]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vectorizer.h
Update copyright years.
[thirdparty/gcc.git] / gcc / tree-vectorizer.h
1 /* Vectorizer
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
23
24 #include "tree-data-ref.h"
25 #include "tree-hash-traits.h"
26 #include "target.h"
27
28 /* Used for naming of new temporaries. */
29 enum vect_var_kind {
30 vect_simple_var,
31 vect_pointer_var,
32 vect_scalar_var,
33 vect_mask_var
34 };
35
36 /* Defines type of operation. */
37 enum operation_type {
38 unary_op = 1,
39 binary_op,
40 ternary_op
41 };
42
43 /* Define type of available alignment support. */
44 enum dr_alignment_support {
45 dr_unaligned_unsupported,
46 dr_unaligned_supported,
47 dr_explicit_realign,
48 dr_explicit_realign_optimized,
49 dr_aligned
50 };
51
52 /* Define type of def-use cross-iteration cycle. */
53 enum vect_def_type {
54 vect_uninitialized_def = 0,
55 vect_constant_def = 1,
56 vect_external_def,
57 vect_internal_def,
58 vect_induction_def,
59 vect_reduction_def,
60 vect_double_reduction_def,
61 vect_nested_cycle,
62 vect_unknown_def_type
63 };
64
65 /* Define type of reduction. */
66 enum vect_reduction_type {
67 TREE_CODE_REDUCTION,
68 COND_REDUCTION,
69 INTEGER_INDUC_COND_REDUCTION,
70 CONST_COND_REDUCTION
71 };
72
73 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
74 || ((D) == vect_double_reduction_def) \
75 || ((D) == vect_nested_cycle))
76
77 /* Structure to encapsulate information about a group of like
78 instructions to be presented to the target cost model. */
79 struct stmt_info_for_cost {
80 int count;
81 enum vect_cost_for_stmt kind;
82 gimple *stmt;
83 int misalign;
84 };
85
86 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
87
88 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
89 known alignment for that base. */
90 typedef hash_map<tree_operand_hash,
91 innermost_loop_behavior *> vec_base_alignments;
92
93 /************************************************************************
94 SLP
95 ************************************************************************/
96 typedef struct _slp_tree *slp_tree;
97
98 /* A computation tree of an SLP instance. Each node corresponds to a group of
99 stmts to be packed in a SIMD stmt. */
100 struct _slp_tree {
101 /* Nodes that contain def-stmts of this node statements operands. */
102 vec<slp_tree> children;
103 /* A group of scalar stmts to be vectorized together. */
104 vec<gimple *> stmts;
105 /* Load permutation relative to the stores, NULL if there is no
106 permutation. */
107 vec<unsigned> load_permutation;
108 /* Vectorized stmt/s. */
109 vec<gimple *> vec_stmts;
110 /* Number of vector stmts that are created to replace the group of scalar
111 stmts. It is calculated during the transformation phase as the number of
112 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
113 divided by vector size. */
114 unsigned int vec_stmts_size;
115 /* Whether the scalar computations use two different operators. */
116 bool two_operators;
117 /* The DEF type of this node. */
118 enum vect_def_type def_type;
119 };
120
121
122 /* SLP instance is a sequence of stmts in a loop that can be packed into
123 SIMD stmts. */
124 typedef struct _slp_instance {
125 /* The root of SLP tree. */
126 slp_tree root;
127
128 /* Size of groups of scalar stmts that will be replaced by SIMD stmt/s. */
129 unsigned int group_size;
130
131 /* The unrolling factor required to vectorized this SLP instance. */
132 poly_uint64 unrolling_factor;
133
134 /* The group of nodes that contain loads of this SLP instance. */
135 vec<slp_tree> loads;
136
137 /* The SLP node containing the reduction PHIs. */
138 slp_tree reduc_phis;
139 } *slp_instance;
140
141
142 /* Access Functions. */
143 #define SLP_INSTANCE_TREE(S) (S)->root
144 #define SLP_INSTANCE_GROUP_SIZE(S) (S)->group_size
145 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
146 #define SLP_INSTANCE_LOADS(S) (S)->loads
147
148 #define SLP_TREE_CHILDREN(S) (S)->children
149 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
150 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
151 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
152 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
153 #define SLP_TREE_TWO_OPERATORS(S) (S)->two_operators
154 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
155
156
157
158 /* Describes two objects whose addresses must be unequal for the vectorized
159 loop to be valid. */
160 typedef std::pair<tree, tree> vec_object_pair;
161
162 /* Vectorizer state common between loop and basic-block vectorization. */
163 struct vec_info {
164 enum vec_kind { bb, loop };
165
166 vec_info (vec_kind, void *);
167 ~vec_info ();
168
169 /* The type of vectorization. */
170 vec_kind kind;
171
172 /* All SLP instances. */
173 auto_vec<slp_instance> slp_instances;
174
175 /* All data references. Freed by free_data_refs, so not an auto_vec. */
176 vec<data_reference_p> datarefs;
177
178 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
179 known alignment for that base. */
180 vec_base_alignments base_alignments;
181
182 /* All data dependences. Freed by free_dependence_relations, so not
183 an auto_vec. */
184 vec<ddr_p> ddrs;
185
186 /* All interleaving chains of stores, represented by the first
187 stmt in the chain. */
188 auto_vec<gimple *> grouped_stores;
189
190 /* Cost data used by the target cost model. */
191 void *target_cost_data;
192 };
193
194 struct _loop_vec_info;
195 struct _bb_vec_info;
196
197 template<>
198 template<>
199 inline bool
200 is_a_helper <_loop_vec_info *>::test (vec_info *i)
201 {
202 return i->kind == vec_info::loop;
203 }
204
205 template<>
206 template<>
207 inline bool
208 is_a_helper <_bb_vec_info *>::test (vec_info *i)
209 {
210 return i->kind == vec_info::bb;
211 }
212
213
214 /*-----------------------------------------------------------------*/
215 /* Info on vectorized loops. */
216 /*-----------------------------------------------------------------*/
217 typedef struct _loop_vec_info : public vec_info {
218 _loop_vec_info (struct loop *);
219 ~_loop_vec_info ();
220
221 /* The loop to which this info struct refers to. */
222 struct loop *loop;
223
224 /* The loop basic blocks. */
225 basic_block *bbs;
226
227 /* Number of latch executions. */
228 tree num_itersm1;
229 /* Number of iterations. */
230 tree num_iters;
231 /* Number of iterations of the original loop. */
232 tree num_iters_unchanged;
233 /* Condition under which this loop is analyzed and versioned. */
234 tree num_iters_assumptions;
235
236 /* Threshold of number of iterations below which vectorzation will not be
237 performed. It is calculated from MIN_PROFITABLE_ITERS and
238 PARAM_MIN_VECT_LOOP_BOUND. */
239 unsigned int th;
240
241 /* When applying loop versioning, the vector form should only be used
242 if the number of scalar iterations is >= this value, on top of all
243 the other requirements. Ignored when loop versioning is not being
244 used. */
245 poly_uint64 versioning_threshold;
246
247 /* Unrolling factor */
248 poly_uint64 vectorization_factor;
249
250 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
251 if there is no particular limit. */
252 unsigned HOST_WIDE_INT max_vectorization_factor;
253
254 /* Unknown DRs according to which loop was peeled. */
255 struct data_reference *unaligned_dr;
256
257 /* peeling_for_alignment indicates whether peeling for alignment will take
258 place, and what the peeling factor should be:
259 peeling_for_alignment = X means:
260 If X=0: Peeling for alignment will not be applied.
261 If X>0: Peel first X iterations.
262 If X=-1: Generate a runtime test to calculate the number of iterations
263 to be peeled, using the dataref recorded in the field
264 unaligned_dr. */
265 int peeling_for_alignment;
266
267 /* The mask used to check the alignment of pointers or arrays. */
268 int ptr_mask;
269
270 /* The loop nest in which the data dependences are computed. */
271 auto_vec<loop_p> loop_nest;
272
273 /* Data Dependence Relations defining address ranges that are candidates
274 for a run-time aliasing check. */
275 auto_vec<ddr_p> may_alias_ddrs;
276
277 /* Data Dependence Relations defining address ranges together with segment
278 lengths from which the run-time aliasing check is built. */
279 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
280
281 /* Check that the addresses of each pair of objects is unequal. */
282 auto_vec<vec_object_pair> check_unequal_addrs;
283
284 /* Statements in the loop that have data references that are candidates for a
285 runtime (loop versioning) misalignment check. */
286 auto_vec<gimple *> may_misalign_stmts;
287
288 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
289 auto_vec<gimple *> reductions;
290
291 /* All reduction chains in the loop, represented by the first
292 stmt in the chain. */
293 auto_vec<gimple *> reduction_chains;
294
295 /* Cost vector for a single scalar iteration. */
296 auto_vec<stmt_info_for_cost> scalar_cost_vec;
297
298 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
299 applied to the loop, i.e., no unrolling is needed, this is 1. */
300 poly_uint64 slp_unrolling_factor;
301
302 /* Cost of a single scalar iteration. */
303 int single_scalar_iteration_cost;
304
305 /* Is the loop vectorizable? */
306 bool vectorizable;
307
308 /* When we have grouped data accesses with gaps, we may introduce invalid
309 memory accesses. We peel the last iteration of the loop to prevent
310 this. */
311 bool peeling_for_gaps;
312
313 /* When the number of iterations is not a multiple of the vector size
314 we need to peel off iterations at the end to form an epilogue loop. */
315 bool peeling_for_niter;
316
317 /* Reductions are canonicalized so that the last operand is the reduction
318 operand. If this places a constant into RHS1, this decanonicalizes
319 GIMPLE for other phases, so we must track when this has occurred and
320 fix it up. */
321 bool operands_swapped;
322
323 /* True if there are no loop carried data dependencies in the loop.
324 If loop->safelen <= 1, then this is always true, either the loop
325 didn't have any loop carried data dependencies, or the loop is being
326 vectorized guarded with some runtime alias checks, or couldn't
327 be vectorized at all, but then this field shouldn't be used.
328 For loop->safelen >= 2, the user has asserted that there are no
329 backward dependencies, but there still could be loop carried forward
330 dependencies in such loops. This flag will be false if normal
331 vectorizer data dependency analysis would fail or require versioning
332 for alias, but because of loop->safelen >= 2 it has been vectorized
333 even without versioning for alias. E.g. in:
334 #pragma omp simd
335 for (int i = 0; i < m; i++)
336 a[i] = a[i + k] * c;
337 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
338 DTRT even for k > 0 && k < m, but without safelen we would not
339 vectorize this, so this field would be false. */
340 bool no_data_dependencies;
341
342 /* Mark loops having masked stores. */
343 bool has_mask_store;
344
345 /* If if-conversion versioned this loop before conversion, this is the
346 loop version without if-conversion. */
347 struct loop *scalar_loop;
348
349 /* For loops being epilogues of already vectorized loops
350 this points to the original vectorized loop. Otherwise NULL. */
351 _loop_vec_info *orig_loop_info;
352
353 } *loop_vec_info;
354
355 /* Access Functions. */
356 #define LOOP_VINFO_LOOP(L) (L)->loop
357 #define LOOP_VINFO_BBS(L) (L)->bbs
358 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
359 #define LOOP_VINFO_NITERS(L) (L)->num_iters
360 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
361 prologue peeling retain total unchanged scalar loop iterations for
362 cost model. */
363 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
364 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
365 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
366 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
367 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
368 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
369 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
370 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
371 #define LOOP_VINFO_LOOP_NEST(L) (L)->loop_nest
372 #define LOOP_VINFO_DATAREFS(L) (L)->datarefs
373 #define LOOP_VINFO_DDRS(L) (L)->ddrs
374 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
375 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
376 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
377 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
378 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
379 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
380 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
381 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
382 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
383 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
384 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
385 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
386 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
387 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
388 #define LOOP_VINFO_OPERANDS_SWAPPED(L) (L)->operands_swapped
389 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
390 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
391 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
392 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
393 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
394 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
395 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
396
397 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
398 ((L)->may_misalign_stmts.length () > 0)
399 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
400 ((L)->comp_alias_ddrs.length () > 0 \
401 || (L)->check_unequal_addrs.length () > 0)
402 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
403 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
404 #define LOOP_REQUIRES_VERSIONING(L) \
405 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
406 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
407 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L))
408
409 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
410 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
411
412 #define LOOP_VINFO_EPILOGUE_P(L) \
413 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
414
415 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
416 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
417
418 static inline loop_vec_info
419 loop_vec_info_for_loop (struct loop *loop)
420 {
421 return (loop_vec_info) loop->aux;
422 }
423
424 static inline bool
425 nested_in_vect_loop_p (struct loop *loop, gimple *stmt)
426 {
427 return (loop->inner
428 && (loop->inner == (gimple_bb (stmt))->loop_father));
429 }
430
431 typedef struct _bb_vec_info : public vec_info
432 {
433 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator);
434 ~_bb_vec_info ();
435
436 basic_block bb;
437 gimple_stmt_iterator region_begin;
438 gimple_stmt_iterator region_end;
439 } *bb_vec_info;
440
441 #define BB_VINFO_BB(B) (B)->bb
442 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
443 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
444 #define BB_VINFO_DATAREFS(B) (B)->datarefs
445 #define BB_VINFO_DDRS(B) (B)->ddrs
446 #define BB_VINFO_TARGET_COST_DATA(B) (B)->target_cost_data
447
448 static inline bb_vec_info
449 vec_info_for_bb (basic_block bb)
450 {
451 return (bb_vec_info) bb->aux;
452 }
453
454 /*-----------------------------------------------------------------*/
455 /* Info on vectorized defs. */
456 /*-----------------------------------------------------------------*/
457 enum stmt_vec_info_type {
458 undef_vec_info_type = 0,
459 load_vec_info_type,
460 store_vec_info_type,
461 shift_vec_info_type,
462 op_vec_info_type,
463 call_vec_info_type,
464 call_simd_clone_vec_info_type,
465 assignment_vec_info_type,
466 condition_vec_info_type,
467 comparison_vec_info_type,
468 reduc_vec_info_type,
469 induc_vec_info_type,
470 type_promotion_vec_info_type,
471 type_demotion_vec_info_type,
472 type_conversion_vec_info_type,
473 loop_exit_ctrl_vec_info_type
474 };
475
476 /* Indicates whether/how a variable is used in the scope of loop/basic
477 block. */
478 enum vect_relevant {
479 vect_unused_in_scope = 0,
480
481 /* The def is only used outside the loop. */
482 vect_used_only_live,
483 /* The def is in the inner loop, and the use is in the outer loop, and the
484 use is a reduction stmt. */
485 vect_used_in_outer_by_reduction,
486 /* The def is in the inner loop, and the use is in the outer loop (and is
487 not part of reduction). */
488 vect_used_in_outer,
489
490 /* defs that feed computations that end up (only) in a reduction. These
491 defs may be used by non-reduction stmts, but eventually, any
492 computations/values that are affected by these defs are used to compute
493 a reduction (i.e. don't get stored to memory, for example). We use this
494 to identify computations that we can change the order in which they are
495 computed. */
496 vect_used_by_reduction,
497
498 vect_used_in_scope
499 };
500
501 /* The type of vectorization that can be applied to the stmt: regular loop-based
502 vectorization; pure SLP - the stmt is a part of SLP instances and does not
503 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
504 a part of SLP instance and also must be loop-based vectorized, since it has
505 uses outside SLP sequences.
506
507 In the loop context the meanings of pure and hybrid SLP are slightly
508 different. By saying that pure SLP is applied to the loop, we mean that we
509 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
510 vectorized without doing any conceptual unrolling, cause we don't pack
511 together stmts from different iterations, only within a single iteration.
512 Loop hybrid SLP means that we exploit both intra-iteration and
513 inter-iteration parallelism (e.g., number of elements in the vector is 4
514 and the slp-group-size is 2, in which case we don't have enough parallelism
515 within an iteration, so we obtain the rest of the parallelism from subsequent
516 iterations by unrolling the loop by 2). */
517 enum slp_vect_type {
518 loop_vect = 0,
519 pure_slp,
520 hybrid
521 };
522
523 /* Describes how we're going to vectorize an individual load or store,
524 or a group of loads or stores. */
525 enum vect_memory_access_type {
526 /* An access to an invariant address. This is used only for loads. */
527 VMAT_INVARIANT,
528
529 /* A simple contiguous access. */
530 VMAT_CONTIGUOUS,
531
532 /* A contiguous access that goes down in memory rather than up,
533 with no additional permutation. This is used only for stores
534 of invariants. */
535 VMAT_CONTIGUOUS_DOWN,
536
537 /* A simple contiguous access in which the elements need to be permuted
538 after loading or before storing. Only used for loop vectorization;
539 SLP uses separate permutes. */
540 VMAT_CONTIGUOUS_PERMUTE,
541
542 /* A simple contiguous access in which the elements need to be reversed
543 after loading or before storing. */
544 VMAT_CONTIGUOUS_REVERSE,
545
546 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
547 VMAT_LOAD_STORE_LANES,
548
549 /* An access in which each scalar element is loaded or stored
550 individually. */
551 VMAT_ELEMENTWISE,
552
553 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
554 SLP accesses. Each unrolled iteration uses a contiguous load
555 or store for the whole group, but the groups from separate iterations
556 are combined in the same way as for VMAT_ELEMENTWISE. */
557 VMAT_STRIDED_SLP,
558
559 /* The access uses gather loads or scatter stores. */
560 VMAT_GATHER_SCATTER
561 };
562
563 typedef struct data_reference *dr_p;
564
565 typedef struct _stmt_vec_info {
566
567 enum stmt_vec_info_type type;
568
569 /* Indicates whether this stmts is part of a computation whose result is
570 used outside the loop. */
571 bool live;
572
573 /* Stmt is part of some pattern (computation idiom) */
574 bool in_pattern_p;
575
576 /* Is this statement vectorizable or should it be skipped in (partial)
577 vectorization. */
578 bool vectorizable;
579
580 /* The stmt to which this info struct refers to. */
581 gimple *stmt;
582
583 /* The vec_info with respect to which STMT is vectorized. */
584 vec_info *vinfo;
585
586 /* The vector type to be used for the LHS of this statement. */
587 tree vectype;
588
589 /* The vectorized version of the stmt. */
590 gimple *vectorized_stmt;
591
592
593 /* The following is relevant only for stmts that contain a non-scalar
594 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
595 at most one such data-ref. */
596
597 /* Information about the data-ref (access function, etc),
598 relative to the inner-most containing loop. */
599 struct data_reference *data_ref_info;
600
601 /* Information about the data-ref relative to this loop
602 nest (the loop that is being considered for vectorization). */
603 innermost_loop_behavior dr_wrt_vec_loop;
604
605 /* For loop PHI nodes, the base and evolution part of it. This makes sure
606 this information is still available in vect_update_ivs_after_vectorizer
607 where we may not be able to re-analyze the PHI nodes evolution as
608 peeling for the prologue loop can make it unanalyzable. The evolution
609 part is still correct after peeling, but the base may have changed from
610 the version here. */
611 tree loop_phi_evolution_base_unchanged;
612 tree loop_phi_evolution_part;
613
614 /* Used for various bookkeeping purposes, generally holding a pointer to
615 some other stmt S that is in some way "related" to this stmt.
616 Current use of this field is:
617 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
618 true): S is the "pattern stmt" that represents (and replaces) the
619 sequence of stmts that constitutes the pattern. Similarly, the
620 related_stmt of the "pattern stmt" points back to this stmt (which is
621 the last stmt in the original sequence of stmts that constitutes the
622 pattern). */
623 gimple *related_stmt;
624
625 /* Used to keep a sequence of def stmts of a pattern stmt if such exists. */
626 gimple_seq pattern_def_seq;
627
628 /* List of datarefs that are known to have the same alignment as the dataref
629 of this stmt. */
630 vec<dr_p> same_align_refs;
631
632 /* Selected SIMD clone's function info. First vector element
633 is SIMD clone's function decl, followed by a pair of trees (base + step)
634 for linear arguments (pair of NULLs for other arguments). */
635 vec<tree> simd_clone_info;
636
637 /* Classify the def of this stmt. */
638 enum vect_def_type def_type;
639
640 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
641 enum slp_vect_type slp_type;
642
643 /* Interleaving and reduction chains info. */
644 /* First element in the group. */
645 gimple *first_element;
646 /* Pointer to the next element in the group. */
647 gimple *next_element;
648 /* For data-refs, in case that two or more stmts share data-ref, this is the
649 pointer to the previously detected stmt with the same dr. */
650 gimple *same_dr_stmt;
651 /* The size of the group. */
652 unsigned int size;
653 /* For stores, number of stores from this group seen. We vectorize the last
654 one. */
655 unsigned int store_count;
656 /* For loads only, the gap from the previous load. For consecutive loads, GAP
657 is 1. */
658 unsigned int gap;
659
660 /* The minimum negative dependence distance this stmt participates in
661 or zero if none. */
662 unsigned int min_neg_dist;
663
664 /* Not all stmts in the loop need to be vectorized. e.g, the increment
665 of the loop induction variable and computation of array indexes. relevant
666 indicates whether the stmt needs to be vectorized. */
667 enum vect_relevant relevant;
668
669 /* For loads if this is a gather, for stores if this is a scatter. */
670 bool gather_scatter_p;
671
672 /* True if this is an access with loop-invariant stride. */
673 bool strided_p;
674
675 /* For both loads and stores. */
676 bool simd_lane_access_p;
677
678 /* Classifies how the load or store is going to be implemented
679 for loop vectorization. */
680 vect_memory_access_type memory_access_type;
681
682 /* For reduction loops, this is the type of reduction. */
683 enum vect_reduction_type v_reduc_type;
684
685 /* For CONST_COND_REDUCTION, record the reduc code. */
686 enum tree_code const_cond_reduc_code;
687
688 /* On a reduction PHI the reduction type as detected by
689 vect_force_simple_reduction. */
690 enum vect_reduction_type reduc_type;
691
692 /* On a reduction PHI the def returned by vect_force_simple_reduction.
693 On the def returned by vect_force_simple_reduction the
694 corresponding PHI. */
695 gimple *reduc_def;
696
697 /* The number of scalar stmt references from active SLP instances. */
698 unsigned int num_slp_uses;
699 } *stmt_vec_info;
700
701 /* Information about a gather/scatter call. */
702 struct gather_scatter_info {
703 /* The FUNCTION_DECL for the built-in gather/scatter function. */
704 tree decl;
705
706 /* The loop-invariant base value. */
707 tree base;
708
709 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
710 tree offset;
711
712 /* Each offset element should be multiplied by this amount before
713 being added to the base. */
714 int scale;
715
716 /* The definition type for the vectorized offset. */
717 enum vect_def_type offset_dt;
718
719 /* The type of the vectorized offset. */
720 tree offset_vectype;
721 };
722
723 /* Access Functions. */
724 #define STMT_VINFO_TYPE(S) (S)->type
725 #define STMT_VINFO_STMT(S) (S)->stmt
726 inline loop_vec_info
727 STMT_VINFO_LOOP_VINFO (stmt_vec_info stmt_vinfo)
728 {
729 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (stmt_vinfo->vinfo))
730 return loop_vinfo;
731 return NULL;
732 }
733 inline bb_vec_info
734 STMT_VINFO_BB_VINFO (stmt_vec_info stmt_vinfo)
735 {
736 if (bb_vec_info bb_vinfo = dyn_cast <bb_vec_info> (stmt_vinfo->vinfo))
737 return bb_vinfo;
738 return NULL;
739 }
740 #define STMT_VINFO_RELEVANT(S) (S)->relevant
741 #define STMT_VINFO_LIVE_P(S) (S)->live
742 #define STMT_VINFO_VECTYPE(S) (S)->vectype
743 #define STMT_VINFO_VEC_STMT(S) (S)->vectorized_stmt
744 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
745 #define STMT_VINFO_DATA_REF(S) (S)->data_ref_info
746 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
747 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
748 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
749 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
750 #define STMT_VINFO_VEC_REDUCTION_TYPE(S) (S)->v_reduc_type
751 #define STMT_VINFO_VEC_CONST_COND_REDUC_CODE(S) (S)->const_cond_reduc_code
752
753 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
754 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
755 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
756 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
757 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
758 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
759 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
760 (S)->dr_wrt_vec_loop.base_misalignment
761 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
762 (S)->dr_wrt_vec_loop.offset_alignment
763 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
764 (S)->dr_wrt_vec_loop.step_alignment
765
766 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
767 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
768 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
769 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
770 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
771 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
772 #define STMT_VINFO_GROUP_FIRST_ELEMENT(S) (S)->first_element
773 #define STMT_VINFO_GROUP_NEXT_ELEMENT(S) (S)->next_element
774 #define STMT_VINFO_GROUP_SIZE(S) (S)->size
775 #define STMT_VINFO_GROUP_STORE_COUNT(S) (S)->store_count
776 #define STMT_VINFO_GROUP_GAP(S) (S)->gap
777 #define STMT_VINFO_GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt
778 #define STMT_VINFO_GROUPED_ACCESS(S) ((S)->first_element != NULL && (S)->data_ref_info)
779 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
780 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
781 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
782 #define STMT_VINFO_NUM_SLP_USES(S) (S)->num_slp_uses
783 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
784 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
785
786 #define GROUP_FIRST_ELEMENT(S) (S)->first_element
787 #define GROUP_NEXT_ELEMENT(S) (S)->next_element
788 #define GROUP_SIZE(S) (S)->size
789 #define GROUP_STORE_COUNT(S) (S)->store_count
790 #define GROUP_GAP(S) (S)->gap
791 #define GROUP_SAME_DR_STMT(S) (S)->same_dr_stmt
792
793 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
794
795 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
796 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
797 #define STMT_SLP_TYPE(S) (S)->slp_type
798
799 struct dataref_aux {
800 /* The misalignment in bytes of the reference, or -1 if not known. */
801 int misalignment;
802 /* The byte alignment that we'd ideally like the reference to have,
803 and the value that misalignment is measured against. */
804 int target_alignment;
805 /* If true the alignment of base_decl needs to be increased. */
806 bool base_misaligned;
807 tree base_decl;
808 };
809
810 #define DR_VECT_AUX(dr) ((dataref_aux *)(dr)->aux)
811
812 #define VECT_MAX_COST 1000
813
814 /* The maximum number of intermediate steps required in multi-step type
815 conversion. */
816 #define MAX_INTERM_CVT_STEPS 3
817
818 #define MAX_VECTORIZATION_FACTOR INT_MAX
819
820 /* Nonzero if TYPE represents a (scalar) boolean type or type
821 in the middle-end compatible with it (unsigned precision 1 integral
822 types). Used to determine which types should be vectorized as
823 VECTOR_BOOLEAN_TYPE_P. */
824
825 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
826 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
827 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
828 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
829 && TYPE_PRECISION (TYPE) == 1 \
830 && TYPE_UNSIGNED (TYPE)))
831
832 extern vec<stmt_vec_info> stmt_vec_info_vec;
833
834 void init_stmt_vec_info_vec (void);
835 void free_stmt_vec_info_vec (void);
836
837 /* Return a stmt_vec_info corresponding to STMT. */
838
839 static inline stmt_vec_info
840 vinfo_for_stmt (gimple *stmt)
841 {
842 int uid = gimple_uid (stmt);
843 if (uid <= 0)
844 return NULL;
845
846 return stmt_vec_info_vec[uid - 1];
847 }
848
849 /* Set vectorizer information INFO for STMT. */
850
851 static inline void
852 set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info)
853 {
854 unsigned int uid = gimple_uid (stmt);
855 if (uid == 0)
856 {
857 gcc_checking_assert (info);
858 uid = stmt_vec_info_vec.length () + 1;
859 gimple_set_uid (stmt, uid);
860 stmt_vec_info_vec.safe_push (info);
861 }
862 else
863 {
864 gcc_checking_assert (info == NULL);
865 stmt_vec_info_vec[uid - 1] = info;
866 }
867 }
868
869 /* Return the earlier statement between STMT1 and STMT2. */
870
871 static inline gimple *
872 get_earlier_stmt (gimple *stmt1, gimple *stmt2)
873 {
874 unsigned int uid1, uid2;
875
876 if (stmt1 == NULL)
877 return stmt2;
878
879 if (stmt2 == NULL)
880 return stmt1;
881
882 uid1 = gimple_uid (stmt1);
883 uid2 = gimple_uid (stmt2);
884
885 if (uid1 == 0 || uid2 == 0)
886 return NULL;
887
888 gcc_checking_assert (uid1 <= stmt_vec_info_vec.length ()
889 && uid2 <= stmt_vec_info_vec.length ());
890
891 if (uid1 < uid2)
892 return stmt1;
893 else
894 return stmt2;
895 }
896
897 /* Return the later statement between STMT1 and STMT2. */
898
899 static inline gimple *
900 get_later_stmt (gimple *stmt1, gimple *stmt2)
901 {
902 unsigned int uid1, uid2;
903
904 if (stmt1 == NULL)
905 return stmt2;
906
907 if (stmt2 == NULL)
908 return stmt1;
909
910 uid1 = gimple_uid (stmt1);
911 uid2 = gimple_uid (stmt2);
912
913 if (uid1 == 0 || uid2 == 0)
914 return NULL;
915
916 gcc_assert (uid1 <= stmt_vec_info_vec.length ());
917 gcc_assert (uid2 <= stmt_vec_info_vec.length ());
918
919 if (uid1 > uid2)
920 return stmt1;
921 else
922 return stmt2;
923 }
924
925 /* Return TRUE if a statement represented by STMT_INFO is a part of a
926 pattern. */
927
928 static inline bool
929 is_pattern_stmt_p (stmt_vec_info stmt_info)
930 {
931 gimple *related_stmt;
932 stmt_vec_info related_stmt_info;
933
934 related_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
935 if (related_stmt
936 && (related_stmt_info = vinfo_for_stmt (related_stmt))
937 && STMT_VINFO_IN_PATTERN_P (related_stmt_info))
938 return true;
939
940 return false;
941 }
942
943 /* Return true if BB is a loop header. */
944
945 static inline bool
946 is_loop_header_bb_p (basic_block bb)
947 {
948 if (bb == (bb->loop_father)->header)
949 return true;
950 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
951 return false;
952 }
953
954 /* Return pow2 (X). */
955
956 static inline int
957 vect_pow2 (int x)
958 {
959 int i, res = 1;
960
961 for (i = 0; i < x; i++)
962 res *= 2;
963
964 return res;
965 }
966
967 /* Alias targetm.vectorize.builtin_vectorization_cost. */
968
969 static inline int
970 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
971 tree vectype, int misalign)
972 {
973 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
974 vectype, misalign);
975 }
976
977 /* Get cost by calling cost target builtin. */
978
979 static inline
980 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
981 {
982 return builtin_vectorization_cost (type_of_cost, NULL, 0);
983 }
984
985 /* Alias targetm.vectorize.init_cost. */
986
987 static inline void *
988 init_cost (struct loop *loop_info)
989 {
990 return targetm.vectorize.init_cost (loop_info);
991 }
992
993 /* Alias targetm.vectorize.add_stmt_cost. */
994
995 static inline unsigned
996 add_stmt_cost (void *data, int count, enum vect_cost_for_stmt kind,
997 stmt_vec_info stmt_info, int misalign,
998 enum vect_cost_model_location where)
999 {
1000 return targetm.vectorize.add_stmt_cost (data, count, kind,
1001 stmt_info, misalign, where);
1002 }
1003
1004 /* Alias targetm.vectorize.finish_cost. */
1005
1006 static inline void
1007 finish_cost (void *data, unsigned *prologue_cost,
1008 unsigned *body_cost, unsigned *epilogue_cost)
1009 {
1010 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1011 }
1012
1013 /* Alias targetm.vectorize.destroy_cost_data. */
1014
1015 static inline void
1016 destroy_cost_data (void *data)
1017 {
1018 targetm.vectorize.destroy_cost_data (data);
1019 }
1020
1021 /*-----------------------------------------------------------------*/
1022 /* Info on data references alignment. */
1023 /*-----------------------------------------------------------------*/
1024 inline void
1025 set_dr_misalignment (struct data_reference *dr, int val)
1026 {
1027 dataref_aux *data_aux = DR_VECT_AUX (dr);
1028
1029 if (!data_aux)
1030 {
1031 data_aux = XCNEW (dataref_aux);
1032 dr->aux = data_aux;
1033 }
1034
1035 data_aux->misalignment = val;
1036 }
1037
1038 inline int
1039 dr_misalignment (struct data_reference *dr)
1040 {
1041 return DR_VECT_AUX (dr)->misalignment;
1042 }
1043
1044 /* Reflects actual alignment of first access in the vectorized loop,
1045 taking into account peeling/versioning if applied. */
1046 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1047 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1048 #define DR_MISALIGNMENT_UNKNOWN (-1)
1049
1050 /* Only defined once DR_MISALIGNMENT is defined. */
1051 #define DR_TARGET_ALIGNMENT(DR) DR_VECT_AUX (DR)->target_alignment
1052
1053 /* Return true if data access DR is aligned to its target alignment
1054 (which may be less than a full vector). */
1055
1056 static inline bool
1057 aligned_access_p (struct data_reference *data_ref_info)
1058 {
1059 return (DR_MISALIGNMENT (data_ref_info) == 0);
1060 }
1061
1062 /* Return TRUE if the alignment of the data access is known, and FALSE
1063 otherwise. */
1064
1065 static inline bool
1066 known_alignment_for_access_p (struct data_reference *data_ref_info)
1067 {
1068 return (DR_MISALIGNMENT (data_ref_info) != DR_MISALIGNMENT_UNKNOWN);
1069 }
1070
1071 /* Return the minimum alignment in bytes that the vectorized version
1072 of DR is guaranteed to have. */
1073
1074 static inline unsigned int
1075 vect_known_alignment_in_bytes (struct data_reference *dr)
1076 {
1077 if (DR_MISALIGNMENT (dr) == DR_MISALIGNMENT_UNKNOWN)
1078 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr)));
1079 if (DR_MISALIGNMENT (dr) == 0)
1080 return DR_TARGET_ALIGNMENT (dr);
1081 return DR_MISALIGNMENT (dr) & -DR_MISALIGNMENT (dr);
1082 }
1083
1084 /* Return the behavior of DR with respect to the vectorization context
1085 (which for outer loop vectorization might not be the behavior recorded
1086 in DR itself). */
1087
1088 static inline innermost_loop_behavior *
1089 vect_dr_behavior (data_reference *dr)
1090 {
1091 gimple *stmt = DR_STMT (dr);
1092 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1093 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1094 if (loop_vinfo == NULL
1095 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt))
1096 return &DR_INNERMOST (dr);
1097 else
1098 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1099 }
1100
1101 /* Return true if the vect cost model is unlimited. */
1102 static inline bool
1103 unlimited_cost_model (loop_p loop)
1104 {
1105 if (loop != NULL && loop->force_vectorize
1106 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1107 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1108 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1109 }
1110
1111 /* Return the number of vectors of type VECTYPE that are needed to get
1112 NUNITS elements. NUNITS should be based on the vectorization factor,
1113 so it is always a known multiple of the number of elements in VECTYPE. */
1114
1115 static inline unsigned int
1116 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1117 {
1118 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1119 }
1120
1121 /* Return the number of copies needed for loop vectorization when
1122 a statement operates on vectors of type VECTYPE. This is the
1123 vectorization factor divided by the number of elements in
1124 VECTYPE and is always known at compile time. */
1125
1126 static inline unsigned int
1127 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1128 {
1129 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1130 }
1131
1132 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1133 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1134 if we haven't yet recorded any vector types. */
1135
1136 static inline void
1137 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1138 {
1139 /* All unit counts have the form current_vector_size * X for some
1140 rational X, so two unit sizes must have a common multiple.
1141 Everything is a multiple of the initial value of 1. */
1142 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1143 *max_nunits = force_common_multiple (*max_nunits, nunits);
1144 }
1145
1146 /* Return the vectorization factor that should be used for costing
1147 purposes while vectorizing the loop described by LOOP_VINFO.
1148 Pick a reasonable estimate if the vectorization factor isn't
1149 known at compile time. */
1150
1151 static inline unsigned int
1152 vect_vf_for_cost (loop_vec_info loop_vinfo)
1153 {
1154 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1155 }
1156
1157 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1158 Pick a reasonable estimate if the exact number isn't known at
1159 compile time. */
1160
1161 static inline unsigned int
1162 vect_nunits_for_cost (tree vec_type)
1163 {
1164 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1165 }
1166
1167 /* Return the size of the value accessed by unvectorized data reference DR.
1168 This is only valid once STMT_VINFO_VECTYPE has been calculated for the
1169 associated gimple statement, since that guarantees that DR accesses
1170 either a scalar or a scalar equivalent. ("Scalar equivalent" here
1171 includes things like V1SI, which can be vectorized in the same way
1172 as a plain SI.) */
1173
1174 inline unsigned int
1175 vect_get_scalar_dr_size (struct data_reference *dr)
1176 {
1177 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
1178 }
1179
1180 /* Source location */
1181 extern source_location vect_location;
1182
1183 /*-----------------------------------------------------------------*/
1184 /* Function prototypes. */
1185 /*-----------------------------------------------------------------*/
1186
1187 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1188 in tree-vect-loop-manip.c. */
1189 extern void slpeel_make_loop_iterate_ntimes (struct loop *, tree, tree,
1190 tree, bool);
1191 extern bool slpeel_can_duplicate_loop_p (const struct loop *, const_edge);
1192 struct loop *slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *,
1193 struct loop *, edge);
1194 extern void vect_loop_versioning (loop_vec_info, unsigned int, bool,
1195 poly_uint64);
1196 extern struct loop *vect_do_peeling (loop_vec_info, tree, tree,
1197 tree *, tree *, tree *, int, bool, bool);
1198 extern source_location find_loop_location (struct loop *);
1199 extern bool vect_can_advance_ivs_p (loop_vec_info);
1200
1201 /* In tree-vect-stmts.c. */
1202 extern poly_uint64 current_vector_size;
1203 extern tree get_vectype_for_scalar_type (tree);
1204 extern tree get_mask_type_for_scalar_type (tree);
1205 extern tree get_same_sized_vectype (tree, tree);
1206 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1207 enum vect_def_type *);
1208 extern bool vect_is_simple_use (tree, vec_info *, gimple **,
1209 enum vect_def_type *, tree *);
1210 extern bool supportable_widening_operation (enum tree_code, gimple *, tree,
1211 tree, enum tree_code *,
1212 enum tree_code *, int *,
1213 vec<tree> *);
1214 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1215 enum tree_code *,
1216 int *, vec<tree> *);
1217 extern stmt_vec_info new_stmt_vec_info (gimple *stmt, vec_info *);
1218 extern void free_stmt_vec_info (gimple *stmt);
1219 extern void vect_model_simple_cost (stmt_vec_info, int, enum vect_def_type *,
1220 int, stmt_vector_for_cost *,
1221 stmt_vector_for_cost *);
1222 extern void vect_model_store_cost (stmt_vec_info, int, vect_memory_access_type,
1223 enum vect_def_type, slp_tree,
1224 stmt_vector_for_cost *,
1225 stmt_vector_for_cost *);
1226 extern void vect_model_load_cost (stmt_vec_info, int, vect_memory_access_type,
1227 slp_tree, stmt_vector_for_cost *,
1228 stmt_vector_for_cost *);
1229 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1230 enum vect_cost_for_stmt, stmt_vec_info,
1231 int, enum vect_cost_model_location);
1232 extern void vect_finish_stmt_generation (gimple *, gimple *,
1233 gimple_stmt_iterator *);
1234 extern bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
1235 extern tree vect_get_vec_def_for_operand_1 (gimple *, enum vect_def_type);
1236 extern tree vect_get_vec_def_for_operand (tree, gimple *, tree = NULL);
1237 extern void vect_get_vec_defs (tree, tree, gimple *, vec<tree> *,
1238 vec<tree> *, slp_tree);
1239 extern void vect_get_vec_defs_for_stmt_copy (enum vect_def_type *,
1240 vec<tree> *, vec<tree> *);
1241 extern tree vect_init_vector (gimple *, tree, tree,
1242 gimple_stmt_iterator *);
1243 extern tree vect_get_vec_def_for_stmt_copy (enum vect_def_type, tree);
1244 extern bool vect_transform_stmt (gimple *, gimple_stmt_iterator *,
1245 bool *, slp_tree, slp_instance);
1246 extern void vect_remove_stores (gimple *);
1247 extern bool vect_analyze_stmt (gimple *, bool *, slp_tree, slp_instance);
1248 extern bool vectorizable_condition (gimple *, gimple_stmt_iterator *,
1249 gimple **, tree, int, slp_tree);
1250 extern void vect_get_load_cost (struct data_reference *, int, bool,
1251 unsigned int *, unsigned int *,
1252 stmt_vector_for_cost *,
1253 stmt_vector_for_cost *, bool);
1254 extern void vect_get_store_cost (struct data_reference *, int,
1255 unsigned int *, stmt_vector_for_cost *);
1256 extern bool vect_supportable_shift (enum tree_code, tree);
1257 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1258 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1259 extern void optimize_mask_stores (struct loop*);
1260
1261 /* In tree-vect-data-refs.c. */
1262 extern bool vect_can_force_dr_alignment_p (const_tree, unsigned int);
1263 extern enum dr_alignment_support vect_supportable_dr_alignment
1264 (struct data_reference *, bool);
1265 extern tree vect_get_smallest_scalar_type (gimple *, HOST_WIDE_INT *,
1266 HOST_WIDE_INT *);
1267 extern bool vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1268 extern bool vect_slp_analyze_instance_dependence (slp_instance);
1269 extern bool vect_enhance_data_refs_alignment (loop_vec_info);
1270 extern bool vect_analyze_data_refs_alignment (loop_vec_info);
1271 extern bool vect_verify_datarefs_alignment (loop_vec_info);
1272 extern bool vect_slp_analyze_and_verify_instance_alignment (slp_instance);
1273 extern bool vect_analyze_data_ref_accesses (vec_info *);
1274 extern bool vect_prune_runtime_alias_test_list (loop_vec_info);
1275 extern bool vect_check_gather_scatter (gimple *, loop_vec_info,
1276 gather_scatter_info *);
1277 extern bool vect_analyze_data_refs (vec_info *, poly_uint64 *);
1278 extern void vect_record_base_alignments (vec_info *);
1279 extern tree vect_create_data_ref_ptr (gimple *, tree, struct loop *, tree,
1280 tree *, gimple_stmt_iterator *,
1281 gimple **, bool, bool *,
1282 tree = NULL_TREE);
1283 extern tree bump_vector_ptr (tree, gimple *, gimple_stmt_iterator *, gimple *,
1284 tree);
1285 extern tree vect_create_destination_var (tree, tree);
1286 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1287 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT);
1288 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1289 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT);
1290 extern void vect_permute_store_chain (vec<tree> ,unsigned int, gimple *,
1291 gimple_stmt_iterator *, vec<tree> *);
1292 extern tree vect_setup_realignment (gimple *, gimple_stmt_iterator *, tree *,
1293 enum dr_alignment_support, tree,
1294 struct loop **);
1295 extern void vect_transform_grouped_load (gimple *, vec<tree> , int,
1296 gimple_stmt_iterator *);
1297 extern void vect_record_grouped_load_vectors (gimple *, vec<tree> );
1298 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1299 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1300 const char * = NULL);
1301 extern tree vect_create_addr_base_for_vector_ref (gimple *, gimple_seq *,
1302 tree, tree = NULL_TREE);
1303
1304 /* In tree-vect-loop.c. */
1305 /* FORNOW: Used in tree-parloops.c. */
1306 extern gimple *vect_force_simple_reduction (loop_vec_info, gimple *,
1307 bool *, bool);
1308 /* Used in gimple-loop-interchange.c. */
1309 extern bool check_reduction_path (location_t, loop_p, gphi *, tree,
1310 enum tree_code);
1311 /* Drive for loop analysis stage. */
1312 extern loop_vec_info vect_analyze_loop (struct loop *, loop_vec_info);
1313 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1314 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1315 tree *, bool);
1316 /* Drive for loop transformation stage. */
1317 extern struct loop *vect_transform_loop (loop_vec_info);
1318 extern loop_vec_info vect_analyze_loop_form (struct loop *);
1319 extern bool vectorizable_live_operation (gimple *, gimple_stmt_iterator *,
1320 slp_tree, int, gimple **);
1321 extern bool vectorizable_reduction (gimple *, gimple_stmt_iterator *,
1322 gimple **, slp_tree, slp_instance);
1323 extern bool vectorizable_induction (gimple *, gimple_stmt_iterator *,
1324 gimple **, slp_tree);
1325 extern tree get_initial_def_for_reduction (gimple *, tree, tree *);
1326 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
1327 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
1328 stmt_vector_for_cost *,
1329 stmt_vector_for_cost *,
1330 stmt_vector_for_cost *);
1331
1332 /* In tree-vect-slp.c. */
1333 extern void vect_free_slp_instance (slp_instance);
1334 extern bool vect_transform_slp_perm_load (slp_tree, vec<tree> ,
1335 gimple_stmt_iterator *, poly_uint64,
1336 slp_instance, bool, unsigned *);
1337 extern bool vect_slp_analyze_operations (vec_info *);
1338 extern bool vect_schedule_slp (vec_info *);
1339 extern bool vect_analyze_slp (vec_info *, unsigned);
1340 extern bool vect_make_slp_decision (loop_vec_info);
1341 extern void vect_detect_hybrid_slp (loop_vec_info);
1342 extern void vect_get_slp_defs (vec<tree> , slp_tree, vec<vec<tree> > *);
1343 extern bool vect_slp_bb (basic_block);
1344 extern gimple *vect_find_last_scalar_stmt_in_slp (slp_tree);
1345 extern bool is_simple_and_all_uses_invariant (gimple *, loop_vec_info);
1346
1347 /* In tree-vect-patterns.c. */
1348 /* Pattern recognition functions.
1349 Additional pattern recognition functions can (and will) be added
1350 in the future. */
1351 typedef gimple *(* vect_recog_func_ptr) (vec<gimple *> *, tree *, tree *);
1352 #define NUM_PATTERNS 14
1353 void vect_pattern_recog (vec_info *);
1354
1355 /* In tree-vectorizer.c. */
1356 unsigned vectorize_loops (void);
1357 bool vect_stmt_in_region_p (vec_info *, gimple *);
1358 void vect_free_loop_info_assumptions (struct loop *);
1359
1360 #endif /* GCC_TREE_VECTORIZER_H */