]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reload1.c
Update copyright years.
[thirdparty/gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
35
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
45 #include "function-abi.h"
46
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
53
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
57
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
61
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
69
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
73
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
80 \f
81 struct target_reload default_target_reload;
82 #if SWITCHABLE_TARGET
83 struct target_reload *this_target_reload = &default_target_reload;
84 #endif
85
86 #define spill_indirect_levels \
87 (this_target_reload->x_spill_indirect_levels)
88
89 /* During reload_as_needed, element N contains a REG rtx for the hard reg
90 into which reg N has been reloaded (perhaps for a previous insn). */
91 static rtx *reg_last_reload_reg;
92
93 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
94 for an output reload that stores into reg N. */
95 static regset_head reg_has_output_reload;
96
97 /* Indicates which hard regs are reload-registers for an output reload
98 in the current insn. */
99 static HARD_REG_SET reg_is_output_reload;
100
101 /* Widest mode in which each pseudo reg is referred to (via subreg). */
102 static machine_mode *reg_max_ref_mode;
103
104 /* Vector to remember old contents of reg_renumber before spilling. */
105 static short *reg_old_renumber;
106
107 /* During reload_as_needed, element N contains the last pseudo regno reloaded
108 into hard register N. If that pseudo reg occupied more than one register,
109 reg_reloaded_contents points to that pseudo for each spill register in
110 use; all of these must remain set for an inheritance to occur. */
111 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
112
113 /* During reload_as_needed, element N contains the insn for which
114 hard register N was last used. Its contents are significant only
115 when reg_reloaded_valid is set for this register. */
116 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
117
118 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
119 static HARD_REG_SET reg_reloaded_valid;
120 /* Indicate if the register was dead at the end of the reload.
121 This is only valid if reg_reloaded_contents is set and valid. */
122 static HARD_REG_SET reg_reloaded_dead;
123
124 /* Number of spill-regs so far; number of valid elements of spill_regs. */
125 static int n_spills;
126
127 /* In parallel with spill_regs, contains REG rtx's for those regs.
128 Holds the last rtx used for any given reg, or 0 if it has never
129 been used for spilling yet. This rtx is reused, provided it has
130 the proper mode. */
131 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
132
133 /* In parallel with spill_regs, contains nonzero for a spill reg
134 that was stored after the last time it was used.
135 The precise value is the insn generated to do the store. */
136 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
137
138 /* This is the register that was stored with spill_reg_store. This is a
139 copy of reload_out / reload_out_reg when the value was stored; if
140 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
141 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
142
143 /* This table is the inverse mapping of spill_regs:
144 indexed by hard reg number,
145 it contains the position of that reg in spill_regs,
146 or -1 for something that is not in spill_regs.
147
148 ?!? This is no longer accurate. */
149 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
150
151 /* This reg set indicates registers that can't be used as spill registers for
152 the currently processed insn. These are the hard registers which are live
153 during the insn, but not allocated to pseudos, as well as fixed
154 registers. */
155 static HARD_REG_SET bad_spill_regs;
156
157 /* These are the hard registers that can't be used as spill register for any
158 insn. This includes registers used for user variables and registers that
159 we can't eliminate. A register that appears in this set also can't be used
160 to retry register allocation. */
161 static HARD_REG_SET bad_spill_regs_global;
162
163 /* Describes order of use of registers for reloading
164 of spilled pseudo-registers. `n_spills' is the number of
165 elements that are actually valid; new ones are added at the end.
166
167 Both spill_regs and spill_reg_order are used on two occasions:
168 once during find_reload_regs, where they keep track of the spill registers
169 for a single insn, but also during reload_as_needed where they show all
170 the registers ever used by reload. For the latter case, the information
171 is calculated during finish_spills. */
172 static short spill_regs[FIRST_PSEUDO_REGISTER];
173
174 /* This vector of reg sets indicates, for each pseudo, which hard registers
175 may not be used for retrying global allocation because the register was
176 formerly spilled from one of them. If we allowed reallocating a pseudo to
177 a register that it was already allocated to, reload might not
178 terminate. */
179 static HARD_REG_SET *pseudo_previous_regs;
180
181 /* This vector of reg sets indicates, for each pseudo, which hard
182 registers may not be used for retrying global allocation because they
183 are used as spill registers during one of the insns in which the
184 pseudo is live. */
185 static HARD_REG_SET *pseudo_forbidden_regs;
186
187 /* All hard regs that have been used as spill registers for any insn are
188 marked in this set. */
189 static HARD_REG_SET used_spill_regs;
190
191 /* Index of last register assigned as a spill register. We allocate in
192 a round-robin fashion. */
193 static int last_spill_reg;
194
195 /* Record the stack slot for each spilled hard register. */
196 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
197
198 /* Width allocated so far for that stack slot. */
199 static poly_uint64_pod spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
200
201 /* Record which pseudos needed to be spilled. */
202 static regset_head spilled_pseudos;
203
204 /* Record which pseudos changed their allocation in finish_spills. */
205 static regset_head changed_allocation_pseudos;
206
207 /* Used for communication between order_regs_for_reload and count_pseudo.
208 Used to avoid counting one pseudo twice. */
209 static regset_head pseudos_counted;
210
211 /* First uid used by insns created by reload in this function.
212 Used in find_equiv_reg. */
213 int reload_first_uid;
214
215 /* Flag set by local-alloc or global-alloc if anything is live in
216 a call-clobbered reg across calls. */
217 int caller_save_needed;
218
219 /* Set to 1 while reload_as_needed is operating.
220 Required by some machines to handle any generated moves differently. */
221 int reload_in_progress = 0;
222
223 /* This obstack is used for allocation of rtl during register elimination.
224 The allocated storage can be freed once find_reloads has processed the
225 insn. */
226 static struct obstack reload_obstack;
227
228 /* Points to the beginning of the reload_obstack. All insn_chain structures
229 are allocated first. */
230 static char *reload_startobj;
231
232 /* The point after all insn_chain structures. Used to quickly deallocate
233 memory allocated in copy_reloads during calculate_needs_all_insns. */
234 static char *reload_firstobj;
235
236 /* This points before all local rtl generated by register elimination.
237 Used to quickly free all memory after processing one insn. */
238 static char *reload_insn_firstobj;
239
240 /* List of insn_chain instructions, one for every insn that reload needs to
241 examine. */
242 class insn_chain *reload_insn_chain;
243
244 /* TRUE if we potentially left dead insns in the insn stream and want to
245 run DCE immediately after reload, FALSE otherwise. */
246 static bool need_dce;
247
248 /* List of all insns needing reloads. */
249 static class insn_chain *insns_need_reload;
250 \f
251 /* This structure is used to record information about register eliminations.
252 Each array entry describes one possible way of eliminating a register
253 in favor of another. If there is more than one way of eliminating a
254 particular register, the most preferred should be specified first. */
255
256 struct elim_table
257 {
258 int from; /* Register number to be eliminated. */
259 int to; /* Register number used as replacement. */
260 poly_int64_pod initial_offset; /* Initial difference between values. */
261 int can_eliminate; /* Nonzero if this elimination can be done. */
262 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
263 target hook in previous scan over insns
264 made by reload. */
265 poly_int64_pod offset; /* Current offset between the two regs. */
266 poly_int64_pod previous_offset; /* Offset at end of previous insn. */
267 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
268 rtx from_rtx; /* REG rtx for the register to be eliminated.
269 We cannot simply compare the number since
270 we might then spuriously replace a hard
271 register corresponding to a pseudo
272 assigned to the reg to be eliminated. */
273 rtx to_rtx; /* REG rtx for the replacement. */
274 };
275
276 static struct elim_table *reg_eliminate = 0;
277
278 /* This is an intermediate structure to initialize the table. It has
279 exactly the members provided by ELIMINABLE_REGS. */
280 static const struct elim_table_1
281 {
282 const int from;
283 const int to;
284 } reg_eliminate_1[] =
285
286 ELIMINABLE_REGS;
287
288 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
289
290 /* Record the number of pending eliminations that have an offset not equal
291 to their initial offset. If nonzero, we use a new copy of each
292 replacement result in any insns encountered. */
293 int num_not_at_initial_offset;
294
295 /* Count the number of registers that we may be able to eliminate. */
296 static int num_eliminable;
297 /* And the number of registers that are equivalent to a constant that
298 can be eliminated to frame_pointer / arg_pointer + constant. */
299 static int num_eliminable_invariants;
300
301 /* For each label, we record the offset of each elimination. If we reach
302 a label by more than one path and an offset differs, we cannot do the
303 elimination. This information is indexed by the difference of the
304 number of the label and the first label number. We can't offset the
305 pointer itself as this can cause problems on machines with segmented
306 memory. The first table is an array of flags that records whether we
307 have yet encountered a label and the second table is an array of arrays,
308 one entry in the latter array for each elimination. */
309
310 static int first_label_num;
311 static char *offsets_known_at;
312 static poly_int64_pod (*offsets_at)[NUM_ELIMINABLE_REGS];
313
314 vec<reg_equivs_t, va_gc> *reg_equivs;
315
316 /* Stack of addresses where an rtx has been changed. We can undo the
317 changes by popping items off the stack and restoring the original
318 value at each location.
319
320 We use this simplistic undo capability rather than copy_rtx as copy_rtx
321 will not make a deep copy of a normally sharable rtx, such as
322 (const (plus (symbol_ref) (const_int))). If such an expression appears
323 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
324 rtx expression would be changed. See PR 42431. */
325
326 typedef rtx *rtx_p;
327 static vec<rtx_p> substitute_stack;
328
329 /* Number of labels in the current function. */
330
331 static int num_labels;
332 \f
333 static void replace_pseudos_in (rtx *, machine_mode, rtx);
334 static void maybe_fix_stack_asms (void);
335 static void copy_reloads (class insn_chain *);
336 static void calculate_needs_all_insns (int);
337 static int find_reg (class insn_chain *, int);
338 static void find_reload_regs (class insn_chain *);
339 static void select_reload_regs (void);
340 static void delete_caller_save_insns (void);
341
342 static void spill_failure (rtx_insn *, enum reg_class);
343 static void count_spilled_pseudo (int, int, int);
344 static void delete_dead_insn (rtx_insn *);
345 static void alter_reg (int, int, bool);
346 static void set_label_offsets (rtx, rtx_insn *, int);
347 static void check_eliminable_occurrences (rtx);
348 static void elimination_effects (rtx, machine_mode);
349 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
350 static int eliminate_regs_in_insn (rtx_insn *, int);
351 static void update_eliminable_offsets (void);
352 static void mark_not_eliminable (rtx, const_rtx, void *);
353 static void set_initial_elim_offsets (void);
354 static bool verify_initial_elim_offsets (void);
355 static void set_initial_label_offsets (void);
356 static void set_offsets_for_label (rtx_insn *);
357 static void init_eliminable_invariants (rtx_insn *, bool);
358 static void init_elim_table (void);
359 static void free_reg_equiv (void);
360 static void update_eliminables (HARD_REG_SET *);
361 static bool update_eliminables_and_spill (void);
362 static void elimination_costs_in_insn (rtx_insn *);
363 static void spill_hard_reg (unsigned int, int);
364 static int finish_spills (int);
365 static void scan_paradoxical_subregs (rtx);
366 static void count_pseudo (int);
367 static void order_regs_for_reload (class insn_chain *);
368 static void reload_as_needed (int);
369 static void forget_old_reloads_1 (rtx, const_rtx, void *);
370 static void forget_marked_reloads (regset);
371 static int reload_reg_class_lower (const void *, const void *);
372 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
373 machine_mode);
374 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
375 machine_mode);
376 static int reload_reg_free_p (unsigned int, int, enum reload_type);
377 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
378 rtx, rtx, int, int);
379 static int free_for_value_p (int, machine_mode, int, enum reload_type,
380 rtx, rtx, int, int);
381 static int allocate_reload_reg (class insn_chain *, int, int);
382 static int conflicts_with_override (rtx);
383 static void failed_reload (rtx_insn *, int);
384 static int set_reload_reg (int, int);
385 static void choose_reload_regs_init (class insn_chain *, rtx *);
386 static void choose_reload_regs (class insn_chain *);
387 static void emit_input_reload_insns (class insn_chain *, struct reload *,
388 rtx, int);
389 static void emit_output_reload_insns (class insn_chain *, struct reload *,
390 int);
391 static void do_input_reload (class insn_chain *, struct reload *, int);
392 static void do_output_reload (class insn_chain *, struct reload *, int);
393 static void emit_reload_insns (class insn_chain *);
394 static void delete_output_reload (rtx_insn *, int, int, rtx);
395 static void delete_address_reloads (rtx_insn *, rtx_insn *);
396 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
397 static void inc_for_reload (rtx, rtx, rtx, poly_int64);
398 static void add_auto_inc_notes (rtx_insn *, rtx);
399 static void substitute (rtx *, const_rtx, rtx);
400 static bool gen_reload_chain_without_interm_reg_p (int, int);
401 static int reloads_conflict (int, int);
402 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
403 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
404 \f
405 /* Initialize the reload pass. This is called at the beginning of compilation
406 and may be called again if the target is reinitialized. */
407
408 void
409 init_reload (void)
410 {
411 int i;
412
413 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
414 Set spill_indirect_levels to the number of levels such addressing is
415 permitted, zero if it is not permitted at all. */
416
417 rtx tem
418 = gen_rtx_MEM (Pmode,
419 gen_rtx_PLUS (Pmode,
420 gen_rtx_REG (Pmode,
421 LAST_VIRTUAL_REGISTER + 1),
422 gen_int_mode (4, Pmode)));
423 spill_indirect_levels = 0;
424
425 while (memory_address_p (QImode, tem))
426 {
427 spill_indirect_levels++;
428 tem = gen_rtx_MEM (Pmode, tem);
429 }
430
431 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
432
433 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
434 indirect_symref_ok = memory_address_p (QImode, tem);
435
436 /* See if reg+reg is a valid (and offsettable) address. */
437
438 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
439 {
440 tem = gen_rtx_PLUS (Pmode,
441 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
442 gen_rtx_REG (Pmode, i));
443
444 /* This way, we make sure that reg+reg is an offsettable address. */
445 tem = plus_constant (Pmode, tem, 4);
446
447 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
448 if (!double_reg_address_ok[mode]
449 && memory_address_p ((enum machine_mode)mode, tem))
450 double_reg_address_ok[mode] = 1;
451 }
452
453 /* Initialize obstack for our rtl allocation. */
454 if (reload_startobj == NULL)
455 {
456 gcc_obstack_init (&reload_obstack);
457 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
458 }
459
460 INIT_REG_SET (&spilled_pseudos);
461 INIT_REG_SET (&changed_allocation_pseudos);
462 INIT_REG_SET (&pseudos_counted);
463 }
464
465 /* List of insn chains that are currently unused. */
466 static class insn_chain *unused_insn_chains = 0;
467
468 /* Allocate an empty insn_chain structure. */
469 class insn_chain *
470 new_insn_chain (void)
471 {
472 class insn_chain *c;
473
474 if (unused_insn_chains == 0)
475 {
476 c = XOBNEW (&reload_obstack, class insn_chain);
477 INIT_REG_SET (&c->live_throughout);
478 INIT_REG_SET (&c->dead_or_set);
479 }
480 else
481 {
482 c = unused_insn_chains;
483 unused_insn_chains = c->next;
484 }
485 c->is_caller_save_insn = 0;
486 c->need_operand_change = 0;
487 c->need_reload = 0;
488 c->need_elim = 0;
489 return c;
490 }
491
492 /* Small utility function to set all regs in hard reg set TO which are
493 allocated to pseudos in regset FROM. */
494
495 void
496 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
497 {
498 unsigned int regno;
499 reg_set_iterator rsi;
500
501 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
502 {
503 int r = reg_renumber[regno];
504
505 if (r < 0)
506 {
507 /* reload_combine uses the information from DF_LIVE_IN,
508 which might still contain registers that have not
509 actually been allocated since they have an
510 equivalence. */
511 gcc_assert (ira_conflicts_p || reload_completed);
512 }
513 else
514 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
515 }
516 }
517
518 /* Replace all pseudos found in LOC with their corresponding
519 equivalences. */
520
521 static void
522 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
523 {
524 rtx x = *loc;
525 enum rtx_code code;
526 const char *fmt;
527 int i, j;
528
529 if (! x)
530 return;
531
532 code = GET_CODE (x);
533 if (code == REG)
534 {
535 unsigned int regno = REGNO (x);
536
537 if (regno < FIRST_PSEUDO_REGISTER)
538 return;
539
540 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
541 if (x != *loc)
542 {
543 *loc = x;
544 replace_pseudos_in (loc, mem_mode, usage);
545 return;
546 }
547
548 if (reg_equiv_constant (regno))
549 *loc = reg_equiv_constant (regno);
550 else if (reg_equiv_invariant (regno))
551 *loc = reg_equiv_invariant (regno);
552 else if (reg_equiv_mem (regno))
553 *loc = reg_equiv_mem (regno);
554 else if (reg_equiv_address (regno))
555 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
556 else
557 {
558 gcc_assert (!REG_P (regno_reg_rtx[regno])
559 || REGNO (regno_reg_rtx[regno]) != regno);
560 *loc = regno_reg_rtx[regno];
561 }
562
563 return;
564 }
565 else if (code == MEM)
566 {
567 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
568 return;
569 }
570
571 /* Process each of our operands recursively. */
572 fmt = GET_RTX_FORMAT (code);
573 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
574 if (*fmt == 'e')
575 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
576 else if (*fmt == 'E')
577 for (j = 0; j < XVECLEN (x, i); j++)
578 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
579 }
580
581 /* Determine if the current function has an exception receiver block
582 that reaches the exit block via non-exceptional edges */
583
584 static bool
585 has_nonexceptional_receiver (void)
586 {
587 edge e;
588 edge_iterator ei;
589 basic_block *tos, *worklist, bb;
590
591 /* If we're not optimizing, then just err on the safe side. */
592 if (!optimize)
593 return true;
594
595 /* First determine which blocks can reach exit via normal paths. */
596 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
597
598 FOR_EACH_BB_FN (bb, cfun)
599 bb->flags &= ~BB_REACHABLE;
600
601 /* Place the exit block on our worklist. */
602 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
603 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
604
605 /* Iterate: find everything reachable from what we've already seen. */
606 while (tos != worklist)
607 {
608 bb = *--tos;
609
610 FOR_EACH_EDGE (e, ei, bb->preds)
611 if (!(e->flags & EDGE_ABNORMAL))
612 {
613 basic_block src = e->src;
614
615 if (!(src->flags & BB_REACHABLE))
616 {
617 src->flags |= BB_REACHABLE;
618 *tos++ = src;
619 }
620 }
621 }
622 free (worklist);
623
624 /* Now see if there's a reachable block with an exceptional incoming
625 edge. */
626 FOR_EACH_BB_FN (bb, cfun)
627 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
628 return true;
629
630 /* No exceptional block reached exit unexceptionally. */
631 return false;
632 }
633
634 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
635 zero elements) to MAX_REG_NUM elements.
636
637 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
638 void
639 grow_reg_equivs (void)
640 {
641 int old_size = vec_safe_length (reg_equivs);
642 int max_regno = max_reg_num ();
643 int i;
644 reg_equivs_t ze;
645
646 memset (&ze, 0, sizeof (reg_equivs_t));
647 vec_safe_reserve (reg_equivs, max_regno);
648 for (i = old_size; i < max_regno; i++)
649 reg_equivs->quick_insert (i, ze);
650 }
651
652 \f
653 /* Global variables used by reload and its subroutines. */
654
655 /* The current basic block while in calculate_elim_costs_all_insns. */
656 static basic_block elim_bb;
657
658 /* Set during calculate_needs if an insn needs register elimination. */
659 static int something_needs_elimination;
660 /* Set during calculate_needs if an insn needs an operand changed. */
661 static int something_needs_operands_changed;
662 /* Set by alter_regs if we spilled a register to the stack. */
663 static bool something_was_spilled;
664
665 /* Nonzero means we couldn't get enough spill regs. */
666 static int failure;
667
668 /* Temporary array of pseudo-register number. */
669 static int *temp_pseudo_reg_arr;
670
671 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
672 If that insn didn't set the register (i.e., it copied the register to
673 memory), just delete that insn instead of the equivalencing insn plus
674 anything now dead. If we call delete_dead_insn on that insn, we may
675 delete the insn that actually sets the register if the register dies
676 there and that is incorrect. */
677 static void
678 remove_init_insns ()
679 {
680 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
681 {
682 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
683 {
684 rtx list;
685 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
686 {
687 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
688
689 /* If we already deleted the insn or if it may trap, we can't
690 delete it. The latter case shouldn't happen, but can
691 if an insn has a variable address, gets a REG_EH_REGION
692 note added to it, and then gets converted into a load
693 from a constant address. */
694 if (NOTE_P (equiv_insn)
695 || can_throw_internal (equiv_insn))
696 ;
697 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
698 delete_dead_insn (equiv_insn);
699 else
700 SET_INSN_DELETED (equiv_insn);
701 }
702 }
703 }
704 }
705
706 /* Return true if remove_init_insns will delete INSN. */
707 static bool
708 will_delete_init_insn_p (rtx_insn *insn)
709 {
710 rtx set = single_set (insn);
711 if (!set || !REG_P (SET_DEST (set)))
712 return false;
713 unsigned regno = REGNO (SET_DEST (set));
714
715 if (can_throw_internal (insn))
716 return false;
717
718 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
719 return false;
720
721 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
722 {
723 rtx equiv_insn = XEXP (list, 0);
724 if (equiv_insn == insn)
725 return true;
726 }
727 return false;
728 }
729
730 /* Main entry point for the reload pass.
731
732 FIRST is the first insn of the function being compiled.
733
734 GLOBAL nonzero means we were called from global_alloc
735 and should attempt to reallocate any pseudoregs that we
736 displace from hard regs we will use for reloads.
737 If GLOBAL is zero, we do not have enough information to do that,
738 so any pseudo reg that is spilled must go to the stack.
739
740 Return value is TRUE if reload likely left dead insns in the
741 stream and a DCE pass should be run to elimiante them. Else the
742 return value is FALSE. */
743
744 bool
745 reload (rtx_insn *first, int global)
746 {
747 int i, n;
748 rtx_insn *insn;
749 struct elim_table *ep;
750 basic_block bb;
751 bool inserted;
752
753 /* Make sure even insns with volatile mem refs are recognizable. */
754 init_recog ();
755
756 failure = 0;
757
758 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
759
760 /* Make sure that the last insn in the chain
761 is not something that needs reloading. */
762 emit_note (NOTE_INSN_DELETED);
763
764 /* Enable find_equiv_reg to distinguish insns made by reload. */
765 reload_first_uid = get_max_uid ();
766
767 /* Initialize the secondary memory table. */
768 clear_secondary_mem ();
769
770 /* We don't have a stack slot for any spill reg yet. */
771 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
772 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
773
774 /* Initialize the save area information for caller-save, in case some
775 are needed. */
776 init_save_areas ();
777
778 /* Compute which hard registers are now in use
779 as homes for pseudo registers.
780 This is done here rather than (eg) in global_alloc
781 because this point is reached even if not optimizing. */
782 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
783 mark_home_live (i);
784
785 /* A function that has a nonlocal label that can reach the exit
786 block via non-exceptional paths must save all call-saved
787 registers. */
788 if (cfun->has_nonlocal_label
789 && has_nonexceptional_receiver ())
790 crtl->saves_all_registers = 1;
791
792 if (crtl->saves_all_registers)
793 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
794 if (! crtl->abi->clobbers_full_reg_p (i)
795 && ! fixed_regs[i]
796 && ! LOCAL_REGNO (i))
797 df_set_regs_ever_live (i, true);
798
799 /* Find all the pseudo registers that didn't get hard regs
800 but do have known equivalent constants or memory slots.
801 These include parameters (known equivalent to parameter slots)
802 and cse'd or loop-moved constant memory addresses.
803
804 Record constant equivalents in reg_equiv_constant
805 so they will be substituted by find_reloads.
806 Record memory equivalents in reg_mem_equiv so they can
807 be substituted eventually by altering the REG-rtx's. */
808
809 grow_reg_equivs ();
810 reg_old_renumber = XCNEWVEC (short, max_regno);
811 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
812 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
813 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
814
815 CLEAR_HARD_REG_SET (bad_spill_regs_global);
816
817 init_eliminable_invariants (first, true);
818 init_elim_table ();
819
820 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
821 stack slots to the pseudos that lack hard regs or equivalents.
822 Do not touch virtual registers. */
823
824 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
825 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
826 temp_pseudo_reg_arr[n++] = i;
827
828 if (ira_conflicts_p)
829 /* Ask IRA to order pseudo-registers for better stack slot
830 sharing. */
831 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode);
832
833 for (i = 0; i < n; i++)
834 alter_reg (temp_pseudo_reg_arr[i], -1, false);
835
836 /* If we have some registers we think can be eliminated, scan all insns to
837 see if there is an insn that sets one of these registers to something
838 other than itself plus a constant. If so, the register cannot be
839 eliminated. Doing this scan here eliminates an extra pass through the
840 main reload loop in the most common case where register elimination
841 cannot be done. */
842 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
843 if (INSN_P (insn))
844 note_pattern_stores (PATTERN (insn), mark_not_eliminable, NULL);
845
846 maybe_fix_stack_asms ();
847
848 insns_need_reload = 0;
849 something_needs_elimination = 0;
850
851 /* Initialize to -1, which means take the first spill register. */
852 last_spill_reg = -1;
853
854 /* Spill any hard regs that we know we can't eliminate. */
855 CLEAR_HARD_REG_SET (used_spill_regs);
856 /* There can be multiple ways to eliminate a register;
857 they should be listed adjacently.
858 Elimination for any register fails only if all possible ways fail. */
859 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
860 {
861 int from = ep->from;
862 int can_eliminate = 0;
863 do
864 {
865 can_eliminate |= ep->can_eliminate;
866 ep++;
867 }
868 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
869 if (! can_eliminate)
870 spill_hard_reg (from, 1);
871 }
872
873 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
874 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
875
876 finish_spills (global);
877
878 /* From now on, we may need to generate moves differently. We may also
879 allow modifications of insns which cause them to not be recognized.
880 Any such modifications will be cleaned up during reload itself. */
881 reload_in_progress = 1;
882
883 /* This loop scans the entire function each go-round
884 and repeats until one repetition spills no additional hard regs. */
885 for (;;)
886 {
887 int something_changed;
888 poly_int64 starting_frame_size;
889
890 starting_frame_size = get_frame_size ();
891 something_was_spilled = false;
892
893 set_initial_elim_offsets ();
894 set_initial_label_offsets ();
895
896 /* For each pseudo register that has an equivalent location defined,
897 try to eliminate any eliminable registers (such as the frame pointer)
898 assuming initial offsets for the replacement register, which
899 is the normal case.
900
901 If the resulting location is directly addressable, substitute
902 the MEM we just got directly for the old REG.
903
904 If it is not addressable but is a constant or the sum of a hard reg
905 and constant, it is probably not addressable because the constant is
906 out of range, in that case record the address; we will generate
907 hairy code to compute the address in a register each time it is
908 needed. Similarly if it is a hard register, but one that is not
909 valid as an address register.
910
911 If the location is not addressable, but does not have one of the
912 above forms, assign a stack slot. We have to do this to avoid the
913 potential of producing lots of reloads if, e.g., a location involves
914 a pseudo that didn't get a hard register and has an equivalent memory
915 location that also involves a pseudo that didn't get a hard register.
916
917 Perhaps at some point we will improve reload_when_needed handling
918 so this problem goes away. But that's very hairy. */
919
920 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
921 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
922 {
923 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
924 NULL_RTX);
925
926 if (strict_memory_address_addr_space_p
927 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
928 MEM_ADDR_SPACE (x)))
929 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
930 else if (CONSTANT_P (XEXP (x, 0))
931 || (REG_P (XEXP (x, 0))
932 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
933 || (GET_CODE (XEXP (x, 0)) == PLUS
934 && REG_P (XEXP (XEXP (x, 0), 0))
935 && (REGNO (XEXP (XEXP (x, 0), 0))
936 < FIRST_PSEUDO_REGISTER)
937 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
938 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
939 else
940 {
941 /* Make a new stack slot. Then indicate that something
942 changed so we go back and recompute offsets for
943 eliminable registers because the allocation of memory
944 below might change some offset. reg_equiv_{mem,address}
945 will be set up for this pseudo on the next pass around
946 the loop. */
947 reg_equiv_memory_loc (i) = 0;
948 reg_equiv_init (i) = 0;
949 alter_reg (i, -1, true);
950 }
951 }
952
953 if (caller_save_needed)
954 setup_save_areas ();
955
956 if (maybe_ne (starting_frame_size, 0) && crtl->stack_alignment_needed)
957 {
958 /* If we have a stack frame, we must align it now. The
959 stack size may be a part of the offset computation for
960 register elimination. So if this changes the stack size,
961 then repeat the elimination bookkeeping. We don't
962 realign when there is no stack, as that will cause a
963 stack frame when none is needed should
964 TARGET_STARTING_FRAME_OFFSET not be already aligned to
965 STACK_BOUNDARY. */
966 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
967 }
968 /* If we allocated another stack slot, redo elimination bookkeeping. */
969 if (something_was_spilled
970 || maybe_ne (starting_frame_size, get_frame_size ()))
971 {
972 if (update_eliminables_and_spill ())
973 finish_spills (0);
974 continue;
975 }
976
977 if (caller_save_needed)
978 {
979 save_call_clobbered_regs ();
980 /* That might have allocated new insn_chain structures. */
981 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
982 }
983
984 calculate_needs_all_insns (global);
985
986 if (! ira_conflicts_p)
987 /* Don't do it for IRA. We need this info because we don't
988 change live_throughout and dead_or_set for chains when IRA
989 is used. */
990 CLEAR_REG_SET (&spilled_pseudos);
991
992 something_changed = 0;
993
994 /* If we allocated any new memory locations, make another pass
995 since it might have changed elimination offsets. */
996 if (something_was_spilled
997 || maybe_ne (starting_frame_size, get_frame_size ()))
998 something_changed = 1;
999
1000 /* Even if the frame size remained the same, we might still have
1001 changed elimination offsets, e.g. if find_reloads called
1002 force_const_mem requiring the back end to allocate a constant
1003 pool base register that needs to be saved on the stack. */
1004 else if (!verify_initial_elim_offsets ())
1005 something_changed = 1;
1006
1007 if (update_eliminables_and_spill ())
1008 {
1009 finish_spills (0);
1010 something_changed = 1;
1011 }
1012 else
1013 {
1014 select_reload_regs ();
1015 if (failure)
1016 goto failed;
1017 if (insns_need_reload)
1018 something_changed |= finish_spills (global);
1019 }
1020
1021 if (! something_changed)
1022 break;
1023
1024 if (caller_save_needed)
1025 delete_caller_save_insns ();
1026
1027 obstack_free (&reload_obstack, reload_firstobj);
1028 }
1029
1030 /* If global-alloc was run, notify it of any register eliminations we have
1031 done. */
1032 if (global)
1033 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1034 if (ep->can_eliminate)
1035 mark_elimination (ep->from, ep->to);
1036
1037 remove_init_insns ();
1038
1039 /* Use the reload registers where necessary
1040 by generating move instructions to move the must-be-register
1041 values into or out of the reload registers. */
1042
1043 if (insns_need_reload != 0 || something_needs_elimination
1044 || something_needs_operands_changed)
1045 {
1046 poly_int64 old_frame_size = get_frame_size ();
1047
1048 reload_as_needed (global);
1049
1050 gcc_assert (known_eq (old_frame_size, get_frame_size ()));
1051
1052 gcc_assert (verify_initial_elim_offsets ());
1053 }
1054
1055 /* If we were able to eliminate the frame pointer, show that it is no
1056 longer live at the start of any basic block. If it ls live by
1057 virtue of being in a pseudo, that pseudo will be marked live
1058 and hence the frame pointer will be known to be live via that
1059 pseudo. */
1060
1061 if (! frame_pointer_needed)
1062 FOR_EACH_BB_FN (bb, cfun)
1063 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1064
1065 /* Come here (with failure set nonzero) if we can't get enough spill
1066 regs. */
1067 failed:
1068
1069 CLEAR_REG_SET (&changed_allocation_pseudos);
1070 CLEAR_REG_SET (&spilled_pseudos);
1071 reload_in_progress = 0;
1072
1073 /* Now eliminate all pseudo regs by modifying them into
1074 their equivalent memory references.
1075 The REG-rtx's for the pseudos are modified in place,
1076 so all insns that used to refer to them now refer to memory.
1077
1078 For a reg that has a reg_equiv_address, all those insns
1079 were changed by reloading so that no insns refer to it any longer;
1080 but the DECL_RTL of a variable decl may refer to it,
1081 and if so this causes the debugging info to mention the variable. */
1082
1083 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1084 {
1085 rtx addr = 0;
1086
1087 if (reg_equiv_mem (i))
1088 addr = XEXP (reg_equiv_mem (i), 0);
1089
1090 if (reg_equiv_address (i))
1091 addr = reg_equiv_address (i);
1092
1093 if (addr)
1094 {
1095 if (reg_renumber[i] < 0)
1096 {
1097 rtx reg = regno_reg_rtx[i];
1098
1099 REG_USERVAR_P (reg) = 0;
1100 PUT_CODE (reg, MEM);
1101 XEXP (reg, 0) = addr;
1102 if (reg_equiv_memory_loc (i))
1103 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1104 else
1105 MEM_ATTRS (reg) = 0;
1106 MEM_NOTRAP_P (reg) = 1;
1107 }
1108 else if (reg_equiv_mem (i))
1109 XEXP (reg_equiv_mem (i), 0) = addr;
1110 }
1111
1112 /* We don't want complex addressing modes in debug insns
1113 if simpler ones will do, so delegitimize equivalences
1114 in debug insns. */
1115 if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0)
1116 {
1117 rtx reg = regno_reg_rtx[i];
1118 rtx equiv = 0;
1119 df_ref use, next;
1120
1121 if (reg_equiv_constant (i))
1122 equiv = reg_equiv_constant (i);
1123 else if (reg_equiv_invariant (i))
1124 equiv = reg_equiv_invariant (i);
1125 else if (reg && MEM_P (reg))
1126 equiv = targetm.delegitimize_address (reg);
1127 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1128 equiv = reg;
1129
1130 if (equiv == reg)
1131 continue;
1132
1133 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1134 {
1135 insn = DF_REF_INSN (use);
1136
1137 /* Make sure the next ref is for a different instruction,
1138 so that we're not affected by the rescan. */
1139 next = DF_REF_NEXT_REG (use);
1140 while (next && DF_REF_INSN (next) == insn)
1141 next = DF_REF_NEXT_REG (next);
1142
1143 if (DEBUG_BIND_INSN_P (insn))
1144 {
1145 if (!equiv)
1146 {
1147 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1148 df_insn_rescan_debug_internal (insn);
1149 }
1150 else
1151 INSN_VAR_LOCATION_LOC (insn)
1152 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1153 reg, equiv);
1154 }
1155 }
1156 }
1157 }
1158
1159 /* We must set reload_completed now since the cleanup_subreg_operands call
1160 below will re-recognize each insn and reload may have generated insns
1161 which are only valid during and after reload. */
1162 reload_completed = 1;
1163
1164 /* Make a pass over all the insns and delete all USEs which we inserted
1165 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1166 notes. Delete all CLOBBER insns, except those that refer to the return
1167 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1168 from misarranging variable-array code, and simplify (subreg (reg))
1169 operands. Strip and regenerate REG_INC notes that may have been moved
1170 around. */
1171
1172 for (insn = first; insn; insn = NEXT_INSN (insn))
1173 if (INSN_P (insn))
1174 {
1175 rtx *pnote;
1176
1177 if (CALL_P (insn))
1178 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1179 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1180
1181 if ((GET_CODE (PATTERN (insn)) == USE
1182 /* We mark with QImode USEs introduced by reload itself. */
1183 && (GET_MODE (insn) == QImode
1184 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1185 || (GET_CODE (PATTERN (insn)) == CLOBBER
1186 && (!MEM_P (XEXP (PATTERN (insn), 0))
1187 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1188 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1189 && XEXP (XEXP (PATTERN (insn), 0), 0)
1190 != stack_pointer_rtx))
1191 && (!REG_P (XEXP (PATTERN (insn), 0))
1192 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1193 {
1194 delete_insn (insn);
1195 continue;
1196 }
1197
1198 /* Some CLOBBERs may survive until here and still reference unassigned
1199 pseudos with const equivalent, which may in turn cause ICE in later
1200 passes if the reference remains in place. */
1201 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1202 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1203 VOIDmode, PATTERN (insn));
1204
1205 /* Discard obvious no-ops, even without -O. This optimization
1206 is fast and doesn't interfere with debugging. */
1207 if (NONJUMP_INSN_P (insn)
1208 && GET_CODE (PATTERN (insn)) == SET
1209 && REG_P (SET_SRC (PATTERN (insn)))
1210 && REG_P (SET_DEST (PATTERN (insn)))
1211 && (REGNO (SET_SRC (PATTERN (insn)))
1212 == REGNO (SET_DEST (PATTERN (insn)))))
1213 {
1214 delete_insn (insn);
1215 continue;
1216 }
1217
1218 pnote = &REG_NOTES (insn);
1219 while (*pnote != 0)
1220 {
1221 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1222 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1223 || REG_NOTE_KIND (*pnote) == REG_INC)
1224 *pnote = XEXP (*pnote, 1);
1225 else
1226 pnote = &XEXP (*pnote, 1);
1227 }
1228
1229 if (AUTO_INC_DEC)
1230 add_auto_inc_notes (insn, PATTERN (insn));
1231
1232 /* Simplify (subreg (reg)) if it appears as an operand. */
1233 cleanup_subreg_operands (insn);
1234
1235 /* Clean up invalid ASMs so that they don't confuse later passes.
1236 See PR 21299. */
1237 if (asm_noperands (PATTERN (insn)) >= 0)
1238 {
1239 extract_insn (insn);
1240 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1241 {
1242 error_for_asm (insn,
1243 "%<asm%> operand has impossible constraints");
1244 delete_insn (insn);
1245 continue;
1246 }
1247 }
1248 }
1249
1250 free (temp_pseudo_reg_arr);
1251
1252 /* Indicate that we no longer have known memory locations or constants. */
1253 free_reg_equiv ();
1254
1255 free (reg_max_ref_mode);
1256 free (reg_old_renumber);
1257 free (pseudo_previous_regs);
1258 free (pseudo_forbidden_regs);
1259
1260 CLEAR_HARD_REG_SET (used_spill_regs);
1261 for (i = 0; i < n_spills; i++)
1262 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1263
1264 /* Free all the insn_chain structures at once. */
1265 obstack_free (&reload_obstack, reload_startobj);
1266 unused_insn_chains = 0;
1267
1268 inserted = fixup_abnormal_edges ();
1269
1270 /* We've possibly turned single trapping insn into multiple ones. */
1271 if (cfun->can_throw_non_call_exceptions)
1272 {
1273 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1274 bitmap_ones (blocks);
1275 find_many_sub_basic_blocks (blocks);
1276 }
1277
1278 if (inserted)
1279 commit_edge_insertions ();
1280
1281 /* Replacing pseudos with their memory equivalents might have
1282 created shared rtx. Subsequent passes would get confused
1283 by this, so unshare everything here. */
1284 unshare_all_rtl_again (first);
1285
1286 #ifdef STACK_BOUNDARY
1287 /* init_emit has set the alignment of the hard frame pointer
1288 to STACK_BOUNDARY. It is very likely no longer valid if
1289 the hard frame pointer was used for register allocation. */
1290 if (!frame_pointer_needed)
1291 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1292 #endif
1293
1294 substitute_stack.release ();
1295
1296 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1297
1298 reload_completed = !failure;
1299
1300 return need_dce;
1301 }
1302
1303 /* Yet another special case. Unfortunately, reg-stack forces people to
1304 write incorrect clobbers in asm statements. These clobbers must not
1305 cause the register to appear in bad_spill_regs, otherwise we'll call
1306 fatal_insn later. We clear the corresponding regnos in the live
1307 register sets to avoid this.
1308 The whole thing is rather sick, I'm afraid. */
1309
1310 static void
1311 maybe_fix_stack_asms (void)
1312 {
1313 #ifdef STACK_REGS
1314 const char *constraints[MAX_RECOG_OPERANDS];
1315 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1316 class insn_chain *chain;
1317
1318 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1319 {
1320 int i, noperands;
1321 HARD_REG_SET clobbered, allowed;
1322 rtx pat;
1323
1324 if (! INSN_P (chain->insn)
1325 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1326 continue;
1327 pat = PATTERN (chain->insn);
1328 if (GET_CODE (pat) != PARALLEL)
1329 continue;
1330
1331 CLEAR_HARD_REG_SET (clobbered);
1332 CLEAR_HARD_REG_SET (allowed);
1333
1334 /* First, make a mask of all stack regs that are clobbered. */
1335 for (i = 0; i < XVECLEN (pat, 0); i++)
1336 {
1337 rtx t = XVECEXP (pat, 0, i);
1338 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1339 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1340 }
1341
1342 /* Get the operand values and constraints out of the insn. */
1343 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1344 constraints, operand_mode, NULL);
1345
1346 /* For every operand, see what registers are allowed. */
1347 for (i = 0; i < noperands; i++)
1348 {
1349 const char *p = constraints[i];
1350 /* For every alternative, we compute the class of registers allowed
1351 for reloading in CLS, and merge its contents into the reg set
1352 ALLOWED. */
1353 int cls = (int) NO_REGS;
1354
1355 for (;;)
1356 {
1357 char c = *p;
1358
1359 if (c == '\0' || c == ',' || c == '#')
1360 {
1361 /* End of one alternative - mark the regs in the current
1362 class, and reset the class. */
1363 allowed |= reg_class_contents[cls];
1364 cls = NO_REGS;
1365 p++;
1366 if (c == '#')
1367 do {
1368 c = *p++;
1369 } while (c != '\0' && c != ',');
1370 if (c == '\0')
1371 break;
1372 continue;
1373 }
1374
1375 switch (c)
1376 {
1377 case 'g':
1378 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1379 break;
1380
1381 default:
1382 enum constraint_num cn = lookup_constraint (p);
1383 if (insn_extra_address_constraint (cn))
1384 cls = (int) reg_class_subunion[cls]
1385 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1386 ADDRESS, SCRATCH)];
1387 else
1388 cls = (int) reg_class_subunion[cls]
1389 [reg_class_for_constraint (cn)];
1390 break;
1391 }
1392 p += CONSTRAINT_LEN (c, p);
1393 }
1394 }
1395 /* Those of the registers which are clobbered, but allowed by the
1396 constraints, must be usable as reload registers. So clear them
1397 out of the life information. */
1398 allowed &= clobbered;
1399 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1400 if (TEST_HARD_REG_BIT (allowed, i))
1401 {
1402 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1403 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1404 }
1405 }
1406
1407 #endif
1408 }
1409 \f
1410 /* Copy the global variables n_reloads and rld into the corresponding elts
1411 of CHAIN. */
1412 static void
1413 copy_reloads (class insn_chain *chain)
1414 {
1415 chain->n_reloads = n_reloads;
1416 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1417 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1418 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1419 }
1420
1421 /* Walk the chain of insns, and determine for each whether it needs reloads
1422 and/or eliminations. Build the corresponding insns_need_reload list, and
1423 set something_needs_elimination as appropriate. */
1424 static void
1425 calculate_needs_all_insns (int global)
1426 {
1427 class insn_chain **pprev_reload = &insns_need_reload;
1428 class insn_chain *chain, *next = 0;
1429
1430 something_needs_elimination = 0;
1431
1432 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1433 for (chain = reload_insn_chain; chain != 0; chain = next)
1434 {
1435 rtx_insn *insn = chain->insn;
1436
1437 next = chain->next;
1438
1439 /* Clear out the shortcuts. */
1440 chain->n_reloads = 0;
1441 chain->need_elim = 0;
1442 chain->need_reload = 0;
1443 chain->need_operand_change = 0;
1444
1445 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1446 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1447 what effects this has on the known offsets at labels. */
1448
1449 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1450 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1451 set_label_offsets (insn, insn, 0);
1452
1453 if (INSN_P (insn))
1454 {
1455 rtx old_body = PATTERN (insn);
1456 int old_code = INSN_CODE (insn);
1457 rtx old_notes = REG_NOTES (insn);
1458 int did_elimination = 0;
1459 int operands_changed = 0;
1460
1461 /* Skip insns that only set an equivalence. */
1462 if (will_delete_init_insn_p (insn))
1463 continue;
1464
1465 /* If needed, eliminate any eliminable registers. */
1466 if (num_eliminable || num_eliminable_invariants)
1467 did_elimination = eliminate_regs_in_insn (insn, 0);
1468
1469 /* Analyze the instruction. */
1470 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1471 global, spill_reg_order);
1472
1473 /* If a no-op set needs more than one reload, this is likely
1474 to be something that needs input address reloads. We
1475 can't get rid of this cleanly later, and it is of no use
1476 anyway, so discard it now.
1477 We only do this when expensive_optimizations is enabled,
1478 since this complements reload inheritance / output
1479 reload deletion, and it can make debugging harder. */
1480 if (flag_expensive_optimizations && n_reloads > 1)
1481 {
1482 rtx set = single_set (insn);
1483 if (set
1484 &&
1485 ((SET_SRC (set) == SET_DEST (set)
1486 && REG_P (SET_SRC (set))
1487 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1488 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1489 && reg_renumber[REGNO (SET_SRC (set))] < 0
1490 && reg_renumber[REGNO (SET_DEST (set))] < 0
1491 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1492 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1493 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1494 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1495 {
1496 if (ira_conflicts_p)
1497 /* Inform IRA about the insn deletion. */
1498 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1499 REGNO (SET_SRC (set)));
1500 delete_insn (insn);
1501 /* Delete it from the reload chain. */
1502 if (chain->prev)
1503 chain->prev->next = next;
1504 else
1505 reload_insn_chain = next;
1506 if (next)
1507 next->prev = chain->prev;
1508 chain->next = unused_insn_chains;
1509 unused_insn_chains = chain;
1510 continue;
1511 }
1512 }
1513 if (num_eliminable)
1514 update_eliminable_offsets ();
1515
1516 /* Remember for later shortcuts which insns had any reloads or
1517 register eliminations. */
1518 chain->need_elim = did_elimination;
1519 chain->need_reload = n_reloads > 0;
1520 chain->need_operand_change = operands_changed;
1521
1522 /* Discard any register replacements done. */
1523 if (did_elimination)
1524 {
1525 obstack_free (&reload_obstack, reload_insn_firstobj);
1526 PATTERN (insn) = old_body;
1527 INSN_CODE (insn) = old_code;
1528 REG_NOTES (insn) = old_notes;
1529 something_needs_elimination = 1;
1530 }
1531
1532 something_needs_operands_changed |= operands_changed;
1533
1534 if (n_reloads != 0)
1535 {
1536 copy_reloads (chain);
1537 *pprev_reload = chain;
1538 pprev_reload = &chain->next_need_reload;
1539 }
1540 }
1541 }
1542 *pprev_reload = 0;
1543 }
1544 \f
1545 /* This function is called from the register allocator to set up estimates
1546 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1547 an invariant. The structure is similar to calculate_needs_all_insns. */
1548
1549 void
1550 calculate_elim_costs_all_insns (void)
1551 {
1552 int *reg_equiv_init_cost;
1553 basic_block bb;
1554 int i;
1555
1556 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1557 init_elim_table ();
1558 init_eliminable_invariants (get_insns (), false);
1559
1560 set_initial_elim_offsets ();
1561 set_initial_label_offsets ();
1562
1563 FOR_EACH_BB_FN (bb, cfun)
1564 {
1565 rtx_insn *insn;
1566 elim_bb = bb;
1567
1568 FOR_BB_INSNS (bb, insn)
1569 {
1570 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1571 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1572 what effects this has on the known offsets at labels. */
1573
1574 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1575 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1576 set_label_offsets (insn, insn, 0);
1577
1578 if (INSN_P (insn))
1579 {
1580 rtx set = single_set (insn);
1581
1582 /* Skip insns that only set an equivalence. */
1583 if (set && REG_P (SET_DEST (set))
1584 && reg_renumber[REGNO (SET_DEST (set))] < 0
1585 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1586 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1587 {
1588 unsigned regno = REGNO (SET_DEST (set));
1589 rtx_insn_list *init = reg_equiv_init (regno);
1590 if (init)
1591 {
1592 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1593 false, true);
1594 machine_mode mode = GET_MODE (SET_DEST (set));
1595 int cost = set_src_cost (t, mode,
1596 optimize_bb_for_speed_p (bb));
1597 int freq = REG_FREQ_FROM_BB (bb);
1598
1599 reg_equiv_init_cost[regno] = cost * freq;
1600 continue;
1601 }
1602 }
1603 /* If needed, eliminate any eliminable registers. */
1604 if (num_eliminable || num_eliminable_invariants)
1605 elimination_costs_in_insn (insn);
1606
1607 if (num_eliminable)
1608 update_eliminable_offsets ();
1609 }
1610 }
1611 }
1612 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1613 {
1614 if (reg_equiv_invariant (i))
1615 {
1616 if (reg_equiv_init (i))
1617 {
1618 int cost = reg_equiv_init_cost[i];
1619 if (dump_file)
1620 fprintf (dump_file,
1621 "Reg %d has equivalence, initial gains %d\n", i, cost);
1622 if (cost != 0)
1623 ira_adjust_equiv_reg_cost (i, cost);
1624 }
1625 else
1626 {
1627 if (dump_file)
1628 fprintf (dump_file,
1629 "Reg %d had equivalence, but can't be eliminated\n",
1630 i);
1631 ira_adjust_equiv_reg_cost (i, 0);
1632 }
1633 }
1634 }
1635
1636 free (reg_equiv_init_cost);
1637 free (offsets_known_at);
1638 free (offsets_at);
1639 offsets_at = NULL;
1640 offsets_known_at = NULL;
1641 }
1642 \f
1643 /* Comparison function for qsort to decide which of two reloads
1644 should be handled first. *P1 and *P2 are the reload numbers. */
1645
1646 static int
1647 reload_reg_class_lower (const void *r1p, const void *r2p)
1648 {
1649 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1650 int t;
1651
1652 /* Consider required reloads before optional ones. */
1653 t = rld[r1].optional - rld[r2].optional;
1654 if (t != 0)
1655 return t;
1656
1657 /* Count all solitary classes before non-solitary ones. */
1658 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1659 - (reg_class_size[(int) rld[r1].rclass] == 1));
1660 if (t != 0)
1661 return t;
1662
1663 /* Aside from solitaires, consider all multi-reg groups first. */
1664 t = rld[r2].nregs - rld[r1].nregs;
1665 if (t != 0)
1666 return t;
1667
1668 /* Consider reloads in order of increasing reg-class number. */
1669 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1670 if (t != 0)
1671 return t;
1672
1673 /* If reloads are equally urgent, sort by reload number,
1674 so that the results of qsort leave nothing to chance. */
1675 return r1 - r2;
1676 }
1677 \f
1678 /* The cost of spilling each hard reg. */
1679 static int spill_cost[FIRST_PSEUDO_REGISTER];
1680
1681 /* When spilling multiple hard registers, we use SPILL_COST for the first
1682 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1683 only the first hard reg for a multi-reg pseudo. */
1684 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1685
1686 /* Map of hard regno to pseudo regno currently occupying the hard
1687 reg. */
1688 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1689
1690 /* Update the spill cost arrays, considering that pseudo REG is live. */
1691
1692 static void
1693 count_pseudo (int reg)
1694 {
1695 int freq = REG_FREQ (reg);
1696 int r = reg_renumber[reg];
1697 int nregs;
1698
1699 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1700 if (ira_conflicts_p && r < 0)
1701 return;
1702
1703 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1704 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1705 return;
1706
1707 SET_REGNO_REG_SET (&pseudos_counted, reg);
1708
1709 gcc_assert (r >= 0);
1710
1711 spill_add_cost[r] += freq;
1712 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1713 while (nregs-- > 0)
1714 {
1715 hard_regno_to_pseudo_regno[r + nregs] = reg;
1716 spill_cost[r + nregs] += freq;
1717 }
1718 }
1719
1720 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1721 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1722
1723 static void
1724 order_regs_for_reload (class insn_chain *chain)
1725 {
1726 unsigned i;
1727 HARD_REG_SET used_by_pseudos;
1728 HARD_REG_SET used_by_pseudos2;
1729 reg_set_iterator rsi;
1730
1731 bad_spill_regs = fixed_reg_set;
1732
1733 memset (spill_cost, 0, sizeof spill_cost);
1734 memset (spill_add_cost, 0, sizeof spill_add_cost);
1735 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1736 hard_regno_to_pseudo_regno[i] = -1;
1737
1738 /* Count number of uses of each hard reg by pseudo regs allocated to it
1739 and then order them by decreasing use. First exclude hard registers
1740 that are live in or across this insn. */
1741
1742 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1743 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1744 bad_spill_regs |= used_by_pseudos;
1745 bad_spill_regs |= used_by_pseudos2;
1746
1747 /* Now find out which pseudos are allocated to it, and update
1748 hard_reg_n_uses. */
1749 CLEAR_REG_SET (&pseudos_counted);
1750
1751 EXECUTE_IF_SET_IN_REG_SET
1752 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1753 {
1754 count_pseudo (i);
1755 }
1756 EXECUTE_IF_SET_IN_REG_SET
1757 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1758 {
1759 count_pseudo (i);
1760 }
1761 CLEAR_REG_SET (&pseudos_counted);
1762 }
1763 \f
1764 /* Vector of reload-numbers showing the order in which the reloads should
1765 be processed. */
1766 static short reload_order[MAX_RELOADS];
1767
1768 /* This is used to keep track of the spill regs used in one insn. */
1769 static HARD_REG_SET used_spill_regs_local;
1770
1771 /* We decided to spill hard register SPILLED, which has a size of
1772 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1773 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1774 update SPILL_COST/SPILL_ADD_COST. */
1775
1776 static void
1777 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1778 {
1779 int freq = REG_FREQ (reg);
1780 int r = reg_renumber[reg];
1781 int nregs;
1782
1783 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1784 if (ira_conflicts_p && r < 0)
1785 return;
1786
1787 gcc_assert (r >= 0);
1788
1789 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1790
1791 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1792 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1793 return;
1794
1795 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1796
1797 spill_add_cost[r] -= freq;
1798 while (nregs-- > 0)
1799 {
1800 hard_regno_to_pseudo_regno[r + nregs] = -1;
1801 spill_cost[r + nregs] -= freq;
1802 }
1803 }
1804
1805 /* Find reload register to use for reload number ORDER. */
1806
1807 static int
1808 find_reg (class insn_chain *chain, int order)
1809 {
1810 int rnum = reload_order[order];
1811 struct reload *rl = rld + rnum;
1812 int best_cost = INT_MAX;
1813 int best_reg = -1;
1814 unsigned int i, j, n;
1815 int k;
1816 HARD_REG_SET not_usable;
1817 HARD_REG_SET used_by_other_reload;
1818 reg_set_iterator rsi;
1819 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1820 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1821
1822 not_usable = (bad_spill_regs
1823 | bad_spill_regs_global
1824 | ~reg_class_contents[rl->rclass]);
1825
1826 CLEAR_HARD_REG_SET (used_by_other_reload);
1827 for (k = 0; k < order; k++)
1828 {
1829 int other = reload_order[k];
1830
1831 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1832 for (j = 0; j < rld[other].nregs; j++)
1833 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1834 }
1835
1836 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1837 {
1838 #ifdef REG_ALLOC_ORDER
1839 unsigned int regno = reg_alloc_order[i];
1840 #else
1841 unsigned int regno = i;
1842 #endif
1843
1844 if (! TEST_HARD_REG_BIT (not_usable, regno)
1845 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1846 && targetm.hard_regno_mode_ok (regno, rl->mode))
1847 {
1848 int this_cost = spill_cost[regno];
1849 int ok = 1;
1850 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1851
1852 for (j = 1; j < this_nregs; j++)
1853 {
1854 this_cost += spill_add_cost[regno + j];
1855 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1856 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1857 ok = 0;
1858 }
1859 if (! ok)
1860 continue;
1861
1862 if (ira_conflicts_p)
1863 {
1864 /* Ask IRA to find a better pseudo-register for
1865 spilling. */
1866 for (n = j = 0; j < this_nregs; j++)
1867 {
1868 int r = hard_regno_to_pseudo_regno[regno + j];
1869
1870 if (r < 0)
1871 continue;
1872 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1873 regno_pseudo_regs[n++] = r;
1874 }
1875 regno_pseudo_regs[n++] = -1;
1876 if (best_reg < 0
1877 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1878 best_regno_pseudo_regs,
1879 rl->in, rl->out,
1880 chain->insn))
1881 {
1882 best_reg = regno;
1883 for (j = 0;; j++)
1884 {
1885 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1886 if (regno_pseudo_regs[j] < 0)
1887 break;
1888 }
1889 }
1890 continue;
1891 }
1892
1893 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1894 this_cost--;
1895 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1896 this_cost--;
1897 if (this_cost < best_cost
1898 /* Among registers with equal cost, prefer caller-saved ones, or
1899 use REG_ALLOC_ORDER if it is defined. */
1900 || (this_cost == best_cost
1901 #ifdef REG_ALLOC_ORDER
1902 && (inv_reg_alloc_order[regno]
1903 < inv_reg_alloc_order[best_reg])
1904 #else
1905 && crtl->abi->clobbers_full_reg_p (regno)
1906 && !crtl->abi->clobbers_full_reg_p (best_reg)
1907 #endif
1908 ))
1909 {
1910 best_reg = regno;
1911 best_cost = this_cost;
1912 }
1913 }
1914 }
1915 if (best_reg == -1)
1916 return 0;
1917
1918 if (dump_file)
1919 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1920
1921 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1922 rl->regno = best_reg;
1923
1924 EXECUTE_IF_SET_IN_REG_SET
1925 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1926 {
1927 count_spilled_pseudo (best_reg, rl->nregs, j);
1928 }
1929
1930 EXECUTE_IF_SET_IN_REG_SET
1931 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1932 {
1933 count_spilled_pseudo (best_reg, rl->nregs, j);
1934 }
1935
1936 for (i = 0; i < rl->nregs; i++)
1937 {
1938 gcc_assert (spill_cost[best_reg + i] == 0);
1939 gcc_assert (spill_add_cost[best_reg + i] == 0);
1940 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1941 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1942 }
1943 return 1;
1944 }
1945
1946 /* Find more reload regs to satisfy the remaining need of an insn, which
1947 is given by CHAIN.
1948 Do it by ascending class number, since otherwise a reg
1949 might be spilled for a big class and might fail to count
1950 for a smaller class even though it belongs to that class. */
1951
1952 static void
1953 find_reload_regs (class insn_chain *chain)
1954 {
1955 int i;
1956
1957 /* In order to be certain of getting the registers we need,
1958 we must sort the reloads into order of increasing register class.
1959 Then our grabbing of reload registers will parallel the process
1960 that provided the reload registers. */
1961 for (i = 0; i < chain->n_reloads; i++)
1962 {
1963 /* Show whether this reload already has a hard reg. */
1964 if (chain->rld[i].reg_rtx)
1965 {
1966 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1967 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1968 }
1969 else
1970 chain->rld[i].regno = -1;
1971 reload_order[i] = i;
1972 }
1973
1974 n_reloads = chain->n_reloads;
1975 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1976
1977 CLEAR_HARD_REG_SET (used_spill_regs_local);
1978
1979 if (dump_file)
1980 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1981
1982 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1983
1984 /* Compute the order of preference for hard registers to spill. */
1985
1986 order_regs_for_reload (chain);
1987
1988 for (i = 0; i < n_reloads; i++)
1989 {
1990 int r = reload_order[i];
1991
1992 /* Ignore reloads that got marked inoperative. */
1993 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1994 && ! rld[r].optional
1995 && rld[r].regno == -1)
1996 if (! find_reg (chain, i))
1997 {
1998 if (dump_file)
1999 fprintf (dump_file, "reload failure for reload %d\n", r);
2000 spill_failure (chain->insn, rld[r].rclass);
2001 failure = 1;
2002 return;
2003 }
2004 }
2005
2006 chain->used_spill_regs = used_spill_regs_local;
2007 used_spill_regs |= used_spill_regs_local;
2008
2009 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2010 }
2011
2012 static void
2013 select_reload_regs (void)
2014 {
2015 class insn_chain *chain;
2016
2017 /* Try to satisfy the needs for each insn. */
2018 for (chain = insns_need_reload; chain != 0;
2019 chain = chain->next_need_reload)
2020 find_reload_regs (chain);
2021 }
2022 \f
2023 /* Delete all insns that were inserted by emit_caller_save_insns during
2024 this iteration. */
2025 static void
2026 delete_caller_save_insns (void)
2027 {
2028 class insn_chain *c = reload_insn_chain;
2029
2030 while (c != 0)
2031 {
2032 while (c != 0 && c->is_caller_save_insn)
2033 {
2034 class insn_chain *next = c->next;
2035 rtx_insn *insn = c->insn;
2036
2037 if (c == reload_insn_chain)
2038 reload_insn_chain = next;
2039 delete_insn (insn);
2040
2041 if (next)
2042 next->prev = c->prev;
2043 if (c->prev)
2044 c->prev->next = next;
2045 c->next = unused_insn_chains;
2046 unused_insn_chains = c;
2047 c = next;
2048 }
2049 if (c != 0)
2050 c = c->next;
2051 }
2052 }
2053 \f
2054 /* Handle the failure to find a register to spill.
2055 INSN should be one of the insns which needed this particular spill reg. */
2056
2057 static void
2058 spill_failure (rtx_insn *insn, enum reg_class rclass)
2059 {
2060 if (asm_noperands (PATTERN (insn)) >= 0)
2061 error_for_asm (insn, "cannot find a register in class %qs while "
2062 "reloading %<asm%>",
2063 reg_class_names[rclass]);
2064 else
2065 {
2066 error ("unable to find a register to spill in class %qs",
2067 reg_class_names[rclass]);
2068
2069 if (dump_file)
2070 {
2071 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2072 debug_reload_to_stream (dump_file);
2073 }
2074 fatal_insn ("this is the insn:", insn);
2075 }
2076 }
2077 \f
2078 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2079 data that is dead in INSN. */
2080
2081 static void
2082 delete_dead_insn (rtx_insn *insn)
2083 {
2084 rtx_insn *prev = prev_active_insn (insn);
2085 rtx prev_dest;
2086
2087 /* If the previous insn sets a register that dies in our insn make
2088 a note that we want to run DCE immediately after reload.
2089
2090 We used to delete the previous insn & recurse, but that's wrong for
2091 block local equivalences. Instead of trying to figure out the exact
2092 circumstances where we can delete the potentially dead insns, just
2093 let DCE do the job. */
2094 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2095 && GET_CODE (PATTERN (prev)) == SET
2096 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2097 && reg_mentioned_p (prev_dest, PATTERN (insn))
2098 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2099 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2100 need_dce = 1;
2101
2102 SET_INSN_DELETED (insn);
2103 }
2104
2105 /* Modify the home of pseudo-reg I.
2106 The new home is present in reg_renumber[I].
2107
2108 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2109 or it may be -1, meaning there is none or it is not relevant.
2110 This is used so that all pseudos spilled from a given hard reg
2111 can share one stack slot. */
2112
2113 static void
2114 alter_reg (int i, int from_reg, bool dont_share_p)
2115 {
2116 /* When outputting an inline function, this can happen
2117 for a reg that isn't actually used. */
2118 if (regno_reg_rtx[i] == 0)
2119 return;
2120
2121 /* If the reg got changed to a MEM at rtl-generation time,
2122 ignore it. */
2123 if (!REG_P (regno_reg_rtx[i]))
2124 return;
2125
2126 /* Modify the reg-rtx to contain the new hard reg
2127 number or else to contain its pseudo reg number. */
2128 SET_REGNO (regno_reg_rtx[i],
2129 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2130
2131 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2132 allocate a stack slot for it. */
2133
2134 if (reg_renumber[i] < 0
2135 && REG_N_REFS (i) > 0
2136 && reg_equiv_constant (i) == 0
2137 && (reg_equiv_invariant (i) == 0
2138 || reg_equiv_init (i) == 0)
2139 && reg_equiv_memory_loc (i) == 0)
2140 {
2141 rtx x = NULL_RTX;
2142 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2143 poly_uint64 inherent_size = GET_MODE_SIZE (mode);
2144 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2145 machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]);
2146 poly_uint64 total_size = GET_MODE_SIZE (wider_mode);
2147 /* ??? Seems strange to derive the minimum alignment from the size,
2148 but that's the traditional behavior. For polynomial-size modes,
2149 the natural extension is to use the minimum possible size. */
2150 unsigned int min_align
2151 = constant_lower_bound (GET_MODE_BITSIZE (reg_max_ref_mode[i]));
2152 poly_int64 adjust = 0;
2153
2154 something_was_spilled = true;
2155
2156 if (ira_conflicts_p)
2157 {
2158 /* Mark the spill for IRA. */
2159 SET_REGNO_REG_SET (&spilled_pseudos, i);
2160 if (!dont_share_p)
2161 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2162 }
2163
2164 if (x)
2165 ;
2166
2167 /* Each pseudo reg has an inherent size which comes from its own mode,
2168 and a total size which provides room for paradoxical subregs
2169 which refer to the pseudo reg in wider modes.
2170
2171 We can use a slot already allocated if it provides both
2172 enough inherent space and enough total space.
2173 Otherwise, we allocate a new slot, making sure that it has no less
2174 inherent space, and no less total space, then the previous slot. */
2175 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2176 {
2177 rtx stack_slot;
2178
2179 /* The sizes are taken from a subreg operation, which guarantees
2180 that they're ordered. */
2181 gcc_checking_assert (ordered_p (total_size, inherent_size));
2182
2183 /* No known place to spill from => no slot to reuse. */
2184 x = assign_stack_local (mode, total_size,
2185 min_align > inherent_align
2186 || maybe_gt (total_size, inherent_size)
2187 ? -1 : 0);
2188
2189 stack_slot = x;
2190
2191 /* Cancel the big-endian correction done in assign_stack_local.
2192 Get the address of the beginning of the slot. This is so we
2193 can do a big-endian correction unconditionally below. */
2194 if (BYTES_BIG_ENDIAN)
2195 {
2196 adjust = inherent_size - total_size;
2197 if (maybe_ne (adjust, 0))
2198 {
2199 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2200 machine_mode mem_mode
2201 = int_mode_for_size (total_bits, 1).else_blk ();
2202 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2203 }
2204 }
2205
2206 if (! dont_share_p && ira_conflicts_p)
2207 /* Inform IRA about allocation a new stack slot. */
2208 ira_mark_new_stack_slot (stack_slot, i, total_size);
2209 }
2210
2211 /* Reuse a stack slot if possible. */
2212 else if (spill_stack_slot[from_reg] != 0
2213 && known_ge (spill_stack_slot_width[from_reg], total_size)
2214 && known_ge (GET_MODE_SIZE
2215 (GET_MODE (spill_stack_slot[from_reg])),
2216 inherent_size)
2217 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2218 x = spill_stack_slot[from_reg];
2219
2220 /* Allocate a bigger slot. */
2221 else
2222 {
2223 /* Compute maximum size needed, both for inherent size
2224 and for total size. */
2225 rtx stack_slot;
2226
2227 if (spill_stack_slot[from_reg])
2228 {
2229 if (partial_subreg_p (mode,
2230 GET_MODE (spill_stack_slot[from_reg])))
2231 mode = GET_MODE (spill_stack_slot[from_reg]);
2232 total_size = ordered_max (total_size,
2233 spill_stack_slot_width[from_reg]);
2234 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2235 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2236 }
2237
2238 /* The sizes are taken from a subreg operation, which guarantees
2239 that they're ordered. */
2240 gcc_checking_assert (ordered_p (total_size, inherent_size));
2241
2242 /* Make a slot with that size. */
2243 x = assign_stack_local (mode, total_size,
2244 min_align > inherent_align
2245 || maybe_gt (total_size, inherent_size)
2246 ? -1 : 0);
2247 stack_slot = x;
2248
2249 /* Cancel the big-endian correction done in assign_stack_local.
2250 Get the address of the beginning of the slot. This is so we
2251 can do a big-endian correction unconditionally below. */
2252 if (BYTES_BIG_ENDIAN)
2253 {
2254 adjust = GET_MODE_SIZE (mode) - total_size;
2255 if (maybe_ne (adjust, 0))
2256 {
2257 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2258 machine_mode mem_mode
2259 = int_mode_for_size (total_bits, 1).else_blk ();
2260 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2261 }
2262 }
2263
2264 spill_stack_slot[from_reg] = stack_slot;
2265 spill_stack_slot_width[from_reg] = total_size;
2266 }
2267
2268 /* On a big endian machine, the "address" of the slot
2269 is the address of the low part that fits its inherent mode. */
2270 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
2271
2272 /* If we have any adjustment to make, or if the stack slot is the
2273 wrong mode, make a new stack slot. */
2274 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2275
2276 /* Set all of the memory attributes as appropriate for a spill. */
2277 set_mem_attrs_for_spill (x);
2278
2279 /* Save the stack slot for later. */
2280 reg_equiv_memory_loc (i) = x;
2281 }
2282 }
2283
2284 /* Mark the slots in regs_ever_live for the hard regs used by
2285 pseudo-reg number REGNO, accessed in MODE. */
2286
2287 static void
2288 mark_home_live_1 (int regno, machine_mode mode)
2289 {
2290 int i, lim;
2291
2292 i = reg_renumber[regno];
2293 if (i < 0)
2294 return;
2295 lim = end_hard_regno (mode, i);
2296 while (i < lim)
2297 df_set_regs_ever_live (i++, true);
2298 }
2299
2300 /* Mark the slots in regs_ever_live for the hard regs
2301 used by pseudo-reg number REGNO. */
2302
2303 void
2304 mark_home_live (int regno)
2305 {
2306 if (reg_renumber[regno] >= 0)
2307 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2308 }
2309 \f
2310 /* This function handles the tracking of elimination offsets around branches.
2311
2312 X is a piece of RTL being scanned.
2313
2314 INSN is the insn that it came from, if any.
2315
2316 INITIAL_P is nonzero if we are to set the offset to be the initial
2317 offset and zero if we are setting the offset of the label to be the
2318 current offset. */
2319
2320 static void
2321 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2322 {
2323 enum rtx_code code = GET_CODE (x);
2324 rtx tem;
2325 unsigned int i;
2326 struct elim_table *p;
2327
2328 switch (code)
2329 {
2330 case LABEL_REF:
2331 if (LABEL_REF_NONLOCAL_P (x))
2332 return;
2333
2334 x = label_ref_label (x);
2335
2336 /* fall through */
2337
2338 case CODE_LABEL:
2339 /* If we know nothing about this label, set the desired offsets. Note
2340 that this sets the offset at a label to be the offset before a label
2341 if we don't know anything about the label. This is not correct for
2342 the label after a BARRIER, but is the best guess we can make. If
2343 we guessed wrong, we will suppress an elimination that might have
2344 been possible had we been able to guess correctly. */
2345
2346 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2347 {
2348 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2349 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2350 = (initial_p ? reg_eliminate[i].initial_offset
2351 : reg_eliminate[i].offset);
2352 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2353 }
2354
2355 /* Otherwise, if this is the definition of a label and it is
2356 preceded by a BARRIER, set our offsets to the known offset of
2357 that label. */
2358
2359 else if (x == insn
2360 && (tem = prev_nonnote_insn (insn)) != 0
2361 && BARRIER_P (tem))
2362 set_offsets_for_label (insn);
2363 else
2364 /* If neither of the above cases is true, compare each offset
2365 with those previously recorded and suppress any eliminations
2366 where the offsets disagree. */
2367
2368 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2369 if (maybe_ne (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i],
2370 (initial_p ? reg_eliminate[i].initial_offset
2371 : reg_eliminate[i].offset)))
2372 reg_eliminate[i].can_eliminate = 0;
2373
2374 return;
2375
2376 case JUMP_TABLE_DATA:
2377 set_label_offsets (PATTERN (insn), insn, initial_p);
2378 return;
2379
2380 case JUMP_INSN:
2381 set_label_offsets (PATTERN (insn), insn, initial_p);
2382
2383 /* fall through */
2384
2385 case INSN:
2386 case CALL_INSN:
2387 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2388 to indirectly and hence must have all eliminations at their
2389 initial offsets. */
2390 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2391 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2392 set_label_offsets (XEXP (tem, 0), insn, 1);
2393 return;
2394
2395 case PARALLEL:
2396 case ADDR_VEC:
2397 case ADDR_DIFF_VEC:
2398 /* Each of the labels in the parallel or address vector must be
2399 at their initial offsets. We want the first field for PARALLEL
2400 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2401
2402 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2403 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2404 insn, initial_p);
2405 return;
2406
2407 case SET:
2408 /* We only care about setting PC. If the source is not RETURN,
2409 IF_THEN_ELSE, or a label, disable any eliminations not at
2410 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2411 isn't one of those possibilities. For branches to a label,
2412 call ourselves recursively.
2413
2414 Note that this can disable elimination unnecessarily when we have
2415 a non-local goto since it will look like a non-constant jump to
2416 someplace in the current function. This isn't a significant
2417 problem since such jumps will normally be when all elimination
2418 pairs are back to their initial offsets. */
2419
2420 if (SET_DEST (x) != pc_rtx)
2421 return;
2422
2423 switch (GET_CODE (SET_SRC (x)))
2424 {
2425 case PC:
2426 case RETURN:
2427 return;
2428
2429 case LABEL_REF:
2430 set_label_offsets (SET_SRC (x), insn, initial_p);
2431 return;
2432
2433 case IF_THEN_ELSE:
2434 tem = XEXP (SET_SRC (x), 1);
2435 if (GET_CODE (tem) == LABEL_REF)
2436 set_label_offsets (label_ref_label (tem), insn, initial_p);
2437 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2438 break;
2439
2440 tem = XEXP (SET_SRC (x), 2);
2441 if (GET_CODE (tem) == LABEL_REF)
2442 set_label_offsets (label_ref_label (tem), insn, initial_p);
2443 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2444 break;
2445 return;
2446
2447 default:
2448 break;
2449 }
2450
2451 /* If we reach here, all eliminations must be at their initial
2452 offset because we are doing a jump to a variable address. */
2453 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2454 if (maybe_ne (p->offset, p->initial_offset))
2455 p->can_eliminate = 0;
2456 break;
2457
2458 default:
2459 break;
2460 }
2461 }
2462 \f
2463 /* This function examines every reg that occurs in X and adjusts the
2464 costs for its elimination which are gathered by IRA. INSN is the
2465 insn in which X occurs. We do not recurse into MEM expressions. */
2466
2467 static void
2468 note_reg_elim_costly (const_rtx x, rtx insn)
2469 {
2470 subrtx_iterator::array_type array;
2471 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2472 {
2473 const_rtx x = *iter;
2474 if (MEM_P (x))
2475 iter.skip_subrtxes ();
2476 else if (REG_P (x)
2477 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2478 && reg_equiv_init (REGNO (x))
2479 && reg_equiv_invariant (REGNO (x)))
2480 {
2481 rtx t = reg_equiv_invariant (REGNO (x));
2482 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2483 int cost = set_src_cost (new_rtx, Pmode,
2484 optimize_bb_for_speed_p (elim_bb));
2485 int freq = REG_FREQ_FROM_BB (elim_bb);
2486
2487 if (cost != 0)
2488 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2489 }
2490 }
2491 }
2492
2493 /* Scan X and replace any eliminable registers (such as fp) with a
2494 replacement (such as sp), plus an offset.
2495
2496 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2497 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2498 MEM, we are allowed to replace a sum of a register and the constant zero
2499 with the register, which we cannot do outside a MEM. In addition, we need
2500 to record the fact that a register is referenced outside a MEM.
2501
2502 If INSN is an insn, it is the insn containing X. If we replace a REG
2503 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2504 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2505 the REG is being modified.
2506
2507 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2508 That's used when we eliminate in expressions stored in notes.
2509 This means, do not set ref_outside_mem even if the reference
2510 is outside of MEMs.
2511
2512 If FOR_COSTS is true, we are being called before reload in order to
2513 estimate the costs of keeping registers with an equivalence unallocated.
2514
2515 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2516 replacements done assuming all offsets are at their initial values. If
2517 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2518 encounter, return the actual location so that find_reloads will do
2519 the proper thing. */
2520
2521 static rtx
2522 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2523 bool may_use_invariant, bool for_costs)
2524 {
2525 enum rtx_code code = GET_CODE (x);
2526 struct elim_table *ep;
2527 int regno;
2528 rtx new_rtx;
2529 int i, j;
2530 const char *fmt;
2531 int copied = 0;
2532
2533 if (! current_function_decl)
2534 return x;
2535
2536 switch (code)
2537 {
2538 CASE_CONST_ANY:
2539 case CONST:
2540 case SYMBOL_REF:
2541 case CODE_LABEL:
2542 case PC:
2543 case CC0:
2544 case ASM_INPUT:
2545 case ADDR_VEC:
2546 case ADDR_DIFF_VEC:
2547 case RETURN:
2548 return x;
2549
2550 case REG:
2551 regno = REGNO (x);
2552
2553 /* First handle the case where we encounter a bare register that
2554 is eliminable. Replace it with a PLUS. */
2555 if (regno < FIRST_PSEUDO_REGISTER)
2556 {
2557 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2558 ep++)
2559 if (ep->from_rtx == x && ep->can_eliminate)
2560 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2561
2562 }
2563 else if (reg_renumber && reg_renumber[regno] < 0
2564 && reg_equivs
2565 && reg_equiv_invariant (regno))
2566 {
2567 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2568 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2569 mem_mode, insn, true, for_costs);
2570 /* There exists at least one use of REGNO that cannot be
2571 eliminated. Prevent the defining insn from being deleted. */
2572 reg_equiv_init (regno) = NULL;
2573 if (!for_costs)
2574 alter_reg (regno, -1, true);
2575 }
2576 return x;
2577
2578 /* You might think handling MINUS in a manner similar to PLUS is a
2579 good idea. It is not. It has been tried multiple times and every
2580 time the change has had to have been reverted.
2581
2582 Other parts of reload know a PLUS is special (gen_reload for example)
2583 and require special code to handle code a reloaded PLUS operand.
2584
2585 Also consider backends where the flags register is clobbered by a
2586 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2587 lea instruction comes to mind). If we try to reload a MINUS, we
2588 may kill the flags register that was holding a useful value.
2589
2590 So, please before trying to handle MINUS, consider reload as a
2591 whole instead of this little section as well as the backend issues. */
2592 case PLUS:
2593 /* If this is the sum of an eliminable register and a constant, rework
2594 the sum. */
2595 if (REG_P (XEXP (x, 0))
2596 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2597 && CONSTANT_P (XEXP (x, 1)))
2598 {
2599 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2600 ep++)
2601 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2602 {
2603 /* The only time we want to replace a PLUS with a REG (this
2604 occurs when the constant operand of the PLUS is the negative
2605 of the offset) is when we are inside a MEM. We won't want
2606 to do so at other times because that would change the
2607 structure of the insn in a way that reload can't handle.
2608 We special-case the commonest situation in
2609 eliminate_regs_in_insn, so just replace a PLUS with a
2610 PLUS here, unless inside a MEM. */
2611 if (mem_mode != 0
2612 && CONST_INT_P (XEXP (x, 1))
2613 && known_eq (INTVAL (XEXP (x, 1)), -ep->previous_offset))
2614 return ep->to_rtx;
2615 else
2616 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2617 plus_constant (Pmode, XEXP (x, 1),
2618 ep->previous_offset));
2619 }
2620
2621 /* If the register is not eliminable, we are done since the other
2622 operand is a constant. */
2623 return x;
2624 }
2625
2626 /* If this is part of an address, we want to bring any constant to the
2627 outermost PLUS. We will do this by doing register replacement in
2628 our operands and seeing if a constant shows up in one of them.
2629
2630 Note that there is no risk of modifying the structure of the insn,
2631 since we only get called for its operands, thus we are either
2632 modifying the address inside a MEM, or something like an address
2633 operand of a load-address insn. */
2634
2635 {
2636 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2637 for_costs);
2638 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2639 for_costs);
2640
2641 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2642 {
2643 /* If one side is a PLUS and the other side is a pseudo that
2644 didn't get a hard register but has a reg_equiv_constant,
2645 we must replace the constant here since it may no longer
2646 be in the position of any operand. */
2647 if (GET_CODE (new0) == PLUS && REG_P (new1)
2648 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2649 && reg_renumber[REGNO (new1)] < 0
2650 && reg_equivs
2651 && reg_equiv_constant (REGNO (new1)) != 0)
2652 new1 = reg_equiv_constant (REGNO (new1));
2653 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2654 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2655 && reg_renumber[REGNO (new0)] < 0
2656 && reg_equiv_constant (REGNO (new0)) != 0)
2657 new0 = reg_equiv_constant (REGNO (new0));
2658
2659 new_rtx = form_sum (GET_MODE (x), new0, new1);
2660
2661 /* As above, if we are not inside a MEM we do not want to
2662 turn a PLUS into something else. We might try to do so here
2663 for an addition of 0 if we aren't optimizing. */
2664 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2665 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2666 else
2667 return new_rtx;
2668 }
2669 }
2670 return x;
2671
2672 case MULT:
2673 /* If this is the product of an eliminable register and a
2674 constant, apply the distribute law and move the constant out
2675 so that we have (plus (mult ..) ..). This is needed in order
2676 to keep load-address insns valid. This case is pathological.
2677 We ignore the possibility of overflow here. */
2678 if (REG_P (XEXP (x, 0))
2679 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2680 && CONST_INT_P (XEXP (x, 1)))
2681 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2682 ep++)
2683 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2684 {
2685 if (! mem_mode
2686 /* Refs inside notes or in DEBUG_INSNs don't count for
2687 this purpose. */
2688 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2689 || GET_CODE (insn) == INSN_LIST
2690 || DEBUG_INSN_P (insn))))
2691 ep->ref_outside_mem = 1;
2692
2693 return
2694 plus_constant (Pmode,
2695 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2696 ep->previous_offset * INTVAL (XEXP (x, 1)));
2697 }
2698
2699 /* fall through */
2700
2701 case CALL:
2702 case COMPARE:
2703 /* See comments before PLUS about handling MINUS. */
2704 case MINUS:
2705 case DIV: case UDIV:
2706 case MOD: case UMOD:
2707 case AND: case IOR: case XOR:
2708 case ROTATERT: case ROTATE:
2709 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2710 case NE: case EQ:
2711 case GE: case GT: case GEU: case GTU:
2712 case LE: case LT: case LEU: case LTU:
2713 {
2714 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2715 for_costs);
2716 rtx new1 = XEXP (x, 1)
2717 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2718 for_costs) : 0;
2719
2720 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2721 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2722 }
2723 return x;
2724
2725 case EXPR_LIST:
2726 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2727 if (XEXP (x, 0))
2728 {
2729 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2730 for_costs);
2731 if (new_rtx != XEXP (x, 0))
2732 {
2733 /* If this is a REG_DEAD note, it is not valid anymore.
2734 Using the eliminated version could result in creating a
2735 REG_DEAD note for the stack or frame pointer. */
2736 if (REG_NOTE_KIND (x) == REG_DEAD)
2737 return (XEXP (x, 1)
2738 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2739 for_costs)
2740 : NULL_RTX);
2741
2742 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2743 }
2744 }
2745
2746 /* fall through */
2747
2748 case INSN_LIST:
2749 case INT_LIST:
2750 /* Now do eliminations in the rest of the chain. If this was
2751 an EXPR_LIST, this might result in allocating more memory than is
2752 strictly needed, but it simplifies the code. */
2753 if (XEXP (x, 1))
2754 {
2755 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2756 for_costs);
2757 if (new_rtx != XEXP (x, 1))
2758 return
2759 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2760 }
2761 return x;
2762
2763 case PRE_INC:
2764 case POST_INC:
2765 case PRE_DEC:
2766 case POST_DEC:
2767 /* We do not support elimination of a register that is modified.
2768 elimination_effects has already make sure that this does not
2769 happen. */
2770 return x;
2771
2772 case PRE_MODIFY:
2773 case POST_MODIFY:
2774 /* We do not support elimination of a register that is modified.
2775 elimination_effects has already make sure that this does not
2776 happen. The only remaining case we need to consider here is
2777 that the increment value may be an eliminable register. */
2778 if (GET_CODE (XEXP (x, 1)) == PLUS
2779 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2780 {
2781 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2782 insn, true, for_costs);
2783
2784 if (new_rtx != XEXP (XEXP (x, 1), 1))
2785 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2786 gen_rtx_PLUS (GET_MODE (x),
2787 XEXP (x, 0), new_rtx));
2788 }
2789 return x;
2790
2791 case STRICT_LOW_PART:
2792 case NEG: case NOT:
2793 case SIGN_EXTEND: case ZERO_EXTEND:
2794 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2795 case FLOAT: case FIX:
2796 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2797 case ABS:
2798 case SQRT:
2799 case FFS:
2800 case CLZ:
2801 case CTZ:
2802 case POPCOUNT:
2803 case PARITY:
2804 case BSWAP:
2805 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2806 for_costs);
2807 if (new_rtx != XEXP (x, 0))
2808 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2809 return x;
2810
2811 case SUBREG:
2812 /* Similar to above processing, but preserve SUBREG_BYTE.
2813 Convert (subreg (mem)) to (mem) if not paradoxical.
2814 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2815 pseudo didn't get a hard reg, we must replace this with the
2816 eliminated version of the memory location because push_reload
2817 may do the replacement in certain circumstances. */
2818 if (REG_P (SUBREG_REG (x))
2819 && !paradoxical_subreg_p (x)
2820 && reg_equivs
2821 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2822 {
2823 new_rtx = SUBREG_REG (x);
2824 }
2825 else
2826 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2827
2828 if (new_rtx != SUBREG_REG (x))
2829 {
2830 poly_int64 x_size = GET_MODE_SIZE (GET_MODE (x));
2831 poly_int64 new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2832
2833 if (MEM_P (new_rtx)
2834 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2835 /* On RISC machines, combine can create rtl of the form
2836 (set (subreg:m1 (reg:m2 R) 0) ...)
2837 where m1 < m2, and expects something interesting to
2838 happen to the entire word. Moreover, it will use the
2839 (reg:m2 R) later, expecting all bits to be preserved.
2840 So if the number of words is the same, preserve the
2841 subreg so that push_reload can see it. */
2842 && !(WORD_REGISTER_OPERATIONS
2843 && known_equal_after_align_down (x_size - 1,
2844 new_size - 1,
2845 UNITS_PER_WORD)))
2846 || known_eq (x_size, new_size))
2847 )
2848 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2849 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2850 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2851 else
2852 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2853 }
2854
2855 return x;
2856
2857 case MEM:
2858 /* Our only special processing is to pass the mode of the MEM to our
2859 recursive call and copy the flags. While we are here, handle this
2860 case more efficiently. */
2861
2862 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2863 for_costs);
2864 if (for_costs
2865 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2866 && !memory_address_p (GET_MODE (x), new_rtx))
2867 note_reg_elim_costly (XEXP (x, 0), insn);
2868
2869 return replace_equiv_address_nv (x, new_rtx);
2870
2871 case USE:
2872 /* Handle insn_list USE that a call to a pure function may generate. */
2873 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2874 for_costs);
2875 if (new_rtx != XEXP (x, 0))
2876 return gen_rtx_USE (GET_MODE (x), new_rtx);
2877 return x;
2878
2879 case CLOBBER:
2880 case ASM_OPERANDS:
2881 gcc_assert (insn && DEBUG_INSN_P (insn));
2882 break;
2883
2884 case SET:
2885 gcc_unreachable ();
2886
2887 default:
2888 break;
2889 }
2890
2891 /* Process each of our operands recursively. If any have changed, make a
2892 copy of the rtx. */
2893 fmt = GET_RTX_FORMAT (code);
2894 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2895 {
2896 if (*fmt == 'e')
2897 {
2898 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2899 for_costs);
2900 if (new_rtx != XEXP (x, i) && ! copied)
2901 {
2902 x = shallow_copy_rtx (x);
2903 copied = 1;
2904 }
2905 XEXP (x, i) = new_rtx;
2906 }
2907 else if (*fmt == 'E')
2908 {
2909 int copied_vec = 0;
2910 for (j = 0; j < XVECLEN (x, i); j++)
2911 {
2912 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2913 for_costs);
2914 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2915 {
2916 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2917 XVEC (x, i)->elem);
2918 if (! copied)
2919 {
2920 x = shallow_copy_rtx (x);
2921 copied = 1;
2922 }
2923 XVEC (x, i) = new_v;
2924 copied_vec = 1;
2925 }
2926 XVECEXP (x, i, j) = new_rtx;
2927 }
2928 }
2929 }
2930
2931 return x;
2932 }
2933
2934 rtx
2935 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2936 {
2937 if (reg_eliminate == NULL)
2938 {
2939 gcc_assert (targetm.no_register_allocation);
2940 return x;
2941 }
2942 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2943 }
2944
2945 /* Scan rtx X for modifications of elimination target registers. Update
2946 the table of eliminables to reflect the changed state. MEM_MODE is
2947 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2948
2949 static void
2950 elimination_effects (rtx x, machine_mode mem_mode)
2951 {
2952 enum rtx_code code = GET_CODE (x);
2953 struct elim_table *ep;
2954 int regno;
2955 int i, j;
2956 const char *fmt;
2957
2958 switch (code)
2959 {
2960 CASE_CONST_ANY:
2961 case CONST:
2962 case SYMBOL_REF:
2963 case CODE_LABEL:
2964 case PC:
2965 case CC0:
2966 case ASM_INPUT:
2967 case ADDR_VEC:
2968 case ADDR_DIFF_VEC:
2969 case RETURN:
2970 return;
2971
2972 case REG:
2973 regno = REGNO (x);
2974
2975 /* First handle the case where we encounter a bare register that
2976 is eliminable. Replace it with a PLUS. */
2977 if (regno < FIRST_PSEUDO_REGISTER)
2978 {
2979 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2980 ep++)
2981 if (ep->from_rtx == x && ep->can_eliminate)
2982 {
2983 if (! mem_mode)
2984 ep->ref_outside_mem = 1;
2985 return;
2986 }
2987
2988 }
2989 else if (reg_renumber[regno] < 0
2990 && reg_equivs
2991 && reg_equiv_constant (regno)
2992 && ! function_invariant_p (reg_equiv_constant (regno)))
2993 elimination_effects (reg_equiv_constant (regno), mem_mode);
2994 return;
2995
2996 case PRE_INC:
2997 case POST_INC:
2998 case PRE_DEC:
2999 case POST_DEC:
3000 case POST_MODIFY:
3001 case PRE_MODIFY:
3002 /* If we modify the source of an elimination rule, disable it. */
3003 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3004 if (ep->from_rtx == XEXP (x, 0))
3005 ep->can_eliminate = 0;
3006
3007 /* If we modify the target of an elimination rule by adding a constant,
3008 update its offset. If we modify the target in any other way, we'll
3009 have to disable the rule as well. */
3010 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3011 if (ep->to_rtx == XEXP (x, 0))
3012 {
3013 poly_int64 size = GET_MODE_SIZE (mem_mode);
3014
3015 /* If more bytes than MEM_MODE are pushed, account for them. */
3016 #ifdef PUSH_ROUNDING
3017 if (ep->to_rtx == stack_pointer_rtx)
3018 size = PUSH_ROUNDING (size);
3019 #endif
3020 if (code == PRE_DEC || code == POST_DEC)
3021 ep->offset += size;
3022 else if (code == PRE_INC || code == POST_INC)
3023 ep->offset -= size;
3024 else if (code == PRE_MODIFY || code == POST_MODIFY)
3025 {
3026 if (GET_CODE (XEXP (x, 1)) == PLUS
3027 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3028 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3029 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3030 else
3031 ep->can_eliminate = 0;
3032 }
3033 }
3034
3035 /* These two aren't unary operators. */
3036 if (code == POST_MODIFY || code == PRE_MODIFY)
3037 break;
3038
3039 /* Fall through to generic unary operation case. */
3040 gcc_fallthrough ();
3041 case STRICT_LOW_PART:
3042 case NEG: case NOT:
3043 case SIGN_EXTEND: case ZERO_EXTEND:
3044 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3045 case FLOAT: case FIX:
3046 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3047 case ABS:
3048 case SQRT:
3049 case FFS:
3050 case CLZ:
3051 case CTZ:
3052 case POPCOUNT:
3053 case PARITY:
3054 case BSWAP:
3055 elimination_effects (XEXP (x, 0), mem_mode);
3056 return;
3057
3058 case SUBREG:
3059 if (REG_P (SUBREG_REG (x))
3060 && !paradoxical_subreg_p (x)
3061 && reg_equivs
3062 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3063 return;
3064
3065 elimination_effects (SUBREG_REG (x), mem_mode);
3066 return;
3067
3068 case USE:
3069 /* If using a register that is the source of an eliminate we still
3070 think can be performed, note it cannot be performed since we don't
3071 know how this register is used. */
3072 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3073 if (ep->from_rtx == XEXP (x, 0))
3074 ep->can_eliminate = 0;
3075
3076 elimination_effects (XEXP (x, 0), mem_mode);
3077 return;
3078
3079 case CLOBBER:
3080 /* If clobbering a register that is the replacement register for an
3081 elimination we still think can be performed, note that it cannot
3082 be performed. Otherwise, we need not be concerned about it. */
3083 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3084 if (ep->to_rtx == XEXP (x, 0))
3085 ep->can_eliminate = 0;
3086
3087 elimination_effects (XEXP (x, 0), mem_mode);
3088 return;
3089
3090 case SET:
3091 /* Check for setting a register that we know about. */
3092 if (REG_P (SET_DEST (x)))
3093 {
3094 /* See if this is setting the replacement register for an
3095 elimination.
3096
3097 If DEST is the hard frame pointer, we do nothing because we
3098 assume that all assignments to the frame pointer are for
3099 non-local gotos and are being done at a time when they are valid
3100 and do not disturb anything else. Some machines want to
3101 eliminate a fake argument pointer (or even a fake frame pointer)
3102 with either the real frame or the stack pointer. Assignments to
3103 the hard frame pointer must not prevent this elimination. */
3104
3105 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3106 ep++)
3107 if (ep->to_rtx == SET_DEST (x)
3108 && SET_DEST (x) != hard_frame_pointer_rtx)
3109 {
3110 /* If it is being incremented, adjust the offset. Otherwise,
3111 this elimination can't be done. */
3112 rtx src = SET_SRC (x);
3113
3114 if (GET_CODE (src) == PLUS
3115 && XEXP (src, 0) == SET_DEST (x)
3116 && CONST_INT_P (XEXP (src, 1)))
3117 ep->offset -= INTVAL (XEXP (src, 1));
3118 else
3119 ep->can_eliminate = 0;
3120 }
3121 }
3122
3123 elimination_effects (SET_DEST (x), VOIDmode);
3124 elimination_effects (SET_SRC (x), VOIDmode);
3125 return;
3126
3127 case MEM:
3128 /* Our only special processing is to pass the mode of the MEM to our
3129 recursive call. */
3130 elimination_effects (XEXP (x, 0), GET_MODE (x));
3131 return;
3132
3133 default:
3134 break;
3135 }
3136
3137 fmt = GET_RTX_FORMAT (code);
3138 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3139 {
3140 if (*fmt == 'e')
3141 elimination_effects (XEXP (x, i), mem_mode);
3142 else if (*fmt == 'E')
3143 for (j = 0; j < XVECLEN (x, i); j++)
3144 elimination_effects (XVECEXP (x, i, j), mem_mode);
3145 }
3146 }
3147
3148 /* Descend through rtx X and verify that no references to eliminable registers
3149 remain. If any do remain, mark the involved register as not
3150 eliminable. */
3151
3152 static void
3153 check_eliminable_occurrences (rtx x)
3154 {
3155 const char *fmt;
3156 int i;
3157 enum rtx_code code;
3158
3159 if (x == 0)
3160 return;
3161
3162 code = GET_CODE (x);
3163
3164 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3165 {
3166 struct elim_table *ep;
3167
3168 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3169 if (ep->from_rtx == x)
3170 ep->can_eliminate = 0;
3171 return;
3172 }
3173
3174 fmt = GET_RTX_FORMAT (code);
3175 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3176 {
3177 if (*fmt == 'e')
3178 check_eliminable_occurrences (XEXP (x, i));
3179 else if (*fmt == 'E')
3180 {
3181 int j;
3182 for (j = 0; j < XVECLEN (x, i); j++)
3183 check_eliminable_occurrences (XVECEXP (x, i, j));
3184 }
3185 }
3186 }
3187 \f
3188 /* Scan INSN and eliminate all eliminable registers in it.
3189
3190 If REPLACE is nonzero, do the replacement destructively. Also
3191 delete the insn as dead it if it is setting an eliminable register.
3192
3193 If REPLACE is zero, do all our allocations in reload_obstack.
3194
3195 If no eliminations were done and this insn doesn't require any elimination
3196 processing (these are not identical conditions: it might be updating sp,
3197 but not referencing fp; this needs to be seen during reload_as_needed so
3198 that the offset between fp and sp can be taken into consideration), zero
3199 is returned. Otherwise, 1 is returned. */
3200
3201 static int
3202 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3203 {
3204 int icode = recog_memoized (insn);
3205 rtx old_body = PATTERN (insn);
3206 int insn_is_asm = asm_noperands (old_body) >= 0;
3207 rtx old_set = single_set (insn);
3208 rtx new_body;
3209 int val = 0;
3210 int i;
3211 rtx substed_operand[MAX_RECOG_OPERANDS];
3212 rtx orig_operand[MAX_RECOG_OPERANDS];
3213 struct elim_table *ep;
3214 rtx plus_src, plus_cst_src;
3215
3216 if (! insn_is_asm && icode < 0)
3217 {
3218 gcc_assert (DEBUG_INSN_P (insn)
3219 || GET_CODE (PATTERN (insn)) == USE
3220 || GET_CODE (PATTERN (insn)) == CLOBBER
3221 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3222 if (DEBUG_BIND_INSN_P (insn))
3223 INSN_VAR_LOCATION_LOC (insn)
3224 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3225 return 0;
3226 }
3227
3228 /* We allow one special case which happens to work on all machines we
3229 currently support: a single set with the source or a REG_EQUAL
3230 note being a PLUS of an eliminable register and a constant. */
3231 plus_src = plus_cst_src = 0;
3232 if (old_set && REG_P (SET_DEST (old_set)))
3233 {
3234 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3235 plus_src = SET_SRC (old_set);
3236 /* First see if the source is of the form (plus (...) CST). */
3237 if (plus_src
3238 && CONST_INT_P (XEXP (plus_src, 1)))
3239 plus_cst_src = plus_src;
3240 else if (REG_P (SET_SRC (old_set))
3241 || plus_src)
3242 {
3243 /* Otherwise, see if we have a REG_EQUAL note of the form
3244 (plus (...) CST). */
3245 rtx links;
3246 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3247 {
3248 if ((REG_NOTE_KIND (links) == REG_EQUAL
3249 || REG_NOTE_KIND (links) == REG_EQUIV)
3250 && GET_CODE (XEXP (links, 0)) == PLUS
3251 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3252 {
3253 plus_cst_src = XEXP (links, 0);
3254 break;
3255 }
3256 }
3257 }
3258
3259 /* Check that the first operand of the PLUS is a hard reg or
3260 the lowpart subreg of one. */
3261 if (plus_cst_src)
3262 {
3263 rtx reg = XEXP (plus_cst_src, 0);
3264 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3265 reg = SUBREG_REG (reg);
3266
3267 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3268 plus_cst_src = 0;
3269 }
3270 }
3271 if (plus_cst_src)
3272 {
3273 rtx reg = XEXP (plus_cst_src, 0);
3274 poly_int64 offset = INTVAL (XEXP (plus_cst_src, 1));
3275
3276 if (GET_CODE (reg) == SUBREG)
3277 reg = SUBREG_REG (reg);
3278
3279 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3280 if (ep->from_rtx == reg && ep->can_eliminate)
3281 {
3282 rtx to_rtx = ep->to_rtx;
3283 offset += ep->offset;
3284 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3285
3286 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3287 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3288 to_rtx);
3289 /* If we have a nonzero offset, and the source is already
3290 a simple REG, the following transformation would
3291 increase the cost of the insn by replacing a simple REG
3292 with (plus (reg sp) CST). So try only when we already
3293 had a PLUS before. */
3294 if (known_eq (offset, 0) || plus_src)
3295 {
3296 rtx new_src = plus_constant (GET_MODE (to_rtx),
3297 to_rtx, offset);
3298
3299 new_body = old_body;
3300 if (! replace)
3301 {
3302 new_body = copy_insn (old_body);
3303 if (REG_NOTES (insn))
3304 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3305 }
3306 PATTERN (insn) = new_body;
3307 old_set = single_set (insn);
3308
3309 /* First see if this insn remains valid when we make the
3310 change. If not, try to replace the whole pattern with
3311 a simple set (this may help if the original insn was a
3312 PARALLEL that was only recognized as single_set due to
3313 REG_UNUSED notes). If this isn't valid either, keep
3314 the INSN_CODE the same and let reload fix it up. */
3315 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3316 {
3317 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3318
3319 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3320 SET_SRC (old_set) = new_src;
3321 }
3322 }
3323 else
3324 break;
3325
3326 val = 1;
3327 /* This can't have an effect on elimination offsets, so skip right
3328 to the end. */
3329 goto done;
3330 }
3331 }
3332
3333 /* Determine the effects of this insn on elimination offsets. */
3334 elimination_effects (old_body, VOIDmode);
3335
3336 /* Eliminate all eliminable registers occurring in operands that
3337 can be handled by reload. */
3338 extract_insn (insn);
3339 for (i = 0; i < recog_data.n_operands; i++)
3340 {
3341 orig_operand[i] = recog_data.operand[i];
3342 substed_operand[i] = recog_data.operand[i];
3343
3344 /* For an asm statement, every operand is eliminable. */
3345 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3346 {
3347 bool is_set_src, in_plus;
3348
3349 /* Check for setting a register that we know about. */
3350 if (recog_data.operand_type[i] != OP_IN
3351 && REG_P (orig_operand[i]))
3352 {
3353 /* If we are assigning to a register that can be eliminated, it
3354 must be as part of a PARALLEL, since the code above handles
3355 single SETs. We must indicate that we can no longer
3356 eliminate this reg. */
3357 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3358 ep++)
3359 if (ep->from_rtx == orig_operand[i])
3360 ep->can_eliminate = 0;
3361 }
3362
3363 /* Companion to the above plus substitution, we can allow
3364 invariants as the source of a plain move. */
3365 is_set_src = false;
3366 if (old_set
3367 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3368 is_set_src = true;
3369 in_plus = false;
3370 if (plus_src
3371 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3372 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3373 in_plus = true;
3374
3375 substed_operand[i]
3376 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3377 replace ? insn : NULL_RTX,
3378 is_set_src || in_plus, false);
3379 if (substed_operand[i] != orig_operand[i])
3380 val = 1;
3381 /* Terminate the search in check_eliminable_occurrences at
3382 this point. */
3383 *recog_data.operand_loc[i] = 0;
3384
3385 /* If an output operand changed from a REG to a MEM and INSN is an
3386 insn, write a CLOBBER insn. */
3387 if (recog_data.operand_type[i] != OP_IN
3388 && REG_P (orig_operand[i])
3389 && MEM_P (substed_operand[i])
3390 && replace)
3391 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3392 }
3393 }
3394
3395 for (i = 0; i < recog_data.n_dups; i++)
3396 *recog_data.dup_loc[i]
3397 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3398
3399 /* If any eliminable remain, they aren't eliminable anymore. */
3400 check_eliminable_occurrences (old_body);
3401
3402 /* Substitute the operands; the new values are in the substed_operand
3403 array. */
3404 for (i = 0; i < recog_data.n_operands; i++)
3405 *recog_data.operand_loc[i] = substed_operand[i];
3406 for (i = 0; i < recog_data.n_dups; i++)
3407 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3408
3409 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3410 re-recognize the insn. We do this in case we had a simple addition
3411 but now can do this as a load-address. This saves an insn in this
3412 common case.
3413 If re-recognition fails, the old insn code number will still be used,
3414 and some register operands may have changed into PLUS expressions.
3415 These will be handled by find_reloads by loading them into a register
3416 again. */
3417
3418 if (val)
3419 {
3420 /* If we aren't replacing things permanently and we changed something,
3421 make another copy to ensure that all the RTL is new. Otherwise
3422 things can go wrong if find_reload swaps commutative operands
3423 and one is inside RTL that has been copied while the other is not. */
3424 new_body = old_body;
3425 if (! replace)
3426 {
3427 new_body = copy_insn (old_body);
3428 if (REG_NOTES (insn))
3429 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3430 }
3431 PATTERN (insn) = new_body;
3432
3433 /* If we had a move insn but now we don't, rerecognize it. This will
3434 cause spurious re-recognition if the old move had a PARALLEL since
3435 the new one still will, but we can't call single_set without
3436 having put NEW_BODY into the insn and the re-recognition won't
3437 hurt in this rare case. */
3438 /* ??? Why this huge if statement - why don't we just rerecognize the
3439 thing always? */
3440 if (! insn_is_asm
3441 && old_set != 0
3442 && ((REG_P (SET_SRC (old_set))
3443 && (GET_CODE (new_body) != SET
3444 || !REG_P (SET_SRC (new_body))))
3445 /* If this was a load from or store to memory, compare
3446 the MEM in recog_data.operand to the one in the insn.
3447 If they are not equal, then rerecognize the insn. */
3448 || (old_set != 0
3449 && ((MEM_P (SET_SRC (old_set))
3450 && SET_SRC (old_set) != recog_data.operand[1])
3451 || (MEM_P (SET_DEST (old_set))
3452 && SET_DEST (old_set) != recog_data.operand[0])))
3453 /* If this was an add insn before, rerecognize. */
3454 || GET_CODE (SET_SRC (old_set)) == PLUS))
3455 {
3456 int new_icode = recog (PATTERN (insn), insn, 0);
3457 if (new_icode >= 0)
3458 INSN_CODE (insn) = new_icode;
3459 }
3460 }
3461
3462 /* Restore the old body. If there were any changes to it, we made a copy
3463 of it while the changes were still in place, so we'll correctly return
3464 a modified insn below. */
3465 if (! replace)
3466 {
3467 /* Restore the old body. */
3468 for (i = 0; i < recog_data.n_operands; i++)
3469 /* Restoring a top-level match_parallel would clobber the new_body
3470 we installed in the insn. */
3471 if (recog_data.operand_loc[i] != &PATTERN (insn))
3472 *recog_data.operand_loc[i] = orig_operand[i];
3473 for (i = 0; i < recog_data.n_dups; i++)
3474 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3475 }
3476
3477 /* Update all elimination pairs to reflect the status after the current
3478 insn. The changes we make were determined by the earlier call to
3479 elimination_effects.
3480
3481 We also detect cases where register elimination cannot be done,
3482 namely, if a register would be both changed and referenced outside a MEM
3483 in the resulting insn since such an insn is often undefined and, even if
3484 not, we cannot know what meaning will be given to it. Note that it is
3485 valid to have a register used in an address in an insn that changes it
3486 (presumably with a pre- or post-increment or decrement).
3487
3488 If anything changes, return nonzero. */
3489
3490 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3491 {
3492 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3493 ep->can_eliminate = 0;
3494
3495 ep->ref_outside_mem = 0;
3496
3497 if (maybe_ne (ep->previous_offset, ep->offset))
3498 val = 1;
3499 }
3500
3501 done:
3502 /* If we changed something, perform elimination in REG_NOTES. This is
3503 needed even when REPLACE is zero because a REG_DEAD note might refer
3504 to a register that we eliminate and could cause a different number
3505 of spill registers to be needed in the final reload pass than in
3506 the pre-passes. */
3507 if (val && REG_NOTES (insn) != 0)
3508 REG_NOTES (insn)
3509 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3510 false);
3511
3512 return val;
3513 }
3514
3515 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3516 register allocator. INSN is the instruction we need to examine, we perform
3517 eliminations in its operands and record cases where eliminating a reg with
3518 an invariant equivalence would add extra cost. */
3519
3520 #pragma GCC diagnostic push
3521 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3522 static void
3523 elimination_costs_in_insn (rtx_insn *insn)
3524 {
3525 int icode = recog_memoized (insn);
3526 rtx old_body = PATTERN (insn);
3527 int insn_is_asm = asm_noperands (old_body) >= 0;
3528 rtx old_set = single_set (insn);
3529 int i;
3530 rtx orig_operand[MAX_RECOG_OPERANDS];
3531 rtx orig_dup[MAX_RECOG_OPERANDS];
3532 struct elim_table *ep;
3533 rtx plus_src, plus_cst_src;
3534 bool sets_reg_p;
3535
3536 if (! insn_is_asm && icode < 0)
3537 {
3538 gcc_assert (DEBUG_INSN_P (insn)
3539 || GET_CODE (PATTERN (insn)) == USE
3540 || GET_CODE (PATTERN (insn)) == CLOBBER
3541 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3542 return;
3543 }
3544
3545 if (old_set != 0 && REG_P (SET_DEST (old_set))
3546 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3547 {
3548 /* Check for setting an eliminable register. */
3549 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3550 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3551 return;
3552 }
3553
3554 /* We allow one special case which happens to work on all machines we
3555 currently support: a single set with the source or a REG_EQUAL
3556 note being a PLUS of an eliminable register and a constant. */
3557 plus_src = plus_cst_src = 0;
3558 sets_reg_p = false;
3559 if (old_set && REG_P (SET_DEST (old_set)))
3560 {
3561 sets_reg_p = true;
3562 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3563 plus_src = SET_SRC (old_set);
3564 /* First see if the source is of the form (plus (...) CST). */
3565 if (plus_src
3566 && CONST_INT_P (XEXP (plus_src, 1)))
3567 plus_cst_src = plus_src;
3568 else if (REG_P (SET_SRC (old_set))
3569 || plus_src)
3570 {
3571 /* Otherwise, see if we have a REG_EQUAL note of the form
3572 (plus (...) CST). */
3573 rtx links;
3574 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3575 {
3576 if ((REG_NOTE_KIND (links) == REG_EQUAL
3577 || REG_NOTE_KIND (links) == REG_EQUIV)
3578 && GET_CODE (XEXP (links, 0)) == PLUS
3579 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3580 {
3581 plus_cst_src = XEXP (links, 0);
3582 break;
3583 }
3584 }
3585 }
3586 }
3587
3588 /* Determine the effects of this insn on elimination offsets. */
3589 elimination_effects (old_body, VOIDmode);
3590
3591 /* Eliminate all eliminable registers occurring in operands that
3592 can be handled by reload. */
3593 extract_insn (insn);
3594 int n_dups = recog_data.n_dups;
3595 for (i = 0; i < n_dups; i++)
3596 orig_dup[i] = *recog_data.dup_loc[i];
3597
3598 int n_operands = recog_data.n_operands;
3599 for (i = 0; i < n_operands; i++)
3600 {
3601 orig_operand[i] = recog_data.operand[i];
3602
3603 /* For an asm statement, every operand is eliminable. */
3604 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3605 {
3606 bool is_set_src, in_plus;
3607
3608 /* Check for setting a register that we know about. */
3609 if (recog_data.operand_type[i] != OP_IN
3610 && REG_P (orig_operand[i]))
3611 {
3612 /* If we are assigning to a register that can be eliminated, it
3613 must be as part of a PARALLEL, since the code above handles
3614 single SETs. We must indicate that we can no longer
3615 eliminate this reg. */
3616 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3617 ep++)
3618 if (ep->from_rtx == orig_operand[i])
3619 ep->can_eliminate = 0;
3620 }
3621
3622 /* Companion to the above plus substitution, we can allow
3623 invariants as the source of a plain move. */
3624 is_set_src = false;
3625 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3626 is_set_src = true;
3627 if (is_set_src && !sets_reg_p)
3628 note_reg_elim_costly (SET_SRC (old_set), insn);
3629 in_plus = false;
3630 if (plus_src && sets_reg_p
3631 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3632 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3633 in_plus = true;
3634
3635 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3636 NULL_RTX,
3637 is_set_src || in_plus, true);
3638 /* Terminate the search in check_eliminable_occurrences at
3639 this point. */
3640 *recog_data.operand_loc[i] = 0;
3641 }
3642 }
3643
3644 for (i = 0; i < n_dups; i++)
3645 *recog_data.dup_loc[i]
3646 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3647
3648 /* If any eliminable remain, they aren't eliminable anymore. */
3649 check_eliminable_occurrences (old_body);
3650
3651 /* Restore the old body. */
3652 for (i = 0; i < n_operands; i++)
3653 *recog_data.operand_loc[i] = orig_operand[i];
3654 for (i = 0; i < n_dups; i++)
3655 *recog_data.dup_loc[i] = orig_dup[i];
3656
3657 /* Update all elimination pairs to reflect the status after the current
3658 insn. The changes we make were determined by the earlier call to
3659 elimination_effects. */
3660
3661 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3662 {
3663 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3664 ep->can_eliminate = 0;
3665
3666 ep->ref_outside_mem = 0;
3667 }
3668
3669 return;
3670 }
3671 #pragma GCC diagnostic pop
3672
3673 /* Loop through all elimination pairs.
3674 Recalculate the number not at initial offset.
3675
3676 Compute the maximum offset (minimum offset if the stack does not
3677 grow downward) for each elimination pair. */
3678
3679 static void
3680 update_eliminable_offsets (void)
3681 {
3682 struct elim_table *ep;
3683
3684 num_not_at_initial_offset = 0;
3685 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3686 {
3687 ep->previous_offset = ep->offset;
3688 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3689 num_not_at_initial_offset++;
3690 }
3691 }
3692
3693 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3694 replacement we currently believe is valid, mark it as not eliminable if X
3695 modifies DEST in any way other than by adding a constant integer to it.
3696
3697 If DEST is the frame pointer, we do nothing because we assume that
3698 all assignments to the hard frame pointer are nonlocal gotos and are being
3699 done at a time when they are valid and do not disturb anything else.
3700 Some machines want to eliminate a fake argument pointer with either the
3701 frame or stack pointer. Assignments to the hard frame pointer must not
3702 prevent this elimination.
3703
3704 Called via note_stores from reload before starting its passes to scan
3705 the insns of the function. */
3706
3707 static void
3708 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3709 {
3710 unsigned int i;
3711
3712 /* A SUBREG of a hard register here is just changing its mode. We should
3713 not see a SUBREG of an eliminable hard register, but check just in
3714 case. */
3715 if (GET_CODE (dest) == SUBREG)
3716 dest = SUBREG_REG (dest);
3717
3718 if (dest == hard_frame_pointer_rtx)
3719 return;
3720
3721 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3722 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3723 && (GET_CODE (x) != SET
3724 || GET_CODE (SET_SRC (x)) != PLUS
3725 || XEXP (SET_SRC (x), 0) != dest
3726 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3727 {
3728 reg_eliminate[i].can_eliminate_previous
3729 = reg_eliminate[i].can_eliminate = 0;
3730 num_eliminable--;
3731 }
3732 }
3733
3734 /* Verify that the initial elimination offsets did not change since the
3735 last call to set_initial_elim_offsets. This is used to catch cases
3736 where something illegal happened during reload_as_needed that could
3737 cause incorrect code to be generated if we did not check for it. */
3738
3739 static bool
3740 verify_initial_elim_offsets (void)
3741 {
3742 poly_int64 t;
3743 struct elim_table *ep;
3744
3745 if (!num_eliminable)
3746 return true;
3747
3748 targetm.compute_frame_layout ();
3749 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3750 {
3751 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3752 if (maybe_ne (t, ep->initial_offset))
3753 return false;
3754 }
3755
3756 return true;
3757 }
3758
3759 /* Reset all offsets on eliminable registers to their initial values. */
3760
3761 static void
3762 set_initial_elim_offsets (void)
3763 {
3764 struct elim_table *ep = reg_eliminate;
3765
3766 targetm.compute_frame_layout ();
3767 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3768 {
3769 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3770 ep->previous_offset = ep->offset = ep->initial_offset;
3771 }
3772
3773 num_not_at_initial_offset = 0;
3774 }
3775
3776 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3777
3778 static void
3779 set_initial_eh_label_offset (rtx label)
3780 {
3781 set_label_offsets (label, NULL, 1);
3782 }
3783
3784 /* Initialize the known label offsets.
3785 Set a known offset for each forced label to be at the initial offset
3786 of each elimination. We do this because we assume that all
3787 computed jumps occur from a location where each elimination is
3788 at its initial offset.
3789 For all other labels, show that we don't know the offsets. */
3790
3791 static void
3792 set_initial_label_offsets (void)
3793 {
3794 memset (offsets_known_at, 0, num_labels);
3795
3796 unsigned int i;
3797 rtx_insn *insn;
3798 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3799 set_label_offsets (insn, NULL, 1);
3800
3801 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3802 if (x->insn ())
3803 set_label_offsets (x->insn (), NULL, 1);
3804
3805 for_each_eh_label (set_initial_eh_label_offset);
3806 }
3807
3808 /* Set all elimination offsets to the known values for the code label given
3809 by INSN. */
3810
3811 static void
3812 set_offsets_for_label (rtx_insn *insn)
3813 {
3814 unsigned int i;
3815 int label_nr = CODE_LABEL_NUMBER (insn);
3816 struct elim_table *ep;
3817
3818 num_not_at_initial_offset = 0;
3819 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3820 {
3821 ep->offset = ep->previous_offset
3822 = offsets_at[label_nr - first_label_num][i];
3823 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3824 num_not_at_initial_offset++;
3825 }
3826 }
3827
3828 /* See if anything that happened changes which eliminations are valid.
3829 For example, on the SPARC, whether or not the frame pointer can
3830 be eliminated can depend on what registers have been used. We need
3831 not check some conditions again (such as flag_omit_frame_pointer)
3832 since they can't have changed. */
3833
3834 static void
3835 update_eliminables (HARD_REG_SET *pset)
3836 {
3837 int previous_frame_pointer_needed = frame_pointer_needed;
3838 struct elim_table *ep;
3839
3840 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3841 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3842 && targetm.frame_pointer_required ())
3843 || ! targetm.can_eliminate (ep->from, ep->to)
3844 )
3845 ep->can_eliminate = 0;
3846
3847 /* Look for the case where we have discovered that we can't replace
3848 register A with register B and that means that we will now be
3849 trying to replace register A with register C. This means we can
3850 no longer replace register C with register B and we need to disable
3851 such an elimination, if it exists. This occurs often with A == ap,
3852 B == sp, and C == fp. */
3853
3854 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3855 {
3856 struct elim_table *op;
3857 int new_to = -1;
3858
3859 if (! ep->can_eliminate && ep->can_eliminate_previous)
3860 {
3861 /* Find the current elimination for ep->from, if there is a
3862 new one. */
3863 for (op = reg_eliminate;
3864 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3865 if (op->from == ep->from && op->can_eliminate)
3866 {
3867 new_to = op->to;
3868 break;
3869 }
3870
3871 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3872 disable it. */
3873 for (op = reg_eliminate;
3874 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3875 if (op->from == new_to && op->to == ep->to)
3876 op->can_eliminate = 0;
3877 }
3878 }
3879
3880 /* See if any registers that we thought we could eliminate the previous
3881 time are no longer eliminable. If so, something has changed and we
3882 must spill the register. Also, recompute the number of eliminable
3883 registers and see if the frame pointer is needed; it is if there is
3884 no elimination of the frame pointer that we can perform. */
3885
3886 frame_pointer_needed = 1;
3887 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3888 {
3889 if (ep->can_eliminate
3890 && ep->from == FRAME_POINTER_REGNUM
3891 && ep->to != HARD_FRAME_POINTER_REGNUM
3892 && (! SUPPORTS_STACK_ALIGNMENT
3893 || ! crtl->stack_realign_needed))
3894 frame_pointer_needed = 0;
3895
3896 if (! ep->can_eliminate && ep->can_eliminate_previous)
3897 {
3898 ep->can_eliminate_previous = 0;
3899 SET_HARD_REG_BIT (*pset, ep->from);
3900 num_eliminable--;
3901 }
3902 }
3903
3904 /* If we didn't need a frame pointer last time, but we do now, spill
3905 the hard frame pointer. */
3906 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3907 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3908 }
3909
3910 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3911 Return true iff a register was spilled. */
3912
3913 static bool
3914 update_eliminables_and_spill (void)
3915 {
3916 int i;
3917 bool did_spill = false;
3918 HARD_REG_SET to_spill;
3919 CLEAR_HARD_REG_SET (to_spill);
3920 update_eliminables (&to_spill);
3921 used_spill_regs &= ~to_spill;
3922
3923 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3924 if (TEST_HARD_REG_BIT (to_spill, i))
3925 {
3926 spill_hard_reg (i, 1);
3927 did_spill = true;
3928
3929 /* Regardless of the state of spills, if we previously had
3930 a register that we thought we could eliminate, but now
3931 cannot eliminate, we must run another pass.
3932
3933 Consider pseudos which have an entry in reg_equiv_* which
3934 reference an eliminable register. We must make another pass
3935 to update reg_equiv_* so that we do not substitute in the
3936 old value from when we thought the elimination could be
3937 performed. */
3938 }
3939 return did_spill;
3940 }
3941
3942 /* Return true if X is used as the target register of an elimination. */
3943
3944 bool
3945 elimination_target_reg_p (rtx x)
3946 {
3947 struct elim_table *ep;
3948
3949 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3950 if (ep->to_rtx == x && ep->can_eliminate)
3951 return true;
3952
3953 return false;
3954 }
3955
3956 /* Initialize the table of registers to eliminate.
3957 Pre-condition: global flag frame_pointer_needed has been set before
3958 calling this function. */
3959
3960 static void
3961 init_elim_table (void)
3962 {
3963 struct elim_table *ep;
3964 const struct elim_table_1 *ep1;
3965
3966 if (!reg_eliminate)
3967 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3968
3969 num_eliminable = 0;
3970
3971 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3972 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3973 {
3974 ep->from = ep1->from;
3975 ep->to = ep1->to;
3976 ep->can_eliminate = ep->can_eliminate_previous
3977 = (targetm.can_eliminate (ep->from, ep->to)
3978 && ! (ep->to == STACK_POINTER_REGNUM
3979 && frame_pointer_needed
3980 && (! SUPPORTS_STACK_ALIGNMENT
3981 || ! stack_realign_fp)));
3982 }
3983
3984 /* Count the number of eliminable registers and build the FROM and TO
3985 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3986 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3987 We depend on this. */
3988 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3989 {
3990 num_eliminable += ep->can_eliminate;
3991 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3992 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3993 }
3994 }
3995
3996 /* Find all the pseudo registers that didn't get hard regs
3997 but do have known equivalent constants or memory slots.
3998 These include parameters (known equivalent to parameter slots)
3999 and cse'd or loop-moved constant memory addresses.
4000
4001 Record constant equivalents in reg_equiv_constant
4002 so they will be substituted by find_reloads.
4003 Record memory equivalents in reg_mem_equiv so they can
4004 be substituted eventually by altering the REG-rtx's. */
4005
4006 static void
4007 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4008 {
4009 int i;
4010 rtx_insn *insn;
4011
4012 grow_reg_equivs ();
4013 if (do_subregs)
4014 reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno);
4015 else
4016 reg_max_ref_mode = NULL;
4017
4018 num_eliminable_invariants = 0;
4019
4020 first_label_num = get_first_label_num ();
4021 num_labels = max_label_num () - first_label_num;
4022
4023 /* Allocate the tables used to store offset information at labels. */
4024 offsets_known_at = XNEWVEC (char, num_labels);
4025 offsets_at = (poly_int64_pod (*)[NUM_ELIMINABLE_REGS])
4026 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (poly_int64));
4027
4028 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4029 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4030 find largest such for each pseudo. FIRST is the head of the insn
4031 list. */
4032
4033 for (insn = first; insn; insn = NEXT_INSN (insn))
4034 {
4035 rtx set = single_set (insn);
4036
4037 /* We may introduce USEs that we want to remove at the end, so
4038 we'll mark them with QImode. Make sure there are no
4039 previously-marked insns left by say regmove. */
4040 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4041 && GET_MODE (insn) != VOIDmode)
4042 PUT_MODE (insn, VOIDmode);
4043
4044 if (do_subregs && NONDEBUG_INSN_P (insn))
4045 scan_paradoxical_subregs (PATTERN (insn));
4046
4047 if (set != 0 && REG_P (SET_DEST (set)))
4048 {
4049 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4050 rtx x;
4051
4052 if (! note)
4053 continue;
4054
4055 i = REGNO (SET_DEST (set));
4056 x = XEXP (note, 0);
4057
4058 if (i <= LAST_VIRTUAL_REGISTER)
4059 continue;
4060
4061 /* If flag_pic and we have constant, verify it's legitimate. */
4062 if (!CONSTANT_P (x)
4063 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4064 {
4065 /* It can happen that a REG_EQUIV note contains a MEM
4066 that is not a legitimate memory operand. As later
4067 stages of reload assume that all addresses found
4068 in the reg_equiv_* arrays were originally legitimate,
4069 we ignore such REG_EQUIV notes. */
4070 if (memory_operand (x, VOIDmode))
4071 {
4072 /* Always unshare the equivalence, so we can
4073 substitute into this insn without touching the
4074 equivalence. */
4075 reg_equiv_memory_loc (i) = copy_rtx (x);
4076 }
4077 else if (function_invariant_p (x))
4078 {
4079 machine_mode mode;
4080
4081 mode = GET_MODE (SET_DEST (set));
4082 if (GET_CODE (x) == PLUS)
4083 {
4084 /* This is PLUS of frame pointer and a constant,
4085 and might be shared. Unshare it. */
4086 reg_equiv_invariant (i) = copy_rtx (x);
4087 num_eliminable_invariants++;
4088 }
4089 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4090 {
4091 reg_equiv_invariant (i) = x;
4092 num_eliminable_invariants++;
4093 }
4094 else if (targetm.legitimate_constant_p (mode, x))
4095 reg_equiv_constant (i) = x;
4096 else
4097 {
4098 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4099 if (! reg_equiv_memory_loc (i))
4100 reg_equiv_init (i) = NULL;
4101 }
4102 }
4103 else
4104 {
4105 reg_equiv_init (i) = NULL;
4106 continue;
4107 }
4108 }
4109 else
4110 reg_equiv_init (i) = NULL;
4111 }
4112 }
4113
4114 if (dump_file)
4115 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4116 if (reg_equiv_init (i))
4117 {
4118 fprintf (dump_file, "init_insns for %u: ", i);
4119 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4120 fprintf (dump_file, "\n");
4121 }
4122 }
4123
4124 /* Indicate that we no longer have known memory locations or constants.
4125 Free all data involved in tracking these. */
4126
4127 static void
4128 free_reg_equiv (void)
4129 {
4130 int i;
4131
4132 free (offsets_known_at);
4133 free (offsets_at);
4134 offsets_at = 0;
4135 offsets_known_at = 0;
4136
4137 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4138 if (reg_equiv_alt_mem_list (i))
4139 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4140 vec_free (reg_equivs);
4141 }
4142 \f
4143 /* Kick all pseudos out of hard register REGNO.
4144
4145 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4146 because we found we can't eliminate some register. In the case, no pseudos
4147 are allowed to be in the register, even if they are only in a block that
4148 doesn't require spill registers, unlike the case when we are spilling this
4149 hard reg to produce another spill register.
4150
4151 Return nonzero if any pseudos needed to be kicked out. */
4152
4153 static void
4154 spill_hard_reg (unsigned int regno, int cant_eliminate)
4155 {
4156 int i;
4157
4158 if (cant_eliminate)
4159 {
4160 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4161 df_set_regs_ever_live (regno, true);
4162 }
4163
4164 /* Spill every pseudo reg that was allocated to this reg
4165 or to something that overlaps this reg. */
4166
4167 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4168 if (reg_renumber[i] >= 0
4169 && (unsigned int) reg_renumber[i] <= regno
4170 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4171 SET_REGNO_REG_SET (&spilled_pseudos, i);
4172 }
4173
4174 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4175 insns that need reloads, this function is used to actually spill pseudo
4176 registers and try to reallocate them. It also sets up the spill_regs
4177 array for use by choose_reload_regs.
4178
4179 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4180 that we displace from hard registers. */
4181
4182 static int
4183 finish_spills (int global)
4184 {
4185 class insn_chain *chain;
4186 int something_changed = 0;
4187 unsigned i;
4188 reg_set_iterator rsi;
4189
4190 /* Build the spill_regs array for the function. */
4191 /* If there are some registers still to eliminate and one of the spill regs
4192 wasn't ever used before, additional stack space may have to be
4193 allocated to store this register. Thus, we may have changed the offset
4194 between the stack and frame pointers, so mark that something has changed.
4195
4196 One might think that we need only set VAL to 1 if this is a call-used
4197 register. However, the set of registers that must be saved by the
4198 prologue is not identical to the call-used set. For example, the
4199 register used by the call insn for the return PC is a call-used register,
4200 but must be saved by the prologue. */
4201
4202 n_spills = 0;
4203 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4204 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4205 {
4206 spill_reg_order[i] = n_spills;
4207 spill_regs[n_spills++] = i;
4208 if (num_eliminable && ! df_regs_ever_live_p (i))
4209 something_changed = 1;
4210 df_set_regs_ever_live (i, true);
4211 }
4212 else
4213 spill_reg_order[i] = -1;
4214
4215 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4216 if (reg_renumber[i] >= 0)
4217 {
4218 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4219 /* Mark it as no longer having a hard register home. */
4220 reg_renumber[i] = -1;
4221 if (ira_conflicts_p)
4222 /* Inform IRA about the change. */
4223 ira_mark_allocation_change (i);
4224 /* We will need to scan everything again. */
4225 something_changed = 1;
4226 }
4227
4228 /* Retry global register allocation if possible. */
4229 if (global && ira_conflicts_p)
4230 {
4231 unsigned int n;
4232
4233 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4234 /* For every insn that needs reloads, set the registers used as spill
4235 regs in pseudo_forbidden_regs for every pseudo live across the
4236 insn. */
4237 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4238 {
4239 EXECUTE_IF_SET_IN_REG_SET
4240 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4241 {
4242 pseudo_forbidden_regs[i] |= chain->used_spill_regs;
4243 }
4244 EXECUTE_IF_SET_IN_REG_SET
4245 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4246 {
4247 pseudo_forbidden_regs[i] |= chain->used_spill_regs;
4248 }
4249 }
4250
4251 /* Retry allocating the pseudos spilled in IRA and the
4252 reload. For each reg, merge the various reg sets that
4253 indicate which hard regs can't be used, and call
4254 ira_reassign_pseudos. */
4255 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4256 if (reg_old_renumber[i] != reg_renumber[i])
4257 {
4258 if (reg_renumber[i] < 0)
4259 temp_pseudo_reg_arr[n++] = i;
4260 else
4261 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4262 }
4263 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4264 bad_spill_regs_global,
4265 pseudo_forbidden_regs, pseudo_previous_regs,
4266 &spilled_pseudos))
4267 something_changed = 1;
4268 }
4269 /* Fix up the register information in the insn chain.
4270 This involves deleting those of the spilled pseudos which did not get
4271 a new hard register home from the live_{before,after} sets. */
4272 for (chain = reload_insn_chain; chain; chain = chain->next)
4273 {
4274 HARD_REG_SET used_by_pseudos;
4275 HARD_REG_SET used_by_pseudos2;
4276
4277 if (! ira_conflicts_p)
4278 {
4279 /* Don't do it for IRA because IRA and the reload still can
4280 assign hard registers to the spilled pseudos on next
4281 reload iterations. */
4282 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4283 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4284 }
4285 /* Mark any unallocated hard regs as available for spills. That
4286 makes inheritance work somewhat better. */
4287 if (chain->need_reload)
4288 {
4289 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4290 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4291 used_by_pseudos |= used_by_pseudos2;
4292
4293 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4294 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4295 /* Value of chain->used_spill_regs from previous iteration
4296 may be not included in the value calculated here because
4297 of possible removing caller-saves insns (see function
4298 delete_caller_save_insns. */
4299 chain->used_spill_regs = ~used_by_pseudos & used_spill_regs;
4300 }
4301 }
4302
4303 CLEAR_REG_SET (&changed_allocation_pseudos);
4304 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4305 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4306 {
4307 int regno = reg_renumber[i];
4308 if (reg_old_renumber[i] == regno)
4309 continue;
4310
4311 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4312
4313 alter_reg (i, reg_old_renumber[i], false);
4314 reg_old_renumber[i] = regno;
4315 if (dump_file)
4316 {
4317 if (regno == -1)
4318 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4319 else
4320 fprintf (dump_file, " Register %d now in %d.\n\n",
4321 i, reg_renumber[i]);
4322 }
4323 }
4324
4325 return something_changed;
4326 }
4327 \f
4328 /* Find all paradoxical subregs within X and update reg_max_ref_mode. */
4329
4330 static void
4331 scan_paradoxical_subregs (rtx x)
4332 {
4333 int i;
4334 const char *fmt;
4335 enum rtx_code code = GET_CODE (x);
4336
4337 switch (code)
4338 {
4339 case REG:
4340 case CONST:
4341 case SYMBOL_REF:
4342 case LABEL_REF:
4343 CASE_CONST_ANY:
4344 case CC0:
4345 case PC:
4346 case USE:
4347 case CLOBBER:
4348 return;
4349
4350 case SUBREG:
4351 if (REG_P (SUBREG_REG (x)))
4352 {
4353 unsigned int regno = REGNO (SUBREG_REG (x));
4354 if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x)))
4355 {
4356 reg_max_ref_mode[regno] = GET_MODE (x);
4357 mark_home_live_1 (regno, GET_MODE (x));
4358 }
4359 }
4360 return;
4361
4362 default:
4363 break;
4364 }
4365
4366 fmt = GET_RTX_FORMAT (code);
4367 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4368 {
4369 if (fmt[i] == 'e')
4370 scan_paradoxical_subregs (XEXP (x, i));
4371 else if (fmt[i] == 'E')
4372 {
4373 int j;
4374 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4375 scan_paradoxical_subregs (XVECEXP (x, i, j));
4376 }
4377 }
4378 }
4379
4380 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4381 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4382 and apply the corresponding narrowing subreg to *OTHER_PTR.
4383 Return true if the operands were changed, false otherwise. */
4384
4385 static bool
4386 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4387 {
4388 rtx op, inner, other, tem;
4389
4390 op = *op_ptr;
4391 if (!paradoxical_subreg_p (op))
4392 return false;
4393 inner = SUBREG_REG (op);
4394
4395 other = *other_ptr;
4396 tem = gen_lowpart_common (GET_MODE (inner), other);
4397 if (!tem)
4398 return false;
4399
4400 /* If the lowpart operation turned a hard register into a subreg,
4401 rather than simplifying it to another hard register, then the
4402 mode change cannot be properly represented. For example, OTHER
4403 might be valid in its current mode, but not in the new one. */
4404 if (GET_CODE (tem) == SUBREG
4405 && REG_P (other)
4406 && HARD_REGISTER_P (other))
4407 return false;
4408
4409 *op_ptr = inner;
4410 *other_ptr = tem;
4411 return true;
4412 }
4413 \f
4414 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4415 examine all of the reload insns between PREV and NEXT exclusive, and
4416 annotate all that may trap. */
4417
4418 static void
4419 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4420 {
4421 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4422 if (note == NULL)
4423 return;
4424 if (!insn_could_throw_p (insn))
4425 remove_note (insn, note);
4426 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4427 }
4428
4429 /* Reload pseudo-registers into hard regs around each insn as needed.
4430 Additional register load insns are output before the insn that needs it
4431 and perhaps store insns after insns that modify the reloaded pseudo reg.
4432
4433 reg_last_reload_reg and reg_reloaded_contents keep track of
4434 which registers are already available in reload registers.
4435 We update these for the reloads that we perform,
4436 as the insns are scanned. */
4437
4438 static void
4439 reload_as_needed (int live_known)
4440 {
4441 class insn_chain *chain;
4442 #if AUTO_INC_DEC
4443 int i;
4444 #endif
4445 rtx_note *marker;
4446
4447 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4448 memset (spill_reg_store, 0, sizeof spill_reg_store);
4449 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4450 INIT_REG_SET (&reg_has_output_reload);
4451 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4452
4453 set_initial_elim_offsets ();
4454
4455 /* Generate a marker insn that we will move around. */
4456 marker = emit_note (NOTE_INSN_DELETED);
4457 unlink_insn_chain (marker, marker);
4458
4459 for (chain = reload_insn_chain; chain; chain = chain->next)
4460 {
4461 rtx_insn *prev = 0;
4462 rtx_insn *insn = chain->insn;
4463 rtx_insn *old_next = NEXT_INSN (insn);
4464 #if AUTO_INC_DEC
4465 rtx_insn *old_prev = PREV_INSN (insn);
4466 #endif
4467
4468 if (will_delete_init_insn_p (insn))
4469 continue;
4470
4471 /* If we pass a label, copy the offsets from the label information
4472 into the current offsets of each elimination. */
4473 if (LABEL_P (insn))
4474 set_offsets_for_label (insn);
4475
4476 else if (INSN_P (insn))
4477 {
4478 regset_head regs_to_forget;
4479 INIT_REG_SET (&regs_to_forget);
4480 note_stores (insn, forget_old_reloads_1, &regs_to_forget);
4481
4482 /* If this is a USE and CLOBBER of a MEM, ensure that any
4483 references to eliminable registers have been removed. */
4484
4485 if ((GET_CODE (PATTERN (insn)) == USE
4486 || GET_CODE (PATTERN (insn)) == CLOBBER)
4487 && MEM_P (XEXP (PATTERN (insn), 0)))
4488 XEXP (XEXP (PATTERN (insn), 0), 0)
4489 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4490 GET_MODE (XEXP (PATTERN (insn), 0)),
4491 NULL_RTX);
4492
4493 /* If we need to do register elimination processing, do so.
4494 This might delete the insn, in which case we are done. */
4495 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4496 {
4497 eliminate_regs_in_insn (insn, 1);
4498 if (NOTE_P (insn))
4499 {
4500 update_eliminable_offsets ();
4501 CLEAR_REG_SET (&regs_to_forget);
4502 continue;
4503 }
4504 }
4505
4506 /* If need_elim is nonzero but need_reload is zero, one might think
4507 that we could simply set n_reloads to 0. However, find_reloads
4508 could have done some manipulation of the insn (such as swapping
4509 commutative operands), and these manipulations are lost during
4510 the first pass for every insn that needs register elimination.
4511 So the actions of find_reloads must be redone here. */
4512
4513 if (! chain->need_elim && ! chain->need_reload
4514 && ! chain->need_operand_change)
4515 n_reloads = 0;
4516 /* First find the pseudo regs that must be reloaded for this insn.
4517 This info is returned in the tables reload_... (see reload.h).
4518 Also modify the body of INSN by substituting RELOAD
4519 rtx's for those pseudo regs. */
4520 else
4521 {
4522 CLEAR_REG_SET (&reg_has_output_reload);
4523 CLEAR_HARD_REG_SET (reg_is_output_reload);
4524
4525 find_reloads (insn, 1, spill_indirect_levels, live_known,
4526 spill_reg_order);
4527 }
4528
4529 if (n_reloads > 0)
4530 {
4531 rtx_insn *next = NEXT_INSN (insn);
4532
4533 /* ??? PREV can get deleted by reload inheritance.
4534 Work around this by emitting a marker note. */
4535 prev = PREV_INSN (insn);
4536 reorder_insns_nobb (marker, marker, prev);
4537
4538 /* Now compute which reload regs to reload them into. Perhaps
4539 reusing reload regs from previous insns, or else output
4540 load insns to reload them. Maybe output store insns too.
4541 Record the choices of reload reg in reload_reg_rtx. */
4542 choose_reload_regs (chain);
4543
4544 /* Generate the insns to reload operands into or out of
4545 their reload regs. */
4546 emit_reload_insns (chain);
4547
4548 /* Substitute the chosen reload regs from reload_reg_rtx
4549 into the insn's body (or perhaps into the bodies of other
4550 load and store insn that we just made for reloading
4551 and that we moved the structure into). */
4552 subst_reloads (insn);
4553
4554 prev = PREV_INSN (marker);
4555 unlink_insn_chain (marker, marker);
4556
4557 /* Adjust the exception region notes for loads and stores. */
4558 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4559 fixup_eh_region_note (insn, prev, next);
4560
4561 /* Adjust the location of REG_ARGS_SIZE. */
4562 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4563 if (p)
4564 {
4565 remove_note (insn, p);
4566 fixup_args_size_notes (prev, PREV_INSN (next),
4567 get_args_size (p));
4568 }
4569
4570 /* If this was an ASM, make sure that all the reload insns
4571 we have generated are valid. If not, give an error
4572 and delete them. */
4573 if (asm_noperands (PATTERN (insn)) >= 0)
4574 for (rtx_insn *p = NEXT_INSN (prev);
4575 p != next;
4576 p = NEXT_INSN (p))
4577 if (p != insn && INSN_P (p)
4578 && GET_CODE (PATTERN (p)) != USE
4579 && (recog_memoized (p) < 0
4580 || (extract_insn (p),
4581 !(constrain_operands (1,
4582 get_enabled_alternatives (p))))))
4583 {
4584 error_for_asm (insn,
4585 "%<asm%> operand requires "
4586 "impossible reload");
4587 delete_insn (p);
4588 }
4589 }
4590
4591 if (num_eliminable && chain->need_elim)
4592 update_eliminable_offsets ();
4593
4594 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4595 is no longer validly lying around to save a future reload.
4596 Note that this does not detect pseudos that were reloaded
4597 for this insn in order to be stored in
4598 (obeying register constraints). That is correct; such reload
4599 registers ARE still valid. */
4600 forget_marked_reloads (&regs_to_forget);
4601 CLEAR_REG_SET (&regs_to_forget);
4602
4603 /* There may have been CLOBBER insns placed after INSN. So scan
4604 between INSN and NEXT and use them to forget old reloads. */
4605 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4606 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4607 note_stores (x, forget_old_reloads_1, NULL);
4608
4609 #if AUTO_INC_DEC
4610 /* Likewise for regs altered by auto-increment in this insn.
4611 REG_INC notes have been changed by reloading:
4612 find_reloads_address_1 records substitutions for them,
4613 which have been performed by subst_reloads above. */
4614 for (i = n_reloads - 1; i >= 0; i--)
4615 {
4616 rtx in_reg = rld[i].in_reg;
4617 if (in_reg)
4618 {
4619 enum rtx_code code = GET_CODE (in_reg);
4620 /* PRE_INC / PRE_DEC will have the reload register ending up
4621 with the same value as the stack slot, but that doesn't
4622 hold true for POST_INC / POST_DEC. Either we have to
4623 convert the memory access to a true POST_INC / POST_DEC,
4624 or we can't use the reload register for inheritance. */
4625 if ((code == POST_INC || code == POST_DEC)
4626 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4627 REGNO (rld[i].reg_rtx))
4628 /* Make sure it is the inc/dec pseudo, and not
4629 some other (e.g. output operand) pseudo. */
4630 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4631 == REGNO (XEXP (in_reg, 0))))
4632
4633 {
4634 rtx reload_reg = rld[i].reg_rtx;
4635 machine_mode mode = GET_MODE (reload_reg);
4636 int n = 0;
4637 rtx_insn *p;
4638
4639 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4640 {
4641 /* We really want to ignore REG_INC notes here, so
4642 use PATTERN (p) as argument to reg_set_p . */
4643 if (reg_set_p (reload_reg, PATTERN (p)))
4644 break;
4645 n = count_occurrences (PATTERN (p), reload_reg, 0);
4646 if (! n)
4647 continue;
4648 if (n == 1)
4649 {
4650 rtx replace_reg
4651 = gen_rtx_fmt_e (code, mode, reload_reg);
4652
4653 validate_replace_rtx_group (reload_reg,
4654 replace_reg, p);
4655 n = verify_changes (0);
4656
4657 /* We must also verify that the constraints
4658 are met after the replacement. Make sure
4659 extract_insn is only called for an insn
4660 where the replacements were found to be
4661 valid so far. */
4662 if (n)
4663 {
4664 extract_insn (p);
4665 n = constrain_operands (1,
4666 get_enabled_alternatives (p));
4667 }
4668
4669 /* If the constraints were not met, then
4670 undo the replacement, else confirm it. */
4671 if (!n)
4672 cancel_changes (0);
4673 else
4674 confirm_change_group ();
4675 }
4676 break;
4677 }
4678 if (n == 1)
4679 {
4680 add_reg_note (p, REG_INC, reload_reg);
4681 /* Mark this as having an output reload so that the
4682 REG_INC processing code below won't invalidate
4683 the reload for inheritance. */
4684 SET_HARD_REG_BIT (reg_is_output_reload,
4685 REGNO (reload_reg));
4686 SET_REGNO_REG_SET (&reg_has_output_reload,
4687 REGNO (XEXP (in_reg, 0)));
4688 }
4689 else
4690 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4691 NULL);
4692 }
4693 else if ((code == PRE_INC || code == PRE_DEC)
4694 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4695 REGNO (rld[i].reg_rtx))
4696 /* Make sure it is the inc/dec pseudo, and not
4697 some other (e.g. output operand) pseudo. */
4698 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4699 == REGNO (XEXP (in_reg, 0))))
4700 {
4701 SET_HARD_REG_BIT (reg_is_output_reload,
4702 REGNO (rld[i].reg_rtx));
4703 SET_REGNO_REG_SET (&reg_has_output_reload,
4704 REGNO (XEXP (in_reg, 0)));
4705 }
4706 else if (code == PRE_INC || code == PRE_DEC
4707 || code == POST_INC || code == POST_DEC)
4708 {
4709 int in_regno = REGNO (XEXP (in_reg, 0));
4710
4711 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4712 {
4713 int in_hard_regno;
4714 bool forget_p = true;
4715
4716 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4717 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4718 in_hard_regno))
4719 {
4720 for (rtx_insn *x = (old_prev ?
4721 NEXT_INSN (old_prev) : insn);
4722 x != old_next;
4723 x = NEXT_INSN (x))
4724 if (x == reg_reloaded_insn[in_hard_regno])
4725 {
4726 forget_p = false;
4727 break;
4728 }
4729 }
4730 /* If for some reasons, we didn't set up
4731 reg_last_reload_reg in this insn,
4732 invalidate inheritance from previous
4733 insns for the incremented/decremented
4734 register. Such registers will be not in
4735 reg_has_output_reload. Invalidate it
4736 also if the corresponding element in
4737 reg_reloaded_insn is also
4738 invalidated. */
4739 if (forget_p)
4740 forget_old_reloads_1 (XEXP (in_reg, 0),
4741 NULL_RTX, NULL);
4742 }
4743 }
4744 }
4745 }
4746 /* If a pseudo that got a hard register is auto-incremented,
4747 we must purge records of copying it into pseudos without
4748 hard registers. */
4749 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4750 if (REG_NOTE_KIND (x) == REG_INC)
4751 {
4752 /* See if this pseudo reg was reloaded in this insn.
4753 If so, its last-reload info is still valid
4754 because it is based on this insn's reload. */
4755 for (i = 0; i < n_reloads; i++)
4756 if (rld[i].out == XEXP (x, 0))
4757 break;
4758
4759 if (i == n_reloads)
4760 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4761 }
4762 #endif
4763 }
4764 /* A reload reg's contents are unknown after a label. */
4765 if (LABEL_P (insn))
4766 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4767
4768 /* Don't assume a reload reg is still good after a call insn
4769 if it is a call-used reg, or if it contains a value that will
4770 be partially clobbered by the call. */
4771 else if (CALL_P (insn))
4772 {
4773 reg_reloaded_valid
4774 &= ~insn_callee_abi (insn).full_and_partial_reg_clobbers ();
4775
4776 /* If this is a call to a setjmp-type function, we must not
4777 reuse any reload reg contents across the call; that will
4778 just be clobbered by other uses of the register in later
4779 code, before the longjmp. */
4780 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4781 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4782 }
4783 }
4784
4785 /* Clean up. */
4786 free (reg_last_reload_reg);
4787 CLEAR_REG_SET (&reg_has_output_reload);
4788 }
4789
4790 /* Discard all record of any value reloaded from X,
4791 or reloaded in X from someplace else;
4792 unless X is an output reload reg of the current insn.
4793
4794 X may be a hard reg (the reload reg)
4795 or it may be a pseudo reg that was reloaded from.
4796
4797 When DATA is non-NULL just mark the registers in regset
4798 to be forgotten later. */
4799
4800 static void
4801 forget_old_reloads_1 (rtx x, const_rtx, void *data)
4802 {
4803 unsigned int regno;
4804 unsigned int nr;
4805 regset regs = (regset) data;
4806
4807 /* note_stores does give us subregs of hard regs,
4808 subreg_regno_offset requires a hard reg. */
4809 while (GET_CODE (x) == SUBREG)
4810 {
4811 /* We ignore the subreg offset when calculating the regno,
4812 because we are using the entire underlying hard register
4813 below. */
4814 x = SUBREG_REG (x);
4815 }
4816
4817 if (!REG_P (x))
4818 return;
4819
4820 regno = REGNO (x);
4821
4822 if (regno >= FIRST_PSEUDO_REGISTER)
4823 nr = 1;
4824 else
4825 {
4826 unsigned int i;
4827
4828 nr = REG_NREGS (x);
4829 /* Storing into a spilled-reg invalidates its contents.
4830 This can happen if a block-local pseudo is allocated to that reg
4831 and it wasn't spilled because this block's total need is 0.
4832 Then some insn might have an optional reload and use this reg. */
4833 if (!regs)
4834 for (i = 0; i < nr; i++)
4835 /* But don't do this if the reg actually serves as an output
4836 reload reg in the current instruction. */
4837 if (n_reloads == 0
4838 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4839 {
4840 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4841 spill_reg_store[regno + i] = 0;
4842 }
4843 }
4844
4845 if (regs)
4846 while (nr-- > 0)
4847 SET_REGNO_REG_SET (regs, regno + nr);
4848 else
4849 {
4850 /* Since value of X has changed,
4851 forget any value previously copied from it. */
4852
4853 while (nr-- > 0)
4854 /* But don't forget a copy if this is the output reload
4855 that establishes the copy's validity. */
4856 if (n_reloads == 0
4857 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4858 reg_last_reload_reg[regno + nr] = 0;
4859 }
4860 }
4861
4862 /* Forget the reloads marked in regset by previous function. */
4863 static void
4864 forget_marked_reloads (regset regs)
4865 {
4866 unsigned int reg;
4867 reg_set_iterator rsi;
4868 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4869 {
4870 if (reg < FIRST_PSEUDO_REGISTER
4871 /* But don't do this if the reg actually serves as an output
4872 reload reg in the current instruction. */
4873 && (n_reloads == 0
4874 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4875 {
4876 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4877 spill_reg_store[reg] = 0;
4878 }
4879 if (n_reloads == 0
4880 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4881 reg_last_reload_reg[reg] = 0;
4882 }
4883 }
4884 \f
4885 /* The following HARD_REG_SETs indicate when each hard register is
4886 used for a reload of various parts of the current insn. */
4887
4888 /* If reg is unavailable for all reloads. */
4889 static HARD_REG_SET reload_reg_unavailable;
4890 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4891 static HARD_REG_SET reload_reg_used;
4892 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4893 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4894 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4895 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4896 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4897 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4898 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4899 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4900 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4901 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4902 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4903 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4904 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4905 static HARD_REG_SET reload_reg_used_in_op_addr;
4906 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4907 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4908 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4909 static HARD_REG_SET reload_reg_used_in_insn;
4910 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4911 static HARD_REG_SET reload_reg_used_in_other_addr;
4912
4913 /* If reg is in use as a reload reg for any sort of reload. */
4914 static HARD_REG_SET reload_reg_used_at_all;
4915
4916 /* If reg is use as an inherited reload. We just mark the first register
4917 in the group. */
4918 static HARD_REG_SET reload_reg_used_for_inherit;
4919
4920 /* Records which hard regs are used in any way, either as explicit use or
4921 by being allocated to a pseudo during any point of the current insn. */
4922 static HARD_REG_SET reg_used_in_insn;
4923
4924 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4925 TYPE. MODE is used to indicate how many consecutive regs are
4926 actually used. */
4927
4928 static void
4929 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4930 machine_mode mode)
4931 {
4932 switch (type)
4933 {
4934 case RELOAD_OTHER:
4935 add_to_hard_reg_set (&reload_reg_used, mode, regno);
4936 break;
4937
4938 case RELOAD_FOR_INPUT_ADDRESS:
4939 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
4940 break;
4941
4942 case RELOAD_FOR_INPADDR_ADDRESS:
4943 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
4944 break;
4945
4946 case RELOAD_FOR_OUTPUT_ADDRESS:
4947 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
4948 break;
4949
4950 case RELOAD_FOR_OUTADDR_ADDRESS:
4951 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
4952 break;
4953
4954 case RELOAD_FOR_OPERAND_ADDRESS:
4955 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
4956 break;
4957
4958 case RELOAD_FOR_OPADDR_ADDR:
4959 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
4960 break;
4961
4962 case RELOAD_FOR_OTHER_ADDRESS:
4963 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
4964 break;
4965
4966 case RELOAD_FOR_INPUT:
4967 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
4968 break;
4969
4970 case RELOAD_FOR_OUTPUT:
4971 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
4972 break;
4973
4974 case RELOAD_FOR_INSN:
4975 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
4976 break;
4977 }
4978
4979 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
4980 }
4981
4982 /* Similarly, but show REGNO is no longer in use for a reload. */
4983
4984 static void
4985 clear_reload_reg_in_use (unsigned int regno, int opnum,
4986 enum reload_type type, machine_mode mode)
4987 {
4988 unsigned int nregs = hard_regno_nregs (regno, mode);
4989 unsigned int start_regno, end_regno, r;
4990 int i;
4991 /* A complication is that for some reload types, inheritance might
4992 allow multiple reloads of the same types to share a reload register.
4993 We set check_opnum if we have to check only reloads with the same
4994 operand number, and check_any if we have to check all reloads. */
4995 int check_opnum = 0;
4996 int check_any = 0;
4997 HARD_REG_SET *used_in_set;
4998
4999 switch (type)
5000 {
5001 case RELOAD_OTHER:
5002 used_in_set = &reload_reg_used;
5003 break;
5004
5005 case RELOAD_FOR_INPUT_ADDRESS:
5006 used_in_set = &reload_reg_used_in_input_addr[opnum];
5007 break;
5008
5009 case RELOAD_FOR_INPADDR_ADDRESS:
5010 check_opnum = 1;
5011 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5012 break;
5013
5014 case RELOAD_FOR_OUTPUT_ADDRESS:
5015 used_in_set = &reload_reg_used_in_output_addr[opnum];
5016 break;
5017
5018 case RELOAD_FOR_OUTADDR_ADDRESS:
5019 check_opnum = 1;
5020 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5021 break;
5022
5023 case RELOAD_FOR_OPERAND_ADDRESS:
5024 used_in_set = &reload_reg_used_in_op_addr;
5025 break;
5026
5027 case RELOAD_FOR_OPADDR_ADDR:
5028 check_any = 1;
5029 used_in_set = &reload_reg_used_in_op_addr_reload;
5030 break;
5031
5032 case RELOAD_FOR_OTHER_ADDRESS:
5033 used_in_set = &reload_reg_used_in_other_addr;
5034 check_any = 1;
5035 break;
5036
5037 case RELOAD_FOR_INPUT:
5038 used_in_set = &reload_reg_used_in_input[opnum];
5039 break;
5040
5041 case RELOAD_FOR_OUTPUT:
5042 used_in_set = &reload_reg_used_in_output[opnum];
5043 break;
5044
5045 case RELOAD_FOR_INSN:
5046 used_in_set = &reload_reg_used_in_insn;
5047 break;
5048 default:
5049 gcc_unreachable ();
5050 }
5051 /* We resolve conflicts with remaining reloads of the same type by
5052 excluding the intervals of reload registers by them from the
5053 interval of freed reload registers. Since we only keep track of
5054 one set of interval bounds, we might have to exclude somewhat
5055 more than what would be necessary if we used a HARD_REG_SET here.
5056 But this should only happen very infrequently, so there should
5057 be no reason to worry about it. */
5058
5059 start_regno = regno;
5060 end_regno = regno + nregs;
5061 if (check_opnum || check_any)
5062 {
5063 for (i = n_reloads - 1; i >= 0; i--)
5064 {
5065 if (rld[i].when_needed == type
5066 && (check_any || rld[i].opnum == opnum)
5067 && rld[i].reg_rtx)
5068 {
5069 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5070 unsigned int conflict_end
5071 = end_hard_regno (rld[i].mode, conflict_start);
5072
5073 /* If there is an overlap with the first to-be-freed register,
5074 adjust the interval start. */
5075 if (conflict_start <= start_regno && conflict_end > start_regno)
5076 start_regno = conflict_end;
5077 /* Otherwise, if there is a conflict with one of the other
5078 to-be-freed registers, adjust the interval end. */
5079 if (conflict_start > start_regno && conflict_start < end_regno)
5080 end_regno = conflict_start;
5081 }
5082 }
5083 }
5084
5085 for (r = start_regno; r < end_regno; r++)
5086 CLEAR_HARD_REG_BIT (*used_in_set, r);
5087 }
5088
5089 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5090 specified by OPNUM and TYPE. */
5091
5092 static int
5093 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5094 {
5095 int i;
5096
5097 /* In use for a RELOAD_OTHER means it's not available for anything. */
5098 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5099 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5100 return 0;
5101
5102 switch (type)
5103 {
5104 case RELOAD_OTHER:
5105 /* In use for anything means we can't use it for RELOAD_OTHER. */
5106 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5107 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5108 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5109 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5110 return 0;
5111
5112 for (i = 0; i < reload_n_operands; i++)
5113 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5114 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5115 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5116 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5117 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5118 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5119 return 0;
5120
5121 return 1;
5122
5123 case RELOAD_FOR_INPUT:
5124 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5125 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5126 return 0;
5127
5128 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5129 return 0;
5130
5131 /* If it is used for some other input, can't use it. */
5132 for (i = 0; i < reload_n_operands; i++)
5133 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5134 return 0;
5135
5136 /* If it is used in a later operand's address, can't use it. */
5137 for (i = opnum + 1; i < reload_n_operands; i++)
5138 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5139 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5140 return 0;
5141
5142 return 1;
5143
5144 case RELOAD_FOR_INPUT_ADDRESS:
5145 /* Can't use a register if it is used for an input address for this
5146 operand or used as an input in an earlier one. */
5147 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5148 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5149 return 0;
5150
5151 for (i = 0; i < opnum; i++)
5152 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5153 return 0;
5154
5155 return 1;
5156
5157 case RELOAD_FOR_INPADDR_ADDRESS:
5158 /* Can't use a register if it is used for an input address
5159 for this operand or used as an input in an earlier
5160 one. */
5161 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5162 return 0;
5163
5164 for (i = 0; i < opnum; i++)
5165 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5166 return 0;
5167
5168 return 1;
5169
5170 case RELOAD_FOR_OUTPUT_ADDRESS:
5171 /* Can't use a register if it is used for an output address for this
5172 operand or used as an output in this or a later operand. Note
5173 that multiple output operands are emitted in reverse order, so
5174 the conflicting ones are those with lower indices. */
5175 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5176 return 0;
5177
5178 for (i = 0; i <= opnum; i++)
5179 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5180 return 0;
5181
5182 return 1;
5183
5184 case RELOAD_FOR_OUTADDR_ADDRESS:
5185 /* Can't use a register if it is used for an output address
5186 for this operand or used as an output in this or a
5187 later operand. Note that multiple output operands are
5188 emitted in reverse order, so the conflicting ones are
5189 those with lower indices. */
5190 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5191 return 0;
5192
5193 for (i = 0; i <= opnum; i++)
5194 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5195 return 0;
5196
5197 return 1;
5198
5199 case RELOAD_FOR_OPERAND_ADDRESS:
5200 for (i = 0; i < reload_n_operands; i++)
5201 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5202 return 0;
5203
5204 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5205 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5206
5207 case RELOAD_FOR_OPADDR_ADDR:
5208 for (i = 0; i < reload_n_operands; i++)
5209 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5210 return 0;
5211
5212 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5213
5214 case RELOAD_FOR_OUTPUT:
5215 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5216 outputs, or an operand address for this or an earlier output.
5217 Note that multiple output operands are emitted in reverse order,
5218 so the conflicting ones are those with higher indices. */
5219 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5220 return 0;
5221
5222 for (i = 0; i < reload_n_operands; i++)
5223 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5224 return 0;
5225
5226 for (i = opnum; i < reload_n_operands; i++)
5227 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5228 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5229 return 0;
5230
5231 return 1;
5232
5233 case RELOAD_FOR_INSN:
5234 for (i = 0; i < reload_n_operands; i++)
5235 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5236 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5237 return 0;
5238
5239 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5240 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5241
5242 case RELOAD_FOR_OTHER_ADDRESS:
5243 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5244
5245 default:
5246 gcc_unreachable ();
5247 }
5248 }
5249
5250 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5251 the number RELOADNUM, is still available in REGNO at the end of the insn.
5252
5253 We can assume that the reload reg was already tested for availability
5254 at the time it is needed, and we should not check this again,
5255 in case the reg has already been marked in use. */
5256
5257 static int
5258 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5259 {
5260 int opnum = rld[reloadnum].opnum;
5261 enum reload_type type = rld[reloadnum].when_needed;
5262 int i;
5263
5264 /* See if there is a reload with the same type for this operand, using
5265 the same register. This case is not handled by the code below. */
5266 for (i = reloadnum + 1; i < n_reloads; i++)
5267 {
5268 rtx reg;
5269
5270 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5271 continue;
5272 reg = rld[i].reg_rtx;
5273 if (reg == NULL_RTX)
5274 continue;
5275 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5276 return 0;
5277 }
5278
5279 switch (type)
5280 {
5281 case RELOAD_OTHER:
5282 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5283 its value must reach the end. */
5284 return 1;
5285
5286 /* If this use is for part of the insn,
5287 its value reaches if no subsequent part uses the same register.
5288 Just like the above function, don't try to do this with lots
5289 of fallthroughs. */
5290
5291 case RELOAD_FOR_OTHER_ADDRESS:
5292 /* Here we check for everything else, since these don't conflict
5293 with anything else and everything comes later. */
5294
5295 for (i = 0; i < reload_n_operands; i++)
5296 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5297 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5298 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5299 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5300 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5301 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5302 return 0;
5303
5304 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5305 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5306 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5307 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5308
5309 case RELOAD_FOR_INPUT_ADDRESS:
5310 case RELOAD_FOR_INPADDR_ADDRESS:
5311 /* Similar, except that we check only for this and subsequent inputs
5312 and the address of only subsequent inputs and we do not need
5313 to check for RELOAD_OTHER objects since they are known not to
5314 conflict. */
5315
5316 for (i = opnum; i < reload_n_operands; i++)
5317 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5318 return 0;
5319
5320 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5321 could be killed if the register is also used by reload with type
5322 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5323 if (type == RELOAD_FOR_INPADDR_ADDRESS
5324 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5325 return 0;
5326
5327 for (i = opnum + 1; i < reload_n_operands; i++)
5328 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5329 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5330 return 0;
5331
5332 for (i = 0; i < reload_n_operands; i++)
5333 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5334 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5335 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5336 return 0;
5337
5338 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5339 return 0;
5340
5341 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5342 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5343 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5344
5345 case RELOAD_FOR_INPUT:
5346 /* Similar to input address, except we start at the next operand for
5347 both input and input address and we do not check for
5348 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5349 would conflict. */
5350
5351 for (i = opnum + 1; i < reload_n_operands; i++)
5352 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5353 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5354 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5355 return 0;
5356
5357 /* ... fall through ... */
5358
5359 case RELOAD_FOR_OPERAND_ADDRESS:
5360 /* Check outputs and their addresses. */
5361
5362 for (i = 0; i < reload_n_operands; i++)
5363 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5364 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5365 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5366 return 0;
5367
5368 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5369
5370 case RELOAD_FOR_OPADDR_ADDR:
5371 for (i = 0; i < reload_n_operands; i++)
5372 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5373 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5374 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5375 return 0;
5376
5377 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5378 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5379 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5380
5381 case RELOAD_FOR_INSN:
5382 /* These conflict with other outputs with RELOAD_OTHER. So
5383 we need only check for output addresses. */
5384
5385 opnum = reload_n_operands;
5386
5387 /* fall through */
5388
5389 case RELOAD_FOR_OUTPUT:
5390 case RELOAD_FOR_OUTPUT_ADDRESS:
5391 case RELOAD_FOR_OUTADDR_ADDRESS:
5392 /* We already know these can't conflict with a later output. So the
5393 only thing to check are later output addresses.
5394 Note that multiple output operands are emitted in reverse order,
5395 so the conflicting ones are those with lower indices. */
5396 for (i = 0; i < opnum; i++)
5397 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5398 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5399 return 0;
5400
5401 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5402 could be killed if the register is also used by reload with type
5403 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5404 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5405 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5406 return 0;
5407
5408 return 1;
5409
5410 default:
5411 gcc_unreachable ();
5412 }
5413 }
5414
5415 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5416 every register in REG. */
5417
5418 static bool
5419 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5420 {
5421 unsigned int i;
5422
5423 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5424 if (!reload_reg_reaches_end_p (i, reloadnum))
5425 return false;
5426 return true;
5427 }
5428 \f
5429
5430 /* Returns whether R1 and R2 are uniquely chained: the value of one
5431 is used by the other, and that value is not used by any other
5432 reload for this insn. This is used to partially undo the decision
5433 made in find_reloads when in the case of multiple
5434 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5435 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5436 reloads. This code tries to avoid the conflict created by that
5437 change. It might be cleaner to explicitly keep track of which
5438 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5439 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5440 this after the fact. */
5441 static bool
5442 reloads_unique_chain_p (int r1, int r2)
5443 {
5444 int i;
5445
5446 /* We only check input reloads. */
5447 if (! rld[r1].in || ! rld[r2].in)
5448 return false;
5449
5450 /* Avoid anything with output reloads. */
5451 if (rld[r1].out || rld[r2].out)
5452 return false;
5453
5454 /* "chained" means one reload is a component of the other reload,
5455 not the same as the other reload. */
5456 if (rld[r1].opnum != rld[r2].opnum
5457 || rtx_equal_p (rld[r1].in, rld[r2].in)
5458 || rld[r1].optional || rld[r2].optional
5459 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5460 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5461 return false;
5462
5463 /* The following loop assumes that r1 is the reload that feeds r2. */
5464 if (r1 > r2)
5465 std::swap (r1, r2);
5466
5467 for (i = 0; i < n_reloads; i ++)
5468 /* Look for input reloads that aren't our two */
5469 if (i != r1 && i != r2 && rld[i].in)
5470 {
5471 /* If our reload is mentioned at all, it isn't a simple chain. */
5472 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5473 return false;
5474 }
5475 return true;
5476 }
5477
5478 /* The recursive function change all occurrences of WHAT in *WHERE
5479 to REPL. */
5480 static void
5481 substitute (rtx *where, const_rtx what, rtx repl)
5482 {
5483 const char *fmt;
5484 int i;
5485 enum rtx_code code;
5486
5487 if (*where == 0)
5488 return;
5489
5490 if (*where == what || rtx_equal_p (*where, what))
5491 {
5492 /* Record the location of the changed rtx. */
5493 substitute_stack.safe_push (where);
5494 *where = repl;
5495 return;
5496 }
5497
5498 code = GET_CODE (*where);
5499 fmt = GET_RTX_FORMAT (code);
5500 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5501 {
5502 if (fmt[i] == 'E')
5503 {
5504 int j;
5505
5506 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5507 substitute (&XVECEXP (*where, i, j), what, repl);
5508 }
5509 else if (fmt[i] == 'e')
5510 substitute (&XEXP (*where, i), what, repl);
5511 }
5512 }
5513
5514 /* The function returns TRUE if chain of reload R1 and R2 (in any
5515 order) can be evaluated without usage of intermediate register for
5516 the reload containing another reload. It is important to see
5517 gen_reload to understand what the function is trying to do. As an
5518 example, let us have reload chain
5519
5520 r2: const
5521 r1: <something> + const
5522
5523 and reload R2 got reload reg HR. The function returns true if
5524 there is a correct insn HR = HR + <something>. Otherwise,
5525 gen_reload will use intermediate register (and this is the reload
5526 reg for R1) to reload <something>.
5527
5528 We need this function to find a conflict for chain reloads. In our
5529 example, if HR = HR + <something> is incorrect insn, then we cannot
5530 use HR as a reload register for R2. If we do use it then we get a
5531 wrong code:
5532
5533 HR = const
5534 HR = <something>
5535 HR = HR + HR
5536
5537 */
5538 static bool
5539 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5540 {
5541 /* Assume other cases in gen_reload are not possible for
5542 chain reloads or do need an intermediate hard registers. */
5543 bool result = true;
5544 int regno, code;
5545 rtx out, in;
5546 rtx_insn *insn;
5547 rtx_insn *last = get_last_insn ();
5548
5549 /* Make r2 a component of r1. */
5550 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5551 std::swap (r1, r2);
5552
5553 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5554 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5555 gcc_assert (regno >= 0);
5556 out = gen_rtx_REG (rld[r1].mode, regno);
5557 in = rld[r1].in;
5558 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5559
5560 /* If IN is a paradoxical SUBREG, remove it and try to put the
5561 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5562 strip_paradoxical_subreg (&in, &out);
5563
5564 if (GET_CODE (in) == PLUS
5565 && (REG_P (XEXP (in, 0))
5566 || GET_CODE (XEXP (in, 0)) == SUBREG
5567 || MEM_P (XEXP (in, 0)))
5568 && (REG_P (XEXP (in, 1))
5569 || GET_CODE (XEXP (in, 1)) == SUBREG
5570 || CONSTANT_P (XEXP (in, 1))
5571 || MEM_P (XEXP (in, 1))))
5572 {
5573 insn = emit_insn (gen_rtx_SET (out, in));
5574 code = recog_memoized (insn);
5575 result = false;
5576
5577 if (code >= 0)
5578 {
5579 extract_insn (insn);
5580 /* We want constrain operands to treat this insn strictly in
5581 its validity determination, i.e., the way it would after
5582 reload has completed. */
5583 result = constrain_operands (1, get_enabled_alternatives (insn));
5584 }
5585
5586 delete_insns_since (last);
5587 }
5588
5589 /* Restore the original value at each changed address within R1. */
5590 while (!substitute_stack.is_empty ())
5591 {
5592 rtx *where = substitute_stack.pop ();
5593 *where = rld[r2].in;
5594 }
5595
5596 return result;
5597 }
5598
5599 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5600 Return 0 otherwise.
5601
5602 This function uses the same algorithm as reload_reg_free_p above. */
5603
5604 static int
5605 reloads_conflict (int r1, int r2)
5606 {
5607 enum reload_type r1_type = rld[r1].when_needed;
5608 enum reload_type r2_type = rld[r2].when_needed;
5609 int r1_opnum = rld[r1].opnum;
5610 int r2_opnum = rld[r2].opnum;
5611
5612 /* RELOAD_OTHER conflicts with everything. */
5613 if (r2_type == RELOAD_OTHER)
5614 return 1;
5615
5616 /* Otherwise, check conflicts differently for each type. */
5617
5618 switch (r1_type)
5619 {
5620 case RELOAD_FOR_INPUT:
5621 return (r2_type == RELOAD_FOR_INSN
5622 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5623 || r2_type == RELOAD_FOR_OPADDR_ADDR
5624 || r2_type == RELOAD_FOR_INPUT
5625 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5626 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5627 && r2_opnum > r1_opnum));
5628
5629 case RELOAD_FOR_INPUT_ADDRESS:
5630 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5631 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5632
5633 case RELOAD_FOR_INPADDR_ADDRESS:
5634 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5635 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5636
5637 case RELOAD_FOR_OUTPUT_ADDRESS:
5638 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5639 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5640
5641 case RELOAD_FOR_OUTADDR_ADDRESS:
5642 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5643 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5644
5645 case RELOAD_FOR_OPERAND_ADDRESS:
5646 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5647 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5648 && (!reloads_unique_chain_p (r1, r2)
5649 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5650
5651 case RELOAD_FOR_OPADDR_ADDR:
5652 return (r2_type == RELOAD_FOR_INPUT
5653 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5654
5655 case RELOAD_FOR_OUTPUT:
5656 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5657 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5658 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5659 && r2_opnum >= r1_opnum));
5660
5661 case RELOAD_FOR_INSN:
5662 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5663 || r2_type == RELOAD_FOR_INSN
5664 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5665
5666 case RELOAD_FOR_OTHER_ADDRESS:
5667 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5668
5669 case RELOAD_OTHER:
5670 return 1;
5671
5672 default:
5673 gcc_unreachable ();
5674 }
5675 }
5676 \f
5677 /* Indexed by reload number, 1 if incoming value
5678 inherited from previous insns. */
5679 static char reload_inherited[MAX_RELOADS];
5680
5681 /* For an inherited reload, this is the insn the reload was inherited from,
5682 if we know it. Otherwise, this is 0. */
5683 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5684
5685 /* If nonzero, this is a place to get the value of the reload,
5686 rather than using reload_in. */
5687 static rtx reload_override_in[MAX_RELOADS];
5688
5689 /* For each reload, the hard register number of the register used,
5690 or -1 if we did not need a register for this reload. */
5691 static int reload_spill_index[MAX_RELOADS];
5692
5693 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5694 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5695
5696 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5697 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5698
5699 /* Subroutine of free_for_value_p, used to check a single register.
5700 START_REGNO is the starting regno of the full reload register
5701 (possibly comprising multiple hard registers) that we are considering. */
5702
5703 static int
5704 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5705 enum reload_type type, rtx value, rtx out,
5706 int reloadnum, int ignore_address_reloads)
5707 {
5708 int time1;
5709 /* Set if we see an input reload that must not share its reload register
5710 with any new earlyclobber, but might otherwise share the reload
5711 register with an output or input-output reload. */
5712 int check_earlyclobber = 0;
5713 int i;
5714 int copy = 0;
5715
5716 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5717 return 0;
5718
5719 if (out == const0_rtx)
5720 {
5721 copy = 1;
5722 out = NULL_RTX;
5723 }
5724
5725 /* We use some pseudo 'time' value to check if the lifetimes of the
5726 new register use would overlap with the one of a previous reload
5727 that is not read-only or uses a different value.
5728 The 'time' used doesn't have to be linear in any shape or form, just
5729 monotonic.
5730 Some reload types use different 'buckets' for each operand.
5731 So there are MAX_RECOG_OPERANDS different time values for each
5732 such reload type.
5733 We compute TIME1 as the time when the register for the prospective
5734 new reload ceases to be live, and TIME2 for each existing
5735 reload as the time when that the reload register of that reload
5736 becomes live.
5737 Where there is little to be gained by exact lifetime calculations,
5738 we just make conservative assumptions, i.e. a longer lifetime;
5739 this is done in the 'default:' cases. */
5740 switch (type)
5741 {
5742 case RELOAD_FOR_OTHER_ADDRESS:
5743 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5744 time1 = copy ? 0 : 1;
5745 break;
5746 case RELOAD_OTHER:
5747 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5748 break;
5749 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5750 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5751 respectively, to the time values for these, we get distinct time
5752 values. To get distinct time values for each operand, we have to
5753 multiply opnum by at least three. We round that up to four because
5754 multiply by four is often cheaper. */
5755 case RELOAD_FOR_INPADDR_ADDRESS:
5756 time1 = opnum * 4 + 2;
5757 break;
5758 case RELOAD_FOR_INPUT_ADDRESS:
5759 time1 = opnum * 4 + 3;
5760 break;
5761 case RELOAD_FOR_INPUT:
5762 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5763 executes (inclusive). */
5764 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5765 break;
5766 case RELOAD_FOR_OPADDR_ADDR:
5767 /* opnum * 4 + 4
5768 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5769 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5770 break;
5771 case RELOAD_FOR_OPERAND_ADDRESS:
5772 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5773 is executed. */
5774 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5775 break;
5776 case RELOAD_FOR_OUTADDR_ADDRESS:
5777 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5778 break;
5779 case RELOAD_FOR_OUTPUT_ADDRESS:
5780 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5781 break;
5782 default:
5783 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5784 }
5785
5786 for (i = 0; i < n_reloads; i++)
5787 {
5788 rtx reg = rld[i].reg_rtx;
5789 if (reg && REG_P (reg)
5790 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5791 && i != reloadnum)
5792 {
5793 rtx other_input = rld[i].in;
5794
5795 /* If the other reload loads the same input value, that
5796 will not cause a conflict only if it's loading it into
5797 the same register. */
5798 if (true_regnum (reg) != start_regno)
5799 other_input = NULL_RTX;
5800 if (! other_input || ! rtx_equal_p (other_input, value)
5801 || rld[i].out || out)
5802 {
5803 int time2;
5804 switch (rld[i].when_needed)
5805 {
5806 case RELOAD_FOR_OTHER_ADDRESS:
5807 time2 = 0;
5808 break;
5809 case RELOAD_FOR_INPADDR_ADDRESS:
5810 /* find_reloads makes sure that a
5811 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5812 by at most one - the first -
5813 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5814 address reload is inherited, the address address reload
5815 goes away, so we can ignore this conflict. */
5816 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5817 && ignore_address_reloads
5818 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5819 Then the address address is still needed to store
5820 back the new address. */
5821 && ! rld[reloadnum].out)
5822 continue;
5823 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5824 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5825 reloads go away. */
5826 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5827 && ignore_address_reloads
5828 /* Unless we are reloading an auto_inc expression. */
5829 && ! rld[reloadnum].out)
5830 continue;
5831 time2 = rld[i].opnum * 4 + 2;
5832 break;
5833 case RELOAD_FOR_INPUT_ADDRESS:
5834 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5835 && ignore_address_reloads
5836 && ! rld[reloadnum].out)
5837 continue;
5838 time2 = rld[i].opnum * 4 + 3;
5839 break;
5840 case RELOAD_FOR_INPUT:
5841 time2 = rld[i].opnum * 4 + 4;
5842 check_earlyclobber = 1;
5843 break;
5844 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5845 == MAX_RECOG_OPERAND * 4 */
5846 case RELOAD_FOR_OPADDR_ADDR:
5847 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5848 && ignore_address_reloads
5849 && ! rld[reloadnum].out)
5850 continue;
5851 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5852 break;
5853 case RELOAD_FOR_OPERAND_ADDRESS:
5854 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5855 check_earlyclobber = 1;
5856 break;
5857 case RELOAD_FOR_INSN:
5858 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5859 break;
5860 case RELOAD_FOR_OUTPUT:
5861 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5862 instruction is executed. */
5863 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5864 break;
5865 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5866 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5867 value. */
5868 case RELOAD_FOR_OUTADDR_ADDRESS:
5869 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5870 && ignore_address_reloads
5871 && ! rld[reloadnum].out)
5872 continue;
5873 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5874 break;
5875 case RELOAD_FOR_OUTPUT_ADDRESS:
5876 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5877 break;
5878 case RELOAD_OTHER:
5879 /* If there is no conflict in the input part, handle this
5880 like an output reload. */
5881 if (! rld[i].in || rtx_equal_p (other_input, value))
5882 {
5883 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5884 /* Earlyclobbered outputs must conflict with inputs. */
5885 if (earlyclobber_operand_p (rld[i].out))
5886 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5887
5888 break;
5889 }
5890 time2 = 1;
5891 /* RELOAD_OTHER might be live beyond instruction execution,
5892 but this is not obvious when we set time2 = 1. So check
5893 here if there might be a problem with the new reload
5894 clobbering the register used by the RELOAD_OTHER. */
5895 if (out)
5896 return 0;
5897 break;
5898 default:
5899 return 0;
5900 }
5901 if ((time1 >= time2
5902 && (! rld[i].in || rld[i].out
5903 || ! rtx_equal_p (other_input, value)))
5904 || (out && rld[reloadnum].out_reg
5905 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5906 return 0;
5907 }
5908 }
5909 }
5910
5911 /* Earlyclobbered outputs must conflict with inputs. */
5912 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5913 return 0;
5914
5915 return 1;
5916 }
5917
5918 /* Return 1 if the value in reload reg REGNO, as used by a reload
5919 needed for the part of the insn specified by OPNUM and TYPE,
5920 may be used to load VALUE into it.
5921
5922 MODE is the mode in which the register is used, this is needed to
5923 determine how many hard regs to test.
5924
5925 Other read-only reloads with the same value do not conflict
5926 unless OUT is nonzero and these other reloads have to live while
5927 output reloads live.
5928 If OUT is CONST0_RTX, this is a special case: it means that the
5929 test should not be for using register REGNO as reload register, but
5930 for copying from register REGNO into the reload register.
5931
5932 RELOADNUM is the number of the reload we want to load this value for;
5933 a reload does not conflict with itself.
5934
5935 When IGNORE_ADDRESS_RELOADS is set, we cannot have conflicts with
5936 reloads that load an address for the very reload we are considering.
5937
5938 The caller has to make sure that there is no conflict with the return
5939 register. */
5940
5941 static int
5942 free_for_value_p (int regno, machine_mode mode, int opnum,
5943 enum reload_type type, rtx value, rtx out, int reloadnum,
5944 int ignore_address_reloads)
5945 {
5946 int nregs = hard_regno_nregs (regno, mode);
5947 while (nregs-- > 0)
5948 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5949 value, out, reloadnum,
5950 ignore_address_reloads))
5951 return 0;
5952 return 1;
5953 }
5954
5955 /* Return nonzero if the rtx X is invariant over the current function. */
5956 /* ??? Actually, the places where we use this expect exactly what is
5957 tested here, and not everything that is function invariant. In
5958 particular, the frame pointer and arg pointer are special cased;
5959 pic_offset_table_rtx is not, and we must not spill these things to
5960 memory. */
5961
5962 int
5963 function_invariant_p (const_rtx x)
5964 {
5965 if (CONSTANT_P (x))
5966 return 1;
5967 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5968 return 1;
5969 if (GET_CODE (x) == PLUS
5970 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5971 && GET_CODE (XEXP (x, 1)) == CONST_INT)
5972 return 1;
5973 return 0;
5974 }
5975
5976 /* Determine whether the reload reg X overlaps any rtx'es used for
5977 overriding inheritance. Return nonzero if so. */
5978
5979 static int
5980 conflicts_with_override (rtx x)
5981 {
5982 int i;
5983 for (i = 0; i < n_reloads; i++)
5984 if (reload_override_in[i]
5985 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5986 return 1;
5987 return 0;
5988 }
5989 \f
5990 /* Give an error message saying we failed to find a reload for INSN,
5991 and clear out reload R. */
5992 static void
5993 failed_reload (rtx_insn *insn, int r)
5994 {
5995 if (asm_noperands (PATTERN (insn)) < 0)
5996 /* It's the compiler's fault. */
5997 fatal_insn ("could not find a spill register", insn);
5998
5999 /* It's the user's fault; the operand's mode and constraint
6000 don't match. Disable this reload so we don't crash in final. */
6001 error_for_asm (insn,
6002 "%<asm%> operand constraint incompatible with operand size");
6003 rld[r].in = 0;
6004 rld[r].out = 0;
6005 rld[r].reg_rtx = 0;
6006 rld[r].optional = 1;
6007 rld[r].secondary_p = 1;
6008 }
6009
6010 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6011 for reload R. If it's valid, get an rtx for it. Return nonzero if
6012 successful. */
6013 static int
6014 set_reload_reg (int i, int r)
6015 {
6016 int regno;
6017 rtx reg = spill_reg_rtx[i];
6018
6019 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6020 spill_reg_rtx[i] = reg
6021 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6022
6023 regno = true_regnum (reg);
6024
6025 /* Detect when the reload reg can't hold the reload mode.
6026 This used to be one `if', but Sequent compiler can't handle that. */
6027 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6028 {
6029 machine_mode test_mode = VOIDmode;
6030 if (rld[r].in)
6031 test_mode = GET_MODE (rld[r].in);
6032 /* If rld[r].in has VOIDmode, it means we will load it
6033 in whatever mode the reload reg has: to wit, rld[r].mode.
6034 We have already tested that for validity. */
6035 /* Aside from that, we need to test that the expressions
6036 to reload from or into have modes which are valid for this
6037 reload register. Otherwise the reload insns would be invalid. */
6038 if (! (rld[r].in != 0 && test_mode != VOIDmode
6039 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6040 if (! (rld[r].out != 0
6041 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6042 {
6043 /* The reg is OK. */
6044 last_spill_reg = i;
6045
6046 /* Mark as in use for this insn the reload regs we use
6047 for this. */
6048 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6049 rld[r].when_needed, rld[r].mode);
6050
6051 rld[r].reg_rtx = reg;
6052 reload_spill_index[r] = spill_regs[i];
6053 return 1;
6054 }
6055 }
6056 return 0;
6057 }
6058
6059 /* Find a spill register to use as a reload register for reload R.
6060 LAST_RELOAD is nonzero if this is the last reload for the insn being
6061 processed.
6062
6063 Set rld[R].reg_rtx to the register allocated.
6064
6065 We return 1 if successful, or 0 if we couldn't find a spill reg and
6066 we didn't change anything. */
6067
6068 static int
6069 allocate_reload_reg (class insn_chain *chain ATTRIBUTE_UNUSED, int r,
6070 int last_reload)
6071 {
6072 int i, pass, count;
6073
6074 /* If we put this reload ahead, thinking it is a group,
6075 then insist on finding a group. Otherwise we can grab a
6076 reg that some other reload needs.
6077 (That can happen when we have a 68000 DATA_OR_FP_REG
6078 which is a group of data regs or one fp reg.)
6079 We need not be so restrictive if there are no more reloads
6080 for this insn.
6081
6082 ??? Really it would be nicer to have smarter handling
6083 for that kind of reg class, where a problem like this is normal.
6084 Perhaps those classes should be avoided for reloading
6085 by use of more alternatives. */
6086
6087 int force_group = rld[r].nregs > 1 && ! last_reload;
6088
6089 /* If we want a single register and haven't yet found one,
6090 take any reg in the right class and not in use.
6091 If we want a consecutive group, here is where we look for it.
6092
6093 We use three passes so we can first look for reload regs to
6094 reuse, which are already in use for other reloads in this insn,
6095 and only then use additional registers which are not "bad", then
6096 finally any register.
6097
6098 I think that maximizing reuse is needed to make sure we don't
6099 run out of reload regs. Suppose we have three reloads, and
6100 reloads A and B can share regs. These need two regs.
6101 Suppose A and B are given different regs.
6102 That leaves none for C. */
6103 for (pass = 0; pass < 3; pass++)
6104 {
6105 /* I is the index in spill_regs.
6106 We advance it round-robin between insns to use all spill regs
6107 equally, so that inherited reloads have a chance
6108 of leapfrogging each other. */
6109
6110 i = last_spill_reg;
6111
6112 for (count = 0; count < n_spills; count++)
6113 {
6114 int rclass = (int) rld[r].rclass;
6115 int regnum;
6116
6117 i++;
6118 if (i >= n_spills)
6119 i -= n_spills;
6120 regnum = spill_regs[i];
6121
6122 if ((reload_reg_free_p (regnum, rld[r].opnum,
6123 rld[r].when_needed)
6124 || (rld[r].in
6125 /* We check reload_reg_used to make sure we
6126 don't clobber the return register. */
6127 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6128 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6129 rld[r].when_needed, rld[r].in,
6130 rld[r].out, r, 1)))
6131 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6132 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6133 /* Look first for regs to share, then for unshared. But
6134 don't share regs used for inherited reloads; they are
6135 the ones we want to preserve. */
6136 && (pass
6137 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6138 regnum)
6139 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6140 regnum))))
6141 {
6142 int nr = hard_regno_nregs (regnum, rld[r].mode);
6143
6144 /* During the second pass we want to avoid reload registers
6145 which are "bad" for this reload. */
6146 if (pass == 1
6147 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6148 continue;
6149
6150 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6151 (on 68000) got us two FP regs. If NR is 1,
6152 we would reject both of them. */
6153 if (force_group)
6154 nr = rld[r].nregs;
6155 /* If we need only one reg, we have already won. */
6156 if (nr == 1)
6157 {
6158 /* But reject a single reg if we demand a group. */
6159 if (force_group)
6160 continue;
6161 break;
6162 }
6163 /* Otherwise check that as many consecutive regs as we need
6164 are available here. */
6165 while (nr > 1)
6166 {
6167 int regno = regnum + nr - 1;
6168 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6169 && spill_reg_order[regno] >= 0
6170 && reload_reg_free_p (regno, rld[r].opnum,
6171 rld[r].when_needed)))
6172 break;
6173 nr--;
6174 }
6175 if (nr == 1)
6176 break;
6177 }
6178 }
6179
6180 /* If we found something on the current pass, omit later passes. */
6181 if (count < n_spills)
6182 break;
6183 }
6184
6185 /* We should have found a spill register by now. */
6186 if (count >= n_spills)
6187 return 0;
6188
6189 /* I is the index in SPILL_REG_RTX of the reload register we are to
6190 allocate. Get an rtx for it and find its register number. */
6191
6192 return set_reload_reg (i, r);
6193 }
6194 \f
6195 /* Initialize all the tables needed to allocate reload registers.
6196 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6197 is the array we use to restore the reg_rtx field for every reload. */
6198
6199 static void
6200 choose_reload_regs_init (class insn_chain *chain, rtx *save_reload_reg_rtx)
6201 {
6202 int i;
6203
6204 for (i = 0; i < n_reloads; i++)
6205 rld[i].reg_rtx = save_reload_reg_rtx[i];
6206
6207 memset (reload_inherited, 0, MAX_RELOADS);
6208 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6209 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6210
6211 CLEAR_HARD_REG_SET (reload_reg_used);
6212 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6213 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6214 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6215 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6216 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6217
6218 CLEAR_HARD_REG_SET (reg_used_in_insn);
6219 {
6220 HARD_REG_SET tmp;
6221 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6222 reg_used_in_insn |= tmp;
6223 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6224 reg_used_in_insn |= tmp;
6225 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6226 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6227 }
6228
6229 for (i = 0; i < reload_n_operands; i++)
6230 {
6231 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6232 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6233 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6234 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6235 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6236 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6237 }
6238
6239 reload_reg_unavailable = ~chain->used_spill_regs;
6240
6241 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6242
6243 for (i = 0; i < n_reloads; i++)
6244 /* If we have already decided to use a certain register,
6245 don't use it in another way. */
6246 if (rld[i].reg_rtx)
6247 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6248 rld[i].when_needed, rld[i].mode);
6249 }
6250
6251 /* If X is not a subreg, return it unmodified. If it is a subreg,
6252 look up whether we made a replacement for the SUBREG_REG. Return
6253 either the replacement or the SUBREG_REG. */
6254
6255 static rtx
6256 replaced_subreg (rtx x)
6257 {
6258 if (GET_CODE (x) == SUBREG)
6259 return find_replacement (&SUBREG_REG (x));
6260 return x;
6261 }
6262
6263 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6264 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6265 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6266 otherwise it is NULL. */
6267
6268 static poly_int64
6269 compute_reload_subreg_offset (machine_mode outermode,
6270 rtx subreg,
6271 machine_mode innermode)
6272 {
6273 poly_int64 outer_offset;
6274 machine_mode middlemode;
6275
6276 if (!subreg)
6277 return subreg_lowpart_offset (outermode, innermode);
6278
6279 outer_offset = SUBREG_BYTE (subreg);
6280 middlemode = GET_MODE (SUBREG_REG (subreg));
6281
6282 /* If SUBREG is paradoxical then return the normal lowpart offset
6283 for OUTERMODE and INNERMODE. Our caller has already checked
6284 that OUTERMODE fits in INNERMODE. */
6285 if (paradoxical_subreg_p (outermode, middlemode))
6286 return subreg_lowpart_offset (outermode, innermode);
6287
6288 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6289 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6290 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6291 }
6292
6293 /* Assign hard reg targets for the pseudo-registers we must reload
6294 into hard regs for this insn.
6295 Also output the instructions to copy them in and out of the hard regs.
6296
6297 For machines with register classes, we are responsible for
6298 finding a reload reg in the proper class. */
6299
6300 static void
6301 choose_reload_regs (class insn_chain *chain)
6302 {
6303 rtx_insn *insn = chain->insn;
6304 int i, j;
6305 unsigned int max_group_size = 1;
6306 enum reg_class group_class = NO_REGS;
6307 int pass, win, inheritance;
6308
6309 rtx save_reload_reg_rtx[MAX_RELOADS];
6310
6311 /* In order to be certain of getting the registers we need,
6312 we must sort the reloads into order of increasing register class.
6313 Then our grabbing of reload registers will parallel the process
6314 that provided the reload registers.
6315
6316 Also note whether any of the reloads wants a consecutive group of regs.
6317 If so, record the maximum size of the group desired and what
6318 register class contains all the groups needed by this insn. */
6319
6320 for (j = 0; j < n_reloads; j++)
6321 {
6322 reload_order[j] = j;
6323 if (rld[j].reg_rtx != NULL_RTX)
6324 {
6325 gcc_assert (REG_P (rld[j].reg_rtx)
6326 && HARD_REGISTER_P (rld[j].reg_rtx));
6327 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6328 }
6329 else
6330 reload_spill_index[j] = -1;
6331
6332 if (rld[j].nregs > 1)
6333 {
6334 max_group_size = MAX (rld[j].nregs, max_group_size);
6335 group_class
6336 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6337 }
6338
6339 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6340 }
6341
6342 if (n_reloads > 1)
6343 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6344
6345 /* If -O, try first with inheritance, then turning it off.
6346 If not -O, don't do inheritance.
6347 Using inheritance when not optimizing leads to paradoxes
6348 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6349 because one side of the comparison might be inherited. */
6350 win = 0;
6351 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6352 {
6353 choose_reload_regs_init (chain, save_reload_reg_rtx);
6354
6355 /* Process the reloads in order of preference just found.
6356 Beyond this point, subregs can be found in reload_reg_rtx.
6357
6358 This used to look for an existing reloaded home for all of the
6359 reloads, and only then perform any new reloads. But that could lose
6360 if the reloads were done out of reg-class order because a later
6361 reload with a looser constraint might have an old home in a register
6362 needed by an earlier reload with a tighter constraint.
6363
6364 To solve this, we make two passes over the reloads, in the order
6365 described above. In the first pass we try to inherit a reload
6366 from a previous insn. If there is a later reload that needs a
6367 class that is a proper subset of the class being processed, we must
6368 also allocate a spill register during the first pass.
6369
6370 Then make a second pass over the reloads to allocate any reloads
6371 that haven't been given registers yet. */
6372
6373 for (j = 0; j < n_reloads; j++)
6374 {
6375 int r = reload_order[j];
6376 rtx search_equiv = NULL_RTX;
6377
6378 /* Ignore reloads that got marked inoperative. */
6379 if (rld[r].out == 0 && rld[r].in == 0
6380 && ! rld[r].secondary_p)
6381 continue;
6382
6383 /* If find_reloads chose to use reload_in or reload_out as a reload
6384 register, we don't need to chose one. Otherwise, try even if it
6385 found one since we might save an insn if we find the value lying
6386 around.
6387 Try also when reload_in is a pseudo without a hard reg. */
6388 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6389 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6390 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6391 && !MEM_P (rld[r].in)
6392 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6393 continue;
6394
6395 #if 0 /* No longer needed for correct operation.
6396 It might give better code, or might not; worth an experiment? */
6397 /* If this is an optional reload, we can't inherit from earlier insns
6398 until we are sure that any non-optional reloads have been allocated.
6399 The following code takes advantage of the fact that optional reloads
6400 are at the end of reload_order. */
6401 if (rld[r].optional != 0)
6402 for (i = 0; i < j; i++)
6403 if ((rld[reload_order[i]].out != 0
6404 || rld[reload_order[i]].in != 0
6405 || rld[reload_order[i]].secondary_p)
6406 && ! rld[reload_order[i]].optional
6407 && rld[reload_order[i]].reg_rtx == 0)
6408 allocate_reload_reg (chain, reload_order[i], 0);
6409 #endif
6410
6411 /* First see if this pseudo is already available as reloaded
6412 for a previous insn. We cannot try to inherit for reloads
6413 that are smaller than the maximum number of registers needed
6414 for groups unless the register we would allocate cannot be used
6415 for the groups.
6416
6417 We could check here to see if this is a secondary reload for
6418 an object that is already in a register of the desired class.
6419 This would avoid the need for the secondary reload register.
6420 But this is complex because we can't easily determine what
6421 objects might want to be loaded via this reload. So let a
6422 register be allocated here. In `emit_reload_insns' we suppress
6423 one of the loads in the case described above. */
6424
6425 if (inheritance)
6426 {
6427 poly_int64 byte = 0;
6428 int regno = -1;
6429 machine_mode mode = VOIDmode;
6430 rtx subreg = NULL_RTX;
6431
6432 if (rld[r].in == 0)
6433 ;
6434 else if (REG_P (rld[r].in))
6435 {
6436 regno = REGNO (rld[r].in);
6437 mode = GET_MODE (rld[r].in);
6438 }
6439 else if (REG_P (rld[r].in_reg))
6440 {
6441 regno = REGNO (rld[r].in_reg);
6442 mode = GET_MODE (rld[r].in_reg);
6443 }
6444 else if (GET_CODE (rld[r].in_reg) == SUBREG
6445 && REG_P (SUBREG_REG (rld[r].in_reg)))
6446 {
6447 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6448 if (regno < FIRST_PSEUDO_REGISTER)
6449 regno = subreg_regno (rld[r].in_reg);
6450 else
6451 {
6452 subreg = rld[r].in_reg;
6453 byte = SUBREG_BYTE (subreg);
6454 }
6455 mode = GET_MODE (rld[r].in_reg);
6456 }
6457 #if AUTO_INC_DEC
6458 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6459 && REG_P (XEXP (rld[r].in_reg, 0)))
6460 {
6461 regno = REGNO (XEXP (rld[r].in_reg, 0));
6462 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6463 rld[r].out = rld[r].in;
6464 }
6465 #endif
6466 #if 0
6467 /* This won't work, since REGNO can be a pseudo reg number.
6468 Also, it takes much more hair to keep track of all the things
6469 that can invalidate an inherited reload of part of a pseudoreg. */
6470 else if (GET_CODE (rld[r].in) == SUBREG
6471 && REG_P (SUBREG_REG (rld[r].in)))
6472 regno = subreg_regno (rld[r].in);
6473 #endif
6474
6475 if (regno >= 0
6476 && reg_last_reload_reg[regno] != 0
6477 && (known_ge
6478 (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])),
6479 GET_MODE_SIZE (mode) + byte))
6480 /* Verify that the register it's in can be used in
6481 mode MODE. */
6482 && (REG_CAN_CHANGE_MODE_P
6483 (REGNO (reg_last_reload_reg[regno]),
6484 GET_MODE (reg_last_reload_reg[regno]),
6485 mode)))
6486 {
6487 enum reg_class rclass = rld[r].rclass, last_class;
6488 rtx last_reg = reg_last_reload_reg[regno];
6489
6490 i = REGNO (last_reg);
6491 byte = compute_reload_subreg_offset (mode,
6492 subreg,
6493 GET_MODE (last_reg));
6494 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6495 last_class = REGNO_REG_CLASS (i);
6496
6497 if (reg_reloaded_contents[i] == regno
6498 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6499 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6500 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6501 /* Even if we can't use this register as a reload
6502 register, we might use it for reload_override_in,
6503 if copying it to the desired class is cheap
6504 enough. */
6505 || ((register_move_cost (mode, last_class, rclass)
6506 < memory_move_cost (mode, rclass, true))
6507 && (secondary_reload_class (1, rclass, mode,
6508 last_reg)
6509 == NO_REGS)
6510 && !(targetm.secondary_memory_needed
6511 (mode, last_class, rclass))))
6512 && (rld[r].nregs == max_group_size
6513 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6514 i))
6515 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6516 rld[r].when_needed, rld[r].in,
6517 const0_rtx, r, 1))
6518 {
6519 /* If a group is needed, verify that all the subsequent
6520 registers still have their values intact. */
6521 int nr = hard_regno_nregs (i, rld[r].mode);
6522 int k;
6523
6524 for (k = 1; k < nr; k++)
6525 if (reg_reloaded_contents[i + k] != regno
6526 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6527 break;
6528
6529 if (k == nr)
6530 {
6531 int i1;
6532 int bad_for_class;
6533
6534 last_reg = (GET_MODE (last_reg) == mode
6535 ? last_reg : gen_rtx_REG (mode, i));
6536
6537 bad_for_class = 0;
6538 for (k = 0; k < nr; k++)
6539 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6540 i+k);
6541
6542 /* We found a register that contains the
6543 value we need. If this register is the
6544 same as an `earlyclobber' operand of the
6545 current insn, just mark it as a place to
6546 reload from since we can't use it as the
6547 reload register itself. */
6548
6549 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6550 if (reg_overlap_mentioned_for_reload_p
6551 (reg_last_reload_reg[regno],
6552 reload_earlyclobbers[i1]))
6553 break;
6554
6555 if (i1 != n_earlyclobbers
6556 || ! (free_for_value_p (i, rld[r].mode,
6557 rld[r].opnum,
6558 rld[r].when_needed, rld[r].in,
6559 rld[r].out, r, 1))
6560 /* Don't use it if we'd clobber a pseudo reg. */
6561 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6562 && rld[r].out
6563 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6564 /* Don't clobber the frame pointer. */
6565 || (i == HARD_FRAME_POINTER_REGNUM
6566 && frame_pointer_needed
6567 && rld[r].out)
6568 /* Don't really use the inherited spill reg
6569 if we need it wider than we've got it. */
6570 || paradoxical_subreg_p (rld[r].mode, mode)
6571 || bad_for_class
6572
6573 /* If find_reloads chose reload_out as reload
6574 register, stay with it - that leaves the
6575 inherited register for subsequent reloads. */
6576 || (rld[r].out && rld[r].reg_rtx
6577 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6578 {
6579 if (! rld[r].optional)
6580 {
6581 reload_override_in[r] = last_reg;
6582 reload_inheritance_insn[r]
6583 = reg_reloaded_insn[i];
6584 }
6585 }
6586 else
6587 {
6588 int k;
6589 /* We can use this as a reload reg. */
6590 /* Mark the register as in use for this part of
6591 the insn. */
6592 mark_reload_reg_in_use (i,
6593 rld[r].opnum,
6594 rld[r].when_needed,
6595 rld[r].mode);
6596 rld[r].reg_rtx = last_reg;
6597 reload_inherited[r] = 1;
6598 reload_inheritance_insn[r]
6599 = reg_reloaded_insn[i];
6600 reload_spill_index[r] = i;
6601 for (k = 0; k < nr; k++)
6602 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6603 i + k);
6604 }
6605 }
6606 }
6607 }
6608 }
6609
6610 /* Here's another way to see if the value is already lying around. */
6611 if (inheritance
6612 && rld[r].in != 0
6613 && ! reload_inherited[r]
6614 && rld[r].out == 0
6615 && (CONSTANT_P (rld[r].in)
6616 || GET_CODE (rld[r].in) == PLUS
6617 || REG_P (rld[r].in)
6618 || MEM_P (rld[r].in))
6619 && (rld[r].nregs == max_group_size
6620 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6621 search_equiv = rld[r].in;
6622
6623 if (search_equiv)
6624 {
6625 rtx equiv
6626 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6627 -1, NULL, 0, rld[r].mode);
6628 int regno = 0;
6629
6630 if (equiv != 0)
6631 {
6632 if (REG_P (equiv))
6633 regno = REGNO (equiv);
6634 else
6635 {
6636 /* This must be a SUBREG of a hard register.
6637 Make a new REG since this might be used in an
6638 address and not all machines support SUBREGs
6639 there. */
6640 gcc_assert (GET_CODE (equiv) == SUBREG);
6641 regno = subreg_regno (equiv);
6642 equiv = gen_rtx_REG (rld[r].mode, regno);
6643 /* If we choose EQUIV as the reload register, but the
6644 loop below decides to cancel the inheritance, we'll
6645 end up reloading EQUIV in rld[r].mode, not the mode
6646 it had originally. That isn't safe when EQUIV isn't
6647 available as a spill register since its value might
6648 still be live at this point. */
6649 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6650 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6651 equiv = 0;
6652 }
6653 }
6654
6655 /* If we found a spill reg, reject it unless it is free
6656 and of the desired class. */
6657 if (equiv != 0)
6658 {
6659 int regs_used = 0;
6660 int bad_for_class = 0;
6661 int max_regno = regno + rld[r].nregs;
6662
6663 for (i = regno; i < max_regno; i++)
6664 {
6665 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6666 i);
6667 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6668 i);
6669 }
6670
6671 if ((regs_used
6672 && ! free_for_value_p (regno, rld[r].mode,
6673 rld[r].opnum, rld[r].when_needed,
6674 rld[r].in, rld[r].out, r, 1))
6675 || bad_for_class)
6676 equiv = 0;
6677 }
6678
6679 if (equiv != 0
6680 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6681 equiv = 0;
6682
6683 /* We found a register that contains the value we need.
6684 If this register is the same as an `earlyclobber' operand
6685 of the current insn, just mark it as a place to reload from
6686 since we can't use it as the reload register itself. */
6687
6688 if (equiv != 0)
6689 for (i = 0; i < n_earlyclobbers; i++)
6690 if (reg_overlap_mentioned_for_reload_p (equiv,
6691 reload_earlyclobbers[i]))
6692 {
6693 if (! rld[r].optional)
6694 reload_override_in[r] = equiv;
6695 equiv = 0;
6696 break;
6697 }
6698
6699 /* If the equiv register we have found is explicitly clobbered
6700 in the current insn, it depends on the reload type if we
6701 can use it, use it for reload_override_in, or not at all.
6702 In particular, we then can't use EQUIV for a
6703 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6704
6705 if (equiv != 0)
6706 {
6707 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6708 switch (rld[r].when_needed)
6709 {
6710 case RELOAD_FOR_OTHER_ADDRESS:
6711 case RELOAD_FOR_INPADDR_ADDRESS:
6712 case RELOAD_FOR_INPUT_ADDRESS:
6713 case RELOAD_FOR_OPADDR_ADDR:
6714 break;
6715 case RELOAD_OTHER:
6716 case RELOAD_FOR_INPUT:
6717 case RELOAD_FOR_OPERAND_ADDRESS:
6718 if (! rld[r].optional)
6719 reload_override_in[r] = equiv;
6720 /* Fall through. */
6721 default:
6722 equiv = 0;
6723 break;
6724 }
6725 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6726 switch (rld[r].when_needed)
6727 {
6728 case RELOAD_FOR_OTHER_ADDRESS:
6729 case RELOAD_FOR_INPADDR_ADDRESS:
6730 case RELOAD_FOR_INPUT_ADDRESS:
6731 case RELOAD_FOR_OPADDR_ADDR:
6732 case RELOAD_FOR_OPERAND_ADDRESS:
6733 case RELOAD_FOR_INPUT:
6734 break;
6735 case RELOAD_OTHER:
6736 if (! rld[r].optional)
6737 reload_override_in[r] = equiv;
6738 /* Fall through. */
6739 default:
6740 equiv = 0;
6741 break;
6742 }
6743 }
6744
6745 /* If we found an equivalent reg, say no code need be generated
6746 to load it, and use it as our reload reg. */
6747 if (equiv != 0
6748 && (regno != HARD_FRAME_POINTER_REGNUM
6749 || !frame_pointer_needed))
6750 {
6751 int nr = hard_regno_nregs (regno, rld[r].mode);
6752 int k;
6753 rld[r].reg_rtx = equiv;
6754 reload_spill_index[r] = regno;
6755 reload_inherited[r] = 1;
6756
6757 /* If reg_reloaded_valid is not set for this register,
6758 there might be a stale spill_reg_store lying around.
6759 We must clear it, since otherwise emit_reload_insns
6760 might delete the store. */
6761 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6762 spill_reg_store[regno] = NULL;
6763 /* If any of the hard registers in EQUIV are spill
6764 registers, mark them as in use for this insn. */
6765 for (k = 0; k < nr; k++)
6766 {
6767 i = spill_reg_order[regno + k];
6768 if (i >= 0)
6769 {
6770 mark_reload_reg_in_use (regno, rld[r].opnum,
6771 rld[r].when_needed,
6772 rld[r].mode);
6773 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6774 regno + k);
6775 }
6776 }
6777 }
6778 }
6779
6780 /* If we found a register to use already, or if this is an optional
6781 reload, we are done. */
6782 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6783 continue;
6784
6785 #if 0
6786 /* No longer needed for correct operation. Might or might
6787 not give better code on the average. Want to experiment? */
6788
6789 /* See if there is a later reload that has a class different from our
6790 class that intersects our class or that requires less register
6791 than our reload. If so, we must allocate a register to this
6792 reload now, since that reload might inherit a previous reload
6793 and take the only available register in our class. Don't do this
6794 for optional reloads since they will force all previous reloads
6795 to be allocated. Also don't do this for reloads that have been
6796 turned off. */
6797
6798 for (i = j + 1; i < n_reloads; i++)
6799 {
6800 int s = reload_order[i];
6801
6802 if ((rld[s].in == 0 && rld[s].out == 0
6803 && ! rld[s].secondary_p)
6804 || rld[s].optional)
6805 continue;
6806
6807 if ((rld[s].rclass != rld[r].rclass
6808 && reg_classes_intersect_p (rld[r].rclass,
6809 rld[s].rclass))
6810 || rld[s].nregs < rld[r].nregs)
6811 break;
6812 }
6813
6814 if (i == n_reloads)
6815 continue;
6816
6817 allocate_reload_reg (chain, r, j == n_reloads - 1);
6818 #endif
6819 }
6820
6821 /* Now allocate reload registers for anything non-optional that
6822 didn't get one yet. */
6823 for (j = 0; j < n_reloads; j++)
6824 {
6825 int r = reload_order[j];
6826
6827 /* Ignore reloads that got marked inoperative. */
6828 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6829 continue;
6830
6831 /* Skip reloads that already have a register allocated or are
6832 optional. */
6833 if (rld[r].reg_rtx != 0 || rld[r].optional)
6834 continue;
6835
6836 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6837 break;
6838 }
6839
6840 /* If that loop got all the way, we have won. */
6841 if (j == n_reloads)
6842 {
6843 win = 1;
6844 break;
6845 }
6846
6847 /* Loop around and try without any inheritance. */
6848 }
6849
6850 if (! win)
6851 {
6852 /* First undo everything done by the failed attempt
6853 to allocate with inheritance. */
6854 choose_reload_regs_init (chain, save_reload_reg_rtx);
6855
6856 /* Some sanity tests to verify that the reloads found in the first
6857 pass are identical to the ones we have now. */
6858 gcc_assert (chain->n_reloads == n_reloads);
6859
6860 for (i = 0; i < n_reloads; i++)
6861 {
6862 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6863 continue;
6864 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6865 for (j = 0; j < n_spills; j++)
6866 if (spill_regs[j] == chain->rld[i].regno)
6867 if (! set_reload_reg (j, i))
6868 failed_reload (chain->insn, i);
6869 }
6870 }
6871
6872 /* If we thought we could inherit a reload, because it seemed that
6873 nothing else wanted the same reload register earlier in the insn,
6874 verify that assumption, now that all reloads have been assigned.
6875 Likewise for reloads where reload_override_in has been set. */
6876
6877 /* If doing expensive optimizations, do one preliminary pass that doesn't
6878 cancel any inheritance, but removes reloads that have been needed only
6879 for reloads that we know can be inherited. */
6880 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6881 {
6882 for (j = 0; j < n_reloads; j++)
6883 {
6884 int r = reload_order[j];
6885 rtx check_reg;
6886 rtx tem;
6887 if (reload_inherited[r] && rld[r].reg_rtx)
6888 check_reg = rld[r].reg_rtx;
6889 else if (reload_override_in[r]
6890 && (REG_P (reload_override_in[r])
6891 || GET_CODE (reload_override_in[r]) == SUBREG))
6892 check_reg = reload_override_in[r];
6893 else
6894 continue;
6895 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6896 rld[r].opnum, rld[r].when_needed, rld[r].in,
6897 (reload_inherited[r]
6898 ? rld[r].out : const0_rtx),
6899 r, 1))
6900 {
6901 if (pass)
6902 continue;
6903 reload_inherited[r] = 0;
6904 reload_override_in[r] = 0;
6905 }
6906 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6907 reload_override_in, then we do not need its related
6908 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6909 likewise for other reload types.
6910 We handle this by removing a reload when its only replacement
6911 is mentioned in reload_in of the reload we are going to inherit.
6912 A special case are auto_inc expressions; even if the input is
6913 inherited, we still need the address for the output. We can
6914 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6915 If we succeeded removing some reload and we are doing a preliminary
6916 pass just to remove such reloads, make another pass, since the
6917 removal of one reload might allow us to inherit another one. */
6918 else if (rld[r].in
6919 && rld[r].out != rld[r].in
6920 && remove_address_replacements (rld[r].in))
6921 {
6922 if (pass)
6923 pass = 2;
6924 }
6925 /* If we needed a memory location for the reload, we also have to
6926 remove its related reloads. */
6927 else if (rld[r].in
6928 && rld[r].out != rld[r].in
6929 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
6930 && REGNO (tem) < FIRST_PSEUDO_REGISTER
6931 && (targetm.secondary_memory_needed
6932 (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
6933 rld[r].rclass))
6934 && remove_address_replacements
6935 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
6936 rld[r].when_needed)))
6937 {
6938 if (pass)
6939 pass = 2;
6940 }
6941 }
6942 }
6943
6944 /* Now that reload_override_in is known valid,
6945 actually override reload_in. */
6946 for (j = 0; j < n_reloads; j++)
6947 if (reload_override_in[j])
6948 rld[j].in = reload_override_in[j];
6949
6950 /* If this reload won't be done because it has been canceled or is
6951 optional and not inherited, clear reload_reg_rtx so other
6952 routines (such as subst_reloads) don't get confused. */
6953 for (j = 0; j < n_reloads; j++)
6954 if (rld[j].reg_rtx != 0
6955 && ((rld[j].optional && ! reload_inherited[j])
6956 || (rld[j].in == 0 && rld[j].out == 0
6957 && ! rld[j].secondary_p)))
6958 {
6959 int regno = true_regnum (rld[j].reg_rtx);
6960
6961 if (spill_reg_order[regno] >= 0)
6962 clear_reload_reg_in_use (regno, rld[j].opnum,
6963 rld[j].when_needed, rld[j].mode);
6964 rld[j].reg_rtx = 0;
6965 reload_spill_index[j] = -1;
6966 }
6967
6968 /* Record which pseudos and which spill regs have output reloads. */
6969 for (j = 0; j < n_reloads; j++)
6970 {
6971 int r = reload_order[j];
6972
6973 i = reload_spill_index[r];
6974
6975 /* I is nonneg if this reload uses a register.
6976 If rld[r].reg_rtx is 0, this is an optional reload
6977 that we opted to ignore. */
6978 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
6979 && rld[r].reg_rtx != 0)
6980 {
6981 int nregno = REGNO (rld[r].out_reg);
6982 int nr = 1;
6983
6984 if (nregno < FIRST_PSEUDO_REGISTER)
6985 nr = hard_regno_nregs (nregno, rld[r].mode);
6986
6987 while (--nr >= 0)
6988 SET_REGNO_REG_SET (&reg_has_output_reload,
6989 nregno + nr);
6990
6991 if (i >= 0)
6992 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
6993
6994 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6995 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6996 || rld[r].when_needed == RELOAD_FOR_INSN);
6997 }
6998 }
6999 }
7000
7001 /* Deallocate the reload register for reload R. This is called from
7002 remove_address_replacements. */
7003
7004 void
7005 deallocate_reload_reg (int r)
7006 {
7007 int regno;
7008
7009 if (! rld[r].reg_rtx)
7010 return;
7011 regno = true_regnum (rld[r].reg_rtx);
7012 rld[r].reg_rtx = 0;
7013 if (spill_reg_order[regno] >= 0)
7014 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7015 rld[r].mode);
7016 reload_spill_index[r] = -1;
7017 }
7018 \f
7019 /* These arrays are filled by emit_reload_insns and its subroutines. */
7020 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7021 static rtx_insn *other_input_address_reload_insns = 0;
7022 static rtx_insn *other_input_reload_insns = 0;
7023 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7024 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7025 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7026 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7027 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7028 static rtx_insn *operand_reload_insns = 0;
7029 static rtx_insn *other_operand_reload_insns = 0;
7030 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7031
7032 /* Values to be put in spill_reg_store are put here first. Instructions
7033 must only be placed here if the associated reload register reaches
7034 the end of the instruction's reload sequence. */
7035 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7036 static HARD_REG_SET reg_reloaded_died;
7037
7038 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7039 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7040 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7041 adjusted register, and return true. Otherwise, return false. */
7042 static bool
7043 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7044 enum reg_class new_class,
7045 machine_mode new_mode)
7046
7047 {
7048 rtx reg;
7049
7050 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7051 {
7052 unsigned regno = REGNO (reg);
7053
7054 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7055 continue;
7056 if (GET_MODE (reg) != new_mode)
7057 {
7058 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7059 continue;
7060 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7061 continue;
7062 reg = reload_adjust_reg_for_mode (reg, new_mode);
7063 }
7064 *reload_reg = reg;
7065 return true;
7066 }
7067 return false;
7068 }
7069
7070 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7071 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7072 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7073 adjusted register, and return true. Otherwise, return false. */
7074 static bool
7075 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7076 enum insn_code icode)
7077
7078 {
7079 enum reg_class new_class = scratch_reload_class (icode);
7080 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7081
7082 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7083 new_class, new_mode);
7084 }
7085
7086 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7087 has the number J. OLD contains the value to be used as input. */
7088
7089 static void
7090 emit_input_reload_insns (class insn_chain *chain, struct reload *rl,
7091 rtx old, int j)
7092 {
7093 rtx_insn *insn = chain->insn;
7094 rtx reloadreg;
7095 rtx oldequiv_reg = 0;
7096 rtx oldequiv = 0;
7097 int special = 0;
7098 machine_mode mode;
7099 rtx_insn **where;
7100
7101 /* delete_output_reload is only invoked properly if old contains
7102 the original pseudo register. Since this is replaced with a
7103 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7104 find the pseudo in RELOAD_IN_REG. This is also used to
7105 determine whether a secondary reload is needed. */
7106 if (reload_override_in[j]
7107 && (REG_P (rl->in_reg)
7108 || (GET_CODE (rl->in_reg) == SUBREG
7109 && REG_P (SUBREG_REG (rl->in_reg)))))
7110 {
7111 oldequiv = old;
7112 old = rl->in_reg;
7113 }
7114 if (oldequiv == 0)
7115 oldequiv = old;
7116 else if (REG_P (oldequiv))
7117 oldequiv_reg = oldequiv;
7118 else if (GET_CODE (oldequiv) == SUBREG)
7119 oldequiv_reg = SUBREG_REG (oldequiv);
7120
7121 reloadreg = reload_reg_rtx_for_input[j];
7122 mode = GET_MODE (reloadreg);
7123
7124 /* If we are reloading from a register that was recently stored in
7125 with an output-reload, see if we can prove there was
7126 actually no need to store the old value in it. */
7127
7128 if (optimize && REG_P (oldequiv)
7129 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7130 && spill_reg_store[REGNO (oldequiv)]
7131 && REG_P (old)
7132 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7133 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7134 rl->out_reg)))
7135 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7136
7137 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7138 OLDEQUIV. */
7139
7140 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7141 oldequiv = SUBREG_REG (oldequiv);
7142 if (GET_MODE (oldequiv) != VOIDmode
7143 && mode != GET_MODE (oldequiv))
7144 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7145
7146 /* Switch to the right place to emit the reload insns. */
7147 switch (rl->when_needed)
7148 {
7149 case RELOAD_OTHER:
7150 where = &other_input_reload_insns;
7151 break;
7152 case RELOAD_FOR_INPUT:
7153 where = &input_reload_insns[rl->opnum];
7154 break;
7155 case RELOAD_FOR_INPUT_ADDRESS:
7156 where = &input_address_reload_insns[rl->opnum];
7157 break;
7158 case RELOAD_FOR_INPADDR_ADDRESS:
7159 where = &inpaddr_address_reload_insns[rl->opnum];
7160 break;
7161 case RELOAD_FOR_OUTPUT_ADDRESS:
7162 where = &output_address_reload_insns[rl->opnum];
7163 break;
7164 case RELOAD_FOR_OUTADDR_ADDRESS:
7165 where = &outaddr_address_reload_insns[rl->opnum];
7166 break;
7167 case RELOAD_FOR_OPERAND_ADDRESS:
7168 where = &operand_reload_insns;
7169 break;
7170 case RELOAD_FOR_OPADDR_ADDR:
7171 where = &other_operand_reload_insns;
7172 break;
7173 case RELOAD_FOR_OTHER_ADDRESS:
7174 where = &other_input_address_reload_insns;
7175 break;
7176 default:
7177 gcc_unreachable ();
7178 }
7179
7180 push_to_sequence (*where);
7181
7182 /* Auto-increment addresses must be reloaded in a special way. */
7183 if (rl->out && ! rl->out_reg)
7184 {
7185 /* We are not going to bother supporting the case where a
7186 incremented register can't be copied directly from
7187 OLDEQUIV since this seems highly unlikely. */
7188 gcc_assert (rl->secondary_in_reload < 0);
7189
7190 if (reload_inherited[j])
7191 oldequiv = reloadreg;
7192
7193 old = XEXP (rl->in_reg, 0);
7194
7195 /* Prevent normal processing of this reload. */
7196 special = 1;
7197 /* Output a special code sequence for this case. */
7198 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7199 }
7200
7201 /* If we are reloading a pseudo-register that was set by the previous
7202 insn, see if we can get rid of that pseudo-register entirely
7203 by redirecting the previous insn into our reload register. */
7204
7205 else if (optimize && REG_P (old)
7206 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7207 && dead_or_set_p (insn, old)
7208 /* This is unsafe if some other reload
7209 uses the same reg first. */
7210 && ! conflicts_with_override (reloadreg)
7211 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7212 rl->when_needed, old, rl->out, j, 0))
7213 {
7214 rtx_insn *temp = PREV_INSN (insn);
7215 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7216 temp = PREV_INSN (temp);
7217 if (temp
7218 && NONJUMP_INSN_P (temp)
7219 && GET_CODE (PATTERN (temp)) == SET
7220 && SET_DEST (PATTERN (temp)) == old
7221 /* Make sure we can access insn_operand_constraint. */
7222 && asm_noperands (PATTERN (temp)) < 0
7223 /* This is unsafe if operand occurs more than once in current
7224 insn. Perhaps some occurrences aren't reloaded. */
7225 && count_occurrences (PATTERN (insn), old, 0) == 1)
7226 {
7227 rtx old = SET_DEST (PATTERN (temp));
7228 /* Store into the reload register instead of the pseudo. */
7229 SET_DEST (PATTERN (temp)) = reloadreg;
7230
7231 /* Verify that resulting insn is valid.
7232
7233 Note that we have replaced the destination of TEMP with
7234 RELOADREG. If TEMP references RELOADREG within an
7235 autoincrement addressing mode, then the resulting insn
7236 is ill-formed and we must reject this optimization. */
7237 extract_insn (temp);
7238 if (constrain_operands (1, get_enabled_alternatives (temp))
7239 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7240 {
7241 /* If the previous insn is an output reload, the source is
7242 a reload register, and its spill_reg_store entry will
7243 contain the previous destination. This is now
7244 invalid. */
7245 if (REG_P (SET_SRC (PATTERN (temp)))
7246 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7247 {
7248 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7249 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7250 }
7251
7252 /* If these are the only uses of the pseudo reg,
7253 pretend for GDB it lives in the reload reg we used. */
7254 if (REG_N_DEATHS (REGNO (old)) == 1
7255 && REG_N_SETS (REGNO (old)) == 1)
7256 {
7257 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7258 if (ira_conflicts_p)
7259 /* Inform IRA about the change. */
7260 ira_mark_allocation_change (REGNO (old));
7261 alter_reg (REGNO (old), -1, false);
7262 }
7263 special = 1;
7264
7265 /* Adjust any debug insns between temp and insn. */
7266 while ((temp = NEXT_INSN (temp)) != insn)
7267 if (DEBUG_BIND_INSN_P (temp))
7268 INSN_VAR_LOCATION_LOC (temp)
7269 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7270 old, reloadreg);
7271 else
7272 gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp));
7273 }
7274 else
7275 {
7276 SET_DEST (PATTERN (temp)) = old;
7277 }
7278 }
7279 }
7280
7281 /* We can't do that, so output an insn to load RELOADREG. */
7282
7283 /* If we have a secondary reload, pick up the secondary register
7284 and icode, if any. If OLDEQUIV and OLD are different or
7285 if this is an in-out reload, recompute whether or not we
7286 still need a secondary register and what the icode should
7287 be. If we still need a secondary register and the class or
7288 icode is different, go back to reloading from OLD if using
7289 OLDEQUIV means that we got the wrong type of register. We
7290 cannot have different class or icode due to an in-out reload
7291 because we don't make such reloads when both the input and
7292 output need secondary reload registers. */
7293
7294 if (! special && rl->secondary_in_reload >= 0)
7295 {
7296 rtx second_reload_reg = 0;
7297 rtx third_reload_reg = 0;
7298 int secondary_reload = rl->secondary_in_reload;
7299 rtx real_oldequiv = oldequiv;
7300 rtx real_old = old;
7301 rtx tmp;
7302 enum insn_code icode;
7303 enum insn_code tertiary_icode = CODE_FOR_nothing;
7304
7305 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7306 and similarly for OLD.
7307 See comments in get_secondary_reload in reload.c. */
7308 /* If it is a pseudo that cannot be replaced with its
7309 equivalent MEM, we must fall back to reload_in, which
7310 will have all the necessary substitutions registered.
7311 Likewise for a pseudo that can't be replaced with its
7312 equivalent constant.
7313
7314 Take extra care for subregs of such pseudos. Note that
7315 we cannot use reg_equiv_mem in this case because it is
7316 not in the right mode. */
7317
7318 tmp = oldequiv;
7319 if (GET_CODE (tmp) == SUBREG)
7320 tmp = SUBREG_REG (tmp);
7321 if (REG_P (tmp)
7322 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7323 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7324 || reg_equiv_constant (REGNO (tmp)) != 0))
7325 {
7326 if (! reg_equiv_mem (REGNO (tmp))
7327 || num_not_at_initial_offset
7328 || GET_CODE (oldequiv) == SUBREG)
7329 real_oldequiv = rl->in;
7330 else
7331 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7332 }
7333
7334 tmp = old;
7335 if (GET_CODE (tmp) == SUBREG)
7336 tmp = SUBREG_REG (tmp);
7337 if (REG_P (tmp)
7338 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7339 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7340 || reg_equiv_constant (REGNO (tmp)) != 0))
7341 {
7342 if (! reg_equiv_mem (REGNO (tmp))
7343 || num_not_at_initial_offset
7344 || GET_CODE (old) == SUBREG)
7345 real_old = rl->in;
7346 else
7347 real_old = reg_equiv_mem (REGNO (tmp));
7348 }
7349
7350 second_reload_reg = rld[secondary_reload].reg_rtx;
7351 if (rld[secondary_reload].secondary_in_reload >= 0)
7352 {
7353 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7354
7355 third_reload_reg = rld[tertiary_reload].reg_rtx;
7356 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7357 /* We'd have to add more code for quartary reloads. */
7358 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7359 }
7360 icode = rl->secondary_in_icode;
7361
7362 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7363 || (rl->in != 0 && rl->out != 0))
7364 {
7365 secondary_reload_info sri, sri2;
7366 enum reg_class new_class, new_t_class;
7367
7368 sri.icode = CODE_FOR_nothing;
7369 sri.prev_sri = NULL;
7370 new_class
7371 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7372 rl->rclass, mode,
7373 &sri);
7374
7375 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7376 second_reload_reg = 0;
7377 else if (new_class == NO_REGS)
7378 {
7379 if (reload_adjust_reg_for_icode (&second_reload_reg,
7380 third_reload_reg,
7381 (enum insn_code) sri.icode))
7382 {
7383 icode = (enum insn_code) sri.icode;
7384 third_reload_reg = 0;
7385 }
7386 else
7387 {
7388 oldequiv = old;
7389 real_oldequiv = real_old;
7390 }
7391 }
7392 else if (sri.icode != CODE_FOR_nothing)
7393 /* We currently lack a way to express this in reloads. */
7394 gcc_unreachable ();
7395 else
7396 {
7397 sri2.icode = CODE_FOR_nothing;
7398 sri2.prev_sri = &sri;
7399 new_t_class
7400 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7401 new_class, mode,
7402 &sri);
7403 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7404 {
7405 if (reload_adjust_reg_for_temp (&second_reload_reg,
7406 third_reload_reg,
7407 new_class, mode))
7408 {
7409 third_reload_reg = 0;
7410 tertiary_icode = (enum insn_code) sri2.icode;
7411 }
7412 else
7413 {
7414 oldequiv = old;
7415 real_oldequiv = real_old;
7416 }
7417 }
7418 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7419 {
7420 rtx intermediate = second_reload_reg;
7421
7422 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7423 new_class, mode)
7424 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7425 ((enum insn_code)
7426 sri2.icode)))
7427 {
7428 second_reload_reg = intermediate;
7429 tertiary_icode = (enum insn_code) sri2.icode;
7430 }
7431 else
7432 {
7433 oldequiv = old;
7434 real_oldequiv = real_old;
7435 }
7436 }
7437 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7438 {
7439 rtx intermediate = second_reload_reg;
7440
7441 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7442 new_class, mode)
7443 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7444 new_t_class, mode))
7445 {
7446 second_reload_reg = intermediate;
7447 tertiary_icode = (enum insn_code) sri2.icode;
7448 }
7449 else
7450 {
7451 oldequiv = old;
7452 real_oldequiv = real_old;
7453 }
7454 }
7455 else
7456 {
7457 /* This could be handled more intelligently too. */
7458 oldequiv = old;
7459 real_oldequiv = real_old;
7460 }
7461 }
7462 }
7463
7464 /* If we still need a secondary reload register, check
7465 to see if it is being used as a scratch or intermediate
7466 register and generate code appropriately. If we need
7467 a scratch register, use REAL_OLDEQUIV since the form of
7468 the insn may depend on the actual address if it is
7469 a MEM. */
7470
7471 if (second_reload_reg)
7472 {
7473 if (icode != CODE_FOR_nothing)
7474 {
7475 /* We'd have to add extra code to handle this case. */
7476 gcc_assert (!third_reload_reg);
7477
7478 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7479 second_reload_reg));
7480 special = 1;
7481 }
7482 else
7483 {
7484 /* See if we need a scratch register to load the
7485 intermediate register (a tertiary reload). */
7486 if (tertiary_icode != CODE_FOR_nothing)
7487 {
7488 emit_insn ((GEN_FCN (tertiary_icode)
7489 (second_reload_reg, real_oldequiv,
7490 third_reload_reg)));
7491 }
7492 else if (third_reload_reg)
7493 {
7494 gen_reload (third_reload_reg, real_oldequiv,
7495 rl->opnum,
7496 rl->when_needed);
7497 gen_reload (second_reload_reg, third_reload_reg,
7498 rl->opnum,
7499 rl->when_needed);
7500 }
7501 else
7502 gen_reload (second_reload_reg, real_oldequiv,
7503 rl->opnum,
7504 rl->when_needed);
7505
7506 oldequiv = second_reload_reg;
7507 }
7508 }
7509 }
7510
7511 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7512 {
7513 rtx real_oldequiv = oldequiv;
7514
7515 if ((REG_P (oldequiv)
7516 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7517 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7518 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7519 || (GET_CODE (oldequiv) == SUBREG
7520 && REG_P (SUBREG_REG (oldequiv))
7521 && (REGNO (SUBREG_REG (oldequiv))
7522 >= FIRST_PSEUDO_REGISTER)
7523 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7524 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7525 || (CONSTANT_P (oldequiv)
7526 && (targetm.preferred_reload_class (oldequiv,
7527 REGNO_REG_CLASS (REGNO (reloadreg)))
7528 == NO_REGS)))
7529 real_oldequiv = rl->in;
7530 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7531 rl->when_needed);
7532 }
7533
7534 if (cfun->can_throw_non_call_exceptions)
7535 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7536
7537 /* End this sequence. */
7538 *where = get_insns ();
7539 end_sequence ();
7540
7541 /* Update reload_override_in so that delete_address_reloads_1
7542 can see the actual register usage. */
7543 if (oldequiv_reg)
7544 reload_override_in[j] = oldequiv;
7545 }
7546
7547 /* Generate insns to for the output reload RL, which is for the insn described
7548 by CHAIN and has the number J. */
7549 static void
7550 emit_output_reload_insns (class insn_chain *chain, struct reload *rl,
7551 int j)
7552 {
7553 rtx reloadreg;
7554 rtx_insn *insn = chain->insn;
7555 int special = 0;
7556 rtx old = rl->out;
7557 machine_mode mode;
7558 rtx_insn *p;
7559 rtx rl_reg_rtx;
7560
7561 if (rl->when_needed == RELOAD_OTHER)
7562 start_sequence ();
7563 else
7564 push_to_sequence (output_reload_insns[rl->opnum]);
7565
7566 rl_reg_rtx = reload_reg_rtx_for_output[j];
7567 mode = GET_MODE (rl_reg_rtx);
7568
7569 reloadreg = rl_reg_rtx;
7570
7571 /* If we need two reload regs, set RELOADREG to the intermediate
7572 one, since it will be stored into OLD. We might need a secondary
7573 register only for an input reload, so check again here. */
7574
7575 if (rl->secondary_out_reload >= 0)
7576 {
7577 rtx real_old = old;
7578 int secondary_reload = rl->secondary_out_reload;
7579 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7580
7581 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7582 && reg_equiv_mem (REGNO (old)) != 0)
7583 real_old = reg_equiv_mem (REGNO (old));
7584
7585 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7586 {
7587 rtx second_reloadreg = reloadreg;
7588 reloadreg = rld[secondary_reload].reg_rtx;
7589
7590 /* See if RELOADREG is to be used as a scratch register
7591 or as an intermediate register. */
7592 if (rl->secondary_out_icode != CODE_FOR_nothing)
7593 {
7594 /* We'd have to add extra code to handle this case. */
7595 gcc_assert (tertiary_reload < 0);
7596
7597 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7598 (real_old, second_reloadreg, reloadreg)));
7599 special = 1;
7600 }
7601 else
7602 {
7603 /* See if we need both a scratch and intermediate reload
7604 register. */
7605
7606 enum insn_code tertiary_icode
7607 = rld[secondary_reload].secondary_out_icode;
7608
7609 /* We'd have to add more code for quartary reloads. */
7610 gcc_assert (tertiary_reload < 0
7611 || rld[tertiary_reload].secondary_out_reload < 0);
7612
7613 if (GET_MODE (reloadreg) != mode)
7614 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7615
7616 if (tertiary_icode != CODE_FOR_nothing)
7617 {
7618 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7619
7620 /* Copy primary reload reg to secondary reload reg.
7621 (Note that these have been swapped above, then
7622 secondary reload reg to OLD using our insn.) */
7623
7624 /* If REAL_OLD is a paradoxical SUBREG, remove it
7625 and try to put the opposite SUBREG on
7626 RELOADREG. */
7627 strip_paradoxical_subreg (&real_old, &reloadreg);
7628
7629 gen_reload (reloadreg, second_reloadreg,
7630 rl->opnum, rl->when_needed);
7631 emit_insn ((GEN_FCN (tertiary_icode)
7632 (real_old, reloadreg, third_reloadreg)));
7633 special = 1;
7634 }
7635
7636 else
7637 {
7638 /* Copy between the reload regs here and then to
7639 OUT later. */
7640
7641 gen_reload (reloadreg, second_reloadreg,
7642 rl->opnum, rl->when_needed);
7643 if (tertiary_reload >= 0)
7644 {
7645 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7646
7647 gen_reload (third_reloadreg, reloadreg,
7648 rl->opnum, rl->when_needed);
7649 reloadreg = third_reloadreg;
7650 }
7651 }
7652 }
7653 }
7654 }
7655
7656 /* Output the last reload insn. */
7657 if (! special)
7658 {
7659 rtx set;
7660
7661 /* Don't output the last reload if OLD is not the dest of
7662 INSN and is in the src and is clobbered by INSN. */
7663 if (! flag_expensive_optimizations
7664 || !REG_P (old)
7665 || !(set = single_set (insn))
7666 || rtx_equal_p (old, SET_DEST (set))
7667 || !reg_mentioned_p (old, SET_SRC (set))
7668 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7669 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7670 gen_reload (old, reloadreg, rl->opnum,
7671 rl->when_needed);
7672 }
7673
7674 /* Look at all insns we emitted, just to be safe. */
7675 for (p = get_insns (); p; p = NEXT_INSN (p))
7676 if (INSN_P (p))
7677 {
7678 rtx pat = PATTERN (p);
7679
7680 /* If this output reload doesn't come from a spill reg,
7681 clear any memory of reloaded copies of the pseudo reg.
7682 If this output reload comes from a spill reg,
7683 reg_has_output_reload will make this do nothing. */
7684 note_stores (p, forget_old_reloads_1, NULL);
7685
7686 if (reg_mentioned_p (rl_reg_rtx, pat))
7687 {
7688 rtx set = single_set (insn);
7689 if (reload_spill_index[j] < 0
7690 && set
7691 && SET_SRC (set) == rl_reg_rtx)
7692 {
7693 int src = REGNO (SET_SRC (set));
7694
7695 reload_spill_index[j] = src;
7696 SET_HARD_REG_BIT (reg_is_output_reload, src);
7697 if (find_regno_note (insn, REG_DEAD, src))
7698 SET_HARD_REG_BIT (reg_reloaded_died, src);
7699 }
7700 if (HARD_REGISTER_P (rl_reg_rtx))
7701 {
7702 int s = rl->secondary_out_reload;
7703 set = single_set (p);
7704 /* If this reload copies only to the secondary reload
7705 register, the secondary reload does the actual
7706 store. */
7707 if (s >= 0 && set == NULL_RTX)
7708 /* We can't tell what function the secondary reload
7709 has and where the actual store to the pseudo is
7710 made; leave new_spill_reg_store alone. */
7711 ;
7712 else if (s >= 0
7713 && SET_SRC (set) == rl_reg_rtx
7714 && SET_DEST (set) == rld[s].reg_rtx)
7715 {
7716 /* Usually the next instruction will be the
7717 secondary reload insn; if we can confirm
7718 that it is, setting new_spill_reg_store to
7719 that insn will allow an extra optimization. */
7720 rtx s_reg = rld[s].reg_rtx;
7721 rtx_insn *next = NEXT_INSN (p);
7722 rld[s].out = rl->out;
7723 rld[s].out_reg = rl->out_reg;
7724 set = single_set (next);
7725 if (set && SET_SRC (set) == s_reg
7726 && reload_reg_rtx_reaches_end_p (s_reg, s))
7727 {
7728 SET_HARD_REG_BIT (reg_is_output_reload,
7729 REGNO (s_reg));
7730 new_spill_reg_store[REGNO (s_reg)] = next;
7731 }
7732 }
7733 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7734 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7735 }
7736 }
7737 }
7738
7739 if (rl->when_needed == RELOAD_OTHER)
7740 {
7741 emit_insn (other_output_reload_insns[rl->opnum]);
7742 other_output_reload_insns[rl->opnum] = get_insns ();
7743 }
7744 else
7745 output_reload_insns[rl->opnum] = get_insns ();
7746
7747 if (cfun->can_throw_non_call_exceptions)
7748 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7749
7750 end_sequence ();
7751 }
7752
7753 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7754 and has the number J. */
7755 static void
7756 do_input_reload (class insn_chain *chain, struct reload *rl, int j)
7757 {
7758 rtx_insn *insn = chain->insn;
7759 rtx old = (rl->in && MEM_P (rl->in)
7760 ? rl->in_reg : rl->in);
7761 rtx reg_rtx = rl->reg_rtx;
7762
7763 if (old && reg_rtx)
7764 {
7765 machine_mode mode;
7766
7767 /* Determine the mode to reload in.
7768 This is very tricky because we have three to choose from.
7769 There is the mode the insn operand wants (rl->inmode).
7770 There is the mode of the reload register RELOADREG.
7771 There is the intrinsic mode of the operand, which we could find
7772 by stripping some SUBREGs.
7773 It turns out that RELOADREG's mode is irrelevant:
7774 we can change that arbitrarily.
7775
7776 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7777 then the reload reg may not support QImode moves, so use SImode.
7778 If foo is in memory due to spilling a pseudo reg, this is safe,
7779 because the QImode value is in the least significant part of a
7780 slot big enough for a SImode. If foo is some other sort of
7781 memory reference, then it is impossible to reload this case,
7782 so previous passes had better make sure this never happens.
7783
7784 Then consider a one-word union which has SImode and one of its
7785 members is a float, being fetched as (SUBREG:SF union:SI).
7786 We must fetch that as SFmode because we could be loading into
7787 a float-only register. In this case OLD's mode is correct.
7788
7789 Consider an immediate integer: it has VOIDmode. Here we need
7790 to get a mode from something else.
7791
7792 In some cases, there is a fourth mode, the operand's
7793 containing mode. If the insn specifies a containing mode for
7794 this operand, it overrides all others.
7795
7796 I am not sure whether the algorithm here is always right,
7797 but it does the right things in those cases. */
7798
7799 mode = GET_MODE (old);
7800 if (mode == VOIDmode)
7801 mode = rl->inmode;
7802
7803 /* We cannot use gen_lowpart_common since it can do the wrong thing
7804 when REG_RTX has a multi-word mode. Note that REG_RTX must
7805 always be a REG here. */
7806 if (GET_MODE (reg_rtx) != mode)
7807 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7808 }
7809 reload_reg_rtx_for_input[j] = reg_rtx;
7810
7811 if (old != 0
7812 /* AUTO_INC reloads need to be handled even if inherited. We got an
7813 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7814 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7815 && ! rtx_equal_p (reg_rtx, old)
7816 && reg_rtx != 0)
7817 emit_input_reload_insns (chain, rld + j, old, j);
7818
7819 /* When inheriting a wider reload, we have a MEM in rl->in,
7820 e.g. inheriting a SImode output reload for
7821 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7822 if (optimize && reload_inherited[j] && rl->in
7823 && MEM_P (rl->in)
7824 && MEM_P (rl->in_reg)
7825 && reload_spill_index[j] >= 0
7826 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7827 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7828
7829 /* If we are reloading a register that was recently stored in with an
7830 output-reload, see if we can prove there was
7831 actually no need to store the old value in it. */
7832
7833 if (optimize
7834 && (reload_inherited[j] || reload_override_in[j])
7835 && reg_rtx
7836 && REG_P (reg_rtx)
7837 && spill_reg_store[REGNO (reg_rtx)] != 0
7838 #if 0
7839 /* There doesn't seem to be any reason to restrict this to pseudos
7840 and doing so loses in the case where we are copying from a
7841 register of the wrong class. */
7842 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7843 #endif
7844 /* The insn might have already some references to stackslots
7845 replaced by MEMs, while reload_out_reg still names the
7846 original pseudo. */
7847 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7848 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7849 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7850 }
7851
7852 /* Do output reloading for reload RL, which is for the insn described by
7853 CHAIN and has the number J.
7854 ??? At some point we need to support handling output reloads of
7855 JUMP_INSNs or insns that set cc0. */
7856 static void
7857 do_output_reload (class insn_chain *chain, struct reload *rl, int j)
7858 {
7859 rtx note, old;
7860 rtx_insn *insn = chain->insn;
7861 /* If this is an output reload that stores something that is
7862 not loaded in this same reload, see if we can eliminate a previous
7863 store. */
7864 rtx pseudo = rl->out_reg;
7865 rtx reg_rtx = rl->reg_rtx;
7866
7867 if (rl->out && reg_rtx)
7868 {
7869 machine_mode mode;
7870
7871 /* Determine the mode to reload in.
7872 See comments above (for input reloading). */
7873 mode = GET_MODE (rl->out);
7874 if (mode == VOIDmode)
7875 {
7876 /* VOIDmode should never happen for an output. */
7877 if (asm_noperands (PATTERN (insn)) < 0)
7878 /* It's the compiler's fault. */
7879 fatal_insn ("VOIDmode on an output", insn);
7880 error_for_asm (insn, "output operand is constant in %<asm%>");
7881 /* Prevent crash--use something we know is valid. */
7882 mode = word_mode;
7883 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7884 }
7885 if (GET_MODE (reg_rtx) != mode)
7886 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7887 }
7888 reload_reg_rtx_for_output[j] = reg_rtx;
7889
7890 if (pseudo
7891 && optimize
7892 && REG_P (pseudo)
7893 && ! rtx_equal_p (rl->in_reg, pseudo)
7894 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7895 && reg_last_reload_reg[REGNO (pseudo)])
7896 {
7897 int pseudo_no = REGNO (pseudo);
7898 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7899
7900 /* We don't need to test full validity of last_regno for
7901 inherit here; we only want to know if the store actually
7902 matches the pseudo. */
7903 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7904 && reg_reloaded_contents[last_regno] == pseudo_no
7905 && spill_reg_store[last_regno]
7906 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7907 delete_output_reload (insn, j, last_regno, reg_rtx);
7908 }
7909
7910 old = rl->out_reg;
7911 if (old == 0
7912 || reg_rtx == 0
7913 || rtx_equal_p (old, reg_rtx))
7914 return;
7915
7916 /* An output operand that dies right away does need a reload,
7917 but need not be copied from it. Show the new location in the
7918 REG_UNUSED note. */
7919 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7920 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7921 {
7922 XEXP (note, 0) = reg_rtx;
7923 return;
7924 }
7925 /* Likewise for a SUBREG of an operand that dies. */
7926 else if (GET_CODE (old) == SUBREG
7927 && REG_P (SUBREG_REG (old))
7928 && (note = find_reg_note (insn, REG_UNUSED,
7929 SUBREG_REG (old))) != 0)
7930 {
7931 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7932 return;
7933 }
7934 else if (GET_CODE (old) == SCRATCH)
7935 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7936 but we don't want to make an output reload. */
7937 return;
7938
7939 /* If is a JUMP_INSN, we can't support output reloads yet. */
7940 gcc_assert (NONJUMP_INSN_P (insn));
7941
7942 emit_output_reload_insns (chain, rld + j, j);
7943 }
7944
7945 /* A reload copies values of MODE from register SRC to register DEST.
7946 Return true if it can be treated for inheritance purposes like a
7947 group of reloads, each one reloading a single hard register. The
7948 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7949 occupy the same number of hard registers. */
7950
7951 static bool
7952 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7953 int src ATTRIBUTE_UNUSED,
7954 machine_mode mode ATTRIBUTE_UNUSED)
7955 {
7956 return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7957 && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7958 }
7959
7960 /* Output insns to reload values in and out of the chosen reload regs. */
7961
7962 static void
7963 emit_reload_insns (class insn_chain *chain)
7964 {
7965 rtx_insn *insn = chain->insn;
7966
7967 int j;
7968
7969 CLEAR_HARD_REG_SET (reg_reloaded_died);
7970
7971 for (j = 0; j < reload_n_operands; j++)
7972 input_reload_insns[j] = input_address_reload_insns[j]
7973 = inpaddr_address_reload_insns[j]
7974 = output_reload_insns[j] = output_address_reload_insns[j]
7975 = outaddr_address_reload_insns[j]
7976 = other_output_reload_insns[j] = 0;
7977 other_input_address_reload_insns = 0;
7978 other_input_reload_insns = 0;
7979 operand_reload_insns = 0;
7980 other_operand_reload_insns = 0;
7981
7982 /* Dump reloads into the dump file. */
7983 if (dump_file)
7984 {
7985 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7986 debug_reload_to_stream (dump_file);
7987 }
7988
7989 for (j = 0; j < n_reloads; j++)
7990 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
7991 {
7992 unsigned int i;
7993
7994 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
7995 new_spill_reg_store[i] = 0;
7996 }
7997
7998 /* Now output the instructions to copy the data into and out of the
7999 reload registers. Do these in the order that the reloads were reported,
8000 since reloads of base and index registers precede reloads of operands
8001 and the operands may need the base and index registers reloaded. */
8002
8003 for (j = 0; j < n_reloads; j++)
8004 {
8005 do_input_reload (chain, rld + j, j);
8006 do_output_reload (chain, rld + j, j);
8007 }
8008
8009 /* Now write all the insns we made for reloads in the order expected by
8010 the allocation functions. Prior to the insn being reloaded, we write
8011 the following reloads:
8012
8013 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8014
8015 RELOAD_OTHER reloads.
8016
8017 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8018 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8019 RELOAD_FOR_INPUT reload for the operand.
8020
8021 RELOAD_FOR_OPADDR_ADDRS reloads.
8022
8023 RELOAD_FOR_OPERAND_ADDRESS reloads.
8024
8025 After the insn being reloaded, we write the following:
8026
8027 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8028 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8029 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8030 reloads for the operand. The RELOAD_OTHER output reloads are
8031 output in descending order by reload number. */
8032
8033 emit_insn_before (other_input_address_reload_insns, insn);
8034 emit_insn_before (other_input_reload_insns, insn);
8035
8036 for (j = 0; j < reload_n_operands; j++)
8037 {
8038 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8039 emit_insn_before (input_address_reload_insns[j], insn);
8040 emit_insn_before (input_reload_insns[j], insn);
8041 }
8042
8043 emit_insn_before (other_operand_reload_insns, insn);
8044 emit_insn_before (operand_reload_insns, insn);
8045
8046 for (j = 0; j < reload_n_operands; j++)
8047 {
8048 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8049 x = emit_insn_after (output_address_reload_insns[j], x);
8050 x = emit_insn_after (output_reload_insns[j], x);
8051 emit_insn_after (other_output_reload_insns[j], x);
8052 }
8053
8054 /* For all the spill regs newly reloaded in this instruction,
8055 record what they were reloaded from, so subsequent instructions
8056 can inherit the reloads.
8057
8058 Update spill_reg_store for the reloads of this insn.
8059 Copy the elements that were updated in the loop above. */
8060
8061 for (j = 0; j < n_reloads; j++)
8062 {
8063 int r = reload_order[j];
8064 int i = reload_spill_index[r];
8065
8066 /* If this is a non-inherited input reload from a pseudo, we must
8067 clear any memory of a previous store to the same pseudo. Only do
8068 something if there will not be an output reload for the pseudo
8069 being reloaded. */
8070 if (rld[r].in_reg != 0
8071 && ! (reload_inherited[r] || reload_override_in[r]))
8072 {
8073 rtx reg = rld[r].in_reg;
8074
8075 if (GET_CODE (reg) == SUBREG)
8076 reg = SUBREG_REG (reg);
8077
8078 if (REG_P (reg)
8079 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8080 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8081 {
8082 int nregno = REGNO (reg);
8083
8084 if (reg_last_reload_reg[nregno])
8085 {
8086 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8087
8088 if (reg_reloaded_contents[last_regno] == nregno)
8089 spill_reg_store[last_regno] = 0;
8090 }
8091 }
8092 }
8093
8094 /* I is nonneg if this reload used a register.
8095 If rld[r].reg_rtx is 0, this is an optional reload
8096 that we opted to ignore. */
8097
8098 if (i >= 0 && rld[r].reg_rtx != 0)
8099 {
8100 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8101 int k;
8102
8103 /* For a multi register reload, we need to check if all or part
8104 of the value lives to the end. */
8105 for (k = 0; k < nr; k++)
8106 if (reload_reg_reaches_end_p (i + k, r))
8107 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8108
8109 /* Maybe the spill reg contains a copy of reload_out. */
8110 if (rld[r].out != 0
8111 && (REG_P (rld[r].out)
8112 || (rld[r].out_reg
8113 ? REG_P (rld[r].out_reg)
8114 /* The reload value is an auto-modification of
8115 some kind. For PRE_INC, POST_INC, PRE_DEC
8116 and POST_DEC, we record an equivalence
8117 between the reload register and the operand
8118 on the optimistic assumption that we can make
8119 the equivalence hold. reload_as_needed must
8120 then either make it hold or invalidate the
8121 equivalence.
8122
8123 PRE_MODIFY and POST_MODIFY addresses are reloaded
8124 somewhat differently, and allowing them here leads
8125 to problems. */
8126 : (GET_CODE (rld[r].out) != POST_MODIFY
8127 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8128 {
8129 rtx reg;
8130
8131 reg = reload_reg_rtx_for_output[r];
8132 if (reload_reg_rtx_reaches_end_p (reg, r))
8133 {
8134 machine_mode mode = GET_MODE (reg);
8135 int regno = REGNO (reg);
8136 int nregs = REG_NREGS (reg);
8137 rtx out = (REG_P (rld[r].out)
8138 ? rld[r].out
8139 : rld[r].out_reg
8140 ? rld[r].out_reg
8141 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8142 int out_regno = REGNO (out);
8143 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8144 : hard_regno_nregs (out_regno, mode));
8145 bool piecemeal;
8146
8147 spill_reg_store[regno] = new_spill_reg_store[regno];
8148 spill_reg_stored_to[regno] = out;
8149 reg_last_reload_reg[out_regno] = reg;
8150
8151 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8152 && nregs == out_nregs
8153 && inherit_piecemeal_p (out_regno, regno, mode));
8154
8155 /* If OUT_REGNO is a hard register, it may occupy more than
8156 one register. If it does, say what is in the
8157 rest of the registers assuming that both registers
8158 agree on how many words the object takes. If not,
8159 invalidate the subsequent registers. */
8160
8161 if (HARD_REGISTER_NUM_P (out_regno))
8162 for (k = 1; k < out_nregs; k++)
8163 reg_last_reload_reg[out_regno + k]
8164 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8165
8166 /* Now do the inverse operation. */
8167 for (k = 0; k < nregs; k++)
8168 {
8169 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8170 reg_reloaded_contents[regno + k]
8171 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8172 ? out_regno
8173 : out_regno + k);
8174 reg_reloaded_insn[regno + k] = insn;
8175 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8176 }
8177 }
8178 }
8179 /* Maybe the spill reg contains a copy of reload_in. Only do
8180 something if there will not be an output reload for
8181 the register being reloaded. */
8182 else if (rld[r].out_reg == 0
8183 && rld[r].in != 0
8184 && ((REG_P (rld[r].in)
8185 && !HARD_REGISTER_P (rld[r].in)
8186 && !REGNO_REG_SET_P (&reg_has_output_reload,
8187 REGNO (rld[r].in)))
8188 || (REG_P (rld[r].in_reg)
8189 && !REGNO_REG_SET_P (&reg_has_output_reload,
8190 REGNO (rld[r].in_reg))))
8191 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8192 {
8193 rtx reg;
8194
8195 reg = reload_reg_rtx_for_input[r];
8196 if (reload_reg_rtx_reaches_end_p (reg, r))
8197 {
8198 machine_mode mode;
8199 int regno;
8200 int nregs;
8201 int in_regno;
8202 int in_nregs;
8203 rtx in;
8204 bool piecemeal;
8205
8206 mode = GET_MODE (reg);
8207 regno = REGNO (reg);
8208 nregs = REG_NREGS (reg);
8209 if (REG_P (rld[r].in)
8210 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8211 in = rld[r].in;
8212 else if (REG_P (rld[r].in_reg))
8213 in = rld[r].in_reg;
8214 else
8215 in = XEXP (rld[r].in_reg, 0);
8216 in_regno = REGNO (in);
8217
8218 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8219 : hard_regno_nregs (in_regno, mode));
8220
8221 reg_last_reload_reg[in_regno] = reg;
8222
8223 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8224 && nregs == in_nregs
8225 && inherit_piecemeal_p (regno, in_regno, mode));
8226
8227 if (HARD_REGISTER_NUM_P (in_regno))
8228 for (k = 1; k < in_nregs; k++)
8229 reg_last_reload_reg[in_regno + k]
8230 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8231
8232 /* Unless we inherited this reload, show we haven't
8233 recently done a store.
8234 Previous stores of inherited auto_inc expressions
8235 also have to be discarded. */
8236 if (! reload_inherited[r]
8237 || (rld[r].out && ! rld[r].out_reg))
8238 spill_reg_store[regno] = 0;
8239
8240 for (k = 0; k < nregs; k++)
8241 {
8242 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8243 reg_reloaded_contents[regno + k]
8244 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8245 ? in_regno
8246 : in_regno + k);
8247 reg_reloaded_insn[regno + k] = insn;
8248 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8249 }
8250 }
8251 }
8252 }
8253
8254 /* The following if-statement was #if 0'd in 1.34 (or before...).
8255 It's reenabled in 1.35 because supposedly nothing else
8256 deals with this problem. */
8257
8258 /* If a register gets output-reloaded from a non-spill register,
8259 that invalidates any previous reloaded copy of it.
8260 But forget_old_reloads_1 won't get to see it, because
8261 it thinks only about the original insn. So invalidate it here.
8262 Also do the same thing for RELOAD_OTHER constraints where the
8263 output is discarded. */
8264 if (i < 0
8265 && ((rld[r].out != 0
8266 && (REG_P (rld[r].out)
8267 || (MEM_P (rld[r].out)
8268 && REG_P (rld[r].out_reg))))
8269 || (rld[r].out == 0 && rld[r].out_reg
8270 && REG_P (rld[r].out_reg))))
8271 {
8272 rtx out = ((rld[r].out && REG_P (rld[r].out))
8273 ? rld[r].out : rld[r].out_reg);
8274 int out_regno = REGNO (out);
8275 machine_mode mode = GET_MODE (out);
8276
8277 /* REG_RTX is now set or clobbered by the main instruction.
8278 As the comment above explains, forget_old_reloads_1 only
8279 sees the original instruction, and there is no guarantee
8280 that the original instruction also clobbered REG_RTX.
8281 For example, if find_reloads sees that the input side of
8282 a matched operand pair dies in this instruction, it may
8283 use the input register as the reload register.
8284
8285 Calling forget_old_reloads_1 is a waste of effort if
8286 REG_RTX is also the output register.
8287
8288 If we know that REG_RTX holds the value of a pseudo
8289 register, the code after the call will record that fact. */
8290 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8291 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8292
8293 if (!HARD_REGISTER_NUM_P (out_regno))
8294 {
8295 rtx src_reg;
8296 rtx_insn *store_insn = NULL;
8297
8298 reg_last_reload_reg[out_regno] = 0;
8299
8300 /* If we can find a hard register that is stored, record
8301 the storing insn so that we may delete this insn with
8302 delete_output_reload. */
8303 src_reg = reload_reg_rtx_for_output[r];
8304
8305 if (src_reg)
8306 {
8307 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8308 store_insn = new_spill_reg_store[REGNO (src_reg)];
8309 else
8310 src_reg = NULL_RTX;
8311 }
8312 else
8313 {
8314 /* If this is an optional reload, try to find the
8315 source reg from an input reload. */
8316 rtx set = single_set (insn);
8317 if (set && SET_DEST (set) == rld[r].out)
8318 {
8319 int k;
8320
8321 src_reg = SET_SRC (set);
8322 store_insn = insn;
8323 for (k = 0; k < n_reloads; k++)
8324 {
8325 if (rld[k].in == src_reg)
8326 {
8327 src_reg = reload_reg_rtx_for_input[k];
8328 break;
8329 }
8330 }
8331 }
8332 }
8333 if (src_reg && REG_P (src_reg)
8334 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8335 {
8336 int src_regno, src_nregs, k;
8337 rtx note;
8338
8339 gcc_assert (GET_MODE (src_reg) == mode);
8340 src_regno = REGNO (src_reg);
8341 src_nregs = hard_regno_nregs (src_regno, mode);
8342 /* The place where to find a death note varies with
8343 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8344 necessarily checked exactly in the code that moves
8345 notes, so just check both locations. */
8346 note = find_regno_note (insn, REG_DEAD, src_regno);
8347 if (! note && store_insn)
8348 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8349 for (k = 0; k < src_nregs; k++)
8350 {
8351 spill_reg_store[src_regno + k] = store_insn;
8352 spill_reg_stored_to[src_regno + k] = out;
8353 reg_reloaded_contents[src_regno + k] = out_regno;
8354 reg_reloaded_insn[src_regno + k] = store_insn;
8355 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8356 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8357 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8358 if (note)
8359 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8360 else
8361 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8362 }
8363 reg_last_reload_reg[out_regno] = src_reg;
8364 /* We have to set reg_has_output_reload here, or else
8365 forget_old_reloads_1 will clear reg_last_reload_reg
8366 right away. */
8367 SET_REGNO_REG_SET (&reg_has_output_reload,
8368 out_regno);
8369 }
8370 }
8371 else
8372 {
8373 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8374
8375 for (k = 0; k < out_nregs; k++)
8376 reg_last_reload_reg[out_regno + k] = 0;
8377 }
8378 }
8379 }
8380 reg_reloaded_dead |= reg_reloaded_died;
8381 }
8382 \f
8383 /* Go through the motions to emit INSN and test if it is strictly valid.
8384 Return the emitted insn if valid, else return NULL. */
8385
8386 static rtx_insn *
8387 emit_insn_if_valid_for_reload (rtx pat)
8388 {
8389 rtx_insn *last = get_last_insn ();
8390 int code;
8391
8392 rtx_insn *insn = emit_insn (pat);
8393 code = recog_memoized (insn);
8394
8395 if (code >= 0)
8396 {
8397 extract_insn (insn);
8398 /* We want constrain operands to treat this insn strictly in its
8399 validity determination, i.e., the way it would after reload has
8400 completed. */
8401 if (constrain_operands (1, get_enabled_alternatives (insn)))
8402 return insn;
8403 }
8404
8405 delete_insns_since (last);
8406 return NULL;
8407 }
8408
8409 /* Emit code to perform a reload from IN (which may be a reload register) to
8410 OUT (which may also be a reload register). IN or OUT is from operand
8411 OPNUM with reload type TYPE.
8412
8413 Returns first insn emitted. */
8414
8415 static rtx_insn *
8416 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8417 {
8418 rtx_insn *last = get_last_insn ();
8419 rtx_insn *tem;
8420 rtx tem1, tem2;
8421
8422 /* If IN is a paradoxical SUBREG, remove it and try to put the
8423 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8424 if (!strip_paradoxical_subreg (&in, &out))
8425 strip_paradoxical_subreg (&out, &in);
8426
8427 /* How to do this reload can get quite tricky. Normally, we are being
8428 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8429 register that didn't get a hard register. In that case we can just
8430 call emit_move_insn.
8431
8432 We can also be asked to reload a PLUS that adds a register or a MEM to
8433 another register, constant or MEM. This can occur during frame pointer
8434 elimination and while reloading addresses. This case is handled by
8435 trying to emit a single insn to perform the add. If it is not valid,
8436 we use a two insn sequence.
8437
8438 Or we can be asked to reload an unary operand that was a fragment of
8439 an addressing mode, into a register. If it isn't recognized as-is,
8440 we try making the unop operand and the reload-register the same:
8441 (set reg:X (unop:X expr:Y))
8442 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8443
8444 Finally, we could be called to handle an 'o' constraint by putting
8445 an address into a register. In that case, we first try to do this
8446 with a named pattern of "reload_load_address". If no such pattern
8447 exists, we just emit a SET insn and hope for the best (it will normally
8448 be valid on machines that use 'o').
8449
8450 This entire process is made complex because reload will never
8451 process the insns we generate here and so we must ensure that
8452 they will fit their constraints and also by the fact that parts of
8453 IN might be being reloaded separately and replaced with spill registers.
8454 Because of this, we are, in some sense, just guessing the right approach
8455 here. The one listed above seems to work.
8456
8457 ??? At some point, this whole thing needs to be rethought. */
8458
8459 if (GET_CODE (in) == PLUS
8460 && (REG_P (XEXP (in, 0))
8461 || GET_CODE (XEXP (in, 0)) == SUBREG
8462 || MEM_P (XEXP (in, 0)))
8463 && (REG_P (XEXP (in, 1))
8464 || GET_CODE (XEXP (in, 1)) == SUBREG
8465 || CONSTANT_P (XEXP (in, 1))
8466 || MEM_P (XEXP (in, 1))))
8467 {
8468 /* We need to compute the sum of a register or a MEM and another
8469 register, constant, or MEM, and put it into the reload
8470 register. The best possible way of doing this is if the machine
8471 has a three-operand ADD insn that accepts the required operands.
8472
8473 The simplest approach is to try to generate such an insn and see if it
8474 is recognized and matches its constraints. If so, it can be used.
8475
8476 It might be better not to actually emit the insn unless it is valid,
8477 but we need to pass the insn as an operand to `recog' and
8478 `extract_insn' and it is simpler to emit and then delete the insn if
8479 not valid than to dummy things up. */
8480
8481 rtx op0, op1, tem;
8482 rtx_insn *insn;
8483 enum insn_code code;
8484
8485 op0 = find_replacement (&XEXP (in, 0));
8486 op1 = find_replacement (&XEXP (in, 1));
8487
8488 /* Since constraint checking is strict, commutativity won't be
8489 checked, so we need to do that here to avoid spurious failure
8490 if the add instruction is two-address and the second operand
8491 of the add is the same as the reload reg, which is frequently
8492 the case. If the insn would be A = B + A, rearrange it so
8493 it will be A = A + B as constrain_operands expects. */
8494
8495 if (REG_P (XEXP (in, 1))
8496 && REGNO (out) == REGNO (XEXP (in, 1)))
8497 tem = op0, op0 = op1, op1 = tem;
8498
8499 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8500 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8501
8502 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8503 if (insn)
8504 return insn;
8505
8506 /* If that failed, we must use a conservative two-insn sequence.
8507
8508 Use a move to copy one operand into the reload register. Prefer
8509 to reload a constant, MEM or pseudo since the move patterns can
8510 handle an arbitrary operand. If OP1 is not a constant, MEM or
8511 pseudo and OP1 is not a valid operand for an add instruction, then
8512 reload OP1.
8513
8514 After reloading one of the operands into the reload register, add
8515 the reload register to the output register.
8516
8517 If there is another way to do this for a specific machine, a
8518 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8519 we emit below. */
8520
8521 code = optab_handler (add_optab, GET_MODE (out));
8522
8523 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8524 || (REG_P (op1)
8525 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8526 || (code != CODE_FOR_nothing
8527 && !insn_operand_matches (code, 2, op1)))
8528 tem = op0, op0 = op1, op1 = tem;
8529
8530 gen_reload (out, op0, opnum, type);
8531
8532 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8533 This fixes a problem on the 32K where the stack pointer cannot
8534 be used as an operand of an add insn. */
8535
8536 if (rtx_equal_p (op0, op1))
8537 op1 = out;
8538
8539 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8540 if (insn)
8541 {
8542 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8543 set_dst_reg_note (insn, REG_EQUIV, in, out);
8544 return insn;
8545 }
8546
8547 /* If that failed, copy the address register to the reload register.
8548 Then add the constant to the reload register. */
8549
8550 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8551 gen_reload (out, op1, opnum, type);
8552 insn = emit_insn (gen_add2_insn (out, op0));
8553 set_dst_reg_note (insn, REG_EQUIV, in, out);
8554 }
8555
8556 /* If we need a memory location to do the move, do it that way. */
8557 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8558 (REG_P (tem1) && REG_P (tem2)))
8559 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8560 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8561 && targetm.secondary_memory_needed (GET_MODE (out),
8562 REGNO_REG_CLASS (REGNO (tem1)),
8563 REGNO_REG_CLASS (REGNO (tem2))))
8564 {
8565 /* Get the memory to use and rewrite both registers to its mode. */
8566 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8567
8568 if (GET_MODE (loc) != GET_MODE (out))
8569 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8570
8571 if (GET_MODE (loc) != GET_MODE (in))
8572 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8573
8574 gen_reload (loc, in, opnum, type);
8575 gen_reload (out, loc, opnum, type);
8576 }
8577 else if (REG_P (out) && UNARY_P (in))
8578 {
8579 rtx op1;
8580 rtx out_moded;
8581 rtx_insn *set;
8582
8583 op1 = find_replacement (&XEXP (in, 0));
8584 if (op1 != XEXP (in, 0))
8585 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8586
8587 /* First, try a plain SET. */
8588 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8589 if (set)
8590 return set;
8591
8592 /* If that failed, move the inner operand to the reload
8593 register, and try the same unop with the inner expression
8594 replaced with the reload register. */
8595
8596 if (GET_MODE (op1) != GET_MODE (out))
8597 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8598 else
8599 out_moded = out;
8600
8601 gen_reload (out_moded, op1, opnum, type);
8602
8603 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8604 out_moded));
8605 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8606 if (insn)
8607 {
8608 set_unique_reg_note (insn, REG_EQUIV, in);
8609 return insn;
8610 }
8611
8612 fatal_insn ("failure trying to reload:", set);
8613 }
8614 /* If IN is a simple operand, use gen_move_insn. */
8615 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8616 {
8617 tem = emit_insn (gen_move_insn (out, in));
8618 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8619 mark_jump_label (in, tem, 0);
8620 }
8621
8622 else if (targetm.have_reload_load_address ())
8623 emit_insn (targetm.gen_reload_load_address (out, in));
8624
8625 /* Otherwise, just write (set OUT IN) and hope for the best. */
8626 else
8627 emit_insn (gen_rtx_SET (out, in));
8628
8629 /* Return the first insn emitted.
8630 We cannot just return get_last_insn, because there may have
8631 been multiple instructions emitted. Also note that gen_move_insn may
8632 emit more than one insn itself, so we cannot assume that there is one
8633 insn emitted per emit_insn_before call. */
8634
8635 return last ? NEXT_INSN (last) : get_insns ();
8636 }
8637 \f
8638 /* Delete a previously made output-reload whose result we now believe
8639 is not needed. First we double-check.
8640
8641 INSN is the insn now being processed.
8642 LAST_RELOAD_REG is the hard register number for which we want to delete
8643 the last output reload.
8644 J is the reload-number that originally used REG. The caller has made
8645 certain that reload J doesn't use REG any longer for input.
8646 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8647
8648 static void
8649 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8650 rtx new_reload_reg)
8651 {
8652 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8653 rtx reg = spill_reg_stored_to[last_reload_reg];
8654 int k;
8655 int n_occurrences;
8656 int n_inherited = 0;
8657 rtx substed;
8658 unsigned regno;
8659 int nregs;
8660
8661 /* It is possible that this reload has been only used to set another reload
8662 we eliminated earlier and thus deleted this instruction too. */
8663 if (output_reload_insn->deleted ())
8664 return;
8665
8666 /* Get the raw pseudo-register referred to. */
8667
8668 while (GET_CODE (reg) == SUBREG)
8669 reg = SUBREG_REG (reg);
8670 substed = reg_equiv_memory_loc (REGNO (reg));
8671
8672 /* This is unsafe if the operand occurs more often in the current
8673 insn than it is inherited. */
8674 for (k = n_reloads - 1; k >= 0; k--)
8675 {
8676 rtx reg2 = rld[k].in;
8677 if (! reg2)
8678 continue;
8679 if (MEM_P (reg2) || reload_override_in[k])
8680 reg2 = rld[k].in_reg;
8681
8682 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8683 reg2 = XEXP (rld[k].in_reg, 0);
8684
8685 while (GET_CODE (reg2) == SUBREG)
8686 reg2 = SUBREG_REG (reg2);
8687 if (rtx_equal_p (reg2, reg))
8688 {
8689 if (reload_inherited[k] || reload_override_in[k] || k == j)
8690 n_inherited++;
8691 else
8692 return;
8693 }
8694 }
8695 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8696 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8697 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8698 reg, 0);
8699 if (substed)
8700 n_occurrences += count_occurrences (PATTERN (insn),
8701 eliminate_regs (substed, VOIDmode,
8702 NULL_RTX), 0);
8703 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8704 {
8705 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8706 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8707 }
8708 if (n_occurrences > n_inherited)
8709 return;
8710
8711 regno = REGNO (reg);
8712 nregs = REG_NREGS (reg);
8713
8714 /* If the pseudo-reg we are reloading is no longer referenced
8715 anywhere between the store into it and here,
8716 and we're within the same basic block, then the value can only
8717 pass through the reload reg and end up here.
8718 Otherwise, give up--return. */
8719 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8720 i1 != insn; i1 = NEXT_INSN (i1))
8721 {
8722 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8723 return;
8724 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8725 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8726 {
8727 /* If this is USE in front of INSN, we only have to check that
8728 there are no more references than accounted for by inheritance. */
8729 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8730 {
8731 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8732 i1 = NEXT_INSN (i1);
8733 }
8734 if (n_occurrences <= n_inherited && i1 == insn)
8735 break;
8736 return;
8737 }
8738 }
8739
8740 /* We will be deleting the insn. Remove the spill reg information. */
8741 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8742 {
8743 spill_reg_store[last_reload_reg + k] = 0;
8744 spill_reg_stored_to[last_reload_reg + k] = 0;
8745 }
8746
8747 /* The caller has already checked that REG dies or is set in INSN.
8748 It has also checked that we are optimizing, and thus some
8749 inaccuracies in the debugging information are acceptable.
8750 So we could just delete output_reload_insn. But in some cases
8751 we can improve the debugging information without sacrificing
8752 optimization - maybe even improving the code: See if the pseudo
8753 reg has been completely replaced with reload regs. If so, delete
8754 the store insn and forget we had a stack slot for the pseudo. */
8755 if (rld[j].out != rld[j].in
8756 && REG_N_DEATHS (REGNO (reg)) == 1
8757 && REG_N_SETS (REGNO (reg)) == 1
8758 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8759 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8760 {
8761 rtx_insn *i2;
8762
8763 /* We know that it was used only between here and the beginning of
8764 the current basic block. (We also know that the last use before
8765 INSN was the output reload we are thinking of deleting, but never
8766 mind that.) Search that range; see if any ref remains. */
8767 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8768 {
8769 rtx set = single_set (i2);
8770
8771 /* Uses which just store in the pseudo don't count,
8772 since if they are the only uses, they are dead. */
8773 if (set != 0 && SET_DEST (set) == reg)
8774 continue;
8775 if (LABEL_P (i2) || JUMP_P (i2))
8776 break;
8777 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8778 && reg_mentioned_p (reg, PATTERN (i2)))
8779 {
8780 /* Some other ref remains; just delete the output reload we
8781 know to be dead. */
8782 delete_address_reloads (output_reload_insn, insn);
8783 delete_insn (output_reload_insn);
8784 return;
8785 }
8786 }
8787
8788 /* Delete the now-dead stores into this pseudo. Note that this
8789 loop also takes care of deleting output_reload_insn. */
8790 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8791 {
8792 rtx set = single_set (i2);
8793
8794 if (set != 0 && SET_DEST (set) == reg)
8795 {
8796 delete_address_reloads (i2, insn);
8797 delete_insn (i2);
8798 }
8799 if (LABEL_P (i2) || JUMP_P (i2))
8800 break;
8801 }
8802
8803 /* For the debugging info, say the pseudo lives in this reload reg. */
8804 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8805 if (ira_conflicts_p)
8806 /* Inform IRA about the change. */
8807 ira_mark_allocation_change (REGNO (reg));
8808 alter_reg (REGNO (reg), -1, false);
8809 }
8810 else
8811 {
8812 delete_address_reloads (output_reload_insn, insn);
8813 delete_insn (output_reload_insn);
8814 }
8815 }
8816
8817 /* We are going to delete DEAD_INSN. Recursively delete loads of
8818 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8819 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8820 static void
8821 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8822 {
8823 rtx set = single_set (dead_insn);
8824 rtx set2, dst;
8825 rtx_insn *prev, *next;
8826 if (set)
8827 {
8828 rtx dst = SET_DEST (set);
8829 if (MEM_P (dst))
8830 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8831 }
8832 /* If we deleted the store from a reloaded post_{in,de}c expression,
8833 we can delete the matching adds. */
8834 prev = PREV_INSN (dead_insn);
8835 next = NEXT_INSN (dead_insn);
8836 if (! prev || ! next)
8837 return;
8838 set = single_set (next);
8839 set2 = single_set (prev);
8840 if (! set || ! set2
8841 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8842 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8843 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8844 return;
8845 dst = SET_DEST (set);
8846 if (! rtx_equal_p (dst, SET_DEST (set2))
8847 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8848 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8849 || (INTVAL (XEXP (SET_SRC (set), 1))
8850 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8851 return;
8852 delete_related_insns (prev);
8853 delete_related_insns (next);
8854 }
8855
8856 /* Subfunction of delete_address_reloads: process registers found in X. */
8857 static void
8858 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8859 {
8860 rtx_insn *prev, *i2;
8861 rtx set, dst;
8862 int i, j;
8863 enum rtx_code code = GET_CODE (x);
8864
8865 if (code != REG)
8866 {
8867 const char *fmt = GET_RTX_FORMAT (code);
8868 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8869 {
8870 if (fmt[i] == 'e')
8871 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8872 else if (fmt[i] == 'E')
8873 {
8874 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8875 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8876 current_insn);
8877 }
8878 }
8879 return;
8880 }
8881
8882 if (spill_reg_order[REGNO (x)] < 0)
8883 return;
8884
8885 /* Scan backwards for the insn that sets x. This might be a way back due
8886 to inheritance. */
8887 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8888 {
8889 code = GET_CODE (prev);
8890 if (code == CODE_LABEL || code == JUMP_INSN)
8891 return;
8892 if (!INSN_P (prev))
8893 continue;
8894 if (reg_set_p (x, PATTERN (prev)))
8895 break;
8896 if (reg_referenced_p (x, PATTERN (prev)))
8897 return;
8898 }
8899 if (! prev || INSN_UID (prev) < reload_first_uid)
8900 return;
8901 /* Check that PREV only sets the reload register. */
8902 set = single_set (prev);
8903 if (! set)
8904 return;
8905 dst = SET_DEST (set);
8906 if (!REG_P (dst)
8907 || ! rtx_equal_p (dst, x))
8908 return;
8909 if (! reg_set_p (dst, PATTERN (dead_insn)))
8910 {
8911 /* Check if DST was used in a later insn -
8912 it might have been inherited. */
8913 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8914 {
8915 if (LABEL_P (i2))
8916 break;
8917 if (! INSN_P (i2))
8918 continue;
8919 if (reg_referenced_p (dst, PATTERN (i2)))
8920 {
8921 /* If there is a reference to the register in the current insn,
8922 it might be loaded in a non-inherited reload. If no other
8923 reload uses it, that means the register is set before
8924 referenced. */
8925 if (i2 == current_insn)
8926 {
8927 for (j = n_reloads - 1; j >= 0; j--)
8928 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8929 || reload_override_in[j] == dst)
8930 return;
8931 for (j = n_reloads - 1; j >= 0; j--)
8932 if (rld[j].in && rld[j].reg_rtx == dst)
8933 break;
8934 if (j >= 0)
8935 break;
8936 }
8937 return;
8938 }
8939 if (JUMP_P (i2))
8940 break;
8941 /* If DST is still live at CURRENT_INSN, check if it is used for
8942 any reload. Note that even if CURRENT_INSN sets DST, we still
8943 have to check the reloads. */
8944 if (i2 == current_insn)
8945 {
8946 for (j = n_reloads - 1; j >= 0; j--)
8947 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8948 || reload_override_in[j] == dst)
8949 return;
8950 /* ??? We can't finish the loop here, because dst might be
8951 allocated to a pseudo in this block if no reload in this
8952 block needs any of the classes containing DST - see
8953 spill_hard_reg. There is no easy way to tell this, so we
8954 have to scan till the end of the basic block. */
8955 }
8956 if (reg_set_p (dst, PATTERN (i2)))
8957 break;
8958 }
8959 }
8960 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
8961 reg_reloaded_contents[REGNO (dst)] = -1;
8962 delete_insn (prev);
8963 }
8964 \f
8965 /* Output reload-insns to reload VALUE into RELOADREG.
8966 VALUE is an autoincrement or autodecrement RTX whose operand
8967 is a register or memory location;
8968 so reloading involves incrementing that location.
8969 IN is either identical to VALUE, or some cheaper place to reload from.
8970
8971 INC_AMOUNT is the number to increment or decrement by (always positive).
8972 This cannot be deduced from VALUE. */
8973
8974 static void
8975 inc_for_reload (rtx reloadreg, rtx in, rtx value, poly_int64 inc_amount)
8976 {
8977 /* REG or MEM to be copied and incremented. */
8978 rtx incloc = find_replacement (&XEXP (value, 0));
8979 /* Nonzero if increment after copying. */
8980 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
8981 || GET_CODE (value) == POST_MODIFY);
8982 rtx_insn *last;
8983 rtx inc;
8984 rtx_insn *add_insn;
8985 int code;
8986 rtx real_in = in == value ? incloc : in;
8987
8988 /* No hard register is equivalent to this register after
8989 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
8990 we could inc/dec that register as well (maybe even using it for
8991 the source), but I'm not sure it's worth worrying about. */
8992 if (REG_P (incloc))
8993 reg_last_reload_reg[REGNO (incloc)] = 0;
8994
8995 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
8996 {
8997 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
8998 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
8999 }
9000 else
9001 {
9002 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9003 inc_amount = -inc_amount;
9004
9005 inc = gen_int_mode (inc_amount, Pmode);
9006 }
9007
9008 /* If this is post-increment, first copy the location to the reload reg. */
9009 if (post && real_in != reloadreg)
9010 emit_insn (gen_move_insn (reloadreg, real_in));
9011
9012 if (in == value)
9013 {
9014 /* See if we can directly increment INCLOC. Use a method similar to
9015 that in gen_reload. */
9016
9017 last = get_last_insn ();
9018 add_insn = emit_insn (gen_rtx_SET (incloc,
9019 gen_rtx_PLUS (GET_MODE (incloc),
9020 incloc, inc)));
9021
9022 code = recog_memoized (add_insn);
9023 if (code >= 0)
9024 {
9025 extract_insn (add_insn);
9026 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9027 {
9028 /* If this is a pre-increment and we have incremented the value
9029 where it lives, copy the incremented value to RELOADREG to
9030 be used as an address. */
9031
9032 if (! post)
9033 emit_insn (gen_move_insn (reloadreg, incloc));
9034 return;
9035 }
9036 }
9037 delete_insns_since (last);
9038 }
9039
9040 /* If couldn't do the increment directly, must increment in RELOADREG.
9041 The way we do this depends on whether this is pre- or post-increment.
9042 For pre-increment, copy INCLOC to the reload register, increment it
9043 there, then save back. */
9044
9045 if (! post)
9046 {
9047 if (in != reloadreg)
9048 emit_insn (gen_move_insn (reloadreg, real_in));
9049 emit_insn (gen_add2_insn (reloadreg, inc));
9050 emit_insn (gen_move_insn (incloc, reloadreg));
9051 }
9052 else
9053 {
9054 /* Postincrement.
9055 Because this might be a jump insn or a compare, and because RELOADREG
9056 may not be available after the insn in an input reload, we must do
9057 the incrementation before the insn being reloaded for.
9058
9059 We have already copied IN to RELOADREG. Increment the copy in
9060 RELOADREG, save that back, then decrement RELOADREG so it has
9061 the original value. */
9062
9063 emit_insn (gen_add2_insn (reloadreg, inc));
9064 emit_insn (gen_move_insn (incloc, reloadreg));
9065 if (CONST_INT_P (inc))
9066 emit_insn (gen_add2_insn (reloadreg,
9067 gen_int_mode (-INTVAL (inc),
9068 GET_MODE (reloadreg))));
9069 else
9070 emit_insn (gen_sub2_insn (reloadreg, inc));
9071 }
9072 }
9073 \f
9074 static void
9075 add_auto_inc_notes (rtx_insn *insn, rtx x)
9076 {
9077 enum rtx_code code = GET_CODE (x);
9078 const char *fmt;
9079 int i, j;
9080
9081 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9082 {
9083 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9084 return;
9085 }
9086
9087 /* Scan all the operand sub-expressions. */
9088 fmt = GET_RTX_FORMAT (code);
9089 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9090 {
9091 if (fmt[i] == 'e')
9092 add_auto_inc_notes (insn, XEXP (x, i));
9093 else if (fmt[i] == 'E')
9094 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9095 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9096 }
9097 }