]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-eh.c
utils.c (init_gnat_to_gnu): Use typed GC allocation.
[thirdparty/gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "tree-inline.h"
33 #include "tree-iterator.h"
34 #include "tree-pass.h"
35 #include "timevar.h"
36 #include "langhooks.h"
37 #include "ggc.h"
38 #include "toplev.h"
39 #include "gimple.h"
40 #include "target.h"
41
42 /* In some instances a tree and a gimple need to be stored in a same table,
43 i.e. in hash tables. This is a structure to do this. */
44 typedef union {tree *tp; tree t; gimple g;} treemple;
45
46 /* Nonzero if we are using EH to handle cleanups. */
47 static int using_eh_for_cleanups_p = 0;
48
49 void
50 using_eh_for_cleanups (void)
51 {
52 using_eh_for_cleanups_p = 1;
53 }
54
55 /* Misc functions used in this file. */
56
57 /* Compare and hash for any structure which begins with a canonical
58 pointer. Assumes all pointers are interchangeable, which is sort
59 of already assumed by gcc elsewhere IIRC. */
60
61 static int
62 struct_ptr_eq (const void *a, const void *b)
63 {
64 const void * const * x = (const void * const *) a;
65 const void * const * y = (const void * const *) b;
66 return *x == *y;
67 }
68
69 static hashval_t
70 struct_ptr_hash (const void *a)
71 {
72 const void * const * x = (const void * const *) a;
73 return (size_t)*x >> 4;
74 }
75
76
77 /* Remember and lookup EH landing pad data for arbitrary statements.
78 Really this means any statement that could_throw_p. We could
79 stuff this information into the stmt_ann data structure, but:
80
81 (1) We absolutely rely on this information being kept until
82 we get to rtl. Once we're done with lowering here, if we lose
83 the information there's no way to recover it!
84
85 (2) There are many more statements that *cannot* throw as
86 compared to those that can. We should be saving some amount
87 of space by only allocating memory for those that can throw. */
88
89 /* Add statement T in function IFUN to landing pad NUM. */
90
91 void
92 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
93 {
94 struct throw_stmt_node *n;
95 void **slot;
96
97 gcc_assert (num != 0);
98
99 n = ggc_alloc_throw_stmt_node ();
100 n->stmt = t;
101 n->lp_nr = num;
102
103 if (!get_eh_throw_stmt_table (ifun))
104 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
105 struct_ptr_eq,
106 ggc_free));
107
108 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
109 gcc_assert (!*slot);
110 *slot = n;
111 }
112
113 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
114
115 void
116 add_stmt_to_eh_lp (gimple t, int num)
117 {
118 add_stmt_to_eh_lp_fn (cfun, t, num);
119 }
120
121 /* Add statement T to the single EH landing pad in REGION. */
122
123 static void
124 record_stmt_eh_region (eh_region region, gimple t)
125 {
126 if (region == NULL)
127 return;
128 if (region->type == ERT_MUST_NOT_THROW)
129 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
130 else
131 {
132 eh_landing_pad lp = region->landing_pads;
133 if (lp == NULL)
134 lp = gen_eh_landing_pad (region);
135 else
136 gcc_assert (lp->next_lp == NULL);
137 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
138 }
139 }
140
141
142 /* Remove statement T in function IFUN from its EH landing pad. */
143
144 bool
145 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
146 {
147 struct throw_stmt_node dummy;
148 void **slot;
149
150 if (!get_eh_throw_stmt_table (ifun))
151 return false;
152
153 dummy.stmt = t;
154 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
155 NO_INSERT);
156 if (slot)
157 {
158 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
159 return true;
160 }
161 else
162 return false;
163 }
164
165
166 /* Remove statement T in the current function (cfun) from its
167 EH landing pad. */
168
169 bool
170 remove_stmt_from_eh_lp (gimple t)
171 {
172 return remove_stmt_from_eh_lp_fn (cfun, t);
173 }
174
175 /* Determine if statement T is inside an EH region in function IFUN.
176 Positive numbers indicate a landing pad index; negative numbers
177 indicate a MUST_NOT_THROW region index; zero indicates that the
178 statement is not recorded in the region table. */
179
180 int
181 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
182 {
183 struct throw_stmt_node *p, n;
184
185 if (ifun->eh->throw_stmt_table == NULL)
186 return 0;
187
188 n.stmt = t;
189 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
190 return p ? p->lp_nr : 0;
191 }
192
193 /* Likewise, but always use the current function. */
194
195 int
196 lookup_stmt_eh_lp (gimple t)
197 {
198 /* We can get called from initialized data when -fnon-call-exceptions
199 is on; prevent crash. */
200 if (!cfun)
201 return 0;
202 return lookup_stmt_eh_lp_fn (cfun, t);
203 }
204
205 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
206 nodes and LABEL_DECL nodes. We will use this during the second phase to
207 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
208
209 struct finally_tree_node
210 {
211 /* When storing a GIMPLE_TRY, we have to record a gimple. However
212 when deciding whether a GOTO to a certain LABEL_DECL (which is a
213 tree) leaves the TRY block, its necessary to record a tree in
214 this field. Thus a treemple is used. */
215 treemple child;
216 gimple parent;
217 };
218
219 /* Note that this table is *not* marked GTY. It is short-lived. */
220 static htab_t finally_tree;
221
222 static void
223 record_in_finally_tree (treemple child, gimple parent)
224 {
225 struct finally_tree_node *n;
226 void **slot;
227
228 n = XNEW (struct finally_tree_node);
229 n->child = child;
230 n->parent = parent;
231
232 slot = htab_find_slot (finally_tree, n, INSERT);
233 gcc_assert (!*slot);
234 *slot = n;
235 }
236
237 static void
238 collect_finally_tree (gimple stmt, gimple region);
239
240 /* Go through the gimple sequence. Works with collect_finally_tree to
241 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
242
243 static void
244 collect_finally_tree_1 (gimple_seq seq, gimple region)
245 {
246 gimple_stmt_iterator gsi;
247
248 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
249 collect_finally_tree (gsi_stmt (gsi), region);
250 }
251
252 static void
253 collect_finally_tree (gimple stmt, gimple region)
254 {
255 treemple temp;
256
257 switch (gimple_code (stmt))
258 {
259 case GIMPLE_LABEL:
260 temp.t = gimple_label_label (stmt);
261 record_in_finally_tree (temp, region);
262 break;
263
264 case GIMPLE_TRY:
265 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
266 {
267 temp.g = stmt;
268 record_in_finally_tree (temp, region);
269 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
270 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
271 }
272 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
273 {
274 collect_finally_tree_1 (gimple_try_eval (stmt), region);
275 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
276 }
277 break;
278
279 case GIMPLE_CATCH:
280 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
281 break;
282
283 case GIMPLE_EH_FILTER:
284 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
285 break;
286
287 default:
288 /* A type, a decl, or some kind of statement that we're not
289 interested in. Don't walk them. */
290 break;
291 }
292 }
293
294
295 /* Use the finally tree to determine if a jump from START to TARGET
296 would leave the try_finally node that START lives in. */
297
298 static bool
299 outside_finally_tree (treemple start, gimple target)
300 {
301 struct finally_tree_node n, *p;
302
303 do
304 {
305 n.child = start;
306 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
307 if (!p)
308 return true;
309 start.g = p->parent;
310 }
311 while (start.g != target);
312
313 return false;
314 }
315
316 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
317 nodes into a set of gotos, magic labels, and eh regions.
318 The eh region creation is straight-forward, but frobbing all the gotos
319 and such into shape isn't. */
320
321 /* The sequence into which we record all EH stuff. This will be
322 placed at the end of the function when we're all done. */
323 static gimple_seq eh_seq;
324
325 /* Record whether an EH region contains something that can throw,
326 indexed by EH region number. */
327 static bitmap eh_region_may_contain_throw_map;
328
329 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
330 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
331 The idea is to record a gimple statement for everything except for
332 the conditionals, which get their labels recorded. Since labels are
333 of type 'tree', we need this node to store both gimple and tree
334 objects. REPL_STMT is the sequence used to replace the goto/return
335 statement. CONT_STMT is used to store the statement that allows
336 the return/goto to jump to the original destination. */
337
338 struct goto_queue_node
339 {
340 treemple stmt;
341 gimple_seq repl_stmt;
342 gimple cont_stmt;
343 int index;
344 /* This is used when index >= 0 to indicate that stmt is a label (as
345 opposed to a goto stmt). */
346 int is_label;
347 };
348
349 /* State of the world while lowering. */
350
351 struct leh_state
352 {
353 /* What's "current" while constructing the eh region tree. These
354 correspond to variables of the same name in cfun->eh, which we
355 don't have easy access to. */
356 eh_region cur_region;
357
358 /* What's "current" for the purposes of __builtin_eh_pointer. For
359 a CATCH, this is the associated TRY. For an EH_FILTER, this is
360 the associated ALLOWED_EXCEPTIONS, etc. */
361 eh_region ehp_region;
362
363 /* Processing of TRY_FINALLY requires a bit more state. This is
364 split out into a separate structure so that we don't have to
365 copy so much when processing other nodes. */
366 struct leh_tf_state *tf;
367 };
368
369 struct leh_tf_state
370 {
371 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
372 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
373 this so that outside_finally_tree can reliably reference the tree used
374 in the collect_finally_tree data structures. */
375 gimple try_finally_expr;
376 gimple top_p;
377
378 /* While lowering a top_p usually it is expanded into multiple statements,
379 thus we need the following field to store them. */
380 gimple_seq top_p_seq;
381
382 /* The state outside this try_finally node. */
383 struct leh_state *outer;
384
385 /* The exception region created for it. */
386 eh_region region;
387
388 /* The goto queue. */
389 struct goto_queue_node *goto_queue;
390 size_t goto_queue_size;
391 size_t goto_queue_active;
392
393 /* Pointer map to help in searching goto_queue when it is large. */
394 struct pointer_map_t *goto_queue_map;
395
396 /* The set of unique labels seen as entries in the goto queue. */
397 VEC(tree,heap) *dest_array;
398
399 /* A label to be added at the end of the completed transformed
400 sequence. It will be set if may_fallthru was true *at one time*,
401 though subsequent transformations may have cleared that flag. */
402 tree fallthru_label;
403
404 /* True if it is possible to fall out the bottom of the try block.
405 Cleared if the fallthru is converted to a goto. */
406 bool may_fallthru;
407
408 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
409 bool may_return;
410
411 /* True if the finally block can receive an exception edge.
412 Cleared if the exception case is handled by code duplication. */
413 bool may_throw;
414 };
415
416 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
417
418 /* Search for STMT in the goto queue. Return the replacement,
419 or null if the statement isn't in the queue. */
420
421 #define LARGE_GOTO_QUEUE 20
422
423 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq);
424
425 static gimple_seq
426 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
427 {
428 unsigned int i;
429 void **slot;
430
431 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
432 {
433 for (i = 0; i < tf->goto_queue_active; i++)
434 if ( tf->goto_queue[i].stmt.g == stmt.g)
435 return tf->goto_queue[i].repl_stmt;
436 return NULL;
437 }
438
439 /* If we have a large number of entries in the goto_queue, create a
440 pointer map and use that for searching. */
441
442 if (!tf->goto_queue_map)
443 {
444 tf->goto_queue_map = pointer_map_create ();
445 for (i = 0; i < tf->goto_queue_active; i++)
446 {
447 slot = pointer_map_insert (tf->goto_queue_map,
448 tf->goto_queue[i].stmt.g);
449 gcc_assert (*slot == NULL);
450 *slot = &tf->goto_queue[i];
451 }
452 }
453
454 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
455 if (slot != NULL)
456 return (((struct goto_queue_node *) *slot)->repl_stmt);
457
458 return NULL;
459 }
460
461 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
462 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
463 then we can just splat it in, otherwise we add the new stmts immediately
464 after the GIMPLE_COND and redirect. */
465
466 static void
467 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
468 gimple_stmt_iterator *gsi)
469 {
470 tree label;
471 gimple_seq new_seq;
472 treemple temp;
473 location_t loc = gimple_location (gsi_stmt (*gsi));
474
475 temp.tp = tp;
476 new_seq = find_goto_replacement (tf, temp);
477 if (!new_seq)
478 return;
479
480 if (gimple_seq_singleton_p (new_seq)
481 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
482 {
483 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
484 return;
485 }
486
487 label = create_artificial_label (loc);
488 /* Set the new label for the GIMPLE_COND */
489 *tp = label;
490
491 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
492 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
493 }
494
495 /* The real work of replace_goto_queue. Returns with TSI updated to
496 point to the next statement. */
497
498 static void replace_goto_queue_stmt_list (gimple_seq, struct leh_tf_state *);
499
500 static void
501 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
502 gimple_stmt_iterator *gsi)
503 {
504 gimple_seq seq;
505 treemple temp;
506 temp.g = NULL;
507
508 switch (gimple_code (stmt))
509 {
510 case GIMPLE_GOTO:
511 case GIMPLE_RETURN:
512 temp.g = stmt;
513 seq = find_goto_replacement (tf, temp);
514 if (seq)
515 {
516 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
517 gsi_remove (gsi, false);
518 return;
519 }
520 break;
521
522 case GIMPLE_COND:
523 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
524 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
525 break;
526
527 case GIMPLE_TRY:
528 replace_goto_queue_stmt_list (gimple_try_eval (stmt), tf);
529 replace_goto_queue_stmt_list (gimple_try_cleanup (stmt), tf);
530 break;
531 case GIMPLE_CATCH:
532 replace_goto_queue_stmt_list (gimple_catch_handler (stmt), tf);
533 break;
534 case GIMPLE_EH_FILTER:
535 replace_goto_queue_stmt_list (gimple_eh_filter_failure (stmt), tf);
536 break;
537
538 default:
539 /* These won't have gotos in them. */
540 break;
541 }
542
543 gsi_next (gsi);
544 }
545
546 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
547
548 static void
549 replace_goto_queue_stmt_list (gimple_seq seq, struct leh_tf_state *tf)
550 {
551 gimple_stmt_iterator gsi = gsi_start (seq);
552
553 while (!gsi_end_p (gsi))
554 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
555 }
556
557 /* Replace all goto queue members. */
558
559 static void
560 replace_goto_queue (struct leh_tf_state *tf)
561 {
562 if (tf->goto_queue_active == 0)
563 return;
564 replace_goto_queue_stmt_list (tf->top_p_seq, tf);
565 replace_goto_queue_stmt_list (eh_seq, tf);
566 }
567
568 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
569 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
570 a gimple return. */
571
572 static void
573 record_in_goto_queue (struct leh_tf_state *tf,
574 treemple new_stmt,
575 int index,
576 bool is_label)
577 {
578 size_t active, size;
579 struct goto_queue_node *q;
580
581 gcc_assert (!tf->goto_queue_map);
582
583 active = tf->goto_queue_active;
584 size = tf->goto_queue_size;
585 if (active >= size)
586 {
587 size = (size ? size * 2 : 32);
588 tf->goto_queue_size = size;
589 tf->goto_queue
590 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
591 }
592
593 q = &tf->goto_queue[active];
594 tf->goto_queue_active = active + 1;
595
596 memset (q, 0, sizeof (*q));
597 q->stmt = new_stmt;
598 q->index = index;
599 q->is_label = is_label;
600 }
601
602 /* Record the LABEL label in the goto queue contained in TF.
603 TF is not null. */
604
605 static void
606 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
607 {
608 int index;
609 treemple temp, new_stmt;
610
611 if (!label)
612 return;
613
614 /* Computed and non-local gotos do not get processed. Given
615 their nature we can neither tell whether we've escaped the
616 finally block nor redirect them if we knew. */
617 if (TREE_CODE (label) != LABEL_DECL)
618 return;
619
620 /* No need to record gotos that don't leave the try block. */
621 temp.t = label;
622 if (!outside_finally_tree (temp, tf->try_finally_expr))
623 return;
624
625 if (! tf->dest_array)
626 {
627 tf->dest_array = VEC_alloc (tree, heap, 10);
628 VEC_quick_push (tree, tf->dest_array, label);
629 index = 0;
630 }
631 else
632 {
633 int n = VEC_length (tree, tf->dest_array);
634 for (index = 0; index < n; ++index)
635 if (VEC_index (tree, tf->dest_array, index) == label)
636 break;
637 if (index == n)
638 VEC_safe_push (tree, heap, tf->dest_array, label);
639 }
640
641 /* In the case of a GOTO we want to record the destination label,
642 since with a GIMPLE_COND we have an easy access to the then/else
643 labels. */
644 new_stmt = stmt;
645 record_in_goto_queue (tf, new_stmt, index, true);
646 }
647
648 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
649 node, and if so record that fact in the goto queue associated with that
650 try_finally node. */
651
652 static void
653 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
654 {
655 struct leh_tf_state *tf = state->tf;
656 treemple new_stmt;
657
658 if (!tf)
659 return;
660
661 switch (gimple_code (stmt))
662 {
663 case GIMPLE_COND:
664 new_stmt.tp = gimple_op_ptr (stmt, 2);
665 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
666 new_stmt.tp = gimple_op_ptr (stmt, 3);
667 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
668 break;
669 case GIMPLE_GOTO:
670 new_stmt.g = stmt;
671 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
672 break;
673
674 case GIMPLE_RETURN:
675 tf->may_return = true;
676 new_stmt.g = stmt;
677 record_in_goto_queue (tf, new_stmt, -1, false);
678 break;
679
680 default:
681 gcc_unreachable ();
682 }
683 }
684
685
686 #ifdef ENABLE_CHECKING
687 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
688 was in fact structured, and we've not yet done jump threading, then none
689 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
690
691 static void
692 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
693 {
694 struct leh_tf_state *tf = state->tf;
695 size_t i, n;
696
697 if (!tf)
698 return;
699
700 n = gimple_switch_num_labels (switch_expr);
701
702 for (i = 0; i < n; ++i)
703 {
704 treemple temp;
705 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
706 temp.t = lab;
707 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
708 }
709 }
710 #else
711 #define verify_norecord_switch_expr(state, switch_expr)
712 #endif
713
714 /* Redirect a RETURN_EXPR pointed to by STMT_P to FINLAB. Place in CONT_P
715 whatever is needed to finish the return. If MOD is non-null, insert it
716 before the new branch. RETURN_VALUE_P is a cache containing a temporary
717 variable to be used in manipulating the value returned from the function. */
718
719 static void
720 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
721 tree *return_value_p)
722 {
723 tree ret_expr;
724 gimple x;
725
726 /* In the case of a return, the queue node must be a gimple statement. */
727 gcc_assert (!q->is_label);
728
729 ret_expr = gimple_return_retval (q->stmt.g);
730
731 if (ret_expr)
732 {
733 if (!*return_value_p)
734 *return_value_p = ret_expr;
735 else
736 gcc_assert (*return_value_p == ret_expr);
737 q->cont_stmt = q->stmt.g;
738 /* The nasty part about redirecting the return value is that the
739 return value itself is to be computed before the FINALLY block
740 is executed. e.g.
741
742 int x;
743 int foo (void)
744 {
745 x = 0;
746 try {
747 return x;
748 } finally {
749 x++;
750 }
751 }
752
753 should return 0, not 1. Arrange for this to happen by copying
754 computed the return value into a local temporary. This also
755 allows us to redirect multiple return statements through the
756 same destination block; whether this is a net win or not really
757 depends, I guess, but it does make generation of the switch in
758 lower_try_finally_switch easier. */
759
760 if (TREE_CODE (ret_expr) == RESULT_DECL)
761 {
762 if (!*return_value_p)
763 *return_value_p = ret_expr;
764 else
765 gcc_assert (*return_value_p == ret_expr);
766 q->cont_stmt = q->stmt.g;
767 }
768 else
769 gcc_unreachable ();
770 }
771 else
772 /* If we don't return a value, all return statements are the same. */
773 q->cont_stmt = q->stmt.g;
774
775 if (!q->repl_stmt)
776 q->repl_stmt = gimple_seq_alloc ();
777
778 if (mod)
779 gimple_seq_add_seq (&q->repl_stmt, mod);
780
781 x = gimple_build_goto (finlab);
782 gimple_seq_add_stmt (&q->repl_stmt, x);
783 }
784
785 /* Similar, but easier, for GIMPLE_GOTO. */
786
787 static void
788 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
789 struct leh_tf_state *tf)
790 {
791 gimple x;
792
793 gcc_assert (q->is_label);
794 if (!q->repl_stmt)
795 q->repl_stmt = gimple_seq_alloc ();
796
797 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
798
799 if (mod)
800 gimple_seq_add_seq (&q->repl_stmt, mod);
801
802 x = gimple_build_goto (finlab);
803 gimple_seq_add_stmt (&q->repl_stmt, x);
804 }
805
806 /* Emit a standard landing pad sequence into SEQ for REGION. */
807
808 static void
809 emit_post_landing_pad (gimple_seq *seq, eh_region region)
810 {
811 eh_landing_pad lp = region->landing_pads;
812 gimple x;
813
814 if (lp == NULL)
815 lp = gen_eh_landing_pad (region);
816
817 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
818 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
819
820 x = gimple_build_label (lp->post_landing_pad);
821 gimple_seq_add_stmt (seq, x);
822 }
823
824 /* Emit a RESX statement into SEQ for REGION. */
825
826 static void
827 emit_resx (gimple_seq *seq, eh_region region)
828 {
829 gimple x = gimple_build_resx (region->index);
830 gimple_seq_add_stmt (seq, x);
831 if (region->outer)
832 record_stmt_eh_region (region->outer, x);
833 }
834
835 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
836
837 static void
838 emit_eh_dispatch (gimple_seq *seq, eh_region region)
839 {
840 gimple x = gimple_build_eh_dispatch (region->index);
841 gimple_seq_add_stmt (seq, x);
842 }
843
844 /* Note that the current EH region may contain a throw, or a
845 call to a function which itself may contain a throw. */
846
847 static void
848 note_eh_region_may_contain_throw (eh_region region)
849 {
850 while (!bitmap_bit_p (eh_region_may_contain_throw_map, region->index))
851 {
852 bitmap_set_bit (eh_region_may_contain_throw_map, region->index);
853 region = region->outer;
854 if (region == NULL)
855 break;
856 }
857 }
858
859 /* Check if REGION has been marked as containing a throw. If REGION is
860 NULL, this predicate is false. */
861
862 static inline bool
863 eh_region_may_contain_throw (eh_region r)
864 {
865 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
866 }
867
868 /* We want to transform
869 try { body; } catch { stuff; }
870 to
871 normal_seqence:
872 body;
873 over:
874 eh_seqence:
875 landing_pad:
876 stuff;
877 goto over;
878
879 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
880 should be placed before the second operand, or NULL. OVER is
881 an existing label that should be put at the exit, or NULL. */
882
883 static gimple_seq
884 frob_into_branch_around (gimple tp, eh_region region, tree over)
885 {
886 gimple x;
887 gimple_seq cleanup, result;
888 location_t loc = gimple_location (tp);
889
890 cleanup = gimple_try_cleanup (tp);
891 result = gimple_try_eval (tp);
892
893 if (region)
894 emit_post_landing_pad (&eh_seq, region);
895
896 if (gimple_seq_may_fallthru (cleanup))
897 {
898 if (!over)
899 over = create_artificial_label (loc);
900 x = gimple_build_goto (over);
901 gimple_seq_add_stmt (&cleanup, x);
902 }
903 gimple_seq_add_seq (&eh_seq, cleanup);
904
905 if (over)
906 {
907 x = gimple_build_label (over);
908 gimple_seq_add_stmt (&result, x);
909 }
910 return result;
911 }
912
913 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
914 Make sure to record all new labels found. */
915
916 static gimple_seq
917 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
918 {
919 gimple region = NULL;
920 gimple_seq new_seq;
921
922 new_seq = copy_gimple_seq_and_replace_locals (seq);
923
924 if (outer_state->tf)
925 region = outer_state->tf->try_finally_expr;
926 collect_finally_tree_1 (new_seq, region);
927
928 return new_seq;
929 }
930
931 /* A subroutine of lower_try_finally. Create a fallthru label for
932 the given try_finally state. The only tricky bit here is that
933 we have to make sure to record the label in our outer context. */
934
935 static tree
936 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
937 {
938 tree label = tf->fallthru_label;
939 treemple temp;
940
941 if (!label)
942 {
943 label = create_artificial_label (gimple_location (tf->try_finally_expr));
944 tf->fallthru_label = label;
945 if (tf->outer->tf)
946 {
947 temp.t = label;
948 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
949 }
950 }
951 return label;
952 }
953
954 /* A subroutine of lower_try_finally. If lang_protect_cleanup_actions
955 returns non-null, then the language requires that the exception path out
956 of a try_finally be treated specially. To wit: the code within the
957 finally block may not itself throw an exception. We have two choices here.
958 First we can duplicate the finally block and wrap it in a must_not_throw
959 region. Second, we can generate code like
960
961 try {
962 finally_block;
963 } catch {
964 if (fintmp == eh_edge)
965 protect_cleanup_actions;
966 }
967
968 where "fintmp" is the temporary used in the switch statement generation
969 alternative considered below. For the nonce, we always choose the first
970 option.
971
972 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
973
974 static void
975 honor_protect_cleanup_actions (struct leh_state *outer_state,
976 struct leh_state *this_state,
977 struct leh_tf_state *tf)
978 {
979 tree protect_cleanup_actions;
980 gimple_stmt_iterator gsi;
981 bool finally_may_fallthru;
982 gimple_seq finally;
983 gimple x;
984
985 /* First check for nothing to do. */
986 if (lang_protect_cleanup_actions == NULL)
987 return;
988 protect_cleanup_actions = lang_protect_cleanup_actions ();
989 if (protect_cleanup_actions == NULL)
990 return;
991
992 finally = gimple_try_cleanup (tf->top_p);
993 finally_may_fallthru = gimple_seq_may_fallthru (finally);
994
995 /* Duplicate the FINALLY block. Only need to do this for try-finally,
996 and not for cleanups. */
997 if (this_state)
998 finally = lower_try_finally_dup_block (finally, outer_state);
999
1000 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
1001 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
1002 to be in an enclosing scope, but needs to be implemented at this level
1003 to avoid a nesting violation (see wrap_temporary_cleanups in
1004 cp/decl.c). Since it's logically at an outer level, we should call
1005 terminate before we get to it, so strip it away before adding the
1006 MUST_NOT_THROW filter. */
1007 gsi = gsi_start (finally);
1008 x = gsi_stmt (gsi);
1009 if (gimple_code (x) == GIMPLE_TRY
1010 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
1011 && gimple_try_catch_is_cleanup (x))
1012 {
1013 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
1014 gsi_remove (&gsi, false);
1015 }
1016
1017 /* Wrap the block with protect_cleanup_actions as the action. */
1018 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
1019 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
1020 GIMPLE_TRY_CATCH);
1021 finally = lower_eh_must_not_throw (outer_state, x);
1022
1023 /* Drop all of this into the exception sequence. */
1024 emit_post_landing_pad (&eh_seq, tf->region);
1025 gimple_seq_add_seq (&eh_seq, finally);
1026 if (finally_may_fallthru)
1027 emit_resx (&eh_seq, tf->region);
1028
1029 /* Having now been handled, EH isn't to be considered with
1030 the rest of the outgoing edges. */
1031 tf->may_throw = false;
1032 }
1033
1034 /* A subroutine of lower_try_finally. We have determined that there is
1035 no fallthru edge out of the finally block. This means that there is
1036 no outgoing edge corresponding to any incoming edge. Restructure the
1037 try_finally node for this special case. */
1038
1039 static void
1040 lower_try_finally_nofallthru (struct leh_state *state,
1041 struct leh_tf_state *tf)
1042 {
1043 tree lab, return_val;
1044 gimple x;
1045 gimple_seq finally;
1046 struct goto_queue_node *q, *qe;
1047
1048 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1049
1050 /* We expect that tf->top_p is a GIMPLE_TRY. */
1051 finally = gimple_try_cleanup (tf->top_p);
1052 tf->top_p_seq = gimple_try_eval (tf->top_p);
1053
1054 x = gimple_build_label (lab);
1055 gimple_seq_add_stmt (&tf->top_p_seq, x);
1056
1057 return_val = NULL;
1058 q = tf->goto_queue;
1059 qe = q + tf->goto_queue_active;
1060 for (; q < qe; ++q)
1061 if (q->index < 0)
1062 do_return_redirection (q, lab, NULL, &return_val);
1063 else
1064 do_goto_redirection (q, lab, NULL, tf);
1065
1066 replace_goto_queue (tf);
1067
1068 lower_eh_constructs_1 (state, finally);
1069 gimple_seq_add_seq (&tf->top_p_seq, finally);
1070
1071 if (tf->may_throw)
1072 {
1073 emit_post_landing_pad (&eh_seq, tf->region);
1074
1075 x = gimple_build_goto (lab);
1076 gimple_seq_add_stmt (&eh_seq, x);
1077 }
1078 }
1079
1080 /* A subroutine of lower_try_finally. We have determined that there is
1081 exactly one destination of the finally block. Restructure the
1082 try_finally node for this special case. */
1083
1084 static void
1085 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1086 {
1087 struct goto_queue_node *q, *qe;
1088 gimple x;
1089 gimple_seq finally;
1090 tree finally_label;
1091 location_t loc = gimple_location (tf->try_finally_expr);
1092
1093 finally = gimple_try_cleanup (tf->top_p);
1094 tf->top_p_seq = gimple_try_eval (tf->top_p);
1095
1096 lower_eh_constructs_1 (state, finally);
1097
1098 if (tf->may_throw)
1099 {
1100 /* Only reachable via the exception edge. Add the given label to
1101 the head of the FINALLY block. Append a RESX at the end. */
1102 emit_post_landing_pad (&eh_seq, tf->region);
1103 gimple_seq_add_seq (&eh_seq, finally);
1104 emit_resx (&eh_seq, tf->region);
1105 return;
1106 }
1107
1108 if (tf->may_fallthru)
1109 {
1110 /* Only reachable via the fallthru edge. Do nothing but let
1111 the two blocks run together; we'll fall out the bottom. */
1112 gimple_seq_add_seq (&tf->top_p_seq, finally);
1113 return;
1114 }
1115
1116 finally_label = create_artificial_label (loc);
1117 x = gimple_build_label (finally_label);
1118 gimple_seq_add_stmt (&tf->top_p_seq, x);
1119
1120 gimple_seq_add_seq (&tf->top_p_seq, finally);
1121
1122 q = tf->goto_queue;
1123 qe = q + tf->goto_queue_active;
1124
1125 if (tf->may_return)
1126 {
1127 /* Reachable by return expressions only. Redirect them. */
1128 tree return_val = NULL;
1129 for (; q < qe; ++q)
1130 do_return_redirection (q, finally_label, NULL, &return_val);
1131 replace_goto_queue (tf);
1132 }
1133 else
1134 {
1135 /* Reachable by goto expressions only. Redirect them. */
1136 for (; q < qe; ++q)
1137 do_goto_redirection (q, finally_label, NULL, tf);
1138 replace_goto_queue (tf);
1139
1140 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1141 {
1142 /* Reachable by goto to fallthru label only. Redirect it
1143 to the new label (already created, sadly), and do not
1144 emit the final branch out, or the fallthru label. */
1145 tf->fallthru_label = NULL;
1146 return;
1147 }
1148 }
1149
1150 /* Place the original return/goto to the original destination
1151 immediately after the finally block. */
1152 x = tf->goto_queue[0].cont_stmt;
1153 gimple_seq_add_stmt (&tf->top_p_seq, x);
1154 maybe_record_in_goto_queue (state, x);
1155 }
1156
1157 /* A subroutine of lower_try_finally. There are multiple edges incoming
1158 and outgoing from the finally block. Implement this by duplicating the
1159 finally block for every destination. */
1160
1161 static void
1162 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1163 {
1164 gimple_seq finally;
1165 gimple_seq new_stmt;
1166 gimple_seq seq;
1167 gimple x;
1168 tree tmp;
1169 location_t tf_loc = gimple_location (tf->try_finally_expr);
1170
1171 finally = gimple_try_cleanup (tf->top_p);
1172 tf->top_p_seq = gimple_try_eval (tf->top_p);
1173 new_stmt = NULL;
1174
1175 if (tf->may_fallthru)
1176 {
1177 seq = lower_try_finally_dup_block (finally, state);
1178 lower_eh_constructs_1 (state, seq);
1179 gimple_seq_add_seq (&new_stmt, seq);
1180
1181 tmp = lower_try_finally_fallthru_label (tf);
1182 x = gimple_build_goto (tmp);
1183 gimple_seq_add_stmt (&new_stmt, x);
1184 }
1185
1186 if (tf->may_throw)
1187 {
1188 seq = lower_try_finally_dup_block (finally, state);
1189 lower_eh_constructs_1 (state, seq);
1190
1191 emit_post_landing_pad (&eh_seq, tf->region);
1192 gimple_seq_add_seq (&eh_seq, seq);
1193 emit_resx (&eh_seq, tf->region);
1194 }
1195
1196 if (tf->goto_queue)
1197 {
1198 struct goto_queue_node *q, *qe;
1199 tree return_val = NULL;
1200 int return_index, index;
1201 struct labels_s
1202 {
1203 struct goto_queue_node *q;
1204 tree label;
1205 } *labels;
1206
1207 return_index = VEC_length (tree, tf->dest_array);
1208 labels = XCNEWVEC (struct labels_s, return_index + 1);
1209
1210 q = tf->goto_queue;
1211 qe = q + tf->goto_queue_active;
1212 for (; q < qe; q++)
1213 {
1214 index = q->index < 0 ? return_index : q->index;
1215
1216 if (!labels[index].q)
1217 labels[index].q = q;
1218 }
1219
1220 for (index = 0; index < return_index + 1; index++)
1221 {
1222 tree lab;
1223
1224 q = labels[index].q;
1225 if (! q)
1226 continue;
1227
1228 lab = labels[index].label
1229 = create_artificial_label (tf_loc);
1230
1231 if (index == return_index)
1232 do_return_redirection (q, lab, NULL, &return_val);
1233 else
1234 do_goto_redirection (q, lab, NULL, tf);
1235
1236 x = gimple_build_label (lab);
1237 gimple_seq_add_stmt (&new_stmt, x);
1238
1239 seq = lower_try_finally_dup_block (finally, state);
1240 lower_eh_constructs_1 (state, seq);
1241 gimple_seq_add_seq (&new_stmt, seq);
1242
1243 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1244 maybe_record_in_goto_queue (state, q->cont_stmt);
1245 }
1246
1247 for (q = tf->goto_queue; q < qe; q++)
1248 {
1249 tree lab;
1250
1251 index = q->index < 0 ? return_index : q->index;
1252
1253 if (labels[index].q == q)
1254 continue;
1255
1256 lab = labels[index].label;
1257
1258 if (index == return_index)
1259 do_return_redirection (q, lab, NULL, &return_val);
1260 else
1261 do_goto_redirection (q, lab, NULL, tf);
1262 }
1263
1264 replace_goto_queue (tf);
1265 free (labels);
1266 }
1267
1268 /* Need to link new stmts after running replace_goto_queue due
1269 to not wanting to process the same goto stmts twice. */
1270 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1271 }
1272
1273 /* A subroutine of lower_try_finally. There are multiple edges incoming
1274 and outgoing from the finally block. Implement this by instrumenting
1275 each incoming edge and creating a switch statement at the end of the
1276 finally block that branches to the appropriate destination. */
1277
1278 static void
1279 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1280 {
1281 struct goto_queue_node *q, *qe;
1282 tree return_val = NULL;
1283 tree finally_tmp, finally_label;
1284 int return_index, eh_index, fallthru_index;
1285 int nlabels, ndests, j, last_case_index;
1286 tree last_case;
1287 VEC (tree,heap) *case_label_vec;
1288 gimple_seq switch_body;
1289 gimple x;
1290 tree tmp;
1291 gimple switch_stmt;
1292 gimple_seq finally;
1293 struct pointer_map_t *cont_map = NULL;
1294 /* The location of the TRY_FINALLY stmt. */
1295 location_t tf_loc = gimple_location (tf->try_finally_expr);
1296 /* The location of the finally block. */
1297 location_t finally_loc;
1298
1299 switch_body = gimple_seq_alloc ();
1300
1301 /* Mash the TRY block to the head of the chain. */
1302 finally = gimple_try_cleanup (tf->top_p);
1303 tf->top_p_seq = gimple_try_eval (tf->top_p);
1304
1305 /* The location of the finally is either the last stmt in the finally
1306 block or the location of the TRY_FINALLY itself. */
1307 finally_loc = gimple_seq_last_stmt (tf->top_p_seq) != NULL ?
1308 gimple_location (gimple_seq_last_stmt (tf->top_p_seq))
1309 : tf_loc;
1310
1311 /* Lower the finally block itself. */
1312 lower_eh_constructs_1 (state, finally);
1313
1314 /* Prepare for switch statement generation. */
1315 nlabels = VEC_length (tree, tf->dest_array);
1316 return_index = nlabels;
1317 eh_index = return_index + tf->may_return;
1318 fallthru_index = eh_index + tf->may_throw;
1319 ndests = fallthru_index + tf->may_fallthru;
1320
1321 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1322 finally_label = create_artificial_label (finally_loc);
1323
1324 /* We use VEC_quick_push on case_label_vec throughout this function,
1325 since we know the size in advance and allocate precisely as muce
1326 space as needed. */
1327 case_label_vec = VEC_alloc (tree, heap, ndests);
1328 last_case = NULL;
1329 last_case_index = 0;
1330
1331 /* Begin inserting code for getting to the finally block. Things
1332 are done in this order to correspond to the sequence the code is
1333 layed out. */
1334
1335 if (tf->may_fallthru)
1336 {
1337 x = gimple_build_assign (finally_tmp,
1338 build_int_cst (NULL, fallthru_index));
1339 gimple_seq_add_stmt (&tf->top_p_seq, x);
1340
1341 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1342 build_int_cst (NULL, fallthru_index),
1343 NULL, create_artificial_label (tf_loc));
1344 VEC_quick_push (tree, case_label_vec, last_case);
1345 last_case_index++;
1346
1347 x = gimple_build_label (CASE_LABEL (last_case));
1348 gimple_seq_add_stmt (&switch_body, x);
1349
1350 tmp = lower_try_finally_fallthru_label (tf);
1351 x = gimple_build_goto (tmp);
1352 gimple_seq_add_stmt (&switch_body, x);
1353 }
1354
1355 if (tf->may_throw)
1356 {
1357 emit_post_landing_pad (&eh_seq, tf->region);
1358
1359 x = gimple_build_assign (finally_tmp,
1360 build_int_cst (NULL, eh_index));
1361 gimple_seq_add_stmt (&eh_seq, x);
1362
1363 x = gimple_build_goto (finally_label);
1364 gimple_seq_add_stmt (&eh_seq, x);
1365
1366 last_case = build3 (CASE_LABEL_EXPR, void_type_node,
1367 build_int_cst (NULL, eh_index),
1368 NULL, create_artificial_label (tf_loc));
1369 VEC_quick_push (tree, case_label_vec, last_case);
1370 last_case_index++;
1371
1372 x = gimple_build_label (CASE_LABEL (last_case));
1373 gimple_seq_add_stmt (&eh_seq, x);
1374 emit_resx (&eh_seq, tf->region);
1375 }
1376
1377 x = gimple_build_label (finally_label);
1378 gimple_seq_add_stmt (&tf->top_p_seq, x);
1379
1380 gimple_seq_add_seq (&tf->top_p_seq, finally);
1381
1382 /* Redirect each incoming goto edge. */
1383 q = tf->goto_queue;
1384 qe = q + tf->goto_queue_active;
1385 j = last_case_index + tf->may_return;
1386 /* Prepare the assignments to finally_tmp that are executed upon the
1387 entrance through a particular edge. */
1388 for (; q < qe; ++q)
1389 {
1390 gimple_seq mod;
1391 int switch_id;
1392 unsigned int case_index;
1393
1394 mod = gimple_seq_alloc ();
1395
1396 if (q->index < 0)
1397 {
1398 x = gimple_build_assign (finally_tmp,
1399 build_int_cst (NULL, return_index));
1400 gimple_seq_add_stmt (&mod, x);
1401 do_return_redirection (q, finally_label, mod, &return_val);
1402 switch_id = return_index;
1403 }
1404 else
1405 {
1406 x = gimple_build_assign (finally_tmp,
1407 build_int_cst (NULL, q->index));
1408 gimple_seq_add_stmt (&mod, x);
1409 do_goto_redirection (q, finally_label, mod, tf);
1410 switch_id = q->index;
1411 }
1412
1413 case_index = j + q->index;
1414 if (VEC_length (tree, case_label_vec) <= case_index
1415 || !VEC_index (tree, case_label_vec, case_index))
1416 {
1417 tree case_lab;
1418 void **slot;
1419 case_lab = build3 (CASE_LABEL_EXPR, void_type_node,
1420 build_int_cst (NULL, switch_id),
1421 NULL, NULL);
1422 /* We store the cont_stmt in the pointer map, so that we can recover
1423 it in the loop below. We don't create the new label while
1424 walking the goto_queue because pointers don't offer a stable
1425 order. */
1426 if (!cont_map)
1427 cont_map = pointer_map_create ();
1428 slot = pointer_map_insert (cont_map, case_lab);
1429 *slot = q->cont_stmt;
1430 VEC_quick_push (tree, case_label_vec, case_lab);
1431 }
1432 }
1433 for (j = last_case_index; j < last_case_index + nlabels; j++)
1434 {
1435 tree label;
1436 gimple cont_stmt;
1437 void **slot;
1438
1439 last_case = VEC_index (tree, case_label_vec, j);
1440
1441 gcc_assert (last_case);
1442 gcc_assert (cont_map);
1443
1444 slot = pointer_map_contains (cont_map, last_case);
1445 /* As the comment above suggests, CASE_LABEL (last_case) was just a
1446 placeholder, it does not store an actual label, yet. */
1447 gcc_assert (slot);
1448 cont_stmt = *(gimple *) slot;
1449
1450 label = create_artificial_label (tf_loc);
1451 CASE_LABEL (last_case) = label;
1452
1453 x = gimple_build_label (label);
1454 gimple_seq_add_stmt (&switch_body, x);
1455 gimple_seq_add_stmt (&switch_body, cont_stmt);
1456 maybe_record_in_goto_queue (state, cont_stmt);
1457 }
1458 if (cont_map)
1459 pointer_map_destroy (cont_map);
1460
1461 replace_goto_queue (tf);
1462
1463 /* Make sure that the last case is the default label, as one is required.
1464 Then sort the labels, which is also required in GIMPLE. */
1465 CASE_LOW (last_case) = NULL;
1466 sort_case_labels (case_label_vec);
1467
1468 /* Build the switch statement, setting last_case to be the default
1469 label. */
1470 switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1471 case_label_vec);
1472 gimple_set_location (switch_stmt, finally_loc);
1473
1474 /* Need to link SWITCH_STMT after running replace_goto_queue
1475 due to not wanting to process the same goto stmts twice. */
1476 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1477 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1478 }
1479
1480 /* Decide whether or not we are going to duplicate the finally block.
1481 There are several considerations.
1482
1483 First, if this is Java, then the finally block contains code
1484 written by the user. It has line numbers associated with it,
1485 so duplicating the block means it's difficult to set a breakpoint.
1486 Since controlling code generation via -g is verboten, we simply
1487 never duplicate code without optimization.
1488
1489 Second, we'd like to prevent egregious code growth. One way to
1490 do this is to estimate the size of the finally block, multiply
1491 that by the number of copies we'd need to make, and compare against
1492 the estimate of the size of the switch machinery we'd have to add. */
1493
1494 static bool
1495 decide_copy_try_finally (int ndests, gimple_seq finally)
1496 {
1497 int f_estimate, sw_estimate;
1498
1499 if (!optimize)
1500 return false;
1501
1502 /* Finally estimate N times, plus N gotos. */
1503 f_estimate = count_insns_seq (finally, &eni_size_weights);
1504 f_estimate = (f_estimate + 1) * ndests;
1505
1506 /* Switch statement (cost 10), N variable assignments, N gotos. */
1507 sw_estimate = 10 + 2 * ndests;
1508
1509 /* Optimize for size clearly wants our best guess. */
1510 if (optimize_function_for_size_p (cfun))
1511 return f_estimate < sw_estimate;
1512
1513 /* ??? These numbers are completely made up so far. */
1514 if (optimize > 1)
1515 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1516 else
1517 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1518 }
1519
1520 /* REG is the enclosing region for a possible cleanup region, or the region
1521 itself. Returns TRUE if such a region would be unreachable.
1522
1523 Cleanup regions within a must-not-throw region aren't actually reachable
1524 even if there are throwing stmts within them, because the personality
1525 routine will call terminate before unwinding. */
1526
1527 static bool
1528 cleanup_is_dead_in (eh_region reg)
1529 {
1530 while (reg && reg->type == ERT_CLEANUP)
1531 reg = reg->outer;
1532 return (reg && reg->type == ERT_MUST_NOT_THROW);
1533 }
1534
1535 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1536 to a sequence of labels and blocks, plus the exception region trees
1537 that record all the magic. This is complicated by the need to
1538 arrange for the FINALLY block to be executed on all exits. */
1539
1540 static gimple_seq
1541 lower_try_finally (struct leh_state *state, gimple tp)
1542 {
1543 struct leh_tf_state this_tf;
1544 struct leh_state this_state;
1545 int ndests;
1546 gimple_seq old_eh_seq;
1547
1548 /* Process the try block. */
1549
1550 memset (&this_tf, 0, sizeof (this_tf));
1551 this_tf.try_finally_expr = tp;
1552 this_tf.top_p = tp;
1553 this_tf.outer = state;
1554 if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1555 {
1556 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1557 this_state.cur_region = this_tf.region;
1558 }
1559 else
1560 {
1561 this_tf.region = NULL;
1562 this_state.cur_region = state->cur_region;
1563 }
1564
1565 this_state.ehp_region = state->ehp_region;
1566 this_state.tf = &this_tf;
1567
1568 old_eh_seq = eh_seq;
1569 eh_seq = NULL;
1570
1571 lower_eh_constructs_1 (&this_state, gimple_try_eval(tp));
1572
1573 /* Determine if the try block is escaped through the bottom. */
1574 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1575
1576 /* Determine if any exceptions are possible within the try block. */
1577 if (this_tf.region)
1578 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1579 if (this_tf.may_throw)
1580 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1581
1582 /* Determine how many edges (still) reach the finally block. Or rather,
1583 how many destinations are reached by the finally block. Use this to
1584 determine how we process the finally block itself. */
1585
1586 ndests = VEC_length (tree, this_tf.dest_array);
1587 ndests += this_tf.may_fallthru;
1588 ndests += this_tf.may_return;
1589 ndests += this_tf.may_throw;
1590
1591 /* If the FINALLY block is not reachable, dike it out. */
1592 if (ndests == 0)
1593 {
1594 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1595 gimple_try_set_cleanup (tp, NULL);
1596 }
1597 /* If the finally block doesn't fall through, then any destination
1598 we might try to impose there isn't reached either. There may be
1599 some minor amount of cleanup and redirection still needed. */
1600 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1601 lower_try_finally_nofallthru (state, &this_tf);
1602
1603 /* We can easily special-case redirection to a single destination. */
1604 else if (ndests == 1)
1605 lower_try_finally_onedest (state, &this_tf);
1606 else if (decide_copy_try_finally (ndests, gimple_try_cleanup (tp)))
1607 lower_try_finally_copy (state, &this_tf);
1608 else
1609 lower_try_finally_switch (state, &this_tf);
1610
1611 /* If someone requested we add a label at the end of the transformed
1612 block, do so. */
1613 if (this_tf.fallthru_label)
1614 {
1615 /* This must be reached only if ndests == 0. */
1616 gimple x = gimple_build_label (this_tf.fallthru_label);
1617 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1618 }
1619
1620 VEC_free (tree, heap, this_tf.dest_array);
1621 if (this_tf.goto_queue)
1622 free (this_tf.goto_queue);
1623 if (this_tf.goto_queue_map)
1624 pointer_map_destroy (this_tf.goto_queue_map);
1625
1626 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1627 If there was no old eh_seq, then the append is trivially already done. */
1628 if (old_eh_seq)
1629 {
1630 if (eh_seq == NULL)
1631 eh_seq = old_eh_seq;
1632 else
1633 {
1634 gimple_seq new_eh_seq = eh_seq;
1635 eh_seq = old_eh_seq;
1636 gimple_seq_add_seq(&eh_seq, new_eh_seq);
1637 }
1638 }
1639
1640 return this_tf.top_p_seq;
1641 }
1642
1643 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1644 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1645 exception region trees that records all the magic. */
1646
1647 static gimple_seq
1648 lower_catch (struct leh_state *state, gimple tp)
1649 {
1650 eh_region try_region = NULL;
1651 struct leh_state this_state = *state;
1652 gimple_stmt_iterator gsi;
1653 tree out_label;
1654 gimple_seq new_seq;
1655 gimple x;
1656 location_t try_catch_loc = gimple_location (tp);
1657
1658 if (flag_exceptions)
1659 {
1660 try_region = gen_eh_region_try (state->cur_region);
1661 this_state.cur_region = try_region;
1662 }
1663
1664 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1665
1666 if (!eh_region_may_contain_throw (try_region))
1667 return gimple_try_eval (tp);
1668
1669 new_seq = NULL;
1670 emit_eh_dispatch (&new_seq, try_region);
1671 emit_resx (&new_seq, try_region);
1672
1673 this_state.cur_region = state->cur_region;
1674 this_state.ehp_region = try_region;
1675
1676 out_label = NULL;
1677 for (gsi = gsi_start (gimple_try_cleanup (tp));
1678 !gsi_end_p (gsi);
1679 gsi_next (&gsi))
1680 {
1681 eh_catch c;
1682 gimple gcatch;
1683 gimple_seq handler;
1684
1685 gcatch = gsi_stmt (gsi);
1686 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1687
1688 handler = gimple_catch_handler (gcatch);
1689 lower_eh_constructs_1 (&this_state, handler);
1690
1691 c->label = create_artificial_label (UNKNOWN_LOCATION);
1692 x = gimple_build_label (c->label);
1693 gimple_seq_add_stmt (&new_seq, x);
1694
1695 gimple_seq_add_seq (&new_seq, handler);
1696
1697 if (gimple_seq_may_fallthru (new_seq))
1698 {
1699 if (!out_label)
1700 out_label = create_artificial_label (try_catch_loc);
1701
1702 x = gimple_build_goto (out_label);
1703 gimple_seq_add_stmt (&new_seq, x);
1704 }
1705 if (!c->type_list)
1706 break;
1707 }
1708
1709 gimple_try_set_cleanup (tp, new_seq);
1710
1711 return frob_into_branch_around (tp, try_region, out_label);
1712 }
1713
1714 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1715 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1716 region trees that record all the magic. */
1717
1718 static gimple_seq
1719 lower_eh_filter (struct leh_state *state, gimple tp)
1720 {
1721 struct leh_state this_state = *state;
1722 eh_region this_region = NULL;
1723 gimple inner, x;
1724 gimple_seq new_seq;
1725
1726 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1727
1728 if (flag_exceptions)
1729 {
1730 this_region = gen_eh_region_allowed (state->cur_region,
1731 gimple_eh_filter_types (inner));
1732 this_state.cur_region = this_region;
1733 }
1734
1735 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1736
1737 if (!eh_region_may_contain_throw (this_region))
1738 return gimple_try_eval (tp);
1739
1740 new_seq = NULL;
1741 this_state.cur_region = state->cur_region;
1742 this_state.ehp_region = this_region;
1743
1744 emit_eh_dispatch (&new_seq, this_region);
1745 emit_resx (&new_seq, this_region);
1746
1747 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1748 x = gimple_build_label (this_region->u.allowed.label);
1749 gimple_seq_add_stmt (&new_seq, x);
1750
1751 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure (inner));
1752 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1753
1754 gimple_try_set_cleanup (tp, new_seq);
1755
1756 return frob_into_branch_around (tp, this_region, NULL);
1757 }
1758
1759 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1760 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1761 plus the exception region trees that record all the magic. */
1762
1763 static gimple_seq
1764 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1765 {
1766 struct leh_state this_state = *state;
1767
1768 if (flag_exceptions)
1769 {
1770 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1771 eh_region this_region;
1772
1773 this_region = gen_eh_region_must_not_throw (state->cur_region);
1774 this_region->u.must_not_throw.failure_decl
1775 = gimple_eh_must_not_throw_fndecl (inner);
1776 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1777
1778 /* In order to get mangling applied to this decl, we must mark it
1779 used now. Otherwise, pass_ipa_free_lang_data won't think it
1780 needs to happen. */
1781 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1782
1783 this_state.cur_region = this_region;
1784 }
1785
1786 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1787
1788 return gimple_try_eval (tp);
1789 }
1790
1791 /* Implement a cleanup expression. This is similar to try-finally,
1792 except that we only execute the cleanup block for exception edges. */
1793
1794 static gimple_seq
1795 lower_cleanup (struct leh_state *state, gimple tp)
1796 {
1797 struct leh_state this_state = *state;
1798 eh_region this_region = NULL;
1799 struct leh_tf_state fake_tf;
1800 gimple_seq result;
1801 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1802
1803 if (flag_exceptions && !cleanup_dead)
1804 {
1805 this_region = gen_eh_region_cleanup (state->cur_region);
1806 this_state.cur_region = this_region;
1807 }
1808
1809 lower_eh_constructs_1 (&this_state, gimple_try_eval (tp));
1810
1811 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1812 return gimple_try_eval (tp);
1813
1814 /* Build enough of a try-finally state so that we can reuse
1815 honor_protect_cleanup_actions. */
1816 memset (&fake_tf, 0, sizeof (fake_tf));
1817 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1818 fake_tf.outer = state;
1819 fake_tf.region = this_region;
1820 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1821 fake_tf.may_throw = true;
1822
1823 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1824
1825 if (fake_tf.may_throw)
1826 {
1827 /* In this case honor_protect_cleanup_actions had nothing to do,
1828 and we should process this normally. */
1829 lower_eh_constructs_1 (state, gimple_try_cleanup (tp));
1830 result = frob_into_branch_around (tp, this_region,
1831 fake_tf.fallthru_label);
1832 }
1833 else
1834 {
1835 /* In this case honor_protect_cleanup_actions did nearly all of
1836 the work. All we have left is to append the fallthru_label. */
1837
1838 result = gimple_try_eval (tp);
1839 if (fake_tf.fallthru_label)
1840 {
1841 gimple x = gimple_build_label (fake_tf.fallthru_label);
1842 gimple_seq_add_stmt (&result, x);
1843 }
1844 }
1845 return result;
1846 }
1847
1848 /* Main loop for lowering eh constructs. Also moves gsi to the next
1849 statement. */
1850
1851 static void
1852 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1853 {
1854 gimple_seq replace;
1855 gimple x;
1856 gimple stmt = gsi_stmt (*gsi);
1857
1858 switch (gimple_code (stmt))
1859 {
1860 case GIMPLE_CALL:
1861 {
1862 tree fndecl = gimple_call_fndecl (stmt);
1863 tree rhs, lhs;
1864
1865 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1866 switch (DECL_FUNCTION_CODE (fndecl))
1867 {
1868 case BUILT_IN_EH_POINTER:
1869 /* The front end may have generated a call to
1870 __builtin_eh_pointer (0) within a catch region. Replace
1871 this zero argument with the current catch region number. */
1872 if (state->ehp_region)
1873 {
1874 tree nr = build_int_cst (NULL, state->ehp_region->index);
1875 gimple_call_set_arg (stmt, 0, nr);
1876 }
1877 else
1878 {
1879 /* The user has dome something silly. Remove it. */
1880 rhs = build_int_cst (ptr_type_node, 0);
1881 goto do_replace;
1882 }
1883 break;
1884
1885 case BUILT_IN_EH_FILTER:
1886 /* ??? This should never appear, but since it's a builtin it
1887 is accessible to abuse by users. Just remove it and
1888 replace the use with the arbitrary value zero. */
1889 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1890 do_replace:
1891 lhs = gimple_call_lhs (stmt);
1892 x = gimple_build_assign (lhs, rhs);
1893 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1894 /* FALLTHRU */
1895
1896 case BUILT_IN_EH_COPY_VALUES:
1897 /* Likewise this should not appear. Remove it. */
1898 gsi_remove (gsi, true);
1899 return;
1900
1901 default:
1902 break;
1903 }
1904 }
1905 /* FALLTHRU */
1906
1907 case GIMPLE_ASSIGN:
1908 /* If the stmt can throw use a new temporary for the assignment
1909 to a LHS. This makes sure the old value of the LHS is
1910 available on the EH edge. Only do so for statements that
1911 potentially fall thru (no noreturn calls e.g.), otherwise
1912 this new assignment might create fake fallthru regions. */
1913 if (stmt_could_throw_p (stmt)
1914 && gimple_has_lhs (stmt)
1915 && gimple_stmt_may_fallthru (stmt)
1916 && !tree_could_throw_p (gimple_get_lhs (stmt))
1917 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1918 {
1919 tree lhs = gimple_get_lhs (stmt);
1920 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1921 gimple s = gimple_build_assign (lhs, tmp);
1922 gimple_set_location (s, gimple_location (stmt));
1923 gimple_set_block (s, gimple_block (stmt));
1924 gimple_set_lhs (stmt, tmp);
1925 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1926 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1927 DECL_GIMPLE_REG_P (tmp) = 1;
1928 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1929 }
1930 /* Look for things that can throw exceptions, and record them. */
1931 if (state->cur_region && stmt_could_throw_p (stmt))
1932 {
1933 record_stmt_eh_region (state->cur_region, stmt);
1934 note_eh_region_may_contain_throw (state->cur_region);
1935 }
1936 break;
1937
1938 case GIMPLE_COND:
1939 case GIMPLE_GOTO:
1940 case GIMPLE_RETURN:
1941 maybe_record_in_goto_queue (state, stmt);
1942 break;
1943
1944 case GIMPLE_SWITCH:
1945 verify_norecord_switch_expr (state, stmt);
1946 break;
1947
1948 case GIMPLE_TRY:
1949 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1950 replace = lower_try_finally (state, stmt);
1951 else
1952 {
1953 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1954 if (!x)
1955 {
1956 replace = gimple_try_eval (stmt);
1957 lower_eh_constructs_1 (state, replace);
1958 }
1959 else
1960 switch (gimple_code (x))
1961 {
1962 case GIMPLE_CATCH:
1963 replace = lower_catch (state, stmt);
1964 break;
1965 case GIMPLE_EH_FILTER:
1966 replace = lower_eh_filter (state, stmt);
1967 break;
1968 case GIMPLE_EH_MUST_NOT_THROW:
1969 replace = lower_eh_must_not_throw (state, stmt);
1970 break;
1971 default:
1972 replace = lower_cleanup (state, stmt);
1973 break;
1974 }
1975 }
1976
1977 /* Remove the old stmt and insert the transformed sequence
1978 instead. */
1979 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
1980 gsi_remove (gsi, true);
1981
1982 /* Return since we don't want gsi_next () */
1983 return;
1984
1985 default:
1986 /* A type, a decl, or some kind of statement that we're not
1987 interested in. Don't walk them. */
1988 break;
1989 }
1990
1991 gsi_next (gsi);
1992 }
1993
1994 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
1995
1996 static void
1997 lower_eh_constructs_1 (struct leh_state *state, gimple_seq seq)
1998 {
1999 gimple_stmt_iterator gsi;
2000 for (gsi = gsi_start (seq); !gsi_end_p (gsi);)
2001 lower_eh_constructs_2 (state, &gsi);
2002 }
2003
2004 static unsigned int
2005 lower_eh_constructs (void)
2006 {
2007 struct leh_state null_state;
2008 gimple_seq bodyp;
2009
2010 bodyp = gimple_body (current_function_decl);
2011 if (bodyp == NULL)
2012 return 0;
2013
2014 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2015 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2016 memset (&null_state, 0, sizeof (null_state));
2017
2018 collect_finally_tree_1 (bodyp, NULL);
2019 lower_eh_constructs_1 (&null_state, bodyp);
2020
2021 /* We assume there's a return statement, or something, at the end of
2022 the function, and thus ploping the EH sequence afterward won't
2023 change anything. */
2024 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2025 gimple_seq_add_seq (&bodyp, eh_seq);
2026
2027 /* We assume that since BODYP already existed, adding EH_SEQ to it
2028 didn't change its value, and we don't have to re-set the function. */
2029 gcc_assert (bodyp == gimple_body (current_function_decl));
2030
2031 htab_delete (finally_tree);
2032 BITMAP_FREE (eh_region_may_contain_throw_map);
2033 eh_seq = NULL;
2034
2035 /* If this function needs a language specific EH personality routine
2036 and the frontend didn't already set one do so now. */
2037 if (function_needs_eh_personality (cfun) == eh_personality_lang
2038 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2039 DECL_FUNCTION_PERSONALITY (current_function_decl)
2040 = lang_hooks.eh_personality ();
2041
2042 return 0;
2043 }
2044
2045 struct gimple_opt_pass pass_lower_eh =
2046 {
2047 {
2048 GIMPLE_PASS,
2049 "eh", /* name */
2050 NULL, /* gate */
2051 lower_eh_constructs, /* execute */
2052 NULL, /* sub */
2053 NULL, /* next */
2054 0, /* static_pass_number */
2055 TV_TREE_EH, /* tv_id */
2056 PROP_gimple_lcf, /* properties_required */
2057 PROP_gimple_leh, /* properties_provided */
2058 0, /* properties_destroyed */
2059 0, /* todo_flags_start */
2060 TODO_dump_func /* todo_flags_finish */
2061 }
2062 };
2063 \f
2064 /* Create the multiple edges from an EH_DISPATCH statement to all of
2065 the possible handlers for its EH region. Return true if there's
2066 no fallthru edge; false if there is. */
2067
2068 bool
2069 make_eh_dispatch_edges (gimple stmt)
2070 {
2071 eh_region r;
2072 eh_catch c;
2073 basic_block src, dst;
2074
2075 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2076 src = gimple_bb (stmt);
2077
2078 switch (r->type)
2079 {
2080 case ERT_TRY:
2081 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2082 {
2083 dst = label_to_block (c->label);
2084 make_edge (src, dst, 0);
2085
2086 /* A catch-all handler doesn't have a fallthru. */
2087 if (c->type_list == NULL)
2088 return false;
2089 }
2090 break;
2091
2092 case ERT_ALLOWED_EXCEPTIONS:
2093 dst = label_to_block (r->u.allowed.label);
2094 make_edge (src, dst, 0);
2095 break;
2096
2097 default:
2098 gcc_unreachable ();
2099 }
2100
2101 return true;
2102 }
2103
2104 /* Create the single EH edge from STMT to its nearest landing pad,
2105 if there is such a landing pad within the current function. */
2106
2107 void
2108 make_eh_edges (gimple stmt)
2109 {
2110 basic_block src, dst;
2111 eh_landing_pad lp;
2112 int lp_nr;
2113
2114 lp_nr = lookup_stmt_eh_lp (stmt);
2115 if (lp_nr <= 0)
2116 return;
2117
2118 lp = get_eh_landing_pad_from_number (lp_nr);
2119 gcc_assert (lp != NULL);
2120
2121 src = gimple_bb (stmt);
2122 dst = label_to_block (lp->post_landing_pad);
2123 make_edge (src, dst, EDGE_EH);
2124 }
2125
2126 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2127 do not actually perform the final edge redirection.
2128
2129 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2130 we intend to change the destination EH region as well; this means
2131 EH_LANDING_PAD_NR must already be set on the destination block label.
2132 If false, we're being called from generic cfg manipulation code and we
2133 should preserve our place within the region tree. */
2134
2135 static void
2136 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2137 {
2138 eh_landing_pad old_lp, new_lp;
2139 basic_block old_bb;
2140 gimple throw_stmt;
2141 int old_lp_nr, new_lp_nr;
2142 tree old_label, new_label;
2143 edge_iterator ei;
2144 edge e;
2145
2146 old_bb = edge_in->dest;
2147 old_label = gimple_block_label (old_bb);
2148 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2149 gcc_assert (old_lp_nr > 0);
2150 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2151
2152 throw_stmt = last_stmt (edge_in->src);
2153 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2154
2155 new_label = gimple_block_label (new_bb);
2156
2157 /* Look for an existing region that might be using NEW_BB already. */
2158 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2159 if (new_lp_nr)
2160 {
2161 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2162 gcc_assert (new_lp);
2163
2164 /* Unless CHANGE_REGION is true, the new and old landing pad
2165 had better be associated with the same EH region. */
2166 gcc_assert (change_region || new_lp->region == old_lp->region);
2167 }
2168 else
2169 {
2170 new_lp = NULL;
2171 gcc_assert (!change_region);
2172 }
2173
2174 /* Notice when we redirect the last EH edge away from OLD_BB. */
2175 FOR_EACH_EDGE (e, ei, old_bb->preds)
2176 if (e != edge_in && (e->flags & EDGE_EH))
2177 break;
2178
2179 if (new_lp)
2180 {
2181 /* NEW_LP already exists. If there are still edges into OLD_LP,
2182 there's nothing to do with the EH tree. If there are no more
2183 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2184 If CHANGE_REGION is true, then our caller is expecting to remove
2185 the landing pad. */
2186 if (e == NULL && !change_region)
2187 remove_eh_landing_pad (old_lp);
2188 }
2189 else
2190 {
2191 /* No correct landing pad exists. If there are no more edges
2192 into OLD_LP, then we can simply re-use the existing landing pad.
2193 Otherwise, we have to create a new landing pad. */
2194 if (e == NULL)
2195 {
2196 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2197 new_lp = old_lp;
2198 }
2199 else
2200 new_lp = gen_eh_landing_pad (old_lp->region);
2201 new_lp->post_landing_pad = new_label;
2202 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2203 }
2204
2205 /* Maybe move the throwing statement to the new region. */
2206 if (old_lp != new_lp)
2207 {
2208 remove_stmt_from_eh_lp (throw_stmt);
2209 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2210 }
2211 }
2212
2213 /* Redirect EH edge E to NEW_BB. */
2214
2215 edge
2216 redirect_eh_edge (edge edge_in, basic_block new_bb)
2217 {
2218 redirect_eh_edge_1 (edge_in, new_bb, false);
2219 return ssa_redirect_edge (edge_in, new_bb);
2220 }
2221
2222 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2223 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2224 The actual edge update will happen in the caller. */
2225
2226 void
2227 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2228 {
2229 tree new_lab = gimple_block_label (new_bb);
2230 bool any_changed = false;
2231 basic_block old_bb;
2232 eh_region r;
2233 eh_catch c;
2234
2235 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2236 switch (r->type)
2237 {
2238 case ERT_TRY:
2239 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2240 {
2241 old_bb = label_to_block (c->label);
2242 if (old_bb == e->dest)
2243 {
2244 c->label = new_lab;
2245 any_changed = true;
2246 }
2247 }
2248 break;
2249
2250 case ERT_ALLOWED_EXCEPTIONS:
2251 old_bb = label_to_block (r->u.allowed.label);
2252 gcc_assert (old_bb == e->dest);
2253 r->u.allowed.label = new_lab;
2254 any_changed = true;
2255 break;
2256
2257 default:
2258 gcc_unreachable ();
2259 }
2260
2261 gcc_assert (any_changed);
2262 }
2263 \f
2264 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2265
2266 bool
2267 operation_could_trap_helper_p (enum tree_code op,
2268 bool fp_operation,
2269 bool honor_trapv,
2270 bool honor_nans,
2271 bool honor_snans,
2272 tree divisor,
2273 bool *handled)
2274 {
2275 *handled = true;
2276 switch (op)
2277 {
2278 case TRUNC_DIV_EXPR:
2279 case CEIL_DIV_EXPR:
2280 case FLOOR_DIV_EXPR:
2281 case ROUND_DIV_EXPR:
2282 case EXACT_DIV_EXPR:
2283 case CEIL_MOD_EXPR:
2284 case FLOOR_MOD_EXPR:
2285 case ROUND_MOD_EXPR:
2286 case TRUNC_MOD_EXPR:
2287 case RDIV_EXPR:
2288 if (honor_snans || honor_trapv)
2289 return true;
2290 if (fp_operation)
2291 return flag_trapping_math;
2292 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2293 return true;
2294 return false;
2295
2296 case LT_EXPR:
2297 case LE_EXPR:
2298 case GT_EXPR:
2299 case GE_EXPR:
2300 case LTGT_EXPR:
2301 /* Some floating point comparisons may trap. */
2302 return honor_nans;
2303
2304 case EQ_EXPR:
2305 case NE_EXPR:
2306 case UNORDERED_EXPR:
2307 case ORDERED_EXPR:
2308 case UNLT_EXPR:
2309 case UNLE_EXPR:
2310 case UNGT_EXPR:
2311 case UNGE_EXPR:
2312 case UNEQ_EXPR:
2313 return honor_snans;
2314
2315 case CONVERT_EXPR:
2316 case FIX_TRUNC_EXPR:
2317 /* Conversion of floating point might trap. */
2318 return honor_nans;
2319
2320 case NEGATE_EXPR:
2321 case ABS_EXPR:
2322 case CONJ_EXPR:
2323 /* These operations don't trap with floating point. */
2324 if (honor_trapv)
2325 return true;
2326 return false;
2327
2328 case PLUS_EXPR:
2329 case MINUS_EXPR:
2330 case MULT_EXPR:
2331 /* Any floating arithmetic may trap. */
2332 if (fp_operation && flag_trapping_math)
2333 return true;
2334 if (honor_trapv)
2335 return true;
2336 return false;
2337
2338 default:
2339 /* Any floating arithmetic may trap. */
2340 if (fp_operation && flag_trapping_math)
2341 return true;
2342
2343 *handled = false;
2344 return false;
2345 }
2346 }
2347
2348 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2349 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2350 type operands that may trap. If OP is a division operator, DIVISOR contains
2351 the value of the divisor. */
2352
2353 bool
2354 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2355 tree divisor)
2356 {
2357 bool honor_nans = (fp_operation && flag_trapping_math
2358 && !flag_finite_math_only);
2359 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2360 bool handled;
2361
2362 if (TREE_CODE_CLASS (op) != tcc_comparison
2363 && TREE_CODE_CLASS (op) != tcc_unary
2364 && TREE_CODE_CLASS (op) != tcc_binary)
2365 return false;
2366
2367 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2368 honor_nans, honor_snans, divisor,
2369 &handled);
2370 }
2371
2372 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2373 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2374 This routine expects only GIMPLE lhs or rhs input. */
2375
2376 bool
2377 tree_could_trap_p (tree expr)
2378 {
2379 enum tree_code code;
2380 bool fp_operation = false;
2381 bool honor_trapv = false;
2382 tree t, base, div = NULL_TREE;
2383
2384 if (!expr)
2385 return false;
2386
2387 code = TREE_CODE (expr);
2388 t = TREE_TYPE (expr);
2389
2390 if (t)
2391 {
2392 if (COMPARISON_CLASS_P (expr))
2393 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2394 else
2395 fp_operation = FLOAT_TYPE_P (t);
2396 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2397 }
2398
2399 if (TREE_CODE_CLASS (code) == tcc_binary)
2400 div = TREE_OPERAND (expr, 1);
2401 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2402 return true;
2403
2404 restart:
2405 switch (code)
2406 {
2407 case TARGET_MEM_REF:
2408 /* For TARGET_MEM_REFs use the information based on the original
2409 reference. */
2410 expr = TMR_ORIGINAL (expr);
2411 code = TREE_CODE (expr);
2412 goto restart;
2413
2414 case COMPONENT_REF:
2415 case REALPART_EXPR:
2416 case IMAGPART_EXPR:
2417 case BIT_FIELD_REF:
2418 case VIEW_CONVERT_EXPR:
2419 case WITH_SIZE_EXPR:
2420 expr = TREE_OPERAND (expr, 0);
2421 code = TREE_CODE (expr);
2422 goto restart;
2423
2424 case ARRAY_RANGE_REF:
2425 base = TREE_OPERAND (expr, 0);
2426 if (tree_could_trap_p (base))
2427 return true;
2428 if (TREE_THIS_NOTRAP (expr))
2429 return false;
2430 return !range_in_array_bounds_p (expr);
2431
2432 case ARRAY_REF:
2433 base = TREE_OPERAND (expr, 0);
2434 if (tree_could_trap_p (base))
2435 return true;
2436 if (TREE_THIS_NOTRAP (expr))
2437 return false;
2438 return !in_array_bounds_p (expr);
2439
2440 case INDIRECT_REF:
2441 case ALIGN_INDIRECT_REF:
2442 case MISALIGNED_INDIRECT_REF:
2443 return !TREE_THIS_NOTRAP (expr);
2444
2445 case ASM_EXPR:
2446 return TREE_THIS_VOLATILE (expr);
2447
2448 case CALL_EXPR:
2449 t = get_callee_fndecl (expr);
2450 /* Assume that calls to weak functions may trap. */
2451 if (!t || !DECL_P (t) || DECL_WEAK (t))
2452 return true;
2453 return false;
2454
2455 default:
2456 return false;
2457 }
2458 }
2459
2460
2461 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2462 an assignment or a conditional) may throw. */
2463
2464 static bool
2465 stmt_could_throw_1_p (gimple stmt)
2466 {
2467 enum tree_code code = gimple_expr_code (stmt);
2468 bool honor_nans = false;
2469 bool honor_snans = false;
2470 bool fp_operation = false;
2471 bool honor_trapv = false;
2472 tree t;
2473 size_t i;
2474 bool handled, ret;
2475
2476 if (TREE_CODE_CLASS (code) == tcc_comparison
2477 || TREE_CODE_CLASS (code) == tcc_unary
2478 || TREE_CODE_CLASS (code) == tcc_binary)
2479 {
2480 t = gimple_expr_type (stmt);
2481 fp_operation = FLOAT_TYPE_P (t);
2482 if (fp_operation)
2483 {
2484 honor_nans = flag_trapping_math && !flag_finite_math_only;
2485 honor_snans = flag_signaling_nans != 0;
2486 }
2487 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2488 honor_trapv = true;
2489 }
2490
2491 /* Check if the main expression may trap. */
2492 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2493 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2494 honor_nans, honor_snans, t,
2495 &handled);
2496 if (handled)
2497 return ret;
2498
2499 /* If the expression does not trap, see if any of the individual operands may
2500 trap. */
2501 for (i = 0; i < gimple_num_ops (stmt); i++)
2502 if (tree_could_trap_p (gimple_op (stmt, i)))
2503 return true;
2504
2505 return false;
2506 }
2507
2508
2509 /* Return true if statement STMT could throw an exception. */
2510
2511 bool
2512 stmt_could_throw_p (gimple stmt)
2513 {
2514 if (!flag_exceptions)
2515 return false;
2516
2517 /* The only statements that can throw an exception are assignments,
2518 conditionals, calls, resx, and asms. */
2519 switch (gimple_code (stmt))
2520 {
2521 case GIMPLE_RESX:
2522 return true;
2523
2524 case GIMPLE_CALL:
2525 return !gimple_call_nothrow_p (stmt);
2526
2527 case GIMPLE_ASSIGN:
2528 case GIMPLE_COND:
2529 if (!cfun->can_throw_non_call_exceptions)
2530 return false;
2531 return stmt_could_throw_1_p (stmt);
2532
2533 case GIMPLE_ASM:
2534 if (!cfun->can_throw_non_call_exceptions)
2535 return false;
2536 return gimple_asm_volatile_p (stmt);
2537
2538 default:
2539 return false;
2540 }
2541 }
2542
2543
2544 /* Return true if expression T could throw an exception. */
2545
2546 bool
2547 tree_could_throw_p (tree t)
2548 {
2549 if (!flag_exceptions)
2550 return false;
2551 if (TREE_CODE (t) == MODIFY_EXPR)
2552 {
2553 if (cfun->can_throw_non_call_exceptions
2554 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2555 return true;
2556 t = TREE_OPERAND (t, 1);
2557 }
2558
2559 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2560 t = TREE_OPERAND (t, 0);
2561 if (TREE_CODE (t) == CALL_EXPR)
2562 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2563 if (cfun->can_throw_non_call_exceptions)
2564 return tree_could_trap_p (t);
2565 return false;
2566 }
2567
2568 /* Return true if STMT can throw an exception that is not caught within
2569 the current function (CFUN). */
2570
2571 bool
2572 stmt_can_throw_external (gimple stmt)
2573 {
2574 int lp_nr;
2575
2576 if (!stmt_could_throw_p (stmt))
2577 return false;
2578
2579 lp_nr = lookup_stmt_eh_lp (stmt);
2580 return lp_nr == 0;
2581 }
2582
2583 /* Return true if STMT can throw an exception that is caught within
2584 the current function (CFUN). */
2585
2586 bool
2587 stmt_can_throw_internal (gimple stmt)
2588 {
2589 int lp_nr;
2590
2591 if (!stmt_could_throw_p (stmt))
2592 return false;
2593
2594 lp_nr = lookup_stmt_eh_lp (stmt);
2595 return lp_nr > 0;
2596 }
2597
2598 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2599 remove any entry it might have from the EH table. Return true if
2600 any change was made. */
2601
2602 bool
2603 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2604 {
2605 if (stmt_could_throw_p (stmt))
2606 return false;
2607 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2608 }
2609
2610 /* Likewise, but always use the current function. */
2611
2612 bool
2613 maybe_clean_eh_stmt (gimple stmt)
2614 {
2615 return maybe_clean_eh_stmt_fn (cfun, stmt);
2616 }
2617
2618 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2619 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2620 in the table if it should be in there. Return TRUE if a replacement was
2621 done that my require an EH edge purge. */
2622
2623 bool
2624 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2625 {
2626 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2627
2628 if (lp_nr != 0)
2629 {
2630 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2631
2632 if (new_stmt == old_stmt && new_stmt_could_throw)
2633 return false;
2634
2635 remove_stmt_from_eh_lp (old_stmt);
2636 if (new_stmt_could_throw)
2637 {
2638 add_stmt_to_eh_lp (new_stmt, lp_nr);
2639 return false;
2640 }
2641 else
2642 return true;
2643 }
2644
2645 return false;
2646 }
2647
2648 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statment NEW_STMT
2649 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2650 operand is the return value of duplicate_eh_regions. */
2651
2652 bool
2653 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2654 struct function *old_fun, gimple old_stmt,
2655 struct pointer_map_t *map, int default_lp_nr)
2656 {
2657 int old_lp_nr, new_lp_nr;
2658 void **slot;
2659
2660 if (!stmt_could_throw_p (new_stmt))
2661 return false;
2662
2663 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2664 if (old_lp_nr == 0)
2665 {
2666 if (default_lp_nr == 0)
2667 return false;
2668 new_lp_nr = default_lp_nr;
2669 }
2670 else if (old_lp_nr > 0)
2671 {
2672 eh_landing_pad old_lp, new_lp;
2673
2674 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2675 slot = pointer_map_contains (map, old_lp);
2676 new_lp = (eh_landing_pad) *slot;
2677 new_lp_nr = new_lp->index;
2678 }
2679 else
2680 {
2681 eh_region old_r, new_r;
2682
2683 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2684 slot = pointer_map_contains (map, old_r);
2685 new_r = (eh_region) *slot;
2686 new_lp_nr = -new_r->index;
2687 }
2688
2689 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2690 return true;
2691 }
2692
2693 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2694 and thus no remapping is required. */
2695
2696 bool
2697 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2698 {
2699 int lp_nr;
2700
2701 if (!stmt_could_throw_p (new_stmt))
2702 return false;
2703
2704 lp_nr = lookup_stmt_eh_lp (old_stmt);
2705 if (lp_nr == 0)
2706 return false;
2707
2708 add_stmt_to_eh_lp (new_stmt, lp_nr);
2709 return true;
2710 }
2711 \f
2712 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2713 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2714 this only handles handlers consisting of a single call, as that's the
2715 important case for C++: a destructor call for a particular object showing
2716 up in multiple handlers. */
2717
2718 static bool
2719 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2720 {
2721 gimple_stmt_iterator gsi;
2722 gimple ones, twos;
2723 unsigned int ai;
2724
2725 gsi = gsi_start (oneh);
2726 if (!gsi_one_before_end_p (gsi))
2727 return false;
2728 ones = gsi_stmt (gsi);
2729
2730 gsi = gsi_start (twoh);
2731 if (!gsi_one_before_end_p (gsi))
2732 return false;
2733 twos = gsi_stmt (gsi);
2734
2735 if (!is_gimple_call (ones)
2736 || !is_gimple_call (twos)
2737 || gimple_call_lhs (ones)
2738 || gimple_call_lhs (twos)
2739 || gimple_call_chain (ones)
2740 || gimple_call_chain (twos)
2741 || !operand_equal_p (gimple_call_fn (ones), gimple_call_fn (twos), 0)
2742 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2743 return false;
2744
2745 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2746 if (!operand_equal_p (gimple_call_arg (ones, ai),
2747 gimple_call_arg (twos, ai), 0))
2748 return false;
2749
2750 return true;
2751 }
2752
2753 /* Optimize
2754 try { A() } finally { try { ~B() } catch { ~A() } }
2755 try { ... } finally { ~A() }
2756 into
2757 try { A() } catch { ~B() }
2758 try { ~B() ... } finally { ~A() }
2759
2760 This occurs frequently in C++, where A is a local variable and B is a
2761 temporary used in the initializer for A. */
2762
2763 static void
2764 optimize_double_finally (gimple one, gimple two)
2765 {
2766 gimple oneh;
2767 gimple_stmt_iterator gsi;
2768
2769 gsi = gsi_start (gimple_try_cleanup (one));
2770 if (!gsi_one_before_end_p (gsi))
2771 return;
2772
2773 oneh = gsi_stmt (gsi);
2774 if (gimple_code (oneh) != GIMPLE_TRY
2775 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2776 return;
2777
2778 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2779 {
2780 gimple_seq seq = gimple_try_eval (oneh);
2781
2782 gimple_try_set_cleanup (one, seq);
2783 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2784 seq = copy_gimple_seq_and_replace_locals (seq);
2785 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2786 gimple_try_set_eval (two, seq);
2787 }
2788 }
2789
2790 /* Perform EH refactoring optimizations that are simpler to do when code
2791 flow has been lowered but EH structures haven't. */
2792
2793 static void
2794 refactor_eh_r (gimple_seq seq)
2795 {
2796 gimple_stmt_iterator gsi;
2797 gimple one, two;
2798
2799 one = NULL;
2800 two = NULL;
2801 gsi = gsi_start (seq);
2802 while (1)
2803 {
2804 one = two;
2805 if (gsi_end_p (gsi))
2806 two = NULL;
2807 else
2808 two = gsi_stmt (gsi);
2809 if (one
2810 && two
2811 && gimple_code (one) == GIMPLE_TRY
2812 && gimple_code (two) == GIMPLE_TRY
2813 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2814 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2815 optimize_double_finally (one, two);
2816 if (one)
2817 switch (gimple_code (one))
2818 {
2819 case GIMPLE_TRY:
2820 refactor_eh_r (gimple_try_eval (one));
2821 refactor_eh_r (gimple_try_cleanup (one));
2822 break;
2823 case GIMPLE_CATCH:
2824 refactor_eh_r (gimple_catch_handler (one));
2825 break;
2826 case GIMPLE_EH_FILTER:
2827 refactor_eh_r (gimple_eh_filter_failure (one));
2828 break;
2829 default:
2830 break;
2831 }
2832 if (two)
2833 gsi_next (&gsi);
2834 else
2835 break;
2836 }
2837 }
2838
2839 static unsigned
2840 refactor_eh (void)
2841 {
2842 refactor_eh_r (gimple_body (current_function_decl));
2843 return 0;
2844 }
2845
2846 static bool
2847 gate_refactor_eh (void)
2848 {
2849 return flag_exceptions != 0;
2850 }
2851
2852 struct gimple_opt_pass pass_refactor_eh =
2853 {
2854 {
2855 GIMPLE_PASS,
2856 "ehopt", /* name */
2857 gate_refactor_eh, /* gate */
2858 refactor_eh, /* execute */
2859 NULL, /* sub */
2860 NULL, /* next */
2861 0, /* static_pass_number */
2862 TV_TREE_EH, /* tv_id */
2863 PROP_gimple_lcf, /* properties_required */
2864 0, /* properties_provided */
2865 0, /* properties_destroyed */
2866 0, /* todo_flags_start */
2867 TODO_dump_func /* todo_flags_finish */
2868 }
2869 };
2870 \f
2871 /* At the end of gimple optimization, we can lower RESX. */
2872
2873 static bool
2874 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2875 {
2876 int lp_nr;
2877 eh_region src_r, dst_r;
2878 gimple_stmt_iterator gsi;
2879 gimple x;
2880 tree fn, src_nr;
2881 bool ret = false;
2882
2883 lp_nr = lookup_stmt_eh_lp (stmt);
2884 if (lp_nr != 0)
2885 dst_r = get_eh_region_from_lp_number (lp_nr);
2886 else
2887 dst_r = NULL;
2888
2889 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2890 gsi = gsi_last_bb (bb);
2891
2892 if (src_r == NULL)
2893 {
2894 /* We can wind up with no source region when pass_cleanup_eh shows
2895 that there are no entries into an eh region and deletes it, but
2896 then the block that contains the resx isn't removed. This can
2897 happen without optimization when the switch statement created by
2898 lower_try_finally_switch isn't simplified to remove the eh case.
2899
2900 Resolve this by expanding the resx node to an abort. */
2901
2902 fn = implicit_built_in_decls[BUILT_IN_TRAP];
2903 x = gimple_build_call (fn, 0);
2904 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2905
2906 while (EDGE_COUNT (bb->succs) > 0)
2907 remove_edge (EDGE_SUCC (bb, 0));
2908 }
2909 else if (dst_r)
2910 {
2911 /* When we have a destination region, we resolve this by copying
2912 the excptr and filter values into place, and changing the edge
2913 to immediately after the landing pad. */
2914 edge e;
2915
2916 if (lp_nr < 0)
2917 {
2918 basic_block new_bb;
2919 void **slot;
2920 tree lab;
2921
2922 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
2923 the failure decl into a new block, if needed. */
2924 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
2925
2926 slot = pointer_map_contains (mnt_map, dst_r);
2927 if (slot == NULL)
2928 {
2929 gimple_stmt_iterator gsi2;
2930
2931 new_bb = create_empty_bb (bb);
2932 lab = gimple_block_label (new_bb);
2933 gsi2 = gsi_start_bb (new_bb);
2934
2935 fn = dst_r->u.must_not_throw.failure_decl;
2936 x = gimple_build_call (fn, 0);
2937 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
2938 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
2939
2940 slot = pointer_map_insert (mnt_map, dst_r);
2941 *slot = lab;
2942 }
2943 else
2944 {
2945 lab = (tree) *slot;
2946 new_bb = label_to_block (lab);
2947 }
2948
2949 gcc_assert (EDGE_COUNT (bb->succs) == 0);
2950 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
2951 e->count = bb->count;
2952 e->probability = REG_BR_PROB_BASE;
2953 }
2954 else
2955 {
2956 edge_iterator ei;
2957 tree dst_nr = build_int_cst (NULL, dst_r->index);
2958
2959 fn = implicit_built_in_decls[BUILT_IN_EH_COPY_VALUES];
2960 src_nr = build_int_cst (NULL, src_r->index);
2961 x = gimple_build_call (fn, 2, dst_nr, src_nr);
2962 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2963
2964 /* Update the flags for the outgoing edge. */
2965 e = single_succ_edge (bb);
2966 gcc_assert (e->flags & EDGE_EH);
2967 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
2968
2969 /* If there are no more EH users of the landing pad, delete it. */
2970 FOR_EACH_EDGE (e, ei, e->dest->preds)
2971 if (e->flags & EDGE_EH)
2972 break;
2973 if (e == NULL)
2974 {
2975 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2976 remove_eh_landing_pad (lp);
2977 }
2978 }
2979
2980 ret = true;
2981 }
2982 else
2983 {
2984 tree var;
2985
2986 /* When we don't have a destination region, this exception escapes
2987 up the call chain. We resolve this by generating a call to the
2988 _Unwind_Resume library function. */
2989
2990 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
2991 with no arguments for C++ and Java. Check for that. */
2992 if (src_r->use_cxa_end_cleanup)
2993 {
2994 fn = implicit_built_in_decls[BUILT_IN_CXA_END_CLEANUP];
2995 x = gimple_build_call (fn, 0);
2996 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
2997 }
2998 else
2999 {
3000 fn = implicit_built_in_decls[BUILT_IN_EH_POINTER];
3001 src_nr = build_int_cst (NULL, src_r->index);
3002 x = gimple_build_call (fn, 1, src_nr);
3003 var = create_tmp_var (ptr_type_node, NULL);
3004 var = make_ssa_name (var, x);
3005 gimple_call_set_lhs (x, var);
3006 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3007
3008 fn = implicit_built_in_decls[BUILT_IN_UNWIND_RESUME];
3009 x = gimple_build_call (fn, 1, var);
3010 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3011 }
3012
3013 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3014 }
3015
3016 gsi_remove (&gsi, true);
3017
3018 return ret;
3019 }
3020
3021 static unsigned
3022 execute_lower_resx (void)
3023 {
3024 basic_block bb;
3025 struct pointer_map_t *mnt_map;
3026 bool dominance_invalidated = false;
3027 bool any_rewritten = false;
3028
3029 mnt_map = pointer_map_create ();
3030
3031 FOR_EACH_BB (bb)
3032 {
3033 gimple last = last_stmt (bb);
3034 if (last && is_gimple_resx (last))
3035 {
3036 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3037 any_rewritten = true;
3038 }
3039 }
3040
3041 pointer_map_destroy (mnt_map);
3042
3043 if (dominance_invalidated)
3044 {
3045 free_dominance_info (CDI_DOMINATORS);
3046 free_dominance_info (CDI_POST_DOMINATORS);
3047 }
3048
3049 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3050 }
3051
3052 static bool
3053 gate_lower_resx (void)
3054 {
3055 return flag_exceptions != 0;
3056 }
3057
3058 struct gimple_opt_pass pass_lower_resx =
3059 {
3060 {
3061 GIMPLE_PASS,
3062 "resx", /* name */
3063 gate_lower_resx, /* gate */
3064 execute_lower_resx, /* execute */
3065 NULL, /* sub */
3066 NULL, /* next */
3067 0, /* static_pass_number */
3068 TV_TREE_EH, /* tv_id */
3069 PROP_gimple_lcf, /* properties_required */
3070 0, /* properties_provided */
3071 0, /* properties_destroyed */
3072 0, /* todo_flags_start */
3073 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3074 }
3075 };
3076
3077
3078 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3079 we have found some duplicate labels and removed some edges. */
3080
3081 static bool
3082 lower_eh_dispatch (basic_block src, gimple stmt)
3083 {
3084 gimple_stmt_iterator gsi;
3085 int region_nr;
3086 eh_region r;
3087 tree filter, fn;
3088 gimple x;
3089 bool redirected = false;
3090
3091 region_nr = gimple_eh_dispatch_region (stmt);
3092 r = get_eh_region_from_number (region_nr);
3093
3094 gsi = gsi_last_bb (src);
3095
3096 switch (r->type)
3097 {
3098 case ERT_TRY:
3099 {
3100 VEC (tree, heap) *labels = NULL;
3101 tree default_label = NULL;
3102 eh_catch c;
3103 edge_iterator ei;
3104 edge e;
3105 struct pointer_set_t *seen_values = pointer_set_create ();
3106
3107 /* Collect the labels for a switch. Zero the post_landing_pad
3108 field becase we'll no longer have anything keeping these labels
3109 in existance and the optimizer will be free to merge these
3110 blocks at will. */
3111 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3112 {
3113 tree tp_node, flt_node, lab = c->label;
3114 bool have_label = false;
3115
3116 c->label = NULL;
3117 tp_node = c->type_list;
3118 flt_node = c->filter_list;
3119
3120 if (tp_node == NULL)
3121 {
3122 default_label = lab;
3123 break;
3124 }
3125 do
3126 {
3127 /* Filter out duplicate labels that arise when this handler
3128 is shadowed by an earlier one. When no labels are
3129 attached to the handler anymore, we remove
3130 the corresponding edge and then we delete unreachable
3131 blocks at the end of this pass. */
3132 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3133 {
3134 tree t = build3 (CASE_LABEL_EXPR, void_type_node,
3135 TREE_VALUE (flt_node), NULL, lab);
3136 VEC_safe_push (tree, heap, labels, t);
3137 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3138 have_label = true;
3139 }
3140
3141 tp_node = TREE_CHAIN (tp_node);
3142 flt_node = TREE_CHAIN (flt_node);
3143 }
3144 while (tp_node);
3145 if (! have_label)
3146 {
3147 remove_edge (find_edge (src, label_to_block (lab)));
3148 redirected = true;
3149 }
3150 }
3151
3152 /* Clean up the edge flags. */
3153 FOR_EACH_EDGE (e, ei, src->succs)
3154 {
3155 if (e->flags & EDGE_FALLTHRU)
3156 {
3157 /* If there was no catch-all, use the fallthru edge. */
3158 if (default_label == NULL)
3159 default_label = gimple_block_label (e->dest);
3160 e->flags &= ~EDGE_FALLTHRU;
3161 }
3162 }
3163 gcc_assert (default_label != NULL);
3164
3165 /* Don't generate a switch if there's only a default case.
3166 This is common in the form of try { A; } catch (...) { B; }. */
3167 if (labels == NULL)
3168 {
3169 e = single_succ_edge (src);
3170 e->flags |= EDGE_FALLTHRU;
3171 }
3172 else
3173 {
3174 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3175 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3176 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3177 filter = make_ssa_name (filter, x);
3178 gimple_call_set_lhs (x, filter);
3179 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3180
3181 /* Turn the default label into a default case. */
3182 default_label = build3 (CASE_LABEL_EXPR, void_type_node,
3183 NULL, NULL, default_label);
3184 sort_case_labels (labels);
3185
3186 x = gimple_build_switch_vec (filter, default_label, labels);
3187 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3188
3189 VEC_free (tree, heap, labels);
3190 }
3191 pointer_set_destroy (seen_values);
3192 }
3193 break;
3194
3195 case ERT_ALLOWED_EXCEPTIONS:
3196 {
3197 edge b_e = BRANCH_EDGE (src);
3198 edge f_e = FALLTHRU_EDGE (src);
3199
3200 fn = implicit_built_in_decls[BUILT_IN_EH_FILTER];
3201 x = gimple_build_call (fn, 1, build_int_cst (NULL, region_nr));
3202 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3203 filter = make_ssa_name (filter, x);
3204 gimple_call_set_lhs (x, filter);
3205 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3206
3207 r->u.allowed.label = NULL;
3208 x = gimple_build_cond (EQ_EXPR, filter,
3209 build_int_cst (TREE_TYPE (filter),
3210 r->u.allowed.filter),
3211 NULL_TREE, NULL_TREE);
3212 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3213
3214 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3215 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3216 }
3217 break;
3218
3219 default:
3220 gcc_unreachable ();
3221 }
3222
3223 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3224 gsi_remove (&gsi, true);
3225 return redirected;
3226 }
3227
3228 static unsigned
3229 execute_lower_eh_dispatch (void)
3230 {
3231 basic_block bb;
3232 bool any_rewritten = false;
3233 bool redirected = false;
3234
3235 assign_filter_values ();
3236
3237 FOR_EACH_BB (bb)
3238 {
3239 gimple last = last_stmt (bb);
3240 if (last && gimple_code (last) == GIMPLE_EH_DISPATCH)
3241 {
3242 redirected |= lower_eh_dispatch (bb, last);
3243 any_rewritten = true;
3244 }
3245 }
3246
3247 if (redirected)
3248 delete_unreachable_blocks ();
3249 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3250 }
3251
3252 static bool
3253 gate_lower_eh_dispatch (void)
3254 {
3255 return cfun->eh->region_tree != NULL;
3256 }
3257
3258 struct gimple_opt_pass pass_lower_eh_dispatch =
3259 {
3260 {
3261 GIMPLE_PASS,
3262 "ehdisp", /* name */
3263 gate_lower_eh_dispatch, /* gate */
3264 execute_lower_eh_dispatch, /* execute */
3265 NULL, /* sub */
3266 NULL, /* next */
3267 0, /* static_pass_number */
3268 TV_TREE_EH, /* tv_id */
3269 PROP_gimple_lcf, /* properties_required */
3270 0, /* properties_provided */
3271 0, /* properties_destroyed */
3272 0, /* todo_flags_start */
3273 TODO_dump_func | TODO_verify_flow /* todo_flags_finish */
3274 }
3275 };
3276 \f
3277 /* Walk statements, see what regions are really referenced and remove
3278 those that are unused. */
3279
3280 static void
3281 remove_unreachable_handlers (void)
3282 {
3283 sbitmap r_reachable, lp_reachable;
3284 eh_region region;
3285 eh_landing_pad lp;
3286 basic_block bb;
3287 int lp_nr, r_nr;
3288
3289 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3290 lp_reachable
3291 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3292 sbitmap_zero (r_reachable);
3293 sbitmap_zero (lp_reachable);
3294
3295 FOR_EACH_BB (bb)
3296 {
3297 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3298
3299 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3300 {
3301 gimple stmt = gsi_stmt (gsi);
3302 lp_nr = lookup_stmt_eh_lp (stmt);
3303
3304 /* Negative LP numbers are MUST_NOT_THROW regions which
3305 are not considered BB enders. */
3306 if (lp_nr < 0)
3307 SET_BIT (r_reachable, -lp_nr);
3308
3309 /* Positive LP numbers are real landing pads, are are BB enders. */
3310 else if (lp_nr > 0)
3311 {
3312 gcc_assert (gsi_one_before_end_p (gsi));
3313 region = get_eh_region_from_lp_number (lp_nr);
3314 SET_BIT (r_reachable, region->index);
3315 SET_BIT (lp_reachable, lp_nr);
3316 }
3317 }
3318 }
3319
3320 if (dump_file)
3321 {
3322 fprintf (dump_file, "Before removal of unreachable regions:\n");
3323 dump_eh_tree (dump_file, cfun);
3324 fprintf (dump_file, "Reachable regions: ");
3325 dump_sbitmap_file (dump_file, r_reachable);
3326 fprintf (dump_file, "Reachable landing pads: ");
3327 dump_sbitmap_file (dump_file, lp_reachable);
3328 }
3329
3330 for (r_nr = 1;
3331 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3332 if (region && !TEST_BIT (r_reachable, r_nr))
3333 {
3334 if (dump_file)
3335 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3336 remove_eh_handler (region);
3337 }
3338
3339 for (lp_nr = 1;
3340 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3341 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3342 {
3343 if (dump_file)
3344 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3345 remove_eh_landing_pad (lp);
3346 }
3347
3348 if (dump_file)
3349 {
3350 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3351 dump_eh_tree (dump_file, cfun);
3352 fprintf (dump_file, "\n\n");
3353 }
3354
3355 sbitmap_free (r_reachable);
3356 sbitmap_free (lp_reachable);
3357
3358 #ifdef ENABLE_CHECKING
3359 verify_eh_tree (cfun);
3360 #endif
3361 }
3362
3363 /* Remove regions that do not have landing pads. This assumes
3364 that remove_unreachable_handlers has already been run, and
3365 that we've just manipulated the landing pads since then. */
3366
3367 static void
3368 remove_unreachable_handlers_no_lp (void)
3369 {
3370 eh_region r;
3371 int i;
3372
3373 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3374 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW)
3375 {
3376 if (dump_file)
3377 fprintf (dump_file, "Removing unreachable region %d\n", i);
3378 remove_eh_handler (r);
3379 }
3380 }
3381
3382 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3383 optimisticaly split all sorts of edges, including EH edges. The
3384 optimization passes in between may not have needed them; if not,
3385 we should undo the split.
3386
3387 Recognize this case by having one EH edge incoming to the BB and
3388 one normal edge outgoing; BB should be empty apart from the
3389 post_landing_pad label.
3390
3391 Note that this is slightly different from the empty handler case
3392 handled by cleanup_empty_eh, in that the actual handler may yet
3393 have actual code but the landing pad has been separated from the
3394 handler. As such, cleanup_empty_eh relies on this transformation
3395 having been done first. */
3396
3397 static bool
3398 unsplit_eh (eh_landing_pad lp)
3399 {
3400 basic_block bb = label_to_block (lp->post_landing_pad);
3401 gimple_stmt_iterator gsi;
3402 edge e_in, e_out;
3403
3404 /* Quickly check the edge counts on BB for singularity. */
3405 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3406 return false;
3407 e_in = EDGE_PRED (bb, 0);
3408 e_out = EDGE_SUCC (bb, 0);
3409
3410 /* Input edge must be EH and output edge must be normal. */
3411 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3412 return false;
3413
3414 /* The block must be empty except for the labels and debug insns. */
3415 gsi = gsi_after_labels (bb);
3416 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3417 gsi_next_nondebug (&gsi);
3418 if (!gsi_end_p (gsi))
3419 return false;
3420
3421 /* The destination block must not already have a landing pad
3422 for a different region. */
3423 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3424 {
3425 gimple stmt = gsi_stmt (gsi);
3426 tree lab;
3427 int lp_nr;
3428
3429 if (gimple_code (stmt) != GIMPLE_LABEL)
3430 break;
3431 lab = gimple_label_label (stmt);
3432 lp_nr = EH_LANDING_PAD_NR (lab);
3433 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3434 return false;
3435 }
3436
3437 /* The new destination block must not already be a destination of
3438 the source block, lest we merge fallthru and eh edges and get
3439 all sorts of confused. */
3440 if (find_edge (e_in->src, e_out->dest))
3441 return false;
3442
3443 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3444 thought this should have been cleaned up by a phicprop pass, but
3445 that doesn't appear to handle virtuals. Propagate by hand. */
3446 if (!gimple_seq_empty_p (phi_nodes (bb)))
3447 {
3448 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3449 {
3450 gimple use_stmt, phi = gsi_stmt (gsi);
3451 tree lhs = gimple_phi_result (phi);
3452 tree rhs = gimple_phi_arg_def (phi, 0);
3453 use_operand_p use_p;
3454 imm_use_iterator iter;
3455
3456 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3457 {
3458 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3459 SET_USE (use_p, rhs);
3460 }
3461
3462 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3463 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3464
3465 remove_phi_node (&gsi, true);
3466 }
3467 }
3468
3469 if (dump_file && (dump_flags & TDF_DETAILS))
3470 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3471 lp->index, e_out->dest->index);
3472
3473 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3474 a successor edge, humor it. But do the real CFG change with the
3475 predecessor of E_OUT in order to preserve the ordering of arguments
3476 to the PHI nodes in E_OUT->DEST. */
3477 redirect_eh_edge_1 (e_in, e_out->dest, false);
3478 redirect_edge_pred (e_out, e_in->src);
3479 e_out->flags = e_in->flags;
3480 e_out->probability = e_in->probability;
3481 e_out->count = e_in->count;
3482 remove_edge (e_in);
3483
3484 return true;
3485 }
3486
3487 /* Examine each landing pad block and see if it matches unsplit_eh. */
3488
3489 static bool
3490 unsplit_all_eh (void)
3491 {
3492 bool changed = false;
3493 eh_landing_pad lp;
3494 int i;
3495
3496 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3497 if (lp)
3498 changed |= unsplit_eh (lp);
3499
3500 return changed;
3501 }
3502
3503 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3504 to OLD_BB to NEW_BB; return true on success, false on failure.
3505
3506 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3507 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3508 Virtual PHIs may be deleted and marked for renaming. */
3509
3510 static bool
3511 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3512 edge old_bb_out, bool change_region)
3513 {
3514 gimple_stmt_iterator ngsi, ogsi;
3515 edge_iterator ei;
3516 edge e;
3517 bitmap rename_virts;
3518 bitmap ophi_handled;
3519
3520 FOR_EACH_EDGE (e, ei, old_bb->preds)
3521 redirect_edge_var_map_clear (e);
3522
3523 ophi_handled = BITMAP_ALLOC (NULL);
3524 rename_virts = BITMAP_ALLOC (NULL);
3525
3526 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3527 for the edges we're going to move. */
3528 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3529 {
3530 gimple ophi, nphi = gsi_stmt (ngsi);
3531 tree nresult, nop;
3532
3533 nresult = gimple_phi_result (nphi);
3534 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3535
3536 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3537 the source ssa_name. */
3538 ophi = NULL;
3539 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3540 {
3541 ophi = gsi_stmt (ogsi);
3542 if (gimple_phi_result (ophi) == nop)
3543 break;
3544 ophi = NULL;
3545 }
3546
3547 /* If we did find the corresponding PHI, copy those inputs. */
3548 if (ophi)
3549 {
3550 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3551 FOR_EACH_EDGE (e, ei, old_bb->preds)
3552 {
3553 location_t oloc;
3554 tree oop;
3555
3556 if ((e->flags & EDGE_EH) == 0)
3557 continue;
3558 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3559 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3560 redirect_edge_var_map_add (e, nresult, oop, oloc);
3561 }
3562 }
3563 /* If we didn't find the PHI, but it's a VOP, remember to rename
3564 it later, assuming all other tests succeed. */
3565 else if (!is_gimple_reg (nresult))
3566 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3567 /* If we didn't find the PHI, and it's a real variable, we know
3568 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3569 variable is unchanged from input to the block and we can simply
3570 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3571 else
3572 {
3573 location_t nloc
3574 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3575 FOR_EACH_EDGE (e, ei, old_bb->preds)
3576 redirect_edge_var_map_add (e, nresult, nop, nloc);
3577 }
3578 }
3579
3580 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3581 we don't know what values from the other edges into NEW_BB to use. */
3582 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3583 {
3584 gimple ophi = gsi_stmt (ogsi);
3585 tree oresult = gimple_phi_result (ophi);
3586 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3587 goto fail;
3588 }
3589
3590 /* At this point we know that the merge will succeed. Remove the PHI
3591 nodes for the virtuals that we want to rename. */
3592 if (!bitmap_empty_p (rename_virts))
3593 {
3594 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3595 {
3596 gimple nphi = gsi_stmt (ngsi);
3597 tree nresult = gimple_phi_result (nphi);
3598 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3599 {
3600 mark_virtual_phi_result_for_renaming (nphi);
3601 remove_phi_node (&ngsi, true);
3602 }
3603 else
3604 gsi_next (&ngsi);
3605 }
3606 }
3607
3608 /* Finally, move the edges and update the PHIs. */
3609 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3610 if (e->flags & EDGE_EH)
3611 {
3612 redirect_eh_edge_1 (e, new_bb, change_region);
3613 redirect_edge_succ (e, new_bb);
3614 flush_pending_stmts (e);
3615 }
3616 else
3617 ei_next (&ei);
3618
3619 BITMAP_FREE (ophi_handled);
3620 BITMAP_FREE (rename_virts);
3621 return true;
3622
3623 fail:
3624 FOR_EACH_EDGE (e, ei, old_bb->preds)
3625 redirect_edge_var_map_clear (e);
3626 BITMAP_FREE (ophi_handled);
3627 BITMAP_FREE (rename_virts);
3628 return false;
3629 }
3630
3631 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3632 old region to NEW_REGION at BB. */
3633
3634 static void
3635 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3636 eh_landing_pad lp, eh_region new_region)
3637 {
3638 gimple_stmt_iterator gsi;
3639 eh_landing_pad *pp;
3640
3641 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3642 continue;
3643 *pp = lp->next_lp;
3644
3645 lp->region = new_region;
3646 lp->next_lp = new_region->landing_pads;
3647 new_region->landing_pads = lp;
3648
3649 /* Delete the RESX that was matched within the empty handler block. */
3650 gsi = gsi_last_bb (bb);
3651 mark_virtual_ops_for_renaming (gsi_stmt (gsi));
3652 gsi_remove (&gsi, true);
3653
3654 /* Clean up E_OUT for the fallthru. */
3655 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3656 e_out->probability = REG_BR_PROB_BASE;
3657 }
3658
3659 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3660 unsplitting than unsplit_eh was prepared to handle, e.g. when
3661 multiple incoming edges and phis are involved. */
3662
3663 static bool
3664 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3665 {
3666 gimple_stmt_iterator gsi;
3667 tree lab;
3668
3669 /* We really ought not have totally lost everything following
3670 a landing pad label. Given that BB is empty, there had better
3671 be a successor. */
3672 gcc_assert (e_out != NULL);
3673
3674 /* The destination block must not already have a landing pad
3675 for a different region. */
3676 lab = NULL;
3677 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3678 {
3679 gimple stmt = gsi_stmt (gsi);
3680 int lp_nr;
3681
3682 if (gimple_code (stmt) != GIMPLE_LABEL)
3683 break;
3684 lab = gimple_label_label (stmt);
3685 lp_nr = EH_LANDING_PAD_NR (lab);
3686 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3687 return false;
3688 }
3689
3690 /* Attempt to move the PHIs into the successor block. */
3691 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
3692 {
3693 if (dump_file && (dump_flags & TDF_DETAILS))
3694 fprintf (dump_file,
3695 "Unsplit EH landing pad %d to block %i "
3696 "(via cleanup_empty_eh).\n",
3697 lp->index, e_out->dest->index);
3698 return true;
3699 }
3700
3701 return false;
3702 }
3703
3704 /* Examine the block associated with LP to determine if it's an empty
3705 handler for its EH region. If so, attempt to redirect EH edges to
3706 an outer region. Return true the CFG was updated in any way. This
3707 is similar to jump forwarding, just across EH edges. */
3708
3709 static bool
3710 cleanup_empty_eh (eh_landing_pad lp)
3711 {
3712 basic_block bb = label_to_block (lp->post_landing_pad);
3713 gimple_stmt_iterator gsi;
3714 gimple resx;
3715 eh_region new_region;
3716 edge_iterator ei;
3717 edge e, e_out;
3718 bool has_non_eh_pred;
3719 int new_lp_nr;
3720
3721 /* There can be zero or one edges out of BB. This is the quickest test. */
3722 switch (EDGE_COUNT (bb->succs))
3723 {
3724 case 0:
3725 e_out = NULL;
3726 break;
3727 case 1:
3728 e_out = EDGE_SUCC (bb, 0);
3729 break;
3730 default:
3731 return false;
3732 }
3733 gsi = gsi_after_labels (bb);
3734
3735 /* Make sure to skip debug statements. */
3736 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3737 gsi_next_nondebug (&gsi);
3738
3739 /* If the block is totally empty, look for more unsplitting cases. */
3740 if (gsi_end_p (gsi))
3741 return cleanup_empty_eh_unsplit (bb, e_out, lp);
3742
3743 /* The block should consist only of a single RESX statement. */
3744 resx = gsi_stmt (gsi);
3745 if (!is_gimple_resx (resx))
3746 return false;
3747 gcc_assert (gsi_one_before_end_p (gsi));
3748
3749 /* Determine if there are non-EH edges, or resx edges into the handler. */
3750 has_non_eh_pred = false;
3751 FOR_EACH_EDGE (e, ei, bb->preds)
3752 if (!(e->flags & EDGE_EH))
3753 has_non_eh_pred = true;
3754
3755 /* Find the handler that's outer of the empty handler by looking at
3756 where the RESX instruction was vectored. */
3757 new_lp_nr = lookup_stmt_eh_lp (resx);
3758 new_region = get_eh_region_from_lp_number (new_lp_nr);
3759
3760 /* If there's no destination region within the current function,
3761 redirection is trivial via removing the throwing statements from
3762 the EH region, removing the EH edges, and allowing the block
3763 to go unreachable. */
3764 if (new_region == NULL)
3765 {
3766 gcc_assert (e_out == NULL);
3767 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3768 if (e->flags & EDGE_EH)
3769 {
3770 gimple stmt = last_stmt (e->src);
3771 remove_stmt_from_eh_lp (stmt);
3772 remove_edge (e);
3773 }
3774 else
3775 ei_next (&ei);
3776 goto succeed;
3777 }
3778
3779 /* If the destination region is a MUST_NOT_THROW, allow the runtime
3780 to handle the abort and allow the blocks to go unreachable. */
3781 if (new_region->type == ERT_MUST_NOT_THROW)
3782 {
3783 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3784 if (e->flags & EDGE_EH)
3785 {
3786 gimple stmt = last_stmt (e->src);
3787 remove_stmt_from_eh_lp (stmt);
3788 add_stmt_to_eh_lp (stmt, new_lp_nr);
3789 remove_edge (e);
3790 }
3791 else
3792 ei_next (&ei);
3793 goto succeed;
3794 }
3795
3796 /* Try to redirect the EH edges and merge the PHIs into the destination
3797 landing pad block. If the merge succeeds, we'll already have redirected
3798 all the EH edges. The handler itself will go unreachable if there were
3799 no normal edges. */
3800 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
3801 goto succeed;
3802
3803 /* Finally, if all input edges are EH edges, then we can (potentially)
3804 reduce the number of transfers from the runtime by moving the landing
3805 pad from the original region to the new region. This is a win when
3806 we remove the last CLEANUP region along a particular exception
3807 propagation path. Since nothing changes except for the region with
3808 which the landing pad is associated, the PHI nodes do not need to be
3809 adjusted at all. */
3810 if (!has_non_eh_pred)
3811 {
3812 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
3813 if (dump_file && (dump_flags & TDF_DETAILS))
3814 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
3815 lp->index, new_region->index);
3816
3817 /* ??? The CFG didn't change, but we may have rendered the
3818 old EH region unreachable. Trigger a cleanup there. */
3819 return true;
3820 }
3821
3822 return false;
3823
3824 succeed:
3825 if (dump_file && (dump_flags & TDF_DETAILS))
3826 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
3827 remove_eh_landing_pad (lp);
3828 return true;
3829 }
3830
3831 /* Do a post-order traversal of the EH region tree. Examine each
3832 post_landing_pad block and see if we can eliminate it as empty. */
3833
3834 static bool
3835 cleanup_all_empty_eh (void)
3836 {
3837 bool changed = false;
3838 eh_landing_pad lp;
3839 int i;
3840
3841 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3842 if (lp)
3843 changed |= cleanup_empty_eh (lp);
3844
3845 return changed;
3846 }
3847
3848 /* Perform cleanups and lowering of exception handling
3849 1) cleanups regions with handlers doing nothing are optimized out
3850 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
3851 3) Info about regions that are containing instructions, and regions
3852 reachable via local EH edges is collected
3853 4) Eh tree is pruned for regions no longer neccesary.
3854
3855 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
3856 Unify those that have the same failure decl and locus.
3857 */
3858
3859 static unsigned int
3860 execute_cleanup_eh_1 (void)
3861 {
3862 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
3863 looking up unreachable landing pads. */
3864 remove_unreachable_handlers ();
3865
3866 /* Watch out for the region tree vanishing due to all unreachable. */
3867 if (cfun->eh->region_tree && optimize)
3868 {
3869 bool changed = false;
3870
3871 changed |= unsplit_all_eh ();
3872 changed |= cleanup_all_empty_eh ();
3873
3874 if (changed)
3875 {
3876 free_dominance_info (CDI_DOMINATORS);
3877 free_dominance_info (CDI_POST_DOMINATORS);
3878
3879 /* We delayed all basic block deletion, as we may have performed
3880 cleanups on EH edges while non-EH edges were still present. */
3881 delete_unreachable_blocks ();
3882
3883 /* We manipulated the landing pads. Remove any region that no
3884 longer has a landing pad. */
3885 remove_unreachable_handlers_no_lp ();
3886
3887 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
3888 }
3889 }
3890
3891 return 0;
3892 }
3893
3894 static unsigned int
3895 execute_cleanup_eh (void)
3896 {
3897 int ret = execute_cleanup_eh_1 ();
3898
3899 /* If the function no longer needs an EH personality routine
3900 clear it. This exposes cross-language inlining opportunities
3901 and avoids references to a never defined personality routine. */
3902 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
3903 && function_needs_eh_personality (cfun) != eh_personality_lang)
3904 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
3905
3906 return ret;
3907 }
3908
3909 static bool
3910 gate_cleanup_eh (void)
3911 {
3912 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
3913 }
3914
3915 struct gimple_opt_pass pass_cleanup_eh = {
3916 {
3917 GIMPLE_PASS,
3918 "ehcleanup", /* name */
3919 gate_cleanup_eh, /* gate */
3920 execute_cleanup_eh, /* execute */
3921 NULL, /* sub */
3922 NULL, /* next */
3923 0, /* static_pass_number */
3924 TV_TREE_EH, /* tv_id */
3925 PROP_gimple_lcf, /* properties_required */
3926 0, /* properties_provided */
3927 0, /* properties_destroyed */
3928 0, /* todo_flags_start */
3929 TODO_dump_func /* todo_flags_finish */
3930 }
3931 };
3932 \f
3933 /* Verify that BB containing STMT as the last statement, has precisely the
3934 edge that make_eh_edges would create. */
3935
3936 DEBUG_FUNCTION bool
3937 verify_eh_edges (gimple stmt)
3938 {
3939 basic_block bb = gimple_bb (stmt);
3940 eh_landing_pad lp = NULL;
3941 int lp_nr;
3942 edge_iterator ei;
3943 edge e, eh_edge;
3944
3945 lp_nr = lookup_stmt_eh_lp (stmt);
3946 if (lp_nr > 0)
3947 lp = get_eh_landing_pad_from_number (lp_nr);
3948
3949 eh_edge = NULL;
3950 FOR_EACH_EDGE (e, ei, bb->succs)
3951 {
3952 if (e->flags & EDGE_EH)
3953 {
3954 if (eh_edge)
3955 {
3956 error ("BB %i has multiple EH edges", bb->index);
3957 return true;
3958 }
3959 else
3960 eh_edge = e;
3961 }
3962 }
3963
3964 if (lp == NULL)
3965 {
3966 if (eh_edge)
3967 {
3968 error ("BB %i can not throw but has an EH edge", bb->index);
3969 return true;
3970 }
3971 return false;
3972 }
3973
3974 if (!stmt_could_throw_p (stmt))
3975 {
3976 error ("BB %i last statement has incorrectly set lp", bb->index);
3977 return true;
3978 }
3979
3980 if (eh_edge == NULL)
3981 {
3982 error ("BB %i is missing an EH edge", bb->index);
3983 return true;
3984 }
3985
3986 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
3987 {
3988 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
3989 return true;
3990 }
3991
3992 return false;
3993 }
3994
3995 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
3996
3997 DEBUG_FUNCTION bool
3998 verify_eh_dispatch_edge (gimple stmt)
3999 {
4000 eh_region r;
4001 eh_catch c;
4002 basic_block src, dst;
4003 bool want_fallthru = true;
4004 edge_iterator ei;
4005 edge e, fall_edge;
4006
4007 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4008 src = gimple_bb (stmt);
4009
4010 FOR_EACH_EDGE (e, ei, src->succs)
4011 gcc_assert (e->aux == NULL);
4012
4013 switch (r->type)
4014 {
4015 case ERT_TRY:
4016 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4017 {
4018 dst = label_to_block (c->label);
4019 e = find_edge (src, dst);
4020 if (e == NULL)
4021 {
4022 error ("BB %i is missing an edge", src->index);
4023 return true;
4024 }
4025 e->aux = (void *)e;
4026
4027 /* A catch-all handler doesn't have a fallthru. */
4028 if (c->type_list == NULL)
4029 {
4030 want_fallthru = false;
4031 break;
4032 }
4033 }
4034 break;
4035
4036 case ERT_ALLOWED_EXCEPTIONS:
4037 dst = label_to_block (r->u.allowed.label);
4038 e = find_edge (src, dst);
4039 if (e == NULL)
4040 {
4041 error ("BB %i is missing an edge", src->index);
4042 return true;
4043 }
4044 e->aux = (void *)e;
4045 break;
4046
4047 default:
4048 gcc_unreachable ();
4049 }
4050
4051 fall_edge = NULL;
4052 FOR_EACH_EDGE (e, ei, src->succs)
4053 {
4054 if (e->flags & EDGE_FALLTHRU)
4055 {
4056 if (fall_edge != NULL)
4057 {
4058 error ("BB %i too many fallthru edges", src->index);
4059 return true;
4060 }
4061 fall_edge = e;
4062 }
4063 else if (e->aux)
4064 e->aux = NULL;
4065 else
4066 {
4067 error ("BB %i has incorrect edge", src->index);
4068 return true;
4069 }
4070 }
4071 if ((fall_edge != NULL) ^ want_fallthru)
4072 {
4073 error ("BB %i has incorrect fallthru edge", src->index);
4074 return true;
4075 }
4076
4077 return false;
4078 }