]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
PR25675: SIGSEGV in bfd_octets_per_byte
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *value_val_atr (struct type *, struct value *);
200
201 static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
203
204 static struct value *ada_search_struct_field (const char *, struct value *, int,
205 struct type *);
206
207 static struct value *ada_value_primitive_field (struct value *, int, int,
208 struct type *);
209
210 static int find_struct_field (const char *, struct type *, int,
211 struct type **, int *, int *, int *, int *);
212
213 static int ada_resolve_function (struct block_symbol *, int,
214 struct value **, int, const char *,
215 struct type *, int);
216
217 static int ada_is_direct_array_type (struct type *);
218
219 static void ada_language_arch_info (struct gdbarch *,
220 struct language_arch_info *);
221
222 static struct value *ada_index_struct_field (int, struct value *, int,
223 struct type *);
224
225 static struct value *assign_aggregate (struct value *, struct value *,
226 struct expression *,
227 int *, enum noside);
228
229 static void aggregate_assign_from_choices (struct value *, struct value *,
230 struct expression *,
231 int *, LONGEST *, int *,
232 int, LONGEST, LONGEST);
233
234 static void aggregate_assign_positional (struct value *, struct value *,
235 struct expression *,
236 int *, LONGEST *, int *, int,
237 LONGEST, LONGEST);
238
239
240 static void aggregate_assign_others (struct value *, struct value *,
241 struct expression *,
242 int *, LONGEST *, int, LONGEST, LONGEST);
243
244
245 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
246
247
248 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
249 int *, enum noside);
250
251 static void ada_forward_operator_length (struct expression *, int, int *,
252 int *);
253
254 static struct type *ada_find_any_type (const char *name);
255
256 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
257 (const lookup_name_info &lookup_name);
258
259 \f
260
261 /* The result of a symbol lookup to be stored in our symbol cache. */
262
263 struct cache_entry
264 {
265 /* The name used to perform the lookup. */
266 const char *name;
267 /* The namespace used during the lookup. */
268 domain_enum domain;
269 /* The symbol returned by the lookup, or NULL if no matching symbol
270 was found. */
271 struct symbol *sym;
272 /* The block where the symbol was found, or NULL if no matching
273 symbol was found. */
274 const struct block *block;
275 /* A pointer to the next entry with the same hash. */
276 struct cache_entry *next;
277 };
278
279 /* The Ada symbol cache, used to store the result of Ada-mode symbol
280 lookups in the course of executing the user's commands.
281
282 The cache is implemented using a simple, fixed-sized hash.
283 The size is fixed on the grounds that there are not likely to be
284 all that many symbols looked up during any given session, regardless
285 of the size of the symbol table. If we decide to go to a resizable
286 table, let's just use the stuff from libiberty instead. */
287
288 #define HASH_SIZE 1009
289
290 struct ada_symbol_cache
291 {
292 /* An obstack used to store the entries in our cache. */
293 struct obstack cache_space;
294
295 /* The root of the hash table used to implement our symbol cache. */
296 struct cache_entry *root[HASH_SIZE];
297 };
298
299 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
300
301 /* Maximum-sized dynamic type. */
302 static unsigned int varsize_limit;
303
304 static const char ada_completer_word_break_characters[] =
305 #ifdef VMS
306 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
307 #else
308 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
309 #endif
310
311 /* The name of the symbol to use to get the name of the main subprogram. */
312 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
313 = "__gnat_ada_main_program_name";
314
315 /* Limit on the number of warnings to raise per expression evaluation. */
316 static int warning_limit = 2;
317
318 /* Number of warning messages issued; reset to 0 by cleanups after
319 expression evaluation. */
320 static int warnings_issued = 0;
321
322 static const char *known_runtime_file_name_patterns[] = {
323 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
324 };
325
326 static const char *known_auxiliary_function_name_patterns[] = {
327 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
328 };
329
330 /* Maintenance-related settings for this module. */
331
332 static struct cmd_list_element *maint_set_ada_cmdlist;
333 static struct cmd_list_element *maint_show_ada_cmdlist;
334
335 /* Implement the "maintenance set ada" (prefix) command. */
336
337 static void
338 maint_set_ada_cmd (const char *args, int from_tty)
339 {
340 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
341 gdb_stdout);
342 }
343
344 /* Implement the "maintenance show ada" (prefix) command. */
345
346 static void
347 maint_show_ada_cmd (const char *args, int from_tty)
348 {
349 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
350 }
351
352 /* The "maintenance ada set/show ignore-descriptive-type" value. */
353
354 static bool ada_ignore_descriptive_types_p = false;
355
356 /* Inferior-specific data. */
357
358 /* Per-inferior data for this module. */
359
360 struct ada_inferior_data
361 {
362 /* The ada__tags__type_specific_data type, which is used when decoding
363 tagged types. With older versions of GNAT, this type was directly
364 accessible through a component ("tsd") in the object tag. But this
365 is no longer the case, so we cache it for each inferior. */
366 struct type *tsd_type = nullptr;
367
368 /* The exception_support_info data. This data is used to determine
369 how to implement support for Ada exception catchpoints in a given
370 inferior. */
371 const struct exception_support_info *exception_info = nullptr;
372 };
373
374 /* Our key to this module's inferior data. */
375 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
376
377 /* Return our inferior data for the given inferior (INF).
378
379 This function always returns a valid pointer to an allocated
380 ada_inferior_data structure. If INF's inferior data has not
381 been previously set, this functions creates a new one with all
382 fields set to zero, sets INF's inferior to it, and then returns
383 a pointer to that newly allocated ada_inferior_data. */
384
385 static struct ada_inferior_data *
386 get_ada_inferior_data (struct inferior *inf)
387 {
388 struct ada_inferior_data *data;
389
390 data = ada_inferior_data.get (inf);
391 if (data == NULL)
392 data = ada_inferior_data.emplace (inf);
393
394 return data;
395 }
396
397 /* Perform all necessary cleanups regarding our module's inferior data
398 that is required after the inferior INF just exited. */
399
400 static void
401 ada_inferior_exit (struct inferior *inf)
402 {
403 ada_inferior_data.clear (inf);
404 }
405
406
407 /* program-space-specific data. */
408
409 /* This module's per-program-space data. */
410 struct ada_pspace_data
411 {
412 ~ada_pspace_data ()
413 {
414 if (sym_cache != NULL)
415 ada_free_symbol_cache (sym_cache);
416 }
417
418 /* The Ada symbol cache. */
419 struct ada_symbol_cache *sym_cache = nullptr;
420 };
421
422 /* Key to our per-program-space data. */
423 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
424
425 /* Return this module's data for the given program space (PSPACE).
426 If not is found, add a zero'ed one now.
427
428 This function always returns a valid object. */
429
430 static struct ada_pspace_data *
431 get_ada_pspace_data (struct program_space *pspace)
432 {
433 struct ada_pspace_data *data;
434
435 data = ada_pspace_data_handle.get (pspace);
436 if (data == NULL)
437 data = ada_pspace_data_handle.emplace (pspace);
438
439 return data;
440 }
441
442 /* Utilities */
443
444 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
445 all typedef layers have been peeled. Otherwise, return TYPE.
446
447 Normally, we really expect a typedef type to only have 1 typedef layer.
448 In other words, we really expect the target type of a typedef type to be
449 a non-typedef type. This is particularly true for Ada units, because
450 the language does not have a typedef vs not-typedef distinction.
451 In that respect, the Ada compiler has been trying to eliminate as many
452 typedef definitions in the debugging information, since they generally
453 do not bring any extra information (we still use typedef under certain
454 circumstances related mostly to the GNAT encoding).
455
456 Unfortunately, we have seen situations where the debugging information
457 generated by the compiler leads to such multiple typedef layers. For
458 instance, consider the following example with stabs:
459
460 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
461 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
462
463 This is an error in the debugging information which causes type
464 pck__float_array___XUP to be defined twice, and the second time,
465 it is defined as a typedef of a typedef.
466
467 This is on the fringe of legality as far as debugging information is
468 concerned, and certainly unexpected. But it is easy to handle these
469 situations correctly, so we can afford to be lenient in this case. */
470
471 static struct type *
472 ada_typedef_target_type (struct type *type)
473 {
474 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
475 type = TYPE_TARGET_TYPE (type);
476 return type;
477 }
478
479 /* Given DECODED_NAME a string holding a symbol name in its
480 decoded form (ie using the Ada dotted notation), returns
481 its unqualified name. */
482
483 static const char *
484 ada_unqualified_name (const char *decoded_name)
485 {
486 const char *result;
487
488 /* If the decoded name starts with '<', it means that the encoded
489 name does not follow standard naming conventions, and thus that
490 it is not your typical Ada symbol name. Trying to unqualify it
491 is therefore pointless and possibly erroneous. */
492 if (decoded_name[0] == '<')
493 return decoded_name;
494
495 result = strrchr (decoded_name, '.');
496 if (result != NULL)
497 result++; /* Skip the dot... */
498 else
499 result = decoded_name;
500
501 return result;
502 }
503
504 /* Return a string starting with '<', followed by STR, and '>'. */
505
506 static std::string
507 add_angle_brackets (const char *str)
508 {
509 return string_printf ("<%s>", str);
510 }
511
512 static const char *
513 ada_get_gdb_completer_word_break_characters (void)
514 {
515 return ada_completer_word_break_characters;
516 }
517
518 /* Print an array element index using the Ada syntax. */
519
520 static void
521 ada_print_array_index (struct value *index_value, struct ui_file *stream,
522 const struct value_print_options *options)
523 {
524 LA_VALUE_PRINT (index_value, stream, options);
525 fprintf_filtered (stream, " => ");
526 }
527
528 /* la_watch_location_expression for Ada. */
529
530 static gdb::unique_xmalloc_ptr<char>
531 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
532 {
533 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
534 std::string name = type_to_string (type);
535 return gdb::unique_xmalloc_ptr<char>
536 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
537 }
538
539 /* Assuming V points to an array of S objects, make sure that it contains at
540 least M objects, updating V and S as necessary. */
541
542 #define GROW_VECT(v, s, m) \
543 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
544
545 /* Assuming VECT points to an array of *SIZE objects of size
546 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
547 updating *SIZE as necessary and returning the (new) array. */
548
549 static void *
550 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
551 {
552 if (*size < min_size)
553 {
554 *size *= 2;
555 if (*size < min_size)
556 *size = min_size;
557 vect = xrealloc (vect, *size * element_size);
558 }
559 return vect;
560 }
561
562 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
563 suffix of FIELD_NAME beginning "___". */
564
565 static int
566 field_name_match (const char *field_name, const char *target)
567 {
568 int len = strlen (target);
569
570 return
571 (strncmp (field_name, target, len) == 0
572 && (field_name[len] == '\0'
573 || (startswith (field_name + len, "___")
574 && strcmp (field_name + strlen (field_name) - 6,
575 "___XVN") != 0)));
576 }
577
578
579 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
580 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
581 and return its index. This function also handles fields whose name
582 have ___ suffixes because the compiler sometimes alters their name
583 by adding such a suffix to represent fields with certain constraints.
584 If the field could not be found, return a negative number if
585 MAYBE_MISSING is set. Otherwise raise an error. */
586
587 int
588 ada_get_field_index (const struct type *type, const char *field_name,
589 int maybe_missing)
590 {
591 int fieldno;
592 struct type *struct_type = check_typedef ((struct type *) type);
593
594 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
595 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
596 return fieldno;
597
598 if (!maybe_missing)
599 error (_("Unable to find field %s in struct %s. Aborting"),
600 field_name, TYPE_NAME (struct_type));
601
602 return -1;
603 }
604
605 /* The length of the prefix of NAME prior to any "___" suffix. */
606
607 int
608 ada_name_prefix_len (const char *name)
609 {
610 if (name == NULL)
611 return 0;
612 else
613 {
614 const char *p = strstr (name, "___");
615
616 if (p == NULL)
617 return strlen (name);
618 else
619 return p - name;
620 }
621 }
622
623 /* Return non-zero if SUFFIX is a suffix of STR.
624 Return zero if STR is null. */
625
626 static int
627 is_suffix (const char *str, const char *suffix)
628 {
629 int len1, len2;
630
631 if (str == NULL)
632 return 0;
633 len1 = strlen (str);
634 len2 = strlen (suffix);
635 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
636 }
637
638 /* The contents of value VAL, treated as a value of type TYPE. The
639 result is an lval in memory if VAL is. */
640
641 static struct value *
642 coerce_unspec_val_to_type (struct value *val, struct type *type)
643 {
644 type = ada_check_typedef (type);
645 if (value_type (val) == type)
646 return val;
647 else
648 {
649 struct value *result;
650
651 /* Make sure that the object size is not unreasonable before
652 trying to allocate some memory for it. */
653 ada_ensure_varsize_limit (type);
654
655 if (value_lazy (val)
656 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
657 result = allocate_value_lazy (type);
658 else
659 {
660 result = allocate_value (type);
661 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
662 }
663 set_value_component_location (result, val);
664 set_value_bitsize (result, value_bitsize (val));
665 set_value_bitpos (result, value_bitpos (val));
666 if (VALUE_LVAL (result) == lval_memory)
667 set_value_address (result, value_address (val));
668 return result;
669 }
670 }
671
672 static const gdb_byte *
673 cond_offset_host (const gdb_byte *valaddr, long offset)
674 {
675 if (valaddr == NULL)
676 return NULL;
677 else
678 return valaddr + offset;
679 }
680
681 static CORE_ADDR
682 cond_offset_target (CORE_ADDR address, long offset)
683 {
684 if (address == 0)
685 return 0;
686 else
687 return address + offset;
688 }
689
690 /* Issue a warning (as for the definition of warning in utils.c, but
691 with exactly one argument rather than ...), unless the limit on the
692 number of warnings has passed during the evaluation of the current
693 expression. */
694
695 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
696 provided by "complaint". */
697 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
698
699 static void
700 lim_warning (const char *format, ...)
701 {
702 va_list args;
703
704 va_start (args, format);
705 warnings_issued += 1;
706 if (warnings_issued <= warning_limit)
707 vwarning (format, args);
708
709 va_end (args);
710 }
711
712 /* Issue an error if the size of an object of type T is unreasonable,
713 i.e. if it would be a bad idea to allocate a value of this type in
714 GDB. */
715
716 void
717 ada_ensure_varsize_limit (const struct type *type)
718 {
719 if (TYPE_LENGTH (type) > varsize_limit)
720 error (_("object size is larger than varsize-limit"));
721 }
722
723 /* Maximum value of a SIZE-byte signed integer type. */
724 static LONGEST
725 max_of_size (int size)
726 {
727 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
728
729 return top_bit | (top_bit - 1);
730 }
731
732 /* Minimum value of a SIZE-byte signed integer type. */
733 static LONGEST
734 min_of_size (int size)
735 {
736 return -max_of_size (size) - 1;
737 }
738
739 /* Maximum value of a SIZE-byte unsigned integer type. */
740 static ULONGEST
741 umax_of_size (int size)
742 {
743 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
744
745 return top_bit | (top_bit - 1);
746 }
747
748 /* Maximum value of integral type T, as a signed quantity. */
749 static LONGEST
750 max_of_type (struct type *t)
751 {
752 if (TYPE_UNSIGNED (t))
753 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
754 else
755 return max_of_size (TYPE_LENGTH (t));
756 }
757
758 /* Minimum value of integral type T, as a signed quantity. */
759 static LONGEST
760 min_of_type (struct type *t)
761 {
762 if (TYPE_UNSIGNED (t))
763 return 0;
764 else
765 return min_of_size (TYPE_LENGTH (t));
766 }
767
768 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
769 LONGEST
770 ada_discrete_type_high_bound (struct type *type)
771 {
772 type = resolve_dynamic_type (type, NULL, 0);
773 switch (TYPE_CODE (type))
774 {
775 case TYPE_CODE_RANGE:
776 return TYPE_HIGH_BOUND (type);
777 case TYPE_CODE_ENUM:
778 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
779 case TYPE_CODE_BOOL:
780 return 1;
781 case TYPE_CODE_CHAR:
782 case TYPE_CODE_INT:
783 return max_of_type (type);
784 default:
785 error (_("Unexpected type in ada_discrete_type_high_bound."));
786 }
787 }
788
789 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
790 LONGEST
791 ada_discrete_type_low_bound (struct type *type)
792 {
793 type = resolve_dynamic_type (type, NULL, 0);
794 switch (TYPE_CODE (type))
795 {
796 case TYPE_CODE_RANGE:
797 return TYPE_LOW_BOUND (type);
798 case TYPE_CODE_ENUM:
799 return TYPE_FIELD_ENUMVAL (type, 0);
800 case TYPE_CODE_BOOL:
801 return 0;
802 case TYPE_CODE_CHAR:
803 case TYPE_CODE_INT:
804 return min_of_type (type);
805 default:
806 error (_("Unexpected type in ada_discrete_type_low_bound."));
807 }
808 }
809
810 /* The identity on non-range types. For range types, the underlying
811 non-range scalar type. */
812
813 static struct type *
814 get_base_type (struct type *type)
815 {
816 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
817 {
818 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
819 return type;
820 type = TYPE_TARGET_TYPE (type);
821 }
822 return type;
823 }
824
825 /* Return a decoded version of the given VALUE. This means returning
826 a value whose type is obtained by applying all the GNAT-specific
827 encodings, making the resulting type a static but standard description
828 of the initial type. */
829
830 struct value *
831 ada_get_decoded_value (struct value *value)
832 {
833 struct type *type = ada_check_typedef (value_type (value));
834
835 if (ada_is_array_descriptor_type (type)
836 || (ada_is_constrained_packed_array_type (type)
837 && TYPE_CODE (type) != TYPE_CODE_PTR))
838 {
839 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
840 value = ada_coerce_to_simple_array_ptr (value);
841 else
842 value = ada_coerce_to_simple_array (value);
843 }
844 else
845 value = ada_to_fixed_value (value);
846
847 return value;
848 }
849
850 /* Same as ada_get_decoded_value, but with the given TYPE.
851 Because there is no associated actual value for this type,
852 the resulting type might be a best-effort approximation in
853 the case of dynamic types. */
854
855 struct type *
856 ada_get_decoded_type (struct type *type)
857 {
858 type = to_static_fixed_type (type);
859 if (ada_is_constrained_packed_array_type (type))
860 type = ada_coerce_to_simple_array_type (type);
861 return type;
862 }
863
864 \f
865
866 /* Language Selection */
867
868 /* If the main program is in Ada, return language_ada, otherwise return LANG
869 (the main program is in Ada iif the adainit symbol is found). */
870
871 static enum language
872 ada_update_initial_language (enum language lang)
873 {
874 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
875 return language_ada;
876
877 return lang;
878 }
879
880 /* If the main procedure is written in Ada, then return its name.
881 The result is good until the next call. Return NULL if the main
882 procedure doesn't appear to be in Ada. */
883
884 char *
885 ada_main_name (void)
886 {
887 struct bound_minimal_symbol msym;
888 static gdb::unique_xmalloc_ptr<char> main_program_name;
889
890 /* For Ada, the name of the main procedure is stored in a specific
891 string constant, generated by the binder. Look for that symbol,
892 extract its address, and then read that string. If we didn't find
893 that string, then most probably the main procedure is not written
894 in Ada. */
895 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
896
897 if (msym.minsym != NULL)
898 {
899 CORE_ADDR main_program_name_addr;
900 int err_code;
901
902 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
903 if (main_program_name_addr == 0)
904 error (_("Invalid address for Ada main program name."));
905
906 target_read_string (main_program_name_addr, &main_program_name,
907 1024, &err_code);
908
909 if (err_code != 0)
910 return NULL;
911 return main_program_name.get ();
912 }
913
914 /* The main procedure doesn't seem to be in Ada. */
915 return NULL;
916 }
917 \f
918 /* Symbols */
919
920 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
921 of NULLs. */
922
923 const struct ada_opname_map ada_opname_table[] = {
924 {"Oadd", "\"+\"", BINOP_ADD},
925 {"Osubtract", "\"-\"", BINOP_SUB},
926 {"Omultiply", "\"*\"", BINOP_MUL},
927 {"Odivide", "\"/\"", BINOP_DIV},
928 {"Omod", "\"mod\"", BINOP_MOD},
929 {"Orem", "\"rem\"", BINOP_REM},
930 {"Oexpon", "\"**\"", BINOP_EXP},
931 {"Olt", "\"<\"", BINOP_LESS},
932 {"Ole", "\"<=\"", BINOP_LEQ},
933 {"Ogt", "\">\"", BINOP_GTR},
934 {"Oge", "\">=\"", BINOP_GEQ},
935 {"Oeq", "\"=\"", BINOP_EQUAL},
936 {"One", "\"/=\"", BINOP_NOTEQUAL},
937 {"Oand", "\"and\"", BINOP_BITWISE_AND},
938 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
939 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
940 {"Oconcat", "\"&\"", BINOP_CONCAT},
941 {"Oabs", "\"abs\"", UNOP_ABS},
942 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
943 {"Oadd", "\"+\"", UNOP_PLUS},
944 {"Osubtract", "\"-\"", UNOP_NEG},
945 {NULL, NULL}
946 };
947
948 /* The "encoded" form of DECODED, according to GNAT conventions. The
949 result is valid until the next call to ada_encode. If
950 THROW_ERRORS, throw an error if invalid operator name is found.
951 Otherwise, return NULL in that case. */
952
953 static char *
954 ada_encode_1 (const char *decoded, bool throw_errors)
955 {
956 static char *encoding_buffer = NULL;
957 static size_t encoding_buffer_size = 0;
958 const char *p;
959 int k;
960
961 if (decoded == NULL)
962 return NULL;
963
964 GROW_VECT (encoding_buffer, encoding_buffer_size,
965 2 * strlen (decoded) + 10);
966
967 k = 0;
968 for (p = decoded; *p != '\0'; p += 1)
969 {
970 if (*p == '.')
971 {
972 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
973 k += 2;
974 }
975 else if (*p == '"')
976 {
977 const struct ada_opname_map *mapping;
978
979 for (mapping = ada_opname_table;
980 mapping->encoded != NULL
981 && !startswith (p, mapping->decoded); mapping += 1)
982 ;
983 if (mapping->encoded == NULL)
984 {
985 if (throw_errors)
986 error (_("invalid Ada operator name: %s"), p);
987 else
988 return NULL;
989 }
990 strcpy (encoding_buffer + k, mapping->encoded);
991 k += strlen (mapping->encoded);
992 break;
993 }
994 else
995 {
996 encoding_buffer[k] = *p;
997 k += 1;
998 }
999 }
1000
1001 encoding_buffer[k] = '\0';
1002 return encoding_buffer;
1003 }
1004
1005 /* The "encoded" form of DECODED, according to GNAT conventions.
1006 The result is valid until the next call to ada_encode. */
1007
1008 char *
1009 ada_encode (const char *decoded)
1010 {
1011 return ada_encode_1 (decoded, true);
1012 }
1013
1014 /* Return NAME folded to lower case, or, if surrounded by single
1015 quotes, unfolded, but with the quotes stripped away. Result good
1016 to next call. */
1017
1018 static char *
1019 ada_fold_name (const char *name)
1020 {
1021 static char *fold_buffer = NULL;
1022 static size_t fold_buffer_size = 0;
1023
1024 int len = strlen (name);
1025 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1026
1027 if (name[0] == '\'')
1028 {
1029 strncpy (fold_buffer, name + 1, len - 2);
1030 fold_buffer[len - 2] = '\000';
1031 }
1032 else
1033 {
1034 int i;
1035
1036 for (i = 0; i <= len; i += 1)
1037 fold_buffer[i] = tolower (name[i]);
1038 }
1039
1040 return fold_buffer;
1041 }
1042
1043 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1044
1045 static int
1046 is_lower_alphanum (const char c)
1047 {
1048 return (isdigit (c) || (isalpha (c) && islower (c)));
1049 }
1050
1051 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1052 This function saves in LEN the length of that same symbol name but
1053 without either of these suffixes:
1054 . .{DIGIT}+
1055 . ${DIGIT}+
1056 . ___{DIGIT}+
1057 . __{DIGIT}+.
1058
1059 These are suffixes introduced by the compiler for entities such as
1060 nested subprogram for instance, in order to avoid name clashes.
1061 They do not serve any purpose for the debugger. */
1062
1063 static void
1064 ada_remove_trailing_digits (const char *encoded, int *len)
1065 {
1066 if (*len > 1 && isdigit (encoded[*len - 1]))
1067 {
1068 int i = *len - 2;
1069
1070 while (i > 0 && isdigit (encoded[i]))
1071 i--;
1072 if (i >= 0 && encoded[i] == '.')
1073 *len = i;
1074 else if (i >= 0 && encoded[i] == '$')
1075 *len = i;
1076 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1077 *len = i - 2;
1078 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1079 *len = i - 1;
1080 }
1081 }
1082
1083 /* Remove the suffix introduced by the compiler for protected object
1084 subprograms. */
1085
1086 static void
1087 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1088 {
1089 /* Remove trailing N. */
1090
1091 /* Protected entry subprograms are broken into two
1092 separate subprograms: The first one is unprotected, and has
1093 a 'N' suffix; the second is the protected version, and has
1094 the 'P' suffix. The second calls the first one after handling
1095 the protection. Since the P subprograms are internally generated,
1096 we leave these names undecoded, giving the user a clue that this
1097 entity is internal. */
1098
1099 if (*len > 1
1100 && encoded[*len - 1] == 'N'
1101 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1102 *len = *len - 1;
1103 }
1104
1105 /* If ENCODED follows the GNAT entity encoding conventions, then return
1106 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1107 replaced by ENCODED. */
1108
1109 std::string
1110 ada_decode (const char *encoded)
1111 {
1112 int i, j;
1113 int len0;
1114 const char *p;
1115 int at_start_name;
1116 std::string decoded;
1117
1118 /* With function descriptors on PPC64, the value of a symbol named
1119 ".FN", if it exists, is the entry point of the function "FN". */
1120 if (encoded[0] == '.')
1121 encoded += 1;
1122
1123 /* The name of the Ada main procedure starts with "_ada_".
1124 This prefix is not part of the decoded name, so skip this part
1125 if we see this prefix. */
1126 if (startswith (encoded, "_ada_"))
1127 encoded += 5;
1128
1129 /* If the name starts with '_', then it is not a properly encoded
1130 name, so do not attempt to decode it. Similarly, if the name
1131 starts with '<', the name should not be decoded. */
1132 if (encoded[0] == '_' || encoded[0] == '<')
1133 goto Suppress;
1134
1135 len0 = strlen (encoded);
1136
1137 ada_remove_trailing_digits (encoded, &len0);
1138 ada_remove_po_subprogram_suffix (encoded, &len0);
1139
1140 /* Remove the ___X.* suffix if present. Do not forget to verify that
1141 the suffix is located before the current "end" of ENCODED. We want
1142 to avoid re-matching parts of ENCODED that have previously been
1143 marked as discarded (by decrementing LEN0). */
1144 p = strstr (encoded, "___");
1145 if (p != NULL && p - encoded < len0 - 3)
1146 {
1147 if (p[3] == 'X')
1148 len0 = p - encoded;
1149 else
1150 goto Suppress;
1151 }
1152
1153 /* Remove any trailing TKB suffix. It tells us that this symbol
1154 is for the body of a task, but that information does not actually
1155 appear in the decoded name. */
1156
1157 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1158 len0 -= 3;
1159
1160 /* Remove any trailing TB suffix. The TB suffix is slightly different
1161 from the TKB suffix because it is used for non-anonymous task
1162 bodies. */
1163
1164 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1165 len0 -= 2;
1166
1167 /* Remove trailing "B" suffixes. */
1168 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1169
1170 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1171 len0 -= 1;
1172
1173 /* Make decoded big enough for possible expansion by operator name. */
1174
1175 decoded.resize (2 * len0 + 1, 'X');
1176
1177 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1178
1179 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1180 {
1181 i = len0 - 2;
1182 while ((i >= 0 && isdigit (encoded[i]))
1183 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1184 i -= 1;
1185 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1186 len0 = i - 1;
1187 else if (encoded[i] == '$')
1188 len0 = i;
1189 }
1190
1191 /* The first few characters that are not alphabetic are not part
1192 of any encoding we use, so we can copy them over verbatim. */
1193
1194 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1195 decoded[j] = encoded[i];
1196
1197 at_start_name = 1;
1198 while (i < len0)
1199 {
1200 /* Is this a symbol function? */
1201 if (at_start_name && encoded[i] == 'O')
1202 {
1203 int k;
1204
1205 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1206 {
1207 int op_len = strlen (ada_opname_table[k].encoded);
1208 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1209 op_len - 1) == 0)
1210 && !isalnum (encoded[i + op_len]))
1211 {
1212 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1213 at_start_name = 0;
1214 i += op_len;
1215 j += strlen (ada_opname_table[k].decoded);
1216 break;
1217 }
1218 }
1219 if (ada_opname_table[k].encoded != NULL)
1220 continue;
1221 }
1222 at_start_name = 0;
1223
1224 /* Replace "TK__" with "__", which will eventually be translated
1225 into "." (just below). */
1226
1227 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1228 i += 2;
1229
1230 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1231 be translated into "." (just below). These are internal names
1232 generated for anonymous blocks inside which our symbol is nested. */
1233
1234 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1235 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1236 && isdigit (encoded [i+4]))
1237 {
1238 int k = i + 5;
1239
1240 while (k < len0 && isdigit (encoded[k]))
1241 k++; /* Skip any extra digit. */
1242
1243 /* Double-check that the "__B_{DIGITS}+" sequence we found
1244 is indeed followed by "__". */
1245 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1246 i = k;
1247 }
1248
1249 /* Remove _E{DIGITS}+[sb] */
1250
1251 /* Just as for protected object subprograms, there are 2 categories
1252 of subprograms created by the compiler for each entry. The first
1253 one implements the actual entry code, and has a suffix following
1254 the convention above; the second one implements the barrier and
1255 uses the same convention as above, except that the 'E' is replaced
1256 by a 'B'.
1257
1258 Just as above, we do not decode the name of barrier functions
1259 to give the user a clue that the code he is debugging has been
1260 internally generated. */
1261
1262 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1263 && isdigit (encoded[i+2]))
1264 {
1265 int k = i + 3;
1266
1267 while (k < len0 && isdigit (encoded[k]))
1268 k++;
1269
1270 if (k < len0
1271 && (encoded[k] == 'b' || encoded[k] == 's'))
1272 {
1273 k++;
1274 /* Just as an extra precaution, make sure that if this
1275 suffix is followed by anything else, it is a '_'.
1276 Otherwise, we matched this sequence by accident. */
1277 if (k == len0
1278 || (k < len0 && encoded[k] == '_'))
1279 i = k;
1280 }
1281 }
1282
1283 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1284 the GNAT front-end in protected object subprograms. */
1285
1286 if (i < len0 + 3
1287 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1288 {
1289 /* Backtrack a bit up until we reach either the begining of
1290 the encoded name, or "__". Make sure that we only find
1291 digits or lowercase characters. */
1292 const char *ptr = encoded + i - 1;
1293
1294 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1295 ptr--;
1296 if (ptr < encoded
1297 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1298 i++;
1299 }
1300
1301 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1302 {
1303 /* This is a X[bn]* sequence not separated from the previous
1304 part of the name with a non-alpha-numeric character (in other
1305 words, immediately following an alpha-numeric character), then
1306 verify that it is placed at the end of the encoded name. If
1307 not, then the encoding is not valid and we should abort the
1308 decoding. Otherwise, just skip it, it is used in body-nested
1309 package names. */
1310 do
1311 i += 1;
1312 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1313 if (i < len0)
1314 goto Suppress;
1315 }
1316 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1317 {
1318 /* Replace '__' by '.'. */
1319 decoded[j] = '.';
1320 at_start_name = 1;
1321 i += 2;
1322 j += 1;
1323 }
1324 else
1325 {
1326 /* It's a character part of the decoded name, so just copy it
1327 over. */
1328 decoded[j] = encoded[i];
1329 i += 1;
1330 j += 1;
1331 }
1332 }
1333 decoded.resize (j);
1334
1335 /* Decoded names should never contain any uppercase character.
1336 Double-check this, and abort the decoding if we find one. */
1337
1338 for (i = 0; i < decoded.length(); ++i)
1339 if (isupper (decoded[i]) || decoded[i] == ' ')
1340 goto Suppress;
1341
1342 return decoded;
1343
1344 Suppress:
1345 if (encoded[0] == '<')
1346 decoded = encoded;
1347 else
1348 decoded = '<' + std::string(encoded) + '>';
1349 return decoded;
1350
1351 }
1352
1353 /* Table for keeping permanent unique copies of decoded names. Once
1354 allocated, names in this table are never released. While this is a
1355 storage leak, it should not be significant unless there are massive
1356 changes in the set of decoded names in successive versions of a
1357 symbol table loaded during a single session. */
1358 static struct htab *decoded_names_store;
1359
1360 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1361 in the language-specific part of GSYMBOL, if it has not been
1362 previously computed. Tries to save the decoded name in the same
1363 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1364 in any case, the decoded symbol has a lifetime at least that of
1365 GSYMBOL).
1366 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1367 const, but nevertheless modified to a semantically equivalent form
1368 when a decoded name is cached in it. */
1369
1370 const char *
1371 ada_decode_symbol (const struct general_symbol_info *arg)
1372 {
1373 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1374 const char **resultp =
1375 &gsymbol->language_specific.demangled_name;
1376
1377 if (!gsymbol->ada_mangled)
1378 {
1379 std::string decoded = ada_decode (gsymbol->linkage_name ());
1380 struct obstack *obstack = gsymbol->language_specific.obstack;
1381
1382 gsymbol->ada_mangled = 1;
1383
1384 if (obstack != NULL)
1385 *resultp = obstack_strdup (obstack, decoded.c_str ());
1386 else
1387 {
1388 /* Sometimes, we can't find a corresponding objfile, in
1389 which case, we put the result on the heap. Since we only
1390 decode when needed, we hope this usually does not cause a
1391 significant memory leak (FIXME). */
1392
1393 char **slot = (char **) htab_find_slot (decoded_names_store,
1394 decoded.c_str (), INSERT);
1395
1396 if (*slot == NULL)
1397 *slot = xstrdup (decoded.c_str ());
1398 *resultp = *slot;
1399 }
1400 }
1401
1402 return *resultp;
1403 }
1404
1405 static char *
1406 ada_la_decode (const char *encoded, int options)
1407 {
1408 return xstrdup (ada_decode (encoded).c_str ());
1409 }
1410
1411 /* Implement la_sniff_from_mangled_name for Ada. */
1412
1413 static int
1414 ada_sniff_from_mangled_name (const char *mangled, char **out)
1415 {
1416 std::string demangled = ada_decode (mangled);
1417
1418 *out = NULL;
1419
1420 if (demangled != mangled && demangled[0] != '<')
1421 {
1422 /* Set the gsymbol language to Ada, but still return 0.
1423 Two reasons for that:
1424
1425 1. For Ada, we prefer computing the symbol's decoded name
1426 on the fly rather than pre-compute it, in order to save
1427 memory (Ada projects are typically very large).
1428
1429 2. There are some areas in the definition of the GNAT
1430 encoding where, with a bit of bad luck, we might be able
1431 to decode a non-Ada symbol, generating an incorrect
1432 demangled name (Eg: names ending with "TB" for instance
1433 are identified as task bodies and so stripped from
1434 the decoded name returned).
1435
1436 Returning 1, here, but not setting *DEMANGLED, helps us get a
1437 little bit of the best of both worlds. Because we're last,
1438 we should not affect any of the other languages that were
1439 able to demangle the symbol before us; we get to correctly
1440 tag Ada symbols as such; and even if we incorrectly tagged a
1441 non-Ada symbol, which should be rare, any routing through the
1442 Ada language should be transparent (Ada tries to behave much
1443 like C/C++ with non-Ada symbols). */
1444 return 1;
1445 }
1446
1447 return 0;
1448 }
1449
1450 \f
1451
1452 /* Arrays */
1453
1454 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1455 generated by the GNAT compiler to describe the index type used
1456 for each dimension of an array, check whether it follows the latest
1457 known encoding. If not, fix it up to conform to the latest encoding.
1458 Otherwise, do nothing. This function also does nothing if
1459 INDEX_DESC_TYPE is NULL.
1460
1461 The GNAT encoding used to describe the array index type evolved a bit.
1462 Initially, the information would be provided through the name of each
1463 field of the structure type only, while the type of these fields was
1464 described as unspecified and irrelevant. The debugger was then expected
1465 to perform a global type lookup using the name of that field in order
1466 to get access to the full index type description. Because these global
1467 lookups can be very expensive, the encoding was later enhanced to make
1468 the global lookup unnecessary by defining the field type as being
1469 the full index type description.
1470
1471 The purpose of this routine is to allow us to support older versions
1472 of the compiler by detecting the use of the older encoding, and by
1473 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1474 we essentially replace each field's meaningless type by the associated
1475 index subtype). */
1476
1477 void
1478 ada_fixup_array_indexes_type (struct type *index_desc_type)
1479 {
1480 int i;
1481
1482 if (index_desc_type == NULL)
1483 return;
1484 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1485
1486 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1487 to check one field only, no need to check them all). If not, return
1488 now.
1489
1490 If our INDEX_DESC_TYPE was generated using the older encoding,
1491 the field type should be a meaningless integer type whose name
1492 is not equal to the field name. */
1493 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1494 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1495 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1496 return;
1497
1498 /* Fixup each field of INDEX_DESC_TYPE. */
1499 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1500 {
1501 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1502 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1503
1504 if (raw_type)
1505 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1506 }
1507 }
1508
1509 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1510
1511 static const char *bound_name[] = {
1512 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1513 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1514 };
1515
1516 /* Maximum number of array dimensions we are prepared to handle. */
1517
1518 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1519
1520
1521 /* The desc_* routines return primitive portions of array descriptors
1522 (fat pointers). */
1523
1524 /* The descriptor or array type, if any, indicated by TYPE; removes
1525 level of indirection, if needed. */
1526
1527 static struct type *
1528 desc_base_type (struct type *type)
1529 {
1530 if (type == NULL)
1531 return NULL;
1532 type = ada_check_typedef (type);
1533 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1534 type = ada_typedef_target_type (type);
1535
1536 if (type != NULL
1537 && (TYPE_CODE (type) == TYPE_CODE_PTR
1538 || TYPE_CODE (type) == TYPE_CODE_REF))
1539 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1540 else
1541 return type;
1542 }
1543
1544 /* True iff TYPE indicates a "thin" array pointer type. */
1545
1546 static int
1547 is_thin_pntr (struct type *type)
1548 {
1549 return
1550 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1551 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1552 }
1553
1554 /* The descriptor type for thin pointer type TYPE. */
1555
1556 static struct type *
1557 thin_descriptor_type (struct type *type)
1558 {
1559 struct type *base_type = desc_base_type (type);
1560
1561 if (base_type == NULL)
1562 return NULL;
1563 if (is_suffix (ada_type_name (base_type), "___XVE"))
1564 return base_type;
1565 else
1566 {
1567 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1568
1569 if (alt_type == NULL)
1570 return base_type;
1571 else
1572 return alt_type;
1573 }
1574 }
1575
1576 /* A pointer to the array data for thin-pointer value VAL. */
1577
1578 static struct value *
1579 thin_data_pntr (struct value *val)
1580 {
1581 struct type *type = ada_check_typedef (value_type (val));
1582 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1583
1584 data_type = lookup_pointer_type (data_type);
1585
1586 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1587 return value_cast (data_type, value_copy (val));
1588 else
1589 return value_from_longest (data_type, value_address (val));
1590 }
1591
1592 /* True iff TYPE indicates a "thick" array pointer type. */
1593
1594 static int
1595 is_thick_pntr (struct type *type)
1596 {
1597 type = desc_base_type (type);
1598 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1599 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1600 }
1601
1602 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1603 pointer to one, the type of its bounds data; otherwise, NULL. */
1604
1605 static struct type *
1606 desc_bounds_type (struct type *type)
1607 {
1608 struct type *r;
1609
1610 type = desc_base_type (type);
1611
1612 if (type == NULL)
1613 return NULL;
1614 else if (is_thin_pntr (type))
1615 {
1616 type = thin_descriptor_type (type);
1617 if (type == NULL)
1618 return NULL;
1619 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1620 if (r != NULL)
1621 return ada_check_typedef (r);
1622 }
1623 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1624 {
1625 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1626 if (r != NULL)
1627 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1628 }
1629 return NULL;
1630 }
1631
1632 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1633 one, a pointer to its bounds data. Otherwise NULL. */
1634
1635 static struct value *
1636 desc_bounds (struct value *arr)
1637 {
1638 struct type *type = ada_check_typedef (value_type (arr));
1639
1640 if (is_thin_pntr (type))
1641 {
1642 struct type *bounds_type =
1643 desc_bounds_type (thin_descriptor_type (type));
1644 LONGEST addr;
1645
1646 if (bounds_type == NULL)
1647 error (_("Bad GNAT array descriptor"));
1648
1649 /* NOTE: The following calculation is not really kosher, but
1650 since desc_type is an XVE-encoded type (and shouldn't be),
1651 the correct calculation is a real pain. FIXME (and fix GCC). */
1652 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1653 addr = value_as_long (arr);
1654 else
1655 addr = value_address (arr);
1656
1657 return
1658 value_from_longest (lookup_pointer_type (bounds_type),
1659 addr - TYPE_LENGTH (bounds_type));
1660 }
1661
1662 else if (is_thick_pntr (type))
1663 {
1664 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1665 _("Bad GNAT array descriptor"));
1666 struct type *p_bounds_type = value_type (p_bounds);
1667
1668 if (p_bounds_type
1669 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1670 {
1671 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1672
1673 if (TYPE_STUB (target_type))
1674 p_bounds = value_cast (lookup_pointer_type
1675 (ada_check_typedef (target_type)),
1676 p_bounds);
1677 }
1678 else
1679 error (_("Bad GNAT array descriptor"));
1680
1681 return p_bounds;
1682 }
1683 else
1684 return NULL;
1685 }
1686
1687 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1688 position of the field containing the address of the bounds data. */
1689
1690 static int
1691 fat_pntr_bounds_bitpos (struct type *type)
1692 {
1693 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1694 }
1695
1696 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1697 size of the field containing the address of the bounds data. */
1698
1699 static int
1700 fat_pntr_bounds_bitsize (struct type *type)
1701 {
1702 type = desc_base_type (type);
1703
1704 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1705 return TYPE_FIELD_BITSIZE (type, 1);
1706 else
1707 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1708 }
1709
1710 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1711 pointer to one, the type of its array data (a array-with-no-bounds type);
1712 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1713 data. */
1714
1715 static struct type *
1716 desc_data_target_type (struct type *type)
1717 {
1718 type = desc_base_type (type);
1719
1720 /* NOTE: The following is bogus; see comment in desc_bounds. */
1721 if (is_thin_pntr (type))
1722 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1723 else if (is_thick_pntr (type))
1724 {
1725 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1726
1727 if (data_type
1728 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1729 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1730 }
1731
1732 return NULL;
1733 }
1734
1735 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1736 its array data. */
1737
1738 static struct value *
1739 desc_data (struct value *arr)
1740 {
1741 struct type *type = value_type (arr);
1742
1743 if (is_thin_pntr (type))
1744 return thin_data_pntr (arr);
1745 else if (is_thick_pntr (type))
1746 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1747 _("Bad GNAT array descriptor"));
1748 else
1749 return NULL;
1750 }
1751
1752
1753 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1754 position of the field containing the address of the data. */
1755
1756 static int
1757 fat_pntr_data_bitpos (struct type *type)
1758 {
1759 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1760 }
1761
1762 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1763 size of the field containing the address of the data. */
1764
1765 static int
1766 fat_pntr_data_bitsize (struct type *type)
1767 {
1768 type = desc_base_type (type);
1769
1770 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1771 return TYPE_FIELD_BITSIZE (type, 0);
1772 else
1773 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1774 }
1775
1776 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1777 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1778 bound, if WHICH is 1. The first bound is I=1. */
1779
1780 static struct value *
1781 desc_one_bound (struct value *bounds, int i, int which)
1782 {
1783 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1784 _("Bad GNAT array descriptor bounds"));
1785 }
1786
1787 /* If BOUNDS is an array-bounds structure type, return the bit position
1788 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1789 bound, if WHICH is 1. The first bound is I=1. */
1790
1791 static int
1792 desc_bound_bitpos (struct type *type, int i, int which)
1793 {
1794 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1795 }
1796
1797 /* If BOUNDS is an array-bounds structure type, return the bit field size
1798 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1799 bound, if WHICH is 1. The first bound is I=1. */
1800
1801 static int
1802 desc_bound_bitsize (struct type *type, int i, int which)
1803 {
1804 type = desc_base_type (type);
1805
1806 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1807 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1808 else
1809 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1810 }
1811
1812 /* If TYPE is the type of an array-bounds structure, the type of its
1813 Ith bound (numbering from 1). Otherwise, NULL. */
1814
1815 static struct type *
1816 desc_index_type (struct type *type, int i)
1817 {
1818 type = desc_base_type (type);
1819
1820 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1821 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1822 else
1823 return NULL;
1824 }
1825
1826 /* The number of index positions in the array-bounds type TYPE.
1827 Return 0 if TYPE is NULL. */
1828
1829 static int
1830 desc_arity (struct type *type)
1831 {
1832 type = desc_base_type (type);
1833
1834 if (type != NULL)
1835 return TYPE_NFIELDS (type) / 2;
1836 return 0;
1837 }
1838
1839 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1840 an array descriptor type (representing an unconstrained array
1841 type). */
1842
1843 static int
1844 ada_is_direct_array_type (struct type *type)
1845 {
1846 if (type == NULL)
1847 return 0;
1848 type = ada_check_typedef (type);
1849 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1850 || ada_is_array_descriptor_type (type));
1851 }
1852
1853 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1854 * to one. */
1855
1856 static int
1857 ada_is_array_type (struct type *type)
1858 {
1859 while (type != NULL
1860 && (TYPE_CODE (type) == TYPE_CODE_PTR
1861 || TYPE_CODE (type) == TYPE_CODE_REF))
1862 type = TYPE_TARGET_TYPE (type);
1863 return ada_is_direct_array_type (type);
1864 }
1865
1866 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1867
1868 int
1869 ada_is_simple_array_type (struct type *type)
1870 {
1871 if (type == NULL)
1872 return 0;
1873 type = ada_check_typedef (type);
1874 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1875 || (TYPE_CODE (type) == TYPE_CODE_PTR
1876 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1877 == TYPE_CODE_ARRAY));
1878 }
1879
1880 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1881
1882 int
1883 ada_is_array_descriptor_type (struct type *type)
1884 {
1885 struct type *data_type = desc_data_target_type (type);
1886
1887 if (type == NULL)
1888 return 0;
1889 type = ada_check_typedef (type);
1890 return (data_type != NULL
1891 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1892 && desc_arity (desc_bounds_type (type)) > 0);
1893 }
1894
1895 /* Non-zero iff type is a partially mal-formed GNAT array
1896 descriptor. FIXME: This is to compensate for some problems with
1897 debugging output from GNAT. Re-examine periodically to see if it
1898 is still needed. */
1899
1900 int
1901 ada_is_bogus_array_descriptor (struct type *type)
1902 {
1903 return
1904 type != NULL
1905 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1906 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1907 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1908 && !ada_is_array_descriptor_type (type);
1909 }
1910
1911
1912 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1913 (fat pointer) returns the type of the array data described---specifically,
1914 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1915 in from the descriptor; otherwise, they are left unspecified. If
1916 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1917 returns NULL. The result is simply the type of ARR if ARR is not
1918 a descriptor. */
1919
1920 static struct type *
1921 ada_type_of_array (struct value *arr, int bounds)
1922 {
1923 if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array_type (value_type (arr));
1925
1926 if (!ada_is_array_descriptor_type (value_type (arr)))
1927 return value_type (arr);
1928
1929 if (!bounds)
1930 {
1931 struct type *array_type =
1932 ada_check_typedef (desc_data_target_type (value_type (arr)));
1933
1934 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1935 TYPE_FIELD_BITSIZE (array_type, 0) =
1936 decode_packed_array_bitsize (value_type (arr));
1937
1938 return array_type;
1939 }
1940 else
1941 {
1942 struct type *elt_type;
1943 int arity;
1944 struct value *descriptor;
1945
1946 elt_type = ada_array_element_type (value_type (arr), -1);
1947 arity = ada_array_arity (value_type (arr));
1948
1949 if (elt_type == NULL || arity == 0)
1950 return ada_check_typedef (value_type (arr));
1951
1952 descriptor = desc_bounds (arr);
1953 if (value_as_long (descriptor) == 0)
1954 return NULL;
1955 while (arity > 0)
1956 {
1957 struct type *range_type = alloc_type_copy (value_type (arr));
1958 struct type *array_type = alloc_type_copy (value_type (arr));
1959 struct value *low = desc_one_bound (descriptor, arity, 0);
1960 struct value *high = desc_one_bound (descriptor, arity, 1);
1961
1962 arity -= 1;
1963 create_static_range_type (range_type, value_type (low),
1964 longest_to_int (value_as_long (low)),
1965 longest_to_int (value_as_long (high)));
1966 elt_type = create_array_type (array_type, elt_type, range_type);
1967
1968 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1969 {
1970 /* We need to store the element packed bitsize, as well as
1971 recompute the array size, because it was previously
1972 computed based on the unpacked element size. */
1973 LONGEST lo = value_as_long (low);
1974 LONGEST hi = value_as_long (high);
1975
1976 TYPE_FIELD_BITSIZE (elt_type, 0) =
1977 decode_packed_array_bitsize (value_type (arr));
1978 /* If the array has no element, then the size is already
1979 zero, and does not need to be recomputed. */
1980 if (lo < hi)
1981 {
1982 int array_bitsize =
1983 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1984
1985 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1986 }
1987 }
1988 }
1989
1990 return lookup_pointer_type (elt_type);
1991 }
1992 }
1993
1994 /* If ARR does not represent an array, returns ARR unchanged.
1995 Otherwise, returns either a standard GDB array with bounds set
1996 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1997 GDB array. Returns NULL if ARR is a null fat pointer. */
1998
1999 struct value *
2000 ada_coerce_to_simple_array_ptr (struct value *arr)
2001 {
2002 if (ada_is_array_descriptor_type (value_type (arr)))
2003 {
2004 struct type *arrType = ada_type_of_array (arr, 1);
2005
2006 if (arrType == NULL)
2007 return NULL;
2008 return value_cast (arrType, value_copy (desc_data (arr)));
2009 }
2010 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2011 return decode_constrained_packed_array (arr);
2012 else
2013 return arr;
2014 }
2015
2016 /* If ARR does not represent an array, returns ARR unchanged.
2017 Otherwise, returns a standard GDB array describing ARR (which may
2018 be ARR itself if it already is in the proper form). */
2019
2020 struct value *
2021 ada_coerce_to_simple_array (struct value *arr)
2022 {
2023 if (ada_is_array_descriptor_type (value_type (arr)))
2024 {
2025 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2026
2027 if (arrVal == NULL)
2028 error (_("Bounds unavailable for null array pointer."));
2029 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2030 return value_ind (arrVal);
2031 }
2032 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2033 return decode_constrained_packed_array (arr);
2034 else
2035 return arr;
2036 }
2037
2038 /* If TYPE represents a GNAT array type, return it translated to an
2039 ordinary GDB array type (possibly with BITSIZE fields indicating
2040 packing). For other types, is the identity. */
2041
2042 struct type *
2043 ada_coerce_to_simple_array_type (struct type *type)
2044 {
2045 if (ada_is_constrained_packed_array_type (type))
2046 return decode_constrained_packed_array_type (type);
2047
2048 if (ada_is_array_descriptor_type (type))
2049 return ada_check_typedef (desc_data_target_type (type));
2050
2051 return type;
2052 }
2053
2054 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2055
2056 static int
2057 ada_is_packed_array_type (struct type *type)
2058 {
2059 if (type == NULL)
2060 return 0;
2061 type = desc_base_type (type);
2062 type = ada_check_typedef (type);
2063 return
2064 ada_type_name (type) != NULL
2065 && strstr (ada_type_name (type), "___XP") != NULL;
2066 }
2067
2068 /* Non-zero iff TYPE represents a standard GNAT constrained
2069 packed-array type. */
2070
2071 int
2072 ada_is_constrained_packed_array_type (struct type *type)
2073 {
2074 return ada_is_packed_array_type (type)
2075 && !ada_is_array_descriptor_type (type);
2076 }
2077
2078 /* Non-zero iff TYPE represents an array descriptor for a
2079 unconstrained packed-array type. */
2080
2081 static int
2082 ada_is_unconstrained_packed_array_type (struct type *type)
2083 {
2084 return ada_is_packed_array_type (type)
2085 && ada_is_array_descriptor_type (type);
2086 }
2087
2088 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2089 return the size of its elements in bits. */
2090
2091 static long
2092 decode_packed_array_bitsize (struct type *type)
2093 {
2094 const char *raw_name;
2095 const char *tail;
2096 long bits;
2097
2098 /* Access to arrays implemented as fat pointers are encoded as a typedef
2099 of the fat pointer type. We need the name of the fat pointer type
2100 to do the decoding, so strip the typedef layer. */
2101 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2102 type = ada_typedef_target_type (type);
2103
2104 raw_name = ada_type_name (ada_check_typedef (type));
2105 if (!raw_name)
2106 raw_name = ada_type_name (desc_base_type (type));
2107
2108 if (!raw_name)
2109 return 0;
2110
2111 tail = strstr (raw_name, "___XP");
2112 gdb_assert (tail != NULL);
2113
2114 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2115 {
2116 lim_warning
2117 (_("could not understand bit size information on packed array"));
2118 return 0;
2119 }
2120
2121 return bits;
2122 }
2123
2124 /* Given that TYPE is a standard GDB array type with all bounds filled
2125 in, and that the element size of its ultimate scalar constituents
2126 (that is, either its elements, or, if it is an array of arrays, its
2127 elements' elements, etc.) is *ELT_BITS, return an identical type,
2128 but with the bit sizes of its elements (and those of any
2129 constituent arrays) recorded in the BITSIZE components of its
2130 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2131 in bits.
2132
2133 Note that, for arrays whose index type has an XA encoding where
2134 a bound references a record discriminant, getting that discriminant,
2135 and therefore the actual value of that bound, is not possible
2136 because none of the given parameters gives us access to the record.
2137 This function assumes that it is OK in the context where it is being
2138 used to return an array whose bounds are still dynamic and where
2139 the length is arbitrary. */
2140
2141 static struct type *
2142 constrained_packed_array_type (struct type *type, long *elt_bits)
2143 {
2144 struct type *new_elt_type;
2145 struct type *new_type;
2146 struct type *index_type_desc;
2147 struct type *index_type;
2148 LONGEST low_bound, high_bound;
2149
2150 type = ada_check_typedef (type);
2151 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2152 return type;
2153
2154 index_type_desc = ada_find_parallel_type (type, "___XA");
2155 if (index_type_desc)
2156 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2157 NULL);
2158 else
2159 index_type = TYPE_INDEX_TYPE (type);
2160
2161 new_type = alloc_type_copy (type);
2162 new_elt_type =
2163 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2164 elt_bits);
2165 create_array_type (new_type, new_elt_type, index_type);
2166 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2167 TYPE_NAME (new_type) = ada_type_name (type);
2168
2169 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2170 && is_dynamic_type (check_typedef (index_type)))
2171 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2172 low_bound = high_bound = 0;
2173 if (high_bound < low_bound)
2174 *elt_bits = TYPE_LENGTH (new_type) = 0;
2175 else
2176 {
2177 *elt_bits *= (high_bound - low_bound + 1);
2178 TYPE_LENGTH (new_type) =
2179 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2180 }
2181
2182 TYPE_FIXED_INSTANCE (new_type) = 1;
2183 return new_type;
2184 }
2185
2186 /* The array type encoded by TYPE, where
2187 ada_is_constrained_packed_array_type (TYPE). */
2188
2189 static struct type *
2190 decode_constrained_packed_array_type (struct type *type)
2191 {
2192 const char *raw_name = ada_type_name (ada_check_typedef (type));
2193 char *name;
2194 const char *tail;
2195 struct type *shadow_type;
2196 long bits;
2197
2198 if (!raw_name)
2199 raw_name = ada_type_name (desc_base_type (type));
2200
2201 if (!raw_name)
2202 return NULL;
2203
2204 name = (char *) alloca (strlen (raw_name) + 1);
2205 tail = strstr (raw_name, "___XP");
2206 type = desc_base_type (type);
2207
2208 memcpy (name, raw_name, tail - raw_name);
2209 name[tail - raw_name] = '\000';
2210
2211 shadow_type = ada_find_parallel_type_with_name (type, name);
2212
2213 if (shadow_type == NULL)
2214 {
2215 lim_warning (_("could not find bounds information on packed array"));
2216 return NULL;
2217 }
2218 shadow_type = check_typedef (shadow_type);
2219
2220 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2221 {
2222 lim_warning (_("could not understand bounds "
2223 "information on packed array"));
2224 return NULL;
2225 }
2226
2227 bits = decode_packed_array_bitsize (type);
2228 return constrained_packed_array_type (shadow_type, &bits);
2229 }
2230
2231 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2232 array, returns a simple array that denotes that array. Its type is a
2233 standard GDB array type except that the BITSIZEs of the array
2234 target types are set to the number of bits in each element, and the
2235 type length is set appropriately. */
2236
2237 static struct value *
2238 decode_constrained_packed_array (struct value *arr)
2239 {
2240 struct type *type;
2241
2242 /* If our value is a pointer, then dereference it. Likewise if
2243 the value is a reference. Make sure that this operation does not
2244 cause the target type to be fixed, as this would indirectly cause
2245 this array to be decoded. The rest of the routine assumes that
2246 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2247 and "value_ind" routines to perform the dereferencing, as opposed
2248 to using "ada_coerce_ref" or "ada_value_ind". */
2249 arr = coerce_ref (arr);
2250 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2251 arr = value_ind (arr);
2252
2253 type = decode_constrained_packed_array_type (value_type (arr));
2254 if (type == NULL)
2255 {
2256 error (_("can't unpack array"));
2257 return NULL;
2258 }
2259
2260 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2261 && ada_is_modular_type (value_type (arr)))
2262 {
2263 /* This is a (right-justified) modular type representing a packed
2264 array with no wrapper. In order to interpret the value through
2265 the (left-justified) packed array type we just built, we must
2266 first left-justify it. */
2267 int bit_size, bit_pos;
2268 ULONGEST mod;
2269
2270 mod = ada_modulus (value_type (arr)) - 1;
2271 bit_size = 0;
2272 while (mod > 0)
2273 {
2274 bit_size += 1;
2275 mod >>= 1;
2276 }
2277 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2278 arr = ada_value_primitive_packed_val (arr, NULL,
2279 bit_pos / HOST_CHAR_BIT,
2280 bit_pos % HOST_CHAR_BIT,
2281 bit_size,
2282 type);
2283 }
2284
2285 return coerce_unspec_val_to_type (arr, type);
2286 }
2287
2288
2289 /* The value of the element of packed array ARR at the ARITY indices
2290 given in IND. ARR must be a simple array. */
2291
2292 static struct value *
2293 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2294 {
2295 int i;
2296 int bits, elt_off, bit_off;
2297 long elt_total_bit_offset;
2298 struct type *elt_type;
2299 struct value *v;
2300
2301 bits = 0;
2302 elt_total_bit_offset = 0;
2303 elt_type = ada_check_typedef (value_type (arr));
2304 for (i = 0; i < arity; i += 1)
2305 {
2306 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2307 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2308 error
2309 (_("attempt to do packed indexing of "
2310 "something other than a packed array"));
2311 else
2312 {
2313 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2314 LONGEST lowerbound, upperbound;
2315 LONGEST idx;
2316
2317 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2318 {
2319 lim_warning (_("don't know bounds of array"));
2320 lowerbound = upperbound = 0;
2321 }
2322
2323 idx = pos_atr (ind[i]);
2324 if (idx < lowerbound || idx > upperbound)
2325 lim_warning (_("packed array index %ld out of bounds"),
2326 (long) idx);
2327 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2328 elt_total_bit_offset += (idx - lowerbound) * bits;
2329 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2330 }
2331 }
2332 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2333 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2334
2335 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2336 bits, elt_type);
2337 return v;
2338 }
2339
2340 /* Non-zero iff TYPE includes negative integer values. */
2341
2342 static int
2343 has_negatives (struct type *type)
2344 {
2345 switch (TYPE_CODE (type))
2346 {
2347 default:
2348 return 0;
2349 case TYPE_CODE_INT:
2350 return !TYPE_UNSIGNED (type);
2351 case TYPE_CODE_RANGE:
2352 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2353 }
2354 }
2355
2356 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2357 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2358 the unpacked buffer.
2359
2360 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2361 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2362
2363 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2364 zero otherwise.
2365
2366 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2367
2368 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2369
2370 static void
2371 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2372 gdb_byte *unpacked, int unpacked_len,
2373 int is_big_endian, int is_signed_type,
2374 int is_scalar)
2375 {
2376 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2377 int src_idx; /* Index into the source area */
2378 int src_bytes_left; /* Number of source bytes left to process. */
2379 int srcBitsLeft; /* Number of source bits left to move */
2380 int unusedLS; /* Number of bits in next significant
2381 byte of source that are unused */
2382
2383 int unpacked_idx; /* Index into the unpacked buffer */
2384 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2385
2386 unsigned long accum; /* Staging area for bits being transferred */
2387 int accumSize; /* Number of meaningful bits in accum */
2388 unsigned char sign;
2389
2390 /* Transmit bytes from least to most significant; delta is the direction
2391 the indices move. */
2392 int delta = is_big_endian ? -1 : 1;
2393
2394 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2395 bits from SRC. .*/
2396 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2397 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2398 bit_size, unpacked_len);
2399
2400 srcBitsLeft = bit_size;
2401 src_bytes_left = src_len;
2402 unpacked_bytes_left = unpacked_len;
2403 sign = 0;
2404
2405 if (is_big_endian)
2406 {
2407 src_idx = src_len - 1;
2408 if (is_signed_type
2409 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2410 sign = ~0;
2411
2412 unusedLS =
2413 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2414 % HOST_CHAR_BIT;
2415
2416 if (is_scalar)
2417 {
2418 accumSize = 0;
2419 unpacked_idx = unpacked_len - 1;
2420 }
2421 else
2422 {
2423 /* Non-scalar values must be aligned at a byte boundary... */
2424 accumSize =
2425 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2426 /* ... And are placed at the beginning (most-significant) bytes
2427 of the target. */
2428 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2429 unpacked_bytes_left = unpacked_idx + 1;
2430 }
2431 }
2432 else
2433 {
2434 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2435
2436 src_idx = unpacked_idx = 0;
2437 unusedLS = bit_offset;
2438 accumSize = 0;
2439
2440 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2441 sign = ~0;
2442 }
2443
2444 accum = 0;
2445 while (src_bytes_left > 0)
2446 {
2447 /* Mask for removing bits of the next source byte that are not
2448 part of the value. */
2449 unsigned int unusedMSMask =
2450 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2451 1;
2452 /* Sign-extend bits for this byte. */
2453 unsigned int signMask = sign & ~unusedMSMask;
2454
2455 accum |=
2456 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2457 accumSize += HOST_CHAR_BIT - unusedLS;
2458 if (accumSize >= HOST_CHAR_BIT)
2459 {
2460 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2461 accumSize -= HOST_CHAR_BIT;
2462 accum >>= HOST_CHAR_BIT;
2463 unpacked_bytes_left -= 1;
2464 unpacked_idx += delta;
2465 }
2466 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2467 unusedLS = 0;
2468 src_bytes_left -= 1;
2469 src_idx += delta;
2470 }
2471 while (unpacked_bytes_left > 0)
2472 {
2473 accum |= sign << accumSize;
2474 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2475 accumSize -= HOST_CHAR_BIT;
2476 if (accumSize < 0)
2477 accumSize = 0;
2478 accum >>= HOST_CHAR_BIT;
2479 unpacked_bytes_left -= 1;
2480 unpacked_idx += delta;
2481 }
2482 }
2483
2484 /* Create a new value of type TYPE from the contents of OBJ starting
2485 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2486 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2487 assigning through the result will set the field fetched from.
2488 VALADDR is ignored unless OBJ is NULL, in which case,
2489 VALADDR+OFFSET must address the start of storage containing the
2490 packed value. The value returned in this case is never an lval.
2491 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2492
2493 struct value *
2494 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2495 long offset, int bit_offset, int bit_size,
2496 struct type *type)
2497 {
2498 struct value *v;
2499 const gdb_byte *src; /* First byte containing data to unpack */
2500 gdb_byte *unpacked;
2501 const int is_scalar = is_scalar_type (type);
2502 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2503 gdb::byte_vector staging;
2504
2505 type = ada_check_typedef (type);
2506
2507 if (obj == NULL)
2508 src = valaddr + offset;
2509 else
2510 src = value_contents (obj) + offset;
2511
2512 if (is_dynamic_type (type))
2513 {
2514 /* The length of TYPE might by dynamic, so we need to resolve
2515 TYPE in order to know its actual size, which we then use
2516 to create the contents buffer of the value we return.
2517 The difficulty is that the data containing our object is
2518 packed, and therefore maybe not at a byte boundary. So, what
2519 we do, is unpack the data into a byte-aligned buffer, and then
2520 use that buffer as our object's value for resolving the type. */
2521 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2522 staging.resize (staging_len);
2523
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
2525 staging.data (), staging.size (),
2526 is_big_endian, has_negatives (type),
2527 is_scalar);
2528 type = resolve_dynamic_type (type, staging.data (), 0);
2529 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2530 {
2531 /* This happens when the length of the object is dynamic,
2532 and is actually smaller than the space reserved for it.
2533 For instance, in an array of variant records, the bit_size
2534 we're given is the array stride, which is constant and
2535 normally equal to the maximum size of its element.
2536 But, in reality, each element only actually spans a portion
2537 of that stride. */
2538 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2539 }
2540 }
2541
2542 if (obj == NULL)
2543 {
2544 v = allocate_value (type);
2545 src = valaddr + offset;
2546 }
2547 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2548 {
2549 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2550 gdb_byte *buf;
2551
2552 v = value_at (type, value_address (obj) + offset);
2553 buf = (gdb_byte *) alloca (src_len);
2554 read_memory (value_address (v), buf, src_len);
2555 src = buf;
2556 }
2557 else
2558 {
2559 v = allocate_value (type);
2560 src = value_contents (obj) + offset;
2561 }
2562
2563 if (obj != NULL)
2564 {
2565 long new_offset = offset;
2566
2567 set_value_component_location (v, obj);
2568 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2569 set_value_bitsize (v, bit_size);
2570 if (value_bitpos (v) >= HOST_CHAR_BIT)
2571 {
2572 ++new_offset;
2573 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2574 }
2575 set_value_offset (v, new_offset);
2576
2577 /* Also set the parent value. This is needed when trying to
2578 assign a new value (in inferior memory). */
2579 set_value_parent (v, obj);
2580 }
2581 else
2582 set_value_bitsize (v, bit_size);
2583 unpacked = value_contents_writeable (v);
2584
2585 if (bit_size == 0)
2586 {
2587 memset (unpacked, 0, TYPE_LENGTH (type));
2588 return v;
2589 }
2590
2591 if (staging.size () == TYPE_LENGTH (type))
2592 {
2593 /* Small short-cut: If we've unpacked the data into a buffer
2594 of the same size as TYPE's length, then we can reuse that,
2595 instead of doing the unpacking again. */
2596 memcpy (unpacked, staging.data (), staging.size ());
2597 }
2598 else
2599 ada_unpack_from_contents (src, bit_offset, bit_size,
2600 unpacked, TYPE_LENGTH (type),
2601 is_big_endian, has_negatives (type), is_scalar);
2602
2603 return v;
2604 }
2605
2606 /* Store the contents of FROMVAL into the location of TOVAL.
2607 Return a new value with the location of TOVAL and contents of
2608 FROMVAL. Handles assignment into packed fields that have
2609 floating-point or non-scalar types. */
2610
2611 static struct value *
2612 ada_value_assign (struct value *toval, struct value *fromval)
2613 {
2614 struct type *type = value_type (toval);
2615 int bits = value_bitsize (toval);
2616
2617 toval = ada_coerce_ref (toval);
2618 fromval = ada_coerce_ref (fromval);
2619
2620 if (ada_is_direct_array_type (value_type (toval)))
2621 toval = ada_coerce_to_simple_array (toval);
2622 if (ada_is_direct_array_type (value_type (fromval)))
2623 fromval = ada_coerce_to_simple_array (fromval);
2624
2625 if (!deprecated_value_modifiable (toval))
2626 error (_("Left operand of assignment is not a modifiable lvalue."));
2627
2628 if (VALUE_LVAL (toval) == lval_memory
2629 && bits > 0
2630 && (TYPE_CODE (type) == TYPE_CODE_FLT
2631 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2632 {
2633 int len = (value_bitpos (toval)
2634 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2635 int from_size;
2636 gdb_byte *buffer = (gdb_byte *) alloca (len);
2637 struct value *val;
2638 CORE_ADDR to_addr = value_address (toval);
2639
2640 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2641 fromval = value_cast (type, fromval);
2642
2643 read_memory (to_addr, buffer, len);
2644 from_size = value_bitsize (fromval);
2645 if (from_size == 0)
2646 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2647
2648 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2649 ULONGEST from_offset = 0;
2650 if (is_big_endian && is_scalar_type (value_type (fromval)))
2651 from_offset = from_size - bits;
2652 copy_bitwise (buffer, value_bitpos (toval),
2653 value_contents (fromval), from_offset,
2654 bits, is_big_endian);
2655 write_memory_with_notification (to_addr, buffer, len);
2656
2657 val = value_copy (toval);
2658 memcpy (value_contents_raw (val), value_contents (fromval),
2659 TYPE_LENGTH (type));
2660 deprecated_set_value_type (val, type);
2661
2662 return val;
2663 }
2664
2665 return value_assign (toval, fromval);
2666 }
2667
2668
2669 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2670 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2671 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2672 COMPONENT, and not the inferior's memory. The current contents
2673 of COMPONENT are ignored.
2674
2675 Although not part of the initial design, this function also works
2676 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2677 had a null address, and COMPONENT had an address which is equal to
2678 its offset inside CONTAINER. */
2679
2680 static void
2681 value_assign_to_component (struct value *container, struct value *component,
2682 struct value *val)
2683 {
2684 LONGEST offset_in_container =
2685 (LONGEST) (value_address (component) - value_address (container));
2686 int bit_offset_in_container =
2687 value_bitpos (component) - value_bitpos (container);
2688 int bits;
2689
2690 val = value_cast (value_type (component), val);
2691
2692 if (value_bitsize (component) == 0)
2693 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2694 else
2695 bits = value_bitsize (component);
2696
2697 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2698 {
2699 int src_offset;
2700
2701 if (is_scalar_type (check_typedef (value_type (component))))
2702 src_offset
2703 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2704 else
2705 src_offset = 0;
2706 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2707 value_bitpos (container) + bit_offset_in_container,
2708 value_contents (val), src_offset, bits, 1);
2709 }
2710 else
2711 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2712 value_bitpos (container) + bit_offset_in_container,
2713 value_contents (val), 0, bits, 0);
2714 }
2715
2716 /* Determine if TYPE is an access to an unconstrained array. */
2717
2718 bool
2719 ada_is_access_to_unconstrained_array (struct type *type)
2720 {
2721 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2722 && is_thick_pntr (ada_typedef_target_type (type)));
2723 }
2724
2725 /* The value of the element of array ARR at the ARITY indices given in IND.
2726 ARR may be either a simple array, GNAT array descriptor, or pointer
2727 thereto. */
2728
2729 struct value *
2730 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2731 {
2732 int k;
2733 struct value *elt;
2734 struct type *elt_type;
2735
2736 elt = ada_coerce_to_simple_array (arr);
2737
2738 elt_type = ada_check_typedef (value_type (elt));
2739 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2740 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2741 return value_subscript_packed (elt, arity, ind);
2742
2743 for (k = 0; k < arity; k += 1)
2744 {
2745 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2746
2747 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2748 error (_("too many subscripts (%d expected)"), k);
2749
2750 elt = value_subscript (elt, pos_atr (ind[k]));
2751
2752 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2753 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2754 {
2755 /* The element is a typedef to an unconstrained array,
2756 except that the value_subscript call stripped the
2757 typedef layer. The typedef layer is GNAT's way to
2758 specify that the element is, at the source level, an
2759 access to the unconstrained array, rather than the
2760 unconstrained array. So, we need to restore that
2761 typedef layer, which we can do by forcing the element's
2762 type back to its original type. Otherwise, the returned
2763 value is going to be printed as the array, rather
2764 than as an access. Another symptom of the same issue
2765 would be that an expression trying to dereference the
2766 element would also be improperly rejected. */
2767 deprecated_set_value_type (elt, saved_elt_type);
2768 }
2769
2770 elt_type = ada_check_typedef (value_type (elt));
2771 }
2772
2773 return elt;
2774 }
2775
2776 /* Assuming ARR is a pointer to a GDB array, the value of the element
2777 of *ARR at the ARITY indices given in IND.
2778 Does not read the entire array into memory.
2779
2780 Note: Unlike what one would expect, this function is used instead of
2781 ada_value_subscript for basically all non-packed array types. The reason
2782 for this is that a side effect of doing our own pointer arithmetics instead
2783 of relying on value_subscript is that there is no implicit typedef peeling.
2784 This is important for arrays of array accesses, where it allows us to
2785 preserve the fact that the array's element is an array access, where the
2786 access part os encoded in a typedef layer. */
2787
2788 static struct value *
2789 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2790 {
2791 int k;
2792 struct value *array_ind = ada_value_ind (arr);
2793 struct type *type
2794 = check_typedef (value_enclosing_type (array_ind));
2795
2796 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2797 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2798 return value_subscript_packed (array_ind, arity, ind);
2799
2800 for (k = 0; k < arity; k += 1)
2801 {
2802 LONGEST lwb, upb;
2803 struct value *lwb_value;
2804
2805 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2806 error (_("too many subscripts (%d expected)"), k);
2807 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2808 value_copy (arr));
2809 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2810 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2811 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2812 type = TYPE_TARGET_TYPE (type);
2813 }
2814
2815 return value_ind (arr);
2816 }
2817
2818 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2819 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2820 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2821 this array is LOW, as per Ada rules. */
2822 static struct value *
2823 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2824 int low, int high)
2825 {
2826 struct type *type0 = ada_check_typedef (type);
2827 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2828 struct type *index_type
2829 = create_static_range_type (NULL, base_index_type, low, high);
2830 struct type *slice_type = create_array_type_with_stride
2831 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2832 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2833 TYPE_FIELD_BITSIZE (type0, 0));
2834 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2835 LONGEST base_low_pos, low_pos;
2836 CORE_ADDR base;
2837
2838 if (!discrete_position (base_index_type, low, &low_pos)
2839 || !discrete_position (base_index_type, base_low, &base_low_pos))
2840 {
2841 warning (_("unable to get positions in slice, use bounds instead"));
2842 low_pos = low;
2843 base_low_pos = base_low;
2844 }
2845
2846 base = value_as_address (array_ptr)
2847 + ((low_pos - base_low_pos)
2848 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2849 return value_at_lazy (slice_type, base);
2850 }
2851
2852
2853 static struct value *
2854 ada_value_slice (struct value *array, int low, int high)
2855 {
2856 struct type *type = ada_check_typedef (value_type (array));
2857 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2858 struct type *index_type
2859 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2860 struct type *slice_type = create_array_type_with_stride
2861 (NULL, TYPE_TARGET_TYPE (type), index_type,
2862 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2863 TYPE_FIELD_BITSIZE (type, 0));
2864 LONGEST low_pos, high_pos;
2865
2866 if (!discrete_position (base_index_type, low, &low_pos)
2867 || !discrete_position (base_index_type, high, &high_pos))
2868 {
2869 warning (_("unable to get positions in slice, use bounds instead"));
2870 low_pos = low;
2871 high_pos = high;
2872 }
2873
2874 return value_cast (slice_type,
2875 value_slice (array, low, high_pos - low_pos + 1));
2876 }
2877
2878 /* If type is a record type in the form of a standard GNAT array
2879 descriptor, returns the number of dimensions for type. If arr is a
2880 simple array, returns the number of "array of"s that prefix its
2881 type designation. Otherwise, returns 0. */
2882
2883 int
2884 ada_array_arity (struct type *type)
2885 {
2886 int arity;
2887
2888 if (type == NULL)
2889 return 0;
2890
2891 type = desc_base_type (type);
2892
2893 arity = 0;
2894 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2895 return desc_arity (desc_bounds_type (type));
2896 else
2897 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2898 {
2899 arity += 1;
2900 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2901 }
2902
2903 return arity;
2904 }
2905
2906 /* If TYPE is a record type in the form of a standard GNAT array
2907 descriptor or a simple array type, returns the element type for
2908 TYPE after indexing by NINDICES indices, or by all indices if
2909 NINDICES is -1. Otherwise, returns NULL. */
2910
2911 struct type *
2912 ada_array_element_type (struct type *type, int nindices)
2913 {
2914 type = desc_base_type (type);
2915
2916 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2917 {
2918 int k;
2919 struct type *p_array_type;
2920
2921 p_array_type = desc_data_target_type (type);
2922
2923 k = ada_array_arity (type);
2924 if (k == 0)
2925 return NULL;
2926
2927 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2928 if (nindices >= 0 && k > nindices)
2929 k = nindices;
2930 while (k > 0 && p_array_type != NULL)
2931 {
2932 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2933 k -= 1;
2934 }
2935 return p_array_type;
2936 }
2937 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2938 {
2939 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2940 {
2941 type = TYPE_TARGET_TYPE (type);
2942 nindices -= 1;
2943 }
2944 return type;
2945 }
2946
2947 return NULL;
2948 }
2949
2950 /* The type of nth index in arrays of given type (n numbering from 1).
2951 Does not examine memory. Throws an error if N is invalid or TYPE
2952 is not an array type. NAME is the name of the Ada attribute being
2953 evaluated ('range, 'first, 'last, or 'length); it is used in building
2954 the error message. */
2955
2956 static struct type *
2957 ada_index_type (struct type *type, int n, const char *name)
2958 {
2959 struct type *result_type;
2960
2961 type = desc_base_type (type);
2962
2963 if (n < 0 || n > ada_array_arity (type))
2964 error (_("invalid dimension number to '%s"), name);
2965
2966 if (ada_is_simple_array_type (type))
2967 {
2968 int i;
2969
2970 for (i = 1; i < n; i += 1)
2971 type = TYPE_TARGET_TYPE (type);
2972 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2973 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2974 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2975 perhaps stabsread.c would make more sense. */
2976 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2977 result_type = NULL;
2978 }
2979 else
2980 {
2981 result_type = desc_index_type (desc_bounds_type (type), n);
2982 if (result_type == NULL)
2983 error (_("attempt to take bound of something that is not an array"));
2984 }
2985
2986 return result_type;
2987 }
2988
2989 /* Given that arr is an array type, returns the lower bound of the
2990 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2991 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2992 array-descriptor type. It works for other arrays with bounds supplied
2993 by run-time quantities other than discriminants. */
2994
2995 static LONGEST
2996 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2997 {
2998 struct type *type, *index_type_desc, *index_type;
2999 int i;
3000
3001 gdb_assert (which == 0 || which == 1);
3002
3003 if (ada_is_constrained_packed_array_type (arr_type))
3004 arr_type = decode_constrained_packed_array_type (arr_type);
3005
3006 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3007 return (LONGEST) - which;
3008
3009 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3010 type = TYPE_TARGET_TYPE (arr_type);
3011 else
3012 type = arr_type;
3013
3014 if (TYPE_FIXED_INSTANCE (type))
3015 {
3016 /* The array has already been fixed, so we do not need to
3017 check the parallel ___XA type again. That encoding has
3018 already been applied, so ignore it now. */
3019 index_type_desc = NULL;
3020 }
3021 else
3022 {
3023 index_type_desc = ada_find_parallel_type (type, "___XA");
3024 ada_fixup_array_indexes_type (index_type_desc);
3025 }
3026
3027 if (index_type_desc != NULL)
3028 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3029 NULL);
3030 else
3031 {
3032 struct type *elt_type = check_typedef (type);
3033
3034 for (i = 1; i < n; i++)
3035 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3036
3037 index_type = TYPE_INDEX_TYPE (elt_type);
3038 }
3039
3040 return
3041 (LONGEST) (which == 0
3042 ? ada_discrete_type_low_bound (index_type)
3043 : ada_discrete_type_high_bound (index_type));
3044 }
3045
3046 /* Given that arr is an array value, returns the lower bound of the
3047 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3048 WHICH is 1. This routine will also work for arrays with bounds
3049 supplied by run-time quantities other than discriminants. */
3050
3051 static LONGEST
3052 ada_array_bound (struct value *arr, int n, int which)
3053 {
3054 struct type *arr_type;
3055
3056 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3057 arr = value_ind (arr);
3058 arr_type = value_enclosing_type (arr);
3059
3060 if (ada_is_constrained_packed_array_type (arr_type))
3061 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3062 else if (ada_is_simple_array_type (arr_type))
3063 return ada_array_bound_from_type (arr_type, n, which);
3064 else
3065 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3066 }
3067
3068 /* Given that arr is an array value, returns the length of the
3069 nth index. This routine will also work for arrays with bounds
3070 supplied by run-time quantities other than discriminants.
3071 Does not work for arrays indexed by enumeration types with representation
3072 clauses at the moment. */
3073
3074 static LONGEST
3075 ada_array_length (struct value *arr, int n)
3076 {
3077 struct type *arr_type, *index_type;
3078 int low, high;
3079
3080 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3081 arr = value_ind (arr);
3082 arr_type = value_enclosing_type (arr);
3083
3084 if (ada_is_constrained_packed_array_type (arr_type))
3085 return ada_array_length (decode_constrained_packed_array (arr), n);
3086
3087 if (ada_is_simple_array_type (arr_type))
3088 {
3089 low = ada_array_bound_from_type (arr_type, n, 0);
3090 high = ada_array_bound_from_type (arr_type, n, 1);
3091 }
3092 else
3093 {
3094 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3095 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3096 }
3097
3098 arr_type = check_typedef (arr_type);
3099 index_type = ada_index_type (arr_type, n, "length");
3100 if (index_type != NULL)
3101 {
3102 struct type *base_type;
3103 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3104 base_type = TYPE_TARGET_TYPE (index_type);
3105 else
3106 base_type = index_type;
3107
3108 low = pos_atr (value_from_longest (base_type, low));
3109 high = pos_atr (value_from_longest (base_type, high));
3110 }
3111 return high - low + 1;
3112 }
3113
3114 /* An array whose type is that of ARR_TYPE (an array type), with
3115 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3116 less than LOW, then LOW-1 is used. */
3117
3118 static struct value *
3119 empty_array (struct type *arr_type, int low, int high)
3120 {
3121 struct type *arr_type0 = ada_check_typedef (arr_type);
3122 struct type *index_type
3123 = create_static_range_type
3124 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3125 high < low ? low - 1 : high);
3126 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3127
3128 return allocate_value (create_array_type (NULL, elt_type, index_type));
3129 }
3130 \f
3131
3132 /* Name resolution */
3133
3134 /* The "decoded" name for the user-definable Ada operator corresponding
3135 to OP. */
3136
3137 static const char *
3138 ada_decoded_op_name (enum exp_opcode op)
3139 {
3140 int i;
3141
3142 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3143 {
3144 if (ada_opname_table[i].op == op)
3145 return ada_opname_table[i].decoded;
3146 }
3147 error (_("Could not find operator name for opcode"));
3148 }
3149
3150 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3151 in a listing of choices during disambiguation (see sort_choices, below).
3152 The idea is that overloadings of a subprogram name from the
3153 same package should sort in their source order. We settle for ordering
3154 such symbols by their trailing number (__N or $N). */
3155
3156 static int
3157 encoded_ordered_before (const char *N0, const char *N1)
3158 {
3159 if (N1 == NULL)
3160 return 0;
3161 else if (N0 == NULL)
3162 return 1;
3163 else
3164 {
3165 int k0, k1;
3166
3167 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3168 ;
3169 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3170 ;
3171 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3172 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3173 {
3174 int n0, n1;
3175
3176 n0 = k0;
3177 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3178 n0 -= 1;
3179 n1 = k1;
3180 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3181 n1 -= 1;
3182 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3183 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3184 }
3185 return (strcmp (N0, N1) < 0);
3186 }
3187 }
3188
3189 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3190 encoded names. */
3191
3192 static void
3193 sort_choices (struct block_symbol syms[], int nsyms)
3194 {
3195 int i;
3196
3197 for (i = 1; i < nsyms; i += 1)
3198 {
3199 struct block_symbol sym = syms[i];
3200 int j;
3201
3202 for (j = i - 1; j >= 0; j -= 1)
3203 {
3204 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3205 sym.symbol->linkage_name ()))
3206 break;
3207 syms[j + 1] = syms[j];
3208 }
3209 syms[j + 1] = sym;
3210 }
3211 }
3212
3213 /* Whether GDB should display formals and return types for functions in the
3214 overloads selection menu. */
3215 static bool print_signatures = true;
3216
3217 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3218 all but functions, the signature is just the name of the symbol. For
3219 functions, this is the name of the function, the list of types for formals
3220 and the return type (if any). */
3221
3222 static void
3223 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3224 const struct type_print_options *flags)
3225 {
3226 struct type *type = SYMBOL_TYPE (sym);
3227
3228 fprintf_filtered (stream, "%s", sym->print_name ());
3229 if (!print_signatures
3230 || type == NULL
3231 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3232 return;
3233
3234 if (TYPE_NFIELDS (type) > 0)
3235 {
3236 int i;
3237
3238 fprintf_filtered (stream, " (");
3239 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3240 {
3241 if (i > 0)
3242 fprintf_filtered (stream, "; ");
3243 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3244 flags);
3245 }
3246 fprintf_filtered (stream, ")");
3247 }
3248 if (TYPE_TARGET_TYPE (type) != NULL
3249 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3250 {
3251 fprintf_filtered (stream, " return ");
3252 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3253 }
3254 }
3255
3256 /* Read and validate a set of numeric choices from the user in the
3257 range 0 .. N_CHOICES-1. Place the results in increasing
3258 order in CHOICES[0 .. N-1], and return N.
3259
3260 The user types choices as a sequence of numbers on one line
3261 separated by blanks, encoding them as follows:
3262
3263 + A choice of 0 means to cancel the selection, throwing an error.
3264 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3265 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3266
3267 The user is not allowed to choose more than MAX_RESULTS values.
3268
3269 ANNOTATION_SUFFIX, if present, is used to annotate the input
3270 prompts (for use with the -f switch). */
3271
3272 static int
3273 get_selections (int *choices, int n_choices, int max_results,
3274 int is_all_choice, const char *annotation_suffix)
3275 {
3276 const char *args;
3277 const char *prompt;
3278 int n_chosen;
3279 int first_choice = is_all_choice ? 2 : 1;
3280
3281 prompt = getenv ("PS2");
3282 if (prompt == NULL)
3283 prompt = "> ";
3284
3285 args = command_line_input (prompt, annotation_suffix);
3286
3287 if (args == NULL)
3288 error_no_arg (_("one or more choice numbers"));
3289
3290 n_chosen = 0;
3291
3292 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3293 order, as given in args. Choices are validated. */
3294 while (1)
3295 {
3296 char *args2;
3297 int choice, j;
3298
3299 args = skip_spaces (args);
3300 if (*args == '\0' && n_chosen == 0)
3301 error_no_arg (_("one or more choice numbers"));
3302 else if (*args == '\0')
3303 break;
3304
3305 choice = strtol (args, &args2, 10);
3306 if (args == args2 || choice < 0
3307 || choice > n_choices + first_choice - 1)
3308 error (_("Argument must be choice number"));
3309 args = args2;
3310
3311 if (choice == 0)
3312 error (_("cancelled"));
3313
3314 if (choice < first_choice)
3315 {
3316 n_chosen = n_choices;
3317 for (j = 0; j < n_choices; j += 1)
3318 choices[j] = j;
3319 break;
3320 }
3321 choice -= first_choice;
3322
3323 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3324 {
3325 }
3326
3327 if (j < 0 || choice != choices[j])
3328 {
3329 int k;
3330
3331 for (k = n_chosen - 1; k > j; k -= 1)
3332 choices[k + 1] = choices[k];
3333 choices[j + 1] = choice;
3334 n_chosen += 1;
3335 }
3336 }
3337
3338 if (n_chosen > max_results)
3339 error (_("Select no more than %d of the above"), max_results);
3340
3341 return n_chosen;
3342 }
3343
3344 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3345 by asking the user (if necessary), returning the number selected,
3346 and setting the first elements of SYMS items. Error if no symbols
3347 selected. */
3348
3349 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3350 to be re-integrated one of these days. */
3351
3352 static int
3353 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3354 {
3355 int i;
3356 int *chosen = XALLOCAVEC (int , nsyms);
3357 int n_chosen;
3358 int first_choice = (max_results == 1) ? 1 : 2;
3359 const char *select_mode = multiple_symbols_select_mode ();
3360
3361 if (max_results < 1)
3362 error (_("Request to select 0 symbols!"));
3363 if (nsyms <= 1)
3364 return nsyms;
3365
3366 if (select_mode == multiple_symbols_cancel)
3367 error (_("\
3368 canceled because the command is ambiguous\n\
3369 See set/show multiple-symbol."));
3370
3371 /* If select_mode is "all", then return all possible symbols.
3372 Only do that if more than one symbol can be selected, of course.
3373 Otherwise, display the menu as usual. */
3374 if (select_mode == multiple_symbols_all && max_results > 1)
3375 return nsyms;
3376
3377 printf_filtered (_("[0] cancel\n"));
3378 if (max_results > 1)
3379 printf_filtered (_("[1] all\n"));
3380
3381 sort_choices (syms, nsyms);
3382
3383 for (i = 0; i < nsyms; i += 1)
3384 {
3385 if (syms[i].symbol == NULL)
3386 continue;
3387
3388 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3389 {
3390 struct symtab_and_line sal =
3391 find_function_start_sal (syms[i].symbol, 1);
3392
3393 printf_filtered ("[%d] ", i + first_choice);
3394 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3395 &type_print_raw_options);
3396 if (sal.symtab == NULL)
3397 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3398 metadata_style.style ().ptr (), nullptr, sal.line);
3399 else
3400 printf_filtered
3401 (_(" at %ps:%d\n"),
3402 styled_string (file_name_style.style (),
3403 symtab_to_filename_for_display (sal.symtab)),
3404 sal.line);
3405 continue;
3406 }
3407 else
3408 {
3409 int is_enumeral =
3410 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3411 && SYMBOL_TYPE (syms[i].symbol) != NULL
3412 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3413 struct symtab *symtab = NULL;
3414
3415 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3416 symtab = symbol_symtab (syms[i].symbol);
3417
3418 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3419 {
3420 printf_filtered ("[%d] ", i + first_choice);
3421 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3422 &type_print_raw_options);
3423 printf_filtered (_(" at %s:%d\n"),
3424 symtab_to_filename_for_display (symtab),
3425 SYMBOL_LINE (syms[i].symbol));
3426 }
3427 else if (is_enumeral
3428 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3429 {
3430 printf_filtered (("[%d] "), i + first_choice);
3431 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3432 gdb_stdout, -1, 0, &type_print_raw_options);
3433 printf_filtered (_("'(%s) (enumeral)\n"),
3434 syms[i].symbol->print_name ());
3435 }
3436 else
3437 {
3438 printf_filtered ("[%d] ", i + first_choice);
3439 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3440 &type_print_raw_options);
3441
3442 if (symtab != NULL)
3443 printf_filtered (is_enumeral
3444 ? _(" in %s (enumeral)\n")
3445 : _(" at %s:?\n"),
3446 symtab_to_filename_for_display (symtab));
3447 else
3448 printf_filtered (is_enumeral
3449 ? _(" (enumeral)\n")
3450 : _(" at ?\n"));
3451 }
3452 }
3453 }
3454
3455 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3456 "overload-choice");
3457
3458 for (i = 0; i < n_chosen; i += 1)
3459 syms[i] = syms[chosen[i]];
3460
3461 return n_chosen;
3462 }
3463
3464 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3465 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3466 undefined namespace) and converts operators that are
3467 user-defined into appropriate function calls. If CONTEXT_TYPE is
3468 non-null, it provides a preferred result type [at the moment, only
3469 type void has any effect---causing procedures to be preferred over
3470 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3471 return type is preferred. May change (expand) *EXP. */
3472
3473 static void
3474 resolve (expression_up *expp, int void_context_p, int parse_completion,
3475 innermost_block_tracker *tracker)
3476 {
3477 struct type *context_type = NULL;
3478 int pc = 0;
3479
3480 if (void_context_p)
3481 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3482
3483 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3484 }
3485
3486 /* Resolve the operator of the subexpression beginning at
3487 position *POS of *EXPP. "Resolving" consists of replacing
3488 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3489 with their resolutions, replacing built-in operators with
3490 function calls to user-defined operators, where appropriate, and,
3491 when DEPROCEDURE_P is non-zero, converting function-valued variables
3492 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3493 are as in ada_resolve, above. */
3494
3495 static struct value *
3496 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3497 struct type *context_type, int parse_completion,
3498 innermost_block_tracker *tracker)
3499 {
3500 int pc = *pos;
3501 int i;
3502 struct expression *exp; /* Convenience: == *expp. */
3503 enum exp_opcode op = (*expp)->elts[pc].opcode;
3504 struct value **argvec; /* Vector of operand types (alloca'ed). */
3505 int nargs; /* Number of operands. */
3506 int oplen;
3507
3508 argvec = NULL;
3509 nargs = 0;
3510 exp = expp->get ();
3511
3512 /* Pass one: resolve operands, saving their types and updating *pos,
3513 if needed. */
3514 switch (op)
3515 {
3516 case OP_FUNCALL:
3517 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3518 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3519 *pos += 7;
3520 else
3521 {
3522 *pos += 3;
3523 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3524 }
3525 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3526 break;
3527
3528 case UNOP_ADDR:
3529 *pos += 1;
3530 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3531 break;
3532
3533 case UNOP_QUAL:
3534 *pos += 3;
3535 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3536 parse_completion, tracker);
3537 break;
3538
3539 case OP_ATR_MODULUS:
3540 case OP_ATR_SIZE:
3541 case OP_ATR_TAG:
3542 case OP_ATR_FIRST:
3543 case OP_ATR_LAST:
3544 case OP_ATR_LENGTH:
3545 case OP_ATR_POS:
3546 case OP_ATR_VAL:
3547 case OP_ATR_MIN:
3548 case OP_ATR_MAX:
3549 case TERNOP_IN_RANGE:
3550 case BINOP_IN_BOUNDS:
3551 case UNOP_IN_RANGE:
3552 case OP_AGGREGATE:
3553 case OP_OTHERS:
3554 case OP_CHOICES:
3555 case OP_POSITIONAL:
3556 case OP_DISCRETE_RANGE:
3557 case OP_NAME:
3558 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3559 *pos += oplen;
3560 break;
3561
3562 case BINOP_ASSIGN:
3563 {
3564 struct value *arg1;
3565
3566 *pos += 1;
3567 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3568 if (arg1 == NULL)
3569 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3570 else
3571 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3572 tracker);
3573 break;
3574 }
3575
3576 case UNOP_CAST:
3577 *pos += 3;
3578 nargs = 1;
3579 break;
3580
3581 case BINOP_ADD:
3582 case BINOP_SUB:
3583 case BINOP_MUL:
3584 case BINOP_DIV:
3585 case BINOP_REM:
3586 case BINOP_MOD:
3587 case BINOP_EXP:
3588 case BINOP_CONCAT:
3589 case BINOP_LOGICAL_AND:
3590 case BINOP_LOGICAL_OR:
3591 case BINOP_BITWISE_AND:
3592 case BINOP_BITWISE_IOR:
3593 case BINOP_BITWISE_XOR:
3594
3595 case BINOP_EQUAL:
3596 case BINOP_NOTEQUAL:
3597 case BINOP_LESS:
3598 case BINOP_GTR:
3599 case BINOP_LEQ:
3600 case BINOP_GEQ:
3601
3602 case BINOP_REPEAT:
3603 case BINOP_SUBSCRIPT:
3604 case BINOP_COMMA:
3605 *pos += 1;
3606 nargs = 2;
3607 break;
3608
3609 case UNOP_NEG:
3610 case UNOP_PLUS:
3611 case UNOP_LOGICAL_NOT:
3612 case UNOP_ABS:
3613 case UNOP_IND:
3614 *pos += 1;
3615 nargs = 1;
3616 break;
3617
3618 case OP_LONG:
3619 case OP_FLOAT:
3620 case OP_VAR_VALUE:
3621 case OP_VAR_MSYM_VALUE:
3622 *pos += 4;
3623 break;
3624
3625 case OP_TYPE:
3626 case OP_BOOL:
3627 case OP_LAST:
3628 case OP_INTERNALVAR:
3629 *pos += 3;
3630 break;
3631
3632 case UNOP_MEMVAL:
3633 *pos += 3;
3634 nargs = 1;
3635 break;
3636
3637 case OP_REGISTER:
3638 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3639 break;
3640
3641 case STRUCTOP_STRUCT:
3642 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3643 nargs = 1;
3644 break;
3645
3646 case TERNOP_SLICE:
3647 *pos += 1;
3648 nargs = 3;
3649 break;
3650
3651 case OP_STRING:
3652 break;
3653
3654 default:
3655 error (_("Unexpected operator during name resolution"));
3656 }
3657
3658 argvec = XALLOCAVEC (struct value *, nargs + 1);
3659 for (i = 0; i < nargs; i += 1)
3660 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3661 tracker);
3662 argvec[i] = NULL;
3663 exp = expp->get ();
3664
3665 /* Pass two: perform any resolution on principal operator. */
3666 switch (op)
3667 {
3668 default:
3669 break;
3670
3671 case OP_VAR_VALUE:
3672 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3673 {
3674 std::vector<struct block_symbol> candidates;
3675 int n_candidates;
3676
3677 n_candidates =
3678 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3679 exp->elts[pc + 1].block, VAR_DOMAIN,
3680 &candidates);
3681
3682 if (n_candidates > 1)
3683 {
3684 /* Types tend to get re-introduced locally, so if there
3685 are any local symbols that are not types, first filter
3686 out all types. */
3687 int j;
3688 for (j = 0; j < n_candidates; j += 1)
3689 switch (SYMBOL_CLASS (candidates[j].symbol))
3690 {
3691 case LOC_REGISTER:
3692 case LOC_ARG:
3693 case LOC_REF_ARG:
3694 case LOC_REGPARM_ADDR:
3695 case LOC_LOCAL:
3696 case LOC_COMPUTED:
3697 goto FoundNonType;
3698 default:
3699 break;
3700 }
3701 FoundNonType:
3702 if (j < n_candidates)
3703 {
3704 j = 0;
3705 while (j < n_candidates)
3706 {
3707 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3708 {
3709 candidates[j] = candidates[n_candidates - 1];
3710 n_candidates -= 1;
3711 }
3712 else
3713 j += 1;
3714 }
3715 }
3716 }
3717
3718 if (n_candidates == 0)
3719 error (_("No definition found for %s"),
3720 exp->elts[pc + 2].symbol->print_name ());
3721 else if (n_candidates == 1)
3722 i = 0;
3723 else if (deprocedure_p
3724 && !is_nonfunction (candidates.data (), n_candidates))
3725 {
3726 i = ada_resolve_function
3727 (candidates.data (), n_candidates, NULL, 0,
3728 exp->elts[pc + 2].symbol->linkage_name (),
3729 context_type, parse_completion);
3730 if (i < 0)
3731 error (_("Could not find a match for %s"),
3732 exp->elts[pc + 2].symbol->print_name ());
3733 }
3734 else
3735 {
3736 printf_filtered (_("Multiple matches for %s\n"),
3737 exp->elts[pc + 2].symbol->print_name ());
3738 user_select_syms (candidates.data (), n_candidates, 1);
3739 i = 0;
3740 }
3741
3742 exp->elts[pc + 1].block = candidates[i].block;
3743 exp->elts[pc + 2].symbol = candidates[i].symbol;
3744 tracker->update (candidates[i]);
3745 }
3746
3747 if (deprocedure_p
3748 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3749 == TYPE_CODE_FUNC))
3750 {
3751 replace_operator_with_call (expp, pc, 0, 4,
3752 exp->elts[pc + 2].symbol,
3753 exp->elts[pc + 1].block);
3754 exp = expp->get ();
3755 }
3756 break;
3757
3758 case OP_FUNCALL:
3759 {
3760 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3761 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3762 {
3763 std::vector<struct block_symbol> candidates;
3764 int n_candidates;
3765
3766 n_candidates =
3767 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3768 exp->elts[pc + 4].block, VAR_DOMAIN,
3769 &candidates);
3770
3771 if (n_candidates == 1)
3772 i = 0;
3773 else
3774 {
3775 i = ada_resolve_function
3776 (candidates.data (), n_candidates,
3777 argvec, nargs,
3778 exp->elts[pc + 5].symbol->linkage_name (),
3779 context_type, parse_completion);
3780 if (i < 0)
3781 error (_("Could not find a match for %s"),
3782 exp->elts[pc + 5].symbol->print_name ());
3783 }
3784
3785 exp->elts[pc + 4].block = candidates[i].block;
3786 exp->elts[pc + 5].symbol = candidates[i].symbol;
3787 tracker->update (candidates[i]);
3788 }
3789 }
3790 break;
3791 case BINOP_ADD:
3792 case BINOP_SUB:
3793 case BINOP_MUL:
3794 case BINOP_DIV:
3795 case BINOP_REM:
3796 case BINOP_MOD:
3797 case BINOP_CONCAT:
3798 case BINOP_BITWISE_AND:
3799 case BINOP_BITWISE_IOR:
3800 case BINOP_BITWISE_XOR:
3801 case BINOP_EQUAL:
3802 case BINOP_NOTEQUAL:
3803 case BINOP_LESS:
3804 case BINOP_GTR:
3805 case BINOP_LEQ:
3806 case BINOP_GEQ:
3807 case BINOP_EXP:
3808 case UNOP_NEG:
3809 case UNOP_PLUS:
3810 case UNOP_LOGICAL_NOT:
3811 case UNOP_ABS:
3812 if (possible_user_operator_p (op, argvec))
3813 {
3814 std::vector<struct block_symbol> candidates;
3815 int n_candidates;
3816
3817 n_candidates =
3818 ada_lookup_symbol_list (ada_decoded_op_name (op),
3819 NULL, VAR_DOMAIN,
3820 &candidates);
3821
3822 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3823 nargs, ada_decoded_op_name (op), NULL,
3824 parse_completion);
3825 if (i < 0)
3826 break;
3827
3828 replace_operator_with_call (expp, pc, nargs, 1,
3829 candidates[i].symbol,
3830 candidates[i].block);
3831 exp = expp->get ();
3832 }
3833 break;
3834
3835 case OP_TYPE:
3836 case OP_REGISTER:
3837 return NULL;
3838 }
3839
3840 *pos = pc;
3841 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3842 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3843 exp->elts[pc + 1].objfile,
3844 exp->elts[pc + 2].msymbol);
3845 else
3846 return evaluate_subexp_type (exp, pos);
3847 }
3848
3849 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3850 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3851 a non-pointer. */
3852 /* The term "match" here is rather loose. The match is heuristic and
3853 liberal. */
3854
3855 static int
3856 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3857 {
3858 ftype = ada_check_typedef (ftype);
3859 atype = ada_check_typedef (atype);
3860
3861 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3862 ftype = TYPE_TARGET_TYPE (ftype);
3863 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3864 atype = TYPE_TARGET_TYPE (atype);
3865
3866 switch (TYPE_CODE (ftype))
3867 {
3868 default:
3869 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3870 case TYPE_CODE_PTR:
3871 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3872 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3873 TYPE_TARGET_TYPE (atype), 0);
3874 else
3875 return (may_deref
3876 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3877 case TYPE_CODE_INT:
3878 case TYPE_CODE_ENUM:
3879 case TYPE_CODE_RANGE:
3880 switch (TYPE_CODE (atype))
3881 {
3882 case TYPE_CODE_INT:
3883 case TYPE_CODE_ENUM:
3884 case TYPE_CODE_RANGE:
3885 return 1;
3886 default:
3887 return 0;
3888 }
3889
3890 case TYPE_CODE_ARRAY:
3891 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3892 || ada_is_array_descriptor_type (atype));
3893
3894 case TYPE_CODE_STRUCT:
3895 if (ada_is_array_descriptor_type (ftype))
3896 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3897 || ada_is_array_descriptor_type (atype));
3898 else
3899 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3900 && !ada_is_array_descriptor_type (atype));
3901
3902 case TYPE_CODE_UNION:
3903 case TYPE_CODE_FLT:
3904 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3905 }
3906 }
3907
3908 /* Return non-zero if the formals of FUNC "sufficiently match" the
3909 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3910 may also be an enumeral, in which case it is treated as a 0-
3911 argument function. */
3912
3913 static int
3914 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3915 {
3916 int i;
3917 struct type *func_type = SYMBOL_TYPE (func);
3918
3919 if (SYMBOL_CLASS (func) == LOC_CONST
3920 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3921 return (n_actuals == 0);
3922 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3923 return 0;
3924
3925 if (TYPE_NFIELDS (func_type) != n_actuals)
3926 return 0;
3927
3928 for (i = 0; i < n_actuals; i += 1)
3929 {
3930 if (actuals[i] == NULL)
3931 return 0;
3932 else
3933 {
3934 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3935 i));
3936 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3937
3938 if (!ada_type_match (ftype, atype, 1))
3939 return 0;
3940 }
3941 }
3942 return 1;
3943 }
3944
3945 /* False iff function type FUNC_TYPE definitely does not produce a value
3946 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3947 FUNC_TYPE is not a valid function type with a non-null return type
3948 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3949
3950 static int
3951 return_match (struct type *func_type, struct type *context_type)
3952 {
3953 struct type *return_type;
3954
3955 if (func_type == NULL)
3956 return 1;
3957
3958 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3959 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3960 else
3961 return_type = get_base_type (func_type);
3962 if (return_type == NULL)
3963 return 1;
3964
3965 context_type = get_base_type (context_type);
3966
3967 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3968 return context_type == NULL || return_type == context_type;
3969 else if (context_type == NULL)
3970 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3971 else
3972 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3973 }
3974
3975
3976 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3977 function (if any) that matches the types of the NARGS arguments in
3978 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3979 that returns that type, then eliminate matches that don't. If
3980 CONTEXT_TYPE is void and there is at least one match that does not
3981 return void, eliminate all matches that do.
3982
3983 Asks the user if there is more than one match remaining. Returns -1
3984 if there is no such symbol or none is selected. NAME is used
3985 solely for messages. May re-arrange and modify SYMS in
3986 the process; the index returned is for the modified vector. */
3987
3988 static int
3989 ada_resolve_function (struct block_symbol syms[],
3990 int nsyms, struct value **args, int nargs,
3991 const char *name, struct type *context_type,
3992 int parse_completion)
3993 {
3994 int fallback;
3995 int k;
3996 int m; /* Number of hits */
3997
3998 m = 0;
3999 /* In the first pass of the loop, we only accept functions matching
4000 context_type. If none are found, we add a second pass of the loop
4001 where every function is accepted. */
4002 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4003 {
4004 for (k = 0; k < nsyms; k += 1)
4005 {
4006 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
4007
4008 if (ada_args_match (syms[k].symbol, args, nargs)
4009 && (fallback || return_match (type, context_type)))
4010 {
4011 syms[m] = syms[k];
4012 m += 1;
4013 }
4014 }
4015 }
4016
4017 /* If we got multiple matches, ask the user which one to use. Don't do this
4018 interactive thing during completion, though, as the purpose of the
4019 completion is providing a list of all possible matches. Prompting the
4020 user to filter it down would be completely unexpected in this case. */
4021 if (m == 0)
4022 return -1;
4023 else if (m > 1 && !parse_completion)
4024 {
4025 printf_filtered (_("Multiple matches for %s\n"), name);
4026 user_select_syms (syms, m, 1);
4027 return 0;
4028 }
4029 return 0;
4030 }
4031
4032 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4033 on the function identified by SYM and BLOCK, and taking NARGS
4034 arguments. Update *EXPP as needed to hold more space. */
4035
4036 static void
4037 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4038 int oplen, struct symbol *sym,
4039 const struct block *block)
4040 {
4041 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4042 symbol, -oplen for operator being replaced). */
4043 struct expression *newexp = (struct expression *)
4044 xzalloc (sizeof (struct expression)
4045 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4046 struct expression *exp = expp->get ();
4047
4048 newexp->nelts = exp->nelts + 7 - oplen;
4049 newexp->language_defn = exp->language_defn;
4050 newexp->gdbarch = exp->gdbarch;
4051 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4052 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4053 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4054
4055 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4056 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4057
4058 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4059 newexp->elts[pc + 4].block = block;
4060 newexp->elts[pc + 5].symbol = sym;
4061
4062 expp->reset (newexp);
4063 }
4064
4065 /* Type-class predicates */
4066
4067 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4068 or FLOAT). */
4069
4070 static int
4071 numeric_type_p (struct type *type)
4072 {
4073 if (type == NULL)
4074 return 0;
4075 else
4076 {
4077 switch (TYPE_CODE (type))
4078 {
4079 case TYPE_CODE_INT:
4080 case TYPE_CODE_FLT:
4081 return 1;
4082 case TYPE_CODE_RANGE:
4083 return (type == TYPE_TARGET_TYPE (type)
4084 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4085 default:
4086 return 0;
4087 }
4088 }
4089 }
4090
4091 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4092
4093 static int
4094 integer_type_p (struct type *type)
4095 {
4096 if (type == NULL)
4097 return 0;
4098 else
4099 {
4100 switch (TYPE_CODE (type))
4101 {
4102 case TYPE_CODE_INT:
4103 return 1;
4104 case TYPE_CODE_RANGE:
4105 return (type == TYPE_TARGET_TYPE (type)
4106 || integer_type_p (TYPE_TARGET_TYPE (type)));
4107 default:
4108 return 0;
4109 }
4110 }
4111 }
4112
4113 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4114
4115 static int
4116 scalar_type_p (struct type *type)
4117 {
4118 if (type == NULL)
4119 return 0;
4120 else
4121 {
4122 switch (TYPE_CODE (type))
4123 {
4124 case TYPE_CODE_INT:
4125 case TYPE_CODE_RANGE:
4126 case TYPE_CODE_ENUM:
4127 case TYPE_CODE_FLT:
4128 return 1;
4129 default:
4130 return 0;
4131 }
4132 }
4133 }
4134
4135 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4136
4137 static int
4138 discrete_type_p (struct type *type)
4139 {
4140 if (type == NULL)
4141 return 0;
4142 else
4143 {
4144 switch (TYPE_CODE (type))
4145 {
4146 case TYPE_CODE_INT:
4147 case TYPE_CODE_RANGE:
4148 case TYPE_CODE_ENUM:
4149 case TYPE_CODE_BOOL:
4150 return 1;
4151 default:
4152 return 0;
4153 }
4154 }
4155 }
4156
4157 /* Returns non-zero if OP with operands in the vector ARGS could be
4158 a user-defined function. Errs on the side of pre-defined operators
4159 (i.e., result 0). */
4160
4161 static int
4162 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4163 {
4164 struct type *type0 =
4165 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4166 struct type *type1 =
4167 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4168
4169 if (type0 == NULL)
4170 return 0;
4171
4172 switch (op)
4173 {
4174 default:
4175 return 0;
4176
4177 case BINOP_ADD:
4178 case BINOP_SUB:
4179 case BINOP_MUL:
4180 case BINOP_DIV:
4181 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4182
4183 case BINOP_REM:
4184 case BINOP_MOD:
4185 case BINOP_BITWISE_AND:
4186 case BINOP_BITWISE_IOR:
4187 case BINOP_BITWISE_XOR:
4188 return (!(integer_type_p (type0) && integer_type_p (type1)));
4189
4190 case BINOP_EQUAL:
4191 case BINOP_NOTEQUAL:
4192 case BINOP_LESS:
4193 case BINOP_GTR:
4194 case BINOP_LEQ:
4195 case BINOP_GEQ:
4196 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4197
4198 case BINOP_CONCAT:
4199 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4200
4201 case BINOP_EXP:
4202 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4203
4204 case UNOP_NEG:
4205 case UNOP_PLUS:
4206 case UNOP_LOGICAL_NOT:
4207 case UNOP_ABS:
4208 return (!numeric_type_p (type0));
4209
4210 }
4211 }
4212 \f
4213 /* Renaming */
4214
4215 /* NOTES:
4216
4217 1. In the following, we assume that a renaming type's name may
4218 have an ___XD suffix. It would be nice if this went away at some
4219 point.
4220 2. We handle both the (old) purely type-based representation of
4221 renamings and the (new) variable-based encoding. At some point,
4222 it is devoutly to be hoped that the former goes away
4223 (FIXME: hilfinger-2007-07-09).
4224 3. Subprogram renamings are not implemented, although the XRS
4225 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4226
4227 /* If SYM encodes a renaming,
4228
4229 <renaming> renames <renamed entity>,
4230
4231 sets *LEN to the length of the renamed entity's name,
4232 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4233 the string describing the subcomponent selected from the renamed
4234 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4235 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4236 are undefined). Otherwise, returns a value indicating the category
4237 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4238 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4239 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4240 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4241 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4242 may be NULL, in which case they are not assigned.
4243
4244 [Currently, however, GCC does not generate subprogram renamings.] */
4245
4246 enum ada_renaming_category
4247 ada_parse_renaming (struct symbol *sym,
4248 const char **renamed_entity, int *len,
4249 const char **renaming_expr)
4250 {
4251 enum ada_renaming_category kind;
4252 const char *info;
4253 const char *suffix;
4254
4255 if (sym == NULL)
4256 return ADA_NOT_RENAMING;
4257 switch (SYMBOL_CLASS (sym))
4258 {
4259 default:
4260 return ADA_NOT_RENAMING;
4261 case LOC_LOCAL:
4262 case LOC_STATIC:
4263 case LOC_COMPUTED:
4264 case LOC_OPTIMIZED_OUT:
4265 info = strstr (sym->linkage_name (), "___XR");
4266 if (info == NULL)
4267 return ADA_NOT_RENAMING;
4268 switch (info[5])
4269 {
4270 case '_':
4271 kind = ADA_OBJECT_RENAMING;
4272 info += 6;
4273 break;
4274 case 'E':
4275 kind = ADA_EXCEPTION_RENAMING;
4276 info += 7;
4277 break;
4278 case 'P':
4279 kind = ADA_PACKAGE_RENAMING;
4280 info += 7;
4281 break;
4282 case 'S':
4283 kind = ADA_SUBPROGRAM_RENAMING;
4284 info += 7;
4285 break;
4286 default:
4287 return ADA_NOT_RENAMING;
4288 }
4289 }
4290
4291 if (renamed_entity != NULL)
4292 *renamed_entity = info;
4293 suffix = strstr (info, "___XE");
4294 if (suffix == NULL || suffix == info)
4295 return ADA_NOT_RENAMING;
4296 if (len != NULL)
4297 *len = strlen (info) - strlen (suffix);
4298 suffix += 5;
4299 if (renaming_expr != NULL)
4300 *renaming_expr = suffix;
4301 return kind;
4302 }
4303
4304 /* Compute the value of the given RENAMING_SYM, which is expected to
4305 be a symbol encoding a renaming expression. BLOCK is the block
4306 used to evaluate the renaming. */
4307
4308 static struct value *
4309 ada_read_renaming_var_value (struct symbol *renaming_sym,
4310 const struct block *block)
4311 {
4312 const char *sym_name;
4313
4314 sym_name = renaming_sym->linkage_name ();
4315 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4316 return evaluate_expression (expr.get ());
4317 }
4318 \f
4319
4320 /* Evaluation: Function Calls */
4321
4322 /* Return an lvalue containing the value VAL. This is the identity on
4323 lvalues, and otherwise has the side-effect of allocating memory
4324 in the inferior where a copy of the value contents is copied. */
4325
4326 static struct value *
4327 ensure_lval (struct value *val)
4328 {
4329 if (VALUE_LVAL (val) == not_lval
4330 || VALUE_LVAL (val) == lval_internalvar)
4331 {
4332 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4333 const CORE_ADDR addr =
4334 value_as_long (value_allocate_space_in_inferior (len));
4335
4336 VALUE_LVAL (val) = lval_memory;
4337 set_value_address (val, addr);
4338 write_memory (addr, value_contents (val), len);
4339 }
4340
4341 return val;
4342 }
4343
4344 /* Given ARG, a value of type (pointer or reference to a)*
4345 structure/union, extract the component named NAME from the ultimate
4346 target structure/union and return it as a value with its
4347 appropriate type.
4348
4349 The routine searches for NAME among all members of the structure itself
4350 and (recursively) among all members of any wrapper members
4351 (e.g., '_parent').
4352
4353 If NO_ERR, then simply return NULL in case of error, rather than
4354 calling error. */
4355
4356 static struct value *
4357 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4358 {
4359 struct type *t, *t1;
4360 struct value *v;
4361 int check_tag;
4362
4363 v = NULL;
4364 t1 = t = ada_check_typedef (value_type (arg));
4365 if (TYPE_CODE (t) == TYPE_CODE_REF)
4366 {
4367 t1 = TYPE_TARGET_TYPE (t);
4368 if (t1 == NULL)
4369 goto BadValue;
4370 t1 = ada_check_typedef (t1);
4371 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4372 {
4373 arg = coerce_ref (arg);
4374 t = t1;
4375 }
4376 }
4377
4378 while (TYPE_CODE (t) == TYPE_CODE_PTR)
4379 {
4380 t1 = TYPE_TARGET_TYPE (t);
4381 if (t1 == NULL)
4382 goto BadValue;
4383 t1 = ada_check_typedef (t1);
4384 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
4385 {
4386 arg = value_ind (arg);
4387 t = t1;
4388 }
4389 else
4390 break;
4391 }
4392
4393 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
4394 goto BadValue;
4395
4396 if (t1 == t)
4397 v = ada_search_struct_field (name, arg, 0, t);
4398 else
4399 {
4400 int bit_offset, bit_size, byte_offset;
4401 struct type *field_type;
4402 CORE_ADDR address;
4403
4404 if (TYPE_CODE (t) == TYPE_CODE_PTR)
4405 address = value_address (ada_value_ind (arg));
4406 else
4407 address = value_address (ada_coerce_ref (arg));
4408
4409 /* Check to see if this is a tagged type. We also need to handle
4410 the case where the type is a reference to a tagged type, but
4411 we have to be careful to exclude pointers to tagged types.
4412 The latter should be shown as usual (as a pointer), whereas
4413 a reference should mostly be transparent to the user. */
4414
4415 if (ada_is_tagged_type (t1, 0)
4416 || (TYPE_CODE (t1) == TYPE_CODE_REF
4417 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4418 {
4419 /* We first try to find the searched field in the current type.
4420 If not found then let's look in the fixed type. */
4421
4422 if (!find_struct_field (name, t1, 0,
4423 &field_type, &byte_offset, &bit_offset,
4424 &bit_size, NULL))
4425 check_tag = 1;
4426 else
4427 check_tag = 0;
4428 }
4429 else
4430 check_tag = 0;
4431
4432 /* Convert to fixed type in all cases, so that we have proper
4433 offsets to each field in unconstrained record types. */
4434 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4435 address, NULL, check_tag);
4436
4437 if (find_struct_field (name, t1, 0,
4438 &field_type, &byte_offset, &bit_offset,
4439 &bit_size, NULL))
4440 {
4441 if (bit_size != 0)
4442 {
4443 if (TYPE_CODE (t) == TYPE_CODE_REF)
4444 arg = ada_coerce_ref (arg);
4445 else
4446 arg = ada_value_ind (arg);
4447 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4448 bit_offset, bit_size,
4449 field_type);
4450 }
4451 else
4452 v = value_at_lazy (field_type, address + byte_offset);
4453 }
4454 }
4455
4456 if (v != NULL || no_err)
4457 return v;
4458 else
4459 error (_("There is no member named %s."), name);
4460
4461 BadValue:
4462 if (no_err)
4463 return NULL;
4464 else
4465 error (_("Attempt to extract a component of "
4466 "a value that is not a record."));
4467 }
4468
4469 /* Return the value ACTUAL, converted to be an appropriate value for a
4470 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4471 allocating any necessary descriptors (fat pointers), or copies of
4472 values not residing in memory, updating it as needed. */
4473
4474 struct value *
4475 ada_convert_actual (struct value *actual, struct type *formal_type0)
4476 {
4477 struct type *actual_type = ada_check_typedef (value_type (actual));
4478 struct type *formal_type = ada_check_typedef (formal_type0);
4479 struct type *formal_target =
4480 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4481 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4482 struct type *actual_target =
4483 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4484 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4485
4486 if (ada_is_array_descriptor_type (formal_target)
4487 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4488 return make_array_descriptor (formal_type, actual);
4489 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4490 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4491 {
4492 struct value *result;
4493
4494 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4495 && ada_is_array_descriptor_type (actual_target))
4496 result = desc_data (actual);
4497 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4498 {
4499 if (VALUE_LVAL (actual) != lval_memory)
4500 {
4501 struct value *val;
4502
4503 actual_type = ada_check_typedef (value_type (actual));
4504 val = allocate_value (actual_type);
4505 memcpy ((char *) value_contents_raw (val),
4506 (char *) value_contents (actual),
4507 TYPE_LENGTH (actual_type));
4508 actual = ensure_lval (val);
4509 }
4510 result = value_addr (actual);
4511 }
4512 else
4513 return actual;
4514 return value_cast_pointers (formal_type, result, 0);
4515 }
4516 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4517 return ada_value_ind (actual);
4518 else if (ada_is_aligner_type (formal_type))
4519 {
4520 /* We need to turn this parameter into an aligner type
4521 as well. */
4522 struct value *aligner = allocate_value (formal_type);
4523 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4524
4525 value_assign_to_component (aligner, component, actual);
4526 return aligner;
4527 }
4528
4529 return actual;
4530 }
4531
4532 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4533 type TYPE. This is usually an inefficient no-op except on some targets
4534 (such as AVR) where the representation of a pointer and an address
4535 differs. */
4536
4537 static CORE_ADDR
4538 value_pointer (struct value *value, struct type *type)
4539 {
4540 struct gdbarch *gdbarch = get_type_arch (type);
4541 unsigned len = TYPE_LENGTH (type);
4542 gdb_byte *buf = (gdb_byte *) alloca (len);
4543 CORE_ADDR addr;
4544
4545 addr = value_address (value);
4546 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4547 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4548 return addr;
4549 }
4550
4551
4552 /* Push a descriptor of type TYPE for array value ARR on the stack at
4553 *SP, updating *SP to reflect the new descriptor. Return either
4554 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4555 to-descriptor type rather than a descriptor type), a struct value *
4556 representing a pointer to this descriptor. */
4557
4558 static struct value *
4559 make_array_descriptor (struct type *type, struct value *arr)
4560 {
4561 struct type *bounds_type = desc_bounds_type (type);
4562 struct type *desc_type = desc_base_type (type);
4563 struct value *descriptor = allocate_value (desc_type);
4564 struct value *bounds = allocate_value (bounds_type);
4565 int i;
4566
4567 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4568 i > 0; i -= 1)
4569 {
4570 modify_field (value_type (bounds), value_contents_writeable (bounds),
4571 ada_array_bound (arr, i, 0),
4572 desc_bound_bitpos (bounds_type, i, 0),
4573 desc_bound_bitsize (bounds_type, i, 0));
4574 modify_field (value_type (bounds), value_contents_writeable (bounds),
4575 ada_array_bound (arr, i, 1),
4576 desc_bound_bitpos (bounds_type, i, 1),
4577 desc_bound_bitsize (bounds_type, i, 1));
4578 }
4579
4580 bounds = ensure_lval (bounds);
4581
4582 modify_field (value_type (descriptor),
4583 value_contents_writeable (descriptor),
4584 value_pointer (ensure_lval (arr),
4585 TYPE_FIELD_TYPE (desc_type, 0)),
4586 fat_pntr_data_bitpos (desc_type),
4587 fat_pntr_data_bitsize (desc_type));
4588
4589 modify_field (value_type (descriptor),
4590 value_contents_writeable (descriptor),
4591 value_pointer (bounds,
4592 TYPE_FIELD_TYPE (desc_type, 1)),
4593 fat_pntr_bounds_bitpos (desc_type),
4594 fat_pntr_bounds_bitsize (desc_type));
4595
4596 descriptor = ensure_lval (descriptor);
4597
4598 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4599 return value_addr (descriptor);
4600 else
4601 return descriptor;
4602 }
4603 \f
4604 /* Symbol Cache Module */
4605
4606 /* Performance measurements made as of 2010-01-15 indicate that
4607 this cache does bring some noticeable improvements. Depending
4608 on the type of entity being printed, the cache can make it as much
4609 as an order of magnitude faster than without it.
4610
4611 The descriptive type DWARF extension has significantly reduced
4612 the need for this cache, at least when DWARF is being used. However,
4613 even in this case, some expensive name-based symbol searches are still
4614 sometimes necessary - to find an XVZ variable, mostly. */
4615
4616 /* Initialize the contents of SYM_CACHE. */
4617
4618 static void
4619 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4620 {
4621 obstack_init (&sym_cache->cache_space);
4622 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4623 }
4624
4625 /* Free the memory used by SYM_CACHE. */
4626
4627 static void
4628 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4629 {
4630 obstack_free (&sym_cache->cache_space, NULL);
4631 xfree (sym_cache);
4632 }
4633
4634 /* Return the symbol cache associated to the given program space PSPACE.
4635 If not allocated for this PSPACE yet, allocate and initialize one. */
4636
4637 static struct ada_symbol_cache *
4638 ada_get_symbol_cache (struct program_space *pspace)
4639 {
4640 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4641
4642 if (pspace_data->sym_cache == NULL)
4643 {
4644 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4645 ada_init_symbol_cache (pspace_data->sym_cache);
4646 }
4647
4648 return pspace_data->sym_cache;
4649 }
4650
4651 /* Clear all entries from the symbol cache. */
4652
4653 static void
4654 ada_clear_symbol_cache (void)
4655 {
4656 struct ada_symbol_cache *sym_cache
4657 = ada_get_symbol_cache (current_program_space);
4658
4659 obstack_free (&sym_cache->cache_space, NULL);
4660 ada_init_symbol_cache (sym_cache);
4661 }
4662
4663 /* Search our cache for an entry matching NAME and DOMAIN.
4664 Return it if found, or NULL otherwise. */
4665
4666 static struct cache_entry **
4667 find_entry (const char *name, domain_enum domain)
4668 {
4669 struct ada_symbol_cache *sym_cache
4670 = ada_get_symbol_cache (current_program_space);
4671 int h = msymbol_hash (name) % HASH_SIZE;
4672 struct cache_entry **e;
4673
4674 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4675 {
4676 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4677 return e;
4678 }
4679 return NULL;
4680 }
4681
4682 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4683 Return 1 if found, 0 otherwise.
4684
4685 If an entry was found and SYM is not NULL, set *SYM to the entry's
4686 SYM. Same principle for BLOCK if not NULL. */
4687
4688 static int
4689 lookup_cached_symbol (const char *name, domain_enum domain,
4690 struct symbol **sym, const struct block **block)
4691 {
4692 struct cache_entry **e = find_entry (name, domain);
4693
4694 if (e == NULL)
4695 return 0;
4696 if (sym != NULL)
4697 *sym = (*e)->sym;
4698 if (block != NULL)
4699 *block = (*e)->block;
4700 return 1;
4701 }
4702
4703 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4704 in domain DOMAIN, save this result in our symbol cache. */
4705
4706 static void
4707 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4708 const struct block *block)
4709 {
4710 struct ada_symbol_cache *sym_cache
4711 = ada_get_symbol_cache (current_program_space);
4712 int h;
4713 struct cache_entry *e;
4714
4715 /* Symbols for builtin types don't have a block.
4716 For now don't cache such symbols. */
4717 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4718 return;
4719
4720 /* If the symbol is a local symbol, then do not cache it, as a search
4721 for that symbol depends on the context. To determine whether
4722 the symbol is local or not, we check the block where we found it
4723 against the global and static blocks of its associated symtab. */
4724 if (sym
4725 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4726 GLOBAL_BLOCK) != block
4727 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4728 STATIC_BLOCK) != block)
4729 return;
4730
4731 h = msymbol_hash (name) % HASH_SIZE;
4732 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4733 e->next = sym_cache->root[h];
4734 sym_cache->root[h] = e;
4735 e->name = obstack_strdup (&sym_cache->cache_space, name);
4736 e->sym = sym;
4737 e->domain = domain;
4738 e->block = block;
4739 }
4740 \f
4741 /* Symbol Lookup */
4742
4743 /* Return the symbol name match type that should be used used when
4744 searching for all symbols matching LOOKUP_NAME.
4745
4746 LOOKUP_NAME is expected to be a symbol name after transformation
4747 for Ada lookups. */
4748
4749 static symbol_name_match_type
4750 name_match_type_from_name (const char *lookup_name)
4751 {
4752 return (strstr (lookup_name, "__") == NULL
4753 ? symbol_name_match_type::WILD
4754 : symbol_name_match_type::FULL);
4755 }
4756
4757 /* Return the result of a standard (literal, C-like) lookup of NAME in
4758 given DOMAIN, visible from lexical block BLOCK. */
4759
4760 static struct symbol *
4761 standard_lookup (const char *name, const struct block *block,
4762 domain_enum domain)
4763 {
4764 /* Initialize it just to avoid a GCC false warning. */
4765 struct block_symbol sym = {};
4766
4767 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4768 return sym.symbol;
4769 ada_lookup_encoded_symbol (name, block, domain, &sym);
4770 cache_symbol (name, domain, sym.symbol, sym.block);
4771 return sym.symbol;
4772 }
4773
4774
4775 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4776 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4777 since they contend in overloading in the same way. */
4778 static int
4779 is_nonfunction (struct block_symbol syms[], int n)
4780 {
4781 int i;
4782
4783 for (i = 0; i < n; i += 1)
4784 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4785 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4786 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4787 return 1;
4788
4789 return 0;
4790 }
4791
4792 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4793 struct types. Otherwise, they may not. */
4794
4795 static int
4796 equiv_types (struct type *type0, struct type *type1)
4797 {
4798 if (type0 == type1)
4799 return 1;
4800 if (type0 == NULL || type1 == NULL
4801 || TYPE_CODE (type0) != TYPE_CODE (type1))
4802 return 0;
4803 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4804 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4805 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4806 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4807 return 1;
4808
4809 return 0;
4810 }
4811
4812 /* True iff SYM0 represents the same entity as SYM1, or one that is
4813 no more defined than that of SYM1. */
4814
4815 static int
4816 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4817 {
4818 if (sym0 == sym1)
4819 return 1;
4820 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4821 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4822 return 0;
4823
4824 switch (SYMBOL_CLASS (sym0))
4825 {
4826 case LOC_UNDEF:
4827 return 1;
4828 case LOC_TYPEDEF:
4829 {
4830 struct type *type0 = SYMBOL_TYPE (sym0);
4831 struct type *type1 = SYMBOL_TYPE (sym1);
4832 const char *name0 = sym0->linkage_name ();
4833 const char *name1 = sym1->linkage_name ();
4834 int len0 = strlen (name0);
4835
4836 return
4837 TYPE_CODE (type0) == TYPE_CODE (type1)
4838 && (equiv_types (type0, type1)
4839 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4840 && startswith (name1 + len0, "___XV")));
4841 }
4842 case LOC_CONST:
4843 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4844 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4845
4846 case LOC_STATIC:
4847 {
4848 const char *name0 = sym0->linkage_name ();
4849 const char *name1 = sym1->linkage_name ();
4850 return (strcmp (name0, name1) == 0
4851 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4852 }
4853
4854 default:
4855 return 0;
4856 }
4857 }
4858
4859 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4860 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4861
4862 static void
4863 add_defn_to_vec (struct obstack *obstackp,
4864 struct symbol *sym,
4865 const struct block *block)
4866 {
4867 int i;
4868 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4869
4870 /* Do not try to complete stub types, as the debugger is probably
4871 already scanning all symbols matching a certain name at the
4872 time when this function is called. Trying to replace the stub
4873 type by its associated full type will cause us to restart a scan
4874 which may lead to an infinite recursion. Instead, the client
4875 collecting the matching symbols will end up collecting several
4876 matches, with at least one of them complete. It can then filter
4877 out the stub ones if needed. */
4878
4879 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4880 {
4881 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4882 return;
4883 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4884 {
4885 prevDefns[i].symbol = sym;
4886 prevDefns[i].block = block;
4887 return;
4888 }
4889 }
4890
4891 {
4892 struct block_symbol info;
4893
4894 info.symbol = sym;
4895 info.block = block;
4896 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4897 }
4898 }
4899
4900 /* Number of block_symbol structures currently collected in current vector in
4901 OBSTACKP. */
4902
4903 static int
4904 num_defns_collected (struct obstack *obstackp)
4905 {
4906 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4907 }
4908
4909 /* Vector of block_symbol structures currently collected in current vector in
4910 OBSTACKP. If FINISH, close off the vector and return its final address. */
4911
4912 static struct block_symbol *
4913 defns_collected (struct obstack *obstackp, int finish)
4914 {
4915 if (finish)
4916 return (struct block_symbol *) obstack_finish (obstackp);
4917 else
4918 return (struct block_symbol *) obstack_base (obstackp);
4919 }
4920
4921 /* Return a bound minimal symbol matching NAME according to Ada
4922 decoding rules. Returns an invalid symbol if there is no such
4923 minimal symbol. Names prefixed with "standard__" are handled
4924 specially: "standard__" is first stripped off, and only static and
4925 global symbols are searched. */
4926
4927 struct bound_minimal_symbol
4928 ada_lookup_simple_minsym (const char *name)
4929 {
4930 struct bound_minimal_symbol result;
4931
4932 memset (&result, 0, sizeof (result));
4933
4934 symbol_name_match_type match_type = name_match_type_from_name (name);
4935 lookup_name_info lookup_name (name, match_type);
4936
4937 symbol_name_matcher_ftype *match_name
4938 = ada_get_symbol_name_matcher (lookup_name);
4939
4940 for (objfile *objfile : current_program_space->objfiles ())
4941 {
4942 for (minimal_symbol *msymbol : objfile->msymbols ())
4943 {
4944 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4945 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4946 {
4947 result.minsym = msymbol;
4948 result.objfile = objfile;
4949 break;
4950 }
4951 }
4952 }
4953
4954 return result;
4955 }
4956
4957 /* For all subprograms that statically enclose the subprogram of the
4958 selected frame, add symbols matching identifier NAME in DOMAIN
4959 and their blocks to the list of data in OBSTACKP, as for
4960 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4961 with a wildcard prefix. */
4962
4963 static void
4964 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4965 const lookup_name_info &lookup_name,
4966 domain_enum domain)
4967 {
4968 }
4969
4970 /* True if TYPE is definitely an artificial type supplied to a symbol
4971 for which no debugging information was given in the symbol file. */
4972
4973 static int
4974 is_nondebugging_type (struct type *type)
4975 {
4976 const char *name = ada_type_name (type);
4977
4978 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4979 }
4980
4981 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4982 that are deemed "identical" for practical purposes.
4983
4984 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4985 types and that their number of enumerals is identical (in other
4986 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4987
4988 static int
4989 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4990 {
4991 int i;
4992
4993 /* The heuristic we use here is fairly conservative. We consider
4994 that 2 enumerate types are identical if they have the same
4995 number of enumerals and that all enumerals have the same
4996 underlying value and name. */
4997
4998 /* All enums in the type should have an identical underlying value. */
4999 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5000 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5001 return 0;
5002
5003 /* All enumerals should also have the same name (modulo any numerical
5004 suffix). */
5005 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5006 {
5007 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5008 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5009 int len_1 = strlen (name_1);
5010 int len_2 = strlen (name_2);
5011
5012 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5013 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5014 if (len_1 != len_2
5015 || strncmp (TYPE_FIELD_NAME (type1, i),
5016 TYPE_FIELD_NAME (type2, i),
5017 len_1) != 0)
5018 return 0;
5019 }
5020
5021 return 1;
5022 }
5023
5024 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5025 that are deemed "identical" for practical purposes. Sometimes,
5026 enumerals are not strictly identical, but their types are so similar
5027 that they can be considered identical.
5028
5029 For instance, consider the following code:
5030
5031 type Color is (Black, Red, Green, Blue, White);
5032 type RGB_Color is new Color range Red .. Blue;
5033
5034 Type RGB_Color is a subrange of an implicit type which is a copy
5035 of type Color. If we call that implicit type RGB_ColorB ("B" is
5036 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5037 As a result, when an expression references any of the enumeral
5038 by name (Eg. "print green"), the expression is technically
5039 ambiguous and the user should be asked to disambiguate. But
5040 doing so would only hinder the user, since it wouldn't matter
5041 what choice he makes, the outcome would always be the same.
5042 So, for practical purposes, we consider them as the same. */
5043
5044 static int
5045 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5046 {
5047 int i;
5048
5049 /* Before performing a thorough comparison check of each type,
5050 we perform a series of inexpensive checks. We expect that these
5051 checks will quickly fail in the vast majority of cases, and thus
5052 help prevent the unnecessary use of a more expensive comparison.
5053 Said comparison also expects us to make some of these checks
5054 (see ada_identical_enum_types_p). */
5055
5056 /* Quick check: All symbols should have an enum type. */
5057 for (i = 0; i < syms.size (); i++)
5058 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5059 return 0;
5060
5061 /* Quick check: They should all have the same value. */
5062 for (i = 1; i < syms.size (); i++)
5063 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5064 return 0;
5065
5066 /* Quick check: They should all have the same number of enumerals. */
5067 for (i = 1; i < syms.size (); i++)
5068 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5069 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5070 return 0;
5071
5072 /* All the sanity checks passed, so we might have a set of
5073 identical enumeration types. Perform a more complete
5074 comparison of the type of each symbol. */
5075 for (i = 1; i < syms.size (); i++)
5076 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5077 SYMBOL_TYPE (syms[0].symbol)))
5078 return 0;
5079
5080 return 1;
5081 }
5082
5083 /* Remove any non-debugging symbols in SYMS that definitely
5084 duplicate other symbols in the list (The only case I know of where
5085 this happens is when object files containing stabs-in-ecoff are
5086 linked with files containing ordinary ecoff debugging symbols (or no
5087 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5088 Returns the number of items in the modified list. */
5089
5090 static int
5091 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5092 {
5093 int i, j;
5094
5095 /* We should never be called with less than 2 symbols, as there
5096 cannot be any extra symbol in that case. But it's easy to
5097 handle, since we have nothing to do in that case. */
5098 if (syms->size () < 2)
5099 return syms->size ();
5100
5101 i = 0;
5102 while (i < syms->size ())
5103 {
5104 int remove_p = 0;
5105
5106 /* If two symbols have the same name and one of them is a stub type,
5107 the get rid of the stub. */
5108
5109 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5110 && (*syms)[i].symbol->linkage_name () != NULL)
5111 {
5112 for (j = 0; j < syms->size (); j++)
5113 {
5114 if (j != i
5115 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5116 && (*syms)[j].symbol->linkage_name () != NULL
5117 && strcmp ((*syms)[i].symbol->linkage_name (),
5118 (*syms)[j].symbol->linkage_name ()) == 0)
5119 remove_p = 1;
5120 }
5121 }
5122
5123 /* Two symbols with the same name, same class and same address
5124 should be identical. */
5125
5126 else if ((*syms)[i].symbol->linkage_name () != NULL
5127 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5128 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5129 {
5130 for (j = 0; j < syms->size (); j += 1)
5131 {
5132 if (i != j
5133 && (*syms)[j].symbol->linkage_name () != NULL
5134 && strcmp ((*syms)[i].symbol->linkage_name (),
5135 (*syms)[j].symbol->linkage_name ()) == 0
5136 && SYMBOL_CLASS ((*syms)[i].symbol)
5137 == SYMBOL_CLASS ((*syms)[j].symbol)
5138 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5139 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5140 remove_p = 1;
5141 }
5142 }
5143
5144 if (remove_p)
5145 syms->erase (syms->begin () + i);
5146
5147 i += 1;
5148 }
5149
5150 /* If all the remaining symbols are identical enumerals, then
5151 just keep the first one and discard the rest.
5152
5153 Unlike what we did previously, we do not discard any entry
5154 unless they are ALL identical. This is because the symbol
5155 comparison is not a strict comparison, but rather a practical
5156 comparison. If all symbols are considered identical, then
5157 we can just go ahead and use the first one and discard the rest.
5158 But if we cannot reduce the list to a single element, we have
5159 to ask the user to disambiguate anyways. And if we have to
5160 present a multiple-choice menu, it's less confusing if the list
5161 isn't missing some choices that were identical and yet distinct. */
5162 if (symbols_are_identical_enums (*syms))
5163 syms->resize (1);
5164
5165 return syms->size ();
5166 }
5167
5168 /* Given a type that corresponds to a renaming entity, use the type name
5169 to extract the scope (package name or function name, fully qualified,
5170 and following the GNAT encoding convention) where this renaming has been
5171 defined. */
5172
5173 static std::string
5174 xget_renaming_scope (struct type *renaming_type)
5175 {
5176 /* The renaming types adhere to the following convention:
5177 <scope>__<rename>___<XR extension>.
5178 So, to extract the scope, we search for the "___XR" extension,
5179 and then backtrack until we find the first "__". */
5180
5181 const char *name = TYPE_NAME (renaming_type);
5182 const char *suffix = strstr (name, "___XR");
5183 const char *last;
5184
5185 /* Now, backtrack a bit until we find the first "__". Start looking
5186 at suffix - 3, as the <rename> part is at least one character long. */
5187
5188 for (last = suffix - 3; last > name; last--)
5189 if (last[0] == '_' && last[1] == '_')
5190 break;
5191
5192 /* Make a copy of scope and return it. */
5193 return std::string (name, last);
5194 }
5195
5196 /* Return nonzero if NAME corresponds to a package name. */
5197
5198 static int
5199 is_package_name (const char *name)
5200 {
5201 /* Here, We take advantage of the fact that no symbols are generated
5202 for packages, while symbols are generated for each function.
5203 So the condition for NAME represent a package becomes equivalent
5204 to NAME not existing in our list of symbols. There is only one
5205 small complication with library-level functions (see below). */
5206
5207 /* If it is a function that has not been defined at library level,
5208 then we should be able to look it up in the symbols. */
5209 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5210 return 0;
5211
5212 /* Library-level function names start with "_ada_". See if function
5213 "_ada_" followed by NAME can be found. */
5214
5215 /* Do a quick check that NAME does not contain "__", since library-level
5216 functions names cannot contain "__" in them. */
5217 if (strstr (name, "__") != NULL)
5218 return 0;
5219
5220 std::string fun_name = string_printf ("_ada_%s", name);
5221
5222 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5223 }
5224
5225 /* Return nonzero if SYM corresponds to a renaming entity that is
5226 not visible from FUNCTION_NAME. */
5227
5228 static int
5229 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5230 {
5231 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5232 return 0;
5233
5234 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5235
5236 /* If the rename has been defined in a package, then it is visible. */
5237 if (is_package_name (scope.c_str ()))
5238 return 0;
5239
5240 /* Check that the rename is in the current function scope by checking
5241 that its name starts with SCOPE. */
5242
5243 /* If the function name starts with "_ada_", it means that it is
5244 a library-level function. Strip this prefix before doing the
5245 comparison, as the encoding for the renaming does not contain
5246 this prefix. */
5247 if (startswith (function_name, "_ada_"))
5248 function_name += 5;
5249
5250 return !startswith (function_name, scope.c_str ());
5251 }
5252
5253 /* Remove entries from SYMS that corresponds to a renaming entity that
5254 is not visible from the function associated with CURRENT_BLOCK or
5255 that is superfluous due to the presence of more specific renaming
5256 information. Places surviving symbols in the initial entries of
5257 SYMS and returns the number of surviving symbols.
5258
5259 Rationale:
5260 First, in cases where an object renaming is implemented as a
5261 reference variable, GNAT may produce both the actual reference
5262 variable and the renaming encoding. In this case, we discard the
5263 latter.
5264
5265 Second, GNAT emits a type following a specified encoding for each renaming
5266 entity. Unfortunately, STABS currently does not support the definition
5267 of types that are local to a given lexical block, so all renamings types
5268 are emitted at library level. As a consequence, if an application
5269 contains two renaming entities using the same name, and a user tries to
5270 print the value of one of these entities, the result of the ada symbol
5271 lookup will also contain the wrong renaming type.
5272
5273 This function partially covers for this limitation by attempting to
5274 remove from the SYMS list renaming symbols that should be visible
5275 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5276 method with the current information available. The implementation
5277 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5278
5279 - When the user tries to print a rename in a function while there
5280 is another rename entity defined in a package: Normally, the
5281 rename in the function has precedence over the rename in the
5282 package, so the latter should be removed from the list. This is
5283 currently not the case.
5284
5285 - This function will incorrectly remove valid renames if
5286 the CURRENT_BLOCK corresponds to a function which symbol name
5287 has been changed by an "Export" pragma. As a consequence,
5288 the user will be unable to print such rename entities. */
5289
5290 static int
5291 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5292 const struct block *current_block)
5293 {
5294 struct symbol *current_function;
5295 const char *current_function_name;
5296 int i;
5297 int is_new_style_renaming;
5298
5299 /* If there is both a renaming foo___XR... encoded as a variable and
5300 a simple variable foo in the same block, discard the latter.
5301 First, zero out such symbols, then compress. */
5302 is_new_style_renaming = 0;
5303 for (i = 0; i < syms->size (); i += 1)
5304 {
5305 struct symbol *sym = (*syms)[i].symbol;
5306 const struct block *block = (*syms)[i].block;
5307 const char *name;
5308 const char *suffix;
5309
5310 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5311 continue;
5312 name = sym->linkage_name ();
5313 suffix = strstr (name, "___XR");
5314
5315 if (suffix != NULL)
5316 {
5317 int name_len = suffix - name;
5318 int j;
5319
5320 is_new_style_renaming = 1;
5321 for (j = 0; j < syms->size (); j += 1)
5322 if (i != j && (*syms)[j].symbol != NULL
5323 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5324 name_len) == 0
5325 && block == (*syms)[j].block)
5326 (*syms)[j].symbol = NULL;
5327 }
5328 }
5329 if (is_new_style_renaming)
5330 {
5331 int j, k;
5332
5333 for (j = k = 0; j < syms->size (); j += 1)
5334 if ((*syms)[j].symbol != NULL)
5335 {
5336 (*syms)[k] = (*syms)[j];
5337 k += 1;
5338 }
5339 return k;
5340 }
5341
5342 /* Extract the function name associated to CURRENT_BLOCK.
5343 Abort if unable to do so. */
5344
5345 if (current_block == NULL)
5346 return syms->size ();
5347
5348 current_function = block_linkage_function (current_block);
5349 if (current_function == NULL)
5350 return syms->size ();
5351
5352 current_function_name = current_function->linkage_name ();
5353 if (current_function_name == NULL)
5354 return syms->size ();
5355
5356 /* Check each of the symbols, and remove it from the list if it is
5357 a type corresponding to a renaming that is out of the scope of
5358 the current block. */
5359
5360 i = 0;
5361 while (i < syms->size ())
5362 {
5363 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5364 == ADA_OBJECT_RENAMING
5365 && old_renaming_is_invisible ((*syms)[i].symbol,
5366 current_function_name))
5367 syms->erase (syms->begin () + i);
5368 else
5369 i += 1;
5370 }
5371
5372 return syms->size ();
5373 }
5374
5375 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5376 whose name and domain match NAME and DOMAIN respectively.
5377 If no match was found, then extend the search to "enclosing"
5378 routines (in other words, if we're inside a nested function,
5379 search the symbols defined inside the enclosing functions).
5380 If WILD_MATCH_P is nonzero, perform the naming matching in
5381 "wild" mode (see function "wild_match" for more info).
5382
5383 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5384
5385 static void
5386 ada_add_local_symbols (struct obstack *obstackp,
5387 const lookup_name_info &lookup_name,
5388 const struct block *block, domain_enum domain)
5389 {
5390 int block_depth = 0;
5391
5392 while (block != NULL)
5393 {
5394 block_depth += 1;
5395 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5396
5397 /* If we found a non-function match, assume that's the one. */
5398 if (is_nonfunction (defns_collected (obstackp, 0),
5399 num_defns_collected (obstackp)))
5400 return;
5401
5402 block = BLOCK_SUPERBLOCK (block);
5403 }
5404
5405 /* If no luck so far, try to find NAME as a local symbol in some lexically
5406 enclosing subprogram. */
5407 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5408 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5409 }
5410
5411 /* An object of this type is used as the user_data argument when
5412 calling the map_matching_symbols method. */
5413
5414 struct match_data
5415 {
5416 struct objfile *objfile;
5417 struct obstack *obstackp;
5418 struct symbol *arg_sym;
5419 int found_sym;
5420 };
5421
5422 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5423 to a list of symbols. DATA is a pointer to a struct match_data *
5424 containing the obstack that collects the symbol list, the file that SYM
5425 must come from, a flag indicating whether a non-argument symbol has
5426 been found in the current block, and the last argument symbol
5427 passed in SYM within the current block (if any). When SYM is null,
5428 marking the end of a block, the argument symbol is added if no
5429 other has been found. */
5430
5431 static bool
5432 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5433 struct match_data *data)
5434 {
5435 const struct block *block = bsym->block;
5436 struct symbol *sym = bsym->symbol;
5437
5438 if (sym == NULL)
5439 {
5440 if (!data->found_sym && data->arg_sym != NULL)
5441 add_defn_to_vec (data->obstackp,
5442 fixup_symbol_section (data->arg_sym, data->objfile),
5443 block);
5444 data->found_sym = 0;
5445 data->arg_sym = NULL;
5446 }
5447 else
5448 {
5449 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5450 return true;
5451 else if (SYMBOL_IS_ARGUMENT (sym))
5452 data->arg_sym = sym;
5453 else
5454 {
5455 data->found_sym = 1;
5456 add_defn_to_vec (data->obstackp,
5457 fixup_symbol_section (sym, data->objfile),
5458 block);
5459 }
5460 }
5461 return true;
5462 }
5463
5464 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5465 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5466 symbols to OBSTACKP. Return whether we found such symbols. */
5467
5468 static int
5469 ada_add_block_renamings (struct obstack *obstackp,
5470 const struct block *block,
5471 const lookup_name_info &lookup_name,
5472 domain_enum domain)
5473 {
5474 struct using_direct *renaming;
5475 int defns_mark = num_defns_collected (obstackp);
5476
5477 symbol_name_matcher_ftype *name_match
5478 = ada_get_symbol_name_matcher (lookup_name);
5479
5480 for (renaming = block_using (block);
5481 renaming != NULL;
5482 renaming = renaming->next)
5483 {
5484 const char *r_name;
5485
5486 /* Avoid infinite recursions: skip this renaming if we are actually
5487 already traversing it.
5488
5489 Currently, symbol lookup in Ada don't use the namespace machinery from
5490 C++/Fortran support: skip namespace imports that use them. */
5491 if (renaming->searched
5492 || (renaming->import_src != NULL
5493 && renaming->import_src[0] != '\0')
5494 || (renaming->import_dest != NULL
5495 && renaming->import_dest[0] != '\0'))
5496 continue;
5497 renaming->searched = 1;
5498
5499 /* TODO: here, we perform another name-based symbol lookup, which can
5500 pull its own multiple overloads. In theory, we should be able to do
5501 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5502 not a simple name. But in order to do this, we would need to enhance
5503 the DWARF reader to associate a symbol to this renaming, instead of a
5504 name. So, for now, we do something simpler: re-use the C++/Fortran
5505 namespace machinery. */
5506 r_name = (renaming->alias != NULL
5507 ? renaming->alias
5508 : renaming->declaration);
5509 if (name_match (r_name, lookup_name, NULL))
5510 {
5511 lookup_name_info decl_lookup_name (renaming->declaration,
5512 lookup_name.match_type ());
5513 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5514 1, NULL);
5515 }
5516 renaming->searched = 0;
5517 }
5518 return num_defns_collected (obstackp) != defns_mark;
5519 }
5520
5521 /* Implements compare_names, but only applying the comparision using
5522 the given CASING. */
5523
5524 static int
5525 compare_names_with_case (const char *string1, const char *string2,
5526 enum case_sensitivity casing)
5527 {
5528 while (*string1 != '\0' && *string2 != '\0')
5529 {
5530 char c1, c2;
5531
5532 if (isspace (*string1) || isspace (*string2))
5533 return strcmp_iw_ordered (string1, string2);
5534
5535 if (casing == case_sensitive_off)
5536 {
5537 c1 = tolower (*string1);
5538 c2 = tolower (*string2);
5539 }
5540 else
5541 {
5542 c1 = *string1;
5543 c2 = *string2;
5544 }
5545 if (c1 != c2)
5546 break;
5547
5548 string1 += 1;
5549 string2 += 1;
5550 }
5551
5552 switch (*string1)
5553 {
5554 case '(':
5555 return strcmp_iw_ordered (string1, string2);
5556 case '_':
5557 if (*string2 == '\0')
5558 {
5559 if (is_name_suffix (string1))
5560 return 0;
5561 else
5562 return 1;
5563 }
5564 /* FALLTHROUGH */
5565 default:
5566 if (*string2 == '(')
5567 return strcmp_iw_ordered (string1, string2);
5568 else
5569 {
5570 if (casing == case_sensitive_off)
5571 return tolower (*string1) - tolower (*string2);
5572 else
5573 return *string1 - *string2;
5574 }
5575 }
5576 }
5577
5578 /* Compare STRING1 to STRING2, with results as for strcmp.
5579 Compatible with strcmp_iw_ordered in that...
5580
5581 strcmp_iw_ordered (STRING1, STRING2) <= 0
5582
5583 ... implies...
5584
5585 compare_names (STRING1, STRING2) <= 0
5586
5587 (they may differ as to what symbols compare equal). */
5588
5589 static int
5590 compare_names (const char *string1, const char *string2)
5591 {
5592 int result;
5593
5594 /* Similar to what strcmp_iw_ordered does, we need to perform
5595 a case-insensitive comparison first, and only resort to
5596 a second, case-sensitive, comparison if the first one was
5597 not sufficient to differentiate the two strings. */
5598
5599 result = compare_names_with_case (string1, string2, case_sensitive_off);
5600 if (result == 0)
5601 result = compare_names_with_case (string1, string2, case_sensitive_on);
5602
5603 return result;
5604 }
5605
5606 /* Convenience function to get at the Ada encoded lookup name for
5607 LOOKUP_NAME, as a C string. */
5608
5609 static const char *
5610 ada_lookup_name (const lookup_name_info &lookup_name)
5611 {
5612 return lookup_name.ada ().lookup_name ().c_str ();
5613 }
5614
5615 /* Add to OBSTACKP all non-local symbols whose name and domain match
5616 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5617 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5618 symbols otherwise. */
5619
5620 static void
5621 add_nonlocal_symbols (struct obstack *obstackp,
5622 const lookup_name_info &lookup_name,
5623 domain_enum domain, int global)
5624 {
5625 struct match_data data;
5626
5627 memset (&data, 0, sizeof data);
5628 data.obstackp = obstackp;
5629
5630 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5631
5632 auto callback = [&] (struct block_symbol *bsym)
5633 {
5634 return aux_add_nonlocal_symbols (bsym, &data);
5635 };
5636
5637 for (objfile *objfile : current_program_space->objfiles ())
5638 {
5639 data.objfile = objfile;
5640
5641 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5642 domain, global, callback,
5643 (is_wild_match
5644 ? NULL : compare_names));
5645
5646 for (compunit_symtab *cu : objfile->compunits ())
5647 {
5648 const struct block *global_block
5649 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5650
5651 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5652 domain))
5653 data.found_sym = 1;
5654 }
5655 }
5656
5657 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5658 {
5659 const char *name = ada_lookup_name (lookup_name);
5660 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5661 symbol_name_match_type::FULL);
5662
5663 for (objfile *objfile : current_program_space->objfiles ())
5664 {
5665 data.objfile = objfile;
5666 objfile->sf->qf->map_matching_symbols (objfile, name1,
5667 domain, global, callback,
5668 compare_names);
5669 }
5670 }
5671 }
5672
5673 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5674 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5675 returning the number of matches. Add these to OBSTACKP.
5676
5677 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5678 symbol match within the nest of blocks whose innermost member is BLOCK,
5679 is the one match returned (no other matches in that or
5680 enclosing blocks is returned). If there are any matches in or
5681 surrounding BLOCK, then these alone are returned.
5682
5683 Names prefixed with "standard__" are handled specially:
5684 "standard__" is first stripped off (by the lookup_name
5685 constructor), and only static and global symbols are searched.
5686
5687 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5688 to lookup global symbols. */
5689
5690 static void
5691 ada_add_all_symbols (struct obstack *obstackp,
5692 const struct block *block,
5693 const lookup_name_info &lookup_name,
5694 domain_enum domain,
5695 int full_search,
5696 int *made_global_lookup_p)
5697 {
5698 struct symbol *sym;
5699
5700 if (made_global_lookup_p)
5701 *made_global_lookup_p = 0;
5702
5703 /* Special case: If the user specifies a symbol name inside package
5704 Standard, do a non-wild matching of the symbol name without
5705 the "standard__" prefix. This was primarily introduced in order
5706 to allow the user to specifically access the standard exceptions
5707 using, for instance, Standard.Constraint_Error when Constraint_Error
5708 is ambiguous (due to the user defining its own Constraint_Error
5709 entity inside its program). */
5710 if (lookup_name.ada ().standard_p ())
5711 block = NULL;
5712
5713 /* Check the non-global symbols. If we have ANY match, then we're done. */
5714
5715 if (block != NULL)
5716 {
5717 if (full_search)
5718 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5719 else
5720 {
5721 /* In the !full_search case we're are being called by
5722 ada_iterate_over_symbols, and we don't want to search
5723 superblocks. */
5724 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5725 }
5726 if (num_defns_collected (obstackp) > 0 || !full_search)
5727 return;
5728 }
5729
5730 /* No non-global symbols found. Check our cache to see if we have
5731 already performed this search before. If we have, then return
5732 the same result. */
5733
5734 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5735 domain, &sym, &block))
5736 {
5737 if (sym != NULL)
5738 add_defn_to_vec (obstackp, sym, block);
5739 return;
5740 }
5741
5742 if (made_global_lookup_p)
5743 *made_global_lookup_p = 1;
5744
5745 /* Search symbols from all global blocks. */
5746
5747 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5748
5749 /* Now add symbols from all per-file blocks if we've gotten no hits
5750 (not strictly correct, but perhaps better than an error). */
5751
5752 if (num_defns_collected (obstackp) == 0)
5753 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5754 }
5755
5756 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5757 is non-zero, enclosing scope and in global scopes, returning the number of
5758 matches.
5759 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5760 found and the blocks and symbol tables (if any) in which they were
5761 found.
5762
5763 When full_search is non-zero, any non-function/non-enumeral
5764 symbol match within the nest of blocks whose innermost member is BLOCK,
5765 is the one match returned (no other matches in that or
5766 enclosing blocks is returned). If there are any matches in or
5767 surrounding BLOCK, then these alone are returned.
5768
5769 Names prefixed with "standard__" are handled specially: "standard__"
5770 is first stripped off, and only static and global symbols are searched. */
5771
5772 static int
5773 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5774 const struct block *block,
5775 domain_enum domain,
5776 std::vector<struct block_symbol> *results,
5777 int full_search)
5778 {
5779 int syms_from_global_search;
5780 int ndefns;
5781 auto_obstack obstack;
5782
5783 ada_add_all_symbols (&obstack, block, lookup_name,
5784 domain, full_search, &syms_from_global_search);
5785
5786 ndefns = num_defns_collected (&obstack);
5787
5788 struct block_symbol *base = defns_collected (&obstack, 1);
5789 for (int i = 0; i < ndefns; ++i)
5790 results->push_back (base[i]);
5791
5792 ndefns = remove_extra_symbols (results);
5793
5794 if (ndefns == 0 && full_search && syms_from_global_search)
5795 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5796
5797 if (ndefns == 1 && full_search && syms_from_global_search)
5798 cache_symbol (ada_lookup_name (lookup_name), domain,
5799 (*results)[0].symbol, (*results)[0].block);
5800
5801 ndefns = remove_irrelevant_renamings (results, block);
5802
5803 return ndefns;
5804 }
5805
5806 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5807 in global scopes, returning the number of matches, and filling *RESULTS
5808 with (SYM,BLOCK) tuples.
5809
5810 See ada_lookup_symbol_list_worker for further details. */
5811
5812 int
5813 ada_lookup_symbol_list (const char *name, const struct block *block,
5814 domain_enum domain,
5815 std::vector<struct block_symbol> *results)
5816 {
5817 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5818 lookup_name_info lookup_name (name, name_match_type);
5819
5820 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5821 }
5822
5823 /* Implementation of the la_iterate_over_symbols method. */
5824
5825 static bool
5826 ada_iterate_over_symbols
5827 (const struct block *block, const lookup_name_info &name,
5828 domain_enum domain,
5829 gdb::function_view<symbol_found_callback_ftype> callback)
5830 {
5831 int ndefs, i;
5832 std::vector<struct block_symbol> results;
5833
5834 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5835
5836 for (i = 0; i < ndefs; ++i)
5837 {
5838 if (!callback (&results[i]))
5839 return false;
5840 }
5841
5842 return true;
5843 }
5844
5845 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5846 to 1, but choosing the first symbol found if there are multiple
5847 choices.
5848
5849 The result is stored in *INFO, which must be non-NULL.
5850 If no match is found, INFO->SYM is set to NULL. */
5851
5852 void
5853 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5854 domain_enum domain,
5855 struct block_symbol *info)
5856 {
5857 /* Since we already have an encoded name, wrap it in '<>' to force a
5858 verbatim match. Otherwise, if the name happens to not look like
5859 an encoded name (because it doesn't include a "__"),
5860 ada_lookup_name_info would re-encode/fold it again, and that
5861 would e.g., incorrectly lowercase object renaming names like
5862 "R28b" -> "r28b". */
5863 std::string verbatim = std::string ("<") + name + '>';
5864
5865 gdb_assert (info != NULL);
5866 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5867 }
5868
5869 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5870 scope and in global scopes, or NULL if none. NAME is folded and
5871 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5872 choosing the first symbol if there are multiple choices. */
5873
5874 struct block_symbol
5875 ada_lookup_symbol (const char *name, const struct block *block0,
5876 domain_enum domain)
5877 {
5878 std::vector<struct block_symbol> candidates;
5879 int n_candidates;
5880
5881 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5882
5883 if (n_candidates == 0)
5884 return {};
5885
5886 block_symbol info = candidates[0];
5887 info.symbol = fixup_symbol_section (info.symbol, NULL);
5888 return info;
5889 }
5890
5891 static struct block_symbol
5892 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5893 const char *name,
5894 const struct block *block,
5895 const domain_enum domain)
5896 {
5897 struct block_symbol sym;
5898
5899 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5900 if (sym.symbol != NULL)
5901 return sym;
5902
5903 /* If we haven't found a match at this point, try the primitive
5904 types. In other languages, this search is performed before
5905 searching for global symbols in order to short-circuit that
5906 global-symbol search if it happens that the name corresponds
5907 to a primitive type. But we cannot do the same in Ada, because
5908 it is perfectly legitimate for a program to declare a type which
5909 has the same name as a standard type. If looking up a type in
5910 that situation, we have traditionally ignored the primitive type
5911 in favor of user-defined types. This is why, unlike most other
5912 languages, we search the primitive types this late and only after
5913 having searched the global symbols without success. */
5914
5915 if (domain == VAR_DOMAIN)
5916 {
5917 struct gdbarch *gdbarch;
5918
5919 if (block == NULL)
5920 gdbarch = target_gdbarch ();
5921 else
5922 gdbarch = block_gdbarch (block);
5923 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5924 if (sym.symbol != NULL)
5925 return sym;
5926 }
5927
5928 return {};
5929 }
5930
5931
5932 /* True iff STR is a possible encoded suffix of a normal Ada name
5933 that is to be ignored for matching purposes. Suffixes of parallel
5934 names (e.g., XVE) are not included here. Currently, the possible suffixes
5935 are given by any of the regular expressions:
5936
5937 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5938 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5939 TKB [subprogram suffix for task bodies]
5940 _E[0-9]+[bs]$ [protected object entry suffixes]
5941 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5942
5943 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5944 match is performed. This sequence is used to differentiate homonyms,
5945 is an optional part of a valid name suffix. */
5946
5947 static int
5948 is_name_suffix (const char *str)
5949 {
5950 int k;
5951 const char *matching;
5952 const int len = strlen (str);
5953
5954 /* Skip optional leading __[0-9]+. */
5955
5956 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5957 {
5958 str += 3;
5959 while (isdigit (str[0]))
5960 str += 1;
5961 }
5962
5963 /* [.$][0-9]+ */
5964
5965 if (str[0] == '.' || str[0] == '$')
5966 {
5967 matching = str + 1;
5968 while (isdigit (matching[0]))
5969 matching += 1;
5970 if (matching[0] == '\0')
5971 return 1;
5972 }
5973
5974 /* ___[0-9]+ */
5975
5976 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5977 {
5978 matching = str + 3;
5979 while (isdigit (matching[0]))
5980 matching += 1;
5981 if (matching[0] == '\0')
5982 return 1;
5983 }
5984
5985 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5986
5987 if (strcmp (str, "TKB") == 0)
5988 return 1;
5989
5990 #if 0
5991 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5992 with a N at the end. Unfortunately, the compiler uses the same
5993 convention for other internal types it creates. So treating
5994 all entity names that end with an "N" as a name suffix causes
5995 some regressions. For instance, consider the case of an enumerated
5996 type. To support the 'Image attribute, it creates an array whose
5997 name ends with N.
5998 Having a single character like this as a suffix carrying some
5999 information is a bit risky. Perhaps we should change the encoding
6000 to be something like "_N" instead. In the meantime, do not do
6001 the following check. */
6002 /* Protected Object Subprograms */
6003 if (len == 1 && str [0] == 'N')
6004 return 1;
6005 #endif
6006
6007 /* _E[0-9]+[bs]$ */
6008 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6009 {
6010 matching = str + 3;
6011 while (isdigit (matching[0]))
6012 matching += 1;
6013 if ((matching[0] == 'b' || matching[0] == 's')
6014 && matching [1] == '\0')
6015 return 1;
6016 }
6017
6018 /* ??? We should not modify STR directly, as we are doing below. This
6019 is fine in this case, but may become problematic later if we find
6020 that this alternative did not work, and want to try matching
6021 another one from the begining of STR. Since we modified it, we
6022 won't be able to find the begining of the string anymore! */
6023 if (str[0] == 'X')
6024 {
6025 str += 1;
6026 while (str[0] != '_' && str[0] != '\0')
6027 {
6028 if (str[0] != 'n' && str[0] != 'b')
6029 return 0;
6030 str += 1;
6031 }
6032 }
6033
6034 if (str[0] == '\000')
6035 return 1;
6036
6037 if (str[0] == '_')
6038 {
6039 if (str[1] != '_' || str[2] == '\000')
6040 return 0;
6041 if (str[2] == '_')
6042 {
6043 if (strcmp (str + 3, "JM") == 0)
6044 return 1;
6045 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6046 the LJM suffix in favor of the JM one. But we will
6047 still accept LJM as a valid suffix for a reasonable
6048 amount of time, just to allow ourselves to debug programs
6049 compiled using an older version of GNAT. */
6050 if (strcmp (str + 3, "LJM") == 0)
6051 return 1;
6052 if (str[3] != 'X')
6053 return 0;
6054 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6055 || str[4] == 'U' || str[4] == 'P')
6056 return 1;
6057 if (str[4] == 'R' && str[5] != 'T')
6058 return 1;
6059 return 0;
6060 }
6061 if (!isdigit (str[2]))
6062 return 0;
6063 for (k = 3; str[k] != '\0'; k += 1)
6064 if (!isdigit (str[k]) && str[k] != '_')
6065 return 0;
6066 return 1;
6067 }
6068 if (str[0] == '$' && isdigit (str[1]))
6069 {
6070 for (k = 2; str[k] != '\0'; k += 1)
6071 if (!isdigit (str[k]) && str[k] != '_')
6072 return 0;
6073 return 1;
6074 }
6075 return 0;
6076 }
6077
6078 /* Return non-zero if the string starting at NAME and ending before
6079 NAME_END contains no capital letters. */
6080
6081 static int
6082 is_valid_name_for_wild_match (const char *name0)
6083 {
6084 std::string decoded_name = ada_decode (name0);
6085 int i;
6086
6087 /* If the decoded name starts with an angle bracket, it means that
6088 NAME0 does not follow the GNAT encoding format. It should then
6089 not be allowed as a possible wild match. */
6090 if (decoded_name[0] == '<')
6091 return 0;
6092
6093 for (i=0; decoded_name[i] != '\0'; i++)
6094 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6095 return 0;
6096
6097 return 1;
6098 }
6099
6100 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6101 that could start a simple name. Assumes that *NAMEP points into
6102 the string beginning at NAME0. */
6103
6104 static int
6105 advance_wild_match (const char **namep, const char *name0, int target0)
6106 {
6107 const char *name = *namep;
6108
6109 while (1)
6110 {
6111 int t0, t1;
6112
6113 t0 = *name;
6114 if (t0 == '_')
6115 {
6116 t1 = name[1];
6117 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6118 {
6119 name += 1;
6120 if (name == name0 + 5 && startswith (name0, "_ada"))
6121 break;
6122 else
6123 name += 1;
6124 }
6125 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6126 || name[2] == target0))
6127 {
6128 name += 2;
6129 break;
6130 }
6131 else
6132 return 0;
6133 }
6134 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6135 name += 1;
6136 else
6137 return 0;
6138 }
6139
6140 *namep = name;
6141 return 1;
6142 }
6143
6144 /* Return true iff NAME encodes a name of the form prefix.PATN.
6145 Ignores any informational suffixes of NAME (i.e., for which
6146 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6147 simple name. */
6148
6149 static bool
6150 wild_match (const char *name, const char *patn)
6151 {
6152 const char *p;
6153 const char *name0 = name;
6154
6155 while (1)
6156 {
6157 const char *match = name;
6158
6159 if (*name == *patn)
6160 {
6161 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6162 if (*p != *name)
6163 break;
6164 if (*p == '\0' && is_name_suffix (name))
6165 return match == name0 || is_valid_name_for_wild_match (name0);
6166
6167 if (name[-1] == '_')
6168 name -= 1;
6169 }
6170 if (!advance_wild_match (&name, name0, *patn))
6171 return false;
6172 }
6173 }
6174
6175 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6176 any trailing suffixes that encode debugging information or leading
6177 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6178 information that is ignored). */
6179
6180 static bool
6181 full_match (const char *sym_name, const char *search_name)
6182 {
6183 size_t search_name_len = strlen (search_name);
6184
6185 if (strncmp (sym_name, search_name, search_name_len) == 0
6186 && is_name_suffix (sym_name + search_name_len))
6187 return true;
6188
6189 if (startswith (sym_name, "_ada_")
6190 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6191 && is_name_suffix (sym_name + search_name_len + 5))
6192 return true;
6193
6194 return false;
6195 }
6196
6197 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6198 *defn_symbols, updating the list of symbols in OBSTACKP (if
6199 necessary). OBJFILE is the section containing BLOCK. */
6200
6201 static void
6202 ada_add_block_symbols (struct obstack *obstackp,
6203 const struct block *block,
6204 const lookup_name_info &lookup_name,
6205 domain_enum domain, struct objfile *objfile)
6206 {
6207 struct block_iterator iter;
6208 /* A matching argument symbol, if any. */
6209 struct symbol *arg_sym;
6210 /* Set true when we find a matching non-argument symbol. */
6211 int found_sym;
6212 struct symbol *sym;
6213
6214 arg_sym = NULL;
6215 found_sym = 0;
6216 for (sym = block_iter_match_first (block, lookup_name, &iter);
6217 sym != NULL;
6218 sym = block_iter_match_next (lookup_name, &iter))
6219 {
6220 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6221 {
6222 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6223 {
6224 if (SYMBOL_IS_ARGUMENT (sym))
6225 arg_sym = sym;
6226 else
6227 {
6228 found_sym = 1;
6229 add_defn_to_vec (obstackp,
6230 fixup_symbol_section (sym, objfile),
6231 block);
6232 }
6233 }
6234 }
6235 }
6236
6237 /* Handle renamings. */
6238
6239 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6240 found_sym = 1;
6241
6242 if (!found_sym && arg_sym != NULL)
6243 {
6244 add_defn_to_vec (obstackp,
6245 fixup_symbol_section (arg_sym, objfile),
6246 block);
6247 }
6248
6249 if (!lookup_name.ada ().wild_match_p ())
6250 {
6251 arg_sym = NULL;
6252 found_sym = 0;
6253 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6254 const char *name = ada_lookup_name.c_str ();
6255 size_t name_len = ada_lookup_name.size ();
6256
6257 ALL_BLOCK_SYMBOLS (block, iter, sym)
6258 {
6259 if (symbol_matches_domain (sym->language (),
6260 SYMBOL_DOMAIN (sym), domain))
6261 {
6262 int cmp;
6263
6264 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6265 if (cmp == 0)
6266 {
6267 cmp = !startswith (sym->linkage_name (), "_ada_");
6268 if (cmp == 0)
6269 cmp = strncmp (name, sym->linkage_name () + 5,
6270 name_len);
6271 }
6272
6273 if (cmp == 0
6274 && is_name_suffix (sym->linkage_name () + name_len + 5))
6275 {
6276 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6277 {
6278 if (SYMBOL_IS_ARGUMENT (sym))
6279 arg_sym = sym;
6280 else
6281 {
6282 found_sym = 1;
6283 add_defn_to_vec (obstackp,
6284 fixup_symbol_section (sym, objfile),
6285 block);
6286 }
6287 }
6288 }
6289 }
6290 }
6291
6292 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6293 They aren't parameters, right? */
6294 if (!found_sym && arg_sym != NULL)
6295 {
6296 add_defn_to_vec (obstackp,
6297 fixup_symbol_section (arg_sym, objfile),
6298 block);
6299 }
6300 }
6301 }
6302 \f
6303
6304 /* Symbol Completion */
6305
6306 /* See symtab.h. */
6307
6308 bool
6309 ada_lookup_name_info::matches
6310 (const char *sym_name,
6311 symbol_name_match_type match_type,
6312 completion_match_result *comp_match_res) const
6313 {
6314 bool match = false;
6315 const char *text = m_encoded_name.c_str ();
6316 size_t text_len = m_encoded_name.size ();
6317
6318 /* First, test against the fully qualified name of the symbol. */
6319
6320 if (strncmp (sym_name, text, text_len) == 0)
6321 match = true;
6322
6323 std::string decoded_name = ada_decode (sym_name);
6324 if (match && !m_encoded_p)
6325 {
6326 /* One needed check before declaring a positive match is to verify
6327 that iff we are doing a verbatim match, the decoded version
6328 of the symbol name starts with '<'. Otherwise, this symbol name
6329 is not a suitable completion. */
6330
6331 bool has_angle_bracket = (decoded_name[0] == '<');
6332 match = (has_angle_bracket == m_verbatim_p);
6333 }
6334
6335 if (match && !m_verbatim_p)
6336 {
6337 /* When doing non-verbatim match, another check that needs to
6338 be done is to verify that the potentially matching symbol name
6339 does not include capital letters, because the ada-mode would
6340 not be able to understand these symbol names without the
6341 angle bracket notation. */
6342 const char *tmp;
6343
6344 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6345 if (*tmp != '\0')
6346 match = false;
6347 }
6348
6349 /* Second: Try wild matching... */
6350
6351 if (!match && m_wild_match_p)
6352 {
6353 /* Since we are doing wild matching, this means that TEXT
6354 may represent an unqualified symbol name. We therefore must
6355 also compare TEXT against the unqualified name of the symbol. */
6356 sym_name = ada_unqualified_name (decoded_name.c_str ());
6357
6358 if (strncmp (sym_name, text, text_len) == 0)
6359 match = true;
6360 }
6361
6362 /* Finally: If we found a match, prepare the result to return. */
6363
6364 if (!match)
6365 return false;
6366
6367 if (comp_match_res != NULL)
6368 {
6369 std::string &match_str = comp_match_res->match.storage ();
6370
6371 if (!m_encoded_p)
6372 match_str = ada_decode (sym_name);
6373 else
6374 {
6375 if (m_verbatim_p)
6376 match_str = add_angle_brackets (sym_name);
6377 else
6378 match_str = sym_name;
6379
6380 }
6381
6382 comp_match_res->set_match (match_str.c_str ());
6383 }
6384
6385 return true;
6386 }
6387
6388 /* Add the list of possible symbol names completing TEXT to TRACKER.
6389 WORD is the entire command on which completion is made. */
6390
6391 static void
6392 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6393 complete_symbol_mode mode,
6394 symbol_name_match_type name_match_type,
6395 const char *text, const char *word,
6396 enum type_code code)
6397 {
6398 struct symbol *sym;
6399 const struct block *b, *surrounding_static_block = 0;
6400 struct block_iterator iter;
6401
6402 gdb_assert (code == TYPE_CODE_UNDEF);
6403
6404 lookup_name_info lookup_name (text, name_match_type, true);
6405
6406 /* First, look at the partial symtab symbols. */
6407 expand_symtabs_matching (NULL,
6408 lookup_name,
6409 NULL,
6410 NULL,
6411 ALL_DOMAIN);
6412
6413 /* At this point scan through the misc symbol vectors and add each
6414 symbol you find to the list. Eventually we want to ignore
6415 anything that isn't a text symbol (everything else will be
6416 handled by the psymtab code above). */
6417
6418 for (objfile *objfile : current_program_space->objfiles ())
6419 {
6420 for (minimal_symbol *msymbol : objfile->msymbols ())
6421 {
6422 QUIT;
6423
6424 if (completion_skip_symbol (mode, msymbol))
6425 continue;
6426
6427 language symbol_language = msymbol->language ();
6428
6429 /* Ada minimal symbols won't have their language set to Ada. If
6430 we let completion_list_add_name compare using the
6431 default/C-like matcher, then when completing e.g., symbols in a
6432 package named "pck", we'd match internal Ada symbols like
6433 "pckS", which are invalid in an Ada expression, unless you wrap
6434 them in '<' '>' to request a verbatim match.
6435
6436 Unfortunately, some Ada encoded names successfully demangle as
6437 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6438 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6439 with the wrong language set. Paper over that issue here. */
6440 if (symbol_language == language_auto
6441 || symbol_language == language_cplus)
6442 symbol_language = language_ada;
6443
6444 completion_list_add_name (tracker,
6445 symbol_language,
6446 msymbol->linkage_name (),
6447 lookup_name, text, word);
6448 }
6449 }
6450
6451 /* Search upwards from currently selected frame (so that we can
6452 complete on local vars. */
6453
6454 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6455 {
6456 if (!BLOCK_SUPERBLOCK (b))
6457 surrounding_static_block = b; /* For elmin of dups */
6458
6459 ALL_BLOCK_SYMBOLS (b, iter, sym)
6460 {
6461 if (completion_skip_symbol (mode, sym))
6462 continue;
6463
6464 completion_list_add_name (tracker,
6465 sym->language (),
6466 sym->linkage_name (),
6467 lookup_name, text, word);
6468 }
6469 }
6470
6471 /* Go through the symtabs and check the externs and statics for
6472 symbols which match. */
6473
6474 for (objfile *objfile : current_program_space->objfiles ())
6475 {
6476 for (compunit_symtab *s : objfile->compunits ())
6477 {
6478 QUIT;
6479 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6480 ALL_BLOCK_SYMBOLS (b, iter, sym)
6481 {
6482 if (completion_skip_symbol (mode, sym))
6483 continue;
6484
6485 completion_list_add_name (tracker,
6486 sym->language (),
6487 sym->linkage_name (),
6488 lookup_name, text, word);
6489 }
6490 }
6491 }
6492
6493 for (objfile *objfile : current_program_space->objfiles ())
6494 {
6495 for (compunit_symtab *s : objfile->compunits ())
6496 {
6497 QUIT;
6498 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6499 /* Don't do this block twice. */
6500 if (b == surrounding_static_block)
6501 continue;
6502 ALL_BLOCK_SYMBOLS (b, iter, sym)
6503 {
6504 if (completion_skip_symbol (mode, sym))
6505 continue;
6506
6507 completion_list_add_name (tracker,
6508 sym->language (),
6509 sym->linkage_name (),
6510 lookup_name, text, word);
6511 }
6512 }
6513 }
6514 }
6515
6516 /* Field Access */
6517
6518 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6519 for tagged types. */
6520
6521 static int
6522 ada_is_dispatch_table_ptr_type (struct type *type)
6523 {
6524 const char *name;
6525
6526 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6527 return 0;
6528
6529 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6530 if (name == NULL)
6531 return 0;
6532
6533 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6534 }
6535
6536 /* Return non-zero if TYPE is an interface tag. */
6537
6538 static int
6539 ada_is_interface_tag (struct type *type)
6540 {
6541 const char *name = TYPE_NAME (type);
6542
6543 if (name == NULL)
6544 return 0;
6545
6546 return (strcmp (name, "ada__tags__interface_tag") == 0);
6547 }
6548
6549 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6550 to be invisible to users. */
6551
6552 int
6553 ada_is_ignored_field (struct type *type, int field_num)
6554 {
6555 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6556 return 1;
6557
6558 /* Check the name of that field. */
6559 {
6560 const char *name = TYPE_FIELD_NAME (type, field_num);
6561
6562 /* Anonymous field names should not be printed.
6563 brobecker/2007-02-20: I don't think this can actually happen
6564 but we don't want to print the value of anonymous fields anyway. */
6565 if (name == NULL)
6566 return 1;
6567
6568 /* Normally, fields whose name start with an underscore ("_")
6569 are fields that have been internally generated by the compiler,
6570 and thus should not be printed. The "_parent" field is special,
6571 however: This is a field internally generated by the compiler
6572 for tagged types, and it contains the components inherited from
6573 the parent type. This field should not be printed as is, but
6574 should not be ignored either. */
6575 if (name[0] == '_' && !startswith (name, "_parent"))
6576 return 1;
6577 }
6578
6579 /* If this is the dispatch table of a tagged type or an interface tag,
6580 then ignore. */
6581 if (ada_is_tagged_type (type, 1)
6582 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6583 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6584 return 1;
6585
6586 /* Not a special field, so it should not be ignored. */
6587 return 0;
6588 }
6589
6590 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6591 pointer or reference type whose ultimate target has a tag field. */
6592
6593 int
6594 ada_is_tagged_type (struct type *type, int refok)
6595 {
6596 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6597 }
6598
6599 /* True iff TYPE represents the type of X'Tag */
6600
6601 int
6602 ada_is_tag_type (struct type *type)
6603 {
6604 type = ada_check_typedef (type);
6605
6606 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6607 return 0;
6608 else
6609 {
6610 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6611
6612 return (name != NULL
6613 && strcmp (name, "ada__tags__dispatch_table") == 0);
6614 }
6615 }
6616
6617 /* The type of the tag on VAL. */
6618
6619 static struct type *
6620 ada_tag_type (struct value *val)
6621 {
6622 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6623 }
6624
6625 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6626 retired at Ada 05). */
6627
6628 static int
6629 is_ada95_tag (struct value *tag)
6630 {
6631 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6632 }
6633
6634 /* The value of the tag on VAL. */
6635
6636 static struct value *
6637 ada_value_tag (struct value *val)
6638 {
6639 return ada_value_struct_elt (val, "_tag", 0);
6640 }
6641
6642 /* The value of the tag on the object of type TYPE whose contents are
6643 saved at VALADDR, if it is non-null, or is at memory address
6644 ADDRESS. */
6645
6646 static struct value *
6647 value_tag_from_contents_and_address (struct type *type,
6648 const gdb_byte *valaddr,
6649 CORE_ADDR address)
6650 {
6651 int tag_byte_offset;
6652 struct type *tag_type;
6653
6654 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6655 NULL, NULL, NULL))
6656 {
6657 const gdb_byte *valaddr1 = ((valaddr == NULL)
6658 ? NULL
6659 : valaddr + tag_byte_offset);
6660 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6661
6662 return value_from_contents_and_address (tag_type, valaddr1, address1);
6663 }
6664 return NULL;
6665 }
6666
6667 static struct type *
6668 type_from_tag (struct value *tag)
6669 {
6670 const char *type_name = ada_tag_name (tag);
6671
6672 if (type_name != NULL)
6673 return ada_find_any_type (ada_encode (type_name));
6674 return NULL;
6675 }
6676
6677 /* Given a value OBJ of a tagged type, return a value of this
6678 type at the base address of the object. The base address, as
6679 defined in Ada.Tags, it is the address of the primary tag of
6680 the object, and therefore where the field values of its full
6681 view can be fetched. */
6682
6683 struct value *
6684 ada_tag_value_at_base_address (struct value *obj)
6685 {
6686 struct value *val;
6687 LONGEST offset_to_top = 0;
6688 struct type *ptr_type, *obj_type;
6689 struct value *tag;
6690 CORE_ADDR base_address;
6691
6692 obj_type = value_type (obj);
6693
6694 /* It is the responsability of the caller to deref pointers. */
6695
6696 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6697 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6698 return obj;
6699
6700 tag = ada_value_tag (obj);
6701 if (!tag)
6702 return obj;
6703
6704 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6705
6706 if (is_ada95_tag (tag))
6707 return obj;
6708
6709 ptr_type = language_lookup_primitive_type
6710 (language_def (language_ada), target_gdbarch(), "storage_offset");
6711 ptr_type = lookup_pointer_type (ptr_type);
6712 val = value_cast (ptr_type, tag);
6713 if (!val)
6714 return obj;
6715
6716 /* It is perfectly possible that an exception be raised while
6717 trying to determine the base address, just like for the tag;
6718 see ada_tag_name for more details. We do not print the error
6719 message for the same reason. */
6720
6721 try
6722 {
6723 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6724 }
6725
6726 catch (const gdb_exception_error &e)
6727 {
6728 return obj;
6729 }
6730
6731 /* If offset is null, nothing to do. */
6732
6733 if (offset_to_top == 0)
6734 return obj;
6735
6736 /* -1 is a special case in Ada.Tags; however, what should be done
6737 is not quite clear from the documentation. So do nothing for
6738 now. */
6739
6740 if (offset_to_top == -1)
6741 return obj;
6742
6743 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6744 from the base address. This was however incompatible with
6745 C++ dispatch table: C++ uses a *negative* value to *add*
6746 to the base address. Ada's convention has therefore been
6747 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6748 use the same convention. Here, we support both cases by
6749 checking the sign of OFFSET_TO_TOP. */
6750
6751 if (offset_to_top > 0)
6752 offset_to_top = -offset_to_top;
6753
6754 base_address = value_address (obj) + offset_to_top;
6755 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6756
6757 /* Make sure that we have a proper tag at the new address.
6758 Otherwise, offset_to_top is bogus (which can happen when
6759 the object is not initialized yet). */
6760
6761 if (!tag)
6762 return obj;
6763
6764 obj_type = type_from_tag (tag);
6765
6766 if (!obj_type)
6767 return obj;
6768
6769 return value_from_contents_and_address (obj_type, NULL, base_address);
6770 }
6771
6772 /* Return the "ada__tags__type_specific_data" type. */
6773
6774 static struct type *
6775 ada_get_tsd_type (struct inferior *inf)
6776 {
6777 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6778
6779 if (data->tsd_type == 0)
6780 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6781 return data->tsd_type;
6782 }
6783
6784 /* Return the TSD (type-specific data) associated to the given TAG.
6785 TAG is assumed to be the tag of a tagged-type entity.
6786
6787 May return NULL if we are unable to get the TSD. */
6788
6789 static struct value *
6790 ada_get_tsd_from_tag (struct value *tag)
6791 {
6792 struct value *val;
6793 struct type *type;
6794
6795 /* First option: The TSD is simply stored as a field of our TAG.
6796 Only older versions of GNAT would use this format, but we have
6797 to test it first, because there are no visible markers for
6798 the current approach except the absence of that field. */
6799
6800 val = ada_value_struct_elt (tag, "tsd", 1);
6801 if (val)
6802 return val;
6803
6804 /* Try the second representation for the dispatch table (in which
6805 there is no explicit 'tsd' field in the referent of the tag pointer,
6806 and instead the tsd pointer is stored just before the dispatch
6807 table. */
6808
6809 type = ada_get_tsd_type (current_inferior());
6810 if (type == NULL)
6811 return NULL;
6812 type = lookup_pointer_type (lookup_pointer_type (type));
6813 val = value_cast (type, tag);
6814 if (val == NULL)
6815 return NULL;
6816 return value_ind (value_ptradd (val, -1));
6817 }
6818
6819 /* Given the TSD of a tag (type-specific data), return a string
6820 containing the name of the associated type.
6821
6822 The returned value is good until the next call. May return NULL
6823 if we are unable to determine the tag name. */
6824
6825 static char *
6826 ada_tag_name_from_tsd (struct value *tsd)
6827 {
6828 static char name[1024];
6829 char *p;
6830 struct value *val;
6831
6832 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6833 if (val == NULL)
6834 return NULL;
6835 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6836 for (p = name; *p != '\0'; p += 1)
6837 if (isalpha (*p))
6838 *p = tolower (*p);
6839 return name;
6840 }
6841
6842 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6843 a C string.
6844
6845 Return NULL if the TAG is not an Ada tag, or if we were unable to
6846 determine the name of that tag. The result is good until the next
6847 call. */
6848
6849 const char *
6850 ada_tag_name (struct value *tag)
6851 {
6852 char *name = NULL;
6853
6854 if (!ada_is_tag_type (value_type (tag)))
6855 return NULL;
6856
6857 /* It is perfectly possible that an exception be raised while trying
6858 to determine the TAG's name, even under normal circumstances:
6859 The associated variable may be uninitialized or corrupted, for
6860 instance. We do not let any exception propagate past this point.
6861 instead we return NULL.
6862
6863 We also do not print the error message either (which often is very
6864 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6865 the caller print a more meaningful message if necessary. */
6866 try
6867 {
6868 struct value *tsd = ada_get_tsd_from_tag (tag);
6869
6870 if (tsd != NULL)
6871 name = ada_tag_name_from_tsd (tsd);
6872 }
6873 catch (const gdb_exception_error &e)
6874 {
6875 }
6876
6877 return name;
6878 }
6879
6880 /* The parent type of TYPE, or NULL if none. */
6881
6882 struct type *
6883 ada_parent_type (struct type *type)
6884 {
6885 int i;
6886
6887 type = ada_check_typedef (type);
6888
6889 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6890 return NULL;
6891
6892 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6893 if (ada_is_parent_field (type, i))
6894 {
6895 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6896
6897 /* If the _parent field is a pointer, then dereference it. */
6898 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6899 parent_type = TYPE_TARGET_TYPE (parent_type);
6900 /* If there is a parallel XVS type, get the actual base type. */
6901 parent_type = ada_get_base_type (parent_type);
6902
6903 return ada_check_typedef (parent_type);
6904 }
6905
6906 return NULL;
6907 }
6908
6909 /* True iff field number FIELD_NUM of structure type TYPE contains the
6910 parent-type (inherited) fields of a derived type. Assumes TYPE is
6911 a structure type with at least FIELD_NUM+1 fields. */
6912
6913 int
6914 ada_is_parent_field (struct type *type, int field_num)
6915 {
6916 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6917
6918 return (name != NULL
6919 && (startswith (name, "PARENT")
6920 || startswith (name, "_parent")));
6921 }
6922
6923 /* True iff field number FIELD_NUM of structure type TYPE is a
6924 transparent wrapper field (which should be silently traversed when doing
6925 field selection and flattened when printing). Assumes TYPE is a
6926 structure type with at least FIELD_NUM+1 fields. Such fields are always
6927 structures. */
6928
6929 int
6930 ada_is_wrapper_field (struct type *type, int field_num)
6931 {
6932 const char *name = TYPE_FIELD_NAME (type, field_num);
6933
6934 if (name != NULL && strcmp (name, "RETVAL") == 0)
6935 {
6936 /* This happens in functions with "out" or "in out" parameters
6937 which are passed by copy. For such functions, GNAT describes
6938 the function's return type as being a struct where the return
6939 value is in a field called RETVAL, and where the other "out"
6940 or "in out" parameters are fields of that struct. This is not
6941 a wrapper. */
6942 return 0;
6943 }
6944
6945 return (name != NULL
6946 && (startswith (name, "PARENT")
6947 || strcmp (name, "REP") == 0
6948 || startswith (name, "_parent")
6949 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6950 }
6951
6952 /* True iff field number FIELD_NUM of structure or union type TYPE
6953 is a variant wrapper. Assumes TYPE is a structure type with at least
6954 FIELD_NUM+1 fields. */
6955
6956 int
6957 ada_is_variant_part (struct type *type, int field_num)
6958 {
6959 /* Only Ada types are eligible. */
6960 if (!ADA_TYPE_P (type))
6961 return 0;
6962
6963 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6964
6965 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6966 || (is_dynamic_field (type, field_num)
6967 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6968 == TYPE_CODE_UNION)));
6969 }
6970
6971 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6972 whose discriminants are contained in the record type OUTER_TYPE,
6973 returns the type of the controlling discriminant for the variant.
6974 May return NULL if the type could not be found. */
6975
6976 struct type *
6977 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6978 {
6979 const char *name = ada_variant_discrim_name (var_type);
6980
6981 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6982 }
6983
6984 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6985 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6986 represents a 'when others' clause; otherwise 0. */
6987
6988 static int
6989 ada_is_others_clause (struct type *type, int field_num)
6990 {
6991 const char *name = TYPE_FIELD_NAME (type, field_num);
6992
6993 return (name != NULL && name[0] == 'O');
6994 }
6995
6996 /* Assuming that TYPE0 is the type of the variant part of a record,
6997 returns the name of the discriminant controlling the variant.
6998 The value is valid until the next call to ada_variant_discrim_name. */
6999
7000 const char *
7001 ada_variant_discrim_name (struct type *type0)
7002 {
7003 static char *result = NULL;
7004 static size_t result_len = 0;
7005 struct type *type;
7006 const char *name;
7007 const char *discrim_end;
7008 const char *discrim_start;
7009
7010 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7011 type = TYPE_TARGET_TYPE (type0);
7012 else
7013 type = type0;
7014
7015 name = ada_type_name (type);
7016
7017 if (name == NULL || name[0] == '\000')
7018 return "";
7019
7020 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7021 discrim_end -= 1)
7022 {
7023 if (startswith (discrim_end, "___XVN"))
7024 break;
7025 }
7026 if (discrim_end == name)
7027 return "";
7028
7029 for (discrim_start = discrim_end; discrim_start != name + 3;
7030 discrim_start -= 1)
7031 {
7032 if (discrim_start == name + 1)
7033 return "";
7034 if ((discrim_start > name + 3
7035 && startswith (discrim_start - 3, "___"))
7036 || discrim_start[-1] == '.')
7037 break;
7038 }
7039
7040 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7041 strncpy (result, discrim_start, discrim_end - discrim_start);
7042 result[discrim_end - discrim_start] = '\0';
7043 return result;
7044 }
7045
7046 /* Scan STR for a subtype-encoded number, beginning at position K.
7047 Put the position of the character just past the number scanned in
7048 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7049 Return 1 if there was a valid number at the given position, and 0
7050 otherwise. A "subtype-encoded" number consists of the absolute value
7051 in decimal, followed by the letter 'm' to indicate a negative number.
7052 Assumes 0m does not occur. */
7053
7054 int
7055 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7056 {
7057 ULONGEST RU;
7058
7059 if (!isdigit (str[k]))
7060 return 0;
7061
7062 /* Do it the hard way so as not to make any assumption about
7063 the relationship of unsigned long (%lu scan format code) and
7064 LONGEST. */
7065 RU = 0;
7066 while (isdigit (str[k]))
7067 {
7068 RU = RU * 10 + (str[k] - '0');
7069 k += 1;
7070 }
7071
7072 if (str[k] == 'm')
7073 {
7074 if (R != NULL)
7075 *R = (-(LONGEST) (RU - 1)) - 1;
7076 k += 1;
7077 }
7078 else if (R != NULL)
7079 *R = (LONGEST) RU;
7080
7081 /* NOTE on the above: Technically, C does not say what the results of
7082 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7083 number representable as a LONGEST (although either would probably work
7084 in most implementations). When RU>0, the locution in the then branch
7085 above is always equivalent to the negative of RU. */
7086
7087 if (new_k != NULL)
7088 *new_k = k;
7089 return 1;
7090 }
7091
7092 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7093 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7094 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7095
7096 static int
7097 ada_in_variant (LONGEST val, struct type *type, int field_num)
7098 {
7099 const char *name = TYPE_FIELD_NAME (type, field_num);
7100 int p;
7101
7102 p = 0;
7103 while (1)
7104 {
7105 switch (name[p])
7106 {
7107 case '\0':
7108 return 0;
7109 case 'S':
7110 {
7111 LONGEST W;
7112
7113 if (!ada_scan_number (name, p + 1, &W, &p))
7114 return 0;
7115 if (val == W)
7116 return 1;
7117 break;
7118 }
7119 case 'R':
7120 {
7121 LONGEST L, U;
7122
7123 if (!ada_scan_number (name, p + 1, &L, &p)
7124 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7125 return 0;
7126 if (val >= L && val <= U)
7127 return 1;
7128 break;
7129 }
7130 case 'O':
7131 return 1;
7132 default:
7133 return 0;
7134 }
7135 }
7136 }
7137
7138 /* FIXME: Lots of redundancy below. Try to consolidate. */
7139
7140 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7141 ARG_TYPE, extract and return the value of one of its (non-static)
7142 fields. FIELDNO says which field. Differs from value_primitive_field
7143 only in that it can handle packed values of arbitrary type. */
7144
7145 static struct value *
7146 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7147 struct type *arg_type)
7148 {
7149 struct type *type;
7150
7151 arg_type = ada_check_typedef (arg_type);
7152 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7153
7154 /* Handle packed fields. It might be that the field is not packed
7155 relative to its containing structure, but the structure itself is
7156 packed; in this case we must take the bit-field path. */
7157 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7158 {
7159 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7160 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7161
7162 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7163 offset + bit_pos / 8,
7164 bit_pos % 8, bit_size, type);
7165 }
7166 else
7167 return value_primitive_field (arg1, offset, fieldno, arg_type);
7168 }
7169
7170 /* Find field with name NAME in object of type TYPE. If found,
7171 set the following for each argument that is non-null:
7172 - *FIELD_TYPE_P to the field's type;
7173 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7174 an object of that type;
7175 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7176 - *BIT_SIZE_P to its size in bits if the field is packed, and
7177 0 otherwise;
7178 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7179 fields up to but not including the desired field, or by the total
7180 number of fields if not found. A NULL value of NAME never
7181 matches; the function just counts visible fields in this case.
7182
7183 Notice that we need to handle when a tagged record hierarchy
7184 has some components with the same name, like in this scenario:
7185
7186 type Top_T is tagged record
7187 N : Integer := 1;
7188 U : Integer := 974;
7189 A : Integer := 48;
7190 end record;
7191
7192 type Middle_T is new Top.Top_T with record
7193 N : Character := 'a';
7194 C : Integer := 3;
7195 end record;
7196
7197 type Bottom_T is new Middle.Middle_T with record
7198 N : Float := 4.0;
7199 C : Character := '5';
7200 X : Integer := 6;
7201 A : Character := 'J';
7202 end record;
7203
7204 Let's say we now have a variable declared and initialized as follow:
7205
7206 TC : Top_A := new Bottom_T;
7207
7208 And then we use this variable to call this function
7209
7210 procedure Assign (Obj: in out Top_T; TV : Integer);
7211
7212 as follow:
7213
7214 Assign (Top_T (B), 12);
7215
7216 Now, we're in the debugger, and we're inside that procedure
7217 then and we want to print the value of obj.c:
7218
7219 Usually, the tagged record or one of the parent type owns the
7220 component to print and there's no issue but in this particular
7221 case, what does it mean to ask for Obj.C? Since the actual
7222 type for object is type Bottom_T, it could mean two things: type
7223 component C from the Middle_T view, but also component C from
7224 Bottom_T. So in that "undefined" case, when the component is
7225 not found in the non-resolved type (which includes all the
7226 components of the parent type), then resolve it and see if we
7227 get better luck once expanded.
7228
7229 In the case of homonyms in the derived tagged type, we don't
7230 guaranty anything, and pick the one that's easiest for us
7231 to program.
7232
7233 Returns 1 if found, 0 otherwise. */
7234
7235 static int
7236 find_struct_field (const char *name, struct type *type, int offset,
7237 struct type **field_type_p,
7238 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7239 int *index_p)
7240 {
7241 int i;
7242 int parent_offset = -1;
7243
7244 type = ada_check_typedef (type);
7245
7246 if (field_type_p != NULL)
7247 *field_type_p = NULL;
7248 if (byte_offset_p != NULL)
7249 *byte_offset_p = 0;
7250 if (bit_offset_p != NULL)
7251 *bit_offset_p = 0;
7252 if (bit_size_p != NULL)
7253 *bit_size_p = 0;
7254
7255 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7256 {
7257 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7258 int fld_offset = offset + bit_pos / 8;
7259 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7260
7261 if (t_field_name == NULL)
7262 continue;
7263
7264 else if (ada_is_parent_field (type, i))
7265 {
7266 /* This is a field pointing us to the parent type of a tagged
7267 type. As hinted in this function's documentation, we give
7268 preference to fields in the current record first, so what
7269 we do here is just record the index of this field before
7270 we skip it. If it turns out we couldn't find our field
7271 in the current record, then we'll get back to it and search
7272 inside it whether the field might exist in the parent. */
7273
7274 parent_offset = i;
7275 continue;
7276 }
7277
7278 else if (name != NULL && field_name_match (t_field_name, name))
7279 {
7280 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7281
7282 if (field_type_p != NULL)
7283 *field_type_p = TYPE_FIELD_TYPE (type, i);
7284 if (byte_offset_p != NULL)
7285 *byte_offset_p = fld_offset;
7286 if (bit_offset_p != NULL)
7287 *bit_offset_p = bit_pos % 8;
7288 if (bit_size_p != NULL)
7289 *bit_size_p = bit_size;
7290 return 1;
7291 }
7292 else if (ada_is_wrapper_field (type, i))
7293 {
7294 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7295 field_type_p, byte_offset_p, bit_offset_p,
7296 bit_size_p, index_p))
7297 return 1;
7298 }
7299 else if (ada_is_variant_part (type, i))
7300 {
7301 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7302 fixed type?? */
7303 int j;
7304 struct type *field_type
7305 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7306
7307 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7308 {
7309 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7310 fld_offset
7311 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7312 field_type_p, byte_offset_p,
7313 bit_offset_p, bit_size_p, index_p))
7314 return 1;
7315 }
7316 }
7317 else if (index_p != NULL)
7318 *index_p += 1;
7319 }
7320
7321 /* Field not found so far. If this is a tagged type which
7322 has a parent, try finding that field in the parent now. */
7323
7324 if (parent_offset != -1)
7325 {
7326 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7327 int fld_offset = offset + bit_pos / 8;
7328
7329 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7330 fld_offset, field_type_p, byte_offset_p,
7331 bit_offset_p, bit_size_p, index_p))
7332 return 1;
7333 }
7334
7335 return 0;
7336 }
7337
7338 /* Number of user-visible fields in record type TYPE. */
7339
7340 static int
7341 num_visible_fields (struct type *type)
7342 {
7343 int n;
7344
7345 n = 0;
7346 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7347 return n;
7348 }
7349
7350 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7351 and search in it assuming it has (class) type TYPE.
7352 If found, return value, else return NULL.
7353
7354 Searches recursively through wrapper fields (e.g., '_parent').
7355
7356 In the case of homonyms in the tagged types, please refer to the
7357 long explanation in find_struct_field's function documentation. */
7358
7359 static struct value *
7360 ada_search_struct_field (const char *name, struct value *arg, int offset,
7361 struct type *type)
7362 {
7363 int i;
7364 int parent_offset = -1;
7365
7366 type = ada_check_typedef (type);
7367 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7368 {
7369 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7370
7371 if (t_field_name == NULL)
7372 continue;
7373
7374 else if (ada_is_parent_field (type, i))
7375 {
7376 /* This is a field pointing us to the parent type of a tagged
7377 type. As hinted in this function's documentation, we give
7378 preference to fields in the current record first, so what
7379 we do here is just record the index of this field before
7380 we skip it. If it turns out we couldn't find our field
7381 in the current record, then we'll get back to it and search
7382 inside it whether the field might exist in the parent. */
7383
7384 parent_offset = i;
7385 continue;
7386 }
7387
7388 else if (field_name_match (t_field_name, name))
7389 return ada_value_primitive_field (arg, offset, i, type);
7390
7391 else if (ada_is_wrapper_field (type, i))
7392 {
7393 struct value *v = /* Do not let indent join lines here. */
7394 ada_search_struct_field (name, arg,
7395 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7396 TYPE_FIELD_TYPE (type, i));
7397
7398 if (v != NULL)
7399 return v;
7400 }
7401
7402 else if (ada_is_variant_part (type, i))
7403 {
7404 /* PNH: Do we ever get here? See find_struct_field. */
7405 int j;
7406 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7407 i));
7408 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7409
7410 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7411 {
7412 struct value *v = ada_search_struct_field /* Force line
7413 break. */
7414 (name, arg,
7415 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7416 TYPE_FIELD_TYPE (field_type, j));
7417
7418 if (v != NULL)
7419 return v;
7420 }
7421 }
7422 }
7423
7424 /* Field not found so far. If this is a tagged type which
7425 has a parent, try finding that field in the parent now. */
7426
7427 if (parent_offset != -1)
7428 {
7429 struct value *v = ada_search_struct_field (
7430 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7431 TYPE_FIELD_TYPE (type, parent_offset));
7432
7433 if (v != NULL)
7434 return v;
7435 }
7436
7437 return NULL;
7438 }
7439
7440 static struct value *ada_index_struct_field_1 (int *, struct value *,
7441 int, struct type *);
7442
7443
7444 /* Return field #INDEX in ARG, where the index is that returned by
7445 * find_struct_field through its INDEX_P argument. Adjust the address
7446 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7447 * If found, return value, else return NULL. */
7448
7449 static struct value *
7450 ada_index_struct_field (int index, struct value *arg, int offset,
7451 struct type *type)
7452 {
7453 return ada_index_struct_field_1 (&index, arg, offset, type);
7454 }
7455
7456
7457 /* Auxiliary function for ada_index_struct_field. Like
7458 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7459 * *INDEX_P. */
7460
7461 static struct value *
7462 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7463 struct type *type)
7464 {
7465 int i;
7466 type = ada_check_typedef (type);
7467
7468 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7469 {
7470 if (TYPE_FIELD_NAME (type, i) == NULL)
7471 continue;
7472 else if (ada_is_wrapper_field (type, i))
7473 {
7474 struct value *v = /* Do not let indent join lines here. */
7475 ada_index_struct_field_1 (index_p, arg,
7476 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7477 TYPE_FIELD_TYPE (type, i));
7478
7479 if (v != NULL)
7480 return v;
7481 }
7482
7483 else if (ada_is_variant_part (type, i))
7484 {
7485 /* PNH: Do we ever get here? See ada_search_struct_field,
7486 find_struct_field. */
7487 error (_("Cannot assign this kind of variant record"));
7488 }
7489 else if (*index_p == 0)
7490 return ada_value_primitive_field (arg, offset, i, type);
7491 else
7492 *index_p -= 1;
7493 }
7494 return NULL;
7495 }
7496
7497 /* Return a string representation of type TYPE. */
7498
7499 static std::string
7500 type_as_string (struct type *type)
7501 {
7502 string_file tmp_stream;
7503
7504 type_print (type, "", &tmp_stream, -1);
7505
7506 return std::move (tmp_stream.string ());
7507 }
7508
7509 /* Given a type TYPE, look up the type of the component of type named NAME.
7510 If DISPP is non-null, add its byte displacement from the beginning of a
7511 structure (pointed to by a value) of type TYPE to *DISPP (does not
7512 work for packed fields).
7513
7514 Matches any field whose name has NAME as a prefix, possibly
7515 followed by "___".
7516
7517 TYPE can be either a struct or union. If REFOK, TYPE may also
7518 be a (pointer or reference)+ to a struct or union, and the
7519 ultimate target type will be searched.
7520
7521 Looks recursively into variant clauses and parent types.
7522
7523 In the case of homonyms in the tagged types, please refer to the
7524 long explanation in find_struct_field's function documentation.
7525
7526 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7527 TYPE is not a type of the right kind. */
7528
7529 static struct type *
7530 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7531 int noerr)
7532 {
7533 int i;
7534 int parent_offset = -1;
7535
7536 if (name == NULL)
7537 goto BadName;
7538
7539 if (refok && type != NULL)
7540 while (1)
7541 {
7542 type = ada_check_typedef (type);
7543 if (TYPE_CODE (type) != TYPE_CODE_PTR
7544 && TYPE_CODE (type) != TYPE_CODE_REF)
7545 break;
7546 type = TYPE_TARGET_TYPE (type);
7547 }
7548
7549 if (type == NULL
7550 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7551 && TYPE_CODE (type) != TYPE_CODE_UNION))
7552 {
7553 if (noerr)
7554 return NULL;
7555
7556 error (_("Type %s is not a structure or union type"),
7557 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7558 }
7559
7560 type = to_static_fixed_type (type);
7561
7562 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7563 {
7564 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7565 struct type *t;
7566
7567 if (t_field_name == NULL)
7568 continue;
7569
7570 else if (ada_is_parent_field (type, i))
7571 {
7572 /* This is a field pointing us to the parent type of a tagged
7573 type. As hinted in this function's documentation, we give
7574 preference to fields in the current record first, so what
7575 we do here is just record the index of this field before
7576 we skip it. If it turns out we couldn't find our field
7577 in the current record, then we'll get back to it and search
7578 inside it whether the field might exist in the parent. */
7579
7580 parent_offset = i;
7581 continue;
7582 }
7583
7584 else if (field_name_match (t_field_name, name))
7585 return TYPE_FIELD_TYPE (type, i);
7586
7587 else if (ada_is_wrapper_field (type, i))
7588 {
7589 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7590 0, 1);
7591 if (t != NULL)
7592 return t;
7593 }
7594
7595 else if (ada_is_variant_part (type, i))
7596 {
7597 int j;
7598 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7599 i));
7600
7601 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7602 {
7603 /* FIXME pnh 2008/01/26: We check for a field that is
7604 NOT wrapped in a struct, since the compiler sometimes
7605 generates these for unchecked variant types. Revisit
7606 if the compiler changes this practice. */
7607 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7608
7609 if (v_field_name != NULL
7610 && field_name_match (v_field_name, name))
7611 t = TYPE_FIELD_TYPE (field_type, j);
7612 else
7613 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7614 j),
7615 name, 0, 1);
7616
7617 if (t != NULL)
7618 return t;
7619 }
7620 }
7621
7622 }
7623
7624 /* Field not found so far. If this is a tagged type which
7625 has a parent, try finding that field in the parent now. */
7626
7627 if (parent_offset != -1)
7628 {
7629 struct type *t;
7630
7631 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7632 name, 0, 1);
7633 if (t != NULL)
7634 return t;
7635 }
7636
7637 BadName:
7638 if (!noerr)
7639 {
7640 const char *name_str = name != NULL ? name : _("<null>");
7641
7642 error (_("Type %s has no component named %s"),
7643 type_as_string (type).c_str (), name_str);
7644 }
7645
7646 return NULL;
7647 }
7648
7649 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7650 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7651 represents an unchecked union (that is, the variant part of a
7652 record that is named in an Unchecked_Union pragma). */
7653
7654 static int
7655 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7656 {
7657 const char *discrim_name = ada_variant_discrim_name (var_type);
7658
7659 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7660 }
7661
7662
7663 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7664 within a value of type OUTER_TYPE that is stored in GDB at
7665 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7666 numbering from 0) is applicable. Returns -1 if none are. */
7667
7668 int
7669 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7670 const gdb_byte *outer_valaddr)
7671 {
7672 int others_clause;
7673 int i;
7674 const char *discrim_name = ada_variant_discrim_name (var_type);
7675 struct value *outer;
7676 struct value *discrim;
7677 LONGEST discrim_val;
7678
7679 /* Using plain value_from_contents_and_address here causes problems
7680 because we will end up trying to resolve a type that is currently
7681 being constructed. */
7682 outer = value_from_contents_and_address_unresolved (outer_type,
7683 outer_valaddr, 0);
7684 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7685 if (discrim == NULL)
7686 return -1;
7687 discrim_val = value_as_long (discrim);
7688
7689 others_clause = -1;
7690 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7691 {
7692 if (ada_is_others_clause (var_type, i))
7693 others_clause = i;
7694 else if (ada_in_variant (discrim_val, var_type, i))
7695 return i;
7696 }
7697
7698 return others_clause;
7699 }
7700 \f
7701
7702
7703 /* Dynamic-Sized Records */
7704
7705 /* Strategy: The type ostensibly attached to a value with dynamic size
7706 (i.e., a size that is not statically recorded in the debugging
7707 data) does not accurately reflect the size or layout of the value.
7708 Our strategy is to convert these values to values with accurate,
7709 conventional types that are constructed on the fly. */
7710
7711 /* There is a subtle and tricky problem here. In general, we cannot
7712 determine the size of dynamic records without its data. However,
7713 the 'struct value' data structure, which GDB uses to represent
7714 quantities in the inferior process (the target), requires the size
7715 of the type at the time of its allocation in order to reserve space
7716 for GDB's internal copy of the data. That's why the
7717 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7718 rather than struct value*s.
7719
7720 However, GDB's internal history variables ($1, $2, etc.) are
7721 struct value*s containing internal copies of the data that are not, in
7722 general, the same as the data at their corresponding addresses in
7723 the target. Fortunately, the types we give to these values are all
7724 conventional, fixed-size types (as per the strategy described
7725 above), so that we don't usually have to perform the
7726 'to_fixed_xxx_type' conversions to look at their values.
7727 Unfortunately, there is one exception: if one of the internal
7728 history variables is an array whose elements are unconstrained
7729 records, then we will need to create distinct fixed types for each
7730 element selected. */
7731
7732 /* The upshot of all of this is that many routines take a (type, host
7733 address, target address) triple as arguments to represent a value.
7734 The host address, if non-null, is supposed to contain an internal
7735 copy of the relevant data; otherwise, the program is to consult the
7736 target at the target address. */
7737
7738 /* Assuming that VAL0 represents a pointer value, the result of
7739 dereferencing it. Differs from value_ind in its treatment of
7740 dynamic-sized types. */
7741
7742 struct value *
7743 ada_value_ind (struct value *val0)
7744 {
7745 struct value *val = value_ind (val0);
7746
7747 if (ada_is_tagged_type (value_type (val), 0))
7748 val = ada_tag_value_at_base_address (val);
7749
7750 return ada_to_fixed_value (val);
7751 }
7752
7753 /* The value resulting from dereferencing any "reference to"
7754 qualifiers on VAL0. */
7755
7756 static struct value *
7757 ada_coerce_ref (struct value *val0)
7758 {
7759 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7760 {
7761 struct value *val = val0;
7762
7763 val = coerce_ref (val);
7764
7765 if (ada_is_tagged_type (value_type (val), 0))
7766 val = ada_tag_value_at_base_address (val);
7767
7768 return ada_to_fixed_value (val);
7769 }
7770 else
7771 return val0;
7772 }
7773
7774 /* Return OFF rounded upward if necessary to a multiple of
7775 ALIGNMENT (a power of 2). */
7776
7777 static unsigned int
7778 align_value (unsigned int off, unsigned int alignment)
7779 {
7780 return (off + alignment - 1) & ~(alignment - 1);
7781 }
7782
7783 /* Return the bit alignment required for field #F of template type TYPE. */
7784
7785 static unsigned int
7786 field_alignment (struct type *type, int f)
7787 {
7788 const char *name = TYPE_FIELD_NAME (type, f);
7789 int len;
7790 int align_offset;
7791
7792 /* The field name should never be null, unless the debugging information
7793 is somehow malformed. In this case, we assume the field does not
7794 require any alignment. */
7795 if (name == NULL)
7796 return 1;
7797
7798 len = strlen (name);
7799
7800 if (!isdigit (name[len - 1]))
7801 return 1;
7802
7803 if (isdigit (name[len - 2]))
7804 align_offset = len - 2;
7805 else
7806 align_offset = len - 1;
7807
7808 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7809 return TARGET_CHAR_BIT;
7810
7811 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7812 }
7813
7814 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7815
7816 static struct symbol *
7817 ada_find_any_type_symbol (const char *name)
7818 {
7819 struct symbol *sym;
7820
7821 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7822 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7823 return sym;
7824
7825 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7826 return sym;
7827 }
7828
7829 /* Find a type named NAME. Ignores ambiguity. This routine will look
7830 solely for types defined by debug info, it will not search the GDB
7831 primitive types. */
7832
7833 static struct type *
7834 ada_find_any_type (const char *name)
7835 {
7836 struct symbol *sym = ada_find_any_type_symbol (name);
7837
7838 if (sym != NULL)
7839 return SYMBOL_TYPE (sym);
7840
7841 return NULL;
7842 }
7843
7844 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7845 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7846 symbol, in which case it is returned. Otherwise, this looks for
7847 symbols whose name is that of NAME_SYM suffixed with "___XR".
7848 Return symbol if found, and NULL otherwise. */
7849
7850 static bool
7851 ada_is_renaming_symbol (struct symbol *name_sym)
7852 {
7853 const char *name = name_sym->linkage_name ();
7854 return strstr (name, "___XR") != NULL;
7855 }
7856
7857 /* Because of GNAT encoding conventions, several GDB symbols may match a
7858 given type name. If the type denoted by TYPE0 is to be preferred to
7859 that of TYPE1 for purposes of type printing, return non-zero;
7860 otherwise return 0. */
7861
7862 int
7863 ada_prefer_type (struct type *type0, struct type *type1)
7864 {
7865 if (type1 == NULL)
7866 return 1;
7867 else if (type0 == NULL)
7868 return 0;
7869 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7870 return 1;
7871 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7872 return 0;
7873 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7874 return 1;
7875 else if (ada_is_constrained_packed_array_type (type0))
7876 return 1;
7877 else if (ada_is_array_descriptor_type (type0)
7878 && !ada_is_array_descriptor_type (type1))
7879 return 1;
7880 else
7881 {
7882 const char *type0_name = TYPE_NAME (type0);
7883 const char *type1_name = TYPE_NAME (type1);
7884
7885 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7886 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7887 return 1;
7888 }
7889 return 0;
7890 }
7891
7892 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7893 null. */
7894
7895 const char *
7896 ada_type_name (struct type *type)
7897 {
7898 if (type == NULL)
7899 return NULL;
7900 return TYPE_NAME (type);
7901 }
7902
7903 /* Search the list of "descriptive" types associated to TYPE for a type
7904 whose name is NAME. */
7905
7906 static struct type *
7907 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7908 {
7909 struct type *result, *tmp;
7910
7911 if (ada_ignore_descriptive_types_p)
7912 return NULL;
7913
7914 /* If there no descriptive-type info, then there is no parallel type
7915 to be found. */
7916 if (!HAVE_GNAT_AUX_INFO (type))
7917 return NULL;
7918
7919 result = TYPE_DESCRIPTIVE_TYPE (type);
7920 while (result != NULL)
7921 {
7922 const char *result_name = ada_type_name (result);
7923
7924 if (result_name == NULL)
7925 {
7926 warning (_("unexpected null name on descriptive type"));
7927 return NULL;
7928 }
7929
7930 /* If the names match, stop. */
7931 if (strcmp (result_name, name) == 0)
7932 break;
7933
7934 /* Otherwise, look at the next item on the list, if any. */
7935 if (HAVE_GNAT_AUX_INFO (result))
7936 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7937 else
7938 tmp = NULL;
7939
7940 /* If not found either, try after having resolved the typedef. */
7941 if (tmp != NULL)
7942 result = tmp;
7943 else
7944 {
7945 result = check_typedef (result);
7946 if (HAVE_GNAT_AUX_INFO (result))
7947 result = TYPE_DESCRIPTIVE_TYPE (result);
7948 else
7949 result = NULL;
7950 }
7951 }
7952
7953 /* If we didn't find a match, see whether this is a packed array. With
7954 older compilers, the descriptive type information is either absent or
7955 irrelevant when it comes to packed arrays so the above lookup fails.
7956 Fall back to using a parallel lookup by name in this case. */
7957 if (result == NULL && ada_is_constrained_packed_array_type (type))
7958 return ada_find_any_type (name);
7959
7960 return result;
7961 }
7962
7963 /* Find a parallel type to TYPE with the specified NAME, using the
7964 descriptive type taken from the debugging information, if available,
7965 and otherwise using the (slower) name-based method. */
7966
7967 static struct type *
7968 ada_find_parallel_type_with_name (struct type *type, const char *name)
7969 {
7970 struct type *result = NULL;
7971
7972 if (HAVE_GNAT_AUX_INFO (type))
7973 result = find_parallel_type_by_descriptive_type (type, name);
7974 else
7975 result = ada_find_any_type (name);
7976
7977 return result;
7978 }
7979
7980 /* Same as above, but specify the name of the parallel type by appending
7981 SUFFIX to the name of TYPE. */
7982
7983 struct type *
7984 ada_find_parallel_type (struct type *type, const char *suffix)
7985 {
7986 char *name;
7987 const char *type_name = ada_type_name (type);
7988 int len;
7989
7990 if (type_name == NULL)
7991 return NULL;
7992
7993 len = strlen (type_name);
7994
7995 name = (char *) alloca (len + strlen (suffix) + 1);
7996
7997 strcpy (name, type_name);
7998 strcpy (name + len, suffix);
7999
8000 return ada_find_parallel_type_with_name (type, name);
8001 }
8002
8003 /* If TYPE is a variable-size record type, return the corresponding template
8004 type describing its fields. Otherwise, return NULL. */
8005
8006 static struct type *
8007 dynamic_template_type (struct type *type)
8008 {
8009 type = ada_check_typedef (type);
8010
8011 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8012 || ada_type_name (type) == NULL)
8013 return NULL;
8014 else
8015 {
8016 int len = strlen (ada_type_name (type));
8017
8018 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8019 return type;
8020 else
8021 return ada_find_parallel_type (type, "___XVE");
8022 }
8023 }
8024
8025 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8026 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8027
8028 static int
8029 is_dynamic_field (struct type *templ_type, int field_num)
8030 {
8031 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8032
8033 return name != NULL
8034 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8035 && strstr (name, "___XVL") != NULL;
8036 }
8037
8038 /* The index of the variant field of TYPE, or -1 if TYPE does not
8039 represent a variant record type. */
8040
8041 static int
8042 variant_field_index (struct type *type)
8043 {
8044 int f;
8045
8046 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8047 return -1;
8048
8049 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8050 {
8051 if (ada_is_variant_part (type, f))
8052 return f;
8053 }
8054 return -1;
8055 }
8056
8057 /* A record type with no fields. */
8058
8059 static struct type *
8060 empty_record (struct type *templ)
8061 {
8062 struct type *type = alloc_type_copy (templ);
8063
8064 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8065 TYPE_NFIELDS (type) = 0;
8066 TYPE_FIELDS (type) = NULL;
8067 INIT_NONE_SPECIFIC (type);
8068 TYPE_NAME (type) = "<empty>";
8069 TYPE_LENGTH (type) = 0;
8070 return type;
8071 }
8072
8073 /* An ordinary record type (with fixed-length fields) that describes
8074 the value of type TYPE at VALADDR or ADDRESS (see comments at
8075 the beginning of this section) VAL according to GNAT conventions.
8076 DVAL0 should describe the (portion of a) record that contains any
8077 necessary discriminants. It should be NULL if value_type (VAL) is
8078 an outer-level type (i.e., as opposed to a branch of a variant.) A
8079 variant field (unless unchecked) is replaced by a particular branch
8080 of the variant.
8081
8082 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8083 length are not statically known are discarded. As a consequence,
8084 VALADDR, ADDRESS and DVAL0 are ignored.
8085
8086 NOTE: Limitations: For now, we assume that dynamic fields and
8087 variants occupy whole numbers of bytes. However, they need not be
8088 byte-aligned. */
8089
8090 struct type *
8091 ada_template_to_fixed_record_type_1 (struct type *type,
8092 const gdb_byte *valaddr,
8093 CORE_ADDR address, struct value *dval0,
8094 int keep_dynamic_fields)
8095 {
8096 struct value *mark = value_mark ();
8097 struct value *dval;
8098 struct type *rtype;
8099 int nfields, bit_len;
8100 int variant_field;
8101 long off;
8102 int fld_bit_len;
8103 int f;
8104
8105 /* Compute the number of fields in this record type that are going
8106 to be processed: unless keep_dynamic_fields, this includes only
8107 fields whose position and length are static will be processed. */
8108 if (keep_dynamic_fields)
8109 nfields = TYPE_NFIELDS (type);
8110 else
8111 {
8112 nfields = 0;
8113 while (nfields < TYPE_NFIELDS (type)
8114 && !ada_is_variant_part (type, nfields)
8115 && !is_dynamic_field (type, nfields))
8116 nfields++;
8117 }
8118
8119 rtype = alloc_type_copy (type);
8120 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8121 INIT_NONE_SPECIFIC (rtype);
8122 TYPE_NFIELDS (rtype) = nfields;
8123 TYPE_FIELDS (rtype) = (struct field *)
8124 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8125 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8126 TYPE_NAME (rtype) = ada_type_name (type);
8127 TYPE_FIXED_INSTANCE (rtype) = 1;
8128
8129 off = 0;
8130 bit_len = 0;
8131 variant_field = -1;
8132
8133 for (f = 0; f < nfields; f += 1)
8134 {
8135 off = align_value (off, field_alignment (type, f))
8136 + TYPE_FIELD_BITPOS (type, f);
8137 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8138 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8139
8140 if (ada_is_variant_part (type, f))
8141 {
8142 variant_field = f;
8143 fld_bit_len = 0;
8144 }
8145 else if (is_dynamic_field (type, f))
8146 {
8147 const gdb_byte *field_valaddr = valaddr;
8148 CORE_ADDR field_address = address;
8149 struct type *field_type =
8150 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8151
8152 if (dval0 == NULL)
8153 {
8154 /* rtype's length is computed based on the run-time
8155 value of discriminants. If the discriminants are not
8156 initialized, the type size may be completely bogus and
8157 GDB may fail to allocate a value for it. So check the
8158 size first before creating the value. */
8159 ada_ensure_varsize_limit (rtype);
8160 /* Using plain value_from_contents_and_address here
8161 causes problems because we will end up trying to
8162 resolve a type that is currently being
8163 constructed. */
8164 dval = value_from_contents_and_address_unresolved (rtype,
8165 valaddr,
8166 address);
8167 rtype = value_type (dval);
8168 }
8169 else
8170 dval = dval0;
8171
8172 /* If the type referenced by this field is an aligner type, we need
8173 to unwrap that aligner type, because its size might not be set.
8174 Keeping the aligner type would cause us to compute the wrong
8175 size for this field, impacting the offset of the all the fields
8176 that follow this one. */
8177 if (ada_is_aligner_type (field_type))
8178 {
8179 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8180
8181 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8182 field_address = cond_offset_target (field_address, field_offset);
8183 field_type = ada_aligned_type (field_type);
8184 }
8185
8186 field_valaddr = cond_offset_host (field_valaddr,
8187 off / TARGET_CHAR_BIT);
8188 field_address = cond_offset_target (field_address,
8189 off / TARGET_CHAR_BIT);
8190
8191 /* Get the fixed type of the field. Note that, in this case,
8192 we do not want to get the real type out of the tag: if
8193 the current field is the parent part of a tagged record,
8194 we will get the tag of the object. Clearly wrong: the real
8195 type of the parent is not the real type of the child. We
8196 would end up in an infinite loop. */
8197 field_type = ada_get_base_type (field_type);
8198 field_type = ada_to_fixed_type (field_type, field_valaddr,
8199 field_address, dval, 0);
8200 /* If the field size is already larger than the maximum
8201 object size, then the record itself will necessarily
8202 be larger than the maximum object size. We need to make
8203 this check now, because the size might be so ridiculously
8204 large (due to an uninitialized variable in the inferior)
8205 that it would cause an overflow when adding it to the
8206 record size. */
8207 ada_ensure_varsize_limit (field_type);
8208
8209 TYPE_FIELD_TYPE (rtype, f) = field_type;
8210 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8211 /* The multiplication can potentially overflow. But because
8212 the field length has been size-checked just above, and
8213 assuming that the maximum size is a reasonable value,
8214 an overflow should not happen in practice. So rather than
8215 adding overflow recovery code to this already complex code,
8216 we just assume that it's not going to happen. */
8217 fld_bit_len =
8218 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8219 }
8220 else
8221 {
8222 /* Note: If this field's type is a typedef, it is important
8223 to preserve the typedef layer.
8224
8225 Otherwise, we might be transforming a typedef to a fat
8226 pointer (encoding a pointer to an unconstrained array),
8227 into a basic fat pointer (encoding an unconstrained
8228 array). As both types are implemented using the same
8229 structure, the typedef is the only clue which allows us
8230 to distinguish between the two options. Stripping it
8231 would prevent us from printing this field appropriately. */
8232 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8233 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8234 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8235 fld_bit_len =
8236 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8237 else
8238 {
8239 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8240
8241 /* We need to be careful of typedefs when computing
8242 the length of our field. If this is a typedef,
8243 get the length of the target type, not the length
8244 of the typedef. */
8245 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8246 field_type = ada_typedef_target_type (field_type);
8247
8248 fld_bit_len =
8249 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8250 }
8251 }
8252 if (off + fld_bit_len > bit_len)
8253 bit_len = off + fld_bit_len;
8254 off += fld_bit_len;
8255 TYPE_LENGTH (rtype) =
8256 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8257 }
8258
8259 /* We handle the variant part, if any, at the end because of certain
8260 odd cases in which it is re-ordered so as NOT to be the last field of
8261 the record. This can happen in the presence of representation
8262 clauses. */
8263 if (variant_field >= 0)
8264 {
8265 struct type *branch_type;
8266
8267 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8268
8269 if (dval0 == NULL)
8270 {
8271 /* Using plain value_from_contents_and_address here causes
8272 problems because we will end up trying to resolve a type
8273 that is currently being constructed. */
8274 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8275 address);
8276 rtype = value_type (dval);
8277 }
8278 else
8279 dval = dval0;
8280
8281 branch_type =
8282 to_fixed_variant_branch_type
8283 (TYPE_FIELD_TYPE (type, variant_field),
8284 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8285 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8286 if (branch_type == NULL)
8287 {
8288 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8289 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8290 TYPE_NFIELDS (rtype) -= 1;
8291 }
8292 else
8293 {
8294 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8295 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8296 fld_bit_len =
8297 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8298 TARGET_CHAR_BIT;
8299 if (off + fld_bit_len > bit_len)
8300 bit_len = off + fld_bit_len;
8301 TYPE_LENGTH (rtype) =
8302 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8303 }
8304 }
8305
8306 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8307 should contain the alignment of that record, which should be a strictly
8308 positive value. If null or negative, then something is wrong, most
8309 probably in the debug info. In that case, we don't round up the size
8310 of the resulting type. If this record is not part of another structure,
8311 the current RTYPE length might be good enough for our purposes. */
8312 if (TYPE_LENGTH (type) <= 0)
8313 {
8314 if (TYPE_NAME (rtype))
8315 warning (_("Invalid type size for `%s' detected: %s."),
8316 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8317 else
8318 warning (_("Invalid type size for <unnamed> detected: %s."),
8319 pulongest (TYPE_LENGTH (type)));
8320 }
8321 else
8322 {
8323 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8324 TYPE_LENGTH (type));
8325 }
8326
8327 value_free_to_mark (mark);
8328 if (TYPE_LENGTH (rtype) > varsize_limit)
8329 error (_("record type with dynamic size is larger than varsize-limit"));
8330 return rtype;
8331 }
8332
8333 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8334 of 1. */
8335
8336 static struct type *
8337 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8338 CORE_ADDR address, struct value *dval0)
8339 {
8340 return ada_template_to_fixed_record_type_1 (type, valaddr,
8341 address, dval0, 1);
8342 }
8343
8344 /* An ordinary record type in which ___XVL-convention fields and
8345 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8346 static approximations, containing all possible fields. Uses
8347 no runtime values. Useless for use in values, but that's OK,
8348 since the results are used only for type determinations. Works on both
8349 structs and unions. Representation note: to save space, we memorize
8350 the result of this function in the TYPE_TARGET_TYPE of the
8351 template type. */
8352
8353 static struct type *
8354 template_to_static_fixed_type (struct type *type0)
8355 {
8356 struct type *type;
8357 int nfields;
8358 int f;
8359
8360 /* No need no do anything if the input type is already fixed. */
8361 if (TYPE_FIXED_INSTANCE (type0))
8362 return type0;
8363
8364 /* Likewise if we already have computed the static approximation. */
8365 if (TYPE_TARGET_TYPE (type0) != NULL)
8366 return TYPE_TARGET_TYPE (type0);
8367
8368 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8369 type = type0;
8370 nfields = TYPE_NFIELDS (type0);
8371
8372 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8373 recompute all over next time. */
8374 TYPE_TARGET_TYPE (type0) = type;
8375
8376 for (f = 0; f < nfields; f += 1)
8377 {
8378 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8379 struct type *new_type;
8380
8381 if (is_dynamic_field (type0, f))
8382 {
8383 field_type = ada_check_typedef (field_type);
8384 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8385 }
8386 else
8387 new_type = static_unwrap_type (field_type);
8388
8389 if (new_type != field_type)
8390 {
8391 /* Clone TYPE0 only the first time we get a new field type. */
8392 if (type == type0)
8393 {
8394 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8395 TYPE_CODE (type) = TYPE_CODE (type0);
8396 INIT_NONE_SPECIFIC (type);
8397 TYPE_NFIELDS (type) = nfields;
8398 TYPE_FIELDS (type) = (struct field *)
8399 TYPE_ALLOC (type, nfields * sizeof (struct field));
8400 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8401 sizeof (struct field) * nfields);
8402 TYPE_NAME (type) = ada_type_name (type0);
8403 TYPE_FIXED_INSTANCE (type) = 1;
8404 TYPE_LENGTH (type) = 0;
8405 }
8406 TYPE_FIELD_TYPE (type, f) = new_type;
8407 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8408 }
8409 }
8410
8411 return type;
8412 }
8413
8414 /* Given an object of type TYPE whose contents are at VALADDR and
8415 whose address in memory is ADDRESS, returns a revision of TYPE,
8416 which should be a non-dynamic-sized record, in which the variant
8417 part, if any, is replaced with the appropriate branch. Looks
8418 for discriminant values in DVAL0, which can be NULL if the record
8419 contains the necessary discriminant values. */
8420
8421 static struct type *
8422 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8423 CORE_ADDR address, struct value *dval0)
8424 {
8425 struct value *mark = value_mark ();
8426 struct value *dval;
8427 struct type *rtype;
8428 struct type *branch_type;
8429 int nfields = TYPE_NFIELDS (type);
8430 int variant_field = variant_field_index (type);
8431
8432 if (variant_field == -1)
8433 return type;
8434
8435 if (dval0 == NULL)
8436 {
8437 dval = value_from_contents_and_address (type, valaddr, address);
8438 type = value_type (dval);
8439 }
8440 else
8441 dval = dval0;
8442
8443 rtype = alloc_type_copy (type);
8444 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8445 INIT_NONE_SPECIFIC (rtype);
8446 TYPE_NFIELDS (rtype) = nfields;
8447 TYPE_FIELDS (rtype) =
8448 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8449 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8450 sizeof (struct field) * nfields);
8451 TYPE_NAME (rtype) = ada_type_name (type);
8452 TYPE_FIXED_INSTANCE (rtype) = 1;
8453 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8454
8455 branch_type = to_fixed_variant_branch_type
8456 (TYPE_FIELD_TYPE (type, variant_field),
8457 cond_offset_host (valaddr,
8458 TYPE_FIELD_BITPOS (type, variant_field)
8459 / TARGET_CHAR_BIT),
8460 cond_offset_target (address,
8461 TYPE_FIELD_BITPOS (type, variant_field)
8462 / TARGET_CHAR_BIT), dval);
8463 if (branch_type == NULL)
8464 {
8465 int f;
8466
8467 for (f = variant_field + 1; f < nfields; f += 1)
8468 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8469 TYPE_NFIELDS (rtype) -= 1;
8470 }
8471 else
8472 {
8473 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8474 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8475 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8476 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8477 }
8478 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8479
8480 value_free_to_mark (mark);
8481 return rtype;
8482 }
8483
8484 /* An ordinary record type (with fixed-length fields) that describes
8485 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8486 beginning of this section]. Any necessary discriminants' values
8487 should be in DVAL, a record value; it may be NULL if the object
8488 at ADDR itself contains any necessary discriminant values.
8489 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8490 values from the record are needed. Except in the case that DVAL,
8491 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8492 unchecked) is replaced by a particular branch of the variant.
8493
8494 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8495 is questionable and may be removed. It can arise during the
8496 processing of an unconstrained-array-of-record type where all the
8497 variant branches have exactly the same size. This is because in
8498 such cases, the compiler does not bother to use the XVS convention
8499 when encoding the record. I am currently dubious of this
8500 shortcut and suspect the compiler should be altered. FIXME. */
8501
8502 static struct type *
8503 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8504 CORE_ADDR address, struct value *dval)
8505 {
8506 struct type *templ_type;
8507
8508 if (TYPE_FIXED_INSTANCE (type0))
8509 return type0;
8510
8511 templ_type = dynamic_template_type (type0);
8512
8513 if (templ_type != NULL)
8514 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8515 else if (variant_field_index (type0) >= 0)
8516 {
8517 if (dval == NULL && valaddr == NULL && address == 0)
8518 return type0;
8519 return to_record_with_fixed_variant_part (type0, valaddr, address,
8520 dval);
8521 }
8522 else
8523 {
8524 TYPE_FIXED_INSTANCE (type0) = 1;
8525 return type0;
8526 }
8527
8528 }
8529
8530 /* An ordinary record type (with fixed-length fields) that describes
8531 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8532 union type. Any necessary discriminants' values should be in DVAL,
8533 a record value. That is, this routine selects the appropriate
8534 branch of the union at ADDR according to the discriminant value
8535 indicated in the union's type name. Returns VAR_TYPE0 itself if
8536 it represents a variant subject to a pragma Unchecked_Union. */
8537
8538 static struct type *
8539 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8540 CORE_ADDR address, struct value *dval)
8541 {
8542 int which;
8543 struct type *templ_type;
8544 struct type *var_type;
8545
8546 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8547 var_type = TYPE_TARGET_TYPE (var_type0);
8548 else
8549 var_type = var_type0;
8550
8551 templ_type = ada_find_parallel_type (var_type, "___XVU");
8552
8553 if (templ_type != NULL)
8554 var_type = templ_type;
8555
8556 if (is_unchecked_variant (var_type, value_type (dval)))
8557 return var_type0;
8558 which =
8559 ada_which_variant_applies (var_type,
8560 value_type (dval), value_contents (dval));
8561
8562 if (which < 0)
8563 return empty_record (var_type);
8564 else if (is_dynamic_field (var_type, which))
8565 return to_fixed_record_type
8566 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8567 valaddr, address, dval);
8568 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8569 return
8570 to_fixed_record_type
8571 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8572 else
8573 return TYPE_FIELD_TYPE (var_type, which);
8574 }
8575
8576 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8577 ENCODING_TYPE, a type following the GNAT conventions for discrete
8578 type encodings, only carries redundant information. */
8579
8580 static int
8581 ada_is_redundant_range_encoding (struct type *range_type,
8582 struct type *encoding_type)
8583 {
8584 const char *bounds_str;
8585 int n;
8586 LONGEST lo, hi;
8587
8588 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8589
8590 if (TYPE_CODE (get_base_type (range_type))
8591 != TYPE_CODE (get_base_type (encoding_type)))
8592 {
8593 /* The compiler probably used a simple base type to describe
8594 the range type instead of the range's actual base type,
8595 expecting us to get the real base type from the encoding
8596 anyway. In this situation, the encoding cannot be ignored
8597 as redundant. */
8598 return 0;
8599 }
8600
8601 if (is_dynamic_type (range_type))
8602 return 0;
8603
8604 if (TYPE_NAME (encoding_type) == NULL)
8605 return 0;
8606
8607 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8608 if (bounds_str == NULL)
8609 return 0;
8610
8611 n = 8; /* Skip "___XDLU_". */
8612 if (!ada_scan_number (bounds_str, n, &lo, &n))
8613 return 0;
8614 if (TYPE_LOW_BOUND (range_type) != lo)
8615 return 0;
8616
8617 n += 2; /* Skip the "__" separator between the two bounds. */
8618 if (!ada_scan_number (bounds_str, n, &hi, &n))
8619 return 0;
8620 if (TYPE_HIGH_BOUND (range_type) != hi)
8621 return 0;
8622
8623 return 1;
8624 }
8625
8626 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8627 a type following the GNAT encoding for describing array type
8628 indices, only carries redundant information. */
8629
8630 static int
8631 ada_is_redundant_index_type_desc (struct type *array_type,
8632 struct type *desc_type)
8633 {
8634 struct type *this_layer = check_typedef (array_type);
8635 int i;
8636
8637 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8638 {
8639 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8640 TYPE_FIELD_TYPE (desc_type, i)))
8641 return 0;
8642 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8643 }
8644
8645 return 1;
8646 }
8647
8648 /* Assuming that TYPE0 is an array type describing the type of a value
8649 at ADDR, and that DVAL describes a record containing any
8650 discriminants used in TYPE0, returns a type for the value that
8651 contains no dynamic components (that is, no components whose sizes
8652 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8653 true, gives an error message if the resulting type's size is over
8654 varsize_limit. */
8655
8656 static struct type *
8657 to_fixed_array_type (struct type *type0, struct value *dval,
8658 int ignore_too_big)
8659 {
8660 struct type *index_type_desc;
8661 struct type *result;
8662 int constrained_packed_array_p;
8663 static const char *xa_suffix = "___XA";
8664
8665 type0 = ada_check_typedef (type0);
8666 if (TYPE_FIXED_INSTANCE (type0))
8667 return type0;
8668
8669 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8670 if (constrained_packed_array_p)
8671 type0 = decode_constrained_packed_array_type (type0);
8672
8673 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8674
8675 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8676 encoding suffixed with 'P' may still be generated. If so,
8677 it should be used to find the XA type. */
8678
8679 if (index_type_desc == NULL)
8680 {
8681 const char *type_name = ada_type_name (type0);
8682
8683 if (type_name != NULL)
8684 {
8685 const int len = strlen (type_name);
8686 char *name = (char *) alloca (len + strlen (xa_suffix));
8687
8688 if (type_name[len - 1] == 'P')
8689 {
8690 strcpy (name, type_name);
8691 strcpy (name + len - 1, xa_suffix);
8692 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8693 }
8694 }
8695 }
8696
8697 ada_fixup_array_indexes_type (index_type_desc);
8698 if (index_type_desc != NULL
8699 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8700 {
8701 /* Ignore this ___XA parallel type, as it does not bring any
8702 useful information. This allows us to avoid creating fixed
8703 versions of the array's index types, which would be identical
8704 to the original ones. This, in turn, can also help avoid
8705 the creation of fixed versions of the array itself. */
8706 index_type_desc = NULL;
8707 }
8708
8709 if (index_type_desc == NULL)
8710 {
8711 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8712
8713 /* NOTE: elt_type---the fixed version of elt_type0---should never
8714 depend on the contents of the array in properly constructed
8715 debugging data. */
8716 /* Create a fixed version of the array element type.
8717 We're not providing the address of an element here,
8718 and thus the actual object value cannot be inspected to do
8719 the conversion. This should not be a problem, since arrays of
8720 unconstrained objects are not allowed. In particular, all
8721 the elements of an array of a tagged type should all be of
8722 the same type specified in the debugging info. No need to
8723 consult the object tag. */
8724 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8725
8726 /* Make sure we always create a new array type when dealing with
8727 packed array types, since we're going to fix-up the array
8728 type length and element bitsize a little further down. */
8729 if (elt_type0 == elt_type && !constrained_packed_array_p)
8730 result = type0;
8731 else
8732 result = create_array_type (alloc_type_copy (type0),
8733 elt_type, TYPE_INDEX_TYPE (type0));
8734 }
8735 else
8736 {
8737 int i;
8738 struct type *elt_type0;
8739
8740 elt_type0 = type0;
8741 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8742 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8743
8744 /* NOTE: result---the fixed version of elt_type0---should never
8745 depend on the contents of the array in properly constructed
8746 debugging data. */
8747 /* Create a fixed version of the array element type.
8748 We're not providing the address of an element here,
8749 and thus the actual object value cannot be inspected to do
8750 the conversion. This should not be a problem, since arrays of
8751 unconstrained objects are not allowed. In particular, all
8752 the elements of an array of a tagged type should all be of
8753 the same type specified in the debugging info. No need to
8754 consult the object tag. */
8755 result =
8756 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8757
8758 elt_type0 = type0;
8759 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8760 {
8761 struct type *range_type =
8762 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8763
8764 result = create_array_type (alloc_type_copy (elt_type0),
8765 result, range_type);
8766 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8767 }
8768 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8769 error (_("array type with dynamic size is larger than varsize-limit"));
8770 }
8771
8772 /* We want to preserve the type name. This can be useful when
8773 trying to get the type name of a value that has already been
8774 printed (for instance, if the user did "print VAR; whatis $". */
8775 TYPE_NAME (result) = TYPE_NAME (type0);
8776
8777 if (constrained_packed_array_p)
8778 {
8779 /* So far, the resulting type has been created as if the original
8780 type was a regular (non-packed) array type. As a result, the
8781 bitsize of the array elements needs to be set again, and the array
8782 length needs to be recomputed based on that bitsize. */
8783 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8784 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8785
8786 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8787 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8788 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8789 TYPE_LENGTH (result)++;
8790 }
8791
8792 TYPE_FIXED_INSTANCE (result) = 1;
8793 return result;
8794 }
8795
8796
8797 /* A standard type (containing no dynamically sized components)
8798 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8799 DVAL describes a record containing any discriminants used in TYPE0,
8800 and may be NULL if there are none, or if the object of type TYPE at
8801 ADDRESS or in VALADDR contains these discriminants.
8802
8803 If CHECK_TAG is not null, in the case of tagged types, this function
8804 attempts to locate the object's tag and use it to compute the actual
8805 type. However, when ADDRESS is null, we cannot use it to determine the
8806 location of the tag, and therefore compute the tagged type's actual type.
8807 So we return the tagged type without consulting the tag. */
8808
8809 static struct type *
8810 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8811 CORE_ADDR address, struct value *dval, int check_tag)
8812 {
8813 type = ada_check_typedef (type);
8814
8815 /* Only un-fixed types need to be handled here. */
8816 if (!HAVE_GNAT_AUX_INFO (type))
8817 return type;
8818
8819 switch (TYPE_CODE (type))
8820 {
8821 default:
8822 return type;
8823 case TYPE_CODE_STRUCT:
8824 {
8825 struct type *static_type = to_static_fixed_type (type);
8826 struct type *fixed_record_type =
8827 to_fixed_record_type (type, valaddr, address, NULL);
8828
8829 /* If STATIC_TYPE is a tagged type and we know the object's address,
8830 then we can determine its tag, and compute the object's actual
8831 type from there. Note that we have to use the fixed record
8832 type (the parent part of the record may have dynamic fields
8833 and the way the location of _tag is expressed may depend on
8834 them). */
8835
8836 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8837 {
8838 struct value *tag =
8839 value_tag_from_contents_and_address
8840 (fixed_record_type,
8841 valaddr,
8842 address);
8843 struct type *real_type = type_from_tag (tag);
8844 struct value *obj =
8845 value_from_contents_and_address (fixed_record_type,
8846 valaddr,
8847 address);
8848 fixed_record_type = value_type (obj);
8849 if (real_type != NULL)
8850 return to_fixed_record_type
8851 (real_type, NULL,
8852 value_address (ada_tag_value_at_base_address (obj)), NULL);
8853 }
8854
8855 /* Check to see if there is a parallel ___XVZ variable.
8856 If there is, then it provides the actual size of our type. */
8857 else if (ada_type_name (fixed_record_type) != NULL)
8858 {
8859 const char *name = ada_type_name (fixed_record_type);
8860 char *xvz_name
8861 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8862 bool xvz_found = false;
8863 LONGEST size;
8864
8865 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8866 try
8867 {
8868 xvz_found = get_int_var_value (xvz_name, size);
8869 }
8870 catch (const gdb_exception_error &except)
8871 {
8872 /* We found the variable, but somehow failed to read
8873 its value. Rethrow the same error, but with a little
8874 bit more information, to help the user understand
8875 what went wrong (Eg: the variable might have been
8876 optimized out). */
8877 throw_error (except.error,
8878 _("unable to read value of %s (%s)"),
8879 xvz_name, except.what ());
8880 }
8881
8882 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8883 {
8884 fixed_record_type = copy_type (fixed_record_type);
8885 TYPE_LENGTH (fixed_record_type) = size;
8886
8887 /* The FIXED_RECORD_TYPE may have be a stub. We have
8888 observed this when the debugging info is STABS, and
8889 apparently it is something that is hard to fix.
8890
8891 In practice, we don't need the actual type definition
8892 at all, because the presence of the XVZ variable allows us
8893 to assume that there must be a XVS type as well, which we
8894 should be able to use later, when we need the actual type
8895 definition.
8896
8897 In the meantime, pretend that the "fixed" type we are
8898 returning is NOT a stub, because this can cause trouble
8899 when using this type to create new types targeting it.
8900 Indeed, the associated creation routines often check
8901 whether the target type is a stub and will try to replace
8902 it, thus using a type with the wrong size. This, in turn,
8903 might cause the new type to have the wrong size too.
8904 Consider the case of an array, for instance, where the size
8905 of the array is computed from the number of elements in
8906 our array multiplied by the size of its element. */
8907 TYPE_STUB (fixed_record_type) = 0;
8908 }
8909 }
8910 return fixed_record_type;
8911 }
8912 case TYPE_CODE_ARRAY:
8913 return to_fixed_array_type (type, dval, 1);
8914 case TYPE_CODE_UNION:
8915 if (dval == NULL)
8916 return type;
8917 else
8918 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8919 }
8920 }
8921
8922 /* The same as ada_to_fixed_type_1, except that it preserves the type
8923 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8924
8925 The typedef layer needs be preserved in order to differentiate between
8926 arrays and array pointers when both types are implemented using the same
8927 fat pointer. In the array pointer case, the pointer is encoded as
8928 a typedef of the pointer type. For instance, considering:
8929
8930 type String_Access is access String;
8931 S1 : String_Access := null;
8932
8933 To the debugger, S1 is defined as a typedef of type String. But
8934 to the user, it is a pointer. So if the user tries to print S1,
8935 we should not dereference the array, but print the array address
8936 instead.
8937
8938 If we didn't preserve the typedef layer, we would lose the fact that
8939 the type is to be presented as a pointer (needs de-reference before
8940 being printed). And we would also use the source-level type name. */
8941
8942 struct type *
8943 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8944 CORE_ADDR address, struct value *dval, int check_tag)
8945
8946 {
8947 struct type *fixed_type =
8948 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8949
8950 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8951 then preserve the typedef layer.
8952
8953 Implementation note: We can only check the main-type portion of
8954 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8955 from TYPE now returns a type that has the same instance flags
8956 as TYPE. For instance, if TYPE is a "typedef const", and its
8957 target type is a "struct", then the typedef elimination will return
8958 a "const" version of the target type. See check_typedef for more
8959 details about how the typedef layer elimination is done.
8960
8961 brobecker/2010-11-19: It seems to me that the only case where it is
8962 useful to preserve the typedef layer is when dealing with fat pointers.
8963 Perhaps, we could add a check for that and preserve the typedef layer
8964 only in that situation. But this seems unnecessary so far, probably
8965 because we call check_typedef/ada_check_typedef pretty much everywhere.
8966 */
8967 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8968 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8969 == TYPE_MAIN_TYPE (fixed_type)))
8970 return type;
8971
8972 return fixed_type;
8973 }
8974
8975 /* A standard (static-sized) type corresponding as well as possible to
8976 TYPE0, but based on no runtime data. */
8977
8978 static struct type *
8979 to_static_fixed_type (struct type *type0)
8980 {
8981 struct type *type;
8982
8983 if (type0 == NULL)
8984 return NULL;
8985
8986 if (TYPE_FIXED_INSTANCE (type0))
8987 return type0;
8988
8989 type0 = ada_check_typedef (type0);
8990
8991 switch (TYPE_CODE (type0))
8992 {
8993 default:
8994 return type0;
8995 case TYPE_CODE_STRUCT:
8996 type = dynamic_template_type (type0);
8997 if (type != NULL)
8998 return template_to_static_fixed_type (type);
8999 else
9000 return template_to_static_fixed_type (type0);
9001 case TYPE_CODE_UNION:
9002 type = ada_find_parallel_type (type0, "___XVU");
9003 if (type != NULL)
9004 return template_to_static_fixed_type (type);
9005 else
9006 return template_to_static_fixed_type (type0);
9007 }
9008 }
9009
9010 /* A static approximation of TYPE with all type wrappers removed. */
9011
9012 static struct type *
9013 static_unwrap_type (struct type *type)
9014 {
9015 if (ada_is_aligner_type (type))
9016 {
9017 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9018 if (ada_type_name (type1) == NULL)
9019 TYPE_NAME (type1) = ada_type_name (type);
9020
9021 return static_unwrap_type (type1);
9022 }
9023 else
9024 {
9025 struct type *raw_real_type = ada_get_base_type (type);
9026
9027 if (raw_real_type == type)
9028 return type;
9029 else
9030 return to_static_fixed_type (raw_real_type);
9031 }
9032 }
9033
9034 /* In some cases, incomplete and private types require
9035 cross-references that are not resolved as records (for example,
9036 type Foo;
9037 type FooP is access Foo;
9038 V: FooP;
9039 type Foo is array ...;
9040 ). In these cases, since there is no mechanism for producing
9041 cross-references to such types, we instead substitute for FooP a
9042 stub enumeration type that is nowhere resolved, and whose tag is
9043 the name of the actual type. Call these types "non-record stubs". */
9044
9045 /* A type equivalent to TYPE that is not a non-record stub, if one
9046 exists, otherwise TYPE. */
9047
9048 struct type *
9049 ada_check_typedef (struct type *type)
9050 {
9051 if (type == NULL)
9052 return NULL;
9053
9054 /* If our type is an access to an unconstrained array, which is encoded
9055 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9056 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9057 what allows us to distinguish between fat pointers that represent
9058 array types, and fat pointers that represent array access types
9059 (in both cases, the compiler implements them as fat pointers). */
9060 if (ada_is_access_to_unconstrained_array (type))
9061 return type;
9062
9063 type = check_typedef (type);
9064 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9065 || !TYPE_STUB (type)
9066 || TYPE_NAME (type) == NULL)
9067 return type;
9068 else
9069 {
9070 const char *name = TYPE_NAME (type);
9071 struct type *type1 = ada_find_any_type (name);
9072
9073 if (type1 == NULL)
9074 return type;
9075
9076 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9077 stubs pointing to arrays, as we don't create symbols for array
9078 types, only for the typedef-to-array types). If that's the case,
9079 strip the typedef layer. */
9080 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9081 type1 = ada_check_typedef (type1);
9082
9083 return type1;
9084 }
9085 }
9086
9087 /* A value representing the data at VALADDR/ADDRESS as described by
9088 type TYPE0, but with a standard (static-sized) type that correctly
9089 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9090 type, then return VAL0 [this feature is simply to avoid redundant
9091 creation of struct values]. */
9092
9093 static struct value *
9094 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9095 struct value *val0)
9096 {
9097 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9098
9099 if (type == type0 && val0 != NULL)
9100 return val0;
9101
9102 if (VALUE_LVAL (val0) != lval_memory)
9103 {
9104 /* Our value does not live in memory; it could be a convenience
9105 variable, for instance. Create a not_lval value using val0's
9106 contents. */
9107 return value_from_contents (type, value_contents (val0));
9108 }
9109
9110 return value_from_contents_and_address (type, 0, address);
9111 }
9112
9113 /* A value representing VAL, but with a standard (static-sized) type
9114 that correctly describes it. Does not necessarily create a new
9115 value. */
9116
9117 struct value *
9118 ada_to_fixed_value (struct value *val)
9119 {
9120 val = unwrap_value (val);
9121 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9122 return val;
9123 }
9124 \f
9125
9126 /* Attributes */
9127
9128 /* Table mapping attribute numbers to names.
9129 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9130
9131 static const char *attribute_names[] = {
9132 "<?>",
9133
9134 "first",
9135 "last",
9136 "length",
9137 "image",
9138 "max",
9139 "min",
9140 "modulus",
9141 "pos",
9142 "size",
9143 "tag",
9144 "val",
9145 0
9146 };
9147
9148 static const char *
9149 ada_attribute_name (enum exp_opcode n)
9150 {
9151 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9152 return attribute_names[n - OP_ATR_FIRST + 1];
9153 else
9154 return attribute_names[0];
9155 }
9156
9157 /* Evaluate the 'POS attribute applied to ARG. */
9158
9159 static LONGEST
9160 pos_atr (struct value *arg)
9161 {
9162 struct value *val = coerce_ref (arg);
9163 struct type *type = value_type (val);
9164 LONGEST result;
9165
9166 if (!discrete_type_p (type))
9167 error (_("'POS only defined on discrete types"));
9168
9169 if (!discrete_position (type, value_as_long (val), &result))
9170 error (_("enumeration value is invalid: can't find 'POS"));
9171
9172 return result;
9173 }
9174
9175 static struct value *
9176 value_pos_atr (struct type *type, struct value *arg)
9177 {
9178 return value_from_longest (type, pos_atr (arg));
9179 }
9180
9181 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9182
9183 static struct value *
9184 value_val_atr (struct type *type, struct value *arg)
9185 {
9186 if (!discrete_type_p (type))
9187 error (_("'VAL only defined on discrete types"));
9188 if (!integer_type_p (value_type (arg)))
9189 error (_("'VAL requires integral argument"));
9190
9191 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9192 {
9193 long pos = value_as_long (arg);
9194
9195 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9196 error (_("argument to 'VAL out of range"));
9197 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9198 }
9199 else
9200 return value_from_longest (type, value_as_long (arg));
9201 }
9202 \f
9203
9204 /* Evaluation */
9205
9206 /* True if TYPE appears to be an Ada character type.
9207 [At the moment, this is true only for Character and Wide_Character;
9208 It is a heuristic test that could stand improvement]. */
9209
9210 bool
9211 ada_is_character_type (struct type *type)
9212 {
9213 const char *name;
9214
9215 /* If the type code says it's a character, then assume it really is,
9216 and don't check any further. */
9217 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9218 return true;
9219
9220 /* Otherwise, assume it's a character type iff it is a discrete type
9221 with a known character type name. */
9222 name = ada_type_name (type);
9223 return (name != NULL
9224 && (TYPE_CODE (type) == TYPE_CODE_INT
9225 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9226 && (strcmp (name, "character") == 0
9227 || strcmp (name, "wide_character") == 0
9228 || strcmp (name, "wide_wide_character") == 0
9229 || strcmp (name, "unsigned char") == 0));
9230 }
9231
9232 /* True if TYPE appears to be an Ada string type. */
9233
9234 bool
9235 ada_is_string_type (struct type *type)
9236 {
9237 type = ada_check_typedef (type);
9238 if (type != NULL
9239 && TYPE_CODE (type) != TYPE_CODE_PTR
9240 && (ada_is_simple_array_type (type)
9241 || ada_is_array_descriptor_type (type))
9242 && ada_array_arity (type) == 1)
9243 {
9244 struct type *elttype = ada_array_element_type (type, 1);
9245
9246 return ada_is_character_type (elttype);
9247 }
9248 else
9249 return false;
9250 }
9251
9252 /* The compiler sometimes provides a parallel XVS type for a given
9253 PAD type. Normally, it is safe to follow the PAD type directly,
9254 but older versions of the compiler have a bug that causes the offset
9255 of its "F" field to be wrong. Following that field in that case
9256 would lead to incorrect results, but this can be worked around
9257 by ignoring the PAD type and using the associated XVS type instead.
9258
9259 Set to True if the debugger should trust the contents of PAD types.
9260 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9261 static bool trust_pad_over_xvs = true;
9262
9263 /* True if TYPE is a struct type introduced by the compiler to force the
9264 alignment of a value. Such types have a single field with a
9265 distinctive name. */
9266
9267 int
9268 ada_is_aligner_type (struct type *type)
9269 {
9270 type = ada_check_typedef (type);
9271
9272 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9273 return 0;
9274
9275 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9276 && TYPE_NFIELDS (type) == 1
9277 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9278 }
9279
9280 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9281 the parallel type. */
9282
9283 struct type *
9284 ada_get_base_type (struct type *raw_type)
9285 {
9286 struct type *real_type_namer;
9287 struct type *raw_real_type;
9288
9289 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9290 return raw_type;
9291
9292 if (ada_is_aligner_type (raw_type))
9293 /* The encoding specifies that we should always use the aligner type.
9294 So, even if this aligner type has an associated XVS type, we should
9295 simply ignore it.
9296
9297 According to the compiler gurus, an XVS type parallel to an aligner
9298 type may exist because of a stabs limitation. In stabs, aligner
9299 types are empty because the field has a variable-sized type, and
9300 thus cannot actually be used as an aligner type. As a result,
9301 we need the associated parallel XVS type to decode the type.
9302 Since the policy in the compiler is to not change the internal
9303 representation based on the debugging info format, we sometimes
9304 end up having a redundant XVS type parallel to the aligner type. */
9305 return raw_type;
9306
9307 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9308 if (real_type_namer == NULL
9309 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9310 || TYPE_NFIELDS (real_type_namer) != 1)
9311 return raw_type;
9312
9313 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9314 {
9315 /* This is an older encoding form where the base type needs to be
9316 looked up by name. We prefer the newer encoding because it is
9317 more efficient. */
9318 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9319 if (raw_real_type == NULL)
9320 return raw_type;
9321 else
9322 return raw_real_type;
9323 }
9324
9325 /* The field in our XVS type is a reference to the base type. */
9326 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9327 }
9328
9329 /* The type of value designated by TYPE, with all aligners removed. */
9330
9331 struct type *
9332 ada_aligned_type (struct type *type)
9333 {
9334 if (ada_is_aligner_type (type))
9335 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9336 else
9337 return ada_get_base_type (type);
9338 }
9339
9340
9341 /* The address of the aligned value in an object at address VALADDR
9342 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9343
9344 const gdb_byte *
9345 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9346 {
9347 if (ada_is_aligner_type (type))
9348 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9349 valaddr +
9350 TYPE_FIELD_BITPOS (type,
9351 0) / TARGET_CHAR_BIT);
9352 else
9353 return valaddr;
9354 }
9355
9356
9357
9358 /* The printed representation of an enumeration literal with encoded
9359 name NAME. The value is good to the next call of ada_enum_name. */
9360 const char *
9361 ada_enum_name (const char *name)
9362 {
9363 static char *result;
9364 static size_t result_len = 0;
9365 const char *tmp;
9366
9367 /* First, unqualify the enumeration name:
9368 1. Search for the last '.' character. If we find one, then skip
9369 all the preceding characters, the unqualified name starts
9370 right after that dot.
9371 2. Otherwise, we may be debugging on a target where the compiler
9372 translates dots into "__". Search forward for double underscores,
9373 but stop searching when we hit an overloading suffix, which is
9374 of the form "__" followed by digits. */
9375
9376 tmp = strrchr (name, '.');
9377 if (tmp != NULL)
9378 name = tmp + 1;
9379 else
9380 {
9381 while ((tmp = strstr (name, "__")) != NULL)
9382 {
9383 if (isdigit (tmp[2]))
9384 break;
9385 else
9386 name = tmp + 2;
9387 }
9388 }
9389
9390 if (name[0] == 'Q')
9391 {
9392 int v;
9393
9394 if (name[1] == 'U' || name[1] == 'W')
9395 {
9396 if (sscanf (name + 2, "%x", &v) != 1)
9397 return name;
9398 }
9399 else if (((name[1] >= '0' && name[1] <= '9')
9400 || (name[1] >= 'a' && name[1] <= 'z'))
9401 && name[2] == '\0')
9402 {
9403 GROW_VECT (result, result_len, 4);
9404 xsnprintf (result, result_len, "'%c'", name[1]);
9405 return result;
9406 }
9407 else
9408 return name;
9409
9410 GROW_VECT (result, result_len, 16);
9411 if (isascii (v) && isprint (v))
9412 xsnprintf (result, result_len, "'%c'", v);
9413 else if (name[1] == 'U')
9414 xsnprintf (result, result_len, "[\"%02x\"]", v);
9415 else
9416 xsnprintf (result, result_len, "[\"%04x\"]", v);
9417
9418 return result;
9419 }
9420 else
9421 {
9422 tmp = strstr (name, "__");
9423 if (tmp == NULL)
9424 tmp = strstr (name, "$");
9425 if (tmp != NULL)
9426 {
9427 GROW_VECT (result, result_len, tmp - name + 1);
9428 strncpy (result, name, tmp - name);
9429 result[tmp - name] = '\0';
9430 return result;
9431 }
9432
9433 return name;
9434 }
9435 }
9436
9437 /* Evaluate the subexpression of EXP starting at *POS as for
9438 evaluate_type, updating *POS to point just past the evaluated
9439 expression. */
9440
9441 static struct value *
9442 evaluate_subexp_type (struct expression *exp, int *pos)
9443 {
9444 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9445 }
9446
9447 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9448 value it wraps. */
9449
9450 static struct value *
9451 unwrap_value (struct value *val)
9452 {
9453 struct type *type = ada_check_typedef (value_type (val));
9454
9455 if (ada_is_aligner_type (type))
9456 {
9457 struct value *v = ada_value_struct_elt (val, "F", 0);
9458 struct type *val_type = ada_check_typedef (value_type (v));
9459
9460 if (ada_type_name (val_type) == NULL)
9461 TYPE_NAME (val_type) = ada_type_name (type);
9462
9463 return unwrap_value (v);
9464 }
9465 else
9466 {
9467 struct type *raw_real_type =
9468 ada_check_typedef (ada_get_base_type (type));
9469
9470 /* If there is no parallel XVS or XVE type, then the value is
9471 already unwrapped. Return it without further modification. */
9472 if ((type == raw_real_type)
9473 && ada_find_parallel_type (type, "___XVE") == NULL)
9474 return val;
9475
9476 return
9477 coerce_unspec_val_to_type
9478 (val, ada_to_fixed_type (raw_real_type, 0,
9479 value_address (val),
9480 NULL, 1));
9481 }
9482 }
9483
9484 static struct value *
9485 cast_from_fixed (struct type *type, struct value *arg)
9486 {
9487 struct value *scale = ada_scaling_factor (value_type (arg));
9488 arg = value_cast (value_type (scale), arg);
9489
9490 arg = value_binop (arg, scale, BINOP_MUL);
9491 return value_cast (type, arg);
9492 }
9493
9494 static struct value *
9495 cast_to_fixed (struct type *type, struct value *arg)
9496 {
9497 if (type == value_type (arg))
9498 return arg;
9499
9500 struct value *scale = ada_scaling_factor (type);
9501 if (ada_is_fixed_point_type (value_type (arg)))
9502 arg = cast_from_fixed (value_type (scale), arg);
9503 else
9504 arg = value_cast (value_type (scale), arg);
9505
9506 arg = value_binop (arg, scale, BINOP_DIV);
9507 return value_cast (type, arg);
9508 }
9509
9510 /* Given two array types T1 and T2, return nonzero iff both arrays
9511 contain the same number of elements. */
9512
9513 static int
9514 ada_same_array_size_p (struct type *t1, struct type *t2)
9515 {
9516 LONGEST lo1, hi1, lo2, hi2;
9517
9518 /* Get the array bounds in order to verify that the size of
9519 the two arrays match. */
9520 if (!get_array_bounds (t1, &lo1, &hi1)
9521 || !get_array_bounds (t2, &lo2, &hi2))
9522 error (_("unable to determine array bounds"));
9523
9524 /* To make things easier for size comparison, normalize a bit
9525 the case of empty arrays by making sure that the difference
9526 between upper bound and lower bound is always -1. */
9527 if (lo1 > hi1)
9528 hi1 = lo1 - 1;
9529 if (lo2 > hi2)
9530 hi2 = lo2 - 1;
9531
9532 return (hi1 - lo1 == hi2 - lo2);
9533 }
9534
9535 /* Assuming that VAL is an array of integrals, and TYPE represents
9536 an array with the same number of elements, but with wider integral
9537 elements, return an array "casted" to TYPE. In practice, this
9538 means that the returned array is built by casting each element
9539 of the original array into TYPE's (wider) element type. */
9540
9541 static struct value *
9542 ada_promote_array_of_integrals (struct type *type, struct value *val)
9543 {
9544 struct type *elt_type = TYPE_TARGET_TYPE (type);
9545 LONGEST lo, hi;
9546 struct value *res;
9547 LONGEST i;
9548
9549 /* Verify that both val and type are arrays of scalars, and
9550 that the size of val's elements is smaller than the size
9551 of type's element. */
9552 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9553 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9554 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9555 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9556 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9557 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9558
9559 if (!get_array_bounds (type, &lo, &hi))
9560 error (_("unable to determine array bounds"));
9561
9562 res = allocate_value (type);
9563
9564 /* Promote each array element. */
9565 for (i = 0; i < hi - lo + 1; i++)
9566 {
9567 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9568
9569 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9570 value_contents_all (elt), TYPE_LENGTH (elt_type));
9571 }
9572
9573 return res;
9574 }
9575
9576 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9577 return the converted value. */
9578
9579 static struct value *
9580 coerce_for_assign (struct type *type, struct value *val)
9581 {
9582 struct type *type2 = value_type (val);
9583
9584 if (type == type2)
9585 return val;
9586
9587 type2 = ada_check_typedef (type2);
9588 type = ada_check_typedef (type);
9589
9590 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9591 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9592 {
9593 val = ada_value_ind (val);
9594 type2 = value_type (val);
9595 }
9596
9597 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9598 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9599 {
9600 if (!ada_same_array_size_p (type, type2))
9601 error (_("cannot assign arrays of different length"));
9602
9603 if (is_integral_type (TYPE_TARGET_TYPE (type))
9604 && is_integral_type (TYPE_TARGET_TYPE (type2))
9605 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9606 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9607 {
9608 /* Allow implicit promotion of the array elements to
9609 a wider type. */
9610 return ada_promote_array_of_integrals (type, val);
9611 }
9612
9613 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9614 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9615 error (_("Incompatible types in assignment"));
9616 deprecated_set_value_type (val, type);
9617 }
9618 return val;
9619 }
9620
9621 static struct value *
9622 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9623 {
9624 struct value *val;
9625 struct type *type1, *type2;
9626 LONGEST v, v1, v2;
9627
9628 arg1 = coerce_ref (arg1);
9629 arg2 = coerce_ref (arg2);
9630 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9631 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9632
9633 if (TYPE_CODE (type1) != TYPE_CODE_INT
9634 || TYPE_CODE (type2) != TYPE_CODE_INT)
9635 return value_binop (arg1, arg2, op);
9636
9637 switch (op)
9638 {
9639 case BINOP_MOD:
9640 case BINOP_DIV:
9641 case BINOP_REM:
9642 break;
9643 default:
9644 return value_binop (arg1, arg2, op);
9645 }
9646
9647 v2 = value_as_long (arg2);
9648 if (v2 == 0)
9649 error (_("second operand of %s must not be zero."), op_string (op));
9650
9651 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9652 return value_binop (arg1, arg2, op);
9653
9654 v1 = value_as_long (arg1);
9655 switch (op)
9656 {
9657 case BINOP_DIV:
9658 v = v1 / v2;
9659 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9660 v += v > 0 ? -1 : 1;
9661 break;
9662 case BINOP_REM:
9663 v = v1 % v2;
9664 if (v * v1 < 0)
9665 v -= v2;
9666 break;
9667 default:
9668 /* Should not reach this point. */
9669 v = 0;
9670 }
9671
9672 val = allocate_value (type1);
9673 store_unsigned_integer (value_contents_raw (val),
9674 TYPE_LENGTH (value_type (val)),
9675 type_byte_order (type1), v);
9676 return val;
9677 }
9678
9679 static int
9680 ada_value_equal (struct value *arg1, struct value *arg2)
9681 {
9682 if (ada_is_direct_array_type (value_type (arg1))
9683 || ada_is_direct_array_type (value_type (arg2)))
9684 {
9685 struct type *arg1_type, *arg2_type;
9686
9687 /* Automatically dereference any array reference before
9688 we attempt to perform the comparison. */
9689 arg1 = ada_coerce_ref (arg1);
9690 arg2 = ada_coerce_ref (arg2);
9691
9692 arg1 = ada_coerce_to_simple_array (arg1);
9693 arg2 = ada_coerce_to_simple_array (arg2);
9694
9695 arg1_type = ada_check_typedef (value_type (arg1));
9696 arg2_type = ada_check_typedef (value_type (arg2));
9697
9698 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9699 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9700 error (_("Attempt to compare array with non-array"));
9701 /* FIXME: The following works only for types whose
9702 representations use all bits (no padding or undefined bits)
9703 and do not have user-defined equality. */
9704 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9705 && memcmp (value_contents (arg1), value_contents (arg2),
9706 TYPE_LENGTH (arg1_type)) == 0);
9707 }
9708 return value_equal (arg1, arg2);
9709 }
9710
9711 /* Total number of component associations in the aggregate starting at
9712 index PC in EXP. Assumes that index PC is the start of an
9713 OP_AGGREGATE. */
9714
9715 static int
9716 num_component_specs (struct expression *exp, int pc)
9717 {
9718 int n, m, i;
9719
9720 m = exp->elts[pc + 1].longconst;
9721 pc += 3;
9722 n = 0;
9723 for (i = 0; i < m; i += 1)
9724 {
9725 switch (exp->elts[pc].opcode)
9726 {
9727 default:
9728 n += 1;
9729 break;
9730 case OP_CHOICES:
9731 n += exp->elts[pc + 1].longconst;
9732 break;
9733 }
9734 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9735 }
9736 return n;
9737 }
9738
9739 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9740 component of LHS (a simple array or a record), updating *POS past
9741 the expression, assuming that LHS is contained in CONTAINER. Does
9742 not modify the inferior's memory, nor does it modify LHS (unless
9743 LHS == CONTAINER). */
9744
9745 static void
9746 assign_component (struct value *container, struct value *lhs, LONGEST index,
9747 struct expression *exp, int *pos)
9748 {
9749 struct value *mark = value_mark ();
9750 struct value *elt;
9751 struct type *lhs_type = check_typedef (value_type (lhs));
9752
9753 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9754 {
9755 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9756 struct value *index_val = value_from_longest (index_type, index);
9757
9758 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9759 }
9760 else
9761 {
9762 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9763 elt = ada_to_fixed_value (elt);
9764 }
9765
9766 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9767 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9768 else
9769 value_assign_to_component (container, elt,
9770 ada_evaluate_subexp (NULL, exp, pos,
9771 EVAL_NORMAL));
9772
9773 value_free_to_mark (mark);
9774 }
9775
9776 /* Assuming that LHS represents an lvalue having a record or array
9777 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9778 of that aggregate's value to LHS, advancing *POS past the
9779 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9780 lvalue containing LHS (possibly LHS itself). Does not modify
9781 the inferior's memory, nor does it modify the contents of
9782 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9783
9784 static struct value *
9785 assign_aggregate (struct value *container,
9786 struct value *lhs, struct expression *exp,
9787 int *pos, enum noside noside)
9788 {
9789 struct type *lhs_type;
9790 int n = exp->elts[*pos+1].longconst;
9791 LONGEST low_index, high_index;
9792 int num_specs;
9793 LONGEST *indices;
9794 int max_indices, num_indices;
9795 int i;
9796
9797 *pos += 3;
9798 if (noside != EVAL_NORMAL)
9799 {
9800 for (i = 0; i < n; i += 1)
9801 ada_evaluate_subexp (NULL, exp, pos, noside);
9802 return container;
9803 }
9804
9805 container = ada_coerce_ref (container);
9806 if (ada_is_direct_array_type (value_type (container)))
9807 container = ada_coerce_to_simple_array (container);
9808 lhs = ada_coerce_ref (lhs);
9809 if (!deprecated_value_modifiable (lhs))
9810 error (_("Left operand of assignment is not a modifiable lvalue."));
9811
9812 lhs_type = check_typedef (value_type (lhs));
9813 if (ada_is_direct_array_type (lhs_type))
9814 {
9815 lhs = ada_coerce_to_simple_array (lhs);
9816 lhs_type = check_typedef (value_type (lhs));
9817 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9818 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9819 }
9820 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9821 {
9822 low_index = 0;
9823 high_index = num_visible_fields (lhs_type) - 1;
9824 }
9825 else
9826 error (_("Left-hand side must be array or record."));
9827
9828 num_specs = num_component_specs (exp, *pos - 3);
9829 max_indices = 4 * num_specs + 4;
9830 indices = XALLOCAVEC (LONGEST, max_indices);
9831 indices[0] = indices[1] = low_index - 1;
9832 indices[2] = indices[3] = high_index + 1;
9833 num_indices = 4;
9834
9835 for (i = 0; i < n; i += 1)
9836 {
9837 switch (exp->elts[*pos].opcode)
9838 {
9839 case OP_CHOICES:
9840 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9841 &num_indices, max_indices,
9842 low_index, high_index);
9843 break;
9844 case OP_POSITIONAL:
9845 aggregate_assign_positional (container, lhs, exp, pos, indices,
9846 &num_indices, max_indices,
9847 low_index, high_index);
9848 break;
9849 case OP_OTHERS:
9850 if (i != n-1)
9851 error (_("Misplaced 'others' clause"));
9852 aggregate_assign_others (container, lhs, exp, pos, indices,
9853 num_indices, low_index, high_index);
9854 break;
9855 default:
9856 error (_("Internal error: bad aggregate clause"));
9857 }
9858 }
9859
9860 return container;
9861 }
9862
9863 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9864 construct at *POS, updating *POS past the construct, given that
9865 the positions are relative to lower bound LOW, where HIGH is the
9866 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9867 updating *NUM_INDICES as needed. CONTAINER is as for
9868 assign_aggregate. */
9869 static void
9870 aggregate_assign_positional (struct value *container,
9871 struct value *lhs, struct expression *exp,
9872 int *pos, LONGEST *indices, int *num_indices,
9873 int max_indices, LONGEST low, LONGEST high)
9874 {
9875 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9876
9877 if (ind - 1 == high)
9878 warning (_("Extra components in aggregate ignored."));
9879 if (ind <= high)
9880 {
9881 add_component_interval (ind, ind, indices, num_indices, max_indices);
9882 *pos += 3;
9883 assign_component (container, lhs, ind, exp, pos);
9884 }
9885 else
9886 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9887 }
9888
9889 /* Assign into the components of LHS indexed by the OP_CHOICES
9890 construct at *POS, updating *POS past the construct, given that
9891 the allowable indices are LOW..HIGH. Record the indices assigned
9892 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9893 needed. CONTAINER is as for assign_aggregate. */
9894 static void
9895 aggregate_assign_from_choices (struct value *container,
9896 struct value *lhs, struct expression *exp,
9897 int *pos, LONGEST *indices, int *num_indices,
9898 int max_indices, LONGEST low, LONGEST high)
9899 {
9900 int j;
9901 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9902 int choice_pos, expr_pc;
9903 int is_array = ada_is_direct_array_type (value_type (lhs));
9904
9905 choice_pos = *pos += 3;
9906
9907 for (j = 0; j < n_choices; j += 1)
9908 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9909 expr_pc = *pos;
9910 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9911
9912 for (j = 0; j < n_choices; j += 1)
9913 {
9914 LONGEST lower, upper;
9915 enum exp_opcode op = exp->elts[choice_pos].opcode;
9916
9917 if (op == OP_DISCRETE_RANGE)
9918 {
9919 choice_pos += 1;
9920 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9921 EVAL_NORMAL));
9922 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9923 EVAL_NORMAL));
9924 }
9925 else if (is_array)
9926 {
9927 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9928 EVAL_NORMAL));
9929 upper = lower;
9930 }
9931 else
9932 {
9933 int ind;
9934 const char *name;
9935
9936 switch (op)
9937 {
9938 case OP_NAME:
9939 name = &exp->elts[choice_pos + 2].string;
9940 break;
9941 case OP_VAR_VALUE:
9942 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9943 break;
9944 default:
9945 error (_("Invalid record component association."));
9946 }
9947 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9948 ind = 0;
9949 if (! find_struct_field (name, value_type (lhs), 0,
9950 NULL, NULL, NULL, NULL, &ind))
9951 error (_("Unknown component name: %s."), name);
9952 lower = upper = ind;
9953 }
9954
9955 if (lower <= upper && (lower < low || upper > high))
9956 error (_("Index in component association out of bounds."));
9957
9958 add_component_interval (lower, upper, indices, num_indices,
9959 max_indices);
9960 while (lower <= upper)
9961 {
9962 int pos1;
9963
9964 pos1 = expr_pc;
9965 assign_component (container, lhs, lower, exp, &pos1);
9966 lower += 1;
9967 }
9968 }
9969 }
9970
9971 /* Assign the value of the expression in the OP_OTHERS construct in
9972 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9973 have not been previously assigned. The index intervals already assigned
9974 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9975 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9976 static void
9977 aggregate_assign_others (struct value *container,
9978 struct value *lhs, struct expression *exp,
9979 int *pos, LONGEST *indices, int num_indices,
9980 LONGEST low, LONGEST high)
9981 {
9982 int i;
9983 int expr_pc = *pos + 1;
9984
9985 for (i = 0; i < num_indices - 2; i += 2)
9986 {
9987 LONGEST ind;
9988
9989 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9990 {
9991 int localpos;
9992
9993 localpos = expr_pc;
9994 assign_component (container, lhs, ind, exp, &localpos);
9995 }
9996 }
9997 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9998 }
9999
10000 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10001 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10002 modifying *SIZE as needed. It is an error if *SIZE exceeds
10003 MAX_SIZE. The resulting intervals do not overlap. */
10004 static void
10005 add_component_interval (LONGEST low, LONGEST high,
10006 LONGEST* indices, int *size, int max_size)
10007 {
10008 int i, j;
10009
10010 for (i = 0; i < *size; i += 2) {
10011 if (high >= indices[i] && low <= indices[i + 1])
10012 {
10013 int kh;
10014
10015 for (kh = i + 2; kh < *size; kh += 2)
10016 if (high < indices[kh])
10017 break;
10018 if (low < indices[i])
10019 indices[i] = low;
10020 indices[i + 1] = indices[kh - 1];
10021 if (high > indices[i + 1])
10022 indices[i + 1] = high;
10023 memcpy (indices + i + 2, indices + kh, *size - kh);
10024 *size -= kh - i - 2;
10025 return;
10026 }
10027 else if (high < indices[i])
10028 break;
10029 }
10030
10031 if (*size == max_size)
10032 error (_("Internal error: miscounted aggregate components."));
10033 *size += 2;
10034 for (j = *size-1; j >= i+2; j -= 1)
10035 indices[j] = indices[j - 2];
10036 indices[i] = low;
10037 indices[i + 1] = high;
10038 }
10039
10040 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10041 is different. */
10042
10043 static struct value *
10044 ada_value_cast (struct type *type, struct value *arg2)
10045 {
10046 if (type == ada_check_typedef (value_type (arg2)))
10047 return arg2;
10048
10049 if (ada_is_fixed_point_type (type))
10050 return cast_to_fixed (type, arg2);
10051
10052 if (ada_is_fixed_point_type (value_type (arg2)))
10053 return cast_from_fixed (type, arg2);
10054
10055 return value_cast (type, arg2);
10056 }
10057
10058 /* Evaluating Ada expressions, and printing their result.
10059 ------------------------------------------------------
10060
10061 1. Introduction:
10062 ----------------
10063
10064 We usually evaluate an Ada expression in order to print its value.
10065 We also evaluate an expression in order to print its type, which
10066 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10067 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10068 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10069 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10070 similar.
10071
10072 Evaluating expressions is a little more complicated for Ada entities
10073 than it is for entities in languages such as C. The main reason for
10074 this is that Ada provides types whose definition might be dynamic.
10075 One example of such types is variant records. Or another example
10076 would be an array whose bounds can only be known at run time.
10077
10078 The following description is a general guide as to what should be
10079 done (and what should NOT be done) in order to evaluate an expression
10080 involving such types, and when. This does not cover how the semantic
10081 information is encoded by GNAT as this is covered separatly. For the
10082 document used as the reference for the GNAT encoding, see exp_dbug.ads
10083 in the GNAT sources.
10084
10085 Ideally, we should embed each part of this description next to its
10086 associated code. Unfortunately, the amount of code is so vast right
10087 now that it's hard to see whether the code handling a particular
10088 situation might be duplicated or not. One day, when the code is
10089 cleaned up, this guide might become redundant with the comments
10090 inserted in the code, and we might want to remove it.
10091
10092 2. ``Fixing'' an Entity, the Simple Case:
10093 -----------------------------------------
10094
10095 When evaluating Ada expressions, the tricky issue is that they may
10096 reference entities whose type contents and size are not statically
10097 known. Consider for instance a variant record:
10098
10099 type Rec (Empty : Boolean := True) is record
10100 case Empty is
10101 when True => null;
10102 when False => Value : Integer;
10103 end case;
10104 end record;
10105 Yes : Rec := (Empty => False, Value => 1);
10106 No : Rec := (empty => True);
10107
10108 The size and contents of that record depends on the value of the
10109 descriminant (Rec.Empty). At this point, neither the debugging
10110 information nor the associated type structure in GDB are able to
10111 express such dynamic types. So what the debugger does is to create
10112 "fixed" versions of the type that applies to the specific object.
10113 We also informally refer to this operation as "fixing" an object,
10114 which means creating its associated fixed type.
10115
10116 Example: when printing the value of variable "Yes" above, its fixed
10117 type would look like this:
10118
10119 type Rec is record
10120 Empty : Boolean;
10121 Value : Integer;
10122 end record;
10123
10124 On the other hand, if we printed the value of "No", its fixed type
10125 would become:
10126
10127 type Rec is record
10128 Empty : Boolean;
10129 end record;
10130
10131 Things become a little more complicated when trying to fix an entity
10132 with a dynamic type that directly contains another dynamic type,
10133 such as an array of variant records, for instance. There are
10134 two possible cases: Arrays, and records.
10135
10136 3. ``Fixing'' Arrays:
10137 ---------------------
10138
10139 The type structure in GDB describes an array in terms of its bounds,
10140 and the type of its elements. By design, all elements in the array
10141 have the same type and we cannot represent an array of variant elements
10142 using the current type structure in GDB. When fixing an array,
10143 we cannot fix the array element, as we would potentially need one
10144 fixed type per element of the array. As a result, the best we can do
10145 when fixing an array is to produce an array whose bounds and size
10146 are correct (allowing us to read it from memory), but without having
10147 touched its element type. Fixing each element will be done later,
10148 when (if) necessary.
10149
10150 Arrays are a little simpler to handle than records, because the same
10151 amount of memory is allocated for each element of the array, even if
10152 the amount of space actually used by each element differs from element
10153 to element. Consider for instance the following array of type Rec:
10154
10155 type Rec_Array is array (1 .. 2) of Rec;
10156
10157 The actual amount of memory occupied by each element might be different
10158 from element to element, depending on the value of their discriminant.
10159 But the amount of space reserved for each element in the array remains
10160 fixed regardless. So we simply need to compute that size using
10161 the debugging information available, from which we can then determine
10162 the array size (we multiply the number of elements of the array by
10163 the size of each element).
10164
10165 The simplest case is when we have an array of a constrained element
10166 type. For instance, consider the following type declarations:
10167
10168 type Bounded_String (Max_Size : Integer) is
10169 Length : Integer;
10170 Buffer : String (1 .. Max_Size);
10171 end record;
10172 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10173
10174 In this case, the compiler describes the array as an array of
10175 variable-size elements (identified by its XVS suffix) for which
10176 the size can be read in the parallel XVZ variable.
10177
10178 In the case of an array of an unconstrained element type, the compiler
10179 wraps the array element inside a private PAD type. This type should not
10180 be shown to the user, and must be "unwrap"'ed before printing. Note
10181 that we also use the adjective "aligner" in our code to designate
10182 these wrapper types.
10183
10184 In some cases, the size allocated for each element is statically
10185 known. In that case, the PAD type already has the correct size,
10186 and the array element should remain unfixed.
10187
10188 But there are cases when this size is not statically known.
10189 For instance, assuming that "Five" is an integer variable:
10190
10191 type Dynamic is array (1 .. Five) of Integer;
10192 type Wrapper (Has_Length : Boolean := False) is record
10193 Data : Dynamic;
10194 case Has_Length is
10195 when True => Length : Integer;
10196 when False => null;
10197 end case;
10198 end record;
10199 type Wrapper_Array is array (1 .. 2) of Wrapper;
10200
10201 Hello : Wrapper_Array := (others => (Has_Length => True,
10202 Data => (others => 17),
10203 Length => 1));
10204
10205
10206 The debugging info would describe variable Hello as being an
10207 array of a PAD type. The size of that PAD type is not statically
10208 known, but can be determined using a parallel XVZ variable.
10209 In that case, a copy of the PAD type with the correct size should
10210 be used for the fixed array.
10211
10212 3. ``Fixing'' record type objects:
10213 ----------------------------------
10214
10215 Things are slightly different from arrays in the case of dynamic
10216 record types. In this case, in order to compute the associated
10217 fixed type, we need to determine the size and offset of each of
10218 its components. This, in turn, requires us to compute the fixed
10219 type of each of these components.
10220
10221 Consider for instance the example:
10222
10223 type Bounded_String (Max_Size : Natural) is record
10224 Str : String (1 .. Max_Size);
10225 Length : Natural;
10226 end record;
10227 My_String : Bounded_String (Max_Size => 10);
10228
10229 In that case, the position of field "Length" depends on the size
10230 of field Str, which itself depends on the value of the Max_Size
10231 discriminant. In order to fix the type of variable My_String,
10232 we need to fix the type of field Str. Therefore, fixing a variant
10233 record requires us to fix each of its components.
10234
10235 However, if a component does not have a dynamic size, the component
10236 should not be fixed. In particular, fields that use a PAD type
10237 should not fixed. Here is an example where this might happen
10238 (assuming type Rec above):
10239
10240 type Container (Big : Boolean) is record
10241 First : Rec;
10242 After : Integer;
10243 case Big is
10244 when True => Another : Integer;
10245 when False => null;
10246 end case;
10247 end record;
10248 My_Container : Container := (Big => False,
10249 First => (Empty => True),
10250 After => 42);
10251
10252 In that example, the compiler creates a PAD type for component First,
10253 whose size is constant, and then positions the component After just
10254 right after it. The offset of component After is therefore constant
10255 in this case.
10256
10257 The debugger computes the position of each field based on an algorithm
10258 that uses, among other things, the actual position and size of the field
10259 preceding it. Let's now imagine that the user is trying to print
10260 the value of My_Container. If the type fixing was recursive, we would
10261 end up computing the offset of field After based on the size of the
10262 fixed version of field First. And since in our example First has
10263 only one actual field, the size of the fixed type is actually smaller
10264 than the amount of space allocated to that field, and thus we would
10265 compute the wrong offset of field After.
10266
10267 To make things more complicated, we need to watch out for dynamic
10268 components of variant records (identified by the ___XVL suffix in
10269 the component name). Even if the target type is a PAD type, the size
10270 of that type might not be statically known. So the PAD type needs
10271 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10272 we might end up with the wrong size for our component. This can be
10273 observed with the following type declarations:
10274
10275 type Octal is new Integer range 0 .. 7;
10276 type Octal_Array is array (Positive range <>) of Octal;
10277 pragma Pack (Octal_Array);
10278
10279 type Octal_Buffer (Size : Positive) is record
10280 Buffer : Octal_Array (1 .. Size);
10281 Length : Integer;
10282 end record;
10283
10284 In that case, Buffer is a PAD type whose size is unset and needs
10285 to be computed by fixing the unwrapped type.
10286
10287 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10288 ----------------------------------------------------------
10289
10290 Lastly, when should the sub-elements of an entity that remained unfixed
10291 thus far, be actually fixed?
10292
10293 The answer is: Only when referencing that element. For instance
10294 when selecting one component of a record, this specific component
10295 should be fixed at that point in time. Or when printing the value
10296 of a record, each component should be fixed before its value gets
10297 printed. Similarly for arrays, the element of the array should be
10298 fixed when printing each element of the array, or when extracting
10299 one element out of that array. On the other hand, fixing should
10300 not be performed on the elements when taking a slice of an array!
10301
10302 Note that one of the side effects of miscomputing the offset and
10303 size of each field is that we end up also miscomputing the size
10304 of the containing type. This can have adverse results when computing
10305 the value of an entity. GDB fetches the value of an entity based
10306 on the size of its type, and thus a wrong size causes GDB to fetch
10307 the wrong amount of memory. In the case where the computed size is
10308 too small, GDB fetches too little data to print the value of our
10309 entity. Results in this case are unpredictable, as we usually read
10310 past the buffer containing the data =:-o. */
10311
10312 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10313 for that subexpression cast to TO_TYPE. Advance *POS over the
10314 subexpression. */
10315
10316 static value *
10317 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10318 enum noside noside, struct type *to_type)
10319 {
10320 int pc = *pos;
10321
10322 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10323 || exp->elts[pc].opcode == OP_VAR_VALUE)
10324 {
10325 (*pos) += 4;
10326
10327 value *val;
10328 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10329 {
10330 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10331 return value_zero (to_type, not_lval);
10332
10333 val = evaluate_var_msym_value (noside,
10334 exp->elts[pc + 1].objfile,
10335 exp->elts[pc + 2].msymbol);
10336 }
10337 else
10338 val = evaluate_var_value (noside,
10339 exp->elts[pc + 1].block,
10340 exp->elts[pc + 2].symbol);
10341
10342 if (noside == EVAL_SKIP)
10343 return eval_skip_value (exp);
10344
10345 val = ada_value_cast (to_type, val);
10346
10347 /* Follow the Ada language semantics that do not allow taking
10348 an address of the result of a cast (view conversion in Ada). */
10349 if (VALUE_LVAL (val) == lval_memory)
10350 {
10351 if (value_lazy (val))
10352 value_fetch_lazy (val);
10353 VALUE_LVAL (val) = not_lval;
10354 }
10355 return val;
10356 }
10357
10358 value *val = evaluate_subexp (to_type, exp, pos, noside);
10359 if (noside == EVAL_SKIP)
10360 return eval_skip_value (exp);
10361 return ada_value_cast (to_type, val);
10362 }
10363
10364 /* Implement the evaluate_exp routine in the exp_descriptor structure
10365 for the Ada language. */
10366
10367 static struct value *
10368 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10369 int *pos, enum noside noside)
10370 {
10371 enum exp_opcode op;
10372 int tem;
10373 int pc;
10374 int preeval_pos;
10375 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10376 struct type *type;
10377 int nargs, oplen;
10378 struct value **argvec;
10379
10380 pc = *pos;
10381 *pos += 1;
10382 op = exp->elts[pc].opcode;
10383
10384 switch (op)
10385 {
10386 default:
10387 *pos -= 1;
10388 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10389
10390 if (noside == EVAL_NORMAL)
10391 arg1 = unwrap_value (arg1);
10392
10393 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10394 then we need to perform the conversion manually, because
10395 evaluate_subexp_standard doesn't do it. This conversion is
10396 necessary in Ada because the different kinds of float/fixed
10397 types in Ada have different representations.
10398
10399 Similarly, we need to perform the conversion from OP_LONG
10400 ourselves. */
10401 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10402 arg1 = ada_value_cast (expect_type, arg1);
10403
10404 return arg1;
10405
10406 case OP_STRING:
10407 {
10408 struct value *result;
10409
10410 *pos -= 1;
10411 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10412 /* The result type will have code OP_STRING, bashed there from
10413 OP_ARRAY. Bash it back. */
10414 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10415 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10416 return result;
10417 }
10418
10419 case UNOP_CAST:
10420 (*pos) += 2;
10421 type = exp->elts[pc + 1].type;
10422 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10423
10424 case UNOP_QUAL:
10425 (*pos) += 2;
10426 type = exp->elts[pc + 1].type;
10427 return ada_evaluate_subexp (type, exp, pos, noside);
10428
10429 case BINOP_ASSIGN:
10430 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10431 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10432 {
10433 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10434 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10435 return arg1;
10436 return ada_value_assign (arg1, arg1);
10437 }
10438 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10439 except if the lhs of our assignment is a convenience variable.
10440 In the case of assigning to a convenience variable, the lhs
10441 should be exactly the result of the evaluation of the rhs. */
10442 type = value_type (arg1);
10443 if (VALUE_LVAL (arg1) == lval_internalvar)
10444 type = NULL;
10445 arg2 = evaluate_subexp (type, exp, pos, noside);
10446 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10447 return arg1;
10448 if (VALUE_LVAL (arg1) == lval_internalvar)
10449 {
10450 /* Nothing. */
10451 }
10452 else if (ada_is_fixed_point_type (value_type (arg1)))
10453 arg2 = cast_to_fixed (value_type (arg1), arg2);
10454 else if (ada_is_fixed_point_type (value_type (arg2)))
10455 error
10456 (_("Fixed-point values must be assigned to fixed-point variables"));
10457 else
10458 arg2 = coerce_for_assign (value_type (arg1), arg2);
10459 return ada_value_assign (arg1, arg2);
10460
10461 case BINOP_ADD:
10462 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10463 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10464 if (noside == EVAL_SKIP)
10465 goto nosideret;
10466 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10467 return (value_from_longest
10468 (value_type (arg1),
10469 value_as_long (arg1) + value_as_long (arg2)));
10470 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10471 return (value_from_longest
10472 (value_type (arg2),
10473 value_as_long (arg1) + value_as_long (arg2)));
10474 if ((ada_is_fixed_point_type (value_type (arg1))
10475 || ada_is_fixed_point_type (value_type (arg2)))
10476 && value_type (arg1) != value_type (arg2))
10477 error (_("Operands of fixed-point addition must have the same type"));
10478 /* Do the addition, and cast the result to the type of the first
10479 argument. We cannot cast the result to a reference type, so if
10480 ARG1 is a reference type, find its underlying type. */
10481 type = value_type (arg1);
10482 while (TYPE_CODE (type) == TYPE_CODE_REF)
10483 type = TYPE_TARGET_TYPE (type);
10484 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10485 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10486
10487 case BINOP_SUB:
10488 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10489 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10490 if (noside == EVAL_SKIP)
10491 goto nosideret;
10492 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10493 return (value_from_longest
10494 (value_type (arg1),
10495 value_as_long (arg1) - value_as_long (arg2)));
10496 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10497 return (value_from_longest
10498 (value_type (arg2),
10499 value_as_long (arg1) - value_as_long (arg2)));
10500 if ((ada_is_fixed_point_type (value_type (arg1))
10501 || ada_is_fixed_point_type (value_type (arg2)))
10502 && value_type (arg1) != value_type (arg2))
10503 error (_("Operands of fixed-point subtraction "
10504 "must have the same type"));
10505 /* Do the substraction, and cast the result to the type of the first
10506 argument. We cannot cast the result to a reference type, so if
10507 ARG1 is a reference type, find its underlying type. */
10508 type = value_type (arg1);
10509 while (TYPE_CODE (type) == TYPE_CODE_REF)
10510 type = TYPE_TARGET_TYPE (type);
10511 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10512 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10513
10514 case BINOP_MUL:
10515 case BINOP_DIV:
10516 case BINOP_REM:
10517 case BINOP_MOD:
10518 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10519 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10520 if (noside == EVAL_SKIP)
10521 goto nosideret;
10522 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10523 {
10524 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10525 return value_zero (value_type (arg1), not_lval);
10526 }
10527 else
10528 {
10529 type = builtin_type (exp->gdbarch)->builtin_double;
10530 if (ada_is_fixed_point_type (value_type (arg1)))
10531 arg1 = cast_from_fixed (type, arg1);
10532 if (ada_is_fixed_point_type (value_type (arg2)))
10533 arg2 = cast_from_fixed (type, arg2);
10534 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10535 return ada_value_binop (arg1, arg2, op);
10536 }
10537
10538 case BINOP_EQUAL:
10539 case BINOP_NOTEQUAL:
10540 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10541 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10542 if (noside == EVAL_SKIP)
10543 goto nosideret;
10544 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10545 tem = 0;
10546 else
10547 {
10548 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10549 tem = ada_value_equal (arg1, arg2);
10550 }
10551 if (op == BINOP_NOTEQUAL)
10552 tem = !tem;
10553 type = language_bool_type (exp->language_defn, exp->gdbarch);
10554 return value_from_longest (type, (LONGEST) tem);
10555
10556 case UNOP_NEG:
10557 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10558 if (noside == EVAL_SKIP)
10559 goto nosideret;
10560 else if (ada_is_fixed_point_type (value_type (arg1)))
10561 return value_cast (value_type (arg1), value_neg (arg1));
10562 else
10563 {
10564 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10565 return value_neg (arg1);
10566 }
10567
10568 case BINOP_LOGICAL_AND:
10569 case BINOP_LOGICAL_OR:
10570 case UNOP_LOGICAL_NOT:
10571 {
10572 struct value *val;
10573
10574 *pos -= 1;
10575 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10576 type = language_bool_type (exp->language_defn, exp->gdbarch);
10577 return value_cast (type, val);
10578 }
10579
10580 case BINOP_BITWISE_AND:
10581 case BINOP_BITWISE_IOR:
10582 case BINOP_BITWISE_XOR:
10583 {
10584 struct value *val;
10585
10586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10587 *pos = pc;
10588 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10589
10590 return value_cast (value_type (arg1), val);
10591 }
10592
10593 case OP_VAR_VALUE:
10594 *pos -= 1;
10595
10596 if (noside == EVAL_SKIP)
10597 {
10598 *pos += 4;
10599 goto nosideret;
10600 }
10601
10602 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10603 /* Only encountered when an unresolved symbol occurs in a
10604 context other than a function call, in which case, it is
10605 invalid. */
10606 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10607 exp->elts[pc + 2].symbol->print_name ());
10608
10609 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10610 {
10611 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10612 /* Check to see if this is a tagged type. We also need to handle
10613 the case where the type is a reference to a tagged type, but
10614 we have to be careful to exclude pointers to tagged types.
10615 The latter should be shown as usual (as a pointer), whereas
10616 a reference should mostly be transparent to the user. */
10617 if (ada_is_tagged_type (type, 0)
10618 || (TYPE_CODE (type) == TYPE_CODE_REF
10619 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10620 {
10621 /* Tagged types are a little special in the fact that the real
10622 type is dynamic and can only be determined by inspecting the
10623 object's tag. This means that we need to get the object's
10624 value first (EVAL_NORMAL) and then extract the actual object
10625 type from its tag.
10626
10627 Note that we cannot skip the final step where we extract
10628 the object type from its tag, because the EVAL_NORMAL phase
10629 results in dynamic components being resolved into fixed ones.
10630 This can cause problems when trying to print the type
10631 description of tagged types whose parent has a dynamic size:
10632 We use the type name of the "_parent" component in order
10633 to print the name of the ancestor type in the type description.
10634 If that component had a dynamic size, the resolution into
10635 a fixed type would result in the loss of that type name,
10636 thus preventing us from printing the name of the ancestor
10637 type in the type description. */
10638 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10639
10640 if (TYPE_CODE (type) != TYPE_CODE_REF)
10641 {
10642 struct type *actual_type;
10643
10644 actual_type = type_from_tag (ada_value_tag (arg1));
10645 if (actual_type == NULL)
10646 /* If, for some reason, we were unable to determine
10647 the actual type from the tag, then use the static
10648 approximation that we just computed as a fallback.
10649 This can happen if the debugging information is
10650 incomplete, for instance. */
10651 actual_type = type;
10652 return value_zero (actual_type, not_lval);
10653 }
10654 else
10655 {
10656 /* In the case of a ref, ada_coerce_ref takes care
10657 of determining the actual type. But the evaluation
10658 should return a ref as it should be valid to ask
10659 for its address; so rebuild a ref after coerce. */
10660 arg1 = ada_coerce_ref (arg1);
10661 return value_ref (arg1, TYPE_CODE_REF);
10662 }
10663 }
10664
10665 /* Records and unions for which GNAT encodings have been
10666 generated need to be statically fixed as well.
10667 Otherwise, non-static fixing produces a type where
10668 all dynamic properties are removed, which prevents "ptype"
10669 from being able to completely describe the type.
10670 For instance, a case statement in a variant record would be
10671 replaced by the relevant components based on the actual
10672 value of the discriminants. */
10673 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10674 && dynamic_template_type (type) != NULL)
10675 || (TYPE_CODE (type) == TYPE_CODE_UNION
10676 && ada_find_parallel_type (type, "___XVU") != NULL))
10677 {
10678 *pos += 4;
10679 return value_zero (to_static_fixed_type (type), not_lval);
10680 }
10681 }
10682
10683 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10684 return ada_to_fixed_value (arg1);
10685
10686 case OP_FUNCALL:
10687 (*pos) += 2;
10688
10689 /* Allocate arg vector, including space for the function to be
10690 called in argvec[0] and a terminating NULL. */
10691 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10692 argvec = XALLOCAVEC (struct value *, nargs + 2);
10693
10694 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10695 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10696 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10697 exp->elts[pc + 5].symbol->print_name ());
10698 else
10699 {
10700 for (tem = 0; tem <= nargs; tem += 1)
10701 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10702 argvec[tem] = 0;
10703
10704 if (noside == EVAL_SKIP)
10705 goto nosideret;
10706 }
10707
10708 if (ada_is_constrained_packed_array_type
10709 (desc_base_type (value_type (argvec[0]))))
10710 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10711 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10712 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10713 /* This is a packed array that has already been fixed, and
10714 therefore already coerced to a simple array. Nothing further
10715 to do. */
10716 ;
10717 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10718 {
10719 /* Make sure we dereference references so that all the code below
10720 feels like it's really handling the referenced value. Wrapping
10721 types (for alignment) may be there, so make sure we strip them as
10722 well. */
10723 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10724 }
10725 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10726 && VALUE_LVAL (argvec[0]) == lval_memory)
10727 argvec[0] = value_addr (argvec[0]);
10728
10729 type = ada_check_typedef (value_type (argvec[0]));
10730
10731 /* Ada allows us to implicitly dereference arrays when subscripting
10732 them. So, if this is an array typedef (encoding use for array
10733 access types encoded as fat pointers), strip it now. */
10734 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10735 type = ada_typedef_target_type (type);
10736
10737 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10738 {
10739 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10740 {
10741 case TYPE_CODE_FUNC:
10742 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10743 break;
10744 case TYPE_CODE_ARRAY:
10745 break;
10746 case TYPE_CODE_STRUCT:
10747 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10748 argvec[0] = ada_value_ind (argvec[0]);
10749 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10750 break;
10751 default:
10752 error (_("cannot subscript or call something of type `%s'"),
10753 ada_type_name (value_type (argvec[0])));
10754 break;
10755 }
10756 }
10757
10758 switch (TYPE_CODE (type))
10759 {
10760 case TYPE_CODE_FUNC:
10761 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10762 {
10763 if (TYPE_TARGET_TYPE (type) == NULL)
10764 error_call_unknown_return_type (NULL);
10765 return allocate_value (TYPE_TARGET_TYPE (type));
10766 }
10767 return call_function_by_hand (argvec[0], NULL,
10768 gdb::make_array_view (argvec + 1,
10769 nargs));
10770 case TYPE_CODE_INTERNAL_FUNCTION:
10771 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10772 /* We don't know anything about what the internal
10773 function might return, but we have to return
10774 something. */
10775 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10776 not_lval);
10777 else
10778 return call_internal_function (exp->gdbarch, exp->language_defn,
10779 argvec[0], nargs, argvec + 1);
10780
10781 case TYPE_CODE_STRUCT:
10782 {
10783 int arity;
10784
10785 arity = ada_array_arity (type);
10786 type = ada_array_element_type (type, nargs);
10787 if (type == NULL)
10788 error (_("cannot subscript or call a record"));
10789 if (arity != nargs)
10790 error (_("wrong number of subscripts; expecting %d"), arity);
10791 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10792 return value_zero (ada_aligned_type (type), lval_memory);
10793 return
10794 unwrap_value (ada_value_subscript
10795 (argvec[0], nargs, argvec + 1));
10796 }
10797 case TYPE_CODE_ARRAY:
10798 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10799 {
10800 type = ada_array_element_type (type, nargs);
10801 if (type == NULL)
10802 error (_("element type of array unknown"));
10803 else
10804 return value_zero (ada_aligned_type (type), lval_memory);
10805 }
10806 return
10807 unwrap_value (ada_value_subscript
10808 (ada_coerce_to_simple_array (argvec[0]),
10809 nargs, argvec + 1));
10810 case TYPE_CODE_PTR: /* Pointer to array */
10811 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10812 {
10813 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10814 type = ada_array_element_type (type, nargs);
10815 if (type == NULL)
10816 error (_("element type of array unknown"));
10817 else
10818 return value_zero (ada_aligned_type (type), lval_memory);
10819 }
10820 return
10821 unwrap_value (ada_value_ptr_subscript (argvec[0],
10822 nargs, argvec + 1));
10823
10824 default:
10825 error (_("Attempt to index or call something other than an "
10826 "array or function"));
10827 }
10828
10829 case TERNOP_SLICE:
10830 {
10831 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10832 struct value *low_bound_val =
10833 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10834 struct value *high_bound_val =
10835 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10836 LONGEST low_bound;
10837 LONGEST high_bound;
10838
10839 low_bound_val = coerce_ref (low_bound_val);
10840 high_bound_val = coerce_ref (high_bound_val);
10841 low_bound = value_as_long (low_bound_val);
10842 high_bound = value_as_long (high_bound_val);
10843
10844 if (noside == EVAL_SKIP)
10845 goto nosideret;
10846
10847 /* If this is a reference to an aligner type, then remove all
10848 the aligners. */
10849 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10850 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10851 TYPE_TARGET_TYPE (value_type (array)) =
10852 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10853
10854 if (ada_is_constrained_packed_array_type (value_type (array)))
10855 error (_("cannot slice a packed array"));
10856
10857 /* If this is a reference to an array or an array lvalue,
10858 convert to a pointer. */
10859 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10860 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10861 && VALUE_LVAL (array) == lval_memory))
10862 array = value_addr (array);
10863
10864 if (noside == EVAL_AVOID_SIDE_EFFECTS
10865 && ada_is_array_descriptor_type (ada_check_typedef
10866 (value_type (array))))
10867 return empty_array (ada_type_of_array (array, 0), low_bound,
10868 high_bound);
10869
10870 array = ada_coerce_to_simple_array_ptr (array);
10871
10872 /* If we have more than one level of pointer indirection,
10873 dereference the value until we get only one level. */
10874 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10875 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10876 == TYPE_CODE_PTR))
10877 array = value_ind (array);
10878
10879 /* Make sure we really do have an array type before going further,
10880 to avoid a SEGV when trying to get the index type or the target
10881 type later down the road if the debug info generated by
10882 the compiler is incorrect or incomplete. */
10883 if (!ada_is_simple_array_type (value_type (array)))
10884 error (_("cannot take slice of non-array"));
10885
10886 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10887 == TYPE_CODE_PTR)
10888 {
10889 struct type *type0 = ada_check_typedef (value_type (array));
10890
10891 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10892 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10893 else
10894 {
10895 struct type *arr_type0 =
10896 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10897
10898 return ada_value_slice_from_ptr (array, arr_type0,
10899 longest_to_int (low_bound),
10900 longest_to_int (high_bound));
10901 }
10902 }
10903 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10904 return array;
10905 else if (high_bound < low_bound)
10906 return empty_array (value_type (array), low_bound, high_bound);
10907 else
10908 return ada_value_slice (array, longest_to_int (low_bound),
10909 longest_to_int (high_bound));
10910 }
10911
10912 case UNOP_IN_RANGE:
10913 (*pos) += 2;
10914 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10915 type = check_typedef (exp->elts[pc + 1].type);
10916
10917 if (noside == EVAL_SKIP)
10918 goto nosideret;
10919
10920 switch (TYPE_CODE (type))
10921 {
10922 default:
10923 lim_warning (_("Membership test incompletely implemented; "
10924 "always returns true"));
10925 type = language_bool_type (exp->language_defn, exp->gdbarch);
10926 return value_from_longest (type, (LONGEST) 1);
10927
10928 case TYPE_CODE_RANGE:
10929 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10930 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10931 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10932 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10933 type = language_bool_type (exp->language_defn, exp->gdbarch);
10934 return
10935 value_from_longest (type,
10936 (value_less (arg1, arg3)
10937 || value_equal (arg1, arg3))
10938 && (value_less (arg2, arg1)
10939 || value_equal (arg2, arg1)));
10940 }
10941
10942 case BINOP_IN_BOUNDS:
10943 (*pos) += 2;
10944 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10945 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10946
10947 if (noside == EVAL_SKIP)
10948 goto nosideret;
10949
10950 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10951 {
10952 type = language_bool_type (exp->language_defn, exp->gdbarch);
10953 return value_zero (type, not_lval);
10954 }
10955
10956 tem = longest_to_int (exp->elts[pc + 1].longconst);
10957
10958 type = ada_index_type (value_type (arg2), tem, "range");
10959 if (!type)
10960 type = value_type (arg1);
10961
10962 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10963 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10964
10965 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10966 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10967 type = language_bool_type (exp->language_defn, exp->gdbarch);
10968 return
10969 value_from_longest (type,
10970 (value_less (arg1, arg3)
10971 || value_equal (arg1, arg3))
10972 && (value_less (arg2, arg1)
10973 || value_equal (arg2, arg1)));
10974
10975 case TERNOP_IN_RANGE:
10976 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10977 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10978 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10979
10980 if (noside == EVAL_SKIP)
10981 goto nosideret;
10982
10983 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10984 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10985 type = language_bool_type (exp->language_defn, exp->gdbarch);
10986 return
10987 value_from_longest (type,
10988 (value_less (arg1, arg3)
10989 || value_equal (arg1, arg3))
10990 && (value_less (arg2, arg1)
10991 || value_equal (arg2, arg1)));
10992
10993 case OP_ATR_FIRST:
10994 case OP_ATR_LAST:
10995 case OP_ATR_LENGTH:
10996 {
10997 struct type *type_arg;
10998
10999 if (exp->elts[*pos].opcode == OP_TYPE)
11000 {
11001 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11002 arg1 = NULL;
11003 type_arg = check_typedef (exp->elts[pc + 2].type);
11004 }
11005 else
11006 {
11007 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11008 type_arg = NULL;
11009 }
11010
11011 if (exp->elts[*pos].opcode != OP_LONG)
11012 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11013 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11014 *pos += 4;
11015
11016 if (noside == EVAL_SKIP)
11017 goto nosideret;
11018 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11019 {
11020 if (type_arg == NULL)
11021 type_arg = value_type (arg1);
11022
11023 if (ada_is_constrained_packed_array_type (type_arg))
11024 type_arg = decode_constrained_packed_array_type (type_arg);
11025
11026 if (!discrete_type_p (type_arg))
11027 {
11028 switch (op)
11029 {
11030 default: /* Should never happen. */
11031 error (_("unexpected attribute encountered"));
11032 case OP_ATR_FIRST:
11033 case OP_ATR_LAST:
11034 type_arg = ada_index_type (type_arg, tem,
11035 ada_attribute_name (op));
11036 break;
11037 case OP_ATR_LENGTH:
11038 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11039 break;
11040 }
11041 }
11042
11043 return value_zero (type_arg, not_lval);
11044 }
11045 else if (type_arg == NULL)
11046 {
11047 arg1 = ada_coerce_ref (arg1);
11048
11049 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11050 arg1 = ada_coerce_to_simple_array (arg1);
11051
11052 if (op == OP_ATR_LENGTH)
11053 type = builtin_type (exp->gdbarch)->builtin_int;
11054 else
11055 {
11056 type = ada_index_type (value_type (arg1), tem,
11057 ada_attribute_name (op));
11058 if (type == NULL)
11059 type = builtin_type (exp->gdbarch)->builtin_int;
11060 }
11061
11062 switch (op)
11063 {
11064 default: /* Should never happen. */
11065 error (_("unexpected attribute encountered"));
11066 case OP_ATR_FIRST:
11067 return value_from_longest
11068 (type, ada_array_bound (arg1, tem, 0));
11069 case OP_ATR_LAST:
11070 return value_from_longest
11071 (type, ada_array_bound (arg1, tem, 1));
11072 case OP_ATR_LENGTH:
11073 return value_from_longest
11074 (type, ada_array_length (arg1, tem));
11075 }
11076 }
11077 else if (discrete_type_p (type_arg))
11078 {
11079 struct type *range_type;
11080 const char *name = ada_type_name (type_arg);
11081
11082 range_type = NULL;
11083 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11084 range_type = to_fixed_range_type (type_arg, NULL);
11085 if (range_type == NULL)
11086 range_type = type_arg;
11087 switch (op)
11088 {
11089 default:
11090 error (_("unexpected attribute encountered"));
11091 case OP_ATR_FIRST:
11092 return value_from_longest
11093 (range_type, ada_discrete_type_low_bound (range_type));
11094 case OP_ATR_LAST:
11095 return value_from_longest
11096 (range_type, ada_discrete_type_high_bound (range_type));
11097 case OP_ATR_LENGTH:
11098 error (_("the 'length attribute applies only to array types"));
11099 }
11100 }
11101 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11102 error (_("unimplemented type attribute"));
11103 else
11104 {
11105 LONGEST low, high;
11106
11107 if (ada_is_constrained_packed_array_type (type_arg))
11108 type_arg = decode_constrained_packed_array_type (type_arg);
11109
11110 if (op == OP_ATR_LENGTH)
11111 type = builtin_type (exp->gdbarch)->builtin_int;
11112 else
11113 {
11114 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11115 if (type == NULL)
11116 type = builtin_type (exp->gdbarch)->builtin_int;
11117 }
11118
11119 switch (op)
11120 {
11121 default:
11122 error (_("unexpected attribute encountered"));
11123 case OP_ATR_FIRST:
11124 low = ada_array_bound_from_type (type_arg, tem, 0);
11125 return value_from_longest (type, low);
11126 case OP_ATR_LAST:
11127 high = ada_array_bound_from_type (type_arg, tem, 1);
11128 return value_from_longest (type, high);
11129 case OP_ATR_LENGTH:
11130 low = ada_array_bound_from_type (type_arg, tem, 0);
11131 high = ada_array_bound_from_type (type_arg, tem, 1);
11132 return value_from_longest (type, high - low + 1);
11133 }
11134 }
11135 }
11136
11137 case OP_ATR_TAG:
11138 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11139 if (noside == EVAL_SKIP)
11140 goto nosideret;
11141
11142 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11143 return value_zero (ada_tag_type (arg1), not_lval);
11144
11145 return ada_value_tag (arg1);
11146
11147 case OP_ATR_MIN:
11148 case OP_ATR_MAX:
11149 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11150 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11151 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11152 if (noside == EVAL_SKIP)
11153 goto nosideret;
11154 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11155 return value_zero (value_type (arg1), not_lval);
11156 else
11157 {
11158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11159 return value_binop (arg1, arg2,
11160 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11161 }
11162
11163 case OP_ATR_MODULUS:
11164 {
11165 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11166
11167 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11168 if (noside == EVAL_SKIP)
11169 goto nosideret;
11170
11171 if (!ada_is_modular_type (type_arg))
11172 error (_("'modulus must be applied to modular type"));
11173
11174 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11175 ada_modulus (type_arg));
11176 }
11177
11178
11179 case OP_ATR_POS:
11180 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11182 if (noside == EVAL_SKIP)
11183 goto nosideret;
11184 type = builtin_type (exp->gdbarch)->builtin_int;
11185 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11186 return value_zero (type, not_lval);
11187 else
11188 return value_pos_atr (type, arg1);
11189
11190 case OP_ATR_SIZE:
11191 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11192 type = value_type (arg1);
11193
11194 /* If the argument is a reference, then dereference its type, since
11195 the user is really asking for the size of the actual object,
11196 not the size of the pointer. */
11197 if (TYPE_CODE (type) == TYPE_CODE_REF)
11198 type = TYPE_TARGET_TYPE (type);
11199
11200 if (noside == EVAL_SKIP)
11201 goto nosideret;
11202 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11203 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11204 else
11205 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11206 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11207
11208 case OP_ATR_VAL:
11209 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11210 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11211 type = exp->elts[pc + 2].type;
11212 if (noside == EVAL_SKIP)
11213 goto nosideret;
11214 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11215 return value_zero (type, not_lval);
11216 else
11217 return value_val_atr (type, arg1);
11218
11219 case BINOP_EXP:
11220 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11221 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11222 if (noside == EVAL_SKIP)
11223 goto nosideret;
11224 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11225 return value_zero (value_type (arg1), not_lval);
11226 else
11227 {
11228 /* For integer exponentiation operations,
11229 only promote the first argument. */
11230 if (is_integral_type (value_type (arg2)))
11231 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11232 else
11233 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11234
11235 return value_binop (arg1, arg2, op);
11236 }
11237
11238 case UNOP_PLUS:
11239 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11240 if (noside == EVAL_SKIP)
11241 goto nosideret;
11242 else
11243 return arg1;
11244
11245 case UNOP_ABS:
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 if (noside == EVAL_SKIP)
11248 goto nosideret;
11249 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11250 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11251 return value_neg (arg1);
11252 else
11253 return arg1;
11254
11255 case UNOP_IND:
11256 preeval_pos = *pos;
11257 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11258 if (noside == EVAL_SKIP)
11259 goto nosideret;
11260 type = ada_check_typedef (value_type (arg1));
11261 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11262 {
11263 if (ada_is_array_descriptor_type (type))
11264 /* GDB allows dereferencing GNAT array descriptors. */
11265 {
11266 struct type *arrType = ada_type_of_array (arg1, 0);
11267
11268 if (arrType == NULL)
11269 error (_("Attempt to dereference null array pointer."));
11270 return value_at_lazy (arrType, 0);
11271 }
11272 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11273 || TYPE_CODE (type) == TYPE_CODE_REF
11274 /* In C you can dereference an array to get the 1st elt. */
11275 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11276 {
11277 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11278 only be determined by inspecting the object's tag.
11279 This means that we need to evaluate completely the
11280 expression in order to get its type. */
11281
11282 if ((TYPE_CODE (type) == TYPE_CODE_REF
11283 || TYPE_CODE (type) == TYPE_CODE_PTR)
11284 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11285 {
11286 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11287 EVAL_NORMAL);
11288 type = value_type (ada_value_ind (arg1));
11289 }
11290 else
11291 {
11292 type = to_static_fixed_type
11293 (ada_aligned_type
11294 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11295 }
11296 ada_ensure_varsize_limit (type);
11297 return value_zero (type, lval_memory);
11298 }
11299 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11300 {
11301 /* GDB allows dereferencing an int. */
11302 if (expect_type == NULL)
11303 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11304 lval_memory);
11305 else
11306 {
11307 expect_type =
11308 to_static_fixed_type (ada_aligned_type (expect_type));
11309 return value_zero (expect_type, lval_memory);
11310 }
11311 }
11312 else
11313 error (_("Attempt to take contents of a non-pointer value."));
11314 }
11315 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11316 type = ada_check_typedef (value_type (arg1));
11317
11318 if (TYPE_CODE (type) == TYPE_CODE_INT)
11319 /* GDB allows dereferencing an int. If we were given
11320 the expect_type, then use that as the target type.
11321 Otherwise, assume that the target type is an int. */
11322 {
11323 if (expect_type != NULL)
11324 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11325 arg1));
11326 else
11327 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11328 (CORE_ADDR) value_as_address (arg1));
11329 }
11330
11331 if (ada_is_array_descriptor_type (type))
11332 /* GDB allows dereferencing GNAT array descriptors. */
11333 return ada_coerce_to_simple_array (arg1);
11334 else
11335 return ada_value_ind (arg1);
11336
11337 case STRUCTOP_STRUCT:
11338 tem = longest_to_int (exp->elts[pc + 1].longconst);
11339 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11340 preeval_pos = *pos;
11341 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11342 if (noside == EVAL_SKIP)
11343 goto nosideret;
11344 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11345 {
11346 struct type *type1 = value_type (arg1);
11347
11348 if (ada_is_tagged_type (type1, 1))
11349 {
11350 type = ada_lookup_struct_elt_type (type1,
11351 &exp->elts[pc + 2].string,
11352 1, 1);
11353
11354 /* If the field is not found, check if it exists in the
11355 extension of this object's type. This means that we
11356 need to evaluate completely the expression. */
11357
11358 if (type == NULL)
11359 {
11360 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11361 EVAL_NORMAL);
11362 arg1 = ada_value_struct_elt (arg1,
11363 &exp->elts[pc + 2].string,
11364 0);
11365 arg1 = unwrap_value (arg1);
11366 type = value_type (ada_to_fixed_value (arg1));
11367 }
11368 }
11369 else
11370 type =
11371 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11372 0);
11373
11374 return value_zero (ada_aligned_type (type), lval_memory);
11375 }
11376 else
11377 {
11378 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11379 arg1 = unwrap_value (arg1);
11380 return ada_to_fixed_value (arg1);
11381 }
11382
11383 case OP_TYPE:
11384 /* The value is not supposed to be used. This is here to make it
11385 easier to accommodate expressions that contain types. */
11386 (*pos) += 2;
11387 if (noside == EVAL_SKIP)
11388 goto nosideret;
11389 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11390 return allocate_value (exp->elts[pc + 1].type);
11391 else
11392 error (_("Attempt to use a type name as an expression"));
11393
11394 case OP_AGGREGATE:
11395 case OP_CHOICES:
11396 case OP_OTHERS:
11397 case OP_DISCRETE_RANGE:
11398 case OP_POSITIONAL:
11399 case OP_NAME:
11400 if (noside == EVAL_NORMAL)
11401 switch (op)
11402 {
11403 case OP_NAME:
11404 error (_("Undefined name, ambiguous name, or renaming used in "
11405 "component association: %s."), &exp->elts[pc+2].string);
11406 case OP_AGGREGATE:
11407 error (_("Aggregates only allowed on the right of an assignment"));
11408 default:
11409 internal_error (__FILE__, __LINE__,
11410 _("aggregate apparently mangled"));
11411 }
11412
11413 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11414 *pos += oplen - 1;
11415 for (tem = 0; tem < nargs; tem += 1)
11416 ada_evaluate_subexp (NULL, exp, pos, noside);
11417 goto nosideret;
11418 }
11419
11420 nosideret:
11421 return eval_skip_value (exp);
11422 }
11423 \f
11424
11425 /* Fixed point */
11426
11427 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11428 type name that encodes the 'small and 'delta information.
11429 Otherwise, return NULL. */
11430
11431 static const char *
11432 fixed_type_info (struct type *type)
11433 {
11434 const char *name = ada_type_name (type);
11435 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11436
11437 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11438 {
11439 const char *tail = strstr (name, "___XF_");
11440
11441 if (tail == NULL)
11442 return NULL;
11443 else
11444 return tail + 5;
11445 }
11446 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11447 return fixed_type_info (TYPE_TARGET_TYPE (type));
11448 else
11449 return NULL;
11450 }
11451
11452 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11453
11454 int
11455 ada_is_fixed_point_type (struct type *type)
11456 {
11457 return fixed_type_info (type) != NULL;
11458 }
11459
11460 /* Return non-zero iff TYPE represents a System.Address type. */
11461
11462 int
11463 ada_is_system_address_type (struct type *type)
11464 {
11465 return (TYPE_NAME (type)
11466 && strcmp (TYPE_NAME (type), "system__address") == 0);
11467 }
11468
11469 /* Assuming that TYPE is the representation of an Ada fixed-point
11470 type, return the target floating-point type to be used to represent
11471 of this type during internal computation. */
11472
11473 static struct type *
11474 ada_scaling_type (struct type *type)
11475 {
11476 return builtin_type (get_type_arch (type))->builtin_long_double;
11477 }
11478
11479 /* Assuming that TYPE is the representation of an Ada fixed-point
11480 type, return its delta, or NULL if the type is malformed and the
11481 delta cannot be determined. */
11482
11483 struct value *
11484 ada_delta (struct type *type)
11485 {
11486 const char *encoding = fixed_type_info (type);
11487 struct type *scale_type = ada_scaling_type (type);
11488
11489 long long num, den;
11490
11491 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11492 return nullptr;
11493 else
11494 return value_binop (value_from_longest (scale_type, num),
11495 value_from_longest (scale_type, den), BINOP_DIV);
11496 }
11497
11498 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11499 factor ('SMALL value) associated with the type. */
11500
11501 struct value *
11502 ada_scaling_factor (struct type *type)
11503 {
11504 const char *encoding = fixed_type_info (type);
11505 struct type *scale_type = ada_scaling_type (type);
11506
11507 long long num0, den0, num1, den1;
11508 int n;
11509
11510 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11511 &num0, &den0, &num1, &den1);
11512
11513 if (n < 2)
11514 return value_from_longest (scale_type, 1);
11515 else if (n == 4)
11516 return value_binop (value_from_longest (scale_type, num1),
11517 value_from_longest (scale_type, den1), BINOP_DIV);
11518 else
11519 return value_binop (value_from_longest (scale_type, num0),
11520 value_from_longest (scale_type, den0), BINOP_DIV);
11521 }
11522
11523 \f
11524
11525 /* Range types */
11526
11527 /* Scan STR beginning at position K for a discriminant name, and
11528 return the value of that discriminant field of DVAL in *PX. If
11529 PNEW_K is not null, put the position of the character beyond the
11530 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11531 not alter *PX and *PNEW_K if unsuccessful. */
11532
11533 static int
11534 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11535 int *pnew_k)
11536 {
11537 static char *bound_buffer = NULL;
11538 static size_t bound_buffer_len = 0;
11539 const char *pstart, *pend, *bound;
11540 struct value *bound_val;
11541
11542 if (dval == NULL || str == NULL || str[k] == '\0')
11543 return 0;
11544
11545 pstart = str + k;
11546 pend = strstr (pstart, "__");
11547 if (pend == NULL)
11548 {
11549 bound = pstart;
11550 k += strlen (bound);
11551 }
11552 else
11553 {
11554 int len = pend - pstart;
11555
11556 /* Strip __ and beyond. */
11557 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11558 strncpy (bound_buffer, pstart, len);
11559 bound_buffer[len] = '\0';
11560
11561 bound = bound_buffer;
11562 k = pend - str;
11563 }
11564
11565 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11566 if (bound_val == NULL)
11567 return 0;
11568
11569 *px = value_as_long (bound_val);
11570 if (pnew_k != NULL)
11571 *pnew_k = k;
11572 return 1;
11573 }
11574
11575 /* Value of variable named NAME in the current environment. If
11576 no such variable found, then if ERR_MSG is null, returns 0, and
11577 otherwise causes an error with message ERR_MSG. */
11578
11579 static struct value *
11580 get_var_value (const char *name, const char *err_msg)
11581 {
11582 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11583
11584 std::vector<struct block_symbol> syms;
11585 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11586 get_selected_block (0),
11587 VAR_DOMAIN, &syms, 1);
11588
11589 if (nsyms != 1)
11590 {
11591 if (err_msg == NULL)
11592 return 0;
11593 else
11594 error (("%s"), err_msg);
11595 }
11596
11597 return value_of_variable (syms[0].symbol, syms[0].block);
11598 }
11599
11600 /* Value of integer variable named NAME in the current environment.
11601 If no such variable is found, returns false. Otherwise, sets VALUE
11602 to the variable's value and returns true. */
11603
11604 bool
11605 get_int_var_value (const char *name, LONGEST &value)
11606 {
11607 struct value *var_val = get_var_value (name, 0);
11608
11609 if (var_val == 0)
11610 return false;
11611
11612 value = value_as_long (var_val);
11613 return true;
11614 }
11615
11616
11617 /* Return a range type whose base type is that of the range type named
11618 NAME in the current environment, and whose bounds are calculated
11619 from NAME according to the GNAT range encoding conventions.
11620 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11621 corresponding range type from debug information; fall back to using it
11622 if symbol lookup fails. If a new type must be created, allocate it
11623 like ORIG_TYPE was. The bounds information, in general, is encoded
11624 in NAME, the base type given in the named range type. */
11625
11626 static struct type *
11627 to_fixed_range_type (struct type *raw_type, struct value *dval)
11628 {
11629 const char *name;
11630 struct type *base_type;
11631 const char *subtype_info;
11632
11633 gdb_assert (raw_type != NULL);
11634 gdb_assert (TYPE_NAME (raw_type) != NULL);
11635
11636 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11637 base_type = TYPE_TARGET_TYPE (raw_type);
11638 else
11639 base_type = raw_type;
11640
11641 name = TYPE_NAME (raw_type);
11642 subtype_info = strstr (name, "___XD");
11643 if (subtype_info == NULL)
11644 {
11645 LONGEST L = ada_discrete_type_low_bound (raw_type);
11646 LONGEST U = ada_discrete_type_high_bound (raw_type);
11647
11648 if (L < INT_MIN || U > INT_MAX)
11649 return raw_type;
11650 else
11651 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11652 L, U);
11653 }
11654 else
11655 {
11656 static char *name_buf = NULL;
11657 static size_t name_len = 0;
11658 int prefix_len = subtype_info - name;
11659 LONGEST L, U;
11660 struct type *type;
11661 const char *bounds_str;
11662 int n;
11663
11664 GROW_VECT (name_buf, name_len, prefix_len + 5);
11665 strncpy (name_buf, name, prefix_len);
11666 name_buf[prefix_len] = '\0';
11667
11668 subtype_info += 5;
11669 bounds_str = strchr (subtype_info, '_');
11670 n = 1;
11671
11672 if (*subtype_info == 'L')
11673 {
11674 if (!ada_scan_number (bounds_str, n, &L, &n)
11675 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11676 return raw_type;
11677 if (bounds_str[n] == '_')
11678 n += 2;
11679 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11680 n += 1;
11681 subtype_info += 1;
11682 }
11683 else
11684 {
11685 strcpy (name_buf + prefix_len, "___L");
11686 if (!get_int_var_value (name_buf, L))
11687 {
11688 lim_warning (_("Unknown lower bound, using 1."));
11689 L = 1;
11690 }
11691 }
11692
11693 if (*subtype_info == 'U')
11694 {
11695 if (!ada_scan_number (bounds_str, n, &U, &n)
11696 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11697 return raw_type;
11698 }
11699 else
11700 {
11701 strcpy (name_buf + prefix_len, "___U");
11702 if (!get_int_var_value (name_buf, U))
11703 {
11704 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11705 U = L;
11706 }
11707 }
11708
11709 type = create_static_range_type (alloc_type_copy (raw_type),
11710 base_type, L, U);
11711 /* create_static_range_type alters the resulting type's length
11712 to match the size of the base_type, which is not what we want.
11713 Set it back to the original range type's length. */
11714 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11715 TYPE_NAME (type) = name;
11716 return type;
11717 }
11718 }
11719
11720 /* True iff NAME is the name of a range type. */
11721
11722 int
11723 ada_is_range_type_name (const char *name)
11724 {
11725 return (name != NULL && strstr (name, "___XD"));
11726 }
11727 \f
11728
11729 /* Modular types */
11730
11731 /* True iff TYPE is an Ada modular type. */
11732
11733 int
11734 ada_is_modular_type (struct type *type)
11735 {
11736 struct type *subranged_type = get_base_type (type);
11737
11738 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11739 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11740 && TYPE_UNSIGNED (subranged_type));
11741 }
11742
11743 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11744
11745 ULONGEST
11746 ada_modulus (struct type *type)
11747 {
11748 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11749 }
11750 \f
11751
11752 /* Ada exception catchpoint support:
11753 ---------------------------------
11754
11755 We support 3 kinds of exception catchpoints:
11756 . catchpoints on Ada exceptions
11757 . catchpoints on unhandled Ada exceptions
11758 . catchpoints on failed assertions
11759
11760 Exceptions raised during failed assertions, or unhandled exceptions
11761 could perfectly be caught with the general catchpoint on Ada exceptions.
11762 However, we can easily differentiate these two special cases, and having
11763 the option to distinguish these two cases from the rest can be useful
11764 to zero-in on certain situations.
11765
11766 Exception catchpoints are a specialized form of breakpoint,
11767 since they rely on inserting breakpoints inside known routines
11768 of the GNAT runtime. The implementation therefore uses a standard
11769 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11770 of breakpoint_ops.
11771
11772 Support in the runtime for exception catchpoints have been changed
11773 a few times already, and these changes affect the implementation
11774 of these catchpoints. In order to be able to support several
11775 variants of the runtime, we use a sniffer that will determine
11776 the runtime variant used by the program being debugged. */
11777
11778 /* Ada's standard exceptions.
11779
11780 The Ada 83 standard also defined Numeric_Error. But there so many
11781 situations where it was unclear from the Ada 83 Reference Manual
11782 (RM) whether Constraint_Error or Numeric_Error should be raised,
11783 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11784 Interpretation saying that anytime the RM says that Numeric_Error
11785 should be raised, the implementation may raise Constraint_Error.
11786 Ada 95 went one step further and pretty much removed Numeric_Error
11787 from the list of standard exceptions (it made it a renaming of
11788 Constraint_Error, to help preserve compatibility when compiling
11789 an Ada83 compiler). As such, we do not include Numeric_Error from
11790 this list of standard exceptions. */
11791
11792 static const char *standard_exc[] = {
11793 "constraint_error",
11794 "program_error",
11795 "storage_error",
11796 "tasking_error"
11797 };
11798
11799 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11800
11801 /* A structure that describes how to support exception catchpoints
11802 for a given executable. */
11803
11804 struct exception_support_info
11805 {
11806 /* The name of the symbol to break on in order to insert
11807 a catchpoint on exceptions. */
11808 const char *catch_exception_sym;
11809
11810 /* The name of the symbol to break on in order to insert
11811 a catchpoint on unhandled exceptions. */
11812 const char *catch_exception_unhandled_sym;
11813
11814 /* The name of the symbol to break on in order to insert
11815 a catchpoint on failed assertions. */
11816 const char *catch_assert_sym;
11817
11818 /* The name of the symbol to break on in order to insert
11819 a catchpoint on exception handling. */
11820 const char *catch_handlers_sym;
11821
11822 /* Assuming that the inferior just triggered an unhandled exception
11823 catchpoint, this function is responsible for returning the address
11824 in inferior memory where the name of that exception is stored.
11825 Return zero if the address could not be computed. */
11826 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11827 };
11828
11829 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11830 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11831
11832 /* The following exception support info structure describes how to
11833 implement exception catchpoints with the latest version of the
11834 Ada runtime (as of 2019-08-??). */
11835
11836 static const struct exception_support_info default_exception_support_info =
11837 {
11838 "__gnat_debug_raise_exception", /* catch_exception_sym */
11839 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11840 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11841 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11842 ada_unhandled_exception_name_addr
11843 };
11844
11845 /* The following exception support info structure describes how to
11846 implement exception catchpoints with an earlier version of the
11847 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11848
11849 static const struct exception_support_info exception_support_info_v0 =
11850 {
11851 "__gnat_debug_raise_exception", /* catch_exception_sym */
11852 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11853 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11854 "__gnat_begin_handler", /* catch_handlers_sym */
11855 ada_unhandled_exception_name_addr
11856 };
11857
11858 /* The following exception support info structure describes how to
11859 implement exception catchpoints with a slightly older version
11860 of the Ada runtime. */
11861
11862 static const struct exception_support_info exception_support_info_fallback =
11863 {
11864 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11865 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11866 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11867 "__gnat_begin_handler", /* catch_handlers_sym */
11868 ada_unhandled_exception_name_addr_from_raise
11869 };
11870
11871 /* Return nonzero if we can detect the exception support routines
11872 described in EINFO.
11873
11874 This function errors out if an abnormal situation is detected
11875 (for instance, if we find the exception support routines, but
11876 that support is found to be incomplete). */
11877
11878 static int
11879 ada_has_this_exception_support (const struct exception_support_info *einfo)
11880 {
11881 struct symbol *sym;
11882
11883 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11884 that should be compiled with debugging information. As a result, we
11885 expect to find that symbol in the symtabs. */
11886
11887 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11888 if (sym == NULL)
11889 {
11890 /* Perhaps we did not find our symbol because the Ada runtime was
11891 compiled without debugging info, or simply stripped of it.
11892 It happens on some GNU/Linux distributions for instance, where
11893 users have to install a separate debug package in order to get
11894 the runtime's debugging info. In that situation, let the user
11895 know why we cannot insert an Ada exception catchpoint.
11896
11897 Note: Just for the purpose of inserting our Ada exception
11898 catchpoint, we could rely purely on the associated minimal symbol.
11899 But we would be operating in degraded mode anyway, since we are
11900 still lacking the debugging info needed later on to extract
11901 the name of the exception being raised (this name is printed in
11902 the catchpoint message, and is also used when trying to catch
11903 a specific exception). We do not handle this case for now. */
11904 struct bound_minimal_symbol msym
11905 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11906
11907 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11908 error (_("Your Ada runtime appears to be missing some debugging "
11909 "information.\nCannot insert Ada exception catchpoint "
11910 "in this configuration."));
11911
11912 return 0;
11913 }
11914
11915 /* Make sure that the symbol we found corresponds to a function. */
11916
11917 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11918 {
11919 error (_("Symbol \"%s\" is not a function (class = %d)"),
11920 sym->linkage_name (), SYMBOL_CLASS (sym));
11921 return 0;
11922 }
11923
11924 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11925 if (sym == NULL)
11926 {
11927 struct bound_minimal_symbol msym
11928 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11929
11930 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11931 error (_("Your Ada runtime appears to be missing some debugging "
11932 "information.\nCannot insert Ada exception catchpoint "
11933 "in this configuration."));
11934
11935 return 0;
11936 }
11937
11938 /* Make sure that the symbol we found corresponds to a function. */
11939
11940 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11941 {
11942 error (_("Symbol \"%s\" is not a function (class = %d)"),
11943 sym->linkage_name (), SYMBOL_CLASS (sym));
11944 return 0;
11945 }
11946
11947 return 1;
11948 }
11949
11950 /* Inspect the Ada runtime and determine which exception info structure
11951 should be used to provide support for exception catchpoints.
11952
11953 This function will always set the per-inferior exception_info,
11954 or raise an error. */
11955
11956 static void
11957 ada_exception_support_info_sniffer (void)
11958 {
11959 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11960
11961 /* If the exception info is already known, then no need to recompute it. */
11962 if (data->exception_info != NULL)
11963 return;
11964
11965 /* Check the latest (default) exception support info. */
11966 if (ada_has_this_exception_support (&default_exception_support_info))
11967 {
11968 data->exception_info = &default_exception_support_info;
11969 return;
11970 }
11971
11972 /* Try the v0 exception suport info. */
11973 if (ada_has_this_exception_support (&exception_support_info_v0))
11974 {
11975 data->exception_info = &exception_support_info_v0;
11976 return;
11977 }
11978
11979 /* Try our fallback exception suport info. */
11980 if (ada_has_this_exception_support (&exception_support_info_fallback))
11981 {
11982 data->exception_info = &exception_support_info_fallback;
11983 return;
11984 }
11985
11986 /* Sometimes, it is normal for us to not be able to find the routine
11987 we are looking for. This happens when the program is linked with
11988 the shared version of the GNAT runtime, and the program has not been
11989 started yet. Inform the user of these two possible causes if
11990 applicable. */
11991
11992 if (ada_update_initial_language (language_unknown) != language_ada)
11993 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11994
11995 /* If the symbol does not exist, then check that the program is
11996 already started, to make sure that shared libraries have been
11997 loaded. If it is not started, this may mean that the symbol is
11998 in a shared library. */
11999
12000 if (inferior_ptid.pid () == 0)
12001 error (_("Unable to insert catchpoint. Try to start the program first."));
12002
12003 /* At this point, we know that we are debugging an Ada program and
12004 that the inferior has been started, but we still are not able to
12005 find the run-time symbols. That can mean that we are in
12006 configurable run time mode, or that a-except as been optimized
12007 out by the linker... In any case, at this point it is not worth
12008 supporting this feature. */
12009
12010 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12011 }
12012
12013 /* True iff FRAME is very likely to be that of a function that is
12014 part of the runtime system. This is all very heuristic, but is
12015 intended to be used as advice as to what frames are uninteresting
12016 to most users. */
12017
12018 static int
12019 is_known_support_routine (struct frame_info *frame)
12020 {
12021 enum language func_lang;
12022 int i;
12023 const char *fullname;
12024
12025 /* If this code does not have any debugging information (no symtab),
12026 This cannot be any user code. */
12027
12028 symtab_and_line sal = find_frame_sal (frame);
12029 if (sal.symtab == NULL)
12030 return 1;
12031
12032 /* If there is a symtab, but the associated source file cannot be
12033 located, then assume this is not user code: Selecting a frame
12034 for which we cannot display the code would not be very helpful
12035 for the user. This should also take care of case such as VxWorks
12036 where the kernel has some debugging info provided for a few units. */
12037
12038 fullname = symtab_to_fullname (sal.symtab);
12039 if (access (fullname, R_OK) != 0)
12040 return 1;
12041
12042 /* Check the unit filename against the Ada runtime file naming.
12043 We also check the name of the objfile against the name of some
12044 known system libraries that sometimes come with debugging info
12045 too. */
12046
12047 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12048 {
12049 re_comp (known_runtime_file_name_patterns[i]);
12050 if (re_exec (lbasename (sal.symtab->filename)))
12051 return 1;
12052 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12053 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12054 return 1;
12055 }
12056
12057 /* Check whether the function is a GNAT-generated entity. */
12058
12059 gdb::unique_xmalloc_ptr<char> func_name
12060 = find_frame_funname (frame, &func_lang, NULL);
12061 if (func_name == NULL)
12062 return 1;
12063
12064 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12065 {
12066 re_comp (known_auxiliary_function_name_patterns[i]);
12067 if (re_exec (func_name.get ()))
12068 return 1;
12069 }
12070
12071 return 0;
12072 }
12073
12074 /* Find the first frame that contains debugging information and that is not
12075 part of the Ada run-time, starting from FI and moving upward. */
12076
12077 void
12078 ada_find_printable_frame (struct frame_info *fi)
12079 {
12080 for (; fi != NULL; fi = get_prev_frame (fi))
12081 {
12082 if (!is_known_support_routine (fi))
12083 {
12084 select_frame (fi);
12085 break;
12086 }
12087 }
12088
12089 }
12090
12091 /* Assuming that the inferior just triggered an unhandled exception
12092 catchpoint, return the address in inferior memory where the name
12093 of the exception is stored.
12094
12095 Return zero if the address could not be computed. */
12096
12097 static CORE_ADDR
12098 ada_unhandled_exception_name_addr (void)
12099 {
12100 return parse_and_eval_address ("e.full_name");
12101 }
12102
12103 /* Same as ada_unhandled_exception_name_addr, except that this function
12104 should be used when the inferior uses an older version of the runtime,
12105 where the exception name needs to be extracted from a specific frame
12106 several frames up in the callstack. */
12107
12108 static CORE_ADDR
12109 ada_unhandled_exception_name_addr_from_raise (void)
12110 {
12111 int frame_level;
12112 struct frame_info *fi;
12113 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12114
12115 /* To determine the name of this exception, we need to select
12116 the frame corresponding to RAISE_SYM_NAME. This frame is
12117 at least 3 levels up, so we simply skip the first 3 frames
12118 without checking the name of their associated function. */
12119 fi = get_current_frame ();
12120 for (frame_level = 0; frame_level < 3; frame_level += 1)
12121 if (fi != NULL)
12122 fi = get_prev_frame (fi);
12123
12124 while (fi != NULL)
12125 {
12126 enum language func_lang;
12127
12128 gdb::unique_xmalloc_ptr<char> func_name
12129 = find_frame_funname (fi, &func_lang, NULL);
12130 if (func_name != NULL)
12131 {
12132 if (strcmp (func_name.get (),
12133 data->exception_info->catch_exception_sym) == 0)
12134 break; /* We found the frame we were looking for... */
12135 }
12136 fi = get_prev_frame (fi);
12137 }
12138
12139 if (fi == NULL)
12140 return 0;
12141
12142 select_frame (fi);
12143 return parse_and_eval_address ("id.full_name");
12144 }
12145
12146 /* Assuming the inferior just triggered an Ada exception catchpoint
12147 (of any type), return the address in inferior memory where the name
12148 of the exception is stored, if applicable.
12149
12150 Assumes the selected frame is the current frame.
12151
12152 Return zero if the address could not be computed, or if not relevant. */
12153
12154 static CORE_ADDR
12155 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12156 struct breakpoint *b)
12157 {
12158 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12159
12160 switch (ex)
12161 {
12162 case ada_catch_exception:
12163 return (parse_and_eval_address ("e.full_name"));
12164 break;
12165
12166 case ada_catch_exception_unhandled:
12167 return data->exception_info->unhandled_exception_name_addr ();
12168 break;
12169
12170 case ada_catch_handlers:
12171 return 0; /* The runtimes does not provide access to the exception
12172 name. */
12173 break;
12174
12175 case ada_catch_assert:
12176 return 0; /* Exception name is not relevant in this case. */
12177 break;
12178
12179 default:
12180 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12181 break;
12182 }
12183
12184 return 0; /* Should never be reached. */
12185 }
12186
12187 /* Assuming the inferior is stopped at an exception catchpoint,
12188 return the message which was associated to the exception, if
12189 available. Return NULL if the message could not be retrieved.
12190
12191 Note: The exception message can be associated to an exception
12192 either through the use of the Raise_Exception function, or
12193 more simply (Ada 2005 and later), via:
12194
12195 raise Exception_Name with "exception message";
12196
12197 */
12198
12199 static gdb::unique_xmalloc_ptr<char>
12200 ada_exception_message_1 (void)
12201 {
12202 struct value *e_msg_val;
12203 int e_msg_len;
12204
12205 /* For runtimes that support this feature, the exception message
12206 is passed as an unbounded string argument called "message". */
12207 e_msg_val = parse_and_eval ("message");
12208 if (e_msg_val == NULL)
12209 return NULL; /* Exception message not supported. */
12210
12211 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12212 gdb_assert (e_msg_val != NULL);
12213 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12214
12215 /* If the message string is empty, then treat it as if there was
12216 no exception message. */
12217 if (e_msg_len <= 0)
12218 return NULL;
12219
12220 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12221 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12222 e_msg.get ()[e_msg_len] = '\0';
12223
12224 return e_msg;
12225 }
12226
12227 /* Same as ada_exception_message_1, except that all exceptions are
12228 contained here (returning NULL instead). */
12229
12230 static gdb::unique_xmalloc_ptr<char>
12231 ada_exception_message (void)
12232 {
12233 gdb::unique_xmalloc_ptr<char> e_msg;
12234
12235 try
12236 {
12237 e_msg = ada_exception_message_1 ();
12238 }
12239 catch (const gdb_exception_error &e)
12240 {
12241 e_msg.reset (nullptr);
12242 }
12243
12244 return e_msg;
12245 }
12246
12247 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12248 any error that ada_exception_name_addr_1 might cause to be thrown.
12249 When an error is intercepted, a warning with the error message is printed,
12250 and zero is returned. */
12251
12252 static CORE_ADDR
12253 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12254 struct breakpoint *b)
12255 {
12256 CORE_ADDR result = 0;
12257
12258 try
12259 {
12260 result = ada_exception_name_addr_1 (ex, b);
12261 }
12262
12263 catch (const gdb_exception_error &e)
12264 {
12265 warning (_("failed to get exception name: %s"), e.what ());
12266 return 0;
12267 }
12268
12269 return result;
12270 }
12271
12272 static std::string ada_exception_catchpoint_cond_string
12273 (const char *excep_string,
12274 enum ada_exception_catchpoint_kind ex);
12275
12276 /* Ada catchpoints.
12277
12278 In the case of catchpoints on Ada exceptions, the catchpoint will
12279 stop the target on every exception the program throws. When a user
12280 specifies the name of a specific exception, we translate this
12281 request into a condition expression (in text form), and then parse
12282 it into an expression stored in each of the catchpoint's locations.
12283 We then use this condition to check whether the exception that was
12284 raised is the one the user is interested in. If not, then the
12285 target is resumed again. We store the name of the requested
12286 exception, in order to be able to re-set the condition expression
12287 when symbols change. */
12288
12289 /* An instance of this type is used to represent an Ada catchpoint
12290 breakpoint location. */
12291
12292 class ada_catchpoint_location : public bp_location
12293 {
12294 public:
12295 ada_catchpoint_location (breakpoint *owner)
12296 : bp_location (owner, bp_loc_software_breakpoint)
12297 {}
12298
12299 /* The condition that checks whether the exception that was raised
12300 is the specific exception the user specified on catchpoint
12301 creation. */
12302 expression_up excep_cond_expr;
12303 };
12304
12305 /* An instance of this type is used to represent an Ada catchpoint. */
12306
12307 struct ada_catchpoint : public breakpoint
12308 {
12309 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12310 : m_kind (kind)
12311 {
12312 }
12313
12314 /* The name of the specific exception the user specified. */
12315 std::string excep_string;
12316
12317 /* What kind of catchpoint this is. */
12318 enum ada_exception_catchpoint_kind m_kind;
12319 };
12320
12321 /* Parse the exception condition string in the context of each of the
12322 catchpoint's locations, and store them for later evaluation. */
12323
12324 static void
12325 create_excep_cond_exprs (struct ada_catchpoint *c,
12326 enum ada_exception_catchpoint_kind ex)
12327 {
12328 struct bp_location *bl;
12329
12330 /* Nothing to do if there's no specific exception to catch. */
12331 if (c->excep_string.empty ())
12332 return;
12333
12334 /* Same if there are no locations... */
12335 if (c->loc == NULL)
12336 return;
12337
12338 /* Compute the condition expression in text form, from the specific
12339 expection we want to catch. */
12340 std::string cond_string
12341 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12342
12343 /* Iterate over all the catchpoint's locations, and parse an
12344 expression for each. */
12345 for (bl = c->loc; bl != NULL; bl = bl->next)
12346 {
12347 struct ada_catchpoint_location *ada_loc
12348 = (struct ada_catchpoint_location *) bl;
12349 expression_up exp;
12350
12351 if (!bl->shlib_disabled)
12352 {
12353 const char *s;
12354
12355 s = cond_string.c_str ();
12356 try
12357 {
12358 exp = parse_exp_1 (&s, bl->address,
12359 block_for_pc (bl->address),
12360 0);
12361 }
12362 catch (const gdb_exception_error &e)
12363 {
12364 warning (_("failed to reevaluate internal exception condition "
12365 "for catchpoint %d: %s"),
12366 c->number, e.what ());
12367 }
12368 }
12369
12370 ada_loc->excep_cond_expr = std::move (exp);
12371 }
12372 }
12373
12374 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12375 structure for all exception catchpoint kinds. */
12376
12377 static struct bp_location *
12378 allocate_location_exception (struct breakpoint *self)
12379 {
12380 return new ada_catchpoint_location (self);
12381 }
12382
12383 /* Implement the RE_SET method in the breakpoint_ops structure for all
12384 exception catchpoint kinds. */
12385
12386 static void
12387 re_set_exception (struct breakpoint *b)
12388 {
12389 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12390
12391 /* Call the base class's method. This updates the catchpoint's
12392 locations. */
12393 bkpt_breakpoint_ops.re_set (b);
12394
12395 /* Reparse the exception conditional expressions. One for each
12396 location. */
12397 create_excep_cond_exprs (c, c->m_kind);
12398 }
12399
12400 /* Returns true if we should stop for this breakpoint hit. If the
12401 user specified a specific exception, we only want to cause a stop
12402 if the program thrown that exception. */
12403
12404 static int
12405 should_stop_exception (const struct bp_location *bl)
12406 {
12407 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12408 const struct ada_catchpoint_location *ada_loc
12409 = (const struct ada_catchpoint_location *) bl;
12410 int stop;
12411
12412 struct internalvar *var = lookup_internalvar ("_ada_exception");
12413 if (c->m_kind == ada_catch_assert)
12414 clear_internalvar (var);
12415 else
12416 {
12417 try
12418 {
12419 const char *expr;
12420
12421 if (c->m_kind == ada_catch_handlers)
12422 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12423 ".all.occurrence.id");
12424 else
12425 expr = "e";
12426
12427 struct value *exc = parse_and_eval (expr);
12428 set_internalvar (var, exc);
12429 }
12430 catch (const gdb_exception_error &ex)
12431 {
12432 clear_internalvar (var);
12433 }
12434 }
12435
12436 /* With no specific exception, should always stop. */
12437 if (c->excep_string.empty ())
12438 return 1;
12439
12440 if (ada_loc->excep_cond_expr == NULL)
12441 {
12442 /* We will have a NULL expression if back when we were creating
12443 the expressions, this location's had failed to parse. */
12444 return 1;
12445 }
12446
12447 stop = 1;
12448 try
12449 {
12450 struct value *mark;
12451
12452 mark = value_mark ();
12453 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12454 value_free_to_mark (mark);
12455 }
12456 catch (const gdb_exception &ex)
12457 {
12458 exception_fprintf (gdb_stderr, ex,
12459 _("Error in testing exception condition:\n"));
12460 }
12461
12462 return stop;
12463 }
12464
12465 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12466 for all exception catchpoint kinds. */
12467
12468 static void
12469 check_status_exception (bpstat bs)
12470 {
12471 bs->stop = should_stop_exception (bs->bp_location_at);
12472 }
12473
12474 /* Implement the PRINT_IT method in the breakpoint_ops structure
12475 for all exception catchpoint kinds. */
12476
12477 static enum print_stop_action
12478 print_it_exception (bpstat bs)
12479 {
12480 struct ui_out *uiout = current_uiout;
12481 struct breakpoint *b = bs->breakpoint_at;
12482
12483 annotate_catchpoint (b->number);
12484
12485 if (uiout->is_mi_like_p ())
12486 {
12487 uiout->field_string ("reason",
12488 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12489 uiout->field_string ("disp", bpdisp_text (b->disposition));
12490 }
12491
12492 uiout->text (b->disposition == disp_del
12493 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12494 uiout->field_signed ("bkptno", b->number);
12495 uiout->text (", ");
12496
12497 /* ada_exception_name_addr relies on the selected frame being the
12498 current frame. Need to do this here because this function may be
12499 called more than once when printing a stop, and below, we'll
12500 select the first frame past the Ada run-time (see
12501 ada_find_printable_frame). */
12502 select_frame (get_current_frame ());
12503
12504 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12505 switch (c->m_kind)
12506 {
12507 case ada_catch_exception:
12508 case ada_catch_exception_unhandled:
12509 case ada_catch_handlers:
12510 {
12511 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12512 char exception_name[256];
12513
12514 if (addr != 0)
12515 {
12516 read_memory (addr, (gdb_byte *) exception_name,
12517 sizeof (exception_name) - 1);
12518 exception_name [sizeof (exception_name) - 1] = '\0';
12519 }
12520 else
12521 {
12522 /* For some reason, we were unable to read the exception
12523 name. This could happen if the Runtime was compiled
12524 without debugging info, for instance. In that case,
12525 just replace the exception name by the generic string
12526 "exception" - it will read as "an exception" in the
12527 notification we are about to print. */
12528 memcpy (exception_name, "exception", sizeof ("exception"));
12529 }
12530 /* In the case of unhandled exception breakpoints, we print
12531 the exception name as "unhandled EXCEPTION_NAME", to make
12532 it clearer to the user which kind of catchpoint just got
12533 hit. We used ui_out_text to make sure that this extra
12534 info does not pollute the exception name in the MI case. */
12535 if (c->m_kind == ada_catch_exception_unhandled)
12536 uiout->text ("unhandled ");
12537 uiout->field_string ("exception-name", exception_name);
12538 }
12539 break;
12540 case ada_catch_assert:
12541 /* In this case, the name of the exception is not really
12542 important. Just print "failed assertion" to make it clearer
12543 that his program just hit an assertion-failure catchpoint.
12544 We used ui_out_text because this info does not belong in
12545 the MI output. */
12546 uiout->text ("failed assertion");
12547 break;
12548 }
12549
12550 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12551 if (exception_message != NULL)
12552 {
12553 uiout->text (" (");
12554 uiout->field_string ("exception-message", exception_message.get ());
12555 uiout->text (")");
12556 }
12557
12558 uiout->text (" at ");
12559 ada_find_printable_frame (get_current_frame ());
12560
12561 return PRINT_SRC_AND_LOC;
12562 }
12563
12564 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12565 for all exception catchpoint kinds. */
12566
12567 static void
12568 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12569 {
12570 struct ui_out *uiout = current_uiout;
12571 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12572 struct value_print_options opts;
12573
12574 get_user_print_options (&opts);
12575
12576 if (opts.addressprint)
12577 uiout->field_skip ("addr");
12578
12579 annotate_field (5);
12580 switch (c->m_kind)
12581 {
12582 case ada_catch_exception:
12583 if (!c->excep_string.empty ())
12584 {
12585 std::string msg = string_printf (_("`%s' Ada exception"),
12586 c->excep_string.c_str ());
12587
12588 uiout->field_string ("what", msg);
12589 }
12590 else
12591 uiout->field_string ("what", "all Ada exceptions");
12592
12593 break;
12594
12595 case ada_catch_exception_unhandled:
12596 uiout->field_string ("what", "unhandled Ada exceptions");
12597 break;
12598
12599 case ada_catch_handlers:
12600 if (!c->excep_string.empty ())
12601 {
12602 uiout->field_fmt ("what",
12603 _("`%s' Ada exception handlers"),
12604 c->excep_string.c_str ());
12605 }
12606 else
12607 uiout->field_string ("what", "all Ada exceptions handlers");
12608 break;
12609
12610 case ada_catch_assert:
12611 uiout->field_string ("what", "failed Ada assertions");
12612 break;
12613
12614 default:
12615 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12616 break;
12617 }
12618 }
12619
12620 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12621 for all exception catchpoint kinds. */
12622
12623 static void
12624 print_mention_exception (struct breakpoint *b)
12625 {
12626 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12627 struct ui_out *uiout = current_uiout;
12628
12629 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12630 : _("Catchpoint "));
12631 uiout->field_signed ("bkptno", b->number);
12632 uiout->text (": ");
12633
12634 switch (c->m_kind)
12635 {
12636 case ada_catch_exception:
12637 if (!c->excep_string.empty ())
12638 {
12639 std::string info = string_printf (_("`%s' Ada exception"),
12640 c->excep_string.c_str ());
12641 uiout->text (info.c_str ());
12642 }
12643 else
12644 uiout->text (_("all Ada exceptions"));
12645 break;
12646
12647 case ada_catch_exception_unhandled:
12648 uiout->text (_("unhandled Ada exceptions"));
12649 break;
12650
12651 case ada_catch_handlers:
12652 if (!c->excep_string.empty ())
12653 {
12654 std::string info
12655 = string_printf (_("`%s' Ada exception handlers"),
12656 c->excep_string.c_str ());
12657 uiout->text (info.c_str ());
12658 }
12659 else
12660 uiout->text (_("all Ada exceptions handlers"));
12661 break;
12662
12663 case ada_catch_assert:
12664 uiout->text (_("failed Ada assertions"));
12665 break;
12666
12667 default:
12668 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12669 break;
12670 }
12671 }
12672
12673 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12674 for all exception catchpoint kinds. */
12675
12676 static void
12677 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12678 {
12679 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12680
12681 switch (c->m_kind)
12682 {
12683 case ada_catch_exception:
12684 fprintf_filtered (fp, "catch exception");
12685 if (!c->excep_string.empty ())
12686 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12687 break;
12688
12689 case ada_catch_exception_unhandled:
12690 fprintf_filtered (fp, "catch exception unhandled");
12691 break;
12692
12693 case ada_catch_handlers:
12694 fprintf_filtered (fp, "catch handlers");
12695 break;
12696
12697 case ada_catch_assert:
12698 fprintf_filtered (fp, "catch assert");
12699 break;
12700
12701 default:
12702 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12703 }
12704 print_recreate_thread (b, fp);
12705 }
12706
12707 /* Virtual tables for various breakpoint types. */
12708 static struct breakpoint_ops catch_exception_breakpoint_ops;
12709 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12710 static struct breakpoint_ops catch_assert_breakpoint_ops;
12711 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12712
12713 /* See ada-lang.h. */
12714
12715 bool
12716 is_ada_exception_catchpoint (breakpoint *bp)
12717 {
12718 return (bp->ops == &catch_exception_breakpoint_ops
12719 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12720 || bp->ops == &catch_assert_breakpoint_ops
12721 || bp->ops == &catch_handlers_breakpoint_ops);
12722 }
12723
12724 /* Split the arguments specified in a "catch exception" command.
12725 Set EX to the appropriate catchpoint type.
12726 Set EXCEP_STRING to the name of the specific exception if
12727 specified by the user.
12728 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12729 "catch handlers" command. False otherwise.
12730 If a condition is found at the end of the arguments, the condition
12731 expression is stored in COND_STRING (memory must be deallocated
12732 after use). Otherwise COND_STRING is set to NULL. */
12733
12734 static void
12735 catch_ada_exception_command_split (const char *args,
12736 bool is_catch_handlers_cmd,
12737 enum ada_exception_catchpoint_kind *ex,
12738 std::string *excep_string,
12739 std::string *cond_string)
12740 {
12741 std::string exception_name;
12742
12743 exception_name = extract_arg (&args);
12744 if (exception_name == "if")
12745 {
12746 /* This is not an exception name; this is the start of a condition
12747 expression for a catchpoint on all exceptions. So, "un-get"
12748 this token, and set exception_name to NULL. */
12749 exception_name.clear ();
12750 args -= 2;
12751 }
12752
12753 /* Check to see if we have a condition. */
12754
12755 args = skip_spaces (args);
12756 if (startswith (args, "if")
12757 && (isspace (args[2]) || args[2] == '\0'))
12758 {
12759 args += 2;
12760 args = skip_spaces (args);
12761
12762 if (args[0] == '\0')
12763 error (_("Condition missing after `if' keyword"));
12764 *cond_string = args;
12765
12766 args += strlen (args);
12767 }
12768
12769 /* Check that we do not have any more arguments. Anything else
12770 is unexpected. */
12771
12772 if (args[0] != '\0')
12773 error (_("Junk at end of expression"));
12774
12775 if (is_catch_handlers_cmd)
12776 {
12777 /* Catch handling of exceptions. */
12778 *ex = ada_catch_handlers;
12779 *excep_string = exception_name;
12780 }
12781 else if (exception_name.empty ())
12782 {
12783 /* Catch all exceptions. */
12784 *ex = ada_catch_exception;
12785 excep_string->clear ();
12786 }
12787 else if (exception_name == "unhandled")
12788 {
12789 /* Catch unhandled exceptions. */
12790 *ex = ada_catch_exception_unhandled;
12791 excep_string->clear ();
12792 }
12793 else
12794 {
12795 /* Catch a specific exception. */
12796 *ex = ada_catch_exception;
12797 *excep_string = exception_name;
12798 }
12799 }
12800
12801 /* Return the name of the symbol on which we should break in order to
12802 implement a catchpoint of the EX kind. */
12803
12804 static const char *
12805 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12806 {
12807 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12808
12809 gdb_assert (data->exception_info != NULL);
12810
12811 switch (ex)
12812 {
12813 case ada_catch_exception:
12814 return (data->exception_info->catch_exception_sym);
12815 break;
12816 case ada_catch_exception_unhandled:
12817 return (data->exception_info->catch_exception_unhandled_sym);
12818 break;
12819 case ada_catch_assert:
12820 return (data->exception_info->catch_assert_sym);
12821 break;
12822 case ada_catch_handlers:
12823 return (data->exception_info->catch_handlers_sym);
12824 break;
12825 default:
12826 internal_error (__FILE__, __LINE__,
12827 _("unexpected catchpoint kind (%d)"), ex);
12828 }
12829 }
12830
12831 /* Return the breakpoint ops "virtual table" used for catchpoints
12832 of the EX kind. */
12833
12834 static const struct breakpoint_ops *
12835 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12836 {
12837 switch (ex)
12838 {
12839 case ada_catch_exception:
12840 return (&catch_exception_breakpoint_ops);
12841 break;
12842 case ada_catch_exception_unhandled:
12843 return (&catch_exception_unhandled_breakpoint_ops);
12844 break;
12845 case ada_catch_assert:
12846 return (&catch_assert_breakpoint_ops);
12847 break;
12848 case ada_catch_handlers:
12849 return (&catch_handlers_breakpoint_ops);
12850 break;
12851 default:
12852 internal_error (__FILE__, __LINE__,
12853 _("unexpected catchpoint kind (%d)"), ex);
12854 }
12855 }
12856
12857 /* Return the condition that will be used to match the current exception
12858 being raised with the exception that the user wants to catch. This
12859 assumes that this condition is used when the inferior just triggered
12860 an exception catchpoint.
12861 EX: the type of catchpoints used for catching Ada exceptions. */
12862
12863 static std::string
12864 ada_exception_catchpoint_cond_string (const char *excep_string,
12865 enum ada_exception_catchpoint_kind ex)
12866 {
12867 int i;
12868 bool is_standard_exc = false;
12869 std::string result;
12870
12871 if (ex == ada_catch_handlers)
12872 {
12873 /* For exception handlers catchpoints, the condition string does
12874 not use the same parameter as for the other exceptions. */
12875 result = ("long_integer (GNAT_GCC_exception_Access"
12876 "(gcc_exception).all.occurrence.id)");
12877 }
12878 else
12879 result = "long_integer (e)";
12880
12881 /* The standard exceptions are a special case. They are defined in
12882 runtime units that have been compiled without debugging info; if
12883 EXCEP_STRING is the not-fully-qualified name of a standard
12884 exception (e.g. "constraint_error") then, during the evaluation
12885 of the condition expression, the symbol lookup on this name would
12886 *not* return this standard exception. The catchpoint condition
12887 may then be set only on user-defined exceptions which have the
12888 same not-fully-qualified name (e.g. my_package.constraint_error).
12889
12890 To avoid this unexcepted behavior, these standard exceptions are
12891 systematically prefixed by "standard". This means that "catch
12892 exception constraint_error" is rewritten into "catch exception
12893 standard.constraint_error".
12894
12895 If an exception named constraint_error is defined in another package of
12896 the inferior program, then the only way to specify this exception as a
12897 breakpoint condition is to use its fully-qualified named:
12898 e.g. my_package.constraint_error. */
12899
12900 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12901 {
12902 if (strcmp (standard_exc [i], excep_string) == 0)
12903 {
12904 is_standard_exc = true;
12905 break;
12906 }
12907 }
12908
12909 result += " = ";
12910
12911 if (is_standard_exc)
12912 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12913 else
12914 string_appendf (result, "long_integer (&%s)", excep_string);
12915
12916 return result;
12917 }
12918
12919 /* Return the symtab_and_line that should be used to insert an exception
12920 catchpoint of the TYPE kind.
12921
12922 ADDR_STRING returns the name of the function where the real
12923 breakpoint that implements the catchpoints is set, depending on the
12924 type of catchpoint we need to create. */
12925
12926 static struct symtab_and_line
12927 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12928 std::string *addr_string, const struct breakpoint_ops **ops)
12929 {
12930 const char *sym_name;
12931 struct symbol *sym;
12932
12933 /* First, find out which exception support info to use. */
12934 ada_exception_support_info_sniffer ();
12935
12936 /* Then lookup the function on which we will break in order to catch
12937 the Ada exceptions requested by the user. */
12938 sym_name = ada_exception_sym_name (ex);
12939 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12940
12941 if (sym == NULL)
12942 error (_("Catchpoint symbol not found: %s"), sym_name);
12943
12944 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12945 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12946
12947 /* Set ADDR_STRING. */
12948 *addr_string = sym_name;
12949
12950 /* Set OPS. */
12951 *ops = ada_exception_breakpoint_ops (ex);
12952
12953 return find_function_start_sal (sym, 1);
12954 }
12955
12956 /* Create an Ada exception catchpoint.
12957
12958 EX_KIND is the kind of exception catchpoint to be created.
12959
12960 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12961 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12962 of the exception to which this catchpoint applies.
12963
12964 COND_STRING, if not empty, is the catchpoint condition.
12965
12966 TEMPFLAG, if nonzero, means that the underlying breakpoint
12967 should be temporary.
12968
12969 FROM_TTY is the usual argument passed to all commands implementations. */
12970
12971 void
12972 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12973 enum ada_exception_catchpoint_kind ex_kind,
12974 const std::string &excep_string,
12975 const std::string &cond_string,
12976 int tempflag,
12977 int disabled,
12978 int from_tty)
12979 {
12980 std::string addr_string;
12981 const struct breakpoint_ops *ops = NULL;
12982 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12983
12984 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12985 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12986 ops, tempflag, disabled, from_tty);
12987 c->excep_string = excep_string;
12988 create_excep_cond_exprs (c.get (), ex_kind);
12989 if (!cond_string.empty ())
12990 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12991 install_breakpoint (0, std::move (c), 1);
12992 }
12993
12994 /* Implement the "catch exception" command. */
12995
12996 static void
12997 catch_ada_exception_command (const char *arg_entry, int from_tty,
12998 struct cmd_list_element *command)
12999 {
13000 const char *arg = arg_entry;
13001 struct gdbarch *gdbarch = get_current_arch ();
13002 int tempflag;
13003 enum ada_exception_catchpoint_kind ex_kind;
13004 std::string excep_string;
13005 std::string cond_string;
13006
13007 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13008
13009 if (!arg)
13010 arg = "";
13011 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13012 &cond_string);
13013 create_ada_exception_catchpoint (gdbarch, ex_kind,
13014 excep_string, cond_string,
13015 tempflag, 1 /* enabled */,
13016 from_tty);
13017 }
13018
13019 /* Implement the "catch handlers" command. */
13020
13021 static void
13022 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13023 struct cmd_list_element *command)
13024 {
13025 const char *arg = arg_entry;
13026 struct gdbarch *gdbarch = get_current_arch ();
13027 int tempflag;
13028 enum ada_exception_catchpoint_kind ex_kind;
13029 std::string excep_string;
13030 std::string cond_string;
13031
13032 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13033
13034 if (!arg)
13035 arg = "";
13036 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13037 &cond_string);
13038 create_ada_exception_catchpoint (gdbarch, ex_kind,
13039 excep_string, cond_string,
13040 tempflag, 1 /* enabled */,
13041 from_tty);
13042 }
13043
13044 /* Completion function for the Ada "catch" commands. */
13045
13046 static void
13047 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13048 const char *text, const char *word)
13049 {
13050 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13051
13052 for (const ada_exc_info &info : exceptions)
13053 {
13054 if (startswith (info.name, word))
13055 tracker.add_completion (make_unique_xstrdup (info.name));
13056 }
13057 }
13058
13059 /* Split the arguments specified in a "catch assert" command.
13060
13061 ARGS contains the command's arguments (or the empty string if
13062 no arguments were passed).
13063
13064 If ARGS contains a condition, set COND_STRING to that condition
13065 (the memory needs to be deallocated after use). */
13066
13067 static void
13068 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13069 {
13070 args = skip_spaces (args);
13071
13072 /* Check whether a condition was provided. */
13073 if (startswith (args, "if")
13074 && (isspace (args[2]) || args[2] == '\0'))
13075 {
13076 args += 2;
13077 args = skip_spaces (args);
13078 if (args[0] == '\0')
13079 error (_("condition missing after `if' keyword"));
13080 cond_string.assign (args);
13081 }
13082
13083 /* Otherwise, there should be no other argument at the end of
13084 the command. */
13085 else if (args[0] != '\0')
13086 error (_("Junk at end of arguments."));
13087 }
13088
13089 /* Implement the "catch assert" command. */
13090
13091 static void
13092 catch_assert_command (const char *arg_entry, int from_tty,
13093 struct cmd_list_element *command)
13094 {
13095 const char *arg = arg_entry;
13096 struct gdbarch *gdbarch = get_current_arch ();
13097 int tempflag;
13098 std::string cond_string;
13099
13100 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13101
13102 if (!arg)
13103 arg = "";
13104 catch_ada_assert_command_split (arg, cond_string);
13105 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13106 "", cond_string,
13107 tempflag, 1 /* enabled */,
13108 from_tty);
13109 }
13110
13111 /* Return non-zero if the symbol SYM is an Ada exception object. */
13112
13113 static int
13114 ada_is_exception_sym (struct symbol *sym)
13115 {
13116 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13117
13118 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13119 && SYMBOL_CLASS (sym) != LOC_BLOCK
13120 && SYMBOL_CLASS (sym) != LOC_CONST
13121 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13122 && type_name != NULL && strcmp (type_name, "exception") == 0);
13123 }
13124
13125 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13126 Ada exception object. This matches all exceptions except the ones
13127 defined by the Ada language. */
13128
13129 static int
13130 ada_is_non_standard_exception_sym (struct symbol *sym)
13131 {
13132 int i;
13133
13134 if (!ada_is_exception_sym (sym))
13135 return 0;
13136
13137 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13138 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
13139 return 0; /* A standard exception. */
13140
13141 /* Numeric_Error is also a standard exception, so exclude it.
13142 See the STANDARD_EXC description for more details as to why
13143 this exception is not listed in that array. */
13144 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
13145 return 0;
13146
13147 return 1;
13148 }
13149
13150 /* A helper function for std::sort, comparing two struct ada_exc_info
13151 objects.
13152
13153 The comparison is determined first by exception name, and then
13154 by exception address. */
13155
13156 bool
13157 ada_exc_info::operator< (const ada_exc_info &other) const
13158 {
13159 int result;
13160
13161 result = strcmp (name, other.name);
13162 if (result < 0)
13163 return true;
13164 if (result == 0 && addr < other.addr)
13165 return true;
13166 return false;
13167 }
13168
13169 bool
13170 ada_exc_info::operator== (const ada_exc_info &other) const
13171 {
13172 return addr == other.addr && strcmp (name, other.name) == 0;
13173 }
13174
13175 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13176 routine, but keeping the first SKIP elements untouched.
13177
13178 All duplicates are also removed. */
13179
13180 static void
13181 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13182 int skip)
13183 {
13184 std::sort (exceptions->begin () + skip, exceptions->end ());
13185 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13186 exceptions->end ());
13187 }
13188
13189 /* Add all exceptions defined by the Ada standard whose name match
13190 a regular expression.
13191
13192 If PREG is not NULL, then this regexp_t object is used to
13193 perform the symbol name matching. Otherwise, no name-based
13194 filtering is performed.
13195
13196 EXCEPTIONS is a vector of exceptions to which matching exceptions
13197 gets pushed. */
13198
13199 static void
13200 ada_add_standard_exceptions (compiled_regex *preg,
13201 std::vector<ada_exc_info> *exceptions)
13202 {
13203 int i;
13204
13205 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13206 {
13207 if (preg == NULL
13208 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13209 {
13210 struct bound_minimal_symbol msymbol
13211 = ada_lookup_simple_minsym (standard_exc[i]);
13212
13213 if (msymbol.minsym != NULL)
13214 {
13215 struct ada_exc_info info
13216 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13217
13218 exceptions->push_back (info);
13219 }
13220 }
13221 }
13222 }
13223
13224 /* Add all Ada exceptions defined locally and accessible from the given
13225 FRAME.
13226
13227 If PREG is not NULL, then this regexp_t object is used to
13228 perform the symbol name matching. Otherwise, no name-based
13229 filtering is performed.
13230
13231 EXCEPTIONS is a vector of exceptions to which matching exceptions
13232 gets pushed. */
13233
13234 static void
13235 ada_add_exceptions_from_frame (compiled_regex *preg,
13236 struct frame_info *frame,
13237 std::vector<ada_exc_info> *exceptions)
13238 {
13239 const struct block *block = get_frame_block (frame, 0);
13240
13241 while (block != 0)
13242 {
13243 struct block_iterator iter;
13244 struct symbol *sym;
13245
13246 ALL_BLOCK_SYMBOLS (block, iter, sym)
13247 {
13248 switch (SYMBOL_CLASS (sym))
13249 {
13250 case LOC_TYPEDEF:
13251 case LOC_BLOCK:
13252 case LOC_CONST:
13253 break;
13254 default:
13255 if (ada_is_exception_sym (sym))
13256 {
13257 struct ada_exc_info info = {sym->print_name (),
13258 SYMBOL_VALUE_ADDRESS (sym)};
13259
13260 exceptions->push_back (info);
13261 }
13262 }
13263 }
13264 if (BLOCK_FUNCTION (block) != NULL)
13265 break;
13266 block = BLOCK_SUPERBLOCK (block);
13267 }
13268 }
13269
13270 /* Return true if NAME matches PREG or if PREG is NULL. */
13271
13272 static bool
13273 name_matches_regex (const char *name, compiled_regex *preg)
13274 {
13275 return (preg == NULL
13276 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13277 }
13278
13279 /* Add all exceptions defined globally whose name name match
13280 a regular expression, excluding standard exceptions.
13281
13282 The reason we exclude standard exceptions is that they need
13283 to be handled separately: Standard exceptions are defined inside
13284 a runtime unit which is normally not compiled with debugging info,
13285 and thus usually do not show up in our symbol search. However,
13286 if the unit was in fact built with debugging info, we need to
13287 exclude them because they would duplicate the entry we found
13288 during the special loop that specifically searches for those
13289 standard exceptions.
13290
13291 If PREG is not NULL, then this regexp_t object is used to
13292 perform the symbol name matching. Otherwise, no name-based
13293 filtering is performed.
13294
13295 EXCEPTIONS is a vector of exceptions to which matching exceptions
13296 gets pushed. */
13297
13298 static void
13299 ada_add_global_exceptions (compiled_regex *preg,
13300 std::vector<ada_exc_info> *exceptions)
13301 {
13302 /* In Ada, the symbol "search name" is a linkage name, whereas the
13303 regular expression used to do the matching refers to the natural
13304 name. So match against the decoded name. */
13305 expand_symtabs_matching (NULL,
13306 lookup_name_info::match_any (),
13307 [&] (const char *search_name)
13308 {
13309 std::string decoded = ada_decode (search_name);
13310 return name_matches_regex (decoded.c_str (), preg);
13311 },
13312 NULL,
13313 VARIABLES_DOMAIN);
13314
13315 for (objfile *objfile : current_program_space->objfiles ())
13316 {
13317 for (compunit_symtab *s : objfile->compunits ())
13318 {
13319 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13320 int i;
13321
13322 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13323 {
13324 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13325 struct block_iterator iter;
13326 struct symbol *sym;
13327
13328 ALL_BLOCK_SYMBOLS (b, iter, sym)
13329 if (ada_is_non_standard_exception_sym (sym)
13330 && name_matches_regex (sym->natural_name (), preg))
13331 {
13332 struct ada_exc_info info
13333 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13334
13335 exceptions->push_back (info);
13336 }
13337 }
13338 }
13339 }
13340 }
13341
13342 /* Implements ada_exceptions_list with the regular expression passed
13343 as a regex_t, rather than a string.
13344
13345 If not NULL, PREG is used to filter out exceptions whose names
13346 do not match. Otherwise, all exceptions are listed. */
13347
13348 static std::vector<ada_exc_info>
13349 ada_exceptions_list_1 (compiled_regex *preg)
13350 {
13351 std::vector<ada_exc_info> result;
13352 int prev_len;
13353
13354 /* First, list the known standard exceptions. These exceptions
13355 need to be handled separately, as they are usually defined in
13356 runtime units that have been compiled without debugging info. */
13357
13358 ada_add_standard_exceptions (preg, &result);
13359
13360 /* Next, find all exceptions whose scope is local and accessible
13361 from the currently selected frame. */
13362
13363 if (has_stack_frames ())
13364 {
13365 prev_len = result.size ();
13366 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13367 &result);
13368 if (result.size () > prev_len)
13369 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13370 }
13371
13372 /* Add all exceptions whose scope is global. */
13373
13374 prev_len = result.size ();
13375 ada_add_global_exceptions (preg, &result);
13376 if (result.size () > prev_len)
13377 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13378
13379 return result;
13380 }
13381
13382 /* Return a vector of ada_exc_info.
13383
13384 If REGEXP is NULL, all exceptions are included in the result.
13385 Otherwise, it should contain a valid regular expression,
13386 and only the exceptions whose names match that regular expression
13387 are included in the result.
13388
13389 The exceptions are sorted in the following order:
13390 - Standard exceptions (defined by the Ada language), in
13391 alphabetical order;
13392 - Exceptions only visible from the current frame, in
13393 alphabetical order;
13394 - Exceptions whose scope is global, in alphabetical order. */
13395
13396 std::vector<ada_exc_info>
13397 ada_exceptions_list (const char *regexp)
13398 {
13399 if (regexp == NULL)
13400 return ada_exceptions_list_1 (NULL);
13401
13402 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13403 return ada_exceptions_list_1 (&reg);
13404 }
13405
13406 /* Implement the "info exceptions" command. */
13407
13408 static void
13409 info_exceptions_command (const char *regexp, int from_tty)
13410 {
13411 struct gdbarch *gdbarch = get_current_arch ();
13412
13413 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13414
13415 if (regexp != NULL)
13416 printf_filtered
13417 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13418 else
13419 printf_filtered (_("All defined Ada exceptions:\n"));
13420
13421 for (const ada_exc_info &info : exceptions)
13422 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13423 }
13424
13425 /* Operators */
13426 /* Information about operators given special treatment in functions
13427 below. */
13428 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13429
13430 #define ADA_OPERATORS \
13431 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13432 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13433 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13434 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13435 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13436 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13437 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13438 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13439 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13440 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13441 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13442 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13443 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13444 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13445 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13446 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13447 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13448 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13449 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13450
13451 static void
13452 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13453 int *argsp)
13454 {
13455 switch (exp->elts[pc - 1].opcode)
13456 {
13457 default:
13458 operator_length_standard (exp, pc, oplenp, argsp);
13459 break;
13460
13461 #define OP_DEFN(op, len, args, binop) \
13462 case op: *oplenp = len; *argsp = args; break;
13463 ADA_OPERATORS;
13464 #undef OP_DEFN
13465
13466 case OP_AGGREGATE:
13467 *oplenp = 3;
13468 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13469 break;
13470
13471 case OP_CHOICES:
13472 *oplenp = 3;
13473 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13474 break;
13475 }
13476 }
13477
13478 /* Implementation of the exp_descriptor method operator_check. */
13479
13480 static int
13481 ada_operator_check (struct expression *exp, int pos,
13482 int (*objfile_func) (struct objfile *objfile, void *data),
13483 void *data)
13484 {
13485 const union exp_element *const elts = exp->elts;
13486 struct type *type = NULL;
13487
13488 switch (elts[pos].opcode)
13489 {
13490 case UNOP_IN_RANGE:
13491 case UNOP_QUAL:
13492 type = elts[pos + 1].type;
13493 break;
13494
13495 default:
13496 return operator_check_standard (exp, pos, objfile_func, data);
13497 }
13498
13499 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13500
13501 if (type && TYPE_OBJFILE (type)
13502 && (*objfile_func) (TYPE_OBJFILE (type), data))
13503 return 1;
13504
13505 return 0;
13506 }
13507
13508 static const char *
13509 ada_op_name (enum exp_opcode opcode)
13510 {
13511 switch (opcode)
13512 {
13513 default:
13514 return op_name_standard (opcode);
13515
13516 #define OP_DEFN(op, len, args, binop) case op: return #op;
13517 ADA_OPERATORS;
13518 #undef OP_DEFN
13519
13520 case OP_AGGREGATE:
13521 return "OP_AGGREGATE";
13522 case OP_CHOICES:
13523 return "OP_CHOICES";
13524 case OP_NAME:
13525 return "OP_NAME";
13526 }
13527 }
13528
13529 /* As for operator_length, but assumes PC is pointing at the first
13530 element of the operator, and gives meaningful results only for the
13531 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13532
13533 static void
13534 ada_forward_operator_length (struct expression *exp, int pc,
13535 int *oplenp, int *argsp)
13536 {
13537 switch (exp->elts[pc].opcode)
13538 {
13539 default:
13540 *oplenp = *argsp = 0;
13541 break;
13542
13543 #define OP_DEFN(op, len, args, binop) \
13544 case op: *oplenp = len; *argsp = args; break;
13545 ADA_OPERATORS;
13546 #undef OP_DEFN
13547
13548 case OP_AGGREGATE:
13549 *oplenp = 3;
13550 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13551 break;
13552
13553 case OP_CHOICES:
13554 *oplenp = 3;
13555 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13556 break;
13557
13558 case OP_STRING:
13559 case OP_NAME:
13560 {
13561 int len = longest_to_int (exp->elts[pc + 1].longconst);
13562
13563 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13564 *argsp = 0;
13565 break;
13566 }
13567 }
13568 }
13569
13570 static int
13571 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13572 {
13573 enum exp_opcode op = exp->elts[elt].opcode;
13574 int oplen, nargs;
13575 int pc = elt;
13576 int i;
13577
13578 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13579
13580 switch (op)
13581 {
13582 /* Ada attributes ('Foo). */
13583 case OP_ATR_FIRST:
13584 case OP_ATR_LAST:
13585 case OP_ATR_LENGTH:
13586 case OP_ATR_IMAGE:
13587 case OP_ATR_MAX:
13588 case OP_ATR_MIN:
13589 case OP_ATR_MODULUS:
13590 case OP_ATR_POS:
13591 case OP_ATR_SIZE:
13592 case OP_ATR_TAG:
13593 case OP_ATR_VAL:
13594 break;
13595
13596 case UNOP_IN_RANGE:
13597 case UNOP_QUAL:
13598 /* XXX: gdb_sprint_host_address, type_sprint */
13599 fprintf_filtered (stream, _("Type @"));
13600 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13601 fprintf_filtered (stream, " (");
13602 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13603 fprintf_filtered (stream, ")");
13604 break;
13605 case BINOP_IN_BOUNDS:
13606 fprintf_filtered (stream, " (%d)",
13607 longest_to_int (exp->elts[pc + 2].longconst));
13608 break;
13609 case TERNOP_IN_RANGE:
13610 break;
13611
13612 case OP_AGGREGATE:
13613 case OP_OTHERS:
13614 case OP_DISCRETE_RANGE:
13615 case OP_POSITIONAL:
13616 case OP_CHOICES:
13617 break;
13618
13619 case OP_NAME:
13620 case OP_STRING:
13621 {
13622 char *name = &exp->elts[elt + 2].string;
13623 int len = longest_to_int (exp->elts[elt + 1].longconst);
13624
13625 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13626 break;
13627 }
13628
13629 default:
13630 return dump_subexp_body_standard (exp, stream, elt);
13631 }
13632
13633 elt += oplen;
13634 for (i = 0; i < nargs; i += 1)
13635 elt = dump_subexp (exp, stream, elt);
13636
13637 return elt;
13638 }
13639
13640 /* The Ada extension of print_subexp (q.v.). */
13641
13642 static void
13643 ada_print_subexp (struct expression *exp, int *pos,
13644 struct ui_file *stream, enum precedence prec)
13645 {
13646 int oplen, nargs, i;
13647 int pc = *pos;
13648 enum exp_opcode op = exp->elts[pc].opcode;
13649
13650 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13651
13652 *pos += oplen;
13653 switch (op)
13654 {
13655 default:
13656 *pos -= oplen;
13657 print_subexp_standard (exp, pos, stream, prec);
13658 return;
13659
13660 case OP_VAR_VALUE:
13661 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13662 return;
13663
13664 case BINOP_IN_BOUNDS:
13665 /* XXX: sprint_subexp */
13666 print_subexp (exp, pos, stream, PREC_SUFFIX);
13667 fputs_filtered (" in ", stream);
13668 print_subexp (exp, pos, stream, PREC_SUFFIX);
13669 fputs_filtered ("'range", stream);
13670 if (exp->elts[pc + 1].longconst > 1)
13671 fprintf_filtered (stream, "(%ld)",
13672 (long) exp->elts[pc + 1].longconst);
13673 return;
13674
13675 case TERNOP_IN_RANGE:
13676 if (prec >= PREC_EQUAL)
13677 fputs_filtered ("(", stream);
13678 /* XXX: sprint_subexp */
13679 print_subexp (exp, pos, stream, PREC_SUFFIX);
13680 fputs_filtered (" in ", stream);
13681 print_subexp (exp, pos, stream, PREC_EQUAL);
13682 fputs_filtered (" .. ", stream);
13683 print_subexp (exp, pos, stream, PREC_EQUAL);
13684 if (prec >= PREC_EQUAL)
13685 fputs_filtered (")", stream);
13686 return;
13687
13688 case OP_ATR_FIRST:
13689 case OP_ATR_LAST:
13690 case OP_ATR_LENGTH:
13691 case OP_ATR_IMAGE:
13692 case OP_ATR_MAX:
13693 case OP_ATR_MIN:
13694 case OP_ATR_MODULUS:
13695 case OP_ATR_POS:
13696 case OP_ATR_SIZE:
13697 case OP_ATR_TAG:
13698 case OP_ATR_VAL:
13699 if (exp->elts[*pos].opcode == OP_TYPE)
13700 {
13701 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13702 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13703 &type_print_raw_options);
13704 *pos += 3;
13705 }
13706 else
13707 print_subexp (exp, pos, stream, PREC_SUFFIX);
13708 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13709 if (nargs > 1)
13710 {
13711 int tem;
13712
13713 for (tem = 1; tem < nargs; tem += 1)
13714 {
13715 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13716 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13717 }
13718 fputs_filtered (")", stream);
13719 }
13720 return;
13721
13722 case UNOP_QUAL:
13723 type_print (exp->elts[pc + 1].type, "", stream, 0);
13724 fputs_filtered ("'(", stream);
13725 print_subexp (exp, pos, stream, PREC_PREFIX);
13726 fputs_filtered (")", stream);
13727 return;
13728
13729 case UNOP_IN_RANGE:
13730 /* XXX: sprint_subexp */
13731 print_subexp (exp, pos, stream, PREC_SUFFIX);
13732 fputs_filtered (" in ", stream);
13733 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13734 &type_print_raw_options);
13735 return;
13736
13737 case OP_DISCRETE_RANGE:
13738 print_subexp (exp, pos, stream, PREC_SUFFIX);
13739 fputs_filtered ("..", stream);
13740 print_subexp (exp, pos, stream, PREC_SUFFIX);
13741 return;
13742
13743 case OP_OTHERS:
13744 fputs_filtered ("others => ", stream);
13745 print_subexp (exp, pos, stream, PREC_SUFFIX);
13746 return;
13747
13748 case OP_CHOICES:
13749 for (i = 0; i < nargs-1; i += 1)
13750 {
13751 if (i > 0)
13752 fputs_filtered ("|", stream);
13753 print_subexp (exp, pos, stream, PREC_SUFFIX);
13754 }
13755 fputs_filtered (" => ", stream);
13756 print_subexp (exp, pos, stream, PREC_SUFFIX);
13757 return;
13758
13759 case OP_POSITIONAL:
13760 print_subexp (exp, pos, stream, PREC_SUFFIX);
13761 return;
13762
13763 case OP_AGGREGATE:
13764 fputs_filtered ("(", stream);
13765 for (i = 0; i < nargs; i += 1)
13766 {
13767 if (i > 0)
13768 fputs_filtered (", ", stream);
13769 print_subexp (exp, pos, stream, PREC_SUFFIX);
13770 }
13771 fputs_filtered (")", stream);
13772 return;
13773 }
13774 }
13775
13776 /* Table mapping opcodes into strings for printing operators
13777 and precedences of the operators. */
13778
13779 static const struct op_print ada_op_print_tab[] = {
13780 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13781 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13782 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13783 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13784 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13785 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13786 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13787 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13788 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13789 {">=", BINOP_GEQ, PREC_ORDER, 0},
13790 {">", BINOP_GTR, PREC_ORDER, 0},
13791 {"<", BINOP_LESS, PREC_ORDER, 0},
13792 {">>", BINOP_RSH, PREC_SHIFT, 0},
13793 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13794 {"+", BINOP_ADD, PREC_ADD, 0},
13795 {"-", BINOP_SUB, PREC_ADD, 0},
13796 {"&", BINOP_CONCAT, PREC_ADD, 0},
13797 {"*", BINOP_MUL, PREC_MUL, 0},
13798 {"/", BINOP_DIV, PREC_MUL, 0},
13799 {"rem", BINOP_REM, PREC_MUL, 0},
13800 {"mod", BINOP_MOD, PREC_MUL, 0},
13801 {"**", BINOP_EXP, PREC_REPEAT, 0},
13802 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13803 {"-", UNOP_NEG, PREC_PREFIX, 0},
13804 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13805 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13806 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13807 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13808 {".all", UNOP_IND, PREC_SUFFIX, 1},
13809 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13810 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13811 {NULL, OP_NULL, PREC_SUFFIX, 0}
13812 };
13813 \f
13814 enum ada_primitive_types {
13815 ada_primitive_type_int,
13816 ada_primitive_type_long,
13817 ada_primitive_type_short,
13818 ada_primitive_type_char,
13819 ada_primitive_type_float,
13820 ada_primitive_type_double,
13821 ada_primitive_type_void,
13822 ada_primitive_type_long_long,
13823 ada_primitive_type_long_double,
13824 ada_primitive_type_natural,
13825 ada_primitive_type_positive,
13826 ada_primitive_type_system_address,
13827 ada_primitive_type_storage_offset,
13828 nr_ada_primitive_types
13829 };
13830
13831 static void
13832 ada_language_arch_info (struct gdbarch *gdbarch,
13833 struct language_arch_info *lai)
13834 {
13835 const struct builtin_type *builtin = builtin_type (gdbarch);
13836
13837 lai->primitive_type_vector
13838 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13839 struct type *);
13840
13841 lai->primitive_type_vector [ada_primitive_type_int]
13842 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13843 0, "integer");
13844 lai->primitive_type_vector [ada_primitive_type_long]
13845 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13846 0, "long_integer");
13847 lai->primitive_type_vector [ada_primitive_type_short]
13848 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13849 0, "short_integer");
13850 lai->string_char_type
13851 = lai->primitive_type_vector [ada_primitive_type_char]
13852 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13853 lai->primitive_type_vector [ada_primitive_type_float]
13854 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13855 "float", gdbarch_float_format (gdbarch));
13856 lai->primitive_type_vector [ada_primitive_type_double]
13857 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13858 "long_float", gdbarch_double_format (gdbarch));
13859 lai->primitive_type_vector [ada_primitive_type_long_long]
13860 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13861 0, "long_long_integer");
13862 lai->primitive_type_vector [ada_primitive_type_long_double]
13863 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13864 "long_long_float", gdbarch_long_double_format (gdbarch));
13865 lai->primitive_type_vector [ada_primitive_type_natural]
13866 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13867 0, "natural");
13868 lai->primitive_type_vector [ada_primitive_type_positive]
13869 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13870 0, "positive");
13871 lai->primitive_type_vector [ada_primitive_type_void]
13872 = builtin->builtin_void;
13873
13874 lai->primitive_type_vector [ada_primitive_type_system_address]
13875 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13876 "void"));
13877 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13878 = "system__address";
13879
13880 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13881 type. This is a signed integral type whose size is the same as
13882 the size of addresses. */
13883 {
13884 unsigned int addr_length = TYPE_LENGTH
13885 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13886
13887 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13888 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13889 "storage_offset");
13890 }
13891
13892 lai->bool_type_symbol = NULL;
13893 lai->bool_type_default = builtin->builtin_bool;
13894 }
13895 \f
13896 /* Language vector */
13897
13898 /* Not really used, but needed in the ada_language_defn. */
13899
13900 static void
13901 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13902 {
13903 ada_emit_char (c, type, stream, quoter, 1);
13904 }
13905
13906 static int
13907 parse (struct parser_state *ps)
13908 {
13909 warnings_issued = 0;
13910 return ada_parse (ps);
13911 }
13912
13913 static const struct exp_descriptor ada_exp_descriptor = {
13914 ada_print_subexp,
13915 ada_operator_length,
13916 ada_operator_check,
13917 ada_op_name,
13918 ada_dump_subexp_body,
13919 ada_evaluate_subexp
13920 };
13921
13922 /* symbol_name_matcher_ftype adapter for wild_match. */
13923
13924 static bool
13925 do_wild_match (const char *symbol_search_name,
13926 const lookup_name_info &lookup_name,
13927 completion_match_result *comp_match_res)
13928 {
13929 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13930 }
13931
13932 /* symbol_name_matcher_ftype adapter for full_match. */
13933
13934 static bool
13935 do_full_match (const char *symbol_search_name,
13936 const lookup_name_info &lookup_name,
13937 completion_match_result *comp_match_res)
13938 {
13939 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13940 }
13941
13942 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13943
13944 static bool
13945 do_exact_match (const char *symbol_search_name,
13946 const lookup_name_info &lookup_name,
13947 completion_match_result *comp_match_res)
13948 {
13949 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13950 }
13951
13952 /* Build the Ada lookup name for LOOKUP_NAME. */
13953
13954 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13955 {
13956 const std::string &user_name = lookup_name.name ();
13957
13958 if (user_name[0] == '<')
13959 {
13960 if (user_name.back () == '>')
13961 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13962 else
13963 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13964 m_encoded_p = true;
13965 m_verbatim_p = true;
13966 m_wild_match_p = false;
13967 m_standard_p = false;
13968 }
13969 else
13970 {
13971 m_verbatim_p = false;
13972
13973 m_encoded_p = user_name.find ("__") != std::string::npos;
13974
13975 if (!m_encoded_p)
13976 {
13977 const char *folded = ada_fold_name (user_name.c_str ());
13978 const char *encoded = ada_encode_1 (folded, false);
13979 if (encoded != NULL)
13980 m_encoded_name = encoded;
13981 else
13982 m_encoded_name = user_name;
13983 }
13984 else
13985 m_encoded_name = user_name;
13986
13987 /* Handle the 'package Standard' special case. See description
13988 of m_standard_p. */
13989 if (startswith (m_encoded_name.c_str (), "standard__"))
13990 {
13991 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13992 m_standard_p = true;
13993 }
13994 else
13995 m_standard_p = false;
13996
13997 /* If the name contains a ".", then the user is entering a fully
13998 qualified entity name, and the match must not be done in wild
13999 mode. Similarly, if the user wants to complete what looks
14000 like an encoded name, the match must not be done in wild
14001 mode. Also, in the standard__ special case always do
14002 non-wild matching. */
14003 m_wild_match_p
14004 = (lookup_name.match_type () != symbol_name_match_type::FULL
14005 && !m_encoded_p
14006 && !m_standard_p
14007 && user_name.find ('.') == std::string::npos);
14008 }
14009 }
14010
14011 /* symbol_name_matcher_ftype method for Ada. This only handles
14012 completion mode. */
14013
14014 static bool
14015 ada_symbol_name_matches (const char *symbol_search_name,
14016 const lookup_name_info &lookup_name,
14017 completion_match_result *comp_match_res)
14018 {
14019 return lookup_name.ada ().matches (symbol_search_name,
14020 lookup_name.match_type (),
14021 comp_match_res);
14022 }
14023
14024 /* A name matcher that matches the symbol name exactly, with
14025 strcmp. */
14026
14027 static bool
14028 literal_symbol_name_matcher (const char *symbol_search_name,
14029 const lookup_name_info &lookup_name,
14030 completion_match_result *comp_match_res)
14031 {
14032 const std::string &name = lookup_name.name ();
14033
14034 int cmp = (lookup_name.completion_mode ()
14035 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14036 : strcmp (symbol_search_name, name.c_str ()));
14037 if (cmp == 0)
14038 {
14039 if (comp_match_res != NULL)
14040 comp_match_res->set_match (symbol_search_name);
14041 return true;
14042 }
14043 else
14044 return false;
14045 }
14046
14047 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14048 Ada. */
14049
14050 static symbol_name_matcher_ftype *
14051 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14052 {
14053 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14054 return literal_symbol_name_matcher;
14055
14056 if (lookup_name.completion_mode ())
14057 return ada_symbol_name_matches;
14058 else
14059 {
14060 if (lookup_name.ada ().wild_match_p ())
14061 return do_wild_match;
14062 else if (lookup_name.ada ().verbatim_p ())
14063 return do_exact_match;
14064 else
14065 return do_full_match;
14066 }
14067 }
14068
14069 /* Implement the "la_read_var_value" language_defn method for Ada. */
14070
14071 static struct value *
14072 ada_read_var_value (struct symbol *var, const struct block *var_block,
14073 struct frame_info *frame)
14074 {
14075 /* The only case where default_read_var_value is not sufficient
14076 is when VAR is a renaming... */
14077 if (frame != nullptr)
14078 {
14079 const struct block *frame_block = get_frame_block (frame, NULL);
14080 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14081 return ada_read_renaming_var_value (var, frame_block);
14082 }
14083
14084 /* This is a typical case where we expect the default_read_var_value
14085 function to work. */
14086 return default_read_var_value (var, var_block, frame);
14087 }
14088
14089 static const char *ada_extensions[] =
14090 {
14091 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14092 };
14093
14094 extern const struct language_defn ada_language_defn = {
14095 "ada", /* Language name */
14096 "Ada",
14097 language_ada,
14098 range_check_off,
14099 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14100 that's not quite what this means. */
14101 array_row_major,
14102 macro_expansion_no,
14103 ada_extensions,
14104 &ada_exp_descriptor,
14105 parse,
14106 resolve,
14107 ada_printchar, /* Print a character constant */
14108 ada_printstr, /* Function to print string constant */
14109 emit_char, /* Function to print single char (not used) */
14110 ada_print_type, /* Print a type using appropriate syntax */
14111 ada_print_typedef, /* Print a typedef using appropriate syntax */
14112 ada_value_print_inner, /* la_value_print_inner */
14113 ada_value_print, /* Print a top-level value */
14114 ada_read_var_value, /* la_read_var_value */
14115 NULL, /* Language specific skip_trampoline */
14116 NULL, /* name_of_this */
14117 true, /* la_store_sym_names_in_linkage_form_p */
14118 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14119 basic_lookup_transparent_type, /* lookup_transparent_type */
14120 ada_la_decode, /* Language specific symbol demangler */
14121 ada_sniff_from_mangled_name,
14122 NULL, /* Language specific
14123 class_name_from_physname */
14124 ada_op_print_tab, /* expression operators for printing */
14125 0, /* c-style arrays */
14126 1, /* String lower bound */
14127 ada_get_gdb_completer_word_break_characters,
14128 ada_collect_symbol_completion_matches,
14129 ada_language_arch_info,
14130 ada_print_array_index,
14131 default_pass_by_reference,
14132 ada_watch_location_expression,
14133 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14134 ada_iterate_over_symbols,
14135 default_search_name_hash,
14136 &ada_varobj_ops,
14137 NULL,
14138 NULL,
14139 ada_is_string_type,
14140 "(...)" /* la_struct_too_deep_ellipsis */
14141 };
14142
14143 /* Command-list for the "set/show ada" prefix command. */
14144 static struct cmd_list_element *set_ada_list;
14145 static struct cmd_list_element *show_ada_list;
14146
14147 /* Implement the "set ada" prefix command. */
14148
14149 static void
14150 set_ada_command (const char *arg, int from_tty)
14151 {
14152 printf_unfiltered (_(\
14153 "\"set ada\" must be followed by the name of a setting.\n"));
14154 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14155 }
14156
14157 /* Implement the "show ada" prefix command. */
14158
14159 static void
14160 show_ada_command (const char *args, int from_tty)
14161 {
14162 cmd_show_list (show_ada_list, from_tty, "");
14163 }
14164
14165 static void
14166 initialize_ada_catchpoint_ops (void)
14167 {
14168 struct breakpoint_ops *ops;
14169
14170 initialize_breakpoint_ops ();
14171
14172 ops = &catch_exception_breakpoint_ops;
14173 *ops = bkpt_breakpoint_ops;
14174 ops->allocate_location = allocate_location_exception;
14175 ops->re_set = re_set_exception;
14176 ops->check_status = check_status_exception;
14177 ops->print_it = print_it_exception;
14178 ops->print_one = print_one_exception;
14179 ops->print_mention = print_mention_exception;
14180 ops->print_recreate = print_recreate_exception;
14181
14182 ops = &catch_exception_unhandled_breakpoint_ops;
14183 *ops = bkpt_breakpoint_ops;
14184 ops->allocate_location = allocate_location_exception;
14185 ops->re_set = re_set_exception;
14186 ops->check_status = check_status_exception;
14187 ops->print_it = print_it_exception;
14188 ops->print_one = print_one_exception;
14189 ops->print_mention = print_mention_exception;
14190 ops->print_recreate = print_recreate_exception;
14191
14192 ops = &catch_assert_breakpoint_ops;
14193 *ops = bkpt_breakpoint_ops;
14194 ops->allocate_location = allocate_location_exception;
14195 ops->re_set = re_set_exception;
14196 ops->check_status = check_status_exception;
14197 ops->print_it = print_it_exception;
14198 ops->print_one = print_one_exception;
14199 ops->print_mention = print_mention_exception;
14200 ops->print_recreate = print_recreate_exception;
14201
14202 ops = &catch_handlers_breakpoint_ops;
14203 *ops = bkpt_breakpoint_ops;
14204 ops->allocate_location = allocate_location_exception;
14205 ops->re_set = re_set_exception;
14206 ops->check_status = check_status_exception;
14207 ops->print_it = print_it_exception;
14208 ops->print_one = print_one_exception;
14209 ops->print_mention = print_mention_exception;
14210 ops->print_recreate = print_recreate_exception;
14211 }
14212
14213 /* This module's 'new_objfile' observer. */
14214
14215 static void
14216 ada_new_objfile_observer (struct objfile *objfile)
14217 {
14218 ada_clear_symbol_cache ();
14219 }
14220
14221 /* This module's 'free_objfile' observer. */
14222
14223 static void
14224 ada_free_objfile_observer (struct objfile *objfile)
14225 {
14226 ada_clear_symbol_cache ();
14227 }
14228
14229 void _initialize_ada_language ();
14230 void
14231 _initialize_ada_language ()
14232 {
14233 initialize_ada_catchpoint_ops ();
14234
14235 add_prefix_cmd ("ada", no_class, set_ada_command,
14236 _("Prefix command for changing Ada-specific settings."),
14237 &set_ada_list, "set ada ", 0, &setlist);
14238
14239 add_prefix_cmd ("ada", no_class, show_ada_command,
14240 _("Generic command for showing Ada-specific settings."),
14241 &show_ada_list, "show ada ", 0, &showlist);
14242
14243 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14244 &trust_pad_over_xvs, _("\
14245 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14246 Show whether an optimization trusting PAD types over XVS types is activated."),
14247 _("\
14248 This is related to the encoding used by the GNAT compiler. The debugger\n\
14249 should normally trust the contents of PAD types, but certain older versions\n\
14250 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14251 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14252 work around this bug. It is always safe to turn this option \"off\", but\n\
14253 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14254 this option to \"off\" unless necessary."),
14255 NULL, NULL, &set_ada_list, &show_ada_list);
14256
14257 add_setshow_boolean_cmd ("print-signatures", class_vars,
14258 &print_signatures, _("\
14259 Enable or disable the output of formal and return types for functions in the \
14260 overloads selection menu."), _("\
14261 Show whether the output of formal and return types for functions in the \
14262 overloads selection menu is activated."),
14263 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14264
14265 add_catch_command ("exception", _("\
14266 Catch Ada exceptions, when raised.\n\
14267 Usage: catch exception [ARG] [if CONDITION]\n\
14268 Without any argument, stop when any Ada exception is raised.\n\
14269 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14270 being raised does not have a handler (and will therefore lead to the task's\n\
14271 termination).\n\
14272 Otherwise, the catchpoint only stops when the name of the exception being\n\
14273 raised is the same as ARG.\n\
14274 CONDITION is a boolean expression that is evaluated to see whether the\n\
14275 exception should cause a stop."),
14276 catch_ada_exception_command,
14277 catch_ada_completer,
14278 CATCH_PERMANENT,
14279 CATCH_TEMPORARY);
14280
14281 add_catch_command ("handlers", _("\
14282 Catch Ada exceptions, when handled.\n\
14283 Usage: catch handlers [ARG] [if CONDITION]\n\
14284 Without any argument, stop when any Ada exception is handled.\n\
14285 With an argument, catch only exceptions with the given name.\n\
14286 CONDITION is a boolean expression that is evaluated to see whether the\n\
14287 exception should cause a stop."),
14288 catch_ada_handlers_command,
14289 catch_ada_completer,
14290 CATCH_PERMANENT,
14291 CATCH_TEMPORARY);
14292 add_catch_command ("assert", _("\
14293 Catch failed Ada assertions, when raised.\n\
14294 Usage: catch assert [if CONDITION]\n\
14295 CONDITION is a boolean expression that is evaluated to see whether the\n\
14296 exception should cause a stop."),
14297 catch_assert_command,
14298 NULL,
14299 CATCH_PERMANENT,
14300 CATCH_TEMPORARY);
14301
14302 varsize_limit = 65536;
14303 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14304 &varsize_limit, _("\
14305 Set the maximum number of bytes allowed in a variable-size object."), _("\
14306 Show the maximum number of bytes allowed in a variable-size object."), _("\
14307 Attempts to access an object whose size is not a compile-time constant\n\
14308 and exceeds this limit will cause an error."),
14309 NULL, NULL, &setlist, &showlist);
14310
14311 add_info ("exceptions", info_exceptions_command,
14312 _("\
14313 List all Ada exception names.\n\
14314 Usage: info exceptions [REGEXP]\n\
14315 If a regular expression is passed as an argument, only those matching\n\
14316 the regular expression are listed."));
14317
14318 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14319 _("Set Ada maintenance-related variables."),
14320 &maint_set_ada_cmdlist, "maintenance set ada ",
14321 0/*allow-unknown*/, &maintenance_set_cmdlist);
14322
14323 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14324 _("Show Ada maintenance-related variables."),
14325 &maint_show_ada_cmdlist, "maintenance show ada ",
14326 0/*allow-unknown*/, &maintenance_show_cmdlist);
14327
14328 add_setshow_boolean_cmd
14329 ("ignore-descriptive-types", class_maintenance,
14330 &ada_ignore_descriptive_types_p,
14331 _("Set whether descriptive types generated by GNAT should be ignored."),
14332 _("Show whether descriptive types generated by GNAT should be ignored."),
14333 _("\
14334 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14335 DWARF attribute."),
14336 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14337
14338 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14339 NULL, xcalloc, xfree);
14340
14341 /* The ada-lang observers. */
14342 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14343 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14344 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14345 }