]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/rtlanal.c
Update copyright years.
[thirdparty/gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
38 #include "hard-reg-set.h"
39 #include "function-abi.h"
40
41 /* Forward declarations */
42 static void set_of_1 (rtx, const_rtx, void *);
43 static bool covers_regno_p (const_rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
45 static int computed_jump_p_1 (const_rtx);
46 static void parms_set (rtx, const_rtx, void *);
47
48 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
49 const_rtx, machine_mode,
50 unsigned HOST_WIDE_INT);
51 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
52 const_rtx, machine_mode,
53 unsigned HOST_WIDE_INT);
54 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
55 const_rtx, machine_mode,
56 unsigned int);
57 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
58 const_rtx, machine_mode,
59 unsigned int);
60
61 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
62 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
63
64 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
65 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
66 SIGN_EXTEND then while narrowing we also have to enforce the
67 representation and sign-extend the value to mode DESTINATION_REP.
68
69 If the value is already sign-extended to DESTINATION_REP mode we
70 can just switch to DESTINATION mode on it. For each pair of
71 integral modes SOURCE and DESTINATION, when truncating from SOURCE
72 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
73 contains the number of high-order bits in SOURCE that have to be
74 copies of the sign-bit so that we can do this mode-switch to
75 DESTINATION. */
76
77 static unsigned int
78 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
79 \f
80 /* Store X into index I of ARRAY. ARRAY is known to have at least I
81 elements. Return the new base of ARRAY. */
82
83 template <typename T>
84 typename T::value_type *
85 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
86 value_type *base,
87 size_t i, value_type x)
88 {
89 if (base == array.stack)
90 {
91 if (i < LOCAL_ELEMS)
92 {
93 base[i] = x;
94 return base;
95 }
96 gcc_checking_assert (i == LOCAL_ELEMS);
97 /* A previous iteration might also have moved from the stack to the
98 heap, in which case the heap array will already be big enough. */
99 if (vec_safe_length (array.heap) <= i)
100 vec_safe_grow (array.heap, i + 1);
101 base = array.heap->address ();
102 memcpy (base, array.stack, sizeof (array.stack));
103 base[LOCAL_ELEMS] = x;
104 return base;
105 }
106 unsigned int length = array.heap->length ();
107 if (length > i)
108 {
109 gcc_checking_assert (base == array.heap->address ());
110 base[i] = x;
111 return base;
112 }
113 else
114 {
115 gcc_checking_assert (i == length);
116 vec_safe_push (array.heap, x);
117 return array.heap->address ();
118 }
119 }
120
121 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
122 number of elements added to the worklist. */
123
124 template <typename T>
125 size_t
126 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
127 value_type *base,
128 size_t end, rtx_type x)
129 {
130 enum rtx_code code = GET_CODE (x);
131 const char *format = GET_RTX_FORMAT (code);
132 size_t orig_end = end;
133 if (__builtin_expect (INSN_P (x), false))
134 {
135 /* Put the pattern at the top of the queue, since that's what
136 we're likely to want most. It also allows for the SEQUENCE
137 code below. */
138 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
139 if (format[i] == 'e')
140 {
141 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
142 if (__builtin_expect (end < LOCAL_ELEMS, true))
143 base[end++] = subx;
144 else
145 base = add_single_to_queue (array, base, end++, subx);
146 }
147 }
148 else
149 for (int i = 0; format[i]; ++i)
150 if (format[i] == 'e')
151 {
152 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
153 if (__builtin_expect (end < LOCAL_ELEMS, true))
154 base[end++] = subx;
155 else
156 base = add_single_to_queue (array, base, end++, subx);
157 }
158 else if (format[i] == 'E')
159 {
160 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
161 rtx *vec = x->u.fld[i].rt_rtvec->elem;
162 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
163 for (unsigned int j = 0; j < length; j++)
164 base[end++] = T::get_value (vec[j]);
165 else
166 for (unsigned int j = 0; j < length; j++)
167 base = add_single_to_queue (array, base, end++,
168 T::get_value (vec[j]));
169 if (code == SEQUENCE && end == length)
170 /* If the subrtxes of the sequence fill the entire array then
171 we know that no other parts of a containing insn are queued.
172 The caller is therefore iterating over the sequence as a
173 PATTERN (...), so we also want the patterns of the
174 subinstructions. */
175 for (unsigned int j = 0; j < length; j++)
176 {
177 typename T::rtx_type x = T::get_rtx (base[j]);
178 if (INSN_P (x))
179 base[j] = T::get_value (PATTERN (x));
180 }
181 }
182 return end - orig_end;
183 }
184
185 template <typename T>
186 void
187 generic_subrtx_iterator <T>::free_array (array_type &array)
188 {
189 vec_free (array.heap);
190 }
191
192 template <typename T>
193 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
194
195 template class generic_subrtx_iterator <const_rtx_accessor>;
196 template class generic_subrtx_iterator <rtx_var_accessor>;
197 template class generic_subrtx_iterator <rtx_ptr_accessor>;
198
199 /* Return 1 if the value of X is unstable
200 (would be different at a different point in the program).
201 The frame pointer, arg pointer, etc. are considered stable
202 (within one function) and so is anything marked `unchanging'. */
203
204 int
205 rtx_unstable_p (const_rtx x)
206 {
207 const RTX_CODE code = GET_CODE (x);
208 int i;
209 const char *fmt;
210
211 switch (code)
212 {
213 case MEM:
214 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
215
216 case CONST:
217 CASE_CONST_ANY:
218 case SYMBOL_REF:
219 case LABEL_REF:
220 return 0;
221
222 case REG:
223 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
224 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
225 /* The arg pointer varies if it is not a fixed register. */
226 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
227 return 0;
228 /* ??? When call-clobbered, the value is stable modulo the restore
229 that must happen after a call. This currently screws up local-alloc
230 into believing that the restore is not needed. */
231 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
232 return 0;
233 return 1;
234
235 case ASM_OPERANDS:
236 if (MEM_VOLATILE_P (x))
237 return 1;
238
239 /* Fall through. */
240
241 default:
242 break;
243 }
244
245 fmt = GET_RTX_FORMAT (code);
246 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
247 if (fmt[i] == 'e')
248 {
249 if (rtx_unstable_p (XEXP (x, i)))
250 return 1;
251 }
252 else if (fmt[i] == 'E')
253 {
254 int j;
255 for (j = 0; j < XVECLEN (x, i); j++)
256 if (rtx_unstable_p (XVECEXP (x, i, j)))
257 return 1;
258 }
259
260 return 0;
261 }
262
263 /* Return 1 if X has a value that can vary even between two
264 executions of the program. 0 means X can be compared reliably
265 against certain constants or near-constants.
266 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
267 zero, we are slightly more conservative.
268 The frame pointer and the arg pointer are considered constant. */
269
270 bool
271 rtx_varies_p (const_rtx x, bool for_alias)
272 {
273 RTX_CODE code;
274 int i;
275 const char *fmt;
276
277 if (!x)
278 return 0;
279
280 code = GET_CODE (x);
281 switch (code)
282 {
283 case MEM:
284 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
285
286 case CONST:
287 CASE_CONST_ANY:
288 case SYMBOL_REF:
289 case LABEL_REF:
290 return 0;
291
292 case REG:
293 /* Note that we have to test for the actual rtx used for the frame
294 and arg pointers and not just the register number in case we have
295 eliminated the frame and/or arg pointer and are using it
296 for pseudos. */
297 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
298 /* The arg pointer varies if it is not a fixed register. */
299 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
300 return 0;
301 if (x == pic_offset_table_rtx
302 /* ??? When call-clobbered, the value is stable modulo the restore
303 that must happen after a call. This currently screws up
304 local-alloc into believing that the restore is not needed, so we
305 must return 0 only if we are called from alias analysis. */
306 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
307 return 0;
308 return 1;
309
310 case LO_SUM:
311 /* The operand 0 of a LO_SUM is considered constant
312 (in fact it is related specifically to operand 1)
313 during alias analysis. */
314 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
315 || rtx_varies_p (XEXP (x, 1), for_alias);
316
317 case ASM_OPERANDS:
318 if (MEM_VOLATILE_P (x))
319 return 1;
320
321 /* Fall through. */
322
323 default:
324 break;
325 }
326
327 fmt = GET_RTX_FORMAT (code);
328 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
329 if (fmt[i] == 'e')
330 {
331 if (rtx_varies_p (XEXP (x, i), for_alias))
332 return 1;
333 }
334 else if (fmt[i] == 'E')
335 {
336 int j;
337 for (j = 0; j < XVECLEN (x, i); j++)
338 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
339 return 1;
340 }
341
342 return 0;
343 }
344
345 /* Compute an approximation for the offset between the register
346 FROM and TO for the current function, as it was at the start
347 of the routine. */
348
349 static poly_int64
350 get_initial_register_offset (int from, int to)
351 {
352 static const struct elim_table_t
353 {
354 const int from;
355 const int to;
356 } table[] = ELIMINABLE_REGS;
357 poly_int64 offset1, offset2;
358 unsigned int i, j;
359
360 if (to == from)
361 return 0;
362
363 /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
364 is completed, but we need to give at least an estimate for the stack
365 pointer based on the frame size. */
366 if (!epilogue_completed)
367 {
368 offset1 = crtl->outgoing_args_size + get_frame_size ();
369 #if !STACK_GROWS_DOWNWARD
370 offset1 = - offset1;
371 #endif
372 if (to == STACK_POINTER_REGNUM)
373 return offset1;
374 else if (from == STACK_POINTER_REGNUM)
375 return - offset1;
376 else
377 return 0;
378 }
379
380 for (i = 0; i < ARRAY_SIZE (table); i++)
381 if (table[i].from == from)
382 {
383 if (table[i].to == to)
384 {
385 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
386 offset1);
387 return offset1;
388 }
389 for (j = 0; j < ARRAY_SIZE (table); j++)
390 {
391 if (table[j].to == to
392 && table[j].from == table[i].to)
393 {
394 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
395 offset1);
396 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
397 offset2);
398 return offset1 + offset2;
399 }
400 if (table[j].from == to
401 && table[j].to == table[i].to)
402 {
403 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
404 offset1);
405 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
406 offset2);
407 return offset1 - offset2;
408 }
409 }
410 }
411 else if (table[i].to == from)
412 {
413 if (table[i].from == to)
414 {
415 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
416 offset1);
417 return - offset1;
418 }
419 for (j = 0; j < ARRAY_SIZE (table); j++)
420 {
421 if (table[j].to == to
422 && table[j].from == table[i].from)
423 {
424 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
425 offset1);
426 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
427 offset2);
428 return - offset1 + offset2;
429 }
430 if (table[j].from == to
431 && table[j].to == table[i].from)
432 {
433 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
434 offset1);
435 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
436 offset2);
437 return - offset1 - offset2;
438 }
439 }
440 }
441
442 /* If the requested register combination was not found,
443 try a different more simple combination. */
444 if (from == ARG_POINTER_REGNUM)
445 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
446 else if (to == ARG_POINTER_REGNUM)
447 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
448 else if (from == HARD_FRAME_POINTER_REGNUM)
449 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
450 else if (to == HARD_FRAME_POINTER_REGNUM)
451 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
452 else
453 return 0;
454 }
455
456 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
457 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
458 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
459 references on strict alignment machines. */
460
461 static int
462 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
463 machine_mode mode, bool unaligned_mems)
464 {
465 enum rtx_code code = GET_CODE (x);
466 gcc_checking_assert (mode == BLKmode || known_size_p (size));
467 poly_int64 const_x1;
468
469 /* The offset must be a multiple of the mode size if we are considering
470 unaligned memory references on strict alignment machines. */
471 if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
472 {
473 poly_int64 actual_offset = offset;
474
475 #ifdef SPARC_STACK_BOUNDARY_HACK
476 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
477 the real alignment of %sp. However, when it does this, the
478 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
479 if (SPARC_STACK_BOUNDARY_HACK
480 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
481 actual_offset -= STACK_POINTER_OFFSET;
482 #endif
483
484 if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
485 return 1;
486 }
487
488 switch (code)
489 {
490 case SYMBOL_REF:
491 if (SYMBOL_REF_WEAK (x))
492 return 1;
493 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
494 {
495 tree decl;
496 poly_int64 decl_size;
497
498 if (maybe_lt (offset, 0))
499 return 1;
500 if (!known_size_p (size))
501 return maybe_ne (offset, 0);
502
503 /* If the size of the access or of the symbol is unknown,
504 assume the worst. */
505 decl = SYMBOL_REF_DECL (x);
506
507 /* Else check that the access is in bounds. TODO: restructure
508 expr_size/tree_expr_size/int_expr_size and just use the latter. */
509 if (!decl)
510 decl_size = -1;
511 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
512 {
513 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
514 decl_size = -1;
515 }
516 else if (TREE_CODE (decl) == STRING_CST)
517 decl_size = TREE_STRING_LENGTH (decl);
518 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
519 decl_size = int_size_in_bytes (TREE_TYPE (decl));
520 else
521 decl_size = -1;
522
523 return (!known_size_p (decl_size) || known_eq (decl_size, 0)
524 ? maybe_ne (offset, 0)
525 : !known_subrange_p (offset, size, 0, decl_size));
526 }
527
528 return 0;
529
530 case LABEL_REF:
531 return 0;
532
533 case REG:
534 /* Stack references are assumed not to trap, but we need to deal with
535 nonsensical offsets. */
536 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
537 || x == stack_pointer_rtx
538 /* The arg pointer varies if it is not a fixed register. */
539 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
540 {
541 #ifdef RED_ZONE_SIZE
542 poly_int64 red_zone_size = RED_ZONE_SIZE;
543 #else
544 poly_int64 red_zone_size = 0;
545 #endif
546 poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
547 poly_int64 low_bound, high_bound;
548
549 if (!known_size_p (size))
550 return 1;
551
552 if (x == frame_pointer_rtx)
553 {
554 if (FRAME_GROWS_DOWNWARD)
555 {
556 high_bound = targetm.starting_frame_offset ();
557 low_bound = high_bound - get_frame_size ();
558 }
559 else
560 {
561 low_bound = targetm.starting_frame_offset ();
562 high_bound = low_bound + get_frame_size ();
563 }
564 }
565 else if (x == hard_frame_pointer_rtx)
566 {
567 poly_int64 sp_offset
568 = get_initial_register_offset (STACK_POINTER_REGNUM,
569 HARD_FRAME_POINTER_REGNUM);
570 poly_int64 ap_offset
571 = get_initial_register_offset (ARG_POINTER_REGNUM,
572 HARD_FRAME_POINTER_REGNUM);
573
574 #if STACK_GROWS_DOWNWARD
575 low_bound = sp_offset - red_zone_size - stack_boundary;
576 high_bound = ap_offset
577 + FIRST_PARM_OFFSET (current_function_decl)
578 #if !ARGS_GROW_DOWNWARD
579 + crtl->args.size
580 #endif
581 + stack_boundary;
582 #else
583 high_bound = sp_offset + red_zone_size + stack_boundary;
584 low_bound = ap_offset
585 + FIRST_PARM_OFFSET (current_function_decl)
586 #if ARGS_GROW_DOWNWARD
587 - crtl->args.size
588 #endif
589 - stack_boundary;
590 #endif
591 }
592 else if (x == stack_pointer_rtx)
593 {
594 poly_int64 ap_offset
595 = get_initial_register_offset (ARG_POINTER_REGNUM,
596 STACK_POINTER_REGNUM);
597
598 #if STACK_GROWS_DOWNWARD
599 low_bound = - red_zone_size - stack_boundary;
600 high_bound = ap_offset
601 + FIRST_PARM_OFFSET (current_function_decl)
602 #if !ARGS_GROW_DOWNWARD
603 + crtl->args.size
604 #endif
605 + stack_boundary;
606 #else
607 high_bound = red_zone_size + stack_boundary;
608 low_bound = ap_offset
609 + FIRST_PARM_OFFSET (current_function_decl)
610 #if ARGS_GROW_DOWNWARD
611 - crtl->args.size
612 #endif
613 - stack_boundary;
614 #endif
615 }
616 else
617 {
618 /* We assume that accesses are safe to at least the
619 next stack boundary.
620 Examples are varargs and __builtin_return_address. */
621 #if ARGS_GROW_DOWNWARD
622 high_bound = FIRST_PARM_OFFSET (current_function_decl)
623 + stack_boundary;
624 low_bound = FIRST_PARM_OFFSET (current_function_decl)
625 - crtl->args.size - stack_boundary;
626 #else
627 low_bound = FIRST_PARM_OFFSET (current_function_decl)
628 - stack_boundary;
629 high_bound = FIRST_PARM_OFFSET (current_function_decl)
630 + crtl->args.size + stack_boundary;
631 #endif
632 }
633
634 if (known_ge (offset, low_bound)
635 && known_le (offset, high_bound - size))
636 return 0;
637 return 1;
638 }
639 /* All of the virtual frame registers are stack references. */
640 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
641 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
642 return 0;
643 return 1;
644
645 case CONST:
646 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
647 mode, unaligned_mems);
648
649 case PLUS:
650 /* An address is assumed not to trap if:
651 - it is the pic register plus a const unspec without offset. */
652 if (XEXP (x, 0) == pic_offset_table_rtx
653 && GET_CODE (XEXP (x, 1)) == CONST
654 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
655 && known_eq (offset, 0))
656 return 0;
657
658 /* - or it is an address that can't trap plus a constant integer. */
659 if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
660 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
661 size, mode, unaligned_mems))
662 return 0;
663
664 return 1;
665
666 case LO_SUM:
667 case PRE_MODIFY:
668 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
669 mode, unaligned_mems);
670
671 case PRE_DEC:
672 case PRE_INC:
673 case POST_DEC:
674 case POST_INC:
675 case POST_MODIFY:
676 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
677 mode, unaligned_mems);
678
679 default:
680 break;
681 }
682
683 /* If it isn't one of the case above, it can cause a trap. */
684 return 1;
685 }
686
687 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
688
689 int
690 rtx_addr_can_trap_p (const_rtx x)
691 {
692 return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
693 }
694
695 /* Return true if X contains a MEM subrtx. */
696
697 bool
698 contains_mem_rtx_p (rtx x)
699 {
700 subrtx_iterator::array_type array;
701 FOR_EACH_SUBRTX (iter, array, x, ALL)
702 if (MEM_P (*iter))
703 return true;
704
705 return false;
706 }
707
708 /* Return true if X is an address that is known to not be zero. */
709
710 bool
711 nonzero_address_p (const_rtx x)
712 {
713 const enum rtx_code code = GET_CODE (x);
714
715 switch (code)
716 {
717 case SYMBOL_REF:
718 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
719
720 case LABEL_REF:
721 return true;
722
723 case REG:
724 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
725 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
726 || x == stack_pointer_rtx
727 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
728 return true;
729 /* All of the virtual frame registers are stack references. */
730 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
731 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
732 return true;
733 return false;
734
735 case CONST:
736 return nonzero_address_p (XEXP (x, 0));
737
738 case PLUS:
739 /* Handle PIC references. */
740 if (XEXP (x, 0) == pic_offset_table_rtx
741 && CONSTANT_P (XEXP (x, 1)))
742 return true;
743 return false;
744
745 case PRE_MODIFY:
746 /* Similar to the above; allow positive offsets. Further, since
747 auto-inc is only allowed in memories, the register must be a
748 pointer. */
749 if (CONST_INT_P (XEXP (x, 1))
750 && INTVAL (XEXP (x, 1)) > 0)
751 return true;
752 return nonzero_address_p (XEXP (x, 0));
753
754 case PRE_INC:
755 /* Similarly. Further, the offset is always positive. */
756 return true;
757
758 case PRE_DEC:
759 case POST_DEC:
760 case POST_INC:
761 case POST_MODIFY:
762 return nonzero_address_p (XEXP (x, 0));
763
764 case LO_SUM:
765 return nonzero_address_p (XEXP (x, 1));
766
767 default:
768 break;
769 }
770
771 /* If it isn't one of the case above, might be zero. */
772 return false;
773 }
774
775 /* Return 1 if X refers to a memory location whose address
776 cannot be compared reliably with constant addresses,
777 or if X refers to a BLKmode memory object.
778 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
779 zero, we are slightly more conservative. */
780
781 bool
782 rtx_addr_varies_p (const_rtx x, bool for_alias)
783 {
784 enum rtx_code code;
785 int i;
786 const char *fmt;
787
788 if (x == 0)
789 return 0;
790
791 code = GET_CODE (x);
792 if (code == MEM)
793 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
794
795 fmt = GET_RTX_FORMAT (code);
796 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
797 if (fmt[i] == 'e')
798 {
799 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
800 return 1;
801 }
802 else if (fmt[i] == 'E')
803 {
804 int j;
805 for (j = 0; j < XVECLEN (x, i); j++)
806 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
807 return 1;
808 }
809 return 0;
810 }
811 \f
812 /* Return the CALL in X if there is one. */
813
814 rtx
815 get_call_rtx_from (const rtx_insn *insn)
816 {
817 rtx x = PATTERN (insn);
818 if (GET_CODE (x) == PARALLEL)
819 x = XVECEXP (x, 0, 0);
820 if (GET_CODE (x) == SET)
821 x = SET_SRC (x);
822 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
823 return x;
824 return NULL_RTX;
825 }
826
827 /* Get the declaration of the function called by INSN. */
828
829 tree
830 get_call_fndecl (const rtx_insn *insn)
831 {
832 rtx note, datum;
833
834 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
835 if (note == NULL_RTX)
836 return NULL_TREE;
837
838 datum = XEXP (note, 0);
839 if (datum != NULL_RTX)
840 return SYMBOL_REF_DECL (datum);
841
842 return NULL_TREE;
843 }
844 \f
845 /* Return the value of the integer term in X, if one is apparent;
846 otherwise return 0.
847 Only obvious integer terms are detected.
848 This is used in cse.c with the `related_value' field. */
849
850 HOST_WIDE_INT
851 get_integer_term (const_rtx x)
852 {
853 if (GET_CODE (x) == CONST)
854 x = XEXP (x, 0);
855
856 if (GET_CODE (x) == MINUS
857 && CONST_INT_P (XEXP (x, 1)))
858 return - INTVAL (XEXP (x, 1));
859 if (GET_CODE (x) == PLUS
860 && CONST_INT_P (XEXP (x, 1)))
861 return INTVAL (XEXP (x, 1));
862 return 0;
863 }
864
865 /* If X is a constant, return the value sans apparent integer term;
866 otherwise return 0.
867 Only obvious integer terms are detected. */
868
869 rtx
870 get_related_value (const_rtx x)
871 {
872 if (GET_CODE (x) != CONST)
873 return 0;
874 x = XEXP (x, 0);
875 if (GET_CODE (x) == PLUS
876 && CONST_INT_P (XEXP (x, 1)))
877 return XEXP (x, 0);
878 else if (GET_CODE (x) == MINUS
879 && CONST_INT_P (XEXP (x, 1)))
880 return XEXP (x, 0);
881 return 0;
882 }
883 \f
884 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
885 to somewhere in the same object or object_block as SYMBOL. */
886
887 bool
888 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
889 {
890 tree decl;
891
892 if (GET_CODE (symbol) != SYMBOL_REF)
893 return false;
894
895 if (offset == 0)
896 return true;
897
898 if (offset > 0)
899 {
900 if (CONSTANT_POOL_ADDRESS_P (symbol)
901 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
902 return true;
903
904 decl = SYMBOL_REF_DECL (symbol);
905 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
906 return true;
907 }
908
909 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
910 && SYMBOL_REF_BLOCK (symbol)
911 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
912 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
913 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
914 return true;
915
916 return false;
917 }
918
919 /* Split X into a base and a constant offset, storing them in *BASE_OUT
920 and *OFFSET_OUT respectively. */
921
922 void
923 split_const (rtx x, rtx *base_out, rtx *offset_out)
924 {
925 if (GET_CODE (x) == CONST)
926 {
927 x = XEXP (x, 0);
928 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
929 {
930 *base_out = XEXP (x, 0);
931 *offset_out = XEXP (x, 1);
932 return;
933 }
934 }
935 *base_out = x;
936 *offset_out = const0_rtx;
937 }
938
939 /* Express integer value X as some value Y plus a polynomial offset,
940 where Y is either const0_rtx, X or something within X (as opposed
941 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
942
943 rtx
944 strip_offset (rtx x, poly_int64_pod *offset_out)
945 {
946 rtx base = const0_rtx;
947 rtx test = x;
948 if (GET_CODE (test) == CONST)
949 test = XEXP (test, 0);
950 if (GET_CODE (test) == PLUS)
951 {
952 base = XEXP (test, 0);
953 test = XEXP (test, 1);
954 }
955 if (poly_int_rtx_p (test, offset_out))
956 return base;
957 *offset_out = 0;
958 return x;
959 }
960
961 /* Return the argument size in REG_ARGS_SIZE note X. */
962
963 poly_int64
964 get_args_size (const_rtx x)
965 {
966 gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
967 return rtx_to_poly_int64 (XEXP (x, 0));
968 }
969 \f
970 /* Return the number of places FIND appears within X. If COUNT_DEST is
971 zero, we do not count occurrences inside the destination of a SET. */
972
973 int
974 count_occurrences (const_rtx x, const_rtx find, int count_dest)
975 {
976 int i, j;
977 enum rtx_code code;
978 const char *format_ptr;
979 int count;
980
981 if (x == find)
982 return 1;
983
984 code = GET_CODE (x);
985
986 switch (code)
987 {
988 case REG:
989 CASE_CONST_ANY:
990 case SYMBOL_REF:
991 case CODE_LABEL:
992 case PC:
993 case CC0:
994 return 0;
995
996 case EXPR_LIST:
997 count = count_occurrences (XEXP (x, 0), find, count_dest);
998 if (XEXP (x, 1))
999 count += count_occurrences (XEXP (x, 1), find, count_dest);
1000 return count;
1001
1002 case MEM:
1003 if (MEM_P (find) && rtx_equal_p (x, find))
1004 return 1;
1005 break;
1006
1007 case SET:
1008 if (SET_DEST (x) == find && ! count_dest)
1009 return count_occurrences (SET_SRC (x), find, count_dest);
1010 break;
1011
1012 default:
1013 break;
1014 }
1015
1016 format_ptr = GET_RTX_FORMAT (code);
1017 count = 0;
1018
1019 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1020 {
1021 switch (*format_ptr++)
1022 {
1023 case 'e':
1024 count += count_occurrences (XEXP (x, i), find, count_dest);
1025 break;
1026
1027 case 'E':
1028 for (j = 0; j < XVECLEN (x, i); j++)
1029 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1030 break;
1031 }
1032 }
1033 return count;
1034 }
1035
1036 \f
1037 /* Return TRUE if OP is a register or subreg of a register that
1038 holds an unsigned quantity. Otherwise, return FALSE. */
1039
1040 bool
1041 unsigned_reg_p (rtx op)
1042 {
1043 if (REG_P (op)
1044 && REG_EXPR (op)
1045 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1046 return true;
1047
1048 if (GET_CODE (op) == SUBREG
1049 && SUBREG_PROMOTED_SIGN (op))
1050 return true;
1051
1052 return false;
1053 }
1054
1055 \f
1056 /* Nonzero if register REG appears somewhere within IN.
1057 Also works if REG is not a register; in this case it checks
1058 for a subexpression of IN that is Lisp "equal" to REG. */
1059
1060 int
1061 reg_mentioned_p (const_rtx reg, const_rtx in)
1062 {
1063 const char *fmt;
1064 int i;
1065 enum rtx_code code;
1066
1067 if (in == 0)
1068 return 0;
1069
1070 if (reg == in)
1071 return 1;
1072
1073 if (GET_CODE (in) == LABEL_REF)
1074 return reg == label_ref_label (in);
1075
1076 code = GET_CODE (in);
1077
1078 switch (code)
1079 {
1080 /* Compare registers by number. */
1081 case REG:
1082 return REG_P (reg) && REGNO (in) == REGNO (reg);
1083
1084 /* These codes have no constituent expressions
1085 and are unique. */
1086 case SCRATCH:
1087 case CC0:
1088 case PC:
1089 return 0;
1090
1091 CASE_CONST_ANY:
1092 /* These are kept unique for a given value. */
1093 return 0;
1094
1095 default:
1096 break;
1097 }
1098
1099 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1100 return 1;
1101
1102 fmt = GET_RTX_FORMAT (code);
1103
1104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1105 {
1106 if (fmt[i] == 'E')
1107 {
1108 int j;
1109 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1110 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1111 return 1;
1112 }
1113 else if (fmt[i] == 'e'
1114 && reg_mentioned_p (reg, XEXP (in, i)))
1115 return 1;
1116 }
1117 return 0;
1118 }
1119 \f
1120 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1121 no CODE_LABEL insn. */
1122
1123 int
1124 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1125 {
1126 rtx_insn *p;
1127 if (beg == end)
1128 return 0;
1129 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1130 if (LABEL_P (p))
1131 return 0;
1132 return 1;
1133 }
1134
1135 /* Nonzero if register REG is used in an insn between
1136 FROM_INSN and TO_INSN (exclusive of those two). */
1137
1138 int
1139 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1140 const rtx_insn *to_insn)
1141 {
1142 rtx_insn *insn;
1143
1144 if (from_insn == to_insn)
1145 return 0;
1146
1147 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1148 if (NONDEBUG_INSN_P (insn)
1149 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1150 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1151 return 1;
1152 return 0;
1153 }
1154 \f
1155 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1156 is entirely replaced by a new value and the only use is as a SET_DEST,
1157 we do not consider it a reference. */
1158
1159 int
1160 reg_referenced_p (const_rtx x, const_rtx body)
1161 {
1162 int i;
1163
1164 switch (GET_CODE (body))
1165 {
1166 case SET:
1167 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1168 return 1;
1169
1170 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1171 of a REG that occupies all of the REG, the insn references X if
1172 it is mentioned in the destination. */
1173 if (GET_CODE (SET_DEST (body)) != CC0
1174 && GET_CODE (SET_DEST (body)) != PC
1175 && !REG_P (SET_DEST (body))
1176 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1177 && REG_P (SUBREG_REG (SET_DEST (body)))
1178 && !read_modify_subreg_p (SET_DEST (body)))
1179 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1180 return 1;
1181 return 0;
1182
1183 case ASM_OPERANDS:
1184 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1185 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1186 return 1;
1187 return 0;
1188
1189 case CALL:
1190 case USE:
1191 case IF_THEN_ELSE:
1192 return reg_overlap_mentioned_p (x, body);
1193
1194 case TRAP_IF:
1195 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1196
1197 case PREFETCH:
1198 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1199
1200 case UNSPEC:
1201 case UNSPEC_VOLATILE:
1202 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1203 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1204 return 1;
1205 return 0;
1206
1207 case PARALLEL:
1208 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1209 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1210 return 1;
1211 return 0;
1212
1213 case CLOBBER:
1214 if (MEM_P (XEXP (body, 0)))
1215 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1216 return 1;
1217 return 0;
1218
1219 case COND_EXEC:
1220 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1221 return 1;
1222 return reg_referenced_p (x, COND_EXEC_CODE (body));
1223
1224 default:
1225 return 0;
1226 }
1227 }
1228 \f
1229 /* Nonzero if register REG is set or clobbered in an insn between
1230 FROM_INSN and TO_INSN (exclusive of those two). */
1231
1232 int
1233 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1234 const rtx_insn *to_insn)
1235 {
1236 const rtx_insn *insn;
1237
1238 if (from_insn == to_insn)
1239 return 0;
1240
1241 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1242 if (INSN_P (insn) && reg_set_p (reg, insn))
1243 return 1;
1244 return 0;
1245 }
1246
1247 /* Return true if REG is set or clobbered inside INSN. */
1248
1249 int
1250 reg_set_p (const_rtx reg, const_rtx insn)
1251 {
1252 /* After delay slot handling, call and branch insns might be in a
1253 sequence. Check all the elements there. */
1254 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1255 {
1256 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1257 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1258 return true;
1259
1260 return false;
1261 }
1262
1263 /* We can be passed an insn or part of one. If we are passed an insn,
1264 check if a side-effect of the insn clobbers REG. */
1265 if (INSN_P (insn)
1266 && (FIND_REG_INC_NOTE (insn, reg)
1267 || (CALL_P (insn)
1268 && ((REG_P (reg)
1269 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1270 && (insn_callee_abi (as_a<const rtx_insn *> (insn))
1271 .clobbers_reg_p (GET_MODE (reg), REGNO (reg))))
1272 || MEM_P (reg)
1273 || find_reg_fusage (insn, CLOBBER, reg)))))
1274 return true;
1275
1276 /* There are no REG_INC notes for SP autoinc. */
1277 if (reg == stack_pointer_rtx && INSN_P (insn))
1278 {
1279 subrtx_var_iterator::array_type array;
1280 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1281 {
1282 rtx mem = *iter;
1283 if (mem
1284 && MEM_P (mem)
1285 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1286 {
1287 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1288 return true;
1289 iter.skip_subrtxes ();
1290 }
1291 }
1292 }
1293
1294 return set_of (reg, insn) != NULL_RTX;
1295 }
1296
1297 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1298 only if none of them are modified between START and END. Return 1 if
1299 X contains a MEM; this routine does use memory aliasing. */
1300
1301 int
1302 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1303 {
1304 const enum rtx_code code = GET_CODE (x);
1305 const char *fmt;
1306 int i, j;
1307 rtx_insn *insn;
1308
1309 if (start == end)
1310 return 0;
1311
1312 switch (code)
1313 {
1314 CASE_CONST_ANY:
1315 case CONST:
1316 case SYMBOL_REF:
1317 case LABEL_REF:
1318 return 0;
1319
1320 case PC:
1321 case CC0:
1322 return 1;
1323
1324 case MEM:
1325 if (modified_between_p (XEXP (x, 0), start, end))
1326 return 1;
1327 if (MEM_READONLY_P (x))
1328 return 0;
1329 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1330 if (memory_modified_in_insn_p (x, insn))
1331 return 1;
1332 return 0;
1333
1334 case REG:
1335 return reg_set_between_p (x, start, end);
1336
1337 default:
1338 break;
1339 }
1340
1341 fmt = GET_RTX_FORMAT (code);
1342 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1343 {
1344 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1345 return 1;
1346
1347 else if (fmt[i] == 'E')
1348 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1349 if (modified_between_p (XVECEXP (x, i, j), start, end))
1350 return 1;
1351 }
1352
1353 return 0;
1354 }
1355
1356 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1357 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1358 does use memory aliasing. */
1359
1360 int
1361 modified_in_p (const_rtx x, const_rtx insn)
1362 {
1363 const enum rtx_code code = GET_CODE (x);
1364 const char *fmt;
1365 int i, j;
1366
1367 switch (code)
1368 {
1369 CASE_CONST_ANY:
1370 case CONST:
1371 case SYMBOL_REF:
1372 case LABEL_REF:
1373 return 0;
1374
1375 case PC:
1376 case CC0:
1377 return 1;
1378
1379 case MEM:
1380 if (modified_in_p (XEXP (x, 0), insn))
1381 return 1;
1382 if (MEM_READONLY_P (x))
1383 return 0;
1384 if (memory_modified_in_insn_p (x, insn))
1385 return 1;
1386 return 0;
1387
1388 case REG:
1389 return reg_set_p (x, insn);
1390
1391 default:
1392 break;
1393 }
1394
1395 fmt = GET_RTX_FORMAT (code);
1396 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1397 {
1398 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1399 return 1;
1400
1401 else if (fmt[i] == 'E')
1402 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1403 if (modified_in_p (XVECEXP (x, i, j), insn))
1404 return 1;
1405 }
1406
1407 return 0;
1408 }
1409
1410 /* Return true if X is a SUBREG and if storing a value to X would
1411 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1412 target, using a SUBREG to store to one half of a DImode REG would
1413 preserve the other half. */
1414
1415 bool
1416 read_modify_subreg_p (const_rtx x)
1417 {
1418 if (GET_CODE (x) != SUBREG)
1419 return false;
1420 poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1421 poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1422 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1423 /* The inner and outer modes of a subreg must be ordered, so that we
1424 can tell whether they're paradoxical or partial. */
1425 gcc_checking_assert (ordered_p (isize, osize));
1426 return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1427 }
1428 \f
1429 /* Helper function for set_of. */
1430 struct set_of_data
1431 {
1432 const_rtx found;
1433 const_rtx pat;
1434 };
1435
1436 static void
1437 set_of_1 (rtx x, const_rtx pat, void *data1)
1438 {
1439 struct set_of_data *const data = (struct set_of_data *) (data1);
1440 if (rtx_equal_p (x, data->pat)
1441 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1442 data->found = pat;
1443 }
1444
1445 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1446 (either directly or via STRICT_LOW_PART and similar modifiers). */
1447 const_rtx
1448 set_of (const_rtx pat, const_rtx insn)
1449 {
1450 struct set_of_data data;
1451 data.found = NULL_RTX;
1452 data.pat = pat;
1453 note_pattern_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1454 return data.found;
1455 }
1456
1457 /* Add all hard register in X to *PSET. */
1458 void
1459 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1460 {
1461 subrtx_iterator::array_type array;
1462 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1463 {
1464 const_rtx x = *iter;
1465 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1466 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1467 }
1468 }
1469
1470 /* This function, called through note_stores, collects sets and
1471 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1472 by DATA. */
1473 void
1474 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1475 {
1476 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1477 if (REG_P (x) && HARD_REGISTER_P (x))
1478 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1479 }
1480
1481 /* Examine INSN, and compute the set of hard registers written by it.
1482 Store it in *PSET. Should only be called after reload.
1483
1484 IMPLICIT is true if we should include registers that are fully-clobbered
1485 by calls. This should be used with caution, since it doesn't include
1486 partially-clobbered registers. */
1487 void
1488 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1489 {
1490 rtx link;
1491
1492 CLEAR_HARD_REG_SET (*pset);
1493 note_stores (insn, record_hard_reg_sets, pset);
1494 if (CALL_P (insn) && implicit)
1495 *pset |= insn_callee_abi (insn).full_reg_clobbers ();
1496 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1497 if (REG_NOTE_KIND (link) == REG_INC)
1498 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1499 }
1500
1501 /* Like record_hard_reg_sets, but called through note_uses. */
1502 void
1503 record_hard_reg_uses (rtx *px, void *data)
1504 {
1505 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1506 }
1507 \f
1508 /* Given an INSN, return a SET expression if this insn has only a single SET.
1509 It may also have CLOBBERs, USEs, or SET whose output
1510 will not be used, which we ignore. */
1511
1512 rtx
1513 single_set_2 (const rtx_insn *insn, const_rtx pat)
1514 {
1515 rtx set = NULL;
1516 int set_verified = 1;
1517 int i;
1518
1519 if (GET_CODE (pat) == PARALLEL)
1520 {
1521 for (i = 0; i < XVECLEN (pat, 0); i++)
1522 {
1523 rtx sub = XVECEXP (pat, 0, i);
1524 switch (GET_CODE (sub))
1525 {
1526 case USE:
1527 case CLOBBER:
1528 break;
1529
1530 case SET:
1531 /* We can consider insns having multiple sets, where all
1532 but one are dead as single set insns. In common case
1533 only single set is present in the pattern so we want
1534 to avoid checking for REG_UNUSED notes unless necessary.
1535
1536 When we reach set first time, we just expect this is
1537 the single set we are looking for and only when more
1538 sets are found in the insn, we check them. */
1539 if (!set_verified)
1540 {
1541 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1542 && !side_effects_p (set))
1543 set = NULL;
1544 else
1545 set_verified = 1;
1546 }
1547 if (!set)
1548 set = sub, set_verified = 0;
1549 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1550 || side_effects_p (sub))
1551 return NULL_RTX;
1552 break;
1553
1554 default:
1555 return NULL_RTX;
1556 }
1557 }
1558 }
1559 return set;
1560 }
1561
1562 /* Given an INSN, return nonzero if it has more than one SET, else return
1563 zero. */
1564
1565 int
1566 multiple_sets (const_rtx insn)
1567 {
1568 int found;
1569 int i;
1570
1571 /* INSN must be an insn. */
1572 if (! INSN_P (insn))
1573 return 0;
1574
1575 /* Only a PARALLEL can have multiple SETs. */
1576 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1577 {
1578 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1579 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1580 {
1581 /* If we have already found a SET, then return now. */
1582 if (found)
1583 return 1;
1584 else
1585 found = 1;
1586 }
1587 }
1588
1589 /* Either zero or one SET. */
1590 return 0;
1591 }
1592 \f
1593 /* Return nonzero if the destination of SET equals the source
1594 and there are no side effects. */
1595
1596 int
1597 set_noop_p (const_rtx set)
1598 {
1599 rtx src = SET_SRC (set);
1600 rtx dst = SET_DEST (set);
1601
1602 if (dst == pc_rtx && src == pc_rtx)
1603 return 1;
1604
1605 if (MEM_P (dst) && MEM_P (src))
1606 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1607
1608 if (GET_CODE (dst) == ZERO_EXTRACT)
1609 return rtx_equal_p (XEXP (dst, 0), src)
1610 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1611 && !side_effects_p (src);
1612
1613 if (GET_CODE (dst) == STRICT_LOW_PART)
1614 dst = XEXP (dst, 0);
1615
1616 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1617 {
1618 if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1619 return 0;
1620 src = SUBREG_REG (src);
1621 dst = SUBREG_REG (dst);
1622 }
1623
1624 /* It is a NOOP if destination overlaps with selected src vector
1625 elements. */
1626 if (GET_CODE (src) == VEC_SELECT
1627 && REG_P (XEXP (src, 0)) && REG_P (dst)
1628 && HARD_REGISTER_P (XEXP (src, 0))
1629 && HARD_REGISTER_P (dst))
1630 {
1631 int i;
1632 rtx par = XEXP (src, 1);
1633 rtx src0 = XEXP (src, 0);
1634 poly_int64 c0 = rtx_to_poly_int64 (XVECEXP (par, 0, 0));
1635 poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1636
1637 for (i = 1; i < XVECLEN (par, 0); i++)
1638 if (maybe_ne (rtx_to_poly_int64 (XVECEXP (par, 0, i)), c0 + i))
1639 return 0;
1640 return
1641 REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
1642 && simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1643 offset, GET_MODE (dst)) == (int) REGNO (dst);
1644 }
1645
1646 return (REG_P (src) && REG_P (dst)
1647 && REGNO (src) == REGNO (dst));
1648 }
1649 \f
1650 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1651 value to itself. */
1652
1653 int
1654 noop_move_p (const rtx_insn *insn)
1655 {
1656 rtx pat = PATTERN (insn);
1657
1658 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1659 return 1;
1660
1661 /* Insns carrying these notes are useful later on. */
1662 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1663 return 0;
1664
1665 /* Check the code to be executed for COND_EXEC. */
1666 if (GET_CODE (pat) == COND_EXEC)
1667 pat = COND_EXEC_CODE (pat);
1668
1669 if (GET_CODE (pat) == SET && set_noop_p (pat))
1670 return 1;
1671
1672 if (GET_CODE (pat) == PARALLEL)
1673 {
1674 int i;
1675 /* If nothing but SETs of registers to themselves,
1676 this insn can also be deleted. */
1677 for (i = 0; i < XVECLEN (pat, 0); i++)
1678 {
1679 rtx tem = XVECEXP (pat, 0, i);
1680
1681 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1682 continue;
1683
1684 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1685 return 0;
1686 }
1687
1688 return 1;
1689 }
1690 return 0;
1691 }
1692 \f
1693
1694 /* Return nonzero if register in range [REGNO, ENDREGNO)
1695 appears either explicitly or implicitly in X
1696 other than being stored into.
1697
1698 References contained within the substructure at LOC do not count.
1699 LOC may be zero, meaning don't ignore anything. */
1700
1701 bool
1702 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1703 rtx *loc)
1704 {
1705 int i;
1706 unsigned int x_regno;
1707 RTX_CODE code;
1708 const char *fmt;
1709
1710 repeat:
1711 /* The contents of a REG_NONNEG note is always zero, so we must come here
1712 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1713 if (x == 0)
1714 return false;
1715
1716 code = GET_CODE (x);
1717
1718 switch (code)
1719 {
1720 case REG:
1721 x_regno = REGNO (x);
1722
1723 /* If we modifying the stack, frame, or argument pointer, it will
1724 clobber a virtual register. In fact, we could be more precise,
1725 but it isn't worth it. */
1726 if ((x_regno == STACK_POINTER_REGNUM
1727 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1728 && x_regno == ARG_POINTER_REGNUM)
1729 || x_regno == FRAME_POINTER_REGNUM)
1730 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1731 return true;
1732
1733 return endregno > x_regno && regno < END_REGNO (x);
1734
1735 case SUBREG:
1736 /* If this is a SUBREG of a hard reg, we can see exactly which
1737 registers are being modified. Otherwise, handle normally. */
1738 if (REG_P (SUBREG_REG (x))
1739 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1740 {
1741 unsigned int inner_regno = subreg_regno (x);
1742 unsigned int inner_endregno
1743 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1744 ? subreg_nregs (x) : 1);
1745
1746 return endregno > inner_regno && regno < inner_endregno;
1747 }
1748 break;
1749
1750 case CLOBBER:
1751 case SET:
1752 if (&SET_DEST (x) != loc
1753 /* Note setting a SUBREG counts as referring to the REG it is in for
1754 a pseudo but not for hard registers since we can
1755 treat each word individually. */
1756 && ((GET_CODE (SET_DEST (x)) == SUBREG
1757 && loc != &SUBREG_REG (SET_DEST (x))
1758 && REG_P (SUBREG_REG (SET_DEST (x)))
1759 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1760 && refers_to_regno_p (regno, endregno,
1761 SUBREG_REG (SET_DEST (x)), loc))
1762 || (!REG_P (SET_DEST (x))
1763 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1764 return true;
1765
1766 if (code == CLOBBER || loc == &SET_SRC (x))
1767 return false;
1768 x = SET_SRC (x);
1769 goto repeat;
1770
1771 default:
1772 break;
1773 }
1774
1775 /* X does not match, so try its subexpressions. */
1776
1777 fmt = GET_RTX_FORMAT (code);
1778 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1779 {
1780 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1781 {
1782 if (i == 0)
1783 {
1784 x = XEXP (x, 0);
1785 goto repeat;
1786 }
1787 else
1788 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1789 return true;
1790 }
1791 else if (fmt[i] == 'E')
1792 {
1793 int j;
1794 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1795 if (loc != &XVECEXP (x, i, j)
1796 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1797 return true;
1798 }
1799 }
1800 return false;
1801 }
1802
1803 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1804 we check if any register number in X conflicts with the relevant register
1805 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1806 contains a MEM (we don't bother checking for memory addresses that can't
1807 conflict because we expect this to be a rare case. */
1808
1809 int
1810 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1811 {
1812 unsigned int regno, endregno;
1813
1814 /* If either argument is a constant, then modifying X cannot
1815 affect IN. Here we look at IN, we can profitably combine
1816 CONSTANT_P (x) with the switch statement below. */
1817 if (CONSTANT_P (in))
1818 return 0;
1819
1820 recurse:
1821 switch (GET_CODE (x))
1822 {
1823 case CLOBBER:
1824 case STRICT_LOW_PART:
1825 case ZERO_EXTRACT:
1826 case SIGN_EXTRACT:
1827 /* Overly conservative. */
1828 x = XEXP (x, 0);
1829 goto recurse;
1830
1831 case SUBREG:
1832 regno = REGNO (SUBREG_REG (x));
1833 if (regno < FIRST_PSEUDO_REGISTER)
1834 regno = subreg_regno (x);
1835 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1836 ? subreg_nregs (x) : 1);
1837 goto do_reg;
1838
1839 case REG:
1840 regno = REGNO (x);
1841 endregno = END_REGNO (x);
1842 do_reg:
1843 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1844
1845 case MEM:
1846 {
1847 const char *fmt;
1848 int i;
1849
1850 if (MEM_P (in))
1851 return 1;
1852
1853 fmt = GET_RTX_FORMAT (GET_CODE (in));
1854 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1855 if (fmt[i] == 'e')
1856 {
1857 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1858 return 1;
1859 }
1860 else if (fmt[i] == 'E')
1861 {
1862 int j;
1863 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1864 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1865 return 1;
1866 }
1867
1868 return 0;
1869 }
1870
1871 case SCRATCH:
1872 case PC:
1873 case CC0:
1874 return reg_mentioned_p (x, in);
1875
1876 case PARALLEL:
1877 {
1878 int i;
1879
1880 /* If any register in here refers to it we return true. */
1881 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1882 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1883 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1884 return 1;
1885 return 0;
1886 }
1887
1888 default:
1889 gcc_assert (CONSTANT_P (x));
1890 return 0;
1891 }
1892 }
1893 \f
1894 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1895 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1896 ignored by note_stores, but passed to FUN.
1897
1898 FUN receives three arguments:
1899 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1900 2. the SET or CLOBBER rtx that does the store,
1901 3. the pointer DATA provided to note_stores.
1902
1903 If the item being stored in or clobbered is a SUBREG of a hard register,
1904 the SUBREG will be passed. */
1905
1906 void
1907 note_pattern_stores (const_rtx x,
1908 void (*fun) (rtx, const_rtx, void *), void *data)
1909 {
1910 int i;
1911
1912 if (GET_CODE (x) == COND_EXEC)
1913 x = COND_EXEC_CODE (x);
1914
1915 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1916 {
1917 rtx dest = SET_DEST (x);
1918
1919 while ((GET_CODE (dest) == SUBREG
1920 && (!REG_P (SUBREG_REG (dest))
1921 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1922 || GET_CODE (dest) == ZERO_EXTRACT
1923 || GET_CODE (dest) == STRICT_LOW_PART)
1924 dest = XEXP (dest, 0);
1925
1926 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1927 each of whose first operand is a register. */
1928 if (GET_CODE (dest) == PARALLEL)
1929 {
1930 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1931 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1932 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1933 }
1934 else
1935 (*fun) (dest, x, data);
1936 }
1937
1938 else if (GET_CODE (x) == PARALLEL)
1939 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1940 note_pattern_stores (XVECEXP (x, 0, i), fun, data);
1941 }
1942
1943 /* Same, but for an instruction. If the instruction is a call, include
1944 any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */
1945
1946 void
1947 note_stores (const rtx_insn *insn,
1948 void (*fun) (rtx, const_rtx, void *), void *data)
1949 {
1950 if (CALL_P (insn))
1951 for (rtx link = CALL_INSN_FUNCTION_USAGE (insn);
1952 link; link = XEXP (link, 1))
1953 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1954 note_pattern_stores (XEXP (link, 0), fun, data);
1955 note_pattern_stores (PATTERN (insn), fun, data);
1956 }
1957 \f
1958 /* Like notes_stores, but call FUN for each expression that is being
1959 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1960 FUN for each expression, not any interior subexpressions. FUN receives a
1961 pointer to the expression and the DATA passed to this function.
1962
1963 Note that this is not quite the same test as that done in reg_referenced_p
1964 since that considers something as being referenced if it is being
1965 partially set, while we do not. */
1966
1967 void
1968 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1969 {
1970 rtx body = *pbody;
1971 int i;
1972
1973 switch (GET_CODE (body))
1974 {
1975 case COND_EXEC:
1976 (*fun) (&COND_EXEC_TEST (body), data);
1977 note_uses (&COND_EXEC_CODE (body), fun, data);
1978 return;
1979
1980 case PARALLEL:
1981 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1982 note_uses (&XVECEXP (body, 0, i), fun, data);
1983 return;
1984
1985 case SEQUENCE:
1986 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1987 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1988 return;
1989
1990 case USE:
1991 (*fun) (&XEXP (body, 0), data);
1992 return;
1993
1994 case ASM_OPERANDS:
1995 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1996 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1997 return;
1998
1999 case TRAP_IF:
2000 (*fun) (&TRAP_CONDITION (body), data);
2001 return;
2002
2003 case PREFETCH:
2004 (*fun) (&XEXP (body, 0), data);
2005 return;
2006
2007 case UNSPEC:
2008 case UNSPEC_VOLATILE:
2009 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2010 (*fun) (&XVECEXP (body, 0, i), data);
2011 return;
2012
2013 case CLOBBER:
2014 if (MEM_P (XEXP (body, 0)))
2015 (*fun) (&XEXP (XEXP (body, 0), 0), data);
2016 return;
2017
2018 case SET:
2019 {
2020 rtx dest = SET_DEST (body);
2021
2022 /* For sets we replace everything in source plus registers in memory
2023 expression in store and operands of a ZERO_EXTRACT. */
2024 (*fun) (&SET_SRC (body), data);
2025
2026 if (GET_CODE (dest) == ZERO_EXTRACT)
2027 {
2028 (*fun) (&XEXP (dest, 1), data);
2029 (*fun) (&XEXP (dest, 2), data);
2030 }
2031
2032 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
2033 dest = XEXP (dest, 0);
2034
2035 if (MEM_P (dest))
2036 (*fun) (&XEXP (dest, 0), data);
2037 }
2038 return;
2039
2040 default:
2041 /* All the other possibilities never store. */
2042 (*fun) (pbody, data);
2043 return;
2044 }
2045 }
2046 \f
2047 /* Return nonzero if X's old contents don't survive after INSN.
2048 This will be true if X is (cc0) or if X is a register and
2049 X dies in INSN or because INSN entirely sets X.
2050
2051 "Entirely set" means set directly and not through a SUBREG, or
2052 ZERO_EXTRACT, so no trace of the old contents remains.
2053 Likewise, REG_INC does not count.
2054
2055 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2056 but for this use that makes no difference, since regs don't overlap
2057 during their lifetimes. Therefore, this function may be used
2058 at any time after deaths have been computed.
2059
2060 If REG is a hard reg that occupies multiple machine registers, this
2061 function will only return 1 if each of those registers will be replaced
2062 by INSN. */
2063
2064 int
2065 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2066 {
2067 unsigned int regno, end_regno;
2068 unsigned int i;
2069
2070 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2071 if (GET_CODE (x) == CC0)
2072 return 1;
2073
2074 gcc_assert (REG_P (x));
2075
2076 regno = REGNO (x);
2077 end_regno = END_REGNO (x);
2078 for (i = regno; i < end_regno; i++)
2079 if (! dead_or_set_regno_p (insn, i))
2080 return 0;
2081
2082 return 1;
2083 }
2084
2085 /* Return TRUE iff DEST is a register or subreg of a register, is a
2086 complete rather than read-modify-write destination, and contains
2087 register TEST_REGNO. */
2088
2089 static bool
2090 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2091 {
2092 unsigned int regno, endregno;
2093
2094 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2095 dest = SUBREG_REG (dest);
2096
2097 if (!REG_P (dest))
2098 return false;
2099
2100 regno = REGNO (dest);
2101 endregno = END_REGNO (dest);
2102 return (test_regno >= regno && test_regno < endregno);
2103 }
2104
2105 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2106 any member matches the covers_regno_no_parallel_p criteria. */
2107
2108 static bool
2109 covers_regno_p (const_rtx dest, unsigned int test_regno)
2110 {
2111 if (GET_CODE (dest) == PARALLEL)
2112 {
2113 /* Some targets place small structures in registers for return
2114 values of functions, and those registers are wrapped in
2115 PARALLELs that we may see as the destination of a SET. */
2116 int i;
2117
2118 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2119 {
2120 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2121 if (inner != NULL_RTX
2122 && covers_regno_no_parallel_p (inner, test_regno))
2123 return true;
2124 }
2125
2126 return false;
2127 }
2128 else
2129 return covers_regno_no_parallel_p (dest, test_regno);
2130 }
2131
2132 /* Utility function for dead_or_set_p to check an individual register. */
2133
2134 int
2135 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2136 {
2137 const_rtx pattern;
2138
2139 /* See if there is a death note for something that includes TEST_REGNO. */
2140 if (find_regno_note (insn, REG_DEAD, test_regno))
2141 return 1;
2142
2143 if (CALL_P (insn)
2144 && find_regno_fusage (insn, CLOBBER, test_regno))
2145 return 1;
2146
2147 pattern = PATTERN (insn);
2148
2149 /* If a COND_EXEC is not executed, the value survives. */
2150 if (GET_CODE (pattern) == COND_EXEC)
2151 return 0;
2152
2153 if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2154 return covers_regno_p (SET_DEST (pattern), test_regno);
2155 else if (GET_CODE (pattern) == PARALLEL)
2156 {
2157 int i;
2158
2159 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2160 {
2161 rtx body = XVECEXP (pattern, 0, i);
2162
2163 if (GET_CODE (body) == COND_EXEC)
2164 body = COND_EXEC_CODE (body);
2165
2166 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2167 && covers_regno_p (SET_DEST (body), test_regno))
2168 return 1;
2169 }
2170 }
2171
2172 return 0;
2173 }
2174
2175 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2176 If DATUM is nonzero, look for one whose datum is DATUM. */
2177
2178 rtx
2179 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2180 {
2181 rtx link;
2182
2183 gcc_checking_assert (insn);
2184
2185 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2186 if (! INSN_P (insn))
2187 return 0;
2188 if (datum == 0)
2189 {
2190 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2191 if (REG_NOTE_KIND (link) == kind)
2192 return link;
2193 return 0;
2194 }
2195
2196 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2197 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2198 return link;
2199 return 0;
2200 }
2201
2202 /* Return the reg-note of kind KIND in insn INSN which applies to register
2203 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2204 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2205 it might be the case that the note overlaps REGNO. */
2206
2207 rtx
2208 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2209 {
2210 rtx link;
2211
2212 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2213 if (! INSN_P (insn))
2214 return 0;
2215
2216 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2217 if (REG_NOTE_KIND (link) == kind
2218 /* Verify that it is a register, so that scratch and MEM won't cause a
2219 problem here. */
2220 && REG_P (XEXP (link, 0))
2221 && REGNO (XEXP (link, 0)) <= regno
2222 && END_REGNO (XEXP (link, 0)) > regno)
2223 return link;
2224 return 0;
2225 }
2226
2227 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2228 has such a note. */
2229
2230 rtx
2231 find_reg_equal_equiv_note (const_rtx insn)
2232 {
2233 rtx link;
2234
2235 if (!INSN_P (insn))
2236 return 0;
2237
2238 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2239 if (REG_NOTE_KIND (link) == REG_EQUAL
2240 || REG_NOTE_KIND (link) == REG_EQUIV)
2241 {
2242 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2243 insns that have multiple sets. Checking single_set to
2244 make sure of this is not the proper check, as explained
2245 in the comment in set_unique_reg_note.
2246
2247 This should be changed into an assert. */
2248 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2249 return 0;
2250 return link;
2251 }
2252 return NULL;
2253 }
2254
2255 /* Check whether INSN is a single_set whose source is known to be
2256 equivalent to a constant. Return that constant if so, otherwise
2257 return null. */
2258
2259 rtx
2260 find_constant_src (const rtx_insn *insn)
2261 {
2262 rtx note, set, x;
2263
2264 set = single_set (insn);
2265 if (set)
2266 {
2267 x = avoid_constant_pool_reference (SET_SRC (set));
2268 if (CONSTANT_P (x))
2269 return x;
2270 }
2271
2272 note = find_reg_equal_equiv_note (insn);
2273 if (note && CONSTANT_P (XEXP (note, 0)))
2274 return XEXP (note, 0);
2275
2276 return NULL_RTX;
2277 }
2278
2279 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2280 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2281
2282 int
2283 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2284 {
2285 /* If it's not a CALL_INSN, it can't possibly have a
2286 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2287 if (!CALL_P (insn))
2288 return 0;
2289
2290 gcc_assert (datum);
2291
2292 if (!REG_P (datum))
2293 {
2294 rtx link;
2295
2296 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2297 link;
2298 link = XEXP (link, 1))
2299 if (GET_CODE (XEXP (link, 0)) == code
2300 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2301 return 1;
2302 }
2303 else
2304 {
2305 unsigned int regno = REGNO (datum);
2306
2307 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2308 to pseudo registers, so don't bother checking. */
2309
2310 if (regno < FIRST_PSEUDO_REGISTER)
2311 {
2312 unsigned int end_regno = END_REGNO (datum);
2313 unsigned int i;
2314
2315 for (i = regno; i < end_regno; i++)
2316 if (find_regno_fusage (insn, code, i))
2317 return 1;
2318 }
2319 }
2320
2321 return 0;
2322 }
2323
2324 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2325 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2326
2327 int
2328 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2329 {
2330 rtx link;
2331
2332 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2333 to pseudo registers, so don't bother checking. */
2334
2335 if (regno >= FIRST_PSEUDO_REGISTER
2336 || !CALL_P (insn) )
2337 return 0;
2338
2339 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2340 {
2341 rtx op, reg;
2342
2343 if (GET_CODE (op = XEXP (link, 0)) == code
2344 && REG_P (reg = XEXP (op, 0))
2345 && REGNO (reg) <= regno
2346 && END_REGNO (reg) > regno)
2347 return 1;
2348 }
2349
2350 return 0;
2351 }
2352
2353 \f
2354 /* Return true if KIND is an integer REG_NOTE. */
2355
2356 static bool
2357 int_reg_note_p (enum reg_note kind)
2358 {
2359 return kind == REG_BR_PROB;
2360 }
2361
2362 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2363 stored as the pointer to the next register note. */
2364
2365 rtx
2366 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2367 {
2368 rtx note;
2369
2370 gcc_checking_assert (!int_reg_note_p (kind));
2371 switch (kind)
2372 {
2373 case REG_CC_SETTER:
2374 case REG_CC_USER:
2375 case REG_LABEL_TARGET:
2376 case REG_LABEL_OPERAND:
2377 case REG_TM:
2378 /* These types of register notes use an INSN_LIST rather than an
2379 EXPR_LIST, so that copying is done right and dumps look
2380 better. */
2381 note = alloc_INSN_LIST (datum, list);
2382 PUT_REG_NOTE_KIND (note, kind);
2383 break;
2384
2385 default:
2386 note = alloc_EXPR_LIST (kind, datum, list);
2387 break;
2388 }
2389
2390 return note;
2391 }
2392
2393 /* Add register note with kind KIND and datum DATUM to INSN. */
2394
2395 void
2396 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2397 {
2398 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2399 }
2400
2401 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2402
2403 void
2404 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2405 {
2406 gcc_checking_assert (int_reg_note_p (kind));
2407 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2408 datum, REG_NOTES (insn));
2409 }
2410
2411 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2412
2413 void
2414 add_args_size_note (rtx_insn *insn, poly_int64 value)
2415 {
2416 gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2417 add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2418 }
2419
2420 /* Add a register note like NOTE to INSN. */
2421
2422 void
2423 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2424 {
2425 if (GET_CODE (note) == INT_LIST)
2426 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2427 else
2428 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2429 }
2430
2431 /* Duplicate NOTE and return the copy. */
2432 rtx
2433 duplicate_reg_note (rtx note)
2434 {
2435 reg_note kind = REG_NOTE_KIND (note);
2436
2437 if (GET_CODE (note) == INT_LIST)
2438 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2439 else if (GET_CODE (note) == EXPR_LIST)
2440 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2441 else
2442 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2443 }
2444
2445 /* Remove register note NOTE from the REG_NOTES of INSN. */
2446
2447 void
2448 remove_note (rtx_insn *insn, const_rtx note)
2449 {
2450 rtx link;
2451
2452 if (note == NULL_RTX)
2453 return;
2454
2455 if (REG_NOTES (insn) == note)
2456 REG_NOTES (insn) = XEXP (note, 1);
2457 else
2458 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2459 if (XEXP (link, 1) == note)
2460 {
2461 XEXP (link, 1) = XEXP (note, 1);
2462 break;
2463 }
2464
2465 switch (REG_NOTE_KIND (note))
2466 {
2467 case REG_EQUAL:
2468 case REG_EQUIV:
2469 df_notes_rescan (insn);
2470 break;
2471 default:
2472 break;
2473 }
2474 }
2475
2476 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2477 Return true if any note has been removed. */
2478
2479 bool
2480 remove_reg_equal_equiv_notes (rtx_insn *insn)
2481 {
2482 rtx *loc;
2483 bool ret = false;
2484
2485 loc = &REG_NOTES (insn);
2486 while (*loc)
2487 {
2488 enum reg_note kind = REG_NOTE_KIND (*loc);
2489 if (kind == REG_EQUAL || kind == REG_EQUIV)
2490 {
2491 *loc = XEXP (*loc, 1);
2492 ret = true;
2493 }
2494 else
2495 loc = &XEXP (*loc, 1);
2496 }
2497 return ret;
2498 }
2499
2500 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2501
2502 void
2503 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2504 {
2505 df_ref eq_use;
2506
2507 if (!df)
2508 return;
2509
2510 /* This loop is a little tricky. We cannot just go down the chain because
2511 it is being modified by some actions in the loop. So we just iterate
2512 over the head. We plan to drain the list anyway. */
2513 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2514 {
2515 rtx_insn *insn = DF_REF_INSN (eq_use);
2516 rtx note = find_reg_equal_equiv_note (insn);
2517
2518 /* This assert is generally triggered when someone deletes a REG_EQUAL
2519 or REG_EQUIV note by hacking the list manually rather than calling
2520 remove_note. */
2521 gcc_assert (note);
2522
2523 remove_note (insn, note);
2524 }
2525 }
2526
2527 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2528 return 1 if it is found. A simple equality test is used to determine if
2529 NODE matches. */
2530
2531 bool
2532 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2533 {
2534 const_rtx x;
2535
2536 for (x = listp; x; x = XEXP (x, 1))
2537 if (node == XEXP (x, 0))
2538 return true;
2539
2540 return false;
2541 }
2542
2543 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2544 remove that entry from the list if it is found.
2545
2546 A simple equality test is used to determine if NODE matches. */
2547
2548 void
2549 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2550 {
2551 rtx_expr_list *temp = *listp;
2552 rtx_expr_list *prev = NULL;
2553
2554 while (temp)
2555 {
2556 if (node == temp->element ())
2557 {
2558 /* Splice the node out of the list. */
2559 if (prev)
2560 XEXP (prev, 1) = temp->next ();
2561 else
2562 *listp = temp->next ();
2563
2564 return;
2565 }
2566
2567 prev = temp;
2568 temp = temp->next ();
2569 }
2570 }
2571
2572 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2573 remove that entry from the list if it is found.
2574
2575 A simple equality test is used to determine if NODE matches. */
2576
2577 void
2578 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2579 {
2580 rtx_insn_list *temp = *listp;
2581 rtx_insn_list *prev = NULL;
2582
2583 while (temp)
2584 {
2585 if (node == temp->insn ())
2586 {
2587 /* Splice the node out of the list. */
2588 if (prev)
2589 XEXP (prev, 1) = temp->next ();
2590 else
2591 *listp = temp->next ();
2592
2593 return;
2594 }
2595
2596 prev = temp;
2597 temp = temp->next ();
2598 }
2599 }
2600 \f
2601 /* Nonzero if X contains any volatile instructions. These are instructions
2602 which may cause unpredictable machine state instructions, and thus no
2603 instructions or register uses should be moved or combined across them.
2604 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2605
2606 int
2607 volatile_insn_p (const_rtx x)
2608 {
2609 const RTX_CODE code = GET_CODE (x);
2610 switch (code)
2611 {
2612 case LABEL_REF:
2613 case SYMBOL_REF:
2614 case CONST:
2615 CASE_CONST_ANY:
2616 case CC0:
2617 case PC:
2618 case REG:
2619 case SCRATCH:
2620 case CLOBBER:
2621 case ADDR_VEC:
2622 case ADDR_DIFF_VEC:
2623 case CALL:
2624 case MEM:
2625 return 0;
2626
2627 case UNSPEC_VOLATILE:
2628 return 1;
2629
2630 case ASM_INPUT:
2631 case ASM_OPERANDS:
2632 if (MEM_VOLATILE_P (x))
2633 return 1;
2634
2635 default:
2636 break;
2637 }
2638
2639 /* Recursively scan the operands of this expression. */
2640
2641 {
2642 const char *const fmt = GET_RTX_FORMAT (code);
2643 int i;
2644
2645 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2646 {
2647 if (fmt[i] == 'e')
2648 {
2649 if (volatile_insn_p (XEXP (x, i)))
2650 return 1;
2651 }
2652 else if (fmt[i] == 'E')
2653 {
2654 int j;
2655 for (j = 0; j < XVECLEN (x, i); j++)
2656 if (volatile_insn_p (XVECEXP (x, i, j)))
2657 return 1;
2658 }
2659 }
2660 }
2661 return 0;
2662 }
2663
2664 /* Nonzero if X contains any volatile memory references
2665 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2666
2667 int
2668 volatile_refs_p (const_rtx x)
2669 {
2670 const RTX_CODE code = GET_CODE (x);
2671 switch (code)
2672 {
2673 case LABEL_REF:
2674 case SYMBOL_REF:
2675 case CONST:
2676 CASE_CONST_ANY:
2677 case CC0:
2678 case PC:
2679 case REG:
2680 case SCRATCH:
2681 case CLOBBER:
2682 case ADDR_VEC:
2683 case ADDR_DIFF_VEC:
2684 return 0;
2685
2686 case UNSPEC_VOLATILE:
2687 return 1;
2688
2689 case MEM:
2690 case ASM_INPUT:
2691 case ASM_OPERANDS:
2692 if (MEM_VOLATILE_P (x))
2693 return 1;
2694
2695 default:
2696 break;
2697 }
2698
2699 /* Recursively scan the operands of this expression. */
2700
2701 {
2702 const char *const fmt = GET_RTX_FORMAT (code);
2703 int i;
2704
2705 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2706 {
2707 if (fmt[i] == 'e')
2708 {
2709 if (volatile_refs_p (XEXP (x, i)))
2710 return 1;
2711 }
2712 else if (fmt[i] == 'E')
2713 {
2714 int j;
2715 for (j = 0; j < XVECLEN (x, i); j++)
2716 if (volatile_refs_p (XVECEXP (x, i, j)))
2717 return 1;
2718 }
2719 }
2720 }
2721 return 0;
2722 }
2723
2724 /* Similar to above, except that it also rejects register pre- and post-
2725 incrementing. */
2726
2727 int
2728 side_effects_p (const_rtx x)
2729 {
2730 const RTX_CODE code = GET_CODE (x);
2731 switch (code)
2732 {
2733 case LABEL_REF:
2734 case SYMBOL_REF:
2735 case CONST:
2736 CASE_CONST_ANY:
2737 case CC0:
2738 case PC:
2739 case REG:
2740 case SCRATCH:
2741 case ADDR_VEC:
2742 case ADDR_DIFF_VEC:
2743 case VAR_LOCATION:
2744 return 0;
2745
2746 case CLOBBER:
2747 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2748 when some combination can't be done. If we see one, don't think
2749 that we can simplify the expression. */
2750 return (GET_MODE (x) != VOIDmode);
2751
2752 case PRE_INC:
2753 case PRE_DEC:
2754 case POST_INC:
2755 case POST_DEC:
2756 case PRE_MODIFY:
2757 case POST_MODIFY:
2758 case CALL:
2759 case UNSPEC_VOLATILE:
2760 return 1;
2761
2762 case MEM:
2763 case ASM_INPUT:
2764 case ASM_OPERANDS:
2765 if (MEM_VOLATILE_P (x))
2766 return 1;
2767
2768 default:
2769 break;
2770 }
2771
2772 /* Recursively scan the operands of this expression. */
2773
2774 {
2775 const char *fmt = GET_RTX_FORMAT (code);
2776 int i;
2777
2778 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2779 {
2780 if (fmt[i] == 'e')
2781 {
2782 if (side_effects_p (XEXP (x, i)))
2783 return 1;
2784 }
2785 else if (fmt[i] == 'E')
2786 {
2787 int j;
2788 for (j = 0; j < XVECLEN (x, i); j++)
2789 if (side_effects_p (XVECEXP (x, i, j)))
2790 return 1;
2791 }
2792 }
2793 }
2794 return 0;
2795 }
2796 \f
2797 /* Return nonzero if evaluating rtx X might cause a trap.
2798 FLAGS controls how to consider MEMs. A nonzero means the context
2799 of the access may have changed from the original, such that the
2800 address may have become invalid. */
2801
2802 int
2803 may_trap_p_1 (const_rtx x, unsigned flags)
2804 {
2805 int i;
2806 enum rtx_code code;
2807 const char *fmt;
2808
2809 /* We make no distinction currently, but this function is part of
2810 the internal target-hooks ABI so we keep the parameter as
2811 "unsigned flags". */
2812 bool code_changed = flags != 0;
2813
2814 if (x == 0)
2815 return 0;
2816 code = GET_CODE (x);
2817 switch (code)
2818 {
2819 /* Handle these cases quickly. */
2820 CASE_CONST_ANY:
2821 case SYMBOL_REF:
2822 case LABEL_REF:
2823 case CONST:
2824 case PC:
2825 case CC0:
2826 case REG:
2827 case SCRATCH:
2828 return 0;
2829
2830 case UNSPEC:
2831 return targetm.unspec_may_trap_p (x, flags);
2832
2833 case UNSPEC_VOLATILE:
2834 case ASM_INPUT:
2835 case TRAP_IF:
2836 return 1;
2837
2838 case ASM_OPERANDS:
2839 return MEM_VOLATILE_P (x);
2840
2841 /* Memory ref can trap unless it's a static var or a stack slot. */
2842 case MEM:
2843 /* Recognize specific pattern of stack checking probes. */
2844 if (flag_stack_check
2845 && MEM_VOLATILE_P (x)
2846 && XEXP (x, 0) == stack_pointer_rtx)
2847 return 1;
2848 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2849 reference; moving it out of context such as when moving code
2850 when optimizing, might cause its address to become invalid. */
2851 code_changed
2852 || !MEM_NOTRAP_P (x))
2853 {
2854 poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
2855 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2856 GET_MODE (x), code_changed);
2857 }
2858
2859 return 0;
2860
2861 /* Division by a non-constant might trap. */
2862 case DIV:
2863 case MOD:
2864 case UDIV:
2865 case UMOD:
2866 if (HONOR_SNANS (x))
2867 return 1;
2868 if (FLOAT_MODE_P (GET_MODE (x)))
2869 return flag_trapping_math;
2870 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2871 return 1;
2872 if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR)
2873 {
2874 /* For CONST_VECTOR, return 1 if any element is or might be zero. */
2875 unsigned int n_elts;
2876 rtx op = XEXP (x, 1);
2877 if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts))
2878 {
2879 if (!CONST_VECTOR_DUPLICATE_P (op))
2880 return 1;
2881 for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++)
2882 if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx)
2883 return 1;
2884 }
2885 else
2886 for (unsigned i = 0; i < n_elts; i++)
2887 if (CONST_VECTOR_ELT (op, i) == const0_rtx)
2888 return 1;
2889 }
2890 break;
2891
2892 case EXPR_LIST:
2893 /* An EXPR_LIST is used to represent a function call. This
2894 certainly may trap. */
2895 return 1;
2896
2897 case GE:
2898 case GT:
2899 case LE:
2900 case LT:
2901 case LTGT:
2902 case COMPARE:
2903 /* Some floating point comparisons may trap. */
2904 if (!flag_trapping_math)
2905 break;
2906 /* ??? There is no machine independent way to check for tests that trap
2907 when COMPARE is used, though many targets do make this distinction.
2908 For instance, sparc uses CCFPE for compares which generate exceptions
2909 and CCFP for compares which do not generate exceptions. */
2910 if (HONOR_NANS (x))
2911 return 1;
2912 /* But often the compare has some CC mode, so check operand
2913 modes as well. */
2914 if (HONOR_NANS (XEXP (x, 0))
2915 || HONOR_NANS (XEXP (x, 1)))
2916 return 1;
2917 break;
2918
2919 case EQ:
2920 case NE:
2921 if (HONOR_SNANS (x))
2922 return 1;
2923 /* Often comparison is CC mode, so check operand modes. */
2924 if (HONOR_SNANS (XEXP (x, 0))
2925 || HONOR_SNANS (XEXP (x, 1)))
2926 return 1;
2927 break;
2928
2929 case FIX:
2930 /* Conversion of floating point might trap. */
2931 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2932 return 1;
2933 break;
2934
2935 case NEG:
2936 case ABS:
2937 case SUBREG:
2938 case VEC_MERGE:
2939 case VEC_SELECT:
2940 case VEC_CONCAT:
2941 case VEC_DUPLICATE:
2942 /* These operations don't trap even with floating point. */
2943 break;
2944
2945 default:
2946 /* Any floating arithmetic may trap. */
2947 if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2948 return 1;
2949 }
2950
2951 fmt = GET_RTX_FORMAT (code);
2952 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2953 {
2954 if (fmt[i] == 'e')
2955 {
2956 if (may_trap_p_1 (XEXP (x, i), flags))
2957 return 1;
2958 }
2959 else if (fmt[i] == 'E')
2960 {
2961 int j;
2962 for (j = 0; j < XVECLEN (x, i); j++)
2963 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2964 return 1;
2965 }
2966 }
2967 return 0;
2968 }
2969
2970 /* Return nonzero if evaluating rtx X might cause a trap. */
2971
2972 int
2973 may_trap_p (const_rtx x)
2974 {
2975 return may_trap_p_1 (x, 0);
2976 }
2977
2978 /* Same as above, but additionally return nonzero if evaluating rtx X might
2979 cause a fault. We define a fault for the purpose of this function as a
2980 erroneous execution condition that cannot be encountered during the normal
2981 execution of a valid program; the typical example is an unaligned memory
2982 access on a strict alignment machine. The compiler guarantees that it
2983 doesn't generate code that will fault from a valid program, but this
2984 guarantee doesn't mean anything for individual instructions. Consider
2985 the following example:
2986
2987 struct S { int d; union { char *cp; int *ip; }; };
2988
2989 int foo(struct S *s)
2990 {
2991 if (s->d == 1)
2992 return *s->ip;
2993 else
2994 return *s->cp;
2995 }
2996
2997 on a strict alignment machine. In a valid program, foo will never be
2998 invoked on a structure for which d is equal to 1 and the underlying
2999 unique field of the union not aligned on a 4-byte boundary, but the
3000 expression *s->ip might cause a fault if considered individually.
3001
3002 At the RTL level, potentially problematic expressions will almost always
3003 verify may_trap_p; for example, the above dereference can be emitted as
3004 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
3005 However, suppose that foo is inlined in a caller that causes s->cp to
3006 point to a local character variable and guarantees that s->d is not set
3007 to 1; foo may have been effectively translated into pseudo-RTL as:
3008
3009 if ((reg:SI) == 1)
3010 (set (reg:SI) (mem:SI (%fp - 7)))
3011 else
3012 (set (reg:QI) (mem:QI (%fp - 7)))
3013
3014 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
3015 memory reference to a stack slot, but it will certainly cause a fault
3016 on a strict alignment machine. */
3017
3018 int
3019 may_trap_or_fault_p (const_rtx x)
3020 {
3021 return may_trap_p_1 (x, 1);
3022 }
3023 \f
3024 /* Replace any occurrence of FROM in X with TO. The function does
3025 not enter into CONST_DOUBLE for the replace.
3026
3027 Note that copying is not done so X must not be shared unless all copies
3028 are to be modified.
3029
3030 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3031 those pointer-equal ones. */
3032
3033 rtx
3034 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3035 {
3036 int i, j;
3037 const char *fmt;
3038
3039 if (x == from)
3040 return to;
3041
3042 /* Allow this function to make replacements in EXPR_LISTs. */
3043 if (x == 0)
3044 return 0;
3045
3046 if (all_regs
3047 && REG_P (x)
3048 && REG_P (from)
3049 && REGNO (x) == REGNO (from))
3050 {
3051 gcc_assert (GET_MODE (x) == GET_MODE (from));
3052 return to;
3053 }
3054 else if (GET_CODE (x) == SUBREG)
3055 {
3056 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3057
3058 if (CONST_INT_P (new_rtx))
3059 {
3060 x = simplify_subreg (GET_MODE (x), new_rtx,
3061 GET_MODE (SUBREG_REG (x)),
3062 SUBREG_BYTE (x));
3063 gcc_assert (x);
3064 }
3065 else
3066 SUBREG_REG (x) = new_rtx;
3067
3068 return x;
3069 }
3070 else if (GET_CODE (x) == ZERO_EXTEND)
3071 {
3072 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3073
3074 if (CONST_INT_P (new_rtx))
3075 {
3076 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3077 new_rtx, GET_MODE (XEXP (x, 0)));
3078 gcc_assert (x);
3079 }
3080 else
3081 XEXP (x, 0) = new_rtx;
3082
3083 return x;
3084 }
3085
3086 fmt = GET_RTX_FORMAT (GET_CODE (x));
3087 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3088 {
3089 if (fmt[i] == 'e')
3090 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3091 else if (fmt[i] == 'E')
3092 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3093 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3094 from, to, all_regs);
3095 }
3096
3097 return x;
3098 }
3099 \f
3100 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3101 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3102
3103 void
3104 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3105 {
3106 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3107 rtx x = *loc;
3108 if (JUMP_TABLE_DATA_P (x))
3109 {
3110 x = PATTERN (x);
3111 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3112 int len = GET_NUM_ELEM (vec);
3113 for (int i = 0; i < len; ++i)
3114 {
3115 rtx ref = RTVEC_ELT (vec, i);
3116 if (XEXP (ref, 0) == old_label)
3117 {
3118 XEXP (ref, 0) = new_label;
3119 if (update_label_nuses)
3120 {
3121 ++LABEL_NUSES (new_label);
3122 --LABEL_NUSES (old_label);
3123 }
3124 }
3125 }
3126 return;
3127 }
3128
3129 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3130 field. This is not handled by the iterator because it doesn't
3131 handle unprinted ('0') fields. */
3132 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3133 JUMP_LABEL (x) = new_label;
3134
3135 subrtx_ptr_iterator::array_type array;
3136 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3137 {
3138 rtx *loc = *iter;
3139 if (rtx x = *loc)
3140 {
3141 if (GET_CODE (x) == SYMBOL_REF
3142 && CONSTANT_POOL_ADDRESS_P (x))
3143 {
3144 rtx c = get_pool_constant (x);
3145 if (rtx_referenced_p (old_label, c))
3146 {
3147 /* Create a copy of constant C; replace the label inside
3148 but do not update LABEL_NUSES because uses in constant pool
3149 are not counted. */
3150 rtx new_c = copy_rtx (c);
3151 replace_label (&new_c, old_label, new_label, false);
3152
3153 /* Add the new constant NEW_C to constant pool and replace
3154 the old reference to constant by new reference. */
3155 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3156 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3157 }
3158 }
3159
3160 if ((GET_CODE (x) == LABEL_REF
3161 || GET_CODE (x) == INSN_LIST)
3162 && XEXP (x, 0) == old_label)
3163 {
3164 XEXP (x, 0) = new_label;
3165 if (update_label_nuses)
3166 {
3167 ++LABEL_NUSES (new_label);
3168 --LABEL_NUSES (old_label);
3169 }
3170 }
3171 }
3172 }
3173 }
3174
3175 void
3176 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3177 rtx_insn *new_label, bool update_label_nuses)
3178 {
3179 rtx insn_as_rtx = insn;
3180 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3181 gcc_checking_assert (insn_as_rtx == insn);
3182 }
3183
3184 /* Return true if X is referenced in BODY. */
3185
3186 bool
3187 rtx_referenced_p (const_rtx x, const_rtx body)
3188 {
3189 subrtx_iterator::array_type array;
3190 FOR_EACH_SUBRTX (iter, array, body, ALL)
3191 if (const_rtx y = *iter)
3192 {
3193 /* Check if a label_ref Y refers to label X. */
3194 if (GET_CODE (y) == LABEL_REF
3195 && LABEL_P (x)
3196 && label_ref_label (y) == x)
3197 return true;
3198
3199 if (rtx_equal_p (x, y))
3200 return true;
3201
3202 /* If Y is a reference to pool constant traverse the constant. */
3203 if (GET_CODE (y) == SYMBOL_REF
3204 && CONSTANT_POOL_ADDRESS_P (y))
3205 iter.substitute (get_pool_constant (y));
3206 }
3207 return false;
3208 }
3209
3210 /* If INSN is a tablejump return true and store the label (before jump table) to
3211 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3212
3213 bool
3214 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3215 rtx_jump_table_data **tablep)
3216 {
3217 if (!JUMP_P (insn))
3218 return false;
3219
3220 rtx target = JUMP_LABEL (insn);
3221 if (target == NULL_RTX || ANY_RETURN_P (target))
3222 return false;
3223
3224 rtx_insn *label = as_a<rtx_insn *> (target);
3225 rtx_insn *table = next_insn (label);
3226 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3227 return false;
3228
3229 if (labelp)
3230 *labelp = label;
3231 if (tablep)
3232 *tablep = as_a <rtx_jump_table_data *> (table);
3233 return true;
3234 }
3235
3236 /* For INSN known to satisfy tablejump_p, determine if it actually is a
3237 CASESI. Return the insn pattern if so, NULL_RTX otherwise. */
3238
3239 rtx
3240 tablejump_casesi_pattern (const rtx_insn *insn)
3241 {
3242 rtx tmp;
3243
3244 if ((tmp = single_set (insn)) != NULL
3245 && SET_DEST (tmp) == pc_rtx
3246 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
3247 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
3248 return tmp;
3249
3250 return NULL_RTX;
3251 }
3252
3253 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3254 constant that is not in the constant pool and not in the condition
3255 of an IF_THEN_ELSE. */
3256
3257 static int
3258 computed_jump_p_1 (const_rtx x)
3259 {
3260 const enum rtx_code code = GET_CODE (x);
3261 int i, j;
3262 const char *fmt;
3263
3264 switch (code)
3265 {
3266 case LABEL_REF:
3267 case PC:
3268 return 0;
3269
3270 case CONST:
3271 CASE_CONST_ANY:
3272 case SYMBOL_REF:
3273 case REG:
3274 return 1;
3275
3276 case MEM:
3277 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3278 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3279
3280 case IF_THEN_ELSE:
3281 return (computed_jump_p_1 (XEXP (x, 1))
3282 || computed_jump_p_1 (XEXP (x, 2)));
3283
3284 default:
3285 break;
3286 }
3287
3288 fmt = GET_RTX_FORMAT (code);
3289 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3290 {
3291 if (fmt[i] == 'e'
3292 && computed_jump_p_1 (XEXP (x, i)))
3293 return 1;
3294
3295 else if (fmt[i] == 'E')
3296 for (j = 0; j < XVECLEN (x, i); j++)
3297 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3298 return 1;
3299 }
3300
3301 return 0;
3302 }
3303
3304 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3305
3306 Tablejumps and casesi insns are not considered indirect jumps;
3307 we can recognize them by a (use (label_ref)). */
3308
3309 int
3310 computed_jump_p (const rtx_insn *insn)
3311 {
3312 int i;
3313 if (JUMP_P (insn))
3314 {
3315 rtx pat = PATTERN (insn);
3316
3317 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3318 if (JUMP_LABEL (insn) != NULL)
3319 return 0;
3320
3321 if (GET_CODE (pat) == PARALLEL)
3322 {
3323 int len = XVECLEN (pat, 0);
3324 int has_use_labelref = 0;
3325
3326 for (i = len - 1; i >= 0; i--)
3327 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3328 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3329 == LABEL_REF))
3330 {
3331 has_use_labelref = 1;
3332 break;
3333 }
3334
3335 if (! has_use_labelref)
3336 for (i = len - 1; i >= 0; i--)
3337 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3338 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3339 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3340 return 1;
3341 }
3342 else if (GET_CODE (pat) == SET
3343 && SET_DEST (pat) == pc_rtx
3344 && computed_jump_p_1 (SET_SRC (pat)))
3345 return 1;
3346 }
3347 return 0;
3348 }
3349
3350 \f
3351
3352 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3353 the equivalent add insn and pass the result to FN, using DATA as the
3354 final argument. */
3355
3356 static int
3357 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3358 {
3359 rtx x = XEXP (mem, 0);
3360 switch (GET_CODE (x))
3361 {
3362 case PRE_INC:
3363 case POST_INC:
3364 {
3365 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3366 rtx r1 = XEXP (x, 0);
3367 rtx c = gen_int_mode (size, GET_MODE (r1));
3368 return fn (mem, x, r1, r1, c, data);
3369 }
3370
3371 case PRE_DEC:
3372 case POST_DEC:
3373 {
3374 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3375 rtx r1 = XEXP (x, 0);
3376 rtx c = gen_int_mode (-size, GET_MODE (r1));
3377 return fn (mem, x, r1, r1, c, data);
3378 }
3379
3380 case PRE_MODIFY:
3381 case POST_MODIFY:
3382 {
3383 rtx r1 = XEXP (x, 0);
3384 rtx add = XEXP (x, 1);
3385 return fn (mem, x, r1, add, NULL, data);
3386 }
3387
3388 default:
3389 gcc_unreachable ();
3390 }
3391 }
3392
3393 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3394 For each such autoinc operation found, call FN, passing it
3395 the innermost enclosing MEM, the operation itself, the RTX modified
3396 by the operation, two RTXs (the second may be NULL) that, once
3397 added, represent the value to be held by the modified RTX
3398 afterwards, and DATA. FN is to return 0 to continue the
3399 traversal or any other value to have it returned to the caller of
3400 for_each_inc_dec. */
3401
3402 int
3403 for_each_inc_dec (rtx x,
3404 for_each_inc_dec_fn fn,
3405 void *data)
3406 {
3407 subrtx_var_iterator::array_type array;
3408 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3409 {
3410 rtx mem = *iter;
3411 if (mem
3412 && MEM_P (mem)
3413 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3414 {
3415 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3416 if (res != 0)
3417 return res;
3418 iter.skip_subrtxes ();
3419 }
3420 }
3421 return 0;
3422 }
3423
3424 \f
3425 /* Searches X for any reference to REGNO, returning the rtx of the
3426 reference found if any. Otherwise, returns NULL_RTX. */
3427
3428 rtx
3429 regno_use_in (unsigned int regno, rtx x)
3430 {
3431 const char *fmt;
3432 int i, j;
3433 rtx tem;
3434
3435 if (REG_P (x) && REGNO (x) == regno)
3436 return x;
3437
3438 fmt = GET_RTX_FORMAT (GET_CODE (x));
3439 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3440 {
3441 if (fmt[i] == 'e')
3442 {
3443 if ((tem = regno_use_in (regno, XEXP (x, i))))
3444 return tem;
3445 }
3446 else if (fmt[i] == 'E')
3447 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3448 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3449 return tem;
3450 }
3451
3452 return NULL_RTX;
3453 }
3454
3455 /* Return a value indicating whether OP, an operand of a commutative
3456 operation, is preferred as the first or second operand. The more
3457 positive the value, the stronger the preference for being the first
3458 operand. */
3459
3460 int
3461 commutative_operand_precedence (rtx op)
3462 {
3463 enum rtx_code code = GET_CODE (op);
3464
3465 /* Constants always become the second operand. Prefer "nice" constants. */
3466 if (code == CONST_INT)
3467 return -10;
3468 if (code == CONST_WIDE_INT)
3469 return -9;
3470 if (code == CONST_POLY_INT)
3471 return -8;
3472 if (code == CONST_DOUBLE)
3473 return -8;
3474 if (code == CONST_FIXED)
3475 return -8;
3476 op = avoid_constant_pool_reference (op);
3477 code = GET_CODE (op);
3478
3479 switch (GET_RTX_CLASS (code))
3480 {
3481 case RTX_CONST_OBJ:
3482 if (code == CONST_INT)
3483 return -7;
3484 if (code == CONST_WIDE_INT)
3485 return -6;
3486 if (code == CONST_POLY_INT)
3487 return -5;
3488 if (code == CONST_DOUBLE)
3489 return -5;
3490 if (code == CONST_FIXED)
3491 return -5;
3492 return -4;
3493
3494 case RTX_EXTRA:
3495 /* SUBREGs of objects should come second. */
3496 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3497 return -3;
3498 return 0;
3499
3500 case RTX_OBJ:
3501 /* Complex expressions should be the first, so decrease priority
3502 of objects. Prefer pointer objects over non pointer objects. */
3503 if ((REG_P (op) && REG_POINTER (op))
3504 || (MEM_P (op) && MEM_POINTER (op)))
3505 return -1;
3506 return -2;
3507
3508 case RTX_COMM_ARITH:
3509 /* Prefer operands that are themselves commutative to be first.
3510 This helps to make things linear. In particular,
3511 (and (and (reg) (reg)) (not (reg))) is canonical. */
3512 return 4;
3513
3514 case RTX_BIN_ARITH:
3515 /* If only one operand is a binary expression, it will be the first
3516 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3517 is canonical, although it will usually be further simplified. */
3518 return 2;
3519
3520 case RTX_UNARY:
3521 /* Then prefer NEG and NOT. */
3522 if (code == NEG || code == NOT)
3523 return 1;
3524 /* FALLTHRU */
3525
3526 default:
3527 return 0;
3528 }
3529 }
3530
3531 /* Return 1 iff it is necessary to swap operands of commutative operation
3532 in order to canonicalize expression. */
3533
3534 bool
3535 swap_commutative_operands_p (rtx x, rtx y)
3536 {
3537 return (commutative_operand_precedence (x)
3538 < commutative_operand_precedence (y));
3539 }
3540
3541 /* Return 1 if X is an autoincrement side effect and the register is
3542 not the stack pointer. */
3543 int
3544 auto_inc_p (const_rtx x)
3545 {
3546 switch (GET_CODE (x))
3547 {
3548 case PRE_INC:
3549 case POST_INC:
3550 case PRE_DEC:
3551 case POST_DEC:
3552 case PRE_MODIFY:
3553 case POST_MODIFY:
3554 /* There are no REG_INC notes for SP. */
3555 if (XEXP (x, 0) != stack_pointer_rtx)
3556 return 1;
3557 default:
3558 break;
3559 }
3560 return 0;
3561 }
3562
3563 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3564 int
3565 loc_mentioned_in_p (rtx *loc, const_rtx in)
3566 {
3567 enum rtx_code code;
3568 const char *fmt;
3569 int i, j;
3570
3571 if (!in)
3572 return 0;
3573
3574 code = GET_CODE (in);
3575 fmt = GET_RTX_FORMAT (code);
3576 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3577 {
3578 if (fmt[i] == 'e')
3579 {
3580 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3581 return 1;
3582 }
3583 else if (fmt[i] == 'E')
3584 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3585 if (loc == &XVECEXP (in, i, j)
3586 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3587 return 1;
3588 }
3589 return 0;
3590 }
3591
3592 /* Reinterpret a subreg as a bit extraction from an integer and return
3593 the position of the least significant bit of the extracted value.
3594 In other words, if the extraction were performed as a shift right
3595 and mask, return the number of bits to shift right.
3596
3597 The outer value of the subreg has OUTER_BYTES bytes and starts at
3598 byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes. */
3599
3600 poly_uint64
3601 subreg_size_lsb (poly_uint64 outer_bytes,
3602 poly_uint64 inner_bytes,
3603 poly_uint64 subreg_byte)
3604 {
3605 poly_uint64 subreg_end, trailing_bytes, byte_pos;
3606
3607 /* A paradoxical subreg begins at bit position 0. */
3608 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3609 if (maybe_gt (outer_bytes, inner_bytes))
3610 {
3611 gcc_checking_assert (known_eq (subreg_byte, 0U));
3612 return 0;
3613 }
3614
3615 subreg_end = subreg_byte + outer_bytes;
3616 trailing_bytes = inner_bytes - subreg_end;
3617 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3618 byte_pos = trailing_bytes;
3619 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3620 byte_pos = subreg_byte;
3621 else
3622 {
3623 /* When bytes and words have opposite endianness, we must be able
3624 to split offsets into words and bytes at compile time. */
3625 poly_uint64 leading_word_part
3626 = force_align_down (subreg_byte, UNITS_PER_WORD);
3627 poly_uint64 trailing_word_part
3628 = force_align_down (trailing_bytes, UNITS_PER_WORD);
3629 /* If the subreg crosses a word boundary ensure that
3630 it also begins and ends on a word boundary. */
3631 gcc_assert (known_le (subreg_end - leading_word_part,
3632 (unsigned int) UNITS_PER_WORD)
3633 || (known_eq (leading_word_part, subreg_byte)
3634 && known_eq (trailing_word_part, trailing_bytes)));
3635 if (WORDS_BIG_ENDIAN)
3636 byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3637 else
3638 byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3639 }
3640
3641 return byte_pos * BITS_PER_UNIT;
3642 }
3643
3644 /* Given a subreg X, return the bit offset where the subreg begins
3645 (counting from the least significant bit of the reg). */
3646
3647 poly_uint64
3648 subreg_lsb (const_rtx x)
3649 {
3650 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3651 SUBREG_BYTE (x));
3652 }
3653
3654 /* Return the subreg byte offset for a subreg whose outer value has
3655 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3656 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3657 lsb of the inner value. This is the inverse of the calculation
3658 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3659
3660 poly_uint64
3661 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3662 poly_uint64 lsb_shift)
3663 {
3664 /* A paradoxical subreg begins at bit position 0. */
3665 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3666 if (maybe_gt (outer_bytes, inner_bytes))
3667 {
3668 gcc_checking_assert (known_eq (lsb_shift, 0U));
3669 return 0;
3670 }
3671
3672 poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3673 poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3674 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3675 return upper_bytes;
3676 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3677 return lower_bytes;
3678 else
3679 {
3680 /* When bytes and words have opposite endianness, we must be able
3681 to split offsets into words and bytes at compile time. */
3682 poly_uint64 lower_word_part = force_align_down (lower_bytes,
3683 UNITS_PER_WORD);
3684 poly_uint64 upper_word_part = force_align_down (upper_bytes,
3685 UNITS_PER_WORD);
3686 if (WORDS_BIG_ENDIAN)
3687 return upper_word_part + (lower_bytes - lower_word_part);
3688 else
3689 return lower_word_part + (upper_bytes - upper_word_part);
3690 }
3691 }
3692
3693 /* Fill in information about a subreg of a hard register.
3694 xregno - A regno of an inner hard subreg_reg (or what will become one).
3695 xmode - The mode of xregno.
3696 offset - The byte offset.
3697 ymode - The mode of a top level SUBREG (or what may become one).
3698 info - Pointer to structure to fill in.
3699
3700 Rather than considering one particular inner register (and thus one
3701 particular "outer" register) in isolation, this function really uses
3702 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3703 function does not check whether adding INFO->offset to XREGNO gives
3704 a valid hard register; even if INFO->offset + XREGNO is out of range,
3705 there might be another register of the same type that is in range.
3706 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3707 the new register, since that can depend on things like whether the final
3708 register number is even or odd. Callers that want to check whether
3709 this particular subreg can be replaced by a simple (reg ...) should
3710 use simplify_subreg_regno. */
3711
3712 void
3713 subreg_get_info (unsigned int xregno, machine_mode xmode,
3714 poly_uint64 offset, machine_mode ymode,
3715 struct subreg_info *info)
3716 {
3717 unsigned int nregs_xmode, nregs_ymode;
3718
3719 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3720
3721 poly_uint64 xsize = GET_MODE_SIZE (xmode);
3722 poly_uint64 ysize = GET_MODE_SIZE (ymode);
3723
3724 bool rknown = false;
3725
3726 /* If the register representation of a non-scalar mode has holes in it,
3727 we expect the scalar units to be concatenated together, with the holes
3728 distributed evenly among the scalar units. Each scalar unit must occupy
3729 at least one register. */
3730 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3731 {
3732 /* As a consequence, we must be dealing with a constant number of
3733 scalars, and thus a constant offset and number of units. */
3734 HOST_WIDE_INT coffset = offset.to_constant ();
3735 HOST_WIDE_INT cysize = ysize.to_constant ();
3736 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3737 unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
3738 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3739 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3740 gcc_assert (nregs_xmode
3741 == (nunits
3742 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3743 gcc_assert (hard_regno_nregs (xregno, xmode)
3744 == hard_regno_nregs (xregno, xmode_unit) * nunits);
3745
3746 /* You can only ask for a SUBREG of a value with holes in the middle
3747 if you don't cross the holes. (Such a SUBREG should be done by
3748 picking a different register class, or doing it in memory if
3749 necessary.) An example of a value with holes is XCmode on 32-bit
3750 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3751 3 for each part, but in memory it's two 128-bit parts.
3752 Padding is assumed to be at the end (not necessarily the 'high part')
3753 of each unit. */
3754 if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3755 && (coffset / GET_MODE_SIZE (xmode_unit)
3756 != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
3757 {
3758 info->representable_p = false;
3759 rknown = true;
3760 }
3761 }
3762 else
3763 nregs_xmode = hard_regno_nregs (xregno, xmode);
3764
3765 nregs_ymode = hard_regno_nregs (xregno, ymode);
3766
3767 /* Subreg sizes must be ordered, so that we can tell whether they are
3768 partial, paradoxical or complete. */
3769 gcc_checking_assert (ordered_p (xsize, ysize));
3770
3771 /* Paradoxical subregs are otherwise valid. */
3772 if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
3773 {
3774 info->representable_p = true;
3775 /* If this is a big endian paradoxical subreg, which uses more
3776 actual hard registers than the original register, we must
3777 return a negative offset so that we find the proper highpart
3778 of the register.
3779
3780 We assume that the ordering of registers within a multi-register
3781 value has a consistent endianness: if bytes and register words
3782 have different endianness, the hard registers that make up a
3783 multi-register value must be at least word-sized. */
3784 if (REG_WORDS_BIG_ENDIAN)
3785 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3786 else
3787 info->offset = 0;
3788 info->nregs = nregs_ymode;
3789 return;
3790 }
3791
3792 /* If registers store different numbers of bits in the different
3793 modes, we cannot generally form this subreg. */
3794 poly_uint64 regsize_xmode, regsize_ymode;
3795 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3796 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3797 && multiple_p (xsize, nregs_xmode, &regsize_xmode)
3798 && multiple_p (ysize, nregs_ymode, &regsize_ymode))
3799 {
3800 if (!rknown
3801 && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
3802 || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
3803 {
3804 info->representable_p = false;
3805 if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
3806 || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
3807 /* Checked by validate_subreg. We must know at compile time
3808 which inner registers are being accessed. */
3809 gcc_unreachable ();
3810 return;
3811 }
3812 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3813 would go outside of XMODE. */
3814 if (!rknown && maybe_gt (ysize + offset, xsize))
3815 {
3816 info->representable_p = false;
3817 info->nregs = nregs_ymode;
3818 if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
3819 /* Checked by validate_subreg. We must know at compile time
3820 which inner registers are being accessed. */
3821 gcc_unreachable ();
3822 return;
3823 }
3824 /* Quick exit for the simple and common case of extracting whole
3825 subregisters from a multiregister value. */
3826 /* ??? It would be better to integrate this into the code below,
3827 if we can generalize the concept enough and figure out how
3828 odd-sized modes can coexist with the other weird cases we support. */
3829 HOST_WIDE_INT count;
3830 if (!rknown
3831 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3832 && known_eq (regsize_xmode, regsize_ymode)
3833 && constant_multiple_p (offset, regsize_ymode, &count))
3834 {
3835 info->representable_p = true;
3836 info->nregs = nregs_ymode;
3837 info->offset = count;
3838 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3839 return;
3840 }
3841 }
3842
3843 /* Lowpart subregs are otherwise valid. */
3844 if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
3845 {
3846 info->representable_p = true;
3847 rknown = true;
3848
3849 if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
3850 {
3851 info->offset = 0;
3852 info->nregs = nregs_ymode;
3853 return;
3854 }
3855 }
3856
3857 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3858 values there are in (reg:XMODE XREGNO). We can view the register
3859 as consisting of this number of independent "blocks", where each
3860 block occupies NREGS_YMODE registers and contains exactly one
3861 representable YMODE value. */
3862 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3863 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3864
3865 /* Calculate the number of bytes in each block. This must always
3866 be exact, otherwise we don't know how to verify the constraint.
3867 These conditions may be relaxed but subreg_regno_offset would
3868 need to be redesigned. */
3869 poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
3870
3871 /* Get the number of the first block that contains the subreg and the byte
3872 offset of the subreg from the start of that block. */
3873 unsigned int block_number;
3874 poly_uint64 subblock_offset;
3875 if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
3876 &subblock_offset))
3877 /* Checked by validate_subreg. We must know at compile time which
3878 inner registers are being accessed. */
3879 gcc_unreachable ();
3880
3881 if (!rknown)
3882 {
3883 /* Only the lowpart of each block is representable. */
3884 info->representable_p
3885 = known_eq (subblock_offset,
3886 subreg_size_lowpart_offset (ysize, bytes_per_block));
3887 rknown = true;
3888 }
3889
3890 /* We assume that the ordering of registers within a multi-register
3891 value has a consistent endianness: if bytes and register words
3892 have different endianness, the hard registers that make up a
3893 multi-register value must be at least word-sized. */
3894 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3895 /* The block number we calculated above followed memory endianness.
3896 Convert it to register endianness by counting back from the end.
3897 (Note that, because of the assumption above, each block must be
3898 at least word-sized.) */
3899 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3900 else
3901 info->offset = block_number * nregs_ymode;
3902 info->nregs = nregs_ymode;
3903 }
3904
3905 /* This function returns the regno offset of a subreg expression.
3906 xregno - A regno of an inner hard subreg_reg (or what will become one).
3907 xmode - The mode of xregno.
3908 offset - The byte offset.
3909 ymode - The mode of a top level SUBREG (or what may become one).
3910 RETURN - The regno offset which would be used. */
3911 unsigned int
3912 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3913 poly_uint64 offset, machine_mode ymode)
3914 {
3915 struct subreg_info info;
3916 subreg_get_info (xregno, xmode, offset, ymode, &info);
3917 return info.offset;
3918 }
3919
3920 /* This function returns true when the offset is representable via
3921 subreg_offset in the given regno.
3922 xregno - A regno of an inner hard subreg_reg (or what will become one).
3923 xmode - The mode of xregno.
3924 offset - The byte offset.
3925 ymode - The mode of a top level SUBREG (or what may become one).
3926 RETURN - Whether the offset is representable. */
3927 bool
3928 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3929 poly_uint64 offset, machine_mode ymode)
3930 {
3931 struct subreg_info info;
3932 subreg_get_info (xregno, xmode, offset, ymode, &info);
3933 return info.representable_p;
3934 }
3935
3936 /* Return the number of a YMODE register to which
3937
3938 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3939
3940 can be simplified. Return -1 if the subreg can't be simplified.
3941
3942 XREGNO is a hard register number. */
3943
3944 int
3945 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3946 poly_uint64 offset, machine_mode ymode)
3947 {
3948 struct subreg_info info;
3949 unsigned int yregno;
3950
3951 /* Give the backend a chance to disallow the mode change. */
3952 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3953 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3954 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode))
3955 return -1;
3956
3957 /* We shouldn't simplify stack-related registers. */
3958 if ((!reload_completed || frame_pointer_needed)
3959 && xregno == FRAME_POINTER_REGNUM)
3960 return -1;
3961
3962 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3963 && xregno == ARG_POINTER_REGNUM)
3964 return -1;
3965
3966 if (xregno == STACK_POINTER_REGNUM
3967 /* We should convert hard stack register in LRA if it is
3968 possible. */
3969 && ! lra_in_progress)
3970 return -1;
3971
3972 /* Try to get the register offset. */
3973 subreg_get_info (xregno, xmode, offset, ymode, &info);
3974 if (!info.representable_p)
3975 return -1;
3976
3977 /* Make sure that the offsetted register value is in range. */
3978 yregno = xregno + info.offset;
3979 if (!HARD_REGISTER_NUM_P (yregno))
3980 return -1;
3981
3982 /* See whether (reg:YMODE YREGNO) is valid.
3983
3984 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3985 This is a kludge to work around how complex FP arguments are passed
3986 on IA-64 and should be fixed. See PR target/49226. */
3987 if (!targetm.hard_regno_mode_ok (yregno, ymode)
3988 && targetm.hard_regno_mode_ok (xregno, xmode))
3989 return -1;
3990
3991 return (int) yregno;
3992 }
3993
3994 /* Return the final regno that a subreg expression refers to. */
3995 unsigned int
3996 subreg_regno (const_rtx x)
3997 {
3998 unsigned int ret;
3999 rtx subreg = SUBREG_REG (x);
4000 int regno = REGNO (subreg);
4001
4002 ret = regno + subreg_regno_offset (regno,
4003 GET_MODE (subreg),
4004 SUBREG_BYTE (x),
4005 GET_MODE (x));
4006 return ret;
4007
4008 }
4009
4010 /* Return the number of registers that a subreg expression refers
4011 to. */
4012 unsigned int
4013 subreg_nregs (const_rtx x)
4014 {
4015 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
4016 }
4017
4018 /* Return the number of registers that a subreg REG with REGNO
4019 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
4020 changed so that the regno can be passed in. */
4021
4022 unsigned int
4023 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4024 {
4025 struct subreg_info info;
4026 rtx subreg = SUBREG_REG (x);
4027
4028 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4029 &info);
4030 return info.nregs;
4031 }
4032
4033 struct parms_set_data
4034 {
4035 int nregs;
4036 HARD_REG_SET regs;
4037 };
4038
4039 /* Helper function for noticing stores to parameter registers. */
4040 static void
4041 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4042 {
4043 struct parms_set_data *const d = (struct parms_set_data *) data;
4044 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4045 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4046 {
4047 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4048 d->nregs--;
4049 }
4050 }
4051
4052 /* Look backward for first parameter to be loaded.
4053 Note that loads of all parameters will not necessarily be
4054 found if CSE has eliminated some of them (e.g., an argument
4055 to the outer function is passed down as a parameter).
4056 Do not skip BOUNDARY. */
4057 rtx_insn *
4058 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4059 {
4060 struct parms_set_data parm;
4061 rtx p;
4062 rtx_insn *before, *first_set;
4063
4064 /* Since different machines initialize their parameter registers
4065 in different orders, assume nothing. Collect the set of all
4066 parameter registers. */
4067 CLEAR_HARD_REG_SET (parm.regs);
4068 parm.nregs = 0;
4069 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4070 if (GET_CODE (XEXP (p, 0)) == USE
4071 && REG_P (XEXP (XEXP (p, 0), 0))
4072 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4073 {
4074 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4075
4076 /* We only care about registers which can hold function
4077 arguments. */
4078 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4079 continue;
4080
4081 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4082 parm.nregs++;
4083 }
4084 before = call_insn;
4085 first_set = call_insn;
4086
4087 /* Search backward for the first set of a register in this set. */
4088 while (parm.nregs && before != boundary)
4089 {
4090 before = PREV_INSN (before);
4091
4092 /* It is possible that some loads got CSEed from one call to
4093 another. Stop in that case. */
4094 if (CALL_P (before))
4095 break;
4096
4097 /* Our caller needs either ensure that we will find all sets
4098 (in case code has not been optimized yet), or take care
4099 for possible labels in a way by setting boundary to preceding
4100 CODE_LABEL. */
4101 if (LABEL_P (before))
4102 {
4103 gcc_assert (before == boundary);
4104 break;
4105 }
4106
4107 if (INSN_P (before))
4108 {
4109 int nregs_old = parm.nregs;
4110 note_stores (before, parms_set, &parm);
4111 /* If we found something that did not set a parameter reg,
4112 we're done. Do not keep going, as that might result
4113 in hoisting an insn before the setting of a pseudo
4114 that is used by the hoisted insn. */
4115 if (nregs_old != parm.nregs)
4116 first_set = before;
4117 else
4118 break;
4119 }
4120 }
4121 return first_set;
4122 }
4123
4124 /* Return true if we should avoid inserting code between INSN and preceding
4125 call instruction. */
4126
4127 bool
4128 keep_with_call_p (const rtx_insn *insn)
4129 {
4130 rtx set;
4131
4132 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4133 {
4134 if (REG_P (SET_DEST (set))
4135 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4136 && fixed_regs[REGNO (SET_DEST (set))]
4137 && general_operand (SET_SRC (set), VOIDmode))
4138 return true;
4139 if (REG_P (SET_SRC (set))
4140 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4141 && REG_P (SET_DEST (set))
4142 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4143 return true;
4144 /* There may be a stack pop just after the call and before the store
4145 of the return register. Search for the actual store when deciding
4146 if we can break or not. */
4147 if (SET_DEST (set) == stack_pointer_rtx)
4148 {
4149 /* This CONST_CAST is okay because next_nonnote_insn just
4150 returns its argument and we assign it to a const_rtx
4151 variable. */
4152 const rtx_insn *i2
4153 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4154 if (i2 && keep_with_call_p (i2))
4155 return true;
4156 }
4157 }
4158 return false;
4159 }
4160
4161 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4162 to non-complex jumps. That is, direct unconditional, conditional,
4163 and tablejumps, but not computed jumps or returns. It also does
4164 not apply to the fallthru case of a conditional jump. */
4165
4166 bool
4167 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4168 {
4169 rtx tmp = JUMP_LABEL (jump_insn);
4170 rtx_jump_table_data *table;
4171
4172 if (label == tmp)
4173 return true;
4174
4175 if (tablejump_p (jump_insn, NULL, &table))
4176 {
4177 rtvec vec = table->get_labels ();
4178 int i, veclen = GET_NUM_ELEM (vec);
4179
4180 for (i = 0; i < veclen; ++i)
4181 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4182 return true;
4183 }
4184
4185 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4186 return true;
4187
4188 return false;
4189 }
4190
4191 \f
4192 /* Return an estimate of the cost of computing rtx X.
4193 One use is in cse, to decide which expression to keep in the hash table.
4194 Another is in rtl generation, to pick the cheapest way to multiply.
4195 Other uses like the latter are expected in the future.
4196
4197 X appears as operand OPNO in an expression with code OUTER_CODE.
4198 SPEED specifies whether costs optimized for speed or size should
4199 be returned. */
4200
4201 int
4202 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4203 int opno, bool speed)
4204 {
4205 int i, j;
4206 enum rtx_code code;
4207 const char *fmt;
4208 int total;
4209 int factor;
4210
4211 if (x == 0)
4212 return 0;
4213
4214 if (GET_MODE (x) != VOIDmode)
4215 mode = GET_MODE (x);
4216
4217 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4218 many insns, taking N times as long. */
4219 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4220 if (factor == 0)
4221 factor = 1;
4222
4223 /* Compute the default costs of certain things.
4224 Note that targetm.rtx_costs can override the defaults. */
4225
4226 code = GET_CODE (x);
4227 switch (code)
4228 {
4229 case MULT:
4230 /* Multiplication has time-complexity O(N*N), where N is the
4231 number of units (translated from digits) when using
4232 schoolbook long multiplication. */
4233 total = factor * factor * COSTS_N_INSNS (5);
4234 break;
4235 case DIV:
4236 case UDIV:
4237 case MOD:
4238 case UMOD:
4239 /* Similarly, complexity for schoolbook long division. */
4240 total = factor * factor * COSTS_N_INSNS (7);
4241 break;
4242 case USE:
4243 /* Used in combine.c as a marker. */
4244 total = 0;
4245 break;
4246 case SET:
4247 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4248 the mode for the factor. */
4249 mode = GET_MODE (SET_DEST (x));
4250 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4251 if (factor == 0)
4252 factor = 1;
4253 /* FALLTHRU */
4254 default:
4255 total = factor * COSTS_N_INSNS (1);
4256 }
4257
4258 switch (code)
4259 {
4260 case REG:
4261 return 0;
4262
4263 case SUBREG:
4264 total = 0;
4265 /* If we can't tie these modes, make this expensive. The larger
4266 the mode, the more expensive it is. */
4267 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4268 return COSTS_N_INSNS (2 + factor);
4269 break;
4270
4271 case TRUNCATE:
4272 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4273 {
4274 total = 0;
4275 break;
4276 }
4277 /* FALLTHRU */
4278 default:
4279 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4280 return total;
4281 break;
4282 }
4283
4284 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4285 which is already in total. */
4286
4287 fmt = GET_RTX_FORMAT (code);
4288 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4289 if (fmt[i] == 'e')
4290 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4291 else if (fmt[i] == 'E')
4292 for (j = 0; j < XVECLEN (x, i); j++)
4293 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4294
4295 return total;
4296 }
4297
4298 /* Fill in the structure C with information about both speed and size rtx
4299 costs for X, which is operand OPNO in an expression with code OUTER. */
4300
4301 void
4302 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4303 struct full_rtx_costs *c)
4304 {
4305 c->speed = rtx_cost (x, mode, outer, opno, true);
4306 c->size = rtx_cost (x, mode, outer, opno, false);
4307 }
4308
4309 \f
4310 /* Return cost of address expression X.
4311 Expect that X is properly formed address reference.
4312
4313 SPEED parameter specify whether costs optimized for speed or size should
4314 be returned. */
4315
4316 int
4317 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4318 {
4319 /* We may be asked for cost of various unusual addresses, such as operands
4320 of push instruction. It is not worthwhile to complicate writing
4321 of the target hook by such cases. */
4322
4323 if (!memory_address_addr_space_p (mode, x, as))
4324 return 1000;
4325
4326 return targetm.address_cost (x, mode, as, speed);
4327 }
4328
4329 /* If the target doesn't override, compute the cost as with arithmetic. */
4330
4331 int
4332 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4333 {
4334 return rtx_cost (x, Pmode, MEM, 0, speed);
4335 }
4336 \f
4337
4338 unsigned HOST_WIDE_INT
4339 nonzero_bits (const_rtx x, machine_mode mode)
4340 {
4341 if (mode == VOIDmode)
4342 mode = GET_MODE (x);
4343 scalar_int_mode int_mode;
4344 if (!is_a <scalar_int_mode> (mode, &int_mode))
4345 return GET_MODE_MASK (mode);
4346 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4347 }
4348
4349 unsigned int
4350 num_sign_bit_copies (const_rtx x, machine_mode mode)
4351 {
4352 if (mode == VOIDmode)
4353 mode = GET_MODE (x);
4354 scalar_int_mode int_mode;
4355 if (!is_a <scalar_int_mode> (mode, &int_mode))
4356 return 1;
4357 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4358 }
4359
4360 /* Return true if nonzero_bits1 might recurse into both operands
4361 of X. */
4362
4363 static inline bool
4364 nonzero_bits_binary_arith_p (const_rtx x)
4365 {
4366 if (!ARITHMETIC_P (x))
4367 return false;
4368 switch (GET_CODE (x))
4369 {
4370 case AND:
4371 case XOR:
4372 case IOR:
4373 case UMIN:
4374 case UMAX:
4375 case SMIN:
4376 case SMAX:
4377 case PLUS:
4378 case MINUS:
4379 case MULT:
4380 case DIV:
4381 case UDIV:
4382 case MOD:
4383 case UMOD:
4384 return true;
4385 default:
4386 return false;
4387 }
4388 }
4389
4390 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4391 It avoids exponential behavior in nonzero_bits1 when X has
4392 identical subexpressions on the first or the second level. */
4393
4394 static unsigned HOST_WIDE_INT
4395 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4396 machine_mode known_mode,
4397 unsigned HOST_WIDE_INT known_ret)
4398 {
4399 if (x == known_x && mode == known_mode)
4400 return known_ret;
4401
4402 /* Try to find identical subexpressions. If found call
4403 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4404 precomputed value for the subexpression as KNOWN_RET. */
4405
4406 if (nonzero_bits_binary_arith_p (x))
4407 {
4408 rtx x0 = XEXP (x, 0);
4409 rtx x1 = XEXP (x, 1);
4410
4411 /* Check the first level. */
4412 if (x0 == x1)
4413 return nonzero_bits1 (x, mode, x0, mode,
4414 cached_nonzero_bits (x0, mode, known_x,
4415 known_mode, known_ret));
4416
4417 /* Check the second level. */
4418 if (nonzero_bits_binary_arith_p (x0)
4419 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4420 return nonzero_bits1 (x, mode, x1, mode,
4421 cached_nonzero_bits (x1, mode, known_x,
4422 known_mode, known_ret));
4423
4424 if (nonzero_bits_binary_arith_p (x1)
4425 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4426 return nonzero_bits1 (x, mode, x0, mode,
4427 cached_nonzero_bits (x0, mode, known_x,
4428 known_mode, known_ret));
4429 }
4430
4431 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4432 }
4433
4434 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4435 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4436 is less useful. We can't allow both, because that results in exponential
4437 run time recursion. There is a nullstone testcase that triggered
4438 this. This macro avoids accidental uses of num_sign_bit_copies. */
4439 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4440
4441 /* Given an expression, X, compute which bits in X can be nonzero.
4442 We don't care about bits outside of those defined in MODE.
4443
4444 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4445 an arithmetic operation, we can do better. */
4446
4447 static unsigned HOST_WIDE_INT
4448 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4449 machine_mode known_mode,
4450 unsigned HOST_WIDE_INT known_ret)
4451 {
4452 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4453 unsigned HOST_WIDE_INT inner_nz;
4454 enum rtx_code code = GET_CODE (x);
4455 machine_mode inner_mode;
4456 unsigned int inner_width;
4457 scalar_int_mode xmode;
4458
4459 unsigned int mode_width = GET_MODE_PRECISION (mode);
4460
4461 if (CONST_INT_P (x))
4462 {
4463 if (SHORT_IMMEDIATES_SIGN_EXTEND
4464 && INTVAL (x) > 0
4465 && mode_width < BITS_PER_WORD
4466 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4467 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4468
4469 return UINTVAL (x);
4470 }
4471
4472 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4473 return nonzero;
4474 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4475
4476 /* If X is wider than MODE, use its mode instead. */
4477 if (xmode_width > mode_width)
4478 {
4479 mode = xmode;
4480 nonzero = GET_MODE_MASK (mode);
4481 mode_width = xmode_width;
4482 }
4483
4484 if (mode_width > HOST_BITS_PER_WIDE_INT)
4485 /* Our only callers in this case look for single bit values. So
4486 just return the mode mask. Those tests will then be false. */
4487 return nonzero;
4488
4489 /* If MODE is wider than X, but both are a single word for both the host
4490 and target machines, we can compute this from which bits of the object
4491 might be nonzero in its own mode, taking into account the fact that, on
4492 CISC machines, accessing an object in a wider mode generally causes the
4493 high-order bits to become undefined, so they are not known to be zero.
4494 We extend this reasoning to RISC machines for operations that might not
4495 operate on the full registers. */
4496 if (mode_width > xmode_width
4497 && xmode_width <= BITS_PER_WORD
4498 && xmode_width <= HOST_BITS_PER_WIDE_INT
4499 && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
4500 {
4501 nonzero &= cached_nonzero_bits (x, xmode,
4502 known_x, known_mode, known_ret);
4503 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4504 return nonzero;
4505 }
4506
4507 /* Please keep nonzero_bits_binary_arith_p above in sync with
4508 the code in the switch below. */
4509 switch (code)
4510 {
4511 case REG:
4512 #if defined(POINTERS_EXTEND_UNSIGNED)
4513 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4514 all the bits above ptr_mode are known to be zero. */
4515 /* As we do not know which address space the pointer is referring to,
4516 we can do this only if the target does not support different pointer
4517 or address modes depending on the address space. */
4518 if (target_default_pointer_address_modes_p ()
4519 && POINTERS_EXTEND_UNSIGNED
4520 && xmode == Pmode
4521 && REG_POINTER (x)
4522 && !targetm.have_ptr_extend ())
4523 nonzero &= GET_MODE_MASK (ptr_mode);
4524 #endif
4525
4526 /* Include declared information about alignment of pointers. */
4527 /* ??? We don't properly preserve REG_POINTER changes across
4528 pointer-to-integer casts, so we can't trust it except for
4529 things that we know must be pointers. See execute/960116-1.c. */
4530 if ((x == stack_pointer_rtx
4531 || x == frame_pointer_rtx
4532 || x == arg_pointer_rtx)
4533 && REGNO_POINTER_ALIGN (REGNO (x)))
4534 {
4535 unsigned HOST_WIDE_INT alignment
4536 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4537
4538 #ifdef PUSH_ROUNDING
4539 /* If PUSH_ROUNDING is defined, it is possible for the
4540 stack to be momentarily aligned only to that amount,
4541 so we pick the least alignment. */
4542 if (x == stack_pointer_rtx && PUSH_ARGS)
4543 {
4544 poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4545 alignment = MIN (known_alignment (rounded_1), alignment);
4546 }
4547 #endif
4548
4549 nonzero &= ~(alignment - 1);
4550 }
4551
4552 {
4553 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4554 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4555 &nonzero_for_hook);
4556
4557 if (new_rtx)
4558 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4559 known_mode, known_ret);
4560
4561 return nonzero_for_hook;
4562 }
4563
4564 case MEM:
4565 /* In many, if not most, RISC machines, reading a byte from memory
4566 zeros the rest of the register. Noticing that fact saves a lot
4567 of extra zero-extends. */
4568 if (load_extend_op (xmode) == ZERO_EXTEND)
4569 nonzero &= GET_MODE_MASK (xmode);
4570 break;
4571
4572 case EQ: case NE:
4573 case UNEQ: case LTGT:
4574 case GT: case GTU: case UNGT:
4575 case LT: case LTU: case UNLT:
4576 case GE: case GEU: case UNGE:
4577 case LE: case LEU: case UNLE:
4578 case UNORDERED: case ORDERED:
4579 /* If this produces an integer result, we know which bits are set.
4580 Code here used to clear bits outside the mode of X, but that is
4581 now done above. */
4582 /* Mind that MODE is the mode the caller wants to look at this
4583 operation in, and not the actual operation mode. We can wind
4584 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4585 that describes the results of a vector compare. */
4586 if (GET_MODE_CLASS (xmode) == MODE_INT
4587 && mode_width <= HOST_BITS_PER_WIDE_INT)
4588 nonzero = STORE_FLAG_VALUE;
4589 break;
4590
4591 case NEG:
4592 #if 0
4593 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4594 and num_sign_bit_copies. */
4595 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4596 nonzero = 1;
4597 #endif
4598
4599 if (xmode_width < mode_width)
4600 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4601 break;
4602
4603 case ABS:
4604 #if 0
4605 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4606 and num_sign_bit_copies. */
4607 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4608 nonzero = 1;
4609 #endif
4610 break;
4611
4612 case TRUNCATE:
4613 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4614 known_x, known_mode, known_ret)
4615 & GET_MODE_MASK (mode));
4616 break;
4617
4618 case ZERO_EXTEND:
4619 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4620 known_x, known_mode, known_ret);
4621 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4622 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4623 break;
4624
4625 case SIGN_EXTEND:
4626 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4627 Otherwise, show all the bits in the outer mode but not the inner
4628 may be nonzero. */
4629 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4630 known_x, known_mode, known_ret);
4631 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4632 {
4633 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4634 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4635 inner_nz |= (GET_MODE_MASK (mode)
4636 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4637 }
4638
4639 nonzero &= inner_nz;
4640 break;
4641
4642 case AND:
4643 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4644 known_x, known_mode, known_ret)
4645 & cached_nonzero_bits (XEXP (x, 1), mode,
4646 known_x, known_mode, known_ret);
4647 break;
4648
4649 case XOR: case IOR:
4650 case UMIN: case UMAX: case SMIN: case SMAX:
4651 {
4652 unsigned HOST_WIDE_INT nonzero0
4653 = cached_nonzero_bits (XEXP (x, 0), mode,
4654 known_x, known_mode, known_ret);
4655
4656 /* Don't call nonzero_bits for the second time if it cannot change
4657 anything. */
4658 if ((nonzero & nonzero0) != nonzero)
4659 nonzero &= nonzero0
4660 | cached_nonzero_bits (XEXP (x, 1), mode,
4661 known_x, known_mode, known_ret);
4662 }
4663 break;
4664
4665 case PLUS: case MINUS:
4666 case MULT:
4667 case DIV: case UDIV:
4668 case MOD: case UMOD:
4669 /* We can apply the rules of arithmetic to compute the number of
4670 high- and low-order zero bits of these operations. We start by
4671 computing the width (position of the highest-order nonzero bit)
4672 and the number of low-order zero bits for each value. */
4673 {
4674 unsigned HOST_WIDE_INT nz0
4675 = cached_nonzero_bits (XEXP (x, 0), mode,
4676 known_x, known_mode, known_ret);
4677 unsigned HOST_WIDE_INT nz1
4678 = cached_nonzero_bits (XEXP (x, 1), mode,
4679 known_x, known_mode, known_ret);
4680 int sign_index = xmode_width - 1;
4681 int width0 = floor_log2 (nz0) + 1;
4682 int width1 = floor_log2 (nz1) + 1;
4683 int low0 = ctz_or_zero (nz0);
4684 int low1 = ctz_or_zero (nz1);
4685 unsigned HOST_WIDE_INT op0_maybe_minusp
4686 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4687 unsigned HOST_WIDE_INT op1_maybe_minusp
4688 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4689 unsigned int result_width = mode_width;
4690 int result_low = 0;
4691
4692 switch (code)
4693 {
4694 case PLUS:
4695 result_width = MAX (width0, width1) + 1;
4696 result_low = MIN (low0, low1);
4697 break;
4698 case MINUS:
4699 result_low = MIN (low0, low1);
4700 break;
4701 case MULT:
4702 result_width = width0 + width1;
4703 result_low = low0 + low1;
4704 break;
4705 case DIV:
4706 if (width1 == 0)
4707 break;
4708 if (!op0_maybe_minusp && !op1_maybe_minusp)
4709 result_width = width0;
4710 break;
4711 case UDIV:
4712 if (width1 == 0)
4713 break;
4714 result_width = width0;
4715 break;
4716 case MOD:
4717 if (width1 == 0)
4718 break;
4719 if (!op0_maybe_minusp && !op1_maybe_minusp)
4720 result_width = MIN (width0, width1);
4721 result_low = MIN (low0, low1);
4722 break;
4723 case UMOD:
4724 if (width1 == 0)
4725 break;
4726 result_width = MIN (width0, width1);
4727 result_low = MIN (low0, low1);
4728 break;
4729 default:
4730 gcc_unreachable ();
4731 }
4732
4733 if (result_width < mode_width)
4734 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4735
4736 if (result_low > 0)
4737 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4738 }
4739 break;
4740
4741 case ZERO_EXTRACT:
4742 if (CONST_INT_P (XEXP (x, 1))
4743 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4744 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4745 break;
4746
4747 case SUBREG:
4748 /* If this is a SUBREG formed for a promoted variable that has
4749 been zero-extended, we know that at least the high-order bits
4750 are zero, though others might be too. */
4751 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4752 nonzero = GET_MODE_MASK (xmode)
4753 & cached_nonzero_bits (SUBREG_REG (x), xmode,
4754 known_x, known_mode, known_ret);
4755
4756 /* If the inner mode is a single word for both the host and target
4757 machines, we can compute this from which bits of the inner
4758 object might be nonzero. */
4759 inner_mode = GET_MODE (SUBREG_REG (x));
4760 if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
4761 && inner_width <= BITS_PER_WORD
4762 && inner_width <= HOST_BITS_PER_WIDE_INT)
4763 {
4764 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4765 known_x, known_mode, known_ret);
4766
4767 /* On a typical CISC machine, accessing an object in a wider mode
4768 causes the high-order bits to become undefined. So they are
4769 not known to be zero.
4770
4771 On a typical RISC machine, we only have to worry about the way
4772 loads are extended. Otherwise, if we get a reload for the inner
4773 part, it may be loaded from the stack, and then we may lose all
4774 the zero bits that existed before the store to the stack. */
4775 rtx_code extend_op;
4776 if ((!WORD_REGISTER_OPERATIONS
4777 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4778 ? val_signbit_known_set_p (inner_mode, nonzero)
4779 : extend_op != ZERO_EXTEND)
4780 || !MEM_P (SUBREG_REG (x)))
4781 && xmode_width > inner_width)
4782 nonzero
4783 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4784 }
4785 break;
4786
4787 case ASHIFT:
4788 case ASHIFTRT:
4789 case LSHIFTRT:
4790 case ROTATE:
4791 case ROTATERT:
4792 /* The nonzero bits are in two classes: any bits within MODE
4793 that aren't in xmode are always significant. The rest of the
4794 nonzero bits are those that are significant in the operand of
4795 the shift when shifted the appropriate number of bits. This
4796 shows that high-order bits are cleared by the right shift and
4797 low-order bits by left shifts. */
4798 if (CONST_INT_P (XEXP (x, 1))
4799 && INTVAL (XEXP (x, 1)) >= 0
4800 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4801 && INTVAL (XEXP (x, 1)) < xmode_width)
4802 {
4803 int count = INTVAL (XEXP (x, 1));
4804 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4805 unsigned HOST_WIDE_INT op_nonzero
4806 = cached_nonzero_bits (XEXP (x, 0), mode,
4807 known_x, known_mode, known_ret);
4808 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4809 unsigned HOST_WIDE_INT outer = 0;
4810
4811 if (mode_width > xmode_width)
4812 outer = (op_nonzero & nonzero & ~mode_mask);
4813
4814 switch (code)
4815 {
4816 case ASHIFT:
4817 inner <<= count;
4818 break;
4819
4820 case LSHIFTRT:
4821 inner >>= count;
4822 break;
4823
4824 case ASHIFTRT:
4825 inner >>= count;
4826
4827 /* If the sign bit may have been nonzero before the shift, we
4828 need to mark all the places it could have been copied to
4829 by the shift as possibly nonzero. */
4830 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4831 inner |= (((HOST_WIDE_INT_1U << count) - 1)
4832 << (xmode_width - count));
4833 break;
4834
4835 case ROTATE:
4836 inner = (inner << (count % xmode_width)
4837 | (inner >> (xmode_width - (count % xmode_width))))
4838 & mode_mask;
4839 break;
4840
4841 case ROTATERT:
4842 inner = (inner >> (count % xmode_width)
4843 | (inner << (xmode_width - (count % xmode_width))))
4844 & mode_mask;
4845 break;
4846
4847 default:
4848 gcc_unreachable ();
4849 }
4850
4851 nonzero &= (outer | inner);
4852 }
4853 break;
4854
4855 case FFS:
4856 case POPCOUNT:
4857 /* This is at most the number of bits in the mode. */
4858 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4859 break;
4860
4861 case CLZ:
4862 /* If CLZ has a known value at zero, then the nonzero bits are
4863 that value, plus the number of bits in the mode minus one. */
4864 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4865 nonzero
4866 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4867 else
4868 nonzero = -1;
4869 break;
4870
4871 case CTZ:
4872 /* If CTZ has a known value at zero, then the nonzero bits are
4873 that value, plus the number of bits in the mode minus one. */
4874 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4875 nonzero
4876 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4877 else
4878 nonzero = -1;
4879 break;
4880
4881 case CLRSB:
4882 /* This is at most the number of bits in the mode minus 1. */
4883 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4884 break;
4885
4886 case PARITY:
4887 nonzero = 1;
4888 break;
4889
4890 case IF_THEN_ELSE:
4891 {
4892 unsigned HOST_WIDE_INT nonzero_true
4893 = cached_nonzero_bits (XEXP (x, 1), mode,
4894 known_x, known_mode, known_ret);
4895
4896 /* Don't call nonzero_bits for the second time if it cannot change
4897 anything. */
4898 if ((nonzero & nonzero_true) != nonzero)
4899 nonzero &= nonzero_true
4900 | cached_nonzero_bits (XEXP (x, 2), mode,
4901 known_x, known_mode, known_ret);
4902 }
4903 break;
4904
4905 default:
4906 break;
4907 }
4908
4909 return nonzero;
4910 }
4911
4912 /* See the macro definition above. */
4913 #undef cached_num_sign_bit_copies
4914
4915 \f
4916 /* Return true if num_sign_bit_copies1 might recurse into both operands
4917 of X. */
4918
4919 static inline bool
4920 num_sign_bit_copies_binary_arith_p (const_rtx x)
4921 {
4922 if (!ARITHMETIC_P (x))
4923 return false;
4924 switch (GET_CODE (x))
4925 {
4926 case IOR:
4927 case AND:
4928 case XOR:
4929 case SMIN:
4930 case SMAX:
4931 case UMIN:
4932 case UMAX:
4933 case PLUS:
4934 case MINUS:
4935 case MULT:
4936 return true;
4937 default:
4938 return false;
4939 }
4940 }
4941
4942 /* The function cached_num_sign_bit_copies is a wrapper around
4943 num_sign_bit_copies1. It avoids exponential behavior in
4944 num_sign_bit_copies1 when X has identical subexpressions on the
4945 first or the second level. */
4946
4947 static unsigned int
4948 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4949 const_rtx known_x, machine_mode known_mode,
4950 unsigned int known_ret)
4951 {
4952 if (x == known_x && mode == known_mode)
4953 return known_ret;
4954
4955 /* Try to find identical subexpressions. If found call
4956 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4957 the precomputed value for the subexpression as KNOWN_RET. */
4958
4959 if (num_sign_bit_copies_binary_arith_p (x))
4960 {
4961 rtx x0 = XEXP (x, 0);
4962 rtx x1 = XEXP (x, 1);
4963
4964 /* Check the first level. */
4965 if (x0 == x1)
4966 return
4967 num_sign_bit_copies1 (x, mode, x0, mode,
4968 cached_num_sign_bit_copies (x0, mode, known_x,
4969 known_mode,
4970 known_ret));
4971
4972 /* Check the second level. */
4973 if (num_sign_bit_copies_binary_arith_p (x0)
4974 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4975 return
4976 num_sign_bit_copies1 (x, mode, x1, mode,
4977 cached_num_sign_bit_copies (x1, mode, known_x,
4978 known_mode,
4979 known_ret));
4980
4981 if (num_sign_bit_copies_binary_arith_p (x1)
4982 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4983 return
4984 num_sign_bit_copies1 (x, mode, x0, mode,
4985 cached_num_sign_bit_copies (x0, mode, known_x,
4986 known_mode,
4987 known_ret));
4988 }
4989
4990 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4991 }
4992
4993 /* Return the number of bits at the high-order end of X that are known to
4994 be equal to the sign bit. X will be used in mode MODE. The returned
4995 value will always be between 1 and the number of bits in MODE. */
4996
4997 static unsigned int
4998 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4999 machine_mode known_mode,
5000 unsigned int known_ret)
5001 {
5002 enum rtx_code code = GET_CODE (x);
5003 unsigned int bitwidth = GET_MODE_PRECISION (mode);
5004 int num0, num1, result;
5005 unsigned HOST_WIDE_INT nonzero;
5006
5007 if (CONST_INT_P (x))
5008 {
5009 /* If the constant is negative, take its 1's complement and remask.
5010 Then see how many zero bits we have. */
5011 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
5012 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5013 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5014 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5015
5016 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5017 }
5018
5019 scalar_int_mode xmode, inner_mode;
5020 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5021 return 1;
5022
5023 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5024
5025 /* For a smaller mode, just ignore the high bits. */
5026 if (bitwidth < xmode_width)
5027 {
5028 num0 = cached_num_sign_bit_copies (x, xmode,
5029 known_x, known_mode, known_ret);
5030 return MAX (1, num0 - (int) (xmode_width - bitwidth));
5031 }
5032
5033 if (bitwidth > xmode_width)
5034 {
5035 /* If this machine does not do all register operations on the entire
5036 register and MODE is wider than the mode of X, we can say nothing
5037 at all about the high-order bits. We extend this reasoning to RISC
5038 machines for operations that might not operate on full registers. */
5039 if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
5040 return 1;
5041
5042 /* Likewise on machines that do, if the mode of the object is smaller
5043 than a word and loads of that size don't sign extend, we can say
5044 nothing about the high order bits. */
5045 if (xmode_width < BITS_PER_WORD
5046 && load_extend_op (xmode) != SIGN_EXTEND)
5047 return 1;
5048 }
5049
5050 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5051 the code in the switch below. */
5052 switch (code)
5053 {
5054 case REG:
5055
5056 #if defined(POINTERS_EXTEND_UNSIGNED)
5057 /* If pointers extend signed and this is a pointer in Pmode, say that
5058 all the bits above ptr_mode are known to be sign bit copies. */
5059 /* As we do not know which address space the pointer is referring to,
5060 we can do this only if the target does not support different pointer
5061 or address modes depending on the address space. */
5062 if (target_default_pointer_address_modes_p ()
5063 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5064 && mode == Pmode && REG_POINTER (x)
5065 && !targetm.have_ptr_extend ())
5066 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5067 #endif
5068
5069 {
5070 unsigned int copies_for_hook = 1, copies = 1;
5071 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5072 &copies_for_hook);
5073
5074 if (new_rtx)
5075 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5076 known_mode, known_ret);
5077
5078 if (copies > 1 || copies_for_hook > 1)
5079 return MAX (copies, copies_for_hook);
5080
5081 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5082 }
5083 break;
5084
5085 case MEM:
5086 /* Some RISC machines sign-extend all loads of smaller than a word. */
5087 if (load_extend_op (xmode) == SIGN_EXTEND)
5088 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5089 break;
5090
5091 case SUBREG:
5092 /* If this is a SUBREG for a promoted object that is sign-extended
5093 and we are looking at it in a wider mode, we know that at least the
5094 high-order bits are known to be sign bit copies. */
5095
5096 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5097 {
5098 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5099 known_x, known_mode, known_ret);
5100 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5101 }
5102
5103 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5104 {
5105 /* For a smaller object, just ignore the high bits. */
5106 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5107 {
5108 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5109 known_x, known_mode,
5110 known_ret);
5111 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5112 - bitwidth));
5113 }
5114
5115 /* For paradoxical SUBREGs on machines where all register operations
5116 affect the entire register, just look inside. Note that we are
5117 passing MODE to the recursive call, so the number of sign bit
5118 copies will remain relative to that mode, not the inner mode.
5119
5120 This works only if loads sign extend. Otherwise, if we get a
5121 reload for the inner part, it may be loaded from the stack, and
5122 then we lose all sign bit copies that existed before the store
5123 to the stack. */
5124 if (WORD_REGISTER_OPERATIONS
5125 && load_extend_op (inner_mode) == SIGN_EXTEND
5126 && paradoxical_subreg_p (x)
5127 && MEM_P (SUBREG_REG (x)))
5128 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5129 known_x, known_mode, known_ret);
5130 }
5131 break;
5132
5133 case SIGN_EXTRACT:
5134 if (CONST_INT_P (XEXP (x, 1)))
5135 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5136 break;
5137
5138 case SIGN_EXTEND:
5139 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5140 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5141 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5142 known_x, known_mode, known_ret));
5143 break;
5144
5145 case TRUNCATE:
5146 /* For a smaller object, just ignore the high bits. */
5147 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5148 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5149 known_x, known_mode, known_ret);
5150 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5151 - bitwidth)));
5152
5153 case NOT:
5154 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5155 known_x, known_mode, known_ret);
5156
5157 case ROTATE: case ROTATERT:
5158 /* If we are rotating left by a number of bits less than the number
5159 of sign bit copies, we can just subtract that amount from the
5160 number. */
5161 if (CONST_INT_P (XEXP (x, 1))
5162 && INTVAL (XEXP (x, 1)) >= 0
5163 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5164 {
5165 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5166 known_x, known_mode, known_ret);
5167 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5168 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5169 }
5170 break;
5171
5172 case NEG:
5173 /* In general, this subtracts one sign bit copy. But if the value
5174 is known to be positive, the number of sign bit copies is the
5175 same as that of the input. Finally, if the input has just one bit
5176 that might be nonzero, all the bits are copies of the sign bit. */
5177 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5178 known_x, known_mode, known_ret);
5179 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5180 return num0 > 1 ? num0 - 1 : 1;
5181
5182 nonzero = nonzero_bits (XEXP (x, 0), mode);
5183 if (nonzero == 1)
5184 return bitwidth;
5185
5186 if (num0 > 1
5187 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5188 num0--;
5189
5190 return num0;
5191
5192 case IOR: case AND: case XOR:
5193 case SMIN: case SMAX: case UMIN: case UMAX:
5194 /* Logical operations will preserve the number of sign-bit copies.
5195 MIN and MAX operations always return one of the operands. */
5196 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5197 known_x, known_mode, known_ret);
5198 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5199 known_x, known_mode, known_ret);
5200
5201 /* If num1 is clearing some of the top bits then regardless of
5202 the other term, we are guaranteed to have at least that many
5203 high-order zero bits. */
5204 if (code == AND
5205 && num1 > 1
5206 && bitwidth <= HOST_BITS_PER_WIDE_INT
5207 && CONST_INT_P (XEXP (x, 1))
5208 && (UINTVAL (XEXP (x, 1))
5209 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5210 return num1;
5211
5212 /* Similarly for IOR when setting high-order bits. */
5213 if (code == IOR
5214 && num1 > 1
5215 && bitwidth <= HOST_BITS_PER_WIDE_INT
5216 && CONST_INT_P (XEXP (x, 1))
5217 && (UINTVAL (XEXP (x, 1))
5218 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5219 return num1;
5220
5221 return MIN (num0, num1);
5222
5223 case PLUS: case MINUS:
5224 /* For addition and subtraction, we can have a 1-bit carry. However,
5225 if we are subtracting 1 from a positive number, there will not
5226 be such a carry. Furthermore, if the positive number is known to
5227 be 0 or 1, we know the result is either -1 or 0. */
5228
5229 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5230 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5231 {
5232 nonzero = nonzero_bits (XEXP (x, 0), mode);
5233 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5234 return (nonzero == 1 || nonzero == 0 ? bitwidth
5235 : bitwidth - floor_log2 (nonzero) - 1);
5236 }
5237
5238 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5239 known_x, known_mode, known_ret);
5240 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5241 known_x, known_mode, known_ret);
5242 result = MAX (1, MIN (num0, num1) - 1);
5243
5244 return result;
5245
5246 case MULT:
5247 /* The number of bits of the product is the sum of the number of
5248 bits of both terms. However, unless one of the terms if known
5249 to be positive, we must allow for an additional bit since negating
5250 a negative number can remove one sign bit copy. */
5251
5252 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5253 known_x, known_mode, known_ret);
5254 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5255 known_x, known_mode, known_ret);
5256
5257 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5258 if (result > 0
5259 && (bitwidth > HOST_BITS_PER_WIDE_INT
5260 || (((nonzero_bits (XEXP (x, 0), mode)
5261 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5262 && ((nonzero_bits (XEXP (x, 1), mode)
5263 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5264 != 0))))
5265 result--;
5266
5267 return MAX (1, result);
5268
5269 case UDIV:
5270 /* The result must be <= the first operand. If the first operand
5271 has the high bit set, we know nothing about the number of sign
5272 bit copies. */
5273 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5274 return 1;
5275 else if ((nonzero_bits (XEXP (x, 0), mode)
5276 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5277 return 1;
5278 else
5279 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5280 known_x, known_mode, known_ret);
5281
5282 case UMOD:
5283 /* The result must be <= the second operand. If the second operand
5284 has (or just might have) the high bit set, we know nothing about
5285 the number of sign bit copies. */
5286 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5287 return 1;
5288 else if ((nonzero_bits (XEXP (x, 1), mode)
5289 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5290 return 1;
5291 else
5292 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5293 known_x, known_mode, known_ret);
5294
5295 case DIV:
5296 /* Similar to unsigned division, except that we have to worry about
5297 the case where the divisor is negative, in which case we have
5298 to add 1. */
5299 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5300 known_x, known_mode, known_ret);
5301 if (result > 1
5302 && (bitwidth > HOST_BITS_PER_WIDE_INT
5303 || (nonzero_bits (XEXP (x, 1), mode)
5304 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5305 result--;
5306
5307 return result;
5308
5309 case MOD:
5310 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5311 known_x, known_mode, known_ret);
5312 if (result > 1
5313 && (bitwidth > HOST_BITS_PER_WIDE_INT
5314 || (nonzero_bits (XEXP (x, 1), mode)
5315 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5316 result--;
5317
5318 return result;
5319
5320 case ASHIFTRT:
5321 /* Shifts by a constant add to the number of bits equal to the
5322 sign bit. */
5323 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5324 known_x, known_mode, known_ret);
5325 if (CONST_INT_P (XEXP (x, 1))
5326 && INTVAL (XEXP (x, 1)) > 0
5327 && INTVAL (XEXP (x, 1)) < xmode_width)
5328 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5329
5330 return num0;
5331
5332 case ASHIFT:
5333 /* Left shifts destroy copies. */
5334 if (!CONST_INT_P (XEXP (x, 1))
5335 || INTVAL (XEXP (x, 1)) < 0
5336 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5337 || INTVAL (XEXP (x, 1)) >= xmode_width)
5338 return 1;
5339
5340 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5341 known_x, known_mode, known_ret);
5342 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5343
5344 case IF_THEN_ELSE:
5345 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5346 known_x, known_mode, known_ret);
5347 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5348 known_x, known_mode, known_ret);
5349 return MIN (num0, num1);
5350
5351 case EQ: case NE: case GE: case GT: case LE: case LT:
5352 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5353 case GEU: case GTU: case LEU: case LTU:
5354 case UNORDERED: case ORDERED:
5355 /* If the constant is negative, take its 1's complement and remask.
5356 Then see how many zero bits we have. */
5357 nonzero = STORE_FLAG_VALUE;
5358 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5359 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5360 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5361
5362 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5363
5364 default:
5365 break;
5366 }
5367
5368 /* If we haven't been able to figure it out by one of the above rules,
5369 see if some of the high-order bits are known to be zero. If so,
5370 count those bits and return one less than that amount. If we can't
5371 safely compute the mask for this mode, always return BITWIDTH. */
5372
5373 bitwidth = GET_MODE_PRECISION (mode);
5374 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5375 return 1;
5376
5377 nonzero = nonzero_bits (x, mode);
5378 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5379 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5380 }
5381
5382 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5383 zero indicates an instruction pattern without a known cost. */
5384
5385 int
5386 pattern_cost (rtx pat, bool speed)
5387 {
5388 int i, cost;
5389 rtx set;
5390
5391 /* Extract the single set rtx from the instruction pattern. We
5392 can't use single_set since we only have the pattern. We also
5393 consider PARALLELs of a normal set and a single comparison. In
5394 that case we use the cost of the non-comparison SET operation,
5395 which is most-likely to be the real cost of this operation. */
5396 if (GET_CODE (pat) == SET)
5397 set = pat;
5398 else if (GET_CODE (pat) == PARALLEL)
5399 {
5400 set = NULL_RTX;
5401 rtx comparison = NULL_RTX;
5402
5403 for (i = 0; i < XVECLEN (pat, 0); i++)
5404 {
5405 rtx x = XVECEXP (pat, 0, i);
5406 if (GET_CODE (x) == SET)
5407 {
5408 if (GET_CODE (SET_SRC (x)) == COMPARE)
5409 {
5410 if (comparison)
5411 return 0;
5412 comparison = x;
5413 }
5414 else
5415 {
5416 if (set)
5417 return 0;
5418 set = x;
5419 }
5420 }
5421 }
5422
5423 if (!set && comparison)
5424 set = comparison;
5425
5426 if (!set)
5427 return 0;
5428 }
5429 else
5430 return 0;
5431
5432 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5433 return cost > 0 ? cost : COSTS_N_INSNS (1);
5434 }
5435
5436 /* Calculate the cost of a single instruction. A return value of zero
5437 indicates an instruction pattern without a known cost. */
5438
5439 int
5440 insn_cost (rtx_insn *insn, bool speed)
5441 {
5442 if (targetm.insn_cost)
5443 return targetm.insn_cost (insn, speed);
5444
5445 return pattern_cost (PATTERN (insn), speed);
5446 }
5447
5448 /* Returns estimate on cost of computing SEQ. */
5449
5450 unsigned
5451 seq_cost (const rtx_insn *seq, bool speed)
5452 {
5453 unsigned cost = 0;
5454 rtx set;
5455
5456 for (; seq; seq = NEXT_INSN (seq))
5457 {
5458 set = single_set (seq);
5459 if (set)
5460 cost += set_rtx_cost (set, speed);
5461 else if (NONDEBUG_INSN_P (seq))
5462 {
5463 int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5464 if (this_cost > 0)
5465 cost += this_cost;
5466 else
5467 cost++;
5468 }
5469 }
5470
5471 return cost;
5472 }
5473
5474 /* Given an insn INSN and condition COND, return the condition in a
5475 canonical form to simplify testing by callers. Specifically:
5476
5477 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5478 (2) Both operands will be machine operands; (cc0) will have been replaced.
5479 (3) If an operand is a constant, it will be the second operand.
5480 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5481 for GE, GEU, and LEU.
5482
5483 If the condition cannot be understood, or is an inequality floating-point
5484 comparison which needs to be reversed, 0 will be returned.
5485
5486 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5487
5488 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5489 insn used in locating the condition was found. If a replacement test
5490 of the condition is desired, it should be placed in front of that
5491 insn and we will be sure that the inputs are still valid.
5492
5493 If WANT_REG is nonzero, we wish the condition to be relative to that
5494 register, if possible. Therefore, do not canonicalize the condition
5495 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5496 to be a compare to a CC mode register.
5497
5498 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5499 and at INSN. */
5500
5501 rtx
5502 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5503 rtx_insn **earliest,
5504 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5505 {
5506 enum rtx_code code;
5507 rtx_insn *prev = insn;
5508 const_rtx set;
5509 rtx tem;
5510 rtx op0, op1;
5511 int reverse_code = 0;
5512 machine_mode mode;
5513 basic_block bb = BLOCK_FOR_INSN (insn);
5514
5515 code = GET_CODE (cond);
5516 mode = GET_MODE (cond);
5517 op0 = XEXP (cond, 0);
5518 op1 = XEXP (cond, 1);
5519
5520 if (reverse)
5521 code = reversed_comparison_code (cond, insn);
5522 if (code == UNKNOWN)
5523 return 0;
5524
5525 if (earliest)
5526 *earliest = insn;
5527
5528 /* If we are comparing a register with zero, see if the register is set
5529 in the previous insn to a COMPARE or a comparison operation. Perform
5530 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5531 in cse.c */
5532
5533 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5534 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5535 && op1 == CONST0_RTX (GET_MODE (op0))
5536 && op0 != want_reg)
5537 {
5538 /* Set nonzero when we find something of interest. */
5539 rtx x = 0;
5540
5541 /* If comparison with cc0, import actual comparison from compare
5542 insn. */
5543 if (op0 == cc0_rtx)
5544 {
5545 if ((prev = prev_nonnote_insn (prev)) == 0
5546 || !NONJUMP_INSN_P (prev)
5547 || (set = single_set (prev)) == 0
5548 || SET_DEST (set) != cc0_rtx)
5549 return 0;
5550
5551 op0 = SET_SRC (set);
5552 op1 = CONST0_RTX (GET_MODE (op0));
5553 if (earliest)
5554 *earliest = prev;
5555 }
5556
5557 /* If this is a COMPARE, pick up the two things being compared. */
5558 if (GET_CODE (op0) == COMPARE)
5559 {
5560 op1 = XEXP (op0, 1);
5561 op0 = XEXP (op0, 0);
5562 continue;
5563 }
5564 else if (!REG_P (op0))
5565 break;
5566
5567 /* Go back to the previous insn. Stop if it is not an INSN. We also
5568 stop if it isn't a single set or if it has a REG_INC note because
5569 we don't want to bother dealing with it. */
5570
5571 prev = prev_nonnote_nondebug_insn (prev);
5572
5573 if (prev == 0
5574 || !NONJUMP_INSN_P (prev)
5575 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5576 /* In cfglayout mode, there do not have to be labels at the
5577 beginning of a block, or jumps at the end, so the previous
5578 conditions would not stop us when we reach bb boundary. */
5579 || BLOCK_FOR_INSN (prev) != bb)
5580 break;
5581
5582 set = set_of (op0, prev);
5583
5584 if (set
5585 && (GET_CODE (set) != SET
5586 || !rtx_equal_p (SET_DEST (set), op0)))
5587 break;
5588
5589 /* If this is setting OP0, get what it sets it to if it looks
5590 relevant. */
5591 if (set)
5592 {
5593 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5594 #ifdef FLOAT_STORE_FLAG_VALUE
5595 REAL_VALUE_TYPE fsfv;
5596 #endif
5597
5598 /* ??? We may not combine comparisons done in a CCmode with
5599 comparisons not done in a CCmode. This is to aid targets
5600 like Alpha that have an IEEE compliant EQ instruction, and
5601 a non-IEEE compliant BEQ instruction. The use of CCmode is
5602 actually artificial, simply to prevent the combination, but
5603 should not affect other platforms.
5604
5605 However, we must allow VOIDmode comparisons to match either
5606 CCmode or non-CCmode comparison, because some ports have
5607 modeless comparisons inside branch patterns.
5608
5609 ??? This mode check should perhaps look more like the mode check
5610 in simplify_comparison in combine. */
5611 if (((GET_MODE_CLASS (mode) == MODE_CC)
5612 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5613 && mode != VOIDmode
5614 && inner_mode != VOIDmode)
5615 break;
5616 if (GET_CODE (SET_SRC (set)) == COMPARE
5617 || (((code == NE
5618 || (code == LT
5619 && val_signbit_known_set_p (inner_mode,
5620 STORE_FLAG_VALUE))
5621 #ifdef FLOAT_STORE_FLAG_VALUE
5622 || (code == LT
5623 && SCALAR_FLOAT_MODE_P (inner_mode)
5624 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5625 REAL_VALUE_NEGATIVE (fsfv)))
5626 #endif
5627 ))
5628 && COMPARISON_P (SET_SRC (set))))
5629 x = SET_SRC (set);
5630 else if (((code == EQ
5631 || (code == GE
5632 && val_signbit_known_set_p (inner_mode,
5633 STORE_FLAG_VALUE))
5634 #ifdef FLOAT_STORE_FLAG_VALUE
5635 || (code == GE
5636 && SCALAR_FLOAT_MODE_P (inner_mode)
5637 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5638 REAL_VALUE_NEGATIVE (fsfv)))
5639 #endif
5640 ))
5641 && COMPARISON_P (SET_SRC (set)))
5642 {
5643 reverse_code = 1;
5644 x = SET_SRC (set);
5645 }
5646 else if ((code == EQ || code == NE)
5647 && GET_CODE (SET_SRC (set)) == XOR)
5648 /* Handle sequences like:
5649
5650 (set op0 (xor X Y))
5651 ...(eq|ne op0 (const_int 0))...
5652
5653 in which case:
5654
5655 (eq op0 (const_int 0)) reduces to (eq X Y)
5656 (ne op0 (const_int 0)) reduces to (ne X Y)
5657
5658 This is the form used by MIPS16, for example. */
5659 x = SET_SRC (set);
5660 else
5661 break;
5662 }
5663
5664 else if (reg_set_p (op0, prev))
5665 /* If this sets OP0, but not directly, we have to give up. */
5666 break;
5667
5668 if (x)
5669 {
5670 /* If the caller is expecting the condition to be valid at INSN,
5671 make sure X doesn't change before INSN. */
5672 if (valid_at_insn_p)
5673 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5674 break;
5675 if (COMPARISON_P (x))
5676 code = GET_CODE (x);
5677 if (reverse_code)
5678 {
5679 code = reversed_comparison_code (x, prev);
5680 if (code == UNKNOWN)
5681 return 0;
5682 reverse_code = 0;
5683 }
5684
5685 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5686 if (earliest)
5687 *earliest = prev;
5688 }
5689 }
5690
5691 /* If constant is first, put it last. */
5692 if (CONSTANT_P (op0))
5693 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5694
5695 /* If OP0 is the result of a comparison, we weren't able to find what
5696 was really being compared, so fail. */
5697 if (!allow_cc_mode
5698 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5699 return 0;
5700
5701 /* Canonicalize any ordered comparison with integers involving equality
5702 if we can do computations in the relevant mode and we do not
5703 overflow. */
5704
5705 scalar_int_mode op0_mode;
5706 if (CONST_INT_P (op1)
5707 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5708 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5709 {
5710 HOST_WIDE_INT const_val = INTVAL (op1);
5711 unsigned HOST_WIDE_INT uconst_val = const_val;
5712 unsigned HOST_WIDE_INT max_val
5713 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5714
5715 switch (code)
5716 {
5717 case LE:
5718 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5719 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5720 break;
5721
5722 /* When cross-compiling, const_val might be sign-extended from
5723 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5724 case GE:
5725 if ((const_val & max_val)
5726 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5727 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5728 break;
5729
5730 case LEU:
5731 if (uconst_val < max_val)
5732 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5733 break;
5734
5735 case GEU:
5736 if (uconst_val != 0)
5737 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5738 break;
5739
5740 default:
5741 break;
5742 }
5743 }
5744
5745 /* Never return CC0; return zero instead. */
5746 if (CC0_P (op0))
5747 return 0;
5748
5749 /* We promised to return a comparison. */
5750 rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5751 if (COMPARISON_P (ret))
5752 return ret;
5753 return 0;
5754 }
5755
5756 /* Given a jump insn JUMP, return the condition that will cause it to branch
5757 to its JUMP_LABEL. If the condition cannot be understood, or is an
5758 inequality floating-point comparison which needs to be reversed, 0 will
5759 be returned.
5760
5761 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5762 insn used in locating the condition was found. If a replacement test
5763 of the condition is desired, it should be placed in front of that
5764 insn and we will be sure that the inputs are still valid. If EARLIEST
5765 is null, the returned condition will be valid at INSN.
5766
5767 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5768 compare CC mode register.
5769
5770 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5771
5772 rtx
5773 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5774 int valid_at_insn_p)
5775 {
5776 rtx cond;
5777 int reverse;
5778 rtx set;
5779
5780 /* If this is not a standard conditional jump, we can't parse it. */
5781 if (!JUMP_P (jump)
5782 || ! any_condjump_p (jump))
5783 return 0;
5784 set = pc_set (jump);
5785
5786 cond = XEXP (SET_SRC (set), 0);
5787
5788 /* If this branches to JUMP_LABEL when the condition is false, reverse
5789 the condition. */
5790 reverse
5791 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5792 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5793
5794 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5795 allow_cc_mode, valid_at_insn_p);
5796 }
5797
5798 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5799 TARGET_MODE_REP_EXTENDED.
5800
5801 Note that we assume that the property of
5802 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5803 narrower than mode B. I.e., if A is a mode narrower than B then in
5804 order to be able to operate on it in mode B, mode A needs to
5805 satisfy the requirements set by the representation of mode B. */
5806
5807 static void
5808 init_num_sign_bit_copies_in_rep (void)
5809 {
5810 opt_scalar_int_mode in_mode_iter;
5811 scalar_int_mode mode;
5812
5813 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5814 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5815 {
5816 scalar_int_mode in_mode = in_mode_iter.require ();
5817 scalar_int_mode i;
5818
5819 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5820 extends to the next widest mode. */
5821 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5822 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5823
5824 /* We are in in_mode. Count how many bits outside of mode
5825 have to be copies of the sign-bit. */
5826 FOR_EACH_MODE (i, mode, in_mode)
5827 {
5828 /* This must always exist (for the last iteration it will be
5829 IN_MODE). */
5830 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5831
5832 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5833 /* We can only check sign-bit copies starting from the
5834 top-bit. In order to be able to check the bits we
5835 have already seen we pretend that subsequent bits
5836 have to be sign-bit copies too. */
5837 || num_sign_bit_copies_in_rep [in_mode][mode])
5838 num_sign_bit_copies_in_rep [in_mode][mode]
5839 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5840 }
5841 }
5842 }
5843
5844 /* Suppose that truncation from the machine mode of X to MODE is not a
5845 no-op. See if there is anything special about X so that we can
5846 assume it already contains a truncated value of MODE. */
5847
5848 bool
5849 truncated_to_mode (machine_mode mode, const_rtx x)
5850 {
5851 /* This register has already been used in MODE without explicit
5852 truncation. */
5853 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5854 return true;
5855
5856 /* See if we already satisfy the requirements of MODE. If yes we
5857 can just switch to MODE. */
5858 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5859 && (num_sign_bit_copies (x, GET_MODE (x))
5860 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5861 return true;
5862
5863 return false;
5864 }
5865 \f
5866 /* Return true if RTX code CODE has a single sequence of zero or more
5867 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5868 entry in that case. */
5869
5870 static bool
5871 setup_reg_subrtx_bounds (unsigned int code)
5872 {
5873 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5874 unsigned int i = 0;
5875 for (; format[i] != 'e'; ++i)
5876 {
5877 if (!format[i])
5878 /* No subrtxes. Leave start and count as 0. */
5879 return true;
5880 if (format[i] == 'E' || format[i] == 'V')
5881 return false;
5882 }
5883
5884 /* Record the sequence of 'e's. */
5885 rtx_all_subrtx_bounds[code].start = i;
5886 do
5887 ++i;
5888 while (format[i] == 'e');
5889 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5890 /* rtl-iter.h relies on this. */
5891 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5892
5893 for (; format[i]; ++i)
5894 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5895 return false;
5896
5897 return true;
5898 }
5899
5900 /* Initialize rtx_all_subrtx_bounds. */
5901 void
5902 init_rtlanal (void)
5903 {
5904 int i;
5905 for (i = 0; i < NUM_RTX_CODE; i++)
5906 {
5907 if (!setup_reg_subrtx_bounds (i))
5908 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5909 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5910 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5911 }
5912
5913 init_num_sign_bit_copies_in_rep ();
5914 }
5915 \f
5916 /* Check whether this is a constant pool constant. */
5917 bool
5918 constant_pool_constant_p (rtx x)
5919 {
5920 x = avoid_constant_pool_reference (x);
5921 return CONST_DOUBLE_P (x);
5922 }
5923 \f
5924 /* If M is a bitmask that selects a field of low-order bits within an item but
5925 not the entire word, return the length of the field. Return -1 otherwise.
5926 M is used in machine mode MODE. */
5927
5928 int
5929 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5930 {
5931 if (mode != VOIDmode)
5932 {
5933 if (!HWI_COMPUTABLE_MODE_P (mode))
5934 return -1;
5935 m &= GET_MODE_MASK (mode);
5936 }
5937
5938 return exact_log2 (m + 1);
5939 }
5940
5941 /* Return the mode of MEM's address. */
5942
5943 scalar_int_mode
5944 get_address_mode (rtx mem)
5945 {
5946 machine_mode mode;
5947
5948 gcc_assert (MEM_P (mem));
5949 mode = GET_MODE (XEXP (mem, 0));
5950 if (mode != VOIDmode)
5951 return as_a <scalar_int_mode> (mode);
5952 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5953 }
5954 \f
5955 /* Split up a CONST_DOUBLE or integer constant rtx
5956 into two rtx's for single words,
5957 storing in *FIRST the word that comes first in memory in the target
5958 and in *SECOND the other.
5959
5960 TODO: This function needs to be rewritten to work on any size
5961 integer. */
5962
5963 void
5964 split_double (rtx value, rtx *first, rtx *second)
5965 {
5966 if (CONST_INT_P (value))
5967 {
5968 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5969 {
5970 /* In this case the CONST_INT holds both target words.
5971 Extract the bits from it into two word-sized pieces.
5972 Sign extend each half to HOST_WIDE_INT. */
5973 unsigned HOST_WIDE_INT low, high;
5974 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5975 unsigned bits_per_word = BITS_PER_WORD;
5976
5977 /* Set sign_bit to the most significant bit of a word. */
5978 sign_bit = 1;
5979 sign_bit <<= bits_per_word - 1;
5980
5981 /* Set mask so that all bits of the word are set. We could
5982 have used 1 << BITS_PER_WORD instead of basing the
5983 calculation on sign_bit. However, on machines where
5984 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5985 compiler warning, even though the code would never be
5986 executed. */
5987 mask = sign_bit << 1;
5988 mask--;
5989
5990 /* Set sign_extend as any remaining bits. */
5991 sign_extend = ~mask;
5992
5993 /* Pick the lower word and sign-extend it. */
5994 low = INTVAL (value);
5995 low &= mask;
5996 if (low & sign_bit)
5997 low |= sign_extend;
5998
5999 /* Pick the higher word, shifted to the least significant
6000 bits, and sign-extend it. */
6001 high = INTVAL (value);
6002 high >>= bits_per_word - 1;
6003 high >>= 1;
6004 high &= mask;
6005 if (high & sign_bit)
6006 high |= sign_extend;
6007
6008 /* Store the words in the target machine order. */
6009 if (WORDS_BIG_ENDIAN)
6010 {
6011 *first = GEN_INT (high);
6012 *second = GEN_INT (low);
6013 }
6014 else
6015 {
6016 *first = GEN_INT (low);
6017 *second = GEN_INT (high);
6018 }
6019 }
6020 else
6021 {
6022 /* The rule for using CONST_INT for a wider mode
6023 is that we regard the value as signed.
6024 So sign-extend it. */
6025 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6026 if (WORDS_BIG_ENDIAN)
6027 {
6028 *first = high;
6029 *second = value;
6030 }
6031 else
6032 {
6033 *first = value;
6034 *second = high;
6035 }
6036 }
6037 }
6038 else if (GET_CODE (value) == CONST_WIDE_INT)
6039 {
6040 /* All of this is scary code and needs to be converted to
6041 properly work with any size integer. */
6042 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6043 if (WORDS_BIG_ENDIAN)
6044 {
6045 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6046 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6047 }
6048 else
6049 {
6050 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6051 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6052 }
6053 }
6054 else if (!CONST_DOUBLE_P (value))
6055 {
6056 if (WORDS_BIG_ENDIAN)
6057 {
6058 *first = const0_rtx;
6059 *second = value;
6060 }
6061 else
6062 {
6063 *first = value;
6064 *second = const0_rtx;
6065 }
6066 }
6067 else if (GET_MODE (value) == VOIDmode
6068 /* This is the old way we did CONST_DOUBLE integers. */
6069 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6070 {
6071 /* In an integer, the words are defined as most and least significant.
6072 So order them by the target's convention. */
6073 if (WORDS_BIG_ENDIAN)
6074 {
6075 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6076 *second = GEN_INT (CONST_DOUBLE_LOW (value));
6077 }
6078 else
6079 {
6080 *first = GEN_INT (CONST_DOUBLE_LOW (value));
6081 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6082 }
6083 }
6084 else
6085 {
6086 long l[2];
6087
6088 /* Note, this converts the REAL_VALUE_TYPE to the target's
6089 format, splits up the floating point double and outputs
6090 exactly 32 bits of it into each of l[0] and l[1] --
6091 not necessarily BITS_PER_WORD bits. */
6092 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6093
6094 /* If 32 bits is an entire word for the target, but not for the host,
6095 then sign-extend on the host so that the number will look the same
6096 way on the host that it would on the target. See for instance
6097 simplify_unary_operation. The #if is needed to avoid compiler
6098 warnings. */
6099
6100 #if HOST_BITS_PER_LONG > 32
6101 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6102 {
6103 if (l[0] & ((long) 1 << 31))
6104 l[0] |= ((unsigned long) (-1) << 32);
6105 if (l[1] & ((long) 1 << 31))
6106 l[1] |= ((unsigned long) (-1) << 32);
6107 }
6108 #endif
6109
6110 *first = GEN_INT (l[0]);
6111 *second = GEN_INT (l[1]);
6112 }
6113 }
6114
6115 /* Return true if X is a sign_extract or zero_extract from the least
6116 significant bit. */
6117
6118 static bool
6119 lsb_bitfield_op_p (rtx x)
6120 {
6121 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6122 {
6123 machine_mode mode = GET_MODE (XEXP (x, 0));
6124 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6125 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6126 poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6127
6128 return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6129 }
6130 return false;
6131 }
6132
6133 /* Strip outer address "mutations" from LOC and return a pointer to the
6134 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6135 stripped expression there.
6136
6137 "Mutations" either convert between modes or apply some kind of
6138 extension, truncation or alignment. */
6139
6140 rtx *
6141 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6142 {
6143 for (;;)
6144 {
6145 enum rtx_code code = GET_CODE (*loc);
6146 if (GET_RTX_CLASS (code) == RTX_UNARY)
6147 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6148 used to convert between pointer sizes. */
6149 loc = &XEXP (*loc, 0);
6150 else if (lsb_bitfield_op_p (*loc))
6151 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6152 acts as a combined truncation and extension. */
6153 loc = &XEXP (*loc, 0);
6154 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6155 /* (and ... (const_int -X)) is used to align to X bytes. */
6156 loc = &XEXP (*loc, 0);
6157 else if (code == SUBREG
6158 && !OBJECT_P (SUBREG_REG (*loc))
6159 && subreg_lowpart_p (*loc))
6160 /* (subreg (operator ...) ...) inside and is used for mode
6161 conversion too. */
6162 loc = &SUBREG_REG (*loc);
6163 else
6164 return loc;
6165 if (outer_code)
6166 *outer_code = code;
6167 }
6168 }
6169
6170 /* Return true if CODE applies some kind of scale. The scaled value is
6171 is the first operand and the scale is the second. */
6172
6173 static bool
6174 binary_scale_code_p (enum rtx_code code)
6175 {
6176 return (code == MULT
6177 || code == ASHIFT
6178 /* Needed by ARM targets. */
6179 || code == ASHIFTRT
6180 || code == LSHIFTRT
6181 || code == ROTATE
6182 || code == ROTATERT);
6183 }
6184
6185 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6186 (see address_info). Return null otherwise. */
6187
6188 static rtx *
6189 get_base_term (rtx *inner)
6190 {
6191 if (GET_CODE (*inner) == LO_SUM)
6192 inner = strip_address_mutations (&XEXP (*inner, 0));
6193 if (REG_P (*inner)
6194 || MEM_P (*inner)
6195 || GET_CODE (*inner) == SUBREG
6196 || GET_CODE (*inner) == SCRATCH)
6197 return inner;
6198 return 0;
6199 }
6200
6201 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6202 (see address_info). Return null otherwise. */
6203
6204 static rtx *
6205 get_index_term (rtx *inner)
6206 {
6207 /* At present, only constant scales are allowed. */
6208 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6209 inner = strip_address_mutations (&XEXP (*inner, 0));
6210 if (REG_P (*inner)
6211 || MEM_P (*inner)
6212 || GET_CODE (*inner) == SUBREG
6213 || GET_CODE (*inner) == SCRATCH)
6214 return inner;
6215 return 0;
6216 }
6217
6218 /* Set the segment part of address INFO to LOC, given that INNER is the
6219 unmutated value. */
6220
6221 static void
6222 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6223 {
6224 gcc_assert (!info->segment);
6225 info->segment = loc;
6226 info->segment_term = inner;
6227 }
6228
6229 /* Set the base part of address INFO to LOC, given that INNER is the
6230 unmutated value. */
6231
6232 static void
6233 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6234 {
6235 gcc_assert (!info->base);
6236 info->base = loc;
6237 info->base_term = inner;
6238 }
6239
6240 /* Set the index part of address INFO to LOC, given that INNER is the
6241 unmutated value. */
6242
6243 static void
6244 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6245 {
6246 gcc_assert (!info->index);
6247 info->index = loc;
6248 info->index_term = inner;
6249 }
6250
6251 /* Set the displacement part of address INFO to LOC, given that INNER
6252 is the constant term. */
6253
6254 static void
6255 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6256 {
6257 gcc_assert (!info->disp);
6258 info->disp = loc;
6259 info->disp_term = inner;
6260 }
6261
6262 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6263 rest of INFO accordingly. */
6264
6265 static void
6266 decompose_incdec_address (struct address_info *info)
6267 {
6268 info->autoinc_p = true;
6269
6270 rtx *base = &XEXP (*info->inner, 0);
6271 set_address_base (info, base, base);
6272 gcc_checking_assert (info->base == info->base_term);
6273
6274 /* These addresses are only valid when the size of the addressed
6275 value is known. */
6276 gcc_checking_assert (info->mode != VOIDmode);
6277 }
6278
6279 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6280 of INFO accordingly. */
6281
6282 static void
6283 decompose_automod_address (struct address_info *info)
6284 {
6285 info->autoinc_p = true;
6286
6287 rtx *base = &XEXP (*info->inner, 0);
6288 set_address_base (info, base, base);
6289 gcc_checking_assert (info->base == info->base_term);
6290
6291 rtx plus = XEXP (*info->inner, 1);
6292 gcc_assert (GET_CODE (plus) == PLUS);
6293
6294 info->base_term2 = &XEXP (plus, 0);
6295 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6296
6297 rtx *step = &XEXP (plus, 1);
6298 rtx *inner_step = strip_address_mutations (step);
6299 if (CONSTANT_P (*inner_step))
6300 set_address_disp (info, step, inner_step);
6301 else
6302 set_address_index (info, step, inner_step);
6303 }
6304
6305 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6306 values in [PTR, END). Return a pointer to the end of the used array. */
6307
6308 static rtx **
6309 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6310 {
6311 rtx x = *loc;
6312 if (GET_CODE (x) == PLUS)
6313 {
6314 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6315 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6316 }
6317 else
6318 {
6319 gcc_assert (ptr != end);
6320 *ptr++ = loc;
6321 }
6322 return ptr;
6323 }
6324
6325 /* Evaluate the likelihood of X being a base or index value, returning
6326 positive if it is likely to be a base, negative if it is likely to be
6327 an index, and 0 if we can't tell. Make the magnitude of the return
6328 value reflect the amount of confidence we have in the answer.
6329
6330 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6331
6332 static int
6333 baseness (rtx x, machine_mode mode, addr_space_t as,
6334 enum rtx_code outer_code, enum rtx_code index_code)
6335 {
6336 /* Believe *_POINTER unless the address shape requires otherwise. */
6337 if (REG_P (x) && REG_POINTER (x))
6338 return 2;
6339 if (MEM_P (x) && MEM_POINTER (x))
6340 return 2;
6341
6342 if (REG_P (x) && HARD_REGISTER_P (x))
6343 {
6344 /* X is a hard register. If it only fits one of the base
6345 or index classes, choose that interpretation. */
6346 int regno = REGNO (x);
6347 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6348 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6349 if (base_p != index_p)
6350 return base_p ? 1 : -1;
6351 }
6352 return 0;
6353 }
6354
6355 /* INFO->INNER describes a normal, non-automodified address.
6356 Fill in the rest of INFO accordingly. */
6357
6358 static void
6359 decompose_normal_address (struct address_info *info)
6360 {
6361 /* Treat the address as the sum of up to four values. */
6362 rtx *ops[4];
6363 size_t n_ops = extract_plus_operands (info->inner, ops,
6364 ops + ARRAY_SIZE (ops)) - ops;
6365
6366 /* If there is more than one component, any base component is in a PLUS. */
6367 if (n_ops > 1)
6368 info->base_outer_code = PLUS;
6369
6370 /* Try to classify each sum operand now. Leave those that could be
6371 either a base or an index in OPS. */
6372 rtx *inner_ops[4];
6373 size_t out = 0;
6374 for (size_t in = 0; in < n_ops; ++in)
6375 {
6376 rtx *loc = ops[in];
6377 rtx *inner = strip_address_mutations (loc);
6378 if (CONSTANT_P (*inner))
6379 set_address_disp (info, loc, inner);
6380 else if (GET_CODE (*inner) == UNSPEC)
6381 set_address_segment (info, loc, inner);
6382 else
6383 {
6384 /* The only other possibilities are a base or an index. */
6385 rtx *base_term = get_base_term (inner);
6386 rtx *index_term = get_index_term (inner);
6387 gcc_assert (base_term || index_term);
6388 if (!base_term)
6389 set_address_index (info, loc, index_term);
6390 else if (!index_term)
6391 set_address_base (info, loc, base_term);
6392 else
6393 {
6394 gcc_assert (base_term == index_term);
6395 ops[out] = loc;
6396 inner_ops[out] = base_term;
6397 ++out;
6398 }
6399 }
6400 }
6401
6402 /* Classify the remaining OPS members as bases and indexes. */
6403 if (out == 1)
6404 {
6405 /* If we haven't seen a base or an index yet, assume that this is
6406 the base. If we were confident that another term was the base
6407 or index, treat the remaining operand as the other kind. */
6408 if (!info->base)
6409 set_address_base (info, ops[0], inner_ops[0]);
6410 else
6411 set_address_index (info, ops[0], inner_ops[0]);
6412 }
6413 else if (out == 2)
6414 {
6415 /* In the event of a tie, assume the base comes first. */
6416 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6417 GET_CODE (*ops[1]))
6418 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6419 GET_CODE (*ops[0])))
6420 {
6421 set_address_base (info, ops[0], inner_ops[0]);
6422 set_address_index (info, ops[1], inner_ops[1]);
6423 }
6424 else
6425 {
6426 set_address_base (info, ops[1], inner_ops[1]);
6427 set_address_index (info, ops[0], inner_ops[0]);
6428 }
6429 }
6430 else
6431 gcc_assert (out == 0);
6432 }
6433
6434 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6435 or VOIDmode if not known. AS is the address space associated with LOC.
6436 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6437
6438 void
6439 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6440 addr_space_t as, enum rtx_code outer_code)
6441 {
6442 memset (info, 0, sizeof (*info));
6443 info->mode = mode;
6444 info->as = as;
6445 info->addr_outer_code = outer_code;
6446 info->outer = loc;
6447 info->inner = strip_address_mutations (loc, &outer_code);
6448 info->base_outer_code = outer_code;
6449 switch (GET_CODE (*info->inner))
6450 {
6451 case PRE_DEC:
6452 case PRE_INC:
6453 case POST_DEC:
6454 case POST_INC:
6455 decompose_incdec_address (info);
6456 break;
6457
6458 case PRE_MODIFY:
6459 case POST_MODIFY:
6460 decompose_automod_address (info);
6461 break;
6462
6463 default:
6464 decompose_normal_address (info);
6465 break;
6466 }
6467 }
6468
6469 /* Describe address operand LOC in INFO. */
6470
6471 void
6472 decompose_lea_address (struct address_info *info, rtx *loc)
6473 {
6474 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6475 }
6476
6477 /* Describe the address of MEM X in INFO. */
6478
6479 void
6480 decompose_mem_address (struct address_info *info, rtx x)
6481 {
6482 gcc_assert (MEM_P (x));
6483 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6484 MEM_ADDR_SPACE (x), MEM);
6485 }
6486
6487 /* Update INFO after a change to the address it describes. */
6488
6489 void
6490 update_address (struct address_info *info)
6491 {
6492 decompose_address (info, info->outer, info->mode, info->as,
6493 info->addr_outer_code);
6494 }
6495
6496 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6497 more complicated than that. */
6498
6499 HOST_WIDE_INT
6500 get_index_scale (const struct address_info *info)
6501 {
6502 rtx index = *info->index;
6503 if (GET_CODE (index) == MULT
6504 && CONST_INT_P (XEXP (index, 1))
6505 && info->index_term == &XEXP (index, 0))
6506 return INTVAL (XEXP (index, 1));
6507
6508 if (GET_CODE (index) == ASHIFT
6509 && CONST_INT_P (XEXP (index, 1))
6510 && info->index_term == &XEXP (index, 0))
6511 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6512
6513 if (info->index == info->index_term)
6514 return 1;
6515
6516 return 0;
6517 }
6518
6519 /* Return the "index code" of INFO, in the form required by
6520 ok_for_base_p_1. */
6521
6522 enum rtx_code
6523 get_index_code (const struct address_info *info)
6524 {
6525 if (info->index)
6526 return GET_CODE (*info->index);
6527
6528 if (info->disp)
6529 return GET_CODE (*info->disp);
6530
6531 return SCRATCH;
6532 }
6533
6534 /* Return true if RTL X contains a SYMBOL_REF. */
6535
6536 bool
6537 contains_symbol_ref_p (const_rtx x)
6538 {
6539 subrtx_iterator::array_type array;
6540 FOR_EACH_SUBRTX (iter, array, x, ALL)
6541 if (SYMBOL_REF_P (*iter))
6542 return true;
6543
6544 return false;
6545 }
6546
6547 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6548
6549 bool
6550 contains_symbolic_reference_p (const_rtx x)
6551 {
6552 subrtx_iterator::array_type array;
6553 FOR_EACH_SUBRTX (iter, array, x, ALL)
6554 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6555 return true;
6556
6557 return false;
6558 }
6559
6560 /* Return true if RTL X contains a constant pool address. */
6561
6562 bool
6563 contains_constant_pool_address_p (const_rtx x)
6564 {
6565 subrtx_iterator::array_type array;
6566 FOR_EACH_SUBRTX (iter, array, x, ALL)
6567 if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
6568 return true;
6569
6570 return false;
6571 }
6572
6573
6574 /* Return true if X contains a thread-local symbol. */
6575
6576 bool
6577 tls_referenced_p (const_rtx x)
6578 {
6579 if (!targetm.have_tls)
6580 return false;
6581
6582 subrtx_iterator::array_type array;
6583 FOR_EACH_SUBRTX (iter, array, x, ALL)
6584 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6585 return true;
6586 return false;
6587 }