]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-array.c
re PR fortran/49636 ([F03] ASSOCIATE construct confused with slightly complicated...
[thirdparty/gcc.git] / gcc / fortran / trans-array.c
1 /* Array translation routines
2 Copyright (C) 2002-2018 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* trans-array.c-- Various array related code, including scalarization,
23 allocation, initialization and other support routines. */
24
25 /* How the scalarizer works.
26 In gfortran, array expressions use the same core routines as scalar
27 expressions.
28 First, a Scalarization State (SS) chain is built. This is done by walking
29 the expression tree, and building a linear list of the terms in the
30 expression. As the tree is walked, scalar subexpressions are translated.
31
32 The scalarization parameters are stored in a gfc_loopinfo structure.
33 First the start and stride of each term is calculated by
34 gfc_conv_ss_startstride. During this process the expressions for the array
35 descriptors and data pointers are also translated.
36
37 If the expression is an assignment, we must then resolve any dependencies.
38 In Fortran all the rhs values of an assignment must be evaluated before
39 any assignments take place. This can require a temporary array to store the
40 values. We also require a temporary when we are passing array expressions
41 or vector subscripts as procedure parameters.
42
43 Array sections are passed without copying to a temporary. These use the
44 scalarizer to determine the shape of the section. The flag
45 loop->array_parameter tells the scalarizer that the actual values and loop
46 variables will not be required.
47
48 The function gfc_conv_loop_setup generates the scalarization setup code.
49 It determines the range of the scalarizing loop variables. If a temporary
50 is required, this is created and initialized. Code for scalar expressions
51 taken outside the loop is also generated at this time. Next the offset and
52 scaling required to translate from loop variables to array indices for each
53 term is calculated.
54
55 A call to gfc_start_scalarized_body marks the start of the scalarized
56 expression. This creates a scope and declares the loop variables. Before
57 calling this gfc_make_ss_chain_used must be used to indicate which terms
58 will be used inside this loop.
59
60 The scalar gfc_conv_* functions are then used to build the main body of the
61 scalarization loop. Scalarization loop variables and precalculated scalar
62 values are automatically substituted. Note that gfc_advance_se_ss_chain
63 must be used, rather than changing the se->ss directly.
64
65 For assignment expressions requiring a temporary two sub loops are
66 generated. The first stores the result of the expression in the temporary,
67 the second copies it to the result. A call to
68 gfc_trans_scalarized_loop_boundary marks the end of the main loop code and
69 the start of the copying loop. The temporary may be less than full rank.
70
71 Finally gfc_trans_scalarizing_loops is called to generate the implicit do
72 loops. The loops are added to the pre chain of the loopinfo. The post
73 chain may still contain cleanup code.
74
75 After the loop code has been added into its parent scope gfc_cleanup_loop
76 is called to free all the SS allocated by the scalarizer. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "options.h"
82 #include "tree.h"
83 #include "gfortran.h"
84 #include "gimple-expr.h"
85 #include "trans.h"
86 #include "fold-const.h"
87 #include "constructor.h"
88 #include "trans-types.h"
89 #include "trans-array.h"
90 #include "trans-const.h"
91 #include "dependency.h"
92
93 static bool gfc_get_array_constructor_size (mpz_t *, gfc_constructor_base);
94
95 /* The contents of this structure aren't actually used, just the address. */
96 static gfc_ss gfc_ss_terminator_var;
97 gfc_ss * const gfc_ss_terminator = &gfc_ss_terminator_var;
98
99
100 static tree
101 gfc_array_dataptr_type (tree desc)
102 {
103 return (GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (desc)));
104 }
105
106
107 /* Build expressions to access the members of an array descriptor.
108 It's surprisingly easy to mess up here, so never access
109 an array descriptor by "brute force", always use these
110 functions. This also avoids problems if we change the format
111 of an array descriptor.
112
113 To understand these magic numbers, look at the comments
114 before gfc_build_array_type() in trans-types.c.
115
116 The code within these defines should be the only code which knows the format
117 of an array descriptor.
118
119 Any code just needing to read obtain the bounds of an array should use
120 gfc_conv_array_* rather than the following functions as these will return
121 know constant values, and work with arrays which do not have descriptors.
122
123 Don't forget to #undef these! */
124
125 #define DATA_FIELD 0
126 #define OFFSET_FIELD 1
127 #define DTYPE_FIELD 2
128 #define SPAN_FIELD 3
129 #define DIMENSION_FIELD 4
130 #define CAF_TOKEN_FIELD 5
131
132 #define STRIDE_SUBFIELD 0
133 #define LBOUND_SUBFIELD 1
134 #define UBOUND_SUBFIELD 2
135
136 /* This provides READ-ONLY access to the data field. The field itself
137 doesn't have the proper type. */
138
139 tree
140 gfc_conv_descriptor_data_get (tree desc)
141 {
142 tree field, type, t;
143
144 type = TREE_TYPE (desc);
145 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
146
147 field = TYPE_FIELDS (type);
148 gcc_assert (DATA_FIELD == 0);
149
150 t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc,
151 field, NULL_TREE);
152 t = fold_convert (GFC_TYPE_ARRAY_DATAPTR_TYPE (type), t);
153
154 return t;
155 }
156
157 /* This provides WRITE access to the data field.
158
159 TUPLES_P is true if we are generating tuples.
160
161 This function gets called through the following macros:
162 gfc_conv_descriptor_data_set
163 gfc_conv_descriptor_data_set. */
164
165 void
166 gfc_conv_descriptor_data_set (stmtblock_t *block, tree desc, tree value)
167 {
168 tree field, type, t;
169
170 type = TREE_TYPE (desc);
171 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
172
173 field = TYPE_FIELDS (type);
174 gcc_assert (DATA_FIELD == 0);
175
176 t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc,
177 field, NULL_TREE);
178 gfc_add_modify (block, t, fold_convert (TREE_TYPE (field), value));
179 }
180
181
182 /* This provides address access to the data field. This should only be
183 used by array allocation, passing this on to the runtime. */
184
185 tree
186 gfc_conv_descriptor_data_addr (tree desc)
187 {
188 tree field, type, t;
189
190 type = TREE_TYPE (desc);
191 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
192
193 field = TYPE_FIELDS (type);
194 gcc_assert (DATA_FIELD == 0);
195
196 t = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), desc,
197 field, NULL_TREE);
198 return gfc_build_addr_expr (NULL_TREE, t);
199 }
200
201 static tree
202 gfc_conv_descriptor_offset (tree desc)
203 {
204 tree type;
205 tree field;
206
207 type = TREE_TYPE (desc);
208 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
209
210 field = gfc_advance_chain (TYPE_FIELDS (type), OFFSET_FIELD);
211 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
212
213 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
214 desc, field, NULL_TREE);
215 }
216
217 tree
218 gfc_conv_descriptor_offset_get (tree desc)
219 {
220 return gfc_conv_descriptor_offset (desc);
221 }
222
223 void
224 gfc_conv_descriptor_offset_set (stmtblock_t *block, tree desc,
225 tree value)
226 {
227 tree t = gfc_conv_descriptor_offset (desc);
228 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
229 }
230
231
232 tree
233 gfc_conv_descriptor_dtype (tree desc)
234 {
235 tree field;
236 tree type;
237
238 type = TREE_TYPE (desc);
239 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
240
241 field = gfc_advance_chain (TYPE_FIELDS (type), DTYPE_FIELD);
242 gcc_assert (field != NULL_TREE
243 && TREE_TYPE (field) == get_dtype_type_node ());
244
245 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
246 desc, field, NULL_TREE);
247 }
248
249 static tree
250 gfc_conv_descriptor_span (tree desc)
251 {
252 tree type;
253 tree field;
254
255 type = TREE_TYPE (desc);
256 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
257
258 field = gfc_advance_chain (TYPE_FIELDS (type), SPAN_FIELD);
259 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
260
261 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
262 desc, field, NULL_TREE);
263 }
264
265 tree
266 gfc_conv_descriptor_span_get (tree desc)
267 {
268 return gfc_conv_descriptor_span (desc);
269 }
270
271 void
272 gfc_conv_descriptor_span_set (stmtblock_t *block, tree desc,
273 tree value)
274 {
275 tree t = gfc_conv_descriptor_span (desc);
276 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
277 }
278
279
280 tree
281 gfc_conv_descriptor_rank (tree desc)
282 {
283 tree tmp;
284 tree dtype;
285
286 dtype = gfc_conv_descriptor_dtype (desc);
287 tmp = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (dtype)), GFC_DTYPE_RANK);
288 gcc_assert (tmp!= NULL_TREE
289 && TREE_TYPE (tmp) == signed_char_type_node);
290 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (tmp),
291 dtype, tmp, NULL_TREE);
292 }
293
294
295 tree
296 gfc_get_descriptor_dimension (tree desc)
297 {
298 tree type, field;
299
300 type = TREE_TYPE (desc);
301 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
302
303 field = gfc_advance_chain (TYPE_FIELDS (type), DIMENSION_FIELD);
304 gcc_assert (field != NULL_TREE
305 && TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE
306 && TREE_CODE (TREE_TYPE (TREE_TYPE (field))) == RECORD_TYPE);
307
308 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
309 desc, field, NULL_TREE);
310 }
311
312
313 static tree
314 gfc_conv_descriptor_dimension (tree desc, tree dim)
315 {
316 tree tmp;
317
318 tmp = gfc_get_descriptor_dimension (desc);
319
320 return gfc_build_array_ref (tmp, dim, NULL);
321 }
322
323
324 tree
325 gfc_conv_descriptor_token (tree desc)
326 {
327 tree type;
328 tree field;
329
330 type = TREE_TYPE (desc);
331 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
332 gcc_assert (flag_coarray == GFC_FCOARRAY_LIB);
333 field = gfc_advance_chain (TYPE_FIELDS (type), CAF_TOKEN_FIELD);
334
335 /* Should be a restricted pointer - except in the finalization wrapper. */
336 gcc_assert (field != NULL_TREE
337 && (TREE_TYPE (field) == prvoid_type_node
338 || TREE_TYPE (field) == pvoid_type_node));
339
340 return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
341 desc, field, NULL_TREE);
342 }
343
344
345 static tree
346 gfc_conv_descriptor_stride (tree desc, tree dim)
347 {
348 tree tmp;
349 tree field;
350
351 tmp = gfc_conv_descriptor_dimension (desc, dim);
352 field = TYPE_FIELDS (TREE_TYPE (tmp));
353 field = gfc_advance_chain (field, STRIDE_SUBFIELD);
354 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
355
356 tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
357 tmp, field, NULL_TREE);
358 return tmp;
359 }
360
361 tree
362 gfc_conv_descriptor_stride_get (tree desc, tree dim)
363 {
364 tree type = TREE_TYPE (desc);
365 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
366 if (integer_zerop (dim)
367 && (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE
368 ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT
369 ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK_CONT
370 ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT))
371 return gfc_index_one_node;
372
373 return gfc_conv_descriptor_stride (desc, dim);
374 }
375
376 void
377 gfc_conv_descriptor_stride_set (stmtblock_t *block, tree desc,
378 tree dim, tree value)
379 {
380 tree t = gfc_conv_descriptor_stride (desc, dim);
381 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
382 }
383
384 static tree
385 gfc_conv_descriptor_lbound (tree desc, tree dim)
386 {
387 tree tmp;
388 tree field;
389
390 tmp = gfc_conv_descriptor_dimension (desc, dim);
391 field = TYPE_FIELDS (TREE_TYPE (tmp));
392 field = gfc_advance_chain (field, LBOUND_SUBFIELD);
393 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
394
395 tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
396 tmp, field, NULL_TREE);
397 return tmp;
398 }
399
400 tree
401 gfc_conv_descriptor_lbound_get (tree desc, tree dim)
402 {
403 return gfc_conv_descriptor_lbound (desc, dim);
404 }
405
406 void
407 gfc_conv_descriptor_lbound_set (stmtblock_t *block, tree desc,
408 tree dim, tree value)
409 {
410 tree t = gfc_conv_descriptor_lbound (desc, dim);
411 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
412 }
413
414 static tree
415 gfc_conv_descriptor_ubound (tree desc, tree dim)
416 {
417 tree tmp;
418 tree field;
419
420 tmp = gfc_conv_descriptor_dimension (desc, dim);
421 field = TYPE_FIELDS (TREE_TYPE (tmp));
422 field = gfc_advance_chain (field, UBOUND_SUBFIELD);
423 gcc_assert (field != NULL_TREE && TREE_TYPE (field) == gfc_array_index_type);
424
425 tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
426 tmp, field, NULL_TREE);
427 return tmp;
428 }
429
430 tree
431 gfc_conv_descriptor_ubound_get (tree desc, tree dim)
432 {
433 return gfc_conv_descriptor_ubound (desc, dim);
434 }
435
436 void
437 gfc_conv_descriptor_ubound_set (stmtblock_t *block, tree desc,
438 tree dim, tree value)
439 {
440 tree t = gfc_conv_descriptor_ubound (desc, dim);
441 gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value));
442 }
443
444 /* Build a null array descriptor constructor. */
445
446 tree
447 gfc_build_null_descriptor (tree type)
448 {
449 tree field;
450 tree tmp;
451
452 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
453 gcc_assert (DATA_FIELD == 0);
454 field = TYPE_FIELDS (type);
455
456 /* Set a NULL data pointer. */
457 tmp = build_constructor_single (type, field, null_pointer_node);
458 TREE_CONSTANT (tmp) = 1;
459 /* All other fields are ignored. */
460
461 return tmp;
462 }
463
464
465 /* Modify a descriptor such that the lbound of a given dimension is the value
466 specified. This also updates ubound and offset accordingly. */
467
468 void
469 gfc_conv_shift_descriptor_lbound (stmtblock_t* block, tree desc,
470 int dim, tree new_lbound)
471 {
472 tree offs, ubound, lbound, stride;
473 tree diff, offs_diff;
474
475 new_lbound = fold_convert (gfc_array_index_type, new_lbound);
476
477 offs = gfc_conv_descriptor_offset_get (desc);
478 lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]);
479 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]);
480 stride = gfc_conv_descriptor_stride_get (desc, gfc_rank_cst[dim]);
481
482 /* Get difference (new - old) by which to shift stuff. */
483 diff = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
484 new_lbound, lbound);
485
486 /* Shift ubound and offset accordingly. This has to be done before
487 updating the lbound, as they depend on the lbound expression! */
488 ubound = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
489 ubound, diff);
490 gfc_conv_descriptor_ubound_set (block, desc, gfc_rank_cst[dim], ubound);
491 offs_diff = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
492 diff, stride);
493 offs = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
494 offs, offs_diff);
495 gfc_conv_descriptor_offset_set (block, desc, offs);
496
497 /* Finally set lbound to value we want. */
498 gfc_conv_descriptor_lbound_set (block, desc, gfc_rank_cst[dim], new_lbound);
499 }
500
501
502 /* Obtain offsets for trans-types.c(gfc_get_array_descr_info). */
503
504 void
505 gfc_get_descriptor_offsets_for_info (const_tree desc_type, tree *data_off,
506 tree *dtype_off, tree *dim_off,
507 tree *dim_size, tree *stride_suboff,
508 tree *lower_suboff, tree *upper_suboff)
509 {
510 tree field;
511 tree type;
512
513 type = TYPE_MAIN_VARIANT (desc_type);
514 field = gfc_advance_chain (TYPE_FIELDS (type), DATA_FIELD);
515 *data_off = byte_position (field);
516 field = gfc_advance_chain (TYPE_FIELDS (type), DTYPE_FIELD);
517 *dtype_off = byte_position (field);
518 field = gfc_advance_chain (TYPE_FIELDS (type), DIMENSION_FIELD);
519 *dim_off = byte_position (field);
520 type = TREE_TYPE (TREE_TYPE (field));
521 *dim_size = TYPE_SIZE_UNIT (type);
522 field = gfc_advance_chain (TYPE_FIELDS (type), STRIDE_SUBFIELD);
523 *stride_suboff = byte_position (field);
524 field = gfc_advance_chain (TYPE_FIELDS (type), LBOUND_SUBFIELD);
525 *lower_suboff = byte_position (field);
526 field = gfc_advance_chain (TYPE_FIELDS (type), UBOUND_SUBFIELD);
527 *upper_suboff = byte_position (field);
528 }
529
530
531 /* Cleanup those #defines. */
532
533 #undef DATA_FIELD
534 #undef OFFSET_FIELD
535 #undef DTYPE_FIELD
536 #undef SPAN_FIELD
537 #undef DIMENSION_FIELD
538 #undef CAF_TOKEN_FIELD
539 #undef STRIDE_SUBFIELD
540 #undef LBOUND_SUBFIELD
541 #undef UBOUND_SUBFIELD
542
543
544 /* Mark a SS chain as used. Flags specifies in which loops the SS is used.
545 flags & 1 = Main loop body.
546 flags & 2 = temp copy loop. */
547
548 void
549 gfc_mark_ss_chain_used (gfc_ss * ss, unsigned flags)
550 {
551 for (; ss != gfc_ss_terminator; ss = ss->next)
552 ss->info->useflags = flags;
553 }
554
555
556 /* Free a gfc_ss chain. */
557
558 void
559 gfc_free_ss_chain (gfc_ss * ss)
560 {
561 gfc_ss *next;
562
563 while (ss != gfc_ss_terminator)
564 {
565 gcc_assert (ss != NULL);
566 next = ss->next;
567 gfc_free_ss (ss);
568 ss = next;
569 }
570 }
571
572
573 static void
574 free_ss_info (gfc_ss_info *ss_info)
575 {
576 int n;
577
578 ss_info->refcount--;
579 if (ss_info->refcount > 0)
580 return;
581
582 gcc_assert (ss_info->refcount == 0);
583
584 switch (ss_info->type)
585 {
586 case GFC_SS_SECTION:
587 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
588 if (ss_info->data.array.subscript[n])
589 gfc_free_ss_chain (ss_info->data.array.subscript[n]);
590 break;
591
592 default:
593 break;
594 }
595
596 free (ss_info);
597 }
598
599
600 /* Free a SS. */
601
602 void
603 gfc_free_ss (gfc_ss * ss)
604 {
605 free_ss_info (ss->info);
606 free (ss);
607 }
608
609
610 /* Creates and initializes an array type gfc_ss struct. */
611
612 gfc_ss *
613 gfc_get_array_ss (gfc_ss *next, gfc_expr *expr, int dimen, gfc_ss_type type)
614 {
615 gfc_ss *ss;
616 gfc_ss_info *ss_info;
617 int i;
618
619 ss_info = gfc_get_ss_info ();
620 ss_info->refcount++;
621 ss_info->type = type;
622 ss_info->expr = expr;
623
624 ss = gfc_get_ss ();
625 ss->info = ss_info;
626 ss->next = next;
627 ss->dimen = dimen;
628 for (i = 0; i < ss->dimen; i++)
629 ss->dim[i] = i;
630
631 return ss;
632 }
633
634
635 /* Creates and initializes a temporary type gfc_ss struct. */
636
637 gfc_ss *
638 gfc_get_temp_ss (tree type, tree string_length, int dimen)
639 {
640 gfc_ss *ss;
641 gfc_ss_info *ss_info;
642 int i;
643
644 ss_info = gfc_get_ss_info ();
645 ss_info->refcount++;
646 ss_info->type = GFC_SS_TEMP;
647 ss_info->string_length = string_length;
648 ss_info->data.temp.type = type;
649
650 ss = gfc_get_ss ();
651 ss->info = ss_info;
652 ss->next = gfc_ss_terminator;
653 ss->dimen = dimen;
654 for (i = 0; i < ss->dimen; i++)
655 ss->dim[i] = i;
656
657 return ss;
658 }
659
660
661 /* Creates and initializes a scalar type gfc_ss struct. */
662
663 gfc_ss *
664 gfc_get_scalar_ss (gfc_ss *next, gfc_expr *expr)
665 {
666 gfc_ss *ss;
667 gfc_ss_info *ss_info;
668
669 ss_info = gfc_get_ss_info ();
670 ss_info->refcount++;
671 ss_info->type = GFC_SS_SCALAR;
672 ss_info->expr = expr;
673
674 ss = gfc_get_ss ();
675 ss->info = ss_info;
676 ss->next = next;
677
678 return ss;
679 }
680
681
682 /* Free all the SS associated with a loop. */
683
684 void
685 gfc_cleanup_loop (gfc_loopinfo * loop)
686 {
687 gfc_loopinfo *loop_next, **ploop;
688 gfc_ss *ss;
689 gfc_ss *next;
690
691 ss = loop->ss;
692 while (ss != gfc_ss_terminator)
693 {
694 gcc_assert (ss != NULL);
695 next = ss->loop_chain;
696 gfc_free_ss (ss);
697 ss = next;
698 }
699
700 /* Remove reference to self in the parent loop. */
701 if (loop->parent)
702 for (ploop = &loop->parent->nested; *ploop; ploop = &(*ploop)->next)
703 if (*ploop == loop)
704 {
705 *ploop = loop->next;
706 break;
707 }
708
709 /* Free non-freed nested loops. */
710 for (loop = loop->nested; loop; loop = loop_next)
711 {
712 loop_next = loop->next;
713 gfc_cleanup_loop (loop);
714 free (loop);
715 }
716 }
717
718
719 static void
720 set_ss_loop (gfc_ss *ss, gfc_loopinfo *loop)
721 {
722 int n;
723
724 for (; ss != gfc_ss_terminator; ss = ss->next)
725 {
726 ss->loop = loop;
727
728 if (ss->info->type == GFC_SS_SCALAR
729 || ss->info->type == GFC_SS_REFERENCE
730 || ss->info->type == GFC_SS_TEMP)
731 continue;
732
733 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
734 if (ss->info->data.array.subscript[n] != NULL)
735 set_ss_loop (ss->info->data.array.subscript[n], loop);
736 }
737 }
738
739
740 /* Associate a SS chain with a loop. */
741
742 void
743 gfc_add_ss_to_loop (gfc_loopinfo * loop, gfc_ss * head)
744 {
745 gfc_ss *ss;
746 gfc_loopinfo *nested_loop;
747
748 if (head == gfc_ss_terminator)
749 return;
750
751 set_ss_loop (head, loop);
752
753 ss = head;
754 for (; ss && ss != gfc_ss_terminator; ss = ss->next)
755 {
756 if (ss->nested_ss)
757 {
758 nested_loop = ss->nested_ss->loop;
759
760 /* More than one ss can belong to the same loop. Hence, we add the
761 loop to the chain only if it is different from the previously
762 added one, to avoid duplicate nested loops. */
763 if (nested_loop != loop->nested)
764 {
765 gcc_assert (nested_loop->parent == NULL);
766 nested_loop->parent = loop;
767
768 gcc_assert (nested_loop->next == NULL);
769 nested_loop->next = loop->nested;
770 loop->nested = nested_loop;
771 }
772 else
773 gcc_assert (nested_loop->parent == loop);
774 }
775
776 if (ss->next == gfc_ss_terminator)
777 ss->loop_chain = loop->ss;
778 else
779 ss->loop_chain = ss->next;
780 }
781 gcc_assert (ss == gfc_ss_terminator);
782 loop->ss = head;
783 }
784
785
786 /* Returns true if the expression is an array pointer. */
787
788 static bool
789 is_pointer_array (tree expr)
790 {
791 if (expr == NULL_TREE
792 || !GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (expr))
793 || GFC_CLASS_TYPE_P (TREE_TYPE (expr)))
794 return false;
795
796 if (TREE_CODE (expr) == VAR_DECL
797 && GFC_DECL_PTR_ARRAY_P (expr))
798 return true;
799
800 if (TREE_CODE (expr) == PARM_DECL
801 && GFC_DECL_PTR_ARRAY_P (expr))
802 return true;
803
804 if (TREE_CODE (expr) == INDIRECT_REF
805 && GFC_DECL_PTR_ARRAY_P (TREE_OPERAND (expr, 0)))
806 return true;
807
808 /* The field declaration is marked as an pointer array. */
809 if (TREE_CODE (expr) == COMPONENT_REF
810 && GFC_DECL_PTR_ARRAY_P (TREE_OPERAND (expr, 1))
811 && !GFC_CLASS_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
812 return true;
813
814 return false;
815 }
816
817
818 /* Return the span of an array. */
819
820 tree
821 gfc_get_array_span (tree desc, gfc_expr *expr)
822 {
823 tree tmp;
824
825 if (is_pointer_array (desc))
826 /* This will have the span field set. */
827 tmp = gfc_conv_descriptor_span_get (desc);
828 else if (TREE_CODE (desc) == COMPONENT_REF
829 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))
830 && GFC_CLASS_TYPE_P (TREE_TYPE (TREE_OPERAND (desc, 0))))
831 {
832 /* The descriptor is a class _data field and so use the vtable
833 size for the receiving span field. */
834 tmp = gfc_get_vptr_from_expr (desc);
835 tmp = gfc_vptr_size_get (tmp);
836 }
837 else if (expr && expr->expr_type == EXPR_VARIABLE
838 && expr->symtree->n.sym->ts.type == BT_CLASS
839 && expr->ref->type == REF_COMPONENT
840 && expr->ref->next->type == REF_ARRAY
841 && expr->ref->next->next == NULL
842 && CLASS_DATA (expr->symtree->n.sym)->attr.dimension)
843 {
844 /* Dummys come in sometimes with the descriptor detached from
845 the class field or declaration. */
846 tmp = gfc_class_vptr_get (expr->symtree->n.sym->backend_decl);
847 tmp = gfc_vptr_size_get (tmp);
848 }
849 else
850 {
851 /* If none of the fancy stuff works, the span is the element
852 size of the array. */
853 tmp = gfc_get_element_type (TREE_TYPE (desc));
854 tmp = fold_convert (gfc_array_index_type,
855 size_in_bytes (tmp));
856 }
857 return tmp;
858 }
859
860
861 /* Generate an initializer for a static pointer or allocatable array. */
862
863 void
864 gfc_trans_static_array_pointer (gfc_symbol * sym)
865 {
866 tree type;
867
868 gcc_assert (TREE_STATIC (sym->backend_decl));
869 /* Just zero the data member. */
870 type = TREE_TYPE (sym->backend_decl);
871 DECL_INITIAL (sym->backend_decl) = gfc_build_null_descriptor (type);
872 }
873
874
875 /* If the bounds of SE's loop have not yet been set, see if they can be
876 determined from array spec AS, which is the array spec of a called
877 function. MAPPING maps the callee's dummy arguments to the values
878 that the caller is passing. Add any initialization and finalization
879 code to SE. */
880
881 void
882 gfc_set_loop_bounds_from_array_spec (gfc_interface_mapping * mapping,
883 gfc_se * se, gfc_array_spec * as)
884 {
885 int n, dim, total_dim;
886 gfc_se tmpse;
887 gfc_ss *ss;
888 tree lower;
889 tree upper;
890 tree tmp;
891
892 total_dim = 0;
893
894 if (!as || as->type != AS_EXPLICIT)
895 return;
896
897 for (ss = se->ss; ss; ss = ss->parent)
898 {
899 total_dim += ss->loop->dimen;
900 for (n = 0; n < ss->loop->dimen; n++)
901 {
902 /* The bound is known, nothing to do. */
903 if (ss->loop->to[n] != NULL_TREE)
904 continue;
905
906 dim = ss->dim[n];
907 gcc_assert (dim < as->rank);
908 gcc_assert (ss->loop->dimen <= as->rank);
909
910 /* Evaluate the lower bound. */
911 gfc_init_se (&tmpse, NULL);
912 gfc_apply_interface_mapping (mapping, &tmpse, as->lower[dim]);
913 gfc_add_block_to_block (&se->pre, &tmpse.pre);
914 gfc_add_block_to_block (&se->post, &tmpse.post);
915 lower = fold_convert (gfc_array_index_type, tmpse.expr);
916
917 /* ...and the upper bound. */
918 gfc_init_se (&tmpse, NULL);
919 gfc_apply_interface_mapping (mapping, &tmpse, as->upper[dim]);
920 gfc_add_block_to_block (&se->pre, &tmpse.pre);
921 gfc_add_block_to_block (&se->post, &tmpse.post);
922 upper = fold_convert (gfc_array_index_type, tmpse.expr);
923
924 /* Set the upper bound of the loop to UPPER - LOWER. */
925 tmp = fold_build2_loc (input_location, MINUS_EXPR,
926 gfc_array_index_type, upper, lower);
927 tmp = gfc_evaluate_now (tmp, &se->pre);
928 ss->loop->to[n] = tmp;
929 }
930 }
931
932 gcc_assert (total_dim == as->rank);
933 }
934
935
936 /* Generate code to allocate an array temporary, or create a variable to
937 hold the data. If size is NULL, zero the descriptor so that the
938 callee will allocate the array. If DEALLOC is true, also generate code to
939 free the array afterwards.
940
941 If INITIAL is not NULL, it is packed using internal_pack and the result used
942 as data instead of allocating a fresh, unitialized area of memory.
943
944 Initialization code is added to PRE and finalization code to POST.
945 DYNAMIC is true if the caller may want to extend the array later
946 using realloc. This prevents us from putting the array on the stack. */
947
948 static void
949 gfc_trans_allocate_array_storage (stmtblock_t * pre, stmtblock_t * post,
950 gfc_array_info * info, tree size, tree nelem,
951 tree initial, bool dynamic, bool dealloc)
952 {
953 tree tmp;
954 tree desc;
955 bool onstack;
956
957 desc = info->descriptor;
958 info->offset = gfc_index_zero_node;
959 if (size == NULL_TREE || integer_zerop (size))
960 {
961 /* A callee allocated array. */
962 gfc_conv_descriptor_data_set (pre, desc, null_pointer_node);
963 onstack = FALSE;
964 }
965 else
966 {
967 /* Allocate the temporary. */
968 onstack = !dynamic && initial == NULL_TREE
969 && (flag_stack_arrays
970 || gfc_can_put_var_on_stack (size));
971
972 if (onstack)
973 {
974 /* Make a temporary variable to hold the data. */
975 tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (nelem),
976 nelem, gfc_index_one_node);
977 tmp = gfc_evaluate_now (tmp, pre);
978 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
979 tmp);
980 tmp = build_array_type (gfc_get_element_type (TREE_TYPE (desc)),
981 tmp);
982 tmp = gfc_create_var (tmp, "A");
983 /* If we're here only because of -fstack-arrays we have to
984 emit a DECL_EXPR to make the gimplifier emit alloca calls. */
985 if (!gfc_can_put_var_on_stack (size))
986 gfc_add_expr_to_block (pre,
987 fold_build1_loc (input_location,
988 DECL_EXPR, TREE_TYPE (tmp),
989 tmp));
990 tmp = gfc_build_addr_expr (NULL_TREE, tmp);
991 gfc_conv_descriptor_data_set (pre, desc, tmp);
992 }
993 else
994 {
995 /* Allocate memory to hold the data or call internal_pack. */
996 if (initial == NULL_TREE)
997 {
998 tmp = gfc_call_malloc (pre, NULL, size);
999 tmp = gfc_evaluate_now (tmp, pre);
1000 }
1001 else
1002 {
1003 tree packed;
1004 tree source_data;
1005 tree was_packed;
1006 stmtblock_t do_copying;
1007
1008 tmp = TREE_TYPE (initial); /* Pointer to descriptor. */
1009 gcc_assert (TREE_CODE (tmp) == POINTER_TYPE);
1010 tmp = TREE_TYPE (tmp); /* The descriptor itself. */
1011 tmp = gfc_get_element_type (tmp);
1012 gcc_assert (tmp == gfc_get_element_type (TREE_TYPE (desc)));
1013 packed = gfc_create_var (build_pointer_type (tmp), "data");
1014
1015 tmp = build_call_expr_loc (input_location,
1016 gfor_fndecl_in_pack, 1, initial);
1017 tmp = fold_convert (TREE_TYPE (packed), tmp);
1018 gfc_add_modify (pre, packed, tmp);
1019
1020 tmp = build_fold_indirect_ref_loc (input_location,
1021 initial);
1022 source_data = gfc_conv_descriptor_data_get (tmp);
1023
1024 /* internal_pack may return source->data without any allocation
1025 or copying if it is already packed. If that's the case, we
1026 need to allocate and copy manually. */
1027
1028 gfc_start_block (&do_copying);
1029 tmp = gfc_call_malloc (&do_copying, NULL, size);
1030 tmp = fold_convert (TREE_TYPE (packed), tmp);
1031 gfc_add_modify (&do_copying, packed, tmp);
1032 tmp = gfc_build_memcpy_call (packed, source_data, size);
1033 gfc_add_expr_to_block (&do_copying, tmp);
1034
1035 was_packed = fold_build2_loc (input_location, EQ_EXPR,
1036 logical_type_node, packed,
1037 source_data);
1038 tmp = gfc_finish_block (&do_copying);
1039 tmp = build3_v (COND_EXPR, was_packed, tmp,
1040 build_empty_stmt (input_location));
1041 gfc_add_expr_to_block (pre, tmp);
1042
1043 tmp = fold_convert (pvoid_type_node, packed);
1044 }
1045
1046 gfc_conv_descriptor_data_set (pre, desc, tmp);
1047 }
1048 }
1049 info->data = gfc_conv_descriptor_data_get (desc);
1050
1051 /* The offset is zero because we create temporaries with a zero
1052 lower bound. */
1053 gfc_conv_descriptor_offset_set (pre, desc, gfc_index_zero_node);
1054
1055 if (dealloc && !onstack)
1056 {
1057 /* Free the temporary. */
1058 tmp = gfc_conv_descriptor_data_get (desc);
1059 tmp = gfc_call_free (tmp);
1060 gfc_add_expr_to_block (post, tmp);
1061 }
1062 }
1063
1064
1065 /* Get the scalarizer array dimension corresponding to actual array dimension
1066 given by ARRAY_DIM.
1067
1068 For example, if SS represents the array ref a(1,:,:,1), it is a
1069 bidimensional scalarizer array, and the result would be 0 for ARRAY_DIM=1,
1070 and 1 for ARRAY_DIM=2.
1071 If SS represents transpose(a(:,1,1,:)), it is again a bidimensional
1072 scalarizer array, and the result would be 1 for ARRAY_DIM=0 and 0 for
1073 ARRAY_DIM=3.
1074 If SS represents sum(a(:,:,:,1), dim=1), it is a 2+1-dimensional scalarizer
1075 array. If called on the inner ss, the result would be respectively 0,1,2 for
1076 ARRAY_DIM=0,1,2. If called on the outer ss, the result would be 0,1
1077 for ARRAY_DIM=1,2. */
1078
1079 static int
1080 get_scalarizer_dim_for_array_dim (gfc_ss *ss, int array_dim)
1081 {
1082 int array_ref_dim;
1083 int n;
1084
1085 array_ref_dim = 0;
1086
1087 for (; ss; ss = ss->parent)
1088 for (n = 0; n < ss->dimen; n++)
1089 if (ss->dim[n] < array_dim)
1090 array_ref_dim++;
1091
1092 return array_ref_dim;
1093 }
1094
1095
1096 static gfc_ss *
1097 innermost_ss (gfc_ss *ss)
1098 {
1099 while (ss->nested_ss != NULL)
1100 ss = ss->nested_ss;
1101
1102 return ss;
1103 }
1104
1105
1106
1107 /* Get the array reference dimension corresponding to the given loop dimension.
1108 It is different from the true array dimension given by the dim array in
1109 the case of a partial array reference (i.e. a(:,:,1,:) for example)
1110 It is different from the loop dimension in the case of a transposed array.
1111 */
1112
1113 static int
1114 get_array_ref_dim_for_loop_dim (gfc_ss *ss, int loop_dim)
1115 {
1116 return get_scalarizer_dim_for_array_dim (innermost_ss (ss),
1117 ss->dim[loop_dim]);
1118 }
1119
1120
1121 /* Generate code to create and initialize the descriptor for a temporary
1122 array. This is used for both temporaries needed by the scalarizer, and
1123 functions returning arrays. Adjusts the loop variables to be
1124 zero-based, and calculates the loop bounds for callee allocated arrays.
1125 Allocate the array unless it's callee allocated (we have a callee
1126 allocated array if 'callee_alloc' is true, or if loop->to[n] is
1127 NULL_TREE for any n). Also fills in the descriptor, data and offset
1128 fields of info if known. Returns the size of the array, or NULL for a
1129 callee allocated array.
1130
1131 'eltype' == NULL signals that the temporary should be a class object.
1132 The 'initial' expression is used to obtain the size of the dynamic
1133 type; otherwise the allocation and initialization proceeds as for any
1134 other expression
1135
1136 PRE, POST, INITIAL, DYNAMIC and DEALLOC are as for
1137 gfc_trans_allocate_array_storage. */
1138
1139 tree
1140 gfc_trans_create_temp_array (stmtblock_t * pre, stmtblock_t * post, gfc_ss * ss,
1141 tree eltype, tree initial, bool dynamic,
1142 bool dealloc, bool callee_alloc, locus * where)
1143 {
1144 gfc_loopinfo *loop;
1145 gfc_ss *s;
1146 gfc_array_info *info;
1147 tree from[GFC_MAX_DIMENSIONS], to[GFC_MAX_DIMENSIONS];
1148 tree type;
1149 tree desc;
1150 tree tmp;
1151 tree size;
1152 tree nelem;
1153 tree cond;
1154 tree or_expr;
1155 tree class_expr = NULL_TREE;
1156 int n, dim, tmp_dim;
1157 int total_dim = 0;
1158
1159 /* This signals a class array for which we need the size of the
1160 dynamic type. Generate an eltype and then the class expression. */
1161 if (eltype == NULL_TREE && initial)
1162 {
1163 gcc_assert (POINTER_TYPE_P (TREE_TYPE (initial)));
1164 class_expr = build_fold_indirect_ref_loc (input_location, initial);
1165 eltype = TREE_TYPE (class_expr);
1166 eltype = gfc_get_element_type (eltype);
1167 /* Obtain the structure (class) expression. */
1168 class_expr = TREE_OPERAND (class_expr, 0);
1169 gcc_assert (class_expr);
1170 }
1171
1172 memset (from, 0, sizeof (from));
1173 memset (to, 0, sizeof (to));
1174
1175 info = &ss->info->data.array;
1176
1177 gcc_assert (ss->dimen > 0);
1178 gcc_assert (ss->loop->dimen == ss->dimen);
1179
1180 if (warn_array_temporaries && where)
1181 gfc_warning (OPT_Warray_temporaries,
1182 "Creating array temporary at %L", where);
1183
1184 /* Set the lower bound to zero. */
1185 for (s = ss; s; s = s->parent)
1186 {
1187 loop = s->loop;
1188
1189 total_dim += loop->dimen;
1190 for (n = 0; n < loop->dimen; n++)
1191 {
1192 dim = s->dim[n];
1193
1194 /* Callee allocated arrays may not have a known bound yet. */
1195 if (loop->to[n])
1196 loop->to[n] = gfc_evaluate_now (
1197 fold_build2_loc (input_location, MINUS_EXPR,
1198 gfc_array_index_type,
1199 loop->to[n], loop->from[n]),
1200 pre);
1201 loop->from[n] = gfc_index_zero_node;
1202
1203 /* We have just changed the loop bounds, we must clear the
1204 corresponding specloop, so that delta calculation is not skipped
1205 later in gfc_set_delta. */
1206 loop->specloop[n] = NULL;
1207
1208 /* We are constructing the temporary's descriptor based on the loop
1209 dimensions. As the dimensions may be accessed in arbitrary order
1210 (think of transpose) the size taken from the n'th loop may not map
1211 to the n'th dimension of the array. We need to reconstruct loop
1212 infos in the right order before using it to set the descriptor
1213 bounds. */
1214 tmp_dim = get_scalarizer_dim_for_array_dim (ss, dim);
1215 from[tmp_dim] = loop->from[n];
1216 to[tmp_dim] = loop->to[n];
1217
1218 info->delta[dim] = gfc_index_zero_node;
1219 info->start[dim] = gfc_index_zero_node;
1220 info->end[dim] = gfc_index_zero_node;
1221 info->stride[dim] = gfc_index_one_node;
1222 }
1223 }
1224
1225 /* Initialize the descriptor. */
1226 type =
1227 gfc_get_array_type_bounds (eltype, total_dim, 0, from, to, 1,
1228 GFC_ARRAY_UNKNOWN, true);
1229 desc = gfc_create_var (type, "atmp");
1230 GFC_DECL_PACKED_ARRAY (desc) = 1;
1231
1232 info->descriptor = desc;
1233 size = gfc_index_one_node;
1234
1235 /* Emit a DECL_EXPR for the variable sized array type in
1236 GFC_TYPE_ARRAY_DATAPTR_TYPE so the gimplification of its type
1237 sizes works correctly. */
1238 tree arraytype = TREE_TYPE (GFC_TYPE_ARRAY_DATAPTR_TYPE (type));
1239 if (! TYPE_NAME (arraytype))
1240 TYPE_NAME (arraytype) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
1241 NULL_TREE, arraytype);
1242 gfc_add_expr_to_block (pre, build1 (DECL_EXPR,
1243 arraytype, TYPE_NAME (arraytype)));
1244
1245 /* Fill in the array dtype. */
1246 tmp = gfc_conv_descriptor_dtype (desc);
1247 gfc_add_modify (pre, tmp, gfc_get_dtype (TREE_TYPE (desc)));
1248
1249 /*
1250 Fill in the bounds and stride. This is a packed array, so:
1251
1252 size = 1;
1253 for (n = 0; n < rank; n++)
1254 {
1255 stride[n] = size
1256 delta = ubound[n] + 1 - lbound[n];
1257 size = size * delta;
1258 }
1259 size = size * sizeof(element);
1260 */
1261
1262 or_expr = NULL_TREE;
1263
1264 /* If there is at least one null loop->to[n], it is a callee allocated
1265 array. */
1266 for (n = 0; n < total_dim; n++)
1267 if (to[n] == NULL_TREE)
1268 {
1269 size = NULL_TREE;
1270 break;
1271 }
1272
1273 if (size == NULL_TREE)
1274 for (s = ss; s; s = s->parent)
1275 for (n = 0; n < s->loop->dimen; n++)
1276 {
1277 dim = get_scalarizer_dim_for_array_dim (ss, s->dim[n]);
1278
1279 /* For a callee allocated array express the loop bounds in terms
1280 of the descriptor fields. */
1281 tmp = fold_build2_loc (input_location,
1282 MINUS_EXPR, gfc_array_index_type,
1283 gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]),
1284 gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]));
1285 s->loop->to[n] = tmp;
1286 }
1287 else
1288 {
1289 for (n = 0; n < total_dim; n++)
1290 {
1291 /* Store the stride and bound components in the descriptor. */
1292 gfc_conv_descriptor_stride_set (pre, desc, gfc_rank_cst[n], size);
1293
1294 gfc_conv_descriptor_lbound_set (pre, desc, gfc_rank_cst[n],
1295 gfc_index_zero_node);
1296
1297 gfc_conv_descriptor_ubound_set (pre, desc, gfc_rank_cst[n], to[n]);
1298
1299 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1300 gfc_array_index_type,
1301 to[n], gfc_index_one_node);
1302
1303 /* Check whether the size for this dimension is negative. */
1304 cond = fold_build2_loc (input_location, LE_EXPR, logical_type_node,
1305 tmp, gfc_index_zero_node);
1306 cond = gfc_evaluate_now (cond, pre);
1307
1308 if (n == 0)
1309 or_expr = cond;
1310 else
1311 or_expr = fold_build2_loc (input_location, TRUTH_OR_EXPR,
1312 logical_type_node, or_expr, cond);
1313
1314 size = fold_build2_loc (input_location, MULT_EXPR,
1315 gfc_array_index_type, size, tmp);
1316 size = gfc_evaluate_now (size, pre);
1317 }
1318 }
1319
1320 /* Get the size of the array. */
1321 if (size && !callee_alloc)
1322 {
1323 tree elemsize;
1324 /* If or_expr is true, then the extent in at least one
1325 dimension is zero and the size is set to zero. */
1326 size = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type,
1327 or_expr, gfc_index_zero_node, size);
1328
1329 nelem = size;
1330 if (class_expr == NULL_TREE)
1331 elemsize = fold_convert (gfc_array_index_type,
1332 TYPE_SIZE_UNIT (gfc_get_element_type (type)));
1333 else
1334 elemsize = gfc_class_vtab_size_get (class_expr);
1335
1336 size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
1337 size, elemsize);
1338 }
1339 else
1340 {
1341 nelem = size;
1342 size = NULL_TREE;
1343 }
1344
1345 gfc_trans_allocate_array_storage (pre, post, info, size, nelem, initial,
1346 dynamic, dealloc);
1347
1348 while (ss->parent)
1349 ss = ss->parent;
1350
1351 if (ss->dimen > ss->loop->temp_dim)
1352 ss->loop->temp_dim = ss->dimen;
1353
1354 return size;
1355 }
1356
1357
1358 /* Return the number of iterations in a loop that starts at START,
1359 ends at END, and has step STEP. */
1360
1361 static tree
1362 gfc_get_iteration_count (tree start, tree end, tree step)
1363 {
1364 tree tmp;
1365 tree type;
1366
1367 type = TREE_TYPE (step);
1368 tmp = fold_build2_loc (input_location, MINUS_EXPR, type, end, start);
1369 tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR, type, tmp, step);
1370 tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp,
1371 build_int_cst (type, 1));
1372 tmp = fold_build2_loc (input_location, MAX_EXPR, type, tmp,
1373 build_int_cst (type, 0));
1374 return fold_convert (gfc_array_index_type, tmp);
1375 }
1376
1377
1378 /* Extend the data in array DESC by EXTRA elements. */
1379
1380 static void
1381 gfc_grow_array (stmtblock_t * pblock, tree desc, tree extra)
1382 {
1383 tree arg0, arg1;
1384 tree tmp;
1385 tree size;
1386 tree ubound;
1387
1388 if (integer_zerop (extra))
1389 return;
1390
1391 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[0]);
1392
1393 /* Add EXTRA to the upper bound. */
1394 tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1395 ubound, extra);
1396 gfc_conv_descriptor_ubound_set (pblock, desc, gfc_rank_cst[0], tmp);
1397
1398 /* Get the value of the current data pointer. */
1399 arg0 = gfc_conv_descriptor_data_get (desc);
1400
1401 /* Calculate the new array size. */
1402 size = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc)));
1403 tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1404 ubound, gfc_index_one_node);
1405 arg1 = fold_build2_loc (input_location, MULT_EXPR, size_type_node,
1406 fold_convert (size_type_node, tmp),
1407 fold_convert (size_type_node, size));
1408
1409 /* Call the realloc() function. */
1410 tmp = gfc_call_realloc (pblock, arg0, arg1);
1411 gfc_conv_descriptor_data_set (pblock, desc, tmp);
1412 }
1413
1414
1415 /* Return true if the bounds of iterator I can only be determined
1416 at run time. */
1417
1418 static inline bool
1419 gfc_iterator_has_dynamic_bounds (gfc_iterator * i)
1420 {
1421 return (i->start->expr_type != EXPR_CONSTANT
1422 || i->end->expr_type != EXPR_CONSTANT
1423 || i->step->expr_type != EXPR_CONSTANT);
1424 }
1425
1426
1427 /* Split the size of constructor element EXPR into the sum of two terms,
1428 one of which can be determined at compile time and one of which must
1429 be calculated at run time. Set *SIZE to the former and return true
1430 if the latter might be nonzero. */
1431
1432 static bool
1433 gfc_get_array_constructor_element_size (mpz_t * size, gfc_expr * expr)
1434 {
1435 if (expr->expr_type == EXPR_ARRAY)
1436 return gfc_get_array_constructor_size (size, expr->value.constructor);
1437 else if (expr->rank > 0)
1438 {
1439 /* Calculate everything at run time. */
1440 mpz_set_ui (*size, 0);
1441 return true;
1442 }
1443 else
1444 {
1445 /* A single element. */
1446 mpz_set_ui (*size, 1);
1447 return false;
1448 }
1449 }
1450
1451
1452 /* Like gfc_get_array_constructor_element_size, but applied to the whole
1453 of array constructor C. */
1454
1455 static bool
1456 gfc_get_array_constructor_size (mpz_t * size, gfc_constructor_base base)
1457 {
1458 gfc_constructor *c;
1459 gfc_iterator *i;
1460 mpz_t val;
1461 mpz_t len;
1462 bool dynamic;
1463
1464 mpz_set_ui (*size, 0);
1465 mpz_init (len);
1466 mpz_init (val);
1467
1468 dynamic = false;
1469 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1470 {
1471 i = c->iterator;
1472 if (i && gfc_iterator_has_dynamic_bounds (i))
1473 dynamic = true;
1474 else
1475 {
1476 dynamic |= gfc_get_array_constructor_element_size (&len, c->expr);
1477 if (i)
1478 {
1479 /* Multiply the static part of the element size by the
1480 number of iterations. */
1481 mpz_sub (val, i->end->value.integer, i->start->value.integer);
1482 mpz_fdiv_q (val, val, i->step->value.integer);
1483 mpz_add_ui (val, val, 1);
1484 if (mpz_sgn (val) > 0)
1485 mpz_mul (len, len, val);
1486 else
1487 mpz_set_ui (len, 0);
1488 }
1489 mpz_add (*size, *size, len);
1490 }
1491 }
1492 mpz_clear (len);
1493 mpz_clear (val);
1494 return dynamic;
1495 }
1496
1497
1498 /* Make sure offset is a variable. */
1499
1500 static void
1501 gfc_put_offset_into_var (stmtblock_t * pblock, tree * poffset,
1502 tree * offsetvar)
1503 {
1504 /* We should have already created the offset variable. We cannot
1505 create it here because we may be in an inner scope. */
1506 gcc_assert (*offsetvar != NULL_TREE);
1507 gfc_add_modify (pblock, *offsetvar, *poffset);
1508 *poffset = *offsetvar;
1509 TREE_USED (*offsetvar) = 1;
1510 }
1511
1512
1513 /* Variables needed for bounds-checking. */
1514 static bool first_len;
1515 static tree first_len_val;
1516 static bool typespec_chararray_ctor;
1517
1518 static void
1519 gfc_trans_array_ctor_element (stmtblock_t * pblock, tree desc,
1520 tree offset, gfc_se * se, gfc_expr * expr)
1521 {
1522 tree tmp;
1523
1524 gfc_conv_expr (se, expr);
1525
1526 /* Store the value. */
1527 tmp = build_fold_indirect_ref_loc (input_location,
1528 gfc_conv_descriptor_data_get (desc));
1529 tmp = gfc_build_array_ref (tmp, offset, NULL);
1530
1531 if (expr->ts.type == BT_CHARACTER)
1532 {
1533 int i = gfc_validate_kind (BT_CHARACTER, expr->ts.kind, false);
1534 tree esize;
1535
1536 esize = size_in_bytes (gfc_get_element_type (TREE_TYPE (desc)));
1537 esize = fold_convert (gfc_charlen_type_node, esize);
1538 esize = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
1539 TREE_TYPE (esize), esize,
1540 build_int_cst (TREE_TYPE (esize),
1541 gfc_character_kinds[i].bit_size / 8));
1542
1543 gfc_conv_string_parameter (se);
1544 if (POINTER_TYPE_P (TREE_TYPE (tmp)))
1545 {
1546 /* The temporary is an array of pointers. */
1547 se->expr = fold_convert (TREE_TYPE (tmp), se->expr);
1548 gfc_add_modify (&se->pre, tmp, se->expr);
1549 }
1550 else
1551 {
1552 /* The temporary is an array of string values. */
1553 tmp = gfc_build_addr_expr (gfc_get_pchar_type (expr->ts.kind), tmp);
1554 /* We know the temporary and the value will be the same length,
1555 so can use memcpy. */
1556 gfc_trans_string_copy (&se->pre, esize, tmp, expr->ts.kind,
1557 se->string_length, se->expr, expr->ts.kind);
1558 }
1559 if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) && !typespec_chararray_ctor)
1560 {
1561 if (first_len)
1562 {
1563 gfc_add_modify (&se->pre, first_len_val,
1564 fold_convert (TREE_TYPE (first_len_val),
1565 se->string_length));
1566 first_len = false;
1567 }
1568 else
1569 {
1570 /* Verify that all constructor elements are of the same
1571 length. */
1572 tree rhs = fold_convert (TREE_TYPE (first_len_val),
1573 se->string_length);
1574 tree cond = fold_build2_loc (input_location, NE_EXPR,
1575 logical_type_node, first_len_val,
1576 rhs);
1577 gfc_trans_runtime_check
1578 (true, false, cond, &se->pre, &expr->where,
1579 "Different CHARACTER lengths (%ld/%ld) in array constructor",
1580 fold_convert (long_integer_type_node, first_len_val),
1581 fold_convert (long_integer_type_node, se->string_length));
1582 }
1583 }
1584 }
1585 else if (GFC_CLASS_TYPE_P (TREE_TYPE (se->expr))
1586 && !GFC_CLASS_TYPE_P (gfc_get_element_type (TREE_TYPE (desc))))
1587 {
1588 /* Assignment of a CLASS array constructor to a derived type array. */
1589 if (expr->expr_type == EXPR_FUNCTION)
1590 se->expr = gfc_evaluate_now (se->expr, pblock);
1591 se->expr = gfc_class_data_get (se->expr);
1592 se->expr = build_fold_indirect_ref_loc (input_location, se->expr);
1593 se->expr = fold_convert (TREE_TYPE (tmp), se->expr);
1594 gfc_add_modify (&se->pre, tmp, se->expr);
1595 }
1596 else
1597 {
1598 /* TODO: Should the frontend already have done this conversion? */
1599 se->expr = fold_convert (TREE_TYPE (tmp), se->expr);
1600 gfc_add_modify (&se->pre, tmp, se->expr);
1601 }
1602
1603 gfc_add_block_to_block (pblock, &se->pre);
1604 gfc_add_block_to_block (pblock, &se->post);
1605 }
1606
1607
1608 /* Add the contents of an array to the constructor. DYNAMIC is as for
1609 gfc_trans_array_constructor_value. */
1610
1611 static void
1612 gfc_trans_array_constructor_subarray (stmtblock_t * pblock,
1613 tree type ATTRIBUTE_UNUSED,
1614 tree desc, gfc_expr * expr,
1615 tree * poffset, tree * offsetvar,
1616 bool dynamic)
1617 {
1618 gfc_se se;
1619 gfc_ss *ss;
1620 gfc_loopinfo loop;
1621 stmtblock_t body;
1622 tree tmp;
1623 tree size;
1624 int n;
1625
1626 /* We need this to be a variable so we can increment it. */
1627 gfc_put_offset_into_var (pblock, poffset, offsetvar);
1628
1629 gfc_init_se (&se, NULL);
1630
1631 /* Walk the array expression. */
1632 ss = gfc_walk_expr (expr);
1633 gcc_assert (ss != gfc_ss_terminator);
1634
1635 /* Initialize the scalarizer. */
1636 gfc_init_loopinfo (&loop);
1637 gfc_add_ss_to_loop (&loop, ss);
1638
1639 /* Initialize the loop. */
1640 gfc_conv_ss_startstride (&loop);
1641 gfc_conv_loop_setup (&loop, &expr->where);
1642
1643 /* Make sure the constructed array has room for the new data. */
1644 if (dynamic)
1645 {
1646 /* Set SIZE to the total number of elements in the subarray. */
1647 size = gfc_index_one_node;
1648 for (n = 0; n < loop.dimen; n++)
1649 {
1650 tmp = gfc_get_iteration_count (loop.from[n], loop.to[n],
1651 gfc_index_one_node);
1652 size = fold_build2_loc (input_location, MULT_EXPR,
1653 gfc_array_index_type, size, tmp);
1654 }
1655
1656 /* Grow the constructed array by SIZE elements. */
1657 gfc_grow_array (&loop.pre, desc, size);
1658 }
1659
1660 /* Make the loop body. */
1661 gfc_mark_ss_chain_used (ss, 1);
1662 gfc_start_scalarized_body (&loop, &body);
1663 gfc_copy_loopinfo_to_se (&se, &loop);
1664 se.ss = ss;
1665
1666 gfc_trans_array_ctor_element (&body, desc, *poffset, &se, expr);
1667 gcc_assert (se.ss == gfc_ss_terminator);
1668
1669 /* Increment the offset. */
1670 tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1671 *poffset, gfc_index_one_node);
1672 gfc_add_modify (&body, *poffset, tmp);
1673
1674 /* Finish the loop. */
1675 gfc_trans_scalarizing_loops (&loop, &body);
1676 gfc_add_block_to_block (&loop.pre, &loop.post);
1677 tmp = gfc_finish_block (&loop.pre);
1678 gfc_add_expr_to_block (pblock, tmp);
1679
1680 gfc_cleanup_loop (&loop);
1681 }
1682
1683
1684 /* Assign the values to the elements of an array constructor. DYNAMIC
1685 is true if descriptor DESC only contains enough data for the static
1686 size calculated by gfc_get_array_constructor_size. When true, memory
1687 for the dynamic parts must be allocated using realloc. */
1688
1689 static void
1690 gfc_trans_array_constructor_value (stmtblock_t * pblock, tree type,
1691 tree desc, gfc_constructor_base base,
1692 tree * poffset, tree * offsetvar,
1693 bool dynamic)
1694 {
1695 tree tmp;
1696 tree start = NULL_TREE;
1697 tree end = NULL_TREE;
1698 tree step = NULL_TREE;
1699 stmtblock_t body;
1700 gfc_se se;
1701 mpz_t size;
1702 gfc_constructor *c;
1703
1704 tree shadow_loopvar = NULL_TREE;
1705 gfc_saved_var saved_loopvar;
1706
1707 mpz_init (size);
1708 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1709 {
1710 /* If this is an iterator or an array, the offset must be a variable. */
1711 if ((c->iterator || c->expr->rank > 0) && INTEGER_CST_P (*poffset))
1712 gfc_put_offset_into_var (pblock, poffset, offsetvar);
1713
1714 /* Shadowing the iterator avoids changing its value and saves us from
1715 keeping track of it. Further, it makes sure that there's always a
1716 backend-decl for the symbol, even if there wasn't one before,
1717 e.g. in the case of an iterator that appears in a specification
1718 expression in an interface mapping. */
1719 if (c->iterator)
1720 {
1721 gfc_symbol *sym;
1722 tree type;
1723
1724 /* Evaluate loop bounds before substituting the loop variable
1725 in case they depend on it. Such a case is invalid, but it is
1726 not more expensive to do the right thing here.
1727 See PR 44354. */
1728 gfc_init_se (&se, NULL);
1729 gfc_conv_expr_val (&se, c->iterator->start);
1730 gfc_add_block_to_block (pblock, &se.pre);
1731 start = gfc_evaluate_now (se.expr, pblock);
1732
1733 gfc_init_se (&se, NULL);
1734 gfc_conv_expr_val (&se, c->iterator->end);
1735 gfc_add_block_to_block (pblock, &se.pre);
1736 end = gfc_evaluate_now (se.expr, pblock);
1737
1738 gfc_init_se (&se, NULL);
1739 gfc_conv_expr_val (&se, c->iterator->step);
1740 gfc_add_block_to_block (pblock, &se.pre);
1741 step = gfc_evaluate_now (se.expr, pblock);
1742
1743 sym = c->iterator->var->symtree->n.sym;
1744 type = gfc_typenode_for_spec (&sym->ts);
1745
1746 shadow_loopvar = gfc_create_var (type, "shadow_loopvar");
1747 gfc_shadow_sym (sym, shadow_loopvar, &saved_loopvar);
1748 }
1749
1750 gfc_start_block (&body);
1751
1752 if (c->expr->expr_type == EXPR_ARRAY)
1753 {
1754 /* Array constructors can be nested. */
1755 gfc_trans_array_constructor_value (&body, type, desc,
1756 c->expr->value.constructor,
1757 poffset, offsetvar, dynamic);
1758 }
1759 else if (c->expr->rank > 0)
1760 {
1761 gfc_trans_array_constructor_subarray (&body, type, desc, c->expr,
1762 poffset, offsetvar, dynamic);
1763 }
1764 else
1765 {
1766 /* This code really upsets the gimplifier so don't bother for now. */
1767 gfc_constructor *p;
1768 HOST_WIDE_INT n;
1769 HOST_WIDE_INT size;
1770
1771 p = c;
1772 n = 0;
1773 while (p && !(p->iterator || p->expr->expr_type != EXPR_CONSTANT))
1774 {
1775 p = gfc_constructor_next (p);
1776 n++;
1777 }
1778 if (n < 4)
1779 {
1780 /* Scalar values. */
1781 gfc_init_se (&se, NULL);
1782 gfc_trans_array_ctor_element (&body, desc, *poffset,
1783 &se, c->expr);
1784
1785 *poffset = fold_build2_loc (input_location, PLUS_EXPR,
1786 gfc_array_index_type,
1787 *poffset, gfc_index_one_node);
1788 }
1789 else
1790 {
1791 /* Collect multiple scalar constants into a constructor. */
1792 vec<constructor_elt, va_gc> *v = NULL;
1793 tree init;
1794 tree bound;
1795 tree tmptype;
1796 HOST_WIDE_INT idx = 0;
1797
1798 p = c;
1799 /* Count the number of consecutive scalar constants. */
1800 while (p && !(p->iterator
1801 || p->expr->expr_type != EXPR_CONSTANT))
1802 {
1803 gfc_init_se (&se, NULL);
1804 gfc_conv_constant (&se, p->expr);
1805
1806 if (c->expr->ts.type != BT_CHARACTER)
1807 se.expr = fold_convert (type, se.expr);
1808 /* For constant character array constructors we build
1809 an array of pointers. */
1810 else if (POINTER_TYPE_P (type))
1811 se.expr = gfc_build_addr_expr
1812 (gfc_get_pchar_type (p->expr->ts.kind),
1813 se.expr);
1814
1815 CONSTRUCTOR_APPEND_ELT (v,
1816 build_int_cst (gfc_array_index_type,
1817 idx++),
1818 se.expr);
1819 c = p;
1820 p = gfc_constructor_next (p);
1821 }
1822
1823 bound = size_int (n - 1);
1824 /* Create an array type to hold them. */
1825 tmptype = build_range_type (gfc_array_index_type,
1826 gfc_index_zero_node, bound);
1827 tmptype = build_array_type (type, tmptype);
1828
1829 init = build_constructor (tmptype, v);
1830 TREE_CONSTANT (init) = 1;
1831 TREE_STATIC (init) = 1;
1832 /* Create a static variable to hold the data. */
1833 tmp = gfc_create_var (tmptype, "data");
1834 TREE_STATIC (tmp) = 1;
1835 TREE_CONSTANT (tmp) = 1;
1836 TREE_READONLY (tmp) = 1;
1837 DECL_INITIAL (tmp) = init;
1838 init = tmp;
1839
1840 /* Use BUILTIN_MEMCPY to assign the values. */
1841 tmp = gfc_conv_descriptor_data_get (desc);
1842 tmp = build_fold_indirect_ref_loc (input_location,
1843 tmp);
1844 tmp = gfc_build_array_ref (tmp, *poffset, NULL);
1845 tmp = gfc_build_addr_expr (NULL_TREE, tmp);
1846 init = gfc_build_addr_expr (NULL_TREE, init);
1847
1848 size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (type));
1849 bound = build_int_cst (size_type_node, n * size);
1850 tmp = build_call_expr_loc (input_location,
1851 builtin_decl_explicit (BUILT_IN_MEMCPY),
1852 3, tmp, init, bound);
1853 gfc_add_expr_to_block (&body, tmp);
1854
1855 *poffset = fold_build2_loc (input_location, PLUS_EXPR,
1856 gfc_array_index_type, *poffset,
1857 build_int_cst (gfc_array_index_type, n));
1858 }
1859 if (!INTEGER_CST_P (*poffset))
1860 {
1861 gfc_add_modify (&body, *offsetvar, *poffset);
1862 *poffset = *offsetvar;
1863 }
1864 }
1865
1866 /* The frontend should already have done any expansions
1867 at compile-time. */
1868 if (!c->iterator)
1869 {
1870 /* Pass the code as is. */
1871 tmp = gfc_finish_block (&body);
1872 gfc_add_expr_to_block (pblock, tmp);
1873 }
1874 else
1875 {
1876 /* Build the implied do-loop. */
1877 stmtblock_t implied_do_block;
1878 tree cond;
1879 tree exit_label;
1880 tree loopbody;
1881 tree tmp2;
1882
1883 loopbody = gfc_finish_block (&body);
1884
1885 /* Create a new block that holds the implied-do loop. A temporary
1886 loop-variable is used. */
1887 gfc_start_block(&implied_do_block);
1888
1889 /* Initialize the loop. */
1890 gfc_add_modify (&implied_do_block, shadow_loopvar, start);
1891
1892 /* If this array expands dynamically, and the number of iterations
1893 is not constant, we won't have allocated space for the static
1894 part of C->EXPR's size. Do that now. */
1895 if (dynamic && gfc_iterator_has_dynamic_bounds (c->iterator))
1896 {
1897 /* Get the number of iterations. */
1898 tmp = gfc_get_iteration_count (shadow_loopvar, end, step);
1899
1900 /* Get the static part of C->EXPR's size. */
1901 gfc_get_array_constructor_element_size (&size, c->expr);
1902 tmp2 = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind);
1903
1904 /* Grow the array by TMP * TMP2 elements. */
1905 tmp = fold_build2_loc (input_location, MULT_EXPR,
1906 gfc_array_index_type, tmp, tmp2);
1907 gfc_grow_array (&implied_do_block, desc, tmp);
1908 }
1909
1910 /* Generate the loop body. */
1911 exit_label = gfc_build_label_decl (NULL_TREE);
1912 gfc_start_block (&body);
1913
1914 /* Generate the exit condition. Depending on the sign of
1915 the step variable we have to generate the correct
1916 comparison. */
1917 tmp = fold_build2_loc (input_location, GT_EXPR, logical_type_node,
1918 step, build_int_cst (TREE_TYPE (step), 0));
1919 cond = fold_build3_loc (input_location, COND_EXPR,
1920 logical_type_node, tmp,
1921 fold_build2_loc (input_location, GT_EXPR,
1922 logical_type_node, shadow_loopvar, end),
1923 fold_build2_loc (input_location, LT_EXPR,
1924 logical_type_node, shadow_loopvar, end));
1925 tmp = build1_v (GOTO_EXPR, exit_label);
1926 TREE_USED (exit_label) = 1;
1927 tmp = build3_v (COND_EXPR, cond, tmp,
1928 build_empty_stmt (input_location));
1929 gfc_add_expr_to_block (&body, tmp);
1930
1931 /* The main loop body. */
1932 gfc_add_expr_to_block (&body, loopbody);
1933
1934 /* Increase loop variable by step. */
1935 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1936 TREE_TYPE (shadow_loopvar), shadow_loopvar,
1937 step);
1938 gfc_add_modify (&body, shadow_loopvar, tmp);
1939
1940 /* Finish the loop. */
1941 tmp = gfc_finish_block (&body);
1942 tmp = build1_v (LOOP_EXPR, tmp);
1943 gfc_add_expr_to_block (&implied_do_block, tmp);
1944
1945 /* Add the exit label. */
1946 tmp = build1_v (LABEL_EXPR, exit_label);
1947 gfc_add_expr_to_block (&implied_do_block, tmp);
1948
1949 /* Finish the implied-do loop. */
1950 tmp = gfc_finish_block(&implied_do_block);
1951 gfc_add_expr_to_block(pblock, tmp);
1952
1953 gfc_restore_sym (c->iterator->var->symtree->n.sym, &saved_loopvar);
1954 }
1955 }
1956 mpz_clear (size);
1957 }
1958
1959
1960 /* The array constructor code can create a string length with an operand
1961 in the form of a temporary variable. This variable will retain its
1962 context (current_function_decl). If we store this length tree in a
1963 gfc_charlen structure which is shared by a variable in another
1964 context, the resulting gfc_charlen structure with a variable in a
1965 different context, we could trip the assertion in expand_expr_real_1
1966 when it sees that a variable has been created in one context and
1967 referenced in another.
1968
1969 If this might be the case, we create a new gfc_charlen structure and
1970 link it into the current namespace. */
1971
1972 static void
1973 store_backend_decl (gfc_charlen **clp, tree len, bool force_new_cl)
1974 {
1975 if (force_new_cl)
1976 {
1977 gfc_charlen *new_cl = gfc_new_charlen (gfc_current_ns, *clp);
1978 *clp = new_cl;
1979 }
1980 (*clp)->backend_decl = len;
1981 }
1982
1983 /* A catch-all to obtain the string length for anything that is not
1984 a substring of non-constant length, a constant, array or variable. */
1985
1986 static void
1987 get_array_ctor_all_strlen (stmtblock_t *block, gfc_expr *e, tree *len)
1988 {
1989 gfc_se se;
1990
1991 /* Don't bother if we already know the length is a constant. */
1992 if (*len && INTEGER_CST_P (*len))
1993 return;
1994
1995 if (!e->ref && e->ts.u.cl && e->ts.u.cl->length
1996 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
1997 {
1998 /* This is easy. */
1999 gfc_conv_const_charlen (e->ts.u.cl);
2000 *len = e->ts.u.cl->backend_decl;
2001 }
2002 else
2003 {
2004 /* Otherwise, be brutal even if inefficient. */
2005 gfc_init_se (&se, NULL);
2006
2007 /* No function call, in case of side effects. */
2008 se.no_function_call = 1;
2009 if (e->rank == 0)
2010 gfc_conv_expr (&se, e);
2011 else
2012 gfc_conv_expr_descriptor (&se, e);
2013
2014 /* Fix the value. */
2015 *len = gfc_evaluate_now (se.string_length, &se.pre);
2016
2017 gfc_add_block_to_block (block, &se.pre);
2018 gfc_add_block_to_block (block, &se.post);
2019
2020 store_backend_decl (&e->ts.u.cl, *len, true);
2021 }
2022 }
2023
2024
2025 /* Figure out the string length of a variable reference expression.
2026 Used by get_array_ctor_strlen. */
2027
2028 static void
2029 get_array_ctor_var_strlen (stmtblock_t *block, gfc_expr * expr, tree * len)
2030 {
2031 gfc_ref *ref;
2032 gfc_typespec *ts;
2033 mpz_t char_len;
2034
2035 /* Don't bother if we already know the length is a constant. */
2036 if (*len && INTEGER_CST_P (*len))
2037 return;
2038
2039 ts = &expr->symtree->n.sym->ts;
2040 for (ref = expr->ref; ref; ref = ref->next)
2041 {
2042 switch (ref->type)
2043 {
2044 case REF_ARRAY:
2045 /* Array references don't change the string length. */
2046 break;
2047
2048 case REF_COMPONENT:
2049 /* Use the length of the component. */
2050 ts = &ref->u.c.component->ts;
2051 break;
2052
2053 case REF_SUBSTRING:
2054 if (ref->u.ss.start->expr_type != EXPR_CONSTANT
2055 || ref->u.ss.end->expr_type != EXPR_CONSTANT)
2056 {
2057 /* Note that this might evaluate expr. */
2058 get_array_ctor_all_strlen (block, expr, len);
2059 return;
2060 }
2061 mpz_init_set_ui (char_len, 1);
2062 mpz_add (char_len, char_len, ref->u.ss.end->value.integer);
2063 mpz_sub (char_len, char_len, ref->u.ss.start->value.integer);
2064 *len = gfc_conv_mpz_to_tree_type (char_len, gfc_charlen_type_node);
2065 mpz_clear (char_len);
2066 return;
2067
2068 default:
2069 gcc_unreachable ();
2070 }
2071 }
2072
2073 *len = ts->u.cl->backend_decl;
2074 }
2075
2076
2077 /* Figure out the string length of a character array constructor.
2078 If len is NULL, don't calculate the length; this happens for recursive calls
2079 when a sub-array-constructor is an element but not at the first position,
2080 so when we're not interested in the length.
2081 Returns TRUE if all elements are character constants. */
2082
2083 bool
2084 get_array_ctor_strlen (stmtblock_t *block, gfc_constructor_base base, tree * len)
2085 {
2086 gfc_constructor *c;
2087 bool is_const;
2088
2089 is_const = TRUE;
2090
2091 if (gfc_constructor_first (base) == NULL)
2092 {
2093 if (len)
2094 *len = build_int_cstu (gfc_charlen_type_node, 0);
2095 return is_const;
2096 }
2097
2098 /* Loop over all constructor elements to find out is_const, but in len we
2099 want to store the length of the first, not the last, element. We can
2100 of course exit the loop as soon as is_const is found to be false. */
2101 for (c = gfc_constructor_first (base);
2102 c && is_const; c = gfc_constructor_next (c))
2103 {
2104 switch (c->expr->expr_type)
2105 {
2106 case EXPR_CONSTANT:
2107 if (len && !(*len && INTEGER_CST_P (*len)))
2108 *len = build_int_cstu (gfc_charlen_type_node,
2109 c->expr->value.character.length);
2110 break;
2111
2112 case EXPR_ARRAY:
2113 if (!get_array_ctor_strlen (block, c->expr->value.constructor, len))
2114 is_const = false;
2115 break;
2116
2117 case EXPR_VARIABLE:
2118 is_const = false;
2119 if (len)
2120 get_array_ctor_var_strlen (block, c->expr, len);
2121 break;
2122
2123 default:
2124 is_const = false;
2125 if (len)
2126 get_array_ctor_all_strlen (block, c->expr, len);
2127 break;
2128 }
2129
2130 /* After the first iteration, we don't want the length modified. */
2131 len = NULL;
2132 }
2133
2134 return is_const;
2135 }
2136
2137 /* Check whether the array constructor C consists entirely of constant
2138 elements, and if so returns the number of those elements, otherwise
2139 return zero. Note, an empty or NULL array constructor returns zero. */
2140
2141 unsigned HOST_WIDE_INT
2142 gfc_constant_array_constructor_p (gfc_constructor_base base)
2143 {
2144 unsigned HOST_WIDE_INT nelem = 0;
2145
2146 gfc_constructor *c = gfc_constructor_first (base);
2147 while (c)
2148 {
2149 if (c->iterator
2150 || c->expr->rank > 0
2151 || c->expr->expr_type != EXPR_CONSTANT)
2152 return 0;
2153 c = gfc_constructor_next (c);
2154 nelem++;
2155 }
2156 return nelem;
2157 }
2158
2159
2160 /* Given EXPR, the constant array constructor specified by an EXPR_ARRAY,
2161 and the tree type of it's elements, TYPE, return a static constant
2162 variable that is compile-time initialized. */
2163
2164 tree
2165 gfc_build_constant_array_constructor (gfc_expr * expr, tree type)
2166 {
2167 tree tmptype, init, tmp;
2168 HOST_WIDE_INT nelem;
2169 gfc_constructor *c;
2170 gfc_array_spec as;
2171 gfc_se se;
2172 int i;
2173 vec<constructor_elt, va_gc> *v = NULL;
2174
2175 /* First traverse the constructor list, converting the constants
2176 to tree to build an initializer. */
2177 nelem = 0;
2178 c = gfc_constructor_first (expr->value.constructor);
2179 while (c)
2180 {
2181 gfc_init_se (&se, NULL);
2182 gfc_conv_constant (&se, c->expr);
2183 if (c->expr->ts.type != BT_CHARACTER)
2184 se.expr = fold_convert (type, se.expr);
2185 else if (POINTER_TYPE_P (type))
2186 se.expr = gfc_build_addr_expr (gfc_get_pchar_type (c->expr->ts.kind),
2187 se.expr);
2188 CONSTRUCTOR_APPEND_ELT (v, build_int_cst (gfc_array_index_type, nelem),
2189 se.expr);
2190 c = gfc_constructor_next (c);
2191 nelem++;
2192 }
2193
2194 /* Next determine the tree type for the array. We use the gfortran
2195 front-end's gfc_get_nodesc_array_type in order to create a suitable
2196 GFC_ARRAY_TYPE_P that may be used by the scalarizer. */
2197
2198 memset (&as, 0, sizeof (gfc_array_spec));
2199
2200 as.rank = expr->rank;
2201 as.type = AS_EXPLICIT;
2202 if (!expr->shape)
2203 {
2204 as.lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
2205 as.upper[0] = gfc_get_int_expr (gfc_default_integer_kind,
2206 NULL, nelem - 1);
2207 }
2208 else
2209 for (i = 0; i < expr->rank; i++)
2210 {
2211 int tmp = (int) mpz_get_si (expr->shape[i]);
2212 as.lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0);
2213 as.upper[i] = gfc_get_int_expr (gfc_default_integer_kind,
2214 NULL, tmp - 1);
2215 }
2216
2217 tmptype = gfc_get_nodesc_array_type (type, &as, PACKED_STATIC, true);
2218
2219 /* as is not needed anymore. */
2220 for (i = 0; i < as.rank + as.corank; i++)
2221 {
2222 gfc_free_expr (as.lower[i]);
2223 gfc_free_expr (as.upper[i]);
2224 }
2225
2226 init = build_constructor (tmptype, v);
2227
2228 TREE_CONSTANT (init) = 1;
2229 TREE_STATIC (init) = 1;
2230
2231 tmp = build_decl (input_location, VAR_DECL, create_tmp_var_name ("A"),
2232 tmptype);
2233 DECL_ARTIFICIAL (tmp) = 1;
2234 DECL_IGNORED_P (tmp) = 1;
2235 TREE_STATIC (tmp) = 1;
2236 TREE_CONSTANT (tmp) = 1;
2237 TREE_READONLY (tmp) = 1;
2238 DECL_INITIAL (tmp) = init;
2239 pushdecl (tmp);
2240
2241 return tmp;
2242 }
2243
2244
2245 /* Translate a constant EXPR_ARRAY array constructor for the scalarizer.
2246 This mostly initializes the scalarizer state info structure with the
2247 appropriate values to directly use the array created by the function
2248 gfc_build_constant_array_constructor. */
2249
2250 static void
2251 trans_constant_array_constructor (gfc_ss * ss, tree type)
2252 {
2253 gfc_array_info *info;
2254 tree tmp;
2255 int i;
2256
2257 tmp = gfc_build_constant_array_constructor (ss->info->expr, type);
2258
2259 info = &ss->info->data.array;
2260
2261 info->descriptor = tmp;
2262 info->data = gfc_build_addr_expr (NULL_TREE, tmp);
2263 info->offset = gfc_index_zero_node;
2264
2265 for (i = 0; i < ss->dimen; i++)
2266 {
2267 info->delta[i] = gfc_index_zero_node;
2268 info->start[i] = gfc_index_zero_node;
2269 info->end[i] = gfc_index_zero_node;
2270 info->stride[i] = gfc_index_one_node;
2271 }
2272 }
2273
2274
2275 static int
2276 get_rank (gfc_loopinfo *loop)
2277 {
2278 int rank;
2279
2280 rank = 0;
2281 for (; loop; loop = loop->parent)
2282 rank += loop->dimen;
2283
2284 return rank;
2285 }
2286
2287
2288 /* Helper routine of gfc_trans_array_constructor to determine if the
2289 bounds of the loop specified by LOOP are constant and simple enough
2290 to use with trans_constant_array_constructor. Returns the
2291 iteration count of the loop if suitable, and NULL_TREE otherwise. */
2292
2293 static tree
2294 constant_array_constructor_loop_size (gfc_loopinfo * l)
2295 {
2296 gfc_loopinfo *loop;
2297 tree size = gfc_index_one_node;
2298 tree tmp;
2299 int i, total_dim;
2300
2301 total_dim = get_rank (l);
2302
2303 for (loop = l; loop; loop = loop->parent)
2304 {
2305 for (i = 0; i < loop->dimen; i++)
2306 {
2307 /* If the bounds aren't constant, return NULL_TREE. */
2308 if (!INTEGER_CST_P (loop->from[i]) || !INTEGER_CST_P (loop->to[i]))
2309 return NULL_TREE;
2310 if (!integer_zerop (loop->from[i]))
2311 {
2312 /* Only allow nonzero "from" in one-dimensional arrays. */
2313 if (total_dim != 1)
2314 return NULL_TREE;
2315 tmp = fold_build2_loc (input_location, MINUS_EXPR,
2316 gfc_array_index_type,
2317 loop->to[i], loop->from[i]);
2318 }
2319 else
2320 tmp = loop->to[i];
2321 tmp = fold_build2_loc (input_location, PLUS_EXPR,
2322 gfc_array_index_type, tmp, gfc_index_one_node);
2323 size = fold_build2_loc (input_location, MULT_EXPR,
2324 gfc_array_index_type, size, tmp);
2325 }
2326 }
2327
2328 return size;
2329 }
2330
2331
2332 static tree *
2333 get_loop_upper_bound_for_array (gfc_ss *array, int array_dim)
2334 {
2335 gfc_ss *ss;
2336 int n;
2337
2338 gcc_assert (array->nested_ss == NULL);
2339
2340 for (ss = array; ss; ss = ss->parent)
2341 for (n = 0; n < ss->loop->dimen; n++)
2342 if (array_dim == get_array_ref_dim_for_loop_dim (ss, n))
2343 return &(ss->loop->to[n]);
2344
2345 gcc_unreachable ();
2346 }
2347
2348
2349 static gfc_loopinfo *
2350 outermost_loop (gfc_loopinfo * loop)
2351 {
2352 while (loop->parent != NULL)
2353 loop = loop->parent;
2354
2355 return loop;
2356 }
2357
2358
2359 /* Array constructors are handled by constructing a temporary, then using that
2360 within the scalarization loop. This is not optimal, but seems by far the
2361 simplest method. */
2362
2363 static void
2364 trans_array_constructor (gfc_ss * ss, locus * where)
2365 {
2366 gfc_constructor_base c;
2367 tree offset;
2368 tree offsetvar;
2369 tree desc;
2370 tree type;
2371 tree tmp;
2372 tree *loop_ubound0;
2373 bool dynamic;
2374 bool old_first_len, old_typespec_chararray_ctor;
2375 tree old_first_len_val;
2376 gfc_loopinfo *loop, *outer_loop;
2377 gfc_ss_info *ss_info;
2378 gfc_expr *expr;
2379 gfc_ss *s;
2380 tree neg_len;
2381 char *msg;
2382
2383 /* Save the old values for nested checking. */
2384 old_first_len = first_len;
2385 old_first_len_val = first_len_val;
2386 old_typespec_chararray_ctor = typespec_chararray_ctor;
2387
2388 loop = ss->loop;
2389 outer_loop = outermost_loop (loop);
2390 ss_info = ss->info;
2391 expr = ss_info->expr;
2392
2393 /* Do bounds-checking here and in gfc_trans_array_ctor_element only if no
2394 typespec was given for the array constructor. */
2395 typespec_chararray_ctor = (expr->ts.type == BT_CHARACTER
2396 && expr->ts.u.cl
2397 && expr->ts.u.cl->length_from_typespec);
2398
2399 if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
2400 && expr->ts.type == BT_CHARACTER && !typespec_chararray_ctor)
2401 {
2402 first_len_val = gfc_create_var (gfc_charlen_type_node, "len");
2403 first_len = true;
2404 }
2405
2406 gcc_assert (ss->dimen == ss->loop->dimen);
2407
2408 c = expr->value.constructor;
2409 if (expr->ts.type == BT_CHARACTER)
2410 {
2411 bool const_string;
2412 bool force_new_cl = false;
2413
2414 /* get_array_ctor_strlen walks the elements of the constructor, if a
2415 typespec was given, we already know the string length and want the one
2416 specified there. */
2417 if (typespec_chararray_ctor && expr->ts.u.cl->length
2418 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT)
2419 {
2420 gfc_se length_se;
2421
2422 const_string = false;
2423 gfc_init_se (&length_se, NULL);
2424 gfc_conv_expr_type (&length_se, expr->ts.u.cl->length,
2425 gfc_charlen_type_node);
2426 ss_info->string_length = length_se.expr;
2427
2428 /* Check if the character length is negative. If it is, then
2429 set LEN = 0. */
2430 neg_len = fold_build2_loc (input_location, LT_EXPR,
2431 logical_type_node, ss_info->string_length,
2432 build_zero_cst (TREE_TYPE
2433 (ss_info->string_length)));
2434 /* Print a warning if bounds checking is enabled. */
2435 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
2436 {
2437 msg = xasprintf ("Negative character length treated as LEN = 0");
2438 gfc_trans_runtime_check (false, true, neg_len, &length_se.pre,
2439 where, msg);
2440 free (msg);
2441 }
2442
2443 ss_info->string_length
2444 = fold_build3_loc (input_location, COND_EXPR,
2445 gfc_charlen_type_node, neg_len,
2446 build_zero_cst
2447 (TREE_TYPE (ss_info->string_length)),
2448 ss_info->string_length);
2449 ss_info->string_length = gfc_evaluate_now (ss_info->string_length,
2450 &length_se.pre);
2451
2452 gfc_add_block_to_block (&outer_loop->pre, &length_se.pre);
2453 gfc_add_block_to_block (&outer_loop->post, &length_se.post);
2454 }
2455 else
2456 {
2457 const_string = get_array_ctor_strlen (&outer_loop->pre, c,
2458 &ss_info->string_length);
2459 force_new_cl = true;
2460 }
2461
2462 /* Complex character array constructors should have been taken care of
2463 and not end up here. */
2464 gcc_assert (ss_info->string_length);
2465
2466 store_backend_decl (&expr->ts.u.cl, ss_info->string_length, force_new_cl);
2467
2468 type = gfc_get_character_type_len (expr->ts.kind, ss_info->string_length);
2469 if (const_string)
2470 type = build_pointer_type (type);
2471 }
2472 else
2473 type = gfc_typenode_for_spec (expr->ts.type == BT_CLASS
2474 ? &CLASS_DATA (expr)->ts : &expr->ts);
2475
2476 /* See if the constructor determines the loop bounds. */
2477 dynamic = false;
2478
2479 loop_ubound0 = get_loop_upper_bound_for_array (ss, 0);
2480
2481 if (expr->shape && get_rank (loop) > 1 && *loop_ubound0 == NULL_TREE)
2482 {
2483 /* We have a multidimensional parameter. */
2484 for (s = ss; s; s = s->parent)
2485 {
2486 int n;
2487 for (n = 0; n < s->loop->dimen; n++)
2488 {
2489 s->loop->from[n] = gfc_index_zero_node;
2490 s->loop->to[n] = gfc_conv_mpz_to_tree (expr->shape[s->dim[n]],
2491 gfc_index_integer_kind);
2492 s->loop->to[n] = fold_build2_loc (input_location, MINUS_EXPR,
2493 gfc_array_index_type,
2494 s->loop->to[n],
2495 gfc_index_one_node);
2496 }
2497 }
2498 }
2499
2500 if (*loop_ubound0 == NULL_TREE)
2501 {
2502 mpz_t size;
2503
2504 /* We should have a 1-dimensional, zero-based loop. */
2505 gcc_assert (loop->parent == NULL && loop->nested == NULL);
2506 gcc_assert (loop->dimen == 1);
2507 gcc_assert (integer_zerop (loop->from[0]));
2508
2509 /* Split the constructor size into a static part and a dynamic part.
2510 Allocate the static size up-front and record whether the dynamic
2511 size might be nonzero. */
2512 mpz_init (size);
2513 dynamic = gfc_get_array_constructor_size (&size, c);
2514 mpz_sub_ui (size, size, 1);
2515 loop->to[0] = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind);
2516 mpz_clear (size);
2517 }
2518
2519 /* Special case constant array constructors. */
2520 if (!dynamic)
2521 {
2522 unsigned HOST_WIDE_INT nelem = gfc_constant_array_constructor_p (c);
2523 if (nelem > 0)
2524 {
2525 tree size = constant_array_constructor_loop_size (loop);
2526 if (size && compare_tree_int (size, nelem) == 0)
2527 {
2528 trans_constant_array_constructor (ss, type);
2529 goto finish;
2530 }
2531 }
2532 }
2533
2534 gfc_trans_create_temp_array (&outer_loop->pre, &outer_loop->post, ss, type,
2535 NULL_TREE, dynamic, true, false, where);
2536
2537 desc = ss_info->data.array.descriptor;
2538 offset = gfc_index_zero_node;
2539 offsetvar = gfc_create_var_np (gfc_array_index_type, "offset");
2540 TREE_NO_WARNING (offsetvar) = 1;
2541 TREE_USED (offsetvar) = 0;
2542 gfc_trans_array_constructor_value (&outer_loop->pre, type, desc, c,
2543 &offset, &offsetvar, dynamic);
2544
2545 /* If the array grows dynamically, the upper bound of the loop variable
2546 is determined by the array's final upper bound. */
2547 if (dynamic)
2548 {
2549 tmp = fold_build2_loc (input_location, MINUS_EXPR,
2550 gfc_array_index_type,
2551 offsetvar, gfc_index_one_node);
2552 tmp = gfc_evaluate_now (tmp, &outer_loop->pre);
2553 gfc_conv_descriptor_ubound_set (&loop->pre, desc, gfc_rank_cst[0], tmp);
2554 if (*loop_ubound0 && VAR_P (*loop_ubound0))
2555 gfc_add_modify (&outer_loop->pre, *loop_ubound0, tmp);
2556 else
2557 *loop_ubound0 = tmp;
2558 }
2559
2560 if (TREE_USED (offsetvar))
2561 pushdecl (offsetvar);
2562 else
2563 gcc_assert (INTEGER_CST_P (offset));
2564
2565 #if 0
2566 /* Disable bound checking for now because it's probably broken. */
2567 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
2568 {
2569 gcc_unreachable ();
2570 }
2571 #endif
2572
2573 finish:
2574 /* Restore old values of globals. */
2575 first_len = old_first_len;
2576 first_len_val = old_first_len_val;
2577 typespec_chararray_ctor = old_typespec_chararray_ctor;
2578 }
2579
2580
2581 /* INFO describes a GFC_SS_SECTION in loop LOOP, and this function is
2582 called after evaluating all of INFO's vector dimensions. Go through
2583 each such vector dimension and see if we can now fill in any missing
2584 loop bounds. */
2585
2586 static void
2587 set_vector_loop_bounds (gfc_ss * ss)
2588 {
2589 gfc_loopinfo *loop, *outer_loop;
2590 gfc_array_info *info;
2591 gfc_se se;
2592 tree tmp;
2593 tree desc;
2594 tree zero;
2595 int n;
2596 int dim;
2597
2598 outer_loop = outermost_loop (ss->loop);
2599
2600 info = &ss->info->data.array;
2601
2602 for (; ss; ss = ss->parent)
2603 {
2604 loop = ss->loop;
2605
2606 for (n = 0; n < loop->dimen; n++)
2607 {
2608 dim = ss->dim[n];
2609 if (info->ref->u.ar.dimen_type[dim] != DIMEN_VECTOR
2610 || loop->to[n] != NULL)
2611 continue;
2612
2613 /* Loop variable N indexes vector dimension DIM, and we don't
2614 yet know the upper bound of loop variable N. Set it to the
2615 difference between the vector's upper and lower bounds. */
2616 gcc_assert (loop->from[n] == gfc_index_zero_node);
2617 gcc_assert (info->subscript[dim]
2618 && info->subscript[dim]->info->type == GFC_SS_VECTOR);
2619
2620 gfc_init_se (&se, NULL);
2621 desc = info->subscript[dim]->info->data.array.descriptor;
2622 zero = gfc_rank_cst[0];
2623 tmp = fold_build2_loc (input_location, MINUS_EXPR,
2624 gfc_array_index_type,
2625 gfc_conv_descriptor_ubound_get (desc, zero),
2626 gfc_conv_descriptor_lbound_get (desc, zero));
2627 tmp = gfc_evaluate_now (tmp, &outer_loop->pre);
2628 loop->to[n] = tmp;
2629 }
2630 }
2631 }
2632
2633
2634 /* Tells whether a scalar argument to an elemental procedure is saved out
2635 of a scalarization loop as a value or as a reference. */
2636
2637 bool
2638 gfc_scalar_elemental_arg_saved_as_reference (gfc_ss_info * ss_info)
2639 {
2640 if (ss_info->type != GFC_SS_REFERENCE)
2641 return false;
2642
2643 /* If the actual argument can be absent (in other words, it can
2644 be a NULL reference), don't try to evaluate it; pass instead
2645 the reference directly. */
2646 if (ss_info->can_be_null_ref)
2647 return true;
2648
2649 /* If the expression is of polymorphic type, it's actual size is not known,
2650 so we avoid copying it anywhere. */
2651 if (ss_info->data.scalar.dummy_arg
2652 && ss_info->data.scalar.dummy_arg->ts.type == BT_CLASS
2653 && ss_info->expr->ts.type == BT_CLASS)
2654 return true;
2655
2656 /* If the expression is a data reference of aggregate type,
2657 and the data reference is not used on the left hand side,
2658 avoid a copy by saving a reference to the content. */
2659 if (!ss_info->data.scalar.needs_temporary
2660 && (ss_info->expr->ts.type == BT_DERIVED
2661 || ss_info->expr->ts.type == BT_CLASS)
2662 && gfc_expr_is_variable (ss_info->expr))
2663 return true;
2664
2665 /* Otherwise the expression is evaluated to a temporary variable before the
2666 scalarization loop. */
2667 return false;
2668 }
2669
2670
2671 /* Add the pre and post chains for all the scalar expressions in a SS chain
2672 to loop. This is called after the loop parameters have been calculated,
2673 but before the actual scalarizing loops. */
2674
2675 static void
2676 gfc_add_loop_ss_code (gfc_loopinfo * loop, gfc_ss * ss, bool subscript,
2677 locus * where)
2678 {
2679 gfc_loopinfo *nested_loop, *outer_loop;
2680 gfc_se se;
2681 gfc_ss_info *ss_info;
2682 gfc_array_info *info;
2683 gfc_expr *expr;
2684 int n;
2685
2686 /* Don't evaluate the arguments for realloc_lhs_loop_for_fcn_call; otherwise,
2687 arguments could get evaluated multiple times. */
2688 if (ss->is_alloc_lhs)
2689 return;
2690
2691 outer_loop = outermost_loop (loop);
2692
2693 /* TODO: This can generate bad code if there are ordering dependencies,
2694 e.g., a callee allocated function and an unknown size constructor. */
2695 gcc_assert (ss != NULL);
2696
2697 for (; ss != gfc_ss_terminator; ss = ss->loop_chain)
2698 {
2699 gcc_assert (ss);
2700
2701 /* Cross loop arrays are handled from within the most nested loop. */
2702 if (ss->nested_ss != NULL)
2703 continue;
2704
2705 ss_info = ss->info;
2706 expr = ss_info->expr;
2707 info = &ss_info->data.array;
2708
2709 switch (ss_info->type)
2710 {
2711 case GFC_SS_SCALAR:
2712 /* Scalar expression. Evaluate this now. This includes elemental
2713 dimension indices, but not array section bounds. */
2714 gfc_init_se (&se, NULL);
2715 gfc_conv_expr (&se, expr);
2716 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2717
2718 if (expr->ts.type != BT_CHARACTER
2719 && !gfc_is_alloc_class_scalar_function (expr))
2720 {
2721 /* Move the evaluation of scalar expressions outside the
2722 scalarization loop, except for WHERE assignments. */
2723 if (subscript)
2724 se.expr = convert(gfc_array_index_type, se.expr);
2725 if (!ss_info->where)
2726 se.expr = gfc_evaluate_now (se.expr, &outer_loop->pre);
2727 gfc_add_block_to_block (&outer_loop->pre, &se.post);
2728 }
2729 else
2730 gfc_add_block_to_block (&outer_loop->post, &se.post);
2731
2732 ss_info->data.scalar.value = se.expr;
2733 ss_info->string_length = se.string_length;
2734 break;
2735
2736 case GFC_SS_REFERENCE:
2737 /* Scalar argument to elemental procedure. */
2738 gfc_init_se (&se, NULL);
2739 if (gfc_scalar_elemental_arg_saved_as_reference (ss_info))
2740 gfc_conv_expr_reference (&se, expr);
2741 else
2742 {
2743 /* Evaluate the argument outside the loop and pass
2744 a reference to the value. */
2745 gfc_conv_expr (&se, expr);
2746 }
2747
2748 /* Ensure that a pointer to the string is stored. */
2749 if (expr->ts.type == BT_CHARACTER)
2750 gfc_conv_string_parameter (&se);
2751
2752 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2753 gfc_add_block_to_block (&outer_loop->post, &se.post);
2754 if (gfc_is_class_scalar_expr (expr))
2755 /* This is necessary because the dynamic type will always be
2756 large than the declared type. In consequence, assigning
2757 the value to a temporary could segfault.
2758 OOP-TODO: see if this is generally correct or is the value
2759 has to be written to an allocated temporary, whose address
2760 is passed via ss_info. */
2761 ss_info->data.scalar.value = se.expr;
2762 else
2763 ss_info->data.scalar.value = gfc_evaluate_now (se.expr,
2764 &outer_loop->pre);
2765
2766 ss_info->string_length = se.string_length;
2767 break;
2768
2769 case GFC_SS_SECTION:
2770 /* Add the expressions for scalar and vector subscripts. */
2771 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
2772 if (info->subscript[n])
2773 gfc_add_loop_ss_code (loop, info->subscript[n], true, where);
2774
2775 set_vector_loop_bounds (ss);
2776 break;
2777
2778 case GFC_SS_VECTOR:
2779 /* Get the vector's descriptor and store it in SS. */
2780 gfc_init_se (&se, NULL);
2781 gfc_conv_expr_descriptor (&se, expr);
2782 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2783 gfc_add_block_to_block (&outer_loop->post, &se.post);
2784 info->descriptor = se.expr;
2785 break;
2786
2787 case GFC_SS_INTRINSIC:
2788 gfc_add_intrinsic_ss_code (loop, ss);
2789 break;
2790
2791 case GFC_SS_FUNCTION:
2792 /* Array function return value. We call the function and save its
2793 result in a temporary for use inside the loop. */
2794 gfc_init_se (&se, NULL);
2795 se.loop = loop;
2796 se.ss = ss;
2797 if (gfc_is_class_array_function (expr))
2798 expr->must_finalize = 1;
2799 gfc_conv_expr (&se, expr);
2800 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2801 gfc_add_block_to_block (&outer_loop->post, &se.post);
2802 ss_info->string_length = se.string_length;
2803 break;
2804
2805 case GFC_SS_CONSTRUCTOR:
2806 if (expr->ts.type == BT_CHARACTER
2807 && ss_info->string_length == NULL
2808 && expr->ts.u.cl
2809 && expr->ts.u.cl->length
2810 && expr->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2811 {
2812 gfc_init_se (&se, NULL);
2813 gfc_conv_expr_type (&se, expr->ts.u.cl->length,
2814 gfc_charlen_type_node);
2815 ss_info->string_length = se.expr;
2816 gfc_add_block_to_block (&outer_loop->pre, &se.pre);
2817 gfc_add_block_to_block (&outer_loop->post, &se.post);
2818 }
2819 trans_array_constructor (ss, where);
2820 break;
2821
2822 case GFC_SS_TEMP:
2823 case GFC_SS_COMPONENT:
2824 /* Do nothing. These are handled elsewhere. */
2825 break;
2826
2827 default:
2828 gcc_unreachable ();
2829 }
2830 }
2831
2832 if (!subscript)
2833 for (nested_loop = loop->nested; nested_loop;
2834 nested_loop = nested_loop->next)
2835 gfc_add_loop_ss_code (nested_loop, nested_loop->ss, subscript, where);
2836 }
2837
2838
2839 /* Translate expressions for the descriptor and data pointer of a SS. */
2840 /*GCC ARRAYS*/
2841
2842 static void
2843 gfc_conv_ss_descriptor (stmtblock_t * block, gfc_ss * ss, int base)
2844 {
2845 gfc_se se;
2846 gfc_ss_info *ss_info;
2847 gfc_array_info *info;
2848 tree tmp;
2849
2850 ss_info = ss->info;
2851 info = &ss_info->data.array;
2852
2853 /* Get the descriptor for the array to be scalarized. */
2854 gcc_assert (ss_info->expr->expr_type == EXPR_VARIABLE);
2855 gfc_init_se (&se, NULL);
2856 se.descriptor_only = 1;
2857 gfc_conv_expr_lhs (&se, ss_info->expr);
2858 gfc_add_block_to_block (block, &se.pre);
2859 info->descriptor = se.expr;
2860 ss_info->string_length = se.string_length;
2861
2862 if (base)
2863 {
2864 if (ss_info->expr->ts.type == BT_CHARACTER && !ss_info->expr->ts.deferred
2865 && ss_info->expr->ts.u.cl->length == NULL)
2866 {
2867 /* Emit a DECL_EXPR for the variable sized array type in
2868 GFC_TYPE_ARRAY_DATAPTR_TYPE so the gimplification of its type
2869 sizes works correctly. */
2870 tree arraytype = TREE_TYPE (
2871 GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (info->descriptor)));
2872 if (! TYPE_NAME (arraytype))
2873 TYPE_NAME (arraytype) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
2874 NULL_TREE, arraytype);
2875 gfc_add_expr_to_block (block, build1 (DECL_EXPR, arraytype,
2876 TYPE_NAME (arraytype)));
2877 }
2878 /* Also the data pointer. */
2879 tmp = gfc_conv_array_data (se.expr);
2880 /* If this is a variable or address of a variable we use it directly.
2881 Otherwise we must evaluate it now to avoid breaking dependency
2882 analysis by pulling the expressions for elemental array indices
2883 inside the loop. */
2884 if (!(DECL_P (tmp)
2885 || (TREE_CODE (tmp) == ADDR_EXPR
2886 && DECL_P (TREE_OPERAND (tmp, 0)))))
2887 tmp = gfc_evaluate_now (tmp, block);
2888 info->data = tmp;
2889
2890 tmp = gfc_conv_array_offset (se.expr);
2891 info->offset = gfc_evaluate_now (tmp, block);
2892
2893 /* Make absolutely sure that the saved_offset is indeed saved
2894 so that the variable is still accessible after the loops
2895 are translated. */
2896 info->saved_offset = info->offset;
2897 }
2898 }
2899
2900
2901 /* Initialize a gfc_loopinfo structure. */
2902
2903 void
2904 gfc_init_loopinfo (gfc_loopinfo * loop)
2905 {
2906 int n;
2907
2908 memset (loop, 0, sizeof (gfc_loopinfo));
2909 gfc_init_block (&loop->pre);
2910 gfc_init_block (&loop->post);
2911
2912 /* Initially scalarize in order and default to no loop reversal. */
2913 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
2914 {
2915 loop->order[n] = n;
2916 loop->reverse[n] = GFC_INHIBIT_REVERSE;
2917 }
2918
2919 loop->ss = gfc_ss_terminator;
2920 }
2921
2922
2923 /* Copies the loop variable info to a gfc_se structure. Does not copy the SS
2924 chain. */
2925
2926 void
2927 gfc_copy_loopinfo_to_se (gfc_se * se, gfc_loopinfo * loop)
2928 {
2929 se->loop = loop;
2930 }
2931
2932
2933 /* Return an expression for the data pointer of an array. */
2934
2935 tree
2936 gfc_conv_array_data (tree descriptor)
2937 {
2938 tree type;
2939
2940 type = TREE_TYPE (descriptor);
2941 if (GFC_ARRAY_TYPE_P (type))
2942 {
2943 if (TREE_CODE (type) == POINTER_TYPE)
2944 return descriptor;
2945 else
2946 {
2947 /* Descriptorless arrays. */
2948 return gfc_build_addr_expr (NULL_TREE, descriptor);
2949 }
2950 }
2951 else
2952 return gfc_conv_descriptor_data_get (descriptor);
2953 }
2954
2955
2956 /* Return an expression for the base offset of an array. */
2957
2958 tree
2959 gfc_conv_array_offset (tree descriptor)
2960 {
2961 tree type;
2962
2963 type = TREE_TYPE (descriptor);
2964 if (GFC_ARRAY_TYPE_P (type))
2965 return GFC_TYPE_ARRAY_OFFSET (type);
2966 else
2967 return gfc_conv_descriptor_offset_get (descriptor);
2968 }
2969
2970
2971 /* Get an expression for the array stride. */
2972
2973 tree
2974 gfc_conv_array_stride (tree descriptor, int dim)
2975 {
2976 tree tmp;
2977 tree type;
2978
2979 type = TREE_TYPE (descriptor);
2980
2981 /* For descriptorless arrays use the array size. */
2982 tmp = GFC_TYPE_ARRAY_STRIDE (type, dim);
2983 if (tmp != NULL_TREE)
2984 return tmp;
2985
2986 tmp = gfc_conv_descriptor_stride_get (descriptor, gfc_rank_cst[dim]);
2987 return tmp;
2988 }
2989
2990
2991 /* Like gfc_conv_array_stride, but for the lower bound. */
2992
2993 tree
2994 gfc_conv_array_lbound (tree descriptor, int dim)
2995 {
2996 tree tmp;
2997 tree type;
2998
2999 type = TREE_TYPE (descriptor);
3000
3001 tmp = GFC_TYPE_ARRAY_LBOUND (type, dim);
3002 if (tmp != NULL_TREE)
3003 return tmp;
3004
3005 tmp = gfc_conv_descriptor_lbound_get (descriptor, gfc_rank_cst[dim]);
3006 return tmp;
3007 }
3008
3009
3010 /* Like gfc_conv_array_stride, but for the upper bound. */
3011
3012 tree
3013 gfc_conv_array_ubound (tree descriptor, int dim)
3014 {
3015 tree tmp;
3016 tree type;
3017
3018 type = TREE_TYPE (descriptor);
3019
3020 tmp = GFC_TYPE_ARRAY_UBOUND (type, dim);
3021 if (tmp != NULL_TREE)
3022 return tmp;
3023
3024 /* This should only ever happen when passing an assumed shape array
3025 as an actual parameter. The value will never be used. */
3026 if (GFC_ARRAY_TYPE_P (TREE_TYPE (descriptor)))
3027 return gfc_index_zero_node;
3028
3029 tmp = gfc_conv_descriptor_ubound_get (descriptor, gfc_rank_cst[dim]);
3030 return tmp;
3031 }
3032
3033
3034 /* Generate code to perform an array index bound check. */
3035
3036 static tree
3037 trans_array_bound_check (gfc_se * se, gfc_ss *ss, tree index, int n,
3038 locus * where, bool check_upper)
3039 {
3040 tree fault;
3041 tree tmp_lo, tmp_up;
3042 tree descriptor;
3043 char *msg;
3044 const char * name = NULL;
3045
3046 if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS))
3047 return index;
3048
3049 descriptor = ss->info->data.array.descriptor;
3050
3051 index = gfc_evaluate_now (index, &se->pre);
3052
3053 /* We find a name for the error message. */
3054 name = ss->info->expr->symtree->n.sym->name;
3055 gcc_assert (name != NULL);
3056
3057 if (VAR_P (descriptor))
3058 name = IDENTIFIER_POINTER (DECL_NAME (descriptor));
3059
3060 /* If upper bound is present, include both bounds in the error message. */
3061 if (check_upper)
3062 {
3063 tmp_lo = gfc_conv_array_lbound (descriptor, n);
3064 tmp_up = gfc_conv_array_ubound (descriptor, n);
3065
3066 if (name)
3067 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
3068 "outside of expected range (%%ld:%%ld)", n+1, name);
3069 else
3070 msg = xasprintf ("Index '%%ld' of dimension %d "
3071 "outside of expected range (%%ld:%%ld)", n+1);
3072
3073 fault = fold_build2_loc (input_location, LT_EXPR, logical_type_node,
3074 index, tmp_lo);
3075 gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
3076 fold_convert (long_integer_type_node, index),
3077 fold_convert (long_integer_type_node, tmp_lo),
3078 fold_convert (long_integer_type_node, tmp_up));
3079 fault = fold_build2_loc (input_location, GT_EXPR, logical_type_node,
3080 index, tmp_up);
3081 gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
3082 fold_convert (long_integer_type_node, index),
3083 fold_convert (long_integer_type_node, tmp_lo),
3084 fold_convert (long_integer_type_node, tmp_up));
3085 free (msg);
3086 }
3087 else
3088 {
3089 tmp_lo = gfc_conv_array_lbound (descriptor, n);
3090
3091 if (name)
3092 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
3093 "below lower bound of %%ld", n+1, name);
3094 else
3095 msg = xasprintf ("Index '%%ld' of dimension %d "
3096 "below lower bound of %%ld", n+1);
3097
3098 fault = fold_build2_loc (input_location, LT_EXPR, logical_type_node,
3099 index, tmp_lo);
3100 gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg,
3101 fold_convert (long_integer_type_node, index),
3102 fold_convert (long_integer_type_node, tmp_lo));
3103 free (msg);
3104 }
3105
3106 return index;
3107 }
3108
3109
3110 /* Return the offset for an index. Performs bound checking for elemental
3111 dimensions. Single element references are processed separately.
3112 DIM is the array dimension, I is the loop dimension. */
3113
3114 static tree
3115 conv_array_index_offset (gfc_se * se, gfc_ss * ss, int dim, int i,
3116 gfc_array_ref * ar, tree stride)
3117 {
3118 gfc_array_info *info;
3119 tree index;
3120 tree desc;
3121 tree data;
3122
3123 info = &ss->info->data.array;
3124
3125 /* Get the index into the array for this dimension. */
3126 if (ar)
3127 {
3128 gcc_assert (ar->type != AR_ELEMENT);
3129 switch (ar->dimen_type[dim])
3130 {
3131 case DIMEN_THIS_IMAGE:
3132 gcc_unreachable ();
3133 break;
3134 case DIMEN_ELEMENT:
3135 /* Elemental dimension. */
3136 gcc_assert (info->subscript[dim]
3137 && info->subscript[dim]->info->type == GFC_SS_SCALAR);
3138 /* We've already translated this value outside the loop. */
3139 index = info->subscript[dim]->info->data.scalar.value;
3140
3141 index = trans_array_bound_check (se, ss, index, dim, &ar->where,
3142 ar->as->type != AS_ASSUMED_SIZE
3143 || dim < ar->dimen - 1);
3144 break;
3145
3146 case DIMEN_VECTOR:
3147 gcc_assert (info && se->loop);
3148 gcc_assert (info->subscript[dim]
3149 && info->subscript[dim]->info->type == GFC_SS_VECTOR);
3150 desc = info->subscript[dim]->info->data.array.descriptor;
3151
3152 /* Get a zero-based index into the vector. */
3153 index = fold_build2_loc (input_location, MINUS_EXPR,
3154 gfc_array_index_type,
3155 se->loop->loopvar[i], se->loop->from[i]);
3156
3157 /* Multiply the index by the stride. */
3158 index = fold_build2_loc (input_location, MULT_EXPR,
3159 gfc_array_index_type,
3160 index, gfc_conv_array_stride (desc, 0));
3161
3162 /* Read the vector to get an index into info->descriptor. */
3163 data = build_fold_indirect_ref_loc (input_location,
3164 gfc_conv_array_data (desc));
3165 index = gfc_build_array_ref (data, index, NULL);
3166 index = gfc_evaluate_now (index, &se->pre);
3167 index = fold_convert (gfc_array_index_type, index);
3168
3169 /* Do any bounds checking on the final info->descriptor index. */
3170 index = trans_array_bound_check (se, ss, index, dim, &ar->where,
3171 ar->as->type != AS_ASSUMED_SIZE
3172 || dim < ar->dimen - 1);
3173 break;
3174
3175 case DIMEN_RANGE:
3176 /* Scalarized dimension. */
3177 gcc_assert (info && se->loop);
3178
3179 /* Multiply the loop variable by the stride and delta. */
3180 index = se->loop->loopvar[i];
3181 if (!integer_onep (info->stride[dim]))
3182 index = fold_build2_loc (input_location, MULT_EXPR,
3183 gfc_array_index_type, index,
3184 info->stride[dim]);
3185 if (!integer_zerop (info->delta[dim]))
3186 index = fold_build2_loc (input_location, PLUS_EXPR,
3187 gfc_array_index_type, index,
3188 info->delta[dim]);
3189 break;
3190
3191 default:
3192 gcc_unreachable ();
3193 }
3194 }
3195 else
3196 {
3197 /* Temporary array or derived type component. */
3198 gcc_assert (se->loop);
3199 index = se->loop->loopvar[se->loop->order[i]];
3200
3201 /* Pointer functions can have stride[0] different from unity.
3202 Use the stride returned by the function call and stored in
3203 the descriptor for the temporary. */
3204 if (se->ss && se->ss->info->type == GFC_SS_FUNCTION
3205 && se->ss->info->expr
3206 && se->ss->info->expr->symtree
3207 && se->ss->info->expr->symtree->n.sym->result
3208 && se->ss->info->expr->symtree->n.sym->result->attr.pointer)
3209 stride = gfc_conv_descriptor_stride_get (info->descriptor,
3210 gfc_rank_cst[dim]);
3211
3212 if (info->delta[dim] && !integer_zerop (info->delta[dim]))
3213 index = fold_build2_loc (input_location, PLUS_EXPR,
3214 gfc_array_index_type, index, info->delta[dim]);
3215 }
3216
3217 /* Multiply by the stride. */
3218 if (stride != NULL && !integer_onep (stride))
3219 index = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
3220 index, stride);
3221
3222 return index;
3223 }
3224
3225
3226 /* Build a scalarized array reference using the vptr 'size'. */
3227
3228 static bool
3229 build_class_array_ref (gfc_se *se, tree base, tree index)
3230 {
3231 tree type;
3232 tree size;
3233 tree offset;
3234 tree decl = NULL_TREE;
3235 tree tmp;
3236 gfc_expr *expr = se->ss->info->expr;
3237 gfc_ref *ref;
3238 gfc_ref *class_ref = NULL;
3239 gfc_typespec *ts;
3240
3241 if (se->expr && DECL_P (se->expr) && DECL_LANG_SPECIFIC (se->expr)
3242 && GFC_DECL_SAVED_DESCRIPTOR (se->expr)
3243 && GFC_CLASS_TYPE_P (TREE_TYPE (GFC_DECL_SAVED_DESCRIPTOR (se->expr))))
3244 decl = se->expr;
3245 else
3246 {
3247 if (expr == NULL
3248 || (expr->ts.type != BT_CLASS
3249 && !gfc_is_class_array_function (expr)
3250 && !gfc_is_class_array_ref (expr, NULL)))
3251 return false;
3252
3253 if (expr->symtree && expr->symtree->n.sym->ts.type == BT_CLASS)
3254 ts = &expr->symtree->n.sym->ts;
3255 else
3256 ts = NULL;
3257
3258 for (ref = expr->ref; ref; ref = ref->next)
3259 {
3260 if (ref->type == REF_COMPONENT
3261 && ref->u.c.component->ts.type == BT_CLASS
3262 && ref->next && ref->next->type == REF_COMPONENT
3263 && strcmp (ref->next->u.c.component->name, "_data") == 0
3264 && ref->next->next
3265 && ref->next->next->type == REF_ARRAY
3266 && ref->next->next->u.ar.type != AR_ELEMENT)
3267 {
3268 ts = &ref->u.c.component->ts;
3269 class_ref = ref;
3270 break;
3271 }
3272 }
3273
3274 if (ts == NULL)
3275 return false;
3276 }
3277
3278 if (class_ref == NULL && expr && expr->symtree->n.sym->attr.function
3279 && expr->symtree->n.sym == expr->symtree->n.sym->result
3280 && expr->symtree->n.sym->backend_decl == current_function_decl)
3281 {
3282 decl = gfc_get_fake_result_decl (expr->symtree->n.sym, 0);
3283 }
3284 else if (expr && gfc_is_class_array_function (expr))
3285 {
3286 size = NULL_TREE;
3287 decl = NULL_TREE;
3288 for (tmp = base; tmp; tmp = TREE_OPERAND (tmp, 0))
3289 {
3290 tree type;
3291 type = TREE_TYPE (tmp);
3292 while (type)
3293 {
3294 if (GFC_CLASS_TYPE_P (type))
3295 decl = tmp;
3296 if (type != TYPE_CANONICAL (type))
3297 type = TYPE_CANONICAL (type);
3298 else
3299 type = NULL_TREE;
3300 }
3301 if (VAR_P (tmp))
3302 break;
3303 }
3304
3305 if (decl == NULL_TREE)
3306 return false;
3307
3308 se->class_vptr = gfc_evaluate_now (gfc_class_vptr_get (decl), &se->pre);
3309 }
3310 else if (class_ref == NULL)
3311 {
3312 if (decl == NULL_TREE)
3313 decl = expr->symtree->n.sym->backend_decl;
3314 /* For class arrays the tree containing the class is stored in
3315 GFC_DECL_SAVED_DESCRIPTOR of the sym's backend_decl.
3316 For all others it's sym's backend_decl directly. */
3317 if (DECL_LANG_SPECIFIC (decl) && GFC_DECL_SAVED_DESCRIPTOR (decl))
3318 decl = GFC_DECL_SAVED_DESCRIPTOR (decl);
3319 }
3320 else
3321 {
3322 /* Remove everything after the last class reference, convert the
3323 expression and then recover its tailend once more. */
3324 gfc_se tmpse;
3325 ref = class_ref->next;
3326 class_ref->next = NULL;
3327 gfc_init_se (&tmpse, NULL);
3328 gfc_conv_expr (&tmpse, expr);
3329 gfc_add_block_to_block (&se->pre, &tmpse.pre);
3330 decl = tmpse.expr;
3331 class_ref->next = ref;
3332 }
3333
3334 if (POINTER_TYPE_P (TREE_TYPE (decl)))
3335 decl = build_fold_indirect_ref_loc (input_location, decl);
3336
3337 if (!GFC_CLASS_TYPE_P (TREE_TYPE (decl)))
3338 return false;
3339
3340 size = gfc_class_vtab_size_get (decl);
3341
3342 /* For unlimited polymorphic entities then _len component needs to be
3343 multiplied with the size. If no _len component is present, then
3344 gfc_class_len_or_zero_get () return a zero_node. */
3345 tmp = gfc_class_len_or_zero_get (decl);
3346 if (!integer_zerop (tmp))
3347 size = fold_build2 (MULT_EXPR, TREE_TYPE (index),
3348 fold_convert (TREE_TYPE (index), size),
3349 fold_build2 (MAX_EXPR, TREE_TYPE (index),
3350 fold_convert (TREE_TYPE (index), tmp),
3351 fold_convert (TREE_TYPE (index),
3352 integer_one_node)));
3353 else
3354 size = fold_convert (TREE_TYPE (index), size);
3355
3356 /* Build the address of the element. */
3357 type = TREE_TYPE (TREE_TYPE (base));
3358 offset = fold_build2_loc (input_location, MULT_EXPR,
3359 gfc_array_index_type,
3360 index, size);
3361 tmp = gfc_build_addr_expr (pvoid_type_node, base);
3362 tmp = fold_build_pointer_plus_loc (input_location, tmp, offset);
3363 tmp = fold_convert (build_pointer_type (type), tmp);
3364
3365 /* Return the element in the se expression. */
3366 se->expr = build_fold_indirect_ref_loc (input_location, tmp);
3367 return true;
3368 }
3369
3370
3371 /* Build a scalarized reference to an array. */
3372
3373 static void
3374 gfc_conv_scalarized_array_ref (gfc_se * se, gfc_array_ref * ar)
3375 {
3376 gfc_array_info *info;
3377 tree decl = NULL_TREE;
3378 tree index;
3379 tree base;
3380 gfc_ss *ss;
3381 gfc_expr *expr;
3382 int n;
3383
3384 ss = se->ss;
3385 expr = ss->info->expr;
3386 info = &ss->info->data.array;
3387 if (ar)
3388 n = se->loop->order[0];
3389 else
3390 n = 0;
3391
3392 index = conv_array_index_offset (se, ss, ss->dim[n], n, ar, info->stride0);
3393 /* Add the offset for this dimension to the stored offset for all other
3394 dimensions. */
3395 if (info->offset && !integer_zerop (info->offset))
3396 index = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
3397 index, info->offset);
3398
3399 base = build_fold_indirect_ref_loc (input_location, info->data);
3400
3401 /* Use the vptr 'size' field to access the element of a class array. */
3402 if (build_class_array_ref (se, base, index))
3403 return;
3404
3405 if (expr && ((is_subref_array (expr)
3406 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (info->descriptor)))
3407 || (expr->ts.deferred && (expr->expr_type == EXPR_VARIABLE
3408 || expr->expr_type == EXPR_FUNCTION))))
3409 decl = expr->symtree->n.sym->backend_decl;
3410
3411 /* A pointer array component can be detected from its field decl. Fix
3412 the descriptor, mark the resulting variable decl and pass it to
3413 gfc_build_array_ref. */
3414 if (is_pointer_array (info->descriptor))
3415 {
3416 if (TREE_CODE (info->descriptor) == COMPONENT_REF)
3417 {
3418 decl = gfc_evaluate_now (info->descriptor, &se->pre);
3419 GFC_DECL_PTR_ARRAY_P (decl) = 1;
3420 TREE_USED (decl) = 1;
3421 }
3422 else if (TREE_CODE (info->descriptor) == INDIRECT_REF)
3423 decl = TREE_OPERAND (info->descriptor, 0);
3424
3425 if (decl == NULL_TREE)
3426 decl = info->descriptor;
3427 }
3428
3429 se->expr = gfc_build_array_ref (base, index, decl);
3430 }
3431
3432
3433 /* Translate access of temporary array. */
3434
3435 void
3436 gfc_conv_tmp_array_ref (gfc_se * se)
3437 {
3438 se->string_length = se->ss->info->string_length;
3439 gfc_conv_scalarized_array_ref (se, NULL);
3440 gfc_advance_se_ss_chain (se);
3441 }
3442
3443 /* Add T to the offset pair *OFFSET, *CST_OFFSET. */
3444
3445 static void
3446 add_to_offset (tree *cst_offset, tree *offset, tree t)
3447 {
3448 if (TREE_CODE (t) == INTEGER_CST)
3449 *cst_offset = int_const_binop (PLUS_EXPR, *cst_offset, t);
3450 else
3451 {
3452 if (!integer_zerop (*offset))
3453 *offset = fold_build2_loc (input_location, PLUS_EXPR,
3454 gfc_array_index_type, *offset, t);
3455 else
3456 *offset = t;
3457 }
3458 }
3459
3460
3461 static tree
3462 build_array_ref (tree desc, tree offset, tree decl, tree vptr)
3463 {
3464 tree tmp;
3465 tree type;
3466 tree cdesc;
3467
3468 /* For class arrays the class declaration is stored in the saved
3469 descriptor. */
3470 if (INDIRECT_REF_P (desc)
3471 && DECL_LANG_SPECIFIC (TREE_OPERAND (desc, 0))
3472 && GFC_DECL_SAVED_DESCRIPTOR (TREE_OPERAND (desc, 0)))
3473 cdesc = gfc_class_data_get (GFC_DECL_SAVED_DESCRIPTOR (
3474 TREE_OPERAND (desc, 0)));
3475 else
3476 cdesc = desc;
3477
3478 /* Class container types do not always have the GFC_CLASS_TYPE_P
3479 but the canonical type does. */
3480 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (cdesc))
3481 && TREE_CODE (cdesc) == COMPONENT_REF)
3482 {
3483 type = TREE_TYPE (TREE_OPERAND (cdesc, 0));
3484 if (TYPE_CANONICAL (type)
3485 && GFC_CLASS_TYPE_P (TYPE_CANONICAL (type)))
3486 vptr = gfc_class_vptr_get (TREE_OPERAND (cdesc, 0));
3487 }
3488
3489 tmp = gfc_conv_array_data (desc);
3490 tmp = build_fold_indirect_ref_loc (input_location, tmp);
3491 tmp = gfc_build_array_ref (tmp, offset, decl, vptr);
3492 return tmp;
3493 }
3494
3495
3496 /* Build an array reference. se->expr already holds the array descriptor.
3497 This should be either a variable, indirect variable reference or component
3498 reference. For arrays which do not have a descriptor, se->expr will be
3499 the data pointer.
3500 a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]*/
3501
3502 void
3503 gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr,
3504 locus * where)
3505 {
3506 int n;
3507 tree offset, cst_offset;
3508 tree tmp;
3509 tree stride;
3510 tree decl = NULL_TREE;
3511 gfc_se indexse;
3512 gfc_se tmpse;
3513 gfc_symbol * sym = expr->symtree->n.sym;
3514 char *var_name = NULL;
3515
3516 if (ar->dimen == 0)
3517 {
3518 gcc_assert (ar->codimen);
3519
3520 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr)))
3521 se->expr = build_fold_indirect_ref (gfc_conv_array_data (se->expr));
3522 else
3523 {
3524 if (GFC_ARRAY_TYPE_P (TREE_TYPE (se->expr))
3525 && TREE_CODE (TREE_TYPE (se->expr)) == POINTER_TYPE)
3526 se->expr = build_fold_indirect_ref_loc (input_location, se->expr);
3527
3528 /* Use the actual tree type and not the wrapped coarray. */
3529 if (!se->want_pointer)
3530 se->expr = fold_convert (TYPE_MAIN_VARIANT (TREE_TYPE (se->expr)),
3531 se->expr);
3532 }
3533
3534 return;
3535 }
3536
3537 /* Handle scalarized references separately. */
3538 if (ar->type != AR_ELEMENT)
3539 {
3540 gfc_conv_scalarized_array_ref (se, ar);
3541 gfc_advance_se_ss_chain (se);
3542 return;
3543 }
3544
3545 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
3546 {
3547 size_t len;
3548 gfc_ref *ref;
3549
3550 len = strlen (sym->name) + 1;
3551 for (ref = expr->ref; ref; ref = ref->next)
3552 {
3553 if (ref->type == REF_ARRAY && &ref->u.ar == ar)
3554 break;
3555 if (ref->type == REF_COMPONENT)
3556 len += 2 + strlen (ref->u.c.component->name);
3557 }
3558
3559 var_name = XALLOCAVEC (char, len);
3560 strcpy (var_name, sym->name);
3561
3562 for (ref = expr->ref; ref; ref = ref->next)
3563 {
3564 if (ref->type == REF_ARRAY && &ref->u.ar == ar)
3565 break;
3566 if (ref->type == REF_COMPONENT)
3567 {
3568 strcat (var_name, "%%");
3569 strcat (var_name, ref->u.c.component->name);
3570 }
3571 }
3572 }
3573
3574 cst_offset = offset = gfc_index_zero_node;
3575 add_to_offset (&cst_offset, &offset, gfc_conv_array_offset (se->expr));
3576
3577 /* Calculate the offsets from all the dimensions. Make sure to associate
3578 the final offset so that we form a chain of loop invariant summands. */
3579 for (n = ar->dimen - 1; n >= 0; n--)
3580 {
3581 /* Calculate the index for this dimension. */
3582 gfc_init_se (&indexse, se);
3583 gfc_conv_expr_type (&indexse, ar->start[n], gfc_array_index_type);
3584 gfc_add_block_to_block (&se->pre, &indexse.pre);
3585
3586 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
3587 {
3588 /* Check array bounds. */
3589 tree cond;
3590 char *msg;
3591
3592 /* Evaluate the indexse.expr only once. */
3593 indexse.expr = save_expr (indexse.expr);
3594
3595 /* Lower bound. */
3596 tmp = gfc_conv_array_lbound (se->expr, n);
3597 if (sym->attr.temporary)
3598 {
3599 gfc_init_se (&tmpse, se);
3600 gfc_conv_expr_type (&tmpse, ar->as->lower[n],
3601 gfc_array_index_type);
3602 gfc_add_block_to_block (&se->pre, &tmpse.pre);
3603 tmp = tmpse.expr;
3604 }
3605
3606 cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node,
3607 indexse.expr, tmp);
3608 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
3609 "below lower bound of %%ld", n+1, var_name);
3610 gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg,
3611 fold_convert (long_integer_type_node,
3612 indexse.expr),
3613 fold_convert (long_integer_type_node, tmp));
3614 free (msg);
3615
3616 /* Upper bound, but not for the last dimension of assumed-size
3617 arrays. */
3618 if (n < ar->dimen - 1 || ar->as->type != AS_ASSUMED_SIZE)
3619 {
3620 tmp = gfc_conv_array_ubound (se->expr, n);
3621 if (sym->attr.temporary)
3622 {
3623 gfc_init_se (&tmpse, se);
3624 gfc_conv_expr_type (&tmpse, ar->as->upper[n],
3625 gfc_array_index_type);
3626 gfc_add_block_to_block (&se->pre, &tmpse.pre);
3627 tmp = tmpse.expr;
3628 }
3629
3630 cond = fold_build2_loc (input_location, GT_EXPR,
3631 logical_type_node, indexse.expr, tmp);
3632 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
3633 "above upper bound of %%ld", n+1, var_name);
3634 gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg,
3635 fold_convert (long_integer_type_node,
3636 indexse.expr),
3637 fold_convert (long_integer_type_node, tmp));
3638 free (msg);
3639 }
3640 }
3641
3642 /* Multiply the index by the stride. */
3643 stride = gfc_conv_array_stride (se->expr, n);
3644 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
3645 indexse.expr, stride);
3646
3647 /* And add it to the total. */
3648 add_to_offset (&cst_offset, &offset, tmp);
3649 }
3650
3651 if (!integer_zerop (cst_offset))
3652 offset = fold_build2_loc (input_location, PLUS_EXPR,
3653 gfc_array_index_type, offset, cst_offset);
3654
3655 /* A pointer array component can be detected from its field decl. Fix
3656 the descriptor, mark the resulting variable decl and pass it to
3657 build_array_ref. */
3658 if (!expr->ts.deferred && !sym->attr.codimension
3659 && is_pointer_array (se->expr))
3660 {
3661 if (TREE_CODE (se->expr) == COMPONENT_REF)
3662 {
3663 decl = gfc_evaluate_now (se->expr, &se->pre);
3664 GFC_DECL_PTR_ARRAY_P (decl) = 1;
3665 TREE_USED (decl) = 1;
3666 }
3667 else if (TREE_CODE (se->expr) == INDIRECT_REF)
3668 decl = TREE_OPERAND (se->expr, 0);
3669 else
3670 decl = se->expr;
3671 }
3672 else if (expr->ts.deferred
3673 || (sym->ts.type == BT_CHARACTER
3674 && sym->attr.select_type_temporary))
3675 decl = sym->backend_decl;
3676 else if (sym->ts.type == BT_CLASS)
3677 decl = NULL_TREE;
3678
3679 se->expr = build_array_ref (se->expr, offset, decl, se->class_vptr);
3680 }
3681
3682
3683 /* Add the offset corresponding to array's ARRAY_DIM dimension and loop's
3684 LOOP_DIM dimension (if any) to array's offset. */
3685
3686 static void
3687 add_array_offset (stmtblock_t *pblock, gfc_loopinfo *loop, gfc_ss *ss,
3688 gfc_array_ref *ar, int array_dim, int loop_dim)
3689 {
3690 gfc_se se;
3691 gfc_array_info *info;
3692 tree stride, index;
3693
3694 info = &ss->info->data.array;
3695
3696 gfc_init_se (&se, NULL);
3697 se.loop = loop;
3698 se.expr = info->descriptor;
3699 stride = gfc_conv_array_stride (info->descriptor, array_dim);
3700 index = conv_array_index_offset (&se, ss, array_dim, loop_dim, ar, stride);
3701 gfc_add_block_to_block (pblock, &se.pre);
3702
3703 info->offset = fold_build2_loc (input_location, PLUS_EXPR,
3704 gfc_array_index_type,
3705 info->offset, index);
3706 info->offset = gfc_evaluate_now (info->offset, pblock);
3707 }
3708
3709
3710 /* Generate the code to be executed immediately before entering a
3711 scalarization loop. */
3712
3713 static void
3714 gfc_trans_preloop_setup (gfc_loopinfo * loop, int dim, int flag,
3715 stmtblock_t * pblock)
3716 {
3717 tree stride;
3718 gfc_ss_info *ss_info;
3719 gfc_array_info *info;
3720 gfc_ss_type ss_type;
3721 gfc_ss *ss, *pss;
3722 gfc_loopinfo *ploop;
3723 gfc_array_ref *ar;
3724 int i;
3725
3726 /* This code will be executed before entering the scalarization loop
3727 for this dimension. */
3728 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3729 {
3730 ss_info = ss->info;
3731
3732 if ((ss_info->useflags & flag) == 0)
3733 continue;
3734
3735 ss_type = ss_info->type;
3736 if (ss_type != GFC_SS_SECTION
3737 && ss_type != GFC_SS_FUNCTION
3738 && ss_type != GFC_SS_CONSTRUCTOR
3739 && ss_type != GFC_SS_COMPONENT)
3740 continue;
3741
3742 info = &ss_info->data.array;
3743
3744 gcc_assert (dim < ss->dimen);
3745 gcc_assert (ss->dimen == loop->dimen);
3746
3747 if (info->ref)
3748 ar = &info->ref->u.ar;
3749 else
3750 ar = NULL;
3751
3752 if (dim == loop->dimen - 1 && loop->parent != NULL)
3753 {
3754 /* If we are in the outermost dimension of this loop, the previous
3755 dimension shall be in the parent loop. */
3756 gcc_assert (ss->parent != NULL);
3757
3758 pss = ss->parent;
3759 ploop = loop->parent;
3760
3761 /* ss and ss->parent are about the same array. */
3762 gcc_assert (ss_info == pss->info);
3763 }
3764 else
3765 {
3766 ploop = loop;
3767 pss = ss;
3768 }
3769
3770 if (dim == loop->dimen - 1)
3771 i = 0;
3772 else
3773 i = dim + 1;
3774
3775 /* For the time being, there is no loop reordering. */
3776 gcc_assert (i == ploop->order[i]);
3777 i = ploop->order[i];
3778
3779 if (dim == loop->dimen - 1 && loop->parent == NULL)
3780 {
3781 stride = gfc_conv_array_stride (info->descriptor,
3782 innermost_ss (ss)->dim[i]);
3783
3784 /* Calculate the stride of the innermost loop. Hopefully this will
3785 allow the backend optimizers to do their stuff more effectively.
3786 */
3787 info->stride0 = gfc_evaluate_now (stride, pblock);
3788
3789 /* For the outermost loop calculate the offset due to any
3790 elemental dimensions. It will have been initialized with the
3791 base offset of the array. */
3792 if (info->ref)
3793 {
3794 for (i = 0; i < ar->dimen; i++)
3795 {
3796 if (ar->dimen_type[i] != DIMEN_ELEMENT)
3797 continue;
3798
3799 add_array_offset (pblock, loop, ss, ar, i, /* unused */ -1);
3800 }
3801 }
3802 }
3803 else
3804 /* Add the offset for the previous loop dimension. */
3805 add_array_offset (pblock, ploop, ss, ar, pss->dim[i], i);
3806
3807 /* Remember this offset for the second loop. */
3808 if (dim == loop->temp_dim - 1 && loop->parent == NULL)
3809 info->saved_offset = info->offset;
3810 }
3811 }
3812
3813
3814 /* Start a scalarized expression. Creates a scope and declares loop
3815 variables. */
3816
3817 void
3818 gfc_start_scalarized_body (gfc_loopinfo * loop, stmtblock_t * pbody)
3819 {
3820 int dim;
3821 int n;
3822 int flags;
3823
3824 gcc_assert (!loop->array_parameter);
3825
3826 for (dim = loop->dimen - 1; dim >= 0; dim--)
3827 {
3828 n = loop->order[dim];
3829
3830 gfc_start_block (&loop->code[n]);
3831
3832 /* Create the loop variable. */
3833 loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "S");
3834
3835 if (dim < loop->temp_dim)
3836 flags = 3;
3837 else
3838 flags = 1;
3839 /* Calculate values that will be constant within this loop. */
3840 gfc_trans_preloop_setup (loop, dim, flags, &loop->code[n]);
3841 }
3842 gfc_start_block (pbody);
3843 }
3844
3845
3846 /* Generates the actual loop code for a scalarization loop. */
3847
3848 void
3849 gfc_trans_scalarized_loop_end (gfc_loopinfo * loop, int n,
3850 stmtblock_t * pbody)
3851 {
3852 stmtblock_t block;
3853 tree cond;
3854 tree tmp;
3855 tree loopbody;
3856 tree exit_label;
3857 tree stmt;
3858 tree init;
3859 tree incr;
3860
3861 if ((ompws_flags & (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS
3862 | OMPWS_SCALARIZER_BODY))
3863 == (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS)
3864 && n == loop->dimen - 1)
3865 {
3866 /* We create an OMP_FOR construct for the outermost scalarized loop. */
3867 init = make_tree_vec (1);
3868 cond = make_tree_vec (1);
3869 incr = make_tree_vec (1);
3870
3871 /* Cycle statement is implemented with a goto. Exit statement must not
3872 be present for this loop. */
3873 exit_label = gfc_build_label_decl (NULL_TREE);
3874 TREE_USED (exit_label) = 1;
3875
3876 /* Label for cycle statements (if needed). */
3877 tmp = build1_v (LABEL_EXPR, exit_label);
3878 gfc_add_expr_to_block (pbody, tmp);
3879
3880 stmt = make_node (OMP_FOR);
3881
3882 TREE_TYPE (stmt) = void_type_node;
3883 OMP_FOR_BODY (stmt) = loopbody = gfc_finish_block (pbody);
3884
3885 OMP_FOR_CLAUSES (stmt) = build_omp_clause (input_location,
3886 OMP_CLAUSE_SCHEDULE);
3887 OMP_CLAUSE_SCHEDULE_KIND (OMP_FOR_CLAUSES (stmt))
3888 = OMP_CLAUSE_SCHEDULE_STATIC;
3889 if (ompws_flags & OMPWS_NOWAIT)
3890 OMP_CLAUSE_CHAIN (OMP_FOR_CLAUSES (stmt))
3891 = build_omp_clause (input_location, OMP_CLAUSE_NOWAIT);
3892
3893 /* Initialize the loopvar. */
3894 TREE_VEC_ELT (init, 0) = build2_v (MODIFY_EXPR, loop->loopvar[n],
3895 loop->from[n]);
3896 OMP_FOR_INIT (stmt) = init;
3897 /* The exit condition. */
3898 TREE_VEC_ELT (cond, 0) = build2_loc (input_location, LE_EXPR,
3899 logical_type_node,
3900 loop->loopvar[n], loop->to[n]);
3901 SET_EXPR_LOCATION (TREE_VEC_ELT (cond, 0), input_location);
3902 OMP_FOR_COND (stmt) = cond;
3903 /* Increment the loopvar. */
3904 tmp = build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
3905 loop->loopvar[n], gfc_index_one_node);
3906 TREE_VEC_ELT (incr, 0) = fold_build2_loc (input_location, MODIFY_EXPR,
3907 void_type_node, loop->loopvar[n], tmp);
3908 OMP_FOR_INCR (stmt) = incr;
3909
3910 ompws_flags &= ~OMPWS_CURR_SINGLEUNIT;
3911 gfc_add_expr_to_block (&loop->code[n], stmt);
3912 }
3913 else
3914 {
3915 bool reverse_loop = (loop->reverse[n] == GFC_REVERSE_SET)
3916 && (loop->temp_ss == NULL);
3917
3918 loopbody = gfc_finish_block (pbody);
3919
3920 if (reverse_loop)
3921 std::swap (loop->from[n], loop->to[n]);
3922
3923 /* Initialize the loopvar. */
3924 if (loop->loopvar[n] != loop->from[n])
3925 gfc_add_modify (&loop->code[n], loop->loopvar[n], loop->from[n]);
3926
3927 exit_label = gfc_build_label_decl (NULL_TREE);
3928
3929 /* Generate the loop body. */
3930 gfc_init_block (&block);
3931
3932 /* The exit condition. */
3933 cond = fold_build2_loc (input_location, reverse_loop ? LT_EXPR : GT_EXPR,
3934 logical_type_node, loop->loopvar[n], loop->to[n]);
3935 tmp = build1_v (GOTO_EXPR, exit_label);
3936 TREE_USED (exit_label) = 1;
3937 tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location));
3938 gfc_add_expr_to_block (&block, tmp);
3939
3940 /* The main body. */
3941 gfc_add_expr_to_block (&block, loopbody);
3942
3943 /* Increment the loopvar. */
3944 tmp = fold_build2_loc (input_location,
3945 reverse_loop ? MINUS_EXPR : PLUS_EXPR,
3946 gfc_array_index_type, loop->loopvar[n],
3947 gfc_index_one_node);
3948
3949 gfc_add_modify (&block, loop->loopvar[n], tmp);
3950
3951 /* Build the loop. */
3952 tmp = gfc_finish_block (&block);
3953 tmp = build1_v (LOOP_EXPR, tmp);
3954 gfc_add_expr_to_block (&loop->code[n], tmp);
3955
3956 /* Add the exit label. */
3957 tmp = build1_v (LABEL_EXPR, exit_label);
3958 gfc_add_expr_to_block (&loop->code[n], tmp);
3959 }
3960
3961 }
3962
3963
3964 /* Finishes and generates the loops for a scalarized expression. */
3965
3966 void
3967 gfc_trans_scalarizing_loops (gfc_loopinfo * loop, stmtblock_t * body)
3968 {
3969 int dim;
3970 int n;
3971 gfc_ss *ss;
3972 stmtblock_t *pblock;
3973 tree tmp;
3974
3975 pblock = body;
3976 /* Generate the loops. */
3977 for (dim = 0; dim < loop->dimen; dim++)
3978 {
3979 n = loop->order[dim];
3980 gfc_trans_scalarized_loop_end (loop, n, pblock);
3981 loop->loopvar[n] = NULL_TREE;
3982 pblock = &loop->code[n];
3983 }
3984
3985 tmp = gfc_finish_block (pblock);
3986 gfc_add_expr_to_block (&loop->pre, tmp);
3987
3988 /* Clear all the used flags. */
3989 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
3990 if (ss->parent == NULL)
3991 ss->info->useflags = 0;
3992 }
3993
3994
3995 /* Finish the main body of a scalarized expression, and start the secondary
3996 copying body. */
3997
3998 void
3999 gfc_trans_scalarized_loop_boundary (gfc_loopinfo * loop, stmtblock_t * body)
4000 {
4001 int dim;
4002 int n;
4003 stmtblock_t *pblock;
4004 gfc_ss *ss;
4005
4006 pblock = body;
4007 /* We finish as many loops as are used by the temporary. */
4008 for (dim = 0; dim < loop->temp_dim - 1; dim++)
4009 {
4010 n = loop->order[dim];
4011 gfc_trans_scalarized_loop_end (loop, n, pblock);
4012 loop->loopvar[n] = NULL_TREE;
4013 pblock = &loop->code[n];
4014 }
4015
4016 /* We don't want to finish the outermost loop entirely. */
4017 n = loop->order[loop->temp_dim - 1];
4018 gfc_trans_scalarized_loop_end (loop, n, pblock);
4019
4020 /* Restore the initial offsets. */
4021 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4022 {
4023 gfc_ss_type ss_type;
4024 gfc_ss_info *ss_info;
4025
4026 ss_info = ss->info;
4027
4028 if ((ss_info->useflags & 2) == 0)
4029 continue;
4030
4031 ss_type = ss_info->type;
4032 if (ss_type != GFC_SS_SECTION
4033 && ss_type != GFC_SS_FUNCTION
4034 && ss_type != GFC_SS_CONSTRUCTOR
4035 && ss_type != GFC_SS_COMPONENT)
4036 continue;
4037
4038 ss_info->data.array.offset = ss_info->data.array.saved_offset;
4039 }
4040
4041 /* Restart all the inner loops we just finished. */
4042 for (dim = loop->temp_dim - 2; dim >= 0; dim--)
4043 {
4044 n = loop->order[dim];
4045
4046 gfc_start_block (&loop->code[n]);
4047
4048 loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "Q");
4049
4050 gfc_trans_preloop_setup (loop, dim, 2, &loop->code[n]);
4051 }
4052
4053 /* Start a block for the secondary copying code. */
4054 gfc_start_block (body);
4055 }
4056
4057
4058 /* Precalculate (either lower or upper) bound of an array section.
4059 BLOCK: Block in which the (pre)calculation code will go.
4060 BOUNDS[DIM]: Where the bound value will be stored once evaluated.
4061 VALUES[DIM]: Specified bound (NULL <=> unspecified).
4062 DESC: Array descriptor from which the bound will be picked if unspecified
4063 (either lower or upper bound according to LBOUND). */
4064
4065 static void
4066 evaluate_bound (stmtblock_t *block, tree *bounds, gfc_expr ** values,
4067 tree desc, int dim, bool lbound, bool deferred)
4068 {
4069 gfc_se se;
4070 gfc_expr * input_val = values[dim];
4071 tree *output = &bounds[dim];
4072
4073
4074 if (input_val)
4075 {
4076 /* Specified section bound. */
4077 gfc_init_se (&se, NULL);
4078 gfc_conv_expr_type (&se, input_val, gfc_array_index_type);
4079 gfc_add_block_to_block (block, &se.pre);
4080 *output = se.expr;
4081 }
4082 else if (deferred && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)))
4083 {
4084 /* The gfc_conv_array_lbound () routine returns a constant zero for
4085 deferred length arrays, which in the scalarizer wreaks havoc, when
4086 copying to a (newly allocated) one-based array.
4087 Keep returning the actual result in sync for both bounds. */
4088 *output = lbound ? gfc_conv_descriptor_lbound_get (desc,
4089 gfc_rank_cst[dim]):
4090 gfc_conv_descriptor_ubound_get (desc,
4091 gfc_rank_cst[dim]);
4092 }
4093 else
4094 {
4095 /* No specific bound specified so use the bound of the array. */
4096 *output = lbound ? gfc_conv_array_lbound (desc, dim) :
4097 gfc_conv_array_ubound (desc, dim);
4098 }
4099 *output = gfc_evaluate_now (*output, block);
4100 }
4101
4102
4103 /* Calculate the lower bound of an array section. */
4104
4105 static void
4106 gfc_conv_section_startstride (stmtblock_t * block, gfc_ss * ss, int dim)
4107 {
4108 gfc_expr *stride = NULL;
4109 tree desc;
4110 gfc_se se;
4111 gfc_array_info *info;
4112 gfc_array_ref *ar;
4113
4114 gcc_assert (ss->info->type == GFC_SS_SECTION);
4115
4116 info = &ss->info->data.array;
4117 ar = &info->ref->u.ar;
4118
4119 if (ar->dimen_type[dim] == DIMEN_VECTOR)
4120 {
4121 /* We use a zero-based index to access the vector. */
4122 info->start[dim] = gfc_index_zero_node;
4123 info->end[dim] = NULL;
4124 info->stride[dim] = gfc_index_one_node;
4125 return;
4126 }
4127
4128 gcc_assert (ar->dimen_type[dim] == DIMEN_RANGE
4129 || ar->dimen_type[dim] == DIMEN_THIS_IMAGE);
4130 desc = info->descriptor;
4131 stride = ar->stride[dim];
4132
4133
4134 /* Calculate the start of the range. For vector subscripts this will
4135 be the range of the vector. */
4136 evaluate_bound (block, info->start, ar->start, desc, dim, true,
4137 ar->as->type == AS_DEFERRED);
4138
4139 /* Similarly calculate the end. Although this is not used in the
4140 scalarizer, it is needed when checking bounds and where the end
4141 is an expression with side-effects. */
4142 evaluate_bound (block, info->end, ar->end, desc, dim, false,
4143 ar->as->type == AS_DEFERRED);
4144
4145
4146 /* Calculate the stride. */
4147 if (stride == NULL)
4148 info->stride[dim] = gfc_index_one_node;
4149 else
4150 {
4151 gfc_init_se (&se, NULL);
4152 gfc_conv_expr_type (&se, stride, gfc_array_index_type);
4153 gfc_add_block_to_block (block, &se.pre);
4154 info->stride[dim] = gfc_evaluate_now (se.expr, block);
4155 }
4156 }
4157
4158
4159 /* Calculates the range start and stride for a SS chain. Also gets the
4160 descriptor and data pointer. The range of vector subscripts is the size
4161 of the vector. Array bounds are also checked. */
4162
4163 void
4164 gfc_conv_ss_startstride (gfc_loopinfo * loop)
4165 {
4166 int n;
4167 tree tmp;
4168 gfc_ss *ss;
4169 tree desc;
4170
4171 gfc_loopinfo * const outer_loop = outermost_loop (loop);
4172
4173 loop->dimen = 0;
4174 /* Determine the rank of the loop. */
4175 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4176 {
4177 switch (ss->info->type)
4178 {
4179 case GFC_SS_SECTION:
4180 case GFC_SS_CONSTRUCTOR:
4181 case GFC_SS_FUNCTION:
4182 case GFC_SS_COMPONENT:
4183 loop->dimen = ss->dimen;
4184 goto done;
4185
4186 /* As usual, lbound and ubound are exceptions!. */
4187 case GFC_SS_INTRINSIC:
4188 switch (ss->info->expr->value.function.isym->id)
4189 {
4190 case GFC_ISYM_LBOUND:
4191 case GFC_ISYM_UBOUND:
4192 case GFC_ISYM_LCOBOUND:
4193 case GFC_ISYM_UCOBOUND:
4194 case GFC_ISYM_THIS_IMAGE:
4195 loop->dimen = ss->dimen;
4196 goto done;
4197
4198 default:
4199 break;
4200 }
4201
4202 default:
4203 break;
4204 }
4205 }
4206
4207 /* We should have determined the rank of the expression by now. If
4208 not, that's bad news. */
4209 gcc_unreachable ();
4210
4211 done:
4212 /* Loop over all the SS in the chain. */
4213 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4214 {
4215 gfc_ss_info *ss_info;
4216 gfc_array_info *info;
4217 gfc_expr *expr;
4218
4219 ss_info = ss->info;
4220 expr = ss_info->expr;
4221 info = &ss_info->data.array;
4222
4223 if (expr && expr->shape && !info->shape)
4224 info->shape = expr->shape;
4225
4226 switch (ss_info->type)
4227 {
4228 case GFC_SS_SECTION:
4229 /* Get the descriptor for the array. If it is a cross loops array,
4230 we got the descriptor already in the outermost loop. */
4231 if (ss->parent == NULL)
4232 gfc_conv_ss_descriptor (&outer_loop->pre, ss,
4233 !loop->array_parameter);
4234
4235 for (n = 0; n < ss->dimen; n++)
4236 gfc_conv_section_startstride (&outer_loop->pre, ss, ss->dim[n]);
4237 break;
4238
4239 case GFC_SS_INTRINSIC:
4240 switch (expr->value.function.isym->id)
4241 {
4242 /* Fall through to supply start and stride. */
4243 case GFC_ISYM_LBOUND:
4244 case GFC_ISYM_UBOUND:
4245 {
4246 gfc_expr *arg;
4247
4248 /* This is the variant without DIM=... */
4249 gcc_assert (expr->value.function.actual->next->expr == NULL);
4250
4251 arg = expr->value.function.actual->expr;
4252 if (arg->rank == -1)
4253 {
4254 gfc_se se;
4255 tree rank, tmp;
4256
4257 /* The rank (hence the return value's shape) is unknown,
4258 we have to retrieve it. */
4259 gfc_init_se (&se, NULL);
4260 se.descriptor_only = 1;
4261 gfc_conv_expr (&se, arg);
4262 /* This is a bare variable, so there is no preliminary
4263 or cleanup code. */
4264 gcc_assert (se.pre.head == NULL_TREE
4265 && se.post.head == NULL_TREE);
4266 rank = gfc_conv_descriptor_rank (se.expr);
4267 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4268 gfc_array_index_type,
4269 fold_convert (gfc_array_index_type,
4270 rank),
4271 gfc_index_one_node);
4272 info->end[0] = gfc_evaluate_now (tmp, &outer_loop->pre);
4273 info->start[0] = gfc_index_zero_node;
4274 info->stride[0] = gfc_index_one_node;
4275 continue;
4276 }
4277 /* Otherwise fall through GFC_SS_FUNCTION. */
4278 gcc_fallthrough ();
4279 }
4280 case GFC_ISYM_LCOBOUND:
4281 case GFC_ISYM_UCOBOUND:
4282 case GFC_ISYM_THIS_IMAGE:
4283 break;
4284
4285 default:
4286 continue;
4287 }
4288
4289 /* FALLTHRU */
4290 case GFC_SS_CONSTRUCTOR:
4291 case GFC_SS_FUNCTION:
4292 for (n = 0; n < ss->dimen; n++)
4293 {
4294 int dim = ss->dim[n];
4295
4296 info->start[dim] = gfc_index_zero_node;
4297 info->end[dim] = gfc_index_zero_node;
4298 info->stride[dim] = gfc_index_one_node;
4299 }
4300 break;
4301
4302 default:
4303 break;
4304 }
4305 }
4306
4307 /* The rest is just runtime bound checking. */
4308 if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
4309 {
4310 stmtblock_t block;
4311 tree lbound, ubound;
4312 tree end;
4313 tree size[GFC_MAX_DIMENSIONS];
4314 tree stride_pos, stride_neg, non_zerosized, tmp2, tmp3;
4315 gfc_array_info *info;
4316 char *msg;
4317 int dim;
4318
4319 gfc_start_block (&block);
4320
4321 for (n = 0; n < loop->dimen; n++)
4322 size[n] = NULL_TREE;
4323
4324 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4325 {
4326 stmtblock_t inner;
4327 gfc_ss_info *ss_info;
4328 gfc_expr *expr;
4329 locus *expr_loc;
4330 const char *expr_name;
4331
4332 ss_info = ss->info;
4333 if (ss_info->type != GFC_SS_SECTION)
4334 continue;
4335
4336 /* Catch allocatable lhs in f2003. */
4337 if (flag_realloc_lhs && ss->is_alloc_lhs)
4338 continue;
4339
4340 expr = ss_info->expr;
4341 expr_loc = &expr->where;
4342 expr_name = expr->symtree->name;
4343
4344 gfc_start_block (&inner);
4345
4346 /* TODO: range checking for mapped dimensions. */
4347 info = &ss_info->data.array;
4348
4349 /* This code only checks ranges. Elemental and vector
4350 dimensions are checked later. */
4351 for (n = 0; n < loop->dimen; n++)
4352 {
4353 bool check_upper;
4354
4355 dim = ss->dim[n];
4356 if (info->ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
4357 continue;
4358
4359 if (dim == info->ref->u.ar.dimen - 1
4360 && info->ref->u.ar.as->type == AS_ASSUMED_SIZE)
4361 check_upper = false;
4362 else
4363 check_upper = true;
4364
4365 /* Zero stride is not allowed. */
4366 tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node,
4367 info->stride[dim], gfc_index_zero_node);
4368 msg = xasprintf ("Zero stride is not allowed, for dimension %d "
4369 "of array '%s'", dim + 1, expr_name);
4370 gfc_trans_runtime_check (true, false, tmp, &inner,
4371 expr_loc, msg);
4372 free (msg);
4373
4374 desc = info->descriptor;
4375
4376 /* This is the run-time equivalent of resolve.c's
4377 check_dimension(). The logical is more readable there
4378 than it is here, with all the trees. */
4379 lbound = gfc_conv_array_lbound (desc, dim);
4380 end = info->end[dim];
4381 if (check_upper)
4382 ubound = gfc_conv_array_ubound (desc, dim);
4383 else
4384 ubound = NULL;
4385
4386 /* non_zerosized is true when the selected range is not
4387 empty. */
4388 stride_pos = fold_build2_loc (input_location, GT_EXPR,
4389 logical_type_node, info->stride[dim],
4390 gfc_index_zero_node);
4391 tmp = fold_build2_loc (input_location, LE_EXPR, logical_type_node,
4392 info->start[dim], end);
4393 stride_pos = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4394 logical_type_node, stride_pos, tmp);
4395
4396 stride_neg = fold_build2_loc (input_location, LT_EXPR,
4397 logical_type_node,
4398 info->stride[dim], gfc_index_zero_node);
4399 tmp = fold_build2_loc (input_location, GE_EXPR, logical_type_node,
4400 info->start[dim], end);
4401 stride_neg = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4402 logical_type_node,
4403 stride_neg, tmp);
4404 non_zerosized = fold_build2_loc (input_location, TRUTH_OR_EXPR,
4405 logical_type_node,
4406 stride_pos, stride_neg);
4407
4408 /* Check the start of the range against the lower and upper
4409 bounds of the array, if the range is not empty.
4410 If upper bound is present, include both bounds in the
4411 error message. */
4412 if (check_upper)
4413 {
4414 tmp = fold_build2_loc (input_location, LT_EXPR,
4415 logical_type_node,
4416 info->start[dim], lbound);
4417 tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4418 logical_type_node,
4419 non_zerosized, tmp);
4420 tmp2 = fold_build2_loc (input_location, GT_EXPR,
4421 logical_type_node,
4422 info->start[dim], ubound);
4423 tmp2 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4424 logical_type_node,
4425 non_zerosized, tmp2);
4426 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
4427 "outside of expected range (%%ld:%%ld)",
4428 dim + 1, expr_name);
4429 gfc_trans_runtime_check (true, false, tmp, &inner,
4430 expr_loc, msg,
4431 fold_convert (long_integer_type_node, info->start[dim]),
4432 fold_convert (long_integer_type_node, lbound),
4433 fold_convert (long_integer_type_node, ubound));
4434 gfc_trans_runtime_check (true, false, tmp2, &inner,
4435 expr_loc, msg,
4436 fold_convert (long_integer_type_node, info->start[dim]),
4437 fold_convert (long_integer_type_node, lbound),
4438 fold_convert (long_integer_type_node, ubound));
4439 free (msg);
4440 }
4441 else
4442 {
4443 tmp = fold_build2_loc (input_location, LT_EXPR,
4444 logical_type_node,
4445 info->start[dim], lbound);
4446 tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4447 logical_type_node, non_zerosized, tmp);
4448 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
4449 "below lower bound of %%ld",
4450 dim + 1, expr_name);
4451 gfc_trans_runtime_check (true, false, tmp, &inner,
4452 expr_loc, msg,
4453 fold_convert (long_integer_type_node, info->start[dim]),
4454 fold_convert (long_integer_type_node, lbound));
4455 free (msg);
4456 }
4457
4458 /* Compute the last element of the range, which is not
4459 necessarily "end" (think 0:5:3, which doesn't contain 5)
4460 and check it against both lower and upper bounds. */
4461
4462 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4463 gfc_array_index_type, end,
4464 info->start[dim]);
4465 tmp = fold_build2_loc (input_location, TRUNC_MOD_EXPR,
4466 gfc_array_index_type, tmp,
4467 info->stride[dim]);
4468 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4469 gfc_array_index_type, end, tmp);
4470 tmp2 = fold_build2_loc (input_location, LT_EXPR,
4471 logical_type_node, tmp, lbound);
4472 tmp2 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4473 logical_type_node, non_zerosized, tmp2);
4474 if (check_upper)
4475 {
4476 tmp3 = fold_build2_loc (input_location, GT_EXPR,
4477 logical_type_node, tmp, ubound);
4478 tmp3 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
4479 logical_type_node, non_zerosized, tmp3);
4480 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
4481 "outside of expected range (%%ld:%%ld)",
4482 dim + 1, expr_name);
4483 gfc_trans_runtime_check (true, false, tmp2, &inner,
4484 expr_loc, msg,
4485 fold_convert (long_integer_type_node, tmp),
4486 fold_convert (long_integer_type_node, ubound),
4487 fold_convert (long_integer_type_node, lbound));
4488 gfc_trans_runtime_check (true, false, tmp3, &inner,
4489 expr_loc, msg,
4490 fold_convert (long_integer_type_node, tmp),
4491 fold_convert (long_integer_type_node, ubound),
4492 fold_convert (long_integer_type_node, lbound));
4493 free (msg);
4494 }
4495 else
4496 {
4497 msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' "
4498 "below lower bound of %%ld",
4499 dim + 1, expr_name);
4500 gfc_trans_runtime_check (true, false, tmp2, &inner,
4501 expr_loc, msg,
4502 fold_convert (long_integer_type_node, tmp),
4503 fold_convert (long_integer_type_node, lbound));
4504 free (msg);
4505 }
4506
4507 /* Check the section sizes match. */
4508 tmp = fold_build2_loc (input_location, MINUS_EXPR,
4509 gfc_array_index_type, end,
4510 info->start[dim]);
4511 tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR,
4512 gfc_array_index_type, tmp,
4513 info->stride[dim]);
4514 tmp = fold_build2_loc (input_location, PLUS_EXPR,
4515 gfc_array_index_type,
4516 gfc_index_one_node, tmp);
4517 tmp = fold_build2_loc (input_location, MAX_EXPR,
4518 gfc_array_index_type, tmp,
4519 build_int_cst (gfc_array_index_type, 0));
4520 /* We remember the size of the first section, and check all the
4521 others against this. */
4522 if (size[n])
4523 {
4524 tmp3 = fold_build2_loc (input_location, NE_EXPR,
4525 logical_type_node, tmp, size[n]);
4526 msg = xasprintf ("Array bound mismatch for dimension %d "
4527 "of array '%s' (%%ld/%%ld)",
4528 dim + 1, expr_name);
4529
4530 gfc_trans_runtime_check (true, false, tmp3, &inner,
4531 expr_loc, msg,
4532 fold_convert (long_integer_type_node, tmp),
4533 fold_convert (long_integer_type_node, size[n]));
4534
4535 free (msg);
4536 }
4537 else
4538 size[n] = gfc_evaluate_now (tmp, &inner);
4539 }
4540
4541 tmp = gfc_finish_block (&inner);
4542
4543 /* For optional arguments, only check bounds if the argument is
4544 present. */
4545 if (expr->symtree->n.sym->attr.optional
4546 || expr->symtree->n.sym->attr.not_always_present)
4547 tmp = build3_v (COND_EXPR,
4548 gfc_conv_expr_present (expr->symtree->n.sym),
4549 tmp, build_empty_stmt (input_location));
4550
4551 gfc_add_expr_to_block (&block, tmp);
4552
4553 }
4554
4555 tmp = gfc_finish_block (&block);
4556 gfc_add_expr_to_block (&outer_loop->pre, tmp);
4557 }
4558
4559 for (loop = loop->nested; loop; loop = loop->next)
4560 gfc_conv_ss_startstride (loop);
4561 }
4562
4563 /* Return true if both symbols could refer to the same data object. Does
4564 not take account of aliasing due to equivalence statements. */
4565
4566 static int
4567 symbols_could_alias (gfc_symbol *lsym, gfc_symbol *rsym, bool lsym_pointer,
4568 bool lsym_target, bool rsym_pointer, bool rsym_target)
4569 {
4570 /* Aliasing isn't possible if the symbols have different base types. */
4571 if (gfc_compare_types (&lsym->ts, &rsym->ts) == 0)
4572 return 0;
4573
4574 /* Pointers can point to other pointers and target objects. */
4575
4576 if ((lsym_pointer && (rsym_pointer || rsym_target))
4577 || (rsym_pointer && (lsym_pointer || lsym_target)))
4578 return 1;
4579
4580 /* Special case: Argument association, cf. F90 12.4.1.6, F2003 12.4.1.7
4581 and F2008 12.5.2.13 items 3b and 4b. The pointer case (a) is already
4582 checked above. */
4583 if (lsym_target && rsym_target
4584 && ((lsym->attr.dummy && !lsym->attr.contiguous
4585 && (!lsym->attr.dimension || lsym->as->type == AS_ASSUMED_SHAPE))
4586 || (rsym->attr.dummy && !rsym->attr.contiguous
4587 && (!rsym->attr.dimension
4588 || rsym->as->type == AS_ASSUMED_SHAPE))))
4589 return 1;
4590
4591 return 0;
4592 }
4593
4594
4595 /* Return true if the two SS could be aliased, i.e. both point to the same data
4596 object. */
4597 /* TODO: resolve aliases based on frontend expressions. */
4598
4599 static int
4600 gfc_could_be_alias (gfc_ss * lss, gfc_ss * rss)
4601 {
4602 gfc_ref *lref;
4603 gfc_ref *rref;
4604 gfc_expr *lexpr, *rexpr;
4605 gfc_symbol *lsym;
4606 gfc_symbol *rsym;
4607 bool lsym_pointer, lsym_target, rsym_pointer, rsym_target;
4608
4609 lexpr = lss->info->expr;
4610 rexpr = rss->info->expr;
4611
4612 lsym = lexpr->symtree->n.sym;
4613 rsym = rexpr->symtree->n.sym;
4614
4615 lsym_pointer = lsym->attr.pointer;
4616 lsym_target = lsym->attr.target;
4617 rsym_pointer = rsym->attr.pointer;
4618 rsym_target = rsym->attr.target;
4619
4620 if (symbols_could_alias (lsym, rsym, lsym_pointer, lsym_target,
4621 rsym_pointer, rsym_target))
4622 return 1;
4623
4624 if (rsym->ts.type != BT_DERIVED && rsym->ts.type != BT_CLASS
4625 && lsym->ts.type != BT_DERIVED && lsym->ts.type != BT_CLASS)
4626 return 0;
4627
4628 /* For derived types we must check all the component types. We can ignore
4629 array references as these will have the same base type as the previous
4630 component ref. */
4631 for (lref = lexpr->ref; lref != lss->info->data.array.ref; lref = lref->next)
4632 {
4633 if (lref->type != REF_COMPONENT)
4634 continue;
4635
4636 lsym_pointer = lsym_pointer || lref->u.c.sym->attr.pointer;
4637 lsym_target = lsym_target || lref->u.c.sym->attr.target;
4638
4639 if (symbols_could_alias (lref->u.c.sym, rsym, lsym_pointer, lsym_target,
4640 rsym_pointer, rsym_target))
4641 return 1;
4642
4643 if ((lsym_pointer && (rsym_pointer || rsym_target))
4644 || (rsym_pointer && (lsym_pointer || lsym_target)))
4645 {
4646 if (gfc_compare_types (&lref->u.c.component->ts,
4647 &rsym->ts))
4648 return 1;
4649 }
4650
4651 for (rref = rexpr->ref; rref != rss->info->data.array.ref;
4652 rref = rref->next)
4653 {
4654 if (rref->type != REF_COMPONENT)
4655 continue;
4656
4657 rsym_pointer = rsym_pointer || rref->u.c.sym->attr.pointer;
4658 rsym_target = lsym_target || rref->u.c.sym->attr.target;
4659
4660 if (symbols_could_alias (lref->u.c.sym, rref->u.c.sym,
4661 lsym_pointer, lsym_target,
4662 rsym_pointer, rsym_target))
4663 return 1;
4664
4665 if ((lsym_pointer && (rsym_pointer || rsym_target))
4666 || (rsym_pointer && (lsym_pointer || lsym_target)))
4667 {
4668 if (gfc_compare_types (&lref->u.c.component->ts,
4669 &rref->u.c.sym->ts))
4670 return 1;
4671 if (gfc_compare_types (&lref->u.c.sym->ts,
4672 &rref->u.c.component->ts))
4673 return 1;
4674 if (gfc_compare_types (&lref->u.c.component->ts,
4675 &rref->u.c.component->ts))
4676 return 1;
4677 }
4678 }
4679 }
4680
4681 lsym_pointer = lsym->attr.pointer;
4682 lsym_target = lsym->attr.target;
4683 lsym_pointer = lsym->attr.pointer;
4684 lsym_target = lsym->attr.target;
4685
4686 for (rref = rexpr->ref; rref != rss->info->data.array.ref; rref = rref->next)
4687 {
4688 if (rref->type != REF_COMPONENT)
4689 break;
4690
4691 rsym_pointer = rsym_pointer || rref->u.c.sym->attr.pointer;
4692 rsym_target = lsym_target || rref->u.c.sym->attr.target;
4693
4694 if (symbols_could_alias (rref->u.c.sym, lsym,
4695 lsym_pointer, lsym_target,
4696 rsym_pointer, rsym_target))
4697 return 1;
4698
4699 if ((lsym_pointer && (rsym_pointer || rsym_target))
4700 || (rsym_pointer && (lsym_pointer || lsym_target)))
4701 {
4702 if (gfc_compare_types (&lsym->ts, &rref->u.c.component->ts))
4703 return 1;
4704 }
4705 }
4706
4707 return 0;
4708 }
4709
4710
4711 /* Resolve array data dependencies. Creates a temporary if required. */
4712 /* TODO: Calc dependencies with gfc_expr rather than gfc_ss, and move to
4713 dependency.c. */
4714
4715 void
4716 gfc_conv_resolve_dependencies (gfc_loopinfo * loop, gfc_ss * dest,
4717 gfc_ss * rss)
4718 {
4719 gfc_ss *ss;
4720 gfc_ref *lref;
4721 gfc_ref *rref;
4722 gfc_ss_info *ss_info;
4723 gfc_expr *dest_expr;
4724 gfc_expr *ss_expr;
4725 int nDepend = 0;
4726 int i, j;
4727
4728 loop->temp_ss = NULL;
4729 dest_expr = dest->info->expr;
4730
4731 for (ss = rss; ss != gfc_ss_terminator; ss = ss->next)
4732 {
4733 ss_info = ss->info;
4734 ss_expr = ss_info->expr;
4735
4736 if (ss_info->array_outer_dependency)
4737 {
4738 nDepend = 1;
4739 break;
4740 }
4741
4742 if (ss_info->type != GFC_SS_SECTION)
4743 {
4744 if (flag_realloc_lhs
4745 && dest_expr != ss_expr
4746 && gfc_is_reallocatable_lhs (dest_expr)
4747 && ss_expr->rank)
4748 nDepend = gfc_check_dependency (dest_expr, ss_expr, true);
4749
4750 /* Check for cases like c(:)(1:2) = c(2)(2:3) */
4751 if (!nDepend && dest_expr->rank > 0
4752 && dest_expr->ts.type == BT_CHARACTER
4753 && ss_expr->expr_type == EXPR_VARIABLE)
4754
4755 nDepend = gfc_check_dependency (dest_expr, ss_expr, false);
4756
4757 if (ss_info->type == GFC_SS_REFERENCE
4758 && gfc_check_dependency (dest_expr, ss_expr, false))
4759 ss_info->data.scalar.needs_temporary = 1;
4760
4761 if (nDepend)
4762 break;
4763 else
4764 continue;
4765 }
4766
4767 if (dest_expr->symtree->n.sym != ss_expr->symtree->n.sym)
4768 {
4769 if (gfc_could_be_alias (dest, ss)
4770 || gfc_are_equivalenced_arrays (dest_expr, ss_expr))
4771 {
4772 nDepend = 1;
4773 break;
4774 }
4775 }
4776 else
4777 {
4778 lref = dest_expr->ref;
4779 rref = ss_expr->ref;
4780
4781 nDepend = gfc_dep_resolver (lref, rref, &loop->reverse[0]);
4782
4783 if (nDepend == 1)
4784 break;
4785
4786 for (i = 0; i < dest->dimen; i++)
4787 for (j = 0; j < ss->dimen; j++)
4788 if (i != j
4789 && dest->dim[i] == ss->dim[j])
4790 {
4791 /* If we don't access array elements in the same order,
4792 there is a dependency. */
4793 nDepend = 1;
4794 goto temporary;
4795 }
4796 #if 0
4797 /* TODO : loop shifting. */
4798 if (nDepend == 1)
4799 {
4800 /* Mark the dimensions for LOOP SHIFTING */
4801 for (n = 0; n < loop->dimen; n++)
4802 {
4803 int dim = dest->data.info.dim[n];
4804
4805 if (lref->u.ar.dimen_type[dim] == DIMEN_VECTOR)
4806 depends[n] = 2;
4807 else if (! gfc_is_same_range (&lref->u.ar,
4808 &rref->u.ar, dim, 0))
4809 depends[n] = 1;
4810 }
4811
4812 /* Put all the dimensions with dependencies in the
4813 innermost loops. */
4814 dim = 0;
4815 for (n = 0; n < loop->dimen; n++)
4816 {
4817 gcc_assert (loop->order[n] == n);
4818 if (depends[n])
4819 loop->order[dim++] = n;
4820 }
4821 for (n = 0; n < loop->dimen; n++)
4822 {
4823 if (! depends[n])
4824 loop->order[dim++] = n;
4825 }
4826
4827 gcc_assert (dim == loop->dimen);
4828 break;
4829 }
4830 #endif
4831 }
4832 }
4833
4834 temporary:
4835
4836 if (nDepend == 1)
4837 {
4838 tree base_type = gfc_typenode_for_spec (&dest_expr->ts);
4839 if (GFC_ARRAY_TYPE_P (base_type)
4840 || GFC_DESCRIPTOR_TYPE_P (base_type))
4841 base_type = gfc_get_element_type (base_type);
4842 loop->temp_ss = gfc_get_temp_ss (base_type, dest->info->string_length,
4843 loop->dimen);
4844 gfc_add_ss_to_loop (loop, loop->temp_ss);
4845 }
4846 else
4847 loop->temp_ss = NULL;
4848 }
4849
4850
4851 /* Browse through each array's information from the scalarizer and set the loop
4852 bounds according to the "best" one (per dimension), i.e. the one which
4853 provides the most information (constant bounds, shape, etc.). */
4854
4855 static void
4856 set_loop_bounds (gfc_loopinfo *loop)
4857 {
4858 int n, dim, spec_dim;
4859 gfc_array_info *info;
4860 gfc_array_info *specinfo;
4861 gfc_ss *ss;
4862 tree tmp;
4863 gfc_ss **loopspec;
4864 bool dynamic[GFC_MAX_DIMENSIONS];
4865 mpz_t *cshape;
4866 mpz_t i;
4867 bool nonoptional_arr;
4868
4869 gfc_loopinfo * const outer_loop = outermost_loop (loop);
4870
4871 loopspec = loop->specloop;
4872
4873 mpz_init (i);
4874 for (n = 0; n < loop->dimen; n++)
4875 {
4876 loopspec[n] = NULL;
4877 dynamic[n] = false;
4878
4879 /* If there are both optional and nonoptional array arguments, scalarize
4880 over the nonoptional; otherwise, it does not matter as then all
4881 (optional) arrays have to be present per F2008, 125.2.12p3(6). */
4882
4883 nonoptional_arr = false;
4884
4885 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4886 if (ss->info->type != GFC_SS_SCALAR && ss->info->type != GFC_SS_TEMP
4887 && ss->info->type != GFC_SS_REFERENCE && !ss->info->can_be_null_ref)
4888 {
4889 nonoptional_arr = true;
4890 break;
4891 }
4892
4893 /* We use one SS term, and use that to determine the bounds of the
4894 loop for this dimension. We try to pick the simplest term. */
4895 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
4896 {
4897 gfc_ss_type ss_type;
4898
4899 ss_type = ss->info->type;
4900 if (ss_type == GFC_SS_SCALAR
4901 || ss_type == GFC_SS_TEMP
4902 || ss_type == GFC_SS_REFERENCE
4903 || (ss->info->can_be_null_ref && nonoptional_arr))
4904 continue;
4905
4906 info = &ss->info->data.array;
4907 dim = ss->dim[n];
4908
4909 if (loopspec[n] != NULL)
4910 {
4911 specinfo = &loopspec[n]->info->data.array;
4912 spec_dim = loopspec[n]->dim[n];
4913 }
4914 else
4915 {
4916 /* Silence uninitialized warnings. */
4917 specinfo = NULL;
4918 spec_dim = 0;
4919 }
4920
4921 if (info->shape)
4922 {
4923 gcc_assert (info->shape[dim]);
4924 /* The frontend has worked out the size for us. */
4925 if (!loopspec[n]
4926 || !specinfo->shape
4927 || !integer_zerop (specinfo->start[spec_dim]))
4928 /* Prefer zero-based descriptors if possible. */
4929 loopspec[n] = ss;
4930 continue;
4931 }
4932
4933 if (ss_type == GFC_SS_CONSTRUCTOR)
4934 {
4935 gfc_constructor_base base;
4936 /* An unknown size constructor will always be rank one.
4937 Higher rank constructors will either have known shape,
4938 or still be wrapped in a call to reshape. */
4939 gcc_assert (loop->dimen == 1);
4940
4941 /* Always prefer to use the constructor bounds if the size
4942 can be determined at compile time. Prefer not to otherwise,
4943 since the general case involves realloc, and it's better to
4944 avoid that overhead if possible. */
4945 base = ss->info->expr->value.constructor;
4946 dynamic[n] = gfc_get_array_constructor_size (&i, base);
4947 if (!dynamic[n] || !loopspec[n])
4948 loopspec[n] = ss;
4949 continue;
4950 }
4951
4952 /* Avoid using an allocatable lhs in an assignment, since
4953 there might be a reallocation coming. */
4954 if (loopspec[n] && ss->is_alloc_lhs)
4955 continue;
4956
4957 if (!loopspec[n])
4958 loopspec[n] = ss;
4959 /* Criteria for choosing a loop specifier (most important first):
4960 doesn't need realloc
4961 stride of one
4962 known stride
4963 known lower bound
4964 known upper bound
4965 */
4966 else if (loopspec[n]->info->type == GFC_SS_CONSTRUCTOR && dynamic[n])
4967 loopspec[n] = ss;
4968 else if (integer_onep (info->stride[dim])
4969 && !integer_onep (specinfo->stride[spec_dim]))
4970 loopspec[n] = ss;
4971 else if (INTEGER_CST_P (info->stride[dim])
4972 && !INTEGER_CST_P (specinfo->stride[spec_dim]))
4973 loopspec[n] = ss;
4974 else if (INTEGER_CST_P (info->start[dim])
4975 && !INTEGER_CST_P (specinfo->start[spec_dim])
4976 && integer_onep (info->stride[dim])
4977 == integer_onep (specinfo->stride[spec_dim])
4978 && INTEGER_CST_P (info->stride[dim])
4979 == INTEGER_CST_P (specinfo->stride[spec_dim]))
4980 loopspec[n] = ss;
4981 /* We don't work out the upper bound.
4982 else if (INTEGER_CST_P (info->finish[n])
4983 && ! INTEGER_CST_P (specinfo->finish[n]))
4984 loopspec[n] = ss; */
4985 }
4986
4987 /* We should have found the scalarization loop specifier. If not,
4988 that's bad news. */
4989 gcc_assert (loopspec[n]);
4990
4991 info = &loopspec[n]->info->data.array;
4992 dim = loopspec[n]->dim[n];
4993
4994 /* Set the extents of this range. */
4995 cshape = info->shape;
4996 if (cshape && INTEGER_CST_P (info->start[dim])
4997 && INTEGER_CST_P (info->stride[dim]))
4998 {
4999 loop->from[n] = info->start[dim];
5000 mpz_set (i, cshape[get_array_ref_dim_for_loop_dim (loopspec[n], n)]);
5001 mpz_sub_ui (i, i, 1);
5002 /* To = from + (size - 1) * stride. */
5003 tmp = gfc_conv_mpz_to_tree (i, gfc_index_integer_kind);
5004 if (!integer_onep (info->stride[dim]))
5005 tmp = fold_build2_loc (input_location, MULT_EXPR,
5006 gfc_array_index_type, tmp,
5007 info->stride[dim]);
5008 loop->to[n] = fold_build2_loc (input_location, PLUS_EXPR,
5009 gfc_array_index_type,
5010 loop->from[n], tmp);
5011 }
5012 else
5013 {
5014 loop->from[n] = info->start[dim];
5015 switch (loopspec[n]->info->type)
5016 {
5017 case GFC_SS_CONSTRUCTOR:
5018 /* The upper bound is calculated when we expand the
5019 constructor. */
5020 gcc_assert (loop->to[n] == NULL_TREE);
5021 break;
5022
5023 case GFC_SS_SECTION:
5024 /* Use the end expression if it exists and is not constant,
5025 so that it is only evaluated once. */
5026 loop->to[n] = info->end[dim];
5027 break;
5028
5029 case GFC_SS_FUNCTION:
5030 /* The loop bound will be set when we generate the call. */
5031 gcc_assert (loop->to[n] == NULL_TREE);
5032 break;
5033
5034 case GFC_SS_INTRINSIC:
5035 {
5036 gfc_expr *expr = loopspec[n]->info->expr;
5037
5038 /* The {l,u}bound of an assumed rank. */
5039 gcc_assert ((expr->value.function.isym->id == GFC_ISYM_LBOUND
5040 || expr->value.function.isym->id == GFC_ISYM_UBOUND)
5041 && expr->value.function.actual->next->expr == NULL
5042 && expr->value.function.actual->expr->rank == -1);
5043
5044 loop->to[n] = info->end[dim];
5045 break;
5046 }
5047
5048 case GFC_SS_COMPONENT:
5049 {
5050 if (info->end[dim] != NULL_TREE)
5051 {
5052 loop->to[n] = info->end[dim];
5053 break;
5054 }
5055 else
5056 gcc_unreachable ();
5057 }
5058
5059 default:
5060 gcc_unreachable ();
5061 }
5062 }
5063
5064 /* Transform everything so we have a simple incrementing variable. */
5065 if (integer_onep (info->stride[dim]))
5066 info->delta[dim] = gfc_index_zero_node;
5067 else
5068 {
5069 /* Set the delta for this section. */
5070 info->delta[dim] = gfc_evaluate_now (loop->from[n], &outer_loop->pre);
5071 /* Number of iterations is (end - start + step) / step.
5072 with start = 0, this simplifies to
5073 last = end / step;
5074 for (i = 0; i<=last; i++){...}; */
5075 tmp = fold_build2_loc (input_location, MINUS_EXPR,
5076 gfc_array_index_type, loop->to[n],
5077 loop->from[n]);
5078 tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR,
5079 gfc_array_index_type, tmp, info->stride[dim]);
5080 tmp = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type,
5081 tmp, build_int_cst (gfc_array_index_type, -1));
5082 loop->to[n] = gfc_evaluate_now (tmp, &outer_loop->pre);
5083 /* Make the loop variable start at 0. */
5084 loop->from[n] = gfc_index_zero_node;
5085 }
5086 }
5087 mpz_clear (i);
5088
5089 for (loop = loop->nested; loop; loop = loop->next)
5090 set_loop_bounds (loop);
5091 }
5092
5093
5094 /* Initialize the scalarization loop. Creates the loop variables. Determines
5095 the range of the loop variables. Creates a temporary if required.
5096 Also generates code for scalar expressions which have been
5097 moved outside the loop. */
5098
5099 void
5100 gfc_conv_loop_setup (gfc_loopinfo * loop, locus * where)
5101 {
5102 gfc_ss *tmp_ss;
5103 tree tmp;
5104
5105 set_loop_bounds (loop);
5106
5107 /* Add all the scalar code that can be taken out of the loops.
5108 This may include calculating the loop bounds, so do it before
5109 allocating the temporary. */
5110 gfc_add_loop_ss_code (loop, loop->ss, false, where);
5111
5112 tmp_ss = loop->temp_ss;
5113 /* If we want a temporary then create it. */
5114 if (tmp_ss != NULL)
5115 {
5116 gfc_ss_info *tmp_ss_info;
5117
5118 tmp_ss_info = tmp_ss->info;
5119 gcc_assert (tmp_ss_info->type == GFC_SS_TEMP);
5120 gcc_assert (loop->parent == NULL);
5121
5122 /* Make absolutely sure that this is a complete type. */
5123 if (tmp_ss_info->string_length)
5124 tmp_ss_info->data.temp.type
5125 = gfc_get_character_type_len_for_eltype
5126 (TREE_TYPE (tmp_ss_info->data.temp.type),
5127 tmp_ss_info->string_length);
5128
5129 tmp = tmp_ss_info->data.temp.type;
5130 memset (&tmp_ss_info->data.array, 0, sizeof (gfc_array_info));
5131 tmp_ss_info->type = GFC_SS_SECTION;
5132
5133 gcc_assert (tmp_ss->dimen != 0);
5134
5135 gfc_trans_create_temp_array (&loop->pre, &loop->post, tmp_ss, tmp,
5136 NULL_TREE, false, true, false, where);
5137 }
5138
5139 /* For array parameters we don't have loop variables, so don't calculate the
5140 translations. */
5141 if (!loop->array_parameter)
5142 gfc_set_delta (loop);
5143 }
5144
5145
5146 /* Calculates how to transform from loop variables to array indices for each
5147 array: once loop bounds are chosen, sets the difference (DELTA field) between
5148 loop bounds and array reference bounds, for each array info. */
5149
5150 void
5151 gfc_set_delta (gfc_loopinfo *loop)
5152 {
5153 gfc_ss *ss, **loopspec;
5154 gfc_array_info *info;
5155 tree tmp;
5156 int n, dim;
5157
5158 gfc_loopinfo * const outer_loop = outermost_loop (loop);
5159
5160 loopspec = loop->specloop;
5161
5162 /* Calculate the translation from loop variables to array indices. */
5163 for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain)
5164 {
5165 gfc_ss_type ss_type;
5166
5167 ss_type = ss->info->type;
5168 if (ss_type != GFC_SS_SECTION
5169 && ss_type != GFC_SS_COMPONENT
5170 && ss_type != GFC_SS_CONSTRUCTOR)
5171 continue;
5172
5173 info = &ss->info->data.array;
5174
5175 for (n = 0; n < ss->dimen; n++)
5176 {
5177 /* If we are specifying the range the delta is already set. */
5178 if (loopspec[n] != ss)
5179 {
5180 dim = ss->dim[n];
5181
5182 /* Calculate the offset relative to the loop variable.
5183 First multiply by the stride. */
5184 tmp = loop->from[n];
5185 if (!integer_onep (info->stride[dim]))
5186 tmp = fold_build2_loc (input_location, MULT_EXPR,
5187 gfc_array_index_type,
5188 tmp, info->stride[dim]);
5189
5190 /* Then subtract this from our starting value. */
5191 tmp = fold_build2_loc (input_location, MINUS_EXPR,
5192 gfc_array_index_type,
5193 info->start[dim], tmp);
5194
5195 info->delta[dim] = gfc_evaluate_now (tmp, &outer_loop->pre);
5196 }
5197 }
5198 }
5199
5200 for (loop = loop->nested; loop; loop = loop->next)
5201 gfc_set_delta (loop);
5202 }
5203
5204
5205 /* Calculate the size of a given array dimension from the bounds. This
5206 is simply (ubound - lbound + 1) if this expression is positive
5207 or 0 if it is negative (pick either one if it is zero). Optionally
5208 (if or_expr is present) OR the (expression != 0) condition to it. */
5209
5210 tree
5211 gfc_conv_array_extent_dim (tree lbound, tree ubound, tree* or_expr)
5212 {
5213 tree res;
5214 tree cond;
5215
5216 /* Calculate (ubound - lbound + 1). */
5217 res = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
5218 ubound, lbound);
5219 res = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, res,
5220 gfc_index_one_node);
5221
5222 /* Check whether the size for this dimension is negative. */
5223 cond = fold_build2_loc (input_location, LE_EXPR, logical_type_node, res,
5224 gfc_index_zero_node);
5225 res = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, cond,
5226 gfc_index_zero_node, res);
5227
5228 /* Build OR expression. */
5229 if (or_expr)
5230 *or_expr = fold_build2_loc (input_location, TRUTH_OR_EXPR,
5231 logical_type_node, *or_expr, cond);
5232
5233 return res;
5234 }
5235
5236
5237 /* For an array descriptor, get the total number of elements. This is just
5238 the product of the extents along from_dim to to_dim. */
5239
5240 static tree
5241 gfc_conv_descriptor_size_1 (tree desc, int from_dim, int to_dim)
5242 {
5243 tree res;
5244 int dim;
5245
5246 res = gfc_index_one_node;
5247
5248 for (dim = from_dim; dim < to_dim; ++dim)
5249 {
5250 tree lbound;
5251 tree ubound;
5252 tree extent;
5253
5254 lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]);
5255 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]);
5256
5257 extent = gfc_conv_array_extent_dim (lbound, ubound, NULL);
5258 res = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
5259 res, extent);
5260 }
5261
5262 return res;
5263 }
5264
5265
5266 /* Full size of an array. */
5267
5268 tree
5269 gfc_conv_descriptor_size (tree desc, int rank)
5270 {
5271 return gfc_conv_descriptor_size_1 (desc, 0, rank);
5272 }
5273
5274
5275 /* Size of a coarray for all dimensions but the last. */
5276
5277 tree
5278 gfc_conv_descriptor_cosize (tree desc, int rank, int corank)
5279 {
5280 return gfc_conv_descriptor_size_1 (desc, rank, rank + corank - 1);
5281 }
5282
5283
5284 /* Fills in an array descriptor, and returns the size of the array.
5285 The size will be a simple_val, ie a variable or a constant. Also
5286 calculates the offset of the base. The pointer argument overflow,
5287 which should be of integer type, will increase in value if overflow
5288 occurs during the size calculation. Returns the size of the array.
5289 {
5290 stride = 1;
5291 offset = 0;
5292 for (n = 0; n < rank; n++)
5293 {
5294 a.lbound[n] = specified_lower_bound;
5295 offset = offset + a.lbond[n] * stride;
5296 size = 1 - lbound;
5297 a.ubound[n] = specified_upper_bound;
5298 a.stride[n] = stride;
5299 size = size >= 0 ? ubound + size : 0; //size = ubound + 1 - lbound
5300 overflow += size == 0 ? 0: (MAX/size < stride ? 1: 0);
5301 stride = stride * size;
5302 }
5303 for (n = rank; n < rank+corank; n++)
5304 (Set lcobound/ucobound as above.)
5305 element_size = sizeof (array element);
5306 if (!rank)
5307 return element_size
5308 stride = (size_t) stride;
5309 overflow += element_size == 0 ? 0: (MAX/element_size < stride ? 1: 0);
5310 stride = stride * element_size;
5311 return (stride);
5312 } */
5313 /*GCC ARRAYS*/
5314
5315 static tree
5316 gfc_array_init_size (tree descriptor, int rank, int corank, tree * poffset,
5317 gfc_expr ** lower, gfc_expr ** upper, stmtblock_t * pblock,
5318 stmtblock_t * descriptor_block, tree * overflow,
5319 tree expr3_elem_size, tree *nelems, gfc_expr *expr3,
5320 tree expr3_desc, bool e3_is_array_constr, gfc_expr *expr)
5321 {
5322 tree type;
5323 tree tmp;
5324 tree size;
5325 tree offset;
5326 tree stride;
5327 tree element_size;
5328 tree or_expr;
5329 tree thencase;
5330 tree elsecase;
5331 tree cond;
5332 tree var;
5333 stmtblock_t thenblock;
5334 stmtblock_t elseblock;
5335 gfc_expr *ubound;
5336 gfc_se se;
5337 int n;
5338
5339 type = TREE_TYPE (descriptor);
5340
5341 stride = gfc_index_one_node;
5342 offset = gfc_index_zero_node;
5343
5344 /* Set the dtype before the alloc, because registration of coarrays needs
5345 it initialized. */
5346 if (expr->ts.type == BT_CHARACTER
5347 && expr->ts.deferred
5348 && VAR_P (expr->ts.u.cl->backend_decl))
5349 {
5350 type = gfc_typenode_for_spec (&expr->ts);
5351 tmp = gfc_conv_descriptor_dtype (descriptor);
5352 gfc_add_modify (pblock, tmp, gfc_get_dtype_rank_type (rank, type));
5353 }
5354 else
5355 {
5356 tmp = gfc_conv_descriptor_dtype (descriptor);
5357 gfc_add_modify (pblock, tmp, gfc_get_dtype (type));
5358 }
5359
5360 or_expr = logical_false_node;
5361
5362 for (n = 0; n < rank; n++)
5363 {
5364 tree conv_lbound;
5365 tree conv_ubound;
5366
5367 /* We have 3 possibilities for determining the size of the array:
5368 lower == NULL => lbound = 1, ubound = upper[n]
5369 upper[n] = NULL => lbound = 1, ubound = lower[n]
5370 upper[n] != NULL => lbound = lower[n], ubound = upper[n] */
5371 ubound = upper[n];
5372
5373 /* Set lower bound. */
5374 gfc_init_se (&se, NULL);
5375 if (expr3_desc != NULL_TREE)
5376 {
5377 if (e3_is_array_constr)
5378 /* The lbound of a constant array [] starts at zero, but when
5379 allocating it, the standard expects the array to start at
5380 one. */
5381 se.expr = gfc_index_one_node;
5382 else
5383 se.expr = gfc_conv_descriptor_lbound_get (expr3_desc,
5384 gfc_rank_cst[n]);
5385 }
5386 else if (lower == NULL)
5387 se.expr = gfc_index_one_node;
5388 else
5389 {
5390 gcc_assert (lower[n]);
5391 if (ubound)
5392 {
5393 gfc_conv_expr_type (&se, lower[n], gfc_array_index_type);
5394 gfc_add_block_to_block (pblock, &se.pre);
5395 }
5396 else
5397 {
5398 se.expr = gfc_index_one_node;
5399 ubound = lower[n];
5400 }
5401 }
5402 gfc_conv_descriptor_lbound_set (descriptor_block, descriptor,
5403 gfc_rank_cst[n], se.expr);
5404 conv_lbound = se.expr;
5405
5406 /* Work out the offset for this component. */
5407 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
5408 se.expr, stride);
5409 offset = fold_build2_loc (input_location, MINUS_EXPR,
5410 gfc_array_index_type, offset, tmp);
5411
5412 /* Set upper bound. */
5413 gfc_init_se (&se, NULL);
5414 if (expr3_desc != NULL_TREE)
5415 {
5416 if (e3_is_array_constr)
5417 {
5418 /* The lbound of a constant array [] starts at zero, but when
5419 allocating it, the standard expects the array to start at
5420 one. Therefore fix the upper bound to be
5421 (desc.ubound - desc.lbound)+ 1. */
5422 tmp = fold_build2_loc (input_location, MINUS_EXPR,
5423 gfc_array_index_type,
5424 gfc_conv_descriptor_ubound_get (
5425 expr3_desc, gfc_rank_cst[n]),
5426 gfc_conv_descriptor_lbound_get (
5427 expr3_desc, gfc_rank_cst[n]));
5428 tmp = fold_build2_loc (input_location, PLUS_EXPR,
5429 gfc_array_index_type, tmp,
5430 gfc_index_one_node);
5431 se.expr = gfc_evaluate_now (tmp, pblock);
5432 }
5433 else
5434 se.expr = gfc_conv_descriptor_ubound_get (expr3_desc,
5435 gfc_rank_cst[n]);
5436 }
5437 else
5438 {
5439 gcc_assert (ubound);
5440 gfc_conv_expr_type (&se, ubound, gfc_array_index_type);
5441 gfc_add_block_to_block (pblock, &se.pre);
5442 if (ubound->expr_type == EXPR_FUNCTION)
5443 se.expr = gfc_evaluate_now (se.expr, pblock);
5444 }
5445 gfc_conv_descriptor_ubound_set (descriptor_block, descriptor,
5446 gfc_rank_cst[n], se.expr);
5447 conv_ubound = se.expr;
5448
5449 /* Store the stride. */
5450 gfc_conv_descriptor_stride_set (descriptor_block, descriptor,
5451 gfc_rank_cst[n], stride);
5452
5453 /* Calculate size and check whether extent is negative. */
5454 size = gfc_conv_array_extent_dim (conv_lbound, conv_ubound, &or_expr);
5455 size = gfc_evaluate_now (size, pblock);
5456
5457 /* Check whether multiplying the stride by the number of
5458 elements in this dimension would overflow. We must also check
5459 whether the current dimension has zero size in order to avoid
5460 division by zero.
5461 */
5462 tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
5463 gfc_array_index_type,
5464 fold_convert (gfc_array_index_type,
5465 TYPE_MAX_VALUE (gfc_array_index_type)),
5466 size);
5467 cond = gfc_unlikely (fold_build2_loc (input_location, LT_EXPR,
5468 logical_type_node, tmp, stride),
5469 PRED_FORTRAN_OVERFLOW);
5470 tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
5471 integer_one_node, integer_zero_node);
5472 cond = gfc_unlikely (fold_build2_loc (input_location, EQ_EXPR,
5473 logical_type_node, size,
5474 gfc_index_zero_node),
5475 PRED_FORTRAN_SIZE_ZERO);
5476 tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
5477 integer_zero_node, tmp);
5478 tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
5479 *overflow, tmp);
5480 *overflow = gfc_evaluate_now (tmp, pblock);
5481
5482 /* Multiply the stride by the number of elements in this dimension. */
5483 stride = fold_build2_loc (input_location, MULT_EXPR,
5484 gfc_array_index_type, stride, size);
5485 stride = gfc_evaluate_now (stride, pblock);
5486 }
5487
5488 for (n = rank; n < rank + corank; n++)
5489 {
5490 ubound = upper[n];
5491
5492 /* Set lower bound. */
5493 gfc_init_se (&se, NULL);
5494 if (lower == NULL || lower[n] == NULL)
5495 {
5496 gcc_assert (n == rank + corank - 1);
5497 se.expr = gfc_index_one_node;
5498 }
5499 else
5500 {
5501 if (ubound || n == rank + corank - 1)
5502 {
5503 gfc_conv_expr_type (&se, lower[n], gfc_array_index_type);
5504 gfc_add_block_to_block (pblock, &se.pre);
5505 }
5506 else
5507 {
5508 se.expr = gfc_index_one_node;
5509 ubound = lower[n];
5510 }
5511 }
5512 gfc_conv_descriptor_lbound_set (descriptor_block, descriptor,
5513 gfc_rank_cst[n], se.expr);
5514
5515 if (n < rank + corank - 1)
5516 {
5517 gfc_init_se (&se, NULL);
5518 gcc_assert (ubound);
5519 gfc_conv_expr_type (&se, ubound, gfc_array_index_type);
5520 gfc_add_block_to_block (pblock, &se.pre);
5521 gfc_conv_descriptor_ubound_set (descriptor_block, descriptor,
5522 gfc_rank_cst[n], se.expr);
5523 }
5524 }
5525
5526 /* The stride is the number of elements in the array, so multiply by the
5527 size of an element to get the total size. Obviously, if there is a
5528 SOURCE expression (expr3) we must use its element size. */
5529 if (expr3_elem_size != NULL_TREE)
5530 tmp = expr3_elem_size;
5531 else if (expr3 != NULL)
5532 {
5533 if (expr3->ts.type == BT_CLASS)
5534 {
5535 gfc_se se_sz;
5536 gfc_expr *sz = gfc_copy_expr (expr3);
5537 gfc_add_vptr_component (sz);
5538 gfc_add_size_component (sz);
5539 gfc_init_se (&se_sz, NULL);
5540 gfc_conv_expr (&se_sz, sz);
5541 gfc_free_expr (sz);
5542 tmp = se_sz.expr;
5543 }
5544 else
5545 {
5546 tmp = gfc_typenode_for_spec (&expr3->ts);
5547 tmp = TYPE_SIZE_UNIT (tmp);
5548 }
5549 }
5550 else
5551 tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type));
5552
5553 /* Convert to size_t. */
5554 element_size = fold_convert (size_type_node, tmp);
5555
5556 if (rank == 0)
5557 return element_size;
5558
5559 *nelems = gfc_evaluate_now (stride, pblock);
5560 stride = fold_convert (size_type_node, stride);
5561
5562 /* First check for overflow. Since an array of type character can
5563 have zero element_size, we must check for that before
5564 dividing. */
5565 tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
5566 size_type_node,
5567 TYPE_MAX_VALUE (size_type_node), element_size);
5568 cond = gfc_unlikely (fold_build2_loc (input_location, LT_EXPR,
5569 logical_type_node, tmp, stride),
5570 PRED_FORTRAN_OVERFLOW);
5571 tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
5572 integer_one_node, integer_zero_node);
5573 cond = gfc_unlikely (fold_build2_loc (input_location, EQ_EXPR,
5574 logical_type_node, element_size,
5575 build_int_cst (size_type_node, 0)),
5576 PRED_FORTRAN_SIZE_ZERO);
5577 tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond,
5578 integer_zero_node, tmp);
5579 tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
5580 *overflow, tmp);
5581 *overflow = gfc_evaluate_now (tmp, pblock);
5582
5583 size = fold_build2_loc (input_location, MULT_EXPR, size_type_node,
5584 stride, element_size);
5585
5586 if (poffset != NULL)
5587 {
5588 offset = gfc_evaluate_now (offset, pblock);
5589 *poffset = offset;
5590 }
5591
5592 if (integer_zerop (or_expr))
5593 return size;
5594 if (integer_onep (or_expr))
5595 return build_int_cst (size_type_node, 0);
5596
5597 var = gfc_create_var (TREE_TYPE (size), "size");
5598 gfc_start_block (&thenblock);
5599 gfc_add_modify (&thenblock, var, build_int_cst (size_type_node, 0));
5600 thencase = gfc_finish_block (&thenblock);
5601
5602 gfc_start_block (&elseblock);
5603 gfc_add_modify (&elseblock, var, size);
5604 elsecase = gfc_finish_block (&elseblock);
5605
5606 tmp = gfc_evaluate_now (or_expr, pblock);
5607 tmp = build3_v (COND_EXPR, tmp, thencase, elsecase);
5608 gfc_add_expr_to_block (pblock, tmp);
5609
5610 return var;
5611 }
5612
5613
5614 /* Retrieve the last ref from the chain. This routine is specific to
5615 gfc_array_allocate ()'s needs. */
5616
5617 bool
5618 retrieve_last_ref (gfc_ref **ref_in, gfc_ref **prev_ref_in)
5619 {
5620 gfc_ref *ref, *prev_ref;
5621
5622 ref = *ref_in;
5623 /* Prevent warnings for uninitialized variables. */
5624 prev_ref = *prev_ref_in;
5625 while (ref && ref->next != NULL)
5626 {
5627 gcc_assert (ref->type != REF_ARRAY || ref->u.ar.type == AR_ELEMENT
5628 || (ref->u.ar.dimen == 0 && ref->u.ar.codimen > 0));
5629 prev_ref = ref;
5630 ref = ref->next;
5631 }
5632
5633 if (ref == NULL || ref->type != REF_ARRAY)
5634 return false;
5635
5636 *ref_in = ref;
5637 *prev_ref_in = prev_ref;
5638 return true;
5639 }
5640
5641 /* Initializes the descriptor and generates a call to _gfor_allocate. Does
5642 the work for an ALLOCATE statement. */
5643 /*GCC ARRAYS*/
5644
5645 bool
5646 gfc_array_allocate (gfc_se * se, gfc_expr * expr, tree status, tree errmsg,
5647 tree errlen, tree label_finish, tree expr3_elem_size,
5648 tree *nelems, gfc_expr *expr3, tree e3_arr_desc,
5649 bool e3_is_array_constr)
5650 {
5651 tree tmp;
5652 tree pointer;
5653 tree offset = NULL_TREE;
5654 tree token = NULL_TREE;
5655 tree size;
5656 tree msg;
5657 tree error = NULL_TREE;
5658 tree overflow; /* Boolean storing whether size calculation overflows. */
5659 tree var_overflow = NULL_TREE;
5660 tree cond;
5661 tree set_descriptor;
5662 stmtblock_t set_descriptor_block;
5663 stmtblock_t elseblock;
5664 gfc_expr **lower;
5665 gfc_expr **upper;
5666 gfc_ref *ref, *prev_ref = NULL, *coref;
5667 bool allocatable, coarray, dimension, alloc_w_e3_arr_spec = false,
5668 non_ulimate_coarray_ptr_comp;
5669
5670 ref = expr->ref;
5671
5672 /* Find the last reference in the chain. */
5673 if (!retrieve_last_ref (&ref, &prev_ref))
5674 return false;
5675
5676 /* Take the allocatable and coarray properties solely from the expr-ref's
5677 attributes and not from source=-expression. */
5678 if (!prev_ref)
5679 {
5680 allocatable = expr->symtree->n.sym->attr.allocatable;
5681 dimension = expr->symtree->n.sym->attr.dimension;
5682 non_ulimate_coarray_ptr_comp = false;
5683 }
5684 else
5685 {
5686 allocatable = prev_ref->u.c.component->attr.allocatable;
5687 /* Pointer components in coarrayed derived types must be treated
5688 specially in that they are registered without a check if the are
5689 already associated. This does not hold for ultimate coarray
5690 pointers. */
5691 non_ulimate_coarray_ptr_comp = (prev_ref->u.c.component->attr.pointer
5692 && !prev_ref->u.c.component->attr.codimension);
5693 dimension = prev_ref->u.c.component->attr.dimension;
5694 }
5695
5696 /* For allocatable/pointer arrays in derived types, one of the refs has to be
5697 a coarray. In this case it does not matter whether we are on this_image
5698 or not. */
5699 coarray = false;
5700 for (coref = expr->ref; coref; coref = coref->next)
5701 if (coref->type == REF_ARRAY && coref->u.ar.codimen > 0)
5702 {
5703 coarray = true;
5704 break;
5705 }
5706
5707 if (!dimension)
5708 gcc_assert (coarray);
5709
5710 if (ref->u.ar.type == AR_FULL && expr3 != NULL)
5711 {
5712 gfc_ref *old_ref = ref;
5713 /* F08:C633: Array shape from expr3. */
5714 ref = expr3->ref;
5715
5716 /* Find the last reference in the chain. */
5717 if (!retrieve_last_ref (&ref, &prev_ref))
5718 {
5719 if (expr3->expr_type == EXPR_FUNCTION
5720 && gfc_expr_attr (expr3).dimension)
5721 ref = old_ref;
5722 else
5723 return false;
5724 }
5725 alloc_w_e3_arr_spec = true;
5726 }
5727
5728 /* Figure out the size of the array. */
5729 switch (ref->u.ar.type)
5730 {
5731 case AR_ELEMENT:
5732 if (!coarray)
5733 {
5734 lower = NULL;
5735 upper = ref->u.ar.start;
5736 break;
5737 }
5738 /* Fall through. */
5739
5740 case AR_SECTION:
5741 lower = ref->u.ar.start;
5742 upper = ref->u.ar.end;
5743 break;
5744
5745 case AR_FULL:
5746 gcc_assert (ref->u.ar.as->type == AS_EXPLICIT
5747 || alloc_w_e3_arr_spec);
5748
5749 lower = ref->u.ar.as->lower;
5750 upper = ref->u.ar.as->upper;
5751 break;
5752
5753 default:
5754 gcc_unreachable ();
5755 break;
5756 }
5757
5758 overflow = integer_zero_node;
5759
5760 gfc_init_block (&set_descriptor_block);
5761 /* Take the corank only from the actual ref and not from the coref. The
5762 later will mislead the generation of the array dimensions for allocatable/
5763 pointer components in derived types. */
5764 size = gfc_array_init_size (se->expr, alloc_w_e3_arr_spec ? expr->rank
5765 : ref->u.ar.as->rank,
5766 coarray ? ref->u.ar.as->corank : 0,
5767 &offset, lower, upper,
5768 &se->pre, &set_descriptor_block, &overflow,
5769 expr3_elem_size, nelems, expr3, e3_arr_desc,
5770 e3_is_array_constr, expr);
5771
5772 if (dimension)
5773 {
5774 var_overflow = gfc_create_var (integer_type_node, "overflow");
5775 gfc_add_modify (&se->pre, var_overflow, overflow);
5776
5777 if (status == NULL_TREE)
5778 {
5779 /* Generate the block of code handling overflow. */
5780 msg = gfc_build_addr_expr (pchar_type_node,
5781 gfc_build_localized_cstring_const
5782 ("Integer overflow when calculating the amount of "
5783 "memory to allocate"));
5784 error = build_call_expr_loc (input_location,
5785 gfor_fndecl_runtime_error, 1, msg);
5786 }
5787 else
5788 {
5789 tree status_type = TREE_TYPE (status);
5790 stmtblock_t set_status_block;
5791
5792 gfc_start_block (&set_status_block);
5793 gfc_add_modify (&set_status_block, status,
5794 build_int_cst (status_type, LIBERROR_ALLOCATION));
5795 error = gfc_finish_block (&set_status_block);
5796 }
5797 }
5798
5799 gfc_start_block (&elseblock);
5800
5801 /* Allocate memory to store the data. */
5802 if (POINTER_TYPE_P (TREE_TYPE (se->expr)))
5803 se->expr = build_fold_indirect_ref_loc (input_location, se->expr);
5804
5805 if (coarray && flag_coarray == GFC_FCOARRAY_LIB)
5806 {
5807 pointer = non_ulimate_coarray_ptr_comp ? se->expr
5808 : gfc_conv_descriptor_data_get (se->expr);
5809 token = gfc_conv_descriptor_token (se->expr);
5810 token = gfc_build_addr_expr (NULL_TREE, token);
5811 }
5812 else
5813 pointer = gfc_conv_descriptor_data_get (se->expr);
5814 STRIP_NOPS (pointer);
5815
5816 /* The allocatable variant takes the old pointer as first argument. */
5817 if (allocatable)
5818 gfc_allocate_allocatable (&elseblock, pointer, size, token,
5819 status, errmsg, errlen, label_finish, expr,
5820 coref != NULL ? coref->u.ar.as->corank : 0);
5821 else if (non_ulimate_coarray_ptr_comp && token)
5822 /* The token is set only for GFC_FCOARRAY_LIB mode. */
5823 gfc_allocate_using_caf_lib (&elseblock, pointer, size, token, status,
5824 errmsg, errlen,
5825 GFC_CAF_COARRAY_ALLOC_ALLOCATE_ONLY);
5826 else
5827 gfc_allocate_using_malloc (&elseblock, pointer, size, status);
5828
5829 if (dimension)
5830 {
5831 cond = gfc_unlikely (fold_build2_loc (input_location, NE_EXPR,
5832 logical_type_node, var_overflow, integer_zero_node),
5833 PRED_FORTRAN_OVERFLOW);
5834 tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond,
5835 error, gfc_finish_block (&elseblock));
5836 }
5837 else
5838 tmp = gfc_finish_block (&elseblock);
5839
5840 gfc_add_expr_to_block (&se->pre, tmp);
5841
5842 /* Update the array descriptors. */
5843 if (dimension)
5844 gfc_conv_descriptor_offset_set (&set_descriptor_block, se->expr, offset);
5845
5846 /* Pointer arrays need the span field to be set. */
5847 if (is_pointer_array (se->expr)
5848 || (expr->ts.type == BT_CLASS
5849 && CLASS_DATA (expr)->attr.class_pointer))
5850 {
5851 if (expr3 && expr3_elem_size != NULL_TREE)
5852 tmp = expr3_elem_size;
5853 else
5854 tmp = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (se->expr)));
5855 tmp = fold_convert (gfc_array_index_type, tmp);
5856 gfc_conv_descriptor_span_set (&set_descriptor_block, se->expr, tmp);
5857 }
5858
5859 set_descriptor = gfc_finish_block (&set_descriptor_block);
5860 if (status != NULL_TREE)
5861 {
5862 cond = fold_build2_loc (input_location, EQ_EXPR,
5863 logical_type_node, status,
5864 build_int_cst (TREE_TYPE (status), 0));
5865 gfc_add_expr_to_block (&se->pre,
5866 fold_build3_loc (input_location, COND_EXPR, void_type_node,
5867 cond,
5868 set_descriptor,
5869 build_empty_stmt (input_location)));
5870 }
5871 else
5872 gfc_add_expr_to_block (&se->pre, set_descriptor);
5873
5874 return true;
5875 }
5876
5877
5878 /* Create an array constructor from an initialization expression.
5879 We assume the frontend already did any expansions and conversions. */
5880
5881 tree
5882 gfc_conv_array_initializer (tree type, gfc_expr * expr)
5883 {
5884 gfc_constructor *c;
5885 tree tmp;
5886 offset_int wtmp;
5887 gfc_se se;
5888 tree index, range;
5889 vec<constructor_elt, va_gc> *v = NULL;
5890
5891 if (expr->expr_type == EXPR_VARIABLE
5892 && expr->symtree->n.sym->attr.flavor == FL_PARAMETER
5893 && expr->symtree->n.sym->value)
5894 expr = expr->symtree->n.sym->value;
5895
5896 switch (expr->expr_type)
5897 {
5898 case EXPR_CONSTANT:
5899 case EXPR_STRUCTURE:
5900 /* A single scalar or derived type value. Create an array with all
5901 elements equal to that value. */
5902 gfc_init_se (&se, NULL);
5903
5904 if (expr->expr_type == EXPR_CONSTANT)
5905 gfc_conv_constant (&se, expr);
5906 else
5907 gfc_conv_structure (&se, expr, 1);
5908
5909 wtmp = wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) + 1;
5910 /* This will probably eat buckets of memory for large arrays. */
5911 while (wtmp != 0)
5912 {
5913 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, se.expr);
5914 wtmp -= 1;
5915 }
5916 break;
5917
5918 case EXPR_ARRAY:
5919 /* Create a vector of all the elements. */
5920 for (c = gfc_constructor_first (expr->value.constructor);
5921 c; c = gfc_constructor_next (c))
5922 {
5923 if (c->iterator)
5924 {
5925 /* Problems occur when we get something like
5926 integer :: a(lots) = (/(i, i=1, lots)/) */
5927 gfc_fatal_error ("The number of elements in the array "
5928 "constructor at %L requires an increase of "
5929 "the allowed %d upper limit. See "
5930 "%<-fmax-array-constructor%> option",
5931 &expr->where, flag_max_array_constructor);
5932 return NULL_TREE;
5933 }
5934 if (mpz_cmp_si (c->offset, 0) != 0)
5935 index = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind);
5936 else
5937 index = NULL_TREE;
5938
5939 if (mpz_cmp_si (c->repeat, 1) > 0)
5940 {
5941 tree tmp1, tmp2;
5942 mpz_t maxval;
5943
5944 mpz_init (maxval);
5945 mpz_add (maxval, c->offset, c->repeat);
5946 mpz_sub_ui (maxval, maxval, 1);
5947 tmp2 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind);
5948 if (mpz_cmp_si (c->offset, 0) != 0)
5949 {
5950 mpz_add_ui (maxval, c->offset, 1);
5951 tmp1 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind);
5952 }
5953 else
5954 tmp1 = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind);
5955
5956 range = fold_build2 (RANGE_EXPR, gfc_array_index_type, tmp1, tmp2);
5957 mpz_clear (maxval);
5958 }
5959 else
5960 range = NULL;
5961
5962 gfc_init_se (&se, NULL);
5963 switch (c->expr->expr_type)
5964 {
5965 case EXPR_CONSTANT:
5966 gfc_conv_constant (&se, c->expr);
5967 break;
5968
5969 case EXPR_STRUCTURE:
5970 gfc_conv_structure (&se, c->expr, 1);
5971 break;
5972
5973 default:
5974 /* Catch those occasional beasts that do not simplify
5975 for one reason or another, assuming that if they are
5976 standard defying the frontend will catch them. */
5977 gfc_conv_expr (&se, c->expr);
5978 break;
5979 }
5980
5981 if (range == NULL_TREE)
5982 CONSTRUCTOR_APPEND_ELT (v, index, se.expr);
5983 else
5984 {
5985 if (index != NULL_TREE)
5986 CONSTRUCTOR_APPEND_ELT (v, index, se.expr);
5987 CONSTRUCTOR_APPEND_ELT (v, range, se.expr);
5988 }
5989 }
5990 break;
5991
5992 case EXPR_NULL:
5993 return gfc_build_null_descriptor (type);
5994
5995 default:
5996 gcc_unreachable ();
5997 }
5998
5999 /* Create a constructor from the list of elements. */
6000 tmp = build_constructor (type, v);
6001 TREE_CONSTANT (tmp) = 1;
6002 return tmp;
6003 }
6004
6005
6006 /* Generate code to evaluate non-constant coarray cobounds. */
6007
6008 void
6009 gfc_trans_array_cobounds (tree type, stmtblock_t * pblock,
6010 const gfc_symbol *sym)
6011 {
6012 int dim;
6013 tree ubound;
6014 tree lbound;
6015 gfc_se se;
6016 gfc_array_spec *as;
6017
6018 as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as;
6019
6020 for (dim = as->rank; dim < as->rank + as->corank; dim++)
6021 {
6022 /* Evaluate non-constant array bound expressions. */
6023 lbound = GFC_TYPE_ARRAY_LBOUND (type, dim);
6024 if (as->lower[dim] && !INTEGER_CST_P (lbound))
6025 {
6026 gfc_init_se (&se, NULL);
6027 gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type);
6028 gfc_add_block_to_block (pblock, &se.pre);
6029 gfc_add_modify (pblock, lbound, se.expr);
6030 }
6031 ubound = GFC_TYPE_ARRAY_UBOUND (type, dim);
6032 if (as->upper[dim] && !INTEGER_CST_P (ubound))
6033 {
6034 gfc_init_se (&se, NULL);
6035 gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type);
6036 gfc_add_block_to_block (pblock, &se.pre);
6037 gfc_add_modify (pblock, ubound, se.expr);
6038 }
6039 }
6040 }
6041
6042
6043 /* Generate code to evaluate non-constant array bounds. Sets *poffset and
6044 returns the size (in elements) of the array. */
6045
6046 static tree
6047 gfc_trans_array_bounds (tree type, gfc_symbol * sym, tree * poffset,
6048 stmtblock_t * pblock)
6049 {
6050 gfc_array_spec *as;
6051 tree size;
6052 tree stride;
6053 tree offset;
6054 tree ubound;
6055 tree lbound;
6056 tree tmp;
6057 gfc_se se;
6058
6059 int dim;
6060
6061 as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as;
6062
6063 size = gfc_index_one_node;
6064 offset = gfc_index_zero_node;
6065 for (dim = 0; dim < as->rank; dim++)
6066 {
6067 /* Evaluate non-constant array bound expressions. */
6068 lbound = GFC_TYPE_ARRAY_LBOUND (type, dim);
6069 if (as->lower[dim] && !INTEGER_CST_P (lbound))
6070 {
6071 gfc_init_se (&se, NULL);
6072 gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type);
6073 gfc_add_block_to_block (pblock, &se.pre);
6074 gfc_add_modify (pblock, lbound, se.expr);
6075 }
6076 ubound = GFC_TYPE_ARRAY_UBOUND (type, dim);
6077 if (as->upper[dim] && !INTEGER_CST_P (ubound))
6078 {
6079 gfc_init_se (&se, NULL);
6080 gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type);
6081 gfc_add_block_to_block (pblock, &se.pre);
6082 gfc_add_modify (pblock, ubound, se.expr);
6083 }
6084 /* The offset of this dimension. offset = offset - lbound * stride. */
6085 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
6086 lbound, size);
6087 offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
6088 offset, tmp);
6089
6090 /* The size of this dimension, and the stride of the next. */
6091 if (dim + 1 < as->rank)
6092 stride = GFC_TYPE_ARRAY_STRIDE (type, dim + 1);
6093 else
6094 stride = GFC_TYPE_ARRAY_SIZE (type);
6095
6096 if (ubound != NULL_TREE && !(stride && INTEGER_CST_P (stride)))
6097 {
6098 /* Calculate stride = size * (ubound + 1 - lbound). */
6099 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6100 gfc_array_index_type,
6101 gfc_index_one_node, lbound);
6102 tmp = fold_build2_loc (input_location, PLUS_EXPR,
6103 gfc_array_index_type, ubound, tmp);
6104 tmp = fold_build2_loc (input_location, MULT_EXPR,
6105 gfc_array_index_type, size, tmp);
6106 if (stride)
6107 gfc_add_modify (pblock, stride, tmp);
6108 else
6109 stride = gfc_evaluate_now (tmp, pblock);
6110
6111 /* Make sure that negative size arrays are translated
6112 to being zero size. */
6113 tmp = fold_build2_loc (input_location, GE_EXPR, logical_type_node,
6114 stride, gfc_index_zero_node);
6115 tmp = fold_build3_loc (input_location, COND_EXPR,
6116 gfc_array_index_type, tmp,
6117 stride, gfc_index_zero_node);
6118 gfc_add_modify (pblock, stride, tmp);
6119 }
6120
6121 size = stride;
6122 }
6123
6124 gfc_trans_array_cobounds (type, pblock, sym);
6125 gfc_trans_vla_type_sizes (sym, pblock);
6126
6127 *poffset = offset;
6128 return size;
6129 }
6130
6131
6132 /* Generate code to initialize/allocate an array variable. */
6133
6134 void
6135 gfc_trans_auto_array_allocation (tree decl, gfc_symbol * sym,
6136 gfc_wrapped_block * block)
6137 {
6138 stmtblock_t init;
6139 tree type;
6140 tree tmp = NULL_TREE;
6141 tree size;
6142 tree offset;
6143 tree space;
6144 tree inittree;
6145 bool onstack;
6146
6147 gcc_assert (!(sym->attr.pointer || sym->attr.allocatable));
6148
6149 /* Do nothing for USEd variables. */
6150 if (sym->attr.use_assoc)
6151 return;
6152
6153 type = TREE_TYPE (decl);
6154 gcc_assert (GFC_ARRAY_TYPE_P (type));
6155 onstack = TREE_CODE (type) != POINTER_TYPE;
6156
6157 gfc_init_block (&init);
6158
6159 /* Evaluate character string length. */
6160 if (sym->ts.type == BT_CHARACTER
6161 && onstack && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
6162 {
6163 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
6164
6165 gfc_trans_vla_type_sizes (sym, &init);
6166
6167 /* Emit a DECL_EXPR for this variable, which will cause the
6168 gimplifier to allocate storage, and all that good stuff. */
6169 tmp = fold_build1_loc (input_location, DECL_EXPR, TREE_TYPE (decl), decl);
6170 gfc_add_expr_to_block (&init, tmp);
6171 }
6172
6173 if (onstack)
6174 {
6175 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
6176 return;
6177 }
6178
6179 type = TREE_TYPE (type);
6180
6181 gcc_assert (!sym->attr.use_assoc);
6182 gcc_assert (!TREE_STATIC (decl));
6183 gcc_assert (!sym->module);
6184
6185 if (sym->ts.type == BT_CHARACTER
6186 && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
6187 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
6188
6189 size = gfc_trans_array_bounds (type, sym, &offset, &init);
6190
6191 /* Don't actually allocate space for Cray Pointees. */
6192 if (sym->attr.cray_pointee)
6193 {
6194 if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type)))
6195 gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
6196
6197 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
6198 return;
6199 }
6200
6201 if (flag_stack_arrays)
6202 {
6203 gcc_assert (TREE_CODE (TREE_TYPE (decl)) == POINTER_TYPE);
6204 space = build_decl (sym->declared_at.lb->location,
6205 VAR_DECL, create_tmp_var_name ("A"),
6206 TREE_TYPE (TREE_TYPE (decl)));
6207 gfc_trans_vla_type_sizes (sym, &init);
6208 }
6209 else
6210 {
6211 /* The size is the number of elements in the array, so multiply by the
6212 size of an element to get the total size. */
6213 tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type));
6214 size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
6215 size, fold_convert (gfc_array_index_type, tmp));
6216
6217 /* Allocate memory to hold the data. */
6218 tmp = gfc_call_malloc (&init, TREE_TYPE (decl), size);
6219 gfc_add_modify (&init, decl, tmp);
6220
6221 /* Free the temporary. */
6222 tmp = gfc_call_free (decl);
6223 space = NULL_TREE;
6224 }
6225
6226 /* Set offset of the array. */
6227 if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type)))
6228 gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
6229
6230 /* Automatic arrays should not have initializers. */
6231 gcc_assert (!sym->value);
6232
6233 inittree = gfc_finish_block (&init);
6234
6235 if (space)
6236 {
6237 tree addr;
6238 pushdecl (space);
6239
6240 /* Don't create new scope, emit the DECL_EXPR in exactly the scope
6241 where also space is located. */
6242 gfc_init_block (&init);
6243 tmp = fold_build1_loc (input_location, DECL_EXPR,
6244 TREE_TYPE (space), space);
6245 gfc_add_expr_to_block (&init, tmp);
6246 addr = fold_build1_loc (sym->declared_at.lb->location,
6247 ADDR_EXPR, TREE_TYPE (decl), space);
6248 gfc_add_modify (&init, decl, addr);
6249 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
6250 tmp = NULL_TREE;
6251 }
6252 gfc_add_init_cleanup (block, inittree, tmp);
6253 }
6254
6255
6256 /* Generate entry and exit code for g77 calling convention arrays. */
6257
6258 void
6259 gfc_trans_g77_array (gfc_symbol * sym, gfc_wrapped_block * block)
6260 {
6261 tree parm;
6262 tree type;
6263 locus loc;
6264 tree offset;
6265 tree tmp;
6266 tree stmt;
6267 stmtblock_t init;
6268
6269 gfc_save_backend_locus (&loc);
6270 gfc_set_backend_locus (&sym->declared_at);
6271
6272 /* Descriptor type. */
6273 parm = sym->backend_decl;
6274 type = TREE_TYPE (parm);
6275 gcc_assert (GFC_ARRAY_TYPE_P (type));
6276
6277 gfc_start_block (&init);
6278
6279 if (sym->ts.type == BT_CHARACTER
6280 && VAR_P (sym->ts.u.cl->backend_decl))
6281 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
6282
6283 /* Evaluate the bounds of the array. */
6284 gfc_trans_array_bounds (type, sym, &offset, &init);
6285
6286 /* Set the offset. */
6287 if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type)))
6288 gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
6289
6290 /* Set the pointer itself if we aren't using the parameter directly. */
6291 if (TREE_CODE (parm) != PARM_DECL)
6292 {
6293 tmp = convert (TREE_TYPE (parm), GFC_DECL_SAVED_DESCRIPTOR (parm));
6294 gfc_add_modify (&init, parm, tmp);
6295 }
6296 stmt = gfc_finish_block (&init);
6297
6298 gfc_restore_backend_locus (&loc);
6299
6300 /* Add the initialization code to the start of the function. */
6301
6302 if (sym->attr.optional || sym->attr.not_always_present)
6303 {
6304 tmp = gfc_conv_expr_present (sym);
6305 stmt = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location));
6306 }
6307
6308 gfc_add_init_cleanup (block, stmt, NULL_TREE);
6309 }
6310
6311
6312 /* Modify the descriptor of an array parameter so that it has the
6313 correct lower bound. Also move the upper bound accordingly.
6314 If the array is not packed, it will be copied into a temporary.
6315 For each dimension we set the new lower and upper bounds. Then we copy the
6316 stride and calculate the offset for this dimension. We also work out
6317 what the stride of a packed array would be, and see it the two match.
6318 If the array need repacking, we set the stride to the values we just
6319 calculated, recalculate the offset and copy the array data.
6320 Code is also added to copy the data back at the end of the function.
6321 */
6322
6323 void
6324 gfc_trans_dummy_array_bias (gfc_symbol * sym, tree tmpdesc,
6325 gfc_wrapped_block * block)
6326 {
6327 tree size;
6328 tree type;
6329 tree offset;
6330 locus loc;
6331 stmtblock_t init;
6332 tree stmtInit, stmtCleanup;
6333 tree lbound;
6334 tree ubound;
6335 tree dubound;
6336 tree dlbound;
6337 tree dumdesc;
6338 tree tmp;
6339 tree stride, stride2;
6340 tree stmt_packed;
6341 tree stmt_unpacked;
6342 tree partial;
6343 gfc_se se;
6344 int n;
6345 int checkparm;
6346 int no_repack;
6347 bool optional_arg;
6348 gfc_array_spec *as;
6349 bool is_classarray = IS_CLASS_ARRAY (sym);
6350
6351 /* Do nothing for pointer and allocatable arrays. */
6352 if ((sym->ts.type != BT_CLASS && sym->attr.pointer)
6353 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->attr.class_pointer)
6354 || sym->attr.allocatable
6355 || (is_classarray && CLASS_DATA (sym)->attr.allocatable))
6356 return;
6357
6358 if (!is_classarray && sym->attr.dummy && gfc_is_nodesc_array (sym))
6359 {
6360 gfc_trans_g77_array (sym, block);
6361 return;
6362 }
6363
6364 loc.nextc = NULL;
6365 gfc_save_backend_locus (&loc);
6366 /* loc.nextc is not set by save_backend_locus but the location routines
6367 depend on it. */
6368 if (loc.nextc == NULL)
6369 loc.nextc = loc.lb->line;
6370 gfc_set_backend_locus (&sym->declared_at);
6371
6372 /* Descriptor type. */
6373 type = TREE_TYPE (tmpdesc);
6374 gcc_assert (GFC_ARRAY_TYPE_P (type));
6375 dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
6376 if (is_classarray)
6377 /* For a class array the dummy array descriptor is in the _class
6378 component. */
6379 dumdesc = gfc_class_data_get (dumdesc);
6380 else
6381 dumdesc = build_fold_indirect_ref_loc (input_location, dumdesc);
6382 as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as;
6383 gfc_start_block (&init);
6384
6385 if (sym->ts.type == BT_CHARACTER
6386 && VAR_P (sym->ts.u.cl->backend_decl))
6387 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
6388
6389 checkparm = (as->type == AS_EXPLICIT
6390 && (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS));
6391
6392 no_repack = !(GFC_DECL_PACKED_ARRAY (tmpdesc)
6393 || GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc));
6394
6395 if (GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc))
6396 {
6397 /* For non-constant shape arrays we only check if the first dimension
6398 is contiguous. Repacking higher dimensions wouldn't gain us
6399 anything as we still don't know the array stride. */
6400 partial = gfc_create_var (logical_type_node, "partial");
6401 TREE_USED (partial) = 1;
6402 tmp = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]);
6403 tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, tmp,
6404 gfc_index_one_node);
6405 gfc_add_modify (&init, partial, tmp);
6406 }
6407 else
6408 partial = NULL_TREE;
6409
6410 /* The naming of stmt_unpacked and stmt_packed may be counter-intuitive
6411 here, however I think it does the right thing. */
6412 if (no_repack)
6413 {
6414 /* Set the first stride. */
6415 stride = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]);
6416 stride = gfc_evaluate_now (stride, &init);
6417
6418 tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node,
6419 stride, gfc_index_zero_node);
6420 tmp = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type,
6421 tmp, gfc_index_one_node, stride);
6422 stride = GFC_TYPE_ARRAY_STRIDE (type, 0);
6423 gfc_add_modify (&init, stride, tmp);
6424
6425 /* Allow the user to disable array repacking. */
6426 stmt_unpacked = NULL_TREE;
6427 }
6428 else
6429 {
6430 gcc_assert (integer_onep (GFC_TYPE_ARRAY_STRIDE (type, 0)));
6431 /* A library call to repack the array if necessary. */
6432 tmp = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
6433 stmt_unpacked = build_call_expr_loc (input_location,
6434 gfor_fndecl_in_pack, 1, tmp);
6435
6436 stride = gfc_index_one_node;
6437
6438 if (warn_array_temporaries)
6439 gfc_warning (OPT_Warray_temporaries,
6440 "Creating array temporary at %L", &loc);
6441 }
6442
6443 /* This is for the case where the array data is used directly without
6444 calling the repack function. */
6445 if (no_repack || partial != NULL_TREE)
6446 stmt_packed = gfc_conv_descriptor_data_get (dumdesc);
6447 else
6448 stmt_packed = NULL_TREE;
6449
6450 /* Assign the data pointer. */
6451 if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE)
6452 {
6453 /* Don't repack unknown shape arrays when the first stride is 1. */
6454 tmp = fold_build3_loc (input_location, COND_EXPR, TREE_TYPE (stmt_packed),
6455 partial, stmt_packed, stmt_unpacked);
6456 }
6457 else
6458 tmp = stmt_packed != NULL_TREE ? stmt_packed : stmt_unpacked;
6459 gfc_add_modify (&init, tmpdesc, fold_convert (type, tmp));
6460
6461 offset = gfc_index_zero_node;
6462 size = gfc_index_one_node;
6463
6464 /* Evaluate the bounds of the array. */
6465 for (n = 0; n < as->rank; n++)
6466 {
6467 if (checkparm || !as->upper[n])
6468 {
6469 /* Get the bounds of the actual parameter. */
6470 dubound = gfc_conv_descriptor_ubound_get (dumdesc, gfc_rank_cst[n]);
6471 dlbound = gfc_conv_descriptor_lbound_get (dumdesc, gfc_rank_cst[n]);
6472 }
6473 else
6474 {
6475 dubound = NULL_TREE;
6476 dlbound = NULL_TREE;
6477 }
6478
6479 lbound = GFC_TYPE_ARRAY_LBOUND (type, n);
6480 if (!INTEGER_CST_P (lbound))
6481 {
6482 gfc_init_se (&se, NULL);
6483 gfc_conv_expr_type (&se, as->lower[n],
6484 gfc_array_index_type);
6485 gfc_add_block_to_block (&init, &se.pre);
6486 gfc_add_modify (&init, lbound, se.expr);
6487 }
6488
6489 ubound = GFC_TYPE_ARRAY_UBOUND (type, n);
6490 /* Set the desired upper bound. */
6491 if (as->upper[n])
6492 {
6493 /* We know what we want the upper bound to be. */
6494 if (!INTEGER_CST_P (ubound))
6495 {
6496 gfc_init_se (&se, NULL);
6497 gfc_conv_expr_type (&se, as->upper[n],
6498 gfc_array_index_type);
6499 gfc_add_block_to_block (&init, &se.pre);
6500 gfc_add_modify (&init, ubound, se.expr);
6501 }
6502
6503 /* Check the sizes match. */
6504 if (checkparm)
6505 {
6506 /* Check (ubound(a) - lbound(a) == ubound(b) - lbound(b)). */
6507 char * msg;
6508 tree temp;
6509
6510 temp = fold_build2_loc (input_location, MINUS_EXPR,
6511 gfc_array_index_type, ubound, lbound);
6512 temp = fold_build2_loc (input_location, PLUS_EXPR,
6513 gfc_array_index_type,
6514 gfc_index_one_node, temp);
6515 stride2 = fold_build2_loc (input_location, MINUS_EXPR,
6516 gfc_array_index_type, dubound,
6517 dlbound);
6518 stride2 = fold_build2_loc (input_location, PLUS_EXPR,
6519 gfc_array_index_type,
6520 gfc_index_one_node, stride2);
6521 tmp = fold_build2_loc (input_location, NE_EXPR,
6522 gfc_array_index_type, temp, stride2);
6523 msg = xasprintf ("Dimension %d of array '%s' has extent "
6524 "%%ld instead of %%ld", n+1, sym->name);
6525
6526 gfc_trans_runtime_check (true, false, tmp, &init, &loc, msg,
6527 fold_convert (long_integer_type_node, temp),
6528 fold_convert (long_integer_type_node, stride2));
6529
6530 free (msg);
6531 }
6532 }
6533 else
6534 {
6535 /* For assumed shape arrays move the upper bound by the same amount
6536 as the lower bound. */
6537 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6538 gfc_array_index_type, dubound, dlbound);
6539 tmp = fold_build2_loc (input_location, PLUS_EXPR,
6540 gfc_array_index_type, tmp, lbound);
6541 gfc_add_modify (&init, ubound, tmp);
6542 }
6543 /* The offset of this dimension. offset = offset - lbound * stride. */
6544 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
6545 lbound, stride);
6546 offset = fold_build2_loc (input_location, MINUS_EXPR,
6547 gfc_array_index_type, offset, tmp);
6548
6549 /* The size of this dimension, and the stride of the next. */
6550 if (n + 1 < as->rank)
6551 {
6552 stride = GFC_TYPE_ARRAY_STRIDE (type, n + 1);
6553
6554 if (no_repack || partial != NULL_TREE)
6555 stmt_unpacked =
6556 gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[n+1]);
6557
6558 /* Figure out the stride if not a known constant. */
6559 if (!INTEGER_CST_P (stride))
6560 {
6561 if (no_repack)
6562 stmt_packed = NULL_TREE;
6563 else
6564 {
6565 /* Calculate stride = size * (ubound + 1 - lbound). */
6566 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6567 gfc_array_index_type,
6568 gfc_index_one_node, lbound);
6569 tmp = fold_build2_loc (input_location, PLUS_EXPR,
6570 gfc_array_index_type, ubound, tmp);
6571 size = fold_build2_loc (input_location, MULT_EXPR,
6572 gfc_array_index_type, size, tmp);
6573 stmt_packed = size;
6574 }
6575
6576 /* Assign the stride. */
6577 if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE)
6578 tmp = fold_build3_loc (input_location, COND_EXPR,
6579 gfc_array_index_type, partial,
6580 stmt_unpacked, stmt_packed);
6581 else
6582 tmp = (stmt_packed != NULL_TREE) ? stmt_packed : stmt_unpacked;
6583 gfc_add_modify (&init, stride, tmp);
6584 }
6585 }
6586 else
6587 {
6588 stride = GFC_TYPE_ARRAY_SIZE (type);
6589
6590 if (stride && !INTEGER_CST_P (stride))
6591 {
6592 /* Calculate size = stride * (ubound + 1 - lbound). */
6593 tmp = fold_build2_loc (input_location, MINUS_EXPR,
6594 gfc_array_index_type,
6595 gfc_index_one_node, lbound);
6596 tmp = fold_build2_loc (input_location, PLUS_EXPR,
6597 gfc_array_index_type,
6598 ubound, tmp);
6599 tmp = fold_build2_loc (input_location, MULT_EXPR,
6600 gfc_array_index_type,
6601 GFC_TYPE_ARRAY_STRIDE (type, n), tmp);
6602 gfc_add_modify (&init, stride, tmp);
6603 }
6604 }
6605 }
6606
6607 gfc_trans_array_cobounds (type, &init, sym);
6608
6609 /* Set the offset. */
6610 if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type)))
6611 gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset);
6612
6613 gfc_trans_vla_type_sizes (sym, &init);
6614
6615 stmtInit = gfc_finish_block (&init);
6616
6617 /* Only do the entry/initialization code if the arg is present. */
6618 dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc);
6619 optional_arg = (sym->attr.optional
6620 || (sym->ns->proc_name->attr.entry_master
6621 && sym->attr.dummy));
6622 if (optional_arg)
6623 {
6624 tmp = gfc_conv_expr_present (sym);
6625 stmtInit = build3_v (COND_EXPR, tmp, stmtInit,
6626 build_empty_stmt (input_location));
6627 }
6628
6629 /* Cleanup code. */
6630 if (no_repack)
6631 stmtCleanup = NULL_TREE;
6632 else
6633 {
6634 stmtblock_t cleanup;
6635 gfc_start_block (&cleanup);
6636
6637 if (sym->attr.intent != INTENT_IN)
6638 {
6639 /* Copy the data back. */
6640 tmp = build_call_expr_loc (input_location,
6641 gfor_fndecl_in_unpack, 2, dumdesc, tmpdesc);
6642 gfc_add_expr_to_block (&cleanup, tmp);
6643 }
6644
6645 /* Free the temporary. */
6646 tmp = gfc_call_free (tmpdesc);
6647 gfc_add_expr_to_block (&cleanup, tmp);
6648
6649 stmtCleanup = gfc_finish_block (&cleanup);
6650
6651 /* Only do the cleanup if the array was repacked. */
6652 if (is_classarray)
6653 /* For a class array the dummy array descriptor is in the _class
6654 component. */
6655 tmp = gfc_class_data_get (dumdesc);
6656 else
6657 tmp = build_fold_indirect_ref_loc (input_location, dumdesc);
6658 tmp = gfc_conv_descriptor_data_get (tmp);
6659 tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
6660 tmp, tmpdesc);
6661 stmtCleanup = build3_v (COND_EXPR, tmp, stmtCleanup,
6662 build_empty_stmt (input_location));
6663
6664 if (optional_arg)
6665 {
6666 tmp = gfc_conv_expr_present (sym);
6667 stmtCleanup = build3_v (COND_EXPR, tmp, stmtCleanup,
6668 build_empty_stmt (input_location));
6669 }
6670 }
6671
6672 /* We don't need to free any memory allocated by internal_pack as it will
6673 be freed at the end of the function by pop_context. */
6674 gfc_add_init_cleanup (block, stmtInit, stmtCleanup);
6675
6676 gfc_restore_backend_locus (&loc);
6677 }
6678
6679
6680 /* Calculate the overall offset, including subreferences. */
6681 static void
6682 gfc_get_dataptr_offset (stmtblock_t *block, tree parm, tree desc, tree offset,
6683 bool subref, gfc_expr *expr)
6684 {
6685 tree tmp;
6686 tree field;
6687 tree stride;
6688 tree index;
6689 gfc_ref *ref;
6690 gfc_se start;
6691 int n;
6692
6693 /* If offset is NULL and this is not a subreferenced array, there is
6694 nothing to do. */
6695 if (offset == NULL_TREE)
6696 {
6697 if (subref)
6698 offset = gfc_index_zero_node;
6699 else
6700 return;
6701 }
6702
6703 tmp = build_array_ref (desc, offset, NULL, NULL);
6704
6705 /* Offset the data pointer for pointer assignments from arrays with
6706 subreferences; e.g. my_integer => my_type(:)%integer_component. */
6707 if (subref)
6708 {
6709 /* Go past the array reference. */
6710 for (ref = expr->ref; ref; ref = ref->next)
6711 if (ref->type == REF_ARRAY &&
6712 ref->u.ar.type != AR_ELEMENT)
6713 {
6714 ref = ref->next;
6715 break;
6716 }
6717
6718 /* Calculate the offset for each subsequent subreference. */
6719 for (; ref; ref = ref->next)
6720 {
6721 switch (ref->type)
6722 {
6723 case REF_COMPONENT:
6724 field = ref->u.c.component->backend_decl;
6725 gcc_assert (field && TREE_CODE (field) == FIELD_DECL);
6726 tmp = fold_build3_loc (input_location, COMPONENT_REF,
6727 TREE_TYPE (field),
6728 tmp, field, NULL_TREE);
6729 break;
6730
6731 case REF_SUBSTRING:
6732 gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE);
6733 gfc_init_se (&start, NULL);
6734 gfc_conv_expr_type (&start, ref->u.ss.start, gfc_charlen_type_node);
6735 gfc_add_block_to_block (block, &start.pre);
6736 tmp = gfc_build_array_ref (tmp, start.expr, NULL);
6737 break;
6738
6739 case REF_ARRAY:
6740 gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE
6741 && ref->u.ar.type == AR_ELEMENT);
6742
6743 /* TODO - Add bounds checking. */
6744 stride = gfc_index_one_node;
6745 index = gfc_index_zero_node;
6746 for (n = 0; n < ref->u.ar.dimen; n++)
6747 {
6748 tree itmp;
6749 tree jtmp;
6750
6751 /* Update the index. */
6752 gfc_init_se (&start, NULL);
6753 gfc_conv_expr_type (&start, ref->u.ar.start[n], gfc_array_index_type);
6754 itmp = gfc_evaluate_now (start.expr, block);
6755 gfc_init_se (&start, NULL);
6756 gfc_conv_expr_type (&start, ref->u.ar.as->lower[n], gfc_array_index_type);
6757 jtmp = gfc_evaluate_now (start.expr, block);
6758 itmp = fold_build2_loc (input_location, MINUS_EXPR,
6759 gfc_array_index_type, itmp, jtmp);
6760 itmp = fold_build2_loc (input_location, MULT_EXPR,
6761 gfc_array_index_type, itmp, stride);
6762 index = fold_build2_loc (input_location, PLUS_EXPR,
6763 gfc_array_index_type, itmp, index);
6764 index = gfc_evaluate_now (index, block);
6765
6766 /* Update the stride. */
6767 gfc_init_se (&start, NULL);
6768 gfc_conv_expr_type (&start, ref->u.ar.as->upper[n], gfc_array_index_type);
6769 itmp = fold_build2_loc (input_location, MINUS_EXPR,
6770 gfc_array_index_type, start.expr,
6771 jtmp);
6772 itmp = fold_build2_loc (input_location, PLUS_EXPR,
6773 gfc_array_index_type,
6774 gfc_index_one_node, itmp);
6775 stride = fold_build2_loc (input_location, MULT_EXPR,
6776 gfc_array_index_type, stride, itmp);
6777 stride = gfc_evaluate_now (stride, block);
6778 }
6779
6780 /* Apply the index to obtain the array element. */
6781 tmp = gfc_build_array_ref (tmp, index, NULL);
6782 break;
6783
6784 default:
6785 gcc_unreachable ();
6786 break;
6787 }
6788 }
6789 }
6790
6791 /* Set the target data pointer. */
6792 offset = gfc_build_addr_expr (gfc_array_dataptr_type (desc), tmp);
6793 gfc_conv_descriptor_data_set (block, parm, offset);
6794 }
6795
6796
6797 /* gfc_conv_expr_descriptor needs the string length an expression
6798 so that the size of the temporary can be obtained. This is done
6799 by adding up the string lengths of all the elements in the
6800 expression. Function with non-constant expressions have their
6801 string lengths mapped onto the actual arguments using the
6802 interface mapping machinery in trans-expr.c. */
6803 static void
6804 get_array_charlen (gfc_expr *expr, gfc_se *se)
6805 {
6806 gfc_interface_mapping mapping;
6807 gfc_formal_arglist *formal;
6808 gfc_actual_arglist *arg;
6809 gfc_se tse;
6810
6811 if (expr->ts.u.cl->length
6812 && gfc_is_constant_expr (expr->ts.u.cl->length))
6813 {
6814 if (!expr->ts.u.cl->backend_decl)
6815 gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
6816 return;
6817 }
6818
6819 switch (expr->expr_type)
6820 {
6821 case EXPR_OP:
6822 get_array_charlen (expr->value.op.op1, se);
6823
6824 /* For parentheses the expression ts.u.cl is identical. */
6825 if (expr->value.op.op == INTRINSIC_PARENTHESES)
6826 return;
6827
6828 expr->ts.u.cl->backend_decl =
6829 gfc_create_var (gfc_charlen_type_node, "sln");
6830
6831 if (expr->value.op.op2)
6832 {
6833 get_array_charlen (expr->value.op.op2, se);
6834
6835 gcc_assert (expr->value.op.op == INTRINSIC_CONCAT);
6836
6837 /* Add the string lengths and assign them to the expression
6838 string length backend declaration. */
6839 gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl,
6840 fold_build2_loc (input_location, PLUS_EXPR,
6841 gfc_charlen_type_node,
6842 expr->value.op.op1->ts.u.cl->backend_decl,
6843 expr->value.op.op2->ts.u.cl->backend_decl));
6844 }
6845 else
6846 gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl,
6847 expr->value.op.op1->ts.u.cl->backend_decl);
6848 break;
6849
6850 case EXPR_FUNCTION:
6851 if (expr->value.function.esym == NULL
6852 || expr->ts.u.cl->length->expr_type == EXPR_CONSTANT)
6853 {
6854 gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
6855 break;
6856 }
6857
6858 /* Map expressions involving the dummy arguments onto the actual
6859 argument expressions. */
6860 gfc_init_interface_mapping (&mapping);
6861 formal = gfc_sym_get_dummy_args (expr->symtree->n.sym);
6862 arg = expr->value.function.actual;
6863
6864 /* Set se = NULL in the calls to the interface mapping, to suppress any
6865 backend stuff. */
6866 for (; arg != NULL; arg = arg->next, formal = formal ? formal->next : NULL)
6867 {
6868 if (!arg->expr)
6869 continue;
6870 if (formal->sym)
6871 gfc_add_interface_mapping (&mapping, formal->sym, NULL, arg->expr);
6872 }
6873
6874 gfc_init_se (&tse, NULL);
6875
6876 /* Build the expression for the character length and convert it. */
6877 gfc_apply_interface_mapping (&mapping, &tse, expr->ts.u.cl->length);
6878
6879 gfc_add_block_to_block (&se->pre, &tse.pre);
6880 gfc_add_block_to_block (&se->post, &tse.post);
6881 tse.expr = fold_convert (gfc_charlen_type_node, tse.expr);
6882 tse.expr = fold_build2_loc (input_location, MAX_EXPR,
6883 TREE_TYPE (tse.expr), tse.expr,
6884 build_zero_cst (TREE_TYPE (tse.expr)));
6885 expr->ts.u.cl->backend_decl = tse.expr;
6886 gfc_free_interface_mapping (&mapping);
6887 break;
6888
6889 default:
6890 gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre);
6891 break;
6892 }
6893 }
6894
6895
6896 /* Helper function to check dimensions. */
6897 static bool
6898 transposed_dims (gfc_ss *ss)
6899 {
6900 int n;
6901
6902 for (n = 0; n < ss->dimen; n++)
6903 if (ss->dim[n] != n)
6904 return true;
6905 return false;
6906 }
6907
6908
6909 /* Convert the last ref of a scalar coarray from an AR_ELEMENT to an
6910 AR_FULL, suitable for the scalarizer. */
6911
6912 static gfc_ss *
6913 walk_coarray (gfc_expr *e)
6914 {
6915 gfc_ss *ss;
6916
6917 gcc_assert (gfc_get_corank (e) > 0);
6918
6919 ss = gfc_walk_expr (e);
6920
6921 /* Fix scalar coarray. */
6922 if (ss == gfc_ss_terminator)
6923 {
6924 gfc_ref *ref;
6925
6926 ref = e->ref;
6927 while (ref)
6928 {
6929 if (ref->type == REF_ARRAY
6930 && ref->u.ar.codimen > 0)
6931 break;
6932
6933 ref = ref->next;
6934 }
6935
6936 gcc_assert (ref != NULL);
6937 if (ref->u.ar.type == AR_ELEMENT)
6938 ref->u.ar.type = AR_SECTION;
6939 ss = gfc_reverse_ss (gfc_walk_array_ref (ss, e, ref));
6940 }
6941
6942 return ss;
6943 }
6944
6945
6946 /* Convert an array for passing as an actual argument. Expressions and
6947 vector subscripts are evaluated and stored in a temporary, which is then
6948 passed. For whole arrays the descriptor is passed. For array sections
6949 a modified copy of the descriptor is passed, but using the original data.
6950
6951 This function is also used for array pointer assignments, and there
6952 are three cases:
6953
6954 - se->want_pointer && !se->direct_byref
6955 EXPR is an actual argument. On exit, se->expr contains a
6956 pointer to the array descriptor.
6957
6958 - !se->want_pointer && !se->direct_byref
6959 EXPR is an actual argument to an intrinsic function or the
6960 left-hand side of a pointer assignment. On exit, se->expr
6961 contains the descriptor for EXPR.
6962
6963 - !se->want_pointer && se->direct_byref
6964 EXPR is the right-hand side of a pointer assignment and
6965 se->expr is the descriptor for the previously-evaluated
6966 left-hand side. The function creates an assignment from
6967 EXPR to se->expr.
6968
6969
6970 The se->force_tmp flag disables the non-copying descriptor optimization
6971 that is used for transpose. It may be used in cases where there is an
6972 alias between the transpose argument and another argument in the same
6973 function call. */
6974
6975 void
6976 gfc_conv_expr_descriptor (gfc_se *se, gfc_expr *expr)
6977 {
6978 gfc_ss *ss;
6979 gfc_ss_type ss_type;
6980 gfc_ss_info *ss_info;
6981 gfc_loopinfo loop;
6982 gfc_array_info *info;
6983 int need_tmp;
6984 int n;
6985 tree tmp;
6986 tree desc;
6987 stmtblock_t block;
6988 tree start;
6989 tree offset;
6990 int full;
6991 bool subref_array_target = false;
6992 gfc_expr *arg, *ss_expr;
6993
6994 if (se->want_coarray)
6995 ss = walk_coarray (expr);
6996 else
6997 ss = gfc_walk_expr (expr);
6998
6999 gcc_assert (ss != NULL);
7000 gcc_assert (ss != gfc_ss_terminator);
7001
7002 ss_info = ss->info;
7003 ss_type = ss_info->type;
7004 ss_expr = ss_info->expr;
7005
7006 /* Special case: TRANSPOSE which needs no temporary. */
7007 while (expr->expr_type == EXPR_FUNCTION && expr->value.function.isym
7008 && (arg = gfc_get_noncopying_intrinsic_argument (expr)) != NULL)
7009 {
7010 /* This is a call to transpose which has already been handled by the
7011 scalarizer, so that we just need to get its argument's descriptor. */
7012 gcc_assert (expr->value.function.isym->id == GFC_ISYM_TRANSPOSE);
7013 expr = expr->value.function.actual->expr;
7014 }
7015
7016 /* Special case things we know we can pass easily. */
7017 switch (expr->expr_type)
7018 {
7019 case EXPR_VARIABLE:
7020 /* If we have a linear array section, we can pass it directly.
7021 Otherwise we need to copy it into a temporary. */
7022
7023 gcc_assert (ss_type == GFC_SS_SECTION);
7024 gcc_assert (ss_expr == expr);
7025 info = &ss_info->data.array;
7026
7027 /* Get the descriptor for the array. */
7028 gfc_conv_ss_descriptor (&se->pre, ss, 0);
7029 desc = info->descriptor;
7030
7031 subref_array_target = se->direct_byref && is_subref_array (expr);
7032 need_tmp = gfc_ref_needs_temporary_p (expr->ref)
7033 && !subref_array_target;
7034
7035 if (se->force_tmp)
7036 need_tmp = 1;
7037
7038 if (need_tmp)
7039 full = 0;
7040 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
7041 {
7042 /* Create a new descriptor if the array doesn't have one. */
7043 full = 0;
7044 }
7045 else if (info->ref->u.ar.type == AR_FULL || se->descriptor_only)
7046 full = 1;
7047 else if (se->direct_byref)
7048 full = 0;
7049 else
7050 full = gfc_full_array_ref_p (info->ref, NULL);
7051
7052 if (full && !transposed_dims (ss))
7053 {
7054 if (se->direct_byref && !se->byref_noassign)
7055 {
7056 /* Copy the descriptor for pointer assignments. */
7057 gfc_add_modify (&se->pre, se->expr, desc);
7058
7059 /* Add any offsets from subreferences. */
7060 gfc_get_dataptr_offset (&se->pre, se->expr, desc, NULL_TREE,
7061 subref_array_target, expr);
7062
7063 /* ....and set the span field. */
7064 tmp = gfc_get_array_span (desc, expr);
7065 gfc_conv_descriptor_span_set (&se->pre, se->expr, tmp);
7066 }
7067 else if (se->want_pointer)
7068 {
7069 /* We pass full arrays directly. This means that pointers and
7070 allocatable arrays should also work. */
7071 se->expr = gfc_build_addr_expr (NULL_TREE, desc);
7072 }
7073 else
7074 {
7075 se->expr = desc;
7076 }
7077
7078 if (expr->ts.type == BT_CHARACTER)
7079 se->string_length = gfc_get_expr_charlen (expr);
7080
7081 gfc_free_ss_chain (ss);
7082 return;
7083 }
7084 break;
7085
7086 case EXPR_FUNCTION:
7087 /* A transformational function return value will be a temporary
7088 array descriptor. We still need to go through the scalarizer
7089 to create the descriptor. Elemental functions are handled as
7090 arbitrary expressions, i.e. copy to a temporary. */
7091
7092 if (se->direct_byref)
7093 {
7094 gcc_assert (ss_type == GFC_SS_FUNCTION && ss_expr == expr);
7095
7096 /* For pointer assignments pass the descriptor directly. */
7097 if (se->ss == NULL)
7098 se->ss = ss;
7099 else
7100 gcc_assert (se->ss == ss);
7101
7102 if (!is_pointer_array (se->expr))
7103 {
7104 tmp = gfc_get_element_type (TREE_TYPE (se->expr));
7105 tmp = fold_convert (gfc_array_index_type,
7106 size_in_bytes (tmp));
7107 gfc_conv_descriptor_span_set (&se->pre, se->expr, tmp);
7108 }
7109
7110 se->expr = gfc_build_addr_expr (NULL_TREE, se->expr);
7111 gfc_conv_expr (se, expr);
7112
7113 gfc_free_ss_chain (ss);
7114 return;
7115 }
7116
7117 if (ss_expr != expr || ss_type != GFC_SS_FUNCTION)
7118 {
7119 if (ss_expr != expr)
7120 /* Elemental function. */
7121 gcc_assert ((expr->value.function.esym != NULL
7122 && expr->value.function.esym->attr.elemental)
7123 || (expr->value.function.isym != NULL
7124 && expr->value.function.isym->elemental)
7125 || gfc_inline_intrinsic_function_p (expr));
7126 else
7127 gcc_assert (ss_type == GFC_SS_INTRINSIC);
7128
7129 need_tmp = 1;
7130 if (expr->ts.type == BT_CHARACTER
7131 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT)
7132 get_array_charlen (expr, se);
7133
7134 info = NULL;
7135 }
7136 else
7137 {
7138 /* Transformational function. */
7139 info = &ss_info->data.array;
7140 need_tmp = 0;
7141 }
7142 break;
7143
7144 case EXPR_ARRAY:
7145 /* Constant array constructors don't need a temporary. */
7146 if (ss_type == GFC_SS_CONSTRUCTOR
7147 && expr->ts.type != BT_CHARACTER
7148 && gfc_constant_array_constructor_p (expr->value.constructor))
7149 {
7150 need_tmp = 0;
7151 info = &ss_info->data.array;
7152 }
7153 else
7154 {
7155 need_tmp = 1;
7156 info = NULL;
7157 }
7158 break;
7159
7160 default:
7161 /* Something complicated. Copy it into a temporary. */
7162 need_tmp = 1;
7163 info = NULL;
7164 break;
7165 }
7166
7167 /* If we are creating a temporary, we don't need to bother about aliases
7168 anymore. */
7169 if (need_tmp)
7170 se->force_tmp = 0;
7171
7172 gfc_init_loopinfo (&loop);
7173
7174 /* Associate the SS with the loop. */
7175 gfc_add_ss_to_loop (&loop, ss);
7176
7177 /* Tell the scalarizer not to bother creating loop variables, etc. */
7178 if (!need_tmp)
7179 loop.array_parameter = 1;
7180 else
7181 /* The right-hand side of a pointer assignment mustn't use a temporary. */
7182 gcc_assert (!se->direct_byref);
7183
7184 /* Setup the scalarizing loops and bounds. */
7185 gfc_conv_ss_startstride (&loop);
7186
7187 if (need_tmp)
7188 {
7189 if (expr->ts.type == BT_CHARACTER && !expr->ts.u.cl->backend_decl)
7190 get_array_charlen (expr, se);
7191
7192 /* Tell the scalarizer to make a temporary. */
7193 loop.temp_ss = gfc_get_temp_ss (gfc_typenode_for_spec (&expr->ts),
7194 ((expr->ts.type == BT_CHARACTER)
7195 ? expr->ts.u.cl->backend_decl
7196 : NULL),
7197 loop.dimen);
7198
7199 se->string_length = loop.temp_ss->info->string_length;
7200 gcc_assert (loop.temp_ss->dimen == loop.dimen);
7201 gfc_add_ss_to_loop (&loop, loop.temp_ss);
7202 }
7203
7204 gfc_conv_loop_setup (&loop, & expr->where);
7205
7206 if (need_tmp)
7207 {
7208 /* Copy into a temporary and pass that. We don't need to copy the data
7209 back because expressions and vector subscripts must be INTENT_IN. */
7210 /* TODO: Optimize passing function return values. */
7211 gfc_se lse;
7212 gfc_se rse;
7213 bool deep_copy;
7214
7215 /* Start the copying loops. */
7216 gfc_mark_ss_chain_used (loop.temp_ss, 1);
7217 gfc_mark_ss_chain_used (ss, 1);
7218 gfc_start_scalarized_body (&loop, &block);
7219
7220 /* Copy each data element. */
7221 gfc_init_se (&lse, NULL);
7222 gfc_copy_loopinfo_to_se (&lse, &loop);
7223 gfc_init_se (&rse, NULL);
7224 gfc_copy_loopinfo_to_se (&rse, &loop);
7225
7226 lse.ss = loop.temp_ss;
7227 rse.ss = ss;
7228
7229 gfc_conv_scalarized_array_ref (&lse, NULL);
7230 if (expr->ts.type == BT_CHARACTER)
7231 {
7232 gfc_conv_expr (&rse, expr);
7233 if (POINTER_TYPE_P (TREE_TYPE (rse.expr)))
7234 rse.expr = build_fold_indirect_ref_loc (input_location,
7235 rse.expr);
7236 }
7237 else
7238 gfc_conv_expr_val (&rse, expr);
7239
7240 gfc_add_block_to_block (&block, &rse.pre);
7241 gfc_add_block_to_block (&block, &lse.pre);
7242
7243 lse.string_length = rse.string_length;
7244
7245 deep_copy = !se->data_not_needed
7246 && (expr->expr_type == EXPR_VARIABLE
7247 || expr->expr_type == EXPR_ARRAY);
7248 tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts,
7249 deep_copy, false);
7250 gfc_add_expr_to_block (&block, tmp);
7251
7252 /* Finish the copying loops. */
7253 gfc_trans_scalarizing_loops (&loop, &block);
7254
7255 desc = loop.temp_ss->info->data.array.descriptor;
7256 }
7257 else if (expr->expr_type == EXPR_FUNCTION && !transposed_dims (ss))
7258 {
7259 desc = info->descriptor;
7260 se->string_length = ss_info->string_length;
7261 }
7262 else
7263 {
7264 /* We pass sections without copying to a temporary. Make a new
7265 descriptor and point it at the section we want. The loop variable
7266 limits will be the limits of the section.
7267 A function may decide to repack the array to speed up access, but
7268 we're not bothered about that here. */
7269 int dim, ndim, codim;
7270 tree parm;
7271 tree parmtype;
7272 tree stride;
7273 tree from;
7274 tree to;
7275 tree base;
7276 bool onebased = false, rank_remap;
7277
7278 ndim = info->ref ? info->ref->u.ar.dimen : ss->dimen;
7279 rank_remap = ss->dimen < ndim;
7280
7281 if (se->want_coarray)
7282 {
7283 gfc_array_ref *ar = &info->ref->u.ar;
7284
7285 codim = gfc_get_corank (expr);
7286 for (n = 0; n < codim - 1; n++)
7287 {
7288 /* Make sure we are not lost somehow. */
7289 gcc_assert (ar->dimen_type[n + ndim] == DIMEN_THIS_IMAGE);
7290
7291 /* Make sure the call to gfc_conv_section_startstride won't
7292 generate unnecessary code to calculate stride. */
7293 gcc_assert (ar->stride[n + ndim] == NULL);
7294
7295 gfc_conv_section_startstride (&loop.pre, ss, n + ndim);
7296 loop.from[n + loop.dimen] = info->start[n + ndim];
7297 loop.to[n + loop.dimen] = info->end[n + ndim];
7298 }
7299
7300 gcc_assert (n == codim - 1);
7301 evaluate_bound (&loop.pre, info->start, ar->start,
7302 info->descriptor, n + ndim, true,
7303 ar->as->type == AS_DEFERRED);
7304 loop.from[n + loop.dimen] = info->start[n + ndim];
7305 }
7306 else
7307 codim = 0;
7308
7309 /* Set the string_length for a character array. */
7310 if (expr->ts.type == BT_CHARACTER)
7311 se->string_length = gfc_get_expr_charlen (expr);
7312
7313 /* If we have an array section or are assigning make sure that
7314 the lower bound is 1. References to the full
7315 array should otherwise keep the original bounds. */
7316 if ((!info->ref || info->ref->u.ar.type != AR_FULL) && !se->want_pointer)
7317 for (dim = 0; dim < loop.dimen; dim++)
7318 if (!integer_onep (loop.from[dim]))
7319 {
7320 tmp = fold_build2_loc (input_location, MINUS_EXPR,
7321 gfc_array_index_type, gfc_index_one_node,
7322 loop.from[dim]);
7323 loop.to[dim] = fold_build2_loc (input_location, PLUS_EXPR,
7324 gfc_array_index_type,
7325 loop.to[dim], tmp);
7326 loop.from[dim] = gfc_index_one_node;
7327 }
7328
7329 desc = info->descriptor;
7330 if (se->direct_byref && !se->byref_noassign)
7331 {
7332 /* For pointer assignments we fill in the destination.... */
7333 parm = se->expr;
7334 parmtype = TREE_TYPE (parm);
7335
7336 /* ....and set the span field. */
7337 tmp = gfc_get_array_span (desc, expr);
7338 gfc_conv_descriptor_span_set (&loop.pre, parm, tmp);
7339 }
7340 else
7341 {
7342 /* Otherwise make a new one. */
7343 if (expr->ts.type == BT_CHARACTER && expr->ts.deferred)
7344 parmtype = gfc_typenode_for_spec (&expr->ts);
7345 else
7346 parmtype = gfc_get_element_type (TREE_TYPE (desc));
7347
7348 parmtype = gfc_get_array_type_bounds (parmtype, loop.dimen, codim,
7349 loop.from, loop.to, 0,
7350 GFC_ARRAY_UNKNOWN, false);
7351 parm = gfc_create_var (parmtype, "parm");
7352
7353 /* When expression is a class object, then add the class' handle to
7354 the parm_decl. */
7355 if (expr->ts.type == BT_CLASS && expr->expr_type == EXPR_VARIABLE)
7356 {
7357 gfc_expr *class_expr = gfc_find_and_cut_at_last_class_ref (expr);
7358 gfc_se classse;
7359
7360 /* class_expr can be NULL, when no _class ref is in expr.
7361 We must not fix this here with a gfc_fix_class_ref (). */
7362 if (class_expr)
7363 {
7364 gfc_init_se (&classse, NULL);
7365 gfc_conv_expr (&classse, class_expr);
7366 gfc_free_expr (class_expr);
7367
7368 gcc_assert (classse.pre.head == NULL_TREE
7369 && classse.post.head == NULL_TREE);
7370 gfc_allocate_lang_decl (parm);
7371 GFC_DECL_SAVED_DESCRIPTOR (parm) = classse.expr;
7372 }
7373 }
7374 }
7375
7376 offset = gfc_index_zero_node;
7377
7378 /* The following can be somewhat confusing. We have two
7379 descriptors, a new one and the original array.
7380 {parm, parmtype, dim} refer to the new one.
7381 {desc, type, n, loop} refer to the original, which maybe
7382 a descriptorless array.
7383 The bounds of the scalarization are the bounds of the section.
7384 We don't have to worry about numeric overflows when calculating
7385 the offsets because all elements are within the array data. */
7386
7387 /* Set the dtype. */
7388 tmp = gfc_conv_descriptor_dtype (parm);
7389 gfc_add_modify (&loop.pre, tmp, gfc_get_dtype (parmtype));
7390
7391 /* Set offset for assignments to pointer only to zero if it is not
7392 the full array. */
7393 if ((se->direct_byref || se->use_offset)
7394 && ((info->ref && info->ref->u.ar.type != AR_FULL)
7395 || (expr->expr_type == EXPR_ARRAY && se->use_offset)))
7396 base = gfc_index_zero_node;
7397 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
7398 base = gfc_evaluate_now (gfc_conv_array_offset (desc), &loop.pre);
7399 else
7400 base = NULL_TREE;
7401
7402 for (n = 0; n < ndim; n++)
7403 {
7404 stride = gfc_conv_array_stride (desc, n);
7405
7406 /* Work out the offset. */
7407 if (info->ref
7408 && info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
7409 {
7410 gcc_assert (info->subscript[n]
7411 && info->subscript[n]->info->type == GFC_SS_SCALAR);
7412 start = info->subscript[n]->info->data.scalar.value;
7413 }
7414 else
7415 {
7416 /* Evaluate and remember the start of the section. */
7417 start = info->start[n];
7418 stride = gfc_evaluate_now (stride, &loop.pre);
7419 }
7420
7421 tmp = gfc_conv_array_lbound (desc, n);
7422 tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (tmp),
7423 start, tmp);
7424 tmp = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE (tmp),
7425 tmp, stride);
7426 offset = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (tmp),
7427 offset, tmp);
7428
7429 if (info->ref
7430 && info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT)
7431 {
7432 /* For elemental dimensions, we only need the offset. */
7433 continue;
7434 }
7435
7436 /* Vector subscripts need copying and are handled elsewhere. */
7437 if (info->ref)
7438 gcc_assert (info->ref->u.ar.dimen_type[n] == DIMEN_RANGE);
7439
7440 /* look for the corresponding scalarizer dimension: dim. */
7441 for (dim = 0; dim < ndim; dim++)
7442 if (ss->dim[dim] == n)
7443 break;
7444
7445 /* loop exited early: the DIM being looked for has been found. */
7446 gcc_assert (dim < ndim);
7447
7448 /* Set the new lower bound. */
7449 from = loop.from[dim];
7450 to = loop.to[dim];
7451
7452 onebased = integer_onep (from);
7453 gfc_conv_descriptor_lbound_set (&loop.pre, parm,
7454 gfc_rank_cst[dim], from);
7455
7456 /* Set the new upper bound. */
7457 gfc_conv_descriptor_ubound_set (&loop.pre, parm,
7458 gfc_rank_cst[dim], to);
7459
7460 /* Multiply the stride by the section stride to get the
7461 total stride. */
7462 stride = fold_build2_loc (input_location, MULT_EXPR,
7463 gfc_array_index_type,
7464 stride, info->stride[n]);
7465
7466 if ((se->direct_byref || se->use_offset)
7467 && ((info->ref && info->ref->u.ar.type != AR_FULL)
7468 || (expr->expr_type == EXPR_ARRAY && se->use_offset)))
7469 {
7470 base = fold_build2_loc (input_location, MINUS_EXPR,
7471 TREE_TYPE (base), base, stride);
7472 }
7473 else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)) || se->use_offset)
7474 {
7475 bool toonebased;
7476 tmp = gfc_conv_array_lbound (desc, n);
7477 toonebased = integer_onep (tmp);
7478 // lb(arr) - from (- start + 1)
7479 tmp = fold_build2_loc (input_location, MINUS_EXPR,
7480 TREE_TYPE (base), tmp, from);
7481 if (onebased && toonebased)
7482 {
7483 tmp = fold_build2_loc (input_location, MINUS_EXPR,
7484 TREE_TYPE (base), tmp, start);
7485 tmp = fold_build2_loc (input_location, PLUS_EXPR,
7486 TREE_TYPE (base), tmp,
7487 gfc_index_one_node);
7488 }
7489 tmp = fold_build2_loc (input_location, MULT_EXPR,
7490 TREE_TYPE (base), tmp,
7491 gfc_conv_array_stride (desc, n));
7492 base = fold_build2_loc (input_location, PLUS_EXPR,
7493 TREE_TYPE (base), tmp, base);
7494 }
7495
7496 /* Store the new stride. */
7497 gfc_conv_descriptor_stride_set (&loop.pre, parm,
7498 gfc_rank_cst[dim], stride);
7499 }
7500
7501 for (n = loop.dimen; n < loop.dimen + codim; n++)
7502 {
7503 from = loop.from[n];
7504 to = loop.to[n];
7505 gfc_conv_descriptor_lbound_set (&loop.pre, parm,
7506 gfc_rank_cst[n], from);
7507 if (n < loop.dimen + codim - 1)
7508 gfc_conv_descriptor_ubound_set (&loop.pre, parm,
7509 gfc_rank_cst[n], to);
7510 }
7511
7512 if (se->data_not_needed)
7513 gfc_conv_descriptor_data_set (&loop.pre, parm,
7514 gfc_index_zero_node);
7515 else
7516 /* Point the data pointer at the 1st element in the section. */
7517 gfc_get_dataptr_offset (&loop.pre, parm, desc, offset,
7518 subref_array_target, expr);
7519
7520 /* Force the offset to be -1, when the lower bound of the highest
7521 dimension is one and the symbol is present and is not a
7522 pointer/allocatable or associated. */
7523 if (((se->direct_byref || GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
7524 && !se->data_not_needed)
7525 || (se->use_offset && base != NULL_TREE))
7526 {
7527 /* Set the offset depending on base. */
7528 tmp = rank_remap && !se->direct_byref ?
7529 fold_build2_loc (input_location, PLUS_EXPR,
7530 gfc_array_index_type, base,
7531 offset)
7532 : base;
7533 gfc_conv_descriptor_offset_set (&loop.pre, parm, tmp);
7534 }
7535 else if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))
7536 && !se->data_not_needed
7537 && (!rank_remap || se->use_offset))
7538 {
7539 gfc_conv_descriptor_offset_set (&loop.pre, parm,
7540 gfc_conv_descriptor_offset_get (desc));
7541 }
7542 else if (onebased && (!rank_remap || se->use_offset)
7543 && expr->symtree
7544 && !(expr->symtree->n.sym && expr->symtree->n.sym->ts.type == BT_CLASS
7545 && !CLASS_DATA (expr->symtree->n.sym)->attr.class_pointer)
7546 && !expr->symtree->n.sym->attr.allocatable
7547 && !expr->symtree->n.sym->attr.pointer
7548 && !expr->symtree->n.sym->attr.host_assoc
7549 && !expr->symtree->n.sym->attr.use_assoc)
7550 {
7551 /* Set the offset to -1. */
7552 mpz_t minus_one;
7553 mpz_init_set_si (minus_one, -1);
7554 tmp = gfc_conv_mpz_to_tree (minus_one, gfc_index_integer_kind);
7555 gfc_conv_descriptor_offset_set (&loop.pre, parm, tmp);
7556 }
7557 else
7558 {
7559 /* Only the callee knows what the correct offset it, so just set
7560 it to zero here. */
7561 gfc_conv_descriptor_offset_set (&loop.pre, parm, gfc_index_zero_node);
7562 }
7563 desc = parm;
7564 }
7565
7566 /* For class arrays add the class tree into the saved descriptor to
7567 enable getting of _vptr and the like. */
7568 if (expr->expr_type == EXPR_VARIABLE && VAR_P (desc)
7569 && IS_CLASS_ARRAY (expr->symtree->n.sym))
7570 {
7571 gfc_allocate_lang_decl (desc);
7572 GFC_DECL_SAVED_DESCRIPTOR (desc) =
7573 DECL_LANG_SPECIFIC (expr->symtree->n.sym->backend_decl) ?
7574 GFC_DECL_SAVED_DESCRIPTOR (expr->symtree->n.sym->backend_decl)
7575 : expr->symtree->n.sym->backend_decl;
7576 }
7577 else if (expr->expr_type == EXPR_ARRAY && VAR_P (desc)
7578 && IS_CLASS_ARRAY (expr))
7579 {
7580 tree vtype;
7581 gfc_allocate_lang_decl (desc);
7582 tmp = gfc_create_var (expr->ts.u.derived->backend_decl, "class");
7583 GFC_DECL_SAVED_DESCRIPTOR (desc) = tmp;
7584 vtype = gfc_class_vptr_get (tmp);
7585 gfc_add_modify (&se->pre, vtype,
7586 gfc_build_addr_expr (TREE_TYPE (vtype),
7587 gfc_find_vtab (&expr->ts)->backend_decl));
7588 }
7589 if (!se->direct_byref || se->byref_noassign)
7590 {
7591 /* Get a pointer to the new descriptor. */
7592 if (se->want_pointer)
7593 se->expr = gfc_build_addr_expr (NULL_TREE, desc);
7594 else
7595 se->expr = desc;
7596 }
7597
7598 gfc_add_block_to_block (&se->pre, &loop.pre);
7599 gfc_add_block_to_block (&se->post, &loop.post);
7600
7601 /* Cleanup the scalarizer. */
7602 gfc_cleanup_loop (&loop);
7603 }
7604
7605 /* Helper function for gfc_conv_array_parameter if array size needs to be
7606 computed. */
7607
7608 static void
7609 array_parameter_size (tree desc, gfc_expr *expr, tree *size)
7610 {
7611 tree elem;
7612 if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc)))
7613 *size = GFC_TYPE_ARRAY_SIZE (TREE_TYPE (desc));
7614 else if (expr->rank > 1)
7615 *size = build_call_expr_loc (input_location,
7616 gfor_fndecl_size0, 1,
7617 gfc_build_addr_expr (NULL, desc));
7618 else
7619 {
7620 tree ubound = gfc_conv_descriptor_ubound_get (desc, gfc_index_zero_node);
7621 tree lbound = gfc_conv_descriptor_lbound_get (desc, gfc_index_zero_node);
7622
7623 *size = fold_build2_loc (input_location, MINUS_EXPR,
7624 gfc_array_index_type, ubound, lbound);
7625 *size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
7626 *size, gfc_index_one_node);
7627 *size = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type,
7628 *size, gfc_index_zero_node);
7629 }
7630 elem = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc)));
7631 *size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
7632 *size, fold_convert (gfc_array_index_type, elem));
7633 }
7634
7635 /* Convert an array for passing as an actual parameter. */
7636 /* TODO: Optimize passing g77 arrays. */
7637
7638 void
7639 gfc_conv_array_parameter (gfc_se * se, gfc_expr * expr, bool g77,
7640 const gfc_symbol *fsym, const char *proc_name,
7641 tree *size)
7642 {
7643 tree ptr;
7644 tree desc;
7645 tree tmp = NULL_TREE;
7646 tree stmt;
7647 tree parent = DECL_CONTEXT (current_function_decl);
7648 bool full_array_var;
7649 bool this_array_result;
7650 bool contiguous;
7651 bool no_pack;
7652 bool array_constructor;
7653 bool good_allocatable;
7654 bool ultimate_ptr_comp;
7655 bool ultimate_alloc_comp;
7656 gfc_symbol *sym;
7657 stmtblock_t block;
7658 gfc_ref *ref;
7659
7660 ultimate_ptr_comp = false;
7661 ultimate_alloc_comp = false;
7662
7663 for (ref = expr->ref; ref; ref = ref->next)
7664 {
7665 if (ref->next == NULL)
7666 break;
7667
7668 if (ref->type == REF_COMPONENT)
7669 {
7670 ultimate_ptr_comp = ref->u.c.component->attr.pointer;
7671 ultimate_alloc_comp = ref->u.c.component->attr.allocatable;
7672 }
7673 }
7674
7675 full_array_var = false;
7676 contiguous = false;
7677
7678 if (expr->expr_type == EXPR_VARIABLE && ref && !ultimate_ptr_comp)
7679 full_array_var = gfc_full_array_ref_p (ref, &contiguous);
7680
7681 sym = full_array_var ? expr->symtree->n.sym : NULL;
7682
7683 /* The symbol should have an array specification. */
7684 gcc_assert (!sym || sym->as || ref->u.ar.as);
7685
7686 if (expr->expr_type == EXPR_ARRAY && expr->ts.type == BT_CHARACTER)
7687 {
7688 get_array_ctor_strlen (&se->pre, expr->value.constructor, &tmp);
7689 expr->ts.u.cl->backend_decl = tmp;
7690 se->string_length = tmp;
7691 }
7692
7693 /* Is this the result of the enclosing procedure? */
7694 this_array_result = (full_array_var && sym->attr.flavor == FL_PROCEDURE);
7695 if (this_array_result
7696 && (sym->backend_decl != current_function_decl)
7697 && (sym->backend_decl != parent))
7698 this_array_result = false;
7699
7700 /* Passing address of the array if it is not pointer or assumed-shape. */
7701 if (full_array_var && g77 && !this_array_result
7702 && sym->ts.type != BT_DERIVED && sym->ts.type != BT_CLASS)
7703 {
7704 tmp = gfc_get_symbol_decl (sym);
7705
7706 if (sym->ts.type == BT_CHARACTER)
7707 se->string_length = sym->ts.u.cl->backend_decl;
7708
7709 if (!sym->attr.pointer
7710 && sym->as
7711 && sym->as->type != AS_ASSUMED_SHAPE
7712 && sym->as->type != AS_DEFERRED
7713 && sym->as->type != AS_ASSUMED_RANK
7714 && !sym->attr.allocatable)
7715 {
7716 /* Some variables are declared directly, others are declared as
7717 pointers and allocated on the heap. */
7718 if (sym->attr.dummy || POINTER_TYPE_P (TREE_TYPE (tmp)))
7719 se->expr = tmp;
7720 else
7721 se->expr = gfc_build_addr_expr (NULL_TREE, tmp);
7722 if (size)
7723 array_parameter_size (tmp, expr, size);
7724 return;
7725 }
7726
7727 if (sym->attr.allocatable)
7728 {
7729 if (sym->attr.dummy || sym->attr.result)
7730 {
7731 gfc_conv_expr_descriptor (se, expr);
7732 tmp = se->expr;
7733 }
7734 if (size)
7735 array_parameter_size (tmp, expr, size);
7736 se->expr = gfc_conv_array_data (tmp);
7737 return;
7738 }
7739 }
7740
7741 /* A convenient reduction in scope. */
7742 contiguous = g77 && !this_array_result && contiguous;
7743
7744 /* There is no need to pack and unpack the array, if it is contiguous
7745 and not a deferred- or assumed-shape array, or if it is simply
7746 contiguous. */
7747 no_pack = ((sym && sym->as
7748 && !sym->attr.pointer
7749 && sym->as->type != AS_DEFERRED
7750 && sym->as->type != AS_ASSUMED_RANK
7751 && sym->as->type != AS_ASSUMED_SHAPE)
7752 ||
7753 (ref && ref->u.ar.as
7754 && ref->u.ar.as->type != AS_DEFERRED
7755 && ref->u.ar.as->type != AS_ASSUMED_RANK
7756 && ref->u.ar.as->type != AS_ASSUMED_SHAPE)
7757 ||
7758 gfc_is_simply_contiguous (expr, false, true));
7759
7760 no_pack = contiguous && no_pack;
7761
7762 /* Array constructors are always contiguous and do not need packing. */
7763 array_constructor = g77 && !this_array_result && expr->expr_type == EXPR_ARRAY;
7764
7765 /* Same is true of contiguous sections from allocatable variables. */
7766 good_allocatable = contiguous
7767 && expr->symtree
7768 && expr->symtree->n.sym->attr.allocatable;
7769
7770 /* Or ultimate allocatable components. */
7771 ultimate_alloc_comp = contiguous && ultimate_alloc_comp;
7772
7773 if (no_pack || array_constructor || good_allocatable || ultimate_alloc_comp)
7774 {
7775 gfc_conv_expr_descriptor (se, expr);
7776 /* Deallocate the allocatable components of structures that are
7777 not variable. */
7778 if ((expr->ts.type == BT_DERIVED || expr->ts.type == BT_CLASS)
7779 && expr->ts.u.derived->attr.alloc_comp
7780 && expr->expr_type != EXPR_VARIABLE)
7781 {
7782 tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, se->expr, expr->rank);
7783
7784 /* The components shall be deallocated before their containing entity. */
7785 gfc_prepend_expr_to_block (&se->post, tmp);
7786 }
7787 if (expr->ts.type == BT_CHARACTER)
7788 se->string_length = expr->ts.u.cl->backend_decl;
7789 if (size)
7790 array_parameter_size (se->expr, expr, size);
7791 se->expr = gfc_conv_array_data (se->expr);
7792 return;
7793 }
7794
7795 if (this_array_result)
7796 {
7797 /* Result of the enclosing function. */
7798 gfc_conv_expr_descriptor (se, expr);
7799 if (size)
7800 array_parameter_size (se->expr, expr, size);
7801 se->expr = gfc_build_addr_expr (NULL_TREE, se->expr);
7802
7803 if (g77 && TREE_TYPE (TREE_TYPE (se->expr)) != NULL_TREE
7804 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (se->expr))))
7805 se->expr = gfc_conv_array_data (build_fold_indirect_ref_loc (input_location,
7806 se->expr));
7807
7808 return;
7809 }
7810 else
7811 {
7812 /* Every other type of array. */
7813 se->want_pointer = 1;
7814 gfc_conv_expr_descriptor (se, expr);
7815
7816 if (size)
7817 array_parameter_size (build_fold_indirect_ref_loc (input_location,
7818 se->expr),
7819 expr, size);
7820 }
7821
7822 /* Deallocate the allocatable components of structures that are
7823 not variable, for descriptorless arguments.
7824 Arguments with a descriptor are handled in gfc_conv_procedure_call. */
7825 if (g77 && (expr->ts.type == BT_DERIVED || expr->ts.type == BT_CLASS)
7826 && expr->ts.u.derived->attr.alloc_comp
7827 && expr->expr_type != EXPR_VARIABLE)
7828 {
7829 tmp = build_fold_indirect_ref_loc (input_location, se->expr);
7830 tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, tmp, expr->rank);
7831
7832 /* The components shall be deallocated before their containing entity. */
7833 gfc_prepend_expr_to_block (&se->post, tmp);
7834 }
7835
7836 if (g77 || (fsym && fsym->attr.contiguous
7837 && !gfc_is_simply_contiguous (expr, false, true)))
7838 {
7839 tree origptr = NULL_TREE;
7840
7841 desc = se->expr;
7842
7843 /* For contiguous arrays, save the original value of the descriptor. */
7844 if (!g77)
7845 {
7846 origptr = gfc_create_var (pvoid_type_node, "origptr");
7847 tmp = build_fold_indirect_ref_loc (input_location, desc);
7848 tmp = gfc_conv_array_data (tmp);
7849 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
7850 TREE_TYPE (origptr), origptr,
7851 fold_convert (TREE_TYPE (origptr), tmp));
7852 gfc_add_expr_to_block (&se->pre, tmp);
7853 }
7854
7855 /* Repack the array. */
7856 if (warn_array_temporaries)
7857 {
7858 if (fsym)
7859 gfc_warning (OPT_Warray_temporaries,
7860 "Creating array temporary at %L for argument %qs",
7861 &expr->where, fsym->name);
7862 else
7863 gfc_warning (OPT_Warray_temporaries,
7864 "Creating array temporary at %L", &expr->where);
7865 }
7866
7867 ptr = build_call_expr_loc (input_location,
7868 gfor_fndecl_in_pack, 1, desc);
7869
7870 if (fsym && fsym->attr.optional && sym && sym->attr.optional)
7871 {
7872 tmp = gfc_conv_expr_present (sym);
7873 ptr = build3_loc (input_location, COND_EXPR, TREE_TYPE (se->expr),
7874 tmp, fold_convert (TREE_TYPE (se->expr), ptr),
7875 fold_convert (TREE_TYPE (se->expr), null_pointer_node));
7876 }
7877
7878 ptr = gfc_evaluate_now (ptr, &se->pre);
7879
7880 /* Use the packed data for the actual argument, except for contiguous arrays,
7881 where the descriptor's data component is set. */
7882 if (g77)
7883 se->expr = ptr;
7884 else
7885 {
7886 tmp = build_fold_indirect_ref_loc (input_location, desc);
7887
7888 gfc_ss * ss = gfc_walk_expr (expr);
7889 if (!transposed_dims (ss))
7890 gfc_conv_descriptor_data_set (&se->pre, tmp, ptr);
7891 else
7892 {
7893 tree old_field, new_field;
7894
7895 /* The original descriptor has transposed dims so we can't reuse
7896 it directly; we have to create a new one. */
7897 tree old_desc = tmp;
7898 tree new_desc = gfc_create_var (TREE_TYPE (old_desc), "arg_desc");
7899
7900 old_field = gfc_conv_descriptor_dtype (old_desc);
7901 new_field = gfc_conv_descriptor_dtype (new_desc);
7902 gfc_add_modify (&se->pre, new_field, old_field);
7903
7904 old_field = gfc_conv_descriptor_offset (old_desc);
7905 new_field = gfc_conv_descriptor_offset (new_desc);
7906 gfc_add_modify (&se->pre, new_field, old_field);
7907
7908 for (int i = 0; i < expr->rank; i++)
7909 {
7910 old_field = gfc_conv_descriptor_dimension (old_desc,
7911 gfc_rank_cst[get_array_ref_dim_for_loop_dim (ss, i)]);
7912 new_field = gfc_conv_descriptor_dimension (new_desc,
7913 gfc_rank_cst[i]);
7914 gfc_add_modify (&se->pre, new_field, old_field);
7915 }
7916
7917 if (flag_coarray == GFC_FCOARRAY_LIB
7918 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (old_desc))
7919 && GFC_TYPE_ARRAY_AKIND (TREE_TYPE (old_desc))
7920 == GFC_ARRAY_ALLOCATABLE)
7921 {
7922 old_field = gfc_conv_descriptor_token (old_desc);
7923 new_field = gfc_conv_descriptor_token (new_desc);
7924 gfc_add_modify (&se->pre, new_field, old_field);
7925 }
7926
7927 gfc_conv_descriptor_data_set (&se->pre, new_desc, ptr);
7928 se->expr = gfc_build_addr_expr (NULL_TREE, new_desc);
7929 }
7930 gfc_free_ss (ss);
7931 }
7932
7933 if (gfc_option.rtcheck & GFC_RTCHECK_ARRAY_TEMPS)
7934 {
7935 char * msg;
7936
7937 if (fsym && proc_name)
7938 msg = xasprintf ("An array temporary was created for argument "
7939 "'%s' of procedure '%s'", fsym->name, proc_name);
7940 else
7941 msg = xasprintf ("An array temporary was created");
7942
7943 tmp = build_fold_indirect_ref_loc (input_location,
7944 desc);
7945 tmp = gfc_conv_array_data (tmp);
7946 tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
7947 fold_convert (TREE_TYPE (tmp), ptr), tmp);
7948
7949 if (fsym && fsym->attr.optional && sym && sym->attr.optional)
7950 tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
7951 logical_type_node,
7952 gfc_conv_expr_present (sym), tmp);
7953
7954 gfc_trans_runtime_check (false, true, tmp, &se->pre,
7955 &expr->where, msg);
7956 free (msg);
7957 }
7958
7959 gfc_start_block (&block);
7960
7961 /* Copy the data back. */
7962 if (fsym == NULL || fsym->attr.intent != INTENT_IN)
7963 {
7964 tmp = build_call_expr_loc (input_location,
7965 gfor_fndecl_in_unpack, 2, desc, ptr);
7966 gfc_add_expr_to_block (&block, tmp);
7967 }
7968
7969 /* Free the temporary. */
7970 tmp = gfc_call_free (ptr);
7971 gfc_add_expr_to_block (&block, tmp);
7972
7973 stmt = gfc_finish_block (&block);
7974
7975 gfc_init_block (&block);
7976 /* Only if it was repacked. This code needs to be executed before the
7977 loop cleanup code. */
7978 tmp = build_fold_indirect_ref_loc (input_location,
7979 desc);
7980 tmp = gfc_conv_array_data (tmp);
7981 tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
7982 fold_convert (TREE_TYPE (tmp), ptr), tmp);
7983
7984 if (fsym && fsym->attr.optional && sym && sym->attr.optional)
7985 tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR,
7986 logical_type_node,
7987 gfc_conv_expr_present (sym), tmp);
7988
7989 tmp = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location));
7990
7991 gfc_add_expr_to_block (&block, tmp);
7992 gfc_add_block_to_block (&block, &se->post);
7993
7994 gfc_init_block (&se->post);
7995
7996 /* Reset the descriptor pointer. */
7997 if (!g77)
7998 {
7999 tmp = build_fold_indirect_ref_loc (input_location, desc);
8000 gfc_conv_descriptor_data_set (&se->post, tmp, origptr);
8001 }
8002
8003 gfc_add_block_to_block (&se->post, &block);
8004 }
8005 }
8006
8007
8008 /* This helper function calculates the size in words of a full array. */
8009
8010 tree
8011 gfc_full_array_size (stmtblock_t *block, tree decl, int rank)
8012 {
8013 tree idx;
8014 tree nelems;
8015 tree tmp;
8016 idx = gfc_rank_cst[rank - 1];
8017 nelems = gfc_conv_descriptor_ubound_get (decl, idx);
8018 tmp = gfc_conv_descriptor_lbound_get (decl, idx);
8019 tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
8020 nelems, tmp);
8021 tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
8022 tmp, gfc_index_one_node);
8023 tmp = gfc_evaluate_now (tmp, block);
8024
8025 nelems = gfc_conv_descriptor_stride_get (decl, idx);
8026 tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
8027 nelems, tmp);
8028 return gfc_evaluate_now (tmp, block);
8029 }
8030
8031
8032 /* Allocate dest to the same size as src, and copy src -> dest.
8033 If no_malloc is set, only the copy is done. */
8034
8035 static tree
8036 duplicate_allocatable (tree dest, tree src, tree type, int rank,
8037 bool no_malloc, bool no_memcpy, tree str_sz,
8038 tree add_when_allocated)
8039 {
8040 tree tmp;
8041 tree size;
8042 tree nelems;
8043 tree null_cond;
8044 tree null_data;
8045 stmtblock_t block;
8046
8047 /* If the source is null, set the destination to null. Then,
8048 allocate memory to the destination. */
8049 gfc_init_block (&block);
8050
8051 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest)))
8052 {
8053 gfc_add_modify (&block, dest, fold_convert (type, null_pointer_node));
8054 null_data = gfc_finish_block (&block);
8055
8056 gfc_init_block (&block);
8057 if (str_sz != NULL_TREE)
8058 size = str_sz;
8059 else
8060 size = TYPE_SIZE_UNIT (TREE_TYPE (type));
8061
8062 if (!no_malloc)
8063 {
8064 tmp = gfc_call_malloc (&block, type, size);
8065 gfc_add_modify (&block, dest, fold_convert (type, tmp));
8066 }
8067
8068 if (!no_memcpy)
8069 {
8070 tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
8071 tmp = build_call_expr_loc (input_location, tmp, 3, dest, src,
8072 fold_convert (size_type_node, size));
8073 gfc_add_expr_to_block (&block, tmp);
8074 }
8075 }
8076 else
8077 {
8078 gfc_conv_descriptor_data_set (&block, dest, null_pointer_node);
8079 null_data = gfc_finish_block (&block);
8080
8081 gfc_init_block (&block);
8082 if (rank)
8083 nelems = gfc_full_array_size (&block, src, rank);
8084 else
8085 nelems = gfc_index_one_node;
8086
8087 if (str_sz != NULL_TREE)
8088 tmp = fold_convert (gfc_array_index_type, str_sz);
8089 else
8090 tmp = fold_convert (gfc_array_index_type,
8091 TYPE_SIZE_UNIT (gfc_get_element_type (type)));
8092 size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type,
8093 nelems, tmp);
8094 if (!no_malloc)
8095 {
8096 tmp = TREE_TYPE (gfc_conv_descriptor_data_get (src));
8097 tmp = gfc_call_malloc (&block, tmp, size);
8098 gfc_conv_descriptor_data_set (&block, dest, tmp);
8099 }
8100
8101 /* We know the temporary and the value will be the same length,
8102 so can use memcpy. */
8103 if (!no_memcpy)
8104 {
8105 tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
8106 tmp = build_call_expr_loc (input_location, tmp, 3,
8107 gfc_conv_descriptor_data_get (dest),
8108 gfc_conv_descriptor_data_get (src),
8109 fold_convert (size_type_node, size));
8110 gfc_add_expr_to_block (&block, tmp);
8111 }
8112 }
8113
8114 gfc_add_expr_to_block (&block, add_when_allocated);
8115 tmp = gfc_finish_block (&block);
8116
8117 /* Null the destination if the source is null; otherwise do
8118 the allocate and copy. */
8119 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (src)))
8120 null_cond = src;
8121 else
8122 null_cond = gfc_conv_descriptor_data_get (src);
8123
8124 null_cond = convert (pvoid_type_node, null_cond);
8125 null_cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
8126 null_cond, null_pointer_node);
8127 return build3_v (COND_EXPR, null_cond, tmp, null_data);
8128 }
8129
8130
8131 /* Allocate dest to the same size as src, and copy data src -> dest. */
8132
8133 tree
8134 gfc_duplicate_allocatable (tree dest, tree src, tree type, int rank,
8135 tree add_when_allocated)
8136 {
8137 return duplicate_allocatable (dest, src, type, rank, false, false,
8138 NULL_TREE, add_when_allocated);
8139 }
8140
8141
8142 /* Copy data src -> dest. */
8143
8144 tree
8145 gfc_copy_allocatable_data (tree dest, tree src, tree type, int rank)
8146 {
8147 return duplicate_allocatable (dest, src, type, rank, true, false,
8148 NULL_TREE, NULL_TREE);
8149 }
8150
8151 /* Allocate dest to the same size as src, but don't copy anything. */
8152
8153 tree
8154 gfc_duplicate_allocatable_nocopy (tree dest, tree src, tree type, int rank)
8155 {
8156 return duplicate_allocatable (dest, src, type, rank, false, true,
8157 NULL_TREE, NULL_TREE);
8158 }
8159
8160
8161 static tree
8162 duplicate_allocatable_coarray (tree dest, tree dest_tok, tree src,
8163 tree type, int rank)
8164 {
8165 tree tmp;
8166 tree size;
8167 tree nelems;
8168 tree null_cond;
8169 tree null_data;
8170 stmtblock_t block, globalblock;
8171
8172 /* If the source is null, set the destination to null. Then,
8173 allocate memory to the destination. */
8174 gfc_init_block (&block);
8175 gfc_init_block (&globalblock);
8176
8177 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest)))
8178 {
8179 gfc_se se;
8180 symbol_attribute attr;
8181 tree dummy_desc;
8182
8183 gfc_init_se (&se, NULL);
8184 gfc_clear_attr (&attr);
8185 attr.allocatable = 1;
8186 dummy_desc = gfc_conv_scalar_to_descriptor (&se, dest, attr);
8187 gfc_add_block_to_block (&globalblock, &se.pre);
8188 size = TYPE_SIZE_UNIT (TREE_TYPE (type));
8189
8190 gfc_add_modify (&block, dest, fold_convert (type, null_pointer_node));
8191 gfc_allocate_using_caf_lib (&block, dummy_desc, size,
8192 gfc_build_addr_expr (NULL_TREE, dest_tok),
8193 NULL_TREE, NULL_TREE, NULL_TREE,
8194 GFC_CAF_COARRAY_ALLOC_REGISTER_ONLY);
8195 null_data = gfc_finish_block (&block);
8196
8197 gfc_init_block (&block);
8198
8199 gfc_allocate_using_caf_lib (&block, dummy_desc,
8200 fold_convert (size_type_node, size),
8201 gfc_build_addr_expr (NULL_TREE, dest_tok),
8202 NULL_TREE, NULL_TREE, NULL_TREE,
8203 GFC_CAF_COARRAY_ALLOC);
8204
8205 tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
8206 tmp = build_call_expr_loc (input_location, tmp, 3, dest, src,
8207 fold_convert (size_type_node, size));
8208 gfc_add_expr_to_block (&block, tmp);
8209 }
8210 else
8211 {
8212 /* Set the rank or unitialized memory access may be reported. */
8213 tmp = gfc_conv_descriptor_rank (dest);
8214 gfc_add_modify (&globalblock, tmp, build_int_cst (TREE_TYPE (tmp), rank));
8215
8216 if (rank)
8217 nelems = gfc_full_array_size (&block, src, rank);
8218 else
8219 nelems = integer_one_node;
8220
8221 tmp = fold_convert (size_type_node,
8222 TYPE_SIZE_UNIT (gfc_get_element_type (type)));
8223 size = fold_build2_loc (input_location, MULT_EXPR, size_type_node,
8224 fold_convert (size_type_node, nelems), tmp);
8225
8226 gfc_conv_descriptor_data_set (&block, dest, null_pointer_node);
8227 gfc_allocate_using_caf_lib (&block, dest, fold_convert (size_type_node,
8228 size),
8229 gfc_build_addr_expr (NULL_TREE, dest_tok),
8230 NULL_TREE, NULL_TREE, NULL_TREE,
8231 GFC_CAF_COARRAY_ALLOC_REGISTER_ONLY);
8232 null_data = gfc_finish_block (&block);
8233
8234 gfc_init_block (&block);
8235 gfc_allocate_using_caf_lib (&block, dest,
8236 fold_convert (size_type_node, size),
8237 gfc_build_addr_expr (NULL_TREE, dest_tok),
8238 NULL_TREE, NULL_TREE, NULL_TREE,
8239 GFC_CAF_COARRAY_ALLOC);
8240
8241 tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
8242 tmp = build_call_expr_loc (input_location, tmp, 3,
8243 gfc_conv_descriptor_data_get (dest),
8244 gfc_conv_descriptor_data_get (src),
8245 fold_convert (size_type_node, size));
8246 gfc_add_expr_to_block (&block, tmp);
8247 }
8248
8249 tmp = gfc_finish_block (&block);
8250
8251 /* Null the destination if the source is null; otherwise do
8252 the register and copy. */
8253 if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (src)))
8254 null_cond = src;
8255 else
8256 null_cond = gfc_conv_descriptor_data_get (src);
8257
8258 null_cond = convert (pvoid_type_node, null_cond);
8259 null_cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
8260 null_cond, null_pointer_node);
8261 gfc_add_expr_to_block (&globalblock, build3_v (COND_EXPR, null_cond, tmp,
8262 null_data));
8263 return gfc_finish_block (&globalblock);
8264 }
8265
8266
8267 /* Helper function to abstract whether coarray processing is enabled. */
8268
8269 static bool
8270 caf_enabled (int caf_mode)
8271 {
8272 return (caf_mode & GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY)
8273 == GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY;
8274 }
8275
8276
8277 /* Helper function to abstract whether coarray processing is enabled
8278 and we are in a derived type coarray. */
8279
8280 static bool
8281 caf_in_coarray (int caf_mode)
8282 {
8283 static const int pat = GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY
8284 | GFC_STRUCTURE_CAF_MODE_IN_COARRAY;
8285 return (caf_mode & pat) == pat;
8286 }
8287
8288
8289 /* Helper function to abstract whether coarray is to deallocate only. */
8290
8291 bool
8292 gfc_caf_is_dealloc_only (int caf_mode)
8293 {
8294 return (caf_mode & GFC_STRUCTURE_CAF_MODE_DEALLOC_ONLY)
8295 == GFC_STRUCTURE_CAF_MODE_DEALLOC_ONLY;
8296 }
8297
8298
8299 /* Recursively traverse an object of derived type, generating code to
8300 deallocate, nullify or copy allocatable components. This is the work horse
8301 function for the functions named in this enum. */
8302
8303 enum {DEALLOCATE_ALLOC_COMP = 1, NULLIFY_ALLOC_COMP,
8304 COPY_ALLOC_COMP, COPY_ONLY_ALLOC_COMP, REASSIGN_CAF_COMP,
8305 ALLOCATE_PDT_COMP, DEALLOCATE_PDT_COMP, CHECK_PDT_DUMMY};
8306
8307 static gfc_actual_arglist *pdt_param_list;
8308
8309 static tree
8310 structure_alloc_comps (gfc_symbol * der_type, tree decl,
8311 tree dest, int rank, int purpose, int caf_mode)
8312 {
8313 gfc_component *c;
8314 gfc_loopinfo loop;
8315 stmtblock_t fnblock;
8316 stmtblock_t loopbody;
8317 stmtblock_t tmpblock;
8318 tree decl_type;
8319 tree tmp;
8320 tree comp;
8321 tree dcmp;
8322 tree nelems;
8323 tree index;
8324 tree var;
8325 tree cdecl;
8326 tree ctype;
8327 tree vref, dref;
8328 tree null_cond = NULL_TREE;
8329 tree add_when_allocated;
8330 tree dealloc_fndecl;
8331 tree caf_token;
8332 gfc_symbol *vtab;
8333 int caf_dereg_mode;
8334 symbol_attribute *attr;
8335 bool deallocate_called;
8336
8337 gfc_init_block (&fnblock);
8338
8339 decl_type = TREE_TYPE (decl);
8340
8341 if ((POINTER_TYPE_P (decl_type))
8342 || (TREE_CODE (decl_type) == REFERENCE_TYPE && rank == 0))
8343 {
8344 decl = build_fold_indirect_ref_loc (input_location, decl);
8345 /* Deref dest in sync with decl, but only when it is not NULL. */
8346 if (dest)
8347 dest = build_fold_indirect_ref_loc (input_location, dest);
8348
8349 /* Update the decl_type because it got dereferenced. */
8350 decl_type = TREE_TYPE (decl);
8351 }
8352
8353 /* If this is an array of derived types with allocatable components
8354 build a loop and recursively call this function. */
8355 if (TREE_CODE (decl_type) == ARRAY_TYPE
8356 || (GFC_DESCRIPTOR_TYPE_P (decl_type) && rank != 0))
8357 {
8358 tmp = gfc_conv_array_data (decl);
8359 var = build_fold_indirect_ref_loc (input_location, tmp);
8360
8361 /* Get the number of elements - 1 and set the counter. */
8362 if (GFC_DESCRIPTOR_TYPE_P (decl_type))
8363 {
8364 /* Use the descriptor for an allocatable array. Since this
8365 is a full array reference, we only need the descriptor
8366 information from dimension = rank. */
8367 tmp = gfc_full_array_size (&fnblock, decl, rank);
8368 tmp = fold_build2_loc (input_location, MINUS_EXPR,
8369 gfc_array_index_type, tmp,
8370 gfc_index_one_node);
8371
8372 null_cond = gfc_conv_descriptor_data_get (decl);
8373 null_cond = fold_build2_loc (input_location, NE_EXPR,
8374 logical_type_node, null_cond,
8375 build_int_cst (TREE_TYPE (null_cond), 0));
8376 }
8377 else
8378 {
8379 /* Otherwise use the TYPE_DOMAIN information. */
8380 tmp = array_type_nelts (decl_type);
8381 tmp = fold_convert (gfc_array_index_type, tmp);
8382 }
8383
8384 /* Remember that this is, in fact, the no. of elements - 1. */
8385 nelems = gfc_evaluate_now (tmp, &fnblock);
8386 index = gfc_create_var (gfc_array_index_type, "S");
8387
8388 /* Build the body of the loop. */
8389 gfc_init_block (&loopbody);
8390
8391 vref = gfc_build_array_ref (var, index, NULL);
8392
8393 if ((purpose == COPY_ALLOC_COMP || purpose == COPY_ONLY_ALLOC_COMP)
8394 && !caf_enabled (caf_mode))
8395 {
8396 tmp = build_fold_indirect_ref_loc (input_location,
8397 gfc_conv_array_data (dest));
8398 dref = gfc_build_array_ref (tmp, index, NULL);
8399 tmp = structure_alloc_comps (der_type, vref, dref, rank,
8400 COPY_ALLOC_COMP, 0);
8401 }
8402 else
8403 tmp = structure_alloc_comps (der_type, vref, NULL_TREE, rank, purpose,
8404 caf_mode);
8405
8406 gfc_add_expr_to_block (&loopbody, tmp);
8407
8408 /* Build the loop and return. */
8409 gfc_init_loopinfo (&loop);
8410 loop.dimen = 1;
8411 loop.from[0] = gfc_index_zero_node;
8412 loop.loopvar[0] = index;
8413 loop.to[0] = nelems;
8414 gfc_trans_scalarizing_loops (&loop, &loopbody);
8415 gfc_add_block_to_block (&fnblock, &loop.pre);
8416
8417 tmp = gfc_finish_block (&fnblock);
8418 /* When copying allocateable components, the above implements the
8419 deep copy. Nevertheless is a deep copy only allowed, when the current
8420 component is allocated, for which code will be generated in
8421 gfc_duplicate_allocatable (), where the deep copy code is just added
8422 into the if's body, by adding tmp (the deep copy code) as last
8423 argument to gfc_duplicate_allocatable (). */
8424 if (purpose == COPY_ALLOC_COMP
8425 && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest)))
8426 tmp = gfc_duplicate_allocatable (dest, decl, decl_type, rank,
8427 tmp);
8428 else if (null_cond != NULL_TREE)
8429 tmp = build3_v (COND_EXPR, null_cond, tmp,
8430 build_empty_stmt (input_location));
8431
8432 return tmp;
8433 }
8434
8435 if (purpose == DEALLOCATE_ALLOC_COMP && der_type->attr.pdt_type)
8436 {
8437 tmp = structure_alloc_comps (der_type, decl, NULL_TREE, rank,
8438 DEALLOCATE_PDT_COMP, 0);
8439 gfc_add_expr_to_block (&fnblock, tmp);
8440 }
8441 else if (purpose == ALLOCATE_PDT_COMP && der_type->attr.alloc_comp)
8442 {
8443 tmp = structure_alloc_comps (der_type, decl, NULL_TREE, rank,
8444 NULLIFY_ALLOC_COMP, 0);
8445 gfc_add_expr_to_block (&fnblock, tmp);
8446 }
8447
8448 /* Otherwise, act on the components or recursively call self to
8449 act on a chain of components. */
8450 for (c = der_type->components; c; c = c->next)
8451 {
8452 bool cmp_has_alloc_comps = (c->ts.type == BT_DERIVED
8453 || c->ts.type == BT_CLASS)
8454 && c->ts.u.derived->attr.alloc_comp;
8455 bool same_type = (c->ts.type == BT_DERIVED && der_type == c->ts.u.derived)
8456 || (c->ts.type == BT_CLASS && der_type == CLASS_DATA (c)->ts.u.derived);
8457
8458 bool is_pdt_type = c->ts.type == BT_DERIVED
8459 && c->ts.u.derived->attr.pdt_type;
8460
8461 cdecl = c->backend_decl;
8462 ctype = TREE_TYPE (cdecl);
8463
8464 switch (purpose)
8465 {
8466 case DEALLOCATE_ALLOC_COMP:
8467
8468 gfc_init_block (&tmpblock);
8469
8470 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
8471 decl, cdecl, NULL_TREE);
8472
8473 /* Shortcut to get the attributes of the component. */
8474 if (c->ts.type == BT_CLASS)
8475 {
8476 attr = &CLASS_DATA (c)->attr;
8477 if (attr->class_pointer)
8478 continue;
8479 }
8480 else
8481 {
8482 attr = &c->attr;
8483 if (attr->pointer)
8484 continue;
8485 }
8486
8487 if ((c->ts.type == BT_DERIVED && !c->attr.pointer)
8488 || (c->ts.type == BT_CLASS && !CLASS_DATA (c)->attr.class_pointer))
8489 /* Call the finalizer, which will free the memory and nullify the
8490 pointer of an array. */
8491 deallocate_called = gfc_add_comp_finalizer_call (&tmpblock, comp, c,
8492 caf_enabled (caf_mode))
8493 && attr->dimension;
8494 else
8495 deallocate_called = false;
8496
8497 /* Add the _class ref for classes. */
8498 if (c->ts.type == BT_CLASS && attr->allocatable)
8499 comp = gfc_class_data_get (comp);
8500
8501 add_when_allocated = NULL_TREE;
8502 if (cmp_has_alloc_comps
8503 && !c->attr.pointer && !c->attr.proc_pointer
8504 && !same_type
8505 && !deallocate_called)
8506 {
8507 /* Add checked deallocation of the components. This code is
8508 obviously added because the finalizer is not trusted to free
8509 all memory. */
8510 if (c->ts.type == BT_CLASS)
8511 {
8512 rank = CLASS_DATA (c)->as ? CLASS_DATA (c)->as->rank : 0;
8513 add_when_allocated
8514 = structure_alloc_comps (CLASS_DATA (c)->ts.u.derived,
8515 comp, NULL_TREE, rank, purpose,
8516 caf_mode);
8517 }
8518 else
8519 {
8520 rank = c->as ? c->as->rank : 0;
8521 add_when_allocated = structure_alloc_comps (c->ts.u.derived,
8522 comp, NULL_TREE,
8523 rank, purpose,
8524 caf_mode);
8525 }
8526 }
8527
8528 if (attr->allocatable && !same_type
8529 && (!attr->codimension || caf_enabled (caf_mode)))
8530 {
8531 /* Handle all types of components besides components of the
8532 same_type as the current one, because those would create an
8533 endless loop. */
8534 caf_dereg_mode
8535 = (caf_in_coarray (caf_mode) || attr->codimension)
8536 ? (gfc_caf_is_dealloc_only (caf_mode)
8537 ? GFC_CAF_COARRAY_DEALLOCATE_ONLY
8538 : GFC_CAF_COARRAY_DEREGISTER)
8539 : GFC_CAF_COARRAY_NOCOARRAY;
8540
8541 caf_token = NULL_TREE;
8542 /* Coarray components are handled directly by
8543 deallocate_with_status. */
8544 if (!attr->codimension
8545 && caf_dereg_mode != GFC_CAF_COARRAY_NOCOARRAY)
8546 {
8547 if (c->caf_token)
8548 caf_token = fold_build3_loc (input_location, COMPONENT_REF,
8549 TREE_TYPE (c->caf_token),
8550 decl, c->caf_token, NULL_TREE);
8551 else if (attr->dimension && !attr->proc_pointer)
8552 caf_token = gfc_conv_descriptor_token (comp);
8553 }
8554 if (attr->dimension && !attr->codimension && !attr->proc_pointer)
8555 /* When this is an array but not in conjunction with a coarray
8556 then add the data-ref. For coarray'ed arrays the data-ref
8557 is added by deallocate_with_status. */
8558 comp = gfc_conv_descriptor_data_get (comp);
8559
8560 tmp = gfc_deallocate_with_status (comp, NULL_TREE, NULL_TREE,
8561 NULL_TREE, NULL_TREE, true,
8562 NULL, caf_dereg_mode,
8563 add_when_allocated, caf_token);
8564
8565 gfc_add_expr_to_block (&tmpblock, tmp);
8566 }
8567 else if (attr->allocatable && !attr->codimension
8568 && !deallocate_called)
8569 {
8570 /* Case of recursive allocatable derived types. */
8571 tree is_allocated;
8572 tree ubound;
8573 tree cdesc;
8574 stmtblock_t dealloc_block;
8575
8576 gfc_init_block (&dealloc_block);
8577 if (add_when_allocated)
8578 gfc_add_expr_to_block (&dealloc_block, add_when_allocated);
8579
8580 /* Convert the component into a rank 1 descriptor type. */
8581 if (attr->dimension)
8582 {
8583 tmp = gfc_get_element_type (TREE_TYPE (comp));
8584 ubound = gfc_full_array_size (&dealloc_block, comp,
8585 c->ts.type == BT_CLASS
8586 ? CLASS_DATA (c)->as->rank
8587 : c->as->rank);
8588 }
8589 else
8590 {
8591 tmp = TREE_TYPE (comp);
8592 ubound = build_int_cst (gfc_array_index_type, 1);
8593 }
8594
8595 cdesc = gfc_get_array_type_bounds (tmp, 1, 0, &gfc_index_one_node,
8596 &ubound, 1,
8597 GFC_ARRAY_ALLOCATABLE, false);
8598
8599 cdesc = gfc_create_var (cdesc, "cdesc");
8600 DECL_ARTIFICIAL (cdesc) = 1;
8601
8602 gfc_add_modify (&dealloc_block, gfc_conv_descriptor_dtype (cdesc),
8603 gfc_get_dtype_rank_type (1, tmp));
8604 gfc_conv_descriptor_lbound_set (&dealloc_block, cdesc,
8605 gfc_index_zero_node,
8606 gfc_index_one_node);
8607 gfc_conv_descriptor_stride_set (&dealloc_block, cdesc,
8608 gfc_index_zero_node,
8609 gfc_index_one_node);
8610 gfc_conv_descriptor_ubound_set (&dealloc_block, cdesc,
8611 gfc_index_zero_node, ubound);
8612
8613 if (attr->dimension)
8614 comp = gfc_conv_descriptor_data_get (comp);
8615
8616 gfc_conv_descriptor_data_set (&dealloc_block, cdesc, comp);
8617
8618 /* Now call the deallocator. */
8619 vtab = gfc_find_vtab (&c->ts);
8620 if (vtab->backend_decl == NULL)
8621 gfc_get_symbol_decl (vtab);
8622 tmp = gfc_build_addr_expr (NULL_TREE, vtab->backend_decl);
8623 dealloc_fndecl = gfc_vptr_deallocate_get (tmp);
8624 dealloc_fndecl = build_fold_indirect_ref_loc (input_location,
8625 dealloc_fndecl);
8626 tmp = build_int_cst (TREE_TYPE (comp), 0);
8627 is_allocated = fold_build2_loc (input_location, NE_EXPR,
8628 logical_type_node, tmp,
8629 comp);
8630 cdesc = gfc_build_addr_expr (NULL_TREE, cdesc);
8631
8632 tmp = build_call_expr_loc (input_location,
8633 dealloc_fndecl, 1,
8634 cdesc);
8635 gfc_add_expr_to_block (&dealloc_block, tmp);
8636
8637 tmp = gfc_finish_block (&dealloc_block);
8638
8639 tmp = fold_build3_loc (input_location, COND_EXPR,
8640 void_type_node, is_allocated, tmp,
8641 build_empty_stmt (input_location));
8642
8643 gfc_add_expr_to_block (&tmpblock, tmp);
8644 }
8645 else if (add_when_allocated)
8646 gfc_add_expr_to_block (&tmpblock, add_when_allocated);
8647
8648 if (c->ts.type == BT_CLASS && attr->allocatable
8649 && (!attr->codimension || !caf_enabled (caf_mode)))
8650 {
8651 /* Finally, reset the vptr to the declared type vtable and, if
8652 necessary reset the _len field.
8653
8654 First recover the reference to the component and obtain
8655 the vptr. */
8656 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
8657 decl, cdecl, NULL_TREE);
8658 tmp = gfc_class_vptr_get (comp);
8659
8660 if (UNLIMITED_POLY (c))
8661 {
8662 /* Both vptr and _len field should be nulled. */
8663 gfc_add_modify (&tmpblock, tmp,
8664 build_int_cst (TREE_TYPE (tmp), 0));
8665 tmp = gfc_class_len_get (comp);
8666 gfc_add_modify (&tmpblock, tmp,
8667 build_int_cst (TREE_TYPE (tmp), 0));
8668 }
8669 else
8670 {
8671 /* Build the vtable address and set the vptr with it. */
8672 tree vtab;
8673 gfc_symbol *vtable;
8674 vtable = gfc_find_derived_vtab (c->ts.u.derived);
8675 vtab = vtable->backend_decl;
8676 if (vtab == NULL_TREE)
8677 vtab = gfc_get_symbol_decl (vtable);
8678 vtab = gfc_build_addr_expr (NULL, vtab);
8679 vtab = fold_convert (TREE_TYPE (tmp), vtab);
8680 gfc_add_modify (&tmpblock, tmp, vtab);
8681 }
8682 }
8683
8684 /* Now add the deallocation of this component. */
8685 gfc_add_block_to_block (&fnblock, &tmpblock);
8686 break;
8687
8688 case NULLIFY_ALLOC_COMP:
8689 /* Nullify
8690 - allocatable components (regular or in class)
8691 - components that have allocatable components
8692 - pointer components when in a coarray.
8693 Skip everything else especially proc_pointers, which may come
8694 coupled with the regular pointer attribute. */
8695 if (c->attr.proc_pointer
8696 || !(c->attr.allocatable || (c->ts.type == BT_CLASS
8697 && CLASS_DATA (c)->attr.allocatable)
8698 || (cmp_has_alloc_comps
8699 && ((c->ts.type == BT_DERIVED && !c->attr.pointer)
8700 || (c->ts.type == BT_CLASS
8701 && !CLASS_DATA (c)->attr.class_pointer)))
8702 || (caf_in_coarray (caf_mode) && c->attr.pointer)))
8703 continue;
8704
8705 /* Process class components first, because they always have the
8706 pointer-attribute set which would be caught wrong else. */
8707 if (c->ts.type == BT_CLASS
8708 && (CLASS_DATA (c)->attr.allocatable
8709 || CLASS_DATA (c)->attr.class_pointer))
8710 {
8711 /* Allocatable CLASS components. */
8712 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
8713 decl, cdecl, NULL_TREE);
8714
8715 comp = gfc_class_data_get (comp);
8716 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (comp)))
8717 gfc_conv_descriptor_data_set (&fnblock, comp,
8718 null_pointer_node);
8719 else
8720 {
8721 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
8722 void_type_node, comp,
8723 build_int_cst (TREE_TYPE (comp), 0));
8724 gfc_add_expr_to_block (&fnblock, tmp);
8725 }
8726 cmp_has_alloc_comps = false;
8727 }
8728 /* Coarrays need the component to be nulled before the api-call
8729 is made. */
8730 else if (c->attr.pointer || c->attr.allocatable)
8731 {
8732 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
8733 decl, cdecl, NULL_TREE);
8734 if (c->attr.dimension || c->attr.codimension)
8735 gfc_conv_descriptor_data_set (&fnblock, comp,
8736 null_pointer_node);
8737 else
8738 gfc_add_modify (&fnblock, comp,
8739 build_int_cst (TREE_TYPE (comp), 0));
8740 if (gfc_deferred_strlen (c, &comp))
8741 {
8742 comp = fold_build3_loc (input_location, COMPONENT_REF,
8743 TREE_TYPE (comp),
8744 decl, comp, NULL_TREE);
8745 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
8746 TREE_TYPE (comp), comp,
8747 build_int_cst (TREE_TYPE (comp), 0));
8748 gfc_add_expr_to_block (&fnblock, tmp);
8749 }
8750 cmp_has_alloc_comps = false;
8751 }
8752
8753 if (flag_coarray == GFC_FCOARRAY_LIB && caf_in_coarray (caf_mode))
8754 {
8755 /* Register a component of a derived type coarray with the
8756 coarray library. Do not register ultimate component
8757 coarrays here. They are treated like regular coarrays and
8758 are either allocated on all images or on none. */
8759 tree token;
8760
8761 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
8762 decl, cdecl, NULL_TREE);
8763 if (c->attr.dimension)
8764 {
8765 /* Set the dtype, because caf_register needs it. */
8766 gfc_add_modify (&fnblock, gfc_conv_descriptor_dtype (comp),
8767 gfc_get_dtype (TREE_TYPE (comp)));
8768 tmp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
8769 decl, cdecl, NULL_TREE);
8770 token = gfc_conv_descriptor_token (tmp);
8771 }
8772 else
8773 {
8774 gfc_se se;
8775
8776 gfc_init_se (&se, NULL);
8777 token = fold_build3_loc (input_location, COMPONENT_REF,
8778 pvoid_type_node, decl, c->caf_token,
8779 NULL_TREE);
8780 comp = gfc_conv_scalar_to_descriptor (&se, comp,
8781 c->ts.type == BT_CLASS
8782 ? CLASS_DATA (c)->attr
8783 : c->attr);
8784 gfc_add_block_to_block (&fnblock, &se.pre);
8785 }
8786
8787 gfc_allocate_using_caf_lib (&fnblock, comp, size_zero_node,
8788 gfc_build_addr_expr (NULL_TREE,
8789 token),
8790 NULL_TREE, NULL_TREE, NULL_TREE,
8791 GFC_CAF_COARRAY_ALLOC_REGISTER_ONLY);
8792 }
8793
8794 if (cmp_has_alloc_comps)
8795 {
8796 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
8797 decl, cdecl, NULL_TREE);
8798 rank = c->as ? c->as->rank : 0;
8799 tmp = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE,
8800 rank, purpose, caf_mode);
8801 gfc_add_expr_to_block (&fnblock, tmp);
8802 }
8803 break;
8804
8805 case REASSIGN_CAF_COMP:
8806 if (caf_enabled (caf_mode)
8807 && (c->attr.codimension
8808 || (c->ts.type == BT_CLASS
8809 && (CLASS_DATA (c)->attr.coarray_comp
8810 || caf_in_coarray (caf_mode)))
8811 || (c->ts.type == BT_DERIVED
8812 && (c->ts.u.derived->attr.coarray_comp
8813 || caf_in_coarray (caf_mode))))
8814 && !same_type)
8815 {
8816 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
8817 decl, cdecl, NULL_TREE);
8818 dcmp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
8819 dest, cdecl, NULL_TREE);
8820
8821 if (c->attr.codimension)
8822 {
8823 if (c->ts.type == BT_CLASS)
8824 {
8825 comp = gfc_class_data_get (comp);
8826 dcmp = gfc_class_data_get (dcmp);
8827 }
8828 gfc_conv_descriptor_data_set (&fnblock, dcmp,
8829 gfc_conv_descriptor_data_get (comp));
8830 }
8831 else
8832 {
8833 tmp = structure_alloc_comps (c->ts.u.derived, comp, dcmp,
8834 rank, purpose, caf_mode
8835 | GFC_STRUCTURE_CAF_MODE_IN_COARRAY);
8836 gfc_add_expr_to_block (&fnblock, tmp);
8837 }
8838 }
8839 break;
8840
8841 case COPY_ALLOC_COMP:
8842 if (c->attr.pointer)
8843 continue;
8844
8845 /* We need source and destination components. */
8846 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl,
8847 cdecl, NULL_TREE);
8848 dcmp = fold_build3_loc (input_location, COMPONENT_REF, ctype, dest,
8849 cdecl, NULL_TREE);
8850 dcmp = fold_convert (TREE_TYPE (comp), dcmp);
8851
8852 if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable)
8853 {
8854 tree ftn_tree;
8855 tree size;
8856 tree dst_data;
8857 tree src_data;
8858 tree null_data;
8859
8860 dst_data = gfc_class_data_get (dcmp);
8861 src_data = gfc_class_data_get (comp);
8862 size = fold_convert (size_type_node,
8863 gfc_class_vtab_size_get (comp));
8864
8865 if (CLASS_DATA (c)->attr.dimension)
8866 {
8867 nelems = gfc_conv_descriptor_size (src_data,
8868 CLASS_DATA (c)->as->rank);
8869 size = fold_build2_loc (input_location, MULT_EXPR,
8870 size_type_node, size,
8871 fold_convert (size_type_node,
8872 nelems));
8873 }
8874 else
8875 nelems = build_int_cst (size_type_node, 1);
8876
8877 if (CLASS_DATA (c)->attr.dimension
8878 || CLASS_DATA (c)->attr.codimension)
8879 {
8880 src_data = gfc_conv_descriptor_data_get (src_data);
8881 dst_data = gfc_conv_descriptor_data_get (dst_data);
8882 }
8883
8884 gfc_init_block (&tmpblock);
8885
8886 gfc_add_modify (&tmpblock, gfc_class_vptr_get (dcmp),
8887 gfc_class_vptr_get (comp));
8888
8889 /* Copy the unlimited '_len' field. If it is greater than zero
8890 (ie. a character(_len)), multiply it by size and use this
8891 for the malloc call. */
8892 if (UNLIMITED_POLY (c))
8893 {
8894 tree ctmp;
8895 gfc_add_modify (&tmpblock, gfc_class_len_get (dcmp),
8896 gfc_class_len_get (comp));
8897
8898 size = gfc_evaluate_now (size, &tmpblock);
8899 tmp = gfc_class_len_get (comp);
8900 ctmp = fold_build2_loc (input_location, MULT_EXPR,
8901 size_type_node, size,
8902 fold_convert (size_type_node, tmp));
8903 tmp = fold_build2_loc (input_location, GT_EXPR,
8904 logical_type_node, tmp,
8905 build_zero_cst (TREE_TYPE (tmp)));
8906 size = fold_build3_loc (input_location, COND_EXPR,
8907 size_type_node, tmp, ctmp, size);
8908 size = gfc_evaluate_now (size, &tmpblock);
8909 }
8910
8911 /* Coarray component have to have the same allocation status and
8912 shape/type-parameter/effective-type on the LHS and RHS of an
8913 intrinsic assignment. Hence, we did not deallocated them - and
8914 do not allocate them here. */
8915 if (!CLASS_DATA (c)->attr.codimension)
8916 {
8917 ftn_tree = builtin_decl_explicit (BUILT_IN_MALLOC);
8918 tmp = build_call_expr_loc (input_location, ftn_tree, 1, size);
8919 gfc_add_modify (&tmpblock, dst_data,
8920 fold_convert (TREE_TYPE (dst_data), tmp));
8921 }
8922
8923 tmp = gfc_copy_class_to_class (comp, dcmp, nelems,
8924 UNLIMITED_POLY (c));
8925 gfc_add_expr_to_block (&tmpblock, tmp);
8926 tmp = gfc_finish_block (&tmpblock);
8927
8928 gfc_init_block (&tmpblock);
8929 gfc_add_modify (&tmpblock, dst_data,
8930 fold_convert (TREE_TYPE (dst_data),
8931 null_pointer_node));
8932 null_data = gfc_finish_block (&tmpblock);
8933
8934 null_cond = fold_build2_loc (input_location, NE_EXPR,
8935 logical_type_node, src_data,
8936 null_pointer_node);
8937
8938 gfc_add_expr_to_block (&fnblock, build3_v (COND_EXPR, null_cond,
8939 tmp, null_data));
8940 continue;
8941 }
8942
8943 /* To implement guarded deep copy, i.e., deep copy only allocatable
8944 components that are really allocated, the deep copy code has to
8945 be generated first and then added to the if-block in
8946 gfc_duplicate_allocatable (). */
8947 if (cmp_has_alloc_comps && !c->attr.proc_pointer && !same_type)
8948 {
8949 rank = c->as ? c->as->rank : 0;
8950 tmp = fold_convert (TREE_TYPE (dcmp), comp);
8951 gfc_add_modify (&fnblock, dcmp, tmp);
8952 add_when_allocated = structure_alloc_comps (c->ts.u.derived,
8953 comp, dcmp,
8954 rank, purpose,
8955 caf_mode);
8956 }
8957 else
8958 add_when_allocated = NULL_TREE;
8959
8960 if (gfc_deferred_strlen (c, &tmp))
8961 {
8962 tree len, size;
8963 len = tmp;
8964 tmp = fold_build3_loc (input_location, COMPONENT_REF,
8965 TREE_TYPE (len),
8966 decl, len, NULL_TREE);
8967 len = fold_build3_loc (input_location, COMPONENT_REF,
8968 TREE_TYPE (len),
8969 dest, len, NULL_TREE);
8970 tmp = fold_build2_loc (input_location, MODIFY_EXPR,
8971 TREE_TYPE (len), len, tmp);
8972 gfc_add_expr_to_block (&fnblock, tmp);
8973 size = size_of_string_in_bytes (c->ts.kind, len);
8974 /* This component can not have allocatable components,
8975 therefore add_when_allocated of duplicate_allocatable ()
8976 is always NULL. */
8977 tmp = duplicate_allocatable (dcmp, comp, ctype, rank,
8978 false, false, size, NULL_TREE);
8979 gfc_add_expr_to_block (&fnblock, tmp);
8980 }
8981 else if (c->attr.pdt_array)
8982 {
8983 tmp = duplicate_allocatable (dcmp, comp, ctype,
8984 c->as ? c->as->rank : 0,
8985 false, false, NULL_TREE, NULL_TREE);
8986 gfc_add_expr_to_block (&fnblock, tmp);
8987 }
8988 else if ((c->attr.allocatable)
8989 && !c->attr.proc_pointer && !same_type
8990 && (!(cmp_has_alloc_comps && c->as) || c->attr.codimension
8991 || caf_in_coarray (caf_mode)))
8992 {
8993 rank = c->as ? c->as->rank : 0;
8994 if (c->attr.codimension)
8995 tmp = gfc_copy_allocatable_data (dcmp, comp, ctype, rank);
8996 else if (flag_coarray == GFC_FCOARRAY_LIB
8997 && caf_in_coarray (caf_mode))
8998 {
8999 tree dst_tok = c->as ? gfc_conv_descriptor_token (dcmp)
9000 : fold_build3_loc (input_location,
9001 COMPONENT_REF,
9002 pvoid_type_node, dest,
9003 c->caf_token,
9004 NULL_TREE);
9005 tmp = duplicate_allocatable_coarray (dcmp, dst_tok, comp,
9006 ctype, rank);
9007 }
9008 else
9009 tmp = gfc_duplicate_allocatable (dcmp, comp, ctype, rank,
9010 add_when_allocated);
9011 gfc_add_expr_to_block (&fnblock, tmp);
9012 }
9013 else
9014 if (cmp_has_alloc_comps || is_pdt_type)
9015 gfc_add_expr_to_block (&fnblock, add_when_allocated);
9016
9017 break;
9018
9019 case ALLOCATE_PDT_COMP:
9020
9021 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9022 decl, cdecl, NULL_TREE);
9023
9024 /* Set the PDT KIND and LEN fields. */
9025 if (c->attr.pdt_kind || c->attr.pdt_len)
9026 {
9027 gfc_se tse;
9028 gfc_expr *c_expr = NULL;
9029 gfc_actual_arglist *param = pdt_param_list;
9030 gfc_init_se (&tse, NULL);
9031 for (; param; param = param->next)
9032 if (param->name && !strcmp (c->name, param->name))
9033 c_expr = param->expr;
9034
9035 if (!c_expr)
9036 c_expr = c->initializer;
9037
9038 if (c_expr)
9039 {
9040 gfc_conv_expr_type (&tse, c_expr, TREE_TYPE (comp));
9041 gfc_add_modify (&fnblock, comp, tse.expr);
9042 }
9043 }
9044
9045 if (c->attr.pdt_string)
9046 {
9047 gfc_se tse;
9048 gfc_init_se (&tse, NULL);
9049 tree strlen = NULL_TREE;
9050 gfc_expr *e = gfc_copy_expr (c->ts.u.cl->length);
9051 /* Convert the parameterized string length to its value. The
9052 string length is stored in a hidden field in the same way as
9053 deferred string lengths. */
9054 gfc_insert_parameter_exprs (e, pdt_param_list);
9055 if (gfc_deferred_strlen (c, &strlen) && strlen != NULL_TREE)
9056 {
9057 gfc_conv_expr_type (&tse, e,
9058 TREE_TYPE (strlen));
9059 strlen = fold_build3_loc (input_location, COMPONENT_REF,
9060 TREE_TYPE (strlen),
9061 decl, strlen, NULL_TREE);
9062 gfc_add_modify (&fnblock, strlen, tse.expr);
9063 c->ts.u.cl->backend_decl = strlen;
9064 }
9065 gfc_free_expr (e);
9066
9067 /* Scalar parameterized strings can be allocated now. */
9068 if (!c->as)
9069 {
9070 tmp = fold_convert (gfc_array_index_type, strlen);
9071 tmp = size_of_string_in_bytes (c->ts.kind, tmp);
9072 tmp = gfc_evaluate_now (tmp, &fnblock);
9073 tmp = gfc_call_malloc (&fnblock, TREE_TYPE (comp), tmp);
9074 gfc_add_modify (&fnblock, comp, tmp);
9075 }
9076 }
9077
9078 /* Allocate parameterized arrays of parameterized derived types. */
9079 if (!(c->attr.pdt_array && c->as && c->as->type == AS_EXPLICIT)
9080 && !((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9081 && (c->ts.u.derived && c->ts.u.derived->attr.pdt_type)))
9082 continue;
9083
9084 if (c->ts.type == BT_CLASS)
9085 comp = gfc_class_data_get (comp);
9086
9087 if (c->attr.pdt_array)
9088 {
9089 gfc_se tse;
9090 int i;
9091 tree size = gfc_index_one_node;
9092 tree offset = gfc_index_zero_node;
9093 tree lower, upper;
9094 gfc_expr *e;
9095
9096 /* This chunk takes the expressions for 'lower' and 'upper'
9097 in the arrayspec and substitutes in the expressions for
9098 the parameters from 'pdt_param_list'. The descriptor
9099 fields can then be filled from the values so obtained. */
9100 gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (comp)));
9101 for (i = 0; i < c->as->rank; i++)
9102 {
9103 gfc_init_se (&tse, NULL);
9104 e = gfc_copy_expr (c->as->lower[i]);
9105 gfc_insert_parameter_exprs (e, pdt_param_list);
9106 gfc_conv_expr_type (&tse, e, gfc_array_index_type);
9107 gfc_free_expr (e);
9108 lower = tse.expr;
9109 gfc_conv_descriptor_lbound_set (&fnblock, comp,
9110 gfc_rank_cst[i],
9111 lower);
9112 e = gfc_copy_expr (c->as->upper[i]);
9113 gfc_insert_parameter_exprs (e, pdt_param_list);
9114 gfc_conv_expr_type (&tse, e, gfc_array_index_type);
9115 gfc_free_expr (e);
9116 upper = tse.expr;
9117 gfc_conv_descriptor_ubound_set (&fnblock, comp,
9118 gfc_rank_cst[i],
9119 upper);
9120 gfc_conv_descriptor_stride_set (&fnblock, comp,
9121 gfc_rank_cst[i],
9122 size);
9123 size = gfc_evaluate_now (size, &fnblock);
9124 offset = fold_build2_loc (input_location,
9125 MINUS_EXPR,
9126 gfc_array_index_type,
9127 offset, size);
9128 offset = gfc_evaluate_now (offset, &fnblock);
9129 tmp = fold_build2_loc (input_location, MINUS_EXPR,
9130 gfc_array_index_type,
9131 upper, lower);
9132 tmp = fold_build2_loc (input_location, PLUS_EXPR,
9133 gfc_array_index_type,
9134 tmp, gfc_index_one_node);
9135 size = fold_build2_loc (input_location, MULT_EXPR,
9136 gfc_array_index_type, size, tmp);
9137 }
9138 gfc_conv_descriptor_offset_set (&fnblock, comp, offset);
9139 if (c->ts.type == BT_CLASS)
9140 {
9141 tmp = gfc_get_vptr_from_expr (comp);
9142 if (POINTER_TYPE_P (TREE_TYPE (tmp)))
9143 tmp = build_fold_indirect_ref_loc (input_location, tmp);
9144 tmp = gfc_vptr_size_get (tmp);
9145 }
9146 else
9147 tmp = TYPE_SIZE_UNIT (gfc_get_element_type (ctype));
9148 tmp = fold_convert (gfc_array_index_type, tmp);
9149 size = fold_build2_loc (input_location, MULT_EXPR,
9150 gfc_array_index_type, size, tmp);
9151 size = gfc_evaluate_now (size, &fnblock);
9152 tmp = gfc_call_malloc (&fnblock, NULL, size);
9153 gfc_conv_descriptor_data_set (&fnblock, comp, tmp);
9154 tmp = gfc_conv_descriptor_dtype (comp);
9155 gfc_add_modify (&fnblock, tmp, gfc_get_dtype (ctype));
9156
9157 if (c->initializer && c->initializer->rank)
9158 {
9159 gfc_init_se (&tse, NULL);
9160 e = gfc_copy_expr (c->initializer);
9161 gfc_insert_parameter_exprs (e, pdt_param_list);
9162 gfc_conv_expr_descriptor (&tse, e);
9163 gfc_add_block_to_block (&fnblock, &tse.pre);
9164 gfc_free_expr (e);
9165 tmp = builtin_decl_explicit (BUILT_IN_MEMCPY);
9166 tmp = build_call_expr_loc (input_location, tmp, 3,
9167 gfc_conv_descriptor_data_get (comp),
9168 gfc_conv_descriptor_data_get (tse.expr),
9169 fold_convert (size_type_node, size));
9170 gfc_add_expr_to_block (&fnblock, tmp);
9171 gfc_add_block_to_block (&fnblock, &tse.post);
9172 }
9173 }
9174
9175 /* Recurse in to PDT components. */
9176 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9177 && c->ts.u.derived && c->ts.u.derived->attr.pdt_type
9178 && !(c->attr.pointer || c->attr.allocatable))
9179 {
9180 bool is_deferred = false;
9181 gfc_actual_arglist *tail = c->param_list;
9182
9183 for (; tail; tail = tail->next)
9184 if (!tail->expr)
9185 is_deferred = true;
9186
9187 tail = is_deferred ? pdt_param_list : c->param_list;
9188 tmp = gfc_allocate_pdt_comp (c->ts.u.derived, comp,
9189 c->as ? c->as->rank : 0,
9190 tail);
9191 gfc_add_expr_to_block (&fnblock, tmp);
9192 }
9193
9194 break;
9195
9196 case DEALLOCATE_PDT_COMP:
9197 /* Deallocate array or parameterized string length components
9198 of parameterized derived types. */
9199 if (!(c->attr.pdt_array && c->as && c->as->type == AS_EXPLICIT)
9200 && !c->attr.pdt_string
9201 && !((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9202 && (c->ts.u.derived && c->ts.u.derived->attr.pdt_type)))
9203 continue;
9204
9205 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9206 decl, cdecl, NULL_TREE);
9207 if (c->ts.type == BT_CLASS)
9208 comp = gfc_class_data_get (comp);
9209
9210 /* Recurse in to PDT components. */
9211 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9212 && c->ts.u.derived && c->ts.u.derived->attr.pdt_type
9213 && (!c->attr.pointer && !c->attr.allocatable))
9214 {
9215 tmp = gfc_deallocate_pdt_comp (c->ts.u.derived, comp,
9216 c->as ? c->as->rank : 0);
9217 gfc_add_expr_to_block (&fnblock, tmp);
9218 }
9219
9220 if (c->attr.pdt_array)
9221 {
9222 tmp = gfc_conv_descriptor_data_get (comp);
9223 null_cond = fold_build2_loc (input_location, NE_EXPR,
9224 logical_type_node, tmp,
9225 build_int_cst (TREE_TYPE (tmp), 0));
9226 tmp = gfc_call_free (tmp);
9227 tmp = build3_v (COND_EXPR, null_cond, tmp,
9228 build_empty_stmt (input_location));
9229 gfc_add_expr_to_block (&fnblock, tmp);
9230 gfc_conv_descriptor_data_set (&fnblock, comp, null_pointer_node);
9231 }
9232 else if (c->attr.pdt_string)
9233 {
9234 null_cond = fold_build2_loc (input_location, NE_EXPR,
9235 logical_type_node, comp,
9236 build_int_cst (TREE_TYPE (comp), 0));
9237 tmp = gfc_call_free (comp);
9238 tmp = build3_v (COND_EXPR, null_cond, tmp,
9239 build_empty_stmt (input_location));
9240 gfc_add_expr_to_block (&fnblock, tmp);
9241 tmp = fold_convert (TREE_TYPE (comp), null_pointer_node);
9242 gfc_add_modify (&fnblock, comp, tmp);
9243 }
9244
9245 break;
9246
9247 case CHECK_PDT_DUMMY:
9248
9249 comp = fold_build3_loc (input_location, COMPONENT_REF, ctype,
9250 decl, cdecl, NULL_TREE);
9251 if (c->ts.type == BT_CLASS)
9252 comp = gfc_class_data_get (comp);
9253
9254 /* Recurse in to PDT components. */
9255 if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
9256 && c->ts.u.derived && c->ts.u.derived->attr.pdt_type)
9257 {
9258 tmp = gfc_check_pdt_dummy (c->ts.u.derived, comp,
9259 c->as ? c->as->rank : 0,
9260 pdt_param_list);
9261 gfc_add_expr_to_block (&fnblock, tmp);
9262 }
9263
9264 if (!c->attr.pdt_len)
9265 continue;
9266 else
9267 {
9268 gfc_se tse;
9269 gfc_expr *c_expr = NULL;
9270 gfc_actual_arglist *param = pdt_param_list;
9271
9272 gfc_init_se (&tse, NULL);
9273 for (; param; param = param->next)
9274 if (!strcmp (c->name, param->name)
9275 && param->spec_type == SPEC_EXPLICIT)
9276 c_expr = param->expr;
9277
9278 if (c_expr)
9279 {
9280 tree error, cond, cname;
9281 gfc_conv_expr_type (&tse, c_expr, TREE_TYPE (comp));
9282 cond = fold_build2_loc (input_location, NE_EXPR,
9283 logical_type_node,
9284 comp, tse.expr);
9285 cname = gfc_build_cstring_const (c->name);
9286 cname = gfc_build_addr_expr (pchar_type_node, cname);
9287 error = gfc_trans_runtime_error (true, NULL,
9288 "The value of the PDT LEN "
9289 "parameter '%s' does not "
9290 "agree with that in the "
9291 "dummy declaration",
9292 cname);
9293 tmp = fold_build3_loc (input_location, COND_EXPR,
9294 void_type_node, cond, error,
9295 build_empty_stmt (input_location));
9296 gfc_add_expr_to_block (&fnblock, tmp);
9297 }
9298 }
9299 break;
9300
9301 default:
9302 gcc_unreachable ();
9303 break;
9304 }
9305 }
9306
9307 return gfc_finish_block (&fnblock);
9308 }
9309
9310 /* Recursively traverse an object of derived type, generating code to
9311 nullify allocatable components. */
9312
9313 tree
9314 gfc_nullify_alloc_comp (gfc_symbol * der_type, tree decl, int rank,
9315 int caf_mode)
9316 {
9317 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
9318 NULLIFY_ALLOC_COMP,
9319 GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY | caf_mode);
9320 }
9321
9322
9323 /* Recursively traverse an object of derived type, generating code to
9324 deallocate allocatable components. */
9325
9326 tree
9327 gfc_deallocate_alloc_comp (gfc_symbol * der_type, tree decl, int rank,
9328 int caf_mode)
9329 {
9330 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
9331 DEALLOCATE_ALLOC_COMP,
9332 GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY | caf_mode);
9333 }
9334
9335
9336 /* Recursively traverse an object of derived type, generating code to
9337 deallocate allocatable components. But do not deallocate coarrays.
9338 To be used for intrinsic assignment, which may not change the allocation
9339 status of coarrays. */
9340
9341 tree
9342 gfc_deallocate_alloc_comp_no_caf (gfc_symbol * der_type, tree decl, int rank)
9343 {
9344 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
9345 DEALLOCATE_ALLOC_COMP, 0);
9346 }
9347
9348
9349 tree
9350 gfc_reassign_alloc_comp_caf (gfc_symbol *der_type, tree decl, tree dest)
9351 {
9352 return structure_alloc_comps (der_type, decl, dest, 0, REASSIGN_CAF_COMP,
9353 GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY);
9354 }
9355
9356
9357 /* Recursively traverse an object of derived type, generating code to
9358 copy it and its allocatable components. */
9359
9360 tree
9361 gfc_copy_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank,
9362 int caf_mode)
9363 {
9364 return structure_alloc_comps (der_type, decl, dest, rank, COPY_ALLOC_COMP,
9365 caf_mode);
9366 }
9367
9368
9369 /* Recursively traverse an object of derived type, generating code to
9370 copy only its allocatable components. */
9371
9372 tree
9373 gfc_copy_only_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank)
9374 {
9375 return structure_alloc_comps (der_type, decl, dest, rank,
9376 COPY_ONLY_ALLOC_COMP, 0);
9377 }
9378
9379
9380 /* Recursively traverse an object of paramterized derived type, generating
9381 code to allocate parameterized components. */
9382
9383 tree
9384 gfc_allocate_pdt_comp (gfc_symbol * der_type, tree decl, int rank,
9385 gfc_actual_arglist *param_list)
9386 {
9387 tree res;
9388 gfc_actual_arglist *old_param_list = pdt_param_list;
9389 pdt_param_list = param_list;
9390 res = structure_alloc_comps (der_type, decl, NULL_TREE, rank,
9391 ALLOCATE_PDT_COMP, 0);
9392 pdt_param_list = old_param_list;
9393 return res;
9394 }
9395
9396 /* Recursively traverse an object of paramterized derived type, generating
9397 code to deallocate parameterized components. */
9398
9399 tree
9400 gfc_deallocate_pdt_comp (gfc_symbol * der_type, tree decl, int rank)
9401 {
9402 return structure_alloc_comps (der_type, decl, NULL_TREE, rank,
9403 DEALLOCATE_PDT_COMP, 0);
9404 }
9405
9406
9407 /* Recursively traverse a dummy of paramterized derived type to check the
9408 values of LEN parameters. */
9409
9410 tree
9411 gfc_check_pdt_dummy (gfc_symbol * der_type, tree decl, int rank,
9412 gfc_actual_arglist *param_list)
9413 {
9414 tree res;
9415 gfc_actual_arglist *old_param_list = pdt_param_list;
9416 pdt_param_list = param_list;
9417 res = structure_alloc_comps (der_type, decl, NULL_TREE, rank,
9418 CHECK_PDT_DUMMY, 0);
9419 pdt_param_list = old_param_list;
9420 return res;
9421 }
9422
9423
9424 /* Returns the value of LBOUND for an expression. This could be broken out
9425 from gfc_conv_intrinsic_bound but this seemed to be simpler. This is
9426 called by gfc_alloc_allocatable_for_assignment. */
9427 static tree
9428 get_std_lbound (gfc_expr *expr, tree desc, int dim, bool assumed_size)
9429 {
9430 tree lbound;
9431 tree ubound;
9432 tree stride;
9433 tree cond, cond1, cond3, cond4;
9434 tree tmp;
9435 gfc_ref *ref;
9436
9437 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)))
9438 {
9439 tmp = gfc_rank_cst[dim];
9440 lbound = gfc_conv_descriptor_lbound_get (desc, tmp);
9441 ubound = gfc_conv_descriptor_ubound_get (desc, tmp);
9442 stride = gfc_conv_descriptor_stride_get (desc, tmp);
9443 cond1 = fold_build2_loc (input_location, GE_EXPR, logical_type_node,
9444 ubound, lbound);
9445 cond3 = fold_build2_loc (input_location, GE_EXPR, logical_type_node,
9446 stride, gfc_index_zero_node);
9447 cond3 = fold_build2_loc (input_location, TRUTH_AND_EXPR,
9448 logical_type_node, cond3, cond1);
9449 cond4 = fold_build2_loc (input_location, LT_EXPR, logical_type_node,
9450 stride, gfc_index_zero_node);
9451 if (assumed_size)
9452 cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node,
9453 tmp, build_int_cst (gfc_array_index_type,
9454 expr->rank - 1));
9455 else
9456 cond = logical_false_node;
9457
9458 cond1 = fold_build2_loc (input_location, TRUTH_OR_EXPR,
9459 logical_type_node, cond3, cond4);
9460 cond = fold_build2_loc (input_location, TRUTH_OR_EXPR,
9461 logical_type_node, cond, cond1);
9462
9463 return fold_build3_loc (input_location, COND_EXPR,
9464 gfc_array_index_type, cond,
9465 lbound, gfc_index_one_node);
9466 }
9467
9468 if (expr->expr_type == EXPR_FUNCTION)
9469 {
9470 /* A conversion function, so use the argument. */
9471 gcc_assert (expr->value.function.isym
9472 && expr->value.function.isym->conversion);
9473 expr = expr->value.function.actual->expr;
9474 }
9475
9476 if (expr->expr_type == EXPR_VARIABLE)
9477 {
9478 tmp = TREE_TYPE (expr->symtree->n.sym->backend_decl);
9479 for (ref = expr->ref; ref; ref = ref->next)
9480 {
9481 if (ref->type == REF_COMPONENT
9482 && ref->u.c.component->as
9483 && ref->next
9484 && ref->next->u.ar.type == AR_FULL)
9485 tmp = TREE_TYPE (ref->u.c.component->backend_decl);
9486 }
9487 return GFC_TYPE_ARRAY_LBOUND(tmp, dim);
9488 }
9489
9490 return gfc_index_one_node;
9491 }
9492
9493
9494 /* Returns true if an expression represents an lhs that can be reallocated
9495 on assignment. */
9496
9497 bool
9498 gfc_is_reallocatable_lhs (gfc_expr *expr)
9499 {
9500 gfc_ref * ref;
9501 gfc_symbol *sym;
9502
9503 if (!expr->ref)
9504 return false;
9505
9506 sym = expr->symtree->n.sym;
9507
9508 /* An allocatable class variable with no reference. */
9509 if (sym->ts.type == BT_CLASS
9510 && CLASS_DATA (sym)->attr.allocatable
9511 && expr->ref && expr->ref->type == REF_COMPONENT
9512 && strcmp (expr->ref->u.c.component->name, "_data") == 0
9513 && expr->ref->next == NULL)
9514 return true;
9515
9516 /* An allocatable variable. */
9517 if (sym->attr.allocatable
9518 && expr->ref
9519 && expr->ref->type == REF_ARRAY
9520 && expr->ref->u.ar.type == AR_FULL)
9521 return true;
9522
9523 /* All that can be left are allocatable components. */
9524 if ((sym->ts.type != BT_DERIVED
9525 && sym->ts.type != BT_CLASS)
9526 || !sym->ts.u.derived->attr.alloc_comp)
9527 return false;
9528
9529 /* Find a component ref followed by an array reference. */
9530 for (ref = expr->ref; ref; ref = ref->next)
9531 if (ref->next
9532 && ref->type == REF_COMPONENT
9533 && ref->next->type == REF_ARRAY
9534 && !ref->next->next)
9535 break;
9536
9537 if (!ref)
9538 return false;
9539
9540 /* Return true if valid reallocatable lhs. */
9541 if (ref->u.c.component->attr.allocatable
9542 && ref->next->u.ar.type == AR_FULL)
9543 return true;
9544
9545 return false;
9546 }
9547
9548
9549 static tree
9550 concat_str_length (gfc_expr* expr)
9551 {
9552 tree type;
9553 tree len1;
9554 tree len2;
9555 gfc_se se;
9556
9557 type = gfc_typenode_for_spec (&expr->value.op.op1->ts);
9558 len1 = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
9559 if (len1 == NULL_TREE)
9560 {
9561 if (expr->value.op.op1->expr_type == EXPR_OP)
9562 len1 = concat_str_length (expr->value.op.op1);
9563 else if (expr->value.op.op1->expr_type == EXPR_CONSTANT)
9564 len1 = build_int_cst (gfc_charlen_type_node,
9565 expr->value.op.op1->value.character.length);
9566 else if (expr->value.op.op1->ts.u.cl->length)
9567 {
9568 gfc_init_se (&se, NULL);
9569 gfc_conv_expr (&se, expr->value.op.op1->ts.u.cl->length);
9570 len1 = se.expr;
9571 }
9572 else
9573 {
9574 /* Last resort! */
9575 gfc_init_se (&se, NULL);
9576 se.want_pointer = 1;
9577 se.descriptor_only = 1;
9578 gfc_conv_expr (&se, expr->value.op.op1);
9579 len1 = se.string_length;
9580 }
9581 }
9582
9583 type = gfc_typenode_for_spec (&expr->value.op.op2->ts);
9584 len2 = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
9585 if (len2 == NULL_TREE)
9586 {
9587 if (expr->value.op.op2->expr_type == EXPR_OP)
9588 len2 = concat_str_length (expr->value.op.op2);
9589 else if (expr->value.op.op2->expr_type == EXPR_CONSTANT)
9590 len2 = build_int_cst (gfc_charlen_type_node,
9591 expr->value.op.op2->value.character.length);
9592 else if (expr->value.op.op2->ts.u.cl->length)
9593 {
9594 gfc_init_se (&se, NULL);
9595 gfc_conv_expr (&se, expr->value.op.op2->ts.u.cl->length);
9596 len2 = se.expr;
9597 }
9598 else
9599 {
9600 /* Last resort! */
9601 gfc_init_se (&se, NULL);
9602 se.want_pointer = 1;
9603 se.descriptor_only = 1;
9604 gfc_conv_expr (&se, expr->value.op.op2);
9605 len2 = se.string_length;
9606 }
9607 }
9608
9609 gcc_assert(len1 && len2);
9610 len1 = fold_convert (gfc_charlen_type_node, len1);
9611 len2 = fold_convert (gfc_charlen_type_node, len2);
9612
9613 return fold_build2_loc (input_location, PLUS_EXPR,
9614 gfc_charlen_type_node, len1, len2);
9615 }
9616
9617
9618 /* Allocate the lhs of an assignment to an allocatable array, otherwise
9619 reallocate it. */
9620
9621 tree
9622 gfc_alloc_allocatable_for_assignment (gfc_loopinfo *loop,
9623 gfc_expr *expr1,
9624 gfc_expr *expr2)
9625 {
9626 stmtblock_t realloc_block;
9627 stmtblock_t alloc_block;
9628 stmtblock_t fblock;
9629 gfc_ss *rss;
9630 gfc_ss *lss;
9631 gfc_array_info *linfo;
9632 tree realloc_expr;
9633 tree alloc_expr;
9634 tree size1;
9635 tree size2;
9636 tree array1;
9637 tree cond_null;
9638 tree cond;
9639 tree tmp;
9640 tree tmp2;
9641 tree lbound;
9642 tree ubound;
9643 tree desc;
9644 tree old_desc;
9645 tree desc2;
9646 tree offset;
9647 tree jump_label1;
9648 tree jump_label2;
9649 tree neq_size;
9650 tree lbd;
9651 int n;
9652 int dim;
9653 gfc_array_spec * as;
9654 bool coarray = (flag_coarray == GFC_FCOARRAY_LIB
9655 && gfc_caf_attr (expr1, true).codimension);
9656 tree token;
9657 gfc_se caf_se;
9658
9659 /* x = f(...) with x allocatable. In this case, expr1 is the rhs.
9660 Find the lhs expression in the loop chain and set expr1 and
9661 expr2 accordingly. */
9662 if (expr1->expr_type == EXPR_FUNCTION && expr2 == NULL)
9663 {
9664 expr2 = expr1;
9665 /* Find the ss for the lhs. */
9666 lss = loop->ss;
9667 for (; lss && lss != gfc_ss_terminator; lss = lss->loop_chain)
9668 if (lss->info->expr && lss->info->expr->expr_type == EXPR_VARIABLE)
9669 break;
9670 if (lss == gfc_ss_terminator)
9671 return NULL_TREE;
9672 expr1 = lss->info->expr;
9673 }
9674
9675 /* Bail out if this is not a valid allocate on assignment. */
9676 if (!gfc_is_reallocatable_lhs (expr1)
9677 || (expr2 && !expr2->rank))
9678 return NULL_TREE;
9679
9680 /* Find the ss for the lhs. */
9681 lss = loop->ss;
9682 for (; lss && lss != gfc_ss_terminator; lss = lss->loop_chain)
9683 if (lss->info->expr == expr1)
9684 break;
9685
9686 if (lss == gfc_ss_terminator)
9687 return NULL_TREE;
9688
9689 linfo = &lss->info->data.array;
9690
9691 /* Find an ss for the rhs. For operator expressions, we see the
9692 ss's for the operands. Any one of these will do. */
9693 rss = loop->ss;
9694 for (; rss && rss != gfc_ss_terminator; rss = rss->loop_chain)
9695 if (rss->info->expr != expr1 && rss != loop->temp_ss)
9696 break;
9697
9698 if (expr2 && rss == gfc_ss_terminator)
9699 return NULL_TREE;
9700
9701 /* Ensure that the string length from the current scope is used. */
9702 if (expr2->ts.type == BT_CHARACTER
9703 && expr2->expr_type == EXPR_FUNCTION
9704 && !expr2->value.function.isym)
9705 expr2->ts.u.cl->backend_decl = rss->info->string_length;
9706
9707 gfc_start_block (&fblock);
9708
9709 /* Since the lhs is allocatable, this must be a descriptor type.
9710 Get the data and array size. */
9711 desc = linfo->descriptor;
9712 gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)));
9713 array1 = gfc_conv_descriptor_data_get (desc);
9714
9715 /* 7.4.1.3 "If variable is an allocated allocatable variable, it is
9716 deallocated if expr is an array of different shape or any of the
9717 corresponding length type parameter values of variable and expr
9718 differ." This assures F95 compatibility. */
9719 jump_label1 = gfc_build_label_decl (NULL_TREE);
9720 jump_label2 = gfc_build_label_decl (NULL_TREE);
9721
9722 /* Allocate if data is NULL. */
9723 cond_null = fold_build2_loc (input_location, EQ_EXPR, logical_type_node,
9724 array1, build_int_cst (TREE_TYPE (array1), 0));
9725
9726 if (expr1->ts.deferred)
9727 cond_null = gfc_evaluate_now (logical_true_node, &fblock);
9728 else
9729 cond_null= gfc_evaluate_now (cond_null, &fblock);
9730
9731 tmp = build3_v (COND_EXPR, cond_null,
9732 build1_v (GOTO_EXPR, jump_label1),
9733 build_empty_stmt (input_location));
9734 gfc_add_expr_to_block (&fblock, tmp);
9735
9736 /* Get arrayspec if expr is a full array. */
9737 if (expr2 && expr2->expr_type == EXPR_FUNCTION
9738 && expr2->value.function.isym
9739 && expr2->value.function.isym->conversion)
9740 {
9741 /* For conversion functions, take the arg. */
9742 gfc_expr *arg = expr2->value.function.actual->expr;
9743 as = gfc_get_full_arrayspec_from_expr (arg);
9744 }
9745 else if (expr2)
9746 as = gfc_get_full_arrayspec_from_expr (expr2);
9747 else
9748 as = NULL;
9749
9750 /* If the lhs shape is not the same as the rhs jump to setting the
9751 bounds and doing the reallocation....... */
9752 for (n = 0; n < expr1->rank; n++)
9753 {
9754 /* Check the shape. */
9755 lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]);
9756 ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[n]);
9757 tmp = fold_build2_loc (input_location, MINUS_EXPR,
9758 gfc_array_index_type,
9759 loop->to[n], loop->from[n]);
9760 tmp = fold_build2_loc (input_location, PLUS_EXPR,
9761 gfc_array_index_type,
9762 tmp, lbound);
9763 tmp = fold_build2_loc (input_location, MINUS_EXPR,
9764 gfc_array_index_type,
9765 tmp, ubound);
9766 cond = fold_build2_loc (input_location, NE_EXPR,
9767 logical_type_node,
9768 tmp, gfc_index_zero_node);
9769 tmp = build3_v (COND_EXPR, cond,
9770 build1_v (GOTO_EXPR, jump_label1),
9771 build_empty_stmt (input_location));
9772 gfc_add_expr_to_block (&fblock, tmp);
9773 }
9774
9775 /* ....else jump past the (re)alloc code. */
9776 tmp = build1_v (GOTO_EXPR, jump_label2);
9777 gfc_add_expr_to_block (&fblock, tmp);
9778
9779 /* Add the label to start automatic (re)allocation. */
9780 tmp = build1_v (LABEL_EXPR, jump_label1);
9781 gfc_add_expr_to_block (&fblock, tmp);
9782
9783 /* If the lhs has not been allocated, its bounds will not have been
9784 initialized and so its size is set to zero. */
9785 size1 = gfc_create_var (gfc_array_index_type, NULL);
9786 gfc_init_block (&alloc_block);
9787 gfc_add_modify (&alloc_block, size1, gfc_index_zero_node);
9788 gfc_init_block (&realloc_block);
9789 gfc_add_modify (&realloc_block, size1,
9790 gfc_conv_descriptor_size (desc, expr1->rank));
9791 tmp = build3_v (COND_EXPR, cond_null,
9792 gfc_finish_block (&alloc_block),
9793 gfc_finish_block (&realloc_block));
9794 gfc_add_expr_to_block (&fblock, tmp);
9795
9796 /* Get the rhs size and fix it. */
9797 if (expr2)
9798 desc2 = rss->info->data.array.descriptor;
9799 else
9800 desc2 = NULL_TREE;
9801
9802 size2 = gfc_index_one_node;
9803 for (n = 0; n < expr2->rank; n++)
9804 {
9805 tmp = fold_build2_loc (input_location, MINUS_EXPR,
9806 gfc_array_index_type,
9807 loop->to[n], loop->from[n]);
9808 tmp = fold_build2_loc (input_location, PLUS_EXPR,
9809 gfc_array_index_type,
9810 tmp, gfc_index_one_node);
9811 size2 = fold_build2_loc (input_location, MULT_EXPR,
9812 gfc_array_index_type,
9813 tmp, size2);
9814 }
9815 size2 = gfc_evaluate_now (size2, &fblock);
9816
9817 cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node,
9818 size1, size2);
9819
9820 /* If the lhs is deferred length, assume that the element size
9821 changes and force a reallocation. */
9822 if (expr1->ts.deferred)
9823 neq_size = gfc_evaluate_now (logical_true_node, &fblock);
9824 else
9825 neq_size = gfc_evaluate_now (cond, &fblock);
9826
9827 /* Deallocation of allocatable components will have to occur on
9828 reallocation. Fix the old descriptor now. */
9829 if ((expr1->ts.type == BT_DERIVED)
9830 && expr1->ts.u.derived->attr.alloc_comp)
9831 old_desc = gfc_evaluate_now (desc, &fblock);
9832 else
9833 old_desc = NULL_TREE;
9834
9835 /* Now modify the lhs descriptor and the associated scalarizer
9836 variables. F2003 7.4.1.3: "If variable is or becomes an
9837 unallocated allocatable variable, then it is allocated with each
9838 deferred type parameter equal to the corresponding type parameters
9839 of expr , with the shape of expr , and with each lower bound equal
9840 to the corresponding element of LBOUND(expr)."
9841 Reuse size1 to keep a dimension-by-dimension track of the
9842 stride of the new array. */
9843 size1 = gfc_index_one_node;
9844 offset = gfc_index_zero_node;
9845
9846 for (n = 0; n < expr2->rank; n++)
9847 {
9848 tmp = fold_build2_loc (input_location, MINUS_EXPR,
9849 gfc_array_index_type,
9850 loop->to[n], loop->from[n]);
9851 tmp = fold_build2_loc (input_location, PLUS_EXPR,
9852 gfc_array_index_type,
9853 tmp, gfc_index_one_node);
9854
9855 lbound = gfc_index_one_node;
9856 ubound = tmp;
9857
9858 if (as)
9859 {
9860 lbd = get_std_lbound (expr2, desc2, n,
9861 as->type == AS_ASSUMED_SIZE);
9862 ubound = fold_build2_loc (input_location,
9863 MINUS_EXPR,
9864 gfc_array_index_type,
9865 ubound, lbound);
9866 ubound = fold_build2_loc (input_location,
9867 PLUS_EXPR,
9868 gfc_array_index_type,
9869 ubound, lbd);
9870 lbound = lbd;
9871 }
9872
9873 gfc_conv_descriptor_lbound_set (&fblock, desc,
9874 gfc_rank_cst[n],
9875 lbound);
9876 gfc_conv_descriptor_ubound_set (&fblock, desc,
9877 gfc_rank_cst[n],
9878 ubound);
9879 gfc_conv_descriptor_stride_set (&fblock, desc,
9880 gfc_rank_cst[n],
9881 size1);
9882 lbound = gfc_conv_descriptor_lbound_get (desc,
9883 gfc_rank_cst[n]);
9884 tmp2 = fold_build2_loc (input_location, MULT_EXPR,
9885 gfc_array_index_type,
9886 lbound, size1);
9887 offset = fold_build2_loc (input_location, MINUS_EXPR,
9888 gfc_array_index_type,
9889 offset, tmp2);
9890 size1 = fold_build2_loc (input_location, MULT_EXPR,
9891 gfc_array_index_type,
9892 tmp, size1);
9893 }
9894
9895 /* Set the lhs descriptor and scalarizer offsets. For rank > 1,
9896 the array offset is saved and the info.offset is used for a
9897 running offset. Use the saved_offset instead. */
9898 tmp = gfc_conv_descriptor_offset (desc);
9899 gfc_add_modify (&fblock, tmp, offset);
9900 if (linfo->saved_offset
9901 && VAR_P (linfo->saved_offset))
9902 gfc_add_modify (&fblock, linfo->saved_offset, tmp);
9903
9904 /* Now set the deltas for the lhs. */
9905 for (n = 0; n < expr1->rank; n++)
9906 {
9907 tmp = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]);
9908 dim = lss->dim[n];
9909 tmp = fold_build2_loc (input_location, MINUS_EXPR,
9910 gfc_array_index_type, tmp,
9911 loop->from[dim]);
9912 if (linfo->delta[dim] && VAR_P (linfo->delta[dim]))
9913 gfc_add_modify (&fblock, linfo->delta[dim], tmp);
9914 }
9915
9916 /* Get the new lhs size in bytes. */
9917 if (expr1->ts.type == BT_CHARACTER && expr1->ts.deferred)
9918 {
9919 if (expr2->ts.deferred)
9920 {
9921 if (VAR_P (expr2->ts.u.cl->backend_decl))
9922 tmp = expr2->ts.u.cl->backend_decl;
9923 else
9924 tmp = rss->info->string_length;
9925 }
9926 else
9927 {
9928 tmp = expr2->ts.u.cl->backend_decl;
9929 if (!tmp && expr2->expr_type == EXPR_OP
9930 && expr2->value.op.op == INTRINSIC_CONCAT)
9931 {
9932 tmp = concat_str_length (expr2);
9933 expr2->ts.u.cl->backend_decl = gfc_evaluate_now (tmp, &fblock);
9934 }
9935 tmp = fold_convert (TREE_TYPE (expr1->ts.u.cl->backend_decl), tmp);
9936 }
9937
9938 if (expr1->ts.u.cl->backend_decl
9939 && VAR_P (expr1->ts.u.cl->backend_decl))
9940 gfc_add_modify (&fblock, expr1->ts.u.cl->backend_decl, tmp);
9941 else
9942 gfc_add_modify (&fblock, lss->info->string_length, tmp);
9943 }
9944 else if (expr1->ts.type == BT_CHARACTER && expr1->ts.u.cl->backend_decl)
9945 {
9946 tmp = TYPE_SIZE_UNIT (TREE_TYPE (gfc_typenode_for_spec (&expr1->ts)));
9947 tmp = fold_build2_loc (input_location, MULT_EXPR,
9948 gfc_array_index_type, tmp,
9949 expr1->ts.u.cl->backend_decl);
9950 }
9951 else
9952 tmp = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&expr1->ts));
9953 tmp = fold_convert (gfc_array_index_type, tmp);
9954 size2 = fold_build2_loc (input_location, MULT_EXPR,
9955 gfc_array_index_type,
9956 tmp, size2);
9957 size2 = fold_convert (size_type_node, size2);
9958 size2 = fold_build2_loc (input_location, MAX_EXPR, size_type_node,
9959 size2, size_one_node);
9960 size2 = gfc_evaluate_now (size2, &fblock);
9961
9962 /* For deferred character length, the 'size' field of the dtype might
9963 have changed so set the dtype. */
9964 if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))
9965 && expr1->ts.type == BT_CHARACTER && expr1->ts.deferred)
9966 {
9967 tree type;
9968 tmp = gfc_conv_descriptor_dtype (desc);
9969 if (expr2->ts.u.cl->backend_decl)
9970 type = gfc_typenode_for_spec (&expr2->ts);
9971 else
9972 type = gfc_typenode_for_spec (&expr1->ts);
9973
9974 gfc_add_modify (&fblock, tmp,
9975 gfc_get_dtype_rank_type (expr1->rank,type));
9976 }
9977 else if (coarray && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)))
9978 {
9979 gfc_add_modify (&fblock, gfc_conv_descriptor_dtype (desc),
9980 gfc_get_dtype (TREE_TYPE (desc)));
9981 }
9982
9983 /* Realloc expression. Note that the scalarizer uses desc.data
9984 in the array reference - (*desc.data)[<element>]. */
9985 gfc_init_block (&realloc_block);
9986 gfc_init_se (&caf_se, NULL);
9987
9988 if (coarray)
9989 {
9990 token = gfc_get_ultimate_alloc_ptr_comps_caf_token (&caf_se, expr1);
9991 if (token == NULL_TREE)
9992 {
9993 tmp = gfc_get_tree_for_caf_expr (expr1);
9994 if (POINTER_TYPE_P (TREE_TYPE (tmp)))
9995 tmp = build_fold_indirect_ref (tmp);
9996 gfc_get_caf_token_offset (&caf_se, &token, NULL, tmp, NULL_TREE,
9997 expr1);
9998 token = gfc_build_addr_expr (NULL_TREE, token);
9999 }
10000
10001 gfc_add_block_to_block (&realloc_block, &caf_se.pre);
10002 }
10003 if ((expr1->ts.type == BT_DERIVED)
10004 && expr1->ts.u.derived->attr.alloc_comp)
10005 {
10006 tmp = gfc_deallocate_alloc_comp_no_caf (expr1->ts.u.derived, old_desc,
10007 expr1->rank);
10008 gfc_add_expr_to_block (&realloc_block, tmp);
10009 }
10010
10011 if (!coarray)
10012 {
10013 tmp = build_call_expr_loc (input_location,
10014 builtin_decl_explicit (BUILT_IN_REALLOC), 2,
10015 fold_convert (pvoid_type_node, array1),
10016 size2);
10017 gfc_conv_descriptor_data_set (&realloc_block,
10018 desc, tmp);
10019 }
10020 else
10021 {
10022 tmp = build_call_expr_loc (input_location,
10023 gfor_fndecl_caf_deregister, 5, token,
10024 build_int_cst (integer_type_node,
10025 GFC_CAF_COARRAY_DEALLOCATE_ONLY),
10026 null_pointer_node, null_pointer_node,
10027 integer_zero_node);
10028 gfc_add_expr_to_block (&realloc_block, tmp);
10029 tmp = build_call_expr_loc (input_location,
10030 gfor_fndecl_caf_register,
10031 7, size2,
10032 build_int_cst (integer_type_node,
10033 GFC_CAF_COARRAY_ALLOC_ALLOCATE_ONLY),
10034 token, gfc_build_addr_expr (NULL_TREE, desc),
10035 null_pointer_node, null_pointer_node,
10036 integer_zero_node);
10037 gfc_add_expr_to_block (&realloc_block, tmp);
10038 }
10039
10040 if ((expr1->ts.type == BT_DERIVED)
10041 && expr1->ts.u.derived->attr.alloc_comp)
10042 {
10043 tmp = gfc_nullify_alloc_comp (expr1->ts.u.derived, desc,
10044 expr1->rank);
10045 gfc_add_expr_to_block (&realloc_block, tmp);
10046 }
10047
10048 gfc_add_block_to_block (&realloc_block, &caf_se.post);
10049 realloc_expr = gfc_finish_block (&realloc_block);
10050
10051 /* Only reallocate if sizes are different. */
10052 tmp = build3_v (COND_EXPR, neq_size, realloc_expr,
10053 build_empty_stmt (input_location));
10054 realloc_expr = tmp;
10055
10056
10057 /* Malloc expression. */
10058 gfc_init_block (&alloc_block);
10059 if (!coarray)
10060 {
10061 tmp = build_call_expr_loc (input_location,
10062 builtin_decl_explicit (BUILT_IN_MALLOC),
10063 1, size2);
10064 gfc_conv_descriptor_data_set (&alloc_block,
10065 desc, tmp);
10066 }
10067 else
10068 {
10069 tmp = build_call_expr_loc (input_location,
10070 gfor_fndecl_caf_register,
10071 7, size2,
10072 build_int_cst (integer_type_node,
10073 GFC_CAF_COARRAY_ALLOC),
10074 token, gfc_build_addr_expr (NULL_TREE, desc),
10075 null_pointer_node, null_pointer_node,
10076 integer_zero_node);
10077 gfc_add_expr_to_block (&alloc_block, tmp);
10078 }
10079
10080
10081 /* We already set the dtype in the case of deferred character
10082 length arrays. */
10083 if (!(GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))
10084 && ((expr1->ts.type == BT_CHARACTER && expr1->ts.deferred)
10085 || coarray)))
10086 {
10087 tmp = gfc_conv_descriptor_dtype (desc);
10088 gfc_add_modify (&alloc_block, tmp, gfc_get_dtype (TREE_TYPE (desc)));
10089 }
10090
10091 if ((expr1->ts.type == BT_DERIVED)
10092 && expr1->ts.u.derived->attr.alloc_comp)
10093 {
10094 tmp = gfc_nullify_alloc_comp (expr1->ts.u.derived, desc,
10095 expr1->rank);
10096 gfc_add_expr_to_block (&alloc_block, tmp);
10097 }
10098 alloc_expr = gfc_finish_block (&alloc_block);
10099
10100 /* Malloc if not allocated; realloc otherwise. */
10101 tmp = build_int_cst (TREE_TYPE (array1), 0);
10102 cond = fold_build2_loc (input_location, EQ_EXPR,
10103 logical_type_node,
10104 array1, tmp);
10105 tmp = build3_v (COND_EXPR, cond, alloc_expr, realloc_expr);
10106 gfc_add_expr_to_block (&fblock, tmp);
10107
10108 /* Make sure that the scalarizer data pointer is updated. */
10109 if (linfo->data && VAR_P (linfo->data))
10110 {
10111 tmp = gfc_conv_descriptor_data_get (desc);
10112 gfc_add_modify (&fblock, linfo->data, tmp);
10113 }
10114
10115 /* Add the exit label. */
10116 tmp = build1_v (LABEL_EXPR, jump_label2);
10117 gfc_add_expr_to_block (&fblock, tmp);
10118
10119 return gfc_finish_block (&fblock);
10120 }
10121
10122
10123 /* NULLIFY an allocatable/pointer array on function entry, free it on exit.
10124 Do likewise, recursively if necessary, with the allocatable components of
10125 derived types. */
10126
10127 void
10128 gfc_trans_deferred_array (gfc_symbol * sym, gfc_wrapped_block * block)
10129 {
10130 tree type;
10131 tree tmp;
10132 tree descriptor;
10133 stmtblock_t init;
10134 stmtblock_t cleanup;
10135 locus loc;
10136 int rank;
10137 bool sym_has_alloc_comp, has_finalizer;
10138
10139 sym_has_alloc_comp = (sym->ts.type == BT_DERIVED
10140 || sym->ts.type == BT_CLASS)
10141 && sym->ts.u.derived->attr.alloc_comp;
10142 has_finalizer = sym->ts.type == BT_CLASS || sym->ts.type == BT_DERIVED
10143 ? gfc_is_finalizable (sym->ts.u.derived, NULL) : false;
10144
10145 /* Make sure the frontend gets these right. */
10146 gcc_assert (sym->attr.pointer || sym->attr.allocatable || sym_has_alloc_comp
10147 || has_finalizer);
10148
10149 gfc_save_backend_locus (&loc);
10150 gfc_set_backend_locus (&sym->declared_at);
10151 gfc_init_block (&init);
10152
10153 gcc_assert (VAR_P (sym->backend_decl)
10154 || TREE_CODE (sym->backend_decl) == PARM_DECL);
10155
10156 if (sym->ts.type == BT_CHARACTER
10157 && !INTEGER_CST_P (sym->ts.u.cl->backend_decl))
10158 {
10159 gfc_conv_string_length (sym->ts.u.cl, NULL, &init);
10160 gfc_trans_vla_type_sizes (sym, &init);
10161 }
10162
10163 /* Dummy, use associated and result variables don't need anything special. */
10164 if (sym->attr.dummy || sym->attr.use_assoc || sym->attr.result)
10165 {
10166 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
10167 gfc_restore_backend_locus (&loc);
10168 return;
10169 }
10170
10171 descriptor = sym->backend_decl;
10172
10173 /* Although static, derived types with default initializers and
10174 allocatable components must not be nulled wholesale; instead they
10175 are treated component by component. */
10176 if (TREE_STATIC (descriptor) && !sym_has_alloc_comp && !has_finalizer)
10177 {
10178 /* SAVEd variables are not freed on exit. */
10179 gfc_trans_static_array_pointer (sym);
10180
10181 gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE);
10182 gfc_restore_backend_locus (&loc);
10183 return;
10184 }
10185
10186 /* Get the descriptor type. */
10187 type = TREE_TYPE (sym->backend_decl);
10188
10189 if ((sym_has_alloc_comp || (has_finalizer && sym->ts.type != BT_CLASS))
10190 && !(sym->attr.pointer || sym->attr.allocatable))
10191 {
10192 if (!sym->attr.save
10193 && !(TREE_STATIC (sym->backend_decl) && sym->attr.is_main_program))
10194 {
10195 if (sym->value == NULL
10196 || !gfc_has_default_initializer (sym->ts.u.derived))
10197 {
10198 rank = sym->as ? sym->as->rank : 0;
10199 tmp = gfc_nullify_alloc_comp (sym->ts.u.derived,
10200 descriptor, rank);
10201 gfc_add_expr_to_block (&init, tmp);
10202 }
10203 else
10204 gfc_init_default_dt (sym, &init, false);
10205 }
10206 }
10207 else if (!GFC_DESCRIPTOR_TYPE_P (type))
10208 {
10209 /* If the backend_decl is not a descriptor, we must have a pointer
10210 to one. */
10211 descriptor = build_fold_indirect_ref_loc (input_location,
10212 sym->backend_decl);
10213 type = TREE_TYPE (descriptor);
10214 }
10215
10216 /* NULLIFY the data pointer, for non-saved allocatables. */
10217 if (GFC_DESCRIPTOR_TYPE_P (type) && !sym->attr.save && sym->attr.allocatable)
10218 {
10219 gfc_conv_descriptor_data_set (&init, descriptor, null_pointer_node);
10220 if (flag_coarray == GFC_FCOARRAY_LIB && sym->attr.codimension)
10221 {
10222 /* Declare the variable static so its array descriptor stays present
10223 after leaving the scope. It may still be accessed through another
10224 image. This may happen, for example, with the caf_mpi
10225 implementation. */
10226 TREE_STATIC (descriptor) = 1;
10227 tmp = gfc_conv_descriptor_token (descriptor);
10228 gfc_add_modify (&init, tmp, fold_convert (TREE_TYPE (tmp),
10229 null_pointer_node));
10230 }
10231 }
10232
10233 gfc_restore_backend_locus (&loc);
10234 gfc_init_block (&cleanup);
10235
10236 /* Allocatable arrays need to be freed when they go out of scope.
10237 The allocatable components of pointers must not be touched. */
10238 if (!sym->attr.allocatable && has_finalizer && sym->ts.type != BT_CLASS
10239 && !sym->attr.pointer && !sym->attr.artificial && !sym->attr.save
10240 && !sym->ns->proc_name->attr.is_main_program)
10241 {
10242 gfc_expr *e;
10243 sym->attr.referenced = 1;
10244 e = gfc_lval_expr_from_sym (sym);
10245 gfc_add_finalizer_call (&cleanup, e);
10246 gfc_free_expr (e);
10247 }
10248 else if ((!sym->attr.allocatable || !has_finalizer)
10249 && sym_has_alloc_comp && !(sym->attr.function || sym->attr.result)
10250 && !sym->attr.pointer && !sym->attr.save
10251 && !sym->ns->proc_name->attr.is_main_program)
10252 {
10253 int rank;
10254 rank = sym->as ? sym->as->rank : 0;
10255 tmp = gfc_deallocate_alloc_comp (sym->ts.u.derived, descriptor, rank);
10256 gfc_add_expr_to_block (&cleanup, tmp);
10257 }
10258
10259 if (sym->attr.allocatable && (sym->attr.dimension || sym->attr.codimension)
10260 && !sym->attr.save && !sym->attr.result
10261 && !sym->ns->proc_name->attr.is_main_program)
10262 {
10263 gfc_expr *e;
10264 e = has_finalizer ? gfc_lval_expr_from_sym (sym) : NULL;
10265 tmp = gfc_deallocate_with_status (sym->backend_decl, NULL_TREE, NULL_TREE,
10266 NULL_TREE, NULL_TREE, true, e,
10267 sym->attr.codimension
10268 ? GFC_CAF_COARRAY_DEREGISTER
10269 : GFC_CAF_COARRAY_NOCOARRAY);
10270 if (e)
10271 gfc_free_expr (e);
10272 gfc_add_expr_to_block (&cleanup, tmp);
10273 }
10274
10275 gfc_add_init_cleanup (block, gfc_finish_block (&init),
10276 gfc_finish_block (&cleanup));
10277 }
10278
10279 /************ Expression Walking Functions ******************/
10280
10281 /* Walk a variable reference.
10282
10283 Possible extension - multiple component subscripts.
10284 x(:,:) = foo%a(:)%b(:)
10285 Transforms to
10286 forall (i=..., j=...)
10287 x(i,j) = foo%a(j)%b(i)
10288 end forall
10289 This adds a fair amount of complexity because you need to deal with more
10290 than one ref. Maybe handle in a similar manner to vector subscripts.
10291 Maybe not worth the effort. */
10292
10293
10294 static gfc_ss *
10295 gfc_walk_variable_expr (gfc_ss * ss, gfc_expr * expr)
10296 {
10297 gfc_ref *ref;
10298
10299 for (ref = expr->ref; ref; ref = ref->next)
10300 if (ref->type == REF_ARRAY && ref->u.ar.type != AR_ELEMENT)
10301 break;
10302
10303 return gfc_walk_array_ref (ss, expr, ref);
10304 }
10305
10306
10307 gfc_ss *
10308 gfc_walk_array_ref (gfc_ss * ss, gfc_expr * expr, gfc_ref * ref)
10309 {
10310 gfc_array_ref *ar;
10311 gfc_ss *newss;
10312 int n;
10313
10314 for (; ref; ref = ref->next)
10315 {
10316 if (ref->type == REF_SUBSTRING)
10317 {
10318 ss = gfc_get_scalar_ss (ss, ref->u.ss.start);
10319 ss = gfc_get_scalar_ss (ss, ref->u.ss.end);
10320 }
10321
10322 /* We're only interested in array sections from now on. */
10323 if (ref->type != REF_ARRAY)
10324 continue;
10325
10326 ar = &ref->u.ar;
10327
10328 switch (ar->type)
10329 {
10330 case AR_ELEMENT:
10331 for (n = ar->dimen - 1; n >= 0; n--)
10332 ss = gfc_get_scalar_ss (ss, ar->start[n]);
10333 break;
10334
10335 case AR_FULL:
10336 newss = gfc_get_array_ss (ss, expr, ar->as->rank, GFC_SS_SECTION);
10337 newss->info->data.array.ref = ref;
10338
10339 /* Make sure array is the same as array(:,:), this way
10340 we don't need to special case all the time. */
10341 ar->dimen = ar->as->rank;
10342 for (n = 0; n < ar->dimen; n++)
10343 {
10344 ar->dimen_type[n] = DIMEN_RANGE;
10345
10346 gcc_assert (ar->start[n] == NULL);
10347 gcc_assert (ar->end[n] == NULL);
10348 gcc_assert (ar->stride[n] == NULL);
10349 }
10350 ss = newss;
10351 break;
10352
10353 case AR_SECTION:
10354 newss = gfc_get_array_ss (ss, expr, 0, GFC_SS_SECTION);
10355 newss->info->data.array.ref = ref;
10356
10357 /* We add SS chains for all the subscripts in the section. */
10358 for (n = 0; n < ar->dimen; n++)
10359 {
10360 gfc_ss *indexss;
10361
10362 switch (ar->dimen_type[n])
10363 {
10364 case DIMEN_ELEMENT:
10365 /* Add SS for elemental (scalar) subscripts. */
10366 gcc_assert (ar->start[n]);
10367 indexss = gfc_get_scalar_ss (gfc_ss_terminator, ar->start[n]);
10368 indexss->loop_chain = gfc_ss_terminator;
10369 newss->info->data.array.subscript[n] = indexss;
10370 break;
10371
10372 case DIMEN_RANGE:
10373 /* We don't add anything for sections, just remember this
10374 dimension for later. */
10375 newss->dim[newss->dimen] = n;
10376 newss->dimen++;
10377 break;
10378
10379 case DIMEN_VECTOR:
10380 /* Create a GFC_SS_VECTOR index in which we can store
10381 the vector's descriptor. */
10382 indexss = gfc_get_array_ss (gfc_ss_terminator, ar->start[n],
10383 1, GFC_SS_VECTOR);
10384 indexss->loop_chain = gfc_ss_terminator;
10385 newss->info->data.array.subscript[n] = indexss;
10386 newss->dim[newss->dimen] = n;
10387 newss->dimen++;
10388 break;
10389
10390 default:
10391 /* We should know what sort of section it is by now. */
10392 gcc_unreachable ();
10393 }
10394 }
10395 /* We should have at least one non-elemental dimension,
10396 unless we are creating a descriptor for a (scalar) coarray. */
10397 gcc_assert (newss->dimen > 0
10398 || newss->info->data.array.ref->u.ar.as->corank > 0);
10399 ss = newss;
10400 break;
10401
10402 default:
10403 /* We should know what sort of section it is by now. */
10404 gcc_unreachable ();
10405 }
10406
10407 }
10408 return ss;
10409 }
10410
10411
10412 /* Walk an expression operator. If only one operand of a binary expression is
10413 scalar, we must also add the scalar term to the SS chain. */
10414
10415 static gfc_ss *
10416 gfc_walk_op_expr (gfc_ss * ss, gfc_expr * expr)
10417 {
10418 gfc_ss *head;
10419 gfc_ss *head2;
10420
10421 head = gfc_walk_subexpr (ss, expr->value.op.op1);
10422 if (expr->value.op.op2 == NULL)
10423 head2 = head;
10424 else
10425 head2 = gfc_walk_subexpr (head, expr->value.op.op2);
10426
10427 /* All operands are scalar. Pass back and let the caller deal with it. */
10428 if (head2 == ss)
10429 return head2;
10430
10431 /* All operands require scalarization. */
10432 if (head != ss && (expr->value.op.op2 == NULL || head2 != head))
10433 return head2;
10434
10435 /* One of the operands needs scalarization, the other is scalar.
10436 Create a gfc_ss for the scalar expression. */
10437 if (head == ss)
10438 {
10439 /* First operand is scalar. We build the chain in reverse order, so
10440 add the scalar SS after the second operand. */
10441 head = head2;
10442 while (head && head->next != ss)
10443 head = head->next;
10444 /* Check we haven't somehow broken the chain. */
10445 gcc_assert (head);
10446 head->next = gfc_get_scalar_ss (ss, expr->value.op.op1);
10447 }
10448 else /* head2 == head */
10449 {
10450 gcc_assert (head2 == head);
10451 /* Second operand is scalar. */
10452 head2 = gfc_get_scalar_ss (head2, expr->value.op.op2);
10453 }
10454
10455 return head2;
10456 }
10457
10458
10459 /* Reverse a SS chain. */
10460
10461 gfc_ss *
10462 gfc_reverse_ss (gfc_ss * ss)
10463 {
10464 gfc_ss *next;
10465 gfc_ss *head;
10466
10467 gcc_assert (ss != NULL);
10468
10469 head = gfc_ss_terminator;
10470 while (ss != gfc_ss_terminator)
10471 {
10472 next = ss->next;
10473 /* Check we didn't somehow break the chain. */
10474 gcc_assert (next != NULL);
10475 ss->next = head;
10476 head = ss;
10477 ss = next;
10478 }
10479
10480 return (head);
10481 }
10482
10483
10484 /* Given an expression referring to a procedure, return the symbol of its
10485 interface. We can't get the procedure symbol directly as we have to handle
10486 the case of (deferred) type-bound procedures. */
10487
10488 gfc_symbol *
10489 gfc_get_proc_ifc_for_expr (gfc_expr *procedure_ref)
10490 {
10491 gfc_symbol *sym;
10492 gfc_ref *ref;
10493
10494 if (procedure_ref == NULL)
10495 return NULL;
10496
10497 /* Normal procedure case. */
10498 if (procedure_ref->expr_type == EXPR_FUNCTION
10499 && procedure_ref->value.function.esym)
10500 sym = procedure_ref->value.function.esym;
10501 else
10502 sym = procedure_ref->symtree->n.sym;
10503
10504 /* Typebound procedure case. */
10505 for (ref = procedure_ref->ref; ref; ref = ref->next)
10506 {
10507 if (ref->type == REF_COMPONENT
10508 && ref->u.c.component->attr.proc_pointer)
10509 sym = ref->u.c.component->ts.interface;
10510 else
10511 sym = NULL;
10512 }
10513
10514 return sym;
10515 }
10516
10517
10518 /* Walk the arguments of an elemental function.
10519 PROC_EXPR is used to check whether an argument is permitted to be absent. If
10520 it is NULL, we don't do the check and the argument is assumed to be present.
10521 */
10522
10523 gfc_ss *
10524 gfc_walk_elemental_function_args (gfc_ss * ss, gfc_actual_arglist *arg,
10525 gfc_symbol *proc_ifc, gfc_ss_type type)
10526 {
10527 gfc_formal_arglist *dummy_arg;
10528 int scalar;
10529 gfc_ss *head;
10530 gfc_ss *tail;
10531 gfc_ss *newss;
10532
10533 head = gfc_ss_terminator;
10534 tail = NULL;
10535
10536 if (proc_ifc)
10537 dummy_arg = gfc_sym_get_dummy_args (proc_ifc);
10538 else
10539 dummy_arg = NULL;
10540
10541 scalar = 1;
10542 for (; arg; arg = arg->next)
10543 {
10544 if (!arg->expr || arg->expr->expr_type == EXPR_NULL)
10545 goto loop_continue;
10546
10547 newss = gfc_walk_subexpr (head, arg->expr);
10548 if (newss == head)
10549 {
10550 /* Scalar argument. */
10551 gcc_assert (type == GFC_SS_SCALAR || type == GFC_SS_REFERENCE);
10552 newss = gfc_get_scalar_ss (head, arg->expr);
10553 newss->info->type = type;
10554 if (dummy_arg)
10555 newss->info->data.scalar.dummy_arg = dummy_arg->sym;
10556 }
10557 else
10558 scalar = 0;
10559
10560 if (dummy_arg != NULL
10561 && dummy_arg->sym->attr.optional
10562 && arg->expr->expr_type == EXPR_VARIABLE
10563 && (gfc_expr_attr (arg->expr).optional
10564 || gfc_expr_attr (arg->expr).allocatable
10565 || gfc_expr_attr (arg->expr).pointer))
10566 newss->info->can_be_null_ref = true;
10567
10568 head = newss;
10569 if (!tail)
10570 {
10571 tail = head;
10572 while (tail->next != gfc_ss_terminator)
10573 tail = tail->next;
10574 }
10575
10576 loop_continue:
10577 if (dummy_arg != NULL)
10578 dummy_arg = dummy_arg->next;
10579 }
10580
10581 if (scalar)
10582 {
10583 /* If all the arguments are scalar we don't need the argument SS. */
10584 gfc_free_ss_chain (head);
10585 /* Pass it back. */
10586 return ss;
10587 }
10588
10589 /* Add it onto the existing chain. */
10590 tail->next = ss;
10591 return head;
10592 }
10593
10594
10595 /* Walk a function call. Scalar functions are passed back, and taken out of
10596 scalarization loops. For elemental functions we walk their arguments.
10597 The result of functions returning arrays is stored in a temporary outside
10598 the loop, so that the function is only called once. Hence we do not need
10599 to walk their arguments. */
10600
10601 static gfc_ss *
10602 gfc_walk_function_expr (gfc_ss * ss, gfc_expr * expr)
10603 {
10604 gfc_intrinsic_sym *isym;
10605 gfc_symbol *sym;
10606 gfc_component *comp = NULL;
10607
10608 isym = expr->value.function.isym;
10609
10610 /* Handle intrinsic functions separately. */
10611 if (isym)
10612 return gfc_walk_intrinsic_function (ss, expr, isym);
10613
10614 sym = expr->value.function.esym;
10615 if (!sym)
10616 sym = expr->symtree->n.sym;
10617
10618 if (gfc_is_class_array_function (expr))
10619 return gfc_get_array_ss (ss, expr,
10620 CLASS_DATA (expr->value.function.esym->result)->as->rank,
10621 GFC_SS_FUNCTION);
10622
10623 /* A function that returns arrays. */
10624 comp = gfc_get_proc_ptr_comp (expr);
10625 if ((!comp && gfc_return_by_reference (sym) && sym->result->attr.dimension)
10626 || (comp && comp->attr.dimension))
10627 return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_FUNCTION);
10628
10629 /* Walk the parameters of an elemental function. For now we always pass
10630 by reference. */
10631 if (sym->attr.elemental || (comp && comp->attr.elemental))
10632 {
10633 gfc_ss *old_ss = ss;
10634
10635 ss = gfc_walk_elemental_function_args (old_ss,
10636 expr->value.function.actual,
10637 gfc_get_proc_ifc_for_expr (expr),
10638 GFC_SS_REFERENCE);
10639 if (ss != old_ss
10640 && (comp
10641 || sym->attr.proc_pointer
10642 || sym->attr.if_source != IFSRC_DECL
10643 || sym->attr.array_outer_dependency))
10644 ss->info->array_outer_dependency = 1;
10645 }
10646
10647 /* Scalar functions are OK as these are evaluated outside the scalarization
10648 loop. Pass back and let the caller deal with it. */
10649 return ss;
10650 }
10651
10652
10653 /* An array temporary is constructed for array constructors. */
10654
10655 static gfc_ss *
10656 gfc_walk_array_constructor (gfc_ss * ss, gfc_expr * expr)
10657 {
10658 return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_CONSTRUCTOR);
10659 }
10660
10661
10662 /* Walk an expression. Add walked expressions to the head of the SS chain.
10663 A wholly scalar expression will not be added. */
10664
10665 gfc_ss *
10666 gfc_walk_subexpr (gfc_ss * ss, gfc_expr * expr)
10667 {
10668 gfc_ss *head;
10669
10670 switch (expr->expr_type)
10671 {
10672 case EXPR_VARIABLE:
10673 head = gfc_walk_variable_expr (ss, expr);
10674 return head;
10675
10676 case EXPR_OP:
10677 head = gfc_walk_op_expr (ss, expr);
10678 return head;
10679
10680 case EXPR_FUNCTION:
10681 head = gfc_walk_function_expr (ss, expr);
10682 return head;
10683
10684 case EXPR_CONSTANT:
10685 case EXPR_NULL:
10686 case EXPR_STRUCTURE:
10687 /* Pass back and let the caller deal with it. */
10688 break;
10689
10690 case EXPR_ARRAY:
10691 head = gfc_walk_array_constructor (ss, expr);
10692 return head;
10693
10694 case EXPR_SUBSTRING:
10695 /* Pass back and let the caller deal with it. */
10696 break;
10697
10698 default:
10699 gfc_internal_error ("bad expression type during walk (%d)",
10700 expr->expr_type);
10701 }
10702 return ss;
10703 }
10704
10705
10706 /* Entry point for expression walking.
10707 A return value equal to the passed chain means this is
10708 a scalar expression. It is up to the caller to take whatever action is
10709 necessary to translate these. */
10710
10711 gfc_ss *
10712 gfc_walk_expr (gfc_expr * expr)
10713 {
10714 gfc_ss *res;
10715
10716 res = gfc_walk_subexpr (gfc_ss_terminator, expr);
10717 return gfc_reverse_ss (res);
10718 }