]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/function.c
Update copyright years.
[thirdparty/gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "regs.h"
50 #include "emit-rtl.h"
51 #include "recog.h"
52 #include "rtl-error.h"
53 #include "alias.h"
54 #include "fold-const.h"
55 #include "stor-layout.h"
56 #include "varasm.h"
57 #include "except.h"
58 #include "dojump.h"
59 #include "explow.h"
60 #include "calls.h"
61 #include "expr.h"
62 #include "optabs-tree.h"
63 #include "output.h"
64 #include "langhooks.h"
65 #include "common/common-target.h"
66 #include "gimplify.h"
67 #include "tree-pass.h"
68 #include "cfgrtl.h"
69 #include "cfganal.h"
70 #include "cfgbuild.h"
71 #include "cfgcleanup.h"
72 #include "cfgexpand.h"
73 #include "shrink-wrap.h"
74 #include "toplev.h"
75 #include "rtl-iter.h"
76 #include "tree-dfa.h"
77 #include "tree-ssa.h"
78 #include "stringpool.h"
79 #include "attribs.h"
80 #include "gimple.h"
81 #include "options.h"
82 #include "function-abi.h"
83
84 /* So we can assign to cfun in this file. */
85 #undef cfun
86
87 #ifndef STACK_ALIGNMENT_NEEDED
88 #define STACK_ALIGNMENT_NEEDED 1
89 #endif
90
91 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
92
93 /* Round a value to the lowest integer less than it that is a multiple of
94 the required alignment. Avoid using division in case the value is
95 negative. Assume the alignment is a power of two. */
96 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
97
98 /* Similar, but round to the next highest integer that meets the
99 alignment. */
100 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
101
102 /* Nonzero once virtual register instantiation has been done.
103 assign_stack_local uses frame_pointer_rtx when this is nonzero.
104 calls.c:emit_library_call_value_1 uses it to set up
105 post-instantiation libcalls. */
106 int virtuals_instantiated;
107
108 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
109 static GTY(()) int funcdef_no;
110
111 /* These variables hold pointers to functions to create and destroy
112 target specific, per-function data structures. */
113 struct machine_function * (*init_machine_status) (void);
114
115 /* The currently compiled function. */
116 struct function *cfun = 0;
117
118 /* These hashes record the prologue and epilogue insns. */
119
120 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
121 {
122 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
123 static bool equal (rtx a, rtx b) { return a == b; }
124 };
125
126 static GTY((cache))
127 hash_table<insn_cache_hasher> *prologue_insn_hash;
128 static GTY((cache))
129 hash_table<insn_cache_hasher> *epilogue_insn_hash;
130 \f
131
132 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
133 vec<tree, va_gc> *types_used_by_cur_var_decl;
134
135 /* Forward declarations. */
136
137 static class temp_slot *find_temp_slot_from_address (rtx);
138 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
139 static void pad_below (struct args_size *, machine_mode, tree);
140 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
141 static int all_blocks (tree, tree *);
142 static tree *get_block_vector (tree, int *);
143 extern tree debug_find_var_in_block_tree (tree, tree);
144 /* We always define `record_insns' even if it's not used so that we
145 can always export `prologue_epilogue_contains'. */
146 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
147 ATTRIBUTE_UNUSED;
148 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
149 static void prepare_function_start (void);
150 static void do_clobber_return_reg (rtx, void *);
151 static void do_use_return_reg (rtx, void *);
152
153 \f
154 /* Stack of nested functions. */
155 /* Keep track of the cfun stack. */
156
157 static vec<function *> function_context_stack;
158
159 /* Save the current context for compilation of a nested function.
160 This is called from language-specific code. */
161
162 void
163 push_function_context (void)
164 {
165 if (cfun == 0)
166 allocate_struct_function (NULL, false);
167
168 function_context_stack.safe_push (cfun);
169 set_cfun (NULL);
170 }
171
172 /* Restore the last saved context, at the end of a nested function.
173 This function is called from language-specific code. */
174
175 void
176 pop_function_context (void)
177 {
178 struct function *p = function_context_stack.pop ();
179 set_cfun (p);
180 current_function_decl = p->decl;
181
182 /* Reset variables that have known state during rtx generation. */
183 virtuals_instantiated = 0;
184 generating_concat_p = 1;
185 }
186
187 /* Clear out all parts of the state in F that can safely be discarded
188 after the function has been parsed, but not compiled, to let
189 garbage collection reclaim the memory. */
190
191 void
192 free_after_parsing (struct function *f)
193 {
194 f->language = 0;
195 }
196
197 /* Clear out all parts of the state in F that can safely be discarded
198 after the function has been compiled, to let garbage collection
199 reclaim the memory. */
200
201 void
202 free_after_compilation (struct function *f)
203 {
204 prologue_insn_hash = NULL;
205 epilogue_insn_hash = NULL;
206
207 free (crtl->emit.regno_pointer_align);
208
209 memset (crtl, 0, sizeof (struct rtl_data));
210 f->eh = NULL;
211 f->machine = NULL;
212 f->cfg = NULL;
213 f->curr_properties &= ~PROP_cfg;
214
215 regno_reg_rtx = NULL;
216 }
217 \f
218 /* Return size needed for stack frame based on slots so far allocated.
219 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
220 the caller may have to do that. */
221
222 poly_int64
223 get_frame_size (void)
224 {
225 if (FRAME_GROWS_DOWNWARD)
226 return -frame_offset;
227 else
228 return frame_offset;
229 }
230
231 /* Issue an error message and return TRUE if frame OFFSET overflows in
232 the signed target pointer arithmetics for function FUNC. Otherwise
233 return FALSE. */
234
235 bool
236 frame_offset_overflow (poly_int64 offset, tree func)
237 {
238 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
239 unsigned HOST_WIDE_INT limit
240 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
241 /* Leave room for the fixed part of the frame. */
242 - 64 * UNITS_PER_WORD);
243
244 if (!coeffs_in_range_p (size, 0U, limit))
245 {
246 unsigned HOST_WIDE_INT hwisize;
247 if (size.is_constant (&hwisize))
248 error_at (DECL_SOURCE_LOCATION (func),
249 "total size of local objects %wu exceeds maximum %wu",
250 hwisize, limit);
251 else
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects exceeds maximum %wu",
254 limit);
255 return true;
256 }
257
258 return false;
259 }
260
261 /* Return the minimum spill slot alignment for a register of mode MODE. */
262
263 unsigned int
264 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
265 {
266 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
267 }
268
269 /* Return stack slot alignment in bits for TYPE and MODE. */
270
271 static unsigned int
272 get_stack_local_alignment (tree type, machine_mode mode)
273 {
274 unsigned int alignment;
275
276 if (mode == BLKmode)
277 alignment = BIGGEST_ALIGNMENT;
278 else
279 alignment = GET_MODE_ALIGNMENT (mode);
280
281 /* Allow the frond-end to (possibly) increase the alignment of this
282 stack slot. */
283 if (! type)
284 type = lang_hooks.types.type_for_mode (mode, 0);
285
286 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
287 }
288
289 /* Determine whether it is possible to fit a stack slot of size SIZE and
290 alignment ALIGNMENT into an area in the stack frame that starts at
291 frame offset START and has a length of LENGTH. If so, store the frame
292 offset to be used for the stack slot in *POFFSET and return true;
293 return false otherwise. This function will extend the frame size when
294 given a start/length pair that lies at the end of the frame. */
295
296 static bool
297 try_fit_stack_local (poly_int64 start, poly_int64 length,
298 poly_int64 size, unsigned int alignment,
299 poly_int64_pod *poffset)
300 {
301 poly_int64 this_frame_offset;
302 int frame_off, frame_alignment, frame_phase;
303
304 /* Calculate how many bytes the start of local variables is off from
305 stack alignment. */
306 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
307 frame_off = targetm.starting_frame_offset () % frame_alignment;
308 frame_phase = frame_off ? frame_alignment - frame_off : 0;
309
310 /* Round the frame offset to the specified alignment. */
311
312 if (FRAME_GROWS_DOWNWARD)
313 this_frame_offset
314 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
315 + frame_phase);
316 else
317 this_frame_offset
318 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
319
320 /* See if it fits. If this space is at the edge of the frame,
321 consider extending the frame to make it fit. Our caller relies on
322 this when allocating a new slot. */
323 if (maybe_lt (this_frame_offset, start))
324 {
325 if (known_eq (frame_offset, start))
326 frame_offset = this_frame_offset;
327 else
328 return false;
329 }
330 else if (maybe_gt (this_frame_offset + size, start + length))
331 {
332 if (known_eq (frame_offset, start + length))
333 frame_offset = this_frame_offset + size;
334 else
335 return false;
336 }
337
338 *poffset = this_frame_offset;
339 return true;
340 }
341
342 /* Create a new frame_space structure describing free space in the stack
343 frame beginning at START and ending at END, and chain it into the
344 function's frame_space_list. */
345
346 static void
347 add_frame_space (poly_int64 start, poly_int64 end)
348 {
349 class frame_space *space = ggc_alloc<frame_space> ();
350 space->next = crtl->frame_space_list;
351 crtl->frame_space_list = space;
352 space->start = start;
353 space->length = end - start;
354 }
355
356 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
357 with machine mode MODE.
358
359 ALIGN controls the amount of alignment for the address of the slot:
360 0 means according to MODE,
361 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
362 -2 means use BITS_PER_UNIT,
363 positive specifies alignment boundary in bits.
364
365 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
366 alignment and ASLK_RECORD_PAD bit set if we should remember
367 extra space we allocated for alignment purposes. When we are
368 called from assign_stack_temp_for_type, it is not set so we don't
369 track the same stack slot in two independent lists.
370
371 We do not round to stack_boundary here. */
372
373 rtx
374 assign_stack_local_1 (machine_mode mode, poly_int64 size,
375 int align, int kind)
376 {
377 rtx x, addr;
378 poly_int64 bigend_correction = 0;
379 poly_int64 slot_offset = 0, old_frame_offset;
380 unsigned int alignment, alignment_in_bits;
381
382 if (align == 0)
383 {
384 alignment = get_stack_local_alignment (NULL, mode);
385 alignment /= BITS_PER_UNIT;
386 }
387 else if (align == -1)
388 {
389 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
390 size = aligned_upper_bound (size, alignment);
391 }
392 else if (align == -2)
393 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
394 else
395 alignment = align / BITS_PER_UNIT;
396
397 alignment_in_bits = alignment * BITS_PER_UNIT;
398
399 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
400 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
401 {
402 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
403 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
404 }
405
406 if (SUPPORTS_STACK_ALIGNMENT)
407 {
408 if (crtl->stack_alignment_estimated < alignment_in_bits)
409 {
410 if (!crtl->stack_realign_processed)
411 crtl->stack_alignment_estimated = alignment_in_bits;
412 else
413 {
414 /* If stack is realigned and stack alignment value
415 hasn't been finalized, it is OK not to increase
416 stack_alignment_estimated. The bigger alignment
417 requirement is recorded in stack_alignment_needed
418 below. */
419 gcc_assert (!crtl->stack_realign_finalized);
420 if (!crtl->stack_realign_needed)
421 {
422 /* It is OK to reduce the alignment as long as the
423 requested size is 0 or the estimated stack
424 alignment >= mode alignment. */
425 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
426 || known_eq (size, 0)
427 || (crtl->stack_alignment_estimated
428 >= GET_MODE_ALIGNMENT (mode)));
429 alignment_in_bits = crtl->stack_alignment_estimated;
430 alignment = alignment_in_bits / BITS_PER_UNIT;
431 }
432 }
433 }
434 }
435
436 if (crtl->stack_alignment_needed < alignment_in_bits)
437 crtl->stack_alignment_needed = alignment_in_bits;
438 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
439 crtl->max_used_stack_slot_alignment = alignment_in_bits;
440
441 if (mode != BLKmode || maybe_ne (size, 0))
442 {
443 if (kind & ASLK_RECORD_PAD)
444 {
445 class frame_space **psp;
446
447 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
448 {
449 class frame_space *space = *psp;
450 if (!try_fit_stack_local (space->start, space->length, size,
451 alignment, &slot_offset))
452 continue;
453 *psp = space->next;
454 if (known_gt (slot_offset, space->start))
455 add_frame_space (space->start, slot_offset);
456 if (known_lt (slot_offset + size, space->start + space->length))
457 add_frame_space (slot_offset + size,
458 space->start + space->length);
459 goto found_space;
460 }
461 }
462 }
463 else if (!STACK_ALIGNMENT_NEEDED)
464 {
465 slot_offset = frame_offset;
466 goto found_space;
467 }
468
469 old_frame_offset = frame_offset;
470
471 if (FRAME_GROWS_DOWNWARD)
472 {
473 frame_offset -= size;
474 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
475
476 if (kind & ASLK_RECORD_PAD)
477 {
478 if (known_gt (slot_offset, frame_offset))
479 add_frame_space (frame_offset, slot_offset);
480 if (known_lt (slot_offset + size, old_frame_offset))
481 add_frame_space (slot_offset + size, old_frame_offset);
482 }
483 }
484 else
485 {
486 frame_offset += size;
487 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
488
489 if (kind & ASLK_RECORD_PAD)
490 {
491 if (known_gt (slot_offset, old_frame_offset))
492 add_frame_space (old_frame_offset, slot_offset);
493 if (known_lt (slot_offset + size, frame_offset))
494 add_frame_space (slot_offset + size, frame_offset);
495 }
496 }
497
498 found_space:
499 /* On a big-endian machine, if we are allocating more space than we will use,
500 use the least significant bytes of those that are allocated. */
501 if (mode != BLKmode)
502 {
503 /* The slot size can sometimes be smaller than the mode size;
504 e.g. the rs6000 port allocates slots with a vector mode
505 that have the size of only one element. However, the slot
506 size must always be ordered wrt to the mode size, in the
507 same way as for a subreg. */
508 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
509 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
510 bigend_correction = size - GET_MODE_SIZE (mode);
511 }
512
513 /* If we have already instantiated virtual registers, return the actual
514 address relative to the frame pointer. */
515 if (virtuals_instantiated)
516 addr = plus_constant (Pmode, frame_pointer_rtx,
517 trunc_int_for_mode
518 (slot_offset + bigend_correction
519 + targetm.starting_frame_offset (), Pmode));
520 else
521 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
522 trunc_int_for_mode
523 (slot_offset + bigend_correction,
524 Pmode));
525
526 x = gen_rtx_MEM (mode, addr);
527 set_mem_align (x, alignment_in_bits);
528 MEM_NOTRAP_P (x) = 1;
529
530 vec_safe_push (stack_slot_list, x);
531
532 if (frame_offset_overflow (frame_offset, current_function_decl))
533 frame_offset = 0;
534
535 return x;
536 }
537
538 /* Wrap up assign_stack_local_1 with last parameter as false. */
539
540 rtx
541 assign_stack_local (machine_mode mode, poly_int64 size, int align)
542 {
543 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
544 }
545 \f
546 /* In order to evaluate some expressions, such as function calls returning
547 structures in memory, we need to temporarily allocate stack locations.
548 We record each allocated temporary in the following structure.
549
550 Associated with each temporary slot is a nesting level. When we pop up
551 one level, all temporaries associated with the previous level are freed.
552 Normally, all temporaries are freed after the execution of the statement
553 in which they were created. However, if we are inside a ({...}) grouping,
554 the result may be in a temporary and hence must be preserved. If the
555 result could be in a temporary, we preserve it if we can determine which
556 one it is in. If we cannot determine which temporary may contain the
557 result, all temporaries are preserved. A temporary is preserved by
558 pretending it was allocated at the previous nesting level. */
559
560 class GTY(()) temp_slot {
561 public:
562 /* Points to next temporary slot. */
563 class temp_slot *next;
564 /* Points to previous temporary slot. */
565 class temp_slot *prev;
566 /* The rtx to used to reference the slot. */
567 rtx slot;
568 /* The size, in units, of the slot. */
569 poly_int64 size;
570 /* The type of the object in the slot, or zero if it doesn't correspond
571 to a type. We use this to determine whether a slot can be reused.
572 It can be reused if objects of the type of the new slot will always
573 conflict with objects of the type of the old slot. */
574 tree type;
575 /* The alignment (in bits) of the slot. */
576 unsigned int align;
577 /* Nonzero if this temporary is currently in use. */
578 char in_use;
579 /* Nesting level at which this slot is being used. */
580 int level;
581 /* The offset of the slot from the frame_pointer, including extra space
582 for alignment. This info is for combine_temp_slots. */
583 poly_int64 base_offset;
584 /* The size of the slot, including extra space for alignment. This
585 info is for combine_temp_slots. */
586 poly_int64 full_size;
587 };
588
589 /* Entry for the below hash table. */
590 struct GTY((for_user)) temp_slot_address_entry {
591 hashval_t hash;
592 rtx address;
593 class temp_slot *temp_slot;
594 };
595
596 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
597 {
598 static hashval_t hash (temp_slot_address_entry *);
599 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
600 };
601
602 /* A table of addresses that represent a stack slot. The table is a mapping
603 from address RTXen to a temp slot. */
604 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
605 static size_t n_temp_slots_in_use;
606
607 /* Removes temporary slot TEMP from LIST. */
608
609 static void
610 cut_slot_from_list (class temp_slot *temp, class temp_slot **list)
611 {
612 if (temp->next)
613 temp->next->prev = temp->prev;
614 if (temp->prev)
615 temp->prev->next = temp->next;
616 else
617 *list = temp->next;
618
619 temp->prev = temp->next = NULL;
620 }
621
622 /* Inserts temporary slot TEMP to LIST. */
623
624 static void
625 insert_slot_to_list (class temp_slot *temp, class temp_slot **list)
626 {
627 temp->next = *list;
628 if (*list)
629 (*list)->prev = temp;
630 temp->prev = NULL;
631 *list = temp;
632 }
633
634 /* Returns the list of used temp slots at LEVEL. */
635
636 static class temp_slot **
637 temp_slots_at_level (int level)
638 {
639 if (level >= (int) vec_safe_length (used_temp_slots))
640 vec_safe_grow_cleared (used_temp_slots, level + 1);
641
642 return &(*used_temp_slots)[level];
643 }
644
645 /* Returns the maximal temporary slot level. */
646
647 static int
648 max_slot_level (void)
649 {
650 if (!used_temp_slots)
651 return -1;
652
653 return used_temp_slots->length () - 1;
654 }
655
656 /* Moves temporary slot TEMP to LEVEL. */
657
658 static void
659 move_slot_to_level (class temp_slot *temp, int level)
660 {
661 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
662 insert_slot_to_list (temp, temp_slots_at_level (level));
663 temp->level = level;
664 }
665
666 /* Make temporary slot TEMP available. */
667
668 static void
669 make_slot_available (class temp_slot *temp)
670 {
671 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
672 insert_slot_to_list (temp, &avail_temp_slots);
673 temp->in_use = 0;
674 temp->level = -1;
675 n_temp_slots_in_use--;
676 }
677
678 /* Compute the hash value for an address -> temp slot mapping.
679 The value is cached on the mapping entry. */
680 static hashval_t
681 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
682 {
683 int do_not_record = 0;
684 return hash_rtx (t->address, GET_MODE (t->address),
685 &do_not_record, NULL, false);
686 }
687
688 /* Return the hash value for an address -> temp slot mapping. */
689 hashval_t
690 temp_address_hasher::hash (temp_slot_address_entry *t)
691 {
692 return t->hash;
693 }
694
695 /* Compare two address -> temp slot mapping entries. */
696 bool
697 temp_address_hasher::equal (temp_slot_address_entry *t1,
698 temp_slot_address_entry *t2)
699 {
700 return exp_equiv_p (t1->address, t2->address, 0, true);
701 }
702
703 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
704 static void
705 insert_temp_slot_address (rtx address, class temp_slot *temp_slot)
706 {
707 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
708 t->address = copy_rtx (address);
709 t->temp_slot = temp_slot;
710 t->hash = temp_slot_address_compute_hash (t);
711 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
712 }
713
714 /* Remove an address -> temp slot mapping entry if the temp slot is
715 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
716 int
717 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
718 {
719 const struct temp_slot_address_entry *t = *slot;
720 if (! t->temp_slot->in_use)
721 temp_slot_address_table->clear_slot (slot);
722 return 1;
723 }
724
725 /* Remove all mappings of addresses to unused temp slots. */
726 static void
727 remove_unused_temp_slot_addresses (void)
728 {
729 /* Use quicker clearing if there aren't any active temp slots. */
730 if (n_temp_slots_in_use)
731 temp_slot_address_table->traverse
732 <void *, remove_unused_temp_slot_addresses_1> (NULL);
733 else
734 temp_slot_address_table->empty ();
735 }
736
737 /* Find the temp slot corresponding to the object at address X. */
738
739 static class temp_slot *
740 find_temp_slot_from_address (rtx x)
741 {
742 class temp_slot *p;
743 struct temp_slot_address_entry tmp, *t;
744
745 /* First try the easy way:
746 See if X exists in the address -> temp slot mapping. */
747 tmp.address = x;
748 tmp.temp_slot = NULL;
749 tmp.hash = temp_slot_address_compute_hash (&tmp);
750 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
751 if (t)
752 return t->temp_slot;
753
754 /* If we have a sum involving a register, see if it points to a temp
755 slot. */
756 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
757 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
758 return p;
759 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
760 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
761 return p;
762
763 /* Last resort: Address is a virtual stack var address. */
764 poly_int64 offset;
765 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
766 {
767 int i;
768 for (i = max_slot_level (); i >= 0; i--)
769 for (p = *temp_slots_at_level (i); p; p = p->next)
770 if (known_in_range_p (offset, p->base_offset, p->full_size))
771 return p;
772 }
773
774 return NULL;
775 }
776 \f
777 /* Allocate a temporary stack slot and record it for possible later
778 reuse.
779
780 MODE is the machine mode to be given to the returned rtx.
781
782 SIZE is the size in units of the space required. We do no rounding here
783 since assign_stack_local will do any required rounding.
784
785 TYPE is the type that will be used for the stack slot. */
786
787 rtx
788 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
789 {
790 unsigned int align;
791 class temp_slot *p, *best_p = 0, *selected = NULL, **pp;
792 rtx slot;
793
794 gcc_assert (known_size_p (size));
795
796 align = get_stack_local_alignment (type, mode);
797
798 /* Try to find an available, already-allocated temporary of the proper
799 mode which meets the size and alignment requirements. Choose the
800 smallest one with the closest alignment.
801
802 If assign_stack_temp is called outside of the tree->rtl expansion,
803 we cannot reuse the stack slots (that may still refer to
804 VIRTUAL_STACK_VARS_REGNUM). */
805 if (!virtuals_instantiated)
806 {
807 for (p = avail_temp_slots; p; p = p->next)
808 {
809 if (p->align >= align
810 && known_ge (p->size, size)
811 && GET_MODE (p->slot) == mode
812 && objects_must_conflict_p (p->type, type)
813 && (best_p == 0
814 || (known_eq (best_p->size, p->size)
815 ? best_p->align > p->align
816 : known_ge (best_p->size, p->size))))
817 {
818 if (p->align == align && known_eq (p->size, size))
819 {
820 selected = p;
821 cut_slot_from_list (selected, &avail_temp_slots);
822 best_p = 0;
823 break;
824 }
825 best_p = p;
826 }
827 }
828 }
829
830 /* Make our best, if any, the one to use. */
831 if (best_p)
832 {
833 selected = best_p;
834 cut_slot_from_list (selected, &avail_temp_slots);
835
836 /* If there are enough aligned bytes left over, make them into a new
837 temp_slot so that the extra bytes don't get wasted. Do this only
838 for BLKmode slots, so that we can be sure of the alignment. */
839 if (GET_MODE (best_p->slot) == BLKmode)
840 {
841 int alignment = best_p->align / BITS_PER_UNIT;
842 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
843
844 if (known_ge (best_p->size - rounded_size, alignment))
845 {
846 p = ggc_alloc<temp_slot> ();
847 p->in_use = 0;
848 p->size = best_p->size - rounded_size;
849 p->base_offset = best_p->base_offset + rounded_size;
850 p->full_size = best_p->full_size - rounded_size;
851 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
852 p->align = best_p->align;
853 p->type = best_p->type;
854 insert_slot_to_list (p, &avail_temp_slots);
855
856 vec_safe_push (stack_slot_list, p->slot);
857
858 best_p->size = rounded_size;
859 best_p->full_size = rounded_size;
860 }
861 }
862 }
863
864 /* If we still didn't find one, make a new temporary. */
865 if (selected == 0)
866 {
867 poly_int64 frame_offset_old = frame_offset;
868
869 p = ggc_alloc<temp_slot> ();
870
871 /* We are passing an explicit alignment request to assign_stack_local.
872 One side effect of that is assign_stack_local will not round SIZE
873 to ensure the frame offset remains suitably aligned.
874
875 So for requests which depended on the rounding of SIZE, we go ahead
876 and round it now. We also make sure ALIGNMENT is at least
877 BIGGEST_ALIGNMENT. */
878 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
879 p->slot = assign_stack_local_1 (mode,
880 (mode == BLKmode
881 ? aligned_upper_bound (size,
882 (int) align
883 / BITS_PER_UNIT)
884 : size),
885 align, 0);
886
887 p->align = align;
888
889 /* The following slot size computation is necessary because we don't
890 know the actual size of the temporary slot until assign_stack_local
891 has performed all the frame alignment and size rounding for the
892 requested temporary. Note that extra space added for alignment
893 can be either above or below this stack slot depending on which
894 way the frame grows. We include the extra space if and only if it
895 is above this slot. */
896 if (FRAME_GROWS_DOWNWARD)
897 p->size = frame_offset_old - frame_offset;
898 else
899 p->size = size;
900
901 /* Now define the fields used by combine_temp_slots. */
902 if (FRAME_GROWS_DOWNWARD)
903 {
904 p->base_offset = frame_offset;
905 p->full_size = frame_offset_old - frame_offset;
906 }
907 else
908 {
909 p->base_offset = frame_offset_old;
910 p->full_size = frame_offset - frame_offset_old;
911 }
912
913 selected = p;
914 }
915
916 p = selected;
917 p->in_use = 1;
918 p->type = type;
919 p->level = temp_slot_level;
920 n_temp_slots_in_use++;
921
922 pp = temp_slots_at_level (p->level);
923 insert_slot_to_list (p, pp);
924 insert_temp_slot_address (XEXP (p->slot, 0), p);
925
926 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
927 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
928 vec_safe_push (stack_slot_list, slot);
929
930 /* If we know the alias set for the memory that will be used, use
931 it. If there's no TYPE, then we don't know anything about the
932 alias set for the memory. */
933 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
934 set_mem_align (slot, align);
935
936 /* If a type is specified, set the relevant flags. */
937 if (type != 0)
938 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
939 MEM_NOTRAP_P (slot) = 1;
940
941 return slot;
942 }
943
944 /* Allocate a temporary stack slot and record it for possible later
945 reuse. First two arguments are same as in preceding function. */
946
947 rtx
948 assign_stack_temp (machine_mode mode, poly_int64 size)
949 {
950 return assign_stack_temp_for_type (mode, size, NULL_TREE);
951 }
952 \f
953 /* Assign a temporary.
954 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
955 and so that should be used in error messages. In either case, we
956 allocate of the given type.
957 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
958 it is 0 if a register is OK.
959 DONT_PROMOTE is 1 if we should not promote values in register
960 to wider modes. */
961
962 rtx
963 assign_temp (tree type_or_decl, int memory_required,
964 int dont_promote ATTRIBUTE_UNUSED)
965 {
966 tree type, decl;
967 machine_mode mode;
968 #ifdef PROMOTE_MODE
969 int unsignedp;
970 #endif
971
972 if (DECL_P (type_or_decl))
973 decl = type_or_decl, type = TREE_TYPE (decl);
974 else
975 decl = NULL, type = type_or_decl;
976
977 mode = TYPE_MODE (type);
978 #ifdef PROMOTE_MODE
979 unsignedp = TYPE_UNSIGNED (type);
980 #endif
981
982 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
983 end. See also create_tmp_var for the gimplification-time check. */
984 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
985
986 if (mode == BLKmode || memory_required)
987 {
988 poly_int64 size;
989 rtx tmp;
990
991 /* Unfortunately, we don't yet know how to allocate variable-sized
992 temporaries. However, sometimes we can find a fixed upper limit on
993 the size, so try that instead. */
994 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
995 size = max_int_size_in_bytes (type);
996
997 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
998 problems with allocating the stack space. */
999 if (known_eq (size, 0))
1000 size = 1;
1001
1002 /* The size of the temporary may be too large to fit into an integer. */
1003 /* ??? Not sure this should happen except for user silliness, so limit
1004 this to things that aren't compiler-generated temporaries. The
1005 rest of the time we'll die in assign_stack_temp_for_type. */
1006 if (decl
1007 && !known_size_p (size)
1008 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1009 {
1010 error ("size of variable %q+D is too large", decl);
1011 size = 1;
1012 }
1013
1014 tmp = assign_stack_temp_for_type (mode, size, type);
1015 return tmp;
1016 }
1017
1018 #ifdef PROMOTE_MODE
1019 if (! dont_promote)
1020 mode = promote_mode (type, mode, &unsignedp);
1021 #endif
1022
1023 return gen_reg_rtx (mode);
1024 }
1025 \f
1026 /* Combine temporary stack slots which are adjacent on the stack.
1027
1028 This allows for better use of already allocated stack space. This is only
1029 done for BLKmode slots because we can be sure that we won't have alignment
1030 problems in this case. */
1031
1032 static void
1033 combine_temp_slots (void)
1034 {
1035 class temp_slot *p, *q, *next, *next_q;
1036 int num_slots;
1037
1038 /* We can't combine slots, because the information about which slot
1039 is in which alias set will be lost. */
1040 if (flag_strict_aliasing)
1041 return;
1042
1043 /* If there are a lot of temp slots, don't do anything unless
1044 high levels of optimization. */
1045 if (! flag_expensive_optimizations)
1046 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1047 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1048 return;
1049
1050 for (p = avail_temp_slots; p; p = next)
1051 {
1052 int delete_p = 0;
1053
1054 next = p->next;
1055
1056 if (GET_MODE (p->slot) != BLKmode)
1057 continue;
1058
1059 for (q = p->next; q; q = next_q)
1060 {
1061 int delete_q = 0;
1062
1063 next_q = q->next;
1064
1065 if (GET_MODE (q->slot) != BLKmode)
1066 continue;
1067
1068 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1069 {
1070 /* Q comes after P; combine Q into P. */
1071 p->size += q->size;
1072 p->full_size += q->full_size;
1073 delete_q = 1;
1074 }
1075 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1076 {
1077 /* P comes after Q; combine P into Q. */
1078 q->size += p->size;
1079 q->full_size += p->full_size;
1080 delete_p = 1;
1081 break;
1082 }
1083 if (delete_q)
1084 cut_slot_from_list (q, &avail_temp_slots);
1085 }
1086
1087 /* Either delete P or advance past it. */
1088 if (delete_p)
1089 cut_slot_from_list (p, &avail_temp_slots);
1090 }
1091 }
1092 \f
1093 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1094 slot that previously was known by OLD_RTX. */
1095
1096 void
1097 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1098 {
1099 class temp_slot *p;
1100
1101 if (rtx_equal_p (old_rtx, new_rtx))
1102 return;
1103
1104 p = find_temp_slot_from_address (old_rtx);
1105
1106 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1107 NEW_RTX is a register, see if one operand of the PLUS is a
1108 temporary location. If so, NEW_RTX points into it. Otherwise,
1109 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1110 in common between them. If so, try a recursive call on those
1111 values. */
1112 if (p == 0)
1113 {
1114 if (GET_CODE (old_rtx) != PLUS)
1115 return;
1116
1117 if (REG_P (new_rtx))
1118 {
1119 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1120 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1121 return;
1122 }
1123 else if (GET_CODE (new_rtx) != PLUS)
1124 return;
1125
1126 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1127 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1128 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1129 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1130 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1131 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1132 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1133 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1134
1135 return;
1136 }
1137
1138 /* Otherwise add an alias for the temp's address. */
1139 insert_temp_slot_address (new_rtx, p);
1140 }
1141
1142 /* If X could be a reference to a temporary slot, mark that slot as
1143 belonging to the to one level higher than the current level. If X
1144 matched one of our slots, just mark that one. Otherwise, we can't
1145 easily predict which it is, so upgrade all of them.
1146
1147 This is called when an ({...}) construct occurs and a statement
1148 returns a value in memory. */
1149
1150 void
1151 preserve_temp_slots (rtx x)
1152 {
1153 class temp_slot *p = 0, *next;
1154
1155 if (x == 0)
1156 return;
1157
1158 /* If X is a register that is being used as a pointer, see if we have
1159 a temporary slot we know it points to. */
1160 if (REG_P (x) && REG_POINTER (x))
1161 p = find_temp_slot_from_address (x);
1162
1163 /* If X is not in memory or is at a constant address, it cannot be in
1164 a temporary slot. */
1165 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1166 return;
1167
1168 /* First see if we can find a match. */
1169 if (p == 0)
1170 p = find_temp_slot_from_address (XEXP (x, 0));
1171
1172 if (p != 0)
1173 {
1174 if (p->level == temp_slot_level)
1175 move_slot_to_level (p, temp_slot_level - 1);
1176 return;
1177 }
1178
1179 /* Otherwise, preserve all non-kept slots at this level. */
1180 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1181 {
1182 next = p->next;
1183 move_slot_to_level (p, temp_slot_level - 1);
1184 }
1185 }
1186
1187 /* Free all temporaries used so far. This is normally called at the
1188 end of generating code for a statement. */
1189
1190 void
1191 free_temp_slots (void)
1192 {
1193 class temp_slot *p, *next;
1194 bool some_available = false;
1195
1196 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1197 {
1198 next = p->next;
1199 make_slot_available (p);
1200 some_available = true;
1201 }
1202
1203 if (some_available)
1204 {
1205 remove_unused_temp_slot_addresses ();
1206 combine_temp_slots ();
1207 }
1208 }
1209
1210 /* Push deeper into the nesting level for stack temporaries. */
1211
1212 void
1213 push_temp_slots (void)
1214 {
1215 temp_slot_level++;
1216 }
1217
1218 /* Pop a temporary nesting level. All slots in use in the current level
1219 are freed. */
1220
1221 void
1222 pop_temp_slots (void)
1223 {
1224 free_temp_slots ();
1225 temp_slot_level--;
1226 }
1227
1228 /* Initialize temporary slots. */
1229
1230 void
1231 init_temp_slots (void)
1232 {
1233 /* We have not allocated any temporaries yet. */
1234 avail_temp_slots = 0;
1235 vec_alloc (used_temp_slots, 0);
1236 temp_slot_level = 0;
1237 n_temp_slots_in_use = 0;
1238
1239 /* Set up the table to map addresses to temp slots. */
1240 if (! temp_slot_address_table)
1241 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1242 else
1243 temp_slot_address_table->empty ();
1244 }
1245 \f
1246 /* Functions and data structures to keep track of the values hard regs
1247 had at the start of the function. */
1248
1249 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1250 and has_hard_reg_initial_val.. */
1251 struct GTY(()) initial_value_pair {
1252 rtx hard_reg;
1253 rtx pseudo;
1254 };
1255 /* ??? This could be a VEC but there is currently no way to define an
1256 opaque VEC type. This could be worked around by defining struct
1257 initial_value_pair in function.h. */
1258 struct GTY(()) initial_value_struct {
1259 int num_entries;
1260 int max_entries;
1261 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1262 };
1263
1264 /* If a pseudo represents an initial hard reg (or expression), return
1265 it, else return NULL_RTX. */
1266
1267 rtx
1268 get_hard_reg_initial_reg (rtx reg)
1269 {
1270 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1271 int i;
1272
1273 if (ivs == 0)
1274 return NULL_RTX;
1275
1276 for (i = 0; i < ivs->num_entries; i++)
1277 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1278 return ivs->entries[i].hard_reg;
1279
1280 return NULL_RTX;
1281 }
1282
1283 /* Make sure that there's a pseudo register of mode MODE that stores the
1284 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1285
1286 rtx
1287 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1288 {
1289 struct initial_value_struct *ivs;
1290 rtx rv;
1291
1292 rv = has_hard_reg_initial_val (mode, regno);
1293 if (rv)
1294 return rv;
1295
1296 ivs = crtl->hard_reg_initial_vals;
1297 if (ivs == 0)
1298 {
1299 ivs = ggc_alloc<initial_value_struct> ();
1300 ivs->num_entries = 0;
1301 ivs->max_entries = 5;
1302 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1303 crtl->hard_reg_initial_vals = ivs;
1304 }
1305
1306 if (ivs->num_entries >= ivs->max_entries)
1307 {
1308 ivs->max_entries += 5;
1309 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1310 ivs->max_entries);
1311 }
1312
1313 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1314 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1315
1316 return ivs->entries[ivs->num_entries++].pseudo;
1317 }
1318
1319 /* See if get_hard_reg_initial_val has been used to create a pseudo
1320 for the initial value of hard register REGNO in mode MODE. Return
1321 the associated pseudo if so, otherwise return NULL. */
1322
1323 rtx
1324 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1325 {
1326 struct initial_value_struct *ivs;
1327 int i;
1328
1329 ivs = crtl->hard_reg_initial_vals;
1330 if (ivs != 0)
1331 for (i = 0; i < ivs->num_entries; i++)
1332 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1333 && REGNO (ivs->entries[i].hard_reg) == regno)
1334 return ivs->entries[i].pseudo;
1335
1336 return NULL_RTX;
1337 }
1338
1339 unsigned int
1340 emit_initial_value_sets (void)
1341 {
1342 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1343 int i;
1344 rtx_insn *seq;
1345
1346 if (ivs == 0)
1347 return 0;
1348
1349 start_sequence ();
1350 for (i = 0; i < ivs->num_entries; i++)
1351 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1352 seq = get_insns ();
1353 end_sequence ();
1354
1355 emit_insn_at_entry (seq);
1356 return 0;
1357 }
1358
1359 /* Return the hardreg-pseudoreg initial values pair entry I and
1360 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1361 bool
1362 initial_value_entry (int i, rtx *hreg, rtx *preg)
1363 {
1364 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1365 if (!ivs || i >= ivs->num_entries)
1366 return false;
1367
1368 *hreg = ivs->entries[i].hard_reg;
1369 *preg = ivs->entries[i].pseudo;
1370 return true;
1371 }
1372 \f
1373 /* These routines are responsible for converting virtual register references
1374 to the actual hard register references once RTL generation is complete.
1375
1376 The following four variables are used for communication between the
1377 routines. They contain the offsets of the virtual registers from their
1378 respective hard registers. */
1379
1380 static poly_int64 in_arg_offset;
1381 static poly_int64 var_offset;
1382 static poly_int64 dynamic_offset;
1383 static poly_int64 out_arg_offset;
1384 static poly_int64 cfa_offset;
1385
1386 /* In most machines, the stack pointer register is equivalent to the bottom
1387 of the stack. */
1388
1389 #ifndef STACK_POINTER_OFFSET
1390 #define STACK_POINTER_OFFSET 0
1391 #endif
1392
1393 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1394 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1395 #endif
1396
1397 /* If not defined, pick an appropriate default for the offset of dynamically
1398 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1399 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1400
1401 #ifndef STACK_DYNAMIC_OFFSET
1402
1403 /* The bottom of the stack points to the actual arguments. If
1404 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1405 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1406 stack space for register parameters is not pushed by the caller, but
1407 rather part of the fixed stack areas and hence not included in
1408 `crtl->outgoing_args_size'. Nevertheless, we must allow
1409 for it when allocating stack dynamic objects. */
1410
1411 #ifdef INCOMING_REG_PARM_STACK_SPACE
1412 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1413 ((ACCUMULATE_OUTGOING_ARGS \
1414 ? (crtl->outgoing_args_size \
1415 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1416 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1417 : 0) + (STACK_POINTER_OFFSET))
1418 #else
1419 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1420 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1421 + (STACK_POINTER_OFFSET))
1422 #endif
1423 #endif
1424
1425 \f
1426 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1427 is a virtual register, return the equivalent hard register and set the
1428 offset indirectly through the pointer. Otherwise, return 0. */
1429
1430 static rtx
1431 instantiate_new_reg (rtx x, poly_int64_pod *poffset)
1432 {
1433 rtx new_rtx;
1434 poly_int64 offset;
1435
1436 if (x == virtual_incoming_args_rtx)
1437 {
1438 if (stack_realign_drap)
1439 {
1440 /* Replace virtual_incoming_args_rtx with internal arg
1441 pointer if DRAP is used to realign stack. */
1442 new_rtx = crtl->args.internal_arg_pointer;
1443 offset = 0;
1444 }
1445 else
1446 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1447 }
1448 else if (x == virtual_stack_vars_rtx)
1449 new_rtx = frame_pointer_rtx, offset = var_offset;
1450 else if (x == virtual_stack_dynamic_rtx)
1451 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1452 else if (x == virtual_outgoing_args_rtx)
1453 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1454 else if (x == virtual_cfa_rtx)
1455 {
1456 #ifdef FRAME_POINTER_CFA_OFFSET
1457 new_rtx = frame_pointer_rtx;
1458 #else
1459 new_rtx = arg_pointer_rtx;
1460 #endif
1461 offset = cfa_offset;
1462 }
1463 else if (x == virtual_preferred_stack_boundary_rtx)
1464 {
1465 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1466 offset = 0;
1467 }
1468 else
1469 return NULL_RTX;
1470
1471 *poffset = offset;
1472 return new_rtx;
1473 }
1474
1475 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1476 registers present inside of *LOC. The expression is simplified,
1477 as much as possible, but is not to be considered "valid" in any sense
1478 implied by the target. Return true if any change is made. */
1479
1480 static bool
1481 instantiate_virtual_regs_in_rtx (rtx *loc)
1482 {
1483 if (!*loc)
1484 return false;
1485 bool changed = false;
1486 subrtx_ptr_iterator::array_type array;
1487 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1488 {
1489 rtx *loc = *iter;
1490 if (rtx x = *loc)
1491 {
1492 rtx new_rtx;
1493 poly_int64 offset;
1494 switch (GET_CODE (x))
1495 {
1496 case REG:
1497 new_rtx = instantiate_new_reg (x, &offset);
1498 if (new_rtx)
1499 {
1500 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1501 changed = true;
1502 }
1503 iter.skip_subrtxes ();
1504 break;
1505
1506 case PLUS:
1507 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1508 if (new_rtx)
1509 {
1510 XEXP (x, 0) = new_rtx;
1511 *loc = plus_constant (GET_MODE (x), x, offset, true);
1512 changed = true;
1513 iter.skip_subrtxes ();
1514 break;
1515 }
1516
1517 /* FIXME -- from old code */
1518 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1519 we can commute the PLUS and SUBREG because pointers into the
1520 frame are well-behaved. */
1521 break;
1522
1523 default:
1524 break;
1525 }
1526 }
1527 }
1528 return changed;
1529 }
1530
1531 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1532 matches the predicate for insn CODE operand OPERAND. */
1533
1534 static int
1535 safe_insn_predicate (int code, int operand, rtx x)
1536 {
1537 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1538 }
1539
1540 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1541 registers present inside of insn. The result will be a valid insn. */
1542
1543 static void
1544 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1545 {
1546 poly_int64 offset;
1547 int insn_code, i;
1548 bool any_change = false;
1549 rtx set, new_rtx, x;
1550 rtx_insn *seq;
1551
1552 /* There are some special cases to be handled first. */
1553 set = single_set (insn);
1554 if (set)
1555 {
1556 /* We're allowed to assign to a virtual register. This is interpreted
1557 to mean that the underlying register gets assigned the inverse
1558 transformation. This is used, for example, in the handling of
1559 non-local gotos. */
1560 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1561 if (new_rtx)
1562 {
1563 start_sequence ();
1564
1565 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1566 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1567 gen_int_mode (-offset, GET_MODE (new_rtx)));
1568 x = force_operand (x, new_rtx);
1569 if (x != new_rtx)
1570 emit_move_insn (new_rtx, x);
1571
1572 seq = get_insns ();
1573 end_sequence ();
1574
1575 emit_insn_before (seq, insn);
1576 delete_insn (insn);
1577 return;
1578 }
1579
1580 /* Handle a straight copy from a virtual register by generating a
1581 new add insn. The difference between this and falling through
1582 to the generic case is avoiding a new pseudo and eliminating a
1583 move insn in the initial rtl stream. */
1584 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1585 if (new_rtx
1586 && maybe_ne (offset, 0)
1587 && REG_P (SET_DEST (set))
1588 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1589 {
1590 start_sequence ();
1591
1592 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1593 gen_int_mode (offset,
1594 GET_MODE (SET_DEST (set))),
1595 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1596 if (x != SET_DEST (set))
1597 emit_move_insn (SET_DEST (set), x);
1598
1599 seq = get_insns ();
1600 end_sequence ();
1601
1602 emit_insn_before (seq, insn);
1603 delete_insn (insn);
1604 return;
1605 }
1606
1607 extract_insn (insn);
1608 insn_code = INSN_CODE (insn);
1609
1610 /* Handle a plus involving a virtual register by determining if the
1611 operands remain valid if they're modified in place. */
1612 poly_int64 delta;
1613 if (GET_CODE (SET_SRC (set)) == PLUS
1614 && recog_data.n_operands >= 3
1615 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1616 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1617 && poly_int_rtx_p (recog_data.operand[2], &delta)
1618 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1619 {
1620 offset += delta;
1621
1622 /* If the sum is zero, then replace with a plain move. */
1623 if (known_eq (offset, 0)
1624 && REG_P (SET_DEST (set))
1625 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1626 {
1627 start_sequence ();
1628 emit_move_insn (SET_DEST (set), new_rtx);
1629 seq = get_insns ();
1630 end_sequence ();
1631
1632 emit_insn_before (seq, insn);
1633 delete_insn (insn);
1634 return;
1635 }
1636
1637 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1638
1639 /* Using validate_change and apply_change_group here leaves
1640 recog_data in an invalid state. Since we know exactly what
1641 we want to check, do those two by hand. */
1642 if (safe_insn_predicate (insn_code, 1, new_rtx)
1643 && safe_insn_predicate (insn_code, 2, x))
1644 {
1645 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1646 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1647 any_change = true;
1648
1649 /* Fall through into the regular operand fixup loop in
1650 order to take care of operands other than 1 and 2. */
1651 }
1652 }
1653 }
1654 else
1655 {
1656 extract_insn (insn);
1657 insn_code = INSN_CODE (insn);
1658 }
1659
1660 /* In the general case, we expect virtual registers to appear only in
1661 operands, and then only as either bare registers or inside memories. */
1662 for (i = 0; i < recog_data.n_operands; ++i)
1663 {
1664 x = recog_data.operand[i];
1665 switch (GET_CODE (x))
1666 {
1667 case MEM:
1668 {
1669 rtx addr = XEXP (x, 0);
1670
1671 if (!instantiate_virtual_regs_in_rtx (&addr))
1672 continue;
1673
1674 start_sequence ();
1675 x = replace_equiv_address (x, addr, true);
1676 /* It may happen that the address with the virtual reg
1677 was valid (e.g. based on the virtual stack reg, which might
1678 be acceptable to the predicates with all offsets), whereas
1679 the address now isn't anymore, for instance when the address
1680 is still offsetted, but the base reg isn't virtual-stack-reg
1681 anymore. Below we would do a force_reg on the whole operand,
1682 but this insn might actually only accept memory. Hence,
1683 before doing that last resort, try to reload the address into
1684 a register, so this operand stays a MEM. */
1685 if (!safe_insn_predicate (insn_code, i, x))
1686 {
1687 addr = force_reg (GET_MODE (addr), addr);
1688 x = replace_equiv_address (x, addr, true);
1689 }
1690 seq = get_insns ();
1691 end_sequence ();
1692 if (seq)
1693 emit_insn_before (seq, insn);
1694 }
1695 break;
1696
1697 case REG:
1698 new_rtx = instantiate_new_reg (x, &offset);
1699 if (new_rtx == NULL)
1700 continue;
1701 if (known_eq (offset, 0))
1702 x = new_rtx;
1703 else
1704 {
1705 start_sequence ();
1706
1707 /* Careful, special mode predicates may have stuff in
1708 insn_data[insn_code].operand[i].mode that isn't useful
1709 to us for computing a new value. */
1710 /* ??? Recognize address_operand and/or "p" constraints
1711 to see if (plus new offset) is a valid before we put
1712 this through expand_simple_binop. */
1713 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1714 gen_int_mode (offset, GET_MODE (x)),
1715 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1716 seq = get_insns ();
1717 end_sequence ();
1718 emit_insn_before (seq, insn);
1719 }
1720 break;
1721
1722 case SUBREG:
1723 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1724 if (new_rtx == NULL)
1725 continue;
1726 if (maybe_ne (offset, 0))
1727 {
1728 start_sequence ();
1729 new_rtx = expand_simple_binop
1730 (GET_MODE (new_rtx), PLUS, new_rtx,
1731 gen_int_mode (offset, GET_MODE (new_rtx)),
1732 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1733 seq = get_insns ();
1734 end_sequence ();
1735 emit_insn_before (seq, insn);
1736 }
1737 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1738 GET_MODE (new_rtx), SUBREG_BYTE (x));
1739 gcc_assert (x);
1740 break;
1741
1742 default:
1743 continue;
1744 }
1745
1746 /* At this point, X contains the new value for the operand.
1747 Validate the new value vs the insn predicate. Note that
1748 asm insns will have insn_code -1 here. */
1749 if (!safe_insn_predicate (insn_code, i, x))
1750 {
1751 start_sequence ();
1752 if (REG_P (x))
1753 {
1754 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1755 x = copy_to_reg (x);
1756 }
1757 else
1758 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1759 seq = get_insns ();
1760 end_sequence ();
1761 if (seq)
1762 emit_insn_before (seq, insn);
1763 }
1764
1765 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1766 any_change = true;
1767 }
1768
1769 if (any_change)
1770 {
1771 /* Propagate operand changes into the duplicates. */
1772 for (i = 0; i < recog_data.n_dups; ++i)
1773 *recog_data.dup_loc[i]
1774 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1775
1776 /* Force re-recognition of the instruction for validation. */
1777 INSN_CODE (insn) = -1;
1778 }
1779
1780 if (asm_noperands (PATTERN (insn)) >= 0)
1781 {
1782 if (!check_asm_operands (PATTERN (insn)))
1783 {
1784 error_for_asm (insn, "impossible constraint in %<asm%>");
1785 /* For asm goto, instead of fixing up all the edges
1786 just clear the template and clear input operands
1787 (asm goto doesn't have any output operands). */
1788 if (JUMP_P (insn))
1789 {
1790 rtx asm_op = extract_asm_operands (PATTERN (insn));
1791 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1792 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1793 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1794 }
1795 else
1796 delete_insn (insn);
1797 }
1798 }
1799 else
1800 {
1801 if (recog_memoized (insn) < 0)
1802 fatal_insn_not_found (insn);
1803 }
1804 }
1805
1806 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1807 do any instantiation required. */
1808
1809 void
1810 instantiate_decl_rtl (rtx x)
1811 {
1812 rtx addr;
1813
1814 if (x == 0)
1815 return;
1816
1817 /* If this is a CONCAT, recurse for the pieces. */
1818 if (GET_CODE (x) == CONCAT)
1819 {
1820 instantiate_decl_rtl (XEXP (x, 0));
1821 instantiate_decl_rtl (XEXP (x, 1));
1822 return;
1823 }
1824
1825 /* If this is not a MEM, no need to do anything. Similarly if the
1826 address is a constant or a register that is not a virtual register. */
1827 if (!MEM_P (x))
1828 return;
1829
1830 addr = XEXP (x, 0);
1831 if (CONSTANT_P (addr)
1832 || (REG_P (addr)
1833 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1834 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1835 return;
1836
1837 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1838 }
1839
1840 /* Helper for instantiate_decls called via walk_tree: Process all decls
1841 in the given DECL_VALUE_EXPR. */
1842
1843 static tree
1844 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1845 {
1846 tree t = *tp;
1847 if (! EXPR_P (t))
1848 {
1849 *walk_subtrees = 0;
1850 if (DECL_P (t))
1851 {
1852 if (DECL_RTL_SET_P (t))
1853 instantiate_decl_rtl (DECL_RTL (t));
1854 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1855 && DECL_INCOMING_RTL (t))
1856 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1857 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1858 && DECL_HAS_VALUE_EXPR_P (t))
1859 {
1860 tree v = DECL_VALUE_EXPR (t);
1861 walk_tree (&v, instantiate_expr, NULL, NULL);
1862 }
1863 }
1864 }
1865 return NULL;
1866 }
1867
1868 /* Subroutine of instantiate_decls: Process all decls in the given
1869 BLOCK node and all its subblocks. */
1870
1871 static void
1872 instantiate_decls_1 (tree let)
1873 {
1874 tree t;
1875
1876 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1877 {
1878 if (DECL_RTL_SET_P (t))
1879 instantiate_decl_rtl (DECL_RTL (t));
1880 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1881 {
1882 tree v = DECL_VALUE_EXPR (t);
1883 walk_tree (&v, instantiate_expr, NULL, NULL);
1884 }
1885 }
1886
1887 /* Process all subblocks. */
1888 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1889 instantiate_decls_1 (t);
1890 }
1891
1892 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1893 all virtual registers in their DECL_RTL's. */
1894
1895 static void
1896 instantiate_decls (tree fndecl)
1897 {
1898 tree decl;
1899 unsigned ix;
1900
1901 /* Process all parameters of the function. */
1902 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1903 {
1904 instantiate_decl_rtl (DECL_RTL (decl));
1905 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1906 if (DECL_HAS_VALUE_EXPR_P (decl))
1907 {
1908 tree v = DECL_VALUE_EXPR (decl);
1909 walk_tree (&v, instantiate_expr, NULL, NULL);
1910 }
1911 }
1912
1913 if ((decl = DECL_RESULT (fndecl))
1914 && TREE_CODE (decl) == RESULT_DECL)
1915 {
1916 if (DECL_RTL_SET_P (decl))
1917 instantiate_decl_rtl (DECL_RTL (decl));
1918 if (DECL_HAS_VALUE_EXPR_P (decl))
1919 {
1920 tree v = DECL_VALUE_EXPR (decl);
1921 walk_tree (&v, instantiate_expr, NULL, NULL);
1922 }
1923 }
1924
1925 /* Process the saved static chain if it exists. */
1926 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1927 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1928 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1929
1930 /* Now process all variables defined in the function or its subblocks. */
1931 if (DECL_INITIAL (fndecl))
1932 instantiate_decls_1 (DECL_INITIAL (fndecl));
1933
1934 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1935 if (DECL_RTL_SET_P (decl))
1936 instantiate_decl_rtl (DECL_RTL (decl));
1937 vec_free (cfun->local_decls);
1938 }
1939
1940 /* Pass through the INSNS of function FNDECL and convert virtual register
1941 references to hard register references. */
1942
1943 static unsigned int
1944 instantiate_virtual_regs (void)
1945 {
1946 rtx_insn *insn;
1947
1948 /* Compute the offsets to use for this function. */
1949 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1950 var_offset = targetm.starting_frame_offset ();
1951 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1952 out_arg_offset = STACK_POINTER_OFFSET;
1953 #ifdef FRAME_POINTER_CFA_OFFSET
1954 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1955 #else
1956 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1957 #endif
1958
1959 /* Initialize recognition, indicating that volatile is OK. */
1960 init_recog ();
1961
1962 /* Scan through all the insns, instantiating every virtual register still
1963 present. */
1964 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1965 if (INSN_P (insn))
1966 {
1967 /* These patterns in the instruction stream can never be recognized.
1968 Fortunately, they shouldn't contain virtual registers either. */
1969 if (GET_CODE (PATTERN (insn)) == USE
1970 || GET_CODE (PATTERN (insn)) == CLOBBER
1971 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1972 || DEBUG_MARKER_INSN_P (insn))
1973 continue;
1974 else if (DEBUG_BIND_INSN_P (insn))
1975 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1976 else
1977 instantiate_virtual_regs_in_insn (insn);
1978
1979 if (insn->deleted ())
1980 continue;
1981
1982 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1983
1984 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1985 if (CALL_P (insn))
1986 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1987 }
1988
1989 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1990 instantiate_decls (current_function_decl);
1991
1992 targetm.instantiate_decls ();
1993
1994 /* Indicate that, from now on, assign_stack_local should use
1995 frame_pointer_rtx. */
1996 virtuals_instantiated = 1;
1997
1998 return 0;
1999 }
2000
2001 namespace {
2002
2003 const pass_data pass_data_instantiate_virtual_regs =
2004 {
2005 RTL_PASS, /* type */
2006 "vregs", /* name */
2007 OPTGROUP_NONE, /* optinfo_flags */
2008 TV_NONE, /* tv_id */
2009 0, /* properties_required */
2010 0, /* properties_provided */
2011 0, /* properties_destroyed */
2012 0, /* todo_flags_start */
2013 0, /* todo_flags_finish */
2014 };
2015
2016 class pass_instantiate_virtual_regs : public rtl_opt_pass
2017 {
2018 public:
2019 pass_instantiate_virtual_regs (gcc::context *ctxt)
2020 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2021 {}
2022
2023 /* opt_pass methods: */
2024 virtual unsigned int execute (function *)
2025 {
2026 return instantiate_virtual_regs ();
2027 }
2028
2029 }; // class pass_instantiate_virtual_regs
2030
2031 } // anon namespace
2032
2033 rtl_opt_pass *
2034 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2035 {
2036 return new pass_instantiate_virtual_regs (ctxt);
2037 }
2038
2039 \f
2040 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2041 This means a type for which function calls must pass an address to the
2042 function or get an address back from the function.
2043 EXP may be a type node or an expression (whose type is tested). */
2044
2045 int
2046 aggregate_value_p (const_tree exp, const_tree fntype)
2047 {
2048 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2049 int i, regno, nregs;
2050 rtx reg;
2051
2052 if (fntype)
2053 switch (TREE_CODE (fntype))
2054 {
2055 case CALL_EXPR:
2056 {
2057 tree fndecl = get_callee_fndecl (fntype);
2058 if (fndecl)
2059 fntype = TREE_TYPE (fndecl);
2060 else if (CALL_EXPR_FN (fntype))
2061 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2062 else
2063 /* For internal functions, assume nothing needs to be
2064 returned in memory. */
2065 return 0;
2066 }
2067 break;
2068 case FUNCTION_DECL:
2069 fntype = TREE_TYPE (fntype);
2070 break;
2071 case FUNCTION_TYPE:
2072 case METHOD_TYPE:
2073 break;
2074 case IDENTIFIER_NODE:
2075 fntype = NULL_TREE;
2076 break;
2077 default:
2078 /* We don't expect other tree types here. */
2079 gcc_unreachable ();
2080 }
2081
2082 if (VOID_TYPE_P (type))
2083 return 0;
2084
2085 /* If a record should be passed the same as its first (and only) member
2086 don't pass it as an aggregate. */
2087 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2088 return aggregate_value_p (first_field (type), fntype);
2089
2090 /* If the front end has decided that this needs to be passed by
2091 reference, do so. */
2092 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2093 && DECL_BY_REFERENCE (exp))
2094 return 1;
2095
2096 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2097 if (fntype && TREE_ADDRESSABLE (fntype))
2098 return 1;
2099
2100 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2101 and thus can't be returned in registers. */
2102 if (TREE_ADDRESSABLE (type))
2103 return 1;
2104
2105 if (TYPE_EMPTY_P (type))
2106 return 0;
2107
2108 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2109 return 1;
2110
2111 if (targetm.calls.return_in_memory (type, fntype))
2112 return 1;
2113
2114 /* Make sure we have suitable call-clobbered regs to return
2115 the value in; if not, we must return it in memory. */
2116 reg = hard_function_value (type, 0, fntype, 0);
2117
2118 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2119 it is OK. */
2120 if (!REG_P (reg))
2121 return 0;
2122
2123 /* Use the default ABI if the type of the function isn't known.
2124 The scheme for handling interoperability between different ABIs
2125 requires us to be able to tell when we're calling a function with
2126 a nondefault ABI. */
2127 const predefined_function_abi &abi = (fntype
2128 ? fntype_abi (fntype)
2129 : default_function_abi);
2130 regno = REGNO (reg);
2131 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2132 for (i = 0; i < nregs; i++)
2133 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno + i))
2134 return 1;
2135
2136 return 0;
2137 }
2138 \f
2139 /* Return true if we should assign DECL a pseudo register; false if it
2140 should live on the local stack. */
2141
2142 bool
2143 use_register_for_decl (const_tree decl)
2144 {
2145 if (TREE_CODE (decl) == SSA_NAME)
2146 {
2147 /* We often try to use the SSA_NAME, instead of its underlying
2148 decl, to get type information and guide decisions, to avoid
2149 differences of behavior between anonymous and named
2150 variables, but in this one case we have to go for the actual
2151 variable if there is one. The main reason is that, at least
2152 at -O0, we want to place user variables on the stack, but we
2153 don't mind using pseudos for anonymous or ignored temps.
2154 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2155 should go in pseudos, whereas their corresponding variables
2156 might have to go on the stack. So, disregarding the decl
2157 here would negatively impact debug info at -O0, enable
2158 coalescing between SSA_NAMEs that ought to get different
2159 stack/pseudo assignments, and get the incoming argument
2160 processing thoroughly confused by PARM_DECLs expected to live
2161 in stack slots but assigned to pseudos. */
2162 if (!SSA_NAME_VAR (decl))
2163 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2164 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2165
2166 decl = SSA_NAME_VAR (decl);
2167 }
2168
2169 /* Honor volatile. */
2170 if (TREE_SIDE_EFFECTS (decl))
2171 return false;
2172
2173 /* Honor addressability. */
2174 if (TREE_ADDRESSABLE (decl))
2175 return false;
2176
2177 /* RESULT_DECLs are a bit special in that they're assigned without
2178 regard to use_register_for_decl, but we generally only store in
2179 them. If we coalesce their SSA NAMEs, we'd better return a
2180 result that matches the assignment in expand_function_start. */
2181 if (TREE_CODE (decl) == RESULT_DECL)
2182 {
2183 /* If it's not an aggregate, we're going to use a REG or a
2184 PARALLEL containing a REG. */
2185 if (!aggregate_value_p (decl, current_function_decl))
2186 return true;
2187
2188 /* If expand_function_start determines the return value, we'll
2189 use MEM if it's not by reference. */
2190 if (cfun->returns_pcc_struct
2191 || (targetm.calls.struct_value_rtx
2192 (TREE_TYPE (current_function_decl), 1)))
2193 return DECL_BY_REFERENCE (decl);
2194
2195 /* Otherwise, we're taking an extra all.function_result_decl
2196 argument. It's set up in assign_parms_augmented_arg_list,
2197 under the (negated) conditions above, and then it's used to
2198 set up the RESULT_DECL rtl in assign_params, after looping
2199 over all parameters. Now, if the RESULT_DECL is not by
2200 reference, we'll use a MEM either way. */
2201 if (!DECL_BY_REFERENCE (decl))
2202 return false;
2203
2204 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2205 the function_result_decl's assignment. Since it's a pointer,
2206 we can short-circuit a number of the tests below, and we must
2207 duplicat e them because we don't have the
2208 function_result_decl to test. */
2209 if (!targetm.calls.allocate_stack_slots_for_args ())
2210 return true;
2211 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2212 if (optimize)
2213 return true;
2214 /* We don't set DECL_REGISTER for the function_result_decl. */
2215 return false;
2216 }
2217
2218 /* Only register-like things go in registers. */
2219 if (DECL_MODE (decl) == BLKmode)
2220 return false;
2221
2222 /* If -ffloat-store specified, don't put explicit float variables
2223 into registers. */
2224 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2225 propagates values across these stores, and it probably shouldn't. */
2226 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2227 return false;
2228
2229 if (!targetm.calls.allocate_stack_slots_for_args ())
2230 return true;
2231
2232 /* If we're not interested in tracking debugging information for
2233 this decl, then we can certainly put it in a register. */
2234 if (DECL_IGNORED_P (decl))
2235 return true;
2236
2237 if (optimize)
2238 return true;
2239
2240 if (!DECL_REGISTER (decl))
2241 return false;
2242
2243 /* When not optimizing, disregard register keyword for types that
2244 could have methods, otherwise the methods won't be callable from
2245 the debugger. */
2246 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2247 return false;
2248
2249 return true;
2250 }
2251
2252 /* Structures to communicate between the subroutines of assign_parms.
2253 The first holds data persistent across all parameters, the second
2254 is cleared out for each parameter. */
2255
2256 struct assign_parm_data_all
2257 {
2258 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2259 should become a job of the target or otherwise encapsulated. */
2260 CUMULATIVE_ARGS args_so_far_v;
2261 cumulative_args_t args_so_far;
2262 struct args_size stack_args_size;
2263 tree function_result_decl;
2264 tree orig_fnargs;
2265 rtx_insn *first_conversion_insn;
2266 rtx_insn *last_conversion_insn;
2267 HOST_WIDE_INT pretend_args_size;
2268 HOST_WIDE_INT extra_pretend_bytes;
2269 int reg_parm_stack_space;
2270 };
2271
2272 struct assign_parm_data_one
2273 {
2274 tree nominal_type;
2275 function_arg_info arg;
2276 rtx entry_parm;
2277 rtx stack_parm;
2278 machine_mode nominal_mode;
2279 machine_mode passed_mode;
2280 struct locate_and_pad_arg_data locate;
2281 int partial;
2282 };
2283
2284 /* A subroutine of assign_parms. Initialize ALL. */
2285
2286 static void
2287 assign_parms_initialize_all (struct assign_parm_data_all *all)
2288 {
2289 tree fntype ATTRIBUTE_UNUSED;
2290
2291 memset (all, 0, sizeof (*all));
2292
2293 fntype = TREE_TYPE (current_function_decl);
2294
2295 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2296 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2297 #else
2298 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2299 current_function_decl, -1);
2300 #endif
2301 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2302
2303 #ifdef INCOMING_REG_PARM_STACK_SPACE
2304 all->reg_parm_stack_space
2305 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2306 #endif
2307 }
2308
2309 /* If ARGS contains entries with complex types, split the entry into two
2310 entries of the component type. Return a new list of substitutions are
2311 needed, else the old list. */
2312
2313 static void
2314 split_complex_args (vec<tree> *args)
2315 {
2316 unsigned i;
2317 tree p;
2318
2319 FOR_EACH_VEC_ELT (*args, i, p)
2320 {
2321 tree type = TREE_TYPE (p);
2322 if (TREE_CODE (type) == COMPLEX_TYPE
2323 && targetm.calls.split_complex_arg (type))
2324 {
2325 tree decl;
2326 tree subtype = TREE_TYPE (type);
2327 bool addressable = TREE_ADDRESSABLE (p);
2328
2329 /* Rewrite the PARM_DECL's type with its component. */
2330 p = copy_node (p);
2331 TREE_TYPE (p) = subtype;
2332 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2333 SET_DECL_MODE (p, VOIDmode);
2334 DECL_SIZE (p) = NULL;
2335 DECL_SIZE_UNIT (p) = NULL;
2336 /* If this arg must go in memory, put it in a pseudo here.
2337 We can't allow it to go in memory as per normal parms,
2338 because the usual place might not have the imag part
2339 adjacent to the real part. */
2340 DECL_ARTIFICIAL (p) = addressable;
2341 DECL_IGNORED_P (p) = addressable;
2342 TREE_ADDRESSABLE (p) = 0;
2343 layout_decl (p, 0);
2344 (*args)[i] = p;
2345
2346 /* Build a second synthetic decl. */
2347 decl = build_decl (EXPR_LOCATION (p),
2348 PARM_DECL, NULL_TREE, subtype);
2349 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2350 DECL_ARTIFICIAL (decl) = addressable;
2351 DECL_IGNORED_P (decl) = addressable;
2352 layout_decl (decl, 0);
2353 args->safe_insert (++i, decl);
2354 }
2355 }
2356 }
2357
2358 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2359 the hidden struct return argument, and (abi willing) complex args.
2360 Return the new parameter list. */
2361
2362 static vec<tree>
2363 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2364 {
2365 tree fndecl = current_function_decl;
2366 tree fntype = TREE_TYPE (fndecl);
2367 vec<tree> fnargs = vNULL;
2368 tree arg;
2369
2370 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2371 fnargs.safe_push (arg);
2372
2373 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2374
2375 /* If struct value address is treated as the first argument, make it so. */
2376 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2377 && ! cfun->returns_pcc_struct
2378 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2379 {
2380 tree type = build_pointer_type (TREE_TYPE (fntype));
2381 tree decl;
2382
2383 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2384 PARM_DECL, get_identifier (".result_ptr"), type);
2385 DECL_ARG_TYPE (decl) = type;
2386 DECL_ARTIFICIAL (decl) = 1;
2387 DECL_NAMELESS (decl) = 1;
2388 TREE_CONSTANT (decl) = 1;
2389 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2390 changes, the end of the RESULT_DECL handling block in
2391 use_register_for_decl must be adjusted to match. */
2392
2393 DECL_CHAIN (decl) = all->orig_fnargs;
2394 all->orig_fnargs = decl;
2395 fnargs.safe_insert (0, decl);
2396
2397 all->function_result_decl = decl;
2398 }
2399
2400 /* If the target wants to split complex arguments into scalars, do so. */
2401 if (targetm.calls.split_complex_arg)
2402 split_complex_args (&fnargs);
2403
2404 return fnargs;
2405 }
2406
2407 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2408 data for the parameter. Incorporate ABI specifics such as pass-by-
2409 reference and type promotion. */
2410
2411 static void
2412 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2413 struct assign_parm_data_one *data)
2414 {
2415 int unsignedp;
2416
2417 *data = assign_parm_data_one ();
2418
2419 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2420 if (!cfun->stdarg)
2421 data->arg.named = 1; /* No variadic parms. */
2422 else if (DECL_CHAIN (parm))
2423 data->arg.named = 1; /* Not the last non-variadic parm. */
2424 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2425 data->arg.named = 1; /* Only variadic ones are unnamed. */
2426 else
2427 data->arg.named = 0; /* Treat as variadic. */
2428
2429 data->nominal_type = TREE_TYPE (parm);
2430 data->arg.type = DECL_ARG_TYPE (parm);
2431
2432 /* Look out for errors propagating this far. Also, if the parameter's
2433 type is void then its value doesn't matter. */
2434 if (TREE_TYPE (parm) == error_mark_node
2435 /* This can happen after weird syntax errors
2436 or if an enum type is defined among the parms. */
2437 || TREE_CODE (parm) != PARM_DECL
2438 || data->arg.type == NULL
2439 || VOID_TYPE_P (data->nominal_type))
2440 {
2441 data->nominal_type = data->arg.type = void_type_node;
2442 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode;
2443 return;
2444 }
2445
2446 /* Find mode of arg as it is passed, and mode of arg as it should be
2447 during execution of this function. */
2448 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type);
2449 data->nominal_mode = TYPE_MODE (data->nominal_type);
2450
2451 /* If the parm is to be passed as a transparent union or record, use the
2452 type of the first field for the tests below. We have already verified
2453 that the modes are the same. */
2454 if (RECORD_OR_UNION_TYPE_P (data->arg.type)
2455 && TYPE_TRANSPARENT_AGGR (data->arg.type))
2456 data->arg.type = TREE_TYPE (first_field (data->arg.type));
2457
2458 /* See if this arg was passed by invisible reference. */
2459 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg))
2460 {
2461 data->nominal_type = data->arg.type;
2462 data->passed_mode = data->nominal_mode = data->arg.mode;
2463 }
2464
2465 /* Find mode as it is passed by the ABI. */
2466 unsignedp = TYPE_UNSIGNED (data->arg.type);
2467 data->arg.mode
2468 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp,
2469 TREE_TYPE (current_function_decl), 0);
2470 }
2471
2472 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2473
2474 static void
2475 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2476 struct assign_parm_data_one *data, bool no_rtl)
2477 {
2478 int varargs_pretend_bytes = 0;
2479
2480 function_arg_info last_named_arg = data->arg;
2481 last_named_arg.named = true;
2482 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg,
2483 &varargs_pretend_bytes, no_rtl);
2484
2485 /* If the back-end has requested extra stack space, record how much is
2486 needed. Do not change pretend_args_size otherwise since it may be
2487 nonzero from an earlier partial argument. */
2488 if (varargs_pretend_bytes > 0)
2489 all->pretend_args_size = varargs_pretend_bytes;
2490 }
2491
2492 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2493 the incoming location of the current parameter. */
2494
2495 static void
2496 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2497 struct assign_parm_data_one *data)
2498 {
2499 HOST_WIDE_INT pretend_bytes = 0;
2500 rtx entry_parm;
2501 bool in_regs;
2502
2503 if (data->arg.mode == VOIDmode)
2504 {
2505 data->entry_parm = data->stack_parm = const0_rtx;
2506 return;
2507 }
2508
2509 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2510 data->arg.type);
2511
2512 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2513 data->arg);
2514 if (entry_parm == 0)
2515 data->arg.mode = data->passed_mode;
2516
2517 /* Determine parm's home in the stack, in case it arrives in the stack
2518 or we should pretend it did. Compute the stack position and rtx where
2519 the argument arrives and its size.
2520
2521 There is one complexity here: If this was a parameter that would
2522 have been passed in registers, but wasn't only because it is
2523 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2524 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2525 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2526 as it was the previous time. */
2527 in_regs = (entry_parm != 0);
2528 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2529 in_regs = true;
2530 #endif
2531 if (!in_regs && !data->arg.named)
2532 {
2533 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2534 {
2535 rtx tem;
2536 function_arg_info named_arg = data->arg;
2537 named_arg.named = true;
2538 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2539 named_arg);
2540 in_regs = tem != NULL;
2541 }
2542 }
2543
2544 /* If this parameter was passed both in registers and in the stack, use
2545 the copy on the stack. */
2546 if (targetm.calls.must_pass_in_stack (data->arg))
2547 entry_parm = 0;
2548
2549 if (entry_parm)
2550 {
2551 int partial;
2552
2553 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg);
2554 data->partial = partial;
2555
2556 /* The caller might already have allocated stack space for the
2557 register parameters. */
2558 if (partial != 0 && all->reg_parm_stack_space == 0)
2559 {
2560 /* Part of this argument is passed in registers and part
2561 is passed on the stack. Ask the prologue code to extend
2562 the stack part so that we can recreate the full value.
2563
2564 PRETEND_BYTES is the size of the registers we need to store.
2565 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2566 stack space that the prologue should allocate.
2567
2568 Internally, gcc assumes that the argument pointer is aligned
2569 to STACK_BOUNDARY bits. This is used both for alignment
2570 optimizations (see init_emit) and to locate arguments that are
2571 aligned to more than PARM_BOUNDARY bits. We must preserve this
2572 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2573 a stack boundary. */
2574
2575 /* We assume at most one partial arg, and it must be the first
2576 argument on the stack. */
2577 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2578
2579 pretend_bytes = partial;
2580 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2581
2582 /* We want to align relative to the actual stack pointer, so
2583 don't include this in the stack size until later. */
2584 all->extra_pretend_bytes = all->pretend_args_size;
2585 }
2586 }
2587
2588 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs,
2589 all->reg_parm_stack_space,
2590 entry_parm ? data->partial : 0, current_function_decl,
2591 &all->stack_args_size, &data->locate);
2592
2593 /* Update parm_stack_boundary if this parameter is passed in the
2594 stack. */
2595 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2596 crtl->parm_stack_boundary = data->locate.boundary;
2597
2598 /* Adjust offsets to include the pretend args. */
2599 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2600 data->locate.slot_offset.constant += pretend_bytes;
2601 data->locate.offset.constant += pretend_bytes;
2602
2603 data->entry_parm = entry_parm;
2604 }
2605
2606 /* A subroutine of assign_parms. If there is actually space on the stack
2607 for this parm, count it in stack_args_size and return true. */
2608
2609 static bool
2610 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2611 struct assign_parm_data_one *data)
2612 {
2613 /* Trivially true if we've no incoming register. */
2614 if (data->entry_parm == NULL)
2615 ;
2616 /* Also true if we're partially in registers and partially not,
2617 since we've arranged to drop the entire argument on the stack. */
2618 else if (data->partial != 0)
2619 ;
2620 /* Also true if the target says that it's passed in both registers
2621 and on the stack. */
2622 else if (GET_CODE (data->entry_parm) == PARALLEL
2623 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2624 ;
2625 /* Also true if the target says that there's stack allocated for
2626 all register parameters. */
2627 else if (all->reg_parm_stack_space > 0)
2628 ;
2629 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2630 else
2631 return false;
2632
2633 all->stack_args_size.constant += data->locate.size.constant;
2634 if (data->locate.size.var)
2635 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2636
2637 return true;
2638 }
2639
2640 /* A subroutine of assign_parms. Given that this parameter is allocated
2641 stack space by the ABI, find it. */
2642
2643 static void
2644 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2645 {
2646 rtx offset_rtx, stack_parm;
2647 unsigned int align, boundary;
2648
2649 /* If we're passing this arg using a reg, make its stack home the
2650 aligned stack slot. */
2651 if (data->entry_parm)
2652 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2653 else
2654 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2655
2656 stack_parm = crtl->args.internal_arg_pointer;
2657 if (offset_rtx != const0_rtx)
2658 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2659 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm);
2660
2661 if (!data->arg.pass_by_reference)
2662 {
2663 set_mem_attributes (stack_parm, parm, 1);
2664 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2665 while promoted mode's size is needed. */
2666 if (data->arg.mode != BLKmode
2667 && data->arg.mode != DECL_MODE (parm))
2668 {
2669 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode));
2670 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2671 {
2672 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2673 data->arg.mode);
2674 if (maybe_ne (offset, 0))
2675 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2676 }
2677 }
2678 }
2679
2680 boundary = data->locate.boundary;
2681 align = BITS_PER_UNIT;
2682
2683 /* If we're padding upward, we know that the alignment of the slot
2684 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2685 intentionally forcing upward padding. Otherwise we have to come
2686 up with a guess at the alignment based on OFFSET_RTX. */
2687 poly_int64 offset;
2688 if (data->locate.where_pad == PAD_NONE || data->entry_parm)
2689 align = boundary;
2690 else if (data->locate.where_pad == PAD_UPWARD)
2691 {
2692 align = boundary;
2693 /* If the argument offset is actually more aligned than the nominal
2694 stack slot boundary, take advantage of that excess alignment.
2695 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2696 if (poly_int_rtx_p (offset_rtx, &offset)
2697 && known_eq (STACK_POINTER_OFFSET, 0))
2698 {
2699 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2700 if (offset_align == 0 || offset_align > STACK_BOUNDARY)
2701 offset_align = STACK_BOUNDARY;
2702 align = MAX (align, offset_align);
2703 }
2704 }
2705 else if (poly_int_rtx_p (offset_rtx, &offset))
2706 {
2707 align = least_bit_hwi (boundary);
2708 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2709 if (offset_align != 0)
2710 align = MIN (align, offset_align);
2711 }
2712 set_mem_align (stack_parm, align);
2713
2714 if (data->entry_parm)
2715 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2716
2717 data->stack_parm = stack_parm;
2718 }
2719
2720 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2721 always valid and contiguous. */
2722
2723 static void
2724 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2725 {
2726 rtx entry_parm = data->entry_parm;
2727 rtx stack_parm = data->stack_parm;
2728
2729 /* If this parm was passed part in regs and part in memory, pretend it
2730 arrived entirely in memory by pushing the register-part onto the stack.
2731 In the special case of a DImode or DFmode that is split, we could put
2732 it together in a pseudoreg directly, but for now that's not worth
2733 bothering with. */
2734 if (data->partial != 0)
2735 {
2736 /* Handle calls that pass values in multiple non-contiguous
2737 locations. The Irix 6 ABI has examples of this. */
2738 if (GET_CODE (entry_parm) == PARALLEL)
2739 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2740 data->arg.type, int_size_in_bytes (data->arg.type));
2741 else
2742 {
2743 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2744 move_block_from_reg (REGNO (entry_parm),
2745 validize_mem (copy_rtx (stack_parm)),
2746 data->partial / UNITS_PER_WORD);
2747 }
2748
2749 entry_parm = stack_parm;
2750 }
2751
2752 /* If we didn't decide this parm came in a register, by default it came
2753 on the stack. */
2754 else if (entry_parm == NULL)
2755 entry_parm = stack_parm;
2756
2757 /* When an argument is passed in multiple locations, we can't make use
2758 of this information, but we can save some copying if the whole argument
2759 is passed in a single register. */
2760 else if (GET_CODE (entry_parm) == PARALLEL
2761 && data->nominal_mode != BLKmode
2762 && data->passed_mode != BLKmode)
2763 {
2764 size_t i, len = XVECLEN (entry_parm, 0);
2765
2766 for (i = 0; i < len; i++)
2767 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2768 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2769 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2770 == data->passed_mode)
2771 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2772 {
2773 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2774 break;
2775 }
2776 }
2777
2778 data->entry_parm = entry_parm;
2779 }
2780
2781 /* A subroutine of assign_parms. Reconstitute any values which were
2782 passed in multiple registers and would fit in a single register. */
2783
2784 static void
2785 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2786 {
2787 rtx entry_parm = data->entry_parm;
2788
2789 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2790 This can be done with register operations rather than on the
2791 stack, even if we will store the reconstituted parameter on the
2792 stack later. */
2793 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2794 {
2795 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2796 emit_group_store (parmreg, entry_parm, data->arg.type,
2797 GET_MODE_SIZE (GET_MODE (entry_parm)));
2798 entry_parm = parmreg;
2799 }
2800
2801 data->entry_parm = entry_parm;
2802 }
2803
2804 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2805 always valid and properly aligned. */
2806
2807 static void
2808 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2809 {
2810 rtx stack_parm = data->stack_parm;
2811
2812 /* If we can't trust the parm stack slot to be aligned enough for its
2813 ultimate type, don't use that slot after entry. We'll make another
2814 stack slot, if we need one. */
2815 if (stack_parm
2816 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)
2817 && ((optab_handler (movmisalign_optab, data->nominal_mode)
2818 != CODE_FOR_nothing)
2819 || targetm.slow_unaligned_access (data->nominal_mode,
2820 MEM_ALIGN (stack_parm))))
2821 || (data->nominal_type
2822 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2823 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2824 stack_parm = NULL;
2825
2826 /* If parm was passed in memory, and we need to convert it on entry,
2827 don't store it back in that same slot. */
2828 else if (data->entry_parm == stack_parm
2829 && data->nominal_mode != BLKmode
2830 && data->nominal_mode != data->passed_mode)
2831 stack_parm = NULL;
2832
2833 /* If stack protection is in effect for this function, don't leave any
2834 pointers in their passed stack slots. */
2835 else if (crtl->stack_protect_guard
2836 && (flag_stack_protect == 2
2837 || data->arg.pass_by_reference
2838 || POINTER_TYPE_P (data->nominal_type)))
2839 stack_parm = NULL;
2840
2841 data->stack_parm = stack_parm;
2842 }
2843
2844 /* A subroutine of assign_parms. Return true if the current parameter
2845 should be stored as a BLKmode in the current frame. */
2846
2847 static bool
2848 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2849 {
2850 if (data->nominal_mode == BLKmode)
2851 return true;
2852 if (GET_MODE (data->entry_parm) == BLKmode)
2853 return true;
2854
2855 #ifdef BLOCK_REG_PADDING
2856 /* Only assign_parm_setup_block knows how to deal with register arguments
2857 that are padded at the least significant end. */
2858 if (REG_P (data->entry_parm)
2859 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD)
2860 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1)
2861 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2862 return true;
2863 #endif
2864
2865 return false;
2866 }
2867
2868 /* A subroutine of assign_parms. Arrange for the parameter to be
2869 present and valid in DATA->STACK_RTL. */
2870
2871 static void
2872 assign_parm_setup_block (struct assign_parm_data_all *all,
2873 tree parm, struct assign_parm_data_one *data)
2874 {
2875 rtx entry_parm = data->entry_parm;
2876 rtx stack_parm = data->stack_parm;
2877 rtx target_reg = NULL_RTX;
2878 bool in_conversion_seq = false;
2879 HOST_WIDE_INT size;
2880 HOST_WIDE_INT size_stored;
2881
2882 if (GET_CODE (entry_parm) == PARALLEL)
2883 entry_parm = emit_group_move_into_temps (entry_parm);
2884
2885 /* If we want the parameter in a pseudo, don't use a stack slot. */
2886 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2887 {
2888 tree def = ssa_default_def (cfun, parm);
2889 gcc_assert (def);
2890 machine_mode mode = promote_ssa_mode (def, NULL);
2891 rtx reg = gen_reg_rtx (mode);
2892 if (GET_CODE (reg) != CONCAT)
2893 stack_parm = reg;
2894 else
2895 {
2896 target_reg = reg;
2897 /* Avoid allocating a stack slot, if there isn't one
2898 preallocated by the ABI. It might seem like we should
2899 always prefer a pseudo, but converting between
2900 floating-point and integer modes goes through the stack
2901 on various machines, so it's better to use the reserved
2902 stack slot than to risk wasting it and allocating more
2903 for the conversion. */
2904 if (stack_parm == NULL_RTX)
2905 {
2906 int save = generating_concat_p;
2907 generating_concat_p = 0;
2908 stack_parm = gen_reg_rtx (mode);
2909 generating_concat_p = save;
2910 }
2911 }
2912 data->stack_parm = NULL;
2913 }
2914
2915 size = int_size_in_bytes (data->arg.type);
2916 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2917 if (stack_parm == 0)
2918 {
2919 HOST_WIDE_INT parm_align
2920 = (STRICT_ALIGNMENT
2921 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm));
2922
2923 SET_DECL_ALIGN (parm, parm_align);
2924 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2925 {
2926 rtx allocsize = gen_int_mode (size_stored, Pmode);
2927 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2928 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2929 MAX_SUPPORTED_STACK_ALIGNMENT);
2930 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2931 DECL_ALIGN (parm));
2932 mark_reg_pointer (addr, DECL_ALIGN (parm));
2933 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2934 MEM_NOTRAP_P (stack_parm) = 1;
2935 }
2936 else
2937 stack_parm = assign_stack_local (BLKmode, size_stored,
2938 DECL_ALIGN (parm));
2939 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2940 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2941 set_mem_attributes (stack_parm, parm, 1);
2942 }
2943
2944 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2945 calls that pass values in multiple non-contiguous locations. */
2946 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2947 {
2948 rtx mem;
2949
2950 /* Note that we will be storing an integral number of words.
2951 So we have to be careful to ensure that we allocate an
2952 integral number of words. We do this above when we call
2953 assign_stack_local if space was not allocated in the argument
2954 list. If it was, this will not work if PARM_BOUNDARY is not
2955 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2956 if it becomes a problem. Exception is when BLKmode arrives
2957 with arguments not conforming to word_mode. */
2958
2959 if (data->stack_parm == 0)
2960 ;
2961 else if (GET_CODE (entry_parm) == PARALLEL)
2962 ;
2963 else
2964 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2965
2966 mem = validize_mem (copy_rtx (stack_parm));
2967
2968 /* Handle values in multiple non-contiguous locations. */
2969 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2970 emit_group_store (mem, entry_parm, data->arg.type, size);
2971 else if (GET_CODE (entry_parm) == PARALLEL)
2972 {
2973 push_to_sequence2 (all->first_conversion_insn,
2974 all->last_conversion_insn);
2975 emit_group_store (mem, entry_parm, data->arg.type, size);
2976 all->first_conversion_insn = get_insns ();
2977 all->last_conversion_insn = get_last_insn ();
2978 end_sequence ();
2979 in_conversion_seq = true;
2980 }
2981
2982 else if (size == 0)
2983 ;
2984
2985 /* If SIZE is that of a mode no bigger than a word, just use
2986 that mode's store operation. */
2987 else if (size <= UNITS_PER_WORD)
2988 {
2989 unsigned int bits = size * BITS_PER_UNIT;
2990 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
2991
2992 if (mode != BLKmode
2993 #ifdef BLOCK_REG_PADDING
2994 && (size == UNITS_PER_WORD
2995 || (BLOCK_REG_PADDING (mode, data->arg.type, 1)
2996 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2997 #endif
2998 )
2999 {
3000 rtx reg;
3001
3002 /* We are really truncating a word_mode value containing
3003 SIZE bytes into a value of mode MODE. If such an
3004 operation requires no actual instructions, we can refer
3005 to the value directly in mode MODE, otherwise we must
3006 start with the register in word_mode and explicitly
3007 convert it. */
3008 if (targetm.truly_noop_truncation (size * BITS_PER_UNIT,
3009 BITS_PER_WORD))
3010 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3011 else
3012 {
3013 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3014 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3015 }
3016 emit_move_insn (change_address (mem, mode, 0), reg);
3017 }
3018
3019 #ifdef BLOCK_REG_PADDING
3020 /* Storing the register in memory as a full word, as
3021 move_block_from_reg below would do, and then using the
3022 MEM in a smaller mode, has the effect of shifting right
3023 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3024 shifting must be explicit. */
3025 else if (!MEM_P (mem))
3026 {
3027 rtx x;
3028
3029 /* If the assert below fails, we should have taken the
3030 mode != BLKmode path above, unless we have downward
3031 padding of smaller-than-word arguments on a machine
3032 with little-endian bytes, which would likely require
3033 additional changes to work correctly. */
3034 gcc_checking_assert (BYTES_BIG_ENDIAN
3035 && (BLOCK_REG_PADDING (mode,
3036 data->arg.type, 1)
3037 == PAD_UPWARD));
3038
3039 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3040
3041 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3042 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3043 NULL_RTX, 1);
3044 x = force_reg (word_mode, x);
3045 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3046
3047 emit_move_insn (mem, x);
3048 }
3049 #endif
3050
3051 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3052 machine must be aligned to the left before storing
3053 to memory. Note that the previous test doesn't
3054 handle all cases (e.g. SIZE == 3). */
3055 else if (size != UNITS_PER_WORD
3056 #ifdef BLOCK_REG_PADDING
3057 && (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3058 == PAD_DOWNWARD)
3059 #else
3060 && BYTES_BIG_ENDIAN
3061 #endif
3062 )
3063 {
3064 rtx tem, x;
3065 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3066 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3067
3068 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3069 tem = change_address (mem, word_mode, 0);
3070 emit_move_insn (tem, x);
3071 }
3072 else
3073 move_block_from_reg (REGNO (entry_parm), mem,
3074 size_stored / UNITS_PER_WORD);
3075 }
3076 else if (!MEM_P (mem))
3077 {
3078 gcc_checking_assert (size > UNITS_PER_WORD);
3079 #ifdef BLOCK_REG_PADDING
3080 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3081 data->arg.type, 0)
3082 == PAD_UPWARD);
3083 #endif
3084 emit_move_insn (mem, entry_parm);
3085 }
3086 else
3087 move_block_from_reg (REGNO (entry_parm), mem,
3088 size_stored / UNITS_PER_WORD);
3089 }
3090 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type))
3091 {
3092 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3093 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3094 BLOCK_OP_NORMAL);
3095 all->first_conversion_insn = get_insns ();
3096 all->last_conversion_insn = get_last_insn ();
3097 end_sequence ();
3098 in_conversion_seq = true;
3099 }
3100
3101 if (target_reg)
3102 {
3103 if (!in_conversion_seq)
3104 emit_move_insn (target_reg, stack_parm);
3105 else
3106 {
3107 push_to_sequence2 (all->first_conversion_insn,
3108 all->last_conversion_insn);
3109 emit_move_insn (target_reg, stack_parm);
3110 all->first_conversion_insn = get_insns ();
3111 all->last_conversion_insn = get_last_insn ();
3112 end_sequence ();
3113 }
3114 stack_parm = target_reg;
3115 }
3116
3117 data->stack_parm = stack_parm;
3118 set_parm_rtl (parm, stack_parm);
3119 }
3120
3121 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3122 parameter. Get it there. Perform all ABI specified conversions. */
3123
3124 static void
3125 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3126 struct assign_parm_data_one *data)
3127 {
3128 rtx parmreg, validated_mem;
3129 rtx equiv_stack_parm;
3130 machine_mode promoted_nominal_mode;
3131 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3132 bool did_conversion = false;
3133 bool need_conversion, moved;
3134 enum insn_code icode;
3135 rtx rtl;
3136
3137 /* Store the parm in a pseudoregister during the function, but we may
3138 need to do it in a wider mode. Using 2 here makes the result
3139 consistent with promote_decl_mode and thus expand_expr_real_1. */
3140 promoted_nominal_mode
3141 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3142 TREE_TYPE (current_function_decl), 2);
3143
3144 parmreg = gen_reg_rtx (promoted_nominal_mode);
3145 if (!DECL_ARTIFICIAL (parm))
3146 mark_user_reg (parmreg);
3147
3148 /* If this was an item that we received a pointer to,
3149 set rtl appropriately. */
3150 if (data->arg.pass_by_reference)
3151 {
3152 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg);
3153 set_mem_attributes (rtl, parm, 1);
3154 }
3155 else
3156 rtl = parmreg;
3157
3158 assign_parm_remove_parallels (data);
3159
3160 /* Copy the value into the register, thus bridging between
3161 assign_parm_find_data_types and expand_expr_real_1. */
3162
3163 equiv_stack_parm = data->stack_parm;
3164 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3165
3166 need_conversion = (data->nominal_mode != data->passed_mode
3167 || promoted_nominal_mode != data->arg.mode);
3168 moved = false;
3169
3170 if (need_conversion
3171 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3172 && data->nominal_mode == data->passed_mode
3173 && data->nominal_mode == GET_MODE (data->entry_parm))
3174 {
3175 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3176 mode, by the caller. We now have to convert it to
3177 NOMINAL_MODE, if different. However, PARMREG may be in
3178 a different mode than NOMINAL_MODE if it is being stored
3179 promoted.
3180
3181 If ENTRY_PARM is a hard register, it might be in a register
3182 not valid for operating in its mode (e.g., an odd-numbered
3183 register for a DFmode). In that case, moves are the only
3184 thing valid, so we can't do a convert from there. This
3185 occurs when the calling sequence allow such misaligned
3186 usages.
3187
3188 In addition, the conversion may involve a call, which could
3189 clobber parameters which haven't been copied to pseudo
3190 registers yet.
3191
3192 First, we try to emit an insn which performs the necessary
3193 conversion. We verify that this insn does not clobber any
3194 hard registers. */
3195
3196 rtx op0, op1;
3197
3198 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3199 unsignedp);
3200
3201 op0 = parmreg;
3202 op1 = validated_mem;
3203 if (icode != CODE_FOR_nothing
3204 && insn_operand_matches (icode, 0, op0)
3205 && insn_operand_matches (icode, 1, op1))
3206 {
3207 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3208 rtx_insn *insn, *insns;
3209 rtx t = op1;
3210 HARD_REG_SET hardregs;
3211
3212 start_sequence ();
3213 /* If op1 is a hard register that is likely spilled, first
3214 force it into a pseudo, otherwise combiner might extend
3215 its lifetime too much. */
3216 if (GET_CODE (t) == SUBREG)
3217 t = SUBREG_REG (t);
3218 if (REG_P (t)
3219 && HARD_REGISTER_P (t)
3220 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3221 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3222 {
3223 t = gen_reg_rtx (GET_MODE (op1));
3224 emit_move_insn (t, op1);
3225 }
3226 else
3227 t = op1;
3228 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3229 data->passed_mode, unsignedp);
3230 emit_insn (pat);
3231 insns = get_insns ();
3232
3233 moved = true;
3234 CLEAR_HARD_REG_SET (hardregs);
3235 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3236 {
3237 if (INSN_P (insn))
3238 note_stores (insn, record_hard_reg_sets, &hardregs);
3239 if (!hard_reg_set_empty_p (hardregs))
3240 moved = false;
3241 }
3242
3243 end_sequence ();
3244
3245 if (moved)
3246 {
3247 emit_insn (insns);
3248 if (equiv_stack_parm != NULL_RTX)
3249 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3250 equiv_stack_parm);
3251 }
3252 }
3253 }
3254
3255 if (moved)
3256 /* Nothing to do. */
3257 ;
3258 else if (need_conversion)
3259 {
3260 /* We did not have an insn to convert directly, or the sequence
3261 generated appeared unsafe. We must first copy the parm to a
3262 pseudo reg, and save the conversion until after all
3263 parameters have been moved. */
3264
3265 int save_tree_used;
3266 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3267
3268 emit_move_insn (tempreg, validated_mem);
3269
3270 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3271 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3272
3273 if (partial_subreg_p (tempreg)
3274 && GET_MODE (tempreg) == data->nominal_mode
3275 && REG_P (SUBREG_REG (tempreg))
3276 && data->nominal_mode == data->passed_mode
3277 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3278 {
3279 /* The argument is already sign/zero extended, so note it
3280 into the subreg. */
3281 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3282 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3283 }
3284
3285 /* TREE_USED gets set erroneously during expand_assignment. */
3286 save_tree_used = TREE_USED (parm);
3287 SET_DECL_RTL (parm, rtl);
3288 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3289 SET_DECL_RTL (parm, NULL_RTX);
3290 TREE_USED (parm) = save_tree_used;
3291 all->first_conversion_insn = get_insns ();
3292 all->last_conversion_insn = get_last_insn ();
3293 end_sequence ();
3294
3295 did_conversion = true;
3296 }
3297 else if (MEM_P (data->entry_parm)
3298 && GET_MODE_ALIGNMENT (promoted_nominal_mode)
3299 > MEM_ALIGN (data->entry_parm)
3300 && (((icode = optab_handler (movmisalign_optab,
3301 promoted_nominal_mode))
3302 != CODE_FOR_nothing)
3303 || targetm.slow_unaligned_access (promoted_nominal_mode,
3304 MEM_ALIGN (data->entry_parm))))
3305 {
3306 if (icode != CODE_FOR_nothing)
3307 emit_insn (GEN_FCN (icode) (parmreg, validated_mem));
3308 else
3309 rtl = parmreg = extract_bit_field (validated_mem,
3310 GET_MODE_BITSIZE (promoted_nominal_mode), 0,
3311 unsignedp, parmreg,
3312 promoted_nominal_mode, VOIDmode, false, NULL);
3313 }
3314 else
3315 emit_move_insn (parmreg, validated_mem);
3316
3317 /* If we were passed a pointer but the actual value can safely live
3318 in a register, retrieve it and use it directly. */
3319 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3320 {
3321 /* We can't use nominal_mode, because it will have been set to
3322 Pmode above. We must use the actual mode of the parm. */
3323 if (use_register_for_decl (parm))
3324 {
3325 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3326 mark_user_reg (parmreg);
3327 }
3328 else
3329 {
3330 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3331 TYPE_MODE (TREE_TYPE (parm)),
3332 TYPE_ALIGN (TREE_TYPE (parm)));
3333 parmreg
3334 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3335 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3336 align);
3337 set_mem_attributes (parmreg, parm, 1);
3338 }
3339
3340 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3341 the debug info in case it is not legitimate. */
3342 if (GET_MODE (parmreg) != GET_MODE (rtl))
3343 {
3344 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3345 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3346
3347 push_to_sequence2 (all->first_conversion_insn,
3348 all->last_conversion_insn);
3349 emit_move_insn (tempreg, rtl);
3350 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3351 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3352 tempreg);
3353 all->first_conversion_insn = get_insns ();
3354 all->last_conversion_insn = get_last_insn ();
3355 end_sequence ();
3356
3357 did_conversion = true;
3358 }
3359 else
3360 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3361
3362 rtl = parmreg;
3363
3364 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3365 now the parm. */
3366 data->stack_parm = NULL;
3367 }
3368
3369 set_parm_rtl (parm, rtl);
3370
3371 /* Mark the register as eliminable if we did no conversion and it was
3372 copied from memory at a fixed offset, and the arg pointer was not
3373 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3374 offset formed an invalid address, such memory-equivalences as we
3375 make here would screw up life analysis for it. */
3376 if (data->nominal_mode == data->passed_mode
3377 && !did_conversion
3378 && data->stack_parm != 0
3379 && MEM_P (data->stack_parm)
3380 && data->locate.offset.var == 0
3381 && reg_mentioned_p (virtual_incoming_args_rtx,
3382 XEXP (data->stack_parm, 0)))
3383 {
3384 rtx_insn *linsn = get_last_insn ();
3385 rtx_insn *sinsn;
3386 rtx set;
3387
3388 /* Mark complex types separately. */
3389 if (GET_CODE (parmreg) == CONCAT)
3390 {
3391 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3392 int regnor = REGNO (XEXP (parmreg, 0));
3393 int regnoi = REGNO (XEXP (parmreg, 1));
3394 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3395 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3396 GET_MODE_SIZE (submode));
3397
3398 /* Scan backwards for the set of the real and
3399 imaginary parts. */
3400 for (sinsn = linsn; sinsn != 0;
3401 sinsn = prev_nonnote_insn (sinsn))
3402 {
3403 set = single_set (sinsn);
3404 if (set == 0)
3405 continue;
3406
3407 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3408 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3409 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3410 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3411 }
3412 }
3413 else
3414 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3415 }
3416
3417 /* For pointer data type, suggest pointer register. */
3418 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3419 mark_reg_pointer (parmreg,
3420 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3421 }
3422
3423 /* A subroutine of assign_parms. Allocate stack space to hold the current
3424 parameter. Get it there. Perform all ABI specified conversions. */
3425
3426 static void
3427 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3428 struct assign_parm_data_one *data)
3429 {
3430 /* Value must be stored in the stack slot STACK_PARM during function
3431 execution. */
3432 bool to_conversion = false;
3433
3434 assign_parm_remove_parallels (data);
3435
3436 if (data->arg.mode != data->nominal_mode)
3437 {
3438 /* Conversion is required. */
3439 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3440
3441 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3442
3443 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3444 to_conversion = true;
3445
3446 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3447 TYPE_UNSIGNED (TREE_TYPE (parm)));
3448
3449 if (data->stack_parm)
3450 {
3451 poly_int64 offset
3452 = subreg_lowpart_offset (data->nominal_mode,
3453 GET_MODE (data->stack_parm));
3454 /* ??? This may need a big-endian conversion on sparc64. */
3455 data->stack_parm
3456 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3457 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3458 set_mem_offset (data->stack_parm,
3459 MEM_OFFSET (data->stack_parm) + offset);
3460 }
3461 }
3462
3463 if (data->entry_parm != data->stack_parm)
3464 {
3465 rtx src, dest;
3466
3467 if (data->stack_parm == 0)
3468 {
3469 int align = STACK_SLOT_ALIGNMENT (data->arg.type,
3470 GET_MODE (data->entry_parm),
3471 TYPE_ALIGN (data->arg.type));
3472 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm))
3473 && ((optab_handler (movmisalign_optab,
3474 GET_MODE (data->entry_parm))
3475 != CODE_FOR_nothing)
3476 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm),
3477 align)))
3478 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm));
3479 data->stack_parm
3480 = assign_stack_local (GET_MODE (data->entry_parm),
3481 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3482 align);
3483 align = MEM_ALIGN (data->stack_parm);
3484 set_mem_attributes (data->stack_parm, parm, 1);
3485 set_mem_align (data->stack_parm, align);
3486 }
3487
3488 dest = validize_mem (copy_rtx (data->stack_parm));
3489 src = validize_mem (copy_rtx (data->entry_parm));
3490
3491 if (TYPE_EMPTY_P (data->arg.type))
3492 /* Empty types don't really need to be copied. */;
3493 else if (MEM_P (src))
3494 {
3495 /* Use a block move to handle potentially misaligned entry_parm. */
3496 if (!to_conversion)
3497 push_to_sequence2 (all->first_conversion_insn,
3498 all->last_conversion_insn);
3499 to_conversion = true;
3500
3501 emit_block_move (dest, src,
3502 GEN_INT (int_size_in_bytes (data->arg.type)),
3503 BLOCK_OP_NORMAL);
3504 }
3505 else
3506 {
3507 if (!REG_P (src))
3508 src = force_reg (GET_MODE (src), src);
3509 emit_move_insn (dest, src);
3510 }
3511 }
3512
3513 if (to_conversion)
3514 {
3515 all->first_conversion_insn = get_insns ();
3516 all->last_conversion_insn = get_last_insn ();
3517 end_sequence ();
3518 }
3519
3520 set_parm_rtl (parm, data->stack_parm);
3521 }
3522
3523 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3524 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3525
3526 static void
3527 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3528 vec<tree> fnargs)
3529 {
3530 tree parm;
3531 tree orig_fnargs = all->orig_fnargs;
3532 unsigned i = 0;
3533
3534 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3535 {
3536 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3537 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3538 {
3539 rtx tmp, real, imag;
3540 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3541
3542 real = DECL_RTL (fnargs[i]);
3543 imag = DECL_RTL (fnargs[i + 1]);
3544 if (inner != GET_MODE (real))
3545 {
3546 real = gen_lowpart_SUBREG (inner, real);
3547 imag = gen_lowpart_SUBREG (inner, imag);
3548 }
3549
3550 if (TREE_ADDRESSABLE (parm))
3551 {
3552 rtx rmem, imem;
3553 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3554 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3555 DECL_MODE (parm),
3556 TYPE_ALIGN (TREE_TYPE (parm)));
3557
3558 /* split_complex_arg put the real and imag parts in
3559 pseudos. Move them to memory. */
3560 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3561 set_mem_attributes (tmp, parm, 1);
3562 rmem = adjust_address_nv (tmp, inner, 0);
3563 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3564 push_to_sequence2 (all->first_conversion_insn,
3565 all->last_conversion_insn);
3566 emit_move_insn (rmem, real);
3567 emit_move_insn (imem, imag);
3568 all->first_conversion_insn = get_insns ();
3569 all->last_conversion_insn = get_last_insn ();
3570 end_sequence ();
3571 }
3572 else
3573 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3574 set_parm_rtl (parm, tmp);
3575
3576 real = DECL_INCOMING_RTL (fnargs[i]);
3577 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3578 if (inner != GET_MODE (real))
3579 {
3580 real = gen_lowpart_SUBREG (inner, real);
3581 imag = gen_lowpart_SUBREG (inner, imag);
3582 }
3583 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3584 set_decl_incoming_rtl (parm, tmp, false);
3585 i++;
3586 }
3587 }
3588 }
3589
3590 /* Assign RTL expressions to the function's parameters. This may involve
3591 copying them into registers and using those registers as the DECL_RTL. */
3592
3593 static void
3594 assign_parms (tree fndecl)
3595 {
3596 struct assign_parm_data_all all;
3597 tree parm;
3598 vec<tree> fnargs;
3599 unsigned i;
3600
3601 crtl->args.internal_arg_pointer
3602 = targetm.calls.internal_arg_pointer ();
3603
3604 assign_parms_initialize_all (&all);
3605 fnargs = assign_parms_augmented_arg_list (&all);
3606
3607 FOR_EACH_VEC_ELT (fnargs, i, parm)
3608 {
3609 struct assign_parm_data_one data;
3610
3611 /* Extract the type of PARM; adjust it according to ABI. */
3612 assign_parm_find_data_types (&all, parm, &data);
3613
3614 /* Early out for errors and void parameters. */
3615 if (data.passed_mode == VOIDmode)
3616 {
3617 SET_DECL_RTL (parm, const0_rtx);
3618 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3619 continue;
3620 }
3621
3622 /* Estimate stack alignment from parameter alignment. */
3623 if (SUPPORTS_STACK_ALIGNMENT)
3624 {
3625 unsigned int align
3626 = targetm.calls.function_arg_boundary (data.arg.mode,
3627 data.arg.type);
3628 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align);
3629 if (TYPE_ALIGN (data.nominal_type) > align)
3630 align = MINIMUM_ALIGNMENT (data.nominal_type,
3631 TYPE_MODE (data.nominal_type),
3632 TYPE_ALIGN (data.nominal_type));
3633 if (crtl->stack_alignment_estimated < align)
3634 {
3635 gcc_assert (!crtl->stack_realign_processed);
3636 crtl->stack_alignment_estimated = align;
3637 }
3638 }
3639
3640 /* Find out where the parameter arrives in this function. */
3641 assign_parm_find_entry_rtl (&all, &data);
3642
3643 /* Find out where stack space for this parameter might be. */
3644 if (assign_parm_is_stack_parm (&all, &data))
3645 {
3646 assign_parm_find_stack_rtl (parm, &data);
3647 assign_parm_adjust_entry_rtl (&data);
3648 /* For arguments that occupy no space in the parameter
3649 passing area, have non-zero size and have address taken,
3650 force creation of a stack slot so that they have distinct
3651 address from other parameters. */
3652 if (TYPE_EMPTY_P (data.arg.type)
3653 && TREE_ADDRESSABLE (parm)
3654 && data.entry_parm == data.stack_parm
3655 && MEM_P (data.entry_parm)
3656 && int_size_in_bytes (data.arg.type))
3657 data.stack_parm = NULL_RTX;
3658 }
3659 /* Record permanently how this parm was passed. */
3660 if (data.arg.pass_by_reference)
3661 {
3662 rtx incoming_rtl
3663 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)),
3664 data.entry_parm);
3665 set_decl_incoming_rtl (parm, incoming_rtl, true);
3666 }
3667 else
3668 set_decl_incoming_rtl (parm, data.entry_parm, false);
3669
3670 assign_parm_adjust_stack_rtl (&data);
3671
3672 if (assign_parm_setup_block_p (&data))
3673 assign_parm_setup_block (&all, parm, &data);
3674 else if (data.arg.pass_by_reference || use_register_for_decl (parm))
3675 assign_parm_setup_reg (&all, parm, &data);
3676 else
3677 assign_parm_setup_stack (&all, parm, &data);
3678
3679 if (cfun->stdarg && !DECL_CHAIN (parm))
3680 assign_parms_setup_varargs (&all, &data, false);
3681
3682 /* Update info on where next arg arrives in registers. */
3683 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3684 }
3685
3686 if (targetm.calls.split_complex_arg)
3687 assign_parms_unsplit_complex (&all, fnargs);
3688
3689 fnargs.release ();
3690
3691 /* Output all parameter conversion instructions (possibly including calls)
3692 now that all parameters have been copied out of hard registers. */
3693 emit_insn (all.first_conversion_insn);
3694
3695 /* Estimate reload stack alignment from scalar return mode. */
3696 if (SUPPORTS_STACK_ALIGNMENT)
3697 {
3698 if (DECL_RESULT (fndecl))
3699 {
3700 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3701 machine_mode mode = TYPE_MODE (type);
3702
3703 if (mode != BLKmode
3704 && mode != VOIDmode
3705 && !AGGREGATE_TYPE_P (type))
3706 {
3707 unsigned int align = GET_MODE_ALIGNMENT (mode);
3708 if (crtl->stack_alignment_estimated < align)
3709 {
3710 gcc_assert (!crtl->stack_realign_processed);
3711 crtl->stack_alignment_estimated = align;
3712 }
3713 }
3714 }
3715 }
3716
3717 /* If we are receiving a struct value address as the first argument, set up
3718 the RTL for the function result. As this might require code to convert
3719 the transmitted address to Pmode, we do this here to ensure that possible
3720 preliminary conversions of the address have been emitted already. */
3721 if (all.function_result_decl)
3722 {
3723 tree result = DECL_RESULT (current_function_decl);
3724 rtx addr = DECL_RTL (all.function_result_decl);
3725 rtx x;
3726
3727 if (DECL_BY_REFERENCE (result))
3728 {
3729 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3730 x = addr;
3731 }
3732 else
3733 {
3734 SET_DECL_VALUE_EXPR (result,
3735 build1 (INDIRECT_REF, TREE_TYPE (result),
3736 all.function_result_decl));
3737 addr = convert_memory_address (Pmode, addr);
3738 x = gen_rtx_MEM (DECL_MODE (result), addr);
3739 set_mem_attributes (x, result, 1);
3740 }
3741
3742 DECL_HAS_VALUE_EXPR_P (result) = 1;
3743
3744 set_parm_rtl (result, x);
3745 }
3746
3747 /* We have aligned all the args, so add space for the pretend args. */
3748 crtl->args.pretend_args_size = all.pretend_args_size;
3749 all.stack_args_size.constant += all.extra_pretend_bytes;
3750 crtl->args.size = all.stack_args_size.constant;
3751
3752 /* Adjust function incoming argument size for alignment and
3753 minimum length. */
3754
3755 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3756 crtl->args.size = aligned_upper_bound (crtl->args.size,
3757 PARM_BOUNDARY / BITS_PER_UNIT);
3758
3759 if (ARGS_GROW_DOWNWARD)
3760 {
3761 crtl->args.arg_offset_rtx
3762 = (all.stack_args_size.var == 0
3763 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3764 : expand_expr (size_diffop (all.stack_args_size.var,
3765 size_int (-all.stack_args_size.constant)),
3766 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3767 }
3768 else
3769 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3770
3771 /* See how many bytes, if any, of its args a function should try to pop
3772 on return. */
3773
3774 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3775 TREE_TYPE (fndecl),
3776 crtl->args.size);
3777
3778 /* For stdarg.h function, save info about
3779 regs and stack space used by the named args. */
3780
3781 crtl->args.info = all.args_so_far_v;
3782
3783 /* Set the rtx used for the function return value. Put this in its
3784 own variable so any optimizers that need this information don't have
3785 to include tree.h. Do this here so it gets done when an inlined
3786 function gets output. */
3787
3788 crtl->return_rtx
3789 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3790 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3791
3792 /* If scalar return value was computed in a pseudo-reg, or was a named
3793 return value that got dumped to the stack, copy that to the hard
3794 return register. */
3795 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3796 {
3797 tree decl_result = DECL_RESULT (fndecl);
3798 rtx decl_rtl = DECL_RTL (decl_result);
3799
3800 if (REG_P (decl_rtl)
3801 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3802 : DECL_REGISTER (decl_result))
3803 {
3804 rtx real_decl_rtl;
3805
3806 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3807 fndecl, true);
3808 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3809 /* The delay slot scheduler assumes that crtl->return_rtx
3810 holds the hard register containing the return value, not a
3811 temporary pseudo. */
3812 crtl->return_rtx = real_decl_rtl;
3813 }
3814 }
3815 }
3816
3817 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3818 For all seen types, gimplify their sizes. */
3819
3820 static tree
3821 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3822 {
3823 tree t = *tp;
3824
3825 *walk_subtrees = 0;
3826 if (TYPE_P (t))
3827 {
3828 if (POINTER_TYPE_P (t))
3829 *walk_subtrees = 1;
3830 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3831 && !TYPE_SIZES_GIMPLIFIED (t))
3832 {
3833 gimplify_type_sizes (t, (gimple_seq *) data);
3834 *walk_subtrees = 1;
3835 }
3836 }
3837
3838 return NULL;
3839 }
3840
3841 /* Gimplify the parameter list for current_function_decl. This involves
3842 evaluating SAVE_EXPRs of variable sized parameters and generating code
3843 to implement callee-copies reference parameters. Returns a sequence of
3844 statements to add to the beginning of the function. */
3845
3846 gimple_seq
3847 gimplify_parameters (gimple_seq *cleanup)
3848 {
3849 struct assign_parm_data_all all;
3850 tree parm;
3851 gimple_seq stmts = NULL;
3852 vec<tree> fnargs;
3853 unsigned i;
3854
3855 assign_parms_initialize_all (&all);
3856 fnargs = assign_parms_augmented_arg_list (&all);
3857
3858 FOR_EACH_VEC_ELT (fnargs, i, parm)
3859 {
3860 struct assign_parm_data_one data;
3861
3862 /* Extract the type of PARM; adjust it according to ABI. */
3863 assign_parm_find_data_types (&all, parm, &data);
3864
3865 /* Early out for errors and void parameters. */
3866 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3867 continue;
3868
3869 /* Update info on where next arg arrives in registers. */
3870 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3871
3872 /* ??? Once upon a time variable_size stuffed parameter list
3873 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3874 turned out to be less than manageable in the gimple world.
3875 Now we have to hunt them down ourselves. */
3876 walk_tree_without_duplicates (&data.arg.type,
3877 gimplify_parm_type, &stmts);
3878
3879 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3880 {
3881 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3882 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3883 }
3884
3885 if (data.arg.pass_by_reference)
3886 {
3887 tree type = TREE_TYPE (data.arg.type);
3888 function_arg_info orig_arg (type, data.arg.named);
3889 if (reference_callee_copied (&all.args_so_far_v, orig_arg))
3890 {
3891 tree local, t;
3892
3893 /* For constant-sized objects, this is trivial; for
3894 variable-sized objects, we have to play games. */
3895 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3896 && !(flag_stack_check == GENERIC_STACK_CHECK
3897 && compare_tree_int (DECL_SIZE_UNIT (parm),
3898 STACK_CHECK_MAX_VAR_SIZE) > 0))
3899 {
3900 local = create_tmp_var (type, get_name (parm));
3901 DECL_IGNORED_P (local) = 0;
3902 /* If PARM was addressable, move that flag over
3903 to the local copy, as its address will be taken,
3904 not the PARMs. Keep the parms address taken
3905 as we'll query that flag during gimplification. */
3906 if (TREE_ADDRESSABLE (parm))
3907 TREE_ADDRESSABLE (local) = 1;
3908 else if (TREE_CODE (type) == COMPLEX_TYPE
3909 || TREE_CODE (type) == VECTOR_TYPE)
3910 DECL_GIMPLE_REG_P (local) = 1;
3911
3912 if (!is_gimple_reg (local)
3913 && flag_stack_reuse != SR_NONE)
3914 {
3915 tree clobber = build_clobber (type);
3916 gimple *clobber_stmt;
3917 clobber_stmt = gimple_build_assign (local, clobber);
3918 gimple_seq_add_stmt (cleanup, clobber_stmt);
3919 }
3920 }
3921 else
3922 {
3923 tree ptr_type, addr;
3924
3925 ptr_type = build_pointer_type (type);
3926 addr = create_tmp_reg (ptr_type, get_name (parm));
3927 DECL_IGNORED_P (addr) = 0;
3928 local = build_fold_indirect_ref (addr);
3929
3930 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3931 DECL_ALIGN (parm),
3932 max_int_size_in_bytes (type));
3933 /* The call has been built for a variable-sized object. */
3934 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3935 t = fold_convert (ptr_type, t);
3936 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3937 gimplify_and_add (t, &stmts);
3938 }
3939
3940 gimplify_assign (local, parm, &stmts);
3941
3942 SET_DECL_VALUE_EXPR (parm, local);
3943 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3944 }
3945 }
3946 }
3947
3948 fnargs.release ();
3949
3950 return stmts;
3951 }
3952 \f
3953 /* Compute the size and offset from the start of the stacked arguments for a
3954 parm passed in mode PASSED_MODE and with type TYPE.
3955
3956 INITIAL_OFFSET_PTR points to the current offset into the stacked
3957 arguments.
3958
3959 The starting offset and size for this parm are returned in
3960 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3961 nonzero, the offset is that of stack slot, which is returned in
3962 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3963 padding required from the initial offset ptr to the stack slot.
3964
3965 IN_REGS is nonzero if the argument will be passed in registers. It will
3966 never be set if REG_PARM_STACK_SPACE is not defined.
3967
3968 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3969 for arguments which are passed in registers.
3970
3971 FNDECL is the function in which the argument was defined.
3972
3973 There are two types of rounding that are done. The first, controlled by
3974 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3975 argument list to be aligned to the specific boundary (in bits). This
3976 rounding affects the initial and starting offsets, but not the argument
3977 size.
3978
3979 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3980 optionally rounds the size of the parm to PARM_BOUNDARY. The
3981 initial offset is not affected by this rounding, while the size always
3982 is and the starting offset may be. */
3983
3984 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3985 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3986 callers pass in the total size of args so far as
3987 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3988
3989 void
3990 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
3991 int reg_parm_stack_space, int partial,
3992 tree fndecl ATTRIBUTE_UNUSED,
3993 struct args_size *initial_offset_ptr,
3994 struct locate_and_pad_arg_data *locate)
3995 {
3996 tree sizetree;
3997 pad_direction where_pad;
3998 unsigned int boundary, round_boundary;
3999 int part_size_in_regs;
4000
4001 /* If we have found a stack parm before we reach the end of the
4002 area reserved for registers, skip that area. */
4003 if (! in_regs)
4004 {
4005 if (reg_parm_stack_space > 0)
4006 {
4007 if (initial_offset_ptr->var
4008 || !ordered_p (initial_offset_ptr->constant,
4009 reg_parm_stack_space))
4010 {
4011 initial_offset_ptr->var
4012 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4013 ssize_int (reg_parm_stack_space));
4014 initial_offset_ptr->constant = 0;
4015 }
4016 else
4017 initial_offset_ptr->constant
4018 = ordered_max (initial_offset_ptr->constant,
4019 reg_parm_stack_space);
4020 }
4021 }
4022
4023 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4024
4025 sizetree = (type
4026 ? arg_size_in_bytes (type)
4027 : size_int (GET_MODE_SIZE (passed_mode)));
4028 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4029 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4030 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4031 type);
4032 locate->where_pad = where_pad;
4033
4034 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4035 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4036 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4037
4038 locate->boundary = boundary;
4039
4040 if (SUPPORTS_STACK_ALIGNMENT)
4041 {
4042 /* stack_alignment_estimated can't change after stack has been
4043 realigned. */
4044 if (crtl->stack_alignment_estimated < boundary)
4045 {
4046 if (!crtl->stack_realign_processed)
4047 crtl->stack_alignment_estimated = boundary;
4048 else
4049 {
4050 /* If stack is realigned and stack alignment value
4051 hasn't been finalized, it is OK not to increase
4052 stack_alignment_estimated. The bigger alignment
4053 requirement is recorded in stack_alignment_needed
4054 below. */
4055 gcc_assert (!crtl->stack_realign_finalized
4056 && crtl->stack_realign_needed);
4057 }
4058 }
4059 }
4060
4061 if (ARGS_GROW_DOWNWARD)
4062 {
4063 locate->slot_offset.constant = -initial_offset_ptr->constant;
4064 if (initial_offset_ptr->var)
4065 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4066 initial_offset_ptr->var);
4067
4068 {
4069 tree s2 = sizetree;
4070 if (where_pad != PAD_NONE
4071 && (!tree_fits_uhwi_p (sizetree)
4072 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4073 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4074 SUB_PARM_SIZE (locate->slot_offset, s2);
4075 }
4076
4077 locate->slot_offset.constant += part_size_in_regs;
4078
4079 if (!in_regs || reg_parm_stack_space > 0)
4080 pad_to_arg_alignment (&locate->slot_offset, boundary,
4081 &locate->alignment_pad);
4082
4083 locate->size.constant = (-initial_offset_ptr->constant
4084 - locate->slot_offset.constant);
4085 if (initial_offset_ptr->var)
4086 locate->size.var = size_binop (MINUS_EXPR,
4087 size_binop (MINUS_EXPR,
4088 ssize_int (0),
4089 initial_offset_ptr->var),
4090 locate->slot_offset.var);
4091
4092 /* Pad_below needs the pre-rounded size to know how much to pad
4093 below. */
4094 locate->offset = locate->slot_offset;
4095 if (where_pad == PAD_DOWNWARD)
4096 pad_below (&locate->offset, passed_mode, sizetree);
4097
4098 }
4099 else
4100 {
4101 if (!in_regs || reg_parm_stack_space > 0)
4102 pad_to_arg_alignment (initial_offset_ptr, boundary,
4103 &locate->alignment_pad);
4104 locate->slot_offset = *initial_offset_ptr;
4105
4106 #ifdef PUSH_ROUNDING
4107 if (passed_mode != BLKmode)
4108 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4109 #endif
4110
4111 /* Pad_below needs the pre-rounded size to know how much to pad below
4112 so this must be done before rounding up. */
4113 locate->offset = locate->slot_offset;
4114 if (where_pad == PAD_DOWNWARD)
4115 pad_below (&locate->offset, passed_mode, sizetree);
4116
4117 if (where_pad != PAD_NONE
4118 && (!tree_fits_uhwi_p (sizetree)
4119 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4120 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4121
4122 ADD_PARM_SIZE (locate->size, sizetree);
4123
4124 locate->size.constant -= part_size_in_regs;
4125 }
4126
4127 locate->offset.constant
4128 += targetm.calls.function_arg_offset (passed_mode, type);
4129 }
4130
4131 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4132 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4133
4134 static void
4135 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4136 struct args_size *alignment_pad)
4137 {
4138 tree save_var = NULL_TREE;
4139 poly_int64 save_constant = 0;
4140 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4141 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4142
4143 #ifdef SPARC_STACK_BOUNDARY_HACK
4144 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4145 the real alignment of %sp. However, when it does this, the
4146 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4147 if (SPARC_STACK_BOUNDARY_HACK)
4148 sp_offset = 0;
4149 #endif
4150
4151 if (boundary > PARM_BOUNDARY)
4152 {
4153 save_var = offset_ptr->var;
4154 save_constant = offset_ptr->constant;
4155 }
4156
4157 alignment_pad->var = NULL_TREE;
4158 alignment_pad->constant = 0;
4159
4160 if (boundary > BITS_PER_UNIT)
4161 {
4162 int misalign;
4163 if (offset_ptr->var
4164 || !known_misalignment (offset_ptr->constant + sp_offset,
4165 boundary_in_bytes, &misalign))
4166 {
4167 tree sp_offset_tree = ssize_int (sp_offset);
4168 tree offset = size_binop (PLUS_EXPR,
4169 ARGS_SIZE_TREE (*offset_ptr),
4170 sp_offset_tree);
4171 tree rounded;
4172 if (ARGS_GROW_DOWNWARD)
4173 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4174 else
4175 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4176
4177 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4178 /* ARGS_SIZE_TREE includes constant term. */
4179 offset_ptr->constant = 0;
4180 if (boundary > PARM_BOUNDARY)
4181 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4182 save_var);
4183 }
4184 else
4185 {
4186 if (ARGS_GROW_DOWNWARD)
4187 offset_ptr->constant -= misalign;
4188 else
4189 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4190
4191 if (boundary > PARM_BOUNDARY)
4192 alignment_pad->constant = offset_ptr->constant - save_constant;
4193 }
4194 }
4195 }
4196
4197 static void
4198 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4199 {
4200 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4201 int misalign;
4202 if (passed_mode != BLKmode
4203 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4204 offset_ptr->constant += -misalign & (align - 1);
4205 else
4206 {
4207 if (TREE_CODE (sizetree) != INTEGER_CST
4208 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4209 {
4210 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4211 tree s2 = round_up (sizetree, align);
4212 /* Add it in. */
4213 ADD_PARM_SIZE (*offset_ptr, s2);
4214 SUB_PARM_SIZE (*offset_ptr, sizetree);
4215 }
4216 }
4217 }
4218 \f
4219
4220 /* True if register REGNO was alive at a place where `setjmp' was
4221 called and was set more than once or is an argument. Such regs may
4222 be clobbered by `longjmp'. */
4223
4224 static bool
4225 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4226 {
4227 /* There appear to be cases where some local vars never reach the
4228 backend but have bogus regnos. */
4229 if (regno >= max_reg_num ())
4230 return false;
4231
4232 return ((REG_N_SETS (regno) > 1
4233 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4234 regno))
4235 && REGNO_REG_SET_P (setjmp_crosses, regno));
4236 }
4237
4238 /* Walk the tree of blocks describing the binding levels within a
4239 function and warn about variables the might be killed by setjmp or
4240 vfork. This is done after calling flow_analysis before register
4241 allocation since that will clobber the pseudo-regs to hard
4242 regs. */
4243
4244 static void
4245 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4246 {
4247 tree decl, sub;
4248
4249 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4250 {
4251 if (VAR_P (decl)
4252 && DECL_RTL_SET_P (decl)
4253 && REG_P (DECL_RTL (decl))
4254 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4255 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4256 " %<longjmp%> or %<vfork%>", decl);
4257 }
4258
4259 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4260 setjmp_vars_warning (setjmp_crosses, sub);
4261 }
4262
4263 /* Do the appropriate part of setjmp_vars_warning
4264 but for arguments instead of local variables. */
4265
4266 static void
4267 setjmp_args_warning (bitmap setjmp_crosses)
4268 {
4269 tree decl;
4270 for (decl = DECL_ARGUMENTS (current_function_decl);
4271 decl; decl = DECL_CHAIN (decl))
4272 if (DECL_RTL (decl) != 0
4273 && REG_P (DECL_RTL (decl))
4274 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4275 warning (OPT_Wclobbered,
4276 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4277 decl);
4278 }
4279
4280 /* Generate warning messages for variables live across setjmp. */
4281
4282 void
4283 generate_setjmp_warnings (void)
4284 {
4285 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4286
4287 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4288 || bitmap_empty_p (setjmp_crosses))
4289 return;
4290
4291 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4292 setjmp_args_warning (setjmp_crosses);
4293 }
4294
4295 \f
4296 /* Reverse the order of elements in the fragment chain T of blocks,
4297 and return the new head of the chain (old last element).
4298 In addition to that clear BLOCK_SAME_RANGE flags when needed
4299 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4300 its super fragment origin. */
4301
4302 static tree
4303 block_fragments_nreverse (tree t)
4304 {
4305 tree prev = 0, block, next, prev_super = 0;
4306 tree super = BLOCK_SUPERCONTEXT (t);
4307 if (BLOCK_FRAGMENT_ORIGIN (super))
4308 super = BLOCK_FRAGMENT_ORIGIN (super);
4309 for (block = t; block; block = next)
4310 {
4311 next = BLOCK_FRAGMENT_CHAIN (block);
4312 BLOCK_FRAGMENT_CHAIN (block) = prev;
4313 if ((prev && !BLOCK_SAME_RANGE (prev))
4314 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4315 != prev_super))
4316 BLOCK_SAME_RANGE (block) = 0;
4317 prev_super = BLOCK_SUPERCONTEXT (block);
4318 BLOCK_SUPERCONTEXT (block) = super;
4319 prev = block;
4320 }
4321 t = BLOCK_FRAGMENT_ORIGIN (t);
4322 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4323 != prev_super)
4324 BLOCK_SAME_RANGE (t) = 0;
4325 BLOCK_SUPERCONTEXT (t) = super;
4326 return prev;
4327 }
4328
4329 /* Reverse the order of elements in the chain T of blocks,
4330 and return the new head of the chain (old last element).
4331 Also do the same on subblocks and reverse the order of elements
4332 in BLOCK_FRAGMENT_CHAIN as well. */
4333
4334 static tree
4335 blocks_nreverse_all (tree t)
4336 {
4337 tree prev = 0, block, next;
4338 for (block = t; block; block = next)
4339 {
4340 next = BLOCK_CHAIN (block);
4341 BLOCK_CHAIN (block) = prev;
4342 if (BLOCK_FRAGMENT_CHAIN (block)
4343 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4344 {
4345 BLOCK_FRAGMENT_CHAIN (block)
4346 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4347 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4348 BLOCK_SAME_RANGE (block) = 0;
4349 }
4350 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4351 prev = block;
4352 }
4353 return prev;
4354 }
4355
4356
4357 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4358 and create duplicate blocks. */
4359 /* ??? Need an option to either create block fragments or to create
4360 abstract origin duplicates of a source block. It really depends
4361 on what optimization has been performed. */
4362
4363 void
4364 reorder_blocks (void)
4365 {
4366 tree block = DECL_INITIAL (current_function_decl);
4367
4368 if (block == NULL_TREE)
4369 return;
4370
4371 auto_vec<tree, 10> block_stack;
4372
4373 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4374 clear_block_marks (block);
4375
4376 /* Prune the old trees away, so that they don't get in the way. */
4377 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4378 BLOCK_CHAIN (block) = NULL_TREE;
4379
4380 /* Recreate the block tree from the note nesting. */
4381 reorder_blocks_1 (get_insns (), block, &block_stack);
4382 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4383 }
4384
4385 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4386
4387 void
4388 clear_block_marks (tree block)
4389 {
4390 while (block)
4391 {
4392 TREE_ASM_WRITTEN (block) = 0;
4393 clear_block_marks (BLOCK_SUBBLOCKS (block));
4394 block = BLOCK_CHAIN (block);
4395 }
4396 }
4397
4398 static void
4399 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4400 vec<tree> *p_block_stack)
4401 {
4402 rtx_insn *insn;
4403 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4404
4405 for (insn = insns; insn; insn = NEXT_INSN (insn))
4406 {
4407 if (NOTE_P (insn))
4408 {
4409 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4410 {
4411 tree block = NOTE_BLOCK (insn);
4412 tree origin;
4413
4414 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4415 origin = block;
4416
4417 if (prev_end)
4418 BLOCK_SAME_RANGE (prev_end) = 0;
4419 prev_end = NULL_TREE;
4420
4421 /* If we have seen this block before, that means it now
4422 spans multiple address regions. Create a new fragment. */
4423 if (TREE_ASM_WRITTEN (block))
4424 {
4425 tree new_block = copy_node (block);
4426
4427 BLOCK_SAME_RANGE (new_block) = 0;
4428 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4429 BLOCK_FRAGMENT_CHAIN (new_block)
4430 = BLOCK_FRAGMENT_CHAIN (origin);
4431 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4432
4433 NOTE_BLOCK (insn) = new_block;
4434 block = new_block;
4435 }
4436
4437 if (prev_beg == current_block && prev_beg)
4438 BLOCK_SAME_RANGE (block) = 1;
4439
4440 prev_beg = origin;
4441
4442 BLOCK_SUBBLOCKS (block) = 0;
4443 TREE_ASM_WRITTEN (block) = 1;
4444 /* When there's only one block for the entire function,
4445 current_block == block and we mustn't do this, it
4446 will cause infinite recursion. */
4447 if (block != current_block)
4448 {
4449 tree super;
4450 if (block != origin)
4451 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4452 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4453 (origin))
4454 == current_block);
4455 if (p_block_stack->is_empty ())
4456 super = current_block;
4457 else
4458 {
4459 super = p_block_stack->last ();
4460 gcc_assert (super == current_block
4461 || BLOCK_FRAGMENT_ORIGIN (super)
4462 == current_block);
4463 }
4464 BLOCK_SUPERCONTEXT (block) = super;
4465 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4466 BLOCK_SUBBLOCKS (current_block) = block;
4467 current_block = origin;
4468 }
4469 p_block_stack->safe_push (block);
4470 }
4471 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4472 {
4473 NOTE_BLOCK (insn) = p_block_stack->pop ();
4474 current_block = BLOCK_SUPERCONTEXT (current_block);
4475 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4476 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4477 prev_beg = NULL_TREE;
4478 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4479 ? NOTE_BLOCK (insn) : NULL_TREE;
4480 }
4481 }
4482 else
4483 {
4484 prev_beg = NULL_TREE;
4485 if (prev_end)
4486 BLOCK_SAME_RANGE (prev_end) = 0;
4487 prev_end = NULL_TREE;
4488 }
4489 }
4490 }
4491
4492 /* Reverse the order of elements in the chain T of blocks,
4493 and return the new head of the chain (old last element). */
4494
4495 tree
4496 blocks_nreverse (tree t)
4497 {
4498 tree prev = 0, block, next;
4499 for (block = t; block; block = next)
4500 {
4501 next = BLOCK_CHAIN (block);
4502 BLOCK_CHAIN (block) = prev;
4503 prev = block;
4504 }
4505 return prev;
4506 }
4507
4508 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4509 by modifying the last node in chain 1 to point to chain 2. */
4510
4511 tree
4512 block_chainon (tree op1, tree op2)
4513 {
4514 tree t1;
4515
4516 if (!op1)
4517 return op2;
4518 if (!op2)
4519 return op1;
4520
4521 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4522 continue;
4523 BLOCK_CHAIN (t1) = op2;
4524
4525 #ifdef ENABLE_TREE_CHECKING
4526 {
4527 tree t2;
4528 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4529 gcc_assert (t2 != t1);
4530 }
4531 #endif
4532
4533 return op1;
4534 }
4535
4536 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4537 non-NULL, list them all into VECTOR, in a depth-first preorder
4538 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4539 blocks. */
4540
4541 static int
4542 all_blocks (tree block, tree *vector)
4543 {
4544 int n_blocks = 0;
4545
4546 while (block)
4547 {
4548 TREE_ASM_WRITTEN (block) = 0;
4549
4550 /* Record this block. */
4551 if (vector)
4552 vector[n_blocks] = block;
4553
4554 ++n_blocks;
4555
4556 /* Record the subblocks, and their subblocks... */
4557 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4558 vector ? vector + n_blocks : 0);
4559 block = BLOCK_CHAIN (block);
4560 }
4561
4562 return n_blocks;
4563 }
4564
4565 /* Return a vector containing all the blocks rooted at BLOCK. The
4566 number of elements in the vector is stored in N_BLOCKS_P. The
4567 vector is dynamically allocated; it is the caller's responsibility
4568 to call `free' on the pointer returned. */
4569
4570 static tree *
4571 get_block_vector (tree block, int *n_blocks_p)
4572 {
4573 tree *block_vector;
4574
4575 *n_blocks_p = all_blocks (block, NULL);
4576 block_vector = XNEWVEC (tree, *n_blocks_p);
4577 all_blocks (block, block_vector);
4578
4579 return block_vector;
4580 }
4581
4582 static GTY(()) int next_block_index = 2;
4583
4584 /* Set BLOCK_NUMBER for all the blocks in FN. */
4585
4586 void
4587 number_blocks (tree fn)
4588 {
4589 int i;
4590 int n_blocks;
4591 tree *block_vector;
4592
4593 /* For XCOFF debugging output, we start numbering the blocks
4594 from 1 within each function, rather than keeping a running
4595 count. */
4596 #if defined (XCOFF_DEBUGGING_INFO)
4597 if (write_symbols == XCOFF_DEBUG)
4598 next_block_index = 1;
4599 #endif
4600
4601 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4602
4603 /* The top-level BLOCK isn't numbered at all. */
4604 for (i = 1; i < n_blocks; ++i)
4605 /* We number the blocks from two. */
4606 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4607
4608 free (block_vector);
4609
4610 return;
4611 }
4612
4613 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4614
4615 DEBUG_FUNCTION tree
4616 debug_find_var_in_block_tree (tree var, tree block)
4617 {
4618 tree t;
4619
4620 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4621 if (t == var)
4622 return block;
4623
4624 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4625 {
4626 tree ret = debug_find_var_in_block_tree (var, t);
4627 if (ret)
4628 return ret;
4629 }
4630
4631 return NULL_TREE;
4632 }
4633 \f
4634 /* Keep track of whether we're in a dummy function context. If we are,
4635 we don't want to invoke the set_current_function hook, because we'll
4636 get into trouble if the hook calls target_reinit () recursively or
4637 when the initial initialization is not yet complete. */
4638
4639 static bool in_dummy_function;
4640
4641 /* Invoke the target hook when setting cfun. Update the optimization options
4642 if the function uses different options than the default. */
4643
4644 static void
4645 invoke_set_current_function_hook (tree fndecl)
4646 {
4647 if (!in_dummy_function)
4648 {
4649 tree opts = ((fndecl)
4650 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4651 : optimization_default_node);
4652
4653 if (!opts)
4654 opts = optimization_default_node;
4655
4656 /* Change optimization options if needed. */
4657 if (optimization_current_node != opts)
4658 {
4659 optimization_current_node = opts;
4660 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4661 }
4662
4663 targetm.set_current_function (fndecl);
4664 this_fn_optabs = this_target_optabs;
4665
4666 /* Initialize global alignment variables after op. */
4667 parse_alignment_opts ();
4668
4669 if (opts != optimization_default_node)
4670 {
4671 init_tree_optimization_optabs (opts);
4672 if (TREE_OPTIMIZATION_OPTABS (opts))
4673 this_fn_optabs = (struct target_optabs *)
4674 TREE_OPTIMIZATION_OPTABS (opts);
4675 }
4676 }
4677 }
4678
4679 /* cfun should never be set directly; use this function. */
4680
4681 void
4682 set_cfun (struct function *new_cfun, bool force)
4683 {
4684 if (cfun != new_cfun || force)
4685 {
4686 cfun = new_cfun;
4687 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4688 redirect_edge_var_map_empty ();
4689 }
4690 }
4691
4692 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4693
4694 static vec<function *> cfun_stack;
4695
4696 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4697 current_function_decl accordingly. */
4698
4699 void
4700 push_cfun (struct function *new_cfun)
4701 {
4702 gcc_assert ((!cfun && !current_function_decl)
4703 || (cfun && current_function_decl == cfun->decl));
4704 cfun_stack.safe_push (cfun);
4705 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4706 set_cfun (new_cfun);
4707 }
4708
4709 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4710
4711 void
4712 pop_cfun (void)
4713 {
4714 struct function *new_cfun = cfun_stack.pop ();
4715 /* When in_dummy_function, we do have a cfun but current_function_decl is
4716 NULL. We also allow pushing NULL cfun and subsequently changing
4717 current_function_decl to something else and have both restored by
4718 pop_cfun. */
4719 gcc_checking_assert (in_dummy_function
4720 || !cfun
4721 || current_function_decl == cfun->decl);
4722 set_cfun (new_cfun);
4723 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4724 }
4725
4726 /* Return value of funcdef and increase it. */
4727 int
4728 get_next_funcdef_no (void)
4729 {
4730 return funcdef_no++;
4731 }
4732
4733 /* Return value of funcdef. */
4734 int
4735 get_last_funcdef_no (void)
4736 {
4737 return funcdef_no;
4738 }
4739
4740 /* Allocate and initialize the stack usage info data structure for the
4741 current function. */
4742 static void
4743 allocate_stack_usage_info (void)
4744 {
4745 gcc_assert (!cfun->su);
4746 cfun->su = ggc_cleared_alloc<stack_usage> ();
4747 cfun->su->static_stack_size = -1;
4748 }
4749
4750 /* Allocate a function structure for FNDECL and set its contents
4751 to the defaults. Set cfun to the newly-allocated object.
4752 Some of the helper functions invoked during initialization assume
4753 that cfun has already been set. Therefore, assign the new object
4754 directly into cfun and invoke the back end hook explicitly at the
4755 very end, rather than initializing a temporary and calling set_cfun
4756 on it.
4757
4758 ABSTRACT_P is true if this is a function that will never be seen by
4759 the middle-end. Such functions are front-end concepts (like C++
4760 function templates) that do not correspond directly to functions
4761 placed in object files. */
4762
4763 void
4764 allocate_struct_function (tree fndecl, bool abstract_p)
4765 {
4766 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4767
4768 cfun = ggc_cleared_alloc<function> ();
4769
4770 init_eh_for_function ();
4771
4772 if (init_machine_status)
4773 cfun->machine = (*init_machine_status) ();
4774
4775 #ifdef OVERRIDE_ABI_FORMAT
4776 OVERRIDE_ABI_FORMAT (fndecl);
4777 #endif
4778
4779 if (fndecl != NULL_TREE)
4780 {
4781 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4782 cfun->decl = fndecl;
4783 current_function_funcdef_no = get_next_funcdef_no ();
4784 }
4785
4786 invoke_set_current_function_hook (fndecl);
4787
4788 if (fndecl != NULL_TREE)
4789 {
4790 tree result = DECL_RESULT (fndecl);
4791
4792 if (!abstract_p)
4793 {
4794 /* Now that we have activated any function-specific attributes
4795 that might affect layout, particularly vector modes, relayout
4796 each of the parameters and the result. */
4797 relayout_decl (result);
4798 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4799 parm = DECL_CHAIN (parm))
4800 relayout_decl (parm);
4801
4802 /* Similarly relayout the function decl. */
4803 targetm.target_option.relayout_function (fndecl);
4804 }
4805
4806 if (!abstract_p && aggregate_value_p (result, fndecl))
4807 {
4808 #ifdef PCC_STATIC_STRUCT_RETURN
4809 cfun->returns_pcc_struct = 1;
4810 #endif
4811 cfun->returns_struct = 1;
4812 }
4813
4814 cfun->stdarg = stdarg_p (fntype);
4815
4816 /* Assume all registers in stdarg functions need to be saved. */
4817 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4818 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4819
4820 /* ??? This could be set on a per-function basis by the front-end
4821 but is this worth the hassle? */
4822 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4823 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4824
4825 if (!profile_flag && !flag_instrument_function_entry_exit)
4826 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4827
4828 if (flag_callgraph_info)
4829 allocate_stack_usage_info ();
4830 }
4831
4832 /* Don't enable begin stmt markers if var-tracking at assignments is
4833 disabled. The markers make little sense without the variable
4834 binding annotations among them. */
4835 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4836 && MAY_HAVE_DEBUG_MARKER_STMTS;
4837 }
4838
4839 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4840 instead of just setting it. */
4841
4842 void
4843 push_struct_function (tree fndecl)
4844 {
4845 /* When in_dummy_function we might be in the middle of a pop_cfun and
4846 current_function_decl and cfun may not match. */
4847 gcc_assert (in_dummy_function
4848 || (!cfun && !current_function_decl)
4849 || (cfun && current_function_decl == cfun->decl));
4850 cfun_stack.safe_push (cfun);
4851 current_function_decl = fndecl;
4852 allocate_struct_function (fndecl, false);
4853 }
4854
4855 /* Reset crtl and other non-struct-function variables to defaults as
4856 appropriate for emitting rtl at the start of a function. */
4857
4858 static void
4859 prepare_function_start (void)
4860 {
4861 gcc_assert (!get_last_insn ());
4862
4863 if (in_dummy_function)
4864 crtl->abi = &default_function_abi;
4865 else
4866 crtl->abi = &fndecl_abi (cfun->decl).base_abi ();
4867
4868 init_temp_slots ();
4869 init_emit ();
4870 init_varasm_status ();
4871 init_expr ();
4872 default_rtl_profile ();
4873
4874 if (flag_stack_usage_info && !flag_callgraph_info)
4875 allocate_stack_usage_info ();
4876
4877 cse_not_expected = ! optimize;
4878
4879 /* Caller save not needed yet. */
4880 caller_save_needed = 0;
4881
4882 /* We haven't done register allocation yet. */
4883 reg_renumber = 0;
4884
4885 /* Indicate that we have not instantiated virtual registers yet. */
4886 virtuals_instantiated = 0;
4887
4888 /* Indicate that we want CONCATs now. */
4889 generating_concat_p = 1;
4890
4891 /* Indicate we have no need of a frame pointer yet. */
4892 frame_pointer_needed = 0;
4893 }
4894
4895 void
4896 push_dummy_function (bool with_decl)
4897 {
4898 tree fn_decl, fn_type, fn_result_decl;
4899
4900 gcc_assert (!in_dummy_function);
4901 in_dummy_function = true;
4902
4903 if (with_decl)
4904 {
4905 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4906 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4907 fn_type);
4908 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4909 NULL_TREE, void_type_node);
4910 DECL_RESULT (fn_decl) = fn_result_decl;
4911 }
4912 else
4913 fn_decl = NULL_TREE;
4914
4915 push_struct_function (fn_decl);
4916 }
4917
4918 /* Initialize the rtl expansion mechanism so that we can do simple things
4919 like generate sequences. This is used to provide a context during global
4920 initialization of some passes. You must call expand_dummy_function_end
4921 to exit this context. */
4922
4923 void
4924 init_dummy_function_start (void)
4925 {
4926 push_dummy_function (false);
4927 prepare_function_start ();
4928 }
4929
4930 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4931 and initialize static variables for generating RTL for the statements
4932 of the function. */
4933
4934 void
4935 init_function_start (tree subr)
4936 {
4937 /* Initialize backend, if needed. */
4938 initialize_rtl ();
4939
4940 prepare_function_start ();
4941 decide_function_section (subr);
4942
4943 /* Warn if this value is an aggregate type,
4944 regardless of which calling convention we are using for it. */
4945 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4946 warning (OPT_Waggregate_return, "function returns an aggregate");
4947 }
4948
4949 /* Expand code to verify the stack_protect_guard. This is invoked at
4950 the end of a function to be protected. */
4951
4952 void
4953 stack_protect_epilogue (void)
4954 {
4955 tree guard_decl = crtl->stack_protect_guard_decl;
4956 rtx_code_label *label = gen_label_rtx ();
4957 rtx x, y;
4958 rtx_insn *seq = NULL;
4959
4960 x = expand_normal (crtl->stack_protect_guard);
4961
4962 if (targetm.have_stack_protect_combined_test () && guard_decl)
4963 {
4964 gcc_assert (DECL_P (guard_decl));
4965 y = DECL_RTL (guard_decl);
4966 /* Allow the target to compute address of Y and compare it with X without
4967 leaking Y into a register. This combined address + compare pattern
4968 allows the target to prevent spilling of any intermediate results by
4969 splitting it after register allocator. */
4970 seq = targetm.gen_stack_protect_combined_test (x, y, label);
4971 }
4972 else
4973 {
4974 if (guard_decl)
4975 y = expand_normal (guard_decl);
4976 else
4977 y = const0_rtx;
4978
4979 /* Allow the target to compare Y with X without leaking either into
4980 a register. */
4981 if (targetm.have_stack_protect_test ())
4982 seq = targetm.gen_stack_protect_test (x, y, label);
4983 }
4984
4985 if (seq)
4986 emit_insn (seq);
4987 else
4988 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4989
4990 /* The noreturn predictor has been moved to the tree level. The rtl-level
4991 predictors estimate this branch about 20%, which isn't enough to get
4992 things moved out of line. Since this is the only extant case of adding
4993 a noreturn function at the rtl level, it doesn't seem worth doing ought
4994 except adding the prediction by hand. */
4995 rtx_insn *tmp = get_last_insn ();
4996 if (JUMP_P (tmp))
4997 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4998
4999 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5000 free_temp_slots ();
5001 emit_label (label);
5002 }
5003 \f
5004 /* Start the RTL for a new function, and set variables used for
5005 emitting RTL.
5006 SUBR is the FUNCTION_DECL node.
5007 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5008 the function's parameters, which must be run at any return statement. */
5009
5010 void
5011 expand_function_start (tree subr)
5012 {
5013 /* Make sure volatile mem refs aren't considered
5014 valid operands of arithmetic insns. */
5015 init_recog_no_volatile ();
5016
5017 crtl->profile
5018 = (profile_flag
5019 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5020
5021 crtl->limit_stack
5022 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5023
5024 /* Make the label for return statements to jump to. Do not special
5025 case machines with special return instructions -- they will be
5026 handled later during jump, ifcvt, or epilogue creation. */
5027 return_label = gen_label_rtx ();
5028
5029 /* Initialize rtx used to return the value. */
5030 /* Do this before assign_parms so that we copy the struct value address
5031 before any library calls that assign parms might generate. */
5032
5033 /* Decide whether to return the value in memory or in a register. */
5034 tree res = DECL_RESULT (subr);
5035 if (aggregate_value_p (res, subr))
5036 {
5037 /* Returning something that won't go in a register. */
5038 rtx value_address = 0;
5039
5040 #ifdef PCC_STATIC_STRUCT_RETURN
5041 if (cfun->returns_pcc_struct)
5042 {
5043 int size = int_size_in_bytes (TREE_TYPE (res));
5044 value_address = assemble_static_space (size);
5045 }
5046 else
5047 #endif
5048 {
5049 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5050 /* Expect to be passed the address of a place to store the value.
5051 If it is passed as an argument, assign_parms will take care of
5052 it. */
5053 if (sv)
5054 {
5055 value_address = gen_reg_rtx (Pmode);
5056 emit_move_insn (value_address, sv);
5057 }
5058 }
5059 if (value_address)
5060 {
5061 rtx x = value_address;
5062 if (!DECL_BY_REFERENCE (res))
5063 {
5064 x = gen_rtx_MEM (DECL_MODE (res), x);
5065 set_mem_attributes (x, res, 1);
5066 }
5067 set_parm_rtl (res, x);
5068 }
5069 }
5070 else if (DECL_MODE (res) == VOIDmode)
5071 /* If return mode is void, this decl rtl should not be used. */
5072 set_parm_rtl (res, NULL_RTX);
5073 else
5074 {
5075 /* Compute the return values into a pseudo reg, which we will copy
5076 into the true return register after the cleanups are done. */
5077 tree return_type = TREE_TYPE (res);
5078
5079 /* If we may coalesce this result, make sure it has the expected mode
5080 in case it was promoted. But we need not bother about BLKmode. */
5081 machine_mode promoted_mode
5082 = flag_tree_coalesce_vars && is_gimple_reg (res)
5083 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5084 : BLKmode;
5085
5086 if (promoted_mode != BLKmode)
5087 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5088 else if (TYPE_MODE (return_type) != BLKmode
5089 && targetm.calls.return_in_msb (return_type))
5090 /* expand_function_end will insert the appropriate padding in
5091 this case. Use the return value's natural (unpadded) mode
5092 within the function proper. */
5093 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5094 else
5095 {
5096 /* In order to figure out what mode to use for the pseudo, we
5097 figure out what the mode of the eventual return register will
5098 actually be, and use that. */
5099 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5100
5101 /* Structures that are returned in registers are not
5102 aggregate_value_p, so we may see a PARALLEL or a REG. */
5103 if (REG_P (hard_reg))
5104 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5105 else
5106 {
5107 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5108 set_parm_rtl (res, gen_group_rtx (hard_reg));
5109 }
5110 }
5111
5112 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5113 result to the real return register(s). */
5114 DECL_REGISTER (res) = 1;
5115 }
5116
5117 /* Initialize rtx for parameters and local variables.
5118 In some cases this requires emitting insns. */
5119 assign_parms (subr);
5120
5121 /* If function gets a static chain arg, store it. */
5122 if (cfun->static_chain_decl)
5123 {
5124 tree parm = cfun->static_chain_decl;
5125 rtx local, chain;
5126 rtx_insn *insn;
5127 int unsignedp;
5128
5129 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5130 chain = targetm.calls.static_chain (current_function_decl, true);
5131
5132 set_decl_incoming_rtl (parm, chain, false);
5133 set_parm_rtl (parm, local);
5134 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5135
5136 if (GET_MODE (local) != GET_MODE (chain))
5137 {
5138 convert_move (local, chain, unsignedp);
5139 insn = get_last_insn ();
5140 }
5141 else
5142 insn = emit_move_insn (local, chain);
5143
5144 /* Mark the register as eliminable, similar to parameters. */
5145 if (MEM_P (chain)
5146 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5147 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5148
5149 /* If we aren't optimizing, save the static chain onto the stack. */
5150 if (!optimize)
5151 {
5152 tree saved_static_chain_decl
5153 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5154 DECL_NAME (parm), TREE_TYPE (parm));
5155 rtx saved_static_chain_rtx
5156 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5157 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5158 emit_move_insn (saved_static_chain_rtx, chain);
5159 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5160 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5161 }
5162 }
5163
5164 /* The following was moved from init_function_start.
5165 The move was supposed to make sdb output more accurate. */
5166 /* Indicate the beginning of the function body,
5167 as opposed to parm setup. */
5168 emit_note (NOTE_INSN_FUNCTION_BEG);
5169
5170 gcc_assert (NOTE_P (get_last_insn ()));
5171
5172 parm_birth_insn = get_last_insn ();
5173
5174 /* If the function receives a non-local goto, then store the
5175 bits we need to restore the frame pointer. */
5176 if (cfun->nonlocal_goto_save_area)
5177 {
5178 tree t_save;
5179 rtx r_save;
5180
5181 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5182 gcc_assert (DECL_RTL_SET_P (var));
5183
5184 t_save = build4 (ARRAY_REF,
5185 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5186 cfun->nonlocal_goto_save_area,
5187 integer_zero_node, NULL_TREE, NULL_TREE);
5188 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5189 gcc_assert (GET_MODE (r_save) == Pmode);
5190
5191 emit_move_insn (r_save, hard_frame_pointer_rtx);
5192 update_nonlocal_goto_save_area ();
5193 }
5194
5195 if (crtl->profile)
5196 {
5197 #ifdef PROFILE_HOOK
5198 PROFILE_HOOK (current_function_funcdef_no);
5199 #endif
5200 }
5201
5202 /* If we are doing generic stack checking, the probe should go here. */
5203 if (flag_stack_check == GENERIC_STACK_CHECK)
5204 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5205 }
5206 \f
5207 void
5208 pop_dummy_function (void)
5209 {
5210 pop_cfun ();
5211 in_dummy_function = false;
5212 }
5213
5214 /* Undo the effects of init_dummy_function_start. */
5215 void
5216 expand_dummy_function_end (void)
5217 {
5218 gcc_assert (in_dummy_function);
5219
5220 /* End any sequences that failed to be closed due to syntax errors. */
5221 while (in_sequence_p ())
5222 end_sequence ();
5223
5224 /* Outside function body, can't compute type's actual size
5225 until next function's body starts. */
5226
5227 free_after_parsing (cfun);
5228 free_after_compilation (cfun);
5229 pop_dummy_function ();
5230 }
5231
5232 /* Helper for diddle_return_value. */
5233
5234 void
5235 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5236 {
5237 if (! outgoing)
5238 return;
5239
5240 if (REG_P (outgoing))
5241 (*doit) (outgoing, arg);
5242 else if (GET_CODE (outgoing) == PARALLEL)
5243 {
5244 int i;
5245
5246 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5247 {
5248 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5249
5250 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5251 (*doit) (x, arg);
5252 }
5253 }
5254 }
5255
5256 /* Call DOIT for each hard register used as a return value from
5257 the current function. */
5258
5259 void
5260 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5261 {
5262 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5263 }
5264
5265 static void
5266 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5267 {
5268 emit_clobber (reg);
5269 }
5270
5271 void
5272 clobber_return_register (void)
5273 {
5274 diddle_return_value (do_clobber_return_reg, NULL);
5275
5276 /* In case we do use pseudo to return value, clobber it too. */
5277 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5278 {
5279 tree decl_result = DECL_RESULT (current_function_decl);
5280 rtx decl_rtl = DECL_RTL (decl_result);
5281 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5282 {
5283 do_clobber_return_reg (decl_rtl, NULL);
5284 }
5285 }
5286 }
5287
5288 static void
5289 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5290 {
5291 emit_use (reg);
5292 }
5293
5294 static void
5295 use_return_register (void)
5296 {
5297 diddle_return_value (do_use_return_reg, NULL);
5298 }
5299
5300 /* Generate RTL for the end of the current function. */
5301
5302 void
5303 expand_function_end (void)
5304 {
5305 /* If arg_pointer_save_area was referenced only from a nested
5306 function, we will not have initialized it yet. Do that now. */
5307 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5308 get_arg_pointer_save_area ();
5309
5310 /* If we are doing generic stack checking and this function makes calls,
5311 do a stack probe at the start of the function to ensure we have enough
5312 space for another stack frame. */
5313 if (flag_stack_check == GENERIC_STACK_CHECK)
5314 {
5315 rtx_insn *insn, *seq;
5316
5317 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5318 if (CALL_P (insn))
5319 {
5320 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5321 start_sequence ();
5322 if (STACK_CHECK_MOVING_SP)
5323 anti_adjust_stack_and_probe (max_frame_size, true);
5324 else
5325 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5326 seq = get_insns ();
5327 end_sequence ();
5328 set_insn_locations (seq, prologue_location);
5329 emit_insn_before (seq, stack_check_probe_note);
5330 break;
5331 }
5332 }
5333
5334 /* End any sequences that failed to be closed due to syntax errors. */
5335 while (in_sequence_p ())
5336 end_sequence ();
5337
5338 clear_pending_stack_adjust ();
5339 do_pending_stack_adjust ();
5340
5341 /* Output a linenumber for the end of the function.
5342 SDB depended on this. */
5343 set_curr_insn_location (input_location);
5344
5345 /* Before the return label (if any), clobber the return
5346 registers so that they are not propagated live to the rest of
5347 the function. This can only happen with functions that drop
5348 through; if there had been a return statement, there would
5349 have either been a return rtx, or a jump to the return label.
5350
5351 We delay actual code generation after the current_function_value_rtx
5352 is computed. */
5353 rtx_insn *clobber_after = get_last_insn ();
5354
5355 /* Output the label for the actual return from the function. */
5356 emit_label (return_label);
5357
5358 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5359 {
5360 /* Let except.c know where it should emit the call to unregister
5361 the function context for sjlj exceptions. */
5362 if (flag_exceptions)
5363 sjlj_emit_function_exit_after (get_last_insn ());
5364 }
5365
5366 /* If this is an implementation of throw, do what's necessary to
5367 communicate between __builtin_eh_return and the epilogue. */
5368 expand_eh_return ();
5369
5370 /* If stack protection is enabled for this function, check the guard. */
5371 if (crtl->stack_protect_guard
5372 && targetm.stack_protect_runtime_enabled_p ()
5373 && naked_return_label == NULL_RTX)
5374 stack_protect_epilogue ();
5375
5376 /* If scalar return value was computed in a pseudo-reg, or was a named
5377 return value that got dumped to the stack, copy that to the hard
5378 return register. */
5379 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5380 {
5381 tree decl_result = DECL_RESULT (current_function_decl);
5382 rtx decl_rtl = DECL_RTL (decl_result);
5383
5384 if (REG_P (decl_rtl)
5385 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5386 : DECL_REGISTER (decl_result))
5387 {
5388 rtx real_decl_rtl = crtl->return_rtx;
5389 complex_mode cmode;
5390
5391 /* This should be set in assign_parms. */
5392 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5393
5394 /* If this is a BLKmode structure being returned in registers,
5395 then use the mode computed in expand_return. Note that if
5396 decl_rtl is memory, then its mode may have been changed,
5397 but that crtl->return_rtx has not. */
5398 if (GET_MODE (real_decl_rtl) == BLKmode)
5399 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5400
5401 /* If a non-BLKmode return value should be padded at the least
5402 significant end of the register, shift it left by the appropriate
5403 amount. BLKmode results are handled using the group load/store
5404 machinery. */
5405 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5406 && REG_P (real_decl_rtl)
5407 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5408 {
5409 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5410 REGNO (real_decl_rtl)),
5411 decl_rtl);
5412 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5413 }
5414 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5415 {
5416 /* If expand_function_start has created a PARALLEL for decl_rtl,
5417 move the result to the real return registers. Otherwise, do
5418 a group load from decl_rtl for a named return. */
5419 if (GET_CODE (decl_rtl) == PARALLEL)
5420 emit_group_move (real_decl_rtl, decl_rtl);
5421 else
5422 emit_group_load (real_decl_rtl, decl_rtl,
5423 TREE_TYPE (decl_result),
5424 int_size_in_bytes (TREE_TYPE (decl_result)));
5425 }
5426 /* In the case of complex integer modes smaller than a word, we'll
5427 need to generate some non-trivial bitfield insertions. Do that
5428 on a pseudo and not the hard register. */
5429 else if (GET_CODE (decl_rtl) == CONCAT
5430 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5431 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5432 {
5433 int old_generating_concat_p;
5434 rtx tmp;
5435
5436 old_generating_concat_p = generating_concat_p;
5437 generating_concat_p = 0;
5438 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5439 generating_concat_p = old_generating_concat_p;
5440
5441 emit_move_insn (tmp, decl_rtl);
5442 emit_move_insn (real_decl_rtl, tmp);
5443 }
5444 /* If a named return value dumped decl_return to memory, then
5445 we may need to re-do the PROMOTE_MODE signed/unsigned
5446 extension. */
5447 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5448 {
5449 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5450 promote_function_mode (TREE_TYPE (decl_result),
5451 GET_MODE (decl_rtl), &unsignedp,
5452 TREE_TYPE (current_function_decl), 1);
5453
5454 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5455 }
5456 else
5457 emit_move_insn (real_decl_rtl, decl_rtl);
5458 }
5459 }
5460
5461 /* If returning a structure, arrange to return the address of the value
5462 in a place where debuggers expect to find it.
5463
5464 If returning a structure PCC style,
5465 the caller also depends on this value.
5466 And cfun->returns_pcc_struct is not necessarily set. */
5467 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5468 && !targetm.calls.omit_struct_return_reg)
5469 {
5470 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5471 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5472 rtx outgoing;
5473
5474 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5475 type = TREE_TYPE (type);
5476 else
5477 value_address = XEXP (value_address, 0);
5478
5479 outgoing = targetm.calls.function_value (build_pointer_type (type),
5480 current_function_decl, true);
5481
5482 /* Mark this as a function return value so integrate will delete the
5483 assignment and USE below when inlining this function. */
5484 REG_FUNCTION_VALUE_P (outgoing) = 1;
5485
5486 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5487 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5488 value_address = convert_memory_address (mode, value_address);
5489
5490 emit_move_insn (outgoing, value_address);
5491
5492 /* Show return register used to hold result (in this case the address
5493 of the result. */
5494 crtl->return_rtx = outgoing;
5495 }
5496
5497 /* Emit the actual code to clobber return register. Don't emit
5498 it if clobber_after is a barrier, then the previous basic block
5499 certainly doesn't fall thru into the exit block. */
5500 if (!BARRIER_P (clobber_after))
5501 {
5502 start_sequence ();
5503 clobber_return_register ();
5504 rtx_insn *seq = get_insns ();
5505 end_sequence ();
5506
5507 emit_insn_after (seq, clobber_after);
5508 }
5509
5510 /* Output the label for the naked return from the function. */
5511 if (naked_return_label)
5512 emit_label (naked_return_label);
5513
5514 /* @@@ This is a kludge. We want to ensure that instructions that
5515 may trap are not moved into the epilogue by scheduling, because
5516 we don't always emit unwind information for the epilogue. */
5517 if (cfun->can_throw_non_call_exceptions
5518 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5519 emit_insn (gen_blockage ());
5520
5521 /* If stack protection is enabled for this function, check the guard. */
5522 if (crtl->stack_protect_guard
5523 && targetm.stack_protect_runtime_enabled_p ()
5524 && naked_return_label)
5525 stack_protect_epilogue ();
5526
5527 /* If we had calls to alloca, and this machine needs
5528 an accurate stack pointer to exit the function,
5529 insert some code to save and restore the stack pointer. */
5530 if (! EXIT_IGNORE_STACK
5531 && cfun->calls_alloca)
5532 {
5533 rtx tem = 0;
5534
5535 start_sequence ();
5536 emit_stack_save (SAVE_FUNCTION, &tem);
5537 rtx_insn *seq = get_insns ();
5538 end_sequence ();
5539 emit_insn_before (seq, parm_birth_insn);
5540
5541 emit_stack_restore (SAVE_FUNCTION, tem);
5542 }
5543
5544 /* ??? This should no longer be necessary since stupid is no longer with
5545 us, but there are some parts of the compiler (eg reload_combine, and
5546 sh mach_dep_reorg) that still try and compute their own lifetime info
5547 instead of using the general framework. */
5548 use_return_register ();
5549 }
5550
5551 rtx
5552 get_arg_pointer_save_area (void)
5553 {
5554 rtx ret = arg_pointer_save_area;
5555
5556 if (! ret)
5557 {
5558 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5559 arg_pointer_save_area = ret;
5560 }
5561
5562 if (! crtl->arg_pointer_save_area_init)
5563 {
5564 /* Save the arg pointer at the beginning of the function. The
5565 generated stack slot may not be a valid memory address, so we
5566 have to check it and fix it if necessary. */
5567 start_sequence ();
5568 emit_move_insn (validize_mem (copy_rtx (ret)),
5569 crtl->args.internal_arg_pointer);
5570 rtx_insn *seq = get_insns ();
5571 end_sequence ();
5572
5573 push_topmost_sequence ();
5574 emit_insn_after (seq, entry_of_function ());
5575 pop_topmost_sequence ();
5576
5577 crtl->arg_pointer_save_area_init = true;
5578 }
5579
5580 return ret;
5581 }
5582 \f
5583
5584 /* If debugging dumps are requested, dump information about how the
5585 target handled -fstack-check=clash for the prologue.
5586
5587 PROBES describes what if any probes were emitted.
5588
5589 RESIDUALS indicates if the prologue had any residual allocation
5590 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5591
5592 void
5593 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5594 {
5595 if (!dump_file)
5596 return;
5597
5598 switch (probes)
5599 {
5600 case NO_PROBE_NO_FRAME:
5601 fprintf (dump_file,
5602 "Stack clash no probe no stack adjustment in prologue.\n");
5603 break;
5604 case NO_PROBE_SMALL_FRAME:
5605 fprintf (dump_file,
5606 "Stack clash no probe small stack adjustment in prologue.\n");
5607 break;
5608 case PROBE_INLINE:
5609 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5610 break;
5611 case PROBE_LOOP:
5612 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5613 break;
5614 }
5615
5616 if (residuals)
5617 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5618 else
5619 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5620
5621 if (frame_pointer_needed)
5622 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5623 else
5624 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5625
5626 if (TREE_THIS_VOLATILE (cfun->decl))
5627 fprintf (dump_file,
5628 "Stack clash noreturn prologue, assuming no implicit"
5629 " probes in caller.\n");
5630 else
5631 fprintf (dump_file,
5632 "Stack clash not noreturn prologue.\n");
5633 }
5634
5635 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5636 for the first time. */
5637
5638 static void
5639 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5640 {
5641 rtx_insn *tmp;
5642 hash_table<insn_cache_hasher> *hash = *hashp;
5643
5644 if (hash == NULL)
5645 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5646
5647 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5648 {
5649 rtx *slot = hash->find_slot (tmp, INSERT);
5650 gcc_assert (*slot == NULL);
5651 *slot = tmp;
5652 }
5653 }
5654
5655 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5656 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5657 insn, then record COPY as well. */
5658
5659 void
5660 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5661 {
5662 hash_table<insn_cache_hasher> *hash;
5663 rtx *slot;
5664
5665 hash = epilogue_insn_hash;
5666 if (!hash || !hash->find (insn))
5667 {
5668 hash = prologue_insn_hash;
5669 if (!hash || !hash->find (insn))
5670 return;
5671 }
5672
5673 slot = hash->find_slot (copy, INSERT);
5674 gcc_assert (*slot == NULL);
5675 *slot = copy;
5676 }
5677
5678 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5679 we can be running after reorg, SEQUENCE rtl is possible. */
5680
5681 static bool
5682 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5683 {
5684 if (hash == NULL)
5685 return false;
5686
5687 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5688 {
5689 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5690 int i;
5691 for (i = seq->len () - 1; i >= 0; i--)
5692 if (hash->find (seq->element (i)))
5693 return true;
5694 return false;
5695 }
5696
5697 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5698 }
5699
5700 int
5701 prologue_contains (const rtx_insn *insn)
5702 {
5703 return contains (insn, prologue_insn_hash);
5704 }
5705
5706 int
5707 epilogue_contains (const rtx_insn *insn)
5708 {
5709 return contains (insn, epilogue_insn_hash);
5710 }
5711
5712 int
5713 prologue_epilogue_contains (const rtx_insn *insn)
5714 {
5715 if (contains (insn, prologue_insn_hash))
5716 return 1;
5717 if (contains (insn, epilogue_insn_hash))
5718 return 1;
5719 return 0;
5720 }
5721
5722 void
5723 record_prologue_seq (rtx_insn *seq)
5724 {
5725 record_insns (seq, NULL, &prologue_insn_hash);
5726 }
5727
5728 void
5729 record_epilogue_seq (rtx_insn *seq)
5730 {
5731 record_insns (seq, NULL, &epilogue_insn_hash);
5732 }
5733
5734 /* Set JUMP_LABEL for a return insn. */
5735
5736 void
5737 set_return_jump_label (rtx_insn *returnjump)
5738 {
5739 rtx pat = PATTERN (returnjump);
5740 if (GET_CODE (pat) == PARALLEL)
5741 pat = XVECEXP (pat, 0, 0);
5742 if (ANY_RETURN_P (pat))
5743 JUMP_LABEL (returnjump) = pat;
5744 else
5745 JUMP_LABEL (returnjump) = ret_rtx;
5746 }
5747
5748 /* Return a sequence to be used as the split prologue for the current
5749 function, or NULL. */
5750
5751 static rtx_insn *
5752 make_split_prologue_seq (void)
5753 {
5754 if (!flag_split_stack
5755 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5756 return NULL;
5757
5758 start_sequence ();
5759 emit_insn (targetm.gen_split_stack_prologue ());
5760 rtx_insn *seq = get_insns ();
5761 end_sequence ();
5762
5763 record_insns (seq, NULL, &prologue_insn_hash);
5764 set_insn_locations (seq, prologue_location);
5765
5766 return seq;
5767 }
5768
5769 /* Return a sequence to be used as the prologue for the current function,
5770 or NULL. */
5771
5772 static rtx_insn *
5773 make_prologue_seq (void)
5774 {
5775 if (!targetm.have_prologue ())
5776 return NULL;
5777
5778 start_sequence ();
5779 rtx_insn *seq = targetm.gen_prologue ();
5780 emit_insn (seq);
5781
5782 /* Insert an explicit USE for the frame pointer
5783 if the profiling is on and the frame pointer is required. */
5784 if (crtl->profile && frame_pointer_needed)
5785 emit_use (hard_frame_pointer_rtx);
5786
5787 /* Retain a map of the prologue insns. */
5788 record_insns (seq, NULL, &prologue_insn_hash);
5789 emit_note (NOTE_INSN_PROLOGUE_END);
5790
5791 /* Ensure that instructions are not moved into the prologue when
5792 profiling is on. The call to the profiling routine can be
5793 emitted within the live range of a call-clobbered register. */
5794 if (!targetm.profile_before_prologue () && crtl->profile)
5795 emit_insn (gen_blockage ());
5796
5797 seq = get_insns ();
5798 end_sequence ();
5799 set_insn_locations (seq, prologue_location);
5800
5801 return seq;
5802 }
5803
5804 /* Return a sequence to be used as the epilogue for the current function,
5805 or NULL. */
5806
5807 static rtx_insn *
5808 make_epilogue_seq (void)
5809 {
5810 if (!targetm.have_epilogue ())
5811 return NULL;
5812
5813 start_sequence ();
5814 emit_note (NOTE_INSN_EPILOGUE_BEG);
5815 rtx_insn *seq = targetm.gen_epilogue ();
5816 if (seq)
5817 emit_jump_insn (seq);
5818
5819 /* Retain a map of the epilogue insns. */
5820 record_insns (seq, NULL, &epilogue_insn_hash);
5821 set_insn_locations (seq, epilogue_location);
5822
5823 seq = get_insns ();
5824 rtx_insn *returnjump = get_last_insn ();
5825 end_sequence ();
5826
5827 if (JUMP_P (returnjump))
5828 set_return_jump_label (returnjump);
5829
5830 return seq;
5831 }
5832
5833
5834 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5835 this into place with notes indicating where the prologue ends and where
5836 the epilogue begins. Update the basic block information when possible.
5837
5838 Notes on epilogue placement:
5839 There are several kinds of edges to the exit block:
5840 * a single fallthru edge from LAST_BB
5841 * possibly, edges from blocks containing sibcalls
5842 * possibly, fake edges from infinite loops
5843
5844 The epilogue is always emitted on the fallthru edge from the last basic
5845 block in the function, LAST_BB, into the exit block.
5846
5847 If LAST_BB is empty except for a label, it is the target of every
5848 other basic block in the function that ends in a return. If a
5849 target has a return or simple_return pattern (possibly with
5850 conditional variants), these basic blocks can be changed so that a
5851 return insn is emitted into them, and their target is adjusted to
5852 the real exit block.
5853
5854 Notes on shrink wrapping: We implement a fairly conservative
5855 version of shrink-wrapping rather than the textbook one. We only
5856 generate a single prologue and a single epilogue. This is
5857 sufficient to catch a number of interesting cases involving early
5858 exits.
5859
5860 First, we identify the blocks that require the prologue to occur before
5861 them. These are the ones that modify a call-saved register, or reference
5862 any of the stack or frame pointer registers. To simplify things, we then
5863 mark everything reachable from these blocks as also requiring a prologue.
5864 This takes care of loops automatically, and avoids the need to examine
5865 whether MEMs reference the frame, since it is sufficient to check for
5866 occurrences of the stack or frame pointer.
5867
5868 We then compute the set of blocks for which the need for a prologue
5869 is anticipatable (borrowing terminology from the shrink-wrapping
5870 description in Muchnick's book). These are the blocks which either
5871 require a prologue themselves, or those that have only successors
5872 where the prologue is anticipatable. The prologue needs to be
5873 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5874 is not. For the moment, we ensure that only one such edge exists.
5875
5876 The epilogue is placed as described above, but we make a
5877 distinction between inserting return and simple_return patterns
5878 when modifying other blocks that end in a return. Blocks that end
5879 in a sibcall omit the sibcall_epilogue if the block is not in
5880 ANTIC. */
5881
5882 void
5883 thread_prologue_and_epilogue_insns (void)
5884 {
5885 df_analyze ();
5886
5887 /* Can't deal with multiple successors of the entry block at the
5888 moment. Function should always have at least one entry
5889 point. */
5890 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5891
5892 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5893 edge orig_entry_edge = entry_edge;
5894
5895 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
5896 rtx_insn *prologue_seq = make_prologue_seq ();
5897 rtx_insn *epilogue_seq = make_epilogue_seq ();
5898
5899 /* Try to perform a kind of shrink-wrapping, making sure the
5900 prologue/epilogue is emitted only around those parts of the
5901 function that require it. */
5902 try_shrink_wrapping (&entry_edge, prologue_seq);
5903
5904 /* If the target can handle splitting the prologue/epilogue into separate
5905 components, try to shrink-wrap these components separately. */
5906 try_shrink_wrapping_separate (entry_edge->dest);
5907
5908 /* If that did anything for any component we now need the generate the
5909 "main" prologue again. Because some targets require some of these
5910 to be called in a specific order (i386 requires the split prologue
5911 to be first, for example), we create all three sequences again here.
5912 If this does not work for some target, that target should not enable
5913 separate shrink-wrapping. */
5914 if (crtl->shrink_wrapped_separate)
5915 {
5916 split_prologue_seq = make_split_prologue_seq ();
5917 prologue_seq = make_prologue_seq ();
5918 epilogue_seq = make_epilogue_seq ();
5919 }
5920
5921 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5922
5923 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5924 this marker for the splits of EH_RETURN patterns, and nothing else
5925 uses the flag in the meantime. */
5926 epilogue_completed = 1;
5927
5928 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5929 some targets, these get split to a special version of the epilogue
5930 code. In order to be able to properly annotate these with unwind
5931 info, try to split them now. If we get a valid split, drop an
5932 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5933 edge e;
5934 edge_iterator ei;
5935 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5936 {
5937 rtx_insn *prev, *last, *trial;
5938
5939 if (e->flags & EDGE_FALLTHRU)
5940 continue;
5941 last = BB_END (e->src);
5942 if (!eh_returnjump_p (last))
5943 continue;
5944
5945 prev = PREV_INSN (last);
5946 trial = try_split (PATTERN (last), last, 1);
5947 if (trial == last)
5948 continue;
5949
5950 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5951 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5952 }
5953
5954 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5955
5956 if (exit_fallthru_edge)
5957 {
5958 if (epilogue_seq)
5959 {
5960 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
5961 commit_edge_insertions ();
5962
5963 /* The epilogue insns we inserted may cause the exit edge to no longer
5964 be fallthru. */
5965 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5966 {
5967 if (((e->flags & EDGE_FALLTHRU) != 0)
5968 && returnjump_p (BB_END (e->src)))
5969 e->flags &= ~EDGE_FALLTHRU;
5970 }
5971 }
5972 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
5973 {
5974 /* We have a fall-through edge to the exit block, the source is not
5975 at the end of the function, and there will be an assembler epilogue
5976 at the end of the function.
5977 We can't use force_nonfallthru here, because that would try to
5978 use return. Inserting a jump 'by hand' is extremely messy, so
5979 we take advantage of cfg_layout_finalize using
5980 fixup_fallthru_exit_predecessor. */
5981 cfg_layout_initialize (0);
5982 basic_block cur_bb;
5983 FOR_EACH_BB_FN (cur_bb, cfun)
5984 if (cur_bb->index >= NUM_FIXED_BLOCKS
5985 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5986 cur_bb->aux = cur_bb->next_bb;
5987 cfg_layout_finalize ();
5988 }
5989 }
5990
5991 /* Insert the prologue. */
5992
5993 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5994
5995 if (split_prologue_seq || prologue_seq)
5996 {
5997 rtx_insn *split_prologue_insn = split_prologue_seq;
5998 if (split_prologue_seq)
5999 {
6000 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
6001 split_prologue_insn = NEXT_INSN (split_prologue_insn);
6002 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6003 }
6004
6005 rtx_insn *prologue_insn = prologue_seq;
6006 if (prologue_seq)
6007 {
6008 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
6009 prologue_insn = NEXT_INSN (prologue_insn);
6010 insert_insn_on_edge (prologue_seq, entry_edge);
6011 }
6012
6013 commit_edge_insertions ();
6014
6015 /* Look for basic blocks within the prologue insns. */
6016 if (split_prologue_insn
6017 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
6018 split_prologue_insn = NULL;
6019 if (prologue_insn
6020 && BLOCK_FOR_INSN (prologue_insn) == NULL)
6021 prologue_insn = NULL;
6022 if (split_prologue_insn || prologue_insn)
6023 {
6024 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6025 bitmap_clear (blocks);
6026 if (split_prologue_insn)
6027 bitmap_set_bit (blocks,
6028 BLOCK_FOR_INSN (split_prologue_insn)->index);
6029 if (prologue_insn)
6030 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
6031 find_many_sub_basic_blocks (blocks);
6032 }
6033 }
6034
6035 default_rtl_profile ();
6036
6037 /* Emit sibling epilogues before any sibling call sites. */
6038 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6039 (e = ei_safe_edge (ei));
6040 ei_next (&ei))
6041 {
6042 /* Skip those already handled, the ones that run without prologue. */
6043 if (e->flags & EDGE_IGNORE)
6044 {
6045 e->flags &= ~EDGE_IGNORE;
6046 continue;
6047 }
6048
6049 rtx_insn *insn = BB_END (e->src);
6050
6051 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6052 continue;
6053
6054 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6055 {
6056 start_sequence ();
6057 emit_note (NOTE_INSN_EPILOGUE_BEG);
6058 emit_insn (ep_seq);
6059 rtx_insn *seq = get_insns ();
6060 end_sequence ();
6061
6062 /* Retain a map of the epilogue insns. Used in life analysis to
6063 avoid getting rid of sibcall epilogue insns. Do this before we
6064 actually emit the sequence. */
6065 record_insns (seq, NULL, &epilogue_insn_hash);
6066 set_insn_locations (seq, epilogue_location);
6067
6068 emit_insn_before (seq, insn);
6069 }
6070 }
6071
6072 if (epilogue_seq)
6073 {
6074 rtx_insn *insn, *next;
6075
6076 /* Similarly, move any line notes that appear after the epilogue.
6077 There is no need, however, to be quite so anal about the existence
6078 of such a note. Also possibly move
6079 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6080 info generation. */
6081 for (insn = epilogue_seq; insn; insn = next)
6082 {
6083 next = NEXT_INSN (insn);
6084 if (NOTE_P (insn)
6085 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6086 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6087 }
6088 }
6089
6090 /* Threading the prologue and epilogue changes the artificial refs
6091 in the entry and exit blocks. */
6092 epilogue_completed = 1;
6093 df_update_entry_exit_and_calls ();
6094 }
6095
6096 /* Reposition the prologue-end and epilogue-begin notes after
6097 instruction scheduling. */
6098
6099 void
6100 reposition_prologue_and_epilogue_notes (void)
6101 {
6102 if (!targetm.have_prologue ()
6103 && !targetm.have_epilogue ()
6104 && !targetm.have_sibcall_epilogue ())
6105 return;
6106
6107 /* Since the hash table is created on demand, the fact that it is
6108 non-null is a signal that it is non-empty. */
6109 if (prologue_insn_hash != NULL)
6110 {
6111 size_t len = prologue_insn_hash->elements ();
6112 rtx_insn *insn, *last = NULL, *note = NULL;
6113
6114 /* Scan from the beginning until we reach the last prologue insn. */
6115 /* ??? While we do have the CFG intact, there are two problems:
6116 (1) The prologue can contain loops (typically probing the stack),
6117 which means that the end of the prologue isn't in the first bb.
6118 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6119 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6120 {
6121 if (NOTE_P (insn))
6122 {
6123 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6124 note = insn;
6125 }
6126 else if (contains (insn, prologue_insn_hash))
6127 {
6128 last = insn;
6129 if (--len == 0)
6130 break;
6131 }
6132 }
6133
6134 if (last)
6135 {
6136 if (note == NULL)
6137 {
6138 /* Scan forward looking for the PROLOGUE_END note. It should
6139 be right at the beginning of the block, possibly with other
6140 insn notes that got moved there. */
6141 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6142 {
6143 if (NOTE_P (note)
6144 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6145 break;
6146 }
6147 }
6148
6149 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6150 if (LABEL_P (last))
6151 last = NEXT_INSN (last);
6152 reorder_insns (note, note, last);
6153 }
6154 }
6155
6156 if (epilogue_insn_hash != NULL)
6157 {
6158 edge_iterator ei;
6159 edge e;
6160
6161 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6162 {
6163 rtx_insn *insn, *first = NULL, *note = NULL;
6164 basic_block bb = e->src;
6165
6166 /* Scan from the beginning until we reach the first epilogue insn. */
6167 FOR_BB_INSNS (bb, insn)
6168 {
6169 if (NOTE_P (insn))
6170 {
6171 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6172 {
6173 note = insn;
6174 if (first != NULL)
6175 break;
6176 }
6177 }
6178 else if (first == NULL && contains (insn, epilogue_insn_hash))
6179 {
6180 first = insn;
6181 if (note != NULL)
6182 break;
6183 }
6184 }
6185
6186 if (note)
6187 {
6188 /* If the function has a single basic block, and no real
6189 epilogue insns (e.g. sibcall with no cleanup), the
6190 epilogue note can get scheduled before the prologue
6191 note. If we have frame related prologue insns, having
6192 them scanned during the epilogue will result in a crash.
6193 In this case re-order the epilogue note to just before
6194 the last insn in the block. */
6195 if (first == NULL)
6196 first = BB_END (bb);
6197
6198 if (PREV_INSN (first) != note)
6199 reorder_insns (note, note, PREV_INSN (first));
6200 }
6201 }
6202 }
6203 }
6204
6205 /* Returns the name of function declared by FNDECL. */
6206 const char *
6207 fndecl_name (tree fndecl)
6208 {
6209 if (fndecl == NULL)
6210 return "(nofn)";
6211 return lang_hooks.decl_printable_name (fndecl, 1);
6212 }
6213
6214 /* Returns the name of function FN. */
6215 const char *
6216 function_name (struct function *fn)
6217 {
6218 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6219 return fndecl_name (fndecl);
6220 }
6221
6222 /* Returns the name of the current function. */
6223 const char *
6224 current_function_name (void)
6225 {
6226 return function_name (cfun);
6227 }
6228 \f
6229
6230 static unsigned int
6231 rest_of_handle_check_leaf_regs (void)
6232 {
6233 #ifdef LEAF_REGISTERS
6234 crtl->uses_only_leaf_regs
6235 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6236 #endif
6237 return 0;
6238 }
6239
6240 /* Insert a TYPE into the used types hash table of CFUN. */
6241
6242 static void
6243 used_types_insert_helper (tree type, struct function *func)
6244 {
6245 if (type != NULL && func != NULL)
6246 {
6247 if (func->used_types_hash == NULL)
6248 func->used_types_hash = hash_set<tree>::create_ggc (37);
6249
6250 func->used_types_hash->add (type);
6251 }
6252 }
6253
6254 /* Given a type, insert it into the used hash table in cfun. */
6255 void
6256 used_types_insert (tree t)
6257 {
6258 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6259 if (TYPE_NAME (t))
6260 break;
6261 else
6262 t = TREE_TYPE (t);
6263 if (TREE_CODE (t) == ERROR_MARK)
6264 return;
6265 if (TYPE_NAME (t) == NULL_TREE
6266 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6267 t = TYPE_MAIN_VARIANT (t);
6268 if (debug_info_level > DINFO_LEVEL_NONE)
6269 {
6270 if (cfun)
6271 used_types_insert_helper (t, cfun);
6272 else
6273 {
6274 /* So this might be a type referenced by a global variable.
6275 Record that type so that we can later decide to emit its
6276 debug information. */
6277 vec_safe_push (types_used_by_cur_var_decl, t);
6278 }
6279 }
6280 }
6281
6282 /* Helper to Hash a struct types_used_by_vars_entry. */
6283
6284 static hashval_t
6285 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6286 {
6287 gcc_assert (entry && entry->var_decl && entry->type);
6288
6289 return iterative_hash_object (entry->type,
6290 iterative_hash_object (entry->var_decl, 0));
6291 }
6292
6293 /* Hash function of the types_used_by_vars_entry hash table. */
6294
6295 hashval_t
6296 used_type_hasher::hash (types_used_by_vars_entry *entry)
6297 {
6298 return hash_types_used_by_vars_entry (entry);
6299 }
6300
6301 /*Equality function of the types_used_by_vars_entry hash table. */
6302
6303 bool
6304 used_type_hasher::equal (types_used_by_vars_entry *e1,
6305 types_used_by_vars_entry *e2)
6306 {
6307 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6308 }
6309
6310 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6311
6312 void
6313 types_used_by_var_decl_insert (tree type, tree var_decl)
6314 {
6315 if (type != NULL && var_decl != NULL)
6316 {
6317 types_used_by_vars_entry **slot;
6318 struct types_used_by_vars_entry e;
6319 e.var_decl = var_decl;
6320 e.type = type;
6321 if (types_used_by_vars_hash == NULL)
6322 types_used_by_vars_hash
6323 = hash_table<used_type_hasher>::create_ggc (37);
6324
6325 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6326 if (*slot == NULL)
6327 {
6328 struct types_used_by_vars_entry *entry;
6329 entry = ggc_alloc<types_used_by_vars_entry> ();
6330 entry->type = type;
6331 entry->var_decl = var_decl;
6332 *slot = entry;
6333 }
6334 }
6335 }
6336
6337 namespace {
6338
6339 const pass_data pass_data_leaf_regs =
6340 {
6341 RTL_PASS, /* type */
6342 "*leaf_regs", /* name */
6343 OPTGROUP_NONE, /* optinfo_flags */
6344 TV_NONE, /* tv_id */
6345 0, /* properties_required */
6346 0, /* properties_provided */
6347 0, /* properties_destroyed */
6348 0, /* todo_flags_start */
6349 0, /* todo_flags_finish */
6350 };
6351
6352 class pass_leaf_regs : public rtl_opt_pass
6353 {
6354 public:
6355 pass_leaf_regs (gcc::context *ctxt)
6356 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6357 {}
6358
6359 /* opt_pass methods: */
6360 virtual unsigned int execute (function *)
6361 {
6362 return rest_of_handle_check_leaf_regs ();
6363 }
6364
6365 }; // class pass_leaf_regs
6366
6367 } // anon namespace
6368
6369 rtl_opt_pass *
6370 make_pass_leaf_regs (gcc::context *ctxt)
6371 {
6372 return new pass_leaf_regs (ctxt);
6373 }
6374
6375 static unsigned int
6376 rest_of_handle_thread_prologue_and_epilogue (void)
6377 {
6378 /* prepare_shrink_wrap is sensitive to the block structure of the control
6379 flow graph, so clean it up first. */
6380 if (optimize)
6381 cleanup_cfg (0);
6382
6383 /* On some machines, the prologue and epilogue code, or parts thereof,
6384 can be represented as RTL. Doing so lets us schedule insns between
6385 it and the rest of the code and also allows delayed branch
6386 scheduling to operate in the epilogue. */
6387 thread_prologue_and_epilogue_insns ();
6388
6389 /* Some non-cold blocks may now be only reachable from cold blocks.
6390 Fix that up. */
6391 fixup_partitions ();
6392
6393 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6394 see PR57320. */
6395 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6396
6397 /* The stack usage info is finalized during prologue expansion. */
6398 if (flag_stack_usage_info || flag_callgraph_info)
6399 output_stack_usage ();
6400
6401 return 0;
6402 }
6403
6404 /* Record a final call to CALLEE at LOCATION. */
6405
6406 void
6407 record_final_call (tree callee, location_t location)
6408 {
6409 struct callinfo_callee datum = { location, callee };
6410 vec_safe_push (cfun->su->callees, datum);
6411 }
6412
6413 /* Record a dynamic allocation made for DECL_OR_EXP. */
6414
6415 void
6416 record_dynamic_alloc (tree decl_or_exp)
6417 {
6418 struct callinfo_dalloc datum;
6419
6420 if (DECL_P (decl_or_exp))
6421 {
6422 datum.location = DECL_SOURCE_LOCATION (decl_or_exp);
6423 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2);
6424 const char *dot = strrchr (name, '.');
6425 if (dot)
6426 name = dot + 1;
6427 datum.name = ggc_strdup (name);
6428 }
6429 else
6430 {
6431 datum.location = EXPR_LOCATION (decl_or_exp);
6432 datum.name = NULL;
6433 }
6434
6435 vec_safe_push (cfun->su->dallocs, datum);
6436 }
6437
6438 namespace {
6439
6440 const pass_data pass_data_thread_prologue_and_epilogue =
6441 {
6442 RTL_PASS, /* type */
6443 "pro_and_epilogue", /* name */
6444 OPTGROUP_NONE, /* optinfo_flags */
6445 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6446 0, /* properties_required */
6447 0, /* properties_provided */
6448 0, /* properties_destroyed */
6449 0, /* todo_flags_start */
6450 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6451 };
6452
6453 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6454 {
6455 public:
6456 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6457 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6458 {}
6459
6460 /* opt_pass methods: */
6461 virtual unsigned int execute (function *)
6462 {
6463 return rest_of_handle_thread_prologue_and_epilogue ();
6464 }
6465
6466 }; // class pass_thread_prologue_and_epilogue
6467
6468 } // anon namespace
6469
6470 rtl_opt_pass *
6471 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6472 {
6473 return new pass_thread_prologue_and_epilogue (ctxt);
6474 }
6475 \f
6476
6477 /* If CONSTRAINT is a matching constraint, then return its number.
6478 Otherwise, return -1. */
6479
6480 static int
6481 matching_constraint_num (const char *constraint)
6482 {
6483 if (*constraint == '%')
6484 constraint++;
6485
6486 if (IN_RANGE (*constraint, '0', '9'))
6487 return strtoul (constraint, NULL, 10);
6488
6489 return -1;
6490 }
6491
6492 /* This mini-pass fixes fall-out from SSA in asm statements that have
6493 in-out constraints. Say you start with
6494
6495 orig = inout;
6496 asm ("": "+mr" (inout));
6497 use (orig);
6498
6499 which is transformed very early to use explicit output and match operands:
6500
6501 orig = inout;
6502 asm ("": "=mr" (inout) : "0" (inout));
6503 use (orig);
6504
6505 Or, after SSA and copyprop,
6506
6507 asm ("": "=mr" (inout_2) : "0" (inout_1));
6508 use (inout_1);
6509
6510 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6511 they represent two separate values, so they will get different pseudo
6512 registers during expansion. Then, since the two operands need to match
6513 per the constraints, but use different pseudo registers, reload can
6514 only register a reload for these operands. But reloads can only be
6515 satisfied by hardregs, not by memory, so we need a register for this
6516 reload, just because we are presented with non-matching operands.
6517 So, even though we allow memory for this operand, no memory can be
6518 used for it, just because the two operands don't match. This can
6519 cause reload failures on register-starved targets.
6520
6521 So it's a symptom of reload not being able to use memory for reloads
6522 or, alternatively it's also a symptom of both operands not coming into
6523 reload as matching (in which case the pseudo could go to memory just
6524 fine, as the alternative allows it, and no reload would be necessary).
6525 We fix the latter problem here, by transforming
6526
6527 asm ("": "=mr" (inout_2) : "0" (inout_1));
6528
6529 back to
6530
6531 inout_2 = inout_1;
6532 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6533
6534 static void
6535 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6536 {
6537 int i;
6538 bool changed = false;
6539 rtx op = SET_SRC (p_sets[0]);
6540 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6541 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6542 bool *output_matched = XALLOCAVEC (bool, noutputs);
6543
6544 memset (output_matched, 0, noutputs * sizeof (bool));
6545 for (i = 0; i < ninputs; i++)
6546 {
6547 rtx input, output;
6548 rtx_insn *insns;
6549 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6550 int match, j;
6551
6552 match = matching_constraint_num (constraint);
6553 if (match < 0)
6554 continue;
6555
6556 gcc_assert (match < noutputs);
6557 output = SET_DEST (p_sets[match]);
6558 input = RTVEC_ELT (inputs, i);
6559 /* Only do the transformation for pseudos. */
6560 if (! REG_P (output)
6561 || rtx_equal_p (output, input)
6562 || !(REG_P (input) || SUBREG_P (input)
6563 || MEM_P (input) || CONSTANT_P (input))
6564 || !general_operand (input, GET_MODE (output)))
6565 continue;
6566
6567 /* We can't do anything if the output is also used as input,
6568 as we're going to overwrite it. */
6569 for (j = 0; j < ninputs; j++)
6570 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6571 break;
6572 if (j != ninputs)
6573 continue;
6574
6575 /* Avoid changing the same input several times. For
6576 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6577 only change it once (to out1), rather than changing it
6578 first to out1 and afterwards to out2. */
6579 if (i > 0)
6580 {
6581 for (j = 0; j < noutputs; j++)
6582 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6583 break;
6584 if (j != noutputs)
6585 continue;
6586 }
6587 output_matched[match] = true;
6588
6589 start_sequence ();
6590 emit_move_insn (output, copy_rtx (input));
6591 insns = get_insns ();
6592 end_sequence ();
6593 emit_insn_before (insns, insn);
6594
6595 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6596 bool early_clobber_p = strchr (constraint, '&') != NULL;
6597
6598 /* Now replace all mentions of the input with output. We can't
6599 just replace the occurrence in inputs[i], as the register might
6600 also be used in some other input (or even in an address of an
6601 output), which would mean possibly increasing the number of
6602 inputs by one (namely 'output' in addition), which might pose
6603 a too complicated problem for reload to solve. E.g. this situation:
6604
6605 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6606
6607 Here 'input' is used in two occurrences as input (once for the
6608 input operand, once for the address in the second output operand).
6609 If we would replace only the occurrence of the input operand (to
6610 make the matching) we would be left with this:
6611
6612 output = input
6613 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6614
6615 Now we suddenly have two different input values (containing the same
6616 value, but different pseudos) where we formerly had only one.
6617 With more complicated asms this might lead to reload failures
6618 which wouldn't have happen without this pass. So, iterate over
6619 all operands and replace all occurrences of the register used.
6620
6621 However, if one or more of the 'input' uses have a non-matching
6622 constraint and the matched output operand is an early clobber
6623 operand, then do not replace the input operand, since by definition
6624 it conflicts with the output operand and cannot share the same
6625 register. See PR89313 for details. */
6626
6627 for (j = 0; j < noutputs; j++)
6628 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6629 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6630 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6631 input, output);
6632 for (j = 0; j < ninputs; j++)
6633 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6634 {
6635 if (!early_clobber_p
6636 || match == matching_constraint_num
6637 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6638 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6639 input, output);
6640 }
6641
6642 changed = true;
6643 }
6644
6645 if (changed)
6646 df_insn_rescan (insn);
6647 }
6648
6649 /* Add the decl D to the local_decls list of FUN. */
6650
6651 void
6652 add_local_decl (struct function *fun, tree d)
6653 {
6654 gcc_assert (VAR_P (d));
6655 vec_safe_push (fun->local_decls, d);
6656 }
6657
6658 namespace {
6659
6660 const pass_data pass_data_match_asm_constraints =
6661 {
6662 RTL_PASS, /* type */
6663 "asmcons", /* name */
6664 OPTGROUP_NONE, /* optinfo_flags */
6665 TV_NONE, /* tv_id */
6666 0, /* properties_required */
6667 0, /* properties_provided */
6668 0, /* properties_destroyed */
6669 0, /* todo_flags_start */
6670 0, /* todo_flags_finish */
6671 };
6672
6673 class pass_match_asm_constraints : public rtl_opt_pass
6674 {
6675 public:
6676 pass_match_asm_constraints (gcc::context *ctxt)
6677 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6678 {}
6679
6680 /* opt_pass methods: */
6681 virtual unsigned int execute (function *);
6682
6683 }; // class pass_match_asm_constraints
6684
6685 unsigned
6686 pass_match_asm_constraints::execute (function *fun)
6687 {
6688 basic_block bb;
6689 rtx_insn *insn;
6690 rtx pat, *p_sets;
6691 int noutputs;
6692
6693 if (!crtl->has_asm_statement)
6694 return 0;
6695
6696 df_set_flags (DF_DEFER_INSN_RESCAN);
6697 FOR_EACH_BB_FN (bb, fun)
6698 {
6699 FOR_BB_INSNS (bb, insn)
6700 {
6701 if (!INSN_P (insn))
6702 continue;
6703
6704 pat = PATTERN (insn);
6705 if (GET_CODE (pat) == PARALLEL)
6706 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6707 else if (GET_CODE (pat) == SET)
6708 p_sets = &PATTERN (insn), noutputs = 1;
6709 else
6710 continue;
6711
6712 if (GET_CODE (*p_sets) == SET
6713 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6714 match_asm_constraints_1 (insn, p_sets, noutputs);
6715 }
6716 }
6717
6718 return TODO_df_finish;
6719 }
6720
6721 } // anon namespace
6722
6723 rtl_opt_pass *
6724 make_pass_match_asm_constraints (gcc::context *ctxt)
6725 {
6726 return new pass_match_asm_constraints (ctxt);
6727 }
6728
6729
6730 #include "gt-function.h"