]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-types.c
d794c2fb66892490b42bc94829f7f613facc010e
[thirdparty/gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010
4 Free Software Foundation, Inc.
5 Contributed by Paul Brook <paul@nowt.org>
6 and Steven Bosscher <s.bosscher@student.tudelft.nl>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* trans-types.c -- gfortran backend types */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tree.h"
30 #include "langhooks.h" /* For iso-c-bindings.def. */
31 #include "target.h"
32 #include "ggc.h"
33 #include "toplev.h" /* For rest_of_decl_compilation/fatal_error. */
34 #include "gfortran.h"
35 #include "trans.h"
36 #include "trans-types.h"
37 #include "trans-const.h"
38 #include "flags.h"
39 #include "dwarf2out.h" /* For struct array_descr_info. */
40 \f
41
42 #if (GFC_MAX_DIMENSIONS < 10)
43 #define GFC_RANK_DIGITS 1
44 #define GFC_RANK_PRINTF_FORMAT "%01d"
45 #elif (GFC_MAX_DIMENSIONS < 100)
46 #define GFC_RANK_DIGITS 2
47 #define GFC_RANK_PRINTF_FORMAT "%02d"
48 #else
49 #error If you really need >99 dimensions, continue the sequence above...
50 #endif
51
52 /* array of structs so we don't have to worry about xmalloc or free */
53 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
54
55 tree gfc_array_index_type;
56 tree gfc_array_range_type;
57 tree gfc_character1_type_node;
58 tree pvoid_type_node;
59 tree prvoid_type_node;
60 tree ppvoid_type_node;
61 tree pchar_type_node;
62 tree pfunc_type_node;
63
64 tree gfc_charlen_type_node;
65
66 static GTY(()) tree gfc_desc_dim_type;
67 static GTY(()) tree gfc_max_array_element_size;
68 static GTY(()) tree gfc_array_descriptor_base[2 * GFC_MAX_DIMENSIONS];
69
70 /* Arrays for all integral and real kinds. We'll fill this in at runtime
71 after the target has a chance to process command-line options. */
72
73 #define MAX_INT_KINDS 5
74 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
75 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
76 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
77 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
78
79 #define MAX_REAL_KINDS 5
80 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
81 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
82 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
83
84 #define MAX_CHARACTER_KINDS 2
85 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
86 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
87 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
88
89
90 /* The integer kind to use for array indices. This will be set to the
91 proper value based on target information from the backend. */
92
93 int gfc_index_integer_kind;
94
95 /* The default kinds of the various types. */
96
97 int gfc_default_integer_kind;
98 int gfc_max_integer_kind;
99 int gfc_default_real_kind;
100 int gfc_default_double_kind;
101 int gfc_default_character_kind;
102 int gfc_default_logical_kind;
103 int gfc_default_complex_kind;
104 int gfc_c_int_kind;
105
106 /* The kind size used for record offsets. If the target system supports
107 kind=8, this will be set to 8, otherwise it is set to 4. */
108 int gfc_intio_kind;
109
110 /* The integer kind used to store character lengths. */
111 int gfc_charlen_int_kind;
112
113 /* The size of the numeric storage unit and character storage unit. */
114 int gfc_numeric_storage_size;
115 int gfc_character_storage_size;
116
117
118 gfc_try
119 gfc_check_any_c_kind (gfc_typespec *ts)
120 {
121 int i;
122
123 for (i = 0; i < ISOCBINDING_NUMBER; i++)
124 {
125 /* Check for any C interoperable kind for the given type/kind in ts.
126 This can be used after verify_c_interop to make sure that the
127 Fortran kind being used exists in at least some form for C. */
128 if (c_interop_kinds_table[i].f90_type == ts->type &&
129 c_interop_kinds_table[i].value == ts->kind)
130 return SUCCESS;
131 }
132
133 return FAILURE;
134 }
135
136
137 static int
138 get_real_kind_from_node (tree type)
139 {
140 int i;
141
142 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
143 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
144 return gfc_real_kinds[i].kind;
145
146 return -4;
147 }
148
149 static int
150 get_int_kind_from_node (tree type)
151 {
152 int i;
153
154 if (!type)
155 return -2;
156
157 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
158 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
159 return gfc_integer_kinds[i].kind;
160
161 return -1;
162 }
163
164 /* Return a typenode for the "standard" C type with a given name. */
165 static tree
166 get_typenode_from_name (const char *name)
167 {
168 if (name == NULL || *name == '\0')
169 return NULL_TREE;
170
171 if (strcmp (name, "char") == 0)
172 return char_type_node;
173 if (strcmp (name, "unsigned char") == 0)
174 return unsigned_char_type_node;
175 if (strcmp (name, "signed char") == 0)
176 return signed_char_type_node;
177
178 if (strcmp (name, "short int") == 0)
179 return short_integer_type_node;
180 if (strcmp (name, "short unsigned int") == 0)
181 return short_unsigned_type_node;
182
183 if (strcmp (name, "int") == 0)
184 return integer_type_node;
185 if (strcmp (name, "unsigned int") == 0)
186 return unsigned_type_node;
187
188 if (strcmp (name, "long int") == 0)
189 return long_integer_type_node;
190 if (strcmp (name, "long unsigned int") == 0)
191 return long_unsigned_type_node;
192
193 if (strcmp (name, "long long int") == 0)
194 return long_long_integer_type_node;
195 if (strcmp (name, "long long unsigned int") == 0)
196 return long_long_unsigned_type_node;
197
198 gcc_unreachable ();
199 }
200
201 static int
202 get_int_kind_from_name (const char *name)
203 {
204 return get_int_kind_from_node (get_typenode_from_name (name));
205 }
206
207
208 /* Get the kind number corresponding to an integer of given size,
209 following the required return values for ISO_FORTRAN_ENV INT* constants:
210 -2 is returned if we support a kind of larger size, -1 otherwise. */
211 int
212 gfc_get_int_kind_from_width_isofortranenv (int size)
213 {
214 int i;
215
216 /* Look for a kind with matching storage size. */
217 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
218 if (gfc_integer_kinds[i].bit_size == size)
219 return gfc_integer_kinds[i].kind;
220
221 /* Look for a kind with larger storage size. */
222 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
223 if (gfc_integer_kinds[i].bit_size > size)
224 return -2;
225
226 return -1;
227 }
228
229 /* Get the kind number corresponding to a real of given storage size,
230 following the required return values for ISO_FORTRAN_ENV REAL* constants:
231 -2 is returned if we support a kind of larger size, -1 otherwise. */
232 int
233 gfc_get_real_kind_from_width_isofortranenv (int size)
234 {
235 int i;
236
237 size /= 8;
238
239 /* Look for a kind with matching storage size. */
240 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
241 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
242 return gfc_real_kinds[i].kind;
243
244 /* Look for a kind with larger storage size. */
245 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
246 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
247 return -2;
248
249 return -1;
250 }
251
252
253
254 static int
255 get_int_kind_from_width (int size)
256 {
257 int i;
258
259 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
260 if (gfc_integer_kinds[i].bit_size == size)
261 return gfc_integer_kinds[i].kind;
262
263 return -2;
264 }
265
266 static int
267 get_int_kind_from_minimal_width (int size)
268 {
269 int i;
270
271 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
272 if (gfc_integer_kinds[i].bit_size >= size)
273 return gfc_integer_kinds[i].kind;
274
275 return -2;
276 }
277
278
279 /* Generate the CInteropKind_t objects for the C interoperable
280 kinds. */
281
282 static
283 void init_c_interop_kinds (void)
284 {
285 int i;
286
287 /* init all pointers in the list to NULL */
288 for (i = 0; i < ISOCBINDING_NUMBER; i++)
289 {
290 /* Initialize the name and value fields. */
291 c_interop_kinds_table[i].name[0] = '\0';
292 c_interop_kinds_table[i].value = -100;
293 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
294 }
295
296 #define NAMED_INTCST(a,b,c,d) \
297 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
298 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
299 c_interop_kinds_table[a].value = c;
300 #define NAMED_REALCST(a,b,c) \
301 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
302 c_interop_kinds_table[a].f90_type = BT_REAL; \
303 c_interop_kinds_table[a].value = c;
304 #define NAMED_CMPXCST(a,b,c) \
305 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
306 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
307 c_interop_kinds_table[a].value = c;
308 #define NAMED_LOGCST(a,b,c) \
309 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
310 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
311 c_interop_kinds_table[a].value = c;
312 #define NAMED_CHARKNDCST(a,b,c) \
313 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
314 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
315 c_interop_kinds_table[a].value = c;
316 #define NAMED_CHARCST(a,b,c) \
317 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
318 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
319 c_interop_kinds_table[a].value = c;
320 #define DERIVED_TYPE(a,b,c) \
321 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
322 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
323 c_interop_kinds_table[a].value = c;
324 #define PROCEDURE(a,b) \
325 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
326 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
327 c_interop_kinds_table[a].value = 0;
328 #include "iso-c-binding.def"
329 }
330
331
332 /* Query the target to determine which machine modes are available for
333 computation. Choose KIND numbers for them. */
334
335 void
336 gfc_init_kinds (void)
337 {
338 unsigned int mode;
339 int i_index, r_index, kind;
340 bool saw_i4 = false, saw_i8 = false;
341 bool saw_r4 = false, saw_r8 = false, saw_r16 = false;
342
343 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
344 {
345 int kind, bitsize;
346
347 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
348 continue;
349
350 /* The middle end doesn't support constants larger than 2*HWI.
351 Perhaps the target hook shouldn't have accepted these either,
352 but just to be safe... */
353 bitsize = GET_MODE_BITSIZE (mode);
354 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
355 continue;
356
357 gcc_assert (i_index != MAX_INT_KINDS);
358
359 /* Let the kind equal the bit size divided by 8. This insulates the
360 programmer from the underlying byte size. */
361 kind = bitsize / 8;
362
363 if (kind == 4)
364 saw_i4 = true;
365 if (kind == 8)
366 saw_i8 = true;
367
368 gfc_integer_kinds[i_index].kind = kind;
369 gfc_integer_kinds[i_index].radix = 2;
370 gfc_integer_kinds[i_index].digits = bitsize - 1;
371 gfc_integer_kinds[i_index].bit_size = bitsize;
372
373 gfc_logical_kinds[i_index].kind = kind;
374 gfc_logical_kinds[i_index].bit_size = bitsize;
375
376 i_index += 1;
377 }
378
379 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
380 used for large file access. */
381
382 if (saw_i8)
383 gfc_intio_kind = 8;
384 else
385 gfc_intio_kind = 4;
386
387 /* If we do not at least have kind = 4, everything is pointless. */
388 gcc_assert(saw_i4);
389
390 /* Set the maximum integer kind. Used with at least BOZ constants. */
391 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
392
393 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
394 {
395 const struct real_format *fmt =
396 REAL_MODE_FORMAT ((enum machine_mode) mode);
397 int kind;
398
399 if (fmt == NULL)
400 continue;
401 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
402 continue;
403
404 /* Only let float/double/long double go through because the fortran
405 library assumes these are the only floating point types. */
406
407 if (mode != TYPE_MODE (float_type_node)
408 && (mode != TYPE_MODE (double_type_node))
409 && (mode != TYPE_MODE (long_double_type_node)))
410 continue;
411
412 /* Let the kind equal the precision divided by 8, rounding up. Again,
413 this insulates the programmer from the underlying byte size.
414
415 Also, it effectively deals with IEEE extended formats. There, the
416 total size of the type may equal 16, but it's got 6 bytes of padding
417 and the increased size can get in the way of a real IEEE quad format
418 which may also be supported by the target.
419
420 We round up so as to handle IA-64 __floatreg (RFmode), which is an
421 82 bit type. Not to be confused with __float80 (XFmode), which is
422 an 80 bit type also supported by IA-64. So XFmode should come out
423 to be kind=10, and RFmode should come out to be kind=11. Egads. */
424
425 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
426
427 if (kind == 4)
428 saw_r4 = true;
429 if (kind == 8)
430 saw_r8 = true;
431 if (kind == 16)
432 saw_r16 = true;
433
434 /* Careful we don't stumble a weird internal mode. */
435 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
436 /* Or have too many modes for the allocated space. */
437 gcc_assert (r_index != MAX_REAL_KINDS);
438
439 gfc_real_kinds[r_index].kind = kind;
440 gfc_real_kinds[r_index].radix = fmt->b;
441 gfc_real_kinds[r_index].digits = fmt->p;
442 gfc_real_kinds[r_index].min_exponent = fmt->emin;
443 gfc_real_kinds[r_index].max_exponent = fmt->emax;
444 if (fmt->pnan < fmt->p)
445 /* This is an IBM extended double format (or the MIPS variant)
446 made up of two IEEE doubles. The value of the long double is
447 the sum of the values of the two parts. The most significant
448 part is required to be the value of the long double rounded
449 to the nearest double. If we use emax of 1024 then we can't
450 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
451 rounding will make the most significant part overflow. */
452 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
453 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
454 r_index += 1;
455 }
456
457 /* Choose the default integer kind. We choose 4 unless the user
458 directs us otherwise. */
459 if (gfc_option.flag_default_integer)
460 {
461 if (!saw_i8)
462 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
463 gfc_default_integer_kind = 8;
464
465 /* Even if the user specified that the default integer kind be 8,
466 the numeric storage size isn't 64. In this case, a warning will
467 be issued when NUMERIC_STORAGE_SIZE is used. */
468 gfc_numeric_storage_size = 4 * 8;
469 }
470 else if (saw_i4)
471 {
472 gfc_default_integer_kind = 4;
473 gfc_numeric_storage_size = 4 * 8;
474 }
475 else
476 {
477 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
478 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
479 }
480
481 /* Choose the default real kind. Again, we choose 4 when possible. */
482 if (gfc_option.flag_default_real)
483 {
484 if (!saw_r8)
485 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
486 gfc_default_real_kind = 8;
487 }
488 else if (saw_r4)
489 gfc_default_real_kind = 4;
490 else
491 gfc_default_real_kind = gfc_real_kinds[0].kind;
492
493 /* Choose the default double kind. If -fdefault-real and -fdefault-double
494 are specified, we use kind=8, if it's available. If -fdefault-real is
495 specified without -fdefault-double, we use kind=16, if it's available.
496 Otherwise we do not change anything. */
497 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
498 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
499
500 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
501 gfc_default_double_kind = 8;
502 else if (gfc_option.flag_default_real && saw_r16)
503 gfc_default_double_kind = 16;
504 else if (saw_r4 && saw_r8)
505 gfc_default_double_kind = 8;
506 else
507 {
508 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
509 real ... occupies two contiguous numeric storage units.
510
511 Therefore we must be supplied a kind twice as large as we chose
512 for single precision. There are loopholes, in that double
513 precision must *occupy* two storage units, though it doesn't have
514 to *use* two storage units. Which means that you can make this
515 kind artificially wide by padding it. But at present there are
516 no GCC targets for which a two-word type does not exist, so we
517 just let gfc_validate_kind abort and tell us if something breaks. */
518
519 gfc_default_double_kind
520 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
521 }
522
523 /* The default logical kind is constrained to be the same as the
524 default integer kind. Similarly with complex and real. */
525 gfc_default_logical_kind = gfc_default_integer_kind;
526 gfc_default_complex_kind = gfc_default_real_kind;
527
528 /* We only have two character kinds: ASCII and UCS-4.
529 ASCII corresponds to a 8-bit integer type, if one is available.
530 UCS-4 corresponds to a 32-bit integer type, if one is available. */
531 i_index = 0;
532 if ((kind = get_int_kind_from_width (8)) > 0)
533 {
534 gfc_character_kinds[i_index].kind = kind;
535 gfc_character_kinds[i_index].bit_size = 8;
536 gfc_character_kinds[i_index].name = "ascii";
537 i_index++;
538 }
539 if ((kind = get_int_kind_from_width (32)) > 0)
540 {
541 gfc_character_kinds[i_index].kind = kind;
542 gfc_character_kinds[i_index].bit_size = 32;
543 gfc_character_kinds[i_index].name = "iso_10646";
544 i_index++;
545 }
546
547 /* Choose the smallest integer kind for our default character. */
548 gfc_default_character_kind = gfc_character_kinds[0].kind;
549 gfc_character_storage_size = gfc_default_character_kind * 8;
550
551 /* Choose the integer kind the same size as "void*" for our index kind. */
552 gfc_index_integer_kind = POINTER_SIZE / 8;
553 /* Pick a kind the same size as the C "int" type. */
554 gfc_c_int_kind = INT_TYPE_SIZE / 8;
555
556 /* initialize the C interoperable kinds */
557 init_c_interop_kinds();
558 }
559
560 /* Make sure that a valid kind is present. Returns an index into the
561 associated kinds array, -1 if the kind is not present. */
562
563 static int
564 validate_integer (int kind)
565 {
566 int i;
567
568 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
569 if (gfc_integer_kinds[i].kind == kind)
570 return i;
571
572 return -1;
573 }
574
575 static int
576 validate_real (int kind)
577 {
578 int i;
579
580 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
581 if (gfc_real_kinds[i].kind == kind)
582 return i;
583
584 return -1;
585 }
586
587 static int
588 validate_logical (int kind)
589 {
590 int i;
591
592 for (i = 0; gfc_logical_kinds[i].kind; i++)
593 if (gfc_logical_kinds[i].kind == kind)
594 return i;
595
596 return -1;
597 }
598
599 static int
600 validate_character (int kind)
601 {
602 int i;
603
604 for (i = 0; gfc_character_kinds[i].kind; i++)
605 if (gfc_character_kinds[i].kind == kind)
606 return i;
607
608 return -1;
609 }
610
611 /* Validate a kind given a basic type. The return value is the same
612 for the child functions, with -1 indicating nonexistence of the
613 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
614
615 int
616 gfc_validate_kind (bt type, int kind, bool may_fail)
617 {
618 int rc;
619
620 switch (type)
621 {
622 case BT_REAL: /* Fall through */
623 case BT_COMPLEX:
624 rc = validate_real (kind);
625 break;
626 case BT_INTEGER:
627 rc = validate_integer (kind);
628 break;
629 case BT_LOGICAL:
630 rc = validate_logical (kind);
631 break;
632 case BT_CHARACTER:
633 rc = validate_character (kind);
634 break;
635
636 default:
637 gfc_internal_error ("gfc_validate_kind(): Got bad type");
638 }
639
640 if (rc < 0 && !may_fail)
641 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
642
643 return rc;
644 }
645
646
647 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
648 Reuse common type nodes where possible. Recognize if the kind matches up
649 with a C type. This will be used later in determining which routines may
650 be scarfed from libm. */
651
652 static tree
653 gfc_build_int_type (gfc_integer_info *info)
654 {
655 int mode_precision = info->bit_size;
656
657 if (mode_precision == CHAR_TYPE_SIZE)
658 info->c_char = 1;
659 if (mode_precision == SHORT_TYPE_SIZE)
660 info->c_short = 1;
661 if (mode_precision == INT_TYPE_SIZE)
662 info->c_int = 1;
663 if (mode_precision == LONG_TYPE_SIZE)
664 info->c_long = 1;
665 if (mode_precision == LONG_LONG_TYPE_SIZE)
666 info->c_long_long = 1;
667
668 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
669 return intQI_type_node;
670 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
671 return intHI_type_node;
672 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
673 return intSI_type_node;
674 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
675 return intDI_type_node;
676 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
677 return intTI_type_node;
678
679 return make_signed_type (mode_precision);
680 }
681
682 tree
683 gfc_build_uint_type (int size)
684 {
685 if (size == CHAR_TYPE_SIZE)
686 return unsigned_char_type_node;
687 if (size == SHORT_TYPE_SIZE)
688 return short_unsigned_type_node;
689 if (size == INT_TYPE_SIZE)
690 return unsigned_type_node;
691 if (size == LONG_TYPE_SIZE)
692 return long_unsigned_type_node;
693 if (size == LONG_LONG_TYPE_SIZE)
694 return long_long_unsigned_type_node;
695
696 return make_unsigned_type (size);
697 }
698
699
700 static tree
701 gfc_build_real_type (gfc_real_info *info)
702 {
703 int mode_precision = info->mode_precision;
704 tree new_type;
705
706 if (mode_precision == FLOAT_TYPE_SIZE)
707 info->c_float = 1;
708 if (mode_precision == DOUBLE_TYPE_SIZE)
709 info->c_double = 1;
710 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
711 info->c_long_double = 1;
712
713 if (TYPE_PRECISION (float_type_node) == mode_precision)
714 return float_type_node;
715 if (TYPE_PRECISION (double_type_node) == mode_precision)
716 return double_type_node;
717 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
718 return long_double_type_node;
719
720 new_type = make_node (REAL_TYPE);
721 TYPE_PRECISION (new_type) = mode_precision;
722 layout_type (new_type);
723 return new_type;
724 }
725
726 static tree
727 gfc_build_complex_type (tree scalar_type)
728 {
729 tree new_type;
730
731 if (scalar_type == NULL)
732 return NULL;
733 if (scalar_type == float_type_node)
734 return complex_float_type_node;
735 if (scalar_type == double_type_node)
736 return complex_double_type_node;
737 if (scalar_type == long_double_type_node)
738 return complex_long_double_type_node;
739
740 new_type = make_node (COMPLEX_TYPE);
741 TREE_TYPE (new_type) = scalar_type;
742 layout_type (new_type);
743 return new_type;
744 }
745
746 static tree
747 gfc_build_logical_type (gfc_logical_info *info)
748 {
749 int bit_size = info->bit_size;
750 tree new_type;
751
752 if (bit_size == BOOL_TYPE_SIZE)
753 {
754 info->c_bool = 1;
755 return boolean_type_node;
756 }
757
758 new_type = make_unsigned_type (bit_size);
759 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
760 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
761 TYPE_PRECISION (new_type) = 1;
762
763 return new_type;
764 }
765
766
767 #if 0
768 /* Return the bit size of the C "size_t". */
769
770 static unsigned int
771 c_size_t_size (void)
772 {
773 #ifdef SIZE_TYPE
774 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
775 return INT_TYPE_SIZE;
776 if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
777 return LONG_TYPE_SIZE;
778 if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
779 return SHORT_TYPE_SIZE;
780 gcc_unreachable ();
781 #else
782 return LONG_TYPE_SIZE;
783 #endif
784 }
785 #endif
786
787 /* Create the backend type nodes. We map them to their
788 equivalent C type, at least for now. We also give
789 names to the types here, and we push them in the
790 global binding level context.*/
791
792 void
793 gfc_init_types (void)
794 {
795 char name_buf[18];
796 int index;
797 tree type;
798 unsigned n;
799 unsigned HOST_WIDE_INT hi;
800 unsigned HOST_WIDE_INT lo;
801
802 /* Create and name the types. */
803 #define PUSH_TYPE(name, node) \
804 pushdecl (build_decl (input_location, \
805 TYPE_DECL, get_identifier (name), node))
806
807 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
808 {
809 type = gfc_build_int_type (&gfc_integer_kinds[index]);
810 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
811 if (TYPE_STRING_FLAG (type))
812 type = make_signed_type (gfc_integer_kinds[index].bit_size);
813 gfc_integer_types[index] = type;
814 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
815 gfc_integer_kinds[index].kind);
816 PUSH_TYPE (name_buf, type);
817 }
818
819 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
820 {
821 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
822 gfc_logical_types[index] = type;
823 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
824 gfc_logical_kinds[index].kind);
825 PUSH_TYPE (name_buf, type);
826 }
827
828 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
829 {
830 type = gfc_build_real_type (&gfc_real_kinds[index]);
831 gfc_real_types[index] = type;
832 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
833 gfc_real_kinds[index].kind);
834 PUSH_TYPE (name_buf, type);
835
836 type = gfc_build_complex_type (type);
837 gfc_complex_types[index] = type;
838 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
839 gfc_real_kinds[index].kind);
840 PUSH_TYPE (name_buf, type);
841 }
842
843 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
844 {
845 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
846 type = build_qualified_type (type, TYPE_UNQUALIFIED);
847 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
848 gfc_character_kinds[index].kind);
849 PUSH_TYPE (name_buf, type);
850 gfc_character_types[index] = type;
851 gfc_pcharacter_types[index] = build_pointer_type (type);
852 }
853 gfc_character1_type_node = gfc_character_types[0];
854
855 PUSH_TYPE ("byte", unsigned_char_type_node);
856 PUSH_TYPE ("void", void_type_node);
857
858 /* DBX debugging output gets upset if these aren't set. */
859 if (!TYPE_NAME (integer_type_node))
860 PUSH_TYPE ("c_integer", integer_type_node);
861 if (!TYPE_NAME (char_type_node))
862 PUSH_TYPE ("c_char", char_type_node);
863
864 #undef PUSH_TYPE
865
866 pvoid_type_node = build_pointer_type (void_type_node);
867 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
868 ppvoid_type_node = build_pointer_type (pvoid_type_node);
869 pchar_type_node = build_pointer_type (gfc_character1_type_node);
870 pfunc_type_node
871 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
872
873 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
874 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
875 since this function is called before gfc_init_constants. */
876 gfc_array_range_type
877 = build_range_type (gfc_array_index_type,
878 build_int_cst (gfc_array_index_type, 0),
879 NULL_TREE);
880
881 /* The maximum array element size that can be handled is determined
882 by the number of bits available to store this field in the array
883 descriptor. */
884
885 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
886 lo = ~ (unsigned HOST_WIDE_INT) 0;
887 if (n > HOST_BITS_PER_WIDE_INT)
888 hi = lo >> (2*HOST_BITS_PER_WIDE_INT - n);
889 else
890 hi = 0, lo >>= HOST_BITS_PER_WIDE_INT - n;
891 gfc_max_array_element_size
892 = build_int_cst_wide (long_unsigned_type_node, lo, hi);
893
894 size_type_node = gfc_array_index_type;
895
896 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
897 boolean_true_node = build_int_cst (boolean_type_node, 1);
898 boolean_false_node = build_int_cst (boolean_type_node, 0);
899
900 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
901 gfc_charlen_int_kind = 4;
902 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
903 }
904
905 /* Get the type node for the given type and kind. */
906
907 tree
908 gfc_get_int_type (int kind)
909 {
910 int index = gfc_validate_kind (BT_INTEGER, kind, true);
911 return index < 0 ? 0 : gfc_integer_types[index];
912 }
913
914 tree
915 gfc_get_real_type (int kind)
916 {
917 int index = gfc_validate_kind (BT_REAL, kind, true);
918 return index < 0 ? 0 : gfc_real_types[index];
919 }
920
921 tree
922 gfc_get_complex_type (int kind)
923 {
924 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
925 return index < 0 ? 0 : gfc_complex_types[index];
926 }
927
928 tree
929 gfc_get_logical_type (int kind)
930 {
931 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
932 return index < 0 ? 0 : gfc_logical_types[index];
933 }
934
935 tree
936 gfc_get_char_type (int kind)
937 {
938 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
939 return index < 0 ? 0 : gfc_character_types[index];
940 }
941
942 tree
943 gfc_get_pchar_type (int kind)
944 {
945 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
946 return index < 0 ? 0 : gfc_pcharacter_types[index];
947 }
948
949 \f
950 /* Create a character type with the given kind and length. */
951
952 tree
953 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
954 {
955 tree bounds, type;
956
957 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
958 type = build_array_type (eltype, bounds);
959 TYPE_STRING_FLAG (type) = 1;
960
961 return type;
962 }
963
964 tree
965 gfc_get_character_type_len (int kind, tree len)
966 {
967 gfc_validate_kind (BT_CHARACTER, kind, false);
968 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
969 }
970
971
972 /* Get a type node for a character kind. */
973
974 tree
975 gfc_get_character_type (int kind, gfc_charlen * cl)
976 {
977 tree len;
978
979 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
980
981 return gfc_get_character_type_len (kind, len);
982 }
983 \f
984 /* Covert a basic type. This will be an array for character types. */
985
986 tree
987 gfc_typenode_for_spec (gfc_typespec * spec)
988 {
989 tree basetype;
990
991 switch (spec->type)
992 {
993 case BT_UNKNOWN:
994 gcc_unreachable ();
995
996 case BT_INTEGER:
997 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
998 has been resolved. This is done so we can convert C_PTR and
999 C_FUNPTR to simple variables that get translated to (void *). */
1000 if (spec->f90_type == BT_VOID)
1001 {
1002 if (spec->u.derived
1003 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1004 basetype = ptr_type_node;
1005 else
1006 basetype = pfunc_type_node;
1007 }
1008 else
1009 basetype = gfc_get_int_type (spec->kind);
1010 break;
1011
1012 case BT_REAL:
1013 basetype = gfc_get_real_type (spec->kind);
1014 break;
1015
1016 case BT_COMPLEX:
1017 basetype = gfc_get_complex_type (spec->kind);
1018 break;
1019
1020 case BT_LOGICAL:
1021 basetype = gfc_get_logical_type (spec->kind);
1022 break;
1023
1024 case BT_CHARACTER:
1025 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1026 break;
1027
1028 case BT_DERIVED:
1029 case BT_CLASS:
1030 basetype = gfc_get_derived_type (spec->u.derived);
1031
1032 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1033 type and kind to fit a (void *) and the basetype returned was a
1034 ptr_type_node. We need to pass up this new information to the
1035 symbol that was declared of type C_PTR or C_FUNPTR. */
1036 if (spec->u.derived->attr.is_iso_c)
1037 {
1038 spec->type = spec->u.derived->ts.type;
1039 spec->kind = spec->u.derived->ts.kind;
1040 spec->f90_type = spec->u.derived->ts.f90_type;
1041 }
1042 break;
1043 case BT_VOID:
1044 /* This is for the second arg to c_f_pointer and c_f_procpointer
1045 of the iso_c_binding module, to accept any ptr type. */
1046 basetype = ptr_type_node;
1047 if (spec->f90_type == BT_VOID)
1048 {
1049 if (spec->u.derived
1050 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1051 basetype = ptr_type_node;
1052 else
1053 basetype = pfunc_type_node;
1054 }
1055 break;
1056 default:
1057 gcc_unreachable ();
1058 }
1059 return basetype;
1060 }
1061 \f
1062 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1063
1064 static tree
1065 gfc_conv_array_bound (gfc_expr * expr)
1066 {
1067 /* If expr is an integer constant, return that. */
1068 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1069 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1070
1071 /* Otherwise return NULL. */
1072 return NULL_TREE;
1073 }
1074 \f
1075 tree
1076 gfc_get_element_type (tree type)
1077 {
1078 tree element;
1079
1080 if (GFC_ARRAY_TYPE_P (type))
1081 {
1082 if (TREE_CODE (type) == POINTER_TYPE)
1083 type = TREE_TYPE (type);
1084 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1085 element = TREE_TYPE (type);
1086 }
1087 else
1088 {
1089 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1090 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1091
1092 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1093 element = TREE_TYPE (element);
1094
1095 gcc_assert (TREE_CODE (element) == ARRAY_TYPE);
1096 element = TREE_TYPE (element);
1097 }
1098
1099 return element;
1100 }
1101 \f
1102 /* Build an array. This function is called from gfc_sym_type().
1103 Actually returns array descriptor type.
1104
1105 Format of array descriptors is as follows:
1106
1107 struct gfc_array_descriptor
1108 {
1109 array *data
1110 index offset;
1111 index dtype;
1112 struct descriptor_dimension dimension[N_DIM];
1113 }
1114
1115 struct descriptor_dimension
1116 {
1117 index stride;
1118 index lbound;
1119 index ubound;
1120 }
1121
1122 Translation code should use gfc_conv_descriptor_* rather than
1123 accessing the descriptor directly. Any changes to the array
1124 descriptor type will require changes in gfc_conv_descriptor_* and
1125 gfc_build_array_initializer.
1126
1127 This is represented internally as a RECORD_TYPE. The index nodes
1128 are gfc_array_index_type and the data node is a pointer to the
1129 data. See below for the handling of character types.
1130
1131 The dtype member is formatted as follows:
1132 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1133 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1134 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1135
1136 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1137 this generated poor code for assumed/deferred size arrays. These
1138 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1139 of the GENERIC grammar. Also, there is no way to explicitly set
1140 the array stride, so all data must be packed(1). I've tried to
1141 mark all the functions which would require modification with a GCC
1142 ARRAYS comment.
1143
1144 The data component points to the first element in the array. The
1145 offset field is the position of the origin of the array (i.e. element
1146 (0, 0 ...)). This may be outside the bounds of the array.
1147
1148 An element is accessed by
1149 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1150 This gives good performance as the computation does not involve the
1151 bounds of the array. For packed arrays, this is optimized further
1152 by substituting the known strides.
1153
1154 This system has one problem: all array bounds must be within 2^31
1155 elements of the origin (2^63 on 64-bit machines). For example
1156 integer, dimension (80000:90000, 80000:90000, 2) :: array
1157 may not work properly on 32-bit machines because 80000*80000 >
1158 2^31, so the calculation for stride2 would overflow. This may
1159 still work, but I haven't checked, and it relies on the overflow
1160 doing the right thing.
1161
1162 The way to fix this problem is to access elements as follows:
1163 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1164 Obviously this is much slower. I will make this a compile time
1165 option, something like -fsmall-array-offsets. Mixing code compiled
1166 with and without this switch will work.
1167
1168 (1) This can be worked around by modifying the upper bound of the
1169 previous dimension. This requires extra fields in the descriptor
1170 (both real_ubound and fake_ubound). */
1171
1172
1173 /* Returns true if the array sym does not require a descriptor. */
1174
1175 int
1176 gfc_is_nodesc_array (gfc_symbol * sym)
1177 {
1178 gcc_assert (sym->attr.dimension);
1179
1180 /* We only want local arrays. */
1181 if (sym->attr.pointer || sym->attr.allocatable)
1182 return 0;
1183
1184 if (sym->attr.dummy)
1185 {
1186 if (sym->as->type != AS_ASSUMED_SHAPE)
1187 return 1;
1188 else
1189 return 0;
1190 }
1191
1192 if (sym->attr.result || sym->attr.function)
1193 return 0;
1194
1195 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1196
1197 return 1;
1198 }
1199
1200
1201 /* Create an array descriptor type. */
1202
1203 static tree
1204 gfc_build_array_type (tree type, gfc_array_spec * as,
1205 enum gfc_array_kind akind, bool restricted)
1206 {
1207 tree lbound[GFC_MAX_DIMENSIONS];
1208 tree ubound[GFC_MAX_DIMENSIONS];
1209 int n;
1210
1211 for (n = 0; n < as->rank; n++)
1212 {
1213 /* Create expressions for the known bounds of the array. */
1214 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1215 lbound[n] = gfc_index_one_node;
1216 else
1217 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1218 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1219 }
1220
1221 if (as->type == AS_ASSUMED_SHAPE)
1222 akind = GFC_ARRAY_ASSUMED_SHAPE;
1223 return gfc_get_array_type_bounds (type, as->rank, as->corank, lbound,
1224 ubound, 0, akind, restricted);
1225 }
1226 \f
1227 /* Returns the struct descriptor_dimension type. */
1228
1229 static tree
1230 gfc_get_desc_dim_type (void)
1231 {
1232 tree type;
1233 tree decl;
1234 tree fieldlist;
1235
1236 if (gfc_desc_dim_type)
1237 return gfc_desc_dim_type;
1238
1239 /* Build the type node. */
1240 type = make_node (RECORD_TYPE);
1241
1242 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1243 TYPE_PACKED (type) = 1;
1244
1245 /* Consists of the stride, lbound and ubound members. */
1246 decl = build_decl (input_location,
1247 FIELD_DECL,
1248 get_identifier ("stride"), gfc_array_index_type);
1249 DECL_CONTEXT (decl) = type;
1250 TREE_NO_WARNING (decl) = 1;
1251 fieldlist = decl;
1252
1253 decl = build_decl (input_location,
1254 FIELD_DECL,
1255 get_identifier ("lbound"), gfc_array_index_type);
1256 DECL_CONTEXT (decl) = type;
1257 TREE_NO_WARNING (decl) = 1;
1258 fieldlist = chainon (fieldlist, decl);
1259
1260 decl = build_decl (input_location,
1261 FIELD_DECL,
1262 get_identifier ("ubound"), gfc_array_index_type);
1263 DECL_CONTEXT (decl) = type;
1264 TREE_NO_WARNING (decl) = 1;
1265 fieldlist = chainon (fieldlist, decl);
1266
1267 /* Finish off the type. */
1268 TYPE_FIELDS (type) = fieldlist;
1269
1270 gfc_finish_type (type);
1271 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1272
1273 gfc_desc_dim_type = type;
1274 return type;
1275 }
1276
1277
1278 /* Return the DTYPE for an array. This describes the type and type parameters
1279 of the array. */
1280 /* TODO: Only call this when the value is actually used, and make all the
1281 unknown cases abort. */
1282
1283 tree
1284 gfc_get_dtype (tree type)
1285 {
1286 tree size;
1287 int n;
1288 HOST_WIDE_INT i;
1289 tree tmp;
1290 tree dtype;
1291 tree etype;
1292 int rank;
1293
1294 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1295
1296 if (GFC_TYPE_ARRAY_DTYPE (type))
1297 return GFC_TYPE_ARRAY_DTYPE (type);
1298
1299 rank = GFC_TYPE_ARRAY_RANK (type);
1300 etype = gfc_get_element_type (type);
1301
1302 switch (TREE_CODE (etype))
1303 {
1304 case INTEGER_TYPE:
1305 n = GFC_DTYPE_INTEGER;
1306 break;
1307
1308 case BOOLEAN_TYPE:
1309 n = GFC_DTYPE_LOGICAL;
1310 break;
1311
1312 case REAL_TYPE:
1313 n = GFC_DTYPE_REAL;
1314 break;
1315
1316 case COMPLEX_TYPE:
1317 n = GFC_DTYPE_COMPLEX;
1318 break;
1319
1320 /* We will never have arrays of arrays. */
1321 case RECORD_TYPE:
1322 n = GFC_DTYPE_DERIVED;
1323 break;
1324
1325 case ARRAY_TYPE:
1326 n = GFC_DTYPE_CHARACTER;
1327 break;
1328
1329 default:
1330 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1331 /* We can strange array types for temporary arrays. */
1332 return gfc_index_zero_node;
1333 }
1334
1335 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1336 size = TYPE_SIZE_UNIT (etype);
1337
1338 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1339 if (size && INTEGER_CST_P (size))
1340 {
1341 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1342 internal_error ("Array element size too big");
1343
1344 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1345 }
1346 dtype = build_int_cst (gfc_array_index_type, i);
1347
1348 if (size && !INTEGER_CST_P (size))
1349 {
1350 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1351 tmp = fold_build2 (LSHIFT_EXPR, gfc_array_index_type,
1352 fold_convert (gfc_array_index_type, size), tmp);
1353 dtype = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp, dtype);
1354 }
1355 /* If we don't know the size we leave it as zero. This should never happen
1356 for anything that is actually used. */
1357 /* TODO: Check this is actually true, particularly when repacking
1358 assumed size parameters. */
1359
1360 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1361 return dtype;
1362 }
1363
1364
1365 /* Build an array type for use without a descriptor, packed according
1366 to the value of PACKED. */
1367
1368 tree
1369 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1370 bool restricted)
1371 {
1372 tree range;
1373 tree type;
1374 tree tmp;
1375 int n;
1376 int known_stride;
1377 int known_offset;
1378 mpz_t offset;
1379 mpz_t stride;
1380 mpz_t delta;
1381 gfc_expr *expr;
1382
1383 mpz_init_set_ui (offset, 0);
1384 mpz_init_set_ui (stride, 1);
1385 mpz_init (delta);
1386
1387 /* We don't use build_array_type because this does not include include
1388 lang-specific information (i.e. the bounds of the array) when checking
1389 for duplicates. */
1390 type = make_node (ARRAY_TYPE);
1391
1392 GFC_ARRAY_TYPE_P (type) = 1;
1393 TYPE_LANG_SPECIFIC (type) = (struct lang_type *)
1394 ggc_alloc_cleared (sizeof (struct lang_type));
1395
1396 known_stride = (packed != PACKED_NO);
1397 known_offset = 1;
1398 for (n = 0; n < as->rank; n++)
1399 {
1400 /* Fill in the stride and bound components of the type. */
1401 if (known_stride)
1402 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1403 else
1404 tmp = NULL_TREE;
1405 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1406
1407 expr = as->lower[n];
1408 if (expr->expr_type == EXPR_CONSTANT)
1409 {
1410 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1411 gfc_index_integer_kind);
1412 }
1413 else
1414 {
1415 known_stride = 0;
1416 tmp = NULL_TREE;
1417 }
1418 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1419
1420 if (known_stride)
1421 {
1422 /* Calculate the offset. */
1423 mpz_mul (delta, stride, as->lower[n]->value.integer);
1424 mpz_sub (offset, offset, delta);
1425 }
1426 else
1427 known_offset = 0;
1428
1429 expr = as->upper[n];
1430 if (expr && expr->expr_type == EXPR_CONSTANT)
1431 {
1432 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1433 gfc_index_integer_kind);
1434 }
1435 else
1436 {
1437 tmp = NULL_TREE;
1438 known_stride = 0;
1439 }
1440 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1441
1442 if (known_stride)
1443 {
1444 /* Calculate the stride. */
1445 mpz_sub (delta, as->upper[n]->value.integer,
1446 as->lower[n]->value.integer);
1447 mpz_add_ui (delta, delta, 1);
1448 mpz_mul (stride, stride, delta);
1449 }
1450
1451 /* Only the first stride is known for partial packed arrays. */
1452 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1453 known_stride = 0;
1454 }
1455
1456 if (known_offset)
1457 {
1458 GFC_TYPE_ARRAY_OFFSET (type) =
1459 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1460 }
1461 else
1462 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1463
1464 if (known_stride)
1465 {
1466 GFC_TYPE_ARRAY_SIZE (type) =
1467 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1468 }
1469 else
1470 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1471
1472 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1473 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1474 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1475 NULL_TREE);
1476 /* TODO: use main type if it is unbounded. */
1477 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1478 build_pointer_type (build_array_type (etype, range));
1479 if (restricted)
1480 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1481 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1482 TYPE_QUAL_RESTRICT);
1483
1484 if (known_stride)
1485 {
1486 mpz_sub_ui (stride, stride, 1);
1487 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1488 }
1489 else
1490 range = NULL_TREE;
1491
1492 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1493 TYPE_DOMAIN (type) = range;
1494
1495 build_pointer_type (etype);
1496 TREE_TYPE (type) = etype;
1497
1498 layout_type (type);
1499
1500 mpz_clear (offset);
1501 mpz_clear (stride);
1502 mpz_clear (delta);
1503
1504 /* Represent packed arrays as multi-dimensional if they have rank >
1505 1 and with proper bounds, instead of flat arrays. This makes for
1506 better debug info. */
1507 if (known_offset)
1508 {
1509 tree gtype = etype, rtype, type_decl;
1510
1511 for (n = as->rank - 1; n >= 0; n--)
1512 {
1513 rtype = build_range_type (gfc_array_index_type,
1514 GFC_TYPE_ARRAY_LBOUND (type, n),
1515 GFC_TYPE_ARRAY_UBOUND (type, n));
1516 gtype = build_array_type (gtype, rtype);
1517 }
1518 TYPE_NAME (type) = type_decl = build_decl (input_location,
1519 TYPE_DECL, NULL, gtype);
1520 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1521 }
1522
1523 if (packed != PACKED_STATIC || !known_stride)
1524 {
1525 /* For dummy arrays and automatic (heap allocated) arrays we
1526 want a pointer to the array. */
1527 type = build_pointer_type (type);
1528 if (restricted)
1529 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1530 GFC_ARRAY_TYPE_P (type) = 1;
1531 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1532 }
1533 return type;
1534 }
1535
1536 /* Return or create the base type for an array descriptor. */
1537
1538 static tree
1539 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted)
1540 {
1541 tree fat_type, fieldlist, decl, arraytype;
1542 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1543 int idx = 2 * (codimen + dimen - 1) + restricted;
1544
1545 gcc_assert (dimen >= 1 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1546 if (gfc_array_descriptor_base[idx])
1547 return gfc_array_descriptor_base[idx];
1548
1549 /* Build the type node. */
1550 fat_type = make_node (RECORD_TYPE);
1551
1552 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1553 TYPE_NAME (fat_type) = get_identifier (name);
1554
1555 /* Add the data member as the first element of the descriptor. */
1556 decl = build_decl (input_location,
1557 FIELD_DECL, get_identifier ("data"),
1558 restricted ? prvoid_type_node : ptr_type_node);
1559
1560 DECL_CONTEXT (decl) = fat_type;
1561 fieldlist = decl;
1562
1563 /* Add the base component. */
1564 decl = build_decl (input_location,
1565 FIELD_DECL, get_identifier ("offset"),
1566 gfc_array_index_type);
1567 DECL_CONTEXT (decl) = fat_type;
1568 TREE_NO_WARNING (decl) = 1;
1569 fieldlist = chainon (fieldlist, decl);
1570
1571 /* Add the dtype component. */
1572 decl = build_decl (input_location,
1573 FIELD_DECL, get_identifier ("dtype"),
1574 gfc_array_index_type);
1575 DECL_CONTEXT (decl) = fat_type;
1576 TREE_NO_WARNING (decl) = 1;
1577 fieldlist = chainon (fieldlist, decl);
1578
1579 /* Build the array type for the stride and bound components. */
1580 arraytype =
1581 build_array_type (gfc_get_desc_dim_type (),
1582 build_range_type (gfc_array_index_type,
1583 gfc_index_zero_node,
1584 gfc_rank_cst[codimen + dimen - 1]));
1585
1586 decl = build_decl (input_location,
1587 FIELD_DECL, get_identifier ("dim"), arraytype);
1588 DECL_CONTEXT (decl) = fat_type;
1589 TREE_NO_WARNING (decl) = 1;
1590 fieldlist = chainon (fieldlist, decl);
1591
1592 /* Finish off the type. */
1593 TYPE_FIELDS (fat_type) = fieldlist;
1594
1595 gfc_finish_type (fat_type);
1596 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1597
1598 gfc_array_descriptor_base[idx] = fat_type;
1599 return fat_type;
1600 }
1601
1602 /* Build an array (descriptor) type with given bounds. */
1603
1604 tree
1605 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1606 tree * ubound, int packed,
1607 enum gfc_array_kind akind, bool restricted)
1608 {
1609 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1610 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1611 const char *type_name;
1612 int n;
1613
1614 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted);
1615 fat_type = build_distinct_type_copy (base_type);
1616 /* Make sure that nontarget and target array type have the same canonical
1617 type (and same stub decl for debug info). */
1618 base_type = gfc_get_array_descriptor_base (dimen, codimen, false);
1619 TYPE_CANONICAL (fat_type) = base_type;
1620 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1621
1622 tmp = TYPE_NAME (etype);
1623 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1624 tmp = DECL_NAME (tmp);
1625 if (tmp)
1626 type_name = IDENTIFIER_POINTER (tmp);
1627 else
1628 type_name = "unknown";
1629 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1630 GFC_MAX_SYMBOL_LEN, type_name);
1631 TYPE_NAME (fat_type) = get_identifier (name);
1632
1633 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1634 TYPE_LANG_SPECIFIC (fat_type) = (struct lang_type *)
1635 ggc_alloc_cleared (sizeof (struct lang_type));
1636
1637 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1638 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1639 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1640
1641 /* Build an array descriptor record type. */
1642 if (packed != 0)
1643 stride = gfc_index_one_node;
1644 else
1645 stride = NULL_TREE;
1646 for (n = 0; n < dimen; n++)
1647 {
1648 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1649
1650 if (lbound)
1651 lower = lbound[n];
1652 else
1653 lower = NULL_TREE;
1654
1655 if (lower != NULL_TREE)
1656 {
1657 if (INTEGER_CST_P (lower))
1658 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1659 else
1660 lower = NULL_TREE;
1661 }
1662
1663 upper = ubound[n];
1664 if (upper != NULL_TREE)
1665 {
1666 if (INTEGER_CST_P (upper))
1667 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1668 else
1669 upper = NULL_TREE;
1670 }
1671
1672 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1673 {
1674 tmp = fold_build2 (MINUS_EXPR, gfc_array_index_type, upper, lower);
1675 tmp = fold_build2 (PLUS_EXPR, gfc_array_index_type, tmp,
1676 gfc_index_one_node);
1677 stride =
1678 fold_build2 (MULT_EXPR, gfc_array_index_type, tmp, stride);
1679 /* Check the folding worked. */
1680 gcc_assert (INTEGER_CST_P (stride));
1681 }
1682 else
1683 stride = NULL_TREE;
1684 }
1685 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1686
1687 /* TODO: known offsets for descriptors. */
1688 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1689
1690 /* We define data as an array with the correct size if possible.
1691 Much better than doing pointer arithmetic. */
1692 if (stride)
1693 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1694 int_const_binop (MINUS_EXPR, stride,
1695 integer_one_node, 0));
1696 else
1697 rtype = gfc_array_range_type;
1698 arraytype = build_array_type (etype, rtype);
1699 arraytype = build_pointer_type (arraytype);
1700 if (restricted)
1701 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1702 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1703
1704 /* This will generate the base declarations we need to emit debug
1705 information for this type. FIXME: there must be a better way to
1706 avoid divergence between compilations with and without debug
1707 information. */
1708 {
1709 struct array_descr_info info;
1710 gfc_get_array_descr_info (fat_type, &info);
1711 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1712 }
1713
1714 return fat_type;
1715 }
1716 \f
1717 /* Build a pointer type. This function is called from gfc_sym_type(). */
1718
1719 static tree
1720 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1721 {
1722 /* Array pointer types aren't actually pointers. */
1723 if (sym->attr.dimension)
1724 return type;
1725 else
1726 return build_pointer_type (type);
1727 }
1728 \f
1729 /* Return the type for a symbol. Special handling is required for character
1730 types to get the correct level of indirection.
1731 For functions return the return type.
1732 For subroutines return void_type_node.
1733 Calling this multiple times for the same symbol should be avoided,
1734 especially for character and array types. */
1735
1736 tree
1737 gfc_sym_type (gfc_symbol * sym)
1738 {
1739 tree type;
1740 int byref;
1741 bool restricted;
1742
1743 /* Procedure Pointers inside COMMON blocks. */
1744 if (sym->attr.proc_pointer && sym->attr.in_common)
1745 {
1746 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
1747 sym->attr.proc_pointer = 0;
1748 type = build_pointer_type (gfc_get_function_type (sym));
1749 sym->attr.proc_pointer = 1;
1750 return type;
1751 }
1752
1753 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
1754 return void_type_node;
1755
1756 /* In the case of a function the fake result variable may have a
1757 type different from the function type, so don't return early in
1758 that case. */
1759 if (sym->backend_decl && !sym->attr.function)
1760 return TREE_TYPE (sym->backend_decl);
1761
1762 if (sym->ts.type == BT_CHARACTER
1763 && ((sym->attr.function && sym->attr.is_bind_c)
1764 || (sym->attr.result
1765 && sym->ns->proc_name
1766 && sym->ns->proc_name->attr.is_bind_c)))
1767 type = gfc_character1_type_node;
1768 else
1769 type = gfc_typenode_for_spec (&sym->ts);
1770
1771 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
1772 byref = 1;
1773 else
1774 byref = 0;
1775
1776 restricted = !sym->attr.target && !sym->attr.pointer
1777 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
1778 if (sym->attr.dimension)
1779 {
1780 if (gfc_is_nodesc_array (sym))
1781 {
1782 /* If this is a character argument of unknown length, just use the
1783 base type. */
1784 if (sym->ts.type != BT_CHARACTER
1785 || !(sym->attr.dummy || sym->attr.function)
1786 || sym->ts.u.cl->backend_decl)
1787 {
1788 type = gfc_get_nodesc_array_type (type, sym->as,
1789 byref ? PACKED_FULL
1790 : PACKED_STATIC,
1791 restricted);
1792 byref = 0;
1793 }
1794
1795 if (sym->attr.cray_pointee)
1796 GFC_POINTER_TYPE_P (type) = 1;
1797 }
1798 else
1799 {
1800 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
1801 if (sym->attr.pointer)
1802 akind = GFC_ARRAY_POINTER;
1803 else if (sym->attr.allocatable)
1804 akind = GFC_ARRAY_ALLOCATABLE;
1805 type = gfc_build_array_type (type, sym->as, akind, restricted);
1806 }
1807 }
1808 else
1809 {
1810 if (sym->attr.allocatable || sym->attr.pointer)
1811 type = gfc_build_pointer_type (sym, type);
1812 if (sym->attr.pointer || sym->attr.cray_pointee)
1813 GFC_POINTER_TYPE_P (type) = 1;
1814 }
1815
1816 /* We currently pass all parameters by reference.
1817 See f95_get_function_decl. For dummy function parameters return the
1818 function type. */
1819 if (byref)
1820 {
1821 /* We must use pointer types for potentially absent variables. The
1822 optimizers assume a reference type argument is never NULL. */
1823 if (sym->attr.optional || sym->ns->proc_name->attr.entry_master)
1824 type = build_pointer_type (type);
1825 else
1826 {
1827 type = build_reference_type (type);
1828 if (restricted)
1829 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1830 }
1831 }
1832
1833 return (type);
1834 }
1835 \f
1836 /* Layout and output debug info for a record type. */
1837
1838 void
1839 gfc_finish_type (tree type)
1840 {
1841 tree decl;
1842
1843 decl = build_decl (input_location,
1844 TYPE_DECL, NULL_TREE, type);
1845 TYPE_STUB_DECL (type) = decl;
1846 layout_type (type);
1847 rest_of_type_compilation (type, 1);
1848 rest_of_decl_compilation (decl, 1, 0);
1849 }
1850 \f
1851 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1852 or RECORD_TYPE pointed to by STYPE. The new field is chained
1853 to the fieldlist pointed to by FIELDLIST.
1854
1855 Returns a pointer to the new field. */
1856
1857 tree
1858 gfc_add_field_to_struct (tree *fieldlist, tree context,
1859 tree name, tree type)
1860 {
1861 tree decl;
1862
1863 decl = build_decl (input_location,
1864 FIELD_DECL, name, type);
1865
1866 DECL_CONTEXT (decl) = context;
1867 DECL_INITIAL (decl) = 0;
1868 DECL_ALIGN (decl) = 0;
1869 DECL_USER_ALIGN (decl) = 0;
1870 TREE_CHAIN (decl) = NULL_TREE;
1871 *fieldlist = chainon (*fieldlist, decl);
1872
1873 return decl;
1874 }
1875
1876
1877 /* Copy the backend_decl and component backend_decls if
1878 the two derived type symbols are "equal", as described
1879 in 4.4.2 and resolved by gfc_compare_derived_types. */
1880
1881 static int
1882 copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
1883 bool from_gsym)
1884 {
1885 gfc_component *to_cm;
1886 gfc_component *from_cm;
1887
1888 if (from->backend_decl == NULL
1889 || !gfc_compare_derived_types (from, to))
1890 return 0;
1891
1892 to->backend_decl = from->backend_decl;
1893
1894 to_cm = to->components;
1895 from_cm = from->components;
1896
1897 /* Copy the component declarations. If a component is itself
1898 a derived type, we need a copy of its component declarations.
1899 This is done by recursing into gfc_get_derived_type and
1900 ensures that the component's component declarations have
1901 been built. If it is a character, we need the character
1902 length, as well. */
1903 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
1904 {
1905 to_cm->backend_decl = from_cm->backend_decl;
1906 if ((!from_cm->attr.pointer || from_gsym)
1907 && from_cm->ts.type == BT_DERIVED)
1908 gfc_get_derived_type (to_cm->ts.u.derived);
1909
1910 else if (from_cm->ts.type == BT_CHARACTER)
1911 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
1912 }
1913
1914 return 1;
1915 }
1916
1917
1918 /* Build a tree node for a procedure pointer component. */
1919
1920 tree
1921 gfc_get_ppc_type (gfc_component* c)
1922 {
1923 tree t;
1924
1925 /* Explicit interface. */
1926 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
1927 return build_pointer_type (gfc_get_function_type (c->ts.interface));
1928
1929 /* Implicit interface (only return value may be known). */
1930 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
1931 t = gfc_typenode_for_spec (&c->ts);
1932 else
1933 t = void_type_node;
1934
1935 return build_pointer_type (build_function_type_list (t, NULL_TREE));
1936 }
1937
1938
1939 /* Build a tree node for a derived type. If there are equal
1940 derived types, with different local names, these are built
1941 at the same time. If an equal derived type has been built
1942 in a parent namespace, this is used. */
1943
1944 tree
1945 gfc_get_derived_type (gfc_symbol * derived)
1946 {
1947 tree typenode = NULL, field = NULL, field_type = NULL, fieldlist = NULL;
1948 tree canonical = NULL_TREE;
1949 bool got_canonical = false;
1950 gfc_component *c;
1951 gfc_dt_list *dt;
1952 gfc_namespace *ns;
1953 gfc_gsymbol *gsym;
1954
1955 gcc_assert (derived && derived->attr.flavor == FL_DERIVED);
1956
1957 /* See if it's one of the iso_c_binding derived types. */
1958 if (derived->attr.is_iso_c == 1)
1959 {
1960 if (derived->backend_decl)
1961 return derived->backend_decl;
1962
1963 if (derived->intmod_sym_id == ISOCBINDING_PTR)
1964 derived->backend_decl = ptr_type_node;
1965 else
1966 derived->backend_decl = pfunc_type_node;
1967
1968 /* Create a backend_decl for the __c_ptr_c_address field. */
1969 derived->components->backend_decl =
1970 gfc_add_field_to_struct (&(derived->backend_decl->type.values),
1971 derived->backend_decl,
1972 get_identifier (derived->components->name),
1973 gfc_typenode_for_spec (
1974 &(derived->components->ts)));
1975
1976 derived->ts.kind = gfc_index_integer_kind;
1977 derived->ts.type = BT_INTEGER;
1978 /* Set the f90_type to BT_VOID as a way to recognize something of type
1979 BT_INTEGER that needs to fit a void * for the purpose of the
1980 iso_c_binding derived types. */
1981 derived->ts.f90_type = BT_VOID;
1982
1983 return derived->backend_decl;
1984 }
1985
1986 /* If use associated, use the module type for this one. */
1987 if (gfc_option.flag_whole_file
1988 && derived->backend_decl == NULL
1989 && derived->attr.use_assoc
1990 && derived->module)
1991 {
1992 gsym = gfc_find_gsymbol (gfc_gsym_root, derived->module);
1993 if (gsym && gsym->ns && gsym->type == GSYM_MODULE)
1994 {
1995 gfc_symbol *s;
1996 s = NULL;
1997 gfc_find_symbol (derived->name, gsym->ns, 0, &s);
1998 if (s && s->backend_decl)
1999 {
2000 copy_dt_decls_ifequal (s, derived, true);
2001 goto copy_derived_types;
2002 }
2003 }
2004 }
2005
2006 /* If a whole file compilation, the derived types from an earlier
2007 namespace can be used as the the canonical type. */
2008 if (gfc_option.flag_whole_file
2009 && derived->backend_decl == NULL
2010 && !derived->attr.use_assoc
2011 && gfc_global_ns_list)
2012 {
2013 for (ns = gfc_global_ns_list;
2014 ns->translated && !got_canonical;
2015 ns = ns->sibling)
2016 {
2017 dt = ns->derived_types;
2018 for (; dt && !canonical; dt = dt->next)
2019 {
2020 copy_dt_decls_ifequal (dt->derived, derived, true);
2021 if (derived->backend_decl)
2022 got_canonical = true;
2023 }
2024 }
2025 }
2026
2027 /* Store up the canonical type to be added to this one. */
2028 if (got_canonical)
2029 {
2030 if (TYPE_CANONICAL (derived->backend_decl))
2031 canonical = TYPE_CANONICAL (derived->backend_decl);
2032 else
2033 canonical = derived->backend_decl;
2034
2035 derived->backend_decl = NULL_TREE;
2036 }
2037
2038 /* derived->backend_decl != 0 means we saw it before, but its
2039 components' backend_decl may have not been built. */
2040 if (derived->backend_decl)
2041 {
2042 /* Its components' backend_decl have been built or we are
2043 seeing recursion through the formal arglist of a procedure
2044 pointer component. */
2045 if (TYPE_FIELDS (derived->backend_decl)
2046 || derived->attr.proc_pointer_comp)
2047 return derived->backend_decl;
2048 else
2049 typenode = derived->backend_decl;
2050 }
2051 else
2052 {
2053 /* We see this derived type first time, so build the type node. */
2054 typenode = make_node (RECORD_TYPE);
2055 TYPE_NAME (typenode) = get_identifier (derived->name);
2056 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2057 derived->backend_decl = typenode;
2058 }
2059
2060 /* Go through the derived type components, building them as
2061 necessary. The reason for doing this now is that it is
2062 possible to recurse back to this derived type through a
2063 pointer component (PR24092). If this happens, the fields
2064 will be built and so we can return the type. */
2065 for (c = derived->components; c; c = c->next)
2066 {
2067 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2068 continue;
2069
2070 if ((!c->attr.pointer && !c->attr.proc_pointer)
2071 || c->ts.u.derived->backend_decl == NULL)
2072 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2073
2074 if (c->ts.u.derived && c->ts.u.derived->attr.is_iso_c)
2075 {
2076 /* Need to copy the modified ts from the derived type. The
2077 typespec was modified because C_PTR/C_FUNPTR are translated
2078 into (void *) from derived types. */
2079 c->ts.type = c->ts.u.derived->ts.type;
2080 c->ts.kind = c->ts.u.derived->ts.kind;
2081 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2082 if (c->initializer)
2083 {
2084 c->initializer->ts.type = c->ts.type;
2085 c->initializer->ts.kind = c->ts.kind;
2086 c->initializer->ts.f90_type = c->ts.f90_type;
2087 c->initializer->expr_type = EXPR_NULL;
2088 }
2089 }
2090 }
2091
2092 if (TYPE_FIELDS (derived->backend_decl))
2093 return derived->backend_decl;
2094
2095 /* Build the type member list. Install the newly created RECORD_TYPE
2096 node as DECL_CONTEXT of each FIELD_DECL. */
2097 fieldlist = NULL_TREE;
2098 for (c = derived->components; c; c = c->next)
2099 {
2100 if (c->attr.proc_pointer)
2101 field_type = gfc_get_ppc_type (c);
2102 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2103 field_type = c->ts.u.derived->backend_decl;
2104 else
2105 {
2106 if (c->ts.type == BT_CHARACTER)
2107 {
2108 /* Evaluate the string length. */
2109 gfc_conv_const_charlen (c->ts.u.cl);
2110 gcc_assert (c->ts.u.cl->backend_decl);
2111 }
2112
2113 field_type = gfc_typenode_for_spec (&c->ts);
2114 }
2115
2116 /* This returns an array descriptor type. Initialization may be
2117 required. */
2118 if (c->attr.dimension && !c->attr.proc_pointer)
2119 {
2120 if (c->attr.pointer || c->attr.allocatable)
2121 {
2122 enum gfc_array_kind akind;
2123 if (c->attr.pointer)
2124 akind = GFC_ARRAY_POINTER;
2125 else
2126 akind = GFC_ARRAY_ALLOCATABLE;
2127 /* Pointers to arrays aren't actually pointer types. The
2128 descriptors are separate, but the data is common. */
2129 field_type = gfc_build_array_type (field_type, c->as, akind,
2130 !c->attr.target
2131 && !c->attr.pointer);
2132 }
2133 else
2134 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2135 PACKED_STATIC,
2136 !c->attr.target);
2137 }
2138 else if ((c->attr.pointer || c->attr.allocatable)
2139 && !c->attr.proc_pointer)
2140 field_type = build_pointer_type (field_type);
2141
2142 field = gfc_add_field_to_struct (&fieldlist, typenode,
2143 get_identifier (c->name), field_type);
2144 if (c->loc.lb)
2145 gfc_set_decl_location (field, &c->loc);
2146 else if (derived->declared_at.lb)
2147 gfc_set_decl_location (field, &derived->declared_at);
2148
2149 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2150
2151 gcc_assert (field);
2152 if (!c->backend_decl)
2153 c->backend_decl = field;
2154 }
2155
2156 /* Now we have the final fieldlist. Record it, then lay out the
2157 derived type, including the fields. */
2158 TYPE_FIELDS (typenode) = fieldlist;
2159 if (canonical)
2160 TYPE_CANONICAL (typenode) = canonical;
2161
2162 gfc_finish_type (typenode);
2163 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2164 if (derived->module && derived->ns->proc_name
2165 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2166 {
2167 if (derived->ns->proc_name->backend_decl
2168 && TREE_CODE (derived->ns->proc_name->backend_decl)
2169 == NAMESPACE_DECL)
2170 {
2171 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2172 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2173 = derived->ns->proc_name->backend_decl;
2174 }
2175 }
2176
2177 derived->backend_decl = typenode;
2178
2179 copy_derived_types:
2180
2181 for (dt = gfc_derived_types; dt; dt = dt->next)
2182 copy_dt_decls_ifequal (derived, dt->derived, false);
2183
2184 return derived->backend_decl;
2185 }
2186
2187
2188 int
2189 gfc_return_by_reference (gfc_symbol * sym)
2190 {
2191 if (!sym->attr.function)
2192 return 0;
2193
2194 if (sym->attr.dimension)
2195 return 1;
2196
2197 if (sym->ts.type == BT_CHARACTER
2198 && !sym->attr.is_bind_c
2199 && (!sym->attr.result
2200 || !sym->ns->proc_name
2201 || !sym->ns->proc_name->attr.is_bind_c))
2202 return 1;
2203
2204 /* Possibly return complex numbers by reference for g77 compatibility.
2205 We don't do this for calls to intrinsics (as the library uses the
2206 -fno-f2c calling convention), nor for calls to functions which always
2207 require an explicit interface, as no compatibility problems can
2208 arise there. */
2209 if (gfc_option.flag_f2c
2210 && sym->ts.type == BT_COMPLEX
2211 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2212 return 1;
2213
2214 return 0;
2215 }
2216 \f
2217 static tree
2218 gfc_get_mixed_entry_union (gfc_namespace *ns)
2219 {
2220 tree type;
2221 tree decl;
2222 tree fieldlist;
2223 char name[GFC_MAX_SYMBOL_LEN + 1];
2224 gfc_entry_list *el, *el2;
2225
2226 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2227 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2228
2229 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2230
2231 /* Build the type node. */
2232 type = make_node (UNION_TYPE);
2233
2234 TYPE_NAME (type) = get_identifier (name);
2235 fieldlist = NULL;
2236
2237 for (el = ns->entries; el; el = el->next)
2238 {
2239 /* Search for duplicates. */
2240 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2241 if (el2->sym->result == el->sym->result)
2242 break;
2243
2244 if (el == el2)
2245 {
2246 decl = build_decl (input_location,
2247 FIELD_DECL,
2248 get_identifier (el->sym->result->name),
2249 gfc_sym_type (el->sym->result));
2250 DECL_CONTEXT (decl) = type;
2251 fieldlist = chainon (fieldlist, decl);
2252 }
2253 }
2254
2255 /* Finish off the type. */
2256 TYPE_FIELDS (type) = fieldlist;
2257
2258 gfc_finish_type (type);
2259 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2260 return type;
2261 }
2262 \f
2263 tree
2264 gfc_get_function_type (gfc_symbol * sym)
2265 {
2266 tree type;
2267 tree typelist;
2268 gfc_formal_arglist *f;
2269 gfc_symbol *arg;
2270 int nstr;
2271 int alternate_return;
2272
2273 /* Make sure this symbol is a function, a subroutine or the main
2274 program. */
2275 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2276 || sym->attr.flavor == FL_PROGRAM);
2277
2278 if (sym->backend_decl)
2279 return TREE_TYPE (sym->backend_decl);
2280
2281 nstr = 0;
2282 alternate_return = 0;
2283 typelist = NULL_TREE;
2284
2285 if (sym->attr.entry_master)
2286 {
2287 /* Additional parameter for selecting an entry point. */
2288 typelist = gfc_chainon_list (typelist, gfc_array_index_type);
2289 }
2290
2291 if (sym->result)
2292 arg = sym->result;
2293 else
2294 arg = sym;
2295
2296 if (arg->ts.type == BT_CHARACTER)
2297 gfc_conv_const_charlen (arg->ts.u.cl);
2298
2299 /* Some functions we use an extra parameter for the return value. */
2300 if (gfc_return_by_reference (sym))
2301 {
2302 type = gfc_sym_type (arg);
2303 if (arg->ts.type == BT_COMPLEX
2304 || arg->attr.dimension
2305 || arg->ts.type == BT_CHARACTER)
2306 type = build_reference_type (type);
2307
2308 typelist = gfc_chainon_list (typelist, type);
2309 if (arg->ts.type == BT_CHARACTER)
2310 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2311 }
2312
2313 /* Build the argument types for the function. */
2314 for (f = sym->formal; f; f = f->next)
2315 {
2316 arg = f->sym;
2317 if (arg)
2318 {
2319 /* Evaluate constant character lengths here so that they can be
2320 included in the type. */
2321 if (arg->ts.type == BT_CHARACTER)
2322 gfc_conv_const_charlen (arg->ts.u.cl);
2323
2324 if (arg->attr.flavor == FL_PROCEDURE)
2325 {
2326 type = gfc_get_function_type (arg);
2327 type = build_pointer_type (type);
2328 }
2329 else
2330 type = gfc_sym_type (arg);
2331
2332 /* Parameter Passing Convention
2333
2334 We currently pass all parameters by reference.
2335 Parameters with INTENT(IN) could be passed by value.
2336 The problem arises if a function is called via an implicit
2337 prototype. In this situation the INTENT is not known.
2338 For this reason all parameters to global functions must be
2339 passed by reference. Passing by value would potentially
2340 generate bad code. Worse there would be no way of telling that
2341 this code was bad, except that it would give incorrect results.
2342
2343 Contained procedures could pass by value as these are never
2344 used without an explicit interface, and cannot be passed as
2345 actual parameters for a dummy procedure. */
2346 if (arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2347 nstr++;
2348 typelist = gfc_chainon_list (typelist, type);
2349 }
2350 else
2351 {
2352 if (sym->attr.subroutine)
2353 alternate_return = 1;
2354 }
2355 }
2356
2357 /* Add hidden string length parameters. */
2358 while (nstr--)
2359 typelist = gfc_chainon_list (typelist, gfc_charlen_type_node);
2360
2361 if (typelist)
2362 typelist = gfc_chainon_list (typelist, void_type_node);
2363
2364 if (alternate_return)
2365 type = integer_type_node;
2366 else if (!sym->attr.function || gfc_return_by_reference (sym))
2367 type = void_type_node;
2368 else if (sym->attr.mixed_entry_master)
2369 type = gfc_get_mixed_entry_union (sym->ns);
2370 else if (gfc_option.flag_f2c
2371 && sym->ts.type == BT_REAL
2372 && sym->ts.kind == gfc_default_real_kind
2373 && !sym->attr.always_explicit)
2374 {
2375 /* Special case: f2c calling conventions require that (scalar)
2376 default REAL functions return the C type double instead. f2c
2377 compatibility is only an issue with functions that don't
2378 require an explicit interface, as only these could be
2379 implemented in Fortran 77. */
2380 sym->ts.kind = gfc_default_double_kind;
2381 type = gfc_typenode_for_spec (&sym->ts);
2382 sym->ts.kind = gfc_default_real_kind;
2383 }
2384 else if (sym->result && sym->result->attr.proc_pointer)
2385 /* Procedure pointer return values. */
2386 {
2387 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2388 {
2389 /* Unset proc_pointer as gfc_get_function_type
2390 is called recursively. */
2391 sym->result->attr.proc_pointer = 0;
2392 type = build_pointer_type (gfc_get_function_type (sym->result));
2393 sym->result->attr.proc_pointer = 1;
2394 }
2395 else
2396 type = gfc_sym_type (sym->result);
2397 }
2398 else
2399 type = gfc_sym_type (sym);
2400
2401 type = build_function_type (type, typelist);
2402
2403 return type;
2404 }
2405 \f
2406 /* Language hooks for middle-end access to type nodes. */
2407
2408 /* Return an integer type with BITS bits of precision,
2409 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2410
2411 tree
2412 gfc_type_for_size (unsigned bits, int unsignedp)
2413 {
2414 if (!unsignedp)
2415 {
2416 int i;
2417 for (i = 0; i <= MAX_INT_KINDS; ++i)
2418 {
2419 tree type = gfc_integer_types[i];
2420 if (type && bits == TYPE_PRECISION (type))
2421 return type;
2422 }
2423
2424 /* Handle TImode as a special case because it is used by some backends
2425 (e.g. ARM) even though it is not available for normal use. */
2426 #if HOST_BITS_PER_WIDE_INT >= 64
2427 if (bits == TYPE_PRECISION (intTI_type_node))
2428 return intTI_type_node;
2429 #endif
2430 }
2431 else
2432 {
2433 if (bits == TYPE_PRECISION (unsigned_intQI_type_node))
2434 return unsigned_intQI_type_node;
2435 if (bits == TYPE_PRECISION (unsigned_intHI_type_node))
2436 return unsigned_intHI_type_node;
2437 if (bits == TYPE_PRECISION (unsigned_intSI_type_node))
2438 return unsigned_intSI_type_node;
2439 if (bits == TYPE_PRECISION (unsigned_intDI_type_node))
2440 return unsigned_intDI_type_node;
2441 if (bits == TYPE_PRECISION (unsigned_intTI_type_node))
2442 return unsigned_intTI_type_node;
2443 }
2444
2445 return NULL_TREE;
2446 }
2447
2448 /* Return a data type that has machine mode MODE. If the mode is an
2449 integer, then UNSIGNEDP selects between signed and unsigned types. */
2450
2451 tree
2452 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2453 {
2454 int i;
2455 tree *base;
2456
2457 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2458 base = gfc_real_types;
2459 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2460 base = gfc_complex_types;
2461 else if (SCALAR_INT_MODE_P (mode))
2462 return gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2463 else if (VECTOR_MODE_P (mode))
2464 {
2465 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2466 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2467 if (inner_type != NULL_TREE)
2468 return build_vector_type_for_mode (inner_type, mode);
2469 return NULL_TREE;
2470 }
2471 else
2472 return NULL_TREE;
2473
2474 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2475 {
2476 tree type = base[i];
2477 if (type && mode == TYPE_MODE (type))
2478 return type;
2479 }
2480
2481 return NULL_TREE;
2482 }
2483
2484 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2485 in that case. */
2486
2487 bool
2488 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2489 {
2490 int rank, dim;
2491 bool indirect = false;
2492 tree etype, ptype, field, t, base_decl;
2493 tree data_off, dim_off, dim_size, elem_size;
2494 tree lower_suboff, upper_suboff, stride_suboff;
2495
2496 if (! GFC_DESCRIPTOR_TYPE_P (type))
2497 {
2498 if (! POINTER_TYPE_P (type))
2499 return false;
2500 type = TREE_TYPE (type);
2501 if (! GFC_DESCRIPTOR_TYPE_P (type))
2502 return false;
2503 indirect = true;
2504 }
2505
2506 rank = GFC_TYPE_ARRAY_RANK (type);
2507 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
2508 return false;
2509
2510 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
2511 gcc_assert (POINTER_TYPE_P (etype));
2512 etype = TREE_TYPE (etype);
2513 gcc_assert (TREE_CODE (etype) == ARRAY_TYPE);
2514 etype = TREE_TYPE (etype);
2515 /* Can't handle variable sized elements yet. */
2516 if (int_size_in_bytes (etype) <= 0)
2517 return false;
2518 /* Nor non-constant lower bounds in assumed shape arrays. */
2519 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2520 {
2521 for (dim = 0; dim < rank; dim++)
2522 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
2523 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
2524 return false;
2525 }
2526
2527 memset (info, '\0', sizeof (*info));
2528 info->ndimensions = rank;
2529 info->element_type = etype;
2530 ptype = build_pointer_type (gfc_array_index_type);
2531 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
2532 if (!base_decl)
2533 {
2534 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
2535 indirect ? build_pointer_type (ptype) : ptype);
2536 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
2537 }
2538 info->base_decl = base_decl;
2539 if (indirect)
2540 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
2541
2542 if (GFC_TYPE_ARRAY_SPAN (type))
2543 elem_size = GFC_TYPE_ARRAY_SPAN (type);
2544 else
2545 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
2546 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
2547 data_off = byte_position (field);
2548 field = TREE_CHAIN (field);
2549 field = TREE_CHAIN (field);
2550 field = TREE_CHAIN (field);
2551 dim_off = byte_position (field);
2552 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
2553 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
2554 stride_suboff = byte_position (field);
2555 field = TREE_CHAIN (field);
2556 lower_suboff = byte_position (field);
2557 field = TREE_CHAIN (field);
2558 upper_suboff = byte_position (field);
2559
2560 t = base_decl;
2561 if (!integer_zerop (data_off))
2562 t = build2 (POINTER_PLUS_EXPR, ptype, t, data_off);
2563 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
2564 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
2565 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
2566 info->allocated = build2 (NE_EXPR, boolean_type_node,
2567 info->data_location, null_pointer_node);
2568 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER)
2569 info->associated = build2 (NE_EXPR, boolean_type_node,
2570 info->data_location, null_pointer_node);
2571
2572 for (dim = 0; dim < rank; dim++)
2573 {
2574 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2575 size_binop (PLUS_EXPR, dim_off, lower_suboff));
2576 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2577 info->dimen[dim].lower_bound = t;
2578 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2579 size_binop (PLUS_EXPR, dim_off, upper_suboff));
2580 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2581 info->dimen[dim].upper_bound = t;
2582 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE)
2583 {
2584 /* Assumed shape arrays have known lower bounds. */
2585 info->dimen[dim].upper_bound
2586 = build2 (MINUS_EXPR, gfc_array_index_type,
2587 info->dimen[dim].upper_bound,
2588 info->dimen[dim].lower_bound);
2589 info->dimen[dim].lower_bound
2590 = fold_convert (gfc_array_index_type,
2591 GFC_TYPE_ARRAY_LBOUND (type, dim));
2592 info->dimen[dim].upper_bound
2593 = build2 (PLUS_EXPR, gfc_array_index_type,
2594 info->dimen[dim].lower_bound,
2595 info->dimen[dim].upper_bound);
2596 }
2597 t = build2 (POINTER_PLUS_EXPR, ptype, base_decl,
2598 size_binop (PLUS_EXPR, dim_off, stride_suboff));
2599 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
2600 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
2601 info->dimen[dim].stride = t;
2602 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
2603 }
2604
2605 return true;
2606 }
2607
2608 #include "gt-fortran-trans-types.h"