]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple-range-cache.cc
Update copyright years.
[thirdparty/gcc.git] / gcc / gimple-range-cache.cc
1 /* Gimple ranger SSA cache implementation.
2 Copyright (C) 2017-2022 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "gimple-pretty-print.h"
30 #include "gimple-range.h"
31 #include "tree-cfg.h"
32
33 #define DEBUG_RANGE_CACHE (dump_file \
34 && (param_ranger_debug & RANGER_DEBUG_CACHE))
35
36 // During contructor, allocate the vector of ssa_names.
37
38 non_null_ref::non_null_ref ()
39 {
40 m_nn.create (num_ssa_names);
41 m_nn.quick_grow_cleared (num_ssa_names);
42 bitmap_obstack_initialize (&m_bitmaps);
43 }
44
45 // Free any bitmaps which were allocated,a swell as the vector itself.
46
47 non_null_ref::~non_null_ref ()
48 {
49 bitmap_obstack_release (&m_bitmaps);
50 m_nn.release ();
51 }
52
53 // Return true if NAME has a non-null dereference in block bb. If this is the
54 // first query for NAME, calculate the summary first.
55 // If SEARCH_DOM is true, the search the dominator tree as well.
56
57 bool
58 non_null_ref::non_null_deref_p (tree name, basic_block bb, bool search_dom)
59 {
60 if (!POINTER_TYPE_P (TREE_TYPE (name)))
61 return false;
62
63 unsigned v = SSA_NAME_VERSION (name);
64 if (v >= m_nn.length ())
65 m_nn.safe_grow_cleared (num_ssa_names + 1);
66
67 if (!m_nn[v])
68 process_name (name);
69
70 if (bitmap_bit_p (m_nn[v], bb->index))
71 return true;
72
73 // See if any dominator has set non-zero.
74 if (search_dom && dom_info_available_p (CDI_DOMINATORS))
75 {
76 // Search back to the Def block, or the top, whichever is closer.
77 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
78 basic_block def_dom = def_bb
79 ? get_immediate_dominator (CDI_DOMINATORS, def_bb)
80 : NULL;
81 for ( ;
82 bb && bb != def_dom;
83 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
84 if (bitmap_bit_p (m_nn[v], bb->index))
85 return true;
86 }
87 return false;
88 }
89
90 // If NAME has a non-null dereference in block BB, adjust R with the
91 // non-zero information from non_null_deref_p, and return TRUE. If
92 // SEARCH_DOM is true, non_null_deref_p should search the dominator tree.
93
94 bool
95 non_null_ref::adjust_range (irange &r, tree name, basic_block bb,
96 bool search_dom)
97 {
98 // Non-call exceptions mean we could throw in the middle of the
99 // block, so just punt on those for now.
100 if (cfun->can_throw_non_call_exceptions)
101 return false;
102
103 // We only care about the null / non-null property of pointers.
104 if (!POINTER_TYPE_P (TREE_TYPE (name)))
105 return false;
106 if (r.undefined_p () || r.lower_bound () != 0 || r.upper_bound () == 0)
107 return false;
108 // Check if pointers have any non-null dereferences.
109 if (non_null_deref_p (name, bb, search_dom))
110 {
111 // Remove zero from the range.
112 unsigned prec = TYPE_PRECISION (TREE_TYPE (name));
113 r.intersect (wi::one (prec), wi::max_value (prec, UNSIGNED));
114 return true;
115 }
116 return false;
117 }
118
119 // Allocate an populate the bitmap for NAME. An ON bit for a block
120 // index indicates there is a non-null reference in that block. In
121 // order to populate the bitmap, a quick run of all the immediate uses
122 // are made and the statement checked to see if a non-null dereference
123 // is made on that statement.
124
125 void
126 non_null_ref::process_name (tree name)
127 {
128 unsigned v = SSA_NAME_VERSION (name);
129 use_operand_p use_p;
130 imm_use_iterator iter;
131 bitmap b;
132
133 // Only tracked for pointers.
134 if (!POINTER_TYPE_P (TREE_TYPE (name)))
135 return;
136
137 // Already processed if a bitmap has been allocated.
138 if (m_nn[v])
139 return;
140
141 b = BITMAP_ALLOC (&m_bitmaps);
142
143 // Loop over each immediate use and see if it implies a non-null value.
144 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
145 {
146 gimple *s = USE_STMT (use_p);
147 unsigned index = gimple_bb (s)->index;
148
149 // If bit is already set for this block, dont bother looking again.
150 if (bitmap_bit_p (b, index))
151 continue;
152
153 // If we can infer a nonnull range, then set the bit for this BB
154 if (!SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name)
155 && infer_nonnull_range (s, name))
156 bitmap_set_bit (b, index);
157 }
158
159 m_nn[v] = b;
160 }
161
162 // -------------------------------------------------------------------------
163
164 // This class represents the API into a cache of ranges for an SSA_NAME.
165 // Routines must be implemented to set, get, and query if a value is set.
166
167 class ssa_block_ranges
168 {
169 public:
170 virtual bool set_bb_range (const_basic_block bb, const irange &r) = 0;
171 virtual bool get_bb_range (irange &r, const_basic_block bb) = 0;
172 virtual bool bb_range_p (const_basic_block bb) = 0;
173
174 void dump(FILE *f);
175 };
176
177 // Print the list of known ranges for file F in a nice format.
178
179 void
180 ssa_block_ranges::dump (FILE *f)
181 {
182 basic_block bb;
183 int_range_max r;
184
185 FOR_EACH_BB_FN (bb, cfun)
186 if (get_bb_range (r, bb))
187 {
188 fprintf (f, "BB%d -> ", bb->index);
189 r.dump (f);
190 fprintf (f, "\n");
191 }
192 }
193
194 // This class implements the range cache as a linear vector, indexed by BB.
195 // It caches a varying and undefined range which are used instead of
196 // allocating new ones each time.
197
198 class sbr_vector : public ssa_block_ranges
199 {
200 public:
201 sbr_vector (tree t, irange_allocator *allocator);
202
203 virtual bool set_bb_range (const_basic_block bb, const irange &r) OVERRIDE;
204 virtual bool get_bb_range (irange &r, const_basic_block bb) OVERRIDE;
205 virtual bool bb_range_p (const_basic_block bb) OVERRIDE;
206 protected:
207 irange **m_tab; // Non growing vector.
208 int m_tab_size;
209 int_range<2> m_varying;
210 int_range<2> m_undefined;
211 tree m_type;
212 irange_allocator *m_irange_allocator;
213 void grow ();
214 };
215
216
217 // Initialize a block cache for an ssa_name of type T.
218
219 sbr_vector::sbr_vector (tree t, irange_allocator *allocator)
220 {
221 gcc_checking_assert (TYPE_P (t));
222 m_type = t;
223 m_irange_allocator = allocator;
224 m_tab_size = last_basic_block_for_fn (cfun) + 1;
225 m_tab = (irange **)allocator->get_memory (m_tab_size * sizeof (irange *));
226 memset (m_tab, 0, m_tab_size * sizeof (irange *));
227
228 // Create the cached type range.
229 m_varying.set_varying (t);
230 m_undefined.set_undefined ();
231 }
232
233 // Grow the vector when the CFG has increased in size.
234
235 void
236 sbr_vector::grow ()
237 {
238 int curr_bb_size = last_basic_block_for_fn (cfun);
239 gcc_checking_assert (curr_bb_size > m_tab_size);
240
241 // Increase the max of a)128, b)needed increase * 2, c)10% of current_size.
242 int inc = MAX ((curr_bb_size - m_tab_size) * 2, 128);
243 inc = MAX (inc, curr_bb_size / 10);
244 int new_size = inc + curr_bb_size;
245
246 // Allocate new memory, copy the old vector and clear the new space.
247 irange **t = (irange **)m_irange_allocator->get_memory (new_size
248 * sizeof (irange *));
249 memcpy (t, m_tab, m_tab_size * sizeof (irange *));
250 memset (t + m_tab_size, 0, (new_size - m_tab_size) * sizeof (irange *));
251
252 m_tab = t;
253 m_tab_size = new_size;
254 }
255
256 // Set the range for block BB to be R.
257
258 bool
259 sbr_vector::set_bb_range (const_basic_block bb, const irange &r)
260 {
261 irange *m;
262 if (bb->index >= m_tab_size)
263 grow ();
264 if (r.varying_p ())
265 m = &m_varying;
266 else if (r.undefined_p ())
267 m = &m_undefined;
268 else
269 m = m_irange_allocator->allocate (r);
270 m_tab[bb->index] = m;
271 return true;
272 }
273
274 // Return the range associated with block BB in R. Return false if
275 // there is no range.
276
277 bool
278 sbr_vector::get_bb_range (irange &r, const_basic_block bb)
279 {
280 if (bb->index >= m_tab_size)
281 return false;
282 irange *m = m_tab[bb->index];
283 if (m)
284 {
285 r = *m;
286 return true;
287 }
288 return false;
289 }
290
291 // Return true if a range is present.
292
293 bool
294 sbr_vector::bb_range_p (const_basic_block bb)
295 {
296 if (bb->index < m_tab_size)
297 return m_tab[bb->index] != NULL;
298 return false;
299 }
300
301 // This class implements the on entry cache via a sparse bitmap.
302 // It uses the quad bit routines to access 4 bits at a time.
303 // A value of 0 (the default) means there is no entry, and a value of
304 // 1 thru SBR_NUM represents an element in the m_range vector.
305 // Varying is given the first value (1) and pre-cached.
306 // SBR_NUM + 1 represents the value of UNDEFINED, and is never stored.
307 // SBR_NUM is the number of values that can be cached.
308 // Indexes are 1..SBR_NUM and are stored locally at m_range[0..SBR_NUM-1]
309
310 #define SBR_NUM 14
311 #define SBR_UNDEF SBR_NUM + 1
312 #define SBR_VARYING 1
313
314 class sbr_sparse_bitmap : public ssa_block_ranges
315 {
316 public:
317 sbr_sparse_bitmap (tree t, irange_allocator *allocator, bitmap_obstack *bm);
318 virtual bool set_bb_range (const_basic_block bb, const irange &r) OVERRIDE;
319 virtual bool get_bb_range (irange &r, const_basic_block bb) OVERRIDE;
320 virtual bool bb_range_p (const_basic_block bb) OVERRIDE;
321 private:
322 void bitmap_set_quad (bitmap head, int quad, int quad_value);
323 int bitmap_get_quad (const_bitmap head, int quad);
324 irange_allocator *m_irange_allocator;
325 irange *m_range[SBR_NUM];
326 bitmap bitvec;
327 tree m_type;
328 };
329
330 // Initialize a block cache for an ssa_name of type T.
331
332 sbr_sparse_bitmap::sbr_sparse_bitmap (tree t, irange_allocator *allocator,
333 bitmap_obstack *bm)
334 {
335 gcc_checking_assert (TYPE_P (t));
336 m_type = t;
337 bitvec = BITMAP_ALLOC (bm);
338 m_irange_allocator = allocator;
339 // Pre-cache varying.
340 m_range[0] = m_irange_allocator->allocate (2);
341 m_range[0]->set_varying (t);
342 // Pre-cache zero and non-zero values for pointers.
343 if (POINTER_TYPE_P (t))
344 {
345 m_range[1] = m_irange_allocator->allocate (2);
346 m_range[1]->set_nonzero (t);
347 m_range[2] = m_irange_allocator->allocate (2);
348 m_range[2]->set_zero (t);
349 }
350 else
351 m_range[1] = m_range[2] = NULL;
352 // Clear SBR_NUM entries.
353 for (int x = 3; x < SBR_NUM; x++)
354 m_range[x] = 0;
355 }
356
357 // Set 4 bit values in a sparse bitmap. This allows a bitmap to
358 // function as a sparse array of 4 bit values.
359 // QUAD is the index, QUAD_VALUE is the 4 bit value to set.
360
361 inline void
362 sbr_sparse_bitmap::bitmap_set_quad (bitmap head, int quad, int quad_value)
363 {
364 bitmap_set_aligned_chunk (head, quad, 4, (BITMAP_WORD) quad_value);
365 }
366
367 // Get a 4 bit value from a sparse bitmap. This allows a bitmap to
368 // function as a sparse array of 4 bit values.
369 // QUAD is the index.
370 inline int
371 sbr_sparse_bitmap::bitmap_get_quad (const_bitmap head, int quad)
372 {
373 return (int) bitmap_get_aligned_chunk (head, quad, 4);
374 }
375
376 // Set the range on entry to basic block BB to R.
377
378 bool
379 sbr_sparse_bitmap::set_bb_range (const_basic_block bb, const irange &r)
380 {
381 if (r.undefined_p ())
382 {
383 bitmap_set_quad (bitvec, bb->index, SBR_UNDEF);
384 return true;
385 }
386
387 // Loop thru the values to see if R is already present.
388 for (int x = 0; x < SBR_NUM; x++)
389 if (!m_range[x] || r == *(m_range[x]))
390 {
391 if (!m_range[x])
392 m_range[x] = m_irange_allocator->allocate (r);
393 bitmap_set_quad (bitvec, bb->index, x + 1);
394 return true;
395 }
396 // All values are taken, default to VARYING.
397 bitmap_set_quad (bitvec, bb->index, SBR_VARYING);
398 return false;
399 }
400
401 // Return the range associated with block BB in R. Return false if
402 // there is no range.
403
404 bool
405 sbr_sparse_bitmap::get_bb_range (irange &r, const_basic_block bb)
406 {
407 int value = bitmap_get_quad (bitvec, bb->index);
408
409 if (!value)
410 return false;
411
412 gcc_checking_assert (value <= SBR_UNDEF);
413 if (value == SBR_UNDEF)
414 r.set_undefined ();
415 else
416 r = *(m_range[value - 1]);
417 return true;
418 }
419
420 // Return true if a range is present.
421
422 bool
423 sbr_sparse_bitmap::bb_range_p (const_basic_block bb)
424 {
425 return (bitmap_get_quad (bitvec, bb->index) != 0);
426 }
427
428 // -------------------------------------------------------------------------
429
430 // Initialize the block cache.
431
432 block_range_cache::block_range_cache ()
433 {
434 bitmap_obstack_initialize (&m_bitmaps);
435 m_ssa_ranges.create (0);
436 m_ssa_ranges.safe_grow_cleared (num_ssa_names);
437 m_irange_allocator = new irange_allocator;
438 }
439
440 // Remove any m_block_caches which have been created.
441
442 block_range_cache::~block_range_cache ()
443 {
444 delete m_irange_allocator;
445 // Release the vector itself.
446 m_ssa_ranges.release ();
447 bitmap_obstack_release (&m_bitmaps);
448 }
449
450 // Set the range for NAME on entry to block BB to R.
451 // If it has not been accessed yet, allocate it first.
452
453 bool
454 block_range_cache::set_bb_range (tree name, const_basic_block bb,
455 const irange &r)
456 {
457 unsigned v = SSA_NAME_VERSION (name);
458 if (v >= m_ssa_ranges.length ())
459 m_ssa_ranges.safe_grow_cleared (num_ssa_names + 1);
460
461 if (!m_ssa_ranges[v])
462 {
463 // Use sparse representation if there are too many basic blocks.
464 if (last_basic_block_for_fn (cfun) > param_evrp_sparse_threshold)
465 {
466 void *r = m_irange_allocator->get_memory (sizeof (sbr_sparse_bitmap));
467 m_ssa_ranges[v] = new (r) sbr_sparse_bitmap (TREE_TYPE (name),
468 m_irange_allocator,
469 &m_bitmaps);
470 }
471 else
472 {
473 // Otherwise use the default vector implemntation.
474 void *r = m_irange_allocator->get_memory (sizeof (sbr_vector));
475 m_ssa_ranges[v] = new (r) sbr_vector (TREE_TYPE (name),
476 m_irange_allocator);
477 }
478 }
479 return m_ssa_ranges[v]->set_bb_range (bb, r);
480 }
481
482
483 // Return a pointer to the ssa_block_cache for NAME. If it has not been
484 // accessed yet, return NULL.
485
486 inline ssa_block_ranges *
487 block_range_cache::query_block_ranges (tree name)
488 {
489 unsigned v = SSA_NAME_VERSION (name);
490 if (v >= m_ssa_ranges.length () || !m_ssa_ranges[v])
491 return NULL;
492 return m_ssa_ranges[v];
493 }
494
495
496
497 // Return the range for NAME on entry to BB in R. Return true if there
498 // is one.
499
500 bool
501 block_range_cache::get_bb_range (irange &r, tree name, const_basic_block bb)
502 {
503 ssa_block_ranges *ptr = query_block_ranges (name);
504 if (ptr)
505 return ptr->get_bb_range (r, bb);
506 return false;
507 }
508
509 // Return true if NAME has a range set in block BB.
510
511 bool
512 block_range_cache::bb_range_p (tree name, const_basic_block bb)
513 {
514 ssa_block_ranges *ptr = query_block_ranges (name);
515 if (ptr)
516 return ptr->bb_range_p (bb);
517 return false;
518 }
519
520 // Print all known block caches to file F.
521
522 void
523 block_range_cache::dump (FILE *f)
524 {
525 unsigned x;
526 for (x = 0; x < m_ssa_ranges.length (); ++x)
527 {
528 if (m_ssa_ranges[x])
529 {
530 fprintf (f, " Ranges for ");
531 print_generic_expr (f, ssa_name (x), TDF_NONE);
532 fprintf (f, ":\n");
533 m_ssa_ranges[x]->dump (f);
534 fprintf (f, "\n");
535 }
536 }
537 }
538
539 // Print all known ranges on entry to blobk BB to file F.
540
541 void
542 block_range_cache::dump (FILE *f, basic_block bb, bool print_varying)
543 {
544 unsigned x;
545 int_range_max r;
546 bool summarize_varying = false;
547 for (x = 1; x < m_ssa_ranges.length (); ++x)
548 {
549 if (!gimple_range_ssa_p (ssa_name (x)))
550 continue;
551 if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb))
552 {
553 if (!print_varying && r.varying_p ())
554 {
555 summarize_varying = true;
556 continue;
557 }
558 print_generic_expr (f, ssa_name (x), TDF_NONE);
559 fprintf (f, "\t");
560 r.dump(f);
561 fprintf (f, "\n");
562 }
563 }
564 // If there were any varying entries, lump them all together.
565 if (summarize_varying)
566 {
567 fprintf (f, "VARYING_P on entry : ");
568 for (x = 1; x < num_ssa_names; ++x)
569 {
570 if (!gimple_range_ssa_p (ssa_name (x)))
571 continue;
572 if (m_ssa_ranges[x] && m_ssa_ranges[x]->get_bb_range (r, bb))
573 {
574 if (r.varying_p ())
575 {
576 print_generic_expr (f, ssa_name (x), TDF_NONE);
577 fprintf (f, " ");
578 }
579 }
580 }
581 fprintf (f, "\n");
582 }
583 }
584
585 // -------------------------------------------------------------------------
586
587 // Initialize a global cache.
588
589 ssa_global_cache::ssa_global_cache ()
590 {
591 m_tab.create (0);
592 m_irange_allocator = new irange_allocator;
593 }
594
595 // Deconstruct a global cache.
596
597 ssa_global_cache::~ssa_global_cache ()
598 {
599 m_tab.release ();
600 delete m_irange_allocator;
601 }
602
603 // Retrieve the global range of NAME from cache memory if it exists.
604 // Return the value in R.
605
606 bool
607 ssa_global_cache::get_global_range (irange &r, tree name) const
608 {
609 unsigned v = SSA_NAME_VERSION (name);
610 if (v >= m_tab.length ())
611 return false;
612
613 irange *stow = m_tab[v];
614 if (!stow)
615 return false;
616 r = *stow;
617 return true;
618 }
619
620 // Set the range for NAME to R in the global cache.
621 // Return TRUE if there was already a range set, otherwise false.
622
623 bool
624 ssa_global_cache::set_global_range (tree name, const irange &r)
625 {
626 unsigned v = SSA_NAME_VERSION (name);
627 if (v >= m_tab.length ())
628 m_tab.safe_grow_cleared (num_ssa_names + 1);
629
630 irange *m = m_tab[v];
631 if (m && m->fits_p (r))
632 *m = r;
633 else
634 m_tab[v] = m_irange_allocator->allocate (r);
635 return m != NULL;
636 }
637
638 // Set the range for NAME to R in the glonbal cache.
639
640 void
641 ssa_global_cache::clear_global_range (tree name)
642 {
643 unsigned v = SSA_NAME_VERSION (name);
644 if (v >= m_tab.length ())
645 m_tab.safe_grow_cleared (num_ssa_names + 1);
646 m_tab[v] = NULL;
647 }
648
649 // Clear the global cache.
650
651 void
652 ssa_global_cache::clear ()
653 {
654 if (m_tab.address ())
655 memset (m_tab.address(), 0, m_tab.length () * sizeof (irange *));
656 }
657
658 // Dump the contents of the global cache to F.
659
660 void
661 ssa_global_cache::dump (FILE *f)
662 {
663 /* Cleared after the table header has been printed. */
664 bool print_header = true;
665 for (unsigned x = 1; x < num_ssa_names; x++)
666 {
667 int_range_max r;
668 if (gimple_range_ssa_p (ssa_name (x)) &&
669 get_global_range (r, ssa_name (x)) && !r.varying_p ())
670 {
671 if (print_header)
672 {
673 /* Print the header only when there's something else
674 to print below. */
675 fprintf (f, "Non-varying global ranges:\n");
676 fprintf (f, "=========================:\n");
677 print_header = false;
678 }
679
680 print_generic_expr (f, ssa_name (x), TDF_NONE);
681 fprintf (f, " : ");
682 r.dump (f);
683 fprintf (f, "\n");
684 }
685 }
686
687 if (!print_header)
688 fputc ('\n', f);
689 }
690
691 // --------------------------------------------------------------------------
692
693
694 // This class will manage the timestamps for each ssa_name.
695 // When a value is calculated, the timestamp is set to the current time.
696 // Current time is then incremented. Any dependencies will already have
697 // been calculated, and will thus have older timestamps.
698 // If one of those values is ever calculated again, it will get a newer
699 // timestamp, and the "current_p" check will fail.
700
701 class temporal_cache
702 {
703 public:
704 temporal_cache ();
705 ~temporal_cache ();
706 bool current_p (tree name, tree dep1, tree dep2) const;
707 void set_timestamp (tree name);
708 void set_always_current (tree name);
709 private:
710 unsigned temporal_value (unsigned ssa) const;
711
712 unsigned m_current_time;
713 vec <unsigned> m_timestamp;
714 };
715
716 inline
717 temporal_cache::temporal_cache ()
718 {
719 m_current_time = 1;
720 m_timestamp.create (0);
721 m_timestamp.safe_grow_cleared (num_ssa_names);
722 }
723
724 inline
725 temporal_cache::~temporal_cache ()
726 {
727 m_timestamp.release ();
728 }
729
730 // Return the timestamp value for SSA, or 0 if there isnt one.
731
732 inline unsigned
733 temporal_cache::temporal_value (unsigned ssa) const
734 {
735 if (ssa >= m_timestamp.length ())
736 return 0;
737 return m_timestamp[ssa];
738 }
739
740 // Return TRUE if the timestampe for NAME is newer than any of its dependents.
741 // Up to 2 dependencies can be checked.
742
743 bool
744 temporal_cache::current_p (tree name, tree dep1, tree dep2) const
745 {
746 unsigned ts = temporal_value (SSA_NAME_VERSION (name));
747 if (ts == 0)
748 return true;
749
750 // Any non-registered dependencies will have a value of 0 and thus be older.
751 // Return true if time is newer than either dependent.
752
753 if (dep1 && ts < temporal_value (SSA_NAME_VERSION (dep1)))
754 return false;
755 if (dep2 && ts < temporal_value (SSA_NAME_VERSION (dep2)))
756 return false;
757
758 return true;
759 }
760
761 // This increments the global timer and sets the timestamp for NAME.
762
763 inline void
764 temporal_cache::set_timestamp (tree name)
765 {
766 unsigned v = SSA_NAME_VERSION (name);
767 if (v >= m_timestamp.length ())
768 m_timestamp.safe_grow_cleared (num_ssa_names + 20);
769 m_timestamp[v] = ++m_current_time;
770 }
771
772 // Set the timestamp to 0, marking it as "always up to date".
773
774 inline void
775 temporal_cache::set_always_current (tree name)
776 {
777 unsigned v = SSA_NAME_VERSION (name);
778 if (v >= m_timestamp.length ())
779 m_timestamp.safe_grow_cleared (num_ssa_names + 20);
780 m_timestamp[v] = 0;
781 }
782
783 // --------------------------------------------------------------------------
784
785 // This class provides an abstraction of a list of blocks to be updated
786 // by the cache. It is currently a stack but could be changed. It also
787 // maintains a list of blocks which have failed propagation, and does not
788 // enter any of those blocks into the list.
789
790 // A vector over the BBs is maintained, and an entry of 0 means it is not in
791 // a list. Otherwise, the entry is the next block in the list. -1 terminates
792 // the list. m_head points to the top of the list, -1 if the list is empty.
793
794 class update_list
795 {
796 public:
797 update_list ();
798 ~update_list ();
799 void add (basic_block bb);
800 basic_block pop ();
801 inline bool empty_p () { return m_update_head == -1; }
802 inline void clear_failures () { bitmap_clear (m_propfail); }
803 inline void propagation_failed (basic_block bb)
804 { bitmap_set_bit (m_propfail, bb->index); }
805 private:
806 vec<int> m_update_list;
807 int m_update_head;
808 bitmap m_propfail;
809 };
810
811 // Create an update list.
812
813 update_list::update_list ()
814 {
815 m_update_list.create (0);
816 m_update_list.safe_grow_cleared (last_basic_block_for_fn (cfun) + 64);
817 m_update_head = -1;
818 m_propfail = BITMAP_ALLOC (NULL);
819 }
820
821 // Destroy an update list.
822
823 update_list::~update_list ()
824 {
825 m_update_list.release ();
826 BITMAP_FREE (m_propfail);
827 }
828
829 // Add BB to the list of blocks to update, unless it's already in the list.
830
831 void
832 update_list::add (basic_block bb)
833 {
834 int i = bb->index;
835 // If propagation has failed for BB, or its already in the list, don't
836 // add it again.
837 if ((unsigned)i >= m_update_list.length ())
838 m_update_list.safe_grow_cleared (i + 64);
839 if (!m_update_list[i] && !bitmap_bit_p (m_propfail, i))
840 {
841 if (empty_p ())
842 {
843 m_update_head = i;
844 m_update_list[i] = -1;
845 }
846 else
847 {
848 gcc_checking_assert (m_update_head > 0);
849 m_update_list[i] = m_update_head;
850 m_update_head = i;
851 }
852 }
853 }
854
855 // Remove a block from the list.
856
857 basic_block
858 update_list::pop ()
859 {
860 gcc_checking_assert (!empty_p ());
861 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, m_update_head);
862 int pop = m_update_head;
863 m_update_head = m_update_list[pop];
864 m_update_list[pop] = 0;
865 return bb;
866 }
867
868 // --------------------------------------------------------------------------
869
870 ranger_cache::ranger_cache (int not_executable_flag)
871 : m_gori (not_executable_flag)
872 {
873 m_workback.create (0);
874 m_workback.safe_grow_cleared (last_basic_block_for_fn (cfun));
875 m_temporal = new temporal_cache;
876 // If DOM info is available, spawn an oracle as well.
877 if (dom_info_available_p (CDI_DOMINATORS))
878 m_oracle = new dom_oracle ();
879 else
880 m_oracle = NULL;
881
882 unsigned x, lim = last_basic_block_for_fn (cfun);
883 // Calculate outgoing range info upfront. This will fully populate the
884 // m_maybe_variant bitmap which will help eliminate processing of names
885 // which never have their ranges adjusted.
886 for (x = 0; x < lim ; x++)
887 {
888 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, x);
889 if (bb)
890 m_gori.exports (bb);
891 }
892 m_update = new update_list ();
893 }
894
895 ranger_cache::~ranger_cache ()
896 {
897 delete m_update;
898 if (m_oracle)
899 delete m_oracle;
900 delete m_temporal;
901 m_workback.release ();
902 }
903
904 // Dump the global caches to file F. if GORI_DUMP is true, dump the
905 // gori map as well.
906
907 void
908 ranger_cache::dump (FILE *f)
909 {
910 m_globals.dump (f);
911 fprintf (f, "\n");
912 }
913
914 // Dump the caches for basic block BB to file F.
915
916 void
917 ranger_cache::dump_bb (FILE *f, basic_block bb)
918 {
919 m_gori.gori_map::dump (f, bb, false);
920 m_on_entry.dump (f, bb);
921 if (m_oracle)
922 m_oracle->dump (f, bb);
923 }
924
925 // Get the global range for NAME, and return in R. Return false if the
926 // global range is not set, and return the legacy global value in R.
927
928 bool
929 ranger_cache::get_global_range (irange &r, tree name) const
930 {
931 if (m_globals.get_global_range (r, name))
932 return true;
933 r = gimple_range_global (name);
934 return false;
935 }
936
937 // Get the global range for NAME, and return in R. Return false if the
938 // global range is not set, and R will contain the legacy global value.
939 // CURRENT_P is set to true if the value was in cache and not stale.
940 // Otherwise, set CURRENT_P to false and mark as it always current.
941 // If the global cache did not have a value, initialize it as well.
942 // After this call, the global cache will have a value.
943
944 bool
945 ranger_cache::get_global_range (irange &r, tree name, bool &current_p)
946 {
947 bool had_global = get_global_range (r, name);
948
949 // If there was a global value, set current flag, otherwise set a value.
950 current_p = false;
951 if (had_global)
952 current_p = r.singleton_p ()
953 || m_temporal->current_p (name, m_gori.depend1 (name),
954 m_gori.depend2 (name));
955 else
956 m_globals.set_global_range (name, r);
957
958 // If the existing value was not current, mark it as always current.
959 if (!current_p)
960 m_temporal->set_always_current (name);
961 return current_p;
962 }
963
964 // Set the global range of NAME to R and give it a timestamp.
965
966 void
967 ranger_cache::set_global_range (tree name, const irange &r)
968 {
969 if (m_globals.set_global_range (name, r))
970 {
971 // If there was already a range set, propagate the new value.
972 basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (name));
973 if (!bb)
974 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
975
976 if (DEBUG_RANGE_CACHE)
977 fprintf (dump_file, " GLOBAL :");
978
979 propagate_updated_value (name, bb);
980 }
981 // Constants no longer need to tracked. Any further refinement has to be
982 // undefined. Propagation works better with constants. PR 100512.
983 // Pointers which resolve to non-zero also do not need
984 // tracking in the cache as they will never change. See PR 98866.
985 // Timestamp must always be updated, or dependent calculations may
986 // not include this latest value. PR 100774.
987
988 if (r.singleton_p ()
989 || (POINTER_TYPE_P (TREE_TYPE (name)) && r.nonzero_p ()))
990 m_gori.set_range_invariant (name);
991 m_temporal->set_timestamp (name);
992 }
993
994 // Provide lookup for the gori-computes class to access the best known range
995 // of an ssa_name in any given basic block. Note, this does no additonal
996 // lookups, just accesses the data that is already known.
997
998 // Get the range of NAME when the def occurs in block BB. If BB is NULL
999 // get the best global value available.
1000
1001 void
1002 ranger_cache::range_of_def (irange &r, tree name, basic_block bb)
1003 {
1004 gcc_checking_assert (gimple_range_ssa_p (name));
1005 gcc_checking_assert (!bb || bb == gimple_bb (SSA_NAME_DEF_STMT (name)));
1006
1007 // Pick up the best global range available.
1008 if (!m_globals.get_global_range (r, name))
1009 {
1010 // If that fails, try to calculate the range using just global values.
1011 gimple *s = SSA_NAME_DEF_STMT (name);
1012 if (gimple_get_lhs (s) == name)
1013 fold_range (r, s, get_global_range_query ());
1014 else
1015 r = gimple_range_global (name);
1016 }
1017
1018 if (bb)
1019 m_non_null.adjust_range (r, name, bb, false);
1020 }
1021
1022 // Get the range of NAME as it occurs on entry to block BB.
1023
1024 void
1025 ranger_cache::entry_range (irange &r, tree name, basic_block bb)
1026 {
1027 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1028 {
1029 r = gimple_range_global (name);
1030 return;
1031 }
1032
1033 // Look for the on-entry value of name in BB from the cache.
1034 // Otherwise pick up the best available global value.
1035 if (!m_on_entry.get_bb_range (r, name, bb))
1036 range_of_def (r, name);
1037
1038 m_non_null.adjust_range (r, name, bb, false);
1039 }
1040
1041 // Get the range of NAME as it occurs on exit from block BB.
1042
1043 void
1044 ranger_cache::exit_range (irange &r, tree name, basic_block bb)
1045 {
1046 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1047 {
1048 r = gimple_range_global (name);
1049 return;
1050 }
1051
1052 gimple *s = SSA_NAME_DEF_STMT (name);
1053 basic_block def_bb = gimple_bb (s);
1054 if (def_bb == bb)
1055 range_of_def (r, name, bb);
1056 else
1057 entry_range (r, name, bb);
1058 }
1059
1060
1061 // Implement range_of_expr.
1062
1063 bool
1064 ranger_cache::range_of_expr (irange &r, tree name, gimple *stmt)
1065 {
1066 if (!gimple_range_ssa_p (name))
1067 {
1068 get_tree_range (r, name, stmt);
1069 return true;
1070 }
1071
1072 basic_block bb = gimple_bb (stmt);
1073 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1074 basic_block def_bb = gimple_bb (def_stmt);
1075
1076 if (bb == def_bb)
1077 range_of_def (r, name, bb);
1078 else
1079 entry_range (r, name, bb);
1080 return true;
1081 }
1082
1083
1084 // Implement range_on_edge. Always return the best available range.
1085
1086 bool
1087 ranger_cache::range_on_edge (irange &r, edge e, tree expr)
1088 {
1089 if (gimple_range_ssa_p (expr))
1090 {
1091 exit_range (r, expr, e->src);
1092 int_range_max edge_range;
1093 if (m_gori.outgoing_edge_range_p (edge_range, e, expr, *this))
1094 r.intersect (edge_range);
1095 return true;
1096 }
1097
1098 return get_tree_range (r, expr, NULL);
1099 }
1100
1101
1102 // Return a static range for NAME on entry to basic block BB in R. If
1103 // calc is true, fill any cache entries required between BB and the
1104 // def block for NAME. Otherwise, return false if the cache is empty.
1105
1106 bool
1107 ranger_cache::block_range (irange &r, basic_block bb, tree name, bool calc)
1108 {
1109 gcc_checking_assert (gimple_range_ssa_p (name));
1110
1111 // If there are no range calculations anywhere in the IL, global range
1112 // applies everywhere, so don't bother caching it.
1113 if (!m_gori.has_edge_range_p (name))
1114 return false;
1115
1116 if (calc)
1117 {
1118 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
1119 basic_block def_bb = NULL;
1120 if (def_stmt)
1121 def_bb = gimple_bb (def_stmt);;
1122 if (!def_bb)
1123 {
1124 // If we get to the entry block, this better be a default def
1125 // or range_on_entry was called for a block not dominated by
1126 // the def.
1127 gcc_checking_assert (SSA_NAME_IS_DEFAULT_DEF (name));
1128 def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1129 }
1130
1131 // There is no range on entry for the definition block.
1132 if (def_bb == bb)
1133 return false;
1134
1135 // Otherwise, go figure out what is known in predecessor blocks.
1136 fill_block_cache (name, bb, def_bb);
1137 gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
1138 }
1139 return m_on_entry.get_bb_range (r, name, bb);
1140 }
1141
1142 // If there is anything in the propagation update_list, continue
1143 // processing NAME until the list of blocks is empty.
1144
1145 void
1146 ranger_cache::propagate_cache (tree name)
1147 {
1148 basic_block bb;
1149 edge_iterator ei;
1150 edge e;
1151 int_range_max new_range;
1152 int_range_max current_range;
1153 int_range_max e_range;
1154
1155 // Process each block by seeing if its calculated range on entry is
1156 // the same as its cached value. If there is a difference, update
1157 // the cache to reflect the new value, and check to see if any
1158 // successors have cache entries which may need to be checked for
1159 // updates.
1160
1161 while (!m_update->empty_p ())
1162 {
1163 bb = m_update->pop ();
1164 gcc_checking_assert (m_on_entry.bb_range_p (name, bb));
1165 m_on_entry.get_bb_range (current_range, name, bb);
1166
1167 if (DEBUG_RANGE_CACHE)
1168 {
1169 fprintf (dump_file, "FWD visiting block %d for ", bb->index);
1170 print_generic_expr (dump_file, name, TDF_SLIM);
1171 fprintf (dump_file, " starting range : ");
1172 current_range.dump (dump_file);
1173 fprintf (dump_file, "\n");
1174 }
1175
1176 // Calculate the "new" range on entry by unioning the pred edges.
1177 new_range.set_undefined ();
1178 FOR_EACH_EDGE (e, ei, bb->preds)
1179 {
1180 range_on_edge (e_range, e, name);
1181 if (DEBUG_RANGE_CACHE)
1182 {
1183 fprintf (dump_file, " edge %d->%d :", e->src->index, bb->index);
1184 e_range.dump (dump_file);
1185 fprintf (dump_file, "\n");
1186 }
1187 new_range.union_ (e_range);
1188 if (new_range.varying_p ())
1189 break;
1190 }
1191
1192 // If the range on entry has changed, update it.
1193 if (new_range != current_range)
1194 {
1195 bool ok_p = m_on_entry.set_bb_range (name, bb, new_range);
1196 // If the cache couldn't set the value, mark it as failed.
1197 if (!ok_p)
1198 m_update->propagation_failed (bb);
1199 if (DEBUG_RANGE_CACHE)
1200 {
1201 if (!ok_p)
1202 {
1203 fprintf (dump_file, " Cache failure to store value:");
1204 print_generic_expr (dump_file, name, TDF_SLIM);
1205 fprintf (dump_file, " ");
1206 }
1207 else
1208 {
1209 fprintf (dump_file, " Updating range to ");
1210 new_range.dump (dump_file);
1211 }
1212 fprintf (dump_file, "\n Updating blocks :");
1213 }
1214 // Mark each successor that has a range to re-check its range
1215 FOR_EACH_EDGE (e, ei, bb->succs)
1216 if (m_on_entry.bb_range_p (name, e->dest))
1217 {
1218 if (DEBUG_RANGE_CACHE)
1219 fprintf (dump_file, " bb%d",e->dest->index);
1220 m_update->add (e->dest);
1221 }
1222 if (DEBUG_RANGE_CACHE)
1223 fprintf (dump_file, "\n");
1224 }
1225 }
1226 if (DEBUG_RANGE_CACHE)
1227 {
1228 fprintf (dump_file, "DONE visiting blocks for ");
1229 print_generic_expr (dump_file, name, TDF_SLIM);
1230 fprintf (dump_file, "\n");
1231 }
1232 m_update->clear_failures ();
1233 }
1234
1235 // Check to see if an update to the value for NAME in BB has any effect
1236 // on values already in the on-entry cache for successor blocks.
1237 // If it does, update them. Don't visit any blocks which dont have a cache
1238 // entry.
1239
1240 void
1241 ranger_cache::propagate_updated_value (tree name, basic_block bb)
1242 {
1243 edge e;
1244 edge_iterator ei;
1245
1246 // The update work list should be empty at this point.
1247 gcc_checking_assert (m_update->empty_p ());
1248 gcc_checking_assert (bb);
1249
1250 if (DEBUG_RANGE_CACHE)
1251 {
1252 fprintf (dump_file, " UPDATE cache for ");
1253 print_generic_expr (dump_file, name, TDF_SLIM);
1254 fprintf (dump_file, " in BB %d : successors : ", bb->index);
1255 }
1256 FOR_EACH_EDGE (e, ei, bb->succs)
1257 {
1258 // Only update active cache entries.
1259 if (m_on_entry.bb_range_p (name, e->dest))
1260 {
1261 m_update->add (e->dest);
1262 if (DEBUG_RANGE_CACHE)
1263 fprintf (dump_file, " UPDATE: bb%d", e->dest->index);
1264 }
1265 }
1266 if (!m_update->empty_p ())
1267 {
1268 if (DEBUG_RANGE_CACHE)
1269 fprintf (dump_file, "\n");
1270 propagate_cache (name);
1271 }
1272 else
1273 {
1274 if (DEBUG_RANGE_CACHE)
1275 fprintf (dump_file, " : No updates!\n");
1276 }
1277 }
1278
1279 // Make sure that the range-on-entry cache for NAME is set for block BB.
1280 // Work back through the CFG to DEF_BB ensuring the range is calculated
1281 // on the block/edges leading back to that point.
1282
1283 void
1284 ranger_cache::fill_block_cache (tree name, basic_block bb, basic_block def_bb)
1285 {
1286 edge_iterator ei;
1287 edge e;
1288 int_range_max block_result;
1289 int_range_max undefined;
1290
1291 // At this point we shouldn't be looking at the def, entry or exit block.
1292 gcc_checking_assert (bb != def_bb && bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) &&
1293 bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
1294
1295 // If the block cache is set, then we've already visited this block.
1296 if (m_on_entry.bb_range_p (name, bb))
1297 return;
1298
1299 // Visit each block back to the DEF. Initialize each one to UNDEFINED.
1300 // m_visited at the end will contain all the blocks that we needed to set
1301 // the range_on_entry cache for.
1302 m_workback.truncate (0);
1303 m_workback.quick_push (bb);
1304 undefined.set_undefined ();
1305 m_on_entry.set_bb_range (name, bb, undefined);
1306 gcc_checking_assert (m_update->empty_p ());
1307
1308 if (DEBUG_RANGE_CACHE)
1309 {
1310 fprintf (dump_file, "\n");
1311 print_generic_expr (dump_file, name, TDF_SLIM);
1312 fprintf (dump_file, " : ");
1313 }
1314
1315 // If there are dominators, check if a dominators can supply the range.
1316 if (dom_info_available_p (CDI_DOMINATORS)
1317 && range_from_dom (block_result, name, bb))
1318 {
1319 m_on_entry.set_bb_range (name, bb, block_result);
1320 if (DEBUG_RANGE_CACHE)
1321 {
1322 fprintf (dump_file, "Filled from dominator! : ");
1323 block_result.dump (dump_file);
1324 fprintf (dump_file, "\n");
1325 }
1326 return;
1327 }
1328
1329 while (m_workback.length () > 0)
1330 {
1331 basic_block node = m_workback.pop ();
1332 if (DEBUG_RANGE_CACHE)
1333 {
1334 fprintf (dump_file, "BACK visiting block %d for ", node->index);
1335 print_generic_expr (dump_file, name, TDF_SLIM);
1336 fprintf (dump_file, "\n");
1337 }
1338
1339 FOR_EACH_EDGE (e, ei, node->preds)
1340 {
1341 basic_block pred = e->src;
1342 int_range_max r;
1343
1344 if (DEBUG_RANGE_CACHE)
1345 fprintf (dump_file, " %d->%d ",e->src->index, e->dest->index);
1346
1347 // If the pred block is the def block add this BB to update list.
1348 if (pred == def_bb)
1349 {
1350 m_update->add (node);
1351 continue;
1352 }
1353
1354 // If the pred is entry but NOT def, then it is used before
1355 // defined, it'll get set to [] and no need to update it.
1356 if (pred == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1357 {
1358 if (DEBUG_RANGE_CACHE)
1359 fprintf (dump_file, "entry: bail.");
1360 continue;
1361 }
1362
1363 // Regardless of whether we have visited pred or not, if the
1364 // pred has a non-null reference, revisit this block.
1365 // Don't search the DOM tree.
1366 if (m_non_null.non_null_deref_p (name, pred, false))
1367 {
1368 if (DEBUG_RANGE_CACHE)
1369 fprintf (dump_file, "nonnull: update ");
1370 m_update->add (node);
1371 }
1372
1373 // If the pred block already has a range, or if it can contribute
1374 // something new. Ie, the edge generates a range of some sort.
1375 if (m_on_entry.get_bb_range (r, name, pred))
1376 {
1377 if (DEBUG_RANGE_CACHE)
1378 {
1379 fprintf (dump_file, "has cache, ");
1380 r.dump (dump_file);
1381 fprintf (dump_file, ", ");
1382 }
1383 if (!r.undefined_p () || m_gori.has_edge_range_p (name, e))
1384 {
1385 m_update->add (node);
1386 if (DEBUG_RANGE_CACHE)
1387 fprintf (dump_file, "update. ");
1388 }
1389 continue;
1390 }
1391
1392 if (DEBUG_RANGE_CACHE)
1393 fprintf (dump_file, "pushing undefined pred block.\n");
1394 // If the pred hasn't been visited (has no range), add it to
1395 // the list.
1396 gcc_checking_assert (!m_on_entry.bb_range_p (name, pred));
1397 m_on_entry.set_bb_range (name, pred, undefined);
1398 m_workback.quick_push (pred);
1399 }
1400 }
1401
1402 if (DEBUG_RANGE_CACHE)
1403 fprintf (dump_file, "\n");
1404
1405 // Now fill in the marked blocks with values.
1406 propagate_cache (name);
1407 if (DEBUG_RANGE_CACHE)
1408 fprintf (dump_file, " Propagation update done.\n");
1409 }
1410
1411
1412 // Check to see if we can simply get the range from the dominator.
1413
1414 bool
1415 ranger_cache::range_from_dom (irange &r, tree name, basic_block bb)
1416 {
1417 gcc_checking_assert (dom_info_available_p (CDI_DOMINATORS));
1418
1419 // Search back to the definition block or entry block.
1420 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
1421 if (def_bb == NULL)
1422 def_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1423
1424 // Flag if we encounter a block with non-null set.
1425 bool non_null = false;
1426 for (bb = get_immediate_dominator (CDI_DOMINATORS, bb);
1427 bb && bb != def_bb;
1428 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
1429 {
1430 // If there is an outgoing range, the on-entry value won't work.
1431 if (m_gori.has_edge_range_p (name, bb))
1432 {
1433 // Check if we can seed this block with a dominator value. THis will
1434 // prevent the ache from being filled back further than this.
1435 if (bb != def_bb && range_from_dom (r, name, bb))
1436 m_on_entry.set_bb_range (name, bb, r);
1437 return false;
1438 }
1439
1440 // Flag if we see a non-null reference during this walk.
1441 if (m_non_null.non_null_deref_p (name, bb, false))
1442 non_null = true;
1443
1444 // If range-on-entry is set in this block, it can be used.
1445 if (m_on_entry.get_bb_range (r, name, bb))
1446 {
1447 // Apply non-null if appropriate.
1448 if (r.varying_p () && non_null)
1449 {
1450 gcc_checking_assert (POINTER_TYPE_P (TREE_TYPE (name)));
1451 r.set_nonzero (TREE_TYPE (name));
1452 }
1453 return true;
1454 }
1455 }
1456 // If this is the def block, and NAME is an export, then this value
1457 // cannot be used.
1458 if (bb == def_bb && m_gori.has_edge_range_p (name, bb))
1459 return false;
1460
1461 // Otherwise choose the global value and use it.
1462 get_global_range (r, name);
1463 if (r.varying_p () && non_null)
1464 {
1465 gcc_checking_assert (POINTER_TYPE_P (TREE_TYPE (name)));
1466 r.set_nonzero (TREE_TYPE (name));
1467 }
1468 return true;
1469 }