]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
Add markers for release 2.26
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1456 suffixes that encode debugging information or leading _ada_ on
1457 SYM_NAME (see is_name_suffix commentary for the debugging
1458 information that is ignored). If WILD, then NAME need only match a
1459 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1460 either argument is NULL. */
1461
1462 static int
1463 match_name (const char *sym_name, const char *name, int wild)
1464 {
1465 if (sym_name == NULL || name == NULL)
1466 return 0;
1467 else if (wild)
1468 return wild_match (sym_name, name) == 0;
1469 else
1470 {
1471 int len_name = strlen (name);
1472
1473 return (strncmp (sym_name, name, len_name) == 0
1474 && is_name_suffix (sym_name + len_name))
1475 || (startswith (sym_name, "_ada_")
1476 && strncmp (sym_name + 5, name, len_name) == 0
1477 && is_name_suffix (sym_name + len_name + 5));
1478 }
1479 }
1480 \f
1481
1482 /* Arrays */
1483
1484 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1485 generated by the GNAT compiler to describe the index type used
1486 for each dimension of an array, check whether it follows the latest
1487 known encoding. If not, fix it up to conform to the latest encoding.
1488 Otherwise, do nothing. This function also does nothing if
1489 INDEX_DESC_TYPE is NULL.
1490
1491 The GNAT encoding used to describle the array index type evolved a bit.
1492 Initially, the information would be provided through the name of each
1493 field of the structure type only, while the type of these fields was
1494 described as unspecified and irrelevant. The debugger was then expected
1495 to perform a global type lookup using the name of that field in order
1496 to get access to the full index type description. Because these global
1497 lookups can be very expensive, the encoding was later enhanced to make
1498 the global lookup unnecessary by defining the field type as being
1499 the full index type description.
1500
1501 The purpose of this routine is to allow us to support older versions
1502 of the compiler by detecting the use of the older encoding, and by
1503 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1504 we essentially replace each field's meaningless type by the associated
1505 index subtype). */
1506
1507 void
1508 ada_fixup_array_indexes_type (struct type *index_desc_type)
1509 {
1510 int i;
1511
1512 if (index_desc_type == NULL)
1513 return;
1514 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1515
1516 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1517 to check one field only, no need to check them all). If not, return
1518 now.
1519
1520 If our INDEX_DESC_TYPE was generated using the older encoding,
1521 the field type should be a meaningless integer type whose name
1522 is not equal to the field name. */
1523 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1524 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1525 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1526 return;
1527
1528 /* Fixup each field of INDEX_DESC_TYPE. */
1529 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1530 {
1531 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1532 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1533
1534 if (raw_type)
1535 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1536 }
1537 }
1538
1539 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1540
1541 static char *bound_name[] = {
1542 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1543 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1544 };
1545
1546 /* Maximum number of array dimensions we are prepared to handle. */
1547
1548 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1549
1550
1551 /* The desc_* routines return primitive portions of array descriptors
1552 (fat pointers). */
1553
1554 /* The descriptor or array type, if any, indicated by TYPE; removes
1555 level of indirection, if needed. */
1556
1557 static struct type *
1558 desc_base_type (struct type *type)
1559 {
1560 if (type == NULL)
1561 return NULL;
1562 type = ada_check_typedef (type);
1563 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1564 type = ada_typedef_target_type (type);
1565
1566 if (type != NULL
1567 && (TYPE_CODE (type) == TYPE_CODE_PTR
1568 || TYPE_CODE (type) == TYPE_CODE_REF))
1569 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1570 else
1571 return type;
1572 }
1573
1574 /* True iff TYPE indicates a "thin" array pointer type. */
1575
1576 static int
1577 is_thin_pntr (struct type *type)
1578 {
1579 return
1580 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1581 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1582 }
1583
1584 /* The descriptor type for thin pointer type TYPE. */
1585
1586 static struct type *
1587 thin_descriptor_type (struct type *type)
1588 {
1589 struct type *base_type = desc_base_type (type);
1590
1591 if (base_type == NULL)
1592 return NULL;
1593 if (is_suffix (ada_type_name (base_type), "___XVE"))
1594 return base_type;
1595 else
1596 {
1597 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1598
1599 if (alt_type == NULL)
1600 return base_type;
1601 else
1602 return alt_type;
1603 }
1604 }
1605
1606 /* A pointer to the array data for thin-pointer value VAL. */
1607
1608 static struct value *
1609 thin_data_pntr (struct value *val)
1610 {
1611 struct type *type = ada_check_typedef (value_type (val));
1612 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1613
1614 data_type = lookup_pointer_type (data_type);
1615
1616 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1617 return value_cast (data_type, value_copy (val));
1618 else
1619 return value_from_longest (data_type, value_address (val));
1620 }
1621
1622 /* True iff TYPE indicates a "thick" array pointer type. */
1623
1624 static int
1625 is_thick_pntr (struct type *type)
1626 {
1627 type = desc_base_type (type);
1628 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1629 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1630 }
1631
1632 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its bounds data; otherwise, NULL. */
1634
1635 static struct type *
1636 desc_bounds_type (struct type *type)
1637 {
1638 struct type *r;
1639
1640 type = desc_base_type (type);
1641
1642 if (type == NULL)
1643 return NULL;
1644 else if (is_thin_pntr (type))
1645 {
1646 type = thin_descriptor_type (type);
1647 if (type == NULL)
1648 return NULL;
1649 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1650 if (r != NULL)
1651 return ada_check_typedef (r);
1652 }
1653 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1654 {
1655 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1656 if (r != NULL)
1657 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1658 }
1659 return NULL;
1660 }
1661
1662 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1663 one, a pointer to its bounds data. Otherwise NULL. */
1664
1665 static struct value *
1666 desc_bounds (struct value *arr)
1667 {
1668 struct type *type = ada_check_typedef (value_type (arr));
1669
1670 if (is_thin_pntr (type))
1671 {
1672 struct type *bounds_type =
1673 desc_bounds_type (thin_descriptor_type (type));
1674 LONGEST addr;
1675
1676 if (bounds_type == NULL)
1677 error (_("Bad GNAT array descriptor"));
1678
1679 /* NOTE: The following calculation is not really kosher, but
1680 since desc_type is an XVE-encoded type (and shouldn't be),
1681 the correct calculation is a real pain. FIXME (and fix GCC). */
1682 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1683 addr = value_as_long (arr);
1684 else
1685 addr = value_address (arr);
1686
1687 return
1688 value_from_longest (lookup_pointer_type (bounds_type),
1689 addr - TYPE_LENGTH (bounds_type));
1690 }
1691
1692 else if (is_thick_pntr (type))
1693 {
1694 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1695 _("Bad GNAT array descriptor"));
1696 struct type *p_bounds_type = value_type (p_bounds);
1697
1698 if (p_bounds_type
1699 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1700 {
1701 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1702
1703 if (TYPE_STUB (target_type))
1704 p_bounds = value_cast (lookup_pointer_type
1705 (ada_check_typedef (target_type)),
1706 p_bounds);
1707 }
1708 else
1709 error (_("Bad GNAT array descriptor"));
1710
1711 return p_bounds;
1712 }
1713 else
1714 return NULL;
1715 }
1716
1717 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1718 position of the field containing the address of the bounds data. */
1719
1720 static int
1721 fat_pntr_bounds_bitpos (struct type *type)
1722 {
1723 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1724 }
1725
1726 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1727 size of the field containing the address of the bounds data. */
1728
1729 static int
1730 fat_pntr_bounds_bitsize (struct type *type)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1735 return TYPE_FIELD_BITSIZE (type, 1);
1736 else
1737 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1738 }
1739
1740 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1741 pointer to one, the type of its array data (a array-with-no-bounds type);
1742 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1743 data. */
1744
1745 static struct type *
1746 desc_data_target_type (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 /* NOTE: The following is bogus; see comment in desc_bounds. */
1751 if (is_thin_pntr (type))
1752 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1753 else if (is_thick_pntr (type))
1754 {
1755 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1756
1757 if (data_type
1758 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1759 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1760 }
1761
1762 return NULL;
1763 }
1764
1765 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1766 its array data. */
1767
1768 static struct value *
1769 desc_data (struct value *arr)
1770 {
1771 struct type *type = value_type (arr);
1772
1773 if (is_thin_pntr (type))
1774 return thin_data_pntr (arr);
1775 else if (is_thick_pntr (type))
1776 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1777 _("Bad GNAT array descriptor"));
1778 else
1779 return NULL;
1780 }
1781
1782
1783 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1784 position of the field containing the address of the data. */
1785
1786 static int
1787 fat_pntr_data_bitpos (struct type *type)
1788 {
1789 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1790 }
1791
1792 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1793 size of the field containing the address of the data. */
1794
1795 static int
1796 fat_pntr_data_bitsize (struct type *type)
1797 {
1798 type = desc_base_type (type);
1799
1800 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1801 return TYPE_FIELD_BITSIZE (type, 0);
1802 else
1803 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1804 }
1805
1806 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1807 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1808 bound, if WHICH is 1. The first bound is I=1. */
1809
1810 static struct value *
1811 desc_one_bound (struct value *bounds, int i, int which)
1812 {
1813 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1814 _("Bad GNAT array descriptor bounds"));
1815 }
1816
1817 /* If BOUNDS is an array-bounds structure type, return the bit position
1818 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1819 bound, if WHICH is 1. The first bound is I=1. */
1820
1821 static int
1822 desc_bound_bitpos (struct type *type, int i, int which)
1823 {
1824 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1825 }
1826
1827 /* If BOUNDS is an array-bounds structure type, return the bit field size
1828 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
1831 static int
1832 desc_bound_bitsize (struct type *type, int i, int which)
1833 {
1834 type = desc_base_type (type);
1835
1836 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1837 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1838 else
1839 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1840 }
1841
1842 /* If TYPE is the type of an array-bounds structure, the type of its
1843 Ith bound (numbering from 1). Otherwise, NULL. */
1844
1845 static struct type *
1846 desc_index_type (struct type *type, int i)
1847 {
1848 type = desc_base_type (type);
1849
1850 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1851 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1852 else
1853 return NULL;
1854 }
1855
1856 /* The number of index positions in the array-bounds type TYPE.
1857 Return 0 if TYPE is NULL. */
1858
1859 static int
1860 desc_arity (struct type *type)
1861 {
1862 type = desc_base_type (type);
1863
1864 if (type != NULL)
1865 return TYPE_NFIELDS (type) / 2;
1866 return 0;
1867 }
1868
1869 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1870 an array descriptor type (representing an unconstrained array
1871 type). */
1872
1873 static int
1874 ada_is_direct_array_type (struct type *type)
1875 {
1876 if (type == NULL)
1877 return 0;
1878 type = ada_check_typedef (type);
1879 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1880 || ada_is_array_descriptor_type (type));
1881 }
1882
1883 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1884 * to one. */
1885
1886 static int
1887 ada_is_array_type (struct type *type)
1888 {
1889 while (type != NULL
1890 && (TYPE_CODE (type) == TYPE_CODE_PTR
1891 || TYPE_CODE (type) == TYPE_CODE_REF))
1892 type = TYPE_TARGET_TYPE (type);
1893 return ada_is_direct_array_type (type);
1894 }
1895
1896 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1897
1898 int
1899 ada_is_simple_array_type (struct type *type)
1900 {
1901 if (type == NULL)
1902 return 0;
1903 type = ada_check_typedef (type);
1904 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1905 || (TYPE_CODE (type) == TYPE_CODE_PTR
1906 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1907 == TYPE_CODE_ARRAY));
1908 }
1909
1910 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1911
1912 int
1913 ada_is_array_descriptor_type (struct type *type)
1914 {
1915 struct type *data_type = desc_data_target_type (type);
1916
1917 if (type == NULL)
1918 return 0;
1919 type = ada_check_typedef (type);
1920 return (data_type != NULL
1921 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1922 && desc_arity (desc_bounds_type (type)) > 0);
1923 }
1924
1925 /* Non-zero iff type is a partially mal-formed GNAT array
1926 descriptor. FIXME: This is to compensate for some problems with
1927 debugging output from GNAT. Re-examine periodically to see if it
1928 is still needed. */
1929
1930 int
1931 ada_is_bogus_array_descriptor (struct type *type)
1932 {
1933 return
1934 type != NULL
1935 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1936 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1937 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1938 && !ada_is_array_descriptor_type (type);
1939 }
1940
1941
1942 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1943 (fat pointer) returns the type of the array data described---specifically,
1944 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1945 in from the descriptor; otherwise, they are left unspecified. If
1946 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1947 returns NULL. The result is simply the type of ARR if ARR is not
1948 a descriptor. */
1949 struct type *
1950 ada_type_of_array (struct value *arr, int bounds)
1951 {
1952 if (ada_is_constrained_packed_array_type (value_type (arr)))
1953 return decode_constrained_packed_array_type (value_type (arr));
1954
1955 if (!ada_is_array_descriptor_type (value_type (arr)))
1956 return value_type (arr);
1957
1958 if (!bounds)
1959 {
1960 struct type *array_type =
1961 ada_check_typedef (desc_data_target_type (value_type (arr)));
1962
1963 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1964 TYPE_FIELD_BITSIZE (array_type, 0) =
1965 decode_packed_array_bitsize (value_type (arr));
1966
1967 return array_type;
1968 }
1969 else
1970 {
1971 struct type *elt_type;
1972 int arity;
1973 struct value *descriptor;
1974
1975 elt_type = ada_array_element_type (value_type (arr), -1);
1976 arity = ada_array_arity (value_type (arr));
1977
1978 if (elt_type == NULL || arity == 0)
1979 return ada_check_typedef (value_type (arr));
1980
1981 descriptor = desc_bounds (arr);
1982 if (value_as_long (descriptor) == 0)
1983 return NULL;
1984 while (arity > 0)
1985 {
1986 struct type *range_type = alloc_type_copy (value_type (arr));
1987 struct type *array_type = alloc_type_copy (value_type (arr));
1988 struct value *low = desc_one_bound (descriptor, arity, 0);
1989 struct value *high = desc_one_bound (descriptor, arity, 1);
1990
1991 arity -= 1;
1992 create_static_range_type (range_type, value_type (low),
1993 longest_to_int (value_as_long (low)),
1994 longest_to_int (value_as_long (high)));
1995 elt_type = create_array_type (array_type, elt_type, range_type);
1996
1997 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1998 {
1999 /* We need to store the element packed bitsize, as well as
2000 recompute the array size, because it was previously
2001 computed based on the unpacked element size. */
2002 LONGEST lo = value_as_long (low);
2003 LONGEST hi = value_as_long (high);
2004
2005 TYPE_FIELD_BITSIZE (elt_type, 0) =
2006 decode_packed_array_bitsize (value_type (arr));
2007 /* If the array has no element, then the size is already
2008 zero, and does not need to be recomputed. */
2009 if (lo < hi)
2010 {
2011 int array_bitsize =
2012 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2013
2014 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2015 }
2016 }
2017 }
2018
2019 return lookup_pointer_type (elt_type);
2020 }
2021 }
2022
2023 /* If ARR does not represent an array, returns ARR unchanged.
2024 Otherwise, returns either a standard GDB array with bounds set
2025 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2026 GDB array. Returns NULL if ARR is a null fat pointer. */
2027
2028 struct value *
2029 ada_coerce_to_simple_array_ptr (struct value *arr)
2030 {
2031 if (ada_is_array_descriptor_type (value_type (arr)))
2032 {
2033 struct type *arrType = ada_type_of_array (arr, 1);
2034
2035 if (arrType == NULL)
2036 return NULL;
2037 return value_cast (arrType, value_copy (desc_data (arr)));
2038 }
2039 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2040 return decode_constrained_packed_array (arr);
2041 else
2042 return arr;
2043 }
2044
2045 /* If ARR does not represent an array, returns ARR unchanged.
2046 Otherwise, returns a standard GDB array describing ARR (which may
2047 be ARR itself if it already is in the proper form). */
2048
2049 struct value *
2050 ada_coerce_to_simple_array (struct value *arr)
2051 {
2052 if (ada_is_array_descriptor_type (value_type (arr)))
2053 {
2054 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2055
2056 if (arrVal == NULL)
2057 error (_("Bounds unavailable for null array pointer."));
2058 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2059 return value_ind (arrVal);
2060 }
2061 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2062 return decode_constrained_packed_array (arr);
2063 else
2064 return arr;
2065 }
2066
2067 /* If TYPE represents a GNAT array type, return it translated to an
2068 ordinary GDB array type (possibly with BITSIZE fields indicating
2069 packing). For other types, is the identity. */
2070
2071 struct type *
2072 ada_coerce_to_simple_array_type (struct type *type)
2073 {
2074 if (ada_is_constrained_packed_array_type (type))
2075 return decode_constrained_packed_array_type (type);
2076
2077 if (ada_is_array_descriptor_type (type))
2078 return ada_check_typedef (desc_data_target_type (type));
2079
2080 return type;
2081 }
2082
2083 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2084
2085 static int
2086 ada_is_packed_array_type (struct type *type)
2087 {
2088 if (type == NULL)
2089 return 0;
2090 type = desc_base_type (type);
2091 type = ada_check_typedef (type);
2092 return
2093 ada_type_name (type) != NULL
2094 && strstr (ada_type_name (type), "___XP") != NULL;
2095 }
2096
2097 /* Non-zero iff TYPE represents a standard GNAT constrained
2098 packed-array type. */
2099
2100 int
2101 ada_is_constrained_packed_array_type (struct type *type)
2102 {
2103 return ada_is_packed_array_type (type)
2104 && !ada_is_array_descriptor_type (type);
2105 }
2106
2107 /* Non-zero iff TYPE represents an array descriptor for a
2108 unconstrained packed-array type. */
2109
2110 static int
2111 ada_is_unconstrained_packed_array_type (struct type *type)
2112 {
2113 return ada_is_packed_array_type (type)
2114 && ada_is_array_descriptor_type (type);
2115 }
2116
2117 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2118 return the size of its elements in bits. */
2119
2120 static long
2121 decode_packed_array_bitsize (struct type *type)
2122 {
2123 const char *raw_name;
2124 const char *tail;
2125 long bits;
2126
2127 /* Access to arrays implemented as fat pointers are encoded as a typedef
2128 of the fat pointer type. We need the name of the fat pointer type
2129 to do the decoding, so strip the typedef layer. */
2130 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2131 type = ada_typedef_target_type (type);
2132
2133 raw_name = ada_type_name (ada_check_typedef (type));
2134 if (!raw_name)
2135 raw_name = ada_type_name (desc_base_type (type));
2136
2137 if (!raw_name)
2138 return 0;
2139
2140 tail = strstr (raw_name, "___XP");
2141 gdb_assert (tail != NULL);
2142
2143 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2144 {
2145 lim_warning
2146 (_("could not understand bit size information on packed array"));
2147 return 0;
2148 }
2149
2150 return bits;
2151 }
2152
2153 /* Given that TYPE is a standard GDB array type with all bounds filled
2154 in, and that the element size of its ultimate scalar constituents
2155 (that is, either its elements, or, if it is an array of arrays, its
2156 elements' elements, etc.) is *ELT_BITS, return an identical type,
2157 but with the bit sizes of its elements (and those of any
2158 constituent arrays) recorded in the BITSIZE components of its
2159 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2160 in bits.
2161
2162 Note that, for arrays whose index type has an XA encoding where
2163 a bound references a record discriminant, getting that discriminant,
2164 and therefore the actual value of that bound, is not possible
2165 because none of the given parameters gives us access to the record.
2166 This function assumes that it is OK in the context where it is being
2167 used to return an array whose bounds are still dynamic and where
2168 the length is arbitrary. */
2169
2170 static struct type *
2171 constrained_packed_array_type (struct type *type, long *elt_bits)
2172 {
2173 struct type *new_elt_type;
2174 struct type *new_type;
2175 struct type *index_type_desc;
2176 struct type *index_type;
2177 LONGEST low_bound, high_bound;
2178
2179 type = ada_check_typedef (type);
2180 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2181 return type;
2182
2183 index_type_desc = ada_find_parallel_type (type, "___XA");
2184 if (index_type_desc)
2185 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2186 NULL);
2187 else
2188 index_type = TYPE_INDEX_TYPE (type);
2189
2190 new_type = alloc_type_copy (type);
2191 new_elt_type =
2192 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2193 elt_bits);
2194 create_array_type (new_type, new_elt_type, index_type);
2195 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2196 TYPE_NAME (new_type) = ada_type_name (type);
2197
2198 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2199 && is_dynamic_type (check_typedef (index_type)))
2200 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2201 low_bound = high_bound = 0;
2202 if (high_bound < low_bound)
2203 *elt_bits = TYPE_LENGTH (new_type) = 0;
2204 else
2205 {
2206 *elt_bits *= (high_bound - low_bound + 1);
2207 TYPE_LENGTH (new_type) =
2208 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2209 }
2210
2211 TYPE_FIXED_INSTANCE (new_type) = 1;
2212 return new_type;
2213 }
2214
2215 /* The array type encoded by TYPE, where
2216 ada_is_constrained_packed_array_type (TYPE). */
2217
2218 static struct type *
2219 decode_constrained_packed_array_type (struct type *type)
2220 {
2221 const char *raw_name = ada_type_name (ada_check_typedef (type));
2222 char *name;
2223 const char *tail;
2224 struct type *shadow_type;
2225 long bits;
2226
2227 if (!raw_name)
2228 raw_name = ada_type_name (desc_base_type (type));
2229
2230 if (!raw_name)
2231 return NULL;
2232
2233 name = (char *) alloca (strlen (raw_name) + 1);
2234 tail = strstr (raw_name, "___XP");
2235 type = desc_base_type (type);
2236
2237 memcpy (name, raw_name, tail - raw_name);
2238 name[tail - raw_name] = '\000';
2239
2240 shadow_type = ada_find_parallel_type_with_name (type, name);
2241
2242 if (shadow_type == NULL)
2243 {
2244 lim_warning (_("could not find bounds information on packed array"));
2245 return NULL;
2246 }
2247 shadow_type = check_typedef (shadow_type);
2248
2249 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2250 {
2251 lim_warning (_("could not understand bounds "
2252 "information on packed array"));
2253 return NULL;
2254 }
2255
2256 bits = decode_packed_array_bitsize (type);
2257 return constrained_packed_array_type (shadow_type, &bits);
2258 }
2259
2260 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2261 array, returns a simple array that denotes that array. Its type is a
2262 standard GDB array type except that the BITSIZEs of the array
2263 target types are set to the number of bits in each element, and the
2264 type length is set appropriately. */
2265
2266 static struct value *
2267 decode_constrained_packed_array (struct value *arr)
2268 {
2269 struct type *type;
2270
2271 /* If our value is a pointer, then dereference it. Likewise if
2272 the value is a reference. Make sure that this operation does not
2273 cause the target type to be fixed, as this would indirectly cause
2274 this array to be decoded. The rest of the routine assumes that
2275 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2276 and "value_ind" routines to perform the dereferencing, as opposed
2277 to using "ada_coerce_ref" or "ada_value_ind". */
2278 arr = coerce_ref (arr);
2279 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2280 arr = value_ind (arr);
2281
2282 type = decode_constrained_packed_array_type (value_type (arr));
2283 if (type == NULL)
2284 {
2285 error (_("can't unpack array"));
2286 return NULL;
2287 }
2288
2289 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2290 && ada_is_modular_type (value_type (arr)))
2291 {
2292 /* This is a (right-justified) modular type representing a packed
2293 array with no wrapper. In order to interpret the value through
2294 the (left-justified) packed array type we just built, we must
2295 first left-justify it. */
2296 int bit_size, bit_pos;
2297 ULONGEST mod;
2298
2299 mod = ada_modulus (value_type (arr)) - 1;
2300 bit_size = 0;
2301 while (mod > 0)
2302 {
2303 bit_size += 1;
2304 mod >>= 1;
2305 }
2306 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2307 arr = ada_value_primitive_packed_val (arr, NULL,
2308 bit_pos / HOST_CHAR_BIT,
2309 bit_pos % HOST_CHAR_BIT,
2310 bit_size,
2311 type);
2312 }
2313
2314 return coerce_unspec_val_to_type (arr, type);
2315 }
2316
2317
2318 /* The value of the element of packed array ARR at the ARITY indices
2319 given in IND. ARR must be a simple array. */
2320
2321 static struct value *
2322 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2323 {
2324 int i;
2325 int bits, elt_off, bit_off;
2326 long elt_total_bit_offset;
2327 struct type *elt_type;
2328 struct value *v;
2329
2330 bits = 0;
2331 elt_total_bit_offset = 0;
2332 elt_type = ada_check_typedef (value_type (arr));
2333 for (i = 0; i < arity; i += 1)
2334 {
2335 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2336 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2337 error
2338 (_("attempt to do packed indexing of "
2339 "something other than a packed array"));
2340 else
2341 {
2342 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2343 LONGEST lowerbound, upperbound;
2344 LONGEST idx;
2345
2346 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2347 {
2348 lim_warning (_("don't know bounds of array"));
2349 lowerbound = upperbound = 0;
2350 }
2351
2352 idx = pos_atr (ind[i]);
2353 if (idx < lowerbound || idx > upperbound)
2354 lim_warning (_("packed array index %ld out of bounds"),
2355 (long) idx);
2356 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2357 elt_total_bit_offset += (idx - lowerbound) * bits;
2358 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2359 }
2360 }
2361 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2362 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2363
2364 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2365 bits, elt_type);
2366 return v;
2367 }
2368
2369 /* Non-zero iff TYPE includes negative integer values. */
2370
2371 static int
2372 has_negatives (struct type *type)
2373 {
2374 switch (TYPE_CODE (type))
2375 {
2376 default:
2377 return 0;
2378 case TYPE_CODE_INT:
2379 return !TYPE_UNSIGNED (type);
2380 case TYPE_CODE_RANGE:
2381 return TYPE_LOW_BOUND (type) < 0;
2382 }
2383 }
2384
2385 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2386 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2387 the unpacked buffer.
2388
2389 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2390 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2391
2392 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2393 zero otherwise.
2394
2395 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2396
2397 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2398
2399 static void
2400 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2401 gdb_byte *unpacked, int unpacked_len,
2402 int is_big_endian, int is_signed_type,
2403 int is_scalar)
2404 {
2405 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2406 int src_idx; /* Index into the source area */
2407 int src_bytes_left; /* Number of source bytes left to process. */
2408 int srcBitsLeft; /* Number of source bits left to move */
2409 int unusedLS; /* Number of bits in next significant
2410 byte of source that are unused */
2411
2412 int unpacked_idx; /* Index into the unpacked buffer */
2413 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2414
2415 unsigned long accum; /* Staging area for bits being transferred */
2416 int accumSize; /* Number of meaningful bits in accum */
2417 unsigned char sign;
2418
2419 /* Transmit bytes from least to most significant; delta is the direction
2420 the indices move. */
2421 int delta = is_big_endian ? -1 : 1;
2422
2423 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2424 bits from SRC. .*/
2425 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2426 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2427 bit_size, unpacked_len);
2428
2429 srcBitsLeft = bit_size;
2430 src_bytes_left = src_len;
2431 unpacked_bytes_left = unpacked_len;
2432 sign = 0;
2433
2434 if (is_big_endian)
2435 {
2436 src_idx = src_len - 1;
2437 if (is_signed_type
2438 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2439 sign = ~0;
2440
2441 unusedLS =
2442 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2443 % HOST_CHAR_BIT;
2444
2445 if (is_scalar)
2446 {
2447 accumSize = 0;
2448 unpacked_idx = unpacked_len - 1;
2449 }
2450 else
2451 {
2452 /* Non-scalar values must be aligned at a byte boundary... */
2453 accumSize =
2454 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2455 /* ... And are placed at the beginning (most-significant) bytes
2456 of the target. */
2457 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2458 unpacked_bytes_left = unpacked_idx + 1;
2459 }
2460 }
2461 else
2462 {
2463 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2464
2465 src_idx = unpacked_idx = 0;
2466 unusedLS = bit_offset;
2467 accumSize = 0;
2468
2469 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2470 sign = ~0;
2471 }
2472
2473 accum = 0;
2474 while (src_bytes_left > 0)
2475 {
2476 /* Mask for removing bits of the next source byte that are not
2477 part of the value. */
2478 unsigned int unusedMSMask =
2479 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2480 1;
2481 /* Sign-extend bits for this byte. */
2482 unsigned int signMask = sign & ~unusedMSMask;
2483
2484 accum |=
2485 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2486 accumSize += HOST_CHAR_BIT - unusedLS;
2487 if (accumSize >= HOST_CHAR_BIT)
2488 {
2489 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2490 accumSize -= HOST_CHAR_BIT;
2491 accum >>= HOST_CHAR_BIT;
2492 unpacked_bytes_left -= 1;
2493 unpacked_idx += delta;
2494 }
2495 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2496 unusedLS = 0;
2497 src_bytes_left -= 1;
2498 src_idx += delta;
2499 }
2500 while (unpacked_bytes_left > 0)
2501 {
2502 accum |= sign << accumSize;
2503 unpacked[unpacked_idx] = accum & ~(~0L << HOST_CHAR_BIT);
2504 accumSize -= HOST_CHAR_BIT;
2505 if (accumSize < 0)
2506 accumSize = 0;
2507 accum >>= HOST_CHAR_BIT;
2508 unpacked_bytes_left -= 1;
2509 unpacked_idx += delta;
2510 }
2511 }
2512
2513 /* Create a new value of type TYPE from the contents of OBJ starting
2514 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2515 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2516 assigning through the result will set the field fetched from.
2517 VALADDR is ignored unless OBJ is NULL, in which case,
2518 VALADDR+OFFSET must address the start of storage containing the
2519 packed value. The value returned in this case is never an lval.
2520 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2521
2522 struct value *
2523 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2524 long offset, int bit_offset, int bit_size,
2525 struct type *type)
2526 {
2527 struct value *v;
2528 const gdb_byte *src; /* First byte containing data to unpack */
2529 gdb_byte *unpacked;
2530 const int is_scalar = is_scalar_type (type);
2531 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2532 gdb_byte *staging = NULL;
2533 int staging_len = 0;
2534 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2535
2536 type = ada_check_typedef (type);
2537
2538 if (obj == NULL)
2539 src = valaddr + offset;
2540 else
2541 src = value_contents (obj) + offset;
2542
2543 if (is_dynamic_type (type))
2544 {
2545 /* The length of TYPE might by dynamic, so we need to resolve
2546 TYPE in order to know its actual size, which we then use
2547 to create the contents buffer of the value we return.
2548 The difficulty is that the data containing our object is
2549 packed, and therefore maybe not at a byte boundary. So, what
2550 we do, is unpack the data into a byte-aligned buffer, and then
2551 use that buffer as our object's value for resolving the type. */
2552 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2553 staging = (gdb_byte *) malloc (staging_len);
2554 make_cleanup (xfree, staging);
2555
2556 ada_unpack_from_contents (src, bit_offset, bit_size,
2557 staging, staging_len,
2558 is_big_endian, has_negatives (type),
2559 is_scalar);
2560 type = resolve_dynamic_type (type, staging, 0);
2561 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2562 {
2563 /* This happens when the length of the object is dynamic,
2564 and is actually smaller than the space reserved for it.
2565 For instance, in an array of variant records, the bit_size
2566 we're given is the array stride, which is constant and
2567 normally equal to the maximum size of its element.
2568 But, in reality, each element only actually spans a portion
2569 of that stride. */
2570 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2571 }
2572 }
2573
2574 if (obj == NULL)
2575 {
2576 v = allocate_value (type);
2577 src = valaddr + offset;
2578 }
2579 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2580 {
2581 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2582 gdb_byte *buf;
2583
2584 v = value_at (type, value_address (obj) + offset);
2585 buf = (gdb_byte *) alloca (src_len);
2586 read_memory (value_address (v), buf, src_len);
2587 src = buf;
2588 }
2589 else
2590 {
2591 v = allocate_value (type);
2592 src = value_contents (obj) + offset;
2593 }
2594
2595 if (obj != NULL)
2596 {
2597 long new_offset = offset;
2598
2599 set_value_component_location (v, obj);
2600 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2601 set_value_bitsize (v, bit_size);
2602 if (value_bitpos (v) >= HOST_CHAR_BIT)
2603 {
2604 ++new_offset;
2605 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2606 }
2607 set_value_offset (v, new_offset);
2608
2609 /* Also set the parent value. This is needed when trying to
2610 assign a new value (in inferior memory). */
2611 set_value_parent (v, obj);
2612 }
2613 else
2614 set_value_bitsize (v, bit_size);
2615 unpacked = value_contents_writeable (v);
2616
2617 if (bit_size == 0)
2618 {
2619 memset (unpacked, 0, TYPE_LENGTH (type));
2620 do_cleanups (old_chain);
2621 return v;
2622 }
2623
2624 if (staging != NULL && staging_len == TYPE_LENGTH (type))
2625 {
2626 /* Small short-cut: If we've unpacked the data into a buffer
2627 of the same size as TYPE's length, then we can reuse that,
2628 instead of doing the unpacking again. */
2629 memcpy (unpacked, staging, staging_len);
2630 }
2631 else
2632 ada_unpack_from_contents (src, bit_offset, bit_size,
2633 unpacked, TYPE_LENGTH (type),
2634 is_big_endian, has_negatives (type), is_scalar);
2635
2636 do_cleanups (old_chain);
2637 return v;
2638 }
2639
2640 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2641 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2642 not overlap. */
2643 static void
2644 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2645 int src_offset, int n, int bits_big_endian_p)
2646 {
2647 unsigned int accum, mask;
2648 int accum_bits, chunk_size;
2649
2650 target += targ_offset / HOST_CHAR_BIT;
2651 targ_offset %= HOST_CHAR_BIT;
2652 source += src_offset / HOST_CHAR_BIT;
2653 src_offset %= HOST_CHAR_BIT;
2654 if (bits_big_endian_p)
2655 {
2656 accum = (unsigned char) *source;
2657 source += 1;
2658 accum_bits = HOST_CHAR_BIT - src_offset;
2659
2660 while (n > 0)
2661 {
2662 int unused_right;
2663
2664 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2665 accum_bits += HOST_CHAR_BIT;
2666 source += 1;
2667 chunk_size = HOST_CHAR_BIT - targ_offset;
2668 if (chunk_size > n)
2669 chunk_size = n;
2670 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2671 mask = ((1 << chunk_size) - 1) << unused_right;
2672 *target =
2673 (*target & ~mask)
2674 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2675 n -= chunk_size;
2676 accum_bits -= chunk_size;
2677 target += 1;
2678 targ_offset = 0;
2679 }
2680 }
2681 else
2682 {
2683 accum = (unsigned char) *source >> src_offset;
2684 source += 1;
2685 accum_bits = HOST_CHAR_BIT - src_offset;
2686
2687 while (n > 0)
2688 {
2689 accum = accum + ((unsigned char) *source << accum_bits);
2690 accum_bits += HOST_CHAR_BIT;
2691 source += 1;
2692 chunk_size = HOST_CHAR_BIT - targ_offset;
2693 if (chunk_size > n)
2694 chunk_size = n;
2695 mask = ((1 << chunk_size) - 1) << targ_offset;
2696 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2697 n -= chunk_size;
2698 accum_bits -= chunk_size;
2699 accum >>= chunk_size;
2700 target += 1;
2701 targ_offset = 0;
2702 }
2703 }
2704 }
2705
2706 /* Store the contents of FROMVAL into the location of TOVAL.
2707 Return a new value with the location of TOVAL and contents of
2708 FROMVAL. Handles assignment into packed fields that have
2709 floating-point or non-scalar types. */
2710
2711 static struct value *
2712 ada_value_assign (struct value *toval, struct value *fromval)
2713 {
2714 struct type *type = value_type (toval);
2715 int bits = value_bitsize (toval);
2716
2717 toval = ada_coerce_ref (toval);
2718 fromval = ada_coerce_ref (fromval);
2719
2720 if (ada_is_direct_array_type (value_type (toval)))
2721 toval = ada_coerce_to_simple_array (toval);
2722 if (ada_is_direct_array_type (value_type (fromval)))
2723 fromval = ada_coerce_to_simple_array (fromval);
2724
2725 if (!deprecated_value_modifiable (toval))
2726 error (_("Left operand of assignment is not a modifiable lvalue."));
2727
2728 if (VALUE_LVAL (toval) == lval_memory
2729 && bits > 0
2730 && (TYPE_CODE (type) == TYPE_CODE_FLT
2731 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2732 {
2733 int len = (value_bitpos (toval)
2734 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2735 int from_size;
2736 gdb_byte *buffer = (gdb_byte *) alloca (len);
2737 struct value *val;
2738 CORE_ADDR to_addr = value_address (toval);
2739
2740 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2741 fromval = value_cast (type, fromval);
2742
2743 read_memory (to_addr, buffer, len);
2744 from_size = value_bitsize (fromval);
2745 if (from_size == 0)
2746 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2747 if (gdbarch_bits_big_endian (get_type_arch (type)))
2748 move_bits (buffer, value_bitpos (toval),
2749 value_contents (fromval), from_size - bits, bits, 1);
2750 else
2751 move_bits (buffer, value_bitpos (toval),
2752 value_contents (fromval), 0, bits, 0);
2753 write_memory_with_notification (to_addr, buffer, len);
2754
2755 val = value_copy (toval);
2756 memcpy (value_contents_raw (val), value_contents (fromval),
2757 TYPE_LENGTH (type));
2758 deprecated_set_value_type (val, type);
2759
2760 return val;
2761 }
2762
2763 return value_assign (toval, fromval);
2764 }
2765
2766
2767 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2768 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2769 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2770 COMPONENT, and not the inferior's memory. The current contents
2771 of COMPONENT are ignored.
2772
2773 Although not part of the initial design, this function also works
2774 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2775 had a null address, and COMPONENT had an address which is equal to
2776 its offset inside CONTAINER. */
2777
2778 static void
2779 value_assign_to_component (struct value *container, struct value *component,
2780 struct value *val)
2781 {
2782 LONGEST offset_in_container =
2783 (LONGEST) (value_address (component) - value_address (container));
2784 int bit_offset_in_container =
2785 value_bitpos (component) - value_bitpos (container);
2786 int bits;
2787
2788 val = value_cast (value_type (component), val);
2789
2790 if (value_bitsize (component) == 0)
2791 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2792 else
2793 bits = value_bitsize (component);
2794
2795 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2796 move_bits (value_contents_writeable (container) + offset_in_container,
2797 value_bitpos (container) + bit_offset_in_container,
2798 value_contents (val),
2799 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2800 bits, 1);
2801 else
2802 move_bits (value_contents_writeable (container) + offset_in_container,
2803 value_bitpos (container) + bit_offset_in_container,
2804 value_contents (val), 0, bits, 0);
2805 }
2806
2807 /* The value of the element of array ARR at the ARITY indices given in IND.
2808 ARR may be either a simple array, GNAT array descriptor, or pointer
2809 thereto. */
2810
2811 struct value *
2812 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2813 {
2814 int k;
2815 struct value *elt;
2816 struct type *elt_type;
2817
2818 elt = ada_coerce_to_simple_array (arr);
2819
2820 elt_type = ada_check_typedef (value_type (elt));
2821 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2822 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2823 return value_subscript_packed (elt, arity, ind);
2824
2825 for (k = 0; k < arity; k += 1)
2826 {
2827 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2828 error (_("too many subscripts (%d expected)"), k);
2829 elt = value_subscript (elt, pos_atr (ind[k]));
2830 }
2831 return elt;
2832 }
2833
2834 /* Assuming ARR is a pointer to a GDB array, the value of the element
2835 of *ARR at the ARITY indices given in IND.
2836 Does not read the entire array into memory.
2837
2838 Note: Unlike what one would expect, this function is used instead of
2839 ada_value_subscript for basically all non-packed array types. The reason
2840 for this is that a side effect of doing our own pointer arithmetics instead
2841 of relying on value_subscript is that there is no implicit typedef peeling.
2842 This is important for arrays of array accesses, where it allows us to
2843 preserve the fact that the array's element is an array access, where the
2844 access part os encoded in a typedef layer. */
2845
2846 static struct value *
2847 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2848 {
2849 int k;
2850 struct value *array_ind = ada_value_ind (arr);
2851 struct type *type
2852 = check_typedef (value_enclosing_type (array_ind));
2853
2854 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2855 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2856 return value_subscript_packed (array_ind, arity, ind);
2857
2858 for (k = 0; k < arity; k += 1)
2859 {
2860 LONGEST lwb, upb;
2861 struct value *lwb_value;
2862
2863 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2864 error (_("too many subscripts (%d expected)"), k);
2865 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2866 value_copy (arr));
2867 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2868 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2869 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2870 type = TYPE_TARGET_TYPE (type);
2871 }
2872
2873 return value_ind (arr);
2874 }
2875
2876 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2877 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2878 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2879 this array is LOW, as per Ada rules. */
2880 static struct value *
2881 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2882 int low, int high)
2883 {
2884 struct type *type0 = ada_check_typedef (type);
2885 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2886 struct type *index_type
2887 = create_static_range_type (NULL, base_index_type, low, high);
2888 struct type *slice_type =
2889 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2890 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2891 LONGEST base_low_pos, low_pos;
2892 CORE_ADDR base;
2893
2894 if (!discrete_position (base_index_type, low, &low_pos)
2895 || !discrete_position (base_index_type, base_low, &base_low_pos))
2896 {
2897 warning (_("unable to get positions in slice, use bounds instead"));
2898 low_pos = low;
2899 base_low_pos = base_low;
2900 }
2901
2902 base = value_as_address (array_ptr)
2903 + ((low_pos - base_low_pos)
2904 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2905 return value_at_lazy (slice_type, base);
2906 }
2907
2908
2909 static struct value *
2910 ada_value_slice (struct value *array, int low, int high)
2911 {
2912 struct type *type = ada_check_typedef (value_type (array));
2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2914 struct type *index_type
2915 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2916 struct type *slice_type =
2917 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2918 LONGEST low_pos, high_pos;
2919
2920 if (!discrete_position (base_index_type, low, &low_pos)
2921 || !discrete_position (base_index_type, high, &high_pos))
2922 {
2923 warning (_("unable to get positions in slice, use bounds instead"));
2924 low_pos = low;
2925 high_pos = high;
2926 }
2927
2928 return value_cast (slice_type,
2929 value_slice (array, low, high_pos - low_pos + 1));
2930 }
2931
2932 /* If type is a record type in the form of a standard GNAT array
2933 descriptor, returns the number of dimensions for type. If arr is a
2934 simple array, returns the number of "array of"s that prefix its
2935 type designation. Otherwise, returns 0. */
2936
2937 int
2938 ada_array_arity (struct type *type)
2939 {
2940 int arity;
2941
2942 if (type == NULL)
2943 return 0;
2944
2945 type = desc_base_type (type);
2946
2947 arity = 0;
2948 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2949 return desc_arity (desc_bounds_type (type));
2950 else
2951 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2952 {
2953 arity += 1;
2954 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2955 }
2956
2957 return arity;
2958 }
2959
2960 /* If TYPE is a record type in the form of a standard GNAT array
2961 descriptor or a simple array type, returns the element type for
2962 TYPE after indexing by NINDICES indices, or by all indices if
2963 NINDICES is -1. Otherwise, returns NULL. */
2964
2965 struct type *
2966 ada_array_element_type (struct type *type, int nindices)
2967 {
2968 type = desc_base_type (type);
2969
2970 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2971 {
2972 int k;
2973 struct type *p_array_type;
2974
2975 p_array_type = desc_data_target_type (type);
2976
2977 k = ada_array_arity (type);
2978 if (k == 0)
2979 return NULL;
2980
2981 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2982 if (nindices >= 0 && k > nindices)
2983 k = nindices;
2984 while (k > 0 && p_array_type != NULL)
2985 {
2986 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2987 k -= 1;
2988 }
2989 return p_array_type;
2990 }
2991 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2992 {
2993 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2994 {
2995 type = TYPE_TARGET_TYPE (type);
2996 nindices -= 1;
2997 }
2998 return type;
2999 }
3000
3001 return NULL;
3002 }
3003
3004 /* The type of nth index in arrays of given type (n numbering from 1).
3005 Does not examine memory. Throws an error if N is invalid or TYPE
3006 is not an array type. NAME is the name of the Ada attribute being
3007 evaluated ('range, 'first, 'last, or 'length); it is used in building
3008 the error message. */
3009
3010 static struct type *
3011 ada_index_type (struct type *type, int n, const char *name)
3012 {
3013 struct type *result_type;
3014
3015 type = desc_base_type (type);
3016
3017 if (n < 0 || n > ada_array_arity (type))
3018 error (_("invalid dimension number to '%s"), name);
3019
3020 if (ada_is_simple_array_type (type))
3021 {
3022 int i;
3023
3024 for (i = 1; i < n; i += 1)
3025 type = TYPE_TARGET_TYPE (type);
3026 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3027 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3028 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3029 perhaps stabsread.c would make more sense. */
3030 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3031 result_type = NULL;
3032 }
3033 else
3034 {
3035 result_type = desc_index_type (desc_bounds_type (type), n);
3036 if (result_type == NULL)
3037 error (_("attempt to take bound of something that is not an array"));
3038 }
3039
3040 return result_type;
3041 }
3042
3043 /* Given that arr is an array type, returns the lower bound of the
3044 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3045 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3046 array-descriptor type. It works for other arrays with bounds supplied
3047 by run-time quantities other than discriminants. */
3048
3049 static LONGEST
3050 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3051 {
3052 struct type *type, *index_type_desc, *index_type;
3053 int i;
3054
3055 gdb_assert (which == 0 || which == 1);
3056
3057 if (ada_is_constrained_packed_array_type (arr_type))
3058 arr_type = decode_constrained_packed_array_type (arr_type);
3059
3060 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3061 return (LONGEST) - which;
3062
3063 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3064 type = TYPE_TARGET_TYPE (arr_type);
3065 else
3066 type = arr_type;
3067
3068 if (TYPE_FIXED_INSTANCE (type))
3069 {
3070 /* The array has already been fixed, so we do not need to
3071 check the parallel ___XA type again. That encoding has
3072 already been applied, so ignore it now. */
3073 index_type_desc = NULL;
3074 }
3075 else
3076 {
3077 index_type_desc = ada_find_parallel_type (type, "___XA");
3078 ada_fixup_array_indexes_type (index_type_desc);
3079 }
3080
3081 if (index_type_desc != NULL)
3082 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3083 NULL);
3084 else
3085 {
3086 struct type *elt_type = check_typedef (type);
3087
3088 for (i = 1; i < n; i++)
3089 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3090
3091 index_type = TYPE_INDEX_TYPE (elt_type);
3092 }
3093
3094 return
3095 (LONGEST) (which == 0
3096 ? ada_discrete_type_low_bound (index_type)
3097 : ada_discrete_type_high_bound (index_type));
3098 }
3099
3100 /* Given that arr is an array value, returns the lower bound of the
3101 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3102 WHICH is 1. This routine will also work for arrays with bounds
3103 supplied by run-time quantities other than discriminants. */
3104
3105 static LONGEST
3106 ada_array_bound (struct value *arr, int n, int which)
3107 {
3108 struct type *arr_type;
3109
3110 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3111 arr = value_ind (arr);
3112 arr_type = value_enclosing_type (arr);
3113
3114 if (ada_is_constrained_packed_array_type (arr_type))
3115 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3116 else if (ada_is_simple_array_type (arr_type))
3117 return ada_array_bound_from_type (arr_type, n, which);
3118 else
3119 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3120 }
3121
3122 /* Given that arr is an array value, returns the length of the
3123 nth index. This routine will also work for arrays with bounds
3124 supplied by run-time quantities other than discriminants.
3125 Does not work for arrays indexed by enumeration types with representation
3126 clauses at the moment. */
3127
3128 static LONGEST
3129 ada_array_length (struct value *arr, int n)
3130 {
3131 struct type *arr_type, *index_type;
3132 int low, high;
3133
3134 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3135 arr = value_ind (arr);
3136 arr_type = value_enclosing_type (arr);
3137
3138 if (ada_is_constrained_packed_array_type (arr_type))
3139 return ada_array_length (decode_constrained_packed_array (arr), n);
3140
3141 if (ada_is_simple_array_type (arr_type))
3142 {
3143 low = ada_array_bound_from_type (arr_type, n, 0);
3144 high = ada_array_bound_from_type (arr_type, n, 1);
3145 }
3146 else
3147 {
3148 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3149 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3150 }
3151
3152 arr_type = check_typedef (arr_type);
3153 index_type = TYPE_INDEX_TYPE (arr_type);
3154 if (index_type != NULL)
3155 {
3156 struct type *base_type;
3157 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3158 base_type = TYPE_TARGET_TYPE (index_type);
3159 else
3160 base_type = index_type;
3161
3162 low = pos_atr (value_from_longest (base_type, low));
3163 high = pos_atr (value_from_longest (base_type, high));
3164 }
3165 return high - low + 1;
3166 }
3167
3168 /* An empty array whose type is that of ARR_TYPE (an array type),
3169 with bounds LOW to LOW-1. */
3170
3171 static struct value *
3172 empty_array (struct type *arr_type, int low)
3173 {
3174 struct type *arr_type0 = ada_check_typedef (arr_type);
3175 struct type *index_type
3176 = create_static_range_type
3177 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3178 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3179
3180 return allocate_value (create_array_type (NULL, elt_type, index_type));
3181 }
3182 \f
3183
3184 /* Name resolution */
3185
3186 /* The "decoded" name for the user-definable Ada operator corresponding
3187 to OP. */
3188
3189 static const char *
3190 ada_decoded_op_name (enum exp_opcode op)
3191 {
3192 int i;
3193
3194 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3195 {
3196 if (ada_opname_table[i].op == op)
3197 return ada_opname_table[i].decoded;
3198 }
3199 error (_("Could not find operator name for opcode"));
3200 }
3201
3202
3203 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3204 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3205 undefined namespace) and converts operators that are
3206 user-defined into appropriate function calls. If CONTEXT_TYPE is
3207 non-null, it provides a preferred result type [at the moment, only
3208 type void has any effect---causing procedures to be preferred over
3209 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3210 return type is preferred. May change (expand) *EXP. */
3211
3212 static void
3213 resolve (struct expression **expp, int void_context_p)
3214 {
3215 struct type *context_type = NULL;
3216 int pc = 0;
3217
3218 if (void_context_p)
3219 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3220
3221 resolve_subexp (expp, &pc, 1, context_type);
3222 }
3223
3224 /* Resolve the operator of the subexpression beginning at
3225 position *POS of *EXPP. "Resolving" consists of replacing
3226 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3227 with their resolutions, replacing built-in operators with
3228 function calls to user-defined operators, where appropriate, and,
3229 when DEPROCEDURE_P is non-zero, converting function-valued variables
3230 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3231 are as in ada_resolve, above. */
3232
3233 static struct value *
3234 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3235 struct type *context_type)
3236 {
3237 int pc = *pos;
3238 int i;
3239 struct expression *exp; /* Convenience: == *expp. */
3240 enum exp_opcode op = (*expp)->elts[pc].opcode;
3241 struct value **argvec; /* Vector of operand types (alloca'ed). */
3242 int nargs; /* Number of operands. */
3243 int oplen;
3244
3245 argvec = NULL;
3246 nargs = 0;
3247 exp = *expp;
3248
3249 /* Pass one: resolve operands, saving their types and updating *pos,
3250 if needed. */
3251 switch (op)
3252 {
3253 case OP_FUNCALL:
3254 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3255 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3256 *pos += 7;
3257 else
3258 {
3259 *pos += 3;
3260 resolve_subexp (expp, pos, 0, NULL);
3261 }
3262 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3263 break;
3264
3265 case UNOP_ADDR:
3266 *pos += 1;
3267 resolve_subexp (expp, pos, 0, NULL);
3268 break;
3269
3270 case UNOP_QUAL:
3271 *pos += 3;
3272 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3273 break;
3274
3275 case OP_ATR_MODULUS:
3276 case OP_ATR_SIZE:
3277 case OP_ATR_TAG:
3278 case OP_ATR_FIRST:
3279 case OP_ATR_LAST:
3280 case OP_ATR_LENGTH:
3281 case OP_ATR_POS:
3282 case OP_ATR_VAL:
3283 case OP_ATR_MIN:
3284 case OP_ATR_MAX:
3285 case TERNOP_IN_RANGE:
3286 case BINOP_IN_BOUNDS:
3287 case UNOP_IN_RANGE:
3288 case OP_AGGREGATE:
3289 case OP_OTHERS:
3290 case OP_CHOICES:
3291 case OP_POSITIONAL:
3292 case OP_DISCRETE_RANGE:
3293 case OP_NAME:
3294 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3295 *pos += oplen;
3296 break;
3297
3298 case BINOP_ASSIGN:
3299 {
3300 struct value *arg1;
3301
3302 *pos += 1;
3303 arg1 = resolve_subexp (expp, pos, 0, NULL);
3304 if (arg1 == NULL)
3305 resolve_subexp (expp, pos, 1, NULL);
3306 else
3307 resolve_subexp (expp, pos, 1, value_type (arg1));
3308 break;
3309 }
3310
3311 case UNOP_CAST:
3312 *pos += 3;
3313 nargs = 1;
3314 break;
3315
3316 case BINOP_ADD:
3317 case BINOP_SUB:
3318 case BINOP_MUL:
3319 case BINOP_DIV:
3320 case BINOP_REM:
3321 case BINOP_MOD:
3322 case BINOP_EXP:
3323 case BINOP_CONCAT:
3324 case BINOP_LOGICAL_AND:
3325 case BINOP_LOGICAL_OR:
3326 case BINOP_BITWISE_AND:
3327 case BINOP_BITWISE_IOR:
3328 case BINOP_BITWISE_XOR:
3329
3330 case BINOP_EQUAL:
3331 case BINOP_NOTEQUAL:
3332 case BINOP_LESS:
3333 case BINOP_GTR:
3334 case BINOP_LEQ:
3335 case BINOP_GEQ:
3336
3337 case BINOP_REPEAT:
3338 case BINOP_SUBSCRIPT:
3339 case BINOP_COMMA:
3340 *pos += 1;
3341 nargs = 2;
3342 break;
3343
3344 case UNOP_NEG:
3345 case UNOP_PLUS:
3346 case UNOP_LOGICAL_NOT:
3347 case UNOP_ABS:
3348 case UNOP_IND:
3349 *pos += 1;
3350 nargs = 1;
3351 break;
3352
3353 case OP_LONG:
3354 case OP_DOUBLE:
3355 case OP_VAR_VALUE:
3356 *pos += 4;
3357 break;
3358
3359 case OP_TYPE:
3360 case OP_BOOL:
3361 case OP_LAST:
3362 case OP_INTERNALVAR:
3363 *pos += 3;
3364 break;
3365
3366 case UNOP_MEMVAL:
3367 *pos += 3;
3368 nargs = 1;
3369 break;
3370
3371 case OP_REGISTER:
3372 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3373 break;
3374
3375 case STRUCTOP_STRUCT:
3376 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3377 nargs = 1;
3378 break;
3379
3380 case TERNOP_SLICE:
3381 *pos += 1;
3382 nargs = 3;
3383 break;
3384
3385 case OP_STRING:
3386 break;
3387
3388 default:
3389 error (_("Unexpected operator during name resolution"));
3390 }
3391
3392 argvec = XALLOCAVEC (struct value *, nargs + 1);
3393 for (i = 0; i < nargs; i += 1)
3394 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3395 argvec[i] = NULL;
3396 exp = *expp;
3397
3398 /* Pass two: perform any resolution on principal operator. */
3399 switch (op)
3400 {
3401 default:
3402 break;
3403
3404 case OP_VAR_VALUE:
3405 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3406 {
3407 struct block_symbol *candidates;
3408 int n_candidates;
3409
3410 n_candidates =
3411 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3412 (exp->elts[pc + 2].symbol),
3413 exp->elts[pc + 1].block, VAR_DOMAIN,
3414 &candidates);
3415
3416 if (n_candidates > 1)
3417 {
3418 /* Types tend to get re-introduced locally, so if there
3419 are any local symbols that are not types, first filter
3420 out all types. */
3421 int j;
3422 for (j = 0; j < n_candidates; j += 1)
3423 switch (SYMBOL_CLASS (candidates[j].symbol))
3424 {
3425 case LOC_REGISTER:
3426 case LOC_ARG:
3427 case LOC_REF_ARG:
3428 case LOC_REGPARM_ADDR:
3429 case LOC_LOCAL:
3430 case LOC_COMPUTED:
3431 goto FoundNonType;
3432 default:
3433 break;
3434 }
3435 FoundNonType:
3436 if (j < n_candidates)
3437 {
3438 j = 0;
3439 while (j < n_candidates)
3440 {
3441 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3442 {
3443 candidates[j] = candidates[n_candidates - 1];
3444 n_candidates -= 1;
3445 }
3446 else
3447 j += 1;
3448 }
3449 }
3450 }
3451
3452 if (n_candidates == 0)
3453 error (_("No definition found for %s"),
3454 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3455 else if (n_candidates == 1)
3456 i = 0;
3457 else if (deprocedure_p
3458 && !is_nonfunction (candidates, n_candidates))
3459 {
3460 i = ada_resolve_function
3461 (candidates, n_candidates, NULL, 0,
3462 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3463 context_type);
3464 if (i < 0)
3465 error (_("Could not find a match for %s"),
3466 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3467 }
3468 else
3469 {
3470 printf_filtered (_("Multiple matches for %s\n"),
3471 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3472 user_select_syms (candidates, n_candidates, 1);
3473 i = 0;
3474 }
3475
3476 exp->elts[pc + 1].block = candidates[i].block;
3477 exp->elts[pc + 2].symbol = candidates[i].symbol;
3478 if (innermost_block == NULL
3479 || contained_in (candidates[i].block, innermost_block))
3480 innermost_block = candidates[i].block;
3481 }
3482
3483 if (deprocedure_p
3484 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3485 == TYPE_CODE_FUNC))
3486 {
3487 replace_operator_with_call (expp, pc, 0, 0,
3488 exp->elts[pc + 2].symbol,
3489 exp->elts[pc + 1].block);
3490 exp = *expp;
3491 }
3492 break;
3493
3494 case OP_FUNCALL:
3495 {
3496 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3497 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3498 {
3499 struct block_symbol *candidates;
3500 int n_candidates;
3501
3502 n_candidates =
3503 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3504 (exp->elts[pc + 5].symbol),
3505 exp->elts[pc + 4].block, VAR_DOMAIN,
3506 &candidates);
3507 if (n_candidates == 1)
3508 i = 0;
3509 else
3510 {
3511 i = ada_resolve_function
3512 (candidates, n_candidates,
3513 argvec, nargs,
3514 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3515 context_type);
3516 if (i < 0)
3517 error (_("Could not find a match for %s"),
3518 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3519 }
3520
3521 exp->elts[pc + 4].block = candidates[i].block;
3522 exp->elts[pc + 5].symbol = candidates[i].symbol;
3523 if (innermost_block == NULL
3524 || contained_in (candidates[i].block, innermost_block))
3525 innermost_block = candidates[i].block;
3526 }
3527 }
3528 break;
3529 case BINOP_ADD:
3530 case BINOP_SUB:
3531 case BINOP_MUL:
3532 case BINOP_DIV:
3533 case BINOP_REM:
3534 case BINOP_MOD:
3535 case BINOP_CONCAT:
3536 case BINOP_BITWISE_AND:
3537 case BINOP_BITWISE_IOR:
3538 case BINOP_BITWISE_XOR:
3539 case BINOP_EQUAL:
3540 case BINOP_NOTEQUAL:
3541 case BINOP_LESS:
3542 case BINOP_GTR:
3543 case BINOP_LEQ:
3544 case BINOP_GEQ:
3545 case BINOP_EXP:
3546 case UNOP_NEG:
3547 case UNOP_PLUS:
3548 case UNOP_LOGICAL_NOT:
3549 case UNOP_ABS:
3550 if (possible_user_operator_p (op, argvec))
3551 {
3552 struct block_symbol *candidates;
3553 int n_candidates;
3554
3555 n_candidates =
3556 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3557 (struct block *) NULL, VAR_DOMAIN,
3558 &candidates);
3559 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3560 ada_decoded_op_name (op), NULL);
3561 if (i < 0)
3562 break;
3563
3564 replace_operator_with_call (expp, pc, nargs, 1,
3565 candidates[i].symbol,
3566 candidates[i].block);
3567 exp = *expp;
3568 }
3569 break;
3570
3571 case OP_TYPE:
3572 case OP_REGISTER:
3573 return NULL;
3574 }
3575
3576 *pos = pc;
3577 return evaluate_subexp_type (exp, pos);
3578 }
3579
3580 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3581 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3582 a non-pointer. */
3583 /* The term "match" here is rather loose. The match is heuristic and
3584 liberal. */
3585
3586 static int
3587 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3588 {
3589 ftype = ada_check_typedef (ftype);
3590 atype = ada_check_typedef (atype);
3591
3592 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3593 ftype = TYPE_TARGET_TYPE (ftype);
3594 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3595 atype = TYPE_TARGET_TYPE (atype);
3596
3597 switch (TYPE_CODE (ftype))
3598 {
3599 default:
3600 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3601 case TYPE_CODE_PTR:
3602 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3603 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3604 TYPE_TARGET_TYPE (atype), 0);
3605 else
3606 return (may_deref
3607 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3608 case TYPE_CODE_INT:
3609 case TYPE_CODE_ENUM:
3610 case TYPE_CODE_RANGE:
3611 switch (TYPE_CODE (atype))
3612 {
3613 case TYPE_CODE_INT:
3614 case TYPE_CODE_ENUM:
3615 case TYPE_CODE_RANGE:
3616 return 1;
3617 default:
3618 return 0;
3619 }
3620
3621 case TYPE_CODE_ARRAY:
3622 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3623 || ada_is_array_descriptor_type (atype));
3624
3625 case TYPE_CODE_STRUCT:
3626 if (ada_is_array_descriptor_type (ftype))
3627 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3628 || ada_is_array_descriptor_type (atype));
3629 else
3630 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3631 && !ada_is_array_descriptor_type (atype));
3632
3633 case TYPE_CODE_UNION:
3634 case TYPE_CODE_FLT:
3635 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3636 }
3637 }
3638
3639 /* Return non-zero if the formals of FUNC "sufficiently match" the
3640 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3641 may also be an enumeral, in which case it is treated as a 0-
3642 argument function. */
3643
3644 static int
3645 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3646 {
3647 int i;
3648 struct type *func_type = SYMBOL_TYPE (func);
3649
3650 if (SYMBOL_CLASS (func) == LOC_CONST
3651 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3652 return (n_actuals == 0);
3653 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3654 return 0;
3655
3656 if (TYPE_NFIELDS (func_type) != n_actuals)
3657 return 0;
3658
3659 for (i = 0; i < n_actuals; i += 1)
3660 {
3661 if (actuals[i] == NULL)
3662 return 0;
3663 else
3664 {
3665 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3666 i));
3667 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3668
3669 if (!ada_type_match (ftype, atype, 1))
3670 return 0;
3671 }
3672 }
3673 return 1;
3674 }
3675
3676 /* False iff function type FUNC_TYPE definitely does not produce a value
3677 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3678 FUNC_TYPE is not a valid function type with a non-null return type
3679 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3680
3681 static int
3682 return_match (struct type *func_type, struct type *context_type)
3683 {
3684 struct type *return_type;
3685
3686 if (func_type == NULL)
3687 return 1;
3688
3689 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3690 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3691 else
3692 return_type = get_base_type (func_type);
3693 if (return_type == NULL)
3694 return 1;
3695
3696 context_type = get_base_type (context_type);
3697
3698 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3699 return context_type == NULL || return_type == context_type;
3700 else if (context_type == NULL)
3701 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3702 else
3703 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3704 }
3705
3706
3707 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3708 function (if any) that matches the types of the NARGS arguments in
3709 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3710 that returns that type, then eliminate matches that don't. If
3711 CONTEXT_TYPE is void and there is at least one match that does not
3712 return void, eliminate all matches that do.
3713
3714 Asks the user if there is more than one match remaining. Returns -1
3715 if there is no such symbol or none is selected. NAME is used
3716 solely for messages. May re-arrange and modify SYMS in
3717 the process; the index returned is for the modified vector. */
3718
3719 static int
3720 ada_resolve_function (struct block_symbol syms[],
3721 int nsyms, struct value **args, int nargs,
3722 const char *name, struct type *context_type)
3723 {
3724 int fallback;
3725 int k;
3726 int m; /* Number of hits */
3727
3728 m = 0;
3729 /* In the first pass of the loop, we only accept functions matching
3730 context_type. If none are found, we add a second pass of the loop
3731 where every function is accepted. */
3732 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3733 {
3734 for (k = 0; k < nsyms; k += 1)
3735 {
3736 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3737
3738 if (ada_args_match (syms[k].symbol, args, nargs)
3739 && (fallback || return_match (type, context_type)))
3740 {
3741 syms[m] = syms[k];
3742 m += 1;
3743 }
3744 }
3745 }
3746
3747 /* If we got multiple matches, ask the user which one to use. Don't do this
3748 interactive thing during completion, though, as the purpose of the
3749 completion is providing a list of all possible matches. Prompting the
3750 user to filter it down would be completely unexpected in this case. */
3751 if (m == 0)
3752 return -1;
3753 else if (m > 1 && !parse_completion)
3754 {
3755 printf_filtered (_("Multiple matches for %s\n"), name);
3756 user_select_syms (syms, m, 1);
3757 return 0;
3758 }
3759 return 0;
3760 }
3761
3762 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3763 in a listing of choices during disambiguation (see sort_choices, below).
3764 The idea is that overloadings of a subprogram name from the
3765 same package should sort in their source order. We settle for ordering
3766 such symbols by their trailing number (__N or $N). */
3767
3768 static int
3769 encoded_ordered_before (const char *N0, const char *N1)
3770 {
3771 if (N1 == NULL)
3772 return 0;
3773 else if (N0 == NULL)
3774 return 1;
3775 else
3776 {
3777 int k0, k1;
3778
3779 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3780 ;
3781 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3782 ;
3783 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3784 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3785 {
3786 int n0, n1;
3787
3788 n0 = k0;
3789 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3790 n0 -= 1;
3791 n1 = k1;
3792 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3793 n1 -= 1;
3794 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3795 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3796 }
3797 return (strcmp (N0, N1) < 0);
3798 }
3799 }
3800
3801 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3802 encoded names. */
3803
3804 static void
3805 sort_choices (struct block_symbol syms[], int nsyms)
3806 {
3807 int i;
3808
3809 for (i = 1; i < nsyms; i += 1)
3810 {
3811 struct block_symbol sym = syms[i];
3812 int j;
3813
3814 for (j = i - 1; j >= 0; j -= 1)
3815 {
3816 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3817 SYMBOL_LINKAGE_NAME (sym.symbol)))
3818 break;
3819 syms[j + 1] = syms[j];
3820 }
3821 syms[j + 1] = sym;
3822 }
3823 }
3824
3825 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3826 by asking the user (if necessary), returning the number selected,
3827 and setting the first elements of SYMS items. Error if no symbols
3828 selected. */
3829
3830 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3831 to be re-integrated one of these days. */
3832
3833 int
3834 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3835 {
3836 int i;
3837 int *chosen = XALLOCAVEC (int , nsyms);
3838 int n_chosen;
3839 int first_choice = (max_results == 1) ? 1 : 2;
3840 const char *select_mode = multiple_symbols_select_mode ();
3841
3842 if (max_results < 1)
3843 error (_("Request to select 0 symbols!"));
3844 if (nsyms <= 1)
3845 return nsyms;
3846
3847 if (select_mode == multiple_symbols_cancel)
3848 error (_("\
3849 canceled because the command is ambiguous\n\
3850 See set/show multiple-symbol."));
3851
3852 /* If select_mode is "all", then return all possible symbols.
3853 Only do that if more than one symbol can be selected, of course.
3854 Otherwise, display the menu as usual. */
3855 if (select_mode == multiple_symbols_all && max_results > 1)
3856 return nsyms;
3857
3858 printf_unfiltered (_("[0] cancel\n"));
3859 if (max_results > 1)
3860 printf_unfiltered (_("[1] all\n"));
3861
3862 sort_choices (syms, nsyms);
3863
3864 for (i = 0; i < nsyms; i += 1)
3865 {
3866 if (syms[i].symbol == NULL)
3867 continue;
3868
3869 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3870 {
3871 struct symtab_and_line sal =
3872 find_function_start_sal (syms[i].symbol, 1);
3873
3874 if (sal.symtab == NULL)
3875 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3876 i + first_choice,
3877 SYMBOL_PRINT_NAME (syms[i].symbol),
3878 sal.line);
3879 else
3880 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3881 SYMBOL_PRINT_NAME (syms[i].symbol),
3882 symtab_to_filename_for_display (sal.symtab),
3883 sal.line);
3884 continue;
3885 }
3886 else
3887 {
3888 int is_enumeral =
3889 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3890 && SYMBOL_TYPE (syms[i].symbol) != NULL
3891 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3892 struct symtab *symtab = NULL;
3893
3894 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3895 symtab = symbol_symtab (syms[i].symbol);
3896
3897 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3898 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3899 i + first_choice,
3900 SYMBOL_PRINT_NAME (syms[i].symbol),
3901 symtab_to_filename_for_display (symtab),
3902 SYMBOL_LINE (syms[i].symbol));
3903 else if (is_enumeral
3904 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3905 {
3906 printf_unfiltered (("[%d] "), i + first_choice);
3907 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3908 gdb_stdout, -1, 0, &type_print_raw_options);
3909 printf_unfiltered (_("'(%s) (enumeral)\n"),
3910 SYMBOL_PRINT_NAME (syms[i].symbol));
3911 }
3912 else if (symtab != NULL)
3913 printf_unfiltered (is_enumeral
3914 ? _("[%d] %s in %s (enumeral)\n")
3915 : _("[%d] %s at %s:?\n"),
3916 i + first_choice,
3917 SYMBOL_PRINT_NAME (syms[i].symbol),
3918 symtab_to_filename_for_display (symtab));
3919 else
3920 printf_unfiltered (is_enumeral
3921 ? _("[%d] %s (enumeral)\n")
3922 : _("[%d] %s at ?\n"),
3923 i + first_choice,
3924 SYMBOL_PRINT_NAME (syms[i].symbol));
3925 }
3926 }
3927
3928 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3929 "overload-choice");
3930
3931 for (i = 0; i < n_chosen; i += 1)
3932 syms[i] = syms[chosen[i]];
3933
3934 return n_chosen;
3935 }
3936
3937 /* Read and validate a set of numeric choices from the user in the
3938 range 0 .. N_CHOICES-1. Place the results in increasing
3939 order in CHOICES[0 .. N-1], and return N.
3940
3941 The user types choices as a sequence of numbers on one line
3942 separated by blanks, encoding them as follows:
3943
3944 + A choice of 0 means to cancel the selection, throwing an error.
3945 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3946 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3947
3948 The user is not allowed to choose more than MAX_RESULTS values.
3949
3950 ANNOTATION_SUFFIX, if present, is used to annotate the input
3951 prompts (for use with the -f switch). */
3952
3953 int
3954 get_selections (int *choices, int n_choices, int max_results,
3955 int is_all_choice, char *annotation_suffix)
3956 {
3957 char *args;
3958 char *prompt;
3959 int n_chosen;
3960 int first_choice = is_all_choice ? 2 : 1;
3961
3962 prompt = getenv ("PS2");
3963 if (prompt == NULL)
3964 prompt = "> ";
3965
3966 args = command_line_input (prompt, 0, annotation_suffix);
3967
3968 if (args == NULL)
3969 error_no_arg (_("one or more choice numbers"));
3970
3971 n_chosen = 0;
3972
3973 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3974 order, as given in args. Choices are validated. */
3975 while (1)
3976 {
3977 char *args2;
3978 int choice, j;
3979
3980 args = skip_spaces (args);
3981 if (*args == '\0' && n_chosen == 0)
3982 error_no_arg (_("one or more choice numbers"));
3983 else if (*args == '\0')
3984 break;
3985
3986 choice = strtol (args, &args2, 10);
3987 if (args == args2 || choice < 0
3988 || choice > n_choices + first_choice - 1)
3989 error (_("Argument must be choice number"));
3990 args = args2;
3991
3992 if (choice == 0)
3993 error (_("cancelled"));
3994
3995 if (choice < first_choice)
3996 {
3997 n_chosen = n_choices;
3998 for (j = 0; j < n_choices; j += 1)
3999 choices[j] = j;
4000 break;
4001 }
4002 choice -= first_choice;
4003
4004 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4005 {
4006 }
4007
4008 if (j < 0 || choice != choices[j])
4009 {
4010 int k;
4011
4012 for (k = n_chosen - 1; k > j; k -= 1)
4013 choices[k + 1] = choices[k];
4014 choices[j + 1] = choice;
4015 n_chosen += 1;
4016 }
4017 }
4018
4019 if (n_chosen > max_results)
4020 error (_("Select no more than %d of the above"), max_results);
4021
4022 return n_chosen;
4023 }
4024
4025 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4026 on the function identified by SYM and BLOCK, and taking NARGS
4027 arguments. Update *EXPP as needed to hold more space. */
4028
4029 static void
4030 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4031 int oplen, struct symbol *sym,
4032 const struct block *block)
4033 {
4034 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4035 symbol, -oplen for operator being replaced). */
4036 struct expression *newexp = (struct expression *)
4037 xzalloc (sizeof (struct expression)
4038 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4039 struct expression *exp = *expp;
4040
4041 newexp->nelts = exp->nelts + 7 - oplen;
4042 newexp->language_defn = exp->language_defn;
4043 newexp->gdbarch = exp->gdbarch;
4044 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4045 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4046 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4047
4048 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4049 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4050
4051 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4052 newexp->elts[pc + 4].block = block;
4053 newexp->elts[pc + 5].symbol = sym;
4054
4055 *expp = newexp;
4056 xfree (exp);
4057 }
4058
4059 /* Type-class predicates */
4060
4061 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4062 or FLOAT). */
4063
4064 static int
4065 numeric_type_p (struct type *type)
4066 {
4067 if (type == NULL)
4068 return 0;
4069 else
4070 {
4071 switch (TYPE_CODE (type))
4072 {
4073 case TYPE_CODE_INT:
4074 case TYPE_CODE_FLT:
4075 return 1;
4076 case TYPE_CODE_RANGE:
4077 return (type == TYPE_TARGET_TYPE (type)
4078 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4079 default:
4080 return 0;
4081 }
4082 }
4083 }
4084
4085 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4086
4087 static int
4088 integer_type_p (struct type *type)
4089 {
4090 if (type == NULL)
4091 return 0;
4092 else
4093 {
4094 switch (TYPE_CODE (type))
4095 {
4096 case TYPE_CODE_INT:
4097 return 1;
4098 case TYPE_CODE_RANGE:
4099 return (type == TYPE_TARGET_TYPE (type)
4100 || integer_type_p (TYPE_TARGET_TYPE (type)));
4101 default:
4102 return 0;
4103 }
4104 }
4105 }
4106
4107 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4108
4109 static int
4110 scalar_type_p (struct type *type)
4111 {
4112 if (type == NULL)
4113 return 0;
4114 else
4115 {
4116 switch (TYPE_CODE (type))
4117 {
4118 case TYPE_CODE_INT:
4119 case TYPE_CODE_RANGE:
4120 case TYPE_CODE_ENUM:
4121 case TYPE_CODE_FLT:
4122 return 1;
4123 default:
4124 return 0;
4125 }
4126 }
4127 }
4128
4129 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4130
4131 static int
4132 discrete_type_p (struct type *type)
4133 {
4134 if (type == NULL)
4135 return 0;
4136 else
4137 {
4138 switch (TYPE_CODE (type))
4139 {
4140 case TYPE_CODE_INT:
4141 case TYPE_CODE_RANGE:
4142 case TYPE_CODE_ENUM:
4143 case TYPE_CODE_BOOL:
4144 return 1;
4145 default:
4146 return 0;
4147 }
4148 }
4149 }
4150
4151 /* Returns non-zero if OP with operands in the vector ARGS could be
4152 a user-defined function. Errs on the side of pre-defined operators
4153 (i.e., result 0). */
4154
4155 static int
4156 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4157 {
4158 struct type *type0 =
4159 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4160 struct type *type1 =
4161 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4162
4163 if (type0 == NULL)
4164 return 0;
4165
4166 switch (op)
4167 {
4168 default:
4169 return 0;
4170
4171 case BINOP_ADD:
4172 case BINOP_SUB:
4173 case BINOP_MUL:
4174 case BINOP_DIV:
4175 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4176
4177 case BINOP_REM:
4178 case BINOP_MOD:
4179 case BINOP_BITWISE_AND:
4180 case BINOP_BITWISE_IOR:
4181 case BINOP_BITWISE_XOR:
4182 return (!(integer_type_p (type0) && integer_type_p (type1)));
4183
4184 case BINOP_EQUAL:
4185 case BINOP_NOTEQUAL:
4186 case BINOP_LESS:
4187 case BINOP_GTR:
4188 case BINOP_LEQ:
4189 case BINOP_GEQ:
4190 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4191
4192 case BINOP_CONCAT:
4193 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4194
4195 case BINOP_EXP:
4196 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4197
4198 case UNOP_NEG:
4199 case UNOP_PLUS:
4200 case UNOP_LOGICAL_NOT:
4201 case UNOP_ABS:
4202 return (!numeric_type_p (type0));
4203
4204 }
4205 }
4206 \f
4207 /* Renaming */
4208
4209 /* NOTES:
4210
4211 1. In the following, we assume that a renaming type's name may
4212 have an ___XD suffix. It would be nice if this went away at some
4213 point.
4214 2. We handle both the (old) purely type-based representation of
4215 renamings and the (new) variable-based encoding. At some point,
4216 it is devoutly to be hoped that the former goes away
4217 (FIXME: hilfinger-2007-07-09).
4218 3. Subprogram renamings are not implemented, although the XRS
4219 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4220
4221 /* If SYM encodes a renaming,
4222
4223 <renaming> renames <renamed entity>,
4224
4225 sets *LEN to the length of the renamed entity's name,
4226 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4227 the string describing the subcomponent selected from the renamed
4228 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4229 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4230 are undefined). Otherwise, returns a value indicating the category
4231 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4232 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4233 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4234 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4235 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4236 may be NULL, in which case they are not assigned.
4237
4238 [Currently, however, GCC does not generate subprogram renamings.] */
4239
4240 enum ada_renaming_category
4241 ada_parse_renaming (struct symbol *sym,
4242 const char **renamed_entity, int *len,
4243 const char **renaming_expr)
4244 {
4245 enum ada_renaming_category kind;
4246 const char *info;
4247 const char *suffix;
4248
4249 if (sym == NULL)
4250 return ADA_NOT_RENAMING;
4251 switch (SYMBOL_CLASS (sym))
4252 {
4253 default:
4254 return ADA_NOT_RENAMING;
4255 case LOC_TYPEDEF:
4256 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4257 renamed_entity, len, renaming_expr);
4258 case LOC_LOCAL:
4259 case LOC_STATIC:
4260 case LOC_COMPUTED:
4261 case LOC_OPTIMIZED_OUT:
4262 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4263 if (info == NULL)
4264 return ADA_NOT_RENAMING;
4265 switch (info[5])
4266 {
4267 case '_':
4268 kind = ADA_OBJECT_RENAMING;
4269 info += 6;
4270 break;
4271 case 'E':
4272 kind = ADA_EXCEPTION_RENAMING;
4273 info += 7;
4274 break;
4275 case 'P':
4276 kind = ADA_PACKAGE_RENAMING;
4277 info += 7;
4278 break;
4279 case 'S':
4280 kind = ADA_SUBPROGRAM_RENAMING;
4281 info += 7;
4282 break;
4283 default:
4284 return ADA_NOT_RENAMING;
4285 }
4286 }
4287
4288 if (renamed_entity != NULL)
4289 *renamed_entity = info;
4290 suffix = strstr (info, "___XE");
4291 if (suffix == NULL || suffix == info)
4292 return ADA_NOT_RENAMING;
4293 if (len != NULL)
4294 *len = strlen (info) - strlen (suffix);
4295 suffix += 5;
4296 if (renaming_expr != NULL)
4297 *renaming_expr = suffix;
4298 return kind;
4299 }
4300
4301 /* Assuming TYPE encodes a renaming according to the old encoding in
4302 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4303 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4304 ADA_NOT_RENAMING otherwise. */
4305 static enum ada_renaming_category
4306 parse_old_style_renaming (struct type *type,
4307 const char **renamed_entity, int *len,
4308 const char **renaming_expr)
4309 {
4310 enum ada_renaming_category kind;
4311 const char *name;
4312 const char *info;
4313 const char *suffix;
4314
4315 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4316 || TYPE_NFIELDS (type) != 1)
4317 return ADA_NOT_RENAMING;
4318
4319 name = type_name_no_tag (type);
4320 if (name == NULL)
4321 return ADA_NOT_RENAMING;
4322
4323 name = strstr (name, "___XR");
4324 if (name == NULL)
4325 return ADA_NOT_RENAMING;
4326 switch (name[5])
4327 {
4328 case '\0':
4329 case '_':
4330 kind = ADA_OBJECT_RENAMING;
4331 break;
4332 case 'E':
4333 kind = ADA_EXCEPTION_RENAMING;
4334 break;
4335 case 'P':
4336 kind = ADA_PACKAGE_RENAMING;
4337 break;
4338 case 'S':
4339 kind = ADA_SUBPROGRAM_RENAMING;
4340 break;
4341 default:
4342 return ADA_NOT_RENAMING;
4343 }
4344
4345 info = TYPE_FIELD_NAME (type, 0);
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 if (renamed_entity != NULL)
4349 *renamed_entity = info;
4350 suffix = strstr (info, "___XE");
4351 if (renaming_expr != NULL)
4352 *renaming_expr = suffix + 5;
4353 if (suffix == NULL || suffix == info)
4354 return ADA_NOT_RENAMING;
4355 if (len != NULL)
4356 *len = suffix - info;
4357 return kind;
4358 }
4359
4360 /* Compute the value of the given RENAMING_SYM, which is expected to
4361 be a symbol encoding a renaming expression. BLOCK is the block
4362 used to evaluate the renaming. */
4363
4364 static struct value *
4365 ada_read_renaming_var_value (struct symbol *renaming_sym,
4366 const struct block *block)
4367 {
4368 const char *sym_name;
4369 struct expression *expr;
4370 struct value *value;
4371 struct cleanup *old_chain = NULL;
4372
4373 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4374 expr = parse_exp_1 (&sym_name, 0, block, 0);
4375 old_chain = make_cleanup (free_current_contents, &expr);
4376 value = evaluate_expression (expr);
4377
4378 do_cleanups (old_chain);
4379 return value;
4380 }
4381 \f
4382
4383 /* Evaluation: Function Calls */
4384
4385 /* Return an lvalue containing the value VAL. This is the identity on
4386 lvalues, and otherwise has the side-effect of allocating memory
4387 in the inferior where a copy of the value contents is copied. */
4388
4389 static struct value *
4390 ensure_lval (struct value *val)
4391 {
4392 if (VALUE_LVAL (val) == not_lval
4393 || VALUE_LVAL (val) == lval_internalvar)
4394 {
4395 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4396 const CORE_ADDR addr =
4397 value_as_long (value_allocate_space_in_inferior (len));
4398
4399 set_value_address (val, addr);
4400 VALUE_LVAL (val) = lval_memory;
4401 write_memory (addr, value_contents (val), len);
4402 }
4403
4404 return val;
4405 }
4406
4407 /* Return the value ACTUAL, converted to be an appropriate value for a
4408 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4409 allocating any necessary descriptors (fat pointers), or copies of
4410 values not residing in memory, updating it as needed. */
4411
4412 struct value *
4413 ada_convert_actual (struct value *actual, struct type *formal_type0)
4414 {
4415 struct type *actual_type = ada_check_typedef (value_type (actual));
4416 struct type *formal_type = ada_check_typedef (formal_type0);
4417 struct type *formal_target =
4418 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4419 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4420 struct type *actual_target =
4421 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4422 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4423
4424 if (ada_is_array_descriptor_type (formal_target)
4425 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4426 return make_array_descriptor (formal_type, actual);
4427 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4428 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4429 {
4430 struct value *result;
4431
4432 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4433 && ada_is_array_descriptor_type (actual_target))
4434 result = desc_data (actual);
4435 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4436 {
4437 if (VALUE_LVAL (actual) != lval_memory)
4438 {
4439 struct value *val;
4440
4441 actual_type = ada_check_typedef (value_type (actual));
4442 val = allocate_value (actual_type);
4443 memcpy ((char *) value_contents_raw (val),
4444 (char *) value_contents (actual),
4445 TYPE_LENGTH (actual_type));
4446 actual = ensure_lval (val);
4447 }
4448 result = value_addr (actual);
4449 }
4450 else
4451 return actual;
4452 return value_cast_pointers (formal_type, result, 0);
4453 }
4454 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4455 return ada_value_ind (actual);
4456 else if (ada_is_aligner_type (formal_type))
4457 {
4458 /* We need to turn this parameter into an aligner type
4459 as well. */
4460 struct value *aligner = allocate_value (formal_type);
4461 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4462
4463 value_assign_to_component (aligner, component, actual);
4464 return aligner;
4465 }
4466
4467 return actual;
4468 }
4469
4470 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4471 type TYPE. This is usually an inefficient no-op except on some targets
4472 (such as AVR) where the representation of a pointer and an address
4473 differs. */
4474
4475 static CORE_ADDR
4476 value_pointer (struct value *value, struct type *type)
4477 {
4478 struct gdbarch *gdbarch = get_type_arch (type);
4479 unsigned len = TYPE_LENGTH (type);
4480 gdb_byte *buf = (gdb_byte *) alloca (len);
4481 CORE_ADDR addr;
4482
4483 addr = value_address (value);
4484 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4485 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4486 return addr;
4487 }
4488
4489
4490 /* Push a descriptor of type TYPE for array value ARR on the stack at
4491 *SP, updating *SP to reflect the new descriptor. Return either
4492 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4493 to-descriptor type rather than a descriptor type), a struct value *
4494 representing a pointer to this descriptor. */
4495
4496 static struct value *
4497 make_array_descriptor (struct type *type, struct value *arr)
4498 {
4499 struct type *bounds_type = desc_bounds_type (type);
4500 struct type *desc_type = desc_base_type (type);
4501 struct value *descriptor = allocate_value (desc_type);
4502 struct value *bounds = allocate_value (bounds_type);
4503 int i;
4504
4505 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4506 i > 0; i -= 1)
4507 {
4508 modify_field (value_type (bounds), value_contents_writeable (bounds),
4509 ada_array_bound (arr, i, 0),
4510 desc_bound_bitpos (bounds_type, i, 0),
4511 desc_bound_bitsize (bounds_type, i, 0));
4512 modify_field (value_type (bounds), value_contents_writeable (bounds),
4513 ada_array_bound (arr, i, 1),
4514 desc_bound_bitpos (bounds_type, i, 1),
4515 desc_bound_bitsize (bounds_type, i, 1));
4516 }
4517
4518 bounds = ensure_lval (bounds);
4519
4520 modify_field (value_type (descriptor),
4521 value_contents_writeable (descriptor),
4522 value_pointer (ensure_lval (arr),
4523 TYPE_FIELD_TYPE (desc_type, 0)),
4524 fat_pntr_data_bitpos (desc_type),
4525 fat_pntr_data_bitsize (desc_type));
4526
4527 modify_field (value_type (descriptor),
4528 value_contents_writeable (descriptor),
4529 value_pointer (bounds,
4530 TYPE_FIELD_TYPE (desc_type, 1)),
4531 fat_pntr_bounds_bitpos (desc_type),
4532 fat_pntr_bounds_bitsize (desc_type));
4533
4534 descriptor = ensure_lval (descriptor);
4535
4536 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4537 return value_addr (descriptor);
4538 else
4539 return descriptor;
4540 }
4541 \f
4542 /* Symbol Cache Module */
4543
4544 /* Performance measurements made as of 2010-01-15 indicate that
4545 this cache does bring some noticeable improvements. Depending
4546 on the type of entity being printed, the cache can make it as much
4547 as an order of magnitude faster than without it.
4548
4549 The descriptive type DWARF extension has significantly reduced
4550 the need for this cache, at least when DWARF is being used. However,
4551 even in this case, some expensive name-based symbol searches are still
4552 sometimes necessary - to find an XVZ variable, mostly. */
4553
4554 /* Initialize the contents of SYM_CACHE. */
4555
4556 static void
4557 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4558 {
4559 obstack_init (&sym_cache->cache_space);
4560 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4561 }
4562
4563 /* Free the memory used by SYM_CACHE. */
4564
4565 static void
4566 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4567 {
4568 obstack_free (&sym_cache->cache_space, NULL);
4569 xfree (sym_cache);
4570 }
4571
4572 /* Return the symbol cache associated to the given program space PSPACE.
4573 If not allocated for this PSPACE yet, allocate and initialize one. */
4574
4575 static struct ada_symbol_cache *
4576 ada_get_symbol_cache (struct program_space *pspace)
4577 {
4578 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4579
4580 if (pspace_data->sym_cache == NULL)
4581 {
4582 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4583 ada_init_symbol_cache (pspace_data->sym_cache);
4584 }
4585
4586 return pspace_data->sym_cache;
4587 }
4588
4589 /* Clear all entries from the symbol cache. */
4590
4591 static void
4592 ada_clear_symbol_cache (void)
4593 {
4594 struct ada_symbol_cache *sym_cache
4595 = ada_get_symbol_cache (current_program_space);
4596
4597 obstack_free (&sym_cache->cache_space, NULL);
4598 ada_init_symbol_cache (sym_cache);
4599 }
4600
4601 /* Search our cache for an entry matching NAME and DOMAIN.
4602 Return it if found, or NULL otherwise. */
4603
4604 static struct cache_entry **
4605 find_entry (const char *name, domain_enum domain)
4606 {
4607 struct ada_symbol_cache *sym_cache
4608 = ada_get_symbol_cache (current_program_space);
4609 int h = msymbol_hash (name) % HASH_SIZE;
4610 struct cache_entry **e;
4611
4612 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4613 {
4614 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4615 return e;
4616 }
4617 return NULL;
4618 }
4619
4620 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4621 Return 1 if found, 0 otherwise.
4622
4623 If an entry was found and SYM is not NULL, set *SYM to the entry's
4624 SYM. Same principle for BLOCK if not NULL. */
4625
4626 static int
4627 lookup_cached_symbol (const char *name, domain_enum domain,
4628 struct symbol **sym, const struct block **block)
4629 {
4630 struct cache_entry **e = find_entry (name, domain);
4631
4632 if (e == NULL)
4633 return 0;
4634 if (sym != NULL)
4635 *sym = (*e)->sym;
4636 if (block != NULL)
4637 *block = (*e)->block;
4638 return 1;
4639 }
4640
4641 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4642 in domain DOMAIN, save this result in our symbol cache. */
4643
4644 static void
4645 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4646 const struct block *block)
4647 {
4648 struct ada_symbol_cache *sym_cache
4649 = ada_get_symbol_cache (current_program_space);
4650 int h;
4651 char *copy;
4652 struct cache_entry *e;
4653
4654 /* Symbols for builtin types don't have a block.
4655 For now don't cache such symbols. */
4656 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4657 return;
4658
4659 /* If the symbol is a local symbol, then do not cache it, as a search
4660 for that symbol depends on the context. To determine whether
4661 the symbol is local or not, we check the block where we found it
4662 against the global and static blocks of its associated symtab. */
4663 if (sym
4664 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4665 GLOBAL_BLOCK) != block
4666 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4667 STATIC_BLOCK) != block)
4668 return;
4669
4670 h = msymbol_hash (name) % HASH_SIZE;
4671 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4672 sizeof (*e));
4673 e->next = sym_cache->root[h];
4674 sym_cache->root[h] = e;
4675 e->name = copy
4676 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4677 strcpy (copy, name);
4678 e->sym = sym;
4679 e->domain = domain;
4680 e->block = block;
4681 }
4682 \f
4683 /* Symbol Lookup */
4684
4685 /* Return nonzero if wild matching should be used when searching for
4686 all symbols matching LOOKUP_NAME.
4687
4688 LOOKUP_NAME is expected to be a symbol name after transformation
4689 for Ada lookups (see ada_name_for_lookup). */
4690
4691 static int
4692 should_use_wild_match (const char *lookup_name)
4693 {
4694 return (strstr (lookup_name, "__") == NULL);
4695 }
4696
4697 /* Return the result of a standard (literal, C-like) lookup of NAME in
4698 given DOMAIN, visible from lexical block BLOCK. */
4699
4700 static struct symbol *
4701 standard_lookup (const char *name, const struct block *block,
4702 domain_enum domain)
4703 {
4704 /* Initialize it just to avoid a GCC false warning. */
4705 struct block_symbol sym = {NULL, NULL};
4706
4707 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4708 return sym.symbol;
4709 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4710 cache_symbol (name, domain, sym.symbol, sym.block);
4711 return sym.symbol;
4712 }
4713
4714
4715 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4716 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4717 since they contend in overloading in the same way. */
4718 static int
4719 is_nonfunction (struct block_symbol syms[], int n)
4720 {
4721 int i;
4722
4723 for (i = 0; i < n; i += 1)
4724 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4725 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4726 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4727 return 1;
4728
4729 return 0;
4730 }
4731
4732 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4733 struct types. Otherwise, they may not. */
4734
4735 static int
4736 equiv_types (struct type *type0, struct type *type1)
4737 {
4738 if (type0 == type1)
4739 return 1;
4740 if (type0 == NULL || type1 == NULL
4741 || TYPE_CODE (type0) != TYPE_CODE (type1))
4742 return 0;
4743 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4744 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4745 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4746 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4747 return 1;
4748
4749 return 0;
4750 }
4751
4752 /* True iff SYM0 represents the same entity as SYM1, or one that is
4753 no more defined than that of SYM1. */
4754
4755 static int
4756 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4757 {
4758 if (sym0 == sym1)
4759 return 1;
4760 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4761 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4762 return 0;
4763
4764 switch (SYMBOL_CLASS (sym0))
4765 {
4766 case LOC_UNDEF:
4767 return 1;
4768 case LOC_TYPEDEF:
4769 {
4770 struct type *type0 = SYMBOL_TYPE (sym0);
4771 struct type *type1 = SYMBOL_TYPE (sym1);
4772 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4773 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4774 int len0 = strlen (name0);
4775
4776 return
4777 TYPE_CODE (type0) == TYPE_CODE (type1)
4778 && (equiv_types (type0, type1)
4779 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4780 && startswith (name1 + len0, "___XV")));
4781 }
4782 case LOC_CONST:
4783 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4784 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4785 default:
4786 return 0;
4787 }
4788 }
4789
4790 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4791 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4792
4793 static void
4794 add_defn_to_vec (struct obstack *obstackp,
4795 struct symbol *sym,
4796 const struct block *block)
4797 {
4798 int i;
4799 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4800
4801 /* Do not try to complete stub types, as the debugger is probably
4802 already scanning all symbols matching a certain name at the
4803 time when this function is called. Trying to replace the stub
4804 type by its associated full type will cause us to restart a scan
4805 which may lead to an infinite recursion. Instead, the client
4806 collecting the matching symbols will end up collecting several
4807 matches, with at least one of them complete. It can then filter
4808 out the stub ones if needed. */
4809
4810 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4811 {
4812 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4813 return;
4814 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4815 {
4816 prevDefns[i].symbol = sym;
4817 prevDefns[i].block = block;
4818 return;
4819 }
4820 }
4821
4822 {
4823 struct block_symbol info;
4824
4825 info.symbol = sym;
4826 info.block = block;
4827 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4828 }
4829 }
4830
4831 /* Number of block_symbol structures currently collected in current vector in
4832 OBSTACKP. */
4833
4834 static int
4835 num_defns_collected (struct obstack *obstackp)
4836 {
4837 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4838 }
4839
4840 /* Vector of block_symbol structures currently collected in current vector in
4841 OBSTACKP. If FINISH, close off the vector and return its final address. */
4842
4843 static struct block_symbol *
4844 defns_collected (struct obstack *obstackp, int finish)
4845 {
4846 if (finish)
4847 return (struct block_symbol *) obstack_finish (obstackp);
4848 else
4849 return (struct block_symbol *) obstack_base (obstackp);
4850 }
4851
4852 /* Return a bound minimal symbol matching NAME according to Ada
4853 decoding rules. Returns an invalid symbol if there is no such
4854 minimal symbol. Names prefixed with "standard__" are handled
4855 specially: "standard__" is first stripped off, and only static and
4856 global symbols are searched. */
4857
4858 struct bound_minimal_symbol
4859 ada_lookup_simple_minsym (const char *name)
4860 {
4861 struct bound_minimal_symbol result;
4862 struct objfile *objfile;
4863 struct minimal_symbol *msymbol;
4864 const int wild_match_p = should_use_wild_match (name);
4865
4866 memset (&result, 0, sizeof (result));
4867
4868 /* Special case: If the user specifies a symbol name inside package
4869 Standard, do a non-wild matching of the symbol name without
4870 the "standard__" prefix. This was primarily introduced in order
4871 to allow the user to specifically access the standard exceptions
4872 using, for instance, Standard.Constraint_Error when Constraint_Error
4873 is ambiguous (due to the user defining its own Constraint_Error
4874 entity inside its program). */
4875 if (startswith (name, "standard__"))
4876 name += sizeof ("standard__") - 1;
4877
4878 ALL_MSYMBOLS (objfile, msymbol)
4879 {
4880 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4881 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4882 {
4883 result.minsym = msymbol;
4884 result.objfile = objfile;
4885 break;
4886 }
4887 }
4888
4889 return result;
4890 }
4891
4892 /* For all subprograms that statically enclose the subprogram of the
4893 selected frame, add symbols matching identifier NAME in DOMAIN
4894 and their blocks to the list of data in OBSTACKP, as for
4895 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4896 with a wildcard prefix. */
4897
4898 static void
4899 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4900 const char *name, domain_enum domain,
4901 int wild_match_p)
4902 {
4903 }
4904
4905 /* True if TYPE is definitely an artificial type supplied to a symbol
4906 for which no debugging information was given in the symbol file. */
4907
4908 static int
4909 is_nondebugging_type (struct type *type)
4910 {
4911 const char *name = ada_type_name (type);
4912
4913 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4914 }
4915
4916 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4917 that are deemed "identical" for practical purposes.
4918
4919 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4920 types and that their number of enumerals is identical (in other
4921 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4922
4923 static int
4924 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4925 {
4926 int i;
4927
4928 /* The heuristic we use here is fairly conservative. We consider
4929 that 2 enumerate types are identical if they have the same
4930 number of enumerals and that all enumerals have the same
4931 underlying value and name. */
4932
4933 /* All enums in the type should have an identical underlying value. */
4934 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4935 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4936 return 0;
4937
4938 /* All enumerals should also have the same name (modulo any numerical
4939 suffix). */
4940 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4941 {
4942 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4943 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4944 int len_1 = strlen (name_1);
4945 int len_2 = strlen (name_2);
4946
4947 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4948 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4949 if (len_1 != len_2
4950 || strncmp (TYPE_FIELD_NAME (type1, i),
4951 TYPE_FIELD_NAME (type2, i),
4952 len_1) != 0)
4953 return 0;
4954 }
4955
4956 return 1;
4957 }
4958
4959 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4960 that are deemed "identical" for practical purposes. Sometimes,
4961 enumerals are not strictly identical, but their types are so similar
4962 that they can be considered identical.
4963
4964 For instance, consider the following code:
4965
4966 type Color is (Black, Red, Green, Blue, White);
4967 type RGB_Color is new Color range Red .. Blue;
4968
4969 Type RGB_Color is a subrange of an implicit type which is a copy
4970 of type Color. If we call that implicit type RGB_ColorB ("B" is
4971 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4972 As a result, when an expression references any of the enumeral
4973 by name (Eg. "print green"), the expression is technically
4974 ambiguous and the user should be asked to disambiguate. But
4975 doing so would only hinder the user, since it wouldn't matter
4976 what choice he makes, the outcome would always be the same.
4977 So, for practical purposes, we consider them as the same. */
4978
4979 static int
4980 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
4981 {
4982 int i;
4983
4984 /* Before performing a thorough comparison check of each type,
4985 we perform a series of inexpensive checks. We expect that these
4986 checks will quickly fail in the vast majority of cases, and thus
4987 help prevent the unnecessary use of a more expensive comparison.
4988 Said comparison also expects us to make some of these checks
4989 (see ada_identical_enum_types_p). */
4990
4991 /* Quick check: All symbols should have an enum type. */
4992 for (i = 0; i < nsyms; i++)
4993 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4994 return 0;
4995
4996 /* Quick check: They should all have the same value. */
4997 for (i = 1; i < nsyms; i++)
4998 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4999 return 0;
5000
5001 /* Quick check: They should all have the same number of enumerals. */
5002 for (i = 1; i < nsyms; i++)
5003 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5004 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5005 return 0;
5006
5007 /* All the sanity checks passed, so we might have a set of
5008 identical enumeration types. Perform a more complete
5009 comparison of the type of each symbol. */
5010 for (i = 1; i < nsyms; i++)
5011 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5012 SYMBOL_TYPE (syms[0].symbol)))
5013 return 0;
5014
5015 return 1;
5016 }
5017
5018 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5019 duplicate other symbols in the list (The only case I know of where
5020 this happens is when object files containing stabs-in-ecoff are
5021 linked with files containing ordinary ecoff debugging symbols (or no
5022 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5023 Returns the number of items in the modified list. */
5024
5025 static int
5026 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5027 {
5028 int i, j;
5029
5030 /* We should never be called with less than 2 symbols, as there
5031 cannot be any extra symbol in that case. But it's easy to
5032 handle, since we have nothing to do in that case. */
5033 if (nsyms < 2)
5034 return nsyms;
5035
5036 i = 0;
5037 while (i < nsyms)
5038 {
5039 int remove_p = 0;
5040
5041 /* If two symbols have the same name and one of them is a stub type,
5042 the get rid of the stub. */
5043
5044 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5045 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5046 {
5047 for (j = 0; j < nsyms; j++)
5048 {
5049 if (j != i
5050 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5051 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5052 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5053 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5054 remove_p = 1;
5055 }
5056 }
5057
5058 /* Two symbols with the same name, same class and same address
5059 should be identical. */
5060
5061 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5062 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5063 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5064 {
5065 for (j = 0; j < nsyms; j += 1)
5066 {
5067 if (i != j
5068 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5069 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5070 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5071 && SYMBOL_CLASS (syms[i].symbol)
5072 == SYMBOL_CLASS (syms[j].symbol)
5073 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5074 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5075 remove_p = 1;
5076 }
5077 }
5078
5079 if (remove_p)
5080 {
5081 for (j = i + 1; j < nsyms; j += 1)
5082 syms[j - 1] = syms[j];
5083 nsyms -= 1;
5084 }
5085
5086 i += 1;
5087 }
5088
5089 /* If all the remaining symbols are identical enumerals, then
5090 just keep the first one and discard the rest.
5091
5092 Unlike what we did previously, we do not discard any entry
5093 unless they are ALL identical. This is because the symbol
5094 comparison is not a strict comparison, but rather a practical
5095 comparison. If all symbols are considered identical, then
5096 we can just go ahead and use the first one and discard the rest.
5097 But if we cannot reduce the list to a single element, we have
5098 to ask the user to disambiguate anyways. And if we have to
5099 present a multiple-choice menu, it's less confusing if the list
5100 isn't missing some choices that were identical and yet distinct. */
5101 if (symbols_are_identical_enums (syms, nsyms))
5102 nsyms = 1;
5103
5104 return nsyms;
5105 }
5106
5107 /* Given a type that corresponds to a renaming entity, use the type name
5108 to extract the scope (package name or function name, fully qualified,
5109 and following the GNAT encoding convention) where this renaming has been
5110 defined. The string returned needs to be deallocated after use. */
5111
5112 static char *
5113 xget_renaming_scope (struct type *renaming_type)
5114 {
5115 /* The renaming types adhere to the following convention:
5116 <scope>__<rename>___<XR extension>.
5117 So, to extract the scope, we search for the "___XR" extension,
5118 and then backtrack until we find the first "__". */
5119
5120 const char *name = type_name_no_tag (renaming_type);
5121 const char *suffix = strstr (name, "___XR");
5122 const char *last;
5123 int scope_len;
5124 char *scope;
5125
5126 /* Now, backtrack a bit until we find the first "__". Start looking
5127 at suffix - 3, as the <rename> part is at least one character long. */
5128
5129 for (last = suffix - 3; last > name; last--)
5130 if (last[0] == '_' && last[1] == '_')
5131 break;
5132
5133 /* Make a copy of scope and return it. */
5134
5135 scope_len = last - name;
5136 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5137
5138 strncpy (scope, name, scope_len);
5139 scope[scope_len] = '\0';
5140
5141 return scope;
5142 }
5143
5144 /* Return nonzero if NAME corresponds to a package name. */
5145
5146 static int
5147 is_package_name (const char *name)
5148 {
5149 /* Here, We take advantage of the fact that no symbols are generated
5150 for packages, while symbols are generated for each function.
5151 So the condition for NAME represent a package becomes equivalent
5152 to NAME not existing in our list of symbols. There is only one
5153 small complication with library-level functions (see below). */
5154
5155 char *fun_name;
5156
5157 /* If it is a function that has not been defined at library level,
5158 then we should be able to look it up in the symbols. */
5159 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5160 return 0;
5161
5162 /* Library-level function names start with "_ada_". See if function
5163 "_ada_" followed by NAME can be found. */
5164
5165 /* Do a quick check that NAME does not contain "__", since library-level
5166 functions names cannot contain "__" in them. */
5167 if (strstr (name, "__") != NULL)
5168 return 0;
5169
5170 fun_name = xstrprintf ("_ada_%s", name);
5171
5172 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5173 }
5174
5175 /* Return nonzero if SYM corresponds to a renaming entity that is
5176 not visible from FUNCTION_NAME. */
5177
5178 static int
5179 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5180 {
5181 char *scope;
5182 struct cleanup *old_chain;
5183
5184 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5185 return 0;
5186
5187 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5188 old_chain = make_cleanup (xfree, scope);
5189
5190 /* If the rename has been defined in a package, then it is visible. */
5191 if (is_package_name (scope))
5192 {
5193 do_cleanups (old_chain);
5194 return 0;
5195 }
5196
5197 /* Check that the rename is in the current function scope by checking
5198 that its name starts with SCOPE. */
5199
5200 /* If the function name starts with "_ada_", it means that it is
5201 a library-level function. Strip this prefix before doing the
5202 comparison, as the encoding for the renaming does not contain
5203 this prefix. */
5204 if (startswith (function_name, "_ada_"))
5205 function_name += 5;
5206
5207 {
5208 int is_invisible = !startswith (function_name, scope);
5209
5210 do_cleanups (old_chain);
5211 return is_invisible;
5212 }
5213 }
5214
5215 /* Remove entries from SYMS that corresponds to a renaming entity that
5216 is not visible from the function associated with CURRENT_BLOCK or
5217 that is superfluous due to the presence of more specific renaming
5218 information. Places surviving symbols in the initial entries of
5219 SYMS and returns the number of surviving symbols.
5220
5221 Rationale:
5222 First, in cases where an object renaming is implemented as a
5223 reference variable, GNAT may produce both the actual reference
5224 variable and the renaming encoding. In this case, we discard the
5225 latter.
5226
5227 Second, GNAT emits a type following a specified encoding for each renaming
5228 entity. Unfortunately, STABS currently does not support the definition
5229 of types that are local to a given lexical block, so all renamings types
5230 are emitted at library level. As a consequence, if an application
5231 contains two renaming entities using the same name, and a user tries to
5232 print the value of one of these entities, the result of the ada symbol
5233 lookup will also contain the wrong renaming type.
5234
5235 This function partially covers for this limitation by attempting to
5236 remove from the SYMS list renaming symbols that should be visible
5237 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5238 method with the current information available. The implementation
5239 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5240
5241 - When the user tries to print a rename in a function while there
5242 is another rename entity defined in a package: Normally, the
5243 rename in the function has precedence over the rename in the
5244 package, so the latter should be removed from the list. This is
5245 currently not the case.
5246
5247 - This function will incorrectly remove valid renames if
5248 the CURRENT_BLOCK corresponds to a function which symbol name
5249 has been changed by an "Export" pragma. As a consequence,
5250 the user will be unable to print such rename entities. */
5251
5252 static int
5253 remove_irrelevant_renamings (struct block_symbol *syms,
5254 int nsyms, const struct block *current_block)
5255 {
5256 struct symbol *current_function;
5257 const char *current_function_name;
5258 int i;
5259 int is_new_style_renaming;
5260
5261 /* If there is both a renaming foo___XR... encoded as a variable and
5262 a simple variable foo in the same block, discard the latter.
5263 First, zero out such symbols, then compress. */
5264 is_new_style_renaming = 0;
5265 for (i = 0; i < nsyms; i += 1)
5266 {
5267 struct symbol *sym = syms[i].symbol;
5268 const struct block *block = syms[i].block;
5269 const char *name;
5270 const char *suffix;
5271
5272 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5273 continue;
5274 name = SYMBOL_LINKAGE_NAME (sym);
5275 suffix = strstr (name, "___XR");
5276
5277 if (suffix != NULL)
5278 {
5279 int name_len = suffix - name;
5280 int j;
5281
5282 is_new_style_renaming = 1;
5283 for (j = 0; j < nsyms; j += 1)
5284 if (i != j && syms[j].symbol != NULL
5285 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5286 name_len) == 0
5287 && block == syms[j].block)
5288 syms[j].symbol = NULL;
5289 }
5290 }
5291 if (is_new_style_renaming)
5292 {
5293 int j, k;
5294
5295 for (j = k = 0; j < nsyms; j += 1)
5296 if (syms[j].symbol != NULL)
5297 {
5298 syms[k] = syms[j];
5299 k += 1;
5300 }
5301 return k;
5302 }
5303
5304 /* Extract the function name associated to CURRENT_BLOCK.
5305 Abort if unable to do so. */
5306
5307 if (current_block == NULL)
5308 return nsyms;
5309
5310 current_function = block_linkage_function (current_block);
5311 if (current_function == NULL)
5312 return nsyms;
5313
5314 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5315 if (current_function_name == NULL)
5316 return nsyms;
5317
5318 /* Check each of the symbols, and remove it from the list if it is
5319 a type corresponding to a renaming that is out of the scope of
5320 the current block. */
5321
5322 i = 0;
5323 while (i < nsyms)
5324 {
5325 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5326 == ADA_OBJECT_RENAMING
5327 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5328 {
5329 int j;
5330
5331 for (j = i + 1; j < nsyms; j += 1)
5332 syms[j - 1] = syms[j];
5333 nsyms -= 1;
5334 }
5335 else
5336 i += 1;
5337 }
5338
5339 return nsyms;
5340 }
5341
5342 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5343 whose name and domain match NAME and DOMAIN respectively.
5344 If no match was found, then extend the search to "enclosing"
5345 routines (in other words, if we're inside a nested function,
5346 search the symbols defined inside the enclosing functions).
5347 If WILD_MATCH_P is nonzero, perform the naming matching in
5348 "wild" mode (see function "wild_match" for more info).
5349
5350 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5351
5352 static void
5353 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5354 const struct block *block, domain_enum domain,
5355 int wild_match_p)
5356 {
5357 int block_depth = 0;
5358
5359 while (block != NULL)
5360 {
5361 block_depth += 1;
5362 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5363 wild_match_p);
5364
5365 /* If we found a non-function match, assume that's the one. */
5366 if (is_nonfunction (defns_collected (obstackp, 0),
5367 num_defns_collected (obstackp)))
5368 return;
5369
5370 block = BLOCK_SUPERBLOCK (block);
5371 }
5372
5373 /* If no luck so far, try to find NAME as a local symbol in some lexically
5374 enclosing subprogram. */
5375 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5376 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5377 }
5378
5379 /* An object of this type is used as the user_data argument when
5380 calling the map_matching_symbols method. */
5381
5382 struct match_data
5383 {
5384 struct objfile *objfile;
5385 struct obstack *obstackp;
5386 struct symbol *arg_sym;
5387 int found_sym;
5388 };
5389
5390 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5391 to a list of symbols. DATA0 is a pointer to a struct match_data *
5392 containing the obstack that collects the symbol list, the file that SYM
5393 must come from, a flag indicating whether a non-argument symbol has
5394 been found in the current block, and the last argument symbol
5395 passed in SYM within the current block (if any). When SYM is null,
5396 marking the end of a block, the argument symbol is added if no
5397 other has been found. */
5398
5399 static int
5400 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5401 {
5402 struct match_data *data = (struct match_data *) data0;
5403
5404 if (sym == NULL)
5405 {
5406 if (!data->found_sym && data->arg_sym != NULL)
5407 add_defn_to_vec (data->obstackp,
5408 fixup_symbol_section (data->arg_sym, data->objfile),
5409 block);
5410 data->found_sym = 0;
5411 data->arg_sym = NULL;
5412 }
5413 else
5414 {
5415 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5416 return 0;
5417 else if (SYMBOL_IS_ARGUMENT (sym))
5418 data->arg_sym = sym;
5419 else
5420 {
5421 data->found_sym = 1;
5422 add_defn_to_vec (data->obstackp,
5423 fixup_symbol_section (sym, data->objfile),
5424 block);
5425 }
5426 }
5427 return 0;
5428 }
5429
5430 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5431 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5432 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5433 function "wild_match" for more information). Return whether we found such
5434 symbols. */
5435
5436 static int
5437 ada_add_block_renamings (struct obstack *obstackp,
5438 const struct block *block,
5439 const char *name,
5440 domain_enum domain,
5441 int wild_match_p)
5442 {
5443 struct using_direct *renaming;
5444 int defns_mark = num_defns_collected (obstackp);
5445
5446 for (renaming = block_using (block);
5447 renaming != NULL;
5448 renaming = renaming->next)
5449 {
5450 const char *r_name;
5451 int name_match;
5452
5453 /* Avoid infinite recursions: skip this renaming if we are actually
5454 already traversing it.
5455
5456 Currently, symbol lookup in Ada don't use the namespace machinery from
5457 C++/Fortran support: skip namespace imports that use them. */
5458 if (renaming->searched
5459 || (renaming->import_src != NULL
5460 && renaming->import_src[0] != '\0')
5461 || (renaming->import_dest != NULL
5462 && renaming->import_dest[0] != '\0'))
5463 continue;
5464 renaming->searched = 1;
5465
5466 /* TODO: here, we perform another name-based symbol lookup, which can
5467 pull its own multiple overloads. In theory, we should be able to do
5468 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5469 not a simple name. But in order to do this, we would need to enhance
5470 the DWARF reader to associate a symbol to this renaming, instead of a
5471 name. So, for now, we do something simpler: re-use the C++/Fortran
5472 namespace machinery. */
5473 r_name = (renaming->alias != NULL
5474 ? renaming->alias
5475 : renaming->declaration);
5476 name_match
5477 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5478 if (name_match == 0)
5479 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5480 1, NULL);
5481 renaming->searched = 0;
5482 }
5483 return num_defns_collected (obstackp) != defns_mark;
5484 }
5485
5486 /* Implements compare_names, but only applying the comparision using
5487 the given CASING. */
5488
5489 static int
5490 compare_names_with_case (const char *string1, const char *string2,
5491 enum case_sensitivity casing)
5492 {
5493 while (*string1 != '\0' && *string2 != '\0')
5494 {
5495 char c1, c2;
5496
5497 if (isspace (*string1) || isspace (*string2))
5498 return strcmp_iw_ordered (string1, string2);
5499
5500 if (casing == case_sensitive_off)
5501 {
5502 c1 = tolower (*string1);
5503 c2 = tolower (*string2);
5504 }
5505 else
5506 {
5507 c1 = *string1;
5508 c2 = *string2;
5509 }
5510 if (c1 != c2)
5511 break;
5512
5513 string1 += 1;
5514 string2 += 1;
5515 }
5516
5517 switch (*string1)
5518 {
5519 case '(':
5520 return strcmp_iw_ordered (string1, string2);
5521 case '_':
5522 if (*string2 == '\0')
5523 {
5524 if (is_name_suffix (string1))
5525 return 0;
5526 else
5527 return 1;
5528 }
5529 /* FALLTHROUGH */
5530 default:
5531 if (*string2 == '(')
5532 return strcmp_iw_ordered (string1, string2);
5533 else
5534 {
5535 if (casing == case_sensitive_off)
5536 return tolower (*string1) - tolower (*string2);
5537 else
5538 return *string1 - *string2;
5539 }
5540 }
5541 }
5542
5543 /* Compare STRING1 to STRING2, with results as for strcmp.
5544 Compatible with strcmp_iw_ordered in that...
5545
5546 strcmp_iw_ordered (STRING1, STRING2) <= 0
5547
5548 ... implies...
5549
5550 compare_names (STRING1, STRING2) <= 0
5551
5552 (they may differ as to what symbols compare equal). */
5553
5554 static int
5555 compare_names (const char *string1, const char *string2)
5556 {
5557 int result;
5558
5559 /* Similar to what strcmp_iw_ordered does, we need to perform
5560 a case-insensitive comparison first, and only resort to
5561 a second, case-sensitive, comparison if the first one was
5562 not sufficient to differentiate the two strings. */
5563
5564 result = compare_names_with_case (string1, string2, case_sensitive_off);
5565 if (result == 0)
5566 result = compare_names_with_case (string1, string2, case_sensitive_on);
5567
5568 return result;
5569 }
5570
5571 /* Add to OBSTACKP all non-local symbols whose name and domain match
5572 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5573 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5574
5575 static void
5576 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5577 domain_enum domain, int global,
5578 int is_wild_match)
5579 {
5580 struct objfile *objfile;
5581 struct compunit_symtab *cu;
5582 struct match_data data;
5583
5584 memset (&data, 0, sizeof data);
5585 data.obstackp = obstackp;
5586
5587 ALL_OBJFILES (objfile)
5588 {
5589 data.objfile = objfile;
5590
5591 if (is_wild_match)
5592 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5593 aux_add_nonlocal_symbols, &data,
5594 wild_match, NULL);
5595 else
5596 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5597 aux_add_nonlocal_symbols, &data,
5598 full_match, compare_names);
5599
5600 ALL_OBJFILE_COMPUNITS (objfile, cu)
5601 {
5602 const struct block *global_block
5603 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5604
5605 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5606 is_wild_match))
5607 data.found_sym = 1;
5608 }
5609 }
5610
5611 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5612 {
5613 ALL_OBJFILES (objfile)
5614 {
5615 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5616 strcpy (name1, "_ada_");
5617 strcpy (name1 + sizeof ("_ada_") - 1, name);
5618 data.objfile = objfile;
5619 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5620 global,
5621 aux_add_nonlocal_symbols,
5622 &data,
5623 full_match, compare_names);
5624 }
5625 }
5626 }
5627
5628 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5629 non-zero, enclosing scope and in global scopes, returning the number of
5630 matches. Add these to OBSTACKP.
5631
5632 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5633 symbol match within the nest of blocks whose innermost member is BLOCK,
5634 is the one match returned (no other matches in that or
5635 enclosing blocks is returned). If there are any matches in or
5636 surrounding BLOCK, then these alone are returned.
5637
5638 Names prefixed with "standard__" are handled specially: "standard__"
5639 is first stripped off, and only static and global symbols are searched.
5640
5641 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5642 to lookup global symbols. */
5643
5644 static void
5645 ada_add_all_symbols (struct obstack *obstackp,
5646 const struct block *block,
5647 const char *name,
5648 domain_enum domain,
5649 int full_search,
5650 int *made_global_lookup_p)
5651 {
5652 struct symbol *sym;
5653 const int wild_match_p = should_use_wild_match (name);
5654
5655 if (made_global_lookup_p)
5656 *made_global_lookup_p = 0;
5657
5658 /* Special case: If the user specifies a symbol name inside package
5659 Standard, do a non-wild matching of the symbol name without
5660 the "standard__" prefix. This was primarily introduced in order
5661 to allow the user to specifically access the standard exceptions
5662 using, for instance, Standard.Constraint_Error when Constraint_Error
5663 is ambiguous (due to the user defining its own Constraint_Error
5664 entity inside its program). */
5665 if (startswith (name, "standard__"))
5666 {
5667 block = NULL;
5668 name = name + sizeof ("standard__") - 1;
5669 }
5670
5671 /* Check the non-global symbols. If we have ANY match, then we're done. */
5672
5673 if (block != NULL)
5674 {
5675 if (full_search)
5676 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5677 else
5678 {
5679 /* In the !full_search case we're are being called by
5680 ada_iterate_over_symbols, and we don't want to search
5681 superblocks. */
5682 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5683 wild_match_p);
5684 }
5685 if (num_defns_collected (obstackp) > 0 || !full_search)
5686 return;
5687 }
5688
5689 /* No non-global symbols found. Check our cache to see if we have
5690 already performed this search before. If we have, then return
5691 the same result. */
5692
5693 if (lookup_cached_symbol (name, domain, &sym, &block))
5694 {
5695 if (sym != NULL)
5696 add_defn_to_vec (obstackp, sym, block);
5697 return;
5698 }
5699
5700 if (made_global_lookup_p)
5701 *made_global_lookup_p = 1;
5702
5703 /* Search symbols from all global blocks. */
5704
5705 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5706
5707 /* Now add symbols from all per-file blocks if we've gotten no hits
5708 (not strictly correct, but perhaps better than an error). */
5709
5710 if (num_defns_collected (obstackp) == 0)
5711 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5712 }
5713
5714 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5715 non-zero, enclosing scope and in global scopes, returning the number of
5716 matches.
5717 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5718 indicating the symbols found and the blocks and symbol tables (if
5719 any) in which they were found. This vector is transient---good only to
5720 the next call of ada_lookup_symbol_list.
5721
5722 When full_search is non-zero, any non-function/non-enumeral
5723 symbol match within the nest of blocks whose innermost member is BLOCK,
5724 is the one match returned (no other matches in that or
5725 enclosing blocks is returned). If there are any matches in or
5726 surrounding BLOCK, then these alone are returned.
5727
5728 Names prefixed with "standard__" are handled specially: "standard__"
5729 is first stripped off, and only static and global symbols are searched. */
5730
5731 static int
5732 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5733 domain_enum domain,
5734 struct block_symbol **results,
5735 int full_search)
5736 {
5737 const int wild_match_p = should_use_wild_match (name);
5738 int syms_from_global_search;
5739 int ndefns;
5740
5741 obstack_free (&symbol_list_obstack, NULL);
5742 obstack_init (&symbol_list_obstack);
5743 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5744 full_search, &syms_from_global_search);
5745
5746 ndefns = num_defns_collected (&symbol_list_obstack);
5747 *results = defns_collected (&symbol_list_obstack, 1);
5748
5749 ndefns = remove_extra_symbols (*results, ndefns);
5750
5751 if (ndefns == 0 && full_search && syms_from_global_search)
5752 cache_symbol (name, domain, NULL, NULL);
5753
5754 if (ndefns == 1 && full_search && syms_from_global_search)
5755 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5756
5757 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5758 return ndefns;
5759 }
5760
5761 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5762 in global scopes, returning the number of matches, and setting *RESULTS
5763 to a vector of (SYM,BLOCK) tuples.
5764 See ada_lookup_symbol_list_worker for further details. */
5765
5766 int
5767 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5768 domain_enum domain, struct block_symbol **results)
5769 {
5770 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5771 }
5772
5773 /* Implementation of the la_iterate_over_symbols method. */
5774
5775 static void
5776 ada_iterate_over_symbols (const struct block *block,
5777 const char *name, domain_enum domain,
5778 symbol_found_callback_ftype *callback,
5779 void *data)
5780 {
5781 int ndefs, i;
5782 struct block_symbol *results;
5783
5784 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5785 for (i = 0; i < ndefs; ++i)
5786 {
5787 if (! (*callback) (results[i].symbol, data))
5788 break;
5789 }
5790 }
5791
5792 /* If NAME is the name of an entity, return a string that should
5793 be used to look that entity up in Ada units. This string should
5794 be deallocated after use using xfree.
5795
5796 NAME can have any form that the "break" or "print" commands might
5797 recognize. In other words, it does not have to be the "natural"
5798 name, or the "encoded" name. */
5799
5800 char *
5801 ada_name_for_lookup (const char *name)
5802 {
5803 char *canon;
5804 int nlen = strlen (name);
5805
5806 if (name[0] == '<' && name[nlen - 1] == '>')
5807 {
5808 canon = (char *) xmalloc (nlen - 1);
5809 memcpy (canon, name + 1, nlen - 2);
5810 canon[nlen - 2] = '\0';
5811 }
5812 else
5813 canon = xstrdup (ada_encode (ada_fold_name (name)));
5814 return canon;
5815 }
5816
5817 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5818 to 1, but choosing the first symbol found if there are multiple
5819 choices.
5820
5821 The result is stored in *INFO, which must be non-NULL.
5822 If no match is found, INFO->SYM is set to NULL. */
5823
5824 void
5825 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5826 domain_enum domain,
5827 struct block_symbol *info)
5828 {
5829 struct block_symbol *candidates;
5830 int n_candidates;
5831
5832 gdb_assert (info != NULL);
5833 memset (info, 0, sizeof (struct block_symbol));
5834
5835 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5836 if (n_candidates == 0)
5837 return;
5838
5839 *info = candidates[0];
5840 info->symbol = fixup_symbol_section (info->symbol, NULL);
5841 }
5842
5843 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5844 scope and in global scopes, or NULL if none. NAME is folded and
5845 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5846 choosing the first symbol if there are multiple choices.
5847 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5848
5849 struct block_symbol
5850 ada_lookup_symbol (const char *name, const struct block *block0,
5851 domain_enum domain, int *is_a_field_of_this)
5852 {
5853 struct block_symbol info;
5854
5855 if (is_a_field_of_this != NULL)
5856 *is_a_field_of_this = 0;
5857
5858 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5859 block0, domain, &info);
5860 return info;
5861 }
5862
5863 static struct block_symbol
5864 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5865 const char *name,
5866 const struct block *block,
5867 const domain_enum domain)
5868 {
5869 struct block_symbol sym;
5870
5871 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5872 if (sym.symbol != NULL)
5873 return sym;
5874
5875 /* If we haven't found a match at this point, try the primitive
5876 types. In other languages, this search is performed before
5877 searching for global symbols in order to short-circuit that
5878 global-symbol search if it happens that the name corresponds
5879 to a primitive type. But we cannot do the same in Ada, because
5880 it is perfectly legitimate for a program to declare a type which
5881 has the same name as a standard type. If looking up a type in
5882 that situation, we have traditionally ignored the primitive type
5883 in favor of user-defined types. This is why, unlike most other
5884 languages, we search the primitive types this late and only after
5885 having searched the global symbols without success. */
5886
5887 if (domain == VAR_DOMAIN)
5888 {
5889 struct gdbarch *gdbarch;
5890
5891 if (block == NULL)
5892 gdbarch = target_gdbarch ();
5893 else
5894 gdbarch = block_gdbarch (block);
5895 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5896 if (sym.symbol != NULL)
5897 return sym;
5898 }
5899
5900 return (struct block_symbol) {NULL, NULL};
5901 }
5902
5903
5904 /* True iff STR is a possible encoded suffix of a normal Ada name
5905 that is to be ignored for matching purposes. Suffixes of parallel
5906 names (e.g., XVE) are not included here. Currently, the possible suffixes
5907 are given by any of the regular expressions:
5908
5909 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5910 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5911 TKB [subprogram suffix for task bodies]
5912 _E[0-9]+[bs]$ [protected object entry suffixes]
5913 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5914
5915 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5916 match is performed. This sequence is used to differentiate homonyms,
5917 is an optional part of a valid name suffix. */
5918
5919 static int
5920 is_name_suffix (const char *str)
5921 {
5922 int k;
5923 const char *matching;
5924 const int len = strlen (str);
5925
5926 /* Skip optional leading __[0-9]+. */
5927
5928 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5929 {
5930 str += 3;
5931 while (isdigit (str[0]))
5932 str += 1;
5933 }
5934
5935 /* [.$][0-9]+ */
5936
5937 if (str[0] == '.' || str[0] == '$')
5938 {
5939 matching = str + 1;
5940 while (isdigit (matching[0]))
5941 matching += 1;
5942 if (matching[0] == '\0')
5943 return 1;
5944 }
5945
5946 /* ___[0-9]+ */
5947
5948 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5949 {
5950 matching = str + 3;
5951 while (isdigit (matching[0]))
5952 matching += 1;
5953 if (matching[0] == '\0')
5954 return 1;
5955 }
5956
5957 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5958
5959 if (strcmp (str, "TKB") == 0)
5960 return 1;
5961
5962 #if 0
5963 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5964 with a N at the end. Unfortunately, the compiler uses the same
5965 convention for other internal types it creates. So treating
5966 all entity names that end with an "N" as a name suffix causes
5967 some regressions. For instance, consider the case of an enumerated
5968 type. To support the 'Image attribute, it creates an array whose
5969 name ends with N.
5970 Having a single character like this as a suffix carrying some
5971 information is a bit risky. Perhaps we should change the encoding
5972 to be something like "_N" instead. In the meantime, do not do
5973 the following check. */
5974 /* Protected Object Subprograms */
5975 if (len == 1 && str [0] == 'N')
5976 return 1;
5977 #endif
5978
5979 /* _E[0-9]+[bs]$ */
5980 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5981 {
5982 matching = str + 3;
5983 while (isdigit (matching[0]))
5984 matching += 1;
5985 if ((matching[0] == 'b' || matching[0] == 's')
5986 && matching [1] == '\0')
5987 return 1;
5988 }
5989
5990 /* ??? We should not modify STR directly, as we are doing below. This
5991 is fine in this case, but may become problematic later if we find
5992 that this alternative did not work, and want to try matching
5993 another one from the begining of STR. Since we modified it, we
5994 won't be able to find the begining of the string anymore! */
5995 if (str[0] == 'X')
5996 {
5997 str += 1;
5998 while (str[0] != '_' && str[0] != '\0')
5999 {
6000 if (str[0] != 'n' && str[0] != 'b')
6001 return 0;
6002 str += 1;
6003 }
6004 }
6005
6006 if (str[0] == '\000')
6007 return 1;
6008
6009 if (str[0] == '_')
6010 {
6011 if (str[1] != '_' || str[2] == '\000')
6012 return 0;
6013 if (str[2] == '_')
6014 {
6015 if (strcmp (str + 3, "JM") == 0)
6016 return 1;
6017 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6018 the LJM suffix in favor of the JM one. But we will
6019 still accept LJM as a valid suffix for a reasonable
6020 amount of time, just to allow ourselves to debug programs
6021 compiled using an older version of GNAT. */
6022 if (strcmp (str + 3, "LJM") == 0)
6023 return 1;
6024 if (str[3] != 'X')
6025 return 0;
6026 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6027 || str[4] == 'U' || str[4] == 'P')
6028 return 1;
6029 if (str[4] == 'R' && str[5] != 'T')
6030 return 1;
6031 return 0;
6032 }
6033 if (!isdigit (str[2]))
6034 return 0;
6035 for (k = 3; str[k] != '\0'; k += 1)
6036 if (!isdigit (str[k]) && str[k] != '_')
6037 return 0;
6038 return 1;
6039 }
6040 if (str[0] == '$' && isdigit (str[1]))
6041 {
6042 for (k = 2; str[k] != '\0'; k += 1)
6043 if (!isdigit (str[k]) && str[k] != '_')
6044 return 0;
6045 return 1;
6046 }
6047 return 0;
6048 }
6049
6050 /* Return non-zero if the string starting at NAME and ending before
6051 NAME_END contains no capital letters. */
6052
6053 static int
6054 is_valid_name_for_wild_match (const char *name0)
6055 {
6056 const char *decoded_name = ada_decode (name0);
6057 int i;
6058
6059 /* If the decoded name starts with an angle bracket, it means that
6060 NAME0 does not follow the GNAT encoding format. It should then
6061 not be allowed as a possible wild match. */
6062 if (decoded_name[0] == '<')
6063 return 0;
6064
6065 for (i=0; decoded_name[i] != '\0'; i++)
6066 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6067 return 0;
6068
6069 return 1;
6070 }
6071
6072 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6073 that could start a simple name. Assumes that *NAMEP points into
6074 the string beginning at NAME0. */
6075
6076 static int
6077 advance_wild_match (const char **namep, const char *name0, int target0)
6078 {
6079 const char *name = *namep;
6080
6081 while (1)
6082 {
6083 int t0, t1;
6084
6085 t0 = *name;
6086 if (t0 == '_')
6087 {
6088 t1 = name[1];
6089 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6090 {
6091 name += 1;
6092 if (name == name0 + 5 && startswith (name0, "_ada"))
6093 break;
6094 else
6095 name += 1;
6096 }
6097 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6098 || name[2] == target0))
6099 {
6100 name += 2;
6101 break;
6102 }
6103 else
6104 return 0;
6105 }
6106 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6107 name += 1;
6108 else
6109 return 0;
6110 }
6111
6112 *namep = name;
6113 return 1;
6114 }
6115
6116 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6117 informational suffixes of NAME (i.e., for which is_name_suffix is
6118 true). Assumes that PATN is a lower-cased Ada simple name. */
6119
6120 static int
6121 wild_match (const char *name, const char *patn)
6122 {
6123 const char *p;
6124 const char *name0 = name;
6125
6126 while (1)
6127 {
6128 const char *match = name;
6129
6130 if (*name == *patn)
6131 {
6132 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6133 if (*p != *name)
6134 break;
6135 if (*p == '\0' && is_name_suffix (name))
6136 return match != name0 && !is_valid_name_for_wild_match (name0);
6137
6138 if (name[-1] == '_')
6139 name -= 1;
6140 }
6141 if (!advance_wild_match (&name, name0, *patn))
6142 return 1;
6143 }
6144 }
6145
6146 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6147 informational suffix. */
6148
6149 static int
6150 full_match (const char *sym_name, const char *search_name)
6151 {
6152 return !match_name (sym_name, search_name, 0);
6153 }
6154
6155
6156 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6157 vector *defn_symbols, updating the list of symbols in OBSTACKP
6158 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6159 OBJFILE is the section containing BLOCK. */
6160
6161 static void
6162 ada_add_block_symbols (struct obstack *obstackp,
6163 const struct block *block, const char *name,
6164 domain_enum domain, struct objfile *objfile,
6165 int wild)
6166 {
6167 struct block_iterator iter;
6168 int name_len = strlen (name);
6169 /* A matching argument symbol, if any. */
6170 struct symbol *arg_sym;
6171 /* Set true when we find a matching non-argument symbol. */
6172 int found_sym;
6173 struct symbol *sym;
6174
6175 arg_sym = NULL;
6176 found_sym = 0;
6177 if (wild)
6178 {
6179 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6180 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6181 {
6182 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6183 SYMBOL_DOMAIN (sym), domain)
6184 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6185 {
6186 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6187 continue;
6188 else if (SYMBOL_IS_ARGUMENT (sym))
6189 arg_sym = sym;
6190 else
6191 {
6192 found_sym = 1;
6193 add_defn_to_vec (obstackp,
6194 fixup_symbol_section (sym, objfile),
6195 block);
6196 }
6197 }
6198 }
6199 }
6200 else
6201 {
6202 for (sym = block_iter_match_first (block, name, full_match, &iter);
6203 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6204 {
6205 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6206 SYMBOL_DOMAIN (sym), domain))
6207 {
6208 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6209 {
6210 if (SYMBOL_IS_ARGUMENT (sym))
6211 arg_sym = sym;
6212 else
6213 {
6214 found_sym = 1;
6215 add_defn_to_vec (obstackp,
6216 fixup_symbol_section (sym, objfile),
6217 block);
6218 }
6219 }
6220 }
6221 }
6222 }
6223
6224 /* Handle renamings. */
6225
6226 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6227 found_sym = 1;
6228
6229 if (!found_sym && arg_sym != NULL)
6230 {
6231 add_defn_to_vec (obstackp,
6232 fixup_symbol_section (arg_sym, objfile),
6233 block);
6234 }
6235
6236 if (!wild)
6237 {
6238 arg_sym = NULL;
6239 found_sym = 0;
6240
6241 ALL_BLOCK_SYMBOLS (block, iter, sym)
6242 {
6243 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6244 SYMBOL_DOMAIN (sym), domain))
6245 {
6246 int cmp;
6247
6248 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6249 if (cmp == 0)
6250 {
6251 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6252 if (cmp == 0)
6253 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6254 name_len);
6255 }
6256
6257 if (cmp == 0
6258 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6259 {
6260 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6261 {
6262 if (SYMBOL_IS_ARGUMENT (sym))
6263 arg_sym = sym;
6264 else
6265 {
6266 found_sym = 1;
6267 add_defn_to_vec (obstackp,
6268 fixup_symbol_section (sym, objfile),
6269 block);
6270 }
6271 }
6272 }
6273 }
6274 }
6275
6276 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6277 They aren't parameters, right? */
6278 if (!found_sym && arg_sym != NULL)
6279 {
6280 add_defn_to_vec (obstackp,
6281 fixup_symbol_section (arg_sym, objfile),
6282 block);
6283 }
6284 }
6285 }
6286 \f
6287
6288 /* Symbol Completion */
6289
6290 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6291 name in a form that's appropriate for the completion. The result
6292 does not need to be deallocated, but is only good until the next call.
6293
6294 TEXT_LEN is equal to the length of TEXT.
6295 Perform a wild match if WILD_MATCH_P is set.
6296 ENCODED_P should be set if TEXT represents the start of a symbol name
6297 in its encoded form. */
6298
6299 static const char *
6300 symbol_completion_match (const char *sym_name,
6301 const char *text, int text_len,
6302 int wild_match_p, int encoded_p)
6303 {
6304 const int verbatim_match = (text[0] == '<');
6305 int match = 0;
6306
6307 if (verbatim_match)
6308 {
6309 /* Strip the leading angle bracket. */
6310 text = text + 1;
6311 text_len--;
6312 }
6313
6314 /* First, test against the fully qualified name of the symbol. */
6315
6316 if (strncmp (sym_name, text, text_len) == 0)
6317 match = 1;
6318
6319 if (match && !encoded_p)
6320 {
6321 /* One needed check before declaring a positive match is to verify
6322 that iff we are doing a verbatim match, the decoded version
6323 of the symbol name starts with '<'. Otherwise, this symbol name
6324 is not a suitable completion. */
6325 const char *sym_name_copy = sym_name;
6326 int has_angle_bracket;
6327
6328 sym_name = ada_decode (sym_name);
6329 has_angle_bracket = (sym_name[0] == '<');
6330 match = (has_angle_bracket == verbatim_match);
6331 sym_name = sym_name_copy;
6332 }
6333
6334 if (match && !verbatim_match)
6335 {
6336 /* When doing non-verbatim match, another check that needs to
6337 be done is to verify that the potentially matching symbol name
6338 does not include capital letters, because the ada-mode would
6339 not be able to understand these symbol names without the
6340 angle bracket notation. */
6341 const char *tmp;
6342
6343 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6344 if (*tmp != '\0')
6345 match = 0;
6346 }
6347
6348 /* Second: Try wild matching... */
6349
6350 if (!match && wild_match_p)
6351 {
6352 /* Since we are doing wild matching, this means that TEXT
6353 may represent an unqualified symbol name. We therefore must
6354 also compare TEXT against the unqualified name of the symbol. */
6355 sym_name = ada_unqualified_name (ada_decode (sym_name));
6356
6357 if (strncmp (sym_name, text, text_len) == 0)
6358 match = 1;
6359 }
6360
6361 /* Finally: If we found a mach, prepare the result to return. */
6362
6363 if (!match)
6364 return NULL;
6365
6366 if (verbatim_match)
6367 sym_name = add_angle_brackets (sym_name);
6368
6369 if (!encoded_p)
6370 sym_name = ada_decode (sym_name);
6371
6372 return sym_name;
6373 }
6374
6375 /* A companion function to ada_make_symbol_completion_list().
6376 Check if SYM_NAME represents a symbol which name would be suitable
6377 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6378 it is appended at the end of the given string vector SV.
6379
6380 ORIG_TEXT is the string original string from the user command
6381 that needs to be completed. WORD is the entire command on which
6382 completion should be performed. These two parameters are used to
6383 determine which part of the symbol name should be added to the
6384 completion vector.
6385 if WILD_MATCH_P is set, then wild matching is performed.
6386 ENCODED_P should be set if TEXT represents a symbol name in its
6387 encoded formed (in which case the completion should also be
6388 encoded). */
6389
6390 static void
6391 symbol_completion_add (VEC(char_ptr) **sv,
6392 const char *sym_name,
6393 const char *text, int text_len,
6394 const char *orig_text, const char *word,
6395 int wild_match_p, int encoded_p)
6396 {
6397 const char *match = symbol_completion_match (sym_name, text, text_len,
6398 wild_match_p, encoded_p);
6399 char *completion;
6400
6401 if (match == NULL)
6402 return;
6403
6404 /* We found a match, so add the appropriate completion to the given
6405 string vector. */
6406
6407 if (word == orig_text)
6408 {
6409 completion = (char *) xmalloc (strlen (match) + 5);
6410 strcpy (completion, match);
6411 }
6412 else if (word > orig_text)
6413 {
6414 /* Return some portion of sym_name. */
6415 completion = (char *) xmalloc (strlen (match) + 5);
6416 strcpy (completion, match + (word - orig_text));
6417 }
6418 else
6419 {
6420 /* Return some of ORIG_TEXT plus sym_name. */
6421 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6422 strncpy (completion, word, orig_text - word);
6423 completion[orig_text - word] = '\0';
6424 strcat (completion, match);
6425 }
6426
6427 VEC_safe_push (char_ptr, *sv, completion);
6428 }
6429
6430 /* An object of this type is passed as the user_data argument to the
6431 expand_symtabs_matching method. */
6432 struct add_partial_datum
6433 {
6434 VEC(char_ptr) **completions;
6435 const char *text;
6436 int text_len;
6437 const char *text0;
6438 const char *word;
6439 int wild_match;
6440 int encoded;
6441 };
6442
6443 /* A callback for expand_symtabs_matching. */
6444
6445 static int
6446 ada_complete_symbol_matcher (const char *name, void *user_data)
6447 {
6448 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6449
6450 return symbol_completion_match (name, data->text, data->text_len,
6451 data->wild_match, data->encoded) != NULL;
6452 }
6453
6454 /* Return a list of possible symbol names completing TEXT0. WORD is
6455 the entire command on which completion is made. */
6456
6457 static VEC (char_ptr) *
6458 ada_make_symbol_completion_list (const char *text0, const char *word,
6459 enum type_code code)
6460 {
6461 char *text;
6462 int text_len;
6463 int wild_match_p;
6464 int encoded_p;
6465 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6466 struct symbol *sym;
6467 struct compunit_symtab *s;
6468 struct minimal_symbol *msymbol;
6469 struct objfile *objfile;
6470 const struct block *b, *surrounding_static_block = 0;
6471 int i;
6472 struct block_iterator iter;
6473 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6474
6475 gdb_assert (code == TYPE_CODE_UNDEF);
6476
6477 if (text0[0] == '<')
6478 {
6479 text = xstrdup (text0);
6480 make_cleanup (xfree, text);
6481 text_len = strlen (text);
6482 wild_match_p = 0;
6483 encoded_p = 1;
6484 }
6485 else
6486 {
6487 text = xstrdup (ada_encode (text0));
6488 make_cleanup (xfree, text);
6489 text_len = strlen (text);
6490 for (i = 0; i < text_len; i++)
6491 text[i] = tolower (text[i]);
6492
6493 encoded_p = (strstr (text0, "__") != NULL);
6494 /* If the name contains a ".", then the user is entering a fully
6495 qualified entity name, and the match must not be done in wild
6496 mode. Similarly, if the user wants to complete what looks like
6497 an encoded name, the match must not be done in wild mode. */
6498 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6499 }
6500
6501 /* First, look at the partial symtab symbols. */
6502 {
6503 struct add_partial_datum data;
6504
6505 data.completions = &completions;
6506 data.text = text;
6507 data.text_len = text_len;
6508 data.text0 = text0;
6509 data.word = word;
6510 data.wild_match = wild_match_p;
6511 data.encoded = encoded_p;
6512 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6513 ALL_DOMAIN, &data);
6514 }
6515
6516 /* At this point scan through the misc symbol vectors and add each
6517 symbol you find to the list. Eventually we want to ignore
6518 anything that isn't a text symbol (everything else will be
6519 handled by the psymtab code above). */
6520
6521 ALL_MSYMBOLS (objfile, msymbol)
6522 {
6523 QUIT;
6524 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6525 text, text_len, text0, word, wild_match_p,
6526 encoded_p);
6527 }
6528
6529 /* Search upwards from currently selected frame (so that we can
6530 complete on local vars. */
6531
6532 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6533 {
6534 if (!BLOCK_SUPERBLOCK (b))
6535 surrounding_static_block = b; /* For elmin of dups */
6536
6537 ALL_BLOCK_SYMBOLS (b, iter, sym)
6538 {
6539 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6540 text, text_len, text0, word,
6541 wild_match_p, encoded_p);
6542 }
6543 }
6544
6545 /* Go through the symtabs and check the externs and statics for
6546 symbols which match. */
6547
6548 ALL_COMPUNITS (objfile, s)
6549 {
6550 QUIT;
6551 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6552 ALL_BLOCK_SYMBOLS (b, iter, sym)
6553 {
6554 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6555 text, text_len, text0, word,
6556 wild_match_p, encoded_p);
6557 }
6558 }
6559
6560 ALL_COMPUNITS (objfile, s)
6561 {
6562 QUIT;
6563 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6564 /* Don't do this block twice. */
6565 if (b == surrounding_static_block)
6566 continue;
6567 ALL_BLOCK_SYMBOLS (b, iter, sym)
6568 {
6569 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6570 text, text_len, text0, word,
6571 wild_match_p, encoded_p);
6572 }
6573 }
6574
6575 do_cleanups (old_chain);
6576 return completions;
6577 }
6578
6579 /* Field Access */
6580
6581 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6582 for tagged types. */
6583
6584 static int
6585 ada_is_dispatch_table_ptr_type (struct type *type)
6586 {
6587 const char *name;
6588
6589 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6590 return 0;
6591
6592 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6593 if (name == NULL)
6594 return 0;
6595
6596 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6597 }
6598
6599 /* Return non-zero if TYPE is an interface tag. */
6600
6601 static int
6602 ada_is_interface_tag (struct type *type)
6603 {
6604 const char *name = TYPE_NAME (type);
6605
6606 if (name == NULL)
6607 return 0;
6608
6609 return (strcmp (name, "ada__tags__interface_tag") == 0);
6610 }
6611
6612 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6613 to be invisible to users. */
6614
6615 int
6616 ada_is_ignored_field (struct type *type, int field_num)
6617 {
6618 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6619 return 1;
6620
6621 /* Check the name of that field. */
6622 {
6623 const char *name = TYPE_FIELD_NAME (type, field_num);
6624
6625 /* Anonymous field names should not be printed.
6626 brobecker/2007-02-20: I don't think this can actually happen
6627 but we don't want to print the value of annonymous fields anyway. */
6628 if (name == NULL)
6629 return 1;
6630
6631 /* Normally, fields whose name start with an underscore ("_")
6632 are fields that have been internally generated by the compiler,
6633 and thus should not be printed. The "_parent" field is special,
6634 however: This is a field internally generated by the compiler
6635 for tagged types, and it contains the components inherited from
6636 the parent type. This field should not be printed as is, but
6637 should not be ignored either. */
6638 if (name[0] == '_' && !startswith (name, "_parent"))
6639 return 1;
6640 }
6641
6642 /* If this is the dispatch table of a tagged type or an interface tag,
6643 then ignore. */
6644 if (ada_is_tagged_type (type, 1)
6645 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6646 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6647 return 1;
6648
6649 /* Not a special field, so it should not be ignored. */
6650 return 0;
6651 }
6652
6653 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6654 pointer or reference type whose ultimate target has a tag field. */
6655
6656 int
6657 ada_is_tagged_type (struct type *type, int refok)
6658 {
6659 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6660 }
6661
6662 /* True iff TYPE represents the type of X'Tag */
6663
6664 int
6665 ada_is_tag_type (struct type *type)
6666 {
6667 type = ada_check_typedef (type);
6668
6669 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6670 return 0;
6671 else
6672 {
6673 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6674
6675 return (name != NULL
6676 && strcmp (name, "ada__tags__dispatch_table") == 0);
6677 }
6678 }
6679
6680 /* The type of the tag on VAL. */
6681
6682 struct type *
6683 ada_tag_type (struct value *val)
6684 {
6685 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6686 }
6687
6688 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6689 retired at Ada 05). */
6690
6691 static int
6692 is_ada95_tag (struct value *tag)
6693 {
6694 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6695 }
6696
6697 /* The value of the tag on VAL. */
6698
6699 struct value *
6700 ada_value_tag (struct value *val)
6701 {
6702 return ada_value_struct_elt (val, "_tag", 0);
6703 }
6704
6705 /* The value of the tag on the object of type TYPE whose contents are
6706 saved at VALADDR, if it is non-null, or is at memory address
6707 ADDRESS. */
6708
6709 static struct value *
6710 value_tag_from_contents_and_address (struct type *type,
6711 const gdb_byte *valaddr,
6712 CORE_ADDR address)
6713 {
6714 int tag_byte_offset;
6715 struct type *tag_type;
6716
6717 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6718 NULL, NULL, NULL))
6719 {
6720 const gdb_byte *valaddr1 = ((valaddr == NULL)
6721 ? NULL
6722 : valaddr + tag_byte_offset);
6723 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6724
6725 return value_from_contents_and_address (tag_type, valaddr1, address1);
6726 }
6727 return NULL;
6728 }
6729
6730 static struct type *
6731 type_from_tag (struct value *tag)
6732 {
6733 const char *type_name = ada_tag_name (tag);
6734
6735 if (type_name != NULL)
6736 return ada_find_any_type (ada_encode (type_name));
6737 return NULL;
6738 }
6739
6740 /* Given a value OBJ of a tagged type, return a value of this
6741 type at the base address of the object. The base address, as
6742 defined in Ada.Tags, it is the address of the primary tag of
6743 the object, and therefore where the field values of its full
6744 view can be fetched. */
6745
6746 struct value *
6747 ada_tag_value_at_base_address (struct value *obj)
6748 {
6749 struct value *val;
6750 LONGEST offset_to_top = 0;
6751 struct type *ptr_type, *obj_type;
6752 struct value *tag;
6753 CORE_ADDR base_address;
6754
6755 obj_type = value_type (obj);
6756
6757 /* It is the responsability of the caller to deref pointers. */
6758
6759 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6760 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6761 return obj;
6762
6763 tag = ada_value_tag (obj);
6764 if (!tag)
6765 return obj;
6766
6767 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6768
6769 if (is_ada95_tag (tag))
6770 return obj;
6771
6772 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6773 ptr_type = lookup_pointer_type (ptr_type);
6774 val = value_cast (ptr_type, tag);
6775 if (!val)
6776 return obj;
6777
6778 /* It is perfectly possible that an exception be raised while
6779 trying to determine the base address, just like for the tag;
6780 see ada_tag_name for more details. We do not print the error
6781 message for the same reason. */
6782
6783 TRY
6784 {
6785 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6786 }
6787
6788 CATCH (e, RETURN_MASK_ERROR)
6789 {
6790 return obj;
6791 }
6792 END_CATCH
6793
6794 /* If offset is null, nothing to do. */
6795
6796 if (offset_to_top == 0)
6797 return obj;
6798
6799 /* -1 is a special case in Ada.Tags; however, what should be done
6800 is not quite clear from the documentation. So do nothing for
6801 now. */
6802
6803 if (offset_to_top == -1)
6804 return obj;
6805
6806 base_address = value_address (obj) - offset_to_top;
6807 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6808
6809 /* Make sure that we have a proper tag at the new address.
6810 Otherwise, offset_to_top is bogus (which can happen when
6811 the object is not initialized yet). */
6812
6813 if (!tag)
6814 return obj;
6815
6816 obj_type = type_from_tag (tag);
6817
6818 if (!obj_type)
6819 return obj;
6820
6821 return value_from_contents_and_address (obj_type, NULL, base_address);
6822 }
6823
6824 /* Return the "ada__tags__type_specific_data" type. */
6825
6826 static struct type *
6827 ada_get_tsd_type (struct inferior *inf)
6828 {
6829 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6830
6831 if (data->tsd_type == 0)
6832 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6833 return data->tsd_type;
6834 }
6835
6836 /* Return the TSD (type-specific data) associated to the given TAG.
6837 TAG is assumed to be the tag of a tagged-type entity.
6838
6839 May return NULL if we are unable to get the TSD. */
6840
6841 static struct value *
6842 ada_get_tsd_from_tag (struct value *tag)
6843 {
6844 struct value *val;
6845 struct type *type;
6846
6847 /* First option: The TSD is simply stored as a field of our TAG.
6848 Only older versions of GNAT would use this format, but we have
6849 to test it first, because there are no visible markers for
6850 the current approach except the absence of that field. */
6851
6852 val = ada_value_struct_elt (tag, "tsd", 1);
6853 if (val)
6854 return val;
6855
6856 /* Try the second representation for the dispatch table (in which
6857 there is no explicit 'tsd' field in the referent of the tag pointer,
6858 and instead the tsd pointer is stored just before the dispatch
6859 table. */
6860
6861 type = ada_get_tsd_type (current_inferior());
6862 if (type == NULL)
6863 return NULL;
6864 type = lookup_pointer_type (lookup_pointer_type (type));
6865 val = value_cast (type, tag);
6866 if (val == NULL)
6867 return NULL;
6868 return value_ind (value_ptradd (val, -1));
6869 }
6870
6871 /* Given the TSD of a tag (type-specific data), return a string
6872 containing the name of the associated type.
6873
6874 The returned value is good until the next call. May return NULL
6875 if we are unable to determine the tag name. */
6876
6877 static char *
6878 ada_tag_name_from_tsd (struct value *tsd)
6879 {
6880 static char name[1024];
6881 char *p;
6882 struct value *val;
6883
6884 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6885 if (val == NULL)
6886 return NULL;
6887 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6888 for (p = name; *p != '\0'; p += 1)
6889 if (isalpha (*p))
6890 *p = tolower (*p);
6891 return name;
6892 }
6893
6894 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6895 a C string.
6896
6897 Return NULL if the TAG is not an Ada tag, or if we were unable to
6898 determine the name of that tag. The result is good until the next
6899 call. */
6900
6901 const char *
6902 ada_tag_name (struct value *tag)
6903 {
6904 char *name = NULL;
6905
6906 if (!ada_is_tag_type (value_type (tag)))
6907 return NULL;
6908
6909 /* It is perfectly possible that an exception be raised while trying
6910 to determine the TAG's name, even under normal circumstances:
6911 The associated variable may be uninitialized or corrupted, for
6912 instance. We do not let any exception propagate past this point.
6913 instead we return NULL.
6914
6915 We also do not print the error message either (which often is very
6916 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6917 the caller print a more meaningful message if necessary. */
6918 TRY
6919 {
6920 struct value *tsd = ada_get_tsd_from_tag (tag);
6921
6922 if (tsd != NULL)
6923 name = ada_tag_name_from_tsd (tsd);
6924 }
6925 CATCH (e, RETURN_MASK_ERROR)
6926 {
6927 }
6928 END_CATCH
6929
6930 return name;
6931 }
6932
6933 /* The parent type of TYPE, or NULL if none. */
6934
6935 struct type *
6936 ada_parent_type (struct type *type)
6937 {
6938 int i;
6939
6940 type = ada_check_typedef (type);
6941
6942 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6943 return NULL;
6944
6945 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6946 if (ada_is_parent_field (type, i))
6947 {
6948 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6949
6950 /* If the _parent field is a pointer, then dereference it. */
6951 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6952 parent_type = TYPE_TARGET_TYPE (parent_type);
6953 /* If there is a parallel XVS type, get the actual base type. */
6954 parent_type = ada_get_base_type (parent_type);
6955
6956 return ada_check_typedef (parent_type);
6957 }
6958
6959 return NULL;
6960 }
6961
6962 /* True iff field number FIELD_NUM of structure type TYPE contains the
6963 parent-type (inherited) fields of a derived type. Assumes TYPE is
6964 a structure type with at least FIELD_NUM+1 fields. */
6965
6966 int
6967 ada_is_parent_field (struct type *type, int field_num)
6968 {
6969 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6970
6971 return (name != NULL
6972 && (startswith (name, "PARENT")
6973 || startswith (name, "_parent")));
6974 }
6975
6976 /* True iff field number FIELD_NUM of structure type TYPE is a
6977 transparent wrapper field (which should be silently traversed when doing
6978 field selection and flattened when printing). Assumes TYPE is a
6979 structure type with at least FIELD_NUM+1 fields. Such fields are always
6980 structures. */
6981
6982 int
6983 ada_is_wrapper_field (struct type *type, int field_num)
6984 {
6985 const char *name = TYPE_FIELD_NAME (type, field_num);
6986
6987 if (name != NULL && strcmp (name, "RETVAL") == 0)
6988 {
6989 /* This happens in functions with "out" or "in out" parameters
6990 which are passed by copy. For such functions, GNAT describes
6991 the function's return type as being a struct where the return
6992 value is in a field called RETVAL, and where the other "out"
6993 or "in out" parameters are fields of that struct. This is not
6994 a wrapper. */
6995 return 0;
6996 }
6997
6998 return (name != NULL
6999 && (startswith (name, "PARENT")
7000 || strcmp (name, "REP") == 0
7001 || startswith (name, "_parent")
7002 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7003 }
7004
7005 /* True iff field number FIELD_NUM of structure or union type TYPE
7006 is a variant wrapper. Assumes TYPE is a structure type with at least
7007 FIELD_NUM+1 fields. */
7008
7009 int
7010 ada_is_variant_part (struct type *type, int field_num)
7011 {
7012 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7013
7014 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7015 || (is_dynamic_field (type, field_num)
7016 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7017 == TYPE_CODE_UNION)));
7018 }
7019
7020 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7021 whose discriminants are contained in the record type OUTER_TYPE,
7022 returns the type of the controlling discriminant for the variant.
7023 May return NULL if the type could not be found. */
7024
7025 struct type *
7026 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7027 {
7028 char *name = ada_variant_discrim_name (var_type);
7029
7030 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7031 }
7032
7033 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7034 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7035 represents a 'when others' clause; otherwise 0. */
7036
7037 int
7038 ada_is_others_clause (struct type *type, int field_num)
7039 {
7040 const char *name = TYPE_FIELD_NAME (type, field_num);
7041
7042 return (name != NULL && name[0] == 'O');
7043 }
7044
7045 /* Assuming that TYPE0 is the type of the variant part of a record,
7046 returns the name of the discriminant controlling the variant.
7047 The value is valid until the next call to ada_variant_discrim_name. */
7048
7049 char *
7050 ada_variant_discrim_name (struct type *type0)
7051 {
7052 static char *result = NULL;
7053 static size_t result_len = 0;
7054 struct type *type;
7055 const char *name;
7056 const char *discrim_end;
7057 const char *discrim_start;
7058
7059 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7060 type = TYPE_TARGET_TYPE (type0);
7061 else
7062 type = type0;
7063
7064 name = ada_type_name (type);
7065
7066 if (name == NULL || name[0] == '\000')
7067 return "";
7068
7069 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7070 discrim_end -= 1)
7071 {
7072 if (startswith (discrim_end, "___XVN"))
7073 break;
7074 }
7075 if (discrim_end == name)
7076 return "";
7077
7078 for (discrim_start = discrim_end; discrim_start != name + 3;
7079 discrim_start -= 1)
7080 {
7081 if (discrim_start == name + 1)
7082 return "";
7083 if ((discrim_start > name + 3
7084 && startswith (discrim_start - 3, "___"))
7085 || discrim_start[-1] == '.')
7086 break;
7087 }
7088
7089 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7090 strncpy (result, discrim_start, discrim_end - discrim_start);
7091 result[discrim_end - discrim_start] = '\0';
7092 return result;
7093 }
7094
7095 /* Scan STR for a subtype-encoded number, beginning at position K.
7096 Put the position of the character just past the number scanned in
7097 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7098 Return 1 if there was a valid number at the given position, and 0
7099 otherwise. A "subtype-encoded" number consists of the absolute value
7100 in decimal, followed by the letter 'm' to indicate a negative number.
7101 Assumes 0m does not occur. */
7102
7103 int
7104 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7105 {
7106 ULONGEST RU;
7107
7108 if (!isdigit (str[k]))
7109 return 0;
7110
7111 /* Do it the hard way so as not to make any assumption about
7112 the relationship of unsigned long (%lu scan format code) and
7113 LONGEST. */
7114 RU = 0;
7115 while (isdigit (str[k]))
7116 {
7117 RU = RU * 10 + (str[k] - '0');
7118 k += 1;
7119 }
7120
7121 if (str[k] == 'm')
7122 {
7123 if (R != NULL)
7124 *R = (-(LONGEST) (RU - 1)) - 1;
7125 k += 1;
7126 }
7127 else if (R != NULL)
7128 *R = (LONGEST) RU;
7129
7130 /* NOTE on the above: Technically, C does not say what the results of
7131 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7132 number representable as a LONGEST (although either would probably work
7133 in most implementations). When RU>0, the locution in the then branch
7134 above is always equivalent to the negative of RU. */
7135
7136 if (new_k != NULL)
7137 *new_k = k;
7138 return 1;
7139 }
7140
7141 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7142 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7143 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7144
7145 int
7146 ada_in_variant (LONGEST val, struct type *type, int field_num)
7147 {
7148 const char *name = TYPE_FIELD_NAME (type, field_num);
7149 int p;
7150
7151 p = 0;
7152 while (1)
7153 {
7154 switch (name[p])
7155 {
7156 case '\0':
7157 return 0;
7158 case 'S':
7159 {
7160 LONGEST W;
7161
7162 if (!ada_scan_number (name, p + 1, &W, &p))
7163 return 0;
7164 if (val == W)
7165 return 1;
7166 break;
7167 }
7168 case 'R':
7169 {
7170 LONGEST L, U;
7171
7172 if (!ada_scan_number (name, p + 1, &L, &p)
7173 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7174 return 0;
7175 if (val >= L && val <= U)
7176 return 1;
7177 break;
7178 }
7179 case 'O':
7180 return 1;
7181 default:
7182 return 0;
7183 }
7184 }
7185 }
7186
7187 /* FIXME: Lots of redundancy below. Try to consolidate. */
7188
7189 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7190 ARG_TYPE, extract and return the value of one of its (non-static)
7191 fields. FIELDNO says which field. Differs from value_primitive_field
7192 only in that it can handle packed values of arbitrary type. */
7193
7194 static struct value *
7195 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7196 struct type *arg_type)
7197 {
7198 struct type *type;
7199
7200 arg_type = ada_check_typedef (arg_type);
7201 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7202
7203 /* Handle packed fields. */
7204
7205 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7206 {
7207 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7208 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7209
7210 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7211 offset + bit_pos / 8,
7212 bit_pos % 8, bit_size, type);
7213 }
7214 else
7215 return value_primitive_field (arg1, offset, fieldno, arg_type);
7216 }
7217
7218 /* Find field with name NAME in object of type TYPE. If found,
7219 set the following for each argument that is non-null:
7220 - *FIELD_TYPE_P to the field's type;
7221 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7222 an object of that type;
7223 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7224 - *BIT_SIZE_P to its size in bits if the field is packed, and
7225 0 otherwise;
7226 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7227 fields up to but not including the desired field, or by the total
7228 number of fields if not found. A NULL value of NAME never
7229 matches; the function just counts visible fields in this case.
7230
7231 Returns 1 if found, 0 otherwise. */
7232
7233 static int
7234 find_struct_field (const char *name, struct type *type, int offset,
7235 struct type **field_type_p,
7236 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7237 int *index_p)
7238 {
7239 int i;
7240
7241 type = ada_check_typedef (type);
7242
7243 if (field_type_p != NULL)
7244 *field_type_p = NULL;
7245 if (byte_offset_p != NULL)
7246 *byte_offset_p = 0;
7247 if (bit_offset_p != NULL)
7248 *bit_offset_p = 0;
7249 if (bit_size_p != NULL)
7250 *bit_size_p = 0;
7251
7252 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7253 {
7254 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7255 int fld_offset = offset + bit_pos / 8;
7256 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7257
7258 if (t_field_name == NULL)
7259 continue;
7260
7261 else if (name != NULL && field_name_match (t_field_name, name))
7262 {
7263 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7264
7265 if (field_type_p != NULL)
7266 *field_type_p = TYPE_FIELD_TYPE (type, i);
7267 if (byte_offset_p != NULL)
7268 *byte_offset_p = fld_offset;
7269 if (bit_offset_p != NULL)
7270 *bit_offset_p = bit_pos % 8;
7271 if (bit_size_p != NULL)
7272 *bit_size_p = bit_size;
7273 return 1;
7274 }
7275 else if (ada_is_wrapper_field (type, i))
7276 {
7277 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7278 field_type_p, byte_offset_p, bit_offset_p,
7279 bit_size_p, index_p))
7280 return 1;
7281 }
7282 else if (ada_is_variant_part (type, i))
7283 {
7284 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7285 fixed type?? */
7286 int j;
7287 struct type *field_type
7288 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7289
7290 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7291 {
7292 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7293 fld_offset
7294 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7295 field_type_p, byte_offset_p,
7296 bit_offset_p, bit_size_p, index_p))
7297 return 1;
7298 }
7299 }
7300 else if (index_p != NULL)
7301 *index_p += 1;
7302 }
7303 return 0;
7304 }
7305
7306 /* Number of user-visible fields in record type TYPE. */
7307
7308 static int
7309 num_visible_fields (struct type *type)
7310 {
7311 int n;
7312
7313 n = 0;
7314 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7315 return n;
7316 }
7317
7318 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7319 and search in it assuming it has (class) type TYPE.
7320 If found, return value, else return NULL.
7321
7322 Searches recursively through wrapper fields (e.g., '_parent'). */
7323
7324 static struct value *
7325 ada_search_struct_field (const char *name, struct value *arg, int offset,
7326 struct type *type)
7327 {
7328 int i;
7329
7330 type = ada_check_typedef (type);
7331 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7332 {
7333 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7334
7335 if (t_field_name == NULL)
7336 continue;
7337
7338 else if (field_name_match (t_field_name, name))
7339 return ada_value_primitive_field (arg, offset, i, type);
7340
7341 else if (ada_is_wrapper_field (type, i))
7342 {
7343 struct value *v = /* Do not let indent join lines here. */
7344 ada_search_struct_field (name, arg,
7345 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7346 TYPE_FIELD_TYPE (type, i));
7347
7348 if (v != NULL)
7349 return v;
7350 }
7351
7352 else if (ada_is_variant_part (type, i))
7353 {
7354 /* PNH: Do we ever get here? See find_struct_field. */
7355 int j;
7356 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7357 i));
7358 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7359
7360 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7361 {
7362 struct value *v = ada_search_struct_field /* Force line
7363 break. */
7364 (name, arg,
7365 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7366 TYPE_FIELD_TYPE (field_type, j));
7367
7368 if (v != NULL)
7369 return v;
7370 }
7371 }
7372 }
7373 return NULL;
7374 }
7375
7376 static struct value *ada_index_struct_field_1 (int *, struct value *,
7377 int, struct type *);
7378
7379
7380 /* Return field #INDEX in ARG, where the index is that returned by
7381 * find_struct_field through its INDEX_P argument. Adjust the address
7382 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7383 * If found, return value, else return NULL. */
7384
7385 static struct value *
7386 ada_index_struct_field (int index, struct value *arg, int offset,
7387 struct type *type)
7388 {
7389 return ada_index_struct_field_1 (&index, arg, offset, type);
7390 }
7391
7392
7393 /* Auxiliary function for ada_index_struct_field. Like
7394 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7395 * *INDEX_P. */
7396
7397 static struct value *
7398 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7399 struct type *type)
7400 {
7401 int i;
7402 type = ada_check_typedef (type);
7403
7404 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7405 {
7406 if (TYPE_FIELD_NAME (type, i) == NULL)
7407 continue;
7408 else if (ada_is_wrapper_field (type, i))
7409 {
7410 struct value *v = /* Do not let indent join lines here. */
7411 ada_index_struct_field_1 (index_p, arg,
7412 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7413 TYPE_FIELD_TYPE (type, i));
7414
7415 if (v != NULL)
7416 return v;
7417 }
7418
7419 else if (ada_is_variant_part (type, i))
7420 {
7421 /* PNH: Do we ever get here? See ada_search_struct_field,
7422 find_struct_field. */
7423 error (_("Cannot assign this kind of variant record"));
7424 }
7425 else if (*index_p == 0)
7426 return ada_value_primitive_field (arg, offset, i, type);
7427 else
7428 *index_p -= 1;
7429 }
7430 return NULL;
7431 }
7432
7433 /* Given ARG, a value of type (pointer or reference to a)*
7434 structure/union, extract the component named NAME from the ultimate
7435 target structure/union and return it as a value with its
7436 appropriate type.
7437
7438 The routine searches for NAME among all members of the structure itself
7439 and (recursively) among all members of any wrapper members
7440 (e.g., '_parent').
7441
7442 If NO_ERR, then simply return NULL in case of error, rather than
7443 calling error. */
7444
7445 struct value *
7446 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7447 {
7448 struct type *t, *t1;
7449 struct value *v;
7450
7451 v = NULL;
7452 t1 = t = ada_check_typedef (value_type (arg));
7453 if (TYPE_CODE (t) == TYPE_CODE_REF)
7454 {
7455 t1 = TYPE_TARGET_TYPE (t);
7456 if (t1 == NULL)
7457 goto BadValue;
7458 t1 = ada_check_typedef (t1);
7459 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7460 {
7461 arg = coerce_ref (arg);
7462 t = t1;
7463 }
7464 }
7465
7466 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7467 {
7468 t1 = TYPE_TARGET_TYPE (t);
7469 if (t1 == NULL)
7470 goto BadValue;
7471 t1 = ada_check_typedef (t1);
7472 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7473 {
7474 arg = value_ind (arg);
7475 t = t1;
7476 }
7477 else
7478 break;
7479 }
7480
7481 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7482 goto BadValue;
7483
7484 if (t1 == t)
7485 v = ada_search_struct_field (name, arg, 0, t);
7486 else
7487 {
7488 int bit_offset, bit_size, byte_offset;
7489 struct type *field_type;
7490 CORE_ADDR address;
7491
7492 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7493 address = value_address (ada_value_ind (arg));
7494 else
7495 address = value_address (ada_coerce_ref (arg));
7496
7497 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7498 if (find_struct_field (name, t1, 0,
7499 &field_type, &byte_offset, &bit_offset,
7500 &bit_size, NULL))
7501 {
7502 if (bit_size != 0)
7503 {
7504 if (TYPE_CODE (t) == TYPE_CODE_REF)
7505 arg = ada_coerce_ref (arg);
7506 else
7507 arg = ada_value_ind (arg);
7508 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7509 bit_offset, bit_size,
7510 field_type);
7511 }
7512 else
7513 v = value_at_lazy (field_type, address + byte_offset);
7514 }
7515 }
7516
7517 if (v != NULL || no_err)
7518 return v;
7519 else
7520 error (_("There is no member named %s."), name);
7521
7522 BadValue:
7523 if (no_err)
7524 return NULL;
7525 else
7526 error (_("Attempt to extract a component of "
7527 "a value that is not a record."));
7528 }
7529
7530 /* Given a type TYPE, look up the type of the component of type named NAME.
7531 If DISPP is non-null, add its byte displacement from the beginning of a
7532 structure (pointed to by a value) of type TYPE to *DISPP (does not
7533 work for packed fields).
7534
7535 Matches any field whose name has NAME as a prefix, possibly
7536 followed by "___".
7537
7538 TYPE can be either a struct or union. If REFOK, TYPE may also
7539 be a (pointer or reference)+ to a struct or union, and the
7540 ultimate target type will be searched.
7541
7542 Looks recursively into variant clauses and parent types.
7543
7544 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7545 TYPE is not a type of the right kind. */
7546
7547 static struct type *
7548 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7549 int noerr, int *dispp)
7550 {
7551 int i;
7552
7553 if (name == NULL)
7554 goto BadName;
7555
7556 if (refok && type != NULL)
7557 while (1)
7558 {
7559 type = ada_check_typedef (type);
7560 if (TYPE_CODE (type) != TYPE_CODE_PTR
7561 && TYPE_CODE (type) != TYPE_CODE_REF)
7562 break;
7563 type = TYPE_TARGET_TYPE (type);
7564 }
7565
7566 if (type == NULL
7567 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7568 && TYPE_CODE (type) != TYPE_CODE_UNION))
7569 {
7570 if (noerr)
7571 return NULL;
7572 else
7573 {
7574 target_terminal_ours ();
7575 gdb_flush (gdb_stdout);
7576 if (type == NULL)
7577 error (_("Type (null) is not a structure or union type"));
7578 else
7579 {
7580 /* XXX: type_sprint */
7581 fprintf_unfiltered (gdb_stderr, _("Type "));
7582 type_print (type, "", gdb_stderr, -1);
7583 error (_(" is not a structure or union type"));
7584 }
7585 }
7586 }
7587
7588 type = to_static_fixed_type (type);
7589
7590 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7591 {
7592 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7593 struct type *t;
7594 int disp;
7595
7596 if (t_field_name == NULL)
7597 continue;
7598
7599 else if (field_name_match (t_field_name, name))
7600 {
7601 if (dispp != NULL)
7602 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7603 return TYPE_FIELD_TYPE (type, i);
7604 }
7605
7606 else if (ada_is_wrapper_field (type, i))
7607 {
7608 disp = 0;
7609 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7610 0, 1, &disp);
7611 if (t != NULL)
7612 {
7613 if (dispp != NULL)
7614 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7615 return t;
7616 }
7617 }
7618
7619 else if (ada_is_variant_part (type, i))
7620 {
7621 int j;
7622 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7623 i));
7624
7625 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7626 {
7627 /* FIXME pnh 2008/01/26: We check for a field that is
7628 NOT wrapped in a struct, since the compiler sometimes
7629 generates these for unchecked variant types. Revisit
7630 if the compiler changes this practice. */
7631 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7632 disp = 0;
7633 if (v_field_name != NULL
7634 && field_name_match (v_field_name, name))
7635 t = TYPE_FIELD_TYPE (field_type, j);
7636 else
7637 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7638 j),
7639 name, 0, 1, &disp);
7640
7641 if (t != NULL)
7642 {
7643 if (dispp != NULL)
7644 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7645 return t;
7646 }
7647 }
7648 }
7649
7650 }
7651
7652 BadName:
7653 if (!noerr)
7654 {
7655 target_terminal_ours ();
7656 gdb_flush (gdb_stdout);
7657 if (name == NULL)
7658 {
7659 /* XXX: type_sprint */
7660 fprintf_unfiltered (gdb_stderr, _("Type "));
7661 type_print (type, "", gdb_stderr, -1);
7662 error (_(" has no component named <null>"));
7663 }
7664 else
7665 {
7666 /* XXX: type_sprint */
7667 fprintf_unfiltered (gdb_stderr, _("Type "));
7668 type_print (type, "", gdb_stderr, -1);
7669 error (_(" has no component named %s"), name);
7670 }
7671 }
7672
7673 return NULL;
7674 }
7675
7676 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7677 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7678 represents an unchecked union (that is, the variant part of a
7679 record that is named in an Unchecked_Union pragma). */
7680
7681 static int
7682 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7683 {
7684 char *discrim_name = ada_variant_discrim_name (var_type);
7685
7686 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7687 == NULL);
7688 }
7689
7690
7691 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7692 within a value of type OUTER_TYPE that is stored in GDB at
7693 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7694 numbering from 0) is applicable. Returns -1 if none are. */
7695
7696 int
7697 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7698 const gdb_byte *outer_valaddr)
7699 {
7700 int others_clause;
7701 int i;
7702 char *discrim_name = ada_variant_discrim_name (var_type);
7703 struct value *outer;
7704 struct value *discrim;
7705 LONGEST discrim_val;
7706
7707 /* Using plain value_from_contents_and_address here causes problems
7708 because we will end up trying to resolve a type that is currently
7709 being constructed. */
7710 outer = value_from_contents_and_address_unresolved (outer_type,
7711 outer_valaddr, 0);
7712 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7713 if (discrim == NULL)
7714 return -1;
7715 discrim_val = value_as_long (discrim);
7716
7717 others_clause = -1;
7718 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7719 {
7720 if (ada_is_others_clause (var_type, i))
7721 others_clause = i;
7722 else if (ada_in_variant (discrim_val, var_type, i))
7723 return i;
7724 }
7725
7726 return others_clause;
7727 }
7728 \f
7729
7730
7731 /* Dynamic-Sized Records */
7732
7733 /* Strategy: The type ostensibly attached to a value with dynamic size
7734 (i.e., a size that is not statically recorded in the debugging
7735 data) does not accurately reflect the size or layout of the value.
7736 Our strategy is to convert these values to values with accurate,
7737 conventional types that are constructed on the fly. */
7738
7739 /* There is a subtle and tricky problem here. In general, we cannot
7740 determine the size of dynamic records without its data. However,
7741 the 'struct value' data structure, which GDB uses to represent
7742 quantities in the inferior process (the target), requires the size
7743 of the type at the time of its allocation in order to reserve space
7744 for GDB's internal copy of the data. That's why the
7745 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7746 rather than struct value*s.
7747
7748 However, GDB's internal history variables ($1, $2, etc.) are
7749 struct value*s containing internal copies of the data that are not, in
7750 general, the same as the data at their corresponding addresses in
7751 the target. Fortunately, the types we give to these values are all
7752 conventional, fixed-size types (as per the strategy described
7753 above), so that we don't usually have to perform the
7754 'to_fixed_xxx_type' conversions to look at their values.
7755 Unfortunately, there is one exception: if one of the internal
7756 history variables is an array whose elements are unconstrained
7757 records, then we will need to create distinct fixed types for each
7758 element selected. */
7759
7760 /* The upshot of all of this is that many routines take a (type, host
7761 address, target address) triple as arguments to represent a value.
7762 The host address, if non-null, is supposed to contain an internal
7763 copy of the relevant data; otherwise, the program is to consult the
7764 target at the target address. */
7765
7766 /* Assuming that VAL0 represents a pointer value, the result of
7767 dereferencing it. Differs from value_ind in its treatment of
7768 dynamic-sized types. */
7769
7770 struct value *
7771 ada_value_ind (struct value *val0)
7772 {
7773 struct value *val = value_ind (val0);
7774
7775 if (ada_is_tagged_type (value_type (val), 0))
7776 val = ada_tag_value_at_base_address (val);
7777
7778 return ada_to_fixed_value (val);
7779 }
7780
7781 /* The value resulting from dereferencing any "reference to"
7782 qualifiers on VAL0. */
7783
7784 static struct value *
7785 ada_coerce_ref (struct value *val0)
7786 {
7787 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7788 {
7789 struct value *val = val0;
7790
7791 val = coerce_ref (val);
7792
7793 if (ada_is_tagged_type (value_type (val), 0))
7794 val = ada_tag_value_at_base_address (val);
7795
7796 return ada_to_fixed_value (val);
7797 }
7798 else
7799 return val0;
7800 }
7801
7802 /* Return OFF rounded upward if necessary to a multiple of
7803 ALIGNMENT (a power of 2). */
7804
7805 static unsigned int
7806 align_value (unsigned int off, unsigned int alignment)
7807 {
7808 return (off + alignment - 1) & ~(alignment - 1);
7809 }
7810
7811 /* Return the bit alignment required for field #F of template type TYPE. */
7812
7813 static unsigned int
7814 field_alignment (struct type *type, int f)
7815 {
7816 const char *name = TYPE_FIELD_NAME (type, f);
7817 int len;
7818 int align_offset;
7819
7820 /* The field name should never be null, unless the debugging information
7821 is somehow malformed. In this case, we assume the field does not
7822 require any alignment. */
7823 if (name == NULL)
7824 return 1;
7825
7826 len = strlen (name);
7827
7828 if (!isdigit (name[len - 1]))
7829 return 1;
7830
7831 if (isdigit (name[len - 2]))
7832 align_offset = len - 2;
7833 else
7834 align_offset = len - 1;
7835
7836 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7837 return TARGET_CHAR_BIT;
7838
7839 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7840 }
7841
7842 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7843
7844 static struct symbol *
7845 ada_find_any_type_symbol (const char *name)
7846 {
7847 struct symbol *sym;
7848
7849 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7850 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7851 return sym;
7852
7853 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7854 return sym;
7855 }
7856
7857 /* Find a type named NAME. Ignores ambiguity. This routine will look
7858 solely for types defined by debug info, it will not search the GDB
7859 primitive types. */
7860
7861 static struct type *
7862 ada_find_any_type (const char *name)
7863 {
7864 struct symbol *sym = ada_find_any_type_symbol (name);
7865
7866 if (sym != NULL)
7867 return SYMBOL_TYPE (sym);
7868
7869 return NULL;
7870 }
7871
7872 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7873 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7874 symbol, in which case it is returned. Otherwise, this looks for
7875 symbols whose name is that of NAME_SYM suffixed with "___XR".
7876 Return symbol if found, and NULL otherwise. */
7877
7878 struct symbol *
7879 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7880 {
7881 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7882 struct symbol *sym;
7883
7884 if (strstr (name, "___XR") != NULL)
7885 return name_sym;
7886
7887 sym = find_old_style_renaming_symbol (name, block);
7888
7889 if (sym != NULL)
7890 return sym;
7891
7892 /* Not right yet. FIXME pnh 7/20/2007. */
7893 sym = ada_find_any_type_symbol (name);
7894 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7895 return sym;
7896 else
7897 return NULL;
7898 }
7899
7900 static struct symbol *
7901 find_old_style_renaming_symbol (const char *name, const struct block *block)
7902 {
7903 const struct symbol *function_sym = block_linkage_function (block);
7904 char *rename;
7905
7906 if (function_sym != NULL)
7907 {
7908 /* If the symbol is defined inside a function, NAME is not fully
7909 qualified. This means we need to prepend the function name
7910 as well as adding the ``___XR'' suffix to build the name of
7911 the associated renaming symbol. */
7912 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7913 /* Function names sometimes contain suffixes used
7914 for instance to qualify nested subprograms. When building
7915 the XR type name, we need to make sure that this suffix is
7916 not included. So do not include any suffix in the function
7917 name length below. */
7918 int function_name_len = ada_name_prefix_len (function_name);
7919 const int rename_len = function_name_len + 2 /* "__" */
7920 + strlen (name) + 6 /* "___XR\0" */ ;
7921
7922 /* Strip the suffix if necessary. */
7923 ada_remove_trailing_digits (function_name, &function_name_len);
7924 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7925 ada_remove_Xbn_suffix (function_name, &function_name_len);
7926
7927 /* Library-level functions are a special case, as GNAT adds
7928 a ``_ada_'' prefix to the function name to avoid namespace
7929 pollution. However, the renaming symbols themselves do not
7930 have this prefix, so we need to skip this prefix if present. */
7931 if (function_name_len > 5 /* "_ada_" */
7932 && strstr (function_name, "_ada_") == function_name)
7933 {
7934 function_name += 5;
7935 function_name_len -= 5;
7936 }
7937
7938 rename = (char *) alloca (rename_len * sizeof (char));
7939 strncpy (rename, function_name, function_name_len);
7940 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7941 "__%s___XR", name);
7942 }
7943 else
7944 {
7945 const int rename_len = strlen (name) + 6;
7946
7947 rename = (char *) alloca (rename_len * sizeof (char));
7948 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7949 }
7950
7951 return ada_find_any_type_symbol (rename);
7952 }
7953
7954 /* Because of GNAT encoding conventions, several GDB symbols may match a
7955 given type name. If the type denoted by TYPE0 is to be preferred to
7956 that of TYPE1 for purposes of type printing, return non-zero;
7957 otherwise return 0. */
7958
7959 int
7960 ada_prefer_type (struct type *type0, struct type *type1)
7961 {
7962 if (type1 == NULL)
7963 return 1;
7964 else if (type0 == NULL)
7965 return 0;
7966 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7967 return 1;
7968 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7969 return 0;
7970 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7971 return 1;
7972 else if (ada_is_constrained_packed_array_type (type0))
7973 return 1;
7974 else if (ada_is_array_descriptor_type (type0)
7975 && !ada_is_array_descriptor_type (type1))
7976 return 1;
7977 else
7978 {
7979 const char *type0_name = type_name_no_tag (type0);
7980 const char *type1_name = type_name_no_tag (type1);
7981
7982 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7983 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7984 return 1;
7985 }
7986 return 0;
7987 }
7988
7989 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7990 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7991
7992 const char *
7993 ada_type_name (struct type *type)
7994 {
7995 if (type == NULL)
7996 return NULL;
7997 else if (TYPE_NAME (type) != NULL)
7998 return TYPE_NAME (type);
7999 else
8000 return TYPE_TAG_NAME (type);
8001 }
8002
8003 /* Search the list of "descriptive" types associated to TYPE for a type
8004 whose name is NAME. */
8005
8006 static struct type *
8007 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8008 {
8009 struct type *result, *tmp;
8010
8011 if (ada_ignore_descriptive_types_p)
8012 return NULL;
8013
8014 /* If there no descriptive-type info, then there is no parallel type
8015 to be found. */
8016 if (!HAVE_GNAT_AUX_INFO (type))
8017 return NULL;
8018
8019 result = TYPE_DESCRIPTIVE_TYPE (type);
8020 while (result != NULL)
8021 {
8022 const char *result_name = ada_type_name (result);
8023
8024 if (result_name == NULL)
8025 {
8026 warning (_("unexpected null name on descriptive type"));
8027 return NULL;
8028 }
8029
8030 /* If the names match, stop. */
8031 if (strcmp (result_name, name) == 0)
8032 break;
8033
8034 /* Otherwise, look at the next item on the list, if any. */
8035 if (HAVE_GNAT_AUX_INFO (result))
8036 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8037 else
8038 tmp = NULL;
8039
8040 /* If not found either, try after having resolved the typedef. */
8041 if (tmp != NULL)
8042 result = tmp;
8043 else
8044 {
8045 result = check_typedef (result);
8046 if (HAVE_GNAT_AUX_INFO (result))
8047 result = TYPE_DESCRIPTIVE_TYPE (result);
8048 else
8049 result = NULL;
8050 }
8051 }
8052
8053 /* If we didn't find a match, see whether this is a packed array. With
8054 older compilers, the descriptive type information is either absent or
8055 irrelevant when it comes to packed arrays so the above lookup fails.
8056 Fall back to using a parallel lookup by name in this case. */
8057 if (result == NULL && ada_is_constrained_packed_array_type (type))
8058 return ada_find_any_type (name);
8059
8060 return result;
8061 }
8062
8063 /* Find a parallel type to TYPE with the specified NAME, using the
8064 descriptive type taken from the debugging information, if available,
8065 and otherwise using the (slower) name-based method. */
8066
8067 static struct type *
8068 ada_find_parallel_type_with_name (struct type *type, const char *name)
8069 {
8070 struct type *result = NULL;
8071
8072 if (HAVE_GNAT_AUX_INFO (type))
8073 result = find_parallel_type_by_descriptive_type (type, name);
8074 else
8075 result = ada_find_any_type (name);
8076
8077 return result;
8078 }
8079
8080 /* Same as above, but specify the name of the parallel type by appending
8081 SUFFIX to the name of TYPE. */
8082
8083 struct type *
8084 ada_find_parallel_type (struct type *type, const char *suffix)
8085 {
8086 char *name;
8087 const char *type_name = ada_type_name (type);
8088 int len;
8089
8090 if (type_name == NULL)
8091 return NULL;
8092
8093 len = strlen (type_name);
8094
8095 name = (char *) alloca (len + strlen (suffix) + 1);
8096
8097 strcpy (name, type_name);
8098 strcpy (name + len, suffix);
8099
8100 return ada_find_parallel_type_with_name (type, name);
8101 }
8102
8103 /* If TYPE is a variable-size record type, return the corresponding template
8104 type describing its fields. Otherwise, return NULL. */
8105
8106 static struct type *
8107 dynamic_template_type (struct type *type)
8108 {
8109 type = ada_check_typedef (type);
8110
8111 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8112 || ada_type_name (type) == NULL)
8113 return NULL;
8114 else
8115 {
8116 int len = strlen (ada_type_name (type));
8117
8118 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8119 return type;
8120 else
8121 return ada_find_parallel_type (type, "___XVE");
8122 }
8123 }
8124
8125 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8126 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8127
8128 static int
8129 is_dynamic_field (struct type *templ_type, int field_num)
8130 {
8131 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8132
8133 return name != NULL
8134 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8135 && strstr (name, "___XVL") != NULL;
8136 }
8137
8138 /* The index of the variant field of TYPE, or -1 if TYPE does not
8139 represent a variant record type. */
8140
8141 static int
8142 variant_field_index (struct type *type)
8143 {
8144 int f;
8145
8146 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8147 return -1;
8148
8149 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8150 {
8151 if (ada_is_variant_part (type, f))
8152 return f;
8153 }
8154 return -1;
8155 }
8156
8157 /* A record type with no fields. */
8158
8159 static struct type *
8160 empty_record (struct type *templ)
8161 {
8162 struct type *type = alloc_type_copy (templ);
8163
8164 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8165 TYPE_NFIELDS (type) = 0;
8166 TYPE_FIELDS (type) = NULL;
8167 INIT_CPLUS_SPECIFIC (type);
8168 TYPE_NAME (type) = "<empty>";
8169 TYPE_TAG_NAME (type) = NULL;
8170 TYPE_LENGTH (type) = 0;
8171 return type;
8172 }
8173
8174 /* An ordinary record type (with fixed-length fields) that describes
8175 the value of type TYPE at VALADDR or ADDRESS (see comments at
8176 the beginning of this section) VAL according to GNAT conventions.
8177 DVAL0 should describe the (portion of a) record that contains any
8178 necessary discriminants. It should be NULL if value_type (VAL) is
8179 an outer-level type (i.e., as opposed to a branch of a variant.) A
8180 variant field (unless unchecked) is replaced by a particular branch
8181 of the variant.
8182
8183 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8184 length are not statically known are discarded. As a consequence,
8185 VALADDR, ADDRESS and DVAL0 are ignored.
8186
8187 NOTE: Limitations: For now, we assume that dynamic fields and
8188 variants occupy whole numbers of bytes. However, they need not be
8189 byte-aligned. */
8190
8191 struct type *
8192 ada_template_to_fixed_record_type_1 (struct type *type,
8193 const gdb_byte *valaddr,
8194 CORE_ADDR address, struct value *dval0,
8195 int keep_dynamic_fields)
8196 {
8197 struct value *mark = value_mark ();
8198 struct value *dval;
8199 struct type *rtype;
8200 int nfields, bit_len;
8201 int variant_field;
8202 long off;
8203 int fld_bit_len;
8204 int f;
8205
8206 /* Compute the number of fields in this record type that are going
8207 to be processed: unless keep_dynamic_fields, this includes only
8208 fields whose position and length are static will be processed. */
8209 if (keep_dynamic_fields)
8210 nfields = TYPE_NFIELDS (type);
8211 else
8212 {
8213 nfields = 0;
8214 while (nfields < TYPE_NFIELDS (type)
8215 && !ada_is_variant_part (type, nfields)
8216 && !is_dynamic_field (type, nfields))
8217 nfields++;
8218 }
8219
8220 rtype = alloc_type_copy (type);
8221 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8222 INIT_CPLUS_SPECIFIC (rtype);
8223 TYPE_NFIELDS (rtype) = nfields;
8224 TYPE_FIELDS (rtype) = (struct field *)
8225 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8226 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8227 TYPE_NAME (rtype) = ada_type_name (type);
8228 TYPE_TAG_NAME (rtype) = NULL;
8229 TYPE_FIXED_INSTANCE (rtype) = 1;
8230
8231 off = 0;
8232 bit_len = 0;
8233 variant_field = -1;
8234
8235 for (f = 0; f < nfields; f += 1)
8236 {
8237 off = align_value (off, field_alignment (type, f))
8238 + TYPE_FIELD_BITPOS (type, f);
8239 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8240 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8241
8242 if (ada_is_variant_part (type, f))
8243 {
8244 variant_field = f;
8245 fld_bit_len = 0;
8246 }
8247 else if (is_dynamic_field (type, f))
8248 {
8249 const gdb_byte *field_valaddr = valaddr;
8250 CORE_ADDR field_address = address;
8251 struct type *field_type =
8252 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8253
8254 if (dval0 == NULL)
8255 {
8256 /* rtype's length is computed based on the run-time
8257 value of discriminants. If the discriminants are not
8258 initialized, the type size may be completely bogus and
8259 GDB may fail to allocate a value for it. So check the
8260 size first before creating the value. */
8261 ada_ensure_varsize_limit (rtype);
8262 /* Using plain value_from_contents_and_address here
8263 causes problems because we will end up trying to
8264 resolve a type that is currently being
8265 constructed. */
8266 dval = value_from_contents_and_address_unresolved (rtype,
8267 valaddr,
8268 address);
8269 rtype = value_type (dval);
8270 }
8271 else
8272 dval = dval0;
8273
8274 /* If the type referenced by this field is an aligner type, we need
8275 to unwrap that aligner type, because its size might not be set.
8276 Keeping the aligner type would cause us to compute the wrong
8277 size for this field, impacting the offset of the all the fields
8278 that follow this one. */
8279 if (ada_is_aligner_type (field_type))
8280 {
8281 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8282
8283 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8284 field_address = cond_offset_target (field_address, field_offset);
8285 field_type = ada_aligned_type (field_type);
8286 }
8287
8288 field_valaddr = cond_offset_host (field_valaddr,
8289 off / TARGET_CHAR_BIT);
8290 field_address = cond_offset_target (field_address,
8291 off / TARGET_CHAR_BIT);
8292
8293 /* Get the fixed type of the field. Note that, in this case,
8294 we do not want to get the real type out of the tag: if
8295 the current field is the parent part of a tagged record,
8296 we will get the tag of the object. Clearly wrong: the real
8297 type of the parent is not the real type of the child. We
8298 would end up in an infinite loop. */
8299 field_type = ada_get_base_type (field_type);
8300 field_type = ada_to_fixed_type (field_type, field_valaddr,
8301 field_address, dval, 0);
8302 /* If the field size is already larger than the maximum
8303 object size, then the record itself will necessarily
8304 be larger than the maximum object size. We need to make
8305 this check now, because the size might be so ridiculously
8306 large (due to an uninitialized variable in the inferior)
8307 that it would cause an overflow when adding it to the
8308 record size. */
8309 ada_ensure_varsize_limit (field_type);
8310
8311 TYPE_FIELD_TYPE (rtype, f) = field_type;
8312 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8313 /* The multiplication can potentially overflow. But because
8314 the field length has been size-checked just above, and
8315 assuming that the maximum size is a reasonable value,
8316 an overflow should not happen in practice. So rather than
8317 adding overflow recovery code to this already complex code,
8318 we just assume that it's not going to happen. */
8319 fld_bit_len =
8320 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8321 }
8322 else
8323 {
8324 /* Note: If this field's type is a typedef, it is important
8325 to preserve the typedef layer.
8326
8327 Otherwise, we might be transforming a typedef to a fat
8328 pointer (encoding a pointer to an unconstrained array),
8329 into a basic fat pointer (encoding an unconstrained
8330 array). As both types are implemented using the same
8331 structure, the typedef is the only clue which allows us
8332 to distinguish between the two options. Stripping it
8333 would prevent us from printing this field appropriately. */
8334 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8335 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8336 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8337 fld_bit_len =
8338 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8339 else
8340 {
8341 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8342
8343 /* We need to be careful of typedefs when computing
8344 the length of our field. If this is a typedef,
8345 get the length of the target type, not the length
8346 of the typedef. */
8347 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8348 field_type = ada_typedef_target_type (field_type);
8349
8350 fld_bit_len =
8351 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8352 }
8353 }
8354 if (off + fld_bit_len > bit_len)
8355 bit_len = off + fld_bit_len;
8356 off += fld_bit_len;
8357 TYPE_LENGTH (rtype) =
8358 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8359 }
8360
8361 /* We handle the variant part, if any, at the end because of certain
8362 odd cases in which it is re-ordered so as NOT to be the last field of
8363 the record. This can happen in the presence of representation
8364 clauses. */
8365 if (variant_field >= 0)
8366 {
8367 struct type *branch_type;
8368
8369 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8370
8371 if (dval0 == NULL)
8372 {
8373 /* Using plain value_from_contents_and_address here causes
8374 problems because we will end up trying to resolve a type
8375 that is currently being constructed. */
8376 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8377 address);
8378 rtype = value_type (dval);
8379 }
8380 else
8381 dval = dval0;
8382
8383 branch_type =
8384 to_fixed_variant_branch_type
8385 (TYPE_FIELD_TYPE (type, variant_field),
8386 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8387 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8388 if (branch_type == NULL)
8389 {
8390 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8391 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8392 TYPE_NFIELDS (rtype) -= 1;
8393 }
8394 else
8395 {
8396 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8397 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8398 fld_bit_len =
8399 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8400 TARGET_CHAR_BIT;
8401 if (off + fld_bit_len > bit_len)
8402 bit_len = off + fld_bit_len;
8403 TYPE_LENGTH (rtype) =
8404 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8405 }
8406 }
8407
8408 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8409 should contain the alignment of that record, which should be a strictly
8410 positive value. If null or negative, then something is wrong, most
8411 probably in the debug info. In that case, we don't round up the size
8412 of the resulting type. If this record is not part of another structure,
8413 the current RTYPE length might be good enough for our purposes. */
8414 if (TYPE_LENGTH (type) <= 0)
8415 {
8416 if (TYPE_NAME (rtype))
8417 warning (_("Invalid type size for `%s' detected: %d."),
8418 TYPE_NAME (rtype), TYPE_LENGTH (type));
8419 else
8420 warning (_("Invalid type size for <unnamed> detected: %d."),
8421 TYPE_LENGTH (type));
8422 }
8423 else
8424 {
8425 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8426 TYPE_LENGTH (type));
8427 }
8428
8429 value_free_to_mark (mark);
8430 if (TYPE_LENGTH (rtype) > varsize_limit)
8431 error (_("record type with dynamic size is larger than varsize-limit"));
8432 return rtype;
8433 }
8434
8435 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8436 of 1. */
8437
8438 static struct type *
8439 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8440 CORE_ADDR address, struct value *dval0)
8441 {
8442 return ada_template_to_fixed_record_type_1 (type, valaddr,
8443 address, dval0, 1);
8444 }
8445
8446 /* An ordinary record type in which ___XVL-convention fields and
8447 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8448 static approximations, containing all possible fields. Uses
8449 no runtime values. Useless for use in values, but that's OK,
8450 since the results are used only for type determinations. Works on both
8451 structs and unions. Representation note: to save space, we memorize
8452 the result of this function in the TYPE_TARGET_TYPE of the
8453 template type. */
8454
8455 static struct type *
8456 template_to_static_fixed_type (struct type *type0)
8457 {
8458 struct type *type;
8459 int nfields;
8460 int f;
8461
8462 /* No need no do anything if the input type is already fixed. */
8463 if (TYPE_FIXED_INSTANCE (type0))
8464 return type0;
8465
8466 /* Likewise if we already have computed the static approximation. */
8467 if (TYPE_TARGET_TYPE (type0) != NULL)
8468 return TYPE_TARGET_TYPE (type0);
8469
8470 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8471 type = type0;
8472 nfields = TYPE_NFIELDS (type0);
8473
8474 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8475 recompute all over next time. */
8476 TYPE_TARGET_TYPE (type0) = type;
8477
8478 for (f = 0; f < nfields; f += 1)
8479 {
8480 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8481 struct type *new_type;
8482
8483 if (is_dynamic_field (type0, f))
8484 {
8485 field_type = ada_check_typedef (field_type);
8486 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8487 }
8488 else
8489 new_type = static_unwrap_type (field_type);
8490
8491 if (new_type != field_type)
8492 {
8493 /* Clone TYPE0 only the first time we get a new field type. */
8494 if (type == type0)
8495 {
8496 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8497 TYPE_CODE (type) = TYPE_CODE (type0);
8498 INIT_CPLUS_SPECIFIC (type);
8499 TYPE_NFIELDS (type) = nfields;
8500 TYPE_FIELDS (type) = (struct field *)
8501 TYPE_ALLOC (type, nfields * sizeof (struct field));
8502 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8503 sizeof (struct field) * nfields);
8504 TYPE_NAME (type) = ada_type_name (type0);
8505 TYPE_TAG_NAME (type) = NULL;
8506 TYPE_FIXED_INSTANCE (type) = 1;
8507 TYPE_LENGTH (type) = 0;
8508 }
8509 TYPE_FIELD_TYPE (type, f) = new_type;
8510 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8511 }
8512 }
8513
8514 return type;
8515 }
8516
8517 /* Given an object of type TYPE whose contents are at VALADDR and
8518 whose address in memory is ADDRESS, returns a revision of TYPE,
8519 which should be a non-dynamic-sized record, in which the variant
8520 part, if any, is replaced with the appropriate branch. Looks
8521 for discriminant values in DVAL0, which can be NULL if the record
8522 contains the necessary discriminant values. */
8523
8524 static struct type *
8525 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8526 CORE_ADDR address, struct value *dval0)
8527 {
8528 struct value *mark = value_mark ();
8529 struct value *dval;
8530 struct type *rtype;
8531 struct type *branch_type;
8532 int nfields = TYPE_NFIELDS (type);
8533 int variant_field = variant_field_index (type);
8534
8535 if (variant_field == -1)
8536 return type;
8537
8538 if (dval0 == NULL)
8539 {
8540 dval = value_from_contents_and_address (type, valaddr, address);
8541 type = value_type (dval);
8542 }
8543 else
8544 dval = dval0;
8545
8546 rtype = alloc_type_copy (type);
8547 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8548 INIT_CPLUS_SPECIFIC (rtype);
8549 TYPE_NFIELDS (rtype) = nfields;
8550 TYPE_FIELDS (rtype) =
8551 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8552 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8553 sizeof (struct field) * nfields);
8554 TYPE_NAME (rtype) = ada_type_name (type);
8555 TYPE_TAG_NAME (rtype) = NULL;
8556 TYPE_FIXED_INSTANCE (rtype) = 1;
8557 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8558
8559 branch_type = to_fixed_variant_branch_type
8560 (TYPE_FIELD_TYPE (type, variant_field),
8561 cond_offset_host (valaddr,
8562 TYPE_FIELD_BITPOS (type, variant_field)
8563 / TARGET_CHAR_BIT),
8564 cond_offset_target (address,
8565 TYPE_FIELD_BITPOS (type, variant_field)
8566 / TARGET_CHAR_BIT), dval);
8567 if (branch_type == NULL)
8568 {
8569 int f;
8570
8571 for (f = variant_field + 1; f < nfields; f += 1)
8572 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8573 TYPE_NFIELDS (rtype) -= 1;
8574 }
8575 else
8576 {
8577 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8578 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8579 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8580 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8581 }
8582 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8583
8584 value_free_to_mark (mark);
8585 return rtype;
8586 }
8587
8588 /* An ordinary record type (with fixed-length fields) that describes
8589 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8590 beginning of this section]. Any necessary discriminants' values
8591 should be in DVAL, a record value; it may be NULL if the object
8592 at ADDR itself contains any necessary discriminant values.
8593 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8594 values from the record are needed. Except in the case that DVAL,
8595 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8596 unchecked) is replaced by a particular branch of the variant.
8597
8598 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8599 is questionable and may be removed. It can arise during the
8600 processing of an unconstrained-array-of-record type where all the
8601 variant branches have exactly the same size. This is because in
8602 such cases, the compiler does not bother to use the XVS convention
8603 when encoding the record. I am currently dubious of this
8604 shortcut and suspect the compiler should be altered. FIXME. */
8605
8606 static struct type *
8607 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8608 CORE_ADDR address, struct value *dval)
8609 {
8610 struct type *templ_type;
8611
8612 if (TYPE_FIXED_INSTANCE (type0))
8613 return type0;
8614
8615 templ_type = dynamic_template_type (type0);
8616
8617 if (templ_type != NULL)
8618 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8619 else if (variant_field_index (type0) >= 0)
8620 {
8621 if (dval == NULL && valaddr == NULL && address == 0)
8622 return type0;
8623 return to_record_with_fixed_variant_part (type0, valaddr, address,
8624 dval);
8625 }
8626 else
8627 {
8628 TYPE_FIXED_INSTANCE (type0) = 1;
8629 return type0;
8630 }
8631
8632 }
8633
8634 /* An ordinary record type (with fixed-length fields) that describes
8635 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8636 union type. Any necessary discriminants' values should be in DVAL,
8637 a record value. That is, this routine selects the appropriate
8638 branch of the union at ADDR according to the discriminant value
8639 indicated in the union's type name. Returns VAR_TYPE0 itself if
8640 it represents a variant subject to a pragma Unchecked_Union. */
8641
8642 static struct type *
8643 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8644 CORE_ADDR address, struct value *dval)
8645 {
8646 int which;
8647 struct type *templ_type;
8648 struct type *var_type;
8649
8650 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8651 var_type = TYPE_TARGET_TYPE (var_type0);
8652 else
8653 var_type = var_type0;
8654
8655 templ_type = ada_find_parallel_type (var_type, "___XVU");
8656
8657 if (templ_type != NULL)
8658 var_type = templ_type;
8659
8660 if (is_unchecked_variant (var_type, value_type (dval)))
8661 return var_type0;
8662 which =
8663 ada_which_variant_applies (var_type,
8664 value_type (dval), value_contents (dval));
8665
8666 if (which < 0)
8667 return empty_record (var_type);
8668 else if (is_dynamic_field (var_type, which))
8669 return to_fixed_record_type
8670 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8671 valaddr, address, dval);
8672 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8673 return
8674 to_fixed_record_type
8675 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8676 else
8677 return TYPE_FIELD_TYPE (var_type, which);
8678 }
8679
8680 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8681 ENCODING_TYPE, a type following the GNAT conventions for discrete
8682 type encodings, only carries redundant information. */
8683
8684 static int
8685 ada_is_redundant_range_encoding (struct type *range_type,
8686 struct type *encoding_type)
8687 {
8688 struct type *fixed_range_type;
8689 const char *bounds_str;
8690 int n;
8691 LONGEST lo, hi;
8692
8693 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8694
8695 if (TYPE_CODE (get_base_type (range_type))
8696 != TYPE_CODE (get_base_type (encoding_type)))
8697 {
8698 /* The compiler probably used a simple base type to describe
8699 the range type instead of the range's actual base type,
8700 expecting us to get the real base type from the encoding
8701 anyway. In this situation, the encoding cannot be ignored
8702 as redundant. */
8703 return 0;
8704 }
8705
8706 if (is_dynamic_type (range_type))
8707 return 0;
8708
8709 if (TYPE_NAME (encoding_type) == NULL)
8710 return 0;
8711
8712 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8713 if (bounds_str == NULL)
8714 return 0;
8715
8716 n = 8; /* Skip "___XDLU_". */
8717 if (!ada_scan_number (bounds_str, n, &lo, &n))
8718 return 0;
8719 if (TYPE_LOW_BOUND (range_type) != lo)
8720 return 0;
8721
8722 n += 2; /* Skip the "__" separator between the two bounds. */
8723 if (!ada_scan_number (bounds_str, n, &hi, &n))
8724 return 0;
8725 if (TYPE_HIGH_BOUND (range_type) != hi)
8726 return 0;
8727
8728 return 1;
8729 }
8730
8731 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8732 a type following the GNAT encoding for describing array type
8733 indices, only carries redundant information. */
8734
8735 static int
8736 ada_is_redundant_index_type_desc (struct type *array_type,
8737 struct type *desc_type)
8738 {
8739 struct type *this_layer = check_typedef (array_type);
8740 int i;
8741
8742 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8743 {
8744 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8745 TYPE_FIELD_TYPE (desc_type, i)))
8746 return 0;
8747 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8748 }
8749
8750 return 1;
8751 }
8752
8753 /* Assuming that TYPE0 is an array type describing the type of a value
8754 at ADDR, and that DVAL describes a record containing any
8755 discriminants used in TYPE0, returns a type for the value that
8756 contains no dynamic components (that is, no components whose sizes
8757 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8758 true, gives an error message if the resulting type's size is over
8759 varsize_limit. */
8760
8761 static struct type *
8762 to_fixed_array_type (struct type *type0, struct value *dval,
8763 int ignore_too_big)
8764 {
8765 struct type *index_type_desc;
8766 struct type *result;
8767 int constrained_packed_array_p;
8768 static const char *xa_suffix = "___XA";
8769
8770 type0 = ada_check_typedef (type0);
8771 if (TYPE_FIXED_INSTANCE (type0))
8772 return type0;
8773
8774 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8775 if (constrained_packed_array_p)
8776 type0 = decode_constrained_packed_array_type (type0);
8777
8778 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8779
8780 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8781 encoding suffixed with 'P' may still be generated. If so,
8782 it should be used to find the XA type. */
8783
8784 if (index_type_desc == NULL)
8785 {
8786 const char *type_name = ada_type_name (type0);
8787
8788 if (type_name != NULL)
8789 {
8790 const int len = strlen (type_name);
8791 char *name = (char *) alloca (len + strlen (xa_suffix));
8792
8793 if (type_name[len - 1] == 'P')
8794 {
8795 strcpy (name, type_name);
8796 strcpy (name + len - 1, xa_suffix);
8797 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8798 }
8799 }
8800 }
8801
8802 ada_fixup_array_indexes_type (index_type_desc);
8803 if (index_type_desc != NULL
8804 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8805 {
8806 /* Ignore this ___XA parallel type, as it does not bring any
8807 useful information. This allows us to avoid creating fixed
8808 versions of the array's index types, which would be identical
8809 to the original ones. This, in turn, can also help avoid
8810 the creation of fixed versions of the array itself. */
8811 index_type_desc = NULL;
8812 }
8813
8814 if (index_type_desc == NULL)
8815 {
8816 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8817
8818 /* NOTE: elt_type---the fixed version of elt_type0---should never
8819 depend on the contents of the array in properly constructed
8820 debugging data. */
8821 /* Create a fixed version of the array element type.
8822 We're not providing the address of an element here,
8823 and thus the actual object value cannot be inspected to do
8824 the conversion. This should not be a problem, since arrays of
8825 unconstrained objects are not allowed. In particular, all
8826 the elements of an array of a tagged type should all be of
8827 the same type specified in the debugging info. No need to
8828 consult the object tag. */
8829 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8830
8831 /* Make sure we always create a new array type when dealing with
8832 packed array types, since we're going to fix-up the array
8833 type length and element bitsize a little further down. */
8834 if (elt_type0 == elt_type && !constrained_packed_array_p)
8835 result = type0;
8836 else
8837 result = create_array_type (alloc_type_copy (type0),
8838 elt_type, TYPE_INDEX_TYPE (type0));
8839 }
8840 else
8841 {
8842 int i;
8843 struct type *elt_type0;
8844
8845 elt_type0 = type0;
8846 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8847 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8848
8849 /* NOTE: result---the fixed version of elt_type0---should never
8850 depend on the contents of the array in properly constructed
8851 debugging data. */
8852 /* Create a fixed version of the array element type.
8853 We're not providing the address of an element here,
8854 and thus the actual object value cannot be inspected to do
8855 the conversion. This should not be a problem, since arrays of
8856 unconstrained objects are not allowed. In particular, all
8857 the elements of an array of a tagged type should all be of
8858 the same type specified in the debugging info. No need to
8859 consult the object tag. */
8860 result =
8861 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8862
8863 elt_type0 = type0;
8864 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8865 {
8866 struct type *range_type =
8867 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8868
8869 result = create_array_type (alloc_type_copy (elt_type0),
8870 result, range_type);
8871 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8872 }
8873 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8874 error (_("array type with dynamic size is larger than varsize-limit"));
8875 }
8876
8877 /* We want to preserve the type name. This can be useful when
8878 trying to get the type name of a value that has already been
8879 printed (for instance, if the user did "print VAR; whatis $". */
8880 TYPE_NAME (result) = TYPE_NAME (type0);
8881
8882 if (constrained_packed_array_p)
8883 {
8884 /* So far, the resulting type has been created as if the original
8885 type was a regular (non-packed) array type. As a result, the
8886 bitsize of the array elements needs to be set again, and the array
8887 length needs to be recomputed based on that bitsize. */
8888 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8889 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8890
8891 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8892 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8893 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8894 TYPE_LENGTH (result)++;
8895 }
8896
8897 TYPE_FIXED_INSTANCE (result) = 1;
8898 return result;
8899 }
8900
8901
8902 /* A standard type (containing no dynamically sized components)
8903 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8904 DVAL describes a record containing any discriminants used in TYPE0,
8905 and may be NULL if there are none, or if the object of type TYPE at
8906 ADDRESS or in VALADDR contains these discriminants.
8907
8908 If CHECK_TAG is not null, in the case of tagged types, this function
8909 attempts to locate the object's tag and use it to compute the actual
8910 type. However, when ADDRESS is null, we cannot use it to determine the
8911 location of the tag, and therefore compute the tagged type's actual type.
8912 So we return the tagged type without consulting the tag. */
8913
8914 static struct type *
8915 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8916 CORE_ADDR address, struct value *dval, int check_tag)
8917 {
8918 type = ada_check_typedef (type);
8919 switch (TYPE_CODE (type))
8920 {
8921 default:
8922 return type;
8923 case TYPE_CODE_STRUCT:
8924 {
8925 struct type *static_type = to_static_fixed_type (type);
8926 struct type *fixed_record_type =
8927 to_fixed_record_type (type, valaddr, address, NULL);
8928
8929 /* If STATIC_TYPE is a tagged type and we know the object's address,
8930 then we can determine its tag, and compute the object's actual
8931 type from there. Note that we have to use the fixed record
8932 type (the parent part of the record may have dynamic fields
8933 and the way the location of _tag is expressed may depend on
8934 them). */
8935
8936 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8937 {
8938 struct value *tag =
8939 value_tag_from_contents_and_address
8940 (fixed_record_type,
8941 valaddr,
8942 address);
8943 struct type *real_type = type_from_tag (tag);
8944 struct value *obj =
8945 value_from_contents_and_address (fixed_record_type,
8946 valaddr,
8947 address);
8948 fixed_record_type = value_type (obj);
8949 if (real_type != NULL)
8950 return to_fixed_record_type
8951 (real_type, NULL,
8952 value_address (ada_tag_value_at_base_address (obj)), NULL);
8953 }
8954
8955 /* Check to see if there is a parallel ___XVZ variable.
8956 If there is, then it provides the actual size of our type. */
8957 else if (ada_type_name (fixed_record_type) != NULL)
8958 {
8959 const char *name = ada_type_name (fixed_record_type);
8960 char *xvz_name
8961 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8962 int xvz_found = 0;
8963 LONGEST size;
8964
8965 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8966 size = get_int_var_value (xvz_name, &xvz_found);
8967 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8968 {
8969 fixed_record_type = copy_type (fixed_record_type);
8970 TYPE_LENGTH (fixed_record_type) = size;
8971
8972 /* The FIXED_RECORD_TYPE may have be a stub. We have
8973 observed this when the debugging info is STABS, and
8974 apparently it is something that is hard to fix.
8975
8976 In practice, we don't need the actual type definition
8977 at all, because the presence of the XVZ variable allows us
8978 to assume that there must be a XVS type as well, which we
8979 should be able to use later, when we need the actual type
8980 definition.
8981
8982 In the meantime, pretend that the "fixed" type we are
8983 returning is NOT a stub, because this can cause trouble
8984 when using this type to create new types targeting it.
8985 Indeed, the associated creation routines often check
8986 whether the target type is a stub and will try to replace
8987 it, thus using a type with the wrong size. This, in turn,
8988 might cause the new type to have the wrong size too.
8989 Consider the case of an array, for instance, where the size
8990 of the array is computed from the number of elements in
8991 our array multiplied by the size of its element. */
8992 TYPE_STUB (fixed_record_type) = 0;
8993 }
8994 }
8995 return fixed_record_type;
8996 }
8997 case TYPE_CODE_ARRAY:
8998 return to_fixed_array_type (type, dval, 1);
8999 case TYPE_CODE_UNION:
9000 if (dval == NULL)
9001 return type;
9002 else
9003 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9004 }
9005 }
9006
9007 /* The same as ada_to_fixed_type_1, except that it preserves the type
9008 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9009
9010 The typedef layer needs be preserved in order to differentiate between
9011 arrays and array pointers when both types are implemented using the same
9012 fat pointer. In the array pointer case, the pointer is encoded as
9013 a typedef of the pointer type. For instance, considering:
9014
9015 type String_Access is access String;
9016 S1 : String_Access := null;
9017
9018 To the debugger, S1 is defined as a typedef of type String. But
9019 to the user, it is a pointer. So if the user tries to print S1,
9020 we should not dereference the array, but print the array address
9021 instead.
9022
9023 If we didn't preserve the typedef layer, we would lose the fact that
9024 the type is to be presented as a pointer (needs de-reference before
9025 being printed). And we would also use the source-level type name. */
9026
9027 struct type *
9028 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9029 CORE_ADDR address, struct value *dval, int check_tag)
9030
9031 {
9032 struct type *fixed_type =
9033 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9034
9035 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9036 then preserve the typedef layer.
9037
9038 Implementation note: We can only check the main-type portion of
9039 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9040 from TYPE now returns a type that has the same instance flags
9041 as TYPE. For instance, if TYPE is a "typedef const", and its
9042 target type is a "struct", then the typedef elimination will return
9043 a "const" version of the target type. See check_typedef for more
9044 details about how the typedef layer elimination is done.
9045
9046 brobecker/2010-11-19: It seems to me that the only case where it is
9047 useful to preserve the typedef layer is when dealing with fat pointers.
9048 Perhaps, we could add a check for that and preserve the typedef layer
9049 only in that situation. But this seems unecessary so far, probably
9050 because we call check_typedef/ada_check_typedef pretty much everywhere.
9051 */
9052 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9053 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9054 == TYPE_MAIN_TYPE (fixed_type)))
9055 return type;
9056
9057 return fixed_type;
9058 }
9059
9060 /* A standard (static-sized) type corresponding as well as possible to
9061 TYPE0, but based on no runtime data. */
9062
9063 static struct type *
9064 to_static_fixed_type (struct type *type0)
9065 {
9066 struct type *type;
9067
9068 if (type0 == NULL)
9069 return NULL;
9070
9071 if (TYPE_FIXED_INSTANCE (type0))
9072 return type0;
9073
9074 type0 = ada_check_typedef (type0);
9075
9076 switch (TYPE_CODE (type0))
9077 {
9078 default:
9079 return type0;
9080 case TYPE_CODE_STRUCT:
9081 type = dynamic_template_type (type0);
9082 if (type != NULL)
9083 return template_to_static_fixed_type (type);
9084 else
9085 return template_to_static_fixed_type (type0);
9086 case TYPE_CODE_UNION:
9087 type = ada_find_parallel_type (type0, "___XVU");
9088 if (type != NULL)
9089 return template_to_static_fixed_type (type);
9090 else
9091 return template_to_static_fixed_type (type0);
9092 }
9093 }
9094
9095 /* A static approximation of TYPE with all type wrappers removed. */
9096
9097 static struct type *
9098 static_unwrap_type (struct type *type)
9099 {
9100 if (ada_is_aligner_type (type))
9101 {
9102 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9103 if (ada_type_name (type1) == NULL)
9104 TYPE_NAME (type1) = ada_type_name (type);
9105
9106 return static_unwrap_type (type1);
9107 }
9108 else
9109 {
9110 struct type *raw_real_type = ada_get_base_type (type);
9111
9112 if (raw_real_type == type)
9113 return type;
9114 else
9115 return to_static_fixed_type (raw_real_type);
9116 }
9117 }
9118
9119 /* In some cases, incomplete and private types require
9120 cross-references that are not resolved as records (for example,
9121 type Foo;
9122 type FooP is access Foo;
9123 V: FooP;
9124 type Foo is array ...;
9125 ). In these cases, since there is no mechanism for producing
9126 cross-references to such types, we instead substitute for FooP a
9127 stub enumeration type that is nowhere resolved, and whose tag is
9128 the name of the actual type. Call these types "non-record stubs". */
9129
9130 /* A type equivalent to TYPE that is not a non-record stub, if one
9131 exists, otherwise TYPE. */
9132
9133 struct type *
9134 ada_check_typedef (struct type *type)
9135 {
9136 if (type == NULL)
9137 return NULL;
9138
9139 /* If our type is a typedef type of a fat pointer, then we're done.
9140 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9141 what allows us to distinguish between fat pointers that represent
9142 array types, and fat pointers that represent array access types
9143 (in both cases, the compiler implements them as fat pointers). */
9144 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9145 && is_thick_pntr (ada_typedef_target_type (type)))
9146 return type;
9147
9148 type = check_typedef (type);
9149 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9150 || !TYPE_STUB (type)
9151 || TYPE_TAG_NAME (type) == NULL)
9152 return type;
9153 else
9154 {
9155 const char *name = TYPE_TAG_NAME (type);
9156 struct type *type1 = ada_find_any_type (name);
9157
9158 if (type1 == NULL)
9159 return type;
9160
9161 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9162 stubs pointing to arrays, as we don't create symbols for array
9163 types, only for the typedef-to-array types). If that's the case,
9164 strip the typedef layer. */
9165 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9166 type1 = ada_check_typedef (type1);
9167
9168 return type1;
9169 }
9170 }
9171
9172 /* A value representing the data at VALADDR/ADDRESS as described by
9173 type TYPE0, but with a standard (static-sized) type that correctly
9174 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9175 type, then return VAL0 [this feature is simply to avoid redundant
9176 creation of struct values]. */
9177
9178 static struct value *
9179 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9180 struct value *val0)
9181 {
9182 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9183
9184 if (type == type0 && val0 != NULL)
9185 return val0;
9186 else
9187 return value_from_contents_and_address (type, 0, address);
9188 }
9189
9190 /* A value representing VAL, but with a standard (static-sized) type
9191 that correctly describes it. Does not necessarily create a new
9192 value. */
9193
9194 struct value *
9195 ada_to_fixed_value (struct value *val)
9196 {
9197 val = unwrap_value (val);
9198 val = ada_to_fixed_value_create (value_type (val),
9199 value_address (val),
9200 val);
9201 return val;
9202 }
9203 \f
9204
9205 /* Attributes */
9206
9207 /* Table mapping attribute numbers to names.
9208 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9209
9210 static const char *attribute_names[] = {
9211 "<?>",
9212
9213 "first",
9214 "last",
9215 "length",
9216 "image",
9217 "max",
9218 "min",
9219 "modulus",
9220 "pos",
9221 "size",
9222 "tag",
9223 "val",
9224 0
9225 };
9226
9227 const char *
9228 ada_attribute_name (enum exp_opcode n)
9229 {
9230 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9231 return attribute_names[n - OP_ATR_FIRST + 1];
9232 else
9233 return attribute_names[0];
9234 }
9235
9236 /* Evaluate the 'POS attribute applied to ARG. */
9237
9238 static LONGEST
9239 pos_atr (struct value *arg)
9240 {
9241 struct value *val = coerce_ref (arg);
9242 struct type *type = value_type (val);
9243 LONGEST result;
9244
9245 if (!discrete_type_p (type))
9246 error (_("'POS only defined on discrete types"));
9247
9248 if (!discrete_position (type, value_as_long (val), &result))
9249 error (_("enumeration value is invalid: can't find 'POS"));
9250
9251 return result;
9252 }
9253
9254 static struct value *
9255 value_pos_atr (struct type *type, struct value *arg)
9256 {
9257 return value_from_longest (type, pos_atr (arg));
9258 }
9259
9260 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9261
9262 static struct value *
9263 value_val_atr (struct type *type, struct value *arg)
9264 {
9265 if (!discrete_type_p (type))
9266 error (_("'VAL only defined on discrete types"));
9267 if (!integer_type_p (value_type (arg)))
9268 error (_("'VAL requires integral argument"));
9269
9270 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9271 {
9272 long pos = value_as_long (arg);
9273
9274 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9275 error (_("argument to 'VAL out of range"));
9276 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9277 }
9278 else
9279 return value_from_longest (type, value_as_long (arg));
9280 }
9281 \f
9282
9283 /* Evaluation */
9284
9285 /* True if TYPE appears to be an Ada character type.
9286 [At the moment, this is true only for Character and Wide_Character;
9287 It is a heuristic test that could stand improvement]. */
9288
9289 int
9290 ada_is_character_type (struct type *type)
9291 {
9292 const char *name;
9293
9294 /* If the type code says it's a character, then assume it really is,
9295 and don't check any further. */
9296 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9297 return 1;
9298
9299 /* Otherwise, assume it's a character type iff it is a discrete type
9300 with a known character type name. */
9301 name = ada_type_name (type);
9302 return (name != NULL
9303 && (TYPE_CODE (type) == TYPE_CODE_INT
9304 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9305 && (strcmp (name, "character") == 0
9306 || strcmp (name, "wide_character") == 0
9307 || strcmp (name, "wide_wide_character") == 0
9308 || strcmp (name, "unsigned char") == 0));
9309 }
9310
9311 /* True if TYPE appears to be an Ada string type. */
9312
9313 int
9314 ada_is_string_type (struct type *type)
9315 {
9316 type = ada_check_typedef (type);
9317 if (type != NULL
9318 && TYPE_CODE (type) != TYPE_CODE_PTR
9319 && (ada_is_simple_array_type (type)
9320 || ada_is_array_descriptor_type (type))
9321 && ada_array_arity (type) == 1)
9322 {
9323 struct type *elttype = ada_array_element_type (type, 1);
9324
9325 return ada_is_character_type (elttype);
9326 }
9327 else
9328 return 0;
9329 }
9330
9331 /* The compiler sometimes provides a parallel XVS type for a given
9332 PAD type. Normally, it is safe to follow the PAD type directly,
9333 but older versions of the compiler have a bug that causes the offset
9334 of its "F" field to be wrong. Following that field in that case
9335 would lead to incorrect results, but this can be worked around
9336 by ignoring the PAD type and using the associated XVS type instead.
9337
9338 Set to True if the debugger should trust the contents of PAD types.
9339 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9340 static int trust_pad_over_xvs = 1;
9341
9342 /* True if TYPE is a struct type introduced by the compiler to force the
9343 alignment of a value. Such types have a single field with a
9344 distinctive name. */
9345
9346 int
9347 ada_is_aligner_type (struct type *type)
9348 {
9349 type = ada_check_typedef (type);
9350
9351 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9352 return 0;
9353
9354 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9355 && TYPE_NFIELDS (type) == 1
9356 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9357 }
9358
9359 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9360 the parallel type. */
9361
9362 struct type *
9363 ada_get_base_type (struct type *raw_type)
9364 {
9365 struct type *real_type_namer;
9366 struct type *raw_real_type;
9367
9368 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9369 return raw_type;
9370
9371 if (ada_is_aligner_type (raw_type))
9372 /* The encoding specifies that we should always use the aligner type.
9373 So, even if this aligner type has an associated XVS type, we should
9374 simply ignore it.
9375
9376 According to the compiler gurus, an XVS type parallel to an aligner
9377 type may exist because of a stabs limitation. In stabs, aligner
9378 types are empty because the field has a variable-sized type, and
9379 thus cannot actually be used as an aligner type. As a result,
9380 we need the associated parallel XVS type to decode the type.
9381 Since the policy in the compiler is to not change the internal
9382 representation based on the debugging info format, we sometimes
9383 end up having a redundant XVS type parallel to the aligner type. */
9384 return raw_type;
9385
9386 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9387 if (real_type_namer == NULL
9388 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9389 || TYPE_NFIELDS (real_type_namer) != 1)
9390 return raw_type;
9391
9392 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9393 {
9394 /* This is an older encoding form where the base type needs to be
9395 looked up by name. We prefer the newer enconding because it is
9396 more efficient. */
9397 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9398 if (raw_real_type == NULL)
9399 return raw_type;
9400 else
9401 return raw_real_type;
9402 }
9403
9404 /* The field in our XVS type is a reference to the base type. */
9405 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9406 }
9407
9408 /* The type of value designated by TYPE, with all aligners removed. */
9409
9410 struct type *
9411 ada_aligned_type (struct type *type)
9412 {
9413 if (ada_is_aligner_type (type))
9414 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9415 else
9416 return ada_get_base_type (type);
9417 }
9418
9419
9420 /* The address of the aligned value in an object at address VALADDR
9421 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9422
9423 const gdb_byte *
9424 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9425 {
9426 if (ada_is_aligner_type (type))
9427 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9428 valaddr +
9429 TYPE_FIELD_BITPOS (type,
9430 0) / TARGET_CHAR_BIT);
9431 else
9432 return valaddr;
9433 }
9434
9435
9436
9437 /* The printed representation of an enumeration literal with encoded
9438 name NAME. The value is good to the next call of ada_enum_name. */
9439 const char *
9440 ada_enum_name (const char *name)
9441 {
9442 static char *result;
9443 static size_t result_len = 0;
9444 const char *tmp;
9445
9446 /* First, unqualify the enumeration name:
9447 1. Search for the last '.' character. If we find one, then skip
9448 all the preceding characters, the unqualified name starts
9449 right after that dot.
9450 2. Otherwise, we may be debugging on a target where the compiler
9451 translates dots into "__". Search forward for double underscores,
9452 but stop searching when we hit an overloading suffix, which is
9453 of the form "__" followed by digits. */
9454
9455 tmp = strrchr (name, '.');
9456 if (tmp != NULL)
9457 name = tmp + 1;
9458 else
9459 {
9460 while ((tmp = strstr (name, "__")) != NULL)
9461 {
9462 if (isdigit (tmp[2]))
9463 break;
9464 else
9465 name = tmp + 2;
9466 }
9467 }
9468
9469 if (name[0] == 'Q')
9470 {
9471 int v;
9472
9473 if (name[1] == 'U' || name[1] == 'W')
9474 {
9475 if (sscanf (name + 2, "%x", &v) != 1)
9476 return name;
9477 }
9478 else
9479 return name;
9480
9481 GROW_VECT (result, result_len, 16);
9482 if (isascii (v) && isprint (v))
9483 xsnprintf (result, result_len, "'%c'", v);
9484 else if (name[1] == 'U')
9485 xsnprintf (result, result_len, "[\"%02x\"]", v);
9486 else
9487 xsnprintf (result, result_len, "[\"%04x\"]", v);
9488
9489 return result;
9490 }
9491 else
9492 {
9493 tmp = strstr (name, "__");
9494 if (tmp == NULL)
9495 tmp = strstr (name, "$");
9496 if (tmp != NULL)
9497 {
9498 GROW_VECT (result, result_len, tmp - name + 1);
9499 strncpy (result, name, tmp - name);
9500 result[tmp - name] = '\0';
9501 return result;
9502 }
9503
9504 return name;
9505 }
9506 }
9507
9508 /* Evaluate the subexpression of EXP starting at *POS as for
9509 evaluate_type, updating *POS to point just past the evaluated
9510 expression. */
9511
9512 static struct value *
9513 evaluate_subexp_type (struct expression *exp, int *pos)
9514 {
9515 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9516 }
9517
9518 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9519 value it wraps. */
9520
9521 static struct value *
9522 unwrap_value (struct value *val)
9523 {
9524 struct type *type = ada_check_typedef (value_type (val));
9525
9526 if (ada_is_aligner_type (type))
9527 {
9528 struct value *v = ada_value_struct_elt (val, "F", 0);
9529 struct type *val_type = ada_check_typedef (value_type (v));
9530
9531 if (ada_type_name (val_type) == NULL)
9532 TYPE_NAME (val_type) = ada_type_name (type);
9533
9534 return unwrap_value (v);
9535 }
9536 else
9537 {
9538 struct type *raw_real_type =
9539 ada_check_typedef (ada_get_base_type (type));
9540
9541 /* If there is no parallel XVS or XVE type, then the value is
9542 already unwrapped. Return it without further modification. */
9543 if ((type == raw_real_type)
9544 && ada_find_parallel_type (type, "___XVE") == NULL)
9545 return val;
9546
9547 return
9548 coerce_unspec_val_to_type
9549 (val, ada_to_fixed_type (raw_real_type, 0,
9550 value_address (val),
9551 NULL, 1));
9552 }
9553 }
9554
9555 static struct value *
9556 cast_to_fixed (struct type *type, struct value *arg)
9557 {
9558 LONGEST val;
9559
9560 if (type == value_type (arg))
9561 return arg;
9562 else if (ada_is_fixed_point_type (value_type (arg)))
9563 val = ada_float_to_fixed (type,
9564 ada_fixed_to_float (value_type (arg),
9565 value_as_long (arg)));
9566 else
9567 {
9568 DOUBLEST argd = value_as_double (arg);
9569
9570 val = ada_float_to_fixed (type, argd);
9571 }
9572
9573 return value_from_longest (type, val);
9574 }
9575
9576 static struct value *
9577 cast_from_fixed (struct type *type, struct value *arg)
9578 {
9579 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9580 value_as_long (arg));
9581
9582 return value_from_double (type, val);
9583 }
9584
9585 /* Given two array types T1 and T2, return nonzero iff both arrays
9586 contain the same number of elements. */
9587
9588 static int
9589 ada_same_array_size_p (struct type *t1, struct type *t2)
9590 {
9591 LONGEST lo1, hi1, lo2, hi2;
9592
9593 /* Get the array bounds in order to verify that the size of
9594 the two arrays match. */
9595 if (!get_array_bounds (t1, &lo1, &hi1)
9596 || !get_array_bounds (t2, &lo2, &hi2))
9597 error (_("unable to determine array bounds"));
9598
9599 /* To make things easier for size comparison, normalize a bit
9600 the case of empty arrays by making sure that the difference
9601 between upper bound and lower bound is always -1. */
9602 if (lo1 > hi1)
9603 hi1 = lo1 - 1;
9604 if (lo2 > hi2)
9605 hi2 = lo2 - 1;
9606
9607 return (hi1 - lo1 == hi2 - lo2);
9608 }
9609
9610 /* Assuming that VAL is an array of integrals, and TYPE represents
9611 an array with the same number of elements, but with wider integral
9612 elements, return an array "casted" to TYPE. In practice, this
9613 means that the returned array is built by casting each element
9614 of the original array into TYPE's (wider) element type. */
9615
9616 static struct value *
9617 ada_promote_array_of_integrals (struct type *type, struct value *val)
9618 {
9619 struct type *elt_type = TYPE_TARGET_TYPE (type);
9620 LONGEST lo, hi;
9621 struct value *res;
9622 LONGEST i;
9623
9624 /* Verify that both val and type are arrays of scalars, and
9625 that the size of val's elements is smaller than the size
9626 of type's element. */
9627 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9628 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9629 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9630 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9631 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9632 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9633
9634 if (!get_array_bounds (type, &lo, &hi))
9635 error (_("unable to determine array bounds"));
9636
9637 res = allocate_value (type);
9638
9639 /* Promote each array element. */
9640 for (i = 0; i < hi - lo + 1; i++)
9641 {
9642 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9643
9644 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9645 value_contents_all (elt), TYPE_LENGTH (elt_type));
9646 }
9647
9648 return res;
9649 }
9650
9651 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9652 return the converted value. */
9653
9654 static struct value *
9655 coerce_for_assign (struct type *type, struct value *val)
9656 {
9657 struct type *type2 = value_type (val);
9658
9659 if (type == type2)
9660 return val;
9661
9662 type2 = ada_check_typedef (type2);
9663 type = ada_check_typedef (type);
9664
9665 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9666 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9667 {
9668 val = ada_value_ind (val);
9669 type2 = value_type (val);
9670 }
9671
9672 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9673 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9674 {
9675 if (!ada_same_array_size_p (type, type2))
9676 error (_("cannot assign arrays of different length"));
9677
9678 if (is_integral_type (TYPE_TARGET_TYPE (type))
9679 && is_integral_type (TYPE_TARGET_TYPE (type2))
9680 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9681 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9682 {
9683 /* Allow implicit promotion of the array elements to
9684 a wider type. */
9685 return ada_promote_array_of_integrals (type, val);
9686 }
9687
9688 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9689 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9690 error (_("Incompatible types in assignment"));
9691 deprecated_set_value_type (val, type);
9692 }
9693 return val;
9694 }
9695
9696 static struct value *
9697 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9698 {
9699 struct value *val;
9700 struct type *type1, *type2;
9701 LONGEST v, v1, v2;
9702
9703 arg1 = coerce_ref (arg1);
9704 arg2 = coerce_ref (arg2);
9705 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9706 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9707
9708 if (TYPE_CODE (type1) != TYPE_CODE_INT
9709 || TYPE_CODE (type2) != TYPE_CODE_INT)
9710 return value_binop (arg1, arg2, op);
9711
9712 switch (op)
9713 {
9714 case BINOP_MOD:
9715 case BINOP_DIV:
9716 case BINOP_REM:
9717 break;
9718 default:
9719 return value_binop (arg1, arg2, op);
9720 }
9721
9722 v2 = value_as_long (arg2);
9723 if (v2 == 0)
9724 error (_("second operand of %s must not be zero."), op_string (op));
9725
9726 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9727 return value_binop (arg1, arg2, op);
9728
9729 v1 = value_as_long (arg1);
9730 switch (op)
9731 {
9732 case BINOP_DIV:
9733 v = v1 / v2;
9734 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9735 v += v > 0 ? -1 : 1;
9736 break;
9737 case BINOP_REM:
9738 v = v1 % v2;
9739 if (v * v1 < 0)
9740 v -= v2;
9741 break;
9742 default:
9743 /* Should not reach this point. */
9744 v = 0;
9745 }
9746
9747 val = allocate_value (type1);
9748 store_unsigned_integer (value_contents_raw (val),
9749 TYPE_LENGTH (value_type (val)),
9750 gdbarch_byte_order (get_type_arch (type1)), v);
9751 return val;
9752 }
9753
9754 static int
9755 ada_value_equal (struct value *arg1, struct value *arg2)
9756 {
9757 if (ada_is_direct_array_type (value_type (arg1))
9758 || ada_is_direct_array_type (value_type (arg2)))
9759 {
9760 /* Automatically dereference any array reference before
9761 we attempt to perform the comparison. */
9762 arg1 = ada_coerce_ref (arg1);
9763 arg2 = ada_coerce_ref (arg2);
9764
9765 arg1 = ada_coerce_to_simple_array (arg1);
9766 arg2 = ada_coerce_to_simple_array (arg2);
9767 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9768 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9769 error (_("Attempt to compare array with non-array"));
9770 /* FIXME: The following works only for types whose
9771 representations use all bits (no padding or undefined bits)
9772 and do not have user-defined equality. */
9773 return
9774 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9775 && memcmp (value_contents (arg1), value_contents (arg2),
9776 TYPE_LENGTH (value_type (arg1))) == 0;
9777 }
9778 return value_equal (arg1, arg2);
9779 }
9780
9781 /* Total number of component associations in the aggregate starting at
9782 index PC in EXP. Assumes that index PC is the start of an
9783 OP_AGGREGATE. */
9784
9785 static int
9786 num_component_specs (struct expression *exp, int pc)
9787 {
9788 int n, m, i;
9789
9790 m = exp->elts[pc + 1].longconst;
9791 pc += 3;
9792 n = 0;
9793 for (i = 0; i < m; i += 1)
9794 {
9795 switch (exp->elts[pc].opcode)
9796 {
9797 default:
9798 n += 1;
9799 break;
9800 case OP_CHOICES:
9801 n += exp->elts[pc + 1].longconst;
9802 break;
9803 }
9804 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9805 }
9806 return n;
9807 }
9808
9809 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9810 component of LHS (a simple array or a record), updating *POS past
9811 the expression, assuming that LHS is contained in CONTAINER. Does
9812 not modify the inferior's memory, nor does it modify LHS (unless
9813 LHS == CONTAINER). */
9814
9815 static void
9816 assign_component (struct value *container, struct value *lhs, LONGEST index,
9817 struct expression *exp, int *pos)
9818 {
9819 struct value *mark = value_mark ();
9820 struct value *elt;
9821
9822 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9823 {
9824 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9825 struct value *index_val = value_from_longest (index_type, index);
9826
9827 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9828 }
9829 else
9830 {
9831 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9832 elt = ada_to_fixed_value (elt);
9833 }
9834
9835 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9836 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9837 else
9838 value_assign_to_component (container, elt,
9839 ada_evaluate_subexp (NULL, exp, pos,
9840 EVAL_NORMAL));
9841
9842 value_free_to_mark (mark);
9843 }
9844
9845 /* Assuming that LHS represents an lvalue having a record or array
9846 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9847 of that aggregate's value to LHS, advancing *POS past the
9848 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9849 lvalue containing LHS (possibly LHS itself). Does not modify
9850 the inferior's memory, nor does it modify the contents of
9851 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9852
9853 static struct value *
9854 assign_aggregate (struct value *container,
9855 struct value *lhs, struct expression *exp,
9856 int *pos, enum noside noside)
9857 {
9858 struct type *lhs_type;
9859 int n = exp->elts[*pos+1].longconst;
9860 LONGEST low_index, high_index;
9861 int num_specs;
9862 LONGEST *indices;
9863 int max_indices, num_indices;
9864 int i;
9865
9866 *pos += 3;
9867 if (noside != EVAL_NORMAL)
9868 {
9869 for (i = 0; i < n; i += 1)
9870 ada_evaluate_subexp (NULL, exp, pos, noside);
9871 return container;
9872 }
9873
9874 container = ada_coerce_ref (container);
9875 if (ada_is_direct_array_type (value_type (container)))
9876 container = ada_coerce_to_simple_array (container);
9877 lhs = ada_coerce_ref (lhs);
9878 if (!deprecated_value_modifiable (lhs))
9879 error (_("Left operand of assignment is not a modifiable lvalue."));
9880
9881 lhs_type = value_type (lhs);
9882 if (ada_is_direct_array_type (lhs_type))
9883 {
9884 lhs = ada_coerce_to_simple_array (lhs);
9885 lhs_type = value_type (lhs);
9886 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9887 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9888 }
9889 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9890 {
9891 low_index = 0;
9892 high_index = num_visible_fields (lhs_type) - 1;
9893 }
9894 else
9895 error (_("Left-hand side must be array or record."));
9896
9897 num_specs = num_component_specs (exp, *pos - 3);
9898 max_indices = 4 * num_specs + 4;
9899 indices = XALLOCAVEC (LONGEST, max_indices);
9900 indices[0] = indices[1] = low_index - 1;
9901 indices[2] = indices[3] = high_index + 1;
9902 num_indices = 4;
9903
9904 for (i = 0; i < n; i += 1)
9905 {
9906 switch (exp->elts[*pos].opcode)
9907 {
9908 case OP_CHOICES:
9909 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9910 &num_indices, max_indices,
9911 low_index, high_index);
9912 break;
9913 case OP_POSITIONAL:
9914 aggregate_assign_positional (container, lhs, exp, pos, indices,
9915 &num_indices, max_indices,
9916 low_index, high_index);
9917 break;
9918 case OP_OTHERS:
9919 if (i != n-1)
9920 error (_("Misplaced 'others' clause"));
9921 aggregate_assign_others (container, lhs, exp, pos, indices,
9922 num_indices, low_index, high_index);
9923 break;
9924 default:
9925 error (_("Internal error: bad aggregate clause"));
9926 }
9927 }
9928
9929 return container;
9930 }
9931
9932 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9933 construct at *POS, updating *POS past the construct, given that
9934 the positions are relative to lower bound LOW, where HIGH is the
9935 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9936 updating *NUM_INDICES as needed. CONTAINER is as for
9937 assign_aggregate. */
9938 static void
9939 aggregate_assign_positional (struct value *container,
9940 struct value *lhs, struct expression *exp,
9941 int *pos, LONGEST *indices, int *num_indices,
9942 int max_indices, LONGEST low, LONGEST high)
9943 {
9944 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9945
9946 if (ind - 1 == high)
9947 warning (_("Extra components in aggregate ignored."));
9948 if (ind <= high)
9949 {
9950 add_component_interval (ind, ind, indices, num_indices, max_indices);
9951 *pos += 3;
9952 assign_component (container, lhs, ind, exp, pos);
9953 }
9954 else
9955 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9956 }
9957
9958 /* Assign into the components of LHS indexed by the OP_CHOICES
9959 construct at *POS, updating *POS past the construct, given that
9960 the allowable indices are LOW..HIGH. Record the indices assigned
9961 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9962 needed. CONTAINER is as for assign_aggregate. */
9963 static void
9964 aggregate_assign_from_choices (struct value *container,
9965 struct value *lhs, struct expression *exp,
9966 int *pos, LONGEST *indices, int *num_indices,
9967 int max_indices, LONGEST low, LONGEST high)
9968 {
9969 int j;
9970 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9971 int choice_pos, expr_pc;
9972 int is_array = ada_is_direct_array_type (value_type (lhs));
9973
9974 choice_pos = *pos += 3;
9975
9976 for (j = 0; j < n_choices; j += 1)
9977 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9978 expr_pc = *pos;
9979 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9980
9981 for (j = 0; j < n_choices; j += 1)
9982 {
9983 LONGEST lower, upper;
9984 enum exp_opcode op = exp->elts[choice_pos].opcode;
9985
9986 if (op == OP_DISCRETE_RANGE)
9987 {
9988 choice_pos += 1;
9989 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9990 EVAL_NORMAL));
9991 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9992 EVAL_NORMAL));
9993 }
9994 else if (is_array)
9995 {
9996 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9997 EVAL_NORMAL));
9998 upper = lower;
9999 }
10000 else
10001 {
10002 int ind;
10003 const char *name;
10004
10005 switch (op)
10006 {
10007 case OP_NAME:
10008 name = &exp->elts[choice_pos + 2].string;
10009 break;
10010 case OP_VAR_VALUE:
10011 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10012 break;
10013 default:
10014 error (_("Invalid record component association."));
10015 }
10016 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10017 ind = 0;
10018 if (! find_struct_field (name, value_type (lhs), 0,
10019 NULL, NULL, NULL, NULL, &ind))
10020 error (_("Unknown component name: %s."), name);
10021 lower = upper = ind;
10022 }
10023
10024 if (lower <= upper && (lower < low || upper > high))
10025 error (_("Index in component association out of bounds."));
10026
10027 add_component_interval (lower, upper, indices, num_indices,
10028 max_indices);
10029 while (lower <= upper)
10030 {
10031 int pos1;
10032
10033 pos1 = expr_pc;
10034 assign_component (container, lhs, lower, exp, &pos1);
10035 lower += 1;
10036 }
10037 }
10038 }
10039
10040 /* Assign the value of the expression in the OP_OTHERS construct in
10041 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10042 have not been previously assigned. The index intervals already assigned
10043 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10044 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10045 static void
10046 aggregate_assign_others (struct value *container,
10047 struct value *lhs, struct expression *exp,
10048 int *pos, LONGEST *indices, int num_indices,
10049 LONGEST low, LONGEST high)
10050 {
10051 int i;
10052 int expr_pc = *pos + 1;
10053
10054 for (i = 0; i < num_indices - 2; i += 2)
10055 {
10056 LONGEST ind;
10057
10058 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10059 {
10060 int localpos;
10061
10062 localpos = expr_pc;
10063 assign_component (container, lhs, ind, exp, &localpos);
10064 }
10065 }
10066 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10067 }
10068
10069 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10070 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10071 modifying *SIZE as needed. It is an error if *SIZE exceeds
10072 MAX_SIZE. The resulting intervals do not overlap. */
10073 static void
10074 add_component_interval (LONGEST low, LONGEST high,
10075 LONGEST* indices, int *size, int max_size)
10076 {
10077 int i, j;
10078
10079 for (i = 0; i < *size; i += 2) {
10080 if (high >= indices[i] && low <= indices[i + 1])
10081 {
10082 int kh;
10083
10084 for (kh = i + 2; kh < *size; kh += 2)
10085 if (high < indices[kh])
10086 break;
10087 if (low < indices[i])
10088 indices[i] = low;
10089 indices[i + 1] = indices[kh - 1];
10090 if (high > indices[i + 1])
10091 indices[i + 1] = high;
10092 memcpy (indices + i + 2, indices + kh, *size - kh);
10093 *size -= kh - i - 2;
10094 return;
10095 }
10096 else if (high < indices[i])
10097 break;
10098 }
10099
10100 if (*size == max_size)
10101 error (_("Internal error: miscounted aggregate components."));
10102 *size += 2;
10103 for (j = *size-1; j >= i+2; j -= 1)
10104 indices[j] = indices[j - 2];
10105 indices[i] = low;
10106 indices[i + 1] = high;
10107 }
10108
10109 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10110 is different. */
10111
10112 static struct value *
10113 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10114 {
10115 if (type == ada_check_typedef (value_type (arg2)))
10116 return arg2;
10117
10118 if (ada_is_fixed_point_type (type))
10119 return (cast_to_fixed (type, arg2));
10120
10121 if (ada_is_fixed_point_type (value_type (arg2)))
10122 return cast_from_fixed (type, arg2);
10123
10124 return value_cast (type, arg2);
10125 }
10126
10127 /* Evaluating Ada expressions, and printing their result.
10128 ------------------------------------------------------
10129
10130 1. Introduction:
10131 ----------------
10132
10133 We usually evaluate an Ada expression in order to print its value.
10134 We also evaluate an expression in order to print its type, which
10135 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10136 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10137 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10138 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10139 similar.
10140
10141 Evaluating expressions is a little more complicated for Ada entities
10142 than it is for entities in languages such as C. The main reason for
10143 this is that Ada provides types whose definition might be dynamic.
10144 One example of such types is variant records. Or another example
10145 would be an array whose bounds can only be known at run time.
10146
10147 The following description is a general guide as to what should be
10148 done (and what should NOT be done) in order to evaluate an expression
10149 involving such types, and when. This does not cover how the semantic
10150 information is encoded by GNAT as this is covered separatly. For the
10151 document used as the reference for the GNAT encoding, see exp_dbug.ads
10152 in the GNAT sources.
10153
10154 Ideally, we should embed each part of this description next to its
10155 associated code. Unfortunately, the amount of code is so vast right
10156 now that it's hard to see whether the code handling a particular
10157 situation might be duplicated or not. One day, when the code is
10158 cleaned up, this guide might become redundant with the comments
10159 inserted in the code, and we might want to remove it.
10160
10161 2. ``Fixing'' an Entity, the Simple Case:
10162 -----------------------------------------
10163
10164 When evaluating Ada expressions, the tricky issue is that they may
10165 reference entities whose type contents and size are not statically
10166 known. Consider for instance a variant record:
10167
10168 type Rec (Empty : Boolean := True) is record
10169 case Empty is
10170 when True => null;
10171 when False => Value : Integer;
10172 end case;
10173 end record;
10174 Yes : Rec := (Empty => False, Value => 1);
10175 No : Rec := (empty => True);
10176
10177 The size and contents of that record depends on the value of the
10178 descriminant (Rec.Empty). At this point, neither the debugging
10179 information nor the associated type structure in GDB are able to
10180 express such dynamic types. So what the debugger does is to create
10181 "fixed" versions of the type that applies to the specific object.
10182 We also informally refer to this opperation as "fixing" an object,
10183 which means creating its associated fixed type.
10184
10185 Example: when printing the value of variable "Yes" above, its fixed
10186 type would look like this:
10187
10188 type Rec is record
10189 Empty : Boolean;
10190 Value : Integer;
10191 end record;
10192
10193 On the other hand, if we printed the value of "No", its fixed type
10194 would become:
10195
10196 type Rec is record
10197 Empty : Boolean;
10198 end record;
10199
10200 Things become a little more complicated when trying to fix an entity
10201 with a dynamic type that directly contains another dynamic type,
10202 such as an array of variant records, for instance. There are
10203 two possible cases: Arrays, and records.
10204
10205 3. ``Fixing'' Arrays:
10206 ---------------------
10207
10208 The type structure in GDB describes an array in terms of its bounds,
10209 and the type of its elements. By design, all elements in the array
10210 have the same type and we cannot represent an array of variant elements
10211 using the current type structure in GDB. When fixing an array,
10212 we cannot fix the array element, as we would potentially need one
10213 fixed type per element of the array. As a result, the best we can do
10214 when fixing an array is to produce an array whose bounds and size
10215 are correct (allowing us to read it from memory), but without having
10216 touched its element type. Fixing each element will be done later,
10217 when (if) necessary.
10218
10219 Arrays are a little simpler to handle than records, because the same
10220 amount of memory is allocated for each element of the array, even if
10221 the amount of space actually used by each element differs from element
10222 to element. Consider for instance the following array of type Rec:
10223
10224 type Rec_Array is array (1 .. 2) of Rec;
10225
10226 The actual amount of memory occupied by each element might be different
10227 from element to element, depending on the value of their discriminant.
10228 But the amount of space reserved for each element in the array remains
10229 fixed regardless. So we simply need to compute that size using
10230 the debugging information available, from which we can then determine
10231 the array size (we multiply the number of elements of the array by
10232 the size of each element).
10233
10234 The simplest case is when we have an array of a constrained element
10235 type. For instance, consider the following type declarations:
10236
10237 type Bounded_String (Max_Size : Integer) is
10238 Length : Integer;
10239 Buffer : String (1 .. Max_Size);
10240 end record;
10241 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10242
10243 In this case, the compiler describes the array as an array of
10244 variable-size elements (identified by its XVS suffix) for which
10245 the size can be read in the parallel XVZ variable.
10246
10247 In the case of an array of an unconstrained element type, the compiler
10248 wraps the array element inside a private PAD type. This type should not
10249 be shown to the user, and must be "unwrap"'ed before printing. Note
10250 that we also use the adjective "aligner" in our code to designate
10251 these wrapper types.
10252
10253 In some cases, the size allocated for each element is statically
10254 known. In that case, the PAD type already has the correct size,
10255 and the array element should remain unfixed.
10256
10257 But there are cases when this size is not statically known.
10258 For instance, assuming that "Five" is an integer variable:
10259
10260 type Dynamic is array (1 .. Five) of Integer;
10261 type Wrapper (Has_Length : Boolean := False) is record
10262 Data : Dynamic;
10263 case Has_Length is
10264 when True => Length : Integer;
10265 when False => null;
10266 end case;
10267 end record;
10268 type Wrapper_Array is array (1 .. 2) of Wrapper;
10269
10270 Hello : Wrapper_Array := (others => (Has_Length => True,
10271 Data => (others => 17),
10272 Length => 1));
10273
10274
10275 The debugging info would describe variable Hello as being an
10276 array of a PAD type. The size of that PAD type is not statically
10277 known, but can be determined using a parallel XVZ variable.
10278 In that case, a copy of the PAD type with the correct size should
10279 be used for the fixed array.
10280
10281 3. ``Fixing'' record type objects:
10282 ----------------------------------
10283
10284 Things are slightly different from arrays in the case of dynamic
10285 record types. In this case, in order to compute the associated
10286 fixed type, we need to determine the size and offset of each of
10287 its components. This, in turn, requires us to compute the fixed
10288 type of each of these components.
10289
10290 Consider for instance the example:
10291
10292 type Bounded_String (Max_Size : Natural) is record
10293 Str : String (1 .. Max_Size);
10294 Length : Natural;
10295 end record;
10296 My_String : Bounded_String (Max_Size => 10);
10297
10298 In that case, the position of field "Length" depends on the size
10299 of field Str, which itself depends on the value of the Max_Size
10300 discriminant. In order to fix the type of variable My_String,
10301 we need to fix the type of field Str. Therefore, fixing a variant
10302 record requires us to fix each of its components.
10303
10304 However, if a component does not have a dynamic size, the component
10305 should not be fixed. In particular, fields that use a PAD type
10306 should not fixed. Here is an example where this might happen
10307 (assuming type Rec above):
10308
10309 type Container (Big : Boolean) is record
10310 First : Rec;
10311 After : Integer;
10312 case Big is
10313 when True => Another : Integer;
10314 when False => null;
10315 end case;
10316 end record;
10317 My_Container : Container := (Big => False,
10318 First => (Empty => True),
10319 After => 42);
10320
10321 In that example, the compiler creates a PAD type for component First,
10322 whose size is constant, and then positions the component After just
10323 right after it. The offset of component After is therefore constant
10324 in this case.
10325
10326 The debugger computes the position of each field based on an algorithm
10327 that uses, among other things, the actual position and size of the field
10328 preceding it. Let's now imagine that the user is trying to print
10329 the value of My_Container. If the type fixing was recursive, we would
10330 end up computing the offset of field After based on the size of the
10331 fixed version of field First. And since in our example First has
10332 only one actual field, the size of the fixed type is actually smaller
10333 than the amount of space allocated to that field, and thus we would
10334 compute the wrong offset of field After.
10335
10336 To make things more complicated, we need to watch out for dynamic
10337 components of variant records (identified by the ___XVL suffix in
10338 the component name). Even if the target type is a PAD type, the size
10339 of that type might not be statically known. So the PAD type needs
10340 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10341 we might end up with the wrong size for our component. This can be
10342 observed with the following type declarations:
10343
10344 type Octal is new Integer range 0 .. 7;
10345 type Octal_Array is array (Positive range <>) of Octal;
10346 pragma Pack (Octal_Array);
10347
10348 type Octal_Buffer (Size : Positive) is record
10349 Buffer : Octal_Array (1 .. Size);
10350 Length : Integer;
10351 end record;
10352
10353 In that case, Buffer is a PAD type whose size is unset and needs
10354 to be computed by fixing the unwrapped type.
10355
10356 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10357 ----------------------------------------------------------
10358
10359 Lastly, when should the sub-elements of an entity that remained unfixed
10360 thus far, be actually fixed?
10361
10362 The answer is: Only when referencing that element. For instance
10363 when selecting one component of a record, this specific component
10364 should be fixed at that point in time. Or when printing the value
10365 of a record, each component should be fixed before its value gets
10366 printed. Similarly for arrays, the element of the array should be
10367 fixed when printing each element of the array, or when extracting
10368 one element out of that array. On the other hand, fixing should
10369 not be performed on the elements when taking a slice of an array!
10370
10371 Note that one of the side-effects of miscomputing the offset and
10372 size of each field is that we end up also miscomputing the size
10373 of the containing type. This can have adverse results when computing
10374 the value of an entity. GDB fetches the value of an entity based
10375 on the size of its type, and thus a wrong size causes GDB to fetch
10376 the wrong amount of memory. In the case where the computed size is
10377 too small, GDB fetches too little data to print the value of our
10378 entiry. Results in this case as unpredicatble, as we usually read
10379 past the buffer containing the data =:-o. */
10380
10381 /* Implement the evaluate_exp routine in the exp_descriptor structure
10382 for the Ada language. */
10383
10384 static struct value *
10385 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10386 int *pos, enum noside noside)
10387 {
10388 enum exp_opcode op;
10389 int tem;
10390 int pc;
10391 int preeval_pos;
10392 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10393 struct type *type;
10394 int nargs, oplen;
10395 struct value **argvec;
10396
10397 pc = *pos;
10398 *pos += 1;
10399 op = exp->elts[pc].opcode;
10400
10401 switch (op)
10402 {
10403 default:
10404 *pos -= 1;
10405 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10406
10407 if (noside == EVAL_NORMAL)
10408 arg1 = unwrap_value (arg1);
10409
10410 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10411 then we need to perform the conversion manually, because
10412 evaluate_subexp_standard doesn't do it. This conversion is
10413 necessary in Ada because the different kinds of float/fixed
10414 types in Ada have different representations.
10415
10416 Similarly, we need to perform the conversion from OP_LONG
10417 ourselves. */
10418 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10419 arg1 = ada_value_cast (expect_type, arg1, noside);
10420
10421 return arg1;
10422
10423 case OP_STRING:
10424 {
10425 struct value *result;
10426
10427 *pos -= 1;
10428 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10429 /* The result type will have code OP_STRING, bashed there from
10430 OP_ARRAY. Bash it back. */
10431 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10432 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10433 return result;
10434 }
10435
10436 case UNOP_CAST:
10437 (*pos) += 2;
10438 type = exp->elts[pc + 1].type;
10439 arg1 = evaluate_subexp (type, exp, pos, noside);
10440 if (noside == EVAL_SKIP)
10441 goto nosideret;
10442 arg1 = ada_value_cast (type, arg1, noside);
10443 return arg1;
10444
10445 case UNOP_QUAL:
10446 (*pos) += 2;
10447 type = exp->elts[pc + 1].type;
10448 return ada_evaluate_subexp (type, exp, pos, noside);
10449
10450 case BINOP_ASSIGN:
10451 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10452 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10453 {
10454 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10455 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10456 return arg1;
10457 return ada_value_assign (arg1, arg1);
10458 }
10459 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10460 except if the lhs of our assignment is a convenience variable.
10461 In the case of assigning to a convenience variable, the lhs
10462 should be exactly the result of the evaluation of the rhs. */
10463 type = value_type (arg1);
10464 if (VALUE_LVAL (arg1) == lval_internalvar)
10465 type = NULL;
10466 arg2 = evaluate_subexp (type, exp, pos, noside);
10467 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10468 return arg1;
10469 if (ada_is_fixed_point_type (value_type (arg1)))
10470 arg2 = cast_to_fixed (value_type (arg1), arg2);
10471 else if (ada_is_fixed_point_type (value_type (arg2)))
10472 error
10473 (_("Fixed-point values must be assigned to fixed-point variables"));
10474 else
10475 arg2 = coerce_for_assign (value_type (arg1), arg2);
10476 return ada_value_assign (arg1, arg2);
10477
10478 case BINOP_ADD:
10479 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10480 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10481 if (noside == EVAL_SKIP)
10482 goto nosideret;
10483 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10484 return (value_from_longest
10485 (value_type (arg1),
10486 value_as_long (arg1) + value_as_long (arg2)));
10487 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10488 return (value_from_longest
10489 (value_type (arg2),
10490 value_as_long (arg1) + value_as_long (arg2)));
10491 if ((ada_is_fixed_point_type (value_type (arg1))
10492 || ada_is_fixed_point_type (value_type (arg2)))
10493 && value_type (arg1) != value_type (arg2))
10494 error (_("Operands of fixed-point addition must have the same type"));
10495 /* Do the addition, and cast the result to the type of the first
10496 argument. We cannot cast the result to a reference type, so if
10497 ARG1 is a reference type, find its underlying type. */
10498 type = value_type (arg1);
10499 while (TYPE_CODE (type) == TYPE_CODE_REF)
10500 type = TYPE_TARGET_TYPE (type);
10501 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10502 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10503
10504 case BINOP_SUB:
10505 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10506 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10507 if (noside == EVAL_SKIP)
10508 goto nosideret;
10509 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10510 return (value_from_longest
10511 (value_type (arg1),
10512 value_as_long (arg1) - value_as_long (arg2)));
10513 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10514 return (value_from_longest
10515 (value_type (arg2),
10516 value_as_long (arg1) - value_as_long (arg2)));
10517 if ((ada_is_fixed_point_type (value_type (arg1))
10518 || ada_is_fixed_point_type (value_type (arg2)))
10519 && value_type (arg1) != value_type (arg2))
10520 error (_("Operands of fixed-point subtraction "
10521 "must have the same type"));
10522 /* Do the substraction, and cast the result to the type of the first
10523 argument. We cannot cast the result to a reference type, so if
10524 ARG1 is a reference type, find its underlying type. */
10525 type = value_type (arg1);
10526 while (TYPE_CODE (type) == TYPE_CODE_REF)
10527 type = TYPE_TARGET_TYPE (type);
10528 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10529 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10530
10531 case BINOP_MUL:
10532 case BINOP_DIV:
10533 case BINOP_REM:
10534 case BINOP_MOD:
10535 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10536 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10537 if (noside == EVAL_SKIP)
10538 goto nosideret;
10539 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10540 {
10541 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10542 return value_zero (value_type (arg1), not_lval);
10543 }
10544 else
10545 {
10546 type = builtin_type (exp->gdbarch)->builtin_double;
10547 if (ada_is_fixed_point_type (value_type (arg1)))
10548 arg1 = cast_from_fixed (type, arg1);
10549 if (ada_is_fixed_point_type (value_type (arg2)))
10550 arg2 = cast_from_fixed (type, arg2);
10551 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10552 return ada_value_binop (arg1, arg2, op);
10553 }
10554
10555 case BINOP_EQUAL:
10556 case BINOP_NOTEQUAL:
10557 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10558 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10559 if (noside == EVAL_SKIP)
10560 goto nosideret;
10561 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10562 tem = 0;
10563 else
10564 {
10565 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10566 tem = ada_value_equal (arg1, arg2);
10567 }
10568 if (op == BINOP_NOTEQUAL)
10569 tem = !tem;
10570 type = language_bool_type (exp->language_defn, exp->gdbarch);
10571 return value_from_longest (type, (LONGEST) tem);
10572
10573 case UNOP_NEG:
10574 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10575 if (noside == EVAL_SKIP)
10576 goto nosideret;
10577 else if (ada_is_fixed_point_type (value_type (arg1)))
10578 return value_cast (value_type (arg1), value_neg (arg1));
10579 else
10580 {
10581 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10582 return value_neg (arg1);
10583 }
10584
10585 case BINOP_LOGICAL_AND:
10586 case BINOP_LOGICAL_OR:
10587 case UNOP_LOGICAL_NOT:
10588 {
10589 struct value *val;
10590
10591 *pos -= 1;
10592 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10593 type = language_bool_type (exp->language_defn, exp->gdbarch);
10594 return value_cast (type, val);
10595 }
10596
10597 case BINOP_BITWISE_AND:
10598 case BINOP_BITWISE_IOR:
10599 case BINOP_BITWISE_XOR:
10600 {
10601 struct value *val;
10602
10603 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10604 *pos = pc;
10605 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10606
10607 return value_cast (value_type (arg1), val);
10608 }
10609
10610 case OP_VAR_VALUE:
10611 *pos -= 1;
10612
10613 if (noside == EVAL_SKIP)
10614 {
10615 *pos += 4;
10616 goto nosideret;
10617 }
10618
10619 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10620 /* Only encountered when an unresolved symbol occurs in a
10621 context other than a function call, in which case, it is
10622 invalid. */
10623 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10624 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10625
10626 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10627 {
10628 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10629 /* Check to see if this is a tagged type. We also need to handle
10630 the case where the type is a reference to a tagged type, but
10631 we have to be careful to exclude pointers to tagged types.
10632 The latter should be shown as usual (as a pointer), whereas
10633 a reference should mostly be transparent to the user. */
10634 if (ada_is_tagged_type (type, 0)
10635 || (TYPE_CODE (type) == TYPE_CODE_REF
10636 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10637 {
10638 /* Tagged types are a little special in the fact that the real
10639 type is dynamic and can only be determined by inspecting the
10640 object's tag. This means that we need to get the object's
10641 value first (EVAL_NORMAL) and then extract the actual object
10642 type from its tag.
10643
10644 Note that we cannot skip the final step where we extract
10645 the object type from its tag, because the EVAL_NORMAL phase
10646 results in dynamic components being resolved into fixed ones.
10647 This can cause problems when trying to print the type
10648 description of tagged types whose parent has a dynamic size:
10649 We use the type name of the "_parent" component in order
10650 to print the name of the ancestor type in the type description.
10651 If that component had a dynamic size, the resolution into
10652 a fixed type would result in the loss of that type name,
10653 thus preventing us from printing the name of the ancestor
10654 type in the type description. */
10655 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10656
10657 if (TYPE_CODE (type) != TYPE_CODE_REF)
10658 {
10659 struct type *actual_type;
10660
10661 actual_type = type_from_tag (ada_value_tag (arg1));
10662 if (actual_type == NULL)
10663 /* If, for some reason, we were unable to determine
10664 the actual type from the tag, then use the static
10665 approximation that we just computed as a fallback.
10666 This can happen if the debugging information is
10667 incomplete, for instance. */
10668 actual_type = type;
10669 return value_zero (actual_type, not_lval);
10670 }
10671 else
10672 {
10673 /* In the case of a ref, ada_coerce_ref takes care
10674 of determining the actual type. But the evaluation
10675 should return a ref as it should be valid to ask
10676 for its address; so rebuild a ref after coerce. */
10677 arg1 = ada_coerce_ref (arg1);
10678 return value_ref (arg1);
10679 }
10680 }
10681
10682 /* Records and unions for which GNAT encodings have been
10683 generated need to be statically fixed as well.
10684 Otherwise, non-static fixing produces a type where
10685 all dynamic properties are removed, which prevents "ptype"
10686 from being able to completely describe the type.
10687 For instance, a case statement in a variant record would be
10688 replaced by the relevant components based on the actual
10689 value of the discriminants. */
10690 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10691 && dynamic_template_type (type) != NULL)
10692 || (TYPE_CODE (type) == TYPE_CODE_UNION
10693 && ada_find_parallel_type (type, "___XVU") != NULL))
10694 {
10695 *pos += 4;
10696 return value_zero (to_static_fixed_type (type), not_lval);
10697 }
10698 }
10699
10700 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10701 return ada_to_fixed_value (arg1);
10702
10703 case OP_FUNCALL:
10704 (*pos) += 2;
10705
10706 /* Allocate arg vector, including space for the function to be
10707 called in argvec[0] and a terminating NULL. */
10708 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10709 argvec = XALLOCAVEC (struct value *, nargs + 2);
10710
10711 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10712 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10713 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10714 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10715 else
10716 {
10717 for (tem = 0; tem <= nargs; tem += 1)
10718 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10719 argvec[tem] = 0;
10720
10721 if (noside == EVAL_SKIP)
10722 goto nosideret;
10723 }
10724
10725 if (ada_is_constrained_packed_array_type
10726 (desc_base_type (value_type (argvec[0]))))
10727 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10728 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10729 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10730 /* This is a packed array that has already been fixed, and
10731 therefore already coerced to a simple array. Nothing further
10732 to do. */
10733 ;
10734 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10735 {
10736 /* Make sure we dereference references so that all the code below
10737 feels like it's really handling the referenced value. Wrapping
10738 types (for alignment) may be there, so make sure we strip them as
10739 well. */
10740 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10741 }
10742 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10743 && VALUE_LVAL (argvec[0]) == lval_memory)
10744 argvec[0] = value_addr (argvec[0]);
10745
10746 type = ada_check_typedef (value_type (argvec[0]));
10747
10748 /* Ada allows us to implicitly dereference arrays when subscripting
10749 them. So, if this is an array typedef (encoding use for array
10750 access types encoded as fat pointers), strip it now. */
10751 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10752 type = ada_typedef_target_type (type);
10753
10754 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10755 {
10756 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10757 {
10758 case TYPE_CODE_FUNC:
10759 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10760 break;
10761 case TYPE_CODE_ARRAY:
10762 break;
10763 case TYPE_CODE_STRUCT:
10764 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10765 argvec[0] = ada_value_ind (argvec[0]);
10766 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10767 break;
10768 default:
10769 error (_("cannot subscript or call something of type `%s'"),
10770 ada_type_name (value_type (argvec[0])));
10771 break;
10772 }
10773 }
10774
10775 switch (TYPE_CODE (type))
10776 {
10777 case TYPE_CODE_FUNC:
10778 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10779 {
10780 struct type *rtype = TYPE_TARGET_TYPE (type);
10781
10782 if (TYPE_GNU_IFUNC (type))
10783 return allocate_value (TYPE_TARGET_TYPE (rtype));
10784 return allocate_value (rtype);
10785 }
10786 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10787 case TYPE_CODE_INTERNAL_FUNCTION:
10788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10789 /* We don't know anything about what the internal
10790 function might return, but we have to return
10791 something. */
10792 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10793 not_lval);
10794 else
10795 return call_internal_function (exp->gdbarch, exp->language_defn,
10796 argvec[0], nargs, argvec + 1);
10797
10798 case TYPE_CODE_STRUCT:
10799 {
10800 int arity;
10801
10802 arity = ada_array_arity (type);
10803 type = ada_array_element_type (type, nargs);
10804 if (type == NULL)
10805 error (_("cannot subscript or call a record"));
10806 if (arity != nargs)
10807 error (_("wrong number of subscripts; expecting %d"), arity);
10808 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10809 return value_zero (ada_aligned_type (type), lval_memory);
10810 return
10811 unwrap_value (ada_value_subscript
10812 (argvec[0], nargs, argvec + 1));
10813 }
10814 case TYPE_CODE_ARRAY:
10815 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10816 {
10817 type = ada_array_element_type (type, nargs);
10818 if (type == NULL)
10819 error (_("element type of array unknown"));
10820 else
10821 return value_zero (ada_aligned_type (type), lval_memory);
10822 }
10823 return
10824 unwrap_value (ada_value_subscript
10825 (ada_coerce_to_simple_array (argvec[0]),
10826 nargs, argvec + 1));
10827 case TYPE_CODE_PTR: /* Pointer to array */
10828 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10829 {
10830 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10831 type = ada_array_element_type (type, nargs);
10832 if (type == NULL)
10833 error (_("element type of array unknown"));
10834 else
10835 return value_zero (ada_aligned_type (type), lval_memory);
10836 }
10837 return
10838 unwrap_value (ada_value_ptr_subscript (argvec[0],
10839 nargs, argvec + 1));
10840
10841 default:
10842 error (_("Attempt to index or call something other than an "
10843 "array or function"));
10844 }
10845
10846 case TERNOP_SLICE:
10847 {
10848 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10849 struct value *low_bound_val =
10850 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10851 struct value *high_bound_val =
10852 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10853 LONGEST low_bound;
10854 LONGEST high_bound;
10855
10856 low_bound_val = coerce_ref (low_bound_val);
10857 high_bound_val = coerce_ref (high_bound_val);
10858 low_bound = value_as_long (low_bound_val);
10859 high_bound = value_as_long (high_bound_val);
10860
10861 if (noside == EVAL_SKIP)
10862 goto nosideret;
10863
10864 /* If this is a reference to an aligner type, then remove all
10865 the aligners. */
10866 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10867 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10868 TYPE_TARGET_TYPE (value_type (array)) =
10869 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10870
10871 if (ada_is_constrained_packed_array_type (value_type (array)))
10872 error (_("cannot slice a packed array"));
10873
10874 /* If this is a reference to an array or an array lvalue,
10875 convert to a pointer. */
10876 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10877 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10878 && VALUE_LVAL (array) == lval_memory))
10879 array = value_addr (array);
10880
10881 if (noside == EVAL_AVOID_SIDE_EFFECTS
10882 && ada_is_array_descriptor_type (ada_check_typedef
10883 (value_type (array))))
10884 return empty_array (ada_type_of_array (array, 0), low_bound);
10885
10886 array = ada_coerce_to_simple_array_ptr (array);
10887
10888 /* If we have more than one level of pointer indirection,
10889 dereference the value until we get only one level. */
10890 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10891 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10892 == TYPE_CODE_PTR))
10893 array = value_ind (array);
10894
10895 /* Make sure we really do have an array type before going further,
10896 to avoid a SEGV when trying to get the index type or the target
10897 type later down the road if the debug info generated by
10898 the compiler is incorrect or incomplete. */
10899 if (!ada_is_simple_array_type (value_type (array)))
10900 error (_("cannot take slice of non-array"));
10901
10902 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10903 == TYPE_CODE_PTR)
10904 {
10905 struct type *type0 = ada_check_typedef (value_type (array));
10906
10907 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10908 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10909 else
10910 {
10911 struct type *arr_type0 =
10912 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10913
10914 return ada_value_slice_from_ptr (array, arr_type0,
10915 longest_to_int (low_bound),
10916 longest_to_int (high_bound));
10917 }
10918 }
10919 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10920 return array;
10921 else if (high_bound < low_bound)
10922 return empty_array (value_type (array), low_bound);
10923 else
10924 return ada_value_slice (array, longest_to_int (low_bound),
10925 longest_to_int (high_bound));
10926 }
10927
10928 case UNOP_IN_RANGE:
10929 (*pos) += 2;
10930 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10931 type = check_typedef (exp->elts[pc + 1].type);
10932
10933 if (noside == EVAL_SKIP)
10934 goto nosideret;
10935
10936 switch (TYPE_CODE (type))
10937 {
10938 default:
10939 lim_warning (_("Membership test incompletely implemented; "
10940 "always returns true"));
10941 type = language_bool_type (exp->language_defn, exp->gdbarch);
10942 return value_from_longest (type, (LONGEST) 1);
10943
10944 case TYPE_CODE_RANGE:
10945 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10946 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10947 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10948 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10949 type = language_bool_type (exp->language_defn, exp->gdbarch);
10950 return
10951 value_from_longest (type,
10952 (value_less (arg1, arg3)
10953 || value_equal (arg1, arg3))
10954 && (value_less (arg2, arg1)
10955 || value_equal (arg2, arg1)));
10956 }
10957
10958 case BINOP_IN_BOUNDS:
10959 (*pos) += 2;
10960 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10961 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10962
10963 if (noside == EVAL_SKIP)
10964 goto nosideret;
10965
10966 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10967 {
10968 type = language_bool_type (exp->language_defn, exp->gdbarch);
10969 return value_zero (type, not_lval);
10970 }
10971
10972 tem = longest_to_int (exp->elts[pc + 1].longconst);
10973
10974 type = ada_index_type (value_type (arg2), tem, "range");
10975 if (!type)
10976 type = value_type (arg1);
10977
10978 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10979 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10980
10981 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10982 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10983 type = language_bool_type (exp->language_defn, exp->gdbarch);
10984 return
10985 value_from_longest (type,
10986 (value_less (arg1, arg3)
10987 || value_equal (arg1, arg3))
10988 && (value_less (arg2, arg1)
10989 || value_equal (arg2, arg1)));
10990
10991 case TERNOP_IN_RANGE:
10992 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10993 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10994 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10995
10996 if (noside == EVAL_SKIP)
10997 goto nosideret;
10998
10999 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11000 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11001 type = language_bool_type (exp->language_defn, exp->gdbarch);
11002 return
11003 value_from_longest (type,
11004 (value_less (arg1, arg3)
11005 || value_equal (arg1, arg3))
11006 && (value_less (arg2, arg1)
11007 || value_equal (arg2, arg1)));
11008
11009 case OP_ATR_FIRST:
11010 case OP_ATR_LAST:
11011 case OP_ATR_LENGTH:
11012 {
11013 struct type *type_arg;
11014
11015 if (exp->elts[*pos].opcode == OP_TYPE)
11016 {
11017 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11018 arg1 = NULL;
11019 type_arg = check_typedef (exp->elts[pc + 2].type);
11020 }
11021 else
11022 {
11023 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11024 type_arg = NULL;
11025 }
11026
11027 if (exp->elts[*pos].opcode != OP_LONG)
11028 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11029 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11030 *pos += 4;
11031
11032 if (noside == EVAL_SKIP)
11033 goto nosideret;
11034
11035 if (type_arg == NULL)
11036 {
11037 arg1 = ada_coerce_ref (arg1);
11038
11039 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11040 arg1 = ada_coerce_to_simple_array (arg1);
11041
11042 if (op == OP_ATR_LENGTH)
11043 type = builtin_type (exp->gdbarch)->builtin_int;
11044 else
11045 {
11046 type = ada_index_type (value_type (arg1), tem,
11047 ada_attribute_name (op));
11048 if (type == NULL)
11049 type = builtin_type (exp->gdbarch)->builtin_int;
11050 }
11051
11052 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11053 return allocate_value (type);
11054
11055 switch (op)
11056 {
11057 default: /* Should never happen. */
11058 error (_("unexpected attribute encountered"));
11059 case OP_ATR_FIRST:
11060 return value_from_longest
11061 (type, ada_array_bound (arg1, tem, 0));
11062 case OP_ATR_LAST:
11063 return value_from_longest
11064 (type, ada_array_bound (arg1, tem, 1));
11065 case OP_ATR_LENGTH:
11066 return value_from_longest
11067 (type, ada_array_length (arg1, tem));
11068 }
11069 }
11070 else if (discrete_type_p (type_arg))
11071 {
11072 struct type *range_type;
11073 const char *name = ada_type_name (type_arg);
11074
11075 range_type = NULL;
11076 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11077 range_type = to_fixed_range_type (type_arg, NULL);
11078 if (range_type == NULL)
11079 range_type = type_arg;
11080 switch (op)
11081 {
11082 default:
11083 error (_("unexpected attribute encountered"));
11084 case OP_ATR_FIRST:
11085 return value_from_longest
11086 (range_type, ada_discrete_type_low_bound (range_type));
11087 case OP_ATR_LAST:
11088 return value_from_longest
11089 (range_type, ada_discrete_type_high_bound (range_type));
11090 case OP_ATR_LENGTH:
11091 error (_("the 'length attribute applies only to array types"));
11092 }
11093 }
11094 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11095 error (_("unimplemented type attribute"));
11096 else
11097 {
11098 LONGEST low, high;
11099
11100 if (ada_is_constrained_packed_array_type (type_arg))
11101 type_arg = decode_constrained_packed_array_type (type_arg);
11102
11103 if (op == OP_ATR_LENGTH)
11104 type = builtin_type (exp->gdbarch)->builtin_int;
11105 else
11106 {
11107 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11108 if (type == NULL)
11109 type = builtin_type (exp->gdbarch)->builtin_int;
11110 }
11111
11112 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11113 return allocate_value (type);
11114
11115 switch (op)
11116 {
11117 default:
11118 error (_("unexpected attribute encountered"));
11119 case OP_ATR_FIRST:
11120 low = ada_array_bound_from_type (type_arg, tem, 0);
11121 return value_from_longest (type, low);
11122 case OP_ATR_LAST:
11123 high = ada_array_bound_from_type (type_arg, tem, 1);
11124 return value_from_longest (type, high);
11125 case OP_ATR_LENGTH:
11126 low = ada_array_bound_from_type (type_arg, tem, 0);
11127 high = ada_array_bound_from_type (type_arg, tem, 1);
11128 return value_from_longest (type, high - low + 1);
11129 }
11130 }
11131 }
11132
11133 case OP_ATR_TAG:
11134 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11135 if (noside == EVAL_SKIP)
11136 goto nosideret;
11137
11138 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11139 return value_zero (ada_tag_type (arg1), not_lval);
11140
11141 return ada_value_tag (arg1);
11142
11143 case OP_ATR_MIN:
11144 case OP_ATR_MAX:
11145 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11147 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11148 if (noside == EVAL_SKIP)
11149 goto nosideret;
11150 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11151 return value_zero (value_type (arg1), not_lval);
11152 else
11153 {
11154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11155 return value_binop (arg1, arg2,
11156 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11157 }
11158
11159 case OP_ATR_MODULUS:
11160 {
11161 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11162
11163 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11164 if (noside == EVAL_SKIP)
11165 goto nosideret;
11166
11167 if (!ada_is_modular_type (type_arg))
11168 error (_("'modulus must be applied to modular type"));
11169
11170 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11171 ada_modulus (type_arg));
11172 }
11173
11174
11175 case OP_ATR_POS:
11176 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11177 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11178 if (noside == EVAL_SKIP)
11179 goto nosideret;
11180 type = builtin_type (exp->gdbarch)->builtin_int;
11181 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11182 return value_zero (type, not_lval);
11183 else
11184 return value_pos_atr (type, arg1);
11185
11186 case OP_ATR_SIZE:
11187 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11188 type = value_type (arg1);
11189
11190 /* If the argument is a reference, then dereference its type, since
11191 the user is really asking for the size of the actual object,
11192 not the size of the pointer. */
11193 if (TYPE_CODE (type) == TYPE_CODE_REF)
11194 type = TYPE_TARGET_TYPE (type);
11195
11196 if (noside == EVAL_SKIP)
11197 goto nosideret;
11198 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11199 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11200 else
11201 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11202 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11203
11204 case OP_ATR_VAL:
11205 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11206 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11207 type = exp->elts[pc + 2].type;
11208 if (noside == EVAL_SKIP)
11209 goto nosideret;
11210 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11211 return value_zero (type, not_lval);
11212 else
11213 return value_val_atr (type, arg1);
11214
11215 case BINOP_EXP:
11216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11217 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11218 if (noside == EVAL_SKIP)
11219 goto nosideret;
11220 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11221 return value_zero (value_type (arg1), not_lval);
11222 else
11223 {
11224 /* For integer exponentiation operations,
11225 only promote the first argument. */
11226 if (is_integral_type (value_type (arg2)))
11227 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11228 else
11229 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11230
11231 return value_binop (arg1, arg2, op);
11232 }
11233
11234 case UNOP_PLUS:
11235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11236 if (noside == EVAL_SKIP)
11237 goto nosideret;
11238 else
11239 return arg1;
11240
11241 case UNOP_ABS:
11242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11243 if (noside == EVAL_SKIP)
11244 goto nosideret;
11245 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11246 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11247 return value_neg (arg1);
11248 else
11249 return arg1;
11250
11251 case UNOP_IND:
11252 preeval_pos = *pos;
11253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11254 if (noside == EVAL_SKIP)
11255 goto nosideret;
11256 type = ada_check_typedef (value_type (arg1));
11257 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11258 {
11259 if (ada_is_array_descriptor_type (type))
11260 /* GDB allows dereferencing GNAT array descriptors. */
11261 {
11262 struct type *arrType = ada_type_of_array (arg1, 0);
11263
11264 if (arrType == NULL)
11265 error (_("Attempt to dereference null array pointer."));
11266 return value_at_lazy (arrType, 0);
11267 }
11268 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11269 || TYPE_CODE (type) == TYPE_CODE_REF
11270 /* In C you can dereference an array to get the 1st elt. */
11271 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11272 {
11273 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11274 only be determined by inspecting the object's tag.
11275 This means that we need to evaluate completely the
11276 expression in order to get its type. */
11277
11278 if ((TYPE_CODE (type) == TYPE_CODE_REF
11279 || TYPE_CODE (type) == TYPE_CODE_PTR)
11280 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11281 {
11282 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11283 EVAL_NORMAL);
11284 type = value_type (ada_value_ind (arg1));
11285 }
11286 else
11287 {
11288 type = to_static_fixed_type
11289 (ada_aligned_type
11290 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11291 }
11292 ada_ensure_varsize_limit (type);
11293 return value_zero (type, lval_memory);
11294 }
11295 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11296 {
11297 /* GDB allows dereferencing an int. */
11298 if (expect_type == NULL)
11299 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11300 lval_memory);
11301 else
11302 {
11303 expect_type =
11304 to_static_fixed_type (ada_aligned_type (expect_type));
11305 return value_zero (expect_type, lval_memory);
11306 }
11307 }
11308 else
11309 error (_("Attempt to take contents of a non-pointer value."));
11310 }
11311 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11312 type = ada_check_typedef (value_type (arg1));
11313
11314 if (TYPE_CODE (type) == TYPE_CODE_INT)
11315 /* GDB allows dereferencing an int. If we were given
11316 the expect_type, then use that as the target type.
11317 Otherwise, assume that the target type is an int. */
11318 {
11319 if (expect_type != NULL)
11320 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11321 arg1));
11322 else
11323 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11324 (CORE_ADDR) value_as_address (arg1));
11325 }
11326
11327 if (ada_is_array_descriptor_type (type))
11328 /* GDB allows dereferencing GNAT array descriptors. */
11329 return ada_coerce_to_simple_array (arg1);
11330 else
11331 return ada_value_ind (arg1);
11332
11333 case STRUCTOP_STRUCT:
11334 tem = longest_to_int (exp->elts[pc + 1].longconst);
11335 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11336 preeval_pos = *pos;
11337 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11338 if (noside == EVAL_SKIP)
11339 goto nosideret;
11340 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11341 {
11342 struct type *type1 = value_type (arg1);
11343
11344 if (ada_is_tagged_type (type1, 1))
11345 {
11346 type = ada_lookup_struct_elt_type (type1,
11347 &exp->elts[pc + 2].string,
11348 1, 1, NULL);
11349
11350 /* If the field is not found, check if it exists in the
11351 extension of this object's type. This means that we
11352 need to evaluate completely the expression. */
11353
11354 if (type == NULL)
11355 {
11356 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11357 EVAL_NORMAL);
11358 arg1 = ada_value_struct_elt (arg1,
11359 &exp->elts[pc + 2].string,
11360 0);
11361 arg1 = unwrap_value (arg1);
11362 type = value_type (ada_to_fixed_value (arg1));
11363 }
11364 }
11365 else
11366 type =
11367 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11368 0, NULL);
11369
11370 return value_zero (ada_aligned_type (type), lval_memory);
11371 }
11372 else
11373 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11374 arg1 = unwrap_value (arg1);
11375 return ada_to_fixed_value (arg1);
11376
11377 case OP_TYPE:
11378 /* The value is not supposed to be used. This is here to make it
11379 easier to accommodate expressions that contain types. */
11380 (*pos) += 2;
11381 if (noside == EVAL_SKIP)
11382 goto nosideret;
11383 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11384 return allocate_value (exp->elts[pc + 1].type);
11385 else
11386 error (_("Attempt to use a type name as an expression"));
11387
11388 case OP_AGGREGATE:
11389 case OP_CHOICES:
11390 case OP_OTHERS:
11391 case OP_DISCRETE_RANGE:
11392 case OP_POSITIONAL:
11393 case OP_NAME:
11394 if (noside == EVAL_NORMAL)
11395 switch (op)
11396 {
11397 case OP_NAME:
11398 error (_("Undefined name, ambiguous name, or renaming used in "
11399 "component association: %s."), &exp->elts[pc+2].string);
11400 case OP_AGGREGATE:
11401 error (_("Aggregates only allowed on the right of an assignment"));
11402 default:
11403 internal_error (__FILE__, __LINE__,
11404 _("aggregate apparently mangled"));
11405 }
11406
11407 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11408 *pos += oplen - 1;
11409 for (tem = 0; tem < nargs; tem += 1)
11410 ada_evaluate_subexp (NULL, exp, pos, noside);
11411 goto nosideret;
11412 }
11413
11414 nosideret:
11415 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11416 }
11417 \f
11418
11419 /* Fixed point */
11420
11421 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11422 type name that encodes the 'small and 'delta information.
11423 Otherwise, return NULL. */
11424
11425 static const char *
11426 fixed_type_info (struct type *type)
11427 {
11428 const char *name = ada_type_name (type);
11429 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11430
11431 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11432 {
11433 const char *tail = strstr (name, "___XF_");
11434
11435 if (tail == NULL)
11436 return NULL;
11437 else
11438 return tail + 5;
11439 }
11440 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11441 return fixed_type_info (TYPE_TARGET_TYPE (type));
11442 else
11443 return NULL;
11444 }
11445
11446 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11447
11448 int
11449 ada_is_fixed_point_type (struct type *type)
11450 {
11451 return fixed_type_info (type) != NULL;
11452 }
11453
11454 /* Return non-zero iff TYPE represents a System.Address type. */
11455
11456 int
11457 ada_is_system_address_type (struct type *type)
11458 {
11459 return (TYPE_NAME (type)
11460 && strcmp (TYPE_NAME (type), "system__address") == 0);
11461 }
11462
11463 /* Assuming that TYPE is the representation of an Ada fixed-point
11464 type, return its delta, or -1 if the type is malformed and the
11465 delta cannot be determined. */
11466
11467 DOUBLEST
11468 ada_delta (struct type *type)
11469 {
11470 const char *encoding = fixed_type_info (type);
11471 DOUBLEST num, den;
11472
11473 /* Strictly speaking, num and den are encoded as integer. However,
11474 they may not fit into a long, and they will have to be converted
11475 to DOUBLEST anyway. So scan them as DOUBLEST. */
11476 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11477 &num, &den) < 2)
11478 return -1.0;
11479 else
11480 return num / den;
11481 }
11482
11483 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11484 factor ('SMALL value) associated with the type. */
11485
11486 static DOUBLEST
11487 scaling_factor (struct type *type)
11488 {
11489 const char *encoding = fixed_type_info (type);
11490 DOUBLEST num0, den0, num1, den1;
11491 int n;
11492
11493 /* Strictly speaking, num's and den's are encoded as integer. However,
11494 they may not fit into a long, and they will have to be converted
11495 to DOUBLEST anyway. So scan them as DOUBLEST. */
11496 n = sscanf (encoding,
11497 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11498 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11499 &num0, &den0, &num1, &den1);
11500
11501 if (n < 2)
11502 return 1.0;
11503 else if (n == 4)
11504 return num1 / den1;
11505 else
11506 return num0 / den0;
11507 }
11508
11509
11510 /* Assuming that X is the representation of a value of fixed-point
11511 type TYPE, return its floating-point equivalent. */
11512
11513 DOUBLEST
11514 ada_fixed_to_float (struct type *type, LONGEST x)
11515 {
11516 return (DOUBLEST) x *scaling_factor (type);
11517 }
11518
11519 /* The representation of a fixed-point value of type TYPE
11520 corresponding to the value X. */
11521
11522 LONGEST
11523 ada_float_to_fixed (struct type *type, DOUBLEST x)
11524 {
11525 return (LONGEST) (x / scaling_factor (type) + 0.5);
11526 }
11527
11528 \f
11529
11530 /* Range types */
11531
11532 /* Scan STR beginning at position K for a discriminant name, and
11533 return the value of that discriminant field of DVAL in *PX. If
11534 PNEW_K is not null, put the position of the character beyond the
11535 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11536 not alter *PX and *PNEW_K if unsuccessful. */
11537
11538 static int
11539 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11540 int *pnew_k)
11541 {
11542 static char *bound_buffer = NULL;
11543 static size_t bound_buffer_len = 0;
11544 const char *pstart, *pend, *bound;
11545 struct value *bound_val;
11546
11547 if (dval == NULL || str == NULL || str[k] == '\0')
11548 return 0;
11549
11550 pstart = str + k;
11551 pend = strstr (pstart, "__");
11552 if (pend == NULL)
11553 {
11554 bound = pstart;
11555 k += strlen (bound);
11556 }
11557 else
11558 {
11559 int len = pend - pstart;
11560
11561 /* Strip __ and beyond. */
11562 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11563 strncpy (bound_buffer, pstart, len);
11564 bound_buffer[len] = '\0';
11565
11566 bound = bound_buffer;
11567 k = pend - str;
11568 }
11569
11570 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11571 if (bound_val == NULL)
11572 return 0;
11573
11574 *px = value_as_long (bound_val);
11575 if (pnew_k != NULL)
11576 *pnew_k = k;
11577 return 1;
11578 }
11579
11580 /* Value of variable named NAME in the current environment. If
11581 no such variable found, then if ERR_MSG is null, returns 0, and
11582 otherwise causes an error with message ERR_MSG. */
11583
11584 static struct value *
11585 get_var_value (char *name, char *err_msg)
11586 {
11587 struct block_symbol *syms;
11588 int nsyms;
11589
11590 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11591 &syms);
11592
11593 if (nsyms != 1)
11594 {
11595 if (err_msg == NULL)
11596 return 0;
11597 else
11598 error (("%s"), err_msg);
11599 }
11600
11601 return value_of_variable (syms[0].symbol, syms[0].block);
11602 }
11603
11604 /* Value of integer variable named NAME in the current environment. If
11605 no such variable found, returns 0, and sets *FLAG to 0. If
11606 successful, sets *FLAG to 1. */
11607
11608 LONGEST
11609 get_int_var_value (char *name, int *flag)
11610 {
11611 struct value *var_val = get_var_value (name, 0);
11612
11613 if (var_val == 0)
11614 {
11615 if (flag != NULL)
11616 *flag = 0;
11617 return 0;
11618 }
11619 else
11620 {
11621 if (flag != NULL)
11622 *flag = 1;
11623 return value_as_long (var_val);
11624 }
11625 }
11626
11627
11628 /* Return a range type whose base type is that of the range type named
11629 NAME in the current environment, and whose bounds are calculated
11630 from NAME according to the GNAT range encoding conventions.
11631 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11632 corresponding range type from debug information; fall back to using it
11633 if symbol lookup fails. If a new type must be created, allocate it
11634 like ORIG_TYPE was. The bounds information, in general, is encoded
11635 in NAME, the base type given in the named range type. */
11636
11637 static struct type *
11638 to_fixed_range_type (struct type *raw_type, struct value *dval)
11639 {
11640 const char *name;
11641 struct type *base_type;
11642 const char *subtype_info;
11643
11644 gdb_assert (raw_type != NULL);
11645 gdb_assert (TYPE_NAME (raw_type) != NULL);
11646
11647 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11648 base_type = TYPE_TARGET_TYPE (raw_type);
11649 else
11650 base_type = raw_type;
11651
11652 name = TYPE_NAME (raw_type);
11653 subtype_info = strstr (name, "___XD");
11654 if (subtype_info == NULL)
11655 {
11656 LONGEST L = ada_discrete_type_low_bound (raw_type);
11657 LONGEST U = ada_discrete_type_high_bound (raw_type);
11658
11659 if (L < INT_MIN || U > INT_MAX)
11660 return raw_type;
11661 else
11662 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11663 L, U);
11664 }
11665 else
11666 {
11667 static char *name_buf = NULL;
11668 static size_t name_len = 0;
11669 int prefix_len = subtype_info - name;
11670 LONGEST L, U;
11671 struct type *type;
11672 const char *bounds_str;
11673 int n;
11674
11675 GROW_VECT (name_buf, name_len, prefix_len + 5);
11676 strncpy (name_buf, name, prefix_len);
11677 name_buf[prefix_len] = '\0';
11678
11679 subtype_info += 5;
11680 bounds_str = strchr (subtype_info, '_');
11681 n = 1;
11682
11683 if (*subtype_info == 'L')
11684 {
11685 if (!ada_scan_number (bounds_str, n, &L, &n)
11686 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11687 return raw_type;
11688 if (bounds_str[n] == '_')
11689 n += 2;
11690 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11691 n += 1;
11692 subtype_info += 1;
11693 }
11694 else
11695 {
11696 int ok;
11697
11698 strcpy (name_buf + prefix_len, "___L");
11699 L = get_int_var_value (name_buf, &ok);
11700 if (!ok)
11701 {
11702 lim_warning (_("Unknown lower bound, using 1."));
11703 L = 1;
11704 }
11705 }
11706
11707 if (*subtype_info == 'U')
11708 {
11709 if (!ada_scan_number (bounds_str, n, &U, &n)
11710 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11711 return raw_type;
11712 }
11713 else
11714 {
11715 int ok;
11716
11717 strcpy (name_buf + prefix_len, "___U");
11718 U = get_int_var_value (name_buf, &ok);
11719 if (!ok)
11720 {
11721 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11722 U = L;
11723 }
11724 }
11725
11726 type = create_static_range_type (alloc_type_copy (raw_type),
11727 base_type, L, U);
11728 TYPE_NAME (type) = name;
11729 return type;
11730 }
11731 }
11732
11733 /* True iff NAME is the name of a range type. */
11734
11735 int
11736 ada_is_range_type_name (const char *name)
11737 {
11738 return (name != NULL && strstr (name, "___XD"));
11739 }
11740 \f
11741
11742 /* Modular types */
11743
11744 /* True iff TYPE is an Ada modular type. */
11745
11746 int
11747 ada_is_modular_type (struct type *type)
11748 {
11749 struct type *subranged_type = get_base_type (type);
11750
11751 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11752 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11753 && TYPE_UNSIGNED (subranged_type));
11754 }
11755
11756 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11757
11758 ULONGEST
11759 ada_modulus (struct type *type)
11760 {
11761 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11762 }
11763 \f
11764
11765 /* Ada exception catchpoint support:
11766 ---------------------------------
11767
11768 We support 3 kinds of exception catchpoints:
11769 . catchpoints on Ada exceptions
11770 . catchpoints on unhandled Ada exceptions
11771 . catchpoints on failed assertions
11772
11773 Exceptions raised during failed assertions, or unhandled exceptions
11774 could perfectly be caught with the general catchpoint on Ada exceptions.
11775 However, we can easily differentiate these two special cases, and having
11776 the option to distinguish these two cases from the rest can be useful
11777 to zero-in on certain situations.
11778
11779 Exception catchpoints are a specialized form of breakpoint,
11780 since they rely on inserting breakpoints inside known routines
11781 of the GNAT runtime. The implementation therefore uses a standard
11782 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11783 of breakpoint_ops.
11784
11785 Support in the runtime for exception catchpoints have been changed
11786 a few times already, and these changes affect the implementation
11787 of these catchpoints. In order to be able to support several
11788 variants of the runtime, we use a sniffer that will determine
11789 the runtime variant used by the program being debugged. */
11790
11791 /* Ada's standard exceptions.
11792
11793 The Ada 83 standard also defined Numeric_Error. But there so many
11794 situations where it was unclear from the Ada 83 Reference Manual
11795 (RM) whether Constraint_Error or Numeric_Error should be raised,
11796 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11797 Interpretation saying that anytime the RM says that Numeric_Error
11798 should be raised, the implementation may raise Constraint_Error.
11799 Ada 95 went one step further and pretty much removed Numeric_Error
11800 from the list of standard exceptions (it made it a renaming of
11801 Constraint_Error, to help preserve compatibility when compiling
11802 an Ada83 compiler). As such, we do not include Numeric_Error from
11803 this list of standard exceptions. */
11804
11805 static char *standard_exc[] = {
11806 "constraint_error",
11807 "program_error",
11808 "storage_error",
11809 "tasking_error"
11810 };
11811
11812 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11813
11814 /* A structure that describes how to support exception catchpoints
11815 for a given executable. */
11816
11817 struct exception_support_info
11818 {
11819 /* The name of the symbol to break on in order to insert
11820 a catchpoint on exceptions. */
11821 const char *catch_exception_sym;
11822
11823 /* The name of the symbol to break on in order to insert
11824 a catchpoint on unhandled exceptions. */
11825 const char *catch_exception_unhandled_sym;
11826
11827 /* The name of the symbol to break on in order to insert
11828 a catchpoint on failed assertions. */
11829 const char *catch_assert_sym;
11830
11831 /* Assuming that the inferior just triggered an unhandled exception
11832 catchpoint, this function is responsible for returning the address
11833 in inferior memory where the name of that exception is stored.
11834 Return zero if the address could not be computed. */
11835 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11836 };
11837
11838 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11839 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11840
11841 /* The following exception support info structure describes how to
11842 implement exception catchpoints with the latest version of the
11843 Ada runtime (as of 2007-03-06). */
11844
11845 static const struct exception_support_info default_exception_support_info =
11846 {
11847 "__gnat_debug_raise_exception", /* catch_exception_sym */
11848 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11849 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11850 ada_unhandled_exception_name_addr
11851 };
11852
11853 /* The following exception support info structure describes how to
11854 implement exception catchpoints with a slightly older version
11855 of the Ada runtime. */
11856
11857 static const struct exception_support_info exception_support_info_fallback =
11858 {
11859 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11860 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11861 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11862 ada_unhandled_exception_name_addr_from_raise
11863 };
11864
11865 /* Return nonzero if we can detect the exception support routines
11866 described in EINFO.
11867
11868 This function errors out if an abnormal situation is detected
11869 (for instance, if we find the exception support routines, but
11870 that support is found to be incomplete). */
11871
11872 static int
11873 ada_has_this_exception_support (const struct exception_support_info *einfo)
11874 {
11875 struct symbol *sym;
11876
11877 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11878 that should be compiled with debugging information. As a result, we
11879 expect to find that symbol in the symtabs. */
11880
11881 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11882 if (sym == NULL)
11883 {
11884 /* Perhaps we did not find our symbol because the Ada runtime was
11885 compiled without debugging info, or simply stripped of it.
11886 It happens on some GNU/Linux distributions for instance, where
11887 users have to install a separate debug package in order to get
11888 the runtime's debugging info. In that situation, let the user
11889 know why we cannot insert an Ada exception catchpoint.
11890
11891 Note: Just for the purpose of inserting our Ada exception
11892 catchpoint, we could rely purely on the associated minimal symbol.
11893 But we would be operating in degraded mode anyway, since we are
11894 still lacking the debugging info needed later on to extract
11895 the name of the exception being raised (this name is printed in
11896 the catchpoint message, and is also used when trying to catch
11897 a specific exception). We do not handle this case for now. */
11898 struct bound_minimal_symbol msym
11899 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11900
11901 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11902 error (_("Your Ada runtime appears to be missing some debugging "
11903 "information.\nCannot insert Ada exception catchpoint "
11904 "in this configuration."));
11905
11906 return 0;
11907 }
11908
11909 /* Make sure that the symbol we found corresponds to a function. */
11910
11911 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11912 error (_("Symbol \"%s\" is not a function (class = %d)"),
11913 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11914
11915 return 1;
11916 }
11917
11918 /* Inspect the Ada runtime and determine which exception info structure
11919 should be used to provide support for exception catchpoints.
11920
11921 This function will always set the per-inferior exception_info,
11922 or raise an error. */
11923
11924 static void
11925 ada_exception_support_info_sniffer (void)
11926 {
11927 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11928
11929 /* If the exception info is already known, then no need to recompute it. */
11930 if (data->exception_info != NULL)
11931 return;
11932
11933 /* Check the latest (default) exception support info. */
11934 if (ada_has_this_exception_support (&default_exception_support_info))
11935 {
11936 data->exception_info = &default_exception_support_info;
11937 return;
11938 }
11939
11940 /* Try our fallback exception suport info. */
11941 if (ada_has_this_exception_support (&exception_support_info_fallback))
11942 {
11943 data->exception_info = &exception_support_info_fallback;
11944 return;
11945 }
11946
11947 /* Sometimes, it is normal for us to not be able to find the routine
11948 we are looking for. This happens when the program is linked with
11949 the shared version of the GNAT runtime, and the program has not been
11950 started yet. Inform the user of these two possible causes if
11951 applicable. */
11952
11953 if (ada_update_initial_language (language_unknown) != language_ada)
11954 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11955
11956 /* If the symbol does not exist, then check that the program is
11957 already started, to make sure that shared libraries have been
11958 loaded. If it is not started, this may mean that the symbol is
11959 in a shared library. */
11960
11961 if (ptid_get_pid (inferior_ptid) == 0)
11962 error (_("Unable to insert catchpoint. Try to start the program first."));
11963
11964 /* At this point, we know that we are debugging an Ada program and
11965 that the inferior has been started, but we still are not able to
11966 find the run-time symbols. That can mean that we are in
11967 configurable run time mode, or that a-except as been optimized
11968 out by the linker... In any case, at this point it is not worth
11969 supporting this feature. */
11970
11971 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11972 }
11973
11974 /* True iff FRAME is very likely to be that of a function that is
11975 part of the runtime system. This is all very heuristic, but is
11976 intended to be used as advice as to what frames are uninteresting
11977 to most users. */
11978
11979 static int
11980 is_known_support_routine (struct frame_info *frame)
11981 {
11982 struct symtab_and_line sal;
11983 char *func_name;
11984 enum language func_lang;
11985 int i;
11986 const char *fullname;
11987
11988 /* If this code does not have any debugging information (no symtab),
11989 This cannot be any user code. */
11990
11991 find_frame_sal (frame, &sal);
11992 if (sal.symtab == NULL)
11993 return 1;
11994
11995 /* If there is a symtab, but the associated source file cannot be
11996 located, then assume this is not user code: Selecting a frame
11997 for which we cannot display the code would not be very helpful
11998 for the user. This should also take care of case such as VxWorks
11999 where the kernel has some debugging info provided for a few units. */
12000
12001 fullname = symtab_to_fullname (sal.symtab);
12002 if (access (fullname, R_OK) != 0)
12003 return 1;
12004
12005 /* Check the unit filename againt the Ada runtime file naming.
12006 We also check the name of the objfile against the name of some
12007 known system libraries that sometimes come with debugging info
12008 too. */
12009
12010 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12011 {
12012 re_comp (known_runtime_file_name_patterns[i]);
12013 if (re_exec (lbasename (sal.symtab->filename)))
12014 return 1;
12015 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12016 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12017 return 1;
12018 }
12019
12020 /* Check whether the function is a GNAT-generated entity. */
12021
12022 find_frame_funname (frame, &func_name, &func_lang, NULL);
12023 if (func_name == NULL)
12024 return 1;
12025
12026 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12027 {
12028 re_comp (known_auxiliary_function_name_patterns[i]);
12029 if (re_exec (func_name))
12030 {
12031 xfree (func_name);
12032 return 1;
12033 }
12034 }
12035
12036 xfree (func_name);
12037 return 0;
12038 }
12039
12040 /* Find the first frame that contains debugging information and that is not
12041 part of the Ada run-time, starting from FI and moving upward. */
12042
12043 void
12044 ada_find_printable_frame (struct frame_info *fi)
12045 {
12046 for (; fi != NULL; fi = get_prev_frame (fi))
12047 {
12048 if (!is_known_support_routine (fi))
12049 {
12050 select_frame (fi);
12051 break;
12052 }
12053 }
12054
12055 }
12056
12057 /* Assuming that the inferior just triggered an unhandled exception
12058 catchpoint, return the address in inferior memory where the name
12059 of the exception is stored.
12060
12061 Return zero if the address could not be computed. */
12062
12063 static CORE_ADDR
12064 ada_unhandled_exception_name_addr (void)
12065 {
12066 return parse_and_eval_address ("e.full_name");
12067 }
12068
12069 /* Same as ada_unhandled_exception_name_addr, except that this function
12070 should be used when the inferior uses an older version of the runtime,
12071 where the exception name needs to be extracted from a specific frame
12072 several frames up in the callstack. */
12073
12074 static CORE_ADDR
12075 ada_unhandled_exception_name_addr_from_raise (void)
12076 {
12077 int frame_level;
12078 struct frame_info *fi;
12079 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12080 struct cleanup *old_chain;
12081
12082 /* To determine the name of this exception, we need to select
12083 the frame corresponding to RAISE_SYM_NAME. This frame is
12084 at least 3 levels up, so we simply skip the first 3 frames
12085 without checking the name of their associated function. */
12086 fi = get_current_frame ();
12087 for (frame_level = 0; frame_level < 3; frame_level += 1)
12088 if (fi != NULL)
12089 fi = get_prev_frame (fi);
12090
12091 old_chain = make_cleanup (null_cleanup, NULL);
12092 while (fi != NULL)
12093 {
12094 char *func_name;
12095 enum language func_lang;
12096
12097 find_frame_funname (fi, &func_name, &func_lang, NULL);
12098 if (func_name != NULL)
12099 {
12100 make_cleanup (xfree, func_name);
12101
12102 if (strcmp (func_name,
12103 data->exception_info->catch_exception_sym) == 0)
12104 break; /* We found the frame we were looking for... */
12105 fi = get_prev_frame (fi);
12106 }
12107 }
12108 do_cleanups (old_chain);
12109
12110 if (fi == NULL)
12111 return 0;
12112
12113 select_frame (fi);
12114 return parse_and_eval_address ("id.full_name");
12115 }
12116
12117 /* Assuming the inferior just triggered an Ada exception catchpoint
12118 (of any type), return the address in inferior memory where the name
12119 of the exception is stored, if applicable.
12120
12121 Return zero if the address could not be computed, or if not relevant. */
12122
12123 static CORE_ADDR
12124 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12125 struct breakpoint *b)
12126 {
12127 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12128
12129 switch (ex)
12130 {
12131 case ada_catch_exception:
12132 return (parse_and_eval_address ("e.full_name"));
12133 break;
12134
12135 case ada_catch_exception_unhandled:
12136 return data->exception_info->unhandled_exception_name_addr ();
12137 break;
12138
12139 case ada_catch_assert:
12140 return 0; /* Exception name is not relevant in this case. */
12141 break;
12142
12143 default:
12144 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12145 break;
12146 }
12147
12148 return 0; /* Should never be reached. */
12149 }
12150
12151 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12152 any error that ada_exception_name_addr_1 might cause to be thrown.
12153 When an error is intercepted, a warning with the error message is printed,
12154 and zero is returned. */
12155
12156 static CORE_ADDR
12157 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12158 struct breakpoint *b)
12159 {
12160 CORE_ADDR result = 0;
12161
12162 TRY
12163 {
12164 result = ada_exception_name_addr_1 (ex, b);
12165 }
12166
12167 CATCH (e, RETURN_MASK_ERROR)
12168 {
12169 warning (_("failed to get exception name: %s"), e.message);
12170 return 0;
12171 }
12172 END_CATCH
12173
12174 return result;
12175 }
12176
12177 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12178
12179 /* Ada catchpoints.
12180
12181 In the case of catchpoints on Ada exceptions, the catchpoint will
12182 stop the target on every exception the program throws. When a user
12183 specifies the name of a specific exception, we translate this
12184 request into a condition expression (in text form), and then parse
12185 it into an expression stored in each of the catchpoint's locations.
12186 We then use this condition to check whether the exception that was
12187 raised is the one the user is interested in. If not, then the
12188 target is resumed again. We store the name of the requested
12189 exception, in order to be able to re-set the condition expression
12190 when symbols change. */
12191
12192 /* An instance of this type is used to represent an Ada catchpoint
12193 breakpoint location. It includes a "struct bp_location" as a kind
12194 of base class; users downcast to "struct bp_location *" when
12195 needed. */
12196
12197 struct ada_catchpoint_location
12198 {
12199 /* The base class. */
12200 struct bp_location base;
12201
12202 /* The condition that checks whether the exception that was raised
12203 is the specific exception the user specified on catchpoint
12204 creation. */
12205 struct expression *excep_cond_expr;
12206 };
12207
12208 /* Implement the DTOR method in the bp_location_ops structure for all
12209 Ada exception catchpoint kinds. */
12210
12211 static void
12212 ada_catchpoint_location_dtor (struct bp_location *bl)
12213 {
12214 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12215
12216 xfree (al->excep_cond_expr);
12217 }
12218
12219 /* The vtable to be used in Ada catchpoint locations. */
12220
12221 static const struct bp_location_ops ada_catchpoint_location_ops =
12222 {
12223 ada_catchpoint_location_dtor
12224 };
12225
12226 /* An instance of this type is used to represent an Ada catchpoint.
12227 It includes a "struct breakpoint" as a kind of base class; users
12228 downcast to "struct breakpoint *" when needed. */
12229
12230 struct ada_catchpoint
12231 {
12232 /* The base class. */
12233 struct breakpoint base;
12234
12235 /* The name of the specific exception the user specified. */
12236 char *excep_string;
12237 };
12238
12239 /* Parse the exception condition string in the context of each of the
12240 catchpoint's locations, and store them for later evaluation. */
12241
12242 static void
12243 create_excep_cond_exprs (struct ada_catchpoint *c)
12244 {
12245 struct cleanup *old_chain;
12246 struct bp_location *bl;
12247 char *cond_string;
12248
12249 /* Nothing to do if there's no specific exception to catch. */
12250 if (c->excep_string == NULL)
12251 return;
12252
12253 /* Same if there are no locations... */
12254 if (c->base.loc == NULL)
12255 return;
12256
12257 /* Compute the condition expression in text form, from the specific
12258 expection we want to catch. */
12259 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12260 old_chain = make_cleanup (xfree, cond_string);
12261
12262 /* Iterate over all the catchpoint's locations, and parse an
12263 expression for each. */
12264 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12265 {
12266 struct ada_catchpoint_location *ada_loc
12267 = (struct ada_catchpoint_location *) bl;
12268 struct expression *exp = NULL;
12269
12270 if (!bl->shlib_disabled)
12271 {
12272 const char *s;
12273
12274 s = cond_string;
12275 TRY
12276 {
12277 exp = parse_exp_1 (&s, bl->address,
12278 block_for_pc (bl->address), 0);
12279 }
12280 CATCH (e, RETURN_MASK_ERROR)
12281 {
12282 warning (_("failed to reevaluate internal exception condition "
12283 "for catchpoint %d: %s"),
12284 c->base.number, e.message);
12285 /* There is a bug in GCC on sparc-solaris when building with
12286 optimization which causes EXP to change unexpectedly
12287 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=56982).
12288 The problem should be fixed starting with GCC 4.9.
12289 In the meantime, work around it by forcing EXP back
12290 to NULL. */
12291 exp = NULL;
12292 }
12293 END_CATCH
12294 }
12295
12296 ada_loc->excep_cond_expr = exp;
12297 }
12298
12299 do_cleanups (old_chain);
12300 }
12301
12302 /* Implement the DTOR method in the breakpoint_ops structure for all
12303 exception catchpoint kinds. */
12304
12305 static void
12306 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12307 {
12308 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12309
12310 xfree (c->excep_string);
12311
12312 bkpt_breakpoint_ops.dtor (b);
12313 }
12314
12315 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12316 structure for all exception catchpoint kinds. */
12317
12318 static struct bp_location *
12319 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12320 struct breakpoint *self)
12321 {
12322 struct ada_catchpoint_location *loc;
12323
12324 loc = XNEW (struct ada_catchpoint_location);
12325 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12326 loc->excep_cond_expr = NULL;
12327 return &loc->base;
12328 }
12329
12330 /* Implement the RE_SET method in the breakpoint_ops structure for all
12331 exception catchpoint kinds. */
12332
12333 static void
12334 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12335 {
12336 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12337
12338 /* Call the base class's method. This updates the catchpoint's
12339 locations. */
12340 bkpt_breakpoint_ops.re_set (b);
12341
12342 /* Reparse the exception conditional expressions. One for each
12343 location. */
12344 create_excep_cond_exprs (c);
12345 }
12346
12347 /* Returns true if we should stop for this breakpoint hit. If the
12348 user specified a specific exception, we only want to cause a stop
12349 if the program thrown that exception. */
12350
12351 static int
12352 should_stop_exception (const struct bp_location *bl)
12353 {
12354 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12355 const struct ada_catchpoint_location *ada_loc
12356 = (const struct ada_catchpoint_location *) bl;
12357 int stop;
12358
12359 /* With no specific exception, should always stop. */
12360 if (c->excep_string == NULL)
12361 return 1;
12362
12363 if (ada_loc->excep_cond_expr == NULL)
12364 {
12365 /* We will have a NULL expression if back when we were creating
12366 the expressions, this location's had failed to parse. */
12367 return 1;
12368 }
12369
12370 stop = 1;
12371 TRY
12372 {
12373 struct value *mark;
12374
12375 mark = value_mark ();
12376 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
12377 value_free_to_mark (mark);
12378 }
12379 CATCH (ex, RETURN_MASK_ALL)
12380 {
12381 exception_fprintf (gdb_stderr, ex,
12382 _("Error in testing exception condition:\n"));
12383 }
12384 END_CATCH
12385
12386 return stop;
12387 }
12388
12389 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12390 for all exception catchpoint kinds. */
12391
12392 static void
12393 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12394 {
12395 bs->stop = should_stop_exception (bs->bp_location_at);
12396 }
12397
12398 /* Implement the PRINT_IT method in the breakpoint_ops structure
12399 for all exception catchpoint kinds. */
12400
12401 static enum print_stop_action
12402 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12403 {
12404 struct ui_out *uiout = current_uiout;
12405 struct breakpoint *b = bs->breakpoint_at;
12406
12407 annotate_catchpoint (b->number);
12408
12409 if (ui_out_is_mi_like_p (uiout))
12410 {
12411 ui_out_field_string (uiout, "reason",
12412 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12413 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12414 }
12415
12416 ui_out_text (uiout,
12417 b->disposition == disp_del ? "\nTemporary catchpoint "
12418 : "\nCatchpoint ");
12419 ui_out_field_int (uiout, "bkptno", b->number);
12420 ui_out_text (uiout, ", ");
12421
12422 switch (ex)
12423 {
12424 case ada_catch_exception:
12425 case ada_catch_exception_unhandled:
12426 {
12427 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12428 char exception_name[256];
12429
12430 if (addr != 0)
12431 {
12432 read_memory (addr, (gdb_byte *) exception_name,
12433 sizeof (exception_name) - 1);
12434 exception_name [sizeof (exception_name) - 1] = '\0';
12435 }
12436 else
12437 {
12438 /* For some reason, we were unable to read the exception
12439 name. This could happen if the Runtime was compiled
12440 without debugging info, for instance. In that case,
12441 just replace the exception name by the generic string
12442 "exception" - it will read as "an exception" in the
12443 notification we are about to print. */
12444 memcpy (exception_name, "exception", sizeof ("exception"));
12445 }
12446 /* In the case of unhandled exception breakpoints, we print
12447 the exception name as "unhandled EXCEPTION_NAME", to make
12448 it clearer to the user which kind of catchpoint just got
12449 hit. We used ui_out_text to make sure that this extra
12450 info does not pollute the exception name in the MI case. */
12451 if (ex == ada_catch_exception_unhandled)
12452 ui_out_text (uiout, "unhandled ");
12453 ui_out_field_string (uiout, "exception-name", exception_name);
12454 }
12455 break;
12456 case ada_catch_assert:
12457 /* In this case, the name of the exception is not really
12458 important. Just print "failed assertion" to make it clearer
12459 that his program just hit an assertion-failure catchpoint.
12460 We used ui_out_text because this info does not belong in
12461 the MI output. */
12462 ui_out_text (uiout, "failed assertion");
12463 break;
12464 }
12465 ui_out_text (uiout, " at ");
12466 ada_find_printable_frame (get_current_frame ());
12467
12468 return PRINT_SRC_AND_LOC;
12469 }
12470
12471 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12472 for all exception catchpoint kinds. */
12473
12474 static void
12475 print_one_exception (enum ada_exception_catchpoint_kind ex,
12476 struct breakpoint *b, struct bp_location **last_loc)
12477 {
12478 struct ui_out *uiout = current_uiout;
12479 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12480 struct value_print_options opts;
12481
12482 get_user_print_options (&opts);
12483 if (opts.addressprint)
12484 {
12485 annotate_field (4);
12486 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12487 }
12488
12489 annotate_field (5);
12490 *last_loc = b->loc;
12491 switch (ex)
12492 {
12493 case ada_catch_exception:
12494 if (c->excep_string != NULL)
12495 {
12496 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12497
12498 ui_out_field_string (uiout, "what", msg);
12499 xfree (msg);
12500 }
12501 else
12502 ui_out_field_string (uiout, "what", "all Ada exceptions");
12503
12504 break;
12505
12506 case ada_catch_exception_unhandled:
12507 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12508 break;
12509
12510 case ada_catch_assert:
12511 ui_out_field_string (uiout, "what", "failed Ada assertions");
12512 break;
12513
12514 default:
12515 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12516 break;
12517 }
12518 }
12519
12520 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12521 for all exception catchpoint kinds. */
12522
12523 static void
12524 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12525 struct breakpoint *b)
12526 {
12527 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12528 struct ui_out *uiout = current_uiout;
12529
12530 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12531 : _("Catchpoint "));
12532 ui_out_field_int (uiout, "bkptno", b->number);
12533 ui_out_text (uiout, ": ");
12534
12535 switch (ex)
12536 {
12537 case ada_catch_exception:
12538 if (c->excep_string != NULL)
12539 {
12540 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12541 struct cleanup *old_chain = make_cleanup (xfree, info);
12542
12543 ui_out_text (uiout, info);
12544 do_cleanups (old_chain);
12545 }
12546 else
12547 ui_out_text (uiout, _("all Ada exceptions"));
12548 break;
12549
12550 case ada_catch_exception_unhandled:
12551 ui_out_text (uiout, _("unhandled Ada exceptions"));
12552 break;
12553
12554 case ada_catch_assert:
12555 ui_out_text (uiout, _("failed Ada assertions"));
12556 break;
12557
12558 default:
12559 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12560 break;
12561 }
12562 }
12563
12564 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12565 for all exception catchpoint kinds. */
12566
12567 static void
12568 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12569 struct breakpoint *b, struct ui_file *fp)
12570 {
12571 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12572
12573 switch (ex)
12574 {
12575 case ada_catch_exception:
12576 fprintf_filtered (fp, "catch exception");
12577 if (c->excep_string != NULL)
12578 fprintf_filtered (fp, " %s", c->excep_string);
12579 break;
12580
12581 case ada_catch_exception_unhandled:
12582 fprintf_filtered (fp, "catch exception unhandled");
12583 break;
12584
12585 case ada_catch_assert:
12586 fprintf_filtered (fp, "catch assert");
12587 break;
12588
12589 default:
12590 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12591 }
12592 print_recreate_thread (b, fp);
12593 }
12594
12595 /* Virtual table for "catch exception" breakpoints. */
12596
12597 static void
12598 dtor_catch_exception (struct breakpoint *b)
12599 {
12600 dtor_exception (ada_catch_exception, b);
12601 }
12602
12603 static struct bp_location *
12604 allocate_location_catch_exception (struct breakpoint *self)
12605 {
12606 return allocate_location_exception (ada_catch_exception, self);
12607 }
12608
12609 static void
12610 re_set_catch_exception (struct breakpoint *b)
12611 {
12612 re_set_exception (ada_catch_exception, b);
12613 }
12614
12615 static void
12616 check_status_catch_exception (bpstat bs)
12617 {
12618 check_status_exception (ada_catch_exception, bs);
12619 }
12620
12621 static enum print_stop_action
12622 print_it_catch_exception (bpstat bs)
12623 {
12624 return print_it_exception (ada_catch_exception, bs);
12625 }
12626
12627 static void
12628 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12629 {
12630 print_one_exception (ada_catch_exception, b, last_loc);
12631 }
12632
12633 static void
12634 print_mention_catch_exception (struct breakpoint *b)
12635 {
12636 print_mention_exception (ada_catch_exception, b);
12637 }
12638
12639 static void
12640 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12641 {
12642 print_recreate_exception (ada_catch_exception, b, fp);
12643 }
12644
12645 static struct breakpoint_ops catch_exception_breakpoint_ops;
12646
12647 /* Virtual table for "catch exception unhandled" breakpoints. */
12648
12649 static void
12650 dtor_catch_exception_unhandled (struct breakpoint *b)
12651 {
12652 dtor_exception (ada_catch_exception_unhandled, b);
12653 }
12654
12655 static struct bp_location *
12656 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12657 {
12658 return allocate_location_exception (ada_catch_exception_unhandled, self);
12659 }
12660
12661 static void
12662 re_set_catch_exception_unhandled (struct breakpoint *b)
12663 {
12664 re_set_exception (ada_catch_exception_unhandled, b);
12665 }
12666
12667 static void
12668 check_status_catch_exception_unhandled (bpstat bs)
12669 {
12670 check_status_exception (ada_catch_exception_unhandled, bs);
12671 }
12672
12673 static enum print_stop_action
12674 print_it_catch_exception_unhandled (bpstat bs)
12675 {
12676 return print_it_exception (ada_catch_exception_unhandled, bs);
12677 }
12678
12679 static void
12680 print_one_catch_exception_unhandled (struct breakpoint *b,
12681 struct bp_location **last_loc)
12682 {
12683 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12684 }
12685
12686 static void
12687 print_mention_catch_exception_unhandled (struct breakpoint *b)
12688 {
12689 print_mention_exception (ada_catch_exception_unhandled, b);
12690 }
12691
12692 static void
12693 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12694 struct ui_file *fp)
12695 {
12696 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12697 }
12698
12699 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12700
12701 /* Virtual table for "catch assert" breakpoints. */
12702
12703 static void
12704 dtor_catch_assert (struct breakpoint *b)
12705 {
12706 dtor_exception (ada_catch_assert, b);
12707 }
12708
12709 static struct bp_location *
12710 allocate_location_catch_assert (struct breakpoint *self)
12711 {
12712 return allocate_location_exception (ada_catch_assert, self);
12713 }
12714
12715 static void
12716 re_set_catch_assert (struct breakpoint *b)
12717 {
12718 re_set_exception (ada_catch_assert, b);
12719 }
12720
12721 static void
12722 check_status_catch_assert (bpstat bs)
12723 {
12724 check_status_exception (ada_catch_assert, bs);
12725 }
12726
12727 static enum print_stop_action
12728 print_it_catch_assert (bpstat bs)
12729 {
12730 return print_it_exception (ada_catch_assert, bs);
12731 }
12732
12733 static void
12734 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12735 {
12736 print_one_exception (ada_catch_assert, b, last_loc);
12737 }
12738
12739 static void
12740 print_mention_catch_assert (struct breakpoint *b)
12741 {
12742 print_mention_exception (ada_catch_assert, b);
12743 }
12744
12745 static void
12746 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12747 {
12748 print_recreate_exception (ada_catch_assert, b, fp);
12749 }
12750
12751 static struct breakpoint_ops catch_assert_breakpoint_ops;
12752
12753 /* Return a newly allocated copy of the first space-separated token
12754 in ARGSP, and then adjust ARGSP to point immediately after that
12755 token.
12756
12757 Return NULL if ARGPS does not contain any more tokens. */
12758
12759 static char *
12760 ada_get_next_arg (char **argsp)
12761 {
12762 char *args = *argsp;
12763 char *end;
12764 char *result;
12765
12766 args = skip_spaces (args);
12767 if (args[0] == '\0')
12768 return NULL; /* No more arguments. */
12769
12770 /* Find the end of the current argument. */
12771
12772 end = skip_to_space (args);
12773
12774 /* Adjust ARGSP to point to the start of the next argument. */
12775
12776 *argsp = end;
12777
12778 /* Make a copy of the current argument and return it. */
12779
12780 result = (char *) xmalloc (end - args + 1);
12781 strncpy (result, args, end - args);
12782 result[end - args] = '\0';
12783
12784 return result;
12785 }
12786
12787 /* Split the arguments specified in a "catch exception" command.
12788 Set EX to the appropriate catchpoint type.
12789 Set EXCEP_STRING to the name of the specific exception if
12790 specified by the user.
12791 If a condition is found at the end of the arguments, the condition
12792 expression is stored in COND_STRING (memory must be deallocated
12793 after use). Otherwise COND_STRING is set to NULL. */
12794
12795 static void
12796 catch_ada_exception_command_split (char *args,
12797 enum ada_exception_catchpoint_kind *ex,
12798 char **excep_string,
12799 char **cond_string)
12800 {
12801 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12802 char *exception_name;
12803 char *cond = NULL;
12804
12805 exception_name = ada_get_next_arg (&args);
12806 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12807 {
12808 /* This is not an exception name; this is the start of a condition
12809 expression for a catchpoint on all exceptions. So, "un-get"
12810 this token, and set exception_name to NULL. */
12811 xfree (exception_name);
12812 exception_name = NULL;
12813 args -= 2;
12814 }
12815 make_cleanup (xfree, exception_name);
12816
12817 /* Check to see if we have a condition. */
12818
12819 args = skip_spaces (args);
12820 if (startswith (args, "if")
12821 && (isspace (args[2]) || args[2] == '\0'))
12822 {
12823 args += 2;
12824 args = skip_spaces (args);
12825
12826 if (args[0] == '\0')
12827 error (_("Condition missing after `if' keyword"));
12828 cond = xstrdup (args);
12829 make_cleanup (xfree, cond);
12830
12831 args += strlen (args);
12832 }
12833
12834 /* Check that we do not have any more arguments. Anything else
12835 is unexpected. */
12836
12837 if (args[0] != '\0')
12838 error (_("Junk at end of expression"));
12839
12840 discard_cleanups (old_chain);
12841
12842 if (exception_name == NULL)
12843 {
12844 /* Catch all exceptions. */
12845 *ex = ada_catch_exception;
12846 *excep_string = NULL;
12847 }
12848 else if (strcmp (exception_name, "unhandled") == 0)
12849 {
12850 /* Catch unhandled exceptions. */
12851 *ex = ada_catch_exception_unhandled;
12852 *excep_string = NULL;
12853 }
12854 else
12855 {
12856 /* Catch a specific exception. */
12857 *ex = ada_catch_exception;
12858 *excep_string = exception_name;
12859 }
12860 *cond_string = cond;
12861 }
12862
12863 /* Return the name of the symbol on which we should break in order to
12864 implement a catchpoint of the EX kind. */
12865
12866 static const char *
12867 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12868 {
12869 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12870
12871 gdb_assert (data->exception_info != NULL);
12872
12873 switch (ex)
12874 {
12875 case ada_catch_exception:
12876 return (data->exception_info->catch_exception_sym);
12877 break;
12878 case ada_catch_exception_unhandled:
12879 return (data->exception_info->catch_exception_unhandled_sym);
12880 break;
12881 case ada_catch_assert:
12882 return (data->exception_info->catch_assert_sym);
12883 break;
12884 default:
12885 internal_error (__FILE__, __LINE__,
12886 _("unexpected catchpoint kind (%d)"), ex);
12887 }
12888 }
12889
12890 /* Return the breakpoint ops "virtual table" used for catchpoints
12891 of the EX kind. */
12892
12893 static const struct breakpoint_ops *
12894 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12895 {
12896 switch (ex)
12897 {
12898 case ada_catch_exception:
12899 return (&catch_exception_breakpoint_ops);
12900 break;
12901 case ada_catch_exception_unhandled:
12902 return (&catch_exception_unhandled_breakpoint_ops);
12903 break;
12904 case ada_catch_assert:
12905 return (&catch_assert_breakpoint_ops);
12906 break;
12907 default:
12908 internal_error (__FILE__, __LINE__,
12909 _("unexpected catchpoint kind (%d)"), ex);
12910 }
12911 }
12912
12913 /* Return the condition that will be used to match the current exception
12914 being raised with the exception that the user wants to catch. This
12915 assumes that this condition is used when the inferior just triggered
12916 an exception catchpoint.
12917
12918 The string returned is a newly allocated string that needs to be
12919 deallocated later. */
12920
12921 static char *
12922 ada_exception_catchpoint_cond_string (const char *excep_string)
12923 {
12924 int i;
12925
12926 /* The standard exceptions are a special case. They are defined in
12927 runtime units that have been compiled without debugging info; if
12928 EXCEP_STRING is the not-fully-qualified name of a standard
12929 exception (e.g. "constraint_error") then, during the evaluation
12930 of the condition expression, the symbol lookup on this name would
12931 *not* return this standard exception. The catchpoint condition
12932 may then be set only on user-defined exceptions which have the
12933 same not-fully-qualified name (e.g. my_package.constraint_error).
12934
12935 To avoid this unexcepted behavior, these standard exceptions are
12936 systematically prefixed by "standard". This means that "catch
12937 exception constraint_error" is rewritten into "catch exception
12938 standard.constraint_error".
12939
12940 If an exception named contraint_error is defined in another package of
12941 the inferior program, then the only way to specify this exception as a
12942 breakpoint condition is to use its fully-qualified named:
12943 e.g. my_package.constraint_error. */
12944
12945 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12946 {
12947 if (strcmp (standard_exc [i], excep_string) == 0)
12948 {
12949 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12950 excep_string);
12951 }
12952 }
12953 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12954 }
12955
12956 /* Return the symtab_and_line that should be used to insert an exception
12957 catchpoint of the TYPE kind.
12958
12959 EXCEP_STRING should contain the name of a specific exception that
12960 the catchpoint should catch, or NULL otherwise.
12961
12962 ADDR_STRING returns the name of the function where the real
12963 breakpoint that implements the catchpoints is set, depending on the
12964 type of catchpoint we need to create. */
12965
12966 static struct symtab_and_line
12967 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12968 char **addr_string, const struct breakpoint_ops **ops)
12969 {
12970 const char *sym_name;
12971 struct symbol *sym;
12972
12973 /* First, find out which exception support info to use. */
12974 ada_exception_support_info_sniffer ();
12975
12976 /* Then lookup the function on which we will break in order to catch
12977 the Ada exceptions requested by the user. */
12978 sym_name = ada_exception_sym_name (ex);
12979 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12980
12981 /* We can assume that SYM is not NULL at this stage. If the symbol
12982 did not exist, ada_exception_support_info_sniffer would have
12983 raised an exception.
12984
12985 Also, ada_exception_support_info_sniffer should have already
12986 verified that SYM is a function symbol. */
12987 gdb_assert (sym != NULL);
12988 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12989
12990 /* Set ADDR_STRING. */
12991 *addr_string = xstrdup (sym_name);
12992
12993 /* Set OPS. */
12994 *ops = ada_exception_breakpoint_ops (ex);
12995
12996 return find_function_start_sal (sym, 1);
12997 }
12998
12999 /* Create an Ada exception catchpoint.
13000
13001 EX_KIND is the kind of exception catchpoint to be created.
13002
13003 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13004 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13005 of the exception to which this catchpoint applies. When not NULL,
13006 the string must be allocated on the heap, and its deallocation
13007 is no longer the responsibility of the caller.
13008
13009 COND_STRING, if not NULL, is the catchpoint condition. This string
13010 must be allocated on the heap, and its deallocation is no longer
13011 the responsibility of the caller.
13012
13013 TEMPFLAG, if nonzero, means that the underlying breakpoint
13014 should be temporary.
13015
13016 FROM_TTY is the usual argument passed to all commands implementations. */
13017
13018 void
13019 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13020 enum ada_exception_catchpoint_kind ex_kind,
13021 char *excep_string,
13022 char *cond_string,
13023 int tempflag,
13024 int disabled,
13025 int from_tty)
13026 {
13027 struct ada_catchpoint *c;
13028 char *addr_string = NULL;
13029 const struct breakpoint_ops *ops = NULL;
13030 struct symtab_and_line sal
13031 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13032
13033 c = XNEW (struct ada_catchpoint);
13034 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13035 ops, tempflag, disabled, from_tty);
13036 c->excep_string = excep_string;
13037 create_excep_cond_exprs (c);
13038 if (cond_string != NULL)
13039 set_breakpoint_condition (&c->base, cond_string, from_tty);
13040 install_breakpoint (0, &c->base, 1);
13041 }
13042
13043 /* Implement the "catch exception" command. */
13044
13045 static void
13046 catch_ada_exception_command (char *arg, int from_tty,
13047 struct cmd_list_element *command)
13048 {
13049 struct gdbarch *gdbarch = get_current_arch ();
13050 int tempflag;
13051 enum ada_exception_catchpoint_kind ex_kind;
13052 char *excep_string = NULL;
13053 char *cond_string = NULL;
13054
13055 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13056
13057 if (!arg)
13058 arg = "";
13059 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13060 &cond_string);
13061 create_ada_exception_catchpoint (gdbarch, ex_kind,
13062 excep_string, cond_string,
13063 tempflag, 1 /* enabled */,
13064 from_tty);
13065 }
13066
13067 /* Split the arguments specified in a "catch assert" command.
13068
13069 ARGS contains the command's arguments (or the empty string if
13070 no arguments were passed).
13071
13072 If ARGS contains a condition, set COND_STRING to that condition
13073 (the memory needs to be deallocated after use). */
13074
13075 static void
13076 catch_ada_assert_command_split (char *args, char **cond_string)
13077 {
13078 args = skip_spaces (args);
13079
13080 /* Check whether a condition was provided. */
13081 if (startswith (args, "if")
13082 && (isspace (args[2]) || args[2] == '\0'))
13083 {
13084 args += 2;
13085 args = skip_spaces (args);
13086 if (args[0] == '\0')
13087 error (_("condition missing after `if' keyword"));
13088 *cond_string = xstrdup (args);
13089 }
13090
13091 /* Otherwise, there should be no other argument at the end of
13092 the command. */
13093 else if (args[0] != '\0')
13094 error (_("Junk at end of arguments."));
13095 }
13096
13097 /* Implement the "catch assert" command. */
13098
13099 static void
13100 catch_assert_command (char *arg, int from_tty,
13101 struct cmd_list_element *command)
13102 {
13103 struct gdbarch *gdbarch = get_current_arch ();
13104 int tempflag;
13105 char *cond_string = NULL;
13106
13107 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13108
13109 if (!arg)
13110 arg = "";
13111 catch_ada_assert_command_split (arg, &cond_string);
13112 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13113 NULL, cond_string,
13114 tempflag, 1 /* enabled */,
13115 from_tty);
13116 }
13117
13118 /* Return non-zero if the symbol SYM is an Ada exception object. */
13119
13120 static int
13121 ada_is_exception_sym (struct symbol *sym)
13122 {
13123 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13124
13125 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13126 && SYMBOL_CLASS (sym) != LOC_BLOCK
13127 && SYMBOL_CLASS (sym) != LOC_CONST
13128 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13129 && type_name != NULL && strcmp (type_name, "exception") == 0);
13130 }
13131
13132 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13133 Ada exception object. This matches all exceptions except the ones
13134 defined by the Ada language. */
13135
13136 static int
13137 ada_is_non_standard_exception_sym (struct symbol *sym)
13138 {
13139 int i;
13140
13141 if (!ada_is_exception_sym (sym))
13142 return 0;
13143
13144 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13145 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13146 return 0; /* A standard exception. */
13147
13148 /* Numeric_Error is also a standard exception, so exclude it.
13149 See the STANDARD_EXC description for more details as to why
13150 this exception is not listed in that array. */
13151 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13152 return 0;
13153
13154 return 1;
13155 }
13156
13157 /* A helper function for qsort, comparing two struct ada_exc_info
13158 objects.
13159
13160 The comparison is determined first by exception name, and then
13161 by exception address. */
13162
13163 static int
13164 compare_ada_exception_info (const void *a, const void *b)
13165 {
13166 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13167 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13168 int result;
13169
13170 result = strcmp (exc_a->name, exc_b->name);
13171 if (result != 0)
13172 return result;
13173
13174 if (exc_a->addr < exc_b->addr)
13175 return -1;
13176 if (exc_a->addr > exc_b->addr)
13177 return 1;
13178
13179 return 0;
13180 }
13181
13182 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13183 routine, but keeping the first SKIP elements untouched.
13184
13185 All duplicates are also removed. */
13186
13187 static void
13188 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13189 int skip)
13190 {
13191 struct ada_exc_info *to_sort
13192 = VEC_address (ada_exc_info, *exceptions) + skip;
13193 int to_sort_len
13194 = VEC_length (ada_exc_info, *exceptions) - skip;
13195 int i, j;
13196
13197 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13198 compare_ada_exception_info);
13199
13200 for (i = 1, j = 1; i < to_sort_len; i++)
13201 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13202 to_sort[j++] = to_sort[i];
13203 to_sort_len = j;
13204 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13205 }
13206
13207 /* A function intended as the "name_matcher" callback in the struct
13208 quick_symbol_functions' expand_symtabs_matching method.
13209
13210 SEARCH_NAME is the symbol's search name.
13211
13212 If USER_DATA is not NULL, it is a pointer to a regext_t object
13213 used to match the symbol (by natural name). Otherwise, when USER_DATA
13214 is null, no filtering is performed, and all symbols are a positive
13215 match. */
13216
13217 static int
13218 ada_exc_search_name_matches (const char *search_name, void *user_data)
13219 {
13220 regex_t *preg = (regex_t *) user_data;
13221
13222 if (preg == NULL)
13223 return 1;
13224
13225 /* In Ada, the symbol "search name" is a linkage name, whereas
13226 the regular expression used to do the matching refers to
13227 the natural name. So match against the decoded name. */
13228 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13229 }
13230
13231 /* Add all exceptions defined by the Ada standard whose name match
13232 a regular expression.
13233
13234 If PREG is not NULL, then this regexp_t object is used to
13235 perform the symbol name matching. Otherwise, no name-based
13236 filtering is performed.
13237
13238 EXCEPTIONS is a vector of exceptions to which matching exceptions
13239 gets pushed. */
13240
13241 static void
13242 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13243 {
13244 int i;
13245
13246 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13247 {
13248 if (preg == NULL
13249 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13250 {
13251 struct bound_minimal_symbol msymbol
13252 = ada_lookup_simple_minsym (standard_exc[i]);
13253
13254 if (msymbol.minsym != NULL)
13255 {
13256 struct ada_exc_info info
13257 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13258
13259 VEC_safe_push (ada_exc_info, *exceptions, &info);
13260 }
13261 }
13262 }
13263 }
13264
13265 /* Add all Ada exceptions defined locally and accessible from the given
13266 FRAME.
13267
13268 If PREG is not NULL, then this regexp_t object is used to
13269 perform the symbol name matching. Otherwise, no name-based
13270 filtering is performed.
13271
13272 EXCEPTIONS is a vector of exceptions to which matching exceptions
13273 gets pushed. */
13274
13275 static void
13276 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13277 VEC(ada_exc_info) **exceptions)
13278 {
13279 const struct block *block = get_frame_block (frame, 0);
13280
13281 while (block != 0)
13282 {
13283 struct block_iterator iter;
13284 struct symbol *sym;
13285
13286 ALL_BLOCK_SYMBOLS (block, iter, sym)
13287 {
13288 switch (SYMBOL_CLASS (sym))
13289 {
13290 case LOC_TYPEDEF:
13291 case LOC_BLOCK:
13292 case LOC_CONST:
13293 break;
13294 default:
13295 if (ada_is_exception_sym (sym))
13296 {
13297 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13298 SYMBOL_VALUE_ADDRESS (sym)};
13299
13300 VEC_safe_push (ada_exc_info, *exceptions, &info);
13301 }
13302 }
13303 }
13304 if (BLOCK_FUNCTION (block) != NULL)
13305 break;
13306 block = BLOCK_SUPERBLOCK (block);
13307 }
13308 }
13309
13310 /* Add all exceptions defined globally whose name name match
13311 a regular expression, excluding standard exceptions.
13312
13313 The reason we exclude standard exceptions is that they need
13314 to be handled separately: Standard exceptions are defined inside
13315 a runtime unit which is normally not compiled with debugging info,
13316 and thus usually do not show up in our symbol search. However,
13317 if the unit was in fact built with debugging info, we need to
13318 exclude them because they would duplicate the entry we found
13319 during the special loop that specifically searches for those
13320 standard exceptions.
13321
13322 If PREG is not NULL, then this regexp_t object is used to
13323 perform the symbol name matching. Otherwise, no name-based
13324 filtering is performed.
13325
13326 EXCEPTIONS is a vector of exceptions to which matching exceptions
13327 gets pushed. */
13328
13329 static void
13330 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13331 {
13332 struct objfile *objfile;
13333 struct compunit_symtab *s;
13334
13335 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13336 VARIABLES_DOMAIN, preg);
13337
13338 ALL_COMPUNITS (objfile, s)
13339 {
13340 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13341 int i;
13342
13343 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13344 {
13345 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13346 struct block_iterator iter;
13347 struct symbol *sym;
13348
13349 ALL_BLOCK_SYMBOLS (b, iter, sym)
13350 if (ada_is_non_standard_exception_sym (sym)
13351 && (preg == NULL
13352 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13353 0, NULL, 0) == 0))
13354 {
13355 struct ada_exc_info info
13356 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13357
13358 VEC_safe_push (ada_exc_info, *exceptions, &info);
13359 }
13360 }
13361 }
13362 }
13363
13364 /* Implements ada_exceptions_list with the regular expression passed
13365 as a regex_t, rather than a string.
13366
13367 If not NULL, PREG is used to filter out exceptions whose names
13368 do not match. Otherwise, all exceptions are listed. */
13369
13370 static VEC(ada_exc_info) *
13371 ada_exceptions_list_1 (regex_t *preg)
13372 {
13373 VEC(ada_exc_info) *result = NULL;
13374 struct cleanup *old_chain
13375 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13376 int prev_len;
13377
13378 /* First, list the known standard exceptions. These exceptions
13379 need to be handled separately, as they are usually defined in
13380 runtime units that have been compiled without debugging info. */
13381
13382 ada_add_standard_exceptions (preg, &result);
13383
13384 /* Next, find all exceptions whose scope is local and accessible
13385 from the currently selected frame. */
13386
13387 if (has_stack_frames ())
13388 {
13389 prev_len = VEC_length (ada_exc_info, result);
13390 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13391 &result);
13392 if (VEC_length (ada_exc_info, result) > prev_len)
13393 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13394 }
13395
13396 /* Add all exceptions whose scope is global. */
13397
13398 prev_len = VEC_length (ada_exc_info, result);
13399 ada_add_global_exceptions (preg, &result);
13400 if (VEC_length (ada_exc_info, result) > prev_len)
13401 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13402
13403 discard_cleanups (old_chain);
13404 return result;
13405 }
13406
13407 /* Return a vector of ada_exc_info.
13408
13409 If REGEXP is NULL, all exceptions are included in the result.
13410 Otherwise, it should contain a valid regular expression,
13411 and only the exceptions whose names match that regular expression
13412 are included in the result.
13413
13414 The exceptions are sorted in the following order:
13415 - Standard exceptions (defined by the Ada language), in
13416 alphabetical order;
13417 - Exceptions only visible from the current frame, in
13418 alphabetical order;
13419 - Exceptions whose scope is global, in alphabetical order. */
13420
13421 VEC(ada_exc_info) *
13422 ada_exceptions_list (const char *regexp)
13423 {
13424 VEC(ada_exc_info) *result = NULL;
13425 struct cleanup *old_chain = NULL;
13426 regex_t reg;
13427
13428 if (regexp != NULL)
13429 old_chain = compile_rx_or_error (&reg, regexp,
13430 _("invalid regular expression"));
13431
13432 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13433
13434 if (old_chain != NULL)
13435 do_cleanups (old_chain);
13436 return result;
13437 }
13438
13439 /* Implement the "info exceptions" command. */
13440
13441 static void
13442 info_exceptions_command (char *regexp, int from_tty)
13443 {
13444 VEC(ada_exc_info) *exceptions;
13445 struct cleanup *cleanup;
13446 struct gdbarch *gdbarch = get_current_arch ();
13447 int ix;
13448 struct ada_exc_info *info;
13449
13450 exceptions = ada_exceptions_list (regexp);
13451 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13452
13453 if (regexp != NULL)
13454 printf_filtered
13455 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13456 else
13457 printf_filtered (_("All defined Ada exceptions:\n"));
13458
13459 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13460 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13461
13462 do_cleanups (cleanup);
13463 }
13464
13465 /* Operators */
13466 /* Information about operators given special treatment in functions
13467 below. */
13468 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13469
13470 #define ADA_OPERATORS \
13471 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13472 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13473 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13474 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13475 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13476 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13477 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13478 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13479 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13480 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13481 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13482 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13483 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13484 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13485 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13486 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13487 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13488 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13489 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13490
13491 static void
13492 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13493 int *argsp)
13494 {
13495 switch (exp->elts[pc - 1].opcode)
13496 {
13497 default:
13498 operator_length_standard (exp, pc, oplenp, argsp);
13499 break;
13500
13501 #define OP_DEFN(op, len, args, binop) \
13502 case op: *oplenp = len; *argsp = args; break;
13503 ADA_OPERATORS;
13504 #undef OP_DEFN
13505
13506 case OP_AGGREGATE:
13507 *oplenp = 3;
13508 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13509 break;
13510
13511 case OP_CHOICES:
13512 *oplenp = 3;
13513 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13514 break;
13515 }
13516 }
13517
13518 /* Implementation of the exp_descriptor method operator_check. */
13519
13520 static int
13521 ada_operator_check (struct expression *exp, int pos,
13522 int (*objfile_func) (struct objfile *objfile, void *data),
13523 void *data)
13524 {
13525 const union exp_element *const elts = exp->elts;
13526 struct type *type = NULL;
13527
13528 switch (elts[pos].opcode)
13529 {
13530 case UNOP_IN_RANGE:
13531 case UNOP_QUAL:
13532 type = elts[pos + 1].type;
13533 break;
13534
13535 default:
13536 return operator_check_standard (exp, pos, objfile_func, data);
13537 }
13538
13539 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13540
13541 if (type && TYPE_OBJFILE (type)
13542 && (*objfile_func) (TYPE_OBJFILE (type), data))
13543 return 1;
13544
13545 return 0;
13546 }
13547
13548 static char *
13549 ada_op_name (enum exp_opcode opcode)
13550 {
13551 switch (opcode)
13552 {
13553 default:
13554 return op_name_standard (opcode);
13555
13556 #define OP_DEFN(op, len, args, binop) case op: return #op;
13557 ADA_OPERATORS;
13558 #undef OP_DEFN
13559
13560 case OP_AGGREGATE:
13561 return "OP_AGGREGATE";
13562 case OP_CHOICES:
13563 return "OP_CHOICES";
13564 case OP_NAME:
13565 return "OP_NAME";
13566 }
13567 }
13568
13569 /* As for operator_length, but assumes PC is pointing at the first
13570 element of the operator, and gives meaningful results only for the
13571 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13572
13573 static void
13574 ada_forward_operator_length (struct expression *exp, int pc,
13575 int *oplenp, int *argsp)
13576 {
13577 switch (exp->elts[pc].opcode)
13578 {
13579 default:
13580 *oplenp = *argsp = 0;
13581 break;
13582
13583 #define OP_DEFN(op, len, args, binop) \
13584 case op: *oplenp = len; *argsp = args; break;
13585 ADA_OPERATORS;
13586 #undef OP_DEFN
13587
13588 case OP_AGGREGATE:
13589 *oplenp = 3;
13590 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13591 break;
13592
13593 case OP_CHOICES:
13594 *oplenp = 3;
13595 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13596 break;
13597
13598 case OP_STRING:
13599 case OP_NAME:
13600 {
13601 int len = longest_to_int (exp->elts[pc + 1].longconst);
13602
13603 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13604 *argsp = 0;
13605 break;
13606 }
13607 }
13608 }
13609
13610 static int
13611 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13612 {
13613 enum exp_opcode op = exp->elts[elt].opcode;
13614 int oplen, nargs;
13615 int pc = elt;
13616 int i;
13617
13618 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13619
13620 switch (op)
13621 {
13622 /* Ada attributes ('Foo). */
13623 case OP_ATR_FIRST:
13624 case OP_ATR_LAST:
13625 case OP_ATR_LENGTH:
13626 case OP_ATR_IMAGE:
13627 case OP_ATR_MAX:
13628 case OP_ATR_MIN:
13629 case OP_ATR_MODULUS:
13630 case OP_ATR_POS:
13631 case OP_ATR_SIZE:
13632 case OP_ATR_TAG:
13633 case OP_ATR_VAL:
13634 break;
13635
13636 case UNOP_IN_RANGE:
13637 case UNOP_QUAL:
13638 /* XXX: gdb_sprint_host_address, type_sprint */
13639 fprintf_filtered (stream, _("Type @"));
13640 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13641 fprintf_filtered (stream, " (");
13642 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13643 fprintf_filtered (stream, ")");
13644 break;
13645 case BINOP_IN_BOUNDS:
13646 fprintf_filtered (stream, " (%d)",
13647 longest_to_int (exp->elts[pc + 2].longconst));
13648 break;
13649 case TERNOP_IN_RANGE:
13650 break;
13651
13652 case OP_AGGREGATE:
13653 case OP_OTHERS:
13654 case OP_DISCRETE_RANGE:
13655 case OP_POSITIONAL:
13656 case OP_CHOICES:
13657 break;
13658
13659 case OP_NAME:
13660 case OP_STRING:
13661 {
13662 char *name = &exp->elts[elt + 2].string;
13663 int len = longest_to_int (exp->elts[elt + 1].longconst);
13664
13665 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13666 break;
13667 }
13668
13669 default:
13670 return dump_subexp_body_standard (exp, stream, elt);
13671 }
13672
13673 elt += oplen;
13674 for (i = 0; i < nargs; i += 1)
13675 elt = dump_subexp (exp, stream, elt);
13676
13677 return elt;
13678 }
13679
13680 /* The Ada extension of print_subexp (q.v.). */
13681
13682 static void
13683 ada_print_subexp (struct expression *exp, int *pos,
13684 struct ui_file *stream, enum precedence prec)
13685 {
13686 int oplen, nargs, i;
13687 int pc = *pos;
13688 enum exp_opcode op = exp->elts[pc].opcode;
13689
13690 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13691
13692 *pos += oplen;
13693 switch (op)
13694 {
13695 default:
13696 *pos -= oplen;
13697 print_subexp_standard (exp, pos, stream, prec);
13698 return;
13699
13700 case OP_VAR_VALUE:
13701 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13702 return;
13703
13704 case BINOP_IN_BOUNDS:
13705 /* XXX: sprint_subexp */
13706 print_subexp (exp, pos, stream, PREC_SUFFIX);
13707 fputs_filtered (" in ", stream);
13708 print_subexp (exp, pos, stream, PREC_SUFFIX);
13709 fputs_filtered ("'range", stream);
13710 if (exp->elts[pc + 1].longconst > 1)
13711 fprintf_filtered (stream, "(%ld)",
13712 (long) exp->elts[pc + 1].longconst);
13713 return;
13714
13715 case TERNOP_IN_RANGE:
13716 if (prec >= PREC_EQUAL)
13717 fputs_filtered ("(", stream);
13718 /* XXX: sprint_subexp */
13719 print_subexp (exp, pos, stream, PREC_SUFFIX);
13720 fputs_filtered (" in ", stream);
13721 print_subexp (exp, pos, stream, PREC_EQUAL);
13722 fputs_filtered (" .. ", stream);
13723 print_subexp (exp, pos, stream, PREC_EQUAL);
13724 if (prec >= PREC_EQUAL)
13725 fputs_filtered (")", stream);
13726 return;
13727
13728 case OP_ATR_FIRST:
13729 case OP_ATR_LAST:
13730 case OP_ATR_LENGTH:
13731 case OP_ATR_IMAGE:
13732 case OP_ATR_MAX:
13733 case OP_ATR_MIN:
13734 case OP_ATR_MODULUS:
13735 case OP_ATR_POS:
13736 case OP_ATR_SIZE:
13737 case OP_ATR_TAG:
13738 case OP_ATR_VAL:
13739 if (exp->elts[*pos].opcode == OP_TYPE)
13740 {
13741 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13742 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13743 &type_print_raw_options);
13744 *pos += 3;
13745 }
13746 else
13747 print_subexp (exp, pos, stream, PREC_SUFFIX);
13748 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13749 if (nargs > 1)
13750 {
13751 int tem;
13752
13753 for (tem = 1; tem < nargs; tem += 1)
13754 {
13755 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13756 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13757 }
13758 fputs_filtered (")", stream);
13759 }
13760 return;
13761
13762 case UNOP_QUAL:
13763 type_print (exp->elts[pc + 1].type, "", stream, 0);
13764 fputs_filtered ("'(", stream);
13765 print_subexp (exp, pos, stream, PREC_PREFIX);
13766 fputs_filtered (")", stream);
13767 return;
13768
13769 case UNOP_IN_RANGE:
13770 /* XXX: sprint_subexp */
13771 print_subexp (exp, pos, stream, PREC_SUFFIX);
13772 fputs_filtered (" in ", stream);
13773 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13774 &type_print_raw_options);
13775 return;
13776
13777 case OP_DISCRETE_RANGE:
13778 print_subexp (exp, pos, stream, PREC_SUFFIX);
13779 fputs_filtered ("..", stream);
13780 print_subexp (exp, pos, stream, PREC_SUFFIX);
13781 return;
13782
13783 case OP_OTHERS:
13784 fputs_filtered ("others => ", stream);
13785 print_subexp (exp, pos, stream, PREC_SUFFIX);
13786 return;
13787
13788 case OP_CHOICES:
13789 for (i = 0; i < nargs-1; i += 1)
13790 {
13791 if (i > 0)
13792 fputs_filtered ("|", stream);
13793 print_subexp (exp, pos, stream, PREC_SUFFIX);
13794 }
13795 fputs_filtered (" => ", stream);
13796 print_subexp (exp, pos, stream, PREC_SUFFIX);
13797 return;
13798
13799 case OP_POSITIONAL:
13800 print_subexp (exp, pos, stream, PREC_SUFFIX);
13801 return;
13802
13803 case OP_AGGREGATE:
13804 fputs_filtered ("(", stream);
13805 for (i = 0; i < nargs; i += 1)
13806 {
13807 if (i > 0)
13808 fputs_filtered (", ", stream);
13809 print_subexp (exp, pos, stream, PREC_SUFFIX);
13810 }
13811 fputs_filtered (")", stream);
13812 return;
13813 }
13814 }
13815
13816 /* Table mapping opcodes into strings for printing operators
13817 and precedences of the operators. */
13818
13819 static const struct op_print ada_op_print_tab[] = {
13820 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13821 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13822 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13823 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13824 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13825 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13826 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13827 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13828 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13829 {">=", BINOP_GEQ, PREC_ORDER, 0},
13830 {">", BINOP_GTR, PREC_ORDER, 0},
13831 {"<", BINOP_LESS, PREC_ORDER, 0},
13832 {">>", BINOP_RSH, PREC_SHIFT, 0},
13833 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13834 {"+", BINOP_ADD, PREC_ADD, 0},
13835 {"-", BINOP_SUB, PREC_ADD, 0},
13836 {"&", BINOP_CONCAT, PREC_ADD, 0},
13837 {"*", BINOP_MUL, PREC_MUL, 0},
13838 {"/", BINOP_DIV, PREC_MUL, 0},
13839 {"rem", BINOP_REM, PREC_MUL, 0},
13840 {"mod", BINOP_MOD, PREC_MUL, 0},
13841 {"**", BINOP_EXP, PREC_REPEAT, 0},
13842 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13843 {"-", UNOP_NEG, PREC_PREFIX, 0},
13844 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13845 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13846 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13847 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13848 {".all", UNOP_IND, PREC_SUFFIX, 1},
13849 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13850 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13851 {NULL, OP_NULL, PREC_SUFFIX, 0}
13852 };
13853 \f
13854 enum ada_primitive_types {
13855 ada_primitive_type_int,
13856 ada_primitive_type_long,
13857 ada_primitive_type_short,
13858 ada_primitive_type_char,
13859 ada_primitive_type_float,
13860 ada_primitive_type_double,
13861 ada_primitive_type_void,
13862 ada_primitive_type_long_long,
13863 ada_primitive_type_long_double,
13864 ada_primitive_type_natural,
13865 ada_primitive_type_positive,
13866 ada_primitive_type_system_address,
13867 nr_ada_primitive_types
13868 };
13869
13870 static void
13871 ada_language_arch_info (struct gdbarch *gdbarch,
13872 struct language_arch_info *lai)
13873 {
13874 const struct builtin_type *builtin = builtin_type (gdbarch);
13875
13876 lai->primitive_type_vector
13877 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13878 struct type *);
13879
13880 lai->primitive_type_vector [ada_primitive_type_int]
13881 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13882 0, "integer");
13883 lai->primitive_type_vector [ada_primitive_type_long]
13884 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13885 0, "long_integer");
13886 lai->primitive_type_vector [ada_primitive_type_short]
13887 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13888 0, "short_integer");
13889 lai->string_char_type
13890 = lai->primitive_type_vector [ada_primitive_type_char]
13891 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13892 lai->primitive_type_vector [ada_primitive_type_float]
13893 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13894 "float", NULL);
13895 lai->primitive_type_vector [ada_primitive_type_double]
13896 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13897 "long_float", NULL);
13898 lai->primitive_type_vector [ada_primitive_type_long_long]
13899 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13900 0, "long_long_integer");
13901 lai->primitive_type_vector [ada_primitive_type_long_double]
13902 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13903 "long_long_float", NULL);
13904 lai->primitive_type_vector [ada_primitive_type_natural]
13905 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13906 0, "natural");
13907 lai->primitive_type_vector [ada_primitive_type_positive]
13908 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13909 0, "positive");
13910 lai->primitive_type_vector [ada_primitive_type_void]
13911 = builtin->builtin_void;
13912
13913 lai->primitive_type_vector [ada_primitive_type_system_address]
13914 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13915 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13916 = "system__address";
13917
13918 lai->bool_type_symbol = NULL;
13919 lai->bool_type_default = builtin->builtin_bool;
13920 }
13921 \f
13922 /* Language vector */
13923
13924 /* Not really used, but needed in the ada_language_defn. */
13925
13926 static void
13927 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13928 {
13929 ada_emit_char (c, type, stream, quoter, 1);
13930 }
13931
13932 static int
13933 parse (struct parser_state *ps)
13934 {
13935 warnings_issued = 0;
13936 return ada_parse (ps);
13937 }
13938
13939 static const struct exp_descriptor ada_exp_descriptor = {
13940 ada_print_subexp,
13941 ada_operator_length,
13942 ada_operator_check,
13943 ada_op_name,
13944 ada_dump_subexp_body,
13945 ada_evaluate_subexp
13946 };
13947
13948 /* Implement the "la_get_symbol_name_cmp" language_defn method
13949 for Ada. */
13950
13951 static symbol_name_cmp_ftype
13952 ada_get_symbol_name_cmp (const char *lookup_name)
13953 {
13954 if (should_use_wild_match (lookup_name))
13955 return wild_match;
13956 else
13957 return compare_names;
13958 }
13959
13960 /* Implement the "la_read_var_value" language_defn method for Ada. */
13961
13962 static struct value *
13963 ada_read_var_value (struct symbol *var, const struct block *var_block,
13964 struct frame_info *frame)
13965 {
13966 const struct block *frame_block = NULL;
13967 struct symbol *renaming_sym = NULL;
13968
13969 /* The only case where default_read_var_value is not sufficient
13970 is when VAR is a renaming... */
13971 if (frame)
13972 frame_block = get_frame_block (frame, NULL);
13973 if (frame_block)
13974 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13975 if (renaming_sym != NULL)
13976 return ada_read_renaming_var_value (renaming_sym, frame_block);
13977
13978 /* This is a typical case where we expect the default_read_var_value
13979 function to work. */
13980 return default_read_var_value (var, var_block, frame);
13981 }
13982
13983 const struct language_defn ada_language_defn = {
13984 "ada", /* Language name */
13985 "Ada",
13986 language_ada,
13987 range_check_off,
13988 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13989 that's not quite what this means. */
13990 array_row_major,
13991 macro_expansion_no,
13992 &ada_exp_descriptor,
13993 parse,
13994 ada_error,
13995 resolve,
13996 ada_printchar, /* Print a character constant */
13997 ada_printstr, /* Function to print string constant */
13998 emit_char, /* Function to print single char (not used) */
13999 ada_print_type, /* Print a type using appropriate syntax */
14000 ada_print_typedef, /* Print a typedef using appropriate syntax */
14001 ada_val_print, /* Print a value using appropriate syntax */
14002 ada_value_print, /* Print a top-level value */
14003 ada_read_var_value, /* la_read_var_value */
14004 NULL, /* Language specific skip_trampoline */
14005 NULL, /* name_of_this */
14006 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14007 basic_lookup_transparent_type, /* lookup_transparent_type */
14008 ada_la_decode, /* Language specific symbol demangler */
14009 NULL, /* Language specific
14010 class_name_from_physname */
14011 ada_op_print_tab, /* expression operators for printing */
14012 0, /* c-style arrays */
14013 1, /* String lower bound */
14014 ada_get_gdb_completer_word_break_characters,
14015 ada_make_symbol_completion_list,
14016 ada_language_arch_info,
14017 ada_print_array_index,
14018 default_pass_by_reference,
14019 c_get_string,
14020 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14021 ada_iterate_over_symbols,
14022 &ada_varobj_ops,
14023 NULL,
14024 NULL,
14025 LANG_MAGIC
14026 };
14027
14028 /* Provide a prototype to silence -Wmissing-prototypes. */
14029 extern initialize_file_ftype _initialize_ada_language;
14030
14031 /* Command-list for the "set/show ada" prefix command. */
14032 static struct cmd_list_element *set_ada_list;
14033 static struct cmd_list_element *show_ada_list;
14034
14035 /* Implement the "set ada" prefix command. */
14036
14037 static void
14038 set_ada_command (char *arg, int from_tty)
14039 {
14040 printf_unfiltered (_(\
14041 "\"set ada\" must be followed by the name of a setting.\n"));
14042 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14043 }
14044
14045 /* Implement the "show ada" prefix command. */
14046
14047 static void
14048 show_ada_command (char *args, int from_tty)
14049 {
14050 cmd_show_list (show_ada_list, from_tty, "");
14051 }
14052
14053 static void
14054 initialize_ada_catchpoint_ops (void)
14055 {
14056 struct breakpoint_ops *ops;
14057
14058 initialize_breakpoint_ops ();
14059
14060 ops = &catch_exception_breakpoint_ops;
14061 *ops = bkpt_breakpoint_ops;
14062 ops->dtor = dtor_catch_exception;
14063 ops->allocate_location = allocate_location_catch_exception;
14064 ops->re_set = re_set_catch_exception;
14065 ops->check_status = check_status_catch_exception;
14066 ops->print_it = print_it_catch_exception;
14067 ops->print_one = print_one_catch_exception;
14068 ops->print_mention = print_mention_catch_exception;
14069 ops->print_recreate = print_recreate_catch_exception;
14070
14071 ops = &catch_exception_unhandled_breakpoint_ops;
14072 *ops = bkpt_breakpoint_ops;
14073 ops->dtor = dtor_catch_exception_unhandled;
14074 ops->allocate_location = allocate_location_catch_exception_unhandled;
14075 ops->re_set = re_set_catch_exception_unhandled;
14076 ops->check_status = check_status_catch_exception_unhandled;
14077 ops->print_it = print_it_catch_exception_unhandled;
14078 ops->print_one = print_one_catch_exception_unhandled;
14079 ops->print_mention = print_mention_catch_exception_unhandled;
14080 ops->print_recreate = print_recreate_catch_exception_unhandled;
14081
14082 ops = &catch_assert_breakpoint_ops;
14083 *ops = bkpt_breakpoint_ops;
14084 ops->dtor = dtor_catch_assert;
14085 ops->allocate_location = allocate_location_catch_assert;
14086 ops->re_set = re_set_catch_assert;
14087 ops->check_status = check_status_catch_assert;
14088 ops->print_it = print_it_catch_assert;
14089 ops->print_one = print_one_catch_assert;
14090 ops->print_mention = print_mention_catch_assert;
14091 ops->print_recreate = print_recreate_catch_assert;
14092 }
14093
14094 /* This module's 'new_objfile' observer. */
14095
14096 static void
14097 ada_new_objfile_observer (struct objfile *objfile)
14098 {
14099 ada_clear_symbol_cache ();
14100 }
14101
14102 /* This module's 'free_objfile' observer. */
14103
14104 static void
14105 ada_free_objfile_observer (struct objfile *objfile)
14106 {
14107 ada_clear_symbol_cache ();
14108 }
14109
14110 void
14111 _initialize_ada_language (void)
14112 {
14113 add_language (&ada_language_defn);
14114
14115 initialize_ada_catchpoint_ops ();
14116
14117 add_prefix_cmd ("ada", no_class, set_ada_command,
14118 _("Prefix command for changing Ada-specfic settings"),
14119 &set_ada_list, "set ada ", 0, &setlist);
14120
14121 add_prefix_cmd ("ada", no_class, show_ada_command,
14122 _("Generic command for showing Ada-specific settings."),
14123 &show_ada_list, "show ada ", 0, &showlist);
14124
14125 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14126 &trust_pad_over_xvs, _("\
14127 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14128 Show whether an optimization trusting PAD types over XVS types is activated"),
14129 _("\
14130 This is related to the encoding used by the GNAT compiler. The debugger\n\
14131 should normally trust the contents of PAD types, but certain older versions\n\
14132 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14133 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14134 work around this bug. It is always safe to turn this option \"off\", but\n\
14135 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14136 this option to \"off\" unless necessary."),
14137 NULL, NULL, &set_ada_list, &show_ada_list);
14138
14139 add_catch_command ("exception", _("\
14140 Catch Ada exceptions, when raised.\n\
14141 With an argument, catch only exceptions with the given name."),
14142 catch_ada_exception_command,
14143 NULL,
14144 CATCH_PERMANENT,
14145 CATCH_TEMPORARY);
14146 add_catch_command ("assert", _("\
14147 Catch failed Ada assertions, when raised.\n\
14148 With an argument, catch only exceptions with the given name."),
14149 catch_assert_command,
14150 NULL,
14151 CATCH_PERMANENT,
14152 CATCH_TEMPORARY);
14153
14154 varsize_limit = 65536;
14155
14156 add_info ("exceptions", info_exceptions_command,
14157 _("\
14158 List all Ada exception names.\n\
14159 If a regular expression is passed as an argument, only those matching\n\
14160 the regular expression are listed."));
14161
14162 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14163 _("Set Ada maintenance-related variables."),
14164 &maint_set_ada_cmdlist, "maintenance set ada ",
14165 0/*allow-unknown*/, &maintenance_set_cmdlist);
14166
14167 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14168 _("Show Ada maintenance-related variables"),
14169 &maint_show_ada_cmdlist, "maintenance show ada ",
14170 0/*allow-unknown*/, &maintenance_show_cmdlist);
14171
14172 add_setshow_boolean_cmd
14173 ("ignore-descriptive-types", class_maintenance,
14174 &ada_ignore_descriptive_types_p,
14175 _("Set whether descriptive types generated by GNAT should be ignored."),
14176 _("Show whether descriptive types generated by GNAT should be ignored."),
14177 _("\
14178 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14179 DWARF attribute."),
14180 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14181
14182 obstack_init (&symbol_list_obstack);
14183
14184 decoded_names_store = htab_create_alloc
14185 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14186 NULL, xcalloc, xfree);
14187
14188 /* The ada-lang observers. */
14189 observer_attach_new_objfile (ada_new_objfile_observer);
14190 observer_attach_free_objfile (ada_free_objfile_observer);
14191 observer_attach_inferior_exit (ada_inferior_exit);
14192
14193 /* Setup various context-specific data. */
14194 ada_inferior_data
14195 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14196 ada_pspace_data_handle
14197 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14198 }