]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/loop-iv.c
Update copyright years.
[thirdparty/gcc.git] / gcc / loop-iv.c
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
24
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
29
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
35
36 The available functions are:
37
38 iv_analyze (insn, mode, reg, iv): Stores the description of the induction
39 variable corresponding to the use of register REG in INSN to IV, given
40 that REG has mode MODE. Returns true if REG is an induction variable
41 in INSN. false otherwise. If a use of REG is not found in INSN,
42 the following insns are scanned (so that we may call this function
43 on insns returned by get_condition).
44 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
45 corresponding to DEF, which is a register defined in INSN.
46 iv_analyze_expr (insn, mode, expr, iv): Stores to IV the description of iv
47 corresponding to expression EXPR evaluated at INSN. All registers used bu
48 EXPR must also be used in INSN. MODE is the mode of EXPR.
49 */
50
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "backend.h"
55 #include "rtl.h"
56 #include "df.h"
57 #include "memmodel.h"
58 #include "emit-rtl.h"
59 #include "diagnostic-core.h"
60 #include "cfgloop.h"
61 #include "intl.h"
62 #include "dumpfile.h"
63 #include "rtl-iter.h"
64 #include "tree-ssa-loop-niter.h"
65 #include "regs.h"
66 #include "function-abi.h"
67
68 /* Possible return values of iv_get_reaching_def. */
69
70 enum iv_grd_result
71 {
72 /* More than one reaching def, or reaching def that does not
73 dominate the use. */
74 GRD_INVALID,
75
76 /* The use is trivial invariant of the loop, i.e. is not changed
77 inside the loop. */
78 GRD_INVARIANT,
79
80 /* The use is reached by initial value and a value from the
81 previous iteration. */
82 GRD_MAYBE_BIV,
83
84 /* The use has single dominating def. */
85 GRD_SINGLE_DOM
86 };
87
88 /* Information about a biv. */
89
90 class biv_entry
91 {
92 public:
93 unsigned regno; /* The register of the biv. */
94 class rtx_iv iv; /* Value of the biv. */
95 };
96
97 static bool clean_slate = true;
98
99 static unsigned int iv_ref_table_size = 0;
100
101 /* Table of rtx_ivs indexed by the df_ref uid field. */
102 static class rtx_iv ** iv_ref_table;
103
104 /* Induction variable stored at the reference. */
105 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
106 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
107
108 /* The current loop. */
109
110 static class loop *current_loop;
111
112 /* Hashtable helper. */
113
114 struct biv_entry_hasher : free_ptr_hash <biv_entry>
115 {
116 typedef rtx_def *compare_type;
117 static inline hashval_t hash (const biv_entry *);
118 static inline bool equal (const biv_entry *, const rtx_def *);
119 };
120
121 /* Returns hash value for biv B. */
122
123 inline hashval_t
124 biv_entry_hasher::hash (const biv_entry *b)
125 {
126 return b->regno;
127 }
128
129 /* Compares biv B and register R. */
130
131 inline bool
132 biv_entry_hasher::equal (const biv_entry *b, const rtx_def *r)
133 {
134 return b->regno == REGNO (r);
135 }
136
137 /* Bivs of the current loop. */
138
139 static hash_table<biv_entry_hasher> *bivs;
140
141 static bool iv_analyze_op (rtx_insn *, scalar_int_mode, rtx, class rtx_iv *);
142
143 /* Return the RTX code corresponding to the IV extend code EXTEND. */
144 static inline enum rtx_code
145 iv_extend_to_rtx_code (enum iv_extend_code extend)
146 {
147 switch (extend)
148 {
149 case IV_SIGN_EXTEND:
150 return SIGN_EXTEND;
151 case IV_ZERO_EXTEND:
152 return ZERO_EXTEND;
153 case IV_UNKNOWN_EXTEND:
154 return UNKNOWN;
155 }
156 gcc_unreachable ();
157 }
158
159 /* Dumps information about IV to FILE. */
160
161 extern void dump_iv_info (FILE *, class rtx_iv *);
162 void
163 dump_iv_info (FILE *file, class rtx_iv *iv)
164 {
165 if (!iv->base)
166 {
167 fprintf (file, "not simple");
168 return;
169 }
170
171 if (iv->step == const0_rtx
172 && !iv->first_special)
173 fprintf (file, "invariant ");
174
175 print_rtl (file, iv->base);
176 if (iv->step != const0_rtx)
177 {
178 fprintf (file, " + ");
179 print_rtl (file, iv->step);
180 fprintf (file, " * iteration");
181 }
182 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
183
184 if (iv->mode != iv->extend_mode)
185 fprintf (file, " %s to %s",
186 rtx_name[iv_extend_to_rtx_code (iv->extend)],
187 GET_MODE_NAME (iv->extend_mode));
188
189 if (iv->mult != const1_rtx)
190 {
191 fprintf (file, " * ");
192 print_rtl (file, iv->mult);
193 }
194 if (iv->delta != const0_rtx)
195 {
196 fprintf (file, " + ");
197 print_rtl (file, iv->delta);
198 }
199 if (iv->first_special)
200 fprintf (file, " (first special)");
201 }
202
203 static void
204 check_iv_ref_table_size (void)
205 {
206 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ())
207 {
208 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
209 iv_ref_table = XRESIZEVEC (class rtx_iv *, iv_ref_table, new_size);
210 memset (&iv_ref_table[iv_ref_table_size], 0,
211 (new_size - iv_ref_table_size) * sizeof (class rtx_iv *));
212 iv_ref_table_size = new_size;
213 }
214 }
215
216
217 /* Checks whether REG is a well-behaved register. */
218
219 static bool
220 simple_reg_p (rtx reg)
221 {
222 unsigned r;
223
224 if (GET_CODE (reg) == SUBREG)
225 {
226 if (!subreg_lowpart_p (reg))
227 return false;
228 reg = SUBREG_REG (reg);
229 }
230
231 if (!REG_P (reg))
232 return false;
233
234 r = REGNO (reg);
235 if (HARD_REGISTER_NUM_P (r))
236 return false;
237
238 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
239 return false;
240
241 return true;
242 }
243
244 /* Clears the information about ivs stored in df. */
245
246 static void
247 clear_iv_info (void)
248 {
249 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
250 class rtx_iv *iv;
251
252 check_iv_ref_table_size ();
253 for (i = 0; i < n_defs; i++)
254 {
255 iv = iv_ref_table[i];
256 if (iv)
257 {
258 free (iv);
259 iv_ref_table[i] = NULL;
260 }
261 }
262
263 bivs->empty ();
264 }
265
266
267 /* Prepare the data for an induction variable analysis of a LOOP. */
268
269 void
270 iv_analysis_loop_init (class loop *loop)
271 {
272 current_loop = loop;
273
274 /* Clear the information from the analysis of the previous loop. */
275 if (clean_slate)
276 {
277 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
278 bivs = new hash_table<biv_entry_hasher> (10);
279 clean_slate = false;
280 }
281 else
282 clear_iv_info ();
283
284 /* Get rid of the ud chains before processing the rescans. Then add
285 the problem back. */
286 df_remove_problem (df_chain);
287 df_process_deferred_rescans ();
288 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
289 df_chain_add_problem (DF_UD_CHAIN);
290 df_note_add_problem ();
291 df_analyze_loop (loop);
292 if (dump_file)
293 df_dump_region (dump_file);
294
295 check_iv_ref_table_size ();
296 }
297
298 /* Finds the definition of REG that dominates loop latch and stores
299 it to DEF. Returns false if there is not a single definition
300 dominating the latch. If REG has no definition in loop, DEF
301 is set to NULL and true is returned. */
302
303 static bool
304 latch_dominating_def (rtx reg, df_ref *def)
305 {
306 df_ref single_rd = NULL, adef;
307 unsigned regno = REGNO (reg);
308 class df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
309
310 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
311 {
312 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
313 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
314 continue;
315
316 /* More than one reaching definition. */
317 if (single_rd)
318 return false;
319
320 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
321 return false;
322
323 single_rd = adef;
324 }
325
326 *def = single_rd;
327 return true;
328 }
329
330 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
331
332 static enum iv_grd_result
333 iv_get_reaching_def (rtx_insn *insn, rtx reg, df_ref *def)
334 {
335 df_ref use, adef;
336 basic_block def_bb, use_bb;
337 rtx_insn *def_insn;
338 bool dom_p;
339
340 *def = NULL;
341 if (!simple_reg_p (reg))
342 return GRD_INVALID;
343 if (GET_CODE (reg) == SUBREG)
344 reg = SUBREG_REG (reg);
345 gcc_assert (REG_P (reg));
346
347 use = df_find_use (insn, reg);
348 gcc_assert (use != NULL);
349
350 if (!DF_REF_CHAIN (use))
351 return GRD_INVARIANT;
352
353 /* More than one reaching def. */
354 if (DF_REF_CHAIN (use)->next)
355 return GRD_INVALID;
356
357 adef = DF_REF_CHAIN (use)->ref;
358
359 /* We do not handle setting only part of the register. */
360 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
361 return GRD_INVALID;
362
363 def_insn = DF_REF_INSN (adef);
364 def_bb = DF_REF_BB (adef);
365 use_bb = BLOCK_FOR_INSN (insn);
366
367 if (use_bb == def_bb)
368 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
369 else
370 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
371
372 if (dom_p)
373 {
374 *def = adef;
375 return GRD_SINGLE_DOM;
376 }
377
378 /* The definition does not dominate the use. This is still OK if
379 this may be a use of a biv, i.e. if the def_bb dominates loop
380 latch. */
381 if (just_once_each_iteration_p (current_loop, def_bb))
382 return GRD_MAYBE_BIV;
383
384 return GRD_INVALID;
385 }
386
387 /* Sets IV to invariant CST in MODE. Always returns true (just for
388 consistency with other iv manipulation functions that may fail). */
389
390 static bool
391 iv_constant (class rtx_iv *iv, scalar_int_mode mode, rtx cst)
392 {
393 iv->mode = mode;
394 iv->base = cst;
395 iv->step = const0_rtx;
396 iv->first_special = false;
397 iv->extend = IV_UNKNOWN_EXTEND;
398 iv->extend_mode = iv->mode;
399 iv->delta = const0_rtx;
400 iv->mult = const1_rtx;
401
402 return true;
403 }
404
405 /* Evaluates application of subreg to MODE on IV. */
406
407 static bool
408 iv_subreg (class rtx_iv *iv, scalar_int_mode mode)
409 {
410 /* If iv is invariant, just calculate the new value. */
411 if (iv->step == const0_rtx
412 && !iv->first_special)
413 {
414 rtx val = get_iv_value (iv, const0_rtx);
415 val = lowpart_subreg (mode, val,
416 iv->extend == IV_UNKNOWN_EXTEND
417 ? iv->mode : iv->extend_mode);
418
419 iv->base = val;
420 iv->extend = IV_UNKNOWN_EXTEND;
421 iv->mode = iv->extend_mode = mode;
422 iv->delta = const0_rtx;
423 iv->mult = const1_rtx;
424 return true;
425 }
426
427 if (iv->extend_mode == mode)
428 return true;
429
430 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
431 return false;
432
433 iv->extend = IV_UNKNOWN_EXTEND;
434 iv->mode = mode;
435
436 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
437 simplify_gen_binary (MULT, iv->extend_mode,
438 iv->base, iv->mult));
439 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
440 iv->mult = const1_rtx;
441 iv->delta = const0_rtx;
442 iv->first_special = false;
443
444 return true;
445 }
446
447 /* Evaluates application of EXTEND to MODE on IV. */
448
449 static bool
450 iv_extend (class rtx_iv *iv, enum iv_extend_code extend, scalar_int_mode mode)
451 {
452 /* If iv is invariant, just calculate the new value. */
453 if (iv->step == const0_rtx
454 && !iv->first_special)
455 {
456 rtx val = get_iv_value (iv, const0_rtx);
457 if (iv->extend_mode != iv->mode
458 && iv->extend != IV_UNKNOWN_EXTEND
459 && iv->extend != extend)
460 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
461 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
462 val,
463 iv->extend == extend
464 ? iv->extend_mode : iv->mode);
465 iv->base = val;
466 iv->extend = IV_UNKNOWN_EXTEND;
467 iv->mode = iv->extend_mode = mode;
468 iv->delta = const0_rtx;
469 iv->mult = const1_rtx;
470 return true;
471 }
472
473 if (mode != iv->extend_mode)
474 return false;
475
476 if (iv->extend != IV_UNKNOWN_EXTEND
477 && iv->extend != extend)
478 return false;
479
480 iv->extend = extend;
481
482 return true;
483 }
484
485 /* Evaluates negation of IV. */
486
487 static bool
488 iv_neg (class rtx_iv *iv)
489 {
490 if (iv->extend == IV_UNKNOWN_EXTEND)
491 {
492 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
493 iv->base, iv->extend_mode);
494 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
495 iv->step, iv->extend_mode);
496 }
497 else
498 {
499 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
500 iv->delta, iv->extend_mode);
501 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
502 iv->mult, iv->extend_mode);
503 }
504
505 return true;
506 }
507
508 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
509
510 static bool
511 iv_add (class rtx_iv *iv0, class rtx_iv *iv1, enum rtx_code op)
512 {
513 scalar_int_mode mode;
514 rtx arg;
515
516 /* Extend the constant to extend_mode of the other operand if necessary. */
517 if (iv0->extend == IV_UNKNOWN_EXTEND
518 && iv0->mode == iv0->extend_mode
519 && iv0->step == const0_rtx
520 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
521 {
522 iv0->extend_mode = iv1->extend_mode;
523 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
524 iv0->base, iv0->mode);
525 }
526 if (iv1->extend == IV_UNKNOWN_EXTEND
527 && iv1->mode == iv1->extend_mode
528 && iv1->step == const0_rtx
529 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
530 {
531 iv1->extend_mode = iv0->extend_mode;
532 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
533 iv1->base, iv1->mode);
534 }
535
536 mode = iv0->extend_mode;
537 if (mode != iv1->extend_mode)
538 return false;
539
540 if (iv0->extend == IV_UNKNOWN_EXTEND
541 && iv1->extend == IV_UNKNOWN_EXTEND)
542 {
543 if (iv0->mode != iv1->mode)
544 return false;
545
546 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
547 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
548
549 return true;
550 }
551
552 /* Handle addition of constant. */
553 if (iv1->extend == IV_UNKNOWN_EXTEND
554 && iv1->mode == mode
555 && iv1->step == const0_rtx)
556 {
557 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
558 return true;
559 }
560
561 if (iv0->extend == IV_UNKNOWN_EXTEND
562 && iv0->mode == mode
563 && iv0->step == const0_rtx)
564 {
565 arg = iv0->base;
566 *iv0 = *iv1;
567 if (op == MINUS
568 && !iv_neg (iv0))
569 return false;
570
571 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
572 return true;
573 }
574
575 return false;
576 }
577
578 /* Evaluates multiplication of IV by constant CST. */
579
580 static bool
581 iv_mult (class rtx_iv *iv, rtx mby)
582 {
583 scalar_int_mode mode = iv->extend_mode;
584
585 if (GET_MODE (mby) != VOIDmode
586 && GET_MODE (mby) != mode)
587 return false;
588
589 if (iv->extend == IV_UNKNOWN_EXTEND)
590 {
591 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
592 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
593 }
594 else
595 {
596 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
597 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
598 }
599
600 return true;
601 }
602
603 /* Evaluates shift of IV by constant CST. */
604
605 static bool
606 iv_shift (class rtx_iv *iv, rtx mby)
607 {
608 scalar_int_mode mode = iv->extend_mode;
609
610 if (GET_MODE (mby) != VOIDmode
611 && GET_MODE (mby) != mode)
612 return false;
613
614 if (iv->extend == IV_UNKNOWN_EXTEND)
615 {
616 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
617 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
618 }
619 else
620 {
621 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
622 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
623 }
624
625 return true;
626 }
627
628 /* The recursive part of get_biv_step. Gets the value of the single value
629 defined by DEF wrto initial value of REG inside loop, in shape described
630 at get_biv_step. */
631
632 static bool
633 get_biv_step_1 (df_ref def, scalar_int_mode outer_mode, rtx reg,
634 rtx *inner_step, scalar_int_mode *inner_mode,
635 enum iv_extend_code *extend,
636 rtx *outer_step)
637 {
638 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
639 rtx next, nextr;
640 enum rtx_code code;
641 rtx_insn *insn = DF_REF_INSN (def);
642 df_ref next_def;
643 enum iv_grd_result res;
644
645 set = single_set (insn);
646 if (!set)
647 return false;
648
649 rhs = find_reg_equal_equiv_note (insn);
650 if (rhs)
651 rhs = XEXP (rhs, 0);
652 else
653 rhs = SET_SRC (set);
654
655 code = GET_CODE (rhs);
656 switch (code)
657 {
658 case SUBREG:
659 case REG:
660 next = rhs;
661 break;
662
663 case PLUS:
664 case MINUS:
665 op0 = XEXP (rhs, 0);
666 op1 = XEXP (rhs, 1);
667
668 if (code == PLUS && CONSTANT_P (op0))
669 std::swap (op0, op1);
670
671 if (!simple_reg_p (op0)
672 || !CONSTANT_P (op1))
673 return false;
674
675 if (GET_MODE (rhs) != outer_mode)
676 {
677 /* ppc64 uses expressions like
678
679 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
680
681 this is equivalent to
682
683 (set x':DI (plus:DI y:DI 1))
684 (set x:SI (subreg:SI (x':DI)). */
685 if (GET_CODE (op0) != SUBREG)
686 return false;
687 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
688 return false;
689 }
690
691 next = op0;
692 break;
693
694 case SIGN_EXTEND:
695 case ZERO_EXTEND:
696 if (GET_MODE (rhs) != outer_mode)
697 return false;
698
699 op0 = XEXP (rhs, 0);
700 if (!simple_reg_p (op0))
701 return false;
702
703 next = op0;
704 break;
705
706 default:
707 return false;
708 }
709
710 if (GET_CODE (next) == SUBREG)
711 {
712 if (!subreg_lowpart_p (next))
713 return false;
714
715 nextr = SUBREG_REG (next);
716 if (GET_MODE (nextr) != outer_mode)
717 return false;
718 }
719 else
720 nextr = next;
721
722 res = iv_get_reaching_def (insn, nextr, &next_def);
723
724 if (res == GRD_INVALID || res == GRD_INVARIANT)
725 return false;
726
727 if (res == GRD_MAYBE_BIV)
728 {
729 if (!rtx_equal_p (nextr, reg))
730 return false;
731
732 *inner_step = const0_rtx;
733 *extend = IV_UNKNOWN_EXTEND;
734 *inner_mode = outer_mode;
735 *outer_step = const0_rtx;
736 }
737 else if (!get_biv_step_1 (next_def, outer_mode, reg,
738 inner_step, inner_mode, extend,
739 outer_step))
740 return false;
741
742 if (GET_CODE (next) == SUBREG)
743 {
744 scalar_int_mode amode;
745 if (!is_a <scalar_int_mode> (GET_MODE (next), &amode)
746 || GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
747 return false;
748
749 *inner_mode = amode;
750 *inner_step = simplify_gen_binary (PLUS, outer_mode,
751 *inner_step, *outer_step);
752 *outer_step = const0_rtx;
753 *extend = IV_UNKNOWN_EXTEND;
754 }
755
756 switch (code)
757 {
758 case REG:
759 case SUBREG:
760 break;
761
762 case PLUS:
763 case MINUS:
764 if (*inner_mode == outer_mode
765 /* See comment in previous switch. */
766 || GET_MODE (rhs) != outer_mode)
767 *inner_step = simplify_gen_binary (code, outer_mode,
768 *inner_step, op1);
769 else
770 *outer_step = simplify_gen_binary (code, outer_mode,
771 *outer_step, op1);
772 break;
773
774 case SIGN_EXTEND:
775 case ZERO_EXTEND:
776 gcc_assert (GET_MODE (op0) == *inner_mode
777 && *extend == IV_UNKNOWN_EXTEND
778 && *outer_step == const0_rtx);
779
780 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
781 break;
782
783 default:
784 return false;
785 }
786
787 return true;
788 }
789
790 /* Gets the operation on register REG inside loop, in shape
791
792 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
793
794 If the operation cannot be described in this shape, return false.
795 LAST_DEF is the definition of REG that dominates loop latch. */
796
797 static bool
798 get_biv_step (df_ref last_def, scalar_int_mode outer_mode, rtx reg,
799 rtx *inner_step, scalar_int_mode *inner_mode,
800 enum iv_extend_code *extend, rtx *outer_step)
801 {
802 if (!get_biv_step_1 (last_def, outer_mode, reg,
803 inner_step, inner_mode, extend,
804 outer_step))
805 return false;
806
807 gcc_assert ((*inner_mode == outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
808 gcc_assert (*inner_mode != outer_mode || *outer_step == const0_rtx);
809
810 return true;
811 }
812
813 /* Records information that DEF is induction variable IV. */
814
815 static void
816 record_iv (df_ref def, class rtx_iv *iv)
817 {
818 class rtx_iv *recorded_iv = XNEW (class rtx_iv);
819
820 *recorded_iv = *iv;
821 check_iv_ref_table_size ();
822 DF_REF_IV_SET (def, recorded_iv);
823 }
824
825 /* If DEF was already analyzed for bivness, store the description of the biv to
826 IV and return true. Otherwise return false. */
827
828 static bool
829 analyzed_for_bivness_p (rtx def, class rtx_iv *iv)
830 {
831 class biv_entry *biv = bivs->find_with_hash (def, REGNO (def));
832
833 if (!biv)
834 return false;
835
836 *iv = biv->iv;
837 return true;
838 }
839
840 static void
841 record_biv (rtx def, class rtx_iv *iv)
842 {
843 class biv_entry *biv = XNEW (class biv_entry);
844 biv_entry **slot = bivs->find_slot_with_hash (def, REGNO (def), INSERT);
845
846 biv->regno = REGNO (def);
847 biv->iv = *iv;
848 gcc_assert (!*slot);
849 *slot = biv;
850 }
851
852 /* Determines whether DEF is a biv and if so, stores its description
853 to *IV. OUTER_MODE is the mode of DEF. */
854
855 static bool
856 iv_analyze_biv (scalar_int_mode outer_mode, rtx def, class rtx_iv *iv)
857 {
858 rtx inner_step, outer_step;
859 scalar_int_mode inner_mode;
860 enum iv_extend_code extend;
861 df_ref last_def;
862
863 if (dump_file)
864 {
865 fprintf (dump_file, "Analyzing ");
866 print_rtl (dump_file, def);
867 fprintf (dump_file, " for bivness.\n");
868 }
869
870 if (!REG_P (def))
871 {
872 if (!CONSTANT_P (def))
873 return false;
874
875 return iv_constant (iv, outer_mode, def);
876 }
877
878 if (!latch_dominating_def (def, &last_def))
879 {
880 if (dump_file)
881 fprintf (dump_file, " not simple.\n");
882 return false;
883 }
884
885 if (!last_def)
886 return iv_constant (iv, outer_mode, def);
887
888 if (analyzed_for_bivness_p (def, iv))
889 {
890 if (dump_file)
891 fprintf (dump_file, " already analysed.\n");
892 return iv->base != NULL_RTX;
893 }
894
895 if (!get_biv_step (last_def, outer_mode, def, &inner_step, &inner_mode,
896 &extend, &outer_step))
897 {
898 iv->base = NULL_RTX;
899 goto end;
900 }
901
902 /* Loop transforms base to es (base + inner_step) + outer_step,
903 where es means extend of subreg between inner_mode and outer_mode.
904 The corresponding induction variable is
905
906 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
907
908 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
909 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
910 iv->mode = inner_mode;
911 iv->extend_mode = outer_mode;
912 iv->extend = extend;
913 iv->mult = const1_rtx;
914 iv->delta = outer_step;
915 iv->first_special = inner_mode != outer_mode;
916
917 end:
918 if (dump_file)
919 {
920 fprintf (dump_file, " ");
921 dump_iv_info (dump_file, iv);
922 fprintf (dump_file, "\n");
923 }
924
925 record_biv (def, iv);
926 return iv->base != NULL_RTX;
927 }
928
929 /* Analyzes expression RHS used at INSN and stores the result to *IV.
930 The mode of the induction variable is MODE. */
931
932 bool
933 iv_analyze_expr (rtx_insn *insn, scalar_int_mode mode, rtx rhs,
934 class rtx_iv *iv)
935 {
936 rtx mby = NULL_RTX;
937 rtx op0 = NULL_RTX, op1 = NULL_RTX;
938 class rtx_iv iv0, iv1;
939 enum rtx_code code = GET_CODE (rhs);
940 scalar_int_mode omode = mode;
941
942 iv->base = NULL_RTX;
943 iv->step = NULL_RTX;
944
945 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
946
947 if (CONSTANT_P (rhs)
948 || REG_P (rhs)
949 || code == SUBREG)
950 return iv_analyze_op (insn, mode, rhs, iv);
951
952 switch (code)
953 {
954 case REG:
955 op0 = rhs;
956 break;
957
958 case SIGN_EXTEND:
959 case ZERO_EXTEND:
960 case NEG:
961 op0 = XEXP (rhs, 0);
962 /* We don't know how many bits there are in a sign-extended constant. */
963 if (!is_a <scalar_int_mode> (GET_MODE (op0), &omode))
964 return false;
965 break;
966
967 case PLUS:
968 case MINUS:
969 op0 = XEXP (rhs, 0);
970 op1 = XEXP (rhs, 1);
971 break;
972
973 case MULT:
974 op0 = XEXP (rhs, 0);
975 mby = XEXP (rhs, 1);
976 if (!CONSTANT_P (mby))
977 std::swap (op0, mby);
978 if (!CONSTANT_P (mby))
979 return false;
980 break;
981
982 case ASHIFT:
983 op0 = XEXP (rhs, 0);
984 mby = XEXP (rhs, 1);
985 if (!CONSTANT_P (mby))
986 return false;
987 break;
988
989 default:
990 return false;
991 }
992
993 if (op0
994 && !iv_analyze_expr (insn, omode, op0, &iv0))
995 return false;
996
997 if (op1
998 && !iv_analyze_expr (insn, omode, op1, &iv1))
999 return false;
1000
1001 switch (code)
1002 {
1003 case SIGN_EXTEND:
1004 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1005 return false;
1006 break;
1007
1008 case ZERO_EXTEND:
1009 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
1010 return false;
1011 break;
1012
1013 case NEG:
1014 if (!iv_neg (&iv0))
1015 return false;
1016 break;
1017
1018 case PLUS:
1019 case MINUS:
1020 if (!iv_add (&iv0, &iv1, code))
1021 return false;
1022 break;
1023
1024 case MULT:
1025 if (!iv_mult (&iv0, mby))
1026 return false;
1027 break;
1028
1029 case ASHIFT:
1030 if (!iv_shift (&iv0, mby))
1031 return false;
1032 break;
1033
1034 default:
1035 break;
1036 }
1037
1038 *iv = iv0;
1039 return iv->base != NULL_RTX;
1040 }
1041
1042 /* Analyzes iv DEF and stores the result to *IV. */
1043
1044 static bool
1045 iv_analyze_def (df_ref def, class rtx_iv *iv)
1046 {
1047 rtx_insn *insn = DF_REF_INSN (def);
1048 rtx reg = DF_REF_REG (def);
1049 rtx set, rhs;
1050
1051 if (dump_file)
1052 {
1053 fprintf (dump_file, "Analyzing def of ");
1054 print_rtl (dump_file, reg);
1055 fprintf (dump_file, " in insn ");
1056 print_rtl_single (dump_file, insn);
1057 }
1058
1059 check_iv_ref_table_size ();
1060 if (DF_REF_IV (def))
1061 {
1062 if (dump_file)
1063 fprintf (dump_file, " already analysed.\n");
1064 *iv = *DF_REF_IV (def);
1065 return iv->base != NULL_RTX;
1066 }
1067
1068 iv->base = NULL_RTX;
1069 iv->step = NULL_RTX;
1070
1071 scalar_int_mode mode;
1072 if (!REG_P (reg) || !is_a <scalar_int_mode> (GET_MODE (reg), &mode))
1073 return false;
1074
1075 set = single_set (insn);
1076 if (!set)
1077 return false;
1078
1079 if (!REG_P (SET_DEST (set)))
1080 return false;
1081
1082 gcc_assert (SET_DEST (set) == reg);
1083 rhs = find_reg_equal_equiv_note (insn);
1084 if (rhs)
1085 rhs = XEXP (rhs, 0);
1086 else
1087 rhs = SET_SRC (set);
1088
1089 iv_analyze_expr (insn, mode, rhs, iv);
1090 record_iv (def, iv);
1091
1092 if (dump_file)
1093 {
1094 print_rtl (dump_file, reg);
1095 fprintf (dump_file, " in insn ");
1096 print_rtl_single (dump_file, insn);
1097 fprintf (dump_file, " is ");
1098 dump_iv_info (dump_file, iv);
1099 fprintf (dump_file, "\n");
1100 }
1101
1102 return iv->base != NULL_RTX;
1103 }
1104
1105 /* Analyzes operand OP of INSN and stores the result to *IV. MODE is the
1106 mode of OP. */
1107
1108 static bool
1109 iv_analyze_op (rtx_insn *insn, scalar_int_mode mode, rtx op, class rtx_iv *iv)
1110 {
1111 df_ref def = NULL;
1112 enum iv_grd_result res;
1113
1114 if (dump_file)
1115 {
1116 fprintf (dump_file, "Analyzing operand ");
1117 print_rtl (dump_file, op);
1118 fprintf (dump_file, " of insn ");
1119 print_rtl_single (dump_file, insn);
1120 }
1121
1122 if (function_invariant_p (op))
1123 res = GRD_INVARIANT;
1124 else if (GET_CODE (op) == SUBREG)
1125 {
1126 scalar_int_mode inner_mode;
1127 if (!subreg_lowpart_p (op)
1128 || !is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op)), &inner_mode))
1129 return false;
1130
1131 if (!iv_analyze_op (insn, inner_mode, SUBREG_REG (op), iv))
1132 return false;
1133
1134 return iv_subreg (iv, mode);
1135 }
1136 else
1137 {
1138 res = iv_get_reaching_def (insn, op, &def);
1139 if (res == GRD_INVALID)
1140 {
1141 if (dump_file)
1142 fprintf (dump_file, " not simple.\n");
1143 return false;
1144 }
1145 }
1146
1147 if (res == GRD_INVARIANT)
1148 {
1149 iv_constant (iv, mode, op);
1150
1151 if (dump_file)
1152 {
1153 fprintf (dump_file, " ");
1154 dump_iv_info (dump_file, iv);
1155 fprintf (dump_file, "\n");
1156 }
1157 return true;
1158 }
1159
1160 if (res == GRD_MAYBE_BIV)
1161 return iv_analyze_biv (mode, op, iv);
1162
1163 return iv_analyze_def (def, iv);
1164 }
1165
1166 /* Analyzes value VAL at INSN and stores the result to *IV. MODE is the
1167 mode of VAL. */
1168
1169 bool
1170 iv_analyze (rtx_insn *insn, scalar_int_mode mode, rtx val, class rtx_iv *iv)
1171 {
1172 rtx reg;
1173
1174 /* We must find the insn in that val is used, so that we get to UD chains.
1175 Since the function is sometimes called on result of get_condition,
1176 this does not necessarily have to be directly INSN; scan also the
1177 following insns. */
1178 if (simple_reg_p (val))
1179 {
1180 if (GET_CODE (val) == SUBREG)
1181 reg = SUBREG_REG (val);
1182 else
1183 reg = val;
1184
1185 while (!df_find_use (insn, reg))
1186 insn = NEXT_INSN (insn);
1187 }
1188
1189 return iv_analyze_op (insn, mode, val, iv);
1190 }
1191
1192 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1193
1194 bool
1195 iv_analyze_result (rtx_insn *insn, rtx def, class rtx_iv *iv)
1196 {
1197 df_ref adef;
1198
1199 adef = df_find_def (insn, def);
1200 if (!adef)
1201 return false;
1202
1203 return iv_analyze_def (adef, iv);
1204 }
1205
1206 /* Checks whether definition of register REG in INSN is a basic induction
1207 variable. MODE is the mode of REG.
1208
1209 IV analysis must have been initialized (via a call to
1210 iv_analysis_loop_init) for this function to produce a result. */
1211
1212 bool
1213 biv_p (rtx_insn *insn, scalar_int_mode mode, rtx reg)
1214 {
1215 class rtx_iv iv;
1216 df_ref def, last_def;
1217
1218 if (!simple_reg_p (reg))
1219 return false;
1220
1221 def = df_find_def (insn, reg);
1222 gcc_assert (def != NULL);
1223 if (!latch_dominating_def (reg, &last_def))
1224 return false;
1225 if (last_def != def)
1226 return false;
1227
1228 if (!iv_analyze_biv (mode, reg, &iv))
1229 return false;
1230
1231 return iv.step != const0_rtx;
1232 }
1233
1234 /* Calculates value of IV at ITERATION-th iteration. */
1235
1236 rtx
1237 get_iv_value (class rtx_iv *iv, rtx iteration)
1238 {
1239 rtx val;
1240
1241 /* We would need to generate some if_then_else patterns, and so far
1242 it is not needed anywhere. */
1243 gcc_assert (!iv->first_special);
1244
1245 if (iv->step != const0_rtx && iteration != const0_rtx)
1246 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1247 simplify_gen_binary (MULT, iv->extend_mode,
1248 iv->step, iteration));
1249 else
1250 val = iv->base;
1251
1252 if (iv->extend_mode == iv->mode)
1253 return val;
1254
1255 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1256
1257 if (iv->extend == IV_UNKNOWN_EXTEND)
1258 return val;
1259
1260 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1261 iv->extend_mode, val, iv->mode);
1262 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1263 simplify_gen_binary (MULT, iv->extend_mode,
1264 iv->mult, val));
1265
1266 return val;
1267 }
1268
1269 /* Free the data for an induction variable analysis. */
1270
1271 void
1272 iv_analysis_done (void)
1273 {
1274 if (!clean_slate)
1275 {
1276 clear_iv_info ();
1277 clean_slate = true;
1278 df_finish_pass (true);
1279 delete bivs;
1280 bivs = NULL;
1281 free (iv_ref_table);
1282 iv_ref_table = NULL;
1283 iv_ref_table_size = 0;
1284 }
1285 }
1286
1287 /* Computes inverse to X modulo (1 << MOD). */
1288
1289 static uint64_t
1290 inverse (uint64_t x, int mod)
1291 {
1292 uint64_t mask =
1293 ((uint64_t) 1 << (mod - 1) << 1) - 1;
1294 uint64_t rslt = 1;
1295 int i;
1296
1297 for (i = 0; i < mod - 1; i++)
1298 {
1299 rslt = (rslt * x) & mask;
1300 x = (x * x) & mask;
1301 }
1302
1303 return rslt;
1304 }
1305
1306 /* Checks whether any register in X is in set ALT. */
1307
1308 static bool
1309 altered_reg_used (const_rtx x, bitmap alt)
1310 {
1311 subrtx_iterator::array_type array;
1312 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1313 {
1314 const_rtx x = *iter;
1315 if (REG_P (x) && REGNO_REG_SET_P (alt, REGNO (x)))
1316 return true;
1317 }
1318 return false;
1319 }
1320
1321 /* Marks registers altered by EXPR in set ALT. */
1322
1323 static void
1324 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1325 {
1326 if (GET_CODE (expr) == SUBREG)
1327 expr = SUBREG_REG (expr);
1328 if (!REG_P (expr))
1329 return;
1330
1331 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1332 }
1333
1334 /* Checks whether RHS is simple enough to process. */
1335
1336 static bool
1337 simple_rhs_p (rtx rhs)
1338 {
1339 rtx op0, op1;
1340
1341 if (function_invariant_p (rhs)
1342 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1343 return true;
1344
1345 switch (GET_CODE (rhs))
1346 {
1347 case PLUS:
1348 case MINUS:
1349 case AND:
1350 op0 = XEXP (rhs, 0);
1351 op1 = XEXP (rhs, 1);
1352 /* Allow reg OP const and reg OP reg. */
1353 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1354 && !function_invariant_p (op0))
1355 return false;
1356 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1357 && !function_invariant_p (op1))
1358 return false;
1359
1360 return true;
1361
1362 case ASHIFT:
1363 case ASHIFTRT:
1364 case LSHIFTRT:
1365 case MULT:
1366 op0 = XEXP (rhs, 0);
1367 op1 = XEXP (rhs, 1);
1368 /* Allow reg OP const. */
1369 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1370 return false;
1371 if (!function_invariant_p (op1))
1372 return false;
1373
1374 return true;
1375
1376 default:
1377 return false;
1378 }
1379 }
1380
1381 /* If REGNO has a single definition, return its known value, otherwise return
1382 null. */
1383
1384 static rtx
1385 find_single_def_src (unsigned int regno)
1386 {
1387 df_ref adef;
1388 rtx set, src;
1389
1390 for (;;)
1391 {
1392 rtx note;
1393 adef = DF_REG_DEF_CHAIN (regno);
1394 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
1395 || DF_REF_IS_ARTIFICIAL (adef))
1396 return NULL_RTX;
1397
1398 set = single_set (DF_REF_INSN (adef));
1399 if (set == NULL || !REG_P (SET_DEST (set))
1400 || REGNO (SET_DEST (set)) != regno)
1401 return NULL_RTX;
1402
1403 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1404
1405 if (note && function_invariant_p (XEXP (note, 0)))
1406 {
1407 src = XEXP (note, 0);
1408 break;
1409 }
1410 src = SET_SRC (set);
1411
1412 if (REG_P (src))
1413 {
1414 regno = REGNO (src);
1415 continue;
1416 }
1417 break;
1418 }
1419 if (!function_invariant_p (src))
1420 return NULL_RTX;
1421
1422 return src;
1423 }
1424
1425 /* If any registers in *EXPR that have a single definition, try to replace
1426 them with the known-equivalent values. */
1427
1428 static void
1429 replace_single_def_regs (rtx *expr)
1430 {
1431 subrtx_var_iterator::array_type array;
1432 repeat:
1433 FOR_EACH_SUBRTX_VAR (iter, array, *expr, NONCONST)
1434 {
1435 rtx x = *iter;
1436 if (REG_P (x))
1437 if (rtx new_x = find_single_def_src (REGNO (x)))
1438 {
1439 *expr = simplify_replace_rtx (*expr, x, new_x);
1440 goto repeat;
1441 }
1442 }
1443 }
1444
1445 /* A subroutine of simplify_using_initial_values, this function examines INSN
1446 to see if it contains a suitable set that we can use to make a replacement.
1447 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1448 the set; return false otherwise. */
1449
1450 static bool
1451 suitable_set_for_replacement (rtx_insn *insn, rtx *dest, rtx *src)
1452 {
1453 rtx set = single_set (insn);
1454 rtx lhs = NULL_RTX, rhs;
1455
1456 if (!set)
1457 return false;
1458
1459 lhs = SET_DEST (set);
1460 if (!REG_P (lhs))
1461 return false;
1462
1463 rhs = find_reg_equal_equiv_note (insn);
1464 if (rhs)
1465 rhs = XEXP (rhs, 0);
1466 else
1467 rhs = SET_SRC (set);
1468
1469 if (!simple_rhs_p (rhs))
1470 return false;
1471
1472 *dest = lhs;
1473 *src = rhs;
1474 return true;
1475 }
1476
1477 /* Using the data returned by suitable_set_for_replacement, replace DEST
1478 with SRC in *EXPR and return the new expression. Also call
1479 replace_single_def_regs if the replacement changed something. */
1480 static void
1481 replace_in_expr (rtx *expr, rtx dest, rtx src)
1482 {
1483 rtx old = *expr;
1484 *expr = simplify_replace_rtx (*expr, dest, src);
1485 if (old == *expr)
1486 return;
1487 replace_single_def_regs (expr);
1488 }
1489
1490 /* Checks whether A implies B. */
1491
1492 static bool
1493 implies_p (rtx a, rtx b)
1494 {
1495 rtx op0, op1, opb0, opb1;
1496 machine_mode mode;
1497
1498 if (rtx_equal_p (a, b))
1499 return true;
1500
1501 if (GET_CODE (a) == EQ)
1502 {
1503 op0 = XEXP (a, 0);
1504 op1 = XEXP (a, 1);
1505
1506 if (REG_P (op0)
1507 || (GET_CODE (op0) == SUBREG
1508 && REG_P (SUBREG_REG (op0))))
1509 {
1510 rtx r = simplify_replace_rtx (b, op0, op1);
1511 if (r == const_true_rtx)
1512 return true;
1513 }
1514
1515 if (REG_P (op1)
1516 || (GET_CODE (op1) == SUBREG
1517 && REG_P (SUBREG_REG (op1))))
1518 {
1519 rtx r = simplify_replace_rtx (b, op1, op0);
1520 if (r == const_true_rtx)
1521 return true;
1522 }
1523 }
1524
1525 if (b == const_true_rtx)
1526 return true;
1527
1528 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1529 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1530 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1531 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1532 return false;
1533
1534 op0 = XEXP (a, 0);
1535 op1 = XEXP (a, 1);
1536 opb0 = XEXP (b, 0);
1537 opb1 = XEXP (b, 1);
1538
1539 mode = GET_MODE (op0);
1540 if (mode != GET_MODE (opb0))
1541 mode = VOIDmode;
1542 else if (mode == VOIDmode)
1543 {
1544 mode = GET_MODE (op1);
1545 if (mode != GET_MODE (opb1))
1546 mode = VOIDmode;
1547 }
1548
1549 /* A < B implies A + 1 <= B. */
1550 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1551 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1552 {
1553
1554 if (GET_CODE (a) == GT)
1555 std::swap (op0, op1);
1556
1557 if (GET_CODE (b) == GE)
1558 std::swap (opb0, opb1);
1559
1560 if (SCALAR_INT_MODE_P (mode)
1561 && rtx_equal_p (op1, opb1)
1562 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1563 return true;
1564 return false;
1565 }
1566
1567 /* A < B or A > B imply A != B. TODO: Likewise
1568 A + n < B implies A != B + n if neither wraps. */
1569 if (GET_CODE (b) == NE
1570 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1571 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1572 {
1573 if (rtx_equal_p (op0, opb0)
1574 && rtx_equal_p (op1, opb1))
1575 return true;
1576 }
1577
1578 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1579 if (GET_CODE (a) == NE
1580 && op1 == const0_rtx)
1581 {
1582 if ((GET_CODE (b) == GTU
1583 && opb1 == const0_rtx)
1584 || (GET_CODE (b) == GEU
1585 && opb1 == const1_rtx))
1586 return rtx_equal_p (op0, opb0);
1587 }
1588
1589 /* A != N is equivalent to A - (N + 1) <u -1. */
1590 if (GET_CODE (a) == NE
1591 && CONST_INT_P (op1)
1592 && GET_CODE (b) == LTU
1593 && opb1 == constm1_rtx
1594 && GET_CODE (opb0) == PLUS
1595 && CONST_INT_P (XEXP (opb0, 1))
1596 /* Avoid overflows. */
1597 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1598 != ((unsigned HOST_WIDE_INT)1
1599 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1600 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1601 return rtx_equal_p (op0, XEXP (opb0, 0));
1602
1603 /* Likewise, A != N implies A - N > 0. */
1604 if (GET_CODE (a) == NE
1605 && CONST_INT_P (op1))
1606 {
1607 if (GET_CODE (b) == GTU
1608 && GET_CODE (opb0) == PLUS
1609 && opb1 == const0_rtx
1610 && CONST_INT_P (XEXP (opb0, 1))
1611 /* Avoid overflows. */
1612 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1613 != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
1614 && rtx_equal_p (XEXP (opb0, 0), op0))
1615 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1616 if (GET_CODE (b) == GEU
1617 && GET_CODE (opb0) == PLUS
1618 && opb1 == const1_rtx
1619 && CONST_INT_P (XEXP (opb0, 1))
1620 /* Avoid overflows. */
1621 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1622 != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
1623 && rtx_equal_p (XEXP (opb0, 0), op0))
1624 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1625 }
1626
1627 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1628 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1629 && CONST_INT_P (op1)
1630 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1631 || INTVAL (op1) >= 0)
1632 && GET_CODE (b) == LTU
1633 && CONST_INT_P (opb1)
1634 && rtx_equal_p (op0, opb0))
1635 return INTVAL (opb1) < 0;
1636
1637 return false;
1638 }
1639
1640 /* Canonicalizes COND so that
1641
1642 (1) Ensure that operands are ordered according to
1643 swap_commutative_operands_p.
1644 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1645 for GE, GEU, and LEU. */
1646
1647 rtx
1648 canon_condition (rtx cond)
1649 {
1650 rtx op0, op1;
1651 enum rtx_code code;
1652 machine_mode mode;
1653
1654 code = GET_CODE (cond);
1655 op0 = XEXP (cond, 0);
1656 op1 = XEXP (cond, 1);
1657
1658 if (swap_commutative_operands_p (op0, op1))
1659 {
1660 code = swap_condition (code);
1661 std::swap (op0, op1);
1662 }
1663
1664 mode = GET_MODE (op0);
1665 if (mode == VOIDmode)
1666 mode = GET_MODE (op1);
1667 gcc_assert (mode != VOIDmode);
1668
1669 if (CONST_SCALAR_INT_P (op1) && GET_MODE_CLASS (mode) != MODE_CC)
1670 {
1671 rtx_mode_t const_val (op1, mode);
1672
1673 switch (code)
1674 {
1675 case LE:
1676 if (wi::ne_p (const_val, wi::max_value (mode, SIGNED)))
1677 {
1678 code = LT;
1679 op1 = immed_wide_int_const (wi::add (const_val, 1), mode);
1680 }
1681 break;
1682
1683 case GE:
1684 if (wi::ne_p (const_val, wi::min_value (mode, SIGNED)))
1685 {
1686 code = GT;
1687 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode);
1688 }
1689 break;
1690
1691 case LEU:
1692 if (wi::ne_p (const_val, -1))
1693 {
1694 code = LTU;
1695 op1 = immed_wide_int_const (wi::add (const_val, 1), mode);
1696 }
1697 break;
1698
1699 case GEU:
1700 if (wi::ne_p (const_val, 0))
1701 {
1702 code = GTU;
1703 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode);
1704 }
1705 break;
1706
1707 default:
1708 break;
1709 }
1710 }
1711
1712 if (op0 != XEXP (cond, 0)
1713 || op1 != XEXP (cond, 1)
1714 || code != GET_CODE (cond)
1715 || GET_MODE (cond) != SImode)
1716 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1717
1718 return cond;
1719 }
1720
1721 /* Reverses CONDition; returns NULL if we cannot. */
1722
1723 static rtx
1724 reversed_condition (rtx cond)
1725 {
1726 enum rtx_code reversed;
1727 reversed = reversed_comparison_code (cond, NULL);
1728 if (reversed == UNKNOWN)
1729 return NULL_RTX;
1730 else
1731 return gen_rtx_fmt_ee (reversed,
1732 GET_MODE (cond), XEXP (cond, 0),
1733 XEXP (cond, 1));
1734 }
1735
1736 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1737 set of altered regs. */
1738
1739 void
1740 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1741 {
1742 rtx rev, reve, exp = *expr;
1743
1744 /* If some register gets altered later, we do not really speak about its
1745 value at the time of comparison. */
1746 if (altered && altered_reg_used (cond, altered))
1747 return;
1748
1749 if (GET_CODE (cond) == EQ
1750 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1751 {
1752 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1753 return;
1754 }
1755
1756 if (!COMPARISON_P (exp))
1757 return;
1758
1759 rev = reversed_condition (cond);
1760 reve = reversed_condition (exp);
1761
1762 cond = canon_condition (cond);
1763 exp = canon_condition (exp);
1764 if (rev)
1765 rev = canon_condition (rev);
1766 if (reve)
1767 reve = canon_condition (reve);
1768
1769 if (rtx_equal_p (exp, cond))
1770 {
1771 *expr = const_true_rtx;
1772 return;
1773 }
1774
1775 if (rev && rtx_equal_p (exp, rev))
1776 {
1777 *expr = const0_rtx;
1778 return;
1779 }
1780
1781 if (implies_p (cond, exp))
1782 {
1783 *expr = const_true_rtx;
1784 return;
1785 }
1786
1787 if (reve && implies_p (cond, reve))
1788 {
1789 *expr = const0_rtx;
1790 return;
1791 }
1792
1793 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1794 be false. */
1795 if (rev && implies_p (exp, rev))
1796 {
1797 *expr = const0_rtx;
1798 return;
1799 }
1800
1801 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1802 if (rev && reve && implies_p (reve, rev))
1803 {
1804 *expr = const_true_rtx;
1805 return;
1806 }
1807
1808 /* We would like to have some other tests here. TODO. */
1809
1810 return;
1811 }
1812
1813 /* Use relationship between A and *B to eventually eliminate *B.
1814 OP is the operation we consider. */
1815
1816 static void
1817 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1818 {
1819 switch (op)
1820 {
1821 case AND:
1822 /* If A implies *B, we may replace *B by true. */
1823 if (implies_p (a, *b))
1824 *b = const_true_rtx;
1825 break;
1826
1827 case IOR:
1828 /* If *B implies A, we may replace *B by false. */
1829 if (implies_p (*b, a))
1830 *b = const0_rtx;
1831 break;
1832
1833 default:
1834 gcc_unreachable ();
1835 }
1836 }
1837
1838 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1839 operation we consider. */
1840
1841 static void
1842 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1843 {
1844 rtx elt;
1845
1846 for (elt = tail; elt; elt = XEXP (elt, 1))
1847 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1848 for (elt = tail; elt; elt = XEXP (elt, 1))
1849 eliminate_implied_condition (op, XEXP (elt, 0), head);
1850 }
1851
1852 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1853 is a list, its elements are assumed to be combined using OP. */
1854
1855 static void
1856 simplify_using_initial_values (class loop *loop, enum rtx_code op, rtx *expr)
1857 {
1858 bool expression_valid;
1859 rtx head, tail, last_valid_expr;
1860 rtx_expr_list *cond_list;
1861 rtx_insn *insn;
1862 rtx neutral, aggr;
1863 regset altered, this_altered;
1864 edge e;
1865
1866 if (!*expr)
1867 return;
1868
1869 if (CONSTANT_P (*expr))
1870 return;
1871
1872 if (GET_CODE (*expr) == EXPR_LIST)
1873 {
1874 head = XEXP (*expr, 0);
1875 tail = XEXP (*expr, 1);
1876
1877 eliminate_implied_conditions (op, &head, tail);
1878
1879 switch (op)
1880 {
1881 case AND:
1882 neutral = const_true_rtx;
1883 aggr = const0_rtx;
1884 break;
1885
1886 case IOR:
1887 neutral = const0_rtx;
1888 aggr = const_true_rtx;
1889 break;
1890
1891 default:
1892 gcc_unreachable ();
1893 }
1894
1895 simplify_using_initial_values (loop, UNKNOWN, &head);
1896 if (head == aggr)
1897 {
1898 XEXP (*expr, 0) = aggr;
1899 XEXP (*expr, 1) = NULL_RTX;
1900 return;
1901 }
1902 else if (head == neutral)
1903 {
1904 *expr = tail;
1905 simplify_using_initial_values (loop, op, expr);
1906 return;
1907 }
1908 simplify_using_initial_values (loop, op, &tail);
1909
1910 if (tail && XEXP (tail, 0) == aggr)
1911 {
1912 *expr = tail;
1913 return;
1914 }
1915
1916 XEXP (*expr, 0) = head;
1917 XEXP (*expr, 1) = tail;
1918 return;
1919 }
1920
1921 gcc_assert (op == UNKNOWN);
1922
1923 replace_single_def_regs (expr);
1924 if (CONSTANT_P (*expr))
1925 return;
1926
1927 e = loop_preheader_edge (loop);
1928 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1929 return;
1930
1931 altered = ALLOC_REG_SET (&reg_obstack);
1932 this_altered = ALLOC_REG_SET (&reg_obstack);
1933
1934 expression_valid = true;
1935 last_valid_expr = *expr;
1936 cond_list = NULL;
1937 while (1)
1938 {
1939 insn = BB_END (e->src);
1940 if (any_condjump_p (insn))
1941 {
1942 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1943
1944 if (cond && (e->flags & EDGE_FALLTHRU))
1945 cond = reversed_condition (cond);
1946 if (cond)
1947 {
1948 rtx old = *expr;
1949 simplify_using_condition (cond, expr, altered);
1950 if (old != *expr)
1951 {
1952 rtx note;
1953 if (CONSTANT_P (*expr))
1954 goto out;
1955 for (note = cond_list; note; note = XEXP (note, 1))
1956 {
1957 simplify_using_condition (XEXP (note, 0), expr, altered);
1958 if (CONSTANT_P (*expr))
1959 goto out;
1960 }
1961 }
1962 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1963 }
1964 }
1965
1966 FOR_BB_INSNS_REVERSE (e->src, insn)
1967 {
1968 rtx src, dest;
1969 rtx old = *expr;
1970
1971 if (!INSN_P (insn))
1972 continue;
1973
1974 CLEAR_REG_SET (this_altered);
1975 note_stores (insn, mark_altered, this_altered);
1976 if (CALL_P (insn))
1977 {
1978 /* Kill all registers that might be clobbered by the call.
1979 We don't track modes of hard registers, so we need to be
1980 conservative and assume that partial kills are full kills. */
1981 function_abi callee_abi = insn_callee_abi (insn);
1982 IOR_REG_SET_HRS (this_altered,
1983 callee_abi.full_and_partial_reg_clobbers ());
1984 }
1985
1986 if (suitable_set_for_replacement (insn, &dest, &src))
1987 {
1988 rtx_expr_list **pnote, **pnote_next;
1989
1990 replace_in_expr (expr, dest, src);
1991 if (CONSTANT_P (*expr))
1992 goto out;
1993
1994 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1995 {
1996 rtx_expr_list *note = *pnote;
1997 rtx old_cond = XEXP (note, 0);
1998
1999 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
2000 replace_in_expr (&XEXP (note, 0), dest, src);
2001
2002 /* We can no longer use a condition that has been simplified
2003 to a constant, and simplify_using_condition will abort if
2004 we try. */
2005 if (CONSTANT_P (XEXP (note, 0)))
2006 {
2007 *pnote = *pnote_next;
2008 pnote_next = pnote;
2009 free_EXPR_LIST_node (note);
2010 }
2011 /* Retry simplifications with this condition if either the
2012 expression or the condition changed. */
2013 else if (old_cond != XEXP (note, 0) || old != *expr)
2014 simplify_using_condition (XEXP (note, 0), expr, altered);
2015 }
2016 }
2017 else
2018 {
2019 rtx_expr_list **pnote, **pnote_next;
2020
2021 /* If we did not use this insn to make a replacement, any overlap
2022 between stores in this insn and our expression will cause the
2023 expression to become invalid. */
2024 if (altered_reg_used (*expr, this_altered))
2025 goto out;
2026
2027 /* Likewise for the conditions. */
2028 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2029 {
2030 rtx_expr_list *note = *pnote;
2031 rtx old_cond = XEXP (note, 0);
2032
2033 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
2034 if (altered_reg_used (old_cond, this_altered))
2035 {
2036 *pnote = *pnote_next;
2037 pnote_next = pnote;
2038 free_EXPR_LIST_node (note);
2039 }
2040 }
2041 }
2042
2043 if (CONSTANT_P (*expr))
2044 goto out;
2045
2046 IOR_REG_SET (altered, this_altered);
2047
2048 /* If the expression now contains regs that have been altered, we
2049 can't return it to the caller. However, it is still valid for
2050 further simplification, so keep searching to see if we can
2051 eventually turn it into a constant. */
2052 if (altered_reg_used (*expr, altered))
2053 expression_valid = false;
2054 if (expression_valid)
2055 last_valid_expr = *expr;
2056 }
2057
2058 if (!single_pred_p (e->src)
2059 || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2060 break;
2061 e = single_pred_edge (e->src);
2062 }
2063
2064 out:
2065 free_EXPR_LIST_list (&cond_list);
2066 if (!CONSTANT_P (*expr))
2067 *expr = last_valid_expr;
2068 FREE_REG_SET (altered);
2069 FREE_REG_SET (this_altered);
2070 }
2071
2072 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2073 that IV occurs as left operands of comparison COND and its signedness
2074 is SIGNED_P to DESC. */
2075
2076 static void
2077 shorten_into_mode (class rtx_iv *iv, scalar_int_mode mode,
2078 enum rtx_code cond, bool signed_p, class niter_desc *desc)
2079 {
2080 rtx mmin, mmax, cond_over, cond_under;
2081
2082 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2083 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2084 iv->base, mmin);
2085 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2086 iv->base, mmax);
2087
2088 switch (cond)
2089 {
2090 case LE:
2091 case LT:
2092 case LEU:
2093 case LTU:
2094 if (cond_under != const0_rtx)
2095 desc->infinite =
2096 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2097 if (cond_over != const0_rtx)
2098 desc->noloop_assumptions =
2099 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2100 break;
2101
2102 case GE:
2103 case GT:
2104 case GEU:
2105 case GTU:
2106 if (cond_over != const0_rtx)
2107 desc->infinite =
2108 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2109 if (cond_under != const0_rtx)
2110 desc->noloop_assumptions =
2111 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2112 break;
2113
2114 case NE:
2115 if (cond_over != const0_rtx)
2116 desc->infinite =
2117 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2118 if (cond_under != const0_rtx)
2119 desc->infinite =
2120 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2121 break;
2122
2123 default:
2124 gcc_unreachable ();
2125 }
2126
2127 iv->mode = mode;
2128 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
2129 }
2130
2131 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2132 subregs of the same mode if possible (sometimes it is necessary to add
2133 some assumptions to DESC). */
2134
2135 static bool
2136 canonicalize_iv_subregs (class rtx_iv *iv0, class rtx_iv *iv1,
2137 enum rtx_code cond, class niter_desc *desc)
2138 {
2139 scalar_int_mode comp_mode;
2140 bool signed_p;
2141
2142 /* If the ivs behave specially in the first iteration, or are
2143 added/multiplied after extending, we ignore them. */
2144 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2145 return false;
2146 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2147 return false;
2148
2149 /* If there is some extend, it must match signedness of the comparison. */
2150 switch (cond)
2151 {
2152 case LE:
2153 case LT:
2154 if (iv0->extend == IV_ZERO_EXTEND
2155 || iv1->extend == IV_ZERO_EXTEND)
2156 return false;
2157 signed_p = true;
2158 break;
2159
2160 case LEU:
2161 case LTU:
2162 if (iv0->extend == IV_SIGN_EXTEND
2163 || iv1->extend == IV_SIGN_EXTEND)
2164 return false;
2165 signed_p = false;
2166 break;
2167
2168 case NE:
2169 if (iv0->extend != IV_UNKNOWN_EXTEND
2170 && iv1->extend != IV_UNKNOWN_EXTEND
2171 && iv0->extend != iv1->extend)
2172 return false;
2173
2174 signed_p = false;
2175 if (iv0->extend != IV_UNKNOWN_EXTEND)
2176 signed_p = iv0->extend == IV_SIGN_EXTEND;
2177 if (iv1->extend != IV_UNKNOWN_EXTEND)
2178 signed_p = iv1->extend == IV_SIGN_EXTEND;
2179 break;
2180
2181 default:
2182 gcc_unreachable ();
2183 }
2184
2185 /* Values of both variables should be computed in the same mode. These
2186 might indeed be different, if we have comparison like
2187
2188 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2189
2190 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2191 in different modes. This does not seem impossible to handle, but
2192 it hardly ever occurs in practice.
2193
2194 The only exception is the case when one of operands is invariant.
2195 For example pentium 3 generates comparisons like
2196 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2197 definitely do not want this prevent the optimization. */
2198 comp_mode = iv0->extend_mode;
2199 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2200 comp_mode = iv1->extend_mode;
2201
2202 if (iv0->extend_mode != comp_mode)
2203 {
2204 if (iv0->mode != iv0->extend_mode
2205 || iv0->step != const0_rtx)
2206 return false;
2207
2208 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2209 comp_mode, iv0->base, iv0->mode);
2210 iv0->extend_mode = comp_mode;
2211 }
2212
2213 if (iv1->extend_mode != comp_mode)
2214 {
2215 if (iv1->mode != iv1->extend_mode
2216 || iv1->step != const0_rtx)
2217 return false;
2218
2219 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2220 comp_mode, iv1->base, iv1->mode);
2221 iv1->extend_mode = comp_mode;
2222 }
2223
2224 /* Check that both ivs belong to a range of a single mode. If one of the
2225 operands is an invariant, we may need to shorten it into the common
2226 mode. */
2227 if (iv0->mode == iv0->extend_mode
2228 && iv0->step == const0_rtx
2229 && iv0->mode != iv1->mode)
2230 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2231
2232 if (iv1->mode == iv1->extend_mode
2233 && iv1->step == const0_rtx
2234 && iv0->mode != iv1->mode)
2235 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2236
2237 if (iv0->mode != iv1->mode)
2238 return false;
2239
2240 desc->mode = iv0->mode;
2241 desc->signed_p = signed_p;
2242
2243 return true;
2244 }
2245
2246 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2247 result. This function is called from iv_number_of_iterations with
2248 a number of fields in DESC already filled in. OLD_NITER is the original
2249 expression for the number of iterations, before we tried to simplify it. */
2250
2251 static uint64_t
2252 determine_max_iter (class loop *loop, class niter_desc *desc, rtx old_niter)
2253 {
2254 rtx niter = desc->niter_expr;
2255 rtx mmin, mmax, cmp;
2256 uint64_t nmax, inc;
2257 uint64_t andmax = 0;
2258
2259 /* We used to look for constant operand 0 of AND,
2260 but canonicalization should always make this impossible. */
2261 gcc_checking_assert (GET_CODE (niter) != AND
2262 || !CONST_INT_P (XEXP (niter, 0)));
2263
2264 if (GET_CODE (niter) == AND
2265 && CONST_INT_P (XEXP (niter, 1)))
2266 {
2267 andmax = UINTVAL (XEXP (niter, 1));
2268 niter = XEXP (niter, 0);
2269 }
2270
2271 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2272 nmax = UINTVAL (mmax) - UINTVAL (mmin);
2273
2274 if (GET_CODE (niter) == UDIV)
2275 {
2276 if (!CONST_INT_P (XEXP (niter, 1)))
2277 return nmax;
2278 inc = INTVAL (XEXP (niter, 1));
2279 niter = XEXP (niter, 0);
2280 }
2281 else
2282 inc = 1;
2283
2284 /* We could use a binary search here, but for now improving the upper
2285 bound by just one eliminates one important corner case. */
2286 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2287 desc->mode, old_niter, mmax);
2288 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2289 if (cmp == const_true_rtx)
2290 {
2291 nmax--;
2292
2293 if (dump_file)
2294 fprintf (dump_file, ";; improved upper bound by one.\n");
2295 }
2296 nmax /= inc;
2297 if (andmax)
2298 nmax = MIN (nmax, andmax);
2299 if (dump_file)
2300 fprintf (dump_file, ";; Determined upper bound %" PRId64".\n",
2301 nmax);
2302 return nmax;
2303 }
2304
2305 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2306 the result into DESC. Very similar to determine_number_of_iterations
2307 (basically its rtl version), complicated by things like subregs. */
2308
2309 static void
2310 iv_number_of_iterations (class loop *loop, rtx_insn *insn, rtx condition,
2311 class niter_desc *desc)
2312 {
2313 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2314 class rtx_iv iv0, iv1;
2315 rtx assumption, may_not_xform;
2316 enum rtx_code cond;
2317 machine_mode nonvoid_mode;
2318 scalar_int_mode comp_mode;
2319 rtx mmin, mmax, mode_mmin, mode_mmax;
2320 uint64_t s, size, d, inv, max, up, down;
2321 int64_t inc, step_val;
2322 int was_sharp = false;
2323 rtx old_niter;
2324 bool step_is_pow2;
2325
2326 /* The meaning of these assumptions is this:
2327 if !assumptions
2328 then the rest of information does not have to be valid
2329 if noloop_assumptions then the loop does not roll
2330 if infinite then this exit is never used */
2331
2332 desc->assumptions = NULL_RTX;
2333 desc->noloop_assumptions = NULL_RTX;
2334 desc->infinite = NULL_RTX;
2335 desc->simple_p = true;
2336
2337 desc->const_iter = false;
2338 desc->niter_expr = NULL_RTX;
2339
2340 cond = GET_CODE (condition);
2341 gcc_assert (COMPARISON_P (condition));
2342
2343 nonvoid_mode = GET_MODE (XEXP (condition, 0));
2344 if (nonvoid_mode == VOIDmode)
2345 nonvoid_mode = GET_MODE (XEXP (condition, 1));
2346 /* The constant comparisons should be folded. */
2347 gcc_assert (nonvoid_mode != VOIDmode);
2348
2349 /* We only handle integers or pointers. */
2350 scalar_int_mode mode;
2351 if (!is_a <scalar_int_mode> (nonvoid_mode, &mode))
2352 goto fail;
2353
2354 op0 = XEXP (condition, 0);
2355 if (!iv_analyze (insn, mode, op0, &iv0))
2356 goto fail;
2357
2358 op1 = XEXP (condition, 1);
2359 if (!iv_analyze (insn, mode, op1, &iv1))
2360 goto fail;
2361
2362 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2363 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2364 goto fail;
2365
2366 /* Check condition and normalize it. */
2367
2368 switch (cond)
2369 {
2370 case GE:
2371 case GT:
2372 case GEU:
2373 case GTU:
2374 std::swap (iv0, iv1);
2375 cond = swap_condition (cond);
2376 break;
2377 case NE:
2378 case LE:
2379 case LEU:
2380 case LT:
2381 case LTU:
2382 break;
2383 default:
2384 goto fail;
2385 }
2386
2387 /* Handle extends. This is relatively nontrivial, so we only try in some
2388 easy cases, when we can canonicalize the ivs (possibly by adding some
2389 assumptions) to shape subreg (base + i * step). This function also fills
2390 in desc->mode and desc->signed_p. */
2391
2392 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2393 goto fail;
2394
2395 comp_mode = iv0.extend_mode;
2396 mode = iv0.mode;
2397 size = GET_MODE_PRECISION (mode);
2398 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2399 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2400 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2401
2402 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
2403 goto fail;
2404
2405 /* We can take care of the case of two induction variables chasing each other
2406 if the test is NE. I have never seen a loop using it, but still it is
2407 cool. */
2408 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2409 {
2410 if (cond != NE)
2411 goto fail;
2412
2413 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2414 iv1.step = const0_rtx;
2415 }
2416
2417 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2418 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2419
2420 /* This is either infinite loop or the one that ends immediately, depending
2421 on initial values. Unswitching should remove this kind of conditions. */
2422 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2423 goto fail;
2424
2425 if (cond != NE)
2426 {
2427 if (iv0.step == const0_rtx)
2428 step_val = -INTVAL (iv1.step);
2429 else
2430 step_val = INTVAL (iv0.step);
2431
2432 /* Ignore loops of while (i-- < 10) type. */
2433 if (step_val < 0)
2434 goto fail;
2435
2436 step_is_pow2 = !(step_val & (step_val - 1));
2437 }
2438 else
2439 {
2440 /* We do not care about whether the step is power of two in this
2441 case. */
2442 step_is_pow2 = false;
2443 step_val = 0;
2444 }
2445
2446 /* Some more condition normalization. We must record some assumptions
2447 due to overflows. */
2448 switch (cond)
2449 {
2450 case LT:
2451 case LTU:
2452 /* We want to take care only of non-sharp relationals; this is easy,
2453 as in cases the overflow would make the transformation unsafe
2454 the loop does not roll. Seemingly it would make more sense to want
2455 to take care of sharp relationals instead, as NE is more similar to
2456 them, but the problem is that here the transformation would be more
2457 difficult due to possibly infinite loops. */
2458 if (iv0.step == const0_rtx)
2459 {
2460 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2461 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2462 mode_mmax);
2463 if (assumption == const_true_rtx)
2464 goto zero_iter_simplify;
2465 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2466 iv0.base, const1_rtx);
2467 }
2468 else
2469 {
2470 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2471 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2472 mode_mmin);
2473 if (assumption == const_true_rtx)
2474 goto zero_iter_simplify;
2475 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2476 iv1.base, constm1_rtx);
2477 }
2478
2479 if (assumption != const0_rtx)
2480 desc->noloop_assumptions =
2481 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2482 cond = (cond == LT) ? LE : LEU;
2483
2484 /* It will be useful to be able to tell the difference once more in
2485 LE -> NE reduction. */
2486 was_sharp = true;
2487 break;
2488 default: ;
2489 }
2490
2491 /* Take care of trivially infinite loops. */
2492 if (cond != NE)
2493 {
2494 if (iv0.step == const0_rtx)
2495 {
2496 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2497 if (rtx_equal_p (tmp, mode_mmin))
2498 {
2499 desc->infinite =
2500 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2501 /* Fill in the remaining fields somehow. */
2502 goto zero_iter_simplify;
2503 }
2504 }
2505 else
2506 {
2507 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2508 if (rtx_equal_p (tmp, mode_mmax))
2509 {
2510 desc->infinite =
2511 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2512 /* Fill in the remaining fields somehow. */
2513 goto zero_iter_simplify;
2514 }
2515 }
2516 }
2517
2518 /* If we can we want to take care of NE conditions instead of size
2519 comparisons, as they are much more friendly (most importantly
2520 this takes care of special handling of loops with step 1). We can
2521 do it if we first check that upper bound is greater or equal to
2522 lower bound, their difference is constant c modulo step and that
2523 there is not an overflow. */
2524 if (cond != NE)
2525 {
2526 if (iv0.step == const0_rtx)
2527 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2528 else
2529 step = iv0.step;
2530 step = lowpart_subreg (mode, step, comp_mode);
2531 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2532 delta = lowpart_subreg (mode, delta, comp_mode);
2533 delta = simplify_gen_binary (UMOD, mode, delta, step);
2534 may_xform = const0_rtx;
2535 may_not_xform = const_true_rtx;
2536
2537 if (CONST_INT_P (delta))
2538 {
2539 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2540 {
2541 /* A special case. We have transformed condition of type
2542 for (i = 0; i < 4; i += 4)
2543 into
2544 for (i = 0; i <= 3; i += 4)
2545 obviously if the test for overflow during that transformation
2546 passed, we cannot overflow here. Most importantly any
2547 loop with sharp end condition and step 1 falls into this
2548 category, so handling this case specially is definitely
2549 worth the troubles. */
2550 may_xform = const_true_rtx;
2551 }
2552 else if (iv0.step == const0_rtx)
2553 {
2554 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2555 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2556 bound = lowpart_subreg (mode, bound, comp_mode);
2557 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2558 may_xform = simplify_gen_relational (cond, SImode, mode,
2559 bound, tmp);
2560 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2561 SImode, mode,
2562 bound, tmp);
2563 }
2564 else
2565 {
2566 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2567 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2568 bound = lowpart_subreg (mode, bound, comp_mode);
2569 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2570 may_xform = simplify_gen_relational (cond, SImode, mode,
2571 tmp, bound);
2572 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2573 SImode, mode,
2574 tmp, bound);
2575 }
2576 }
2577
2578 if (may_xform != const0_rtx)
2579 {
2580 /* We perform the transformation always provided that it is not
2581 completely senseless. This is OK, as we would need this assumption
2582 to determine the number of iterations anyway. */
2583 if (may_xform != const_true_rtx)
2584 {
2585 /* If the step is a power of two and the final value we have
2586 computed overflows, the cycle is infinite. Otherwise it
2587 is nontrivial to compute the number of iterations. */
2588 if (step_is_pow2)
2589 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2590 desc->infinite);
2591 else
2592 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2593 desc->assumptions);
2594 }
2595
2596 /* We are going to lose some information about upper bound on
2597 number of iterations in this step, so record the information
2598 here. */
2599 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2600 if (CONST_INT_P (iv1.base))
2601 up = INTVAL (iv1.base);
2602 else
2603 up = INTVAL (mode_mmax) - inc;
2604 down = INTVAL (CONST_INT_P (iv0.base)
2605 ? iv0.base
2606 : mode_mmin);
2607 max = (up - down) / inc + 1;
2608 if (!desc->infinite
2609 && !desc->assumptions)
2610 record_niter_bound (loop, max, false, true);
2611
2612 if (iv0.step == const0_rtx)
2613 {
2614 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2615 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2616 }
2617 else
2618 {
2619 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2620 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2621 }
2622
2623 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2624 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2625 assumption = simplify_gen_relational (reverse_condition (cond),
2626 SImode, mode, tmp0, tmp1);
2627 if (assumption == const_true_rtx)
2628 goto zero_iter_simplify;
2629 else if (assumption != const0_rtx)
2630 desc->noloop_assumptions =
2631 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2632 cond = NE;
2633 }
2634 }
2635
2636 /* Count the number of iterations. */
2637 if (cond == NE)
2638 {
2639 /* Everything we do here is just arithmetics modulo size of mode. This
2640 makes us able to do more involved computations of number of iterations
2641 than in other cases. First transform the condition into shape
2642 s * i <> c, with s positive. */
2643 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2644 iv0.base = const0_rtx;
2645 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2646 iv1.step = const0_rtx;
2647 if (INTVAL (iv0.step) < 0)
2648 {
2649 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, comp_mode);
2650 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, comp_mode);
2651 }
2652 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2653
2654 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2655 is infinite. Otherwise, the number of iterations is
2656 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2657 s = INTVAL (iv0.step); d = 1;
2658 while (s % 2 != 1)
2659 {
2660 s /= 2;
2661 d *= 2;
2662 size--;
2663 }
2664 bound = GEN_INT (((uint64_t) 1 << (size - 1 ) << 1) - 1);
2665
2666 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2667 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode));
2668 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2669 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2670
2671 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode));
2672 inv = inverse (s, size);
2673 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2674 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2675 }
2676 else
2677 {
2678 if (iv1.step == const0_rtx)
2679 /* Condition in shape a + s * i <= b
2680 We must know that b + s does not overflow and a <= b + s and then we
2681 can compute number of iterations as (b + s - a) / s. (It might
2682 seem that we in fact could be more clever about testing the b + s
2683 overflow condition using some information about b - a mod s,
2684 but it was already taken into account during LE -> NE transform). */
2685 {
2686 step = iv0.step;
2687 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2688 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2689
2690 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2691 lowpart_subreg (mode, step,
2692 comp_mode));
2693 if (step_is_pow2)
2694 {
2695 rtx t0, t1;
2696
2697 /* If s is power of 2, we know that the loop is infinite if
2698 a % s <= b % s and b + s overflows. */
2699 assumption = simplify_gen_relational (reverse_condition (cond),
2700 SImode, mode,
2701 tmp1, bound);
2702
2703 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2704 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2705 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2706 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2707 desc->infinite =
2708 alloc_EXPR_LIST (0, assumption, desc->infinite);
2709 }
2710 else
2711 {
2712 assumption = simplify_gen_relational (cond, SImode, mode,
2713 tmp1, bound);
2714 desc->assumptions =
2715 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2716 }
2717
2718 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2719 tmp = lowpart_subreg (mode, tmp, comp_mode);
2720 assumption = simplify_gen_relational (reverse_condition (cond),
2721 SImode, mode, tmp0, tmp);
2722
2723 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2724 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2725 }
2726 else
2727 {
2728 /* Condition in shape a <= b - s * i
2729 We must know that a - s does not overflow and a - s <= b and then
2730 we can again compute number of iterations as (b - (a - s)) / s. */
2731 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2732 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2733 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2734
2735 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2736 lowpart_subreg (mode, step, comp_mode));
2737 if (step_is_pow2)
2738 {
2739 rtx t0, t1;
2740
2741 /* If s is power of 2, we know that the loop is infinite if
2742 a % s <= b % s and a - s overflows. */
2743 assumption = simplify_gen_relational (reverse_condition (cond),
2744 SImode, mode,
2745 bound, tmp0);
2746
2747 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2748 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2749 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2750 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2751 desc->infinite =
2752 alloc_EXPR_LIST (0, assumption, desc->infinite);
2753 }
2754 else
2755 {
2756 assumption = simplify_gen_relational (cond, SImode, mode,
2757 bound, tmp0);
2758 desc->assumptions =
2759 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2760 }
2761
2762 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2763 tmp = lowpart_subreg (mode, tmp, comp_mode);
2764 assumption = simplify_gen_relational (reverse_condition (cond),
2765 SImode, mode,
2766 tmp, tmp1);
2767 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2768 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2769 }
2770 if (assumption == const_true_rtx)
2771 goto zero_iter_simplify;
2772 else if (assumption != const0_rtx)
2773 desc->noloop_assumptions =
2774 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2775 delta = simplify_gen_binary (UDIV, mode, delta, step);
2776 desc->niter_expr = delta;
2777 }
2778
2779 old_niter = desc->niter_expr;
2780
2781 simplify_using_initial_values (loop, AND, &desc->assumptions);
2782 if (desc->assumptions
2783 && XEXP (desc->assumptions, 0) == const0_rtx)
2784 goto fail;
2785 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2786 simplify_using_initial_values (loop, IOR, &desc->infinite);
2787 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2788
2789 /* Rerun the simplification. Consider code (created by copying loop headers)
2790
2791 i = 0;
2792
2793 if (0 < n)
2794 {
2795 do
2796 {
2797 i++;
2798 } while (i < n);
2799 }
2800
2801 The first pass determines that i = 0, the second pass uses it to eliminate
2802 noloop assumption. */
2803
2804 simplify_using_initial_values (loop, AND, &desc->assumptions);
2805 if (desc->assumptions
2806 && XEXP (desc->assumptions, 0) == const0_rtx)
2807 goto fail;
2808 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2809 simplify_using_initial_values (loop, IOR, &desc->infinite);
2810 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2811
2812 if (desc->noloop_assumptions
2813 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2814 goto zero_iter;
2815
2816 if (CONST_INT_P (desc->niter_expr))
2817 {
2818 uint64_t val = INTVAL (desc->niter_expr);
2819
2820 desc->const_iter = true;
2821 desc->niter = val & GET_MODE_MASK (desc->mode);
2822 if (!desc->infinite
2823 && !desc->assumptions)
2824 record_niter_bound (loop, desc->niter, false, true);
2825 }
2826 else
2827 {
2828 max = determine_max_iter (loop, desc, old_niter);
2829 if (!max)
2830 goto zero_iter_simplify;
2831 if (!desc->infinite
2832 && !desc->assumptions)
2833 record_niter_bound (loop, max, false, true);
2834
2835 /* simplify_using_initial_values does a copy propagation on the registers
2836 in the expression for the number of iterations. This prolongs life
2837 ranges of registers and increases register pressure, and usually
2838 brings no gain (and if it happens to do, the cse pass will take care
2839 of it anyway). So prevent this behavior, unless it enabled us to
2840 derive that the number of iterations is a constant. */
2841 desc->niter_expr = old_niter;
2842 }
2843
2844 return;
2845
2846 zero_iter_simplify:
2847 /* Simplify the assumptions. */
2848 simplify_using_initial_values (loop, AND, &desc->assumptions);
2849 if (desc->assumptions
2850 && XEXP (desc->assumptions, 0) == const0_rtx)
2851 goto fail;
2852 simplify_using_initial_values (loop, IOR, &desc->infinite);
2853
2854 /* Fallthru. */
2855 zero_iter:
2856 desc->const_iter = true;
2857 desc->niter = 0;
2858 record_niter_bound (loop, 0, true, true);
2859 desc->noloop_assumptions = NULL_RTX;
2860 desc->niter_expr = const0_rtx;
2861 return;
2862
2863 fail:
2864 desc->simple_p = false;
2865 return;
2866 }
2867
2868 /* Checks whether E is a simple exit from LOOP and stores its description
2869 into DESC. */
2870
2871 static void
2872 check_simple_exit (class loop *loop, edge e, class niter_desc *desc)
2873 {
2874 basic_block exit_bb;
2875 rtx condition;
2876 rtx_insn *at;
2877 edge ein;
2878
2879 exit_bb = e->src;
2880 desc->simple_p = false;
2881
2882 /* It must belong directly to the loop. */
2883 if (exit_bb->loop_father != loop)
2884 return;
2885
2886 /* It must be tested (at least) once during any iteration. */
2887 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2888 return;
2889
2890 /* It must end in a simple conditional jump. */
2891 if (!any_condjump_p (BB_END (exit_bb)))
2892 return;
2893
2894 ein = EDGE_SUCC (exit_bb, 0);
2895 if (ein == e)
2896 ein = EDGE_SUCC (exit_bb, 1);
2897
2898 desc->out_edge = e;
2899 desc->in_edge = ein;
2900
2901 /* Test whether the condition is suitable. */
2902 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2903 return;
2904
2905 if (ein->flags & EDGE_FALLTHRU)
2906 {
2907 condition = reversed_condition (condition);
2908 if (!condition)
2909 return;
2910 }
2911
2912 /* Check that we are able to determine number of iterations and fill
2913 in information about it. */
2914 iv_number_of_iterations (loop, at, condition, desc);
2915 }
2916
2917 /* Finds a simple exit of LOOP and stores its description into DESC. */
2918
2919 void
2920 find_simple_exit (class loop *loop, class niter_desc *desc)
2921 {
2922 unsigned i;
2923 basic_block *body;
2924 edge e;
2925 class niter_desc act;
2926 bool any = false;
2927 edge_iterator ei;
2928
2929 desc->simple_p = false;
2930 body = get_loop_body (loop);
2931
2932 for (i = 0; i < loop->num_nodes; i++)
2933 {
2934 FOR_EACH_EDGE (e, ei, body[i]->succs)
2935 {
2936 if (flow_bb_inside_loop_p (loop, e->dest))
2937 continue;
2938
2939 check_simple_exit (loop, e, &act);
2940 if (!act.simple_p)
2941 continue;
2942
2943 if (!any)
2944 any = true;
2945 else
2946 {
2947 /* Prefer constant iterations; the less the better. */
2948 if (!act.const_iter
2949 || (desc->const_iter && act.niter >= desc->niter))
2950 continue;
2951
2952 /* Also if the actual exit may be infinite, while the old one
2953 not, prefer the old one. */
2954 if (act.infinite && !desc->infinite)
2955 continue;
2956 }
2957
2958 *desc = act;
2959 }
2960 }
2961
2962 if (dump_file)
2963 {
2964 if (desc->simple_p)
2965 {
2966 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2967 fprintf (dump_file, " simple exit %d -> %d\n",
2968 desc->out_edge->src->index,
2969 desc->out_edge->dest->index);
2970 if (desc->assumptions)
2971 {
2972 fprintf (dump_file, " assumptions: ");
2973 print_rtl (dump_file, desc->assumptions);
2974 fprintf (dump_file, "\n");
2975 }
2976 if (desc->noloop_assumptions)
2977 {
2978 fprintf (dump_file, " does not roll if: ");
2979 print_rtl (dump_file, desc->noloop_assumptions);
2980 fprintf (dump_file, "\n");
2981 }
2982 if (desc->infinite)
2983 {
2984 fprintf (dump_file, " infinite if: ");
2985 print_rtl (dump_file, desc->infinite);
2986 fprintf (dump_file, "\n");
2987 }
2988
2989 fprintf (dump_file, " number of iterations: ");
2990 print_rtl (dump_file, desc->niter_expr);
2991 fprintf (dump_file, "\n");
2992
2993 fprintf (dump_file, " upper bound: %li\n",
2994 (long)get_max_loop_iterations_int (loop));
2995 fprintf (dump_file, " likely upper bound: %li\n",
2996 (long)get_likely_max_loop_iterations_int (loop));
2997 fprintf (dump_file, " realistic bound: %li\n",
2998 (long)get_estimated_loop_iterations_int (loop));
2999 }
3000 else
3001 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
3002 }
3003
3004 /* Fix up the finiteness if possible. We can only do it for single exit,
3005 since the loop is finite, but it's possible that we predicate one loop
3006 exit to be finite which can not be determined as finite in middle-end as
3007 well. It results in incorrect predicate information on the exit condition
3008 expression. For example, if says [(int) _1 + -8, + , -8] != 0 finite,
3009 it means _1 can exactly divide -8. */
3010 if (desc->infinite && single_exit (loop) && finite_loop_p (loop))
3011 {
3012 desc->infinite = NULL_RTX;
3013 if (dump_file)
3014 fprintf (dump_file, " infinite updated to finite.\n");
3015 }
3016
3017 free (body);
3018 }
3019
3020 /* Creates a simple loop description of LOOP if it was not computed
3021 already. */
3022
3023 class niter_desc *
3024 get_simple_loop_desc (class loop *loop)
3025 {
3026 class niter_desc *desc = simple_loop_desc (loop);
3027
3028 if (desc)
3029 return desc;
3030
3031 /* At least desc->infinite is not always initialized by
3032 find_simple_loop_exit. */
3033 desc = ggc_cleared_alloc<niter_desc> ();
3034 iv_analysis_loop_init (loop);
3035 find_simple_exit (loop, desc);
3036 loop->simple_loop_desc = desc;
3037 return desc;
3038 }
3039
3040 /* Releases simple loop description for LOOP. */
3041
3042 void
3043 free_simple_loop_desc (class loop *loop)
3044 {
3045 class niter_desc *desc = simple_loop_desc (loop);
3046
3047 if (!desc)
3048 return;
3049
3050 ggc_free (desc);
3051 loop->simple_loop_desc = NULL;
3052 }