]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
PR25993, read of freed memory
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *value_val_atr (struct type *, struct value *);
200
201 static struct symbol *standard_lookup (const char *, const struct block *,
202 domain_enum);
203
204 static struct value *ada_search_struct_field (const char *, struct value *, int,
205 struct type *);
206
207 static int find_struct_field (const char *, struct type *, int,
208 struct type **, int *, int *, int *, int *);
209
210 static int ada_resolve_function (struct block_symbol *, int,
211 struct value **, int, const char *,
212 struct type *, int);
213
214 static int ada_is_direct_array_type (struct type *);
215
216 static void ada_language_arch_info (struct gdbarch *,
217 struct language_arch_info *);
218
219 static struct value *ada_index_struct_field (int, struct value *, int,
220 struct type *);
221
222 static struct value *assign_aggregate (struct value *, struct value *,
223 struct expression *,
224 int *, enum noside);
225
226 static void aggregate_assign_from_choices (struct value *, struct value *,
227 struct expression *,
228 int *, LONGEST *, int *,
229 int, LONGEST, LONGEST);
230
231 static void aggregate_assign_positional (struct value *, struct value *,
232 struct expression *,
233 int *, LONGEST *, int *, int,
234 LONGEST, LONGEST);
235
236
237 static void aggregate_assign_others (struct value *, struct value *,
238 struct expression *,
239 int *, LONGEST *, int, LONGEST, LONGEST);
240
241
242 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
243
244
245 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
246 int *, enum noside);
247
248 static void ada_forward_operator_length (struct expression *, int, int *,
249 int *);
250
251 static struct type *ada_find_any_type (const char *name);
252
253 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
254 (const lookup_name_info &lookup_name);
255
256 \f
257
258 /* The result of a symbol lookup to be stored in our symbol cache. */
259
260 struct cache_entry
261 {
262 /* The name used to perform the lookup. */
263 const char *name;
264 /* The namespace used during the lookup. */
265 domain_enum domain;
266 /* The symbol returned by the lookup, or NULL if no matching symbol
267 was found. */
268 struct symbol *sym;
269 /* The block where the symbol was found, or NULL if no matching
270 symbol was found. */
271 const struct block *block;
272 /* A pointer to the next entry with the same hash. */
273 struct cache_entry *next;
274 };
275
276 /* The Ada symbol cache, used to store the result of Ada-mode symbol
277 lookups in the course of executing the user's commands.
278
279 The cache is implemented using a simple, fixed-sized hash.
280 The size is fixed on the grounds that there are not likely to be
281 all that many symbols looked up during any given session, regardless
282 of the size of the symbol table. If we decide to go to a resizable
283 table, let's just use the stuff from libiberty instead. */
284
285 #define HASH_SIZE 1009
286
287 struct ada_symbol_cache
288 {
289 /* An obstack used to store the entries in our cache. */
290 struct obstack cache_space;
291
292 /* The root of the hash table used to implement our symbol cache. */
293 struct cache_entry *root[HASH_SIZE];
294 };
295
296 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
297
298 /* Maximum-sized dynamic type. */
299 static unsigned int varsize_limit;
300
301 static const char ada_completer_word_break_characters[] =
302 #ifdef VMS
303 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
304 #else
305 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
306 #endif
307
308 /* The name of the symbol to use to get the name of the main subprogram. */
309 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
310 = "__gnat_ada_main_program_name";
311
312 /* Limit on the number of warnings to raise per expression evaluation. */
313 static int warning_limit = 2;
314
315 /* Number of warning messages issued; reset to 0 by cleanups after
316 expression evaluation. */
317 static int warnings_issued = 0;
318
319 static const char *known_runtime_file_name_patterns[] = {
320 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
321 };
322
323 static const char *known_auxiliary_function_name_patterns[] = {
324 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
325 };
326
327 /* Maintenance-related settings for this module. */
328
329 static struct cmd_list_element *maint_set_ada_cmdlist;
330 static struct cmd_list_element *maint_show_ada_cmdlist;
331
332 /* The "maintenance ada set/show ignore-descriptive-type" value. */
333
334 static bool ada_ignore_descriptive_types_p = false;
335
336 /* Inferior-specific data. */
337
338 /* Per-inferior data for this module. */
339
340 struct ada_inferior_data
341 {
342 /* The ada__tags__type_specific_data type, which is used when decoding
343 tagged types. With older versions of GNAT, this type was directly
344 accessible through a component ("tsd") in the object tag. But this
345 is no longer the case, so we cache it for each inferior. */
346 struct type *tsd_type = nullptr;
347
348 /* The exception_support_info data. This data is used to determine
349 how to implement support for Ada exception catchpoints in a given
350 inferior. */
351 const struct exception_support_info *exception_info = nullptr;
352 };
353
354 /* Our key to this module's inferior data. */
355 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
356
357 /* Return our inferior data for the given inferior (INF).
358
359 This function always returns a valid pointer to an allocated
360 ada_inferior_data structure. If INF's inferior data has not
361 been previously set, this functions creates a new one with all
362 fields set to zero, sets INF's inferior to it, and then returns
363 a pointer to that newly allocated ada_inferior_data. */
364
365 static struct ada_inferior_data *
366 get_ada_inferior_data (struct inferior *inf)
367 {
368 struct ada_inferior_data *data;
369
370 data = ada_inferior_data.get (inf);
371 if (data == NULL)
372 data = ada_inferior_data.emplace (inf);
373
374 return data;
375 }
376
377 /* Perform all necessary cleanups regarding our module's inferior data
378 that is required after the inferior INF just exited. */
379
380 static void
381 ada_inferior_exit (struct inferior *inf)
382 {
383 ada_inferior_data.clear (inf);
384 }
385
386
387 /* program-space-specific data. */
388
389 /* This module's per-program-space data. */
390 struct ada_pspace_data
391 {
392 ~ada_pspace_data ()
393 {
394 if (sym_cache != NULL)
395 ada_free_symbol_cache (sym_cache);
396 }
397
398 /* The Ada symbol cache. */
399 struct ada_symbol_cache *sym_cache = nullptr;
400 };
401
402 /* Key to our per-program-space data. */
403 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
404
405 /* Return this module's data for the given program space (PSPACE).
406 If not is found, add a zero'ed one now.
407
408 This function always returns a valid object. */
409
410 static struct ada_pspace_data *
411 get_ada_pspace_data (struct program_space *pspace)
412 {
413 struct ada_pspace_data *data;
414
415 data = ada_pspace_data_handle.get (pspace);
416 if (data == NULL)
417 data = ada_pspace_data_handle.emplace (pspace);
418
419 return data;
420 }
421
422 /* Utilities */
423
424 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
425 all typedef layers have been peeled. Otherwise, return TYPE.
426
427 Normally, we really expect a typedef type to only have 1 typedef layer.
428 In other words, we really expect the target type of a typedef type to be
429 a non-typedef type. This is particularly true for Ada units, because
430 the language does not have a typedef vs not-typedef distinction.
431 In that respect, the Ada compiler has been trying to eliminate as many
432 typedef definitions in the debugging information, since they generally
433 do not bring any extra information (we still use typedef under certain
434 circumstances related mostly to the GNAT encoding).
435
436 Unfortunately, we have seen situations where the debugging information
437 generated by the compiler leads to such multiple typedef layers. For
438 instance, consider the following example with stabs:
439
440 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
441 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
442
443 This is an error in the debugging information which causes type
444 pck__float_array___XUP to be defined twice, and the second time,
445 it is defined as a typedef of a typedef.
446
447 This is on the fringe of legality as far as debugging information is
448 concerned, and certainly unexpected. But it is easy to handle these
449 situations correctly, so we can afford to be lenient in this case. */
450
451 static struct type *
452 ada_typedef_target_type (struct type *type)
453 {
454 while (type->code () == TYPE_CODE_TYPEDEF)
455 type = TYPE_TARGET_TYPE (type);
456 return type;
457 }
458
459 /* Given DECODED_NAME a string holding a symbol name in its
460 decoded form (ie using the Ada dotted notation), returns
461 its unqualified name. */
462
463 static const char *
464 ada_unqualified_name (const char *decoded_name)
465 {
466 const char *result;
467
468 /* If the decoded name starts with '<', it means that the encoded
469 name does not follow standard naming conventions, and thus that
470 it is not your typical Ada symbol name. Trying to unqualify it
471 is therefore pointless and possibly erroneous. */
472 if (decoded_name[0] == '<')
473 return decoded_name;
474
475 result = strrchr (decoded_name, '.');
476 if (result != NULL)
477 result++; /* Skip the dot... */
478 else
479 result = decoded_name;
480
481 return result;
482 }
483
484 /* Return a string starting with '<', followed by STR, and '>'. */
485
486 static std::string
487 add_angle_brackets (const char *str)
488 {
489 return string_printf ("<%s>", str);
490 }
491
492 static const char *
493 ada_get_gdb_completer_word_break_characters (void)
494 {
495 return ada_completer_word_break_characters;
496 }
497
498 /* Print an array element index using the Ada syntax. */
499
500 static void
501 ada_print_array_index (struct value *index_value, struct ui_file *stream,
502 const struct value_print_options *options)
503 {
504 LA_VALUE_PRINT (index_value, stream, options);
505 fprintf_filtered (stream, " => ");
506 }
507
508 /* la_watch_location_expression for Ada. */
509
510 static gdb::unique_xmalloc_ptr<char>
511 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
512 {
513 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
514 std::string name = type_to_string (type);
515 return gdb::unique_xmalloc_ptr<char>
516 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
517 }
518
519 /* Assuming V points to an array of S objects, make sure that it contains at
520 least M objects, updating V and S as necessary. */
521
522 #define GROW_VECT(v, s, m) \
523 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
524
525 /* Assuming VECT points to an array of *SIZE objects of size
526 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
527 updating *SIZE as necessary and returning the (new) array. */
528
529 static void *
530 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
531 {
532 if (*size < min_size)
533 {
534 *size *= 2;
535 if (*size < min_size)
536 *size = min_size;
537 vect = xrealloc (vect, *size * element_size);
538 }
539 return vect;
540 }
541
542 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
543 suffix of FIELD_NAME beginning "___". */
544
545 static int
546 field_name_match (const char *field_name, const char *target)
547 {
548 int len = strlen (target);
549
550 return
551 (strncmp (field_name, target, len) == 0
552 && (field_name[len] == '\0'
553 || (startswith (field_name + len, "___")
554 && strcmp (field_name + strlen (field_name) - 6,
555 "___XVN") != 0)));
556 }
557
558
559 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
560 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
561 and return its index. This function also handles fields whose name
562 have ___ suffixes because the compiler sometimes alters their name
563 by adding such a suffix to represent fields with certain constraints.
564 If the field could not be found, return a negative number if
565 MAYBE_MISSING is set. Otherwise raise an error. */
566
567 int
568 ada_get_field_index (const struct type *type, const char *field_name,
569 int maybe_missing)
570 {
571 int fieldno;
572 struct type *struct_type = check_typedef ((struct type *) type);
573
574 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
575 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
576 return fieldno;
577
578 if (!maybe_missing)
579 error (_("Unable to find field %s in struct %s. Aborting"),
580 field_name, struct_type->name ());
581
582 return -1;
583 }
584
585 /* The length of the prefix of NAME prior to any "___" suffix. */
586
587 int
588 ada_name_prefix_len (const char *name)
589 {
590 if (name == NULL)
591 return 0;
592 else
593 {
594 const char *p = strstr (name, "___");
595
596 if (p == NULL)
597 return strlen (name);
598 else
599 return p - name;
600 }
601 }
602
603 /* Return non-zero if SUFFIX is a suffix of STR.
604 Return zero if STR is null. */
605
606 static int
607 is_suffix (const char *str, const char *suffix)
608 {
609 int len1, len2;
610
611 if (str == NULL)
612 return 0;
613 len1 = strlen (str);
614 len2 = strlen (suffix);
615 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
616 }
617
618 /* The contents of value VAL, treated as a value of type TYPE. The
619 result is an lval in memory if VAL is. */
620
621 static struct value *
622 coerce_unspec_val_to_type (struct value *val, struct type *type)
623 {
624 type = ada_check_typedef (type);
625 if (value_type (val) == type)
626 return val;
627 else
628 {
629 struct value *result;
630
631 /* Make sure that the object size is not unreasonable before
632 trying to allocate some memory for it. */
633 ada_ensure_varsize_limit (type);
634
635 if (value_lazy (val)
636 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
637 result = allocate_value_lazy (type);
638 else
639 {
640 result = allocate_value (type);
641 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
642 }
643 set_value_component_location (result, val);
644 set_value_bitsize (result, value_bitsize (val));
645 set_value_bitpos (result, value_bitpos (val));
646 if (VALUE_LVAL (result) == lval_memory)
647 set_value_address (result, value_address (val));
648 return result;
649 }
650 }
651
652 static const gdb_byte *
653 cond_offset_host (const gdb_byte *valaddr, long offset)
654 {
655 if (valaddr == NULL)
656 return NULL;
657 else
658 return valaddr + offset;
659 }
660
661 static CORE_ADDR
662 cond_offset_target (CORE_ADDR address, long offset)
663 {
664 if (address == 0)
665 return 0;
666 else
667 return address + offset;
668 }
669
670 /* Issue a warning (as for the definition of warning in utils.c, but
671 with exactly one argument rather than ...), unless the limit on the
672 number of warnings has passed during the evaluation of the current
673 expression. */
674
675 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
676 provided by "complaint". */
677 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
678
679 static void
680 lim_warning (const char *format, ...)
681 {
682 va_list args;
683
684 va_start (args, format);
685 warnings_issued += 1;
686 if (warnings_issued <= warning_limit)
687 vwarning (format, args);
688
689 va_end (args);
690 }
691
692 /* Issue an error if the size of an object of type T is unreasonable,
693 i.e. if it would be a bad idea to allocate a value of this type in
694 GDB. */
695
696 void
697 ada_ensure_varsize_limit (const struct type *type)
698 {
699 if (TYPE_LENGTH (type) > varsize_limit)
700 error (_("object size is larger than varsize-limit"));
701 }
702
703 /* Maximum value of a SIZE-byte signed integer type. */
704 static LONGEST
705 max_of_size (int size)
706 {
707 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
708
709 return top_bit | (top_bit - 1);
710 }
711
712 /* Minimum value of a SIZE-byte signed integer type. */
713 static LONGEST
714 min_of_size (int size)
715 {
716 return -max_of_size (size) - 1;
717 }
718
719 /* Maximum value of a SIZE-byte unsigned integer type. */
720 static ULONGEST
721 umax_of_size (int size)
722 {
723 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
724
725 return top_bit | (top_bit - 1);
726 }
727
728 /* Maximum value of integral type T, as a signed quantity. */
729 static LONGEST
730 max_of_type (struct type *t)
731 {
732 if (TYPE_UNSIGNED (t))
733 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
734 else
735 return max_of_size (TYPE_LENGTH (t));
736 }
737
738 /* Minimum value of integral type T, as a signed quantity. */
739 static LONGEST
740 min_of_type (struct type *t)
741 {
742 if (TYPE_UNSIGNED (t))
743 return 0;
744 else
745 return min_of_size (TYPE_LENGTH (t));
746 }
747
748 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
749 LONGEST
750 ada_discrete_type_high_bound (struct type *type)
751 {
752 type = resolve_dynamic_type (type, {}, 0);
753 switch (type->code ())
754 {
755 case TYPE_CODE_RANGE:
756 return TYPE_HIGH_BOUND (type);
757 case TYPE_CODE_ENUM:
758 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
759 case TYPE_CODE_BOOL:
760 return 1;
761 case TYPE_CODE_CHAR:
762 case TYPE_CODE_INT:
763 return max_of_type (type);
764 default:
765 error (_("Unexpected type in ada_discrete_type_high_bound."));
766 }
767 }
768
769 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
770 LONGEST
771 ada_discrete_type_low_bound (struct type *type)
772 {
773 type = resolve_dynamic_type (type, {}, 0);
774 switch (type->code ())
775 {
776 case TYPE_CODE_RANGE:
777 return TYPE_LOW_BOUND (type);
778 case TYPE_CODE_ENUM:
779 return TYPE_FIELD_ENUMVAL (type, 0);
780 case TYPE_CODE_BOOL:
781 return 0;
782 case TYPE_CODE_CHAR:
783 case TYPE_CODE_INT:
784 return min_of_type (type);
785 default:
786 error (_("Unexpected type in ada_discrete_type_low_bound."));
787 }
788 }
789
790 /* The identity on non-range types. For range types, the underlying
791 non-range scalar type. */
792
793 static struct type *
794 get_base_type (struct type *type)
795 {
796 while (type != NULL && type->code () == TYPE_CODE_RANGE)
797 {
798 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
799 return type;
800 type = TYPE_TARGET_TYPE (type);
801 }
802 return type;
803 }
804
805 /* Return a decoded version of the given VALUE. This means returning
806 a value whose type is obtained by applying all the GNAT-specific
807 encodings, making the resulting type a static but standard description
808 of the initial type. */
809
810 struct value *
811 ada_get_decoded_value (struct value *value)
812 {
813 struct type *type = ada_check_typedef (value_type (value));
814
815 if (ada_is_array_descriptor_type (type)
816 || (ada_is_constrained_packed_array_type (type)
817 && type->code () != TYPE_CODE_PTR))
818 {
819 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
820 value = ada_coerce_to_simple_array_ptr (value);
821 else
822 value = ada_coerce_to_simple_array (value);
823 }
824 else
825 value = ada_to_fixed_value (value);
826
827 return value;
828 }
829
830 /* Same as ada_get_decoded_value, but with the given TYPE.
831 Because there is no associated actual value for this type,
832 the resulting type might be a best-effort approximation in
833 the case of dynamic types. */
834
835 struct type *
836 ada_get_decoded_type (struct type *type)
837 {
838 type = to_static_fixed_type (type);
839 if (ada_is_constrained_packed_array_type (type))
840 type = ada_coerce_to_simple_array_type (type);
841 return type;
842 }
843
844 \f
845
846 /* Language Selection */
847
848 /* If the main program is in Ada, return language_ada, otherwise return LANG
849 (the main program is in Ada iif the adainit symbol is found). */
850
851 static enum language
852 ada_update_initial_language (enum language lang)
853 {
854 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
855 return language_ada;
856
857 return lang;
858 }
859
860 /* If the main procedure is written in Ada, then return its name.
861 The result is good until the next call. Return NULL if the main
862 procedure doesn't appear to be in Ada. */
863
864 char *
865 ada_main_name (void)
866 {
867 struct bound_minimal_symbol msym;
868 static gdb::unique_xmalloc_ptr<char> main_program_name;
869
870 /* For Ada, the name of the main procedure is stored in a specific
871 string constant, generated by the binder. Look for that symbol,
872 extract its address, and then read that string. If we didn't find
873 that string, then most probably the main procedure is not written
874 in Ada. */
875 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
876
877 if (msym.minsym != NULL)
878 {
879 CORE_ADDR main_program_name_addr;
880 int err_code;
881
882 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
883 if (main_program_name_addr == 0)
884 error (_("Invalid address for Ada main program name."));
885
886 target_read_string (main_program_name_addr, &main_program_name,
887 1024, &err_code);
888
889 if (err_code != 0)
890 return NULL;
891 return main_program_name.get ();
892 }
893
894 /* The main procedure doesn't seem to be in Ada. */
895 return NULL;
896 }
897 \f
898 /* Symbols */
899
900 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
901 of NULLs. */
902
903 const struct ada_opname_map ada_opname_table[] = {
904 {"Oadd", "\"+\"", BINOP_ADD},
905 {"Osubtract", "\"-\"", BINOP_SUB},
906 {"Omultiply", "\"*\"", BINOP_MUL},
907 {"Odivide", "\"/\"", BINOP_DIV},
908 {"Omod", "\"mod\"", BINOP_MOD},
909 {"Orem", "\"rem\"", BINOP_REM},
910 {"Oexpon", "\"**\"", BINOP_EXP},
911 {"Olt", "\"<\"", BINOP_LESS},
912 {"Ole", "\"<=\"", BINOP_LEQ},
913 {"Ogt", "\">\"", BINOP_GTR},
914 {"Oge", "\">=\"", BINOP_GEQ},
915 {"Oeq", "\"=\"", BINOP_EQUAL},
916 {"One", "\"/=\"", BINOP_NOTEQUAL},
917 {"Oand", "\"and\"", BINOP_BITWISE_AND},
918 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
919 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
920 {"Oconcat", "\"&\"", BINOP_CONCAT},
921 {"Oabs", "\"abs\"", UNOP_ABS},
922 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
923 {"Oadd", "\"+\"", UNOP_PLUS},
924 {"Osubtract", "\"-\"", UNOP_NEG},
925 {NULL, NULL}
926 };
927
928 /* The "encoded" form of DECODED, according to GNAT conventions. The
929 result is valid until the next call to ada_encode. If
930 THROW_ERRORS, throw an error if invalid operator name is found.
931 Otherwise, return NULL in that case. */
932
933 static char *
934 ada_encode_1 (const char *decoded, bool throw_errors)
935 {
936 static char *encoding_buffer = NULL;
937 static size_t encoding_buffer_size = 0;
938 const char *p;
939 int k;
940
941 if (decoded == NULL)
942 return NULL;
943
944 GROW_VECT (encoding_buffer, encoding_buffer_size,
945 2 * strlen (decoded) + 10);
946
947 k = 0;
948 for (p = decoded; *p != '\0'; p += 1)
949 {
950 if (*p == '.')
951 {
952 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
953 k += 2;
954 }
955 else if (*p == '"')
956 {
957 const struct ada_opname_map *mapping;
958
959 for (mapping = ada_opname_table;
960 mapping->encoded != NULL
961 && !startswith (p, mapping->decoded); mapping += 1)
962 ;
963 if (mapping->encoded == NULL)
964 {
965 if (throw_errors)
966 error (_("invalid Ada operator name: %s"), p);
967 else
968 return NULL;
969 }
970 strcpy (encoding_buffer + k, mapping->encoded);
971 k += strlen (mapping->encoded);
972 break;
973 }
974 else
975 {
976 encoding_buffer[k] = *p;
977 k += 1;
978 }
979 }
980
981 encoding_buffer[k] = '\0';
982 return encoding_buffer;
983 }
984
985 /* The "encoded" form of DECODED, according to GNAT conventions.
986 The result is valid until the next call to ada_encode. */
987
988 char *
989 ada_encode (const char *decoded)
990 {
991 return ada_encode_1 (decoded, true);
992 }
993
994 /* Return NAME folded to lower case, or, if surrounded by single
995 quotes, unfolded, but with the quotes stripped away. Result good
996 to next call. */
997
998 static char *
999 ada_fold_name (gdb::string_view name)
1000 {
1001 static char *fold_buffer = NULL;
1002 static size_t fold_buffer_size = 0;
1003
1004 int len = name.size ();
1005 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1006
1007 if (name[0] == '\'')
1008 {
1009 strncpy (fold_buffer, name.data () + 1, len - 2);
1010 fold_buffer[len - 2] = '\000';
1011 }
1012 else
1013 {
1014 int i;
1015
1016 for (i = 0; i <= len; i += 1)
1017 fold_buffer[i] = tolower (name[i]);
1018 }
1019
1020 return fold_buffer;
1021 }
1022
1023 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1024
1025 static int
1026 is_lower_alphanum (const char c)
1027 {
1028 return (isdigit (c) || (isalpha (c) && islower (c)));
1029 }
1030
1031 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1032 This function saves in LEN the length of that same symbol name but
1033 without either of these suffixes:
1034 . .{DIGIT}+
1035 . ${DIGIT}+
1036 . ___{DIGIT}+
1037 . __{DIGIT}+.
1038
1039 These are suffixes introduced by the compiler for entities such as
1040 nested subprogram for instance, in order to avoid name clashes.
1041 They do not serve any purpose for the debugger. */
1042
1043 static void
1044 ada_remove_trailing_digits (const char *encoded, int *len)
1045 {
1046 if (*len > 1 && isdigit (encoded[*len - 1]))
1047 {
1048 int i = *len - 2;
1049
1050 while (i > 0 && isdigit (encoded[i]))
1051 i--;
1052 if (i >= 0 && encoded[i] == '.')
1053 *len = i;
1054 else if (i >= 0 && encoded[i] == '$')
1055 *len = i;
1056 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1057 *len = i - 2;
1058 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1059 *len = i - 1;
1060 }
1061 }
1062
1063 /* Remove the suffix introduced by the compiler for protected object
1064 subprograms. */
1065
1066 static void
1067 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1068 {
1069 /* Remove trailing N. */
1070
1071 /* Protected entry subprograms are broken into two
1072 separate subprograms: The first one is unprotected, and has
1073 a 'N' suffix; the second is the protected version, and has
1074 the 'P' suffix. The second calls the first one after handling
1075 the protection. Since the P subprograms are internally generated,
1076 we leave these names undecoded, giving the user a clue that this
1077 entity is internal. */
1078
1079 if (*len > 1
1080 && encoded[*len - 1] == 'N'
1081 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1082 *len = *len - 1;
1083 }
1084
1085 /* If ENCODED follows the GNAT entity encoding conventions, then return
1086 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1087 replaced by ENCODED. */
1088
1089 std::string
1090 ada_decode (const char *encoded)
1091 {
1092 int i, j;
1093 int len0;
1094 const char *p;
1095 int at_start_name;
1096 std::string decoded;
1097
1098 /* With function descriptors on PPC64, the value of a symbol named
1099 ".FN", if it exists, is the entry point of the function "FN". */
1100 if (encoded[0] == '.')
1101 encoded += 1;
1102
1103 /* The name of the Ada main procedure starts with "_ada_".
1104 This prefix is not part of the decoded name, so skip this part
1105 if we see this prefix. */
1106 if (startswith (encoded, "_ada_"))
1107 encoded += 5;
1108
1109 /* If the name starts with '_', then it is not a properly encoded
1110 name, so do not attempt to decode it. Similarly, if the name
1111 starts with '<', the name should not be decoded. */
1112 if (encoded[0] == '_' || encoded[0] == '<')
1113 goto Suppress;
1114
1115 len0 = strlen (encoded);
1116
1117 ada_remove_trailing_digits (encoded, &len0);
1118 ada_remove_po_subprogram_suffix (encoded, &len0);
1119
1120 /* Remove the ___X.* suffix if present. Do not forget to verify that
1121 the suffix is located before the current "end" of ENCODED. We want
1122 to avoid re-matching parts of ENCODED that have previously been
1123 marked as discarded (by decrementing LEN0). */
1124 p = strstr (encoded, "___");
1125 if (p != NULL && p - encoded < len0 - 3)
1126 {
1127 if (p[3] == 'X')
1128 len0 = p - encoded;
1129 else
1130 goto Suppress;
1131 }
1132
1133 /* Remove any trailing TKB suffix. It tells us that this symbol
1134 is for the body of a task, but that information does not actually
1135 appear in the decoded name. */
1136
1137 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1138 len0 -= 3;
1139
1140 /* Remove any trailing TB suffix. The TB suffix is slightly different
1141 from the TKB suffix because it is used for non-anonymous task
1142 bodies. */
1143
1144 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1145 len0 -= 2;
1146
1147 /* Remove trailing "B" suffixes. */
1148 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1149
1150 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1151 len0 -= 1;
1152
1153 /* Make decoded big enough for possible expansion by operator name. */
1154
1155 decoded.resize (2 * len0 + 1, 'X');
1156
1157 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1158
1159 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1160 {
1161 i = len0 - 2;
1162 while ((i >= 0 && isdigit (encoded[i]))
1163 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1164 i -= 1;
1165 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1166 len0 = i - 1;
1167 else if (encoded[i] == '$')
1168 len0 = i;
1169 }
1170
1171 /* The first few characters that are not alphabetic are not part
1172 of any encoding we use, so we can copy them over verbatim. */
1173
1174 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1175 decoded[j] = encoded[i];
1176
1177 at_start_name = 1;
1178 while (i < len0)
1179 {
1180 /* Is this a symbol function? */
1181 if (at_start_name && encoded[i] == 'O')
1182 {
1183 int k;
1184
1185 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1186 {
1187 int op_len = strlen (ada_opname_table[k].encoded);
1188 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1189 op_len - 1) == 0)
1190 && !isalnum (encoded[i + op_len]))
1191 {
1192 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1193 at_start_name = 0;
1194 i += op_len;
1195 j += strlen (ada_opname_table[k].decoded);
1196 break;
1197 }
1198 }
1199 if (ada_opname_table[k].encoded != NULL)
1200 continue;
1201 }
1202 at_start_name = 0;
1203
1204 /* Replace "TK__" with "__", which will eventually be translated
1205 into "." (just below). */
1206
1207 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1208 i += 2;
1209
1210 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1211 be translated into "." (just below). These are internal names
1212 generated for anonymous blocks inside which our symbol is nested. */
1213
1214 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1215 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1216 && isdigit (encoded [i+4]))
1217 {
1218 int k = i + 5;
1219
1220 while (k < len0 && isdigit (encoded[k]))
1221 k++; /* Skip any extra digit. */
1222
1223 /* Double-check that the "__B_{DIGITS}+" sequence we found
1224 is indeed followed by "__". */
1225 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1226 i = k;
1227 }
1228
1229 /* Remove _E{DIGITS}+[sb] */
1230
1231 /* Just as for protected object subprograms, there are 2 categories
1232 of subprograms created by the compiler for each entry. The first
1233 one implements the actual entry code, and has a suffix following
1234 the convention above; the second one implements the barrier and
1235 uses the same convention as above, except that the 'E' is replaced
1236 by a 'B'.
1237
1238 Just as above, we do not decode the name of barrier functions
1239 to give the user a clue that the code he is debugging has been
1240 internally generated. */
1241
1242 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1243 && isdigit (encoded[i+2]))
1244 {
1245 int k = i + 3;
1246
1247 while (k < len0 && isdigit (encoded[k]))
1248 k++;
1249
1250 if (k < len0
1251 && (encoded[k] == 'b' || encoded[k] == 's'))
1252 {
1253 k++;
1254 /* Just as an extra precaution, make sure that if this
1255 suffix is followed by anything else, it is a '_'.
1256 Otherwise, we matched this sequence by accident. */
1257 if (k == len0
1258 || (k < len0 && encoded[k] == '_'))
1259 i = k;
1260 }
1261 }
1262
1263 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1264 the GNAT front-end in protected object subprograms. */
1265
1266 if (i < len0 + 3
1267 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1268 {
1269 /* Backtrack a bit up until we reach either the begining of
1270 the encoded name, or "__". Make sure that we only find
1271 digits or lowercase characters. */
1272 const char *ptr = encoded + i - 1;
1273
1274 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1275 ptr--;
1276 if (ptr < encoded
1277 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1278 i++;
1279 }
1280
1281 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1282 {
1283 /* This is a X[bn]* sequence not separated from the previous
1284 part of the name with a non-alpha-numeric character (in other
1285 words, immediately following an alpha-numeric character), then
1286 verify that it is placed at the end of the encoded name. If
1287 not, then the encoding is not valid and we should abort the
1288 decoding. Otherwise, just skip it, it is used in body-nested
1289 package names. */
1290 do
1291 i += 1;
1292 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1293 if (i < len0)
1294 goto Suppress;
1295 }
1296 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1297 {
1298 /* Replace '__' by '.'. */
1299 decoded[j] = '.';
1300 at_start_name = 1;
1301 i += 2;
1302 j += 1;
1303 }
1304 else
1305 {
1306 /* It's a character part of the decoded name, so just copy it
1307 over. */
1308 decoded[j] = encoded[i];
1309 i += 1;
1310 j += 1;
1311 }
1312 }
1313 decoded.resize (j);
1314
1315 /* Decoded names should never contain any uppercase character.
1316 Double-check this, and abort the decoding if we find one. */
1317
1318 for (i = 0; i < decoded.length(); ++i)
1319 if (isupper (decoded[i]) || decoded[i] == ' ')
1320 goto Suppress;
1321
1322 return decoded;
1323
1324 Suppress:
1325 if (encoded[0] == '<')
1326 decoded = encoded;
1327 else
1328 decoded = '<' + std::string(encoded) + '>';
1329 return decoded;
1330
1331 }
1332
1333 /* Table for keeping permanent unique copies of decoded names. Once
1334 allocated, names in this table are never released. While this is a
1335 storage leak, it should not be significant unless there are massive
1336 changes in the set of decoded names in successive versions of a
1337 symbol table loaded during a single session. */
1338 static struct htab *decoded_names_store;
1339
1340 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1341 in the language-specific part of GSYMBOL, if it has not been
1342 previously computed. Tries to save the decoded name in the same
1343 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1344 in any case, the decoded symbol has a lifetime at least that of
1345 GSYMBOL).
1346 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1347 const, but nevertheless modified to a semantically equivalent form
1348 when a decoded name is cached in it. */
1349
1350 const char *
1351 ada_decode_symbol (const struct general_symbol_info *arg)
1352 {
1353 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1354 const char **resultp =
1355 &gsymbol->language_specific.demangled_name;
1356
1357 if (!gsymbol->ada_mangled)
1358 {
1359 std::string decoded = ada_decode (gsymbol->linkage_name ());
1360 struct obstack *obstack = gsymbol->language_specific.obstack;
1361
1362 gsymbol->ada_mangled = 1;
1363
1364 if (obstack != NULL)
1365 *resultp = obstack_strdup (obstack, decoded.c_str ());
1366 else
1367 {
1368 /* Sometimes, we can't find a corresponding objfile, in
1369 which case, we put the result on the heap. Since we only
1370 decode when needed, we hope this usually does not cause a
1371 significant memory leak (FIXME). */
1372
1373 char **slot = (char **) htab_find_slot (decoded_names_store,
1374 decoded.c_str (), INSERT);
1375
1376 if (*slot == NULL)
1377 *slot = xstrdup (decoded.c_str ());
1378 *resultp = *slot;
1379 }
1380 }
1381
1382 return *resultp;
1383 }
1384
1385 static char *
1386 ada_la_decode (const char *encoded, int options)
1387 {
1388 return xstrdup (ada_decode (encoded).c_str ());
1389 }
1390
1391 /* Implement la_sniff_from_mangled_name for Ada. */
1392
1393 static int
1394 ada_sniff_from_mangled_name (const char *mangled, char **out)
1395 {
1396 std::string demangled = ada_decode (mangled);
1397
1398 *out = NULL;
1399
1400 if (demangled != mangled && demangled[0] != '<')
1401 {
1402 /* Set the gsymbol language to Ada, but still return 0.
1403 Two reasons for that:
1404
1405 1. For Ada, we prefer computing the symbol's decoded name
1406 on the fly rather than pre-compute it, in order to save
1407 memory (Ada projects are typically very large).
1408
1409 2. There are some areas in the definition of the GNAT
1410 encoding where, with a bit of bad luck, we might be able
1411 to decode a non-Ada symbol, generating an incorrect
1412 demangled name (Eg: names ending with "TB" for instance
1413 are identified as task bodies and so stripped from
1414 the decoded name returned).
1415
1416 Returning 1, here, but not setting *DEMANGLED, helps us get a
1417 little bit of the best of both worlds. Because we're last,
1418 we should not affect any of the other languages that were
1419 able to demangle the symbol before us; we get to correctly
1420 tag Ada symbols as such; and even if we incorrectly tagged a
1421 non-Ada symbol, which should be rare, any routing through the
1422 Ada language should be transparent (Ada tries to behave much
1423 like C/C++ with non-Ada symbols). */
1424 return 1;
1425 }
1426
1427 return 0;
1428 }
1429
1430 \f
1431
1432 /* Arrays */
1433
1434 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1435 generated by the GNAT compiler to describe the index type used
1436 for each dimension of an array, check whether it follows the latest
1437 known encoding. If not, fix it up to conform to the latest encoding.
1438 Otherwise, do nothing. This function also does nothing if
1439 INDEX_DESC_TYPE is NULL.
1440
1441 The GNAT encoding used to describe the array index type evolved a bit.
1442 Initially, the information would be provided through the name of each
1443 field of the structure type only, while the type of these fields was
1444 described as unspecified and irrelevant. The debugger was then expected
1445 to perform a global type lookup using the name of that field in order
1446 to get access to the full index type description. Because these global
1447 lookups can be very expensive, the encoding was later enhanced to make
1448 the global lookup unnecessary by defining the field type as being
1449 the full index type description.
1450
1451 The purpose of this routine is to allow us to support older versions
1452 of the compiler by detecting the use of the older encoding, and by
1453 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1454 we essentially replace each field's meaningless type by the associated
1455 index subtype). */
1456
1457 void
1458 ada_fixup_array_indexes_type (struct type *index_desc_type)
1459 {
1460 int i;
1461
1462 if (index_desc_type == NULL)
1463 return;
1464 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1465
1466 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1467 to check one field only, no need to check them all). If not, return
1468 now.
1469
1470 If our INDEX_DESC_TYPE was generated using the older encoding,
1471 the field type should be a meaningless integer type whose name
1472 is not equal to the field name. */
1473 if (TYPE_FIELD_TYPE (index_desc_type, 0)->name () != NULL
1474 && strcmp (TYPE_FIELD_TYPE (index_desc_type, 0)->name (),
1475 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1476 return;
1477
1478 /* Fixup each field of INDEX_DESC_TYPE. */
1479 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1480 {
1481 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1482 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1483
1484 if (raw_type)
1485 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1486 }
1487 }
1488
1489 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1490
1491 static const char *bound_name[] = {
1492 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1493 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1494 };
1495
1496 /* Maximum number of array dimensions we are prepared to handle. */
1497
1498 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1499
1500
1501 /* The desc_* routines return primitive portions of array descriptors
1502 (fat pointers). */
1503
1504 /* The descriptor or array type, if any, indicated by TYPE; removes
1505 level of indirection, if needed. */
1506
1507 static struct type *
1508 desc_base_type (struct type *type)
1509 {
1510 if (type == NULL)
1511 return NULL;
1512 type = ada_check_typedef (type);
1513 if (type->code () == TYPE_CODE_TYPEDEF)
1514 type = ada_typedef_target_type (type);
1515
1516 if (type != NULL
1517 && (type->code () == TYPE_CODE_PTR
1518 || type->code () == TYPE_CODE_REF))
1519 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1520 else
1521 return type;
1522 }
1523
1524 /* True iff TYPE indicates a "thin" array pointer type. */
1525
1526 static int
1527 is_thin_pntr (struct type *type)
1528 {
1529 return
1530 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1531 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1532 }
1533
1534 /* The descriptor type for thin pointer type TYPE. */
1535
1536 static struct type *
1537 thin_descriptor_type (struct type *type)
1538 {
1539 struct type *base_type = desc_base_type (type);
1540
1541 if (base_type == NULL)
1542 return NULL;
1543 if (is_suffix (ada_type_name (base_type), "___XVE"))
1544 return base_type;
1545 else
1546 {
1547 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1548
1549 if (alt_type == NULL)
1550 return base_type;
1551 else
1552 return alt_type;
1553 }
1554 }
1555
1556 /* A pointer to the array data for thin-pointer value VAL. */
1557
1558 static struct value *
1559 thin_data_pntr (struct value *val)
1560 {
1561 struct type *type = ada_check_typedef (value_type (val));
1562 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1563
1564 data_type = lookup_pointer_type (data_type);
1565
1566 if (type->code () == TYPE_CODE_PTR)
1567 return value_cast (data_type, value_copy (val));
1568 else
1569 return value_from_longest (data_type, value_address (val));
1570 }
1571
1572 /* True iff TYPE indicates a "thick" array pointer type. */
1573
1574 static int
1575 is_thick_pntr (struct type *type)
1576 {
1577 type = desc_base_type (type);
1578 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1579 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1580 }
1581
1582 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1583 pointer to one, the type of its bounds data; otherwise, NULL. */
1584
1585 static struct type *
1586 desc_bounds_type (struct type *type)
1587 {
1588 struct type *r;
1589
1590 type = desc_base_type (type);
1591
1592 if (type == NULL)
1593 return NULL;
1594 else if (is_thin_pntr (type))
1595 {
1596 type = thin_descriptor_type (type);
1597 if (type == NULL)
1598 return NULL;
1599 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1600 if (r != NULL)
1601 return ada_check_typedef (r);
1602 }
1603 else if (type->code () == TYPE_CODE_STRUCT)
1604 {
1605 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1606 if (r != NULL)
1607 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1608 }
1609 return NULL;
1610 }
1611
1612 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1613 one, a pointer to its bounds data. Otherwise NULL. */
1614
1615 static struct value *
1616 desc_bounds (struct value *arr)
1617 {
1618 struct type *type = ada_check_typedef (value_type (arr));
1619
1620 if (is_thin_pntr (type))
1621 {
1622 struct type *bounds_type =
1623 desc_bounds_type (thin_descriptor_type (type));
1624 LONGEST addr;
1625
1626 if (bounds_type == NULL)
1627 error (_("Bad GNAT array descriptor"));
1628
1629 /* NOTE: The following calculation is not really kosher, but
1630 since desc_type is an XVE-encoded type (and shouldn't be),
1631 the correct calculation is a real pain. FIXME (and fix GCC). */
1632 if (type->code () == TYPE_CODE_PTR)
1633 addr = value_as_long (arr);
1634 else
1635 addr = value_address (arr);
1636
1637 return
1638 value_from_longest (lookup_pointer_type (bounds_type),
1639 addr - TYPE_LENGTH (bounds_type));
1640 }
1641
1642 else if (is_thick_pntr (type))
1643 {
1644 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1645 _("Bad GNAT array descriptor"));
1646 struct type *p_bounds_type = value_type (p_bounds);
1647
1648 if (p_bounds_type
1649 && p_bounds_type->code () == TYPE_CODE_PTR)
1650 {
1651 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1652
1653 if (TYPE_STUB (target_type))
1654 p_bounds = value_cast (lookup_pointer_type
1655 (ada_check_typedef (target_type)),
1656 p_bounds);
1657 }
1658 else
1659 error (_("Bad GNAT array descriptor"));
1660
1661 return p_bounds;
1662 }
1663 else
1664 return NULL;
1665 }
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the bounds data. */
1669
1670 static int
1671 fat_pntr_bounds_bitpos (struct type *type)
1672 {
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1674 }
1675
1676 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1677 size of the field containing the address of the bounds data. */
1678
1679 static int
1680 fat_pntr_bounds_bitsize (struct type *type)
1681 {
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 1);
1686 else
1687 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1688 }
1689
1690 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1691 pointer to one, the type of its array data (a array-with-no-bounds type);
1692 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1693 data. */
1694
1695 static struct type *
1696 desc_data_target_type (struct type *type)
1697 {
1698 type = desc_base_type (type);
1699
1700 /* NOTE: The following is bogus; see comment in desc_bounds. */
1701 if (is_thin_pntr (type))
1702 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1703 else if (is_thick_pntr (type))
1704 {
1705 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1706
1707 if (data_type
1708 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1709 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1710 }
1711
1712 return NULL;
1713 }
1714
1715 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1716 its array data. */
1717
1718 static struct value *
1719 desc_data (struct value *arr)
1720 {
1721 struct type *type = value_type (arr);
1722
1723 if (is_thin_pntr (type))
1724 return thin_data_pntr (arr);
1725 else if (is_thick_pntr (type))
1726 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1727 _("Bad GNAT array descriptor"));
1728 else
1729 return NULL;
1730 }
1731
1732
1733 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1734 position of the field containing the address of the data. */
1735
1736 static int
1737 fat_pntr_data_bitpos (struct type *type)
1738 {
1739 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1740 }
1741
1742 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1743 size of the field containing the address of the data. */
1744
1745 static int
1746 fat_pntr_data_bitsize (struct type *type)
1747 {
1748 type = desc_base_type (type);
1749
1750 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1751 return TYPE_FIELD_BITSIZE (type, 0);
1752 else
1753 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1754 }
1755
1756 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1757 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1758 bound, if WHICH is 1. The first bound is I=1. */
1759
1760 static struct value *
1761 desc_one_bound (struct value *bounds, int i, int which)
1762 {
1763 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1764 _("Bad GNAT array descriptor bounds"));
1765 }
1766
1767 /* If BOUNDS is an array-bounds structure type, return the bit position
1768 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1769 bound, if WHICH is 1. The first bound is I=1. */
1770
1771 static int
1772 desc_bound_bitpos (struct type *type, int i, int which)
1773 {
1774 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1775 }
1776
1777 /* If BOUNDS is an array-bounds structure type, return the bit field size
1778 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1779 bound, if WHICH is 1. The first bound is I=1. */
1780
1781 static int
1782 desc_bound_bitsize (struct type *type, int i, int which)
1783 {
1784 type = desc_base_type (type);
1785
1786 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1787 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1788 else
1789 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1790 }
1791
1792 /* If TYPE is the type of an array-bounds structure, the type of its
1793 Ith bound (numbering from 1). Otherwise, NULL. */
1794
1795 static struct type *
1796 desc_index_type (struct type *type, int i)
1797 {
1798 type = desc_base_type (type);
1799
1800 if (type->code () == TYPE_CODE_STRUCT)
1801 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1802 else
1803 return NULL;
1804 }
1805
1806 /* The number of index positions in the array-bounds type TYPE.
1807 Return 0 if TYPE is NULL. */
1808
1809 static int
1810 desc_arity (struct type *type)
1811 {
1812 type = desc_base_type (type);
1813
1814 if (type != NULL)
1815 return TYPE_NFIELDS (type) / 2;
1816 return 0;
1817 }
1818
1819 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1820 an array descriptor type (representing an unconstrained array
1821 type). */
1822
1823 static int
1824 ada_is_direct_array_type (struct type *type)
1825 {
1826 if (type == NULL)
1827 return 0;
1828 type = ada_check_typedef (type);
1829 return (type->code () == TYPE_CODE_ARRAY
1830 || ada_is_array_descriptor_type (type));
1831 }
1832
1833 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1834 * to one. */
1835
1836 static int
1837 ada_is_array_type (struct type *type)
1838 {
1839 while (type != NULL
1840 && (type->code () == TYPE_CODE_PTR
1841 || type->code () == TYPE_CODE_REF))
1842 type = TYPE_TARGET_TYPE (type);
1843 return ada_is_direct_array_type (type);
1844 }
1845
1846 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1847
1848 int
1849 ada_is_simple_array_type (struct type *type)
1850 {
1851 if (type == NULL)
1852 return 0;
1853 type = ada_check_typedef (type);
1854 return (type->code () == TYPE_CODE_ARRAY
1855 || (type->code () == TYPE_CODE_PTR
1856 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1857 == TYPE_CODE_ARRAY)));
1858 }
1859
1860 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1861
1862 int
1863 ada_is_array_descriptor_type (struct type *type)
1864 {
1865 struct type *data_type = desc_data_target_type (type);
1866
1867 if (type == NULL)
1868 return 0;
1869 type = ada_check_typedef (type);
1870 return (data_type != NULL
1871 && data_type->code () == TYPE_CODE_ARRAY
1872 && desc_arity (desc_bounds_type (type)) > 0);
1873 }
1874
1875 /* Non-zero iff type is a partially mal-formed GNAT array
1876 descriptor. FIXME: This is to compensate for some problems with
1877 debugging output from GNAT. Re-examine periodically to see if it
1878 is still needed. */
1879
1880 int
1881 ada_is_bogus_array_descriptor (struct type *type)
1882 {
1883 return
1884 type != NULL
1885 && type->code () == TYPE_CODE_STRUCT
1886 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1887 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1888 && !ada_is_array_descriptor_type (type);
1889 }
1890
1891
1892 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1893 (fat pointer) returns the type of the array data described---specifically,
1894 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1895 in from the descriptor; otherwise, they are left unspecified. If
1896 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1897 returns NULL. The result is simply the type of ARR if ARR is not
1898 a descriptor. */
1899
1900 static struct type *
1901 ada_type_of_array (struct value *arr, int bounds)
1902 {
1903 if (ada_is_constrained_packed_array_type (value_type (arr)))
1904 return decode_constrained_packed_array_type (value_type (arr));
1905
1906 if (!ada_is_array_descriptor_type (value_type (arr)))
1907 return value_type (arr);
1908
1909 if (!bounds)
1910 {
1911 struct type *array_type =
1912 ada_check_typedef (desc_data_target_type (value_type (arr)));
1913
1914 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1915 TYPE_FIELD_BITSIZE (array_type, 0) =
1916 decode_packed_array_bitsize (value_type (arr));
1917
1918 return array_type;
1919 }
1920 else
1921 {
1922 struct type *elt_type;
1923 int arity;
1924 struct value *descriptor;
1925
1926 elt_type = ada_array_element_type (value_type (arr), -1);
1927 arity = ada_array_arity (value_type (arr));
1928
1929 if (elt_type == NULL || arity == 0)
1930 return ada_check_typedef (value_type (arr));
1931
1932 descriptor = desc_bounds (arr);
1933 if (value_as_long (descriptor) == 0)
1934 return NULL;
1935 while (arity > 0)
1936 {
1937 struct type *range_type = alloc_type_copy (value_type (arr));
1938 struct type *array_type = alloc_type_copy (value_type (arr));
1939 struct value *low = desc_one_bound (descriptor, arity, 0);
1940 struct value *high = desc_one_bound (descriptor, arity, 1);
1941
1942 arity -= 1;
1943 create_static_range_type (range_type, value_type (low),
1944 longest_to_int (value_as_long (low)),
1945 longest_to_int (value_as_long (high)));
1946 elt_type = create_array_type (array_type, elt_type, range_type);
1947
1948 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1949 {
1950 /* We need to store the element packed bitsize, as well as
1951 recompute the array size, because it was previously
1952 computed based on the unpacked element size. */
1953 LONGEST lo = value_as_long (low);
1954 LONGEST hi = value_as_long (high);
1955
1956 TYPE_FIELD_BITSIZE (elt_type, 0) =
1957 decode_packed_array_bitsize (value_type (arr));
1958 /* If the array has no element, then the size is already
1959 zero, and does not need to be recomputed. */
1960 if (lo < hi)
1961 {
1962 int array_bitsize =
1963 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1964
1965 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1966 }
1967 }
1968 }
1969
1970 return lookup_pointer_type (elt_type);
1971 }
1972 }
1973
1974 /* If ARR does not represent an array, returns ARR unchanged.
1975 Otherwise, returns either a standard GDB array with bounds set
1976 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1977 GDB array. Returns NULL if ARR is a null fat pointer. */
1978
1979 struct value *
1980 ada_coerce_to_simple_array_ptr (struct value *arr)
1981 {
1982 if (ada_is_array_descriptor_type (value_type (arr)))
1983 {
1984 struct type *arrType = ada_type_of_array (arr, 1);
1985
1986 if (arrType == NULL)
1987 return NULL;
1988 return value_cast (arrType, value_copy (desc_data (arr)));
1989 }
1990 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1991 return decode_constrained_packed_array (arr);
1992 else
1993 return arr;
1994 }
1995
1996 /* If ARR does not represent an array, returns ARR unchanged.
1997 Otherwise, returns a standard GDB array describing ARR (which may
1998 be ARR itself if it already is in the proper form). */
1999
2000 struct value *
2001 ada_coerce_to_simple_array (struct value *arr)
2002 {
2003 if (ada_is_array_descriptor_type (value_type (arr)))
2004 {
2005 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2006
2007 if (arrVal == NULL)
2008 error (_("Bounds unavailable for null array pointer."));
2009 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2010 return value_ind (arrVal);
2011 }
2012 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2013 return decode_constrained_packed_array (arr);
2014 else
2015 return arr;
2016 }
2017
2018 /* If TYPE represents a GNAT array type, return it translated to an
2019 ordinary GDB array type (possibly with BITSIZE fields indicating
2020 packing). For other types, is the identity. */
2021
2022 struct type *
2023 ada_coerce_to_simple_array_type (struct type *type)
2024 {
2025 if (ada_is_constrained_packed_array_type (type))
2026 return decode_constrained_packed_array_type (type);
2027
2028 if (ada_is_array_descriptor_type (type))
2029 return ada_check_typedef (desc_data_target_type (type));
2030
2031 return type;
2032 }
2033
2034 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2035
2036 static int
2037 ada_is_packed_array_type (struct type *type)
2038 {
2039 if (type == NULL)
2040 return 0;
2041 type = desc_base_type (type);
2042 type = ada_check_typedef (type);
2043 return
2044 ada_type_name (type) != NULL
2045 && strstr (ada_type_name (type), "___XP") != NULL;
2046 }
2047
2048 /* Non-zero iff TYPE represents a standard GNAT constrained
2049 packed-array type. */
2050
2051 int
2052 ada_is_constrained_packed_array_type (struct type *type)
2053 {
2054 return ada_is_packed_array_type (type)
2055 && !ada_is_array_descriptor_type (type);
2056 }
2057
2058 /* Non-zero iff TYPE represents an array descriptor for a
2059 unconstrained packed-array type. */
2060
2061 static int
2062 ada_is_unconstrained_packed_array_type (struct type *type)
2063 {
2064 return ada_is_packed_array_type (type)
2065 && ada_is_array_descriptor_type (type);
2066 }
2067
2068 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2069 return the size of its elements in bits. */
2070
2071 static long
2072 decode_packed_array_bitsize (struct type *type)
2073 {
2074 const char *raw_name;
2075 const char *tail;
2076 long bits;
2077
2078 /* Access to arrays implemented as fat pointers are encoded as a typedef
2079 of the fat pointer type. We need the name of the fat pointer type
2080 to do the decoding, so strip the typedef layer. */
2081 if (type->code () == TYPE_CODE_TYPEDEF)
2082 type = ada_typedef_target_type (type);
2083
2084 raw_name = ada_type_name (ada_check_typedef (type));
2085 if (!raw_name)
2086 raw_name = ada_type_name (desc_base_type (type));
2087
2088 if (!raw_name)
2089 return 0;
2090
2091 tail = strstr (raw_name, "___XP");
2092 gdb_assert (tail != NULL);
2093
2094 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2095 {
2096 lim_warning
2097 (_("could not understand bit size information on packed array"));
2098 return 0;
2099 }
2100
2101 return bits;
2102 }
2103
2104 /* Given that TYPE is a standard GDB array type with all bounds filled
2105 in, and that the element size of its ultimate scalar constituents
2106 (that is, either its elements, or, if it is an array of arrays, its
2107 elements' elements, etc.) is *ELT_BITS, return an identical type,
2108 but with the bit sizes of its elements (and those of any
2109 constituent arrays) recorded in the BITSIZE components of its
2110 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2111 in bits.
2112
2113 Note that, for arrays whose index type has an XA encoding where
2114 a bound references a record discriminant, getting that discriminant,
2115 and therefore the actual value of that bound, is not possible
2116 because none of the given parameters gives us access to the record.
2117 This function assumes that it is OK in the context where it is being
2118 used to return an array whose bounds are still dynamic and where
2119 the length is arbitrary. */
2120
2121 static struct type *
2122 constrained_packed_array_type (struct type *type, long *elt_bits)
2123 {
2124 struct type *new_elt_type;
2125 struct type *new_type;
2126 struct type *index_type_desc;
2127 struct type *index_type;
2128 LONGEST low_bound, high_bound;
2129
2130 type = ada_check_typedef (type);
2131 if (type->code () != TYPE_CODE_ARRAY)
2132 return type;
2133
2134 index_type_desc = ada_find_parallel_type (type, "___XA");
2135 if (index_type_desc)
2136 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2137 NULL);
2138 else
2139 index_type = TYPE_INDEX_TYPE (type);
2140
2141 new_type = alloc_type_copy (type);
2142 new_elt_type =
2143 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2144 elt_bits);
2145 create_array_type (new_type, new_elt_type, index_type);
2146 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2147 new_type->set_name (ada_type_name (type));
2148
2149 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2150 && is_dynamic_type (check_typedef (index_type)))
2151 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2152 low_bound = high_bound = 0;
2153 if (high_bound < low_bound)
2154 *elt_bits = TYPE_LENGTH (new_type) = 0;
2155 else
2156 {
2157 *elt_bits *= (high_bound - low_bound + 1);
2158 TYPE_LENGTH (new_type) =
2159 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2160 }
2161
2162 TYPE_FIXED_INSTANCE (new_type) = 1;
2163 return new_type;
2164 }
2165
2166 /* The array type encoded by TYPE, where
2167 ada_is_constrained_packed_array_type (TYPE). */
2168
2169 static struct type *
2170 decode_constrained_packed_array_type (struct type *type)
2171 {
2172 const char *raw_name = ada_type_name (ada_check_typedef (type));
2173 char *name;
2174 const char *tail;
2175 struct type *shadow_type;
2176 long bits;
2177
2178 if (!raw_name)
2179 raw_name = ada_type_name (desc_base_type (type));
2180
2181 if (!raw_name)
2182 return NULL;
2183
2184 name = (char *) alloca (strlen (raw_name) + 1);
2185 tail = strstr (raw_name, "___XP");
2186 type = desc_base_type (type);
2187
2188 memcpy (name, raw_name, tail - raw_name);
2189 name[tail - raw_name] = '\000';
2190
2191 shadow_type = ada_find_parallel_type_with_name (type, name);
2192
2193 if (shadow_type == NULL)
2194 {
2195 lim_warning (_("could not find bounds information on packed array"));
2196 return NULL;
2197 }
2198 shadow_type = check_typedef (shadow_type);
2199
2200 if (shadow_type->code () != TYPE_CODE_ARRAY)
2201 {
2202 lim_warning (_("could not understand bounds "
2203 "information on packed array"));
2204 return NULL;
2205 }
2206
2207 bits = decode_packed_array_bitsize (type);
2208 return constrained_packed_array_type (shadow_type, &bits);
2209 }
2210
2211 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2212 array, returns a simple array that denotes that array. Its type is a
2213 standard GDB array type except that the BITSIZEs of the array
2214 target types are set to the number of bits in each element, and the
2215 type length is set appropriately. */
2216
2217 static struct value *
2218 decode_constrained_packed_array (struct value *arr)
2219 {
2220 struct type *type;
2221
2222 /* If our value is a pointer, then dereference it. Likewise if
2223 the value is a reference. Make sure that this operation does not
2224 cause the target type to be fixed, as this would indirectly cause
2225 this array to be decoded. The rest of the routine assumes that
2226 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2227 and "value_ind" routines to perform the dereferencing, as opposed
2228 to using "ada_coerce_ref" or "ada_value_ind". */
2229 arr = coerce_ref (arr);
2230 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2231 arr = value_ind (arr);
2232
2233 type = decode_constrained_packed_array_type (value_type (arr));
2234 if (type == NULL)
2235 {
2236 error (_("can't unpack array"));
2237 return NULL;
2238 }
2239
2240 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2241 && ada_is_modular_type (value_type (arr)))
2242 {
2243 /* This is a (right-justified) modular type representing a packed
2244 array with no wrapper. In order to interpret the value through
2245 the (left-justified) packed array type we just built, we must
2246 first left-justify it. */
2247 int bit_size, bit_pos;
2248 ULONGEST mod;
2249
2250 mod = ada_modulus (value_type (arr)) - 1;
2251 bit_size = 0;
2252 while (mod > 0)
2253 {
2254 bit_size += 1;
2255 mod >>= 1;
2256 }
2257 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2258 arr = ada_value_primitive_packed_val (arr, NULL,
2259 bit_pos / HOST_CHAR_BIT,
2260 bit_pos % HOST_CHAR_BIT,
2261 bit_size,
2262 type);
2263 }
2264
2265 return coerce_unspec_val_to_type (arr, type);
2266 }
2267
2268
2269 /* The value of the element of packed array ARR at the ARITY indices
2270 given in IND. ARR must be a simple array. */
2271
2272 static struct value *
2273 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2274 {
2275 int i;
2276 int bits, elt_off, bit_off;
2277 long elt_total_bit_offset;
2278 struct type *elt_type;
2279 struct value *v;
2280
2281 bits = 0;
2282 elt_total_bit_offset = 0;
2283 elt_type = ada_check_typedef (value_type (arr));
2284 for (i = 0; i < arity; i += 1)
2285 {
2286 if (elt_type->code () != TYPE_CODE_ARRAY
2287 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2288 error
2289 (_("attempt to do packed indexing of "
2290 "something other than a packed array"));
2291 else
2292 {
2293 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2294 LONGEST lowerbound, upperbound;
2295 LONGEST idx;
2296
2297 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2298 {
2299 lim_warning (_("don't know bounds of array"));
2300 lowerbound = upperbound = 0;
2301 }
2302
2303 idx = pos_atr (ind[i]);
2304 if (idx < lowerbound || idx > upperbound)
2305 lim_warning (_("packed array index %ld out of bounds"),
2306 (long) idx);
2307 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2308 elt_total_bit_offset += (idx - lowerbound) * bits;
2309 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2310 }
2311 }
2312 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2313 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2314
2315 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2316 bits, elt_type);
2317 return v;
2318 }
2319
2320 /* Non-zero iff TYPE includes negative integer values. */
2321
2322 static int
2323 has_negatives (struct type *type)
2324 {
2325 switch (type->code ())
2326 {
2327 default:
2328 return 0;
2329 case TYPE_CODE_INT:
2330 return !TYPE_UNSIGNED (type);
2331 case TYPE_CODE_RANGE:
2332 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2333 }
2334 }
2335
2336 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2337 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2338 the unpacked buffer.
2339
2340 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2341 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2342
2343 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2344 zero otherwise.
2345
2346 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2347
2348 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2349
2350 static void
2351 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2352 gdb_byte *unpacked, int unpacked_len,
2353 int is_big_endian, int is_signed_type,
2354 int is_scalar)
2355 {
2356 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2357 int src_idx; /* Index into the source area */
2358 int src_bytes_left; /* Number of source bytes left to process. */
2359 int srcBitsLeft; /* Number of source bits left to move */
2360 int unusedLS; /* Number of bits in next significant
2361 byte of source that are unused */
2362
2363 int unpacked_idx; /* Index into the unpacked buffer */
2364 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2365
2366 unsigned long accum; /* Staging area for bits being transferred */
2367 int accumSize; /* Number of meaningful bits in accum */
2368 unsigned char sign;
2369
2370 /* Transmit bytes from least to most significant; delta is the direction
2371 the indices move. */
2372 int delta = is_big_endian ? -1 : 1;
2373
2374 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2375 bits from SRC. .*/
2376 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2377 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2378 bit_size, unpacked_len);
2379
2380 srcBitsLeft = bit_size;
2381 src_bytes_left = src_len;
2382 unpacked_bytes_left = unpacked_len;
2383 sign = 0;
2384
2385 if (is_big_endian)
2386 {
2387 src_idx = src_len - 1;
2388 if (is_signed_type
2389 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2390 sign = ~0;
2391
2392 unusedLS =
2393 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2394 % HOST_CHAR_BIT;
2395
2396 if (is_scalar)
2397 {
2398 accumSize = 0;
2399 unpacked_idx = unpacked_len - 1;
2400 }
2401 else
2402 {
2403 /* Non-scalar values must be aligned at a byte boundary... */
2404 accumSize =
2405 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2406 /* ... And are placed at the beginning (most-significant) bytes
2407 of the target. */
2408 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2409 unpacked_bytes_left = unpacked_idx + 1;
2410 }
2411 }
2412 else
2413 {
2414 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2415
2416 src_idx = unpacked_idx = 0;
2417 unusedLS = bit_offset;
2418 accumSize = 0;
2419
2420 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2421 sign = ~0;
2422 }
2423
2424 accum = 0;
2425 while (src_bytes_left > 0)
2426 {
2427 /* Mask for removing bits of the next source byte that are not
2428 part of the value. */
2429 unsigned int unusedMSMask =
2430 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2431 1;
2432 /* Sign-extend bits for this byte. */
2433 unsigned int signMask = sign & ~unusedMSMask;
2434
2435 accum |=
2436 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2437 accumSize += HOST_CHAR_BIT - unusedLS;
2438 if (accumSize >= HOST_CHAR_BIT)
2439 {
2440 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2441 accumSize -= HOST_CHAR_BIT;
2442 accum >>= HOST_CHAR_BIT;
2443 unpacked_bytes_left -= 1;
2444 unpacked_idx += delta;
2445 }
2446 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2447 unusedLS = 0;
2448 src_bytes_left -= 1;
2449 src_idx += delta;
2450 }
2451 while (unpacked_bytes_left > 0)
2452 {
2453 accum |= sign << accumSize;
2454 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2455 accumSize -= HOST_CHAR_BIT;
2456 if (accumSize < 0)
2457 accumSize = 0;
2458 accum >>= HOST_CHAR_BIT;
2459 unpacked_bytes_left -= 1;
2460 unpacked_idx += delta;
2461 }
2462 }
2463
2464 /* Create a new value of type TYPE from the contents of OBJ starting
2465 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2466 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2467 assigning through the result will set the field fetched from.
2468 VALADDR is ignored unless OBJ is NULL, in which case,
2469 VALADDR+OFFSET must address the start of storage containing the
2470 packed value. The value returned in this case is never an lval.
2471 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2472
2473 struct value *
2474 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2475 long offset, int bit_offset, int bit_size,
2476 struct type *type)
2477 {
2478 struct value *v;
2479 const gdb_byte *src; /* First byte containing data to unpack */
2480 gdb_byte *unpacked;
2481 const int is_scalar = is_scalar_type (type);
2482 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2483 gdb::byte_vector staging;
2484
2485 type = ada_check_typedef (type);
2486
2487 if (obj == NULL)
2488 src = valaddr + offset;
2489 else
2490 src = value_contents (obj) + offset;
2491
2492 if (is_dynamic_type (type))
2493 {
2494 /* The length of TYPE might by dynamic, so we need to resolve
2495 TYPE in order to know its actual size, which we then use
2496 to create the contents buffer of the value we return.
2497 The difficulty is that the data containing our object is
2498 packed, and therefore maybe not at a byte boundary. So, what
2499 we do, is unpack the data into a byte-aligned buffer, and then
2500 use that buffer as our object's value for resolving the type. */
2501 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2502 staging.resize (staging_len);
2503
2504 ada_unpack_from_contents (src, bit_offset, bit_size,
2505 staging.data (), staging.size (),
2506 is_big_endian, has_negatives (type),
2507 is_scalar);
2508 type = resolve_dynamic_type (type, staging, 0);
2509 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2510 {
2511 /* This happens when the length of the object is dynamic,
2512 and is actually smaller than the space reserved for it.
2513 For instance, in an array of variant records, the bit_size
2514 we're given is the array stride, which is constant and
2515 normally equal to the maximum size of its element.
2516 But, in reality, each element only actually spans a portion
2517 of that stride. */
2518 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2519 }
2520 }
2521
2522 if (obj == NULL)
2523 {
2524 v = allocate_value (type);
2525 src = valaddr + offset;
2526 }
2527 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2528 {
2529 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2530 gdb_byte *buf;
2531
2532 v = value_at (type, value_address (obj) + offset);
2533 buf = (gdb_byte *) alloca (src_len);
2534 read_memory (value_address (v), buf, src_len);
2535 src = buf;
2536 }
2537 else
2538 {
2539 v = allocate_value (type);
2540 src = value_contents (obj) + offset;
2541 }
2542
2543 if (obj != NULL)
2544 {
2545 long new_offset = offset;
2546
2547 set_value_component_location (v, obj);
2548 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2549 set_value_bitsize (v, bit_size);
2550 if (value_bitpos (v) >= HOST_CHAR_BIT)
2551 {
2552 ++new_offset;
2553 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2554 }
2555 set_value_offset (v, new_offset);
2556
2557 /* Also set the parent value. This is needed when trying to
2558 assign a new value (in inferior memory). */
2559 set_value_parent (v, obj);
2560 }
2561 else
2562 set_value_bitsize (v, bit_size);
2563 unpacked = value_contents_writeable (v);
2564
2565 if (bit_size == 0)
2566 {
2567 memset (unpacked, 0, TYPE_LENGTH (type));
2568 return v;
2569 }
2570
2571 if (staging.size () == TYPE_LENGTH (type))
2572 {
2573 /* Small short-cut: If we've unpacked the data into a buffer
2574 of the same size as TYPE's length, then we can reuse that,
2575 instead of doing the unpacking again. */
2576 memcpy (unpacked, staging.data (), staging.size ());
2577 }
2578 else
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 unpacked, TYPE_LENGTH (type),
2581 is_big_endian, has_negatives (type), is_scalar);
2582
2583 return v;
2584 }
2585
2586 /* Store the contents of FROMVAL into the location of TOVAL.
2587 Return a new value with the location of TOVAL and contents of
2588 FROMVAL. Handles assignment into packed fields that have
2589 floating-point or non-scalar types. */
2590
2591 static struct value *
2592 ada_value_assign (struct value *toval, struct value *fromval)
2593 {
2594 struct type *type = value_type (toval);
2595 int bits = value_bitsize (toval);
2596
2597 toval = ada_coerce_ref (toval);
2598 fromval = ada_coerce_ref (fromval);
2599
2600 if (ada_is_direct_array_type (value_type (toval)))
2601 toval = ada_coerce_to_simple_array (toval);
2602 if (ada_is_direct_array_type (value_type (fromval)))
2603 fromval = ada_coerce_to_simple_array (fromval);
2604
2605 if (!deprecated_value_modifiable (toval))
2606 error (_("Left operand of assignment is not a modifiable lvalue."));
2607
2608 if (VALUE_LVAL (toval) == lval_memory
2609 && bits > 0
2610 && (type->code () == TYPE_CODE_FLT
2611 || type->code () == TYPE_CODE_STRUCT))
2612 {
2613 int len = (value_bitpos (toval)
2614 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2615 int from_size;
2616 gdb_byte *buffer = (gdb_byte *) alloca (len);
2617 struct value *val;
2618 CORE_ADDR to_addr = value_address (toval);
2619
2620 if (type->code () == TYPE_CODE_FLT)
2621 fromval = value_cast (type, fromval);
2622
2623 read_memory (to_addr, buffer, len);
2624 from_size = value_bitsize (fromval);
2625 if (from_size == 0)
2626 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2627
2628 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2629 ULONGEST from_offset = 0;
2630 if (is_big_endian && is_scalar_type (value_type (fromval)))
2631 from_offset = from_size - bits;
2632 copy_bitwise (buffer, value_bitpos (toval),
2633 value_contents (fromval), from_offset,
2634 bits, is_big_endian);
2635 write_memory_with_notification (to_addr, buffer, len);
2636
2637 val = value_copy (toval);
2638 memcpy (value_contents_raw (val), value_contents (fromval),
2639 TYPE_LENGTH (type));
2640 deprecated_set_value_type (val, type);
2641
2642 return val;
2643 }
2644
2645 return value_assign (toval, fromval);
2646 }
2647
2648
2649 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2650 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2651 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2652 COMPONENT, and not the inferior's memory. The current contents
2653 of COMPONENT are ignored.
2654
2655 Although not part of the initial design, this function also works
2656 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2657 had a null address, and COMPONENT had an address which is equal to
2658 its offset inside CONTAINER. */
2659
2660 static void
2661 value_assign_to_component (struct value *container, struct value *component,
2662 struct value *val)
2663 {
2664 LONGEST offset_in_container =
2665 (LONGEST) (value_address (component) - value_address (container));
2666 int bit_offset_in_container =
2667 value_bitpos (component) - value_bitpos (container);
2668 int bits;
2669
2670 val = value_cast (value_type (component), val);
2671
2672 if (value_bitsize (component) == 0)
2673 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2674 else
2675 bits = value_bitsize (component);
2676
2677 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2678 {
2679 int src_offset;
2680
2681 if (is_scalar_type (check_typedef (value_type (component))))
2682 src_offset
2683 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2684 else
2685 src_offset = 0;
2686 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2687 value_bitpos (container) + bit_offset_in_container,
2688 value_contents (val), src_offset, bits, 1);
2689 }
2690 else
2691 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2692 value_bitpos (container) + bit_offset_in_container,
2693 value_contents (val), 0, bits, 0);
2694 }
2695
2696 /* Determine if TYPE is an access to an unconstrained array. */
2697
2698 bool
2699 ada_is_access_to_unconstrained_array (struct type *type)
2700 {
2701 return (type->code () == TYPE_CODE_TYPEDEF
2702 && is_thick_pntr (ada_typedef_target_type (type)));
2703 }
2704
2705 /* The value of the element of array ARR at the ARITY indices given in IND.
2706 ARR may be either a simple array, GNAT array descriptor, or pointer
2707 thereto. */
2708
2709 struct value *
2710 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2711 {
2712 int k;
2713 struct value *elt;
2714 struct type *elt_type;
2715
2716 elt = ada_coerce_to_simple_array (arr);
2717
2718 elt_type = ada_check_typedef (value_type (elt));
2719 if (elt_type->code () == TYPE_CODE_ARRAY
2720 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2721 return value_subscript_packed (elt, arity, ind);
2722
2723 for (k = 0; k < arity; k += 1)
2724 {
2725 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2726
2727 if (elt_type->code () != TYPE_CODE_ARRAY)
2728 error (_("too many subscripts (%d expected)"), k);
2729
2730 elt = value_subscript (elt, pos_atr (ind[k]));
2731
2732 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2733 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2734 {
2735 /* The element is a typedef to an unconstrained array,
2736 except that the value_subscript call stripped the
2737 typedef layer. The typedef layer is GNAT's way to
2738 specify that the element is, at the source level, an
2739 access to the unconstrained array, rather than the
2740 unconstrained array. So, we need to restore that
2741 typedef layer, which we can do by forcing the element's
2742 type back to its original type. Otherwise, the returned
2743 value is going to be printed as the array, rather
2744 than as an access. Another symptom of the same issue
2745 would be that an expression trying to dereference the
2746 element would also be improperly rejected. */
2747 deprecated_set_value_type (elt, saved_elt_type);
2748 }
2749
2750 elt_type = ada_check_typedef (value_type (elt));
2751 }
2752
2753 return elt;
2754 }
2755
2756 /* Assuming ARR is a pointer to a GDB array, the value of the element
2757 of *ARR at the ARITY indices given in IND.
2758 Does not read the entire array into memory.
2759
2760 Note: Unlike what one would expect, this function is used instead of
2761 ada_value_subscript for basically all non-packed array types. The reason
2762 for this is that a side effect of doing our own pointer arithmetics instead
2763 of relying on value_subscript is that there is no implicit typedef peeling.
2764 This is important for arrays of array accesses, where it allows us to
2765 preserve the fact that the array's element is an array access, where the
2766 access part os encoded in a typedef layer. */
2767
2768 static struct value *
2769 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2770 {
2771 int k;
2772 struct value *array_ind = ada_value_ind (arr);
2773 struct type *type
2774 = check_typedef (value_enclosing_type (array_ind));
2775
2776 if (type->code () == TYPE_CODE_ARRAY
2777 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2778 return value_subscript_packed (array_ind, arity, ind);
2779
2780 for (k = 0; k < arity; k += 1)
2781 {
2782 LONGEST lwb, upb;
2783 struct value *lwb_value;
2784
2785 if (type->code () != TYPE_CODE_ARRAY)
2786 error (_("too many subscripts (%d expected)"), k);
2787 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2788 value_copy (arr));
2789 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2790 lwb_value = value_from_longest (value_type (ind[k]), lwb);
2791 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2792 type = TYPE_TARGET_TYPE (type);
2793 }
2794
2795 return value_ind (arr);
2796 }
2797
2798 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2799 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2800 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2801 this array is LOW, as per Ada rules. */
2802 static struct value *
2803 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2804 int low, int high)
2805 {
2806 struct type *type0 = ada_check_typedef (type);
2807 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2808 struct type *index_type
2809 = create_static_range_type (NULL, base_index_type, low, high);
2810 struct type *slice_type = create_array_type_with_stride
2811 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2812 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2813 TYPE_FIELD_BITSIZE (type0, 0));
2814 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2815 LONGEST base_low_pos, low_pos;
2816 CORE_ADDR base;
2817
2818 if (!discrete_position (base_index_type, low, &low_pos)
2819 || !discrete_position (base_index_type, base_low, &base_low_pos))
2820 {
2821 warning (_("unable to get positions in slice, use bounds instead"));
2822 low_pos = low;
2823 base_low_pos = base_low;
2824 }
2825
2826 base = value_as_address (array_ptr)
2827 + ((low_pos - base_low_pos)
2828 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2829 return value_at_lazy (slice_type, base);
2830 }
2831
2832
2833 static struct value *
2834 ada_value_slice (struct value *array, int low, int high)
2835 {
2836 struct type *type = ada_check_typedef (value_type (array));
2837 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2838 struct type *index_type
2839 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2840 struct type *slice_type = create_array_type_with_stride
2841 (NULL, TYPE_TARGET_TYPE (type), index_type,
2842 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2843 TYPE_FIELD_BITSIZE (type, 0));
2844 LONGEST low_pos, high_pos;
2845
2846 if (!discrete_position (base_index_type, low, &low_pos)
2847 || !discrete_position (base_index_type, high, &high_pos))
2848 {
2849 warning (_("unable to get positions in slice, use bounds instead"));
2850 low_pos = low;
2851 high_pos = high;
2852 }
2853
2854 return value_cast (slice_type,
2855 value_slice (array, low, high_pos - low_pos + 1));
2856 }
2857
2858 /* If type is a record type in the form of a standard GNAT array
2859 descriptor, returns the number of dimensions for type. If arr is a
2860 simple array, returns the number of "array of"s that prefix its
2861 type designation. Otherwise, returns 0. */
2862
2863 int
2864 ada_array_arity (struct type *type)
2865 {
2866 int arity;
2867
2868 if (type == NULL)
2869 return 0;
2870
2871 type = desc_base_type (type);
2872
2873 arity = 0;
2874 if (type->code () == TYPE_CODE_STRUCT)
2875 return desc_arity (desc_bounds_type (type));
2876 else
2877 while (type->code () == TYPE_CODE_ARRAY)
2878 {
2879 arity += 1;
2880 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2881 }
2882
2883 return arity;
2884 }
2885
2886 /* If TYPE is a record type in the form of a standard GNAT array
2887 descriptor or a simple array type, returns the element type for
2888 TYPE after indexing by NINDICES indices, or by all indices if
2889 NINDICES is -1. Otherwise, returns NULL. */
2890
2891 struct type *
2892 ada_array_element_type (struct type *type, int nindices)
2893 {
2894 type = desc_base_type (type);
2895
2896 if (type->code () == TYPE_CODE_STRUCT)
2897 {
2898 int k;
2899 struct type *p_array_type;
2900
2901 p_array_type = desc_data_target_type (type);
2902
2903 k = ada_array_arity (type);
2904 if (k == 0)
2905 return NULL;
2906
2907 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2908 if (nindices >= 0 && k > nindices)
2909 k = nindices;
2910 while (k > 0 && p_array_type != NULL)
2911 {
2912 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2913 k -= 1;
2914 }
2915 return p_array_type;
2916 }
2917 else if (type->code () == TYPE_CODE_ARRAY)
2918 {
2919 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2920 {
2921 type = TYPE_TARGET_TYPE (type);
2922 nindices -= 1;
2923 }
2924 return type;
2925 }
2926
2927 return NULL;
2928 }
2929
2930 /* The type of nth index in arrays of given type (n numbering from 1).
2931 Does not examine memory. Throws an error if N is invalid or TYPE
2932 is not an array type. NAME is the name of the Ada attribute being
2933 evaluated ('range, 'first, 'last, or 'length); it is used in building
2934 the error message. */
2935
2936 static struct type *
2937 ada_index_type (struct type *type, int n, const char *name)
2938 {
2939 struct type *result_type;
2940
2941 type = desc_base_type (type);
2942
2943 if (n < 0 || n > ada_array_arity (type))
2944 error (_("invalid dimension number to '%s"), name);
2945
2946 if (ada_is_simple_array_type (type))
2947 {
2948 int i;
2949
2950 for (i = 1; i < n; i += 1)
2951 type = TYPE_TARGET_TYPE (type);
2952 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2953 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2954 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2955 perhaps stabsread.c would make more sense. */
2956 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2957 result_type = NULL;
2958 }
2959 else
2960 {
2961 result_type = desc_index_type (desc_bounds_type (type), n);
2962 if (result_type == NULL)
2963 error (_("attempt to take bound of something that is not an array"));
2964 }
2965
2966 return result_type;
2967 }
2968
2969 /* Given that arr is an array type, returns the lower bound of the
2970 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2971 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2972 array-descriptor type. It works for other arrays with bounds supplied
2973 by run-time quantities other than discriminants. */
2974
2975 static LONGEST
2976 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2977 {
2978 struct type *type, *index_type_desc, *index_type;
2979 int i;
2980
2981 gdb_assert (which == 0 || which == 1);
2982
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 arr_type = decode_constrained_packed_array_type (arr_type);
2985
2986 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2987 return (LONGEST) - which;
2988
2989 if (arr_type->code () == TYPE_CODE_PTR)
2990 type = TYPE_TARGET_TYPE (arr_type);
2991 else
2992 type = arr_type;
2993
2994 if (TYPE_FIXED_INSTANCE (type))
2995 {
2996 /* The array has already been fixed, so we do not need to
2997 check the parallel ___XA type again. That encoding has
2998 already been applied, so ignore it now. */
2999 index_type_desc = NULL;
3000 }
3001 else
3002 {
3003 index_type_desc = ada_find_parallel_type (type, "___XA");
3004 ada_fixup_array_indexes_type (index_type_desc);
3005 }
3006
3007 if (index_type_desc != NULL)
3008 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3009 NULL);
3010 else
3011 {
3012 struct type *elt_type = check_typedef (type);
3013
3014 for (i = 1; i < n; i++)
3015 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3016
3017 index_type = TYPE_INDEX_TYPE (elt_type);
3018 }
3019
3020 return
3021 (LONGEST) (which == 0
3022 ? ada_discrete_type_low_bound (index_type)
3023 : ada_discrete_type_high_bound (index_type));
3024 }
3025
3026 /* Given that arr is an array value, returns the lower bound of the
3027 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3028 WHICH is 1. This routine will also work for arrays with bounds
3029 supplied by run-time quantities other than discriminants. */
3030
3031 static LONGEST
3032 ada_array_bound (struct value *arr, int n, int which)
3033 {
3034 struct type *arr_type;
3035
3036 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3037 arr = value_ind (arr);
3038 arr_type = value_enclosing_type (arr);
3039
3040 if (ada_is_constrained_packed_array_type (arr_type))
3041 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3042 else if (ada_is_simple_array_type (arr_type))
3043 return ada_array_bound_from_type (arr_type, n, which);
3044 else
3045 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3046 }
3047
3048 /* Given that arr is an array value, returns the length of the
3049 nth index. This routine will also work for arrays with bounds
3050 supplied by run-time quantities other than discriminants.
3051 Does not work for arrays indexed by enumeration types with representation
3052 clauses at the moment. */
3053
3054 static LONGEST
3055 ada_array_length (struct value *arr, int n)
3056 {
3057 struct type *arr_type, *index_type;
3058 int low, high;
3059
3060 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3061 arr = value_ind (arr);
3062 arr_type = value_enclosing_type (arr);
3063
3064 if (ada_is_constrained_packed_array_type (arr_type))
3065 return ada_array_length (decode_constrained_packed_array (arr), n);
3066
3067 if (ada_is_simple_array_type (arr_type))
3068 {
3069 low = ada_array_bound_from_type (arr_type, n, 0);
3070 high = ada_array_bound_from_type (arr_type, n, 1);
3071 }
3072 else
3073 {
3074 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3075 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3076 }
3077
3078 arr_type = check_typedef (arr_type);
3079 index_type = ada_index_type (arr_type, n, "length");
3080 if (index_type != NULL)
3081 {
3082 struct type *base_type;
3083 if (index_type->code () == TYPE_CODE_RANGE)
3084 base_type = TYPE_TARGET_TYPE (index_type);
3085 else
3086 base_type = index_type;
3087
3088 low = pos_atr (value_from_longest (base_type, low));
3089 high = pos_atr (value_from_longest (base_type, high));
3090 }
3091 return high - low + 1;
3092 }
3093
3094 /* An array whose type is that of ARR_TYPE (an array type), with
3095 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3096 less than LOW, then LOW-1 is used. */
3097
3098 static struct value *
3099 empty_array (struct type *arr_type, int low, int high)
3100 {
3101 struct type *arr_type0 = ada_check_typedef (arr_type);
3102 struct type *index_type
3103 = create_static_range_type
3104 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3105 high < low ? low - 1 : high);
3106 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3107
3108 return allocate_value (create_array_type (NULL, elt_type, index_type));
3109 }
3110 \f
3111
3112 /* Name resolution */
3113
3114 /* The "decoded" name for the user-definable Ada operator corresponding
3115 to OP. */
3116
3117 static const char *
3118 ada_decoded_op_name (enum exp_opcode op)
3119 {
3120 int i;
3121
3122 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3123 {
3124 if (ada_opname_table[i].op == op)
3125 return ada_opname_table[i].decoded;
3126 }
3127 error (_("Could not find operator name for opcode"));
3128 }
3129
3130 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3131 in a listing of choices during disambiguation (see sort_choices, below).
3132 The idea is that overloadings of a subprogram name from the
3133 same package should sort in their source order. We settle for ordering
3134 such symbols by their trailing number (__N or $N). */
3135
3136 static int
3137 encoded_ordered_before (const char *N0, const char *N1)
3138 {
3139 if (N1 == NULL)
3140 return 0;
3141 else if (N0 == NULL)
3142 return 1;
3143 else
3144 {
3145 int k0, k1;
3146
3147 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3148 ;
3149 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3150 ;
3151 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3152 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3153 {
3154 int n0, n1;
3155
3156 n0 = k0;
3157 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3158 n0 -= 1;
3159 n1 = k1;
3160 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3161 n1 -= 1;
3162 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3163 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3164 }
3165 return (strcmp (N0, N1) < 0);
3166 }
3167 }
3168
3169 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3170 encoded names. */
3171
3172 static void
3173 sort_choices (struct block_symbol syms[], int nsyms)
3174 {
3175 int i;
3176
3177 for (i = 1; i < nsyms; i += 1)
3178 {
3179 struct block_symbol sym = syms[i];
3180 int j;
3181
3182 for (j = i - 1; j >= 0; j -= 1)
3183 {
3184 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3185 sym.symbol->linkage_name ()))
3186 break;
3187 syms[j + 1] = syms[j];
3188 }
3189 syms[j + 1] = sym;
3190 }
3191 }
3192
3193 /* Whether GDB should display formals and return types for functions in the
3194 overloads selection menu. */
3195 static bool print_signatures = true;
3196
3197 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3198 all but functions, the signature is just the name of the symbol. For
3199 functions, this is the name of the function, the list of types for formals
3200 and the return type (if any). */
3201
3202 static void
3203 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3204 const struct type_print_options *flags)
3205 {
3206 struct type *type = SYMBOL_TYPE (sym);
3207
3208 fprintf_filtered (stream, "%s", sym->print_name ());
3209 if (!print_signatures
3210 || type == NULL
3211 || type->code () != TYPE_CODE_FUNC)
3212 return;
3213
3214 if (TYPE_NFIELDS (type) > 0)
3215 {
3216 int i;
3217
3218 fprintf_filtered (stream, " (");
3219 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3220 {
3221 if (i > 0)
3222 fprintf_filtered (stream, "; ");
3223 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3224 flags);
3225 }
3226 fprintf_filtered (stream, ")");
3227 }
3228 if (TYPE_TARGET_TYPE (type) != NULL
3229 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3230 {
3231 fprintf_filtered (stream, " return ");
3232 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3233 }
3234 }
3235
3236 /* Read and validate a set of numeric choices from the user in the
3237 range 0 .. N_CHOICES-1. Place the results in increasing
3238 order in CHOICES[0 .. N-1], and return N.
3239
3240 The user types choices as a sequence of numbers on one line
3241 separated by blanks, encoding them as follows:
3242
3243 + A choice of 0 means to cancel the selection, throwing an error.
3244 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3245 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3246
3247 The user is not allowed to choose more than MAX_RESULTS values.
3248
3249 ANNOTATION_SUFFIX, if present, is used to annotate the input
3250 prompts (for use with the -f switch). */
3251
3252 static int
3253 get_selections (int *choices, int n_choices, int max_results,
3254 int is_all_choice, const char *annotation_suffix)
3255 {
3256 const char *args;
3257 const char *prompt;
3258 int n_chosen;
3259 int first_choice = is_all_choice ? 2 : 1;
3260
3261 prompt = getenv ("PS2");
3262 if (prompt == NULL)
3263 prompt = "> ";
3264
3265 args = command_line_input (prompt, annotation_suffix);
3266
3267 if (args == NULL)
3268 error_no_arg (_("one or more choice numbers"));
3269
3270 n_chosen = 0;
3271
3272 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3273 order, as given in args. Choices are validated. */
3274 while (1)
3275 {
3276 char *args2;
3277 int choice, j;
3278
3279 args = skip_spaces (args);
3280 if (*args == '\0' && n_chosen == 0)
3281 error_no_arg (_("one or more choice numbers"));
3282 else if (*args == '\0')
3283 break;
3284
3285 choice = strtol (args, &args2, 10);
3286 if (args == args2 || choice < 0
3287 || choice > n_choices + first_choice - 1)
3288 error (_("Argument must be choice number"));
3289 args = args2;
3290
3291 if (choice == 0)
3292 error (_("cancelled"));
3293
3294 if (choice < first_choice)
3295 {
3296 n_chosen = n_choices;
3297 for (j = 0; j < n_choices; j += 1)
3298 choices[j] = j;
3299 break;
3300 }
3301 choice -= first_choice;
3302
3303 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3304 {
3305 }
3306
3307 if (j < 0 || choice != choices[j])
3308 {
3309 int k;
3310
3311 for (k = n_chosen - 1; k > j; k -= 1)
3312 choices[k + 1] = choices[k];
3313 choices[j + 1] = choice;
3314 n_chosen += 1;
3315 }
3316 }
3317
3318 if (n_chosen > max_results)
3319 error (_("Select no more than %d of the above"), max_results);
3320
3321 return n_chosen;
3322 }
3323
3324 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3325 by asking the user (if necessary), returning the number selected,
3326 and setting the first elements of SYMS items. Error if no symbols
3327 selected. */
3328
3329 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3330 to be re-integrated one of these days. */
3331
3332 static int
3333 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3334 {
3335 int i;
3336 int *chosen = XALLOCAVEC (int , nsyms);
3337 int n_chosen;
3338 int first_choice = (max_results == 1) ? 1 : 2;
3339 const char *select_mode = multiple_symbols_select_mode ();
3340
3341 if (max_results < 1)
3342 error (_("Request to select 0 symbols!"));
3343 if (nsyms <= 1)
3344 return nsyms;
3345
3346 if (select_mode == multiple_symbols_cancel)
3347 error (_("\
3348 canceled because the command is ambiguous\n\
3349 See set/show multiple-symbol."));
3350
3351 /* If select_mode is "all", then return all possible symbols.
3352 Only do that if more than one symbol can be selected, of course.
3353 Otherwise, display the menu as usual. */
3354 if (select_mode == multiple_symbols_all && max_results > 1)
3355 return nsyms;
3356
3357 printf_filtered (_("[0] cancel\n"));
3358 if (max_results > 1)
3359 printf_filtered (_("[1] all\n"));
3360
3361 sort_choices (syms, nsyms);
3362
3363 for (i = 0; i < nsyms; i += 1)
3364 {
3365 if (syms[i].symbol == NULL)
3366 continue;
3367
3368 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3369 {
3370 struct symtab_and_line sal =
3371 find_function_start_sal (syms[i].symbol, 1);
3372
3373 printf_filtered ("[%d] ", i + first_choice);
3374 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3375 &type_print_raw_options);
3376 if (sal.symtab == NULL)
3377 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3378 metadata_style.style ().ptr (), nullptr, sal.line);
3379 else
3380 printf_filtered
3381 (_(" at %ps:%d\n"),
3382 styled_string (file_name_style.style (),
3383 symtab_to_filename_for_display (sal.symtab)),
3384 sal.line);
3385 continue;
3386 }
3387 else
3388 {
3389 int is_enumeral =
3390 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3391 && SYMBOL_TYPE (syms[i].symbol) != NULL
3392 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3393 struct symtab *symtab = NULL;
3394
3395 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3396 symtab = symbol_symtab (syms[i].symbol);
3397
3398 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3399 {
3400 printf_filtered ("[%d] ", i + first_choice);
3401 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3402 &type_print_raw_options);
3403 printf_filtered (_(" at %s:%d\n"),
3404 symtab_to_filename_for_display (symtab),
3405 SYMBOL_LINE (syms[i].symbol));
3406 }
3407 else if (is_enumeral
3408 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3409 {
3410 printf_filtered (("[%d] "), i + first_choice);
3411 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3412 gdb_stdout, -1, 0, &type_print_raw_options);
3413 printf_filtered (_("'(%s) (enumeral)\n"),
3414 syms[i].symbol->print_name ());
3415 }
3416 else
3417 {
3418 printf_filtered ("[%d] ", i + first_choice);
3419 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3420 &type_print_raw_options);
3421
3422 if (symtab != NULL)
3423 printf_filtered (is_enumeral
3424 ? _(" in %s (enumeral)\n")
3425 : _(" at %s:?\n"),
3426 symtab_to_filename_for_display (symtab));
3427 else
3428 printf_filtered (is_enumeral
3429 ? _(" (enumeral)\n")
3430 : _(" at ?\n"));
3431 }
3432 }
3433 }
3434
3435 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3436 "overload-choice");
3437
3438 for (i = 0; i < n_chosen; i += 1)
3439 syms[i] = syms[chosen[i]];
3440
3441 return n_chosen;
3442 }
3443
3444 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3445 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3446 undefined namespace) and converts operators that are
3447 user-defined into appropriate function calls. If CONTEXT_TYPE is
3448 non-null, it provides a preferred result type [at the moment, only
3449 type void has any effect---causing procedures to be preferred over
3450 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3451 return type is preferred. May change (expand) *EXP. */
3452
3453 static void
3454 resolve (expression_up *expp, int void_context_p, int parse_completion,
3455 innermost_block_tracker *tracker)
3456 {
3457 struct type *context_type = NULL;
3458 int pc = 0;
3459
3460 if (void_context_p)
3461 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3462
3463 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3464 }
3465
3466 /* Resolve the operator of the subexpression beginning at
3467 position *POS of *EXPP. "Resolving" consists of replacing
3468 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3469 with their resolutions, replacing built-in operators with
3470 function calls to user-defined operators, where appropriate, and,
3471 when DEPROCEDURE_P is non-zero, converting function-valued variables
3472 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3473 are as in ada_resolve, above. */
3474
3475 static struct value *
3476 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3477 struct type *context_type, int parse_completion,
3478 innermost_block_tracker *tracker)
3479 {
3480 int pc = *pos;
3481 int i;
3482 struct expression *exp; /* Convenience: == *expp. */
3483 enum exp_opcode op = (*expp)->elts[pc].opcode;
3484 struct value **argvec; /* Vector of operand types (alloca'ed). */
3485 int nargs; /* Number of operands. */
3486 int oplen;
3487
3488 argvec = NULL;
3489 nargs = 0;
3490 exp = expp->get ();
3491
3492 /* Pass one: resolve operands, saving their types and updating *pos,
3493 if needed. */
3494 switch (op)
3495 {
3496 case OP_FUNCALL:
3497 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3498 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3499 *pos += 7;
3500 else
3501 {
3502 *pos += 3;
3503 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3504 }
3505 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3506 break;
3507
3508 case UNOP_ADDR:
3509 *pos += 1;
3510 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3511 break;
3512
3513 case UNOP_QUAL:
3514 *pos += 3;
3515 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3516 parse_completion, tracker);
3517 break;
3518
3519 case OP_ATR_MODULUS:
3520 case OP_ATR_SIZE:
3521 case OP_ATR_TAG:
3522 case OP_ATR_FIRST:
3523 case OP_ATR_LAST:
3524 case OP_ATR_LENGTH:
3525 case OP_ATR_POS:
3526 case OP_ATR_VAL:
3527 case OP_ATR_MIN:
3528 case OP_ATR_MAX:
3529 case TERNOP_IN_RANGE:
3530 case BINOP_IN_BOUNDS:
3531 case UNOP_IN_RANGE:
3532 case OP_AGGREGATE:
3533 case OP_OTHERS:
3534 case OP_CHOICES:
3535 case OP_POSITIONAL:
3536 case OP_DISCRETE_RANGE:
3537 case OP_NAME:
3538 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3539 *pos += oplen;
3540 break;
3541
3542 case BINOP_ASSIGN:
3543 {
3544 struct value *arg1;
3545
3546 *pos += 1;
3547 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3548 if (arg1 == NULL)
3549 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3550 else
3551 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3552 tracker);
3553 break;
3554 }
3555
3556 case UNOP_CAST:
3557 *pos += 3;
3558 nargs = 1;
3559 break;
3560
3561 case BINOP_ADD:
3562 case BINOP_SUB:
3563 case BINOP_MUL:
3564 case BINOP_DIV:
3565 case BINOP_REM:
3566 case BINOP_MOD:
3567 case BINOP_EXP:
3568 case BINOP_CONCAT:
3569 case BINOP_LOGICAL_AND:
3570 case BINOP_LOGICAL_OR:
3571 case BINOP_BITWISE_AND:
3572 case BINOP_BITWISE_IOR:
3573 case BINOP_BITWISE_XOR:
3574
3575 case BINOP_EQUAL:
3576 case BINOP_NOTEQUAL:
3577 case BINOP_LESS:
3578 case BINOP_GTR:
3579 case BINOP_LEQ:
3580 case BINOP_GEQ:
3581
3582 case BINOP_REPEAT:
3583 case BINOP_SUBSCRIPT:
3584 case BINOP_COMMA:
3585 *pos += 1;
3586 nargs = 2;
3587 break;
3588
3589 case UNOP_NEG:
3590 case UNOP_PLUS:
3591 case UNOP_LOGICAL_NOT:
3592 case UNOP_ABS:
3593 case UNOP_IND:
3594 *pos += 1;
3595 nargs = 1;
3596 break;
3597
3598 case OP_LONG:
3599 case OP_FLOAT:
3600 case OP_VAR_VALUE:
3601 case OP_VAR_MSYM_VALUE:
3602 *pos += 4;
3603 break;
3604
3605 case OP_TYPE:
3606 case OP_BOOL:
3607 case OP_LAST:
3608 case OP_INTERNALVAR:
3609 *pos += 3;
3610 break;
3611
3612 case UNOP_MEMVAL:
3613 *pos += 3;
3614 nargs = 1;
3615 break;
3616
3617 case OP_REGISTER:
3618 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3619 break;
3620
3621 case STRUCTOP_STRUCT:
3622 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3623 nargs = 1;
3624 break;
3625
3626 case TERNOP_SLICE:
3627 *pos += 1;
3628 nargs = 3;
3629 break;
3630
3631 case OP_STRING:
3632 break;
3633
3634 default:
3635 error (_("Unexpected operator during name resolution"));
3636 }
3637
3638 argvec = XALLOCAVEC (struct value *, nargs + 1);
3639 for (i = 0; i < nargs; i += 1)
3640 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3641 tracker);
3642 argvec[i] = NULL;
3643 exp = expp->get ();
3644
3645 /* Pass two: perform any resolution on principal operator. */
3646 switch (op)
3647 {
3648 default:
3649 break;
3650
3651 case OP_VAR_VALUE:
3652 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3653 {
3654 std::vector<struct block_symbol> candidates;
3655 int n_candidates;
3656
3657 n_candidates =
3658 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3659 exp->elts[pc + 1].block, VAR_DOMAIN,
3660 &candidates);
3661
3662 if (n_candidates > 1)
3663 {
3664 /* Types tend to get re-introduced locally, so if there
3665 are any local symbols that are not types, first filter
3666 out all types. */
3667 int j;
3668 for (j = 0; j < n_candidates; j += 1)
3669 switch (SYMBOL_CLASS (candidates[j].symbol))
3670 {
3671 case LOC_REGISTER:
3672 case LOC_ARG:
3673 case LOC_REF_ARG:
3674 case LOC_REGPARM_ADDR:
3675 case LOC_LOCAL:
3676 case LOC_COMPUTED:
3677 goto FoundNonType;
3678 default:
3679 break;
3680 }
3681 FoundNonType:
3682 if (j < n_candidates)
3683 {
3684 j = 0;
3685 while (j < n_candidates)
3686 {
3687 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3688 {
3689 candidates[j] = candidates[n_candidates - 1];
3690 n_candidates -= 1;
3691 }
3692 else
3693 j += 1;
3694 }
3695 }
3696 }
3697
3698 if (n_candidates == 0)
3699 error (_("No definition found for %s"),
3700 exp->elts[pc + 2].symbol->print_name ());
3701 else if (n_candidates == 1)
3702 i = 0;
3703 else if (deprocedure_p
3704 && !is_nonfunction (candidates.data (), n_candidates))
3705 {
3706 i = ada_resolve_function
3707 (candidates.data (), n_candidates, NULL, 0,
3708 exp->elts[pc + 2].symbol->linkage_name (),
3709 context_type, parse_completion);
3710 if (i < 0)
3711 error (_("Could not find a match for %s"),
3712 exp->elts[pc + 2].symbol->print_name ());
3713 }
3714 else
3715 {
3716 printf_filtered (_("Multiple matches for %s\n"),
3717 exp->elts[pc + 2].symbol->print_name ());
3718 user_select_syms (candidates.data (), n_candidates, 1);
3719 i = 0;
3720 }
3721
3722 exp->elts[pc + 1].block = candidates[i].block;
3723 exp->elts[pc + 2].symbol = candidates[i].symbol;
3724 tracker->update (candidates[i]);
3725 }
3726
3727 if (deprocedure_p
3728 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3729 == TYPE_CODE_FUNC))
3730 {
3731 replace_operator_with_call (expp, pc, 0, 4,
3732 exp->elts[pc + 2].symbol,
3733 exp->elts[pc + 1].block);
3734 exp = expp->get ();
3735 }
3736 break;
3737
3738 case OP_FUNCALL:
3739 {
3740 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3741 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3742 {
3743 std::vector<struct block_symbol> candidates;
3744 int n_candidates;
3745
3746 n_candidates =
3747 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3748 exp->elts[pc + 4].block, VAR_DOMAIN,
3749 &candidates);
3750
3751 if (n_candidates == 1)
3752 i = 0;
3753 else
3754 {
3755 i = ada_resolve_function
3756 (candidates.data (), n_candidates,
3757 argvec, nargs,
3758 exp->elts[pc + 5].symbol->linkage_name (),
3759 context_type, parse_completion);
3760 if (i < 0)
3761 error (_("Could not find a match for %s"),
3762 exp->elts[pc + 5].symbol->print_name ());
3763 }
3764
3765 exp->elts[pc + 4].block = candidates[i].block;
3766 exp->elts[pc + 5].symbol = candidates[i].symbol;
3767 tracker->update (candidates[i]);
3768 }
3769 }
3770 break;
3771 case BINOP_ADD:
3772 case BINOP_SUB:
3773 case BINOP_MUL:
3774 case BINOP_DIV:
3775 case BINOP_REM:
3776 case BINOP_MOD:
3777 case BINOP_CONCAT:
3778 case BINOP_BITWISE_AND:
3779 case BINOP_BITWISE_IOR:
3780 case BINOP_BITWISE_XOR:
3781 case BINOP_EQUAL:
3782 case BINOP_NOTEQUAL:
3783 case BINOP_LESS:
3784 case BINOP_GTR:
3785 case BINOP_LEQ:
3786 case BINOP_GEQ:
3787 case BINOP_EXP:
3788 case UNOP_NEG:
3789 case UNOP_PLUS:
3790 case UNOP_LOGICAL_NOT:
3791 case UNOP_ABS:
3792 if (possible_user_operator_p (op, argvec))
3793 {
3794 std::vector<struct block_symbol> candidates;
3795 int n_candidates;
3796
3797 n_candidates =
3798 ada_lookup_symbol_list (ada_decoded_op_name (op),
3799 NULL, VAR_DOMAIN,
3800 &candidates);
3801
3802 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3803 nargs, ada_decoded_op_name (op), NULL,
3804 parse_completion);
3805 if (i < 0)
3806 break;
3807
3808 replace_operator_with_call (expp, pc, nargs, 1,
3809 candidates[i].symbol,
3810 candidates[i].block);
3811 exp = expp->get ();
3812 }
3813 break;
3814
3815 case OP_TYPE:
3816 case OP_REGISTER:
3817 return NULL;
3818 }
3819
3820 *pos = pc;
3821 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3822 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3823 exp->elts[pc + 1].objfile,
3824 exp->elts[pc + 2].msymbol);
3825 else
3826 return evaluate_subexp_type (exp, pos);
3827 }
3828
3829 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3830 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3831 a non-pointer. */
3832 /* The term "match" here is rather loose. The match is heuristic and
3833 liberal. */
3834
3835 static int
3836 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3837 {
3838 ftype = ada_check_typedef (ftype);
3839 atype = ada_check_typedef (atype);
3840
3841 if (ftype->code () == TYPE_CODE_REF)
3842 ftype = TYPE_TARGET_TYPE (ftype);
3843 if (atype->code () == TYPE_CODE_REF)
3844 atype = TYPE_TARGET_TYPE (atype);
3845
3846 switch (ftype->code ())
3847 {
3848 default:
3849 return ftype->code () == atype->code ();
3850 case TYPE_CODE_PTR:
3851 if (atype->code () == TYPE_CODE_PTR)
3852 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3853 TYPE_TARGET_TYPE (atype), 0);
3854 else
3855 return (may_deref
3856 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3857 case TYPE_CODE_INT:
3858 case TYPE_CODE_ENUM:
3859 case TYPE_CODE_RANGE:
3860 switch (atype->code ())
3861 {
3862 case TYPE_CODE_INT:
3863 case TYPE_CODE_ENUM:
3864 case TYPE_CODE_RANGE:
3865 return 1;
3866 default:
3867 return 0;
3868 }
3869
3870 case TYPE_CODE_ARRAY:
3871 return (atype->code () == TYPE_CODE_ARRAY
3872 || ada_is_array_descriptor_type (atype));
3873
3874 case TYPE_CODE_STRUCT:
3875 if (ada_is_array_descriptor_type (ftype))
3876 return (atype->code () == TYPE_CODE_ARRAY
3877 || ada_is_array_descriptor_type (atype));
3878 else
3879 return (atype->code () == TYPE_CODE_STRUCT
3880 && !ada_is_array_descriptor_type (atype));
3881
3882 case TYPE_CODE_UNION:
3883 case TYPE_CODE_FLT:
3884 return (atype->code () == ftype->code ());
3885 }
3886 }
3887
3888 /* Return non-zero if the formals of FUNC "sufficiently match" the
3889 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3890 may also be an enumeral, in which case it is treated as a 0-
3891 argument function. */
3892
3893 static int
3894 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3895 {
3896 int i;
3897 struct type *func_type = SYMBOL_TYPE (func);
3898
3899 if (SYMBOL_CLASS (func) == LOC_CONST
3900 && func_type->code () == TYPE_CODE_ENUM)
3901 return (n_actuals == 0);
3902 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3903 return 0;
3904
3905 if (TYPE_NFIELDS (func_type) != n_actuals)
3906 return 0;
3907
3908 for (i = 0; i < n_actuals; i += 1)
3909 {
3910 if (actuals[i] == NULL)
3911 return 0;
3912 else
3913 {
3914 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3915 i));
3916 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3917
3918 if (!ada_type_match (ftype, atype, 1))
3919 return 0;
3920 }
3921 }
3922 return 1;
3923 }
3924
3925 /* False iff function type FUNC_TYPE definitely does not produce a value
3926 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3927 FUNC_TYPE is not a valid function type with a non-null return type
3928 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3929
3930 static int
3931 return_match (struct type *func_type, struct type *context_type)
3932 {
3933 struct type *return_type;
3934
3935 if (func_type == NULL)
3936 return 1;
3937
3938 if (func_type->code () == TYPE_CODE_FUNC)
3939 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3940 else
3941 return_type = get_base_type (func_type);
3942 if (return_type == NULL)
3943 return 1;
3944
3945 context_type = get_base_type (context_type);
3946
3947 if (return_type->code () == TYPE_CODE_ENUM)
3948 return context_type == NULL || return_type == context_type;
3949 else if (context_type == NULL)
3950 return return_type->code () != TYPE_CODE_VOID;
3951 else
3952 return return_type->code () == context_type->code ();
3953 }
3954
3955
3956 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3957 function (if any) that matches the types of the NARGS arguments in
3958 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3959 that returns that type, then eliminate matches that don't. If
3960 CONTEXT_TYPE is void and there is at least one match that does not
3961 return void, eliminate all matches that do.
3962
3963 Asks the user if there is more than one match remaining. Returns -1
3964 if there is no such symbol or none is selected. NAME is used
3965 solely for messages. May re-arrange and modify SYMS in
3966 the process; the index returned is for the modified vector. */
3967
3968 static int
3969 ada_resolve_function (struct block_symbol syms[],
3970 int nsyms, struct value **args, int nargs,
3971 const char *name, struct type *context_type,
3972 int parse_completion)
3973 {
3974 int fallback;
3975 int k;
3976 int m; /* Number of hits */
3977
3978 m = 0;
3979 /* In the first pass of the loop, we only accept functions matching
3980 context_type. If none are found, we add a second pass of the loop
3981 where every function is accepted. */
3982 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3983 {
3984 for (k = 0; k < nsyms; k += 1)
3985 {
3986 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3987
3988 if (ada_args_match (syms[k].symbol, args, nargs)
3989 && (fallback || return_match (type, context_type)))
3990 {
3991 syms[m] = syms[k];
3992 m += 1;
3993 }
3994 }
3995 }
3996
3997 /* If we got multiple matches, ask the user which one to use. Don't do this
3998 interactive thing during completion, though, as the purpose of the
3999 completion is providing a list of all possible matches. Prompting the
4000 user to filter it down would be completely unexpected in this case. */
4001 if (m == 0)
4002 return -1;
4003 else if (m > 1 && !parse_completion)
4004 {
4005 printf_filtered (_("Multiple matches for %s\n"), name);
4006 user_select_syms (syms, m, 1);
4007 return 0;
4008 }
4009 return 0;
4010 }
4011
4012 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4013 on the function identified by SYM and BLOCK, and taking NARGS
4014 arguments. Update *EXPP as needed to hold more space. */
4015
4016 static void
4017 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4018 int oplen, struct symbol *sym,
4019 const struct block *block)
4020 {
4021 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4022 symbol, -oplen for operator being replaced). */
4023 struct expression *newexp = (struct expression *)
4024 xzalloc (sizeof (struct expression)
4025 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4026 struct expression *exp = expp->get ();
4027
4028 newexp->nelts = exp->nelts + 7 - oplen;
4029 newexp->language_defn = exp->language_defn;
4030 newexp->gdbarch = exp->gdbarch;
4031 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4032 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4033 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4034
4035 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4036 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4037
4038 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4039 newexp->elts[pc + 4].block = block;
4040 newexp->elts[pc + 5].symbol = sym;
4041
4042 expp->reset (newexp);
4043 }
4044
4045 /* Type-class predicates */
4046
4047 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4048 or FLOAT). */
4049
4050 static int
4051 numeric_type_p (struct type *type)
4052 {
4053 if (type == NULL)
4054 return 0;
4055 else
4056 {
4057 switch (type->code ())
4058 {
4059 case TYPE_CODE_INT:
4060 case TYPE_CODE_FLT:
4061 return 1;
4062 case TYPE_CODE_RANGE:
4063 return (type == TYPE_TARGET_TYPE (type)
4064 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4065 default:
4066 return 0;
4067 }
4068 }
4069 }
4070
4071 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4072
4073 static int
4074 integer_type_p (struct type *type)
4075 {
4076 if (type == NULL)
4077 return 0;
4078 else
4079 {
4080 switch (type->code ())
4081 {
4082 case TYPE_CODE_INT:
4083 return 1;
4084 case TYPE_CODE_RANGE:
4085 return (type == TYPE_TARGET_TYPE (type)
4086 || integer_type_p (TYPE_TARGET_TYPE (type)));
4087 default:
4088 return 0;
4089 }
4090 }
4091 }
4092
4093 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4094
4095 static int
4096 scalar_type_p (struct type *type)
4097 {
4098 if (type == NULL)
4099 return 0;
4100 else
4101 {
4102 switch (type->code ())
4103 {
4104 case TYPE_CODE_INT:
4105 case TYPE_CODE_RANGE:
4106 case TYPE_CODE_ENUM:
4107 case TYPE_CODE_FLT:
4108 return 1;
4109 default:
4110 return 0;
4111 }
4112 }
4113 }
4114
4115 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4116
4117 static int
4118 discrete_type_p (struct type *type)
4119 {
4120 if (type == NULL)
4121 return 0;
4122 else
4123 {
4124 switch (type->code ())
4125 {
4126 case TYPE_CODE_INT:
4127 case TYPE_CODE_RANGE:
4128 case TYPE_CODE_ENUM:
4129 case TYPE_CODE_BOOL:
4130 return 1;
4131 default:
4132 return 0;
4133 }
4134 }
4135 }
4136
4137 /* Returns non-zero if OP with operands in the vector ARGS could be
4138 a user-defined function. Errs on the side of pre-defined operators
4139 (i.e., result 0). */
4140
4141 static int
4142 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4143 {
4144 struct type *type0 =
4145 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4146 struct type *type1 =
4147 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4148
4149 if (type0 == NULL)
4150 return 0;
4151
4152 switch (op)
4153 {
4154 default:
4155 return 0;
4156
4157 case BINOP_ADD:
4158 case BINOP_SUB:
4159 case BINOP_MUL:
4160 case BINOP_DIV:
4161 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4162
4163 case BINOP_REM:
4164 case BINOP_MOD:
4165 case BINOP_BITWISE_AND:
4166 case BINOP_BITWISE_IOR:
4167 case BINOP_BITWISE_XOR:
4168 return (!(integer_type_p (type0) && integer_type_p (type1)));
4169
4170 case BINOP_EQUAL:
4171 case BINOP_NOTEQUAL:
4172 case BINOP_LESS:
4173 case BINOP_GTR:
4174 case BINOP_LEQ:
4175 case BINOP_GEQ:
4176 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4177
4178 case BINOP_CONCAT:
4179 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4180
4181 case BINOP_EXP:
4182 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4183
4184 case UNOP_NEG:
4185 case UNOP_PLUS:
4186 case UNOP_LOGICAL_NOT:
4187 case UNOP_ABS:
4188 return (!numeric_type_p (type0));
4189
4190 }
4191 }
4192 \f
4193 /* Renaming */
4194
4195 /* NOTES:
4196
4197 1. In the following, we assume that a renaming type's name may
4198 have an ___XD suffix. It would be nice if this went away at some
4199 point.
4200 2. We handle both the (old) purely type-based representation of
4201 renamings and the (new) variable-based encoding. At some point,
4202 it is devoutly to be hoped that the former goes away
4203 (FIXME: hilfinger-2007-07-09).
4204 3. Subprogram renamings are not implemented, although the XRS
4205 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4206
4207 /* If SYM encodes a renaming,
4208
4209 <renaming> renames <renamed entity>,
4210
4211 sets *LEN to the length of the renamed entity's name,
4212 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4213 the string describing the subcomponent selected from the renamed
4214 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4215 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4216 are undefined). Otherwise, returns a value indicating the category
4217 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4218 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4219 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4220 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4221 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4222 may be NULL, in which case they are not assigned.
4223
4224 [Currently, however, GCC does not generate subprogram renamings.] */
4225
4226 enum ada_renaming_category
4227 ada_parse_renaming (struct symbol *sym,
4228 const char **renamed_entity, int *len,
4229 const char **renaming_expr)
4230 {
4231 enum ada_renaming_category kind;
4232 const char *info;
4233 const char *suffix;
4234
4235 if (sym == NULL)
4236 return ADA_NOT_RENAMING;
4237 switch (SYMBOL_CLASS (sym))
4238 {
4239 default:
4240 return ADA_NOT_RENAMING;
4241 case LOC_LOCAL:
4242 case LOC_STATIC:
4243 case LOC_COMPUTED:
4244 case LOC_OPTIMIZED_OUT:
4245 info = strstr (sym->linkage_name (), "___XR");
4246 if (info == NULL)
4247 return ADA_NOT_RENAMING;
4248 switch (info[5])
4249 {
4250 case '_':
4251 kind = ADA_OBJECT_RENAMING;
4252 info += 6;
4253 break;
4254 case 'E':
4255 kind = ADA_EXCEPTION_RENAMING;
4256 info += 7;
4257 break;
4258 case 'P':
4259 kind = ADA_PACKAGE_RENAMING;
4260 info += 7;
4261 break;
4262 case 'S':
4263 kind = ADA_SUBPROGRAM_RENAMING;
4264 info += 7;
4265 break;
4266 default:
4267 return ADA_NOT_RENAMING;
4268 }
4269 }
4270
4271 if (renamed_entity != NULL)
4272 *renamed_entity = info;
4273 suffix = strstr (info, "___XE");
4274 if (suffix == NULL || suffix == info)
4275 return ADA_NOT_RENAMING;
4276 if (len != NULL)
4277 *len = strlen (info) - strlen (suffix);
4278 suffix += 5;
4279 if (renaming_expr != NULL)
4280 *renaming_expr = suffix;
4281 return kind;
4282 }
4283
4284 /* Compute the value of the given RENAMING_SYM, which is expected to
4285 be a symbol encoding a renaming expression. BLOCK is the block
4286 used to evaluate the renaming. */
4287
4288 static struct value *
4289 ada_read_renaming_var_value (struct symbol *renaming_sym,
4290 const struct block *block)
4291 {
4292 const char *sym_name;
4293
4294 sym_name = renaming_sym->linkage_name ();
4295 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4296 return evaluate_expression (expr.get ());
4297 }
4298 \f
4299
4300 /* Evaluation: Function Calls */
4301
4302 /* Return an lvalue containing the value VAL. This is the identity on
4303 lvalues, and otherwise has the side-effect of allocating memory
4304 in the inferior where a copy of the value contents is copied. */
4305
4306 static struct value *
4307 ensure_lval (struct value *val)
4308 {
4309 if (VALUE_LVAL (val) == not_lval
4310 || VALUE_LVAL (val) == lval_internalvar)
4311 {
4312 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4313 const CORE_ADDR addr =
4314 value_as_long (value_allocate_space_in_inferior (len));
4315
4316 VALUE_LVAL (val) = lval_memory;
4317 set_value_address (val, addr);
4318 write_memory (addr, value_contents (val), len);
4319 }
4320
4321 return val;
4322 }
4323
4324 /* Given ARG, a value of type (pointer or reference to a)*
4325 structure/union, extract the component named NAME from the ultimate
4326 target structure/union and return it as a value with its
4327 appropriate type.
4328
4329 The routine searches for NAME among all members of the structure itself
4330 and (recursively) among all members of any wrapper members
4331 (e.g., '_parent').
4332
4333 If NO_ERR, then simply return NULL in case of error, rather than
4334 calling error. */
4335
4336 static struct value *
4337 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4338 {
4339 struct type *t, *t1;
4340 struct value *v;
4341 int check_tag;
4342
4343 v = NULL;
4344 t1 = t = ada_check_typedef (value_type (arg));
4345 if (t->code () == TYPE_CODE_REF)
4346 {
4347 t1 = TYPE_TARGET_TYPE (t);
4348 if (t1 == NULL)
4349 goto BadValue;
4350 t1 = ada_check_typedef (t1);
4351 if (t1->code () == TYPE_CODE_PTR)
4352 {
4353 arg = coerce_ref (arg);
4354 t = t1;
4355 }
4356 }
4357
4358 while (t->code () == TYPE_CODE_PTR)
4359 {
4360 t1 = TYPE_TARGET_TYPE (t);
4361 if (t1 == NULL)
4362 goto BadValue;
4363 t1 = ada_check_typedef (t1);
4364 if (t1->code () == TYPE_CODE_PTR)
4365 {
4366 arg = value_ind (arg);
4367 t = t1;
4368 }
4369 else
4370 break;
4371 }
4372
4373 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4374 goto BadValue;
4375
4376 if (t1 == t)
4377 v = ada_search_struct_field (name, arg, 0, t);
4378 else
4379 {
4380 int bit_offset, bit_size, byte_offset;
4381 struct type *field_type;
4382 CORE_ADDR address;
4383
4384 if (t->code () == TYPE_CODE_PTR)
4385 address = value_address (ada_value_ind (arg));
4386 else
4387 address = value_address (ada_coerce_ref (arg));
4388
4389 /* Check to see if this is a tagged type. We also need to handle
4390 the case where the type is a reference to a tagged type, but
4391 we have to be careful to exclude pointers to tagged types.
4392 The latter should be shown as usual (as a pointer), whereas
4393 a reference should mostly be transparent to the user. */
4394
4395 if (ada_is_tagged_type (t1, 0)
4396 || (t1->code () == TYPE_CODE_REF
4397 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4398 {
4399 /* We first try to find the searched field in the current type.
4400 If not found then let's look in the fixed type. */
4401
4402 if (!find_struct_field (name, t1, 0,
4403 &field_type, &byte_offset, &bit_offset,
4404 &bit_size, NULL))
4405 check_tag = 1;
4406 else
4407 check_tag = 0;
4408 }
4409 else
4410 check_tag = 0;
4411
4412 /* Convert to fixed type in all cases, so that we have proper
4413 offsets to each field in unconstrained record types. */
4414 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4415 address, NULL, check_tag);
4416
4417 if (find_struct_field (name, t1, 0,
4418 &field_type, &byte_offset, &bit_offset,
4419 &bit_size, NULL))
4420 {
4421 if (bit_size != 0)
4422 {
4423 if (t->code () == TYPE_CODE_REF)
4424 arg = ada_coerce_ref (arg);
4425 else
4426 arg = ada_value_ind (arg);
4427 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4428 bit_offset, bit_size,
4429 field_type);
4430 }
4431 else
4432 v = value_at_lazy (field_type, address + byte_offset);
4433 }
4434 }
4435
4436 if (v != NULL || no_err)
4437 return v;
4438 else
4439 error (_("There is no member named %s."), name);
4440
4441 BadValue:
4442 if (no_err)
4443 return NULL;
4444 else
4445 error (_("Attempt to extract a component of "
4446 "a value that is not a record."));
4447 }
4448
4449 /* Return the value ACTUAL, converted to be an appropriate value for a
4450 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4451 allocating any necessary descriptors (fat pointers), or copies of
4452 values not residing in memory, updating it as needed. */
4453
4454 struct value *
4455 ada_convert_actual (struct value *actual, struct type *formal_type0)
4456 {
4457 struct type *actual_type = ada_check_typedef (value_type (actual));
4458 struct type *formal_type = ada_check_typedef (formal_type0);
4459 struct type *formal_target =
4460 formal_type->code () == TYPE_CODE_PTR
4461 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4462 struct type *actual_target =
4463 actual_type->code () == TYPE_CODE_PTR
4464 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4465
4466 if (ada_is_array_descriptor_type (formal_target)
4467 && actual_target->code () == TYPE_CODE_ARRAY)
4468 return make_array_descriptor (formal_type, actual);
4469 else if (formal_type->code () == TYPE_CODE_PTR
4470 || formal_type->code () == TYPE_CODE_REF)
4471 {
4472 struct value *result;
4473
4474 if (formal_target->code () == TYPE_CODE_ARRAY
4475 && ada_is_array_descriptor_type (actual_target))
4476 result = desc_data (actual);
4477 else if (formal_type->code () != TYPE_CODE_PTR)
4478 {
4479 if (VALUE_LVAL (actual) != lval_memory)
4480 {
4481 struct value *val;
4482
4483 actual_type = ada_check_typedef (value_type (actual));
4484 val = allocate_value (actual_type);
4485 memcpy ((char *) value_contents_raw (val),
4486 (char *) value_contents (actual),
4487 TYPE_LENGTH (actual_type));
4488 actual = ensure_lval (val);
4489 }
4490 result = value_addr (actual);
4491 }
4492 else
4493 return actual;
4494 return value_cast_pointers (formal_type, result, 0);
4495 }
4496 else if (actual_type->code () == TYPE_CODE_PTR)
4497 return ada_value_ind (actual);
4498 else if (ada_is_aligner_type (formal_type))
4499 {
4500 /* We need to turn this parameter into an aligner type
4501 as well. */
4502 struct value *aligner = allocate_value (formal_type);
4503 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4504
4505 value_assign_to_component (aligner, component, actual);
4506 return aligner;
4507 }
4508
4509 return actual;
4510 }
4511
4512 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4513 type TYPE. This is usually an inefficient no-op except on some targets
4514 (such as AVR) where the representation of a pointer and an address
4515 differs. */
4516
4517 static CORE_ADDR
4518 value_pointer (struct value *value, struct type *type)
4519 {
4520 struct gdbarch *gdbarch = get_type_arch (type);
4521 unsigned len = TYPE_LENGTH (type);
4522 gdb_byte *buf = (gdb_byte *) alloca (len);
4523 CORE_ADDR addr;
4524
4525 addr = value_address (value);
4526 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4527 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4528 return addr;
4529 }
4530
4531
4532 /* Push a descriptor of type TYPE for array value ARR on the stack at
4533 *SP, updating *SP to reflect the new descriptor. Return either
4534 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4535 to-descriptor type rather than a descriptor type), a struct value *
4536 representing a pointer to this descriptor. */
4537
4538 static struct value *
4539 make_array_descriptor (struct type *type, struct value *arr)
4540 {
4541 struct type *bounds_type = desc_bounds_type (type);
4542 struct type *desc_type = desc_base_type (type);
4543 struct value *descriptor = allocate_value (desc_type);
4544 struct value *bounds = allocate_value (bounds_type);
4545 int i;
4546
4547 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4548 i > 0; i -= 1)
4549 {
4550 modify_field (value_type (bounds), value_contents_writeable (bounds),
4551 ada_array_bound (arr, i, 0),
4552 desc_bound_bitpos (bounds_type, i, 0),
4553 desc_bound_bitsize (bounds_type, i, 0));
4554 modify_field (value_type (bounds), value_contents_writeable (bounds),
4555 ada_array_bound (arr, i, 1),
4556 desc_bound_bitpos (bounds_type, i, 1),
4557 desc_bound_bitsize (bounds_type, i, 1));
4558 }
4559
4560 bounds = ensure_lval (bounds);
4561
4562 modify_field (value_type (descriptor),
4563 value_contents_writeable (descriptor),
4564 value_pointer (ensure_lval (arr),
4565 TYPE_FIELD_TYPE (desc_type, 0)),
4566 fat_pntr_data_bitpos (desc_type),
4567 fat_pntr_data_bitsize (desc_type));
4568
4569 modify_field (value_type (descriptor),
4570 value_contents_writeable (descriptor),
4571 value_pointer (bounds,
4572 TYPE_FIELD_TYPE (desc_type, 1)),
4573 fat_pntr_bounds_bitpos (desc_type),
4574 fat_pntr_bounds_bitsize (desc_type));
4575
4576 descriptor = ensure_lval (descriptor);
4577
4578 if (type->code () == TYPE_CODE_PTR)
4579 return value_addr (descriptor);
4580 else
4581 return descriptor;
4582 }
4583 \f
4584 /* Symbol Cache Module */
4585
4586 /* Performance measurements made as of 2010-01-15 indicate that
4587 this cache does bring some noticeable improvements. Depending
4588 on the type of entity being printed, the cache can make it as much
4589 as an order of magnitude faster than without it.
4590
4591 The descriptive type DWARF extension has significantly reduced
4592 the need for this cache, at least when DWARF is being used. However,
4593 even in this case, some expensive name-based symbol searches are still
4594 sometimes necessary - to find an XVZ variable, mostly. */
4595
4596 /* Initialize the contents of SYM_CACHE. */
4597
4598 static void
4599 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4600 {
4601 obstack_init (&sym_cache->cache_space);
4602 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4603 }
4604
4605 /* Free the memory used by SYM_CACHE. */
4606
4607 static void
4608 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4609 {
4610 obstack_free (&sym_cache->cache_space, NULL);
4611 xfree (sym_cache);
4612 }
4613
4614 /* Return the symbol cache associated to the given program space PSPACE.
4615 If not allocated for this PSPACE yet, allocate and initialize one. */
4616
4617 static struct ada_symbol_cache *
4618 ada_get_symbol_cache (struct program_space *pspace)
4619 {
4620 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4621
4622 if (pspace_data->sym_cache == NULL)
4623 {
4624 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4625 ada_init_symbol_cache (pspace_data->sym_cache);
4626 }
4627
4628 return pspace_data->sym_cache;
4629 }
4630
4631 /* Clear all entries from the symbol cache. */
4632
4633 static void
4634 ada_clear_symbol_cache (void)
4635 {
4636 struct ada_symbol_cache *sym_cache
4637 = ada_get_symbol_cache (current_program_space);
4638
4639 obstack_free (&sym_cache->cache_space, NULL);
4640 ada_init_symbol_cache (sym_cache);
4641 }
4642
4643 /* Search our cache for an entry matching NAME and DOMAIN.
4644 Return it if found, or NULL otherwise. */
4645
4646 static struct cache_entry **
4647 find_entry (const char *name, domain_enum domain)
4648 {
4649 struct ada_symbol_cache *sym_cache
4650 = ada_get_symbol_cache (current_program_space);
4651 int h = msymbol_hash (name) % HASH_SIZE;
4652 struct cache_entry **e;
4653
4654 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4655 {
4656 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4657 return e;
4658 }
4659 return NULL;
4660 }
4661
4662 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4663 Return 1 if found, 0 otherwise.
4664
4665 If an entry was found and SYM is not NULL, set *SYM to the entry's
4666 SYM. Same principle for BLOCK if not NULL. */
4667
4668 static int
4669 lookup_cached_symbol (const char *name, domain_enum domain,
4670 struct symbol **sym, const struct block **block)
4671 {
4672 struct cache_entry **e = find_entry (name, domain);
4673
4674 if (e == NULL)
4675 return 0;
4676 if (sym != NULL)
4677 *sym = (*e)->sym;
4678 if (block != NULL)
4679 *block = (*e)->block;
4680 return 1;
4681 }
4682
4683 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4684 in domain DOMAIN, save this result in our symbol cache. */
4685
4686 static void
4687 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4688 const struct block *block)
4689 {
4690 struct ada_symbol_cache *sym_cache
4691 = ada_get_symbol_cache (current_program_space);
4692 int h;
4693 struct cache_entry *e;
4694
4695 /* Symbols for builtin types don't have a block.
4696 For now don't cache such symbols. */
4697 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4698 return;
4699
4700 /* If the symbol is a local symbol, then do not cache it, as a search
4701 for that symbol depends on the context. To determine whether
4702 the symbol is local or not, we check the block where we found it
4703 against the global and static blocks of its associated symtab. */
4704 if (sym
4705 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4706 GLOBAL_BLOCK) != block
4707 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4708 STATIC_BLOCK) != block)
4709 return;
4710
4711 h = msymbol_hash (name) % HASH_SIZE;
4712 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4713 e->next = sym_cache->root[h];
4714 sym_cache->root[h] = e;
4715 e->name = obstack_strdup (&sym_cache->cache_space, name);
4716 e->sym = sym;
4717 e->domain = domain;
4718 e->block = block;
4719 }
4720 \f
4721 /* Symbol Lookup */
4722
4723 /* Return the symbol name match type that should be used used when
4724 searching for all symbols matching LOOKUP_NAME.
4725
4726 LOOKUP_NAME is expected to be a symbol name after transformation
4727 for Ada lookups. */
4728
4729 static symbol_name_match_type
4730 name_match_type_from_name (const char *lookup_name)
4731 {
4732 return (strstr (lookup_name, "__") == NULL
4733 ? symbol_name_match_type::WILD
4734 : symbol_name_match_type::FULL);
4735 }
4736
4737 /* Return the result of a standard (literal, C-like) lookup of NAME in
4738 given DOMAIN, visible from lexical block BLOCK. */
4739
4740 static struct symbol *
4741 standard_lookup (const char *name, const struct block *block,
4742 domain_enum domain)
4743 {
4744 /* Initialize it just to avoid a GCC false warning. */
4745 struct block_symbol sym = {};
4746
4747 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4748 return sym.symbol;
4749 ada_lookup_encoded_symbol (name, block, domain, &sym);
4750 cache_symbol (name, domain, sym.symbol, sym.block);
4751 return sym.symbol;
4752 }
4753
4754
4755 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4756 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4757 since they contend in overloading in the same way. */
4758 static int
4759 is_nonfunction (struct block_symbol syms[], int n)
4760 {
4761 int i;
4762
4763 for (i = 0; i < n; i += 1)
4764 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4765 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4766 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4767 return 1;
4768
4769 return 0;
4770 }
4771
4772 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4773 struct types. Otherwise, they may not. */
4774
4775 static int
4776 equiv_types (struct type *type0, struct type *type1)
4777 {
4778 if (type0 == type1)
4779 return 1;
4780 if (type0 == NULL || type1 == NULL
4781 || type0->code () != type1->code ())
4782 return 0;
4783 if ((type0->code () == TYPE_CODE_STRUCT
4784 || type0->code () == TYPE_CODE_ENUM)
4785 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4786 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4787 return 1;
4788
4789 return 0;
4790 }
4791
4792 /* True iff SYM0 represents the same entity as SYM1, or one that is
4793 no more defined than that of SYM1. */
4794
4795 static int
4796 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4797 {
4798 if (sym0 == sym1)
4799 return 1;
4800 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4801 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4802 return 0;
4803
4804 switch (SYMBOL_CLASS (sym0))
4805 {
4806 case LOC_UNDEF:
4807 return 1;
4808 case LOC_TYPEDEF:
4809 {
4810 struct type *type0 = SYMBOL_TYPE (sym0);
4811 struct type *type1 = SYMBOL_TYPE (sym1);
4812 const char *name0 = sym0->linkage_name ();
4813 const char *name1 = sym1->linkage_name ();
4814 int len0 = strlen (name0);
4815
4816 return
4817 type0->code () == type1->code ()
4818 && (equiv_types (type0, type1)
4819 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4820 && startswith (name1 + len0, "___XV")));
4821 }
4822 case LOC_CONST:
4823 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4824 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4825
4826 case LOC_STATIC:
4827 {
4828 const char *name0 = sym0->linkage_name ();
4829 const char *name1 = sym1->linkage_name ();
4830 return (strcmp (name0, name1) == 0
4831 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4832 }
4833
4834 default:
4835 return 0;
4836 }
4837 }
4838
4839 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4840 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4841
4842 static void
4843 add_defn_to_vec (struct obstack *obstackp,
4844 struct symbol *sym,
4845 const struct block *block)
4846 {
4847 int i;
4848 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4849
4850 /* Do not try to complete stub types, as the debugger is probably
4851 already scanning all symbols matching a certain name at the
4852 time when this function is called. Trying to replace the stub
4853 type by its associated full type will cause us to restart a scan
4854 which may lead to an infinite recursion. Instead, the client
4855 collecting the matching symbols will end up collecting several
4856 matches, with at least one of them complete. It can then filter
4857 out the stub ones if needed. */
4858
4859 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4860 {
4861 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4862 return;
4863 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4864 {
4865 prevDefns[i].symbol = sym;
4866 prevDefns[i].block = block;
4867 return;
4868 }
4869 }
4870
4871 {
4872 struct block_symbol info;
4873
4874 info.symbol = sym;
4875 info.block = block;
4876 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4877 }
4878 }
4879
4880 /* Number of block_symbol structures currently collected in current vector in
4881 OBSTACKP. */
4882
4883 static int
4884 num_defns_collected (struct obstack *obstackp)
4885 {
4886 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4887 }
4888
4889 /* Vector of block_symbol structures currently collected in current vector in
4890 OBSTACKP. If FINISH, close off the vector and return its final address. */
4891
4892 static struct block_symbol *
4893 defns_collected (struct obstack *obstackp, int finish)
4894 {
4895 if (finish)
4896 return (struct block_symbol *) obstack_finish (obstackp);
4897 else
4898 return (struct block_symbol *) obstack_base (obstackp);
4899 }
4900
4901 /* Return a bound minimal symbol matching NAME according to Ada
4902 decoding rules. Returns an invalid symbol if there is no such
4903 minimal symbol. Names prefixed with "standard__" are handled
4904 specially: "standard__" is first stripped off, and only static and
4905 global symbols are searched. */
4906
4907 struct bound_minimal_symbol
4908 ada_lookup_simple_minsym (const char *name)
4909 {
4910 struct bound_minimal_symbol result;
4911
4912 memset (&result, 0, sizeof (result));
4913
4914 symbol_name_match_type match_type = name_match_type_from_name (name);
4915 lookup_name_info lookup_name (name, match_type);
4916
4917 symbol_name_matcher_ftype *match_name
4918 = ada_get_symbol_name_matcher (lookup_name);
4919
4920 for (objfile *objfile : current_program_space->objfiles ())
4921 {
4922 for (minimal_symbol *msymbol : objfile->msymbols ())
4923 {
4924 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4925 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4926 {
4927 result.minsym = msymbol;
4928 result.objfile = objfile;
4929 break;
4930 }
4931 }
4932 }
4933
4934 return result;
4935 }
4936
4937 /* For all subprograms that statically enclose the subprogram of the
4938 selected frame, add symbols matching identifier NAME in DOMAIN
4939 and their blocks to the list of data in OBSTACKP, as for
4940 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4941 with a wildcard prefix. */
4942
4943 static void
4944 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4945 const lookup_name_info &lookup_name,
4946 domain_enum domain)
4947 {
4948 }
4949
4950 /* True if TYPE is definitely an artificial type supplied to a symbol
4951 for which no debugging information was given in the symbol file. */
4952
4953 static int
4954 is_nondebugging_type (struct type *type)
4955 {
4956 const char *name = ada_type_name (type);
4957
4958 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4959 }
4960
4961 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4962 that are deemed "identical" for practical purposes.
4963
4964 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4965 types and that their number of enumerals is identical (in other
4966 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4967
4968 static int
4969 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4970 {
4971 int i;
4972
4973 /* The heuristic we use here is fairly conservative. We consider
4974 that 2 enumerate types are identical if they have the same
4975 number of enumerals and that all enumerals have the same
4976 underlying value and name. */
4977
4978 /* All enums in the type should have an identical underlying value. */
4979 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4980 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4981 return 0;
4982
4983 /* All enumerals should also have the same name (modulo any numerical
4984 suffix). */
4985 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4986 {
4987 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4988 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4989 int len_1 = strlen (name_1);
4990 int len_2 = strlen (name_2);
4991
4992 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4993 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4994 if (len_1 != len_2
4995 || strncmp (TYPE_FIELD_NAME (type1, i),
4996 TYPE_FIELD_NAME (type2, i),
4997 len_1) != 0)
4998 return 0;
4999 }
5000
5001 return 1;
5002 }
5003
5004 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5005 that are deemed "identical" for practical purposes. Sometimes,
5006 enumerals are not strictly identical, but their types are so similar
5007 that they can be considered identical.
5008
5009 For instance, consider the following code:
5010
5011 type Color is (Black, Red, Green, Blue, White);
5012 type RGB_Color is new Color range Red .. Blue;
5013
5014 Type RGB_Color is a subrange of an implicit type which is a copy
5015 of type Color. If we call that implicit type RGB_ColorB ("B" is
5016 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5017 As a result, when an expression references any of the enumeral
5018 by name (Eg. "print green"), the expression is technically
5019 ambiguous and the user should be asked to disambiguate. But
5020 doing so would only hinder the user, since it wouldn't matter
5021 what choice he makes, the outcome would always be the same.
5022 So, for practical purposes, we consider them as the same. */
5023
5024 static int
5025 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5026 {
5027 int i;
5028
5029 /* Before performing a thorough comparison check of each type,
5030 we perform a series of inexpensive checks. We expect that these
5031 checks will quickly fail in the vast majority of cases, and thus
5032 help prevent the unnecessary use of a more expensive comparison.
5033 Said comparison also expects us to make some of these checks
5034 (see ada_identical_enum_types_p). */
5035
5036 /* Quick check: All symbols should have an enum type. */
5037 for (i = 0; i < syms.size (); i++)
5038 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
5039 return 0;
5040
5041 /* Quick check: They should all have the same value. */
5042 for (i = 1; i < syms.size (); i++)
5043 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5044 return 0;
5045
5046 /* Quick check: They should all have the same number of enumerals. */
5047 for (i = 1; i < syms.size (); i++)
5048 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5049 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5050 return 0;
5051
5052 /* All the sanity checks passed, so we might have a set of
5053 identical enumeration types. Perform a more complete
5054 comparison of the type of each symbol. */
5055 for (i = 1; i < syms.size (); i++)
5056 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5057 SYMBOL_TYPE (syms[0].symbol)))
5058 return 0;
5059
5060 return 1;
5061 }
5062
5063 /* Remove any non-debugging symbols in SYMS that definitely
5064 duplicate other symbols in the list (The only case I know of where
5065 this happens is when object files containing stabs-in-ecoff are
5066 linked with files containing ordinary ecoff debugging symbols (or no
5067 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5068 Returns the number of items in the modified list. */
5069
5070 static int
5071 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5072 {
5073 int i, j;
5074
5075 /* We should never be called with less than 2 symbols, as there
5076 cannot be any extra symbol in that case. But it's easy to
5077 handle, since we have nothing to do in that case. */
5078 if (syms->size () < 2)
5079 return syms->size ();
5080
5081 i = 0;
5082 while (i < syms->size ())
5083 {
5084 int remove_p = 0;
5085
5086 /* If two symbols have the same name and one of them is a stub type,
5087 the get rid of the stub. */
5088
5089 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5090 && (*syms)[i].symbol->linkage_name () != NULL)
5091 {
5092 for (j = 0; j < syms->size (); j++)
5093 {
5094 if (j != i
5095 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5096 && (*syms)[j].symbol->linkage_name () != NULL
5097 && strcmp ((*syms)[i].symbol->linkage_name (),
5098 (*syms)[j].symbol->linkage_name ()) == 0)
5099 remove_p = 1;
5100 }
5101 }
5102
5103 /* Two symbols with the same name, same class and same address
5104 should be identical. */
5105
5106 else if ((*syms)[i].symbol->linkage_name () != NULL
5107 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5108 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5109 {
5110 for (j = 0; j < syms->size (); j += 1)
5111 {
5112 if (i != j
5113 && (*syms)[j].symbol->linkage_name () != NULL
5114 && strcmp ((*syms)[i].symbol->linkage_name (),
5115 (*syms)[j].symbol->linkage_name ()) == 0
5116 && SYMBOL_CLASS ((*syms)[i].symbol)
5117 == SYMBOL_CLASS ((*syms)[j].symbol)
5118 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5119 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5120 remove_p = 1;
5121 }
5122 }
5123
5124 if (remove_p)
5125 syms->erase (syms->begin () + i);
5126
5127 i += 1;
5128 }
5129
5130 /* If all the remaining symbols are identical enumerals, then
5131 just keep the first one and discard the rest.
5132
5133 Unlike what we did previously, we do not discard any entry
5134 unless they are ALL identical. This is because the symbol
5135 comparison is not a strict comparison, but rather a practical
5136 comparison. If all symbols are considered identical, then
5137 we can just go ahead and use the first one and discard the rest.
5138 But if we cannot reduce the list to a single element, we have
5139 to ask the user to disambiguate anyways. And if we have to
5140 present a multiple-choice menu, it's less confusing if the list
5141 isn't missing some choices that were identical and yet distinct. */
5142 if (symbols_are_identical_enums (*syms))
5143 syms->resize (1);
5144
5145 return syms->size ();
5146 }
5147
5148 /* Given a type that corresponds to a renaming entity, use the type name
5149 to extract the scope (package name or function name, fully qualified,
5150 and following the GNAT encoding convention) where this renaming has been
5151 defined. */
5152
5153 static std::string
5154 xget_renaming_scope (struct type *renaming_type)
5155 {
5156 /* The renaming types adhere to the following convention:
5157 <scope>__<rename>___<XR extension>.
5158 So, to extract the scope, we search for the "___XR" extension,
5159 and then backtrack until we find the first "__". */
5160
5161 const char *name = renaming_type->name ();
5162 const char *suffix = strstr (name, "___XR");
5163 const char *last;
5164
5165 /* Now, backtrack a bit until we find the first "__". Start looking
5166 at suffix - 3, as the <rename> part is at least one character long. */
5167
5168 for (last = suffix - 3; last > name; last--)
5169 if (last[0] == '_' && last[1] == '_')
5170 break;
5171
5172 /* Make a copy of scope and return it. */
5173 return std::string (name, last);
5174 }
5175
5176 /* Return nonzero if NAME corresponds to a package name. */
5177
5178 static int
5179 is_package_name (const char *name)
5180 {
5181 /* Here, We take advantage of the fact that no symbols are generated
5182 for packages, while symbols are generated for each function.
5183 So the condition for NAME represent a package becomes equivalent
5184 to NAME not existing in our list of symbols. There is only one
5185 small complication with library-level functions (see below). */
5186
5187 /* If it is a function that has not been defined at library level,
5188 then we should be able to look it up in the symbols. */
5189 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5190 return 0;
5191
5192 /* Library-level function names start with "_ada_". See if function
5193 "_ada_" followed by NAME can be found. */
5194
5195 /* Do a quick check that NAME does not contain "__", since library-level
5196 functions names cannot contain "__" in them. */
5197 if (strstr (name, "__") != NULL)
5198 return 0;
5199
5200 std::string fun_name = string_printf ("_ada_%s", name);
5201
5202 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5203 }
5204
5205 /* Return nonzero if SYM corresponds to a renaming entity that is
5206 not visible from FUNCTION_NAME. */
5207
5208 static int
5209 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5210 {
5211 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5212 return 0;
5213
5214 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5215
5216 /* If the rename has been defined in a package, then it is visible. */
5217 if (is_package_name (scope.c_str ()))
5218 return 0;
5219
5220 /* Check that the rename is in the current function scope by checking
5221 that its name starts with SCOPE. */
5222
5223 /* If the function name starts with "_ada_", it means that it is
5224 a library-level function. Strip this prefix before doing the
5225 comparison, as the encoding for the renaming does not contain
5226 this prefix. */
5227 if (startswith (function_name, "_ada_"))
5228 function_name += 5;
5229
5230 return !startswith (function_name, scope.c_str ());
5231 }
5232
5233 /* Remove entries from SYMS that corresponds to a renaming entity that
5234 is not visible from the function associated with CURRENT_BLOCK or
5235 that is superfluous due to the presence of more specific renaming
5236 information. Places surviving symbols in the initial entries of
5237 SYMS and returns the number of surviving symbols.
5238
5239 Rationale:
5240 First, in cases where an object renaming is implemented as a
5241 reference variable, GNAT may produce both the actual reference
5242 variable and the renaming encoding. In this case, we discard the
5243 latter.
5244
5245 Second, GNAT emits a type following a specified encoding for each renaming
5246 entity. Unfortunately, STABS currently does not support the definition
5247 of types that are local to a given lexical block, so all renamings types
5248 are emitted at library level. As a consequence, if an application
5249 contains two renaming entities using the same name, and a user tries to
5250 print the value of one of these entities, the result of the ada symbol
5251 lookup will also contain the wrong renaming type.
5252
5253 This function partially covers for this limitation by attempting to
5254 remove from the SYMS list renaming symbols that should be visible
5255 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5256 method with the current information available. The implementation
5257 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5258
5259 - When the user tries to print a rename in a function while there
5260 is another rename entity defined in a package: Normally, the
5261 rename in the function has precedence over the rename in the
5262 package, so the latter should be removed from the list. This is
5263 currently not the case.
5264
5265 - This function will incorrectly remove valid renames if
5266 the CURRENT_BLOCK corresponds to a function which symbol name
5267 has been changed by an "Export" pragma. As a consequence,
5268 the user will be unable to print such rename entities. */
5269
5270 static int
5271 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5272 const struct block *current_block)
5273 {
5274 struct symbol *current_function;
5275 const char *current_function_name;
5276 int i;
5277 int is_new_style_renaming;
5278
5279 /* If there is both a renaming foo___XR... encoded as a variable and
5280 a simple variable foo in the same block, discard the latter.
5281 First, zero out such symbols, then compress. */
5282 is_new_style_renaming = 0;
5283 for (i = 0; i < syms->size (); i += 1)
5284 {
5285 struct symbol *sym = (*syms)[i].symbol;
5286 const struct block *block = (*syms)[i].block;
5287 const char *name;
5288 const char *suffix;
5289
5290 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5291 continue;
5292 name = sym->linkage_name ();
5293 suffix = strstr (name, "___XR");
5294
5295 if (suffix != NULL)
5296 {
5297 int name_len = suffix - name;
5298 int j;
5299
5300 is_new_style_renaming = 1;
5301 for (j = 0; j < syms->size (); j += 1)
5302 if (i != j && (*syms)[j].symbol != NULL
5303 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5304 name_len) == 0
5305 && block == (*syms)[j].block)
5306 (*syms)[j].symbol = NULL;
5307 }
5308 }
5309 if (is_new_style_renaming)
5310 {
5311 int j, k;
5312
5313 for (j = k = 0; j < syms->size (); j += 1)
5314 if ((*syms)[j].symbol != NULL)
5315 {
5316 (*syms)[k] = (*syms)[j];
5317 k += 1;
5318 }
5319 return k;
5320 }
5321
5322 /* Extract the function name associated to CURRENT_BLOCK.
5323 Abort if unable to do so. */
5324
5325 if (current_block == NULL)
5326 return syms->size ();
5327
5328 current_function = block_linkage_function (current_block);
5329 if (current_function == NULL)
5330 return syms->size ();
5331
5332 current_function_name = current_function->linkage_name ();
5333 if (current_function_name == NULL)
5334 return syms->size ();
5335
5336 /* Check each of the symbols, and remove it from the list if it is
5337 a type corresponding to a renaming that is out of the scope of
5338 the current block. */
5339
5340 i = 0;
5341 while (i < syms->size ())
5342 {
5343 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5344 == ADA_OBJECT_RENAMING
5345 && old_renaming_is_invisible ((*syms)[i].symbol,
5346 current_function_name))
5347 syms->erase (syms->begin () + i);
5348 else
5349 i += 1;
5350 }
5351
5352 return syms->size ();
5353 }
5354
5355 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5356 whose name and domain match NAME and DOMAIN respectively.
5357 If no match was found, then extend the search to "enclosing"
5358 routines (in other words, if we're inside a nested function,
5359 search the symbols defined inside the enclosing functions).
5360 If WILD_MATCH_P is nonzero, perform the naming matching in
5361 "wild" mode (see function "wild_match" for more info).
5362
5363 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5364
5365 static void
5366 ada_add_local_symbols (struct obstack *obstackp,
5367 const lookup_name_info &lookup_name,
5368 const struct block *block, domain_enum domain)
5369 {
5370 int block_depth = 0;
5371
5372 while (block != NULL)
5373 {
5374 block_depth += 1;
5375 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5376
5377 /* If we found a non-function match, assume that's the one. */
5378 if (is_nonfunction (defns_collected (obstackp, 0),
5379 num_defns_collected (obstackp)))
5380 return;
5381
5382 block = BLOCK_SUPERBLOCK (block);
5383 }
5384
5385 /* If no luck so far, try to find NAME as a local symbol in some lexically
5386 enclosing subprogram. */
5387 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5388 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5389 }
5390
5391 /* An object of this type is used as the user_data argument when
5392 calling the map_matching_symbols method. */
5393
5394 struct match_data
5395 {
5396 struct objfile *objfile;
5397 struct obstack *obstackp;
5398 struct symbol *arg_sym;
5399 int found_sym;
5400 };
5401
5402 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5403 to a list of symbols. DATA is a pointer to a struct match_data *
5404 containing the obstack that collects the symbol list, the file that SYM
5405 must come from, a flag indicating whether a non-argument symbol has
5406 been found in the current block, and the last argument symbol
5407 passed in SYM within the current block (if any). When SYM is null,
5408 marking the end of a block, the argument symbol is added if no
5409 other has been found. */
5410
5411 static bool
5412 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5413 struct match_data *data)
5414 {
5415 const struct block *block = bsym->block;
5416 struct symbol *sym = bsym->symbol;
5417
5418 if (sym == NULL)
5419 {
5420 if (!data->found_sym && data->arg_sym != NULL)
5421 add_defn_to_vec (data->obstackp,
5422 fixup_symbol_section (data->arg_sym, data->objfile),
5423 block);
5424 data->found_sym = 0;
5425 data->arg_sym = NULL;
5426 }
5427 else
5428 {
5429 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5430 return true;
5431 else if (SYMBOL_IS_ARGUMENT (sym))
5432 data->arg_sym = sym;
5433 else
5434 {
5435 data->found_sym = 1;
5436 add_defn_to_vec (data->obstackp,
5437 fixup_symbol_section (sym, data->objfile),
5438 block);
5439 }
5440 }
5441 return true;
5442 }
5443
5444 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5445 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5446 symbols to OBSTACKP. Return whether we found such symbols. */
5447
5448 static int
5449 ada_add_block_renamings (struct obstack *obstackp,
5450 const struct block *block,
5451 const lookup_name_info &lookup_name,
5452 domain_enum domain)
5453 {
5454 struct using_direct *renaming;
5455 int defns_mark = num_defns_collected (obstackp);
5456
5457 symbol_name_matcher_ftype *name_match
5458 = ada_get_symbol_name_matcher (lookup_name);
5459
5460 for (renaming = block_using (block);
5461 renaming != NULL;
5462 renaming = renaming->next)
5463 {
5464 const char *r_name;
5465
5466 /* Avoid infinite recursions: skip this renaming if we are actually
5467 already traversing it.
5468
5469 Currently, symbol lookup in Ada don't use the namespace machinery from
5470 C++/Fortran support: skip namespace imports that use them. */
5471 if (renaming->searched
5472 || (renaming->import_src != NULL
5473 && renaming->import_src[0] != '\0')
5474 || (renaming->import_dest != NULL
5475 && renaming->import_dest[0] != '\0'))
5476 continue;
5477 renaming->searched = 1;
5478
5479 /* TODO: here, we perform another name-based symbol lookup, which can
5480 pull its own multiple overloads. In theory, we should be able to do
5481 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5482 not a simple name. But in order to do this, we would need to enhance
5483 the DWARF reader to associate a symbol to this renaming, instead of a
5484 name. So, for now, we do something simpler: re-use the C++/Fortran
5485 namespace machinery. */
5486 r_name = (renaming->alias != NULL
5487 ? renaming->alias
5488 : renaming->declaration);
5489 if (name_match (r_name, lookup_name, NULL))
5490 {
5491 lookup_name_info decl_lookup_name (renaming->declaration,
5492 lookup_name.match_type ());
5493 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5494 1, NULL);
5495 }
5496 renaming->searched = 0;
5497 }
5498 return num_defns_collected (obstackp) != defns_mark;
5499 }
5500
5501 /* Implements compare_names, but only applying the comparision using
5502 the given CASING. */
5503
5504 static int
5505 compare_names_with_case (const char *string1, const char *string2,
5506 enum case_sensitivity casing)
5507 {
5508 while (*string1 != '\0' && *string2 != '\0')
5509 {
5510 char c1, c2;
5511
5512 if (isspace (*string1) || isspace (*string2))
5513 return strcmp_iw_ordered (string1, string2);
5514
5515 if (casing == case_sensitive_off)
5516 {
5517 c1 = tolower (*string1);
5518 c2 = tolower (*string2);
5519 }
5520 else
5521 {
5522 c1 = *string1;
5523 c2 = *string2;
5524 }
5525 if (c1 != c2)
5526 break;
5527
5528 string1 += 1;
5529 string2 += 1;
5530 }
5531
5532 switch (*string1)
5533 {
5534 case '(':
5535 return strcmp_iw_ordered (string1, string2);
5536 case '_':
5537 if (*string2 == '\0')
5538 {
5539 if (is_name_suffix (string1))
5540 return 0;
5541 else
5542 return 1;
5543 }
5544 /* FALLTHROUGH */
5545 default:
5546 if (*string2 == '(')
5547 return strcmp_iw_ordered (string1, string2);
5548 else
5549 {
5550 if (casing == case_sensitive_off)
5551 return tolower (*string1) - tolower (*string2);
5552 else
5553 return *string1 - *string2;
5554 }
5555 }
5556 }
5557
5558 /* Compare STRING1 to STRING2, with results as for strcmp.
5559 Compatible with strcmp_iw_ordered in that...
5560
5561 strcmp_iw_ordered (STRING1, STRING2) <= 0
5562
5563 ... implies...
5564
5565 compare_names (STRING1, STRING2) <= 0
5566
5567 (they may differ as to what symbols compare equal). */
5568
5569 static int
5570 compare_names (const char *string1, const char *string2)
5571 {
5572 int result;
5573
5574 /* Similar to what strcmp_iw_ordered does, we need to perform
5575 a case-insensitive comparison first, and only resort to
5576 a second, case-sensitive, comparison if the first one was
5577 not sufficient to differentiate the two strings. */
5578
5579 result = compare_names_with_case (string1, string2, case_sensitive_off);
5580 if (result == 0)
5581 result = compare_names_with_case (string1, string2, case_sensitive_on);
5582
5583 return result;
5584 }
5585
5586 /* Convenience function to get at the Ada encoded lookup name for
5587 LOOKUP_NAME, as a C string. */
5588
5589 static const char *
5590 ada_lookup_name (const lookup_name_info &lookup_name)
5591 {
5592 return lookup_name.ada ().lookup_name ().c_str ();
5593 }
5594
5595 /* Add to OBSTACKP all non-local symbols whose name and domain match
5596 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5597 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5598 symbols otherwise. */
5599
5600 static void
5601 add_nonlocal_symbols (struct obstack *obstackp,
5602 const lookup_name_info &lookup_name,
5603 domain_enum domain, int global)
5604 {
5605 struct match_data data;
5606
5607 memset (&data, 0, sizeof data);
5608 data.obstackp = obstackp;
5609
5610 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5611
5612 auto callback = [&] (struct block_symbol *bsym)
5613 {
5614 return aux_add_nonlocal_symbols (bsym, &data);
5615 };
5616
5617 for (objfile *objfile : current_program_space->objfiles ())
5618 {
5619 data.objfile = objfile;
5620
5621 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5622 domain, global, callback,
5623 (is_wild_match
5624 ? NULL : compare_names));
5625
5626 for (compunit_symtab *cu : objfile->compunits ())
5627 {
5628 const struct block *global_block
5629 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5630
5631 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5632 domain))
5633 data.found_sym = 1;
5634 }
5635 }
5636
5637 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5638 {
5639 const char *name = ada_lookup_name (lookup_name);
5640 std::string bracket_name = std::string ("<_ada_") + name + '>';
5641 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5642
5643 for (objfile *objfile : current_program_space->objfiles ())
5644 {
5645 data.objfile = objfile;
5646 objfile->sf->qf->map_matching_symbols (objfile, name1,
5647 domain, global, callback,
5648 compare_names);
5649 }
5650 }
5651 }
5652
5653 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5654 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5655 returning the number of matches. Add these to OBSTACKP.
5656
5657 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5658 symbol match within the nest of blocks whose innermost member is BLOCK,
5659 is the one match returned (no other matches in that or
5660 enclosing blocks is returned). If there are any matches in or
5661 surrounding BLOCK, then these alone are returned.
5662
5663 Names prefixed with "standard__" are handled specially:
5664 "standard__" is first stripped off (by the lookup_name
5665 constructor), and only static and global symbols are searched.
5666
5667 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5668 to lookup global symbols. */
5669
5670 static void
5671 ada_add_all_symbols (struct obstack *obstackp,
5672 const struct block *block,
5673 const lookup_name_info &lookup_name,
5674 domain_enum domain,
5675 int full_search,
5676 int *made_global_lookup_p)
5677 {
5678 struct symbol *sym;
5679
5680 if (made_global_lookup_p)
5681 *made_global_lookup_p = 0;
5682
5683 /* Special case: If the user specifies a symbol name inside package
5684 Standard, do a non-wild matching of the symbol name without
5685 the "standard__" prefix. This was primarily introduced in order
5686 to allow the user to specifically access the standard exceptions
5687 using, for instance, Standard.Constraint_Error when Constraint_Error
5688 is ambiguous (due to the user defining its own Constraint_Error
5689 entity inside its program). */
5690 if (lookup_name.ada ().standard_p ())
5691 block = NULL;
5692
5693 /* Check the non-global symbols. If we have ANY match, then we're done. */
5694
5695 if (block != NULL)
5696 {
5697 if (full_search)
5698 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5699 else
5700 {
5701 /* In the !full_search case we're are being called by
5702 ada_iterate_over_symbols, and we don't want to search
5703 superblocks. */
5704 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5705 }
5706 if (num_defns_collected (obstackp) > 0 || !full_search)
5707 return;
5708 }
5709
5710 /* No non-global symbols found. Check our cache to see if we have
5711 already performed this search before. If we have, then return
5712 the same result. */
5713
5714 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5715 domain, &sym, &block))
5716 {
5717 if (sym != NULL)
5718 add_defn_to_vec (obstackp, sym, block);
5719 return;
5720 }
5721
5722 if (made_global_lookup_p)
5723 *made_global_lookup_p = 1;
5724
5725 /* Search symbols from all global blocks. */
5726
5727 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5728
5729 /* Now add symbols from all per-file blocks if we've gotten no hits
5730 (not strictly correct, but perhaps better than an error). */
5731
5732 if (num_defns_collected (obstackp) == 0)
5733 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5734 }
5735
5736 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5737 is non-zero, enclosing scope and in global scopes, returning the number of
5738 matches.
5739 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5740 found and the blocks and symbol tables (if any) in which they were
5741 found.
5742
5743 When full_search is non-zero, any non-function/non-enumeral
5744 symbol match within the nest of blocks whose innermost member is BLOCK,
5745 is the one match returned (no other matches in that or
5746 enclosing blocks is returned). If there are any matches in or
5747 surrounding BLOCK, then these alone are returned.
5748
5749 Names prefixed with "standard__" are handled specially: "standard__"
5750 is first stripped off, and only static and global symbols are searched. */
5751
5752 static int
5753 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5754 const struct block *block,
5755 domain_enum domain,
5756 std::vector<struct block_symbol> *results,
5757 int full_search)
5758 {
5759 int syms_from_global_search;
5760 int ndefns;
5761 auto_obstack obstack;
5762
5763 ada_add_all_symbols (&obstack, block, lookup_name,
5764 domain, full_search, &syms_from_global_search);
5765
5766 ndefns = num_defns_collected (&obstack);
5767
5768 struct block_symbol *base = defns_collected (&obstack, 1);
5769 for (int i = 0; i < ndefns; ++i)
5770 results->push_back (base[i]);
5771
5772 ndefns = remove_extra_symbols (results);
5773
5774 if (ndefns == 0 && full_search && syms_from_global_search)
5775 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5776
5777 if (ndefns == 1 && full_search && syms_from_global_search)
5778 cache_symbol (ada_lookup_name (lookup_name), domain,
5779 (*results)[0].symbol, (*results)[0].block);
5780
5781 ndefns = remove_irrelevant_renamings (results, block);
5782
5783 return ndefns;
5784 }
5785
5786 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5787 in global scopes, returning the number of matches, and filling *RESULTS
5788 with (SYM,BLOCK) tuples.
5789
5790 See ada_lookup_symbol_list_worker for further details. */
5791
5792 int
5793 ada_lookup_symbol_list (const char *name, const struct block *block,
5794 domain_enum domain,
5795 std::vector<struct block_symbol> *results)
5796 {
5797 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5798 lookup_name_info lookup_name (name, name_match_type);
5799
5800 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5801 }
5802
5803 /* Implementation of the la_iterate_over_symbols method. */
5804
5805 static bool
5806 ada_iterate_over_symbols
5807 (const struct block *block, const lookup_name_info &name,
5808 domain_enum domain,
5809 gdb::function_view<symbol_found_callback_ftype> callback)
5810 {
5811 int ndefs, i;
5812 std::vector<struct block_symbol> results;
5813
5814 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5815
5816 for (i = 0; i < ndefs; ++i)
5817 {
5818 if (!callback (&results[i]))
5819 return false;
5820 }
5821
5822 return true;
5823 }
5824
5825 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5826 to 1, but choosing the first symbol found if there are multiple
5827 choices.
5828
5829 The result is stored in *INFO, which must be non-NULL.
5830 If no match is found, INFO->SYM is set to NULL. */
5831
5832 void
5833 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5834 domain_enum domain,
5835 struct block_symbol *info)
5836 {
5837 /* Since we already have an encoded name, wrap it in '<>' to force a
5838 verbatim match. Otherwise, if the name happens to not look like
5839 an encoded name (because it doesn't include a "__"),
5840 ada_lookup_name_info would re-encode/fold it again, and that
5841 would e.g., incorrectly lowercase object renaming names like
5842 "R28b" -> "r28b". */
5843 std::string verbatim = std::string ("<") + name + '>';
5844
5845 gdb_assert (info != NULL);
5846 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5847 }
5848
5849 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5850 scope and in global scopes, or NULL if none. NAME is folded and
5851 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5852 choosing the first symbol if there are multiple choices. */
5853
5854 struct block_symbol
5855 ada_lookup_symbol (const char *name, const struct block *block0,
5856 domain_enum domain)
5857 {
5858 std::vector<struct block_symbol> candidates;
5859 int n_candidates;
5860
5861 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5862
5863 if (n_candidates == 0)
5864 return {};
5865
5866 block_symbol info = candidates[0];
5867 info.symbol = fixup_symbol_section (info.symbol, NULL);
5868 return info;
5869 }
5870
5871 static struct block_symbol
5872 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5873 const char *name,
5874 const struct block *block,
5875 const domain_enum domain)
5876 {
5877 struct block_symbol sym;
5878
5879 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5880 if (sym.symbol != NULL)
5881 return sym;
5882
5883 /* If we haven't found a match at this point, try the primitive
5884 types. In other languages, this search is performed before
5885 searching for global symbols in order to short-circuit that
5886 global-symbol search if it happens that the name corresponds
5887 to a primitive type. But we cannot do the same in Ada, because
5888 it is perfectly legitimate for a program to declare a type which
5889 has the same name as a standard type. If looking up a type in
5890 that situation, we have traditionally ignored the primitive type
5891 in favor of user-defined types. This is why, unlike most other
5892 languages, we search the primitive types this late and only after
5893 having searched the global symbols without success. */
5894
5895 if (domain == VAR_DOMAIN)
5896 {
5897 struct gdbarch *gdbarch;
5898
5899 if (block == NULL)
5900 gdbarch = target_gdbarch ();
5901 else
5902 gdbarch = block_gdbarch (block);
5903 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5904 if (sym.symbol != NULL)
5905 return sym;
5906 }
5907
5908 return {};
5909 }
5910
5911
5912 /* True iff STR is a possible encoded suffix of a normal Ada name
5913 that is to be ignored for matching purposes. Suffixes of parallel
5914 names (e.g., XVE) are not included here. Currently, the possible suffixes
5915 are given by any of the regular expressions:
5916
5917 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5918 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5919 TKB [subprogram suffix for task bodies]
5920 _E[0-9]+[bs]$ [protected object entry suffixes]
5921 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5922
5923 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5924 match is performed. This sequence is used to differentiate homonyms,
5925 is an optional part of a valid name suffix. */
5926
5927 static int
5928 is_name_suffix (const char *str)
5929 {
5930 int k;
5931 const char *matching;
5932 const int len = strlen (str);
5933
5934 /* Skip optional leading __[0-9]+. */
5935
5936 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5937 {
5938 str += 3;
5939 while (isdigit (str[0]))
5940 str += 1;
5941 }
5942
5943 /* [.$][0-9]+ */
5944
5945 if (str[0] == '.' || str[0] == '$')
5946 {
5947 matching = str + 1;
5948 while (isdigit (matching[0]))
5949 matching += 1;
5950 if (matching[0] == '\0')
5951 return 1;
5952 }
5953
5954 /* ___[0-9]+ */
5955
5956 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5957 {
5958 matching = str + 3;
5959 while (isdigit (matching[0]))
5960 matching += 1;
5961 if (matching[0] == '\0')
5962 return 1;
5963 }
5964
5965 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5966
5967 if (strcmp (str, "TKB") == 0)
5968 return 1;
5969
5970 #if 0
5971 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5972 with a N at the end. Unfortunately, the compiler uses the same
5973 convention for other internal types it creates. So treating
5974 all entity names that end with an "N" as a name suffix causes
5975 some regressions. For instance, consider the case of an enumerated
5976 type. To support the 'Image attribute, it creates an array whose
5977 name ends with N.
5978 Having a single character like this as a suffix carrying some
5979 information is a bit risky. Perhaps we should change the encoding
5980 to be something like "_N" instead. In the meantime, do not do
5981 the following check. */
5982 /* Protected Object Subprograms */
5983 if (len == 1 && str [0] == 'N')
5984 return 1;
5985 #endif
5986
5987 /* _E[0-9]+[bs]$ */
5988 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5989 {
5990 matching = str + 3;
5991 while (isdigit (matching[0]))
5992 matching += 1;
5993 if ((matching[0] == 'b' || matching[0] == 's')
5994 && matching [1] == '\0')
5995 return 1;
5996 }
5997
5998 /* ??? We should not modify STR directly, as we are doing below. This
5999 is fine in this case, but may become problematic later if we find
6000 that this alternative did not work, and want to try matching
6001 another one from the begining of STR. Since we modified it, we
6002 won't be able to find the begining of the string anymore! */
6003 if (str[0] == 'X')
6004 {
6005 str += 1;
6006 while (str[0] != '_' && str[0] != '\0')
6007 {
6008 if (str[0] != 'n' && str[0] != 'b')
6009 return 0;
6010 str += 1;
6011 }
6012 }
6013
6014 if (str[0] == '\000')
6015 return 1;
6016
6017 if (str[0] == '_')
6018 {
6019 if (str[1] != '_' || str[2] == '\000')
6020 return 0;
6021 if (str[2] == '_')
6022 {
6023 if (strcmp (str + 3, "JM") == 0)
6024 return 1;
6025 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6026 the LJM suffix in favor of the JM one. But we will
6027 still accept LJM as a valid suffix for a reasonable
6028 amount of time, just to allow ourselves to debug programs
6029 compiled using an older version of GNAT. */
6030 if (strcmp (str + 3, "LJM") == 0)
6031 return 1;
6032 if (str[3] != 'X')
6033 return 0;
6034 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6035 || str[4] == 'U' || str[4] == 'P')
6036 return 1;
6037 if (str[4] == 'R' && str[5] != 'T')
6038 return 1;
6039 return 0;
6040 }
6041 if (!isdigit (str[2]))
6042 return 0;
6043 for (k = 3; str[k] != '\0'; k += 1)
6044 if (!isdigit (str[k]) && str[k] != '_')
6045 return 0;
6046 return 1;
6047 }
6048 if (str[0] == '$' && isdigit (str[1]))
6049 {
6050 for (k = 2; str[k] != '\0'; k += 1)
6051 if (!isdigit (str[k]) && str[k] != '_')
6052 return 0;
6053 return 1;
6054 }
6055 return 0;
6056 }
6057
6058 /* Return non-zero if the string starting at NAME and ending before
6059 NAME_END contains no capital letters. */
6060
6061 static int
6062 is_valid_name_for_wild_match (const char *name0)
6063 {
6064 std::string decoded_name = ada_decode (name0);
6065 int i;
6066
6067 /* If the decoded name starts with an angle bracket, it means that
6068 NAME0 does not follow the GNAT encoding format. It should then
6069 not be allowed as a possible wild match. */
6070 if (decoded_name[0] == '<')
6071 return 0;
6072
6073 for (i=0; decoded_name[i] != '\0'; i++)
6074 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6075 return 0;
6076
6077 return 1;
6078 }
6079
6080 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6081 that could start a simple name. Assumes that *NAMEP points into
6082 the string beginning at NAME0. */
6083
6084 static int
6085 advance_wild_match (const char **namep, const char *name0, int target0)
6086 {
6087 const char *name = *namep;
6088
6089 while (1)
6090 {
6091 int t0, t1;
6092
6093 t0 = *name;
6094 if (t0 == '_')
6095 {
6096 t1 = name[1];
6097 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6098 {
6099 name += 1;
6100 if (name == name0 + 5 && startswith (name0, "_ada"))
6101 break;
6102 else
6103 name += 1;
6104 }
6105 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6106 || name[2] == target0))
6107 {
6108 name += 2;
6109 break;
6110 }
6111 else
6112 return 0;
6113 }
6114 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6115 name += 1;
6116 else
6117 return 0;
6118 }
6119
6120 *namep = name;
6121 return 1;
6122 }
6123
6124 /* Return true iff NAME encodes a name of the form prefix.PATN.
6125 Ignores any informational suffixes of NAME (i.e., for which
6126 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6127 simple name. */
6128
6129 static bool
6130 wild_match (const char *name, const char *patn)
6131 {
6132 const char *p;
6133 const char *name0 = name;
6134
6135 while (1)
6136 {
6137 const char *match = name;
6138
6139 if (*name == *patn)
6140 {
6141 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6142 if (*p != *name)
6143 break;
6144 if (*p == '\0' && is_name_suffix (name))
6145 return match == name0 || is_valid_name_for_wild_match (name0);
6146
6147 if (name[-1] == '_')
6148 name -= 1;
6149 }
6150 if (!advance_wild_match (&name, name0, *patn))
6151 return false;
6152 }
6153 }
6154
6155 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6156 any trailing suffixes that encode debugging information or leading
6157 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6158 information that is ignored). */
6159
6160 static bool
6161 full_match (const char *sym_name, const char *search_name)
6162 {
6163 size_t search_name_len = strlen (search_name);
6164
6165 if (strncmp (sym_name, search_name, search_name_len) == 0
6166 && is_name_suffix (sym_name + search_name_len))
6167 return true;
6168
6169 if (startswith (sym_name, "_ada_")
6170 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6171 && is_name_suffix (sym_name + search_name_len + 5))
6172 return true;
6173
6174 return false;
6175 }
6176
6177 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6178 *defn_symbols, updating the list of symbols in OBSTACKP (if
6179 necessary). OBJFILE is the section containing BLOCK. */
6180
6181 static void
6182 ada_add_block_symbols (struct obstack *obstackp,
6183 const struct block *block,
6184 const lookup_name_info &lookup_name,
6185 domain_enum domain, struct objfile *objfile)
6186 {
6187 struct block_iterator iter;
6188 /* A matching argument symbol, if any. */
6189 struct symbol *arg_sym;
6190 /* Set true when we find a matching non-argument symbol. */
6191 int found_sym;
6192 struct symbol *sym;
6193
6194 arg_sym = NULL;
6195 found_sym = 0;
6196 for (sym = block_iter_match_first (block, lookup_name, &iter);
6197 sym != NULL;
6198 sym = block_iter_match_next (lookup_name, &iter))
6199 {
6200 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6201 {
6202 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6203 {
6204 if (SYMBOL_IS_ARGUMENT (sym))
6205 arg_sym = sym;
6206 else
6207 {
6208 found_sym = 1;
6209 add_defn_to_vec (obstackp,
6210 fixup_symbol_section (sym, objfile),
6211 block);
6212 }
6213 }
6214 }
6215 }
6216
6217 /* Handle renamings. */
6218
6219 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6220 found_sym = 1;
6221
6222 if (!found_sym && arg_sym != NULL)
6223 {
6224 add_defn_to_vec (obstackp,
6225 fixup_symbol_section (arg_sym, objfile),
6226 block);
6227 }
6228
6229 if (!lookup_name.ada ().wild_match_p ())
6230 {
6231 arg_sym = NULL;
6232 found_sym = 0;
6233 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6234 const char *name = ada_lookup_name.c_str ();
6235 size_t name_len = ada_lookup_name.size ();
6236
6237 ALL_BLOCK_SYMBOLS (block, iter, sym)
6238 {
6239 if (symbol_matches_domain (sym->language (),
6240 SYMBOL_DOMAIN (sym), domain))
6241 {
6242 int cmp;
6243
6244 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6245 if (cmp == 0)
6246 {
6247 cmp = !startswith (sym->linkage_name (), "_ada_");
6248 if (cmp == 0)
6249 cmp = strncmp (name, sym->linkage_name () + 5,
6250 name_len);
6251 }
6252
6253 if (cmp == 0
6254 && is_name_suffix (sym->linkage_name () + name_len + 5))
6255 {
6256 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6257 {
6258 if (SYMBOL_IS_ARGUMENT (sym))
6259 arg_sym = sym;
6260 else
6261 {
6262 found_sym = 1;
6263 add_defn_to_vec (obstackp,
6264 fixup_symbol_section (sym, objfile),
6265 block);
6266 }
6267 }
6268 }
6269 }
6270 }
6271
6272 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6273 They aren't parameters, right? */
6274 if (!found_sym && arg_sym != NULL)
6275 {
6276 add_defn_to_vec (obstackp,
6277 fixup_symbol_section (arg_sym, objfile),
6278 block);
6279 }
6280 }
6281 }
6282 \f
6283
6284 /* Symbol Completion */
6285
6286 /* See symtab.h. */
6287
6288 bool
6289 ada_lookup_name_info::matches
6290 (const char *sym_name,
6291 symbol_name_match_type match_type,
6292 completion_match_result *comp_match_res) const
6293 {
6294 bool match = false;
6295 const char *text = m_encoded_name.c_str ();
6296 size_t text_len = m_encoded_name.size ();
6297
6298 /* First, test against the fully qualified name of the symbol. */
6299
6300 if (strncmp (sym_name, text, text_len) == 0)
6301 match = true;
6302
6303 std::string decoded_name = ada_decode (sym_name);
6304 if (match && !m_encoded_p)
6305 {
6306 /* One needed check before declaring a positive match is to verify
6307 that iff we are doing a verbatim match, the decoded version
6308 of the symbol name starts with '<'. Otherwise, this symbol name
6309 is not a suitable completion. */
6310
6311 bool has_angle_bracket = (decoded_name[0] == '<');
6312 match = (has_angle_bracket == m_verbatim_p);
6313 }
6314
6315 if (match && !m_verbatim_p)
6316 {
6317 /* When doing non-verbatim match, another check that needs to
6318 be done is to verify that the potentially matching symbol name
6319 does not include capital letters, because the ada-mode would
6320 not be able to understand these symbol names without the
6321 angle bracket notation. */
6322 const char *tmp;
6323
6324 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6325 if (*tmp != '\0')
6326 match = false;
6327 }
6328
6329 /* Second: Try wild matching... */
6330
6331 if (!match && m_wild_match_p)
6332 {
6333 /* Since we are doing wild matching, this means that TEXT
6334 may represent an unqualified symbol name. We therefore must
6335 also compare TEXT against the unqualified name of the symbol. */
6336 sym_name = ada_unqualified_name (decoded_name.c_str ());
6337
6338 if (strncmp (sym_name, text, text_len) == 0)
6339 match = true;
6340 }
6341
6342 /* Finally: If we found a match, prepare the result to return. */
6343
6344 if (!match)
6345 return false;
6346
6347 if (comp_match_res != NULL)
6348 {
6349 std::string &match_str = comp_match_res->match.storage ();
6350
6351 if (!m_encoded_p)
6352 match_str = ada_decode (sym_name);
6353 else
6354 {
6355 if (m_verbatim_p)
6356 match_str = add_angle_brackets (sym_name);
6357 else
6358 match_str = sym_name;
6359
6360 }
6361
6362 comp_match_res->set_match (match_str.c_str ());
6363 }
6364
6365 return true;
6366 }
6367
6368 /* Add the list of possible symbol names completing TEXT to TRACKER.
6369 WORD is the entire command on which completion is made. */
6370
6371 static void
6372 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6373 complete_symbol_mode mode,
6374 symbol_name_match_type name_match_type,
6375 const char *text, const char *word,
6376 enum type_code code)
6377 {
6378 struct symbol *sym;
6379 const struct block *b, *surrounding_static_block = 0;
6380 struct block_iterator iter;
6381
6382 gdb_assert (code == TYPE_CODE_UNDEF);
6383
6384 lookup_name_info lookup_name (text, name_match_type, true);
6385
6386 /* First, look at the partial symtab symbols. */
6387 expand_symtabs_matching (NULL,
6388 lookup_name,
6389 NULL,
6390 NULL,
6391 ALL_DOMAIN);
6392
6393 /* At this point scan through the misc symbol vectors and add each
6394 symbol you find to the list. Eventually we want to ignore
6395 anything that isn't a text symbol (everything else will be
6396 handled by the psymtab code above). */
6397
6398 for (objfile *objfile : current_program_space->objfiles ())
6399 {
6400 for (minimal_symbol *msymbol : objfile->msymbols ())
6401 {
6402 QUIT;
6403
6404 if (completion_skip_symbol (mode, msymbol))
6405 continue;
6406
6407 language symbol_language = msymbol->language ();
6408
6409 /* Ada minimal symbols won't have their language set to Ada. If
6410 we let completion_list_add_name compare using the
6411 default/C-like matcher, then when completing e.g., symbols in a
6412 package named "pck", we'd match internal Ada symbols like
6413 "pckS", which are invalid in an Ada expression, unless you wrap
6414 them in '<' '>' to request a verbatim match.
6415
6416 Unfortunately, some Ada encoded names successfully demangle as
6417 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6418 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6419 with the wrong language set. Paper over that issue here. */
6420 if (symbol_language == language_auto
6421 || symbol_language == language_cplus)
6422 symbol_language = language_ada;
6423
6424 completion_list_add_name (tracker,
6425 symbol_language,
6426 msymbol->linkage_name (),
6427 lookup_name, text, word);
6428 }
6429 }
6430
6431 /* Search upwards from currently selected frame (so that we can
6432 complete on local vars. */
6433
6434 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6435 {
6436 if (!BLOCK_SUPERBLOCK (b))
6437 surrounding_static_block = b; /* For elmin of dups */
6438
6439 ALL_BLOCK_SYMBOLS (b, iter, sym)
6440 {
6441 if (completion_skip_symbol (mode, sym))
6442 continue;
6443
6444 completion_list_add_name (tracker,
6445 sym->language (),
6446 sym->linkage_name (),
6447 lookup_name, text, word);
6448 }
6449 }
6450
6451 /* Go through the symtabs and check the externs and statics for
6452 symbols which match. */
6453
6454 for (objfile *objfile : current_program_space->objfiles ())
6455 {
6456 for (compunit_symtab *s : objfile->compunits ())
6457 {
6458 QUIT;
6459 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6460 ALL_BLOCK_SYMBOLS (b, iter, sym)
6461 {
6462 if (completion_skip_symbol (mode, sym))
6463 continue;
6464
6465 completion_list_add_name (tracker,
6466 sym->language (),
6467 sym->linkage_name (),
6468 lookup_name, text, word);
6469 }
6470 }
6471 }
6472
6473 for (objfile *objfile : current_program_space->objfiles ())
6474 {
6475 for (compunit_symtab *s : objfile->compunits ())
6476 {
6477 QUIT;
6478 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6479 /* Don't do this block twice. */
6480 if (b == surrounding_static_block)
6481 continue;
6482 ALL_BLOCK_SYMBOLS (b, iter, sym)
6483 {
6484 if (completion_skip_symbol (mode, sym))
6485 continue;
6486
6487 completion_list_add_name (tracker,
6488 sym->language (),
6489 sym->linkage_name (),
6490 lookup_name, text, word);
6491 }
6492 }
6493 }
6494 }
6495
6496 /* Field Access */
6497
6498 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6499 for tagged types. */
6500
6501 static int
6502 ada_is_dispatch_table_ptr_type (struct type *type)
6503 {
6504 const char *name;
6505
6506 if (type->code () != TYPE_CODE_PTR)
6507 return 0;
6508
6509 name = TYPE_TARGET_TYPE (type)->name ();
6510 if (name == NULL)
6511 return 0;
6512
6513 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6514 }
6515
6516 /* Return non-zero if TYPE is an interface tag. */
6517
6518 static int
6519 ada_is_interface_tag (struct type *type)
6520 {
6521 const char *name = type->name ();
6522
6523 if (name == NULL)
6524 return 0;
6525
6526 return (strcmp (name, "ada__tags__interface_tag") == 0);
6527 }
6528
6529 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6530 to be invisible to users. */
6531
6532 int
6533 ada_is_ignored_field (struct type *type, int field_num)
6534 {
6535 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6536 return 1;
6537
6538 /* Check the name of that field. */
6539 {
6540 const char *name = TYPE_FIELD_NAME (type, field_num);
6541
6542 /* Anonymous field names should not be printed.
6543 brobecker/2007-02-20: I don't think this can actually happen
6544 but we don't want to print the value of anonymous fields anyway. */
6545 if (name == NULL)
6546 return 1;
6547
6548 /* Normally, fields whose name start with an underscore ("_")
6549 are fields that have been internally generated by the compiler,
6550 and thus should not be printed. The "_parent" field is special,
6551 however: This is a field internally generated by the compiler
6552 for tagged types, and it contains the components inherited from
6553 the parent type. This field should not be printed as is, but
6554 should not be ignored either. */
6555 if (name[0] == '_' && !startswith (name, "_parent"))
6556 return 1;
6557 }
6558
6559 /* If this is the dispatch table of a tagged type or an interface tag,
6560 then ignore. */
6561 if (ada_is_tagged_type (type, 1)
6562 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6563 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6564 return 1;
6565
6566 /* Not a special field, so it should not be ignored. */
6567 return 0;
6568 }
6569
6570 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6571 pointer or reference type whose ultimate target has a tag field. */
6572
6573 int
6574 ada_is_tagged_type (struct type *type, int refok)
6575 {
6576 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6577 }
6578
6579 /* True iff TYPE represents the type of X'Tag */
6580
6581 int
6582 ada_is_tag_type (struct type *type)
6583 {
6584 type = ada_check_typedef (type);
6585
6586 if (type == NULL || type->code () != TYPE_CODE_PTR)
6587 return 0;
6588 else
6589 {
6590 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6591
6592 return (name != NULL
6593 && strcmp (name, "ada__tags__dispatch_table") == 0);
6594 }
6595 }
6596
6597 /* The type of the tag on VAL. */
6598
6599 static struct type *
6600 ada_tag_type (struct value *val)
6601 {
6602 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6603 }
6604
6605 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6606 retired at Ada 05). */
6607
6608 static int
6609 is_ada95_tag (struct value *tag)
6610 {
6611 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6612 }
6613
6614 /* The value of the tag on VAL. */
6615
6616 static struct value *
6617 ada_value_tag (struct value *val)
6618 {
6619 return ada_value_struct_elt (val, "_tag", 0);
6620 }
6621
6622 /* The value of the tag on the object of type TYPE whose contents are
6623 saved at VALADDR, if it is non-null, or is at memory address
6624 ADDRESS. */
6625
6626 static struct value *
6627 value_tag_from_contents_and_address (struct type *type,
6628 const gdb_byte *valaddr,
6629 CORE_ADDR address)
6630 {
6631 int tag_byte_offset;
6632 struct type *tag_type;
6633
6634 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6635 NULL, NULL, NULL))
6636 {
6637 const gdb_byte *valaddr1 = ((valaddr == NULL)
6638 ? NULL
6639 : valaddr + tag_byte_offset);
6640 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6641
6642 return value_from_contents_and_address (tag_type, valaddr1, address1);
6643 }
6644 return NULL;
6645 }
6646
6647 static struct type *
6648 type_from_tag (struct value *tag)
6649 {
6650 const char *type_name = ada_tag_name (tag);
6651
6652 if (type_name != NULL)
6653 return ada_find_any_type (ada_encode (type_name));
6654 return NULL;
6655 }
6656
6657 /* Given a value OBJ of a tagged type, return a value of this
6658 type at the base address of the object. The base address, as
6659 defined in Ada.Tags, it is the address of the primary tag of
6660 the object, and therefore where the field values of its full
6661 view can be fetched. */
6662
6663 struct value *
6664 ada_tag_value_at_base_address (struct value *obj)
6665 {
6666 struct value *val;
6667 LONGEST offset_to_top = 0;
6668 struct type *ptr_type, *obj_type;
6669 struct value *tag;
6670 CORE_ADDR base_address;
6671
6672 obj_type = value_type (obj);
6673
6674 /* It is the responsability of the caller to deref pointers. */
6675
6676 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6677 return obj;
6678
6679 tag = ada_value_tag (obj);
6680 if (!tag)
6681 return obj;
6682
6683 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6684
6685 if (is_ada95_tag (tag))
6686 return obj;
6687
6688 ptr_type = language_lookup_primitive_type
6689 (language_def (language_ada), target_gdbarch(), "storage_offset");
6690 ptr_type = lookup_pointer_type (ptr_type);
6691 val = value_cast (ptr_type, tag);
6692 if (!val)
6693 return obj;
6694
6695 /* It is perfectly possible that an exception be raised while
6696 trying to determine the base address, just like for the tag;
6697 see ada_tag_name for more details. We do not print the error
6698 message for the same reason. */
6699
6700 try
6701 {
6702 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6703 }
6704
6705 catch (const gdb_exception_error &e)
6706 {
6707 return obj;
6708 }
6709
6710 /* If offset is null, nothing to do. */
6711
6712 if (offset_to_top == 0)
6713 return obj;
6714
6715 /* -1 is a special case in Ada.Tags; however, what should be done
6716 is not quite clear from the documentation. So do nothing for
6717 now. */
6718
6719 if (offset_to_top == -1)
6720 return obj;
6721
6722 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6723 from the base address. This was however incompatible with
6724 C++ dispatch table: C++ uses a *negative* value to *add*
6725 to the base address. Ada's convention has therefore been
6726 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6727 use the same convention. Here, we support both cases by
6728 checking the sign of OFFSET_TO_TOP. */
6729
6730 if (offset_to_top > 0)
6731 offset_to_top = -offset_to_top;
6732
6733 base_address = value_address (obj) + offset_to_top;
6734 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6735
6736 /* Make sure that we have a proper tag at the new address.
6737 Otherwise, offset_to_top is bogus (which can happen when
6738 the object is not initialized yet). */
6739
6740 if (!tag)
6741 return obj;
6742
6743 obj_type = type_from_tag (tag);
6744
6745 if (!obj_type)
6746 return obj;
6747
6748 return value_from_contents_and_address (obj_type, NULL, base_address);
6749 }
6750
6751 /* Return the "ada__tags__type_specific_data" type. */
6752
6753 static struct type *
6754 ada_get_tsd_type (struct inferior *inf)
6755 {
6756 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6757
6758 if (data->tsd_type == 0)
6759 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6760 return data->tsd_type;
6761 }
6762
6763 /* Return the TSD (type-specific data) associated to the given TAG.
6764 TAG is assumed to be the tag of a tagged-type entity.
6765
6766 May return NULL if we are unable to get the TSD. */
6767
6768 static struct value *
6769 ada_get_tsd_from_tag (struct value *tag)
6770 {
6771 struct value *val;
6772 struct type *type;
6773
6774 /* First option: The TSD is simply stored as a field of our TAG.
6775 Only older versions of GNAT would use this format, but we have
6776 to test it first, because there are no visible markers for
6777 the current approach except the absence of that field. */
6778
6779 val = ada_value_struct_elt (tag, "tsd", 1);
6780 if (val)
6781 return val;
6782
6783 /* Try the second representation for the dispatch table (in which
6784 there is no explicit 'tsd' field in the referent of the tag pointer,
6785 and instead the tsd pointer is stored just before the dispatch
6786 table. */
6787
6788 type = ada_get_tsd_type (current_inferior());
6789 if (type == NULL)
6790 return NULL;
6791 type = lookup_pointer_type (lookup_pointer_type (type));
6792 val = value_cast (type, tag);
6793 if (val == NULL)
6794 return NULL;
6795 return value_ind (value_ptradd (val, -1));
6796 }
6797
6798 /* Given the TSD of a tag (type-specific data), return a string
6799 containing the name of the associated type.
6800
6801 The returned value is good until the next call. May return NULL
6802 if we are unable to determine the tag name. */
6803
6804 static char *
6805 ada_tag_name_from_tsd (struct value *tsd)
6806 {
6807 static char name[1024];
6808 char *p;
6809 struct value *val;
6810
6811 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6812 if (val == NULL)
6813 return NULL;
6814 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6815 for (p = name; *p != '\0'; p += 1)
6816 if (isalpha (*p))
6817 *p = tolower (*p);
6818 return name;
6819 }
6820
6821 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6822 a C string.
6823
6824 Return NULL if the TAG is not an Ada tag, or if we were unable to
6825 determine the name of that tag. The result is good until the next
6826 call. */
6827
6828 const char *
6829 ada_tag_name (struct value *tag)
6830 {
6831 char *name = NULL;
6832
6833 if (!ada_is_tag_type (value_type (tag)))
6834 return NULL;
6835
6836 /* It is perfectly possible that an exception be raised while trying
6837 to determine the TAG's name, even under normal circumstances:
6838 The associated variable may be uninitialized or corrupted, for
6839 instance. We do not let any exception propagate past this point.
6840 instead we return NULL.
6841
6842 We also do not print the error message either (which often is very
6843 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6844 the caller print a more meaningful message if necessary. */
6845 try
6846 {
6847 struct value *tsd = ada_get_tsd_from_tag (tag);
6848
6849 if (tsd != NULL)
6850 name = ada_tag_name_from_tsd (tsd);
6851 }
6852 catch (const gdb_exception_error &e)
6853 {
6854 }
6855
6856 return name;
6857 }
6858
6859 /* The parent type of TYPE, or NULL if none. */
6860
6861 struct type *
6862 ada_parent_type (struct type *type)
6863 {
6864 int i;
6865
6866 type = ada_check_typedef (type);
6867
6868 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6869 return NULL;
6870
6871 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6872 if (ada_is_parent_field (type, i))
6873 {
6874 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6875
6876 /* If the _parent field is a pointer, then dereference it. */
6877 if (parent_type->code () == TYPE_CODE_PTR)
6878 parent_type = TYPE_TARGET_TYPE (parent_type);
6879 /* If there is a parallel XVS type, get the actual base type. */
6880 parent_type = ada_get_base_type (parent_type);
6881
6882 return ada_check_typedef (parent_type);
6883 }
6884
6885 return NULL;
6886 }
6887
6888 /* True iff field number FIELD_NUM of structure type TYPE contains the
6889 parent-type (inherited) fields of a derived type. Assumes TYPE is
6890 a structure type with at least FIELD_NUM+1 fields. */
6891
6892 int
6893 ada_is_parent_field (struct type *type, int field_num)
6894 {
6895 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6896
6897 return (name != NULL
6898 && (startswith (name, "PARENT")
6899 || startswith (name, "_parent")));
6900 }
6901
6902 /* True iff field number FIELD_NUM of structure type TYPE is a
6903 transparent wrapper field (which should be silently traversed when doing
6904 field selection and flattened when printing). Assumes TYPE is a
6905 structure type with at least FIELD_NUM+1 fields. Such fields are always
6906 structures. */
6907
6908 int
6909 ada_is_wrapper_field (struct type *type, int field_num)
6910 {
6911 const char *name = TYPE_FIELD_NAME (type, field_num);
6912
6913 if (name != NULL && strcmp (name, "RETVAL") == 0)
6914 {
6915 /* This happens in functions with "out" or "in out" parameters
6916 which are passed by copy. For such functions, GNAT describes
6917 the function's return type as being a struct where the return
6918 value is in a field called RETVAL, and where the other "out"
6919 or "in out" parameters are fields of that struct. This is not
6920 a wrapper. */
6921 return 0;
6922 }
6923
6924 return (name != NULL
6925 && (startswith (name, "PARENT")
6926 || strcmp (name, "REP") == 0
6927 || startswith (name, "_parent")
6928 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6929 }
6930
6931 /* True iff field number FIELD_NUM of structure or union type TYPE
6932 is a variant wrapper. Assumes TYPE is a structure type with at least
6933 FIELD_NUM+1 fields. */
6934
6935 int
6936 ada_is_variant_part (struct type *type, int field_num)
6937 {
6938 /* Only Ada types are eligible. */
6939 if (!ADA_TYPE_P (type))
6940 return 0;
6941
6942 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6943
6944 return (field_type->code () == TYPE_CODE_UNION
6945 || (is_dynamic_field (type, field_num)
6946 && (TYPE_TARGET_TYPE (field_type)->code ()
6947 == TYPE_CODE_UNION)));
6948 }
6949
6950 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6951 whose discriminants are contained in the record type OUTER_TYPE,
6952 returns the type of the controlling discriminant for the variant.
6953 May return NULL if the type could not be found. */
6954
6955 struct type *
6956 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6957 {
6958 const char *name = ada_variant_discrim_name (var_type);
6959
6960 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6961 }
6962
6963 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6964 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6965 represents a 'when others' clause; otherwise 0. */
6966
6967 static int
6968 ada_is_others_clause (struct type *type, int field_num)
6969 {
6970 const char *name = TYPE_FIELD_NAME (type, field_num);
6971
6972 return (name != NULL && name[0] == 'O');
6973 }
6974
6975 /* Assuming that TYPE0 is the type of the variant part of a record,
6976 returns the name of the discriminant controlling the variant.
6977 The value is valid until the next call to ada_variant_discrim_name. */
6978
6979 const char *
6980 ada_variant_discrim_name (struct type *type0)
6981 {
6982 static char *result = NULL;
6983 static size_t result_len = 0;
6984 struct type *type;
6985 const char *name;
6986 const char *discrim_end;
6987 const char *discrim_start;
6988
6989 if (type0->code () == TYPE_CODE_PTR)
6990 type = TYPE_TARGET_TYPE (type0);
6991 else
6992 type = type0;
6993
6994 name = ada_type_name (type);
6995
6996 if (name == NULL || name[0] == '\000')
6997 return "";
6998
6999 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7000 discrim_end -= 1)
7001 {
7002 if (startswith (discrim_end, "___XVN"))
7003 break;
7004 }
7005 if (discrim_end == name)
7006 return "";
7007
7008 for (discrim_start = discrim_end; discrim_start != name + 3;
7009 discrim_start -= 1)
7010 {
7011 if (discrim_start == name + 1)
7012 return "";
7013 if ((discrim_start > name + 3
7014 && startswith (discrim_start - 3, "___"))
7015 || discrim_start[-1] == '.')
7016 break;
7017 }
7018
7019 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7020 strncpy (result, discrim_start, discrim_end - discrim_start);
7021 result[discrim_end - discrim_start] = '\0';
7022 return result;
7023 }
7024
7025 /* Scan STR for a subtype-encoded number, beginning at position K.
7026 Put the position of the character just past the number scanned in
7027 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7028 Return 1 if there was a valid number at the given position, and 0
7029 otherwise. A "subtype-encoded" number consists of the absolute value
7030 in decimal, followed by the letter 'm' to indicate a negative number.
7031 Assumes 0m does not occur. */
7032
7033 int
7034 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7035 {
7036 ULONGEST RU;
7037
7038 if (!isdigit (str[k]))
7039 return 0;
7040
7041 /* Do it the hard way so as not to make any assumption about
7042 the relationship of unsigned long (%lu scan format code) and
7043 LONGEST. */
7044 RU = 0;
7045 while (isdigit (str[k]))
7046 {
7047 RU = RU * 10 + (str[k] - '0');
7048 k += 1;
7049 }
7050
7051 if (str[k] == 'm')
7052 {
7053 if (R != NULL)
7054 *R = (-(LONGEST) (RU - 1)) - 1;
7055 k += 1;
7056 }
7057 else if (R != NULL)
7058 *R = (LONGEST) RU;
7059
7060 /* NOTE on the above: Technically, C does not say what the results of
7061 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7062 number representable as a LONGEST (although either would probably work
7063 in most implementations). When RU>0, the locution in the then branch
7064 above is always equivalent to the negative of RU. */
7065
7066 if (new_k != NULL)
7067 *new_k = k;
7068 return 1;
7069 }
7070
7071 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7072 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7073 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7074
7075 static int
7076 ada_in_variant (LONGEST val, struct type *type, int field_num)
7077 {
7078 const char *name = TYPE_FIELD_NAME (type, field_num);
7079 int p;
7080
7081 p = 0;
7082 while (1)
7083 {
7084 switch (name[p])
7085 {
7086 case '\0':
7087 return 0;
7088 case 'S':
7089 {
7090 LONGEST W;
7091
7092 if (!ada_scan_number (name, p + 1, &W, &p))
7093 return 0;
7094 if (val == W)
7095 return 1;
7096 break;
7097 }
7098 case 'R':
7099 {
7100 LONGEST L, U;
7101
7102 if (!ada_scan_number (name, p + 1, &L, &p)
7103 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7104 return 0;
7105 if (val >= L && val <= U)
7106 return 1;
7107 break;
7108 }
7109 case 'O':
7110 return 1;
7111 default:
7112 return 0;
7113 }
7114 }
7115 }
7116
7117 /* FIXME: Lots of redundancy below. Try to consolidate. */
7118
7119 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7120 ARG_TYPE, extract and return the value of one of its (non-static)
7121 fields. FIELDNO says which field. Differs from value_primitive_field
7122 only in that it can handle packed values of arbitrary type. */
7123
7124 struct value *
7125 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7126 struct type *arg_type)
7127 {
7128 struct type *type;
7129
7130 arg_type = ada_check_typedef (arg_type);
7131 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7132
7133 /* Handle packed fields. It might be that the field is not packed
7134 relative to its containing structure, but the structure itself is
7135 packed; in this case we must take the bit-field path. */
7136 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7137 {
7138 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7139 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7140
7141 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7142 offset + bit_pos / 8,
7143 bit_pos % 8, bit_size, type);
7144 }
7145 else
7146 return value_primitive_field (arg1, offset, fieldno, arg_type);
7147 }
7148
7149 /* Find field with name NAME in object of type TYPE. If found,
7150 set the following for each argument that is non-null:
7151 - *FIELD_TYPE_P to the field's type;
7152 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7153 an object of that type;
7154 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7155 - *BIT_SIZE_P to its size in bits if the field is packed, and
7156 0 otherwise;
7157 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7158 fields up to but not including the desired field, or by the total
7159 number of fields if not found. A NULL value of NAME never
7160 matches; the function just counts visible fields in this case.
7161
7162 Notice that we need to handle when a tagged record hierarchy
7163 has some components with the same name, like in this scenario:
7164
7165 type Top_T is tagged record
7166 N : Integer := 1;
7167 U : Integer := 974;
7168 A : Integer := 48;
7169 end record;
7170
7171 type Middle_T is new Top.Top_T with record
7172 N : Character := 'a';
7173 C : Integer := 3;
7174 end record;
7175
7176 type Bottom_T is new Middle.Middle_T with record
7177 N : Float := 4.0;
7178 C : Character := '5';
7179 X : Integer := 6;
7180 A : Character := 'J';
7181 end record;
7182
7183 Let's say we now have a variable declared and initialized as follow:
7184
7185 TC : Top_A := new Bottom_T;
7186
7187 And then we use this variable to call this function
7188
7189 procedure Assign (Obj: in out Top_T; TV : Integer);
7190
7191 as follow:
7192
7193 Assign (Top_T (B), 12);
7194
7195 Now, we're in the debugger, and we're inside that procedure
7196 then and we want to print the value of obj.c:
7197
7198 Usually, the tagged record or one of the parent type owns the
7199 component to print and there's no issue but in this particular
7200 case, what does it mean to ask for Obj.C? Since the actual
7201 type for object is type Bottom_T, it could mean two things: type
7202 component C from the Middle_T view, but also component C from
7203 Bottom_T. So in that "undefined" case, when the component is
7204 not found in the non-resolved type (which includes all the
7205 components of the parent type), then resolve it and see if we
7206 get better luck once expanded.
7207
7208 In the case of homonyms in the derived tagged type, we don't
7209 guaranty anything, and pick the one that's easiest for us
7210 to program.
7211
7212 Returns 1 if found, 0 otherwise. */
7213
7214 static int
7215 find_struct_field (const char *name, struct type *type, int offset,
7216 struct type **field_type_p,
7217 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7218 int *index_p)
7219 {
7220 int i;
7221 int parent_offset = -1;
7222
7223 type = ada_check_typedef (type);
7224
7225 if (field_type_p != NULL)
7226 *field_type_p = NULL;
7227 if (byte_offset_p != NULL)
7228 *byte_offset_p = 0;
7229 if (bit_offset_p != NULL)
7230 *bit_offset_p = 0;
7231 if (bit_size_p != NULL)
7232 *bit_size_p = 0;
7233
7234 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7235 {
7236 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7237 int fld_offset = offset + bit_pos / 8;
7238 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7239
7240 if (t_field_name == NULL)
7241 continue;
7242
7243 else if (ada_is_parent_field (type, i))
7244 {
7245 /* This is a field pointing us to the parent type of a tagged
7246 type. As hinted in this function's documentation, we give
7247 preference to fields in the current record first, so what
7248 we do here is just record the index of this field before
7249 we skip it. If it turns out we couldn't find our field
7250 in the current record, then we'll get back to it and search
7251 inside it whether the field might exist in the parent. */
7252
7253 parent_offset = i;
7254 continue;
7255 }
7256
7257 else if (name != NULL && field_name_match (t_field_name, name))
7258 {
7259 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7260
7261 if (field_type_p != NULL)
7262 *field_type_p = TYPE_FIELD_TYPE (type, i);
7263 if (byte_offset_p != NULL)
7264 *byte_offset_p = fld_offset;
7265 if (bit_offset_p != NULL)
7266 *bit_offset_p = bit_pos % 8;
7267 if (bit_size_p != NULL)
7268 *bit_size_p = bit_size;
7269 return 1;
7270 }
7271 else if (ada_is_wrapper_field (type, i))
7272 {
7273 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7274 field_type_p, byte_offset_p, bit_offset_p,
7275 bit_size_p, index_p))
7276 return 1;
7277 }
7278 else if (ada_is_variant_part (type, i))
7279 {
7280 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7281 fixed type?? */
7282 int j;
7283 struct type *field_type
7284 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7285
7286 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7287 {
7288 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7289 fld_offset
7290 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7291 field_type_p, byte_offset_p,
7292 bit_offset_p, bit_size_p, index_p))
7293 return 1;
7294 }
7295 }
7296 else if (index_p != NULL)
7297 *index_p += 1;
7298 }
7299
7300 /* Field not found so far. If this is a tagged type which
7301 has a parent, try finding that field in the parent now. */
7302
7303 if (parent_offset != -1)
7304 {
7305 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7306 int fld_offset = offset + bit_pos / 8;
7307
7308 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7309 fld_offset, field_type_p, byte_offset_p,
7310 bit_offset_p, bit_size_p, index_p))
7311 return 1;
7312 }
7313
7314 return 0;
7315 }
7316
7317 /* Number of user-visible fields in record type TYPE. */
7318
7319 static int
7320 num_visible_fields (struct type *type)
7321 {
7322 int n;
7323
7324 n = 0;
7325 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7326 return n;
7327 }
7328
7329 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7330 and search in it assuming it has (class) type TYPE.
7331 If found, return value, else return NULL.
7332
7333 Searches recursively through wrapper fields (e.g., '_parent').
7334
7335 In the case of homonyms in the tagged types, please refer to the
7336 long explanation in find_struct_field's function documentation. */
7337
7338 static struct value *
7339 ada_search_struct_field (const char *name, struct value *arg, int offset,
7340 struct type *type)
7341 {
7342 int i;
7343 int parent_offset = -1;
7344
7345 type = ada_check_typedef (type);
7346 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7347 {
7348 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7349
7350 if (t_field_name == NULL)
7351 continue;
7352
7353 else if (ada_is_parent_field (type, i))
7354 {
7355 /* This is a field pointing us to the parent type of a tagged
7356 type. As hinted in this function's documentation, we give
7357 preference to fields in the current record first, so what
7358 we do here is just record the index of this field before
7359 we skip it. If it turns out we couldn't find our field
7360 in the current record, then we'll get back to it and search
7361 inside it whether the field might exist in the parent. */
7362
7363 parent_offset = i;
7364 continue;
7365 }
7366
7367 else if (field_name_match (t_field_name, name))
7368 return ada_value_primitive_field (arg, offset, i, type);
7369
7370 else if (ada_is_wrapper_field (type, i))
7371 {
7372 struct value *v = /* Do not let indent join lines here. */
7373 ada_search_struct_field (name, arg,
7374 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7375 TYPE_FIELD_TYPE (type, i));
7376
7377 if (v != NULL)
7378 return v;
7379 }
7380
7381 else if (ada_is_variant_part (type, i))
7382 {
7383 /* PNH: Do we ever get here? See find_struct_field. */
7384 int j;
7385 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7386 i));
7387 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7388
7389 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7390 {
7391 struct value *v = ada_search_struct_field /* Force line
7392 break. */
7393 (name, arg,
7394 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7395 TYPE_FIELD_TYPE (field_type, j));
7396
7397 if (v != NULL)
7398 return v;
7399 }
7400 }
7401 }
7402
7403 /* Field not found so far. If this is a tagged type which
7404 has a parent, try finding that field in the parent now. */
7405
7406 if (parent_offset != -1)
7407 {
7408 struct value *v = ada_search_struct_field (
7409 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7410 TYPE_FIELD_TYPE (type, parent_offset));
7411
7412 if (v != NULL)
7413 return v;
7414 }
7415
7416 return NULL;
7417 }
7418
7419 static struct value *ada_index_struct_field_1 (int *, struct value *,
7420 int, struct type *);
7421
7422
7423 /* Return field #INDEX in ARG, where the index is that returned by
7424 * find_struct_field through its INDEX_P argument. Adjust the address
7425 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7426 * If found, return value, else return NULL. */
7427
7428 static struct value *
7429 ada_index_struct_field (int index, struct value *arg, int offset,
7430 struct type *type)
7431 {
7432 return ada_index_struct_field_1 (&index, arg, offset, type);
7433 }
7434
7435
7436 /* Auxiliary function for ada_index_struct_field. Like
7437 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7438 * *INDEX_P. */
7439
7440 static struct value *
7441 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7442 struct type *type)
7443 {
7444 int i;
7445 type = ada_check_typedef (type);
7446
7447 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7448 {
7449 if (TYPE_FIELD_NAME (type, i) == NULL)
7450 continue;
7451 else if (ada_is_wrapper_field (type, i))
7452 {
7453 struct value *v = /* Do not let indent join lines here. */
7454 ada_index_struct_field_1 (index_p, arg,
7455 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7456 TYPE_FIELD_TYPE (type, i));
7457
7458 if (v != NULL)
7459 return v;
7460 }
7461
7462 else if (ada_is_variant_part (type, i))
7463 {
7464 /* PNH: Do we ever get here? See ada_search_struct_field,
7465 find_struct_field. */
7466 error (_("Cannot assign this kind of variant record"));
7467 }
7468 else if (*index_p == 0)
7469 return ada_value_primitive_field (arg, offset, i, type);
7470 else
7471 *index_p -= 1;
7472 }
7473 return NULL;
7474 }
7475
7476 /* Return a string representation of type TYPE. */
7477
7478 static std::string
7479 type_as_string (struct type *type)
7480 {
7481 string_file tmp_stream;
7482
7483 type_print (type, "", &tmp_stream, -1);
7484
7485 return std::move (tmp_stream.string ());
7486 }
7487
7488 /* Given a type TYPE, look up the type of the component of type named NAME.
7489 If DISPP is non-null, add its byte displacement from the beginning of a
7490 structure (pointed to by a value) of type TYPE to *DISPP (does not
7491 work for packed fields).
7492
7493 Matches any field whose name has NAME as a prefix, possibly
7494 followed by "___".
7495
7496 TYPE can be either a struct or union. If REFOK, TYPE may also
7497 be a (pointer or reference)+ to a struct or union, and the
7498 ultimate target type will be searched.
7499
7500 Looks recursively into variant clauses and parent types.
7501
7502 In the case of homonyms in the tagged types, please refer to the
7503 long explanation in find_struct_field's function documentation.
7504
7505 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7506 TYPE is not a type of the right kind. */
7507
7508 static struct type *
7509 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7510 int noerr)
7511 {
7512 int i;
7513 int parent_offset = -1;
7514
7515 if (name == NULL)
7516 goto BadName;
7517
7518 if (refok && type != NULL)
7519 while (1)
7520 {
7521 type = ada_check_typedef (type);
7522 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7523 break;
7524 type = TYPE_TARGET_TYPE (type);
7525 }
7526
7527 if (type == NULL
7528 || (type->code () != TYPE_CODE_STRUCT
7529 && type->code () != TYPE_CODE_UNION))
7530 {
7531 if (noerr)
7532 return NULL;
7533
7534 error (_("Type %s is not a structure or union type"),
7535 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7536 }
7537
7538 type = to_static_fixed_type (type);
7539
7540 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7541 {
7542 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7543 struct type *t;
7544
7545 if (t_field_name == NULL)
7546 continue;
7547
7548 else if (ada_is_parent_field (type, i))
7549 {
7550 /* This is a field pointing us to the parent type of a tagged
7551 type. As hinted in this function's documentation, we give
7552 preference to fields in the current record first, so what
7553 we do here is just record the index of this field before
7554 we skip it. If it turns out we couldn't find our field
7555 in the current record, then we'll get back to it and search
7556 inside it whether the field might exist in the parent. */
7557
7558 parent_offset = i;
7559 continue;
7560 }
7561
7562 else if (field_name_match (t_field_name, name))
7563 return TYPE_FIELD_TYPE (type, i);
7564
7565 else if (ada_is_wrapper_field (type, i))
7566 {
7567 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7568 0, 1);
7569 if (t != NULL)
7570 return t;
7571 }
7572
7573 else if (ada_is_variant_part (type, i))
7574 {
7575 int j;
7576 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7577 i));
7578
7579 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7580 {
7581 /* FIXME pnh 2008/01/26: We check for a field that is
7582 NOT wrapped in a struct, since the compiler sometimes
7583 generates these for unchecked variant types. Revisit
7584 if the compiler changes this practice. */
7585 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7586
7587 if (v_field_name != NULL
7588 && field_name_match (v_field_name, name))
7589 t = TYPE_FIELD_TYPE (field_type, j);
7590 else
7591 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7592 j),
7593 name, 0, 1);
7594
7595 if (t != NULL)
7596 return t;
7597 }
7598 }
7599
7600 }
7601
7602 /* Field not found so far. If this is a tagged type which
7603 has a parent, try finding that field in the parent now. */
7604
7605 if (parent_offset != -1)
7606 {
7607 struct type *t;
7608
7609 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7610 name, 0, 1);
7611 if (t != NULL)
7612 return t;
7613 }
7614
7615 BadName:
7616 if (!noerr)
7617 {
7618 const char *name_str = name != NULL ? name : _("<null>");
7619
7620 error (_("Type %s has no component named %s"),
7621 type_as_string (type).c_str (), name_str);
7622 }
7623
7624 return NULL;
7625 }
7626
7627 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7628 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7629 represents an unchecked union (that is, the variant part of a
7630 record that is named in an Unchecked_Union pragma). */
7631
7632 static int
7633 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7634 {
7635 const char *discrim_name = ada_variant_discrim_name (var_type);
7636
7637 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7638 }
7639
7640
7641 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7642 within OUTER, determine which variant clause (field number in VAR_TYPE,
7643 numbering from 0) is applicable. Returns -1 if none are. */
7644
7645 int
7646 ada_which_variant_applies (struct type *var_type, struct value *outer)
7647 {
7648 int others_clause;
7649 int i;
7650 const char *discrim_name = ada_variant_discrim_name (var_type);
7651 struct value *discrim;
7652 LONGEST discrim_val;
7653
7654 /* Using plain value_from_contents_and_address here causes problems
7655 because we will end up trying to resolve a type that is currently
7656 being constructed. */
7657 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7658 if (discrim == NULL)
7659 return -1;
7660 discrim_val = value_as_long (discrim);
7661
7662 others_clause = -1;
7663 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7664 {
7665 if (ada_is_others_clause (var_type, i))
7666 others_clause = i;
7667 else if (ada_in_variant (discrim_val, var_type, i))
7668 return i;
7669 }
7670
7671 return others_clause;
7672 }
7673 \f
7674
7675
7676 /* Dynamic-Sized Records */
7677
7678 /* Strategy: The type ostensibly attached to a value with dynamic size
7679 (i.e., a size that is not statically recorded in the debugging
7680 data) does not accurately reflect the size or layout of the value.
7681 Our strategy is to convert these values to values with accurate,
7682 conventional types that are constructed on the fly. */
7683
7684 /* There is a subtle and tricky problem here. In general, we cannot
7685 determine the size of dynamic records without its data. However,
7686 the 'struct value' data structure, which GDB uses to represent
7687 quantities in the inferior process (the target), requires the size
7688 of the type at the time of its allocation in order to reserve space
7689 for GDB's internal copy of the data. That's why the
7690 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7691 rather than struct value*s.
7692
7693 However, GDB's internal history variables ($1, $2, etc.) are
7694 struct value*s containing internal copies of the data that are not, in
7695 general, the same as the data at their corresponding addresses in
7696 the target. Fortunately, the types we give to these values are all
7697 conventional, fixed-size types (as per the strategy described
7698 above), so that we don't usually have to perform the
7699 'to_fixed_xxx_type' conversions to look at their values.
7700 Unfortunately, there is one exception: if one of the internal
7701 history variables is an array whose elements are unconstrained
7702 records, then we will need to create distinct fixed types for each
7703 element selected. */
7704
7705 /* The upshot of all of this is that many routines take a (type, host
7706 address, target address) triple as arguments to represent a value.
7707 The host address, if non-null, is supposed to contain an internal
7708 copy of the relevant data; otherwise, the program is to consult the
7709 target at the target address. */
7710
7711 /* Assuming that VAL0 represents a pointer value, the result of
7712 dereferencing it. Differs from value_ind in its treatment of
7713 dynamic-sized types. */
7714
7715 struct value *
7716 ada_value_ind (struct value *val0)
7717 {
7718 struct value *val = value_ind (val0);
7719
7720 if (ada_is_tagged_type (value_type (val), 0))
7721 val = ada_tag_value_at_base_address (val);
7722
7723 return ada_to_fixed_value (val);
7724 }
7725
7726 /* The value resulting from dereferencing any "reference to"
7727 qualifiers on VAL0. */
7728
7729 static struct value *
7730 ada_coerce_ref (struct value *val0)
7731 {
7732 if (value_type (val0)->code () == TYPE_CODE_REF)
7733 {
7734 struct value *val = val0;
7735
7736 val = coerce_ref (val);
7737
7738 if (ada_is_tagged_type (value_type (val), 0))
7739 val = ada_tag_value_at_base_address (val);
7740
7741 return ada_to_fixed_value (val);
7742 }
7743 else
7744 return val0;
7745 }
7746
7747 /* Return the bit alignment required for field #F of template type TYPE. */
7748
7749 static unsigned int
7750 field_alignment (struct type *type, int f)
7751 {
7752 const char *name = TYPE_FIELD_NAME (type, f);
7753 int len;
7754 int align_offset;
7755
7756 /* The field name should never be null, unless the debugging information
7757 is somehow malformed. In this case, we assume the field does not
7758 require any alignment. */
7759 if (name == NULL)
7760 return 1;
7761
7762 len = strlen (name);
7763
7764 if (!isdigit (name[len - 1]))
7765 return 1;
7766
7767 if (isdigit (name[len - 2]))
7768 align_offset = len - 2;
7769 else
7770 align_offset = len - 1;
7771
7772 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7773 return TARGET_CHAR_BIT;
7774
7775 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7776 }
7777
7778 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7779
7780 static struct symbol *
7781 ada_find_any_type_symbol (const char *name)
7782 {
7783 struct symbol *sym;
7784
7785 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7786 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7787 return sym;
7788
7789 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7790 return sym;
7791 }
7792
7793 /* Find a type named NAME. Ignores ambiguity. This routine will look
7794 solely for types defined by debug info, it will not search the GDB
7795 primitive types. */
7796
7797 static struct type *
7798 ada_find_any_type (const char *name)
7799 {
7800 struct symbol *sym = ada_find_any_type_symbol (name);
7801
7802 if (sym != NULL)
7803 return SYMBOL_TYPE (sym);
7804
7805 return NULL;
7806 }
7807
7808 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7809 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7810 symbol, in which case it is returned. Otherwise, this looks for
7811 symbols whose name is that of NAME_SYM suffixed with "___XR".
7812 Return symbol if found, and NULL otherwise. */
7813
7814 static bool
7815 ada_is_renaming_symbol (struct symbol *name_sym)
7816 {
7817 const char *name = name_sym->linkage_name ();
7818 return strstr (name, "___XR") != NULL;
7819 }
7820
7821 /* Because of GNAT encoding conventions, several GDB symbols may match a
7822 given type name. If the type denoted by TYPE0 is to be preferred to
7823 that of TYPE1 for purposes of type printing, return non-zero;
7824 otherwise return 0. */
7825
7826 int
7827 ada_prefer_type (struct type *type0, struct type *type1)
7828 {
7829 if (type1 == NULL)
7830 return 1;
7831 else if (type0 == NULL)
7832 return 0;
7833 else if (type1->code () == TYPE_CODE_VOID)
7834 return 1;
7835 else if (type0->code () == TYPE_CODE_VOID)
7836 return 0;
7837 else if (type1->name () == NULL && type0->name () != NULL)
7838 return 1;
7839 else if (ada_is_constrained_packed_array_type (type0))
7840 return 1;
7841 else if (ada_is_array_descriptor_type (type0)
7842 && !ada_is_array_descriptor_type (type1))
7843 return 1;
7844 else
7845 {
7846 const char *type0_name = type0->name ();
7847 const char *type1_name = type1->name ();
7848
7849 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7850 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7851 return 1;
7852 }
7853 return 0;
7854 }
7855
7856 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7857 null. */
7858
7859 const char *
7860 ada_type_name (struct type *type)
7861 {
7862 if (type == NULL)
7863 return NULL;
7864 return type->name ();
7865 }
7866
7867 /* Search the list of "descriptive" types associated to TYPE for a type
7868 whose name is NAME. */
7869
7870 static struct type *
7871 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7872 {
7873 struct type *result, *tmp;
7874
7875 if (ada_ignore_descriptive_types_p)
7876 return NULL;
7877
7878 /* If there no descriptive-type info, then there is no parallel type
7879 to be found. */
7880 if (!HAVE_GNAT_AUX_INFO (type))
7881 return NULL;
7882
7883 result = TYPE_DESCRIPTIVE_TYPE (type);
7884 while (result != NULL)
7885 {
7886 const char *result_name = ada_type_name (result);
7887
7888 if (result_name == NULL)
7889 {
7890 warning (_("unexpected null name on descriptive type"));
7891 return NULL;
7892 }
7893
7894 /* If the names match, stop. */
7895 if (strcmp (result_name, name) == 0)
7896 break;
7897
7898 /* Otherwise, look at the next item on the list, if any. */
7899 if (HAVE_GNAT_AUX_INFO (result))
7900 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7901 else
7902 tmp = NULL;
7903
7904 /* If not found either, try after having resolved the typedef. */
7905 if (tmp != NULL)
7906 result = tmp;
7907 else
7908 {
7909 result = check_typedef (result);
7910 if (HAVE_GNAT_AUX_INFO (result))
7911 result = TYPE_DESCRIPTIVE_TYPE (result);
7912 else
7913 result = NULL;
7914 }
7915 }
7916
7917 /* If we didn't find a match, see whether this is a packed array. With
7918 older compilers, the descriptive type information is either absent or
7919 irrelevant when it comes to packed arrays so the above lookup fails.
7920 Fall back to using a parallel lookup by name in this case. */
7921 if (result == NULL && ada_is_constrained_packed_array_type (type))
7922 return ada_find_any_type (name);
7923
7924 return result;
7925 }
7926
7927 /* Find a parallel type to TYPE with the specified NAME, using the
7928 descriptive type taken from the debugging information, if available,
7929 and otherwise using the (slower) name-based method. */
7930
7931 static struct type *
7932 ada_find_parallel_type_with_name (struct type *type, const char *name)
7933 {
7934 struct type *result = NULL;
7935
7936 if (HAVE_GNAT_AUX_INFO (type))
7937 result = find_parallel_type_by_descriptive_type (type, name);
7938 else
7939 result = ada_find_any_type (name);
7940
7941 return result;
7942 }
7943
7944 /* Same as above, but specify the name of the parallel type by appending
7945 SUFFIX to the name of TYPE. */
7946
7947 struct type *
7948 ada_find_parallel_type (struct type *type, const char *suffix)
7949 {
7950 char *name;
7951 const char *type_name = ada_type_name (type);
7952 int len;
7953
7954 if (type_name == NULL)
7955 return NULL;
7956
7957 len = strlen (type_name);
7958
7959 name = (char *) alloca (len + strlen (suffix) + 1);
7960
7961 strcpy (name, type_name);
7962 strcpy (name + len, suffix);
7963
7964 return ada_find_parallel_type_with_name (type, name);
7965 }
7966
7967 /* If TYPE is a variable-size record type, return the corresponding template
7968 type describing its fields. Otherwise, return NULL. */
7969
7970 static struct type *
7971 dynamic_template_type (struct type *type)
7972 {
7973 type = ada_check_typedef (type);
7974
7975 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7976 || ada_type_name (type) == NULL)
7977 return NULL;
7978 else
7979 {
7980 int len = strlen (ada_type_name (type));
7981
7982 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7983 return type;
7984 else
7985 return ada_find_parallel_type (type, "___XVE");
7986 }
7987 }
7988
7989 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7990 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7991
7992 static int
7993 is_dynamic_field (struct type *templ_type, int field_num)
7994 {
7995 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7996
7997 return name != NULL
7998 && TYPE_FIELD_TYPE (templ_type, field_num)->code () == TYPE_CODE_PTR
7999 && strstr (name, "___XVL") != NULL;
8000 }
8001
8002 /* The index of the variant field of TYPE, or -1 if TYPE does not
8003 represent a variant record type. */
8004
8005 static int
8006 variant_field_index (struct type *type)
8007 {
8008 int f;
8009
8010 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
8011 return -1;
8012
8013 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8014 {
8015 if (ada_is_variant_part (type, f))
8016 return f;
8017 }
8018 return -1;
8019 }
8020
8021 /* A record type with no fields. */
8022
8023 static struct type *
8024 empty_record (struct type *templ)
8025 {
8026 struct type *type = alloc_type_copy (templ);
8027
8028 type->set_code (TYPE_CODE_STRUCT);
8029 TYPE_NFIELDS (type) = 0;
8030 TYPE_FIELDS (type) = NULL;
8031 INIT_NONE_SPECIFIC (type);
8032 type->set_name ("<empty>");
8033 TYPE_LENGTH (type) = 0;
8034 return type;
8035 }
8036
8037 /* An ordinary record type (with fixed-length fields) that describes
8038 the value of type TYPE at VALADDR or ADDRESS (see comments at
8039 the beginning of this section) VAL according to GNAT conventions.
8040 DVAL0 should describe the (portion of a) record that contains any
8041 necessary discriminants. It should be NULL if value_type (VAL) is
8042 an outer-level type (i.e., as opposed to a branch of a variant.) A
8043 variant field (unless unchecked) is replaced by a particular branch
8044 of the variant.
8045
8046 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8047 length are not statically known are discarded. As a consequence,
8048 VALADDR, ADDRESS and DVAL0 are ignored.
8049
8050 NOTE: Limitations: For now, we assume that dynamic fields and
8051 variants occupy whole numbers of bytes. However, they need not be
8052 byte-aligned. */
8053
8054 struct type *
8055 ada_template_to_fixed_record_type_1 (struct type *type,
8056 const gdb_byte *valaddr,
8057 CORE_ADDR address, struct value *dval0,
8058 int keep_dynamic_fields)
8059 {
8060 struct value *mark = value_mark ();
8061 struct value *dval;
8062 struct type *rtype;
8063 int nfields, bit_len;
8064 int variant_field;
8065 long off;
8066 int fld_bit_len;
8067 int f;
8068
8069 /* Compute the number of fields in this record type that are going
8070 to be processed: unless keep_dynamic_fields, this includes only
8071 fields whose position and length are static will be processed. */
8072 if (keep_dynamic_fields)
8073 nfields = TYPE_NFIELDS (type);
8074 else
8075 {
8076 nfields = 0;
8077 while (nfields < TYPE_NFIELDS (type)
8078 && !ada_is_variant_part (type, nfields)
8079 && !is_dynamic_field (type, nfields))
8080 nfields++;
8081 }
8082
8083 rtype = alloc_type_copy (type);
8084 rtype->set_code (TYPE_CODE_STRUCT);
8085 INIT_NONE_SPECIFIC (rtype);
8086 TYPE_NFIELDS (rtype) = nfields;
8087 TYPE_FIELDS (rtype) = (struct field *)
8088 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8089 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8090 rtype->set_name (ada_type_name (type));
8091 TYPE_FIXED_INSTANCE (rtype) = 1;
8092
8093 off = 0;
8094 bit_len = 0;
8095 variant_field = -1;
8096
8097 for (f = 0; f < nfields; f += 1)
8098 {
8099 off = align_up (off, field_alignment (type, f))
8100 + TYPE_FIELD_BITPOS (type, f);
8101 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8102 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8103
8104 if (ada_is_variant_part (type, f))
8105 {
8106 variant_field = f;
8107 fld_bit_len = 0;
8108 }
8109 else if (is_dynamic_field (type, f))
8110 {
8111 const gdb_byte *field_valaddr = valaddr;
8112 CORE_ADDR field_address = address;
8113 struct type *field_type =
8114 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8115
8116 if (dval0 == NULL)
8117 {
8118 /* rtype's length is computed based on the run-time
8119 value of discriminants. If the discriminants are not
8120 initialized, the type size may be completely bogus and
8121 GDB may fail to allocate a value for it. So check the
8122 size first before creating the value. */
8123 ada_ensure_varsize_limit (rtype);
8124 /* Using plain value_from_contents_and_address here
8125 causes problems because we will end up trying to
8126 resolve a type that is currently being
8127 constructed. */
8128 dval = value_from_contents_and_address_unresolved (rtype,
8129 valaddr,
8130 address);
8131 rtype = value_type (dval);
8132 }
8133 else
8134 dval = dval0;
8135
8136 /* If the type referenced by this field is an aligner type, we need
8137 to unwrap that aligner type, because its size might not be set.
8138 Keeping the aligner type would cause us to compute the wrong
8139 size for this field, impacting the offset of the all the fields
8140 that follow this one. */
8141 if (ada_is_aligner_type (field_type))
8142 {
8143 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8144
8145 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8146 field_address = cond_offset_target (field_address, field_offset);
8147 field_type = ada_aligned_type (field_type);
8148 }
8149
8150 field_valaddr = cond_offset_host (field_valaddr,
8151 off / TARGET_CHAR_BIT);
8152 field_address = cond_offset_target (field_address,
8153 off / TARGET_CHAR_BIT);
8154
8155 /* Get the fixed type of the field. Note that, in this case,
8156 we do not want to get the real type out of the tag: if
8157 the current field is the parent part of a tagged record,
8158 we will get the tag of the object. Clearly wrong: the real
8159 type of the parent is not the real type of the child. We
8160 would end up in an infinite loop. */
8161 field_type = ada_get_base_type (field_type);
8162 field_type = ada_to_fixed_type (field_type, field_valaddr,
8163 field_address, dval, 0);
8164 /* If the field size is already larger than the maximum
8165 object size, then the record itself will necessarily
8166 be larger than the maximum object size. We need to make
8167 this check now, because the size might be so ridiculously
8168 large (due to an uninitialized variable in the inferior)
8169 that it would cause an overflow when adding it to the
8170 record size. */
8171 ada_ensure_varsize_limit (field_type);
8172
8173 TYPE_FIELD_TYPE (rtype, f) = field_type;
8174 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8175 /* The multiplication can potentially overflow. But because
8176 the field length has been size-checked just above, and
8177 assuming that the maximum size is a reasonable value,
8178 an overflow should not happen in practice. So rather than
8179 adding overflow recovery code to this already complex code,
8180 we just assume that it's not going to happen. */
8181 fld_bit_len =
8182 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8183 }
8184 else
8185 {
8186 /* Note: If this field's type is a typedef, it is important
8187 to preserve the typedef layer.
8188
8189 Otherwise, we might be transforming a typedef to a fat
8190 pointer (encoding a pointer to an unconstrained array),
8191 into a basic fat pointer (encoding an unconstrained
8192 array). As both types are implemented using the same
8193 structure, the typedef is the only clue which allows us
8194 to distinguish between the two options. Stripping it
8195 would prevent us from printing this field appropriately. */
8196 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8197 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8198 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8199 fld_bit_len =
8200 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8201 else
8202 {
8203 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8204
8205 /* We need to be careful of typedefs when computing
8206 the length of our field. If this is a typedef,
8207 get the length of the target type, not the length
8208 of the typedef. */
8209 if (field_type->code () == TYPE_CODE_TYPEDEF)
8210 field_type = ada_typedef_target_type (field_type);
8211
8212 fld_bit_len =
8213 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8214 }
8215 }
8216 if (off + fld_bit_len > bit_len)
8217 bit_len = off + fld_bit_len;
8218 off += fld_bit_len;
8219 TYPE_LENGTH (rtype) =
8220 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8221 }
8222
8223 /* We handle the variant part, if any, at the end because of certain
8224 odd cases in which it is re-ordered so as NOT to be the last field of
8225 the record. This can happen in the presence of representation
8226 clauses. */
8227 if (variant_field >= 0)
8228 {
8229 struct type *branch_type;
8230
8231 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8232
8233 if (dval0 == NULL)
8234 {
8235 /* Using plain value_from_contents_and_address here causes
8236 problems because we will end up trying to resolve a type
8237 that is currently being constructed. */
8238 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8239 address);
8240 rtype = value_type (dval);
8241 }
8242 else
8243 dval = dval0;
8244
8245 branch_type =
8246 to_fixed_variant_branch_type
8247 (TYPE_FIELD_TYPE (type, variant_field),
8248 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8249 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8250 if (branch_type == NULL)
8251 {
8252 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8253 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8254 TYPE_NFIELDS (rtype) -= 1;
8255 }
8256 else
8257 {
8258 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8259 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8260 fld_bit_len =
8261 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8262 TARGET_CHAR_BIT;
8263 if (off + fld_bit_len > bit_len)
8264 bit_len = off + fld_bit_len;
8265 TYPE_LENGTH (rtype) =
8266 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8267 }
8268 }
8269
8270 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8271 should contain the alignment of that record, which should be a strictly
8272 positive value. If null or negative, then something is wrong, most
8273 probably in the debug info. In that case, we don't round up the size
8274 of the resulting type. If this record is not part of another structure,
8275 the current RTYPE length might be good enough for our purposes. */
8276 if (TYPE_LENGTH (type) <= 0)
8277 {
8278 if (rtype->name ())
8279 warning (_("Invalid type size for `%s' detected: %s."),
8280 rtype->name (), pulongest (TYPE_LENGTH (type)));
8281 else
8282 warning (_("Invalid type size for <unnamed> detected: %s."),
8283 pulongest (TYPE_LENGTH (type)));
8284 }
8285 else
8286 {
8287 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8288 TYPE_LENGTH (type));
8289 }
8290
8291 value_free_to_mark (mark);
8292 if (TYPE_LENGTH (rtype) > varsize_limit)
8293 error (_("record type with dynamic size is larger than varsize-limit"));
8294 return rtype;
8295 }
8296
8297 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8298 of 1. */
8299
8300 static struct type *
8301 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8302 CORE_ADDR address, struct value *dval0)
8303 {
8304 return ada_template_to_fixed_record_type_1 (type, valaddr,
8305 address, dval0, 1);
8306 }
8307
8308 /* An ordinary record type in which ___XVL-convention fields and
8309 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8310 static approximations, containing all possible fields. Uses
8311 no runtime values. Useless for use in values, but that's OK,
8312 since the results are used only for type determinations. Works on both
8313 structs and unions. Representation note: to save space, we memorize
8314 the result of this function in the TYPE_TARGET_TYPE of the
8315 template type. */
8316
8317 static struct type *
8318 template_to_static_fixed_type (struct type *type0)
8319 {
8320 struct type *type;
8321 int nfields;
8322 int f;
8323
8324 /* No need no do anything if the input type is already fixed. */
8325 if (TYPE_FIXED_INSTANCE (type0))
8326 return type0;
8327
8328 /* Likewise if we already have computed the static approximation. */
8329 if (TYPE_TARGET_TYPE (type0) != NULL)
8330 return TYPE_TARGET_TYPE (type0);
8331
8332 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8333 type = type0;
8334 nfields = TYPE_NFIELDS (type0);
8335
8336 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8337 recompute all over next time. */
8338 TYPE_TARGET_TYPE (type0) = type;
8339
8340 for (f = 0; f < nfields; f += 1)
8341 {
8342 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8343 struct type *new_type;
8344
8345 if (is_dynamic_field (type0, f))
8346 {
8347 field_type = ada_check_typedef (field_type);
8348 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8349 }
8350 else
8351 new_type = static_unwrap_type (field_type);
8352
8353 if (new_type != field_type)
8354 {
8355 /* Clone TYPE0 only the first time we get a new field type. */
8356 if (type == type0)
8357 {
8358 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8359 type->set_code (type0->code ());
8360 INIT_NONE_SPECIFIC (type);
8361 TYPE_NFIELDS (type) = nfields;
8362 TYPE_FIELDS (type) = (struct field *)
8363 TYPE_ALLOC (type, nfields * sizeof (struct field));
8364 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8365 sizeof (struct field) * nfields);
8366 type->set_name (ada_type_name (type0));
8367 TYPE_FIXED_INSTANCE (type) = 1;
8368 TYPE_LENGTH (type) = 0;
8369 }
8370 TYPE_FIELD_TYPE (type, f) = new_type;
8371 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8372 }
8373 }
8374
8375 return type;
8376 }
8377
8378 /* Given an object of type TYPE whose contents are at VALADDR and
8379 whose address in memory is ADDRESS, returns a revision of TYPE,
8380 which should be a non-dynamic-sized record, in which the variant
8381 part, if any, is replaced with the appropriate branch. Looks
8382 for discriminant values in DVAL0, which can be NULL if the record
8383 contains the necessary discriminant values. */
8384
8385 static struct type *
8386 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8387 CORE_ADDR address, struct value *dval0)
8388 {
8389 struct value *mark = value_mark ();
8390 struct value *dval;
8391 struct type *rtype;
8392 struct type *branch_type;
8393 int nfields = TYPE_NFIELDS (type);
8394 int variant_field = variant_field_index (type);
8395
8396 if (variant_field == -1)
8397 return type;
8398
8399 if (dval0 == NULL)
8400 {
8401 dval = value_from_contents_and_address (type, valaddr, address);
8402 type = value_type (dval);
8403 }
8404 else
8405 dval = dval0;
8406
8407 rtype = alloc_type_copy (type);
8408 rtype->set_code (TYPE_CODE_STRUCT);
8409 INIT_NONE_SPECIFIC (rtype);
8410 TYPE_NFIELDS (rtype) = nfields;
8411 TYPE_FIELDS (rtype) =
8412 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8413 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8414 sizeof (struct field) * nfields);
8415 rtype->set_name (ada_type_name (type));
8416 TYPE_FIXED_INSTANCE (rtype) = 1;
8417 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8418
8419 branch_type = to_fixed_variant_branch_type
8420 (TYPE_FIELD_TYPE (type, variant_field),
8421 cond_offset_host (valaddr,
8422 TYPE_FIELD_BITPOS (type, variant_field)
8423 / TARGET_CHAR_BIT),
8424 cond_offset_target (address,
8425 TYPE_FIELD_BITPOS (type, variant_field)
8426 / TARGET_CHAR_BIT), dval);
8427 if (branch_type == NULL)
8428 {
8429 int f;
8430
8431 for (f = variant_field + 1; f < nfields; f += 1)
8432 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8433 TYPE_NFIELDS (rtype) -= 1;
8434 }
8435 else
8436 {
8437 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8438 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8439 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8440 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8441 }
8442 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8443
8444 value_free_to_mark (mark);
8445 return rtype;
8446 }
8447
8448 /* An ordinary record type (with fixed-length fields) that describes
8449 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8450 beginning of this section]. Any necessary discriminants' values
8451 should be in DVAL, a record value; it may be NULL if the object
8452 at ADDR itself contains any necessary discriminant values.
8453 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8454 values from the record are needed. Except in the case that DVAL,
8455 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8456 unchecked) is replaced by a particular branch of the variant.
8457
8458 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8459 is questionable and may be removed. It can arise during the
8460 processing of an unconstrained-array-of-record type where all the
8461 variant branches have exactly the same size. This is because in
8462 such cases, the compiler does not bother to use the XVS convention
8463 when encoding the record. I am currently dubious of this
8464 shortcut and suspect the compiler should be altered. FIXME. */
8465
8466 static struct type *
8467 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8468 CORE_ADDR address, struct value *dval)
8469 {
8470 struct type *templ_type;
8471
8472 if (TYPE_FIXED_INSTANCE (type0))
8473 return type0;
8474
8475 templ_type = dynamic_template_type (type0);
8476
8477 if (templ_type != NULL)
8478 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8479 else if (variant_field_index (type0) >= 0)
8480 {
8481 if (dval == NULL && valaddr == NULL && address == 0)
8482 return type0;
8483 return to_record_with_fixed_variant_part (type0, valaddr, address,
8484 dval);
8485 }
8486 else
8487 {
8488 TYPE_FIXED_INSTANCE (type0) = 1;
8489 return type0;
8490 }
8491
8492 }
8493
8494 /* An ordinary record type (with fixed-length fields) that describes
8495 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8496 union type. Any necessary discriminants' values should be in DVAL,
8497 a record value. That is, this routine selects the appropriate
8498 branch of the union at ADDR according to the discriminant value
8499 indicated in the union's type name. Returns VAR_TYPE0 itself if
8500 it represents a variant subject to a pragma Unchecked_Union. */
8501
8502 static struct type *
8503 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8504 CORE_ADDR address, struct value *dval)
8505 {
8506 int which;
8507 struct type *templ_type;
8508 struct type *var_type;
8509
8510 if (var_type0->code () == TYPE_CODE_PTR)
8511 var_type = TYPE_TARGET_TYPE (var_type0);
8512 else
8513 var_type = var_type0;
8514
8515 templ_type = ada_find_parallel_type (var_type, "___XVU");
8516
8517 if (templ_type != NULL)
8518 var_type = templ_type;
8519
8520 if (is_unchecked_variant (var_type, value_type (dval)))
8521 return var_type0;
8522 which = ada_which_variant_applies (var_type, dval);
8523
8524 if (which < 0)
8525 return empty_record (var_type);
8526 else if (is_dynamic_field (var_type, which))
8527 return to_fixed_record_type
8528 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8529 valaddr, address, dval);
8530 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8531 return
8532 to_fixed_record_type
8533 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8534 else
8535 return TYPE_FIELD_TYPE (var_type, which);
8536 }
8537
8538 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8539 ENCODING_TYPE, a type following the GNAT conventions for discrete
8540 type encodings, only carries redundant information. */
8541
8542 static int
8543 ada_is_redundant_range_encoding (struct type *range_type,
8544 struct type *encoding_type)
8545 {
8546 const char *bounds_str;
8547 int n;
8548 LONGEST lo, hi;
8549
8550 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8551
8552 if (get_base_type (range_type)->code ()
8553 != get_base_type (encoding_type)->code ())
8554 {
8555 /* The compiler probably used a simple base type to describe
8556 the range type instead of the range's actual base type,
8557 expecting us to get the real base type from the encoding
8558 anyway. In this situation, the encoding cannot be ignored
8559 as redundant. */
8560 return 0;
8561 }
8562
8563 if (is_dynamic_type (range_type))
8564 return 0;
8565
8566 if (encoding_type->name () == NULL)
8567 return 0;
8568
8569 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8570 if (bounds_str == NULL)
8571 return 0;
8572
8573 n = 8; /* Skip "___XDLU_". */
8574 if (!ada_scan_number (bounds_str, n, &lo, &n))
8575 return 0;
8576 if (TYPE_LOW_BOUND (range_type) != lo)
8577 return 0;
8578
8579 n += 2; /* Skip the "__" separator between the two bounds. */
8580 if (!ada_scan_number (bounds_str, n, &hi, &n))
8581 return 0;
8582 if (TYPE_HIGH_BOUND (range_type) != hi)
8583 return 0;
8584
8585 return 1;
8586 }
8587
8588 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8589 a type following the GNAT encoding for describing array type
8590 indices, only carries redundant information. */
8591
8592 static int
8593 ada_is_redundant_index_type_desc (struct type *array_type,
8594 struct type *desc_type)
8595 {
8596 struct type *this_layer = check_typedef (array_type);
8597 int i;
8598
8599 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8600 {
8601 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8602 TYPE_FIELD_TYPE (desc_type, i)))
8603 return 0;
8604 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8605 }
8606
8607 return 1;
8608 }
8609
8610 /* Assuming that TYPE0 is an array type describing the type of a value
8611 at ADDR, and that DVAL describes a record containing any
8612 discriminants used in TYPE0, returns a type for the value that
8613 contains no dynamic components (that is, no components whose sizes
8614 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8615 true, gives an error message if the resulting type's size is over
8616 varsize_limit. */
8617
8618 static struct type *
8619 to_fixed_array_type (struct type *type0, struct value *dval,
8620 int ignore_too_big)
8621 {
8622 struct type *index_type_desc;
8623 struct type *result;
8624 int constrained_packed_array_p;
8625 static const char *xa_suffix = "___XA";
8626
8627 type0 = ada_check_typedef (type0);
8628 if (TYPE_FIXED_INSTANCE (type0))
8629 return type0;
8630
8631 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8632 if (constrained_packed_array_p)
8633 type0 = decode_constrained_packed_array_type (type0);
8634
8635 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8636
8637 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8638 encoding suffixed with 'P' may still be generated. If so,
8639 it should be used to find the XA type. */
8640
8641 if (index_type_desc == NULL)
8642 {
8643 const char *type_name = ada_type_name (type0);
8644
8645 if (type_name != NULL)
8646 {
8647 const int len = strlen (type_name);
8648 char *name = (char *) alloca (len + strlen (xa_suffix));
8649
8650 if (type_name[len - 1] == 'P')
8651 {
8652 strcpy (name, type_name);
8653 strcpy (name + len - 1, xa_suffix);
8654 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8655 }
8656 }
8657 }
8658
8659 ada_fixup_array_indexes_type (index_type_desc);
8660 if (index_type_desc != NULL
8661 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8662 {
8663 /* Ignore this ___XA parallel type, as it does not bring any
8664 useful information. This allows us to avoid creating fixed
8665 versions of the array's index types, which would be identical
8666 to the original ones. This, in turn, can also help avoid
8667 the creation of fixed versions of the array itself. */
8668 index_type_desc = NULL;
8669 }
8670
8671 if (index_type_desc == NULL)
8672 {
8673 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8674
8675 /* NOTE: elt_type---the fixed version of elt_type0---should never
8676 depend on the contents of the array in properly constructed
8677 debugging data. */
8678 /* Create a fixed version of the array element type.
8679 We're not providing the address of an element here,
8680 and thus the actual object value cannot be inspected to do
8681 the conversion. This should not be a problem, since arrays of
8682 unconstrained objects are not allowed. In particular, all
8683 the elements of an array of a tagged type should all be of
8684 the same type specified in the debugging info. No need to
8685 consult the object tag. */
8686 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8687
8688 /* Make sure we always create a new array type when dealing with
8689 packed array types, since we're going to fix-up the array
8690 type length and element bitsize a little further down. */
8691 if (elt_type0 == elt_type && !constrained_packed_array_p)
8692 result = type0;
8693 else
8694 result = create_array_type (alloc_type_copy (type0),
8695 elt_type, TYPE_INDEX_TYPE (type0));
8696 }
8697 else
8698 {
8699 int i;
8700 struct type *elt_type0;
8701
8702 elt_type0 = type0;
8703 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8704 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8705
8706 /* NOTE: result---the fixed version of elt_type0---should never
8707 depend on the contents of the array in properly constructed
8708 debugging data. */
8709 /* Create a fixed version of the array element type.
8710 We're not providing the address of an element here,
8711 and thus the actual object value cannot be inspected to do
8712 the conversion. This should not be a problem, since arrays of
8713 unconstrained objects are not allowed. In particular, all
8714 the elements of an array of a tagged type should all be of
8715 the same type specified in the debugging info. No need to
8716 consult the object tag. */
8717 result =
8718 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8719
8720 elt_type0 = type0;
8721 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8722 {
8723 struct type *range_type =
8724 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8725
8726 result = create_array_type (alloc_type_copy (elt_type0),
8727 result, range_type);
8728 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8729 }
8730 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8731 error (_("array type with dynamic size is larger than varsize-limit"));
8732 }
8733
8734 /* We want to preserve the type name. This can be useful when
8735 trying to get the type name of a value that has already been
8736 printed (for instance, if the user did "print VAR; whatis $". */
8737 result->set_name (type0->name ());
8738
8739 if (constrained_packed_array_p)
8740 {
8741 /* So far, the resulting type has been created as if the original
8742 type was a regular (non-packed) array type. As a result, the
8743 bitsize of the array elements needs to be set again, and the array
8744 length needs to be recomputed based on that bitsize. */
8745 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8746 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8747
8748 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8749 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8750 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8751 TYPE_LENGTH (result)++;
8752 }
8753
8754 TYPE_FIXED_INSTANCE (result) = 1;
8755 return result;
8756 }
8757
8758
8759 /* A standard type (containing no dynamically sized components)
8760 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8761 DVAL describes a record containing any discriminants used in TYPE0,
8762 and may be NULL if there are none, or if the object of type TYPE at
8763 ADDRESS or in VALADDR contains these discriminants.
8764
8765 If CHECK_TAG is not null, in the case of tagged types, this function
8766 attempts to locate the object's tag and use it to compute the actual
8767 type. However, when ADDRESS is null, we cannot use it to determine the
8768 location of the tag, and therefore compute the tagged type's actual type.
8769 So we return the tagged type without consulting the tag. */
8770
8771 static struct type *
8772 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8773 CORE_ADDR address, struct value *dval, int check_tag)
8774 {
8775 type = ada_check_typedef (type);
8776
8777 /* Only un-fixed types need to be handled here. */
8778 if (!HAVE_GNAT_AUX_INFO (type))
8779 return type;
8780
8781 switch (type->code ())
8782 {
8783 default:
8784 return type;
8785 case TYPE_CODE_STRUCT:
8786 {
8787 struct type *static_type = to_static_fixed_type (type);
8788 struct type *fixed_record_type =
8789 to_fixed_record_type (type, valaddr, address, NULL);
8790
8791 /* If STATIC_TYPE is a tagged type and we know the object's address,
8792 then we can determine its tag, and compute the object's actual
8793 type from there. Note that we have to use the fixed record
8794 type (the parent part of the record may have dynamic fields
8795 and the way the location of _tag is expressed may depend on
8796 them). */
8797
8798 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8799 {
8800 struct value *tag =
8801 value_tag_from_contents_and_address
8802 (fixed_record_type,
8803 valaddr,
8804 address);
8805 struct type *real_type = type_from_tag (tag);
8806 struct value *obj =
8807 value_from_contents_and_address (fixed_record_type,
8808 valaddr,
8809 address);
8810 fixed_record_type = value_type (obj);
8811 if (real_type != NULL)
8812 return to_fixed_record_type
8813 (real_type, NULL,
8814 value_address (ada_tag_value_at_base_address (obj)), NULL);
8815 }
8816
8817 /* Check to see if there is a parallel ___XVZ variable.
8818 If there is, then it provides the actual size of our type. */
8819 else if (ada_type_name (fixed_record_type) != NULL)
8820 {
8821 const char *name = ada_type_name (fixed_record_type);
8822 char *xvz_name
8823 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8824 bool xvz_found = false;
8825 LONGEST size;
8826
8827 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8828 try
8829 {
8830 xvz_found = get_int_var_value (xvz_name, size);
8831 }
8832 catch (const gdb_exception_error &except)
8833 {
8834 /* We found the variable, but somehow failed to read
8835 its value. Rethrow the same error, but with a little
8836 bit more information, to help the user understand
8837 what went wrong (Eg: the variable might have been
8838 optimized out). */
8839 throw_error (except.error,
8840 _("unable to read value of %s (%s)"),
8841 xvz_name, except.what ());
8842 }
8843
8844 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8845 {
8846 fixed_record_type = copy_type (fixed_record_type);
8847 TYPE_LENGTH (fixed_record_type) = size;
8848
8849 /* The FIXED_RECORD_TYPE may have be a stub. We have
8850 observed this when the debugging info is STABS, and
8851 apparently it is something that is hard to fix.
8852
8853 In practice, we don't need the actual type definition
8854 at all, because the presence of the XVZ variable allows us
8855 to assume that there must be a XVS type as well, which we
8856 should be able to use later, when we need the actual type
8857 definition.
8858
8859 In the meantime, pretend that the "fixed" type we are
8860 returning is NOT a stub, because this can cause trouble
8861 when using this type to create new types targeting it.
8862 Indeed, the associated creation routines often check
8863 whether the target type is a stub and will try to replace
8864 it, thus using a type with the wrong size. This, in turn,
8865 might cause the new type to have the wrong size too.
8866 Consider the case of an array, for instance, where the size
8867 of the array is computed from the number of elements in
8868 our array multiplied by the size of its element. */
8869 TYPE_STUB (fixed_record_type) = 0;
8870 }
8871 }
8872 return fixed_record_type;
8873 }
8874 case TYPE_CODE_ARRAY:
8875 return to_fixed_array_type (type, dval, 1);
8876 case TYPE_CODE_UNION:
8877 if (dval == NULL)
8878 return type;
8879 else
8880 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8881 }
8882 }
8883
8884 /* The same as ada_to_fixed_type_1, except that it preserves the type
8885 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8886
8887 The typedef layer needs be preserved in order to differentiate between
8888 arrays and array pointers when both types are implemented using the same
8889 fat pointer. In the array pointer case, the pointer is encoded as
8890 a typedef of the pointer type. For instance, considering:
8891
8892 type String_Access is access String;
8893 S1 : String_Access := null;
8894
8895 To the debugger, S1 is defined as a typedef of type String. But
8896 to the user, it is a pointer. So if the user tries to print S1,
8897 we should not dereference the array, but print the array address
8898 instead.
8899
8900 If we didn't preserve the typedef layer, we would lose the fact that
8901 the type is to be presented as a pointer (needs de-reference before
8902 being printed). And we would also use the source-level type name. */
8903
8904 struct type *
8905 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8906 CORE_ADDR address, struct value *dval, int check_tag)
8907
8908 {
8909 struct type *fixed_type =
8910 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8911
8912 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8913 then preserve the typedef layer.
8914
8915 Implementation note: We can only check the main-type portion of
8916 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8917 from TYPE now returns a type that has the same instance flags
8918 as TYPE. For instance, if TYPE is a "typedef const", and its
8919 target type is a "struct", then the typedef elimination will return
8920 a "const" version of the target type. See check_typedef for more
8921 details about how the typedef layer elimination is done.
8922
8923 brobecker/2010-11-19: It seems to me that the only case where it is
8924 useful to preserve the typedef layer is when dealing with fat pointers.
8925 Perhaps, we could add a check for that and preserve the typedef layer
8926 only in that situation. But this seems unnecessary so far, probably
8927 because we call check_typedef/ada_check_typedef pretty much everywhere.
8928 */
8929 if (type->code () == TYPE_CODE_TYPEDEF
8930 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8931 == TYPE_MAIN_TYPE (fixed_type)))
8932 return type;
8933
8934 return fixed_type;
8935 }
8936
8937 /* A standard (static-sized) type corresponding as well as possible to
8938 TYPE0, but based on no runtime data. */
8939
8940 static struct type *
8941 to_static_fixed_type (struct type *type0)
8942 {
8943 struct type *type;
8944
8945 if (type0 == NULL)
8946 return NULL;
8947
8948 if (TYPE_FIXED_INSTANCE (type0))
8949 return type0;
8950
8951 type0 = ada_check_typedef (type0);
8952
8953 switch (type0->code ())
8954 {
8955 default:
8956 return type0;
8957 case TYPE_CODE_STRUCT:
8958 type = dynamic_template_type (type0);
8959 if (type != NULL)
8960 return template_to_static_fixed_type (type);
8961 else
8962 return template_to_static_fixed_type (type0);
8963 case TYPE_CODE_UNION:
8964 type = ada_find_parallel_type (type0, "___XVU");
8965 if (type != NULL)
8966 return template_to_static_fixed_type (type);
8967 else
8968 return template_to_static_fixed_type (type0);
8969 }
8970 }
8971
8972 /* A static approximation of TYPE with all type wrappers removed. */
8973
8974 static struct type *
8975 static_unwrap_type (struct type *type)
8976 {
8977 if (ada_is_aligner_type (type))
8978 {
8979 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8980 if (ada_type_name (type1) == NULL)
8981 type1->set_name (ada_type_name (type));
8982
8983 return static_unwrap_type (type1);
8984 }
8985 else
8986 {
8987 struct type *raw_real_type = ada_get_base_type (type);
8988
8989 if (raw_real_type == type)
8990 return type;
8991 else
8992 return to_static_fixed_type (raw_real_type);
8993 }
8994 }
8995
8996 /* In some cases, incomplete and private types require
8997 cross-references that are not resolved as records (for example,
8998 type Foo;
8999 type FooP is access Foo;
9000 V: FooP;
9001 type Foo is array ...;
9002 ). In these cases, since there is no mechanism for producing
9003 cross-references to such types, we instead substitute for FooP a
9004 stub enumeration type that is nowhere resolved, and whose tag is
9005 the name of the actual type. Call these types "non-record stubs". */
9006
9007 /* A type equivalent to TYPE that is not a non-record stub, if one
9008 exists, otherwise TYPE. */
9009
9010 struct type *
9011 ada_check_typedef (struct type *type)
9012 {
9013 if (type == NULL)
9014 return NULL;
9015
9016 /* If our type is an access to an unconstrained array, which is encoded
9017 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9018 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9019 what allows us to distinguish between fat pointers that represent
9020 array types, and fat pointers that represent array access types
9021 (in both cases, the compiler implements them as fat pointers). */
9022 if (ada_is_access_to_unconstrained_array (type))
9023 return type;
9024
9025 type = check_typedef (type);
9026 if (type == NULL || type->code () != TYPE_CODE_ENUM
9027 || !TYPE_STUB (type)
9028 || type->name () == NULL)
9029 return type;
9030 else
9031 {
9032 const char *name = type->name ();
9033 struct type *type1 = ada_find_any_type (name);
9034
9035 if (type1 == NULL)
9036 return type;
9037
9038 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9039 stubs pointing to arrays, as we don't create symbols for array
9040 types, only for the typedef-to-array types). If that's the case,
9041 strip the typedef layer. */
9042 if (type1->code () == TYPE_CODE_TYPEDEF)
9043 type1 = ada_check_typedef (type1);
9044
9045 return type1;
9046 }
9047 }
9048
9049 /* A value representing the data at VALADDR/ADDRESS as described by
9050 type TYPE0, but with a standard (static-sized) type that correctly
9051 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9052 type, then return VAL0 [this feature is simply to avoid redundant
9053 creation of struct values]. */
9054
9055 static struct value *
9056 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9057 struct value *val0)
9058 {
9059 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9060
9061 if (type == type0 && val0 != NULL)
9062 return val0;
9063
9064 if (VALUE_LVAL (val0) != lval_memory)
9065 {
9066 /* Our value does not live in memory; it could be a convenience
9067 variable, for instance. Create a not_lval value using val0's
9068 contents. */
9069 return value_from_contents (type, value_contents (val0));
9070 }
9071
9072 return value_from_contents_and_address (type, 0, address);
9073 }
9074
9075 /* A value representing VAL, but with a standard (static-sized) type
9076 that correctly describes it. Does not necessarily create a new
9077 value. */
9078
9079 struct value *
9080 ada_to_fixed_value (struct value *val)
9081 {
9082 val = unwrap_value (val);
9083 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9084 return val;
9085 }
9086 \f
9087
9088 /* Attributes */
9089
9090 /* Table mapping attribute numbers to names.
9091 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9092
9093 static const char *attribute_names[] = {
9094 "<?>",
9095
9096 "first",
9097 "last",
9098 "length",
9099 "image",
9100 "max",
9101 "min",
9102 "modulus",
9103 "pos",
9104 "size",
9105 "tag",
9106 "val",
9107 0
9108 };
9109
9110 static const char *
9111 ada_attribute_name (enum exp_opcode n)
9112 {
9113 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9114 return attribute_names[n - OP_ATR_FIRST + 1];
9115 else
9116 return attribute_names[0];
9117 }
9118
9119 /* Evaluate the 'POS attribute applied to ARG. */
9120
9121 static LONGEST
9122 pos_atr (struct value *arg)
9123 {
9124 struct value *val = coerce_ref (arg);
9125 struct type *type = value_type (val);
9126 LONGEST result;
9127
9128 if (!discrete_type_p (type))
9129 error (_("'POS only defined on discrete types"));
9130
9131 if (!discrete_position (type, value_as_long (val), &result))
9132 error (_("enumeration value is invalid: can't find 'POS"));
9133
9134 return result;
9135 }
9136
9137 static struct value *
9138 value_pos_atr (struct type *type, struct value *arg)
9139 {
9140 return value_from_longest (type, pos_atr (arg));
9141 }
9142
9143 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9144
9145 static struct value *
9146 value_val_atr (struct type *type, struct value *arg)
9147 {
9148 if (!discrete_type_p (type))
9149 error (_("'VAL only defined on discrete types"));
9150 if (!integer_type_p (value_type (arg)))
9151 error (_("'VAL requires integral argument"));
9152
9153 if (type->code () == TYPE_CODE_ENUM)
9154 {
9155 long pos = value_as_long (arg);
9156
9157 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9158 error (_("argument to 'VAL out of range"));
9159 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9160 }
9161 else
9162 return value_from_longest (type, value_as_long (arg));
9163 }
9164 \f
9165
9166 /* Evaluation */
9167
9168 /* True if TYPE appears to be an Ada character type.
9169 [At the moment, this is true only for Character and Wide_Character;
9170 It is a heuristic test that could stand improvement]. */
9171
9172 bool
9173 ada_is_character_type (struct type *type)
9174 {
9175 const char *name;
9176
9177 /* If the type code says it's a character, then assume it really is,
9178 and don't check any further. */
9179 if (type->code () == TYPE_CODE_CHAR)
9180 return true;
9181
9182 /* Otherwise, assume it's a character type iff it is a discrete type
9183 with a known character type name. */
9184 name = ada_type_name (type);
9185 return (name != NULL
9186 && (type->code () == TYPE_CODE_INT
9187 || type->code () == TYPE_CODE_RANGE)
9188 && (strcmp (name, "character") == 0
9189 || strcmp (name, "wide_character") == 0
9190 || strcmp (name, "wide_wide_character") == 0
9191 || strcmp (name, "unsigned char") == 0));
9192 }
9193
9194 /* True if TYPE appears to be an Ada string type. */
9195
9196 bool
9197 ada_is_string_type (struct type *type)
9198 {
9199 type = ada_check_typedef (type);
9200 if (type != NULL
9201 && type->code () != TYPE_CODE_PTR
9202 && (ada_is_simple_array_type (type)
9203 || ada_is_array_descriptor_type (type))
9204 && ada_array_arity (type) == 1)
9205 {
9206 struct type *elttype = ada_array_element_type (type, 1);
9207
9208 return ada_is_character_type (elttype);
9209 }
9210 else
9211 return false;
9212 }
9213
9214 /* The compiler sometimes provides a parallel XVS type for a given
9215 PAD type. Normally, it is safe to follow the PAD type directly,
9216 but older versions of the compiler have a bug that causes the offset
9217 of its "F" field to be wrong. Following that field in that case
9218 would lead to incorrect results, but this can be worked around
9219 by ignoring the PAD type and using the associated XVS type instead.
9220
9221 Set to True if the debugger should trust the contents of PAD types.
9222 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9223 static bool trust_pad_over_xvs = true;
9224
9225 /* True if TYPE is a struct type introduced by the compiler to force the
9226 alignment of a value. Such types have a single field with a
9227 distinctive name. */
9228
9229 int
9230 ada_is_aligner_type (struct type *type)
9231 {
9232 type = ada_check_typedef (type);
9233
9234 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9235 return 0;
9236
9237 return (type->code () == TYPE_CODE_STRUCT
9238 && TYPE_NFIELDS (type) == 1
9239 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9240 }
9241
9242 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9243 the parallel type. */
9244
9245 struct type *
9246 ada_get_base_type (struct type *raw_type)
9247 {
9248 struct type *real_type_namer;
9249 struct type *raw_real_type;
9250
9251 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9252 return raw_type;
9253
9254 if (ada_is_aligner_type (raw_type))
9255 /* The encoding specifies that we should always use the aligner type.
9256 So, even if this aligner type has an associated XVS type, we should
9257 simply ignore it.
9258
9259 According to the compiler gurus, an XVS type parallel to an aligner
9260 type may exist because of a stabs limitation. In stabs, aligner
9261 types are empty because the field has a variable-sized type, and
9262 thus cannot actually be used as an aligner type. As a result,
9263 we need the associated parallel XVS type to decode the type.
9264 Since the policy in the compiler is to not change the internal
9265 representation based on the debugging info format, we sometimes
9266 end up having a redundant XVS type parallel to the aligner type. */
9267 return raw_type;
9268
9269 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9270 if (real_type_namer == NULL
9271 || real_type_namer->code () != TYPE_CODE_STRUCT
9272 || TYPE_NFIELDS (real_type_namer) != 1)
9273 return raw_type;
9274
9275 if (TYPE_FIELD_TYPE (real_type_namer, 0)->code () != TYPE_CODE_REF)
9276 {
9277 /* This is an older encoding form where the base type needs to be
9278 looked up by name. We prefer the newer encoding because it is
9279 more efficient. */
9280 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9281 if (raw_real_type == NULL)
9282 return raw_type;
9283 else
9284 return raw_real_type;
9285 }
9286
9287 /* The field in our XVS type is a reference to the base type. */
9288 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9289 }
9290
9291 /* The type of value designated by TYPE, with all aligners removed. */
9292
9293 struct type *
9294 ada_aligned_type (struct type *type)
9295 {
9296 if (ada_is_aligner_type (type))
9297 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9298 else
9299 return ada_get_base_type (type);
9300 }
9301
9302
9303 /* The address of the aligned value in an object at address VALADDR
9304 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9305
9306 const gdb_byte *
9307 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9308 {
9309 if (ada_is_aligner_type (type))
9310 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9311 valaddr +
9312 TYPE_FIELD_BITPOS (type,
9313 0) / TARGET_CHAR_BIT);
9314 else
9315 return valaddr;
9316 }
9317
9318
9319
9320 /* The printed representation of an enumeration literal with encoded
9321 name NAME. The value is good to the next call of ada_enum_name. */
9322 const char *
9323 ada_enum_name (const char *name)
9324 {
9325 static char *result;
9326 static size_t result_len = 0;
9327 const char *tmp;
9328
9329 /* First, unqualify the enumeration name:
9330 1. Search for the last '.' character. If we find one, then skip
9331 all the preceding characters, the unqualified name starts
9332 right after that dot.
9333 2. Otherwise, we may be debugging on a target where the compiler
9334 translates dots into "__". Search forward for double underscores,
9335 but stop searching when we hit an overloading suffix, which is
9336 of the form "__" followed by digits. */
9337
9338 tmp = strrchr (name, '.');
9339 if (tmp != NULL)
9340 name = tmp + 1;
9341 else
9342 {
9343 while ((tmp = strstr (name, "__")) != NULL)
9344 {
9345 if (isdigit (tmp[2]))
9346 break;
9347 else
9348 name = tmp + 2;
9349 }
9350 }
9351
9352 if (name[0] == 'Q')
9353 {
9354 int v;
9355
9356 if (name[1] == 'U' || name[1] == 'W')
9357 {
9358 if (sscanf (name + 2, "%x", &v) != 1)
9359 return name;
9360 }
9361 else if (((name[1] >= '0' && name[1] <= '9')
9362 || (name[1] >= 'a' && name[1] <= 'z'))
9363 && name[2] == '\0')
9364 {
9365 GROW_VECT (result, result_len, 4);
9366 xsnprintf (result, result_len, "'%c'", name[1]);
9367 return result;
9368 }
9369 else
9370 return name;
9371
9372 GROW_VECT (result, result_len, 16);
9373 if (isascii (v) && isprint (v))
9374 xsnprintf (result, result_len, "'%c'", v);
9375 else if (name[1] == 'U')
9376 xsnprintf (result, result_len, "[\"%02x\"]", v);
9377 else
9378 xsnprintf (result, result_len, "[\"%04x\"]", v);
9379
9380 return result;
9381 }
9382 else
9383 {
9384 tmp = strstr (name, "__");
9385 if (tmp == NULL)
9386 tmp = strstr (name, "$");
9387 if (tmp != NULL)
9388 {
9389 GROW_VECT (result, result_len, tmp - name + 1);
9390 strncpy (result, name, tmp - name);
9391 result[tmp - name] = '\0';
9392 return result;
9393 }
9394
9395 return name;
9396 }
9397 }
9398
9399 /* Evaluate the subexpression of EXP starting at *POS as for
9400 evaluate_type, updating *POS to point just past the evaluated
9401 expression. */
9402
9403 static struct value *
9404 evaluate_subexp_type (struct expression *exp, int *pos)
9405 {
9406 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9407 }
9408
9409 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9410 value it wraps. */
9411
9412 static struct value *
9413 unwrap_value (struct value *val)
9414 {
9415 struct type *type = ada_check_typedef (value_type (val));
9416
9417 if (ada_is_aligner_type (type))
9418 {
9419 struct value *v = ada_value_struct_elt (val, "F", 0);
9420 struct type *val_type = ada_check_typedef (value_type (v));
9421
9422 if (ada_type_name (val_type) == NULL)
9423 val_type->set_name (ada_type_name (type));
9424
9425 return unwrap_value (v);
9426 }
9427 else
9428 {
9429 struct type *raw_real_type =
9430 ada_check_typedef (ada_get_base_type (type));
9431
9432 /* If there is no parallel XVS or XVE type, then the value is
9433 already unwrapped. Return it without further modification. */
9434 if ((type == raw_real_type)
9435 && ada_find_parallel_type (type, "___XVE") == NULL)
9436 return val;
9437
9438 return
9439 coerce_unspec_val_to_type
9440 (val, ada_to_fixed_type (raw_real_type, 0,
9441 value_address (val),
9442 NULL, 1));
9443 }
9444 }
9445
9446 static struct value *
9447 cast_from_fixed (struct type *type, struct value *arg)
9448 {
9449 struct value *scale = ada_scaling_factor (value_type (arg));
9450 arg = value_cast (value_type (scale), arg);
9451
9452 arg = value_binop (arg, scale, BINOP_MUL);
9453 return value_cast (type, arg);
9454 }
9455
9456 static struct value *
9457 cast_to_fixed (struct type *type, struct value *arg)
9458 {
9459 if (type == value_type (arg))
9460 return arg;
9461
9462 struct value *scale = ada_scaling_factor (type);
9463 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9464 arg = cast_from_fixed (value_type (scale), arg);
9465 else
9466 arg = value_cast (value_type (scale), arg);
9467
9468 arg = value_binop (arg, scale, BINOP_DIV);
9469 return value_cast (type, arg);
9470 }
9471
9472 /* Given two array types T1 and T2, return nonzero iff both arrays
9473 contain the same number of elements. */
9474
9475 static int
9476 ada_same_array_size_p (struct type *t1, struct type *t2)
9477 {
9478 LONGEST lo1, hi1, lo2, hi2;
9479
9480 /* Get the array bounds in order to verify that the size of
9481 the two arrays match. */
9482 if (!get_array_bounds (t1, &lo1, &hi1)
9483 || !get_array_bounds (t2, &lo2, &hi2))
9484 error (_("unable to determine array bounds"));
9485
9486 /* To make things easier for size comparison, normalize a bit
9487 the case of empty arrays by making sure that the difference
9488 between upper bound and lower bound is always -1. */
9489 if (lo1 > hi1)
9490 hi1 = lo1 - 1;
9491 if (lo2 > hi2)
9492 hi2 = lo2 - 1;
9493
9494 return (hi1 - lo1 == hi2 - lo2);
9495 }
9496
9497 /* Assuming that VAL is an array of integrals, and TYPE represents
9498 an array with the same number of elements, but with wider integral
9499 elements, return an array "casted" to TYPE. In practice, this
9500 means that the returned array is built by casting each element
9501 of the original array into TYPE's (wider) element type. */
9502
9503 static struct value *
9504 ada_promote_array_of_integrals (struct type *type, struct value *val)
9505 {
9506 struct type *elt_type = TYPE_TARGET_TYPE (type);
9507 LONGEST lo, hi;
9508 struct value *res;
9509 LONGEST i;
9510
9511 /* Verify that both val and type are arrays of scalars, and
9512 that the size of val's elements is smaller than the size
9513 of type's element. */
9514 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9515 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9516 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9517 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9518 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9519 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9520
9521 if (!get_array_bounds (type, &lo, &hi))
9522 error (_("unable to determine array bounds"));
9523
9524 res = allocate_value (type);
9525
9526 /* Promote each array element. */
9527 for (i = 0; i < hi - lo + 1; i++)
9528 {
9529 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9530
9531 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9532 value_contents_all (elt), TYPE_LENGTH (elt_type));
9533 }
9534
9535 return res;
9536 }
9537
9538 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9539 return the converted value. */
9540
9541 static struct value *
9542 coerce_for_assign (struct type *type, struct value *val)
9543 {
9544 struct type *type2 = value_type (val);
9545
9546 if (type == type2)
9547 return val;
9548
9549 type2 = ada_check_typedef (type2);
9550 type = ada_check_typedef (type);
9551
9552 if (type2->code () == TYPE_CODE_PTR
9553 && type->code () == TYPE_CODE_ARRAY)
9554 {
9555 val = ada_value_ind (val);
9556 type2 = value_type (val);
9557 }
9558
9559 if (type2->code () == TYPE_CODE_ARRAY
9560 && type->code () == TYPE_CODE_ARRAY)
9561 {
9562 if (!ada_same_array_size_p (type, type2))
9563 error (_("cannot assign arrays of different length"));
9564
9565 if (is_integral_type (TYPE_TARGET_TYPE (type))
9566 && is_integral_type (TYPE_TARGET_TYPE (type2))
9567 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9568 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9569 {
9570 /* Allow implicit promotion of the array elements to
9571 a wider type. */
9572 return ada_promote_array_of_integrals (type, val);
9573 }
9574
9575 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9576 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9577 error (_("Incompatible types in assignment"));
9578 deprecated_set_value_type (val, type);
9579 }
9580 return val;
9581 }
9582
9583 static struct value *
9584 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9585 {
9586 struct value *val;
9587 struct type *type1, *type2;
9588 LONGEST v, v1, v2;
9589
9590 arg1 = coerce_ref (arg1);
9591 arg2 = coerce_ref (arg2);
9592 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9593 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9594
9595 if (type1->code () != TYPE_CODE_INT
9596 || type2->code () != TYPE_CODE_INT)
9597 return value_binop (arg1, arg2, op);
9598
9599 switch (op)
9600 {
9601 case BINOP_MOD:
9602 case BINOP_DIV:
9603 case BINOP_REM:
9604 break;
9605 default:
9606 return value_binop (arg1, arg2, op);
9607 }
9608
9609 v2 = value_as_long (arg2);
9610 if (v2 == 0)
9611 error (_("second operand of %s must not be zero."), op_string (op));
9612
9613 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9614 return value_binop (arg1, arg2, op);
9615
9616 v1 = value_as_long (arg1);
9617 switch (op)
9618 {
9619 case BINOP_DIV:
9620 v = v1 / v2;
9621 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9622 v += v > 0 ? -1 : 1;
9623 break;
9624 case BINOP_REM:
9625 v = v1 % v2;
9626 if (v * v1 < 0)
9627 v -= v2;
9628 break;
9629 default:
9630 /* Should not reach this point. */
9631 v = 0;
9632 }
9633
9634 val = allocate_value (type1);
9635 store_unsigned_integer (value_contents_raw (val),
9636 TYPE_LENGTH (value_type (val)),
9637 type_byte_order (type1), v);
9638 return val;
9639 }
9640
9641 static int
9642 ada_value_equal (struct value *arg1, struct value *arg2)
9643 {
9644 if (ada_is_direct_array_type (value_type (arg1))
9645 || ada_is_direct_array_type (value_type (arg2)))
9646 {
9647 struct type *arg1_type, *arg2_type;
9648
9649 /* Automatically dereference any array reference before
9650 we attempt to perform the comparison. */
9651 arg1 = ada_coerce_ref (arg1);
9652 arg2 = ada_coerce_ref (arg2);
9653
9654 arg1 = ada_coerce_to_simple_array (arg1);
9655 arg2 = ada_coerce_to_simple_array (arg2);
9656
9657 arg1_type = ada_check_typedef (value_type (arg1));
9658 arg2_type = ada_check_typedef (value_type (arg2));
9659
9660 if (arg1_type->code () != TYPE_CODE_ARRAY
9661 || arg2_type->code () != TYPE_CODE_ARRAY)
9662 error (_("Attempt to compare array with non-array"));
9663 /* FIXME: The following works only for types whose
9664 representations use all bits (no padding or undefined bits)
9665 and do not have user-defined equality. */
9666 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9667 && memcmp (value_contents (arg1), value_contents (arg2),
9668 TYPE_LENGTH (arg1_type)) == 0);
9669 }
9670 return value_equal (arg1, arg2);
9671 }
9672
9673 /* Total number of component associations in the aggregate starting at
9674 index PC in EXP. Assumes that index PC is the start of an
9675 OP_AGGREGATE. */
9676
9677 static int
9678 num_component_specs (struct expression *exp, int pc)
9679 {
9680 int n, m, i;
9681
9682 m = exp->elts[pc + 1].longconst;
9683 pc += 3;
9684 n = 0;
9685 for (i = 0; i < m; i += 1)
9686 {
9687 switch (exp->elts[pc].opcode)
9688 {
9689 default:
9690 n += 1;
9691 break;
9692 case OP_CHOICES:
9693 n += exp->elts[pc + 1].longconst;
9694 break;
9695 }
9696 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9697 }
9698 return n;
9699 }
9700
9701 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9702 component of LHS (a simple array or a record), updating *POS past
9703 the expression, assuming that LHS is contained in CONTAINER. Does
9704 not modify the inferior's memory, nor does it modify LHS (unless
9705 LHS == CONTAINER). */
9706
9707 static void
9708 assign_component (struct value *container, struct value *lhs, LONGEST index,
9709 struct expression *exp, int *pos)
9710 {
9711 struct value *mark = value_mark ();
9712 struct value *elt;
9713 struct type *lhs_type = check_typedef (value_type (lhs));
9714
9715 if (lhs_type->code () == TYPE_CODE_ARRAY)
9716 {
9717 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9718 struct value *index_val = value_from_longest (index_type, index);
9719
9720 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9721 }
9722 else
9723 {
9724 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9725 elt = ada_to_fixed_value (elt);
9726 }
9727
9728 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9729 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9730 else
9731 value_assign_to_component (container, elt,
9732 ada_evaluate_subexp (NULL, exp, pos,
9733 EVAL_NORMAL));
9734
9735 value_free_to_mark (mark);
9736 }
9737
9738 /* Assuming that LHS represents an lvalue having a record or array
9739 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9740 of that aggregate's value to LHS, advancing *POS past the
9741 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9742 lvalue containing LHS (possibly LHS itself). Does not modify
9743 the inferior's memory, nor does it modify the contents of
9744 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9745
9746 static struct value *
9747 assign_aggregate (struct value *container,
9748 struct value *lhs, struct expression *exp,
9749 int *pos, enum noside noside)
9750 {
9751 struct type *lhs_type;
9752 int n = exp->elts[*pos+1].longconst;
9753 LONGEST low_index, high_index;
9754 int num_specs;
9755 LONGEST *indices;
9756 int max_indices, num_indices;
9757 int i;
9758
9759 *pos += 3;
9760 if (noside != EVAL_NORMAL)
9761 {
9762 for (i = 0; i < n; i += 1)
9763 ada_evaluate_subexp (NULL, exp, pos, noside);
9764 return container;
9765 }
9766
9767 container = ada_coerce_ref (container);
9768 if (ada_is_direct_array_type (value_type (container)))
9769 container = ada_coerce_to_simple_array (container);
9770 lhs = ada_coerce_ref (lhs);
9771 if (!deprecated_value_modifiable (lhs))
9772 error (_("Left operand of assignment is not a modifiable lvalue."));
9773
9774 lhs_type = check_typedef (value_type (lhs));
9775 if (ada_is_direct_array_type (lhs_type))
9776 {
9777 lhs = ada_coerce_to_simple_array (lhs);
9778 lhs_type = check_typedef (value_type (lhs));
9779 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9780 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9781 }
9782 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9783 {
9784 low_index = 0;
9785 high_index = num_visible_fields (lhs_type) - 1;
9786 }
9787 else
9788 error (_("Left-hand side must be array or record."));
9789
9790 num_specs = num_component_specs (exp, *pos - 3);
9791 max_indices = 4 * num_specs + 4;
9792 indices = XALLOCAVEC (LONGEST, max_indices);
9793 indices[0] = indices[1] = low_index - 1;
9794 indices[2] = indices[3] = high_index + 1;
9795 num_indices = 4;
9796
9797 for (i = 0; i < n; i += 1)
9798 {
9799 switch (exp->elts[*pos].opcode)
9800 {
9801 case OP_CHOICES:
9802 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9803 &num_indices, max_indices,
9804 low_index, high_index);
9805 break;
9806 case OP_POSITIONAL:
9807 aggregate_assign_positional (container, lhs, exp, pos, indices,
9808 &num_indices, max_indices,
9809 low_index, high_index);
9810 break;
9811 case OP_OTHERS:
9812 if (i != n-1)
9813 error (_("Misplaced 'others' clause"));
9814 aggregate_assign_others (container, lhs, exp, pos, indices,
9815 num_indices, low_index, high_index);
9816 break;
9817 default:
9818 error (_("Internal error: bad aggregate clause"));
9819 }
9820 }
9821
9822 return container;
9823 }
9824
9825 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9826 construct at *POS, updating *POS past the construct, given that
9827 the positions are relative to lower bound LOW, where HIGH is the
9828 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9829 updating *NUM_INDICES as needed. CONTAINER is as for
9830 assign_aggregate. */
9831 static void
9832 aggregate_assign_positional (struct value *container,
9833 struct value *lhs, struct expression *exp,
9834 int *pos, LONGEST *indices, int *num_indices,
9835 int max_indices, LONGEST low, LONGEST high)
9836 {
9837 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9838
9839 if (ind - 1 == high)
9840 warning (_("Extra components in aggregate ignored."));
9841 if (ind <= high)
9842 {
9843 add_component_interval (ind, ind, indices, num_indices, max_indices);
9844 *pos += 3;
9845 assign_component (container, lhs, ind, exp, pos);
9846 }
9847 else
9848 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9849 }
9850
9851 /* Assign into the components of LHS indexed by the OP_CHOICES
9852 construct at *POS, updating *POS past the construct, given that
9853 the allowable indices are LOW..HIGH. Record the indices assigned
9854 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9855 needed. CONTAINER is as for assign_aggregate. */
9856 static void
9857 aggregate_assign_from_choices (struct value *container,
9858 struct value *lhs, struct expression *exp,
9859 int *pos, LONGEST *indices, int *num_indices,
9860 int max_indices, LONGEST low, LONGEST high)
9861 {
9862 int j;
9863 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9864 int choice_pos, expr_pc;
9865 int is_array = ada_is_direct_array_type (value_type (lhs));
9866
9867 choice_pos = *pos += 3;
9868
9869 for (j = 0; j < n_choices; j += 1)
9870 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9871 expr_pc = *pos;
9872 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9873
9874 for (j = 0; j < n_choices; j += 1)
9875 {
9876 LONGEST lower, upper;
9877 enum exp_opcode op = exp->elts[choice_pos].opcode;
9878
9879 if (op == OP_DISCRETE_RANGE)
9880 {
9881 choice_pos += 1;
9882 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9883 EVAL_NORMAL));
9884 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9885 EVAL_NORMAL));
9886 }
9887 else if (is_array)
9888 {
9889 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9890 EVAL_NORMAL));
9891 upper = lower;
9892 }
9893 else
9894 {
9895 int ind;
9896 const char *name;
9897
9898 switch (op)
9899 {
9900 case OP_NAME:
9901 name = &exp->elts[choice_pos + 2].string;
9902 break;
9903 case OP_VAR_VALUE:
9904 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9905 break;
9906 default:
9907 error (_("Invalid record component association."));
9908 }
9909 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9910 ind = 0;
9911 if (! find_struct_field (name, value_type (lhs), 0,
9912 NULL, NULL, NULL, NULL, &ind))
9913 error (_("Unknown component name: %s."), name);
9914 lower = upper = ind;
9915 }
9916
9917 if (lower <= upper && (lower < low || upper > high))
9918 error (_("Index in component association out of bounds."));
9919
9920 add_component_interval (lower, upper, indices, num_indices,
9921 max_indices);
9922 while (lower <= upper)
9923 {
9924 int pos1;
9925
9926 pos1 = expr_pc;
9927 assign_component (container, lhs, lower, exp, &pos1);
9928 lower += 1;
9929 }
9930 }
9931 }
9932
9933 /* Assign the value of the expression in the OP_OTHERS construct in
9934 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9935 have not been previously assigned. The index intervals already assigned
9936 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9937 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9938 static void
9939 aggregate_assign_others (struct value *container,
9940 struct value *lhs, struct expression *exp,
9941 int *pos, LONGEST *indices, int num_indices,
9942 LONGEST low, LONGEST high)
9943 {
9944 int i;
9945 int expr_pc = *pos + 1;
9946
9947 for (i = 0; i < num_indices - 2; i += 2)
9948 {
9949 LONGEST ind;
9950
9951 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9952 {
9953 int localpos;
9954
9955 localpos = expr_pc;
9956 assign_component (container, lhs, ind, exp, &localpos);
9957 }
9958 }
9959 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9960 }
9961
9962 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9963 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9964 modifying *SIZE as needed. It is an error if *SIZE exceeds
9965 MAX_SIZE. The resulting intervals do not overlap. */
9966 static void
9967 add_component_interval (LONGEST low, LONGEST high,
9968 LONGEST* indices, int *size, int max_size)
9969 {
9970 int i, j;
9971
9972 for (i = 0; i < *size; i += 2) {
9973 if (high >= indices[i] && low <= indices[i + 1])
9974 {
9975 int kh;
9976
9977 for (kh = i + 2; kh < *size; kh += 2)
9978 if (high < indices[kh])
9979 break;
9980 if (low < indices[i])
9981 indices[i] = low;
9982 indices[i + 1] = indices[kh - 1];
9983 if (high > indices[i + 1])
9984 indices[i + 1] = high;
9985 memcpy (indices + i + 2, indices + kh, *size - kh);
9986 *size -= kh - i - 2;
9987 return;
9988 }
9989 else if (high < indices[i])
9990 break;
9991 }
9992
9993 if (*size == max_size)
9994 error (_("Internal error: miscounted aggregate components."));
9995 *size += 2;
9996 for (j = *size-1; j >= i+2; j -= 1)
9997 indices[j] = indices[j - 2];
9998 indices[i] = low;
9999 indices[i + 1] = high;
10000 }
10001
10002 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10003 is different. */
10004
10005 static struct value *
10006 ada_value_cast (struct type *type, struct value *arg2)
10007 {
10008 if (type == ada_check_typedef (value_type (arg2)))
10009 return arg2;
10010
10011 if (ada_is_gnat_encoded_fixed_point_type (type))
10012 return cast_to_fixed (type, arg2);
10013
10014 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10015 return cast_from_fixed (type, arg2);
10016
10017 return value_cast (type, arg2);
10018 }
10019
10020 /* Evaluating Ada expressions, and printing their result.
10021 ------------------------------------------------------
10022
10023 1. Introduction:
10024 ----------------
10025
10026 We usually evaluate an Ada expression in order to print its value.
10027 We also evaluate an expression in order to print its type, which
10028 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10029 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10030 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10031 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10032 similar.
10033
10034 Evaluating expressions is a little more complicated for Ada entities
10035 than it is for entities in languages such as C. The main reason for
10036 this is that Ada provides types whose definition might be dynamic.
10037 One example of such types is variant records. Or another example
10038 would be an array whose bounds can only be known at run time.
10039
10040 The following description is a general guide as to what should be
10041 done (and what should NOT be done) in order to evaluate an expression
10042 involving such types, and when. This does not cover how the semantic
10043 information is encoded by GNAT as this is covered separatly. For the
10044 document used as the reference for the GNAT encoding, see exp_dbug.ads
10045 in the GNAT sources.
10046
10047 Ideally, we should embed each part of this description next to its
10048 associated code. Unfortunately, the amount of code is so vast right
10049 now that it's hard to see whether the code handling a particular
10050 situation might be duplicated or not. One day, when the code is
10051 cleaned up, this guide might become redundant with the comments
10052 inserted in the code, and we might want to remove it.
10053
10054 2. ``Fixing'' an Entity, the Simple Case:
10055 -----------------------------------------
10056
10057 When evaluating Ada expressions, the tricky issue is that they may
10058 reference entities whose type contents and size are not statically
10059 known. Consider for instance a variant record:
10060
10061 type Rec (Empty : Boolean := True) is record
10062 case Empty is
10063 when True => null;
10064 when False => Value : Integer;
10065 end case;
10066 end record;
10067 Yes : Rec := (Empty => False, Value => 1);
10068 No : Rec := (empty => True);
10069
10070 The size and contents of that record depends on the value of the
10071 descriminant (Rec.Empty). At this point, neither the debugging
10072 information nor the associated type structure in GDB are able to
10073 express such dynamic types. So what the debugger does is to create
10074 "fixed" versions of the type that applies to the specific object.
10075 We also informally refer to this operation as "fixing" an object,
10076 which means creating its associated fixed type.
10077
10078 Example: when printing the value of variable "Yes" above, its fixed
10079 type would look like this:
10080
10081 type Rec is record
10082 Empty : Boolean;
10083 Value : Integer;
10084 end record;
10085
10086 On the other hand, if we printed the value of "No", its fixed type
10087 would become:
10088
10089 type Rec is record
10090 Empty : Boolean;
10091 end record;
10092
10093 Things become a little more complicated when trying to fix an entity
10094 with a dynamic type that directly contains another dynamic type,
10095 such as an array of variant records, for instance. There are
10096 two possible cases: Arrays, and records.
10097
10098 3. ``Fixing'' Arrays:
10099 ---------------------
10100
10101 The type structure in GDB describes an array in terms of its bounds,
10102 and the type of its elements. By design, all elements in the array
10103 have the same type and we cannot represent an array of variant elements
10104 using the current type structure in GDB. When fixing an array,
10105 we cannot fix the array element, as we would potentially need one
10106 fixed type per element of the array. As a result, the best we can do
10107 when fixing an array is to produce an array whose bounds and size
10108 are correct (allowing us to read it from memory), but without having
10109 touched its element type. Fixing each element will be done later,
10110 when (if) necessary.
10111
10112 Arrays are a little simpler to handle than records, because the same
10113 amount of memory is allocated for each element of the array, even if
10114 the amount of space actually used by each element differs from element
10115 to element. Consider for instance the following array of type Rec:
10116
10117 type Rec_Array is array (1 .. 2) of Rec;
10118
10119 The actual amount of memory occupied by each element might be different
10120 from element to element, depending on the value of their discriminant.
10121 But the amount of space reserved for each element in the array remains
10122 fixed regardless. So we simply need to compute that size using
10123 the debugging information available, from which we can then determine
10124 the array size (we multiply the number of elements of the array by
10125 the size of each element).
10126
10127 The simplest case is when we have an array of a constrained element
10128 type. For instance, consider the following type declarations:
10129
10130 type Bounded_String (Max_Size : Integer) is
10131 Length : Integer;
10132 Buffer : String (1 .. Max_Size);
10133 end record;
10134 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10135
10136 In this case, the compiler describes the array as an array of
10137 variable-size elements (identified by its XVS suffix) for which
10138 the size can be read in the parallel XVZ variable.
10139
10140 In the case of an array of an unconstrained element type, the compiler
10141 wraps the array element inside a private PAD type. This type should not
10142 be shown to the user, and must be "unwrap"'ed before printing. Note
10143 that we also use the adjective "aligner" in our code to designate
10144 these wrapper types.
10145
10146 In some cases, the size allocated for each element is statically
10147 known. In that case, the PAD type already has the correct size,
10148 and the array element should remain unfixed.
10149
10150 But there are cases when this size is not statically known.
10151 For instance, assuming that "Five" is an integer variable:
10152
10153 type Dynamic is array (1 .. Five) of Integer;
10154 type Wrapper (Has_Length : Boolean := False) is record
10155 Data : Dynamic;
10156 case Has_Length is
10157 when True => Length : Integer;
10158 when False => null;
10159 end case;
10160 end record;
10161 type Wrapper_Array is array (1 .. 2) of Wrapper;
10162
10163 Hello : Wrapper_Array := (others => (Has_Length => True,
10164 Data => (others => 17),
10165 Length => 1));
10166
10167
10168 The debugging info would describe variable Hello as being an
10169 array of a PAD type. The size of that PAD type is not statically
10170 known, but can be determined using a parallel XVZ variable.
10171 In that case, a copy of the PAD type with the correct size should
10172 be used for the fixed array.
10173
10174 3. ``Fixing'' record type objects:
10175 ----------------------------------
10176
10177 Things are slightly different from arrays in the case of dynamic
10178 record types. In this case, in order to compute the associated
10179 fixed type, we need to determine the size and offset of each of
10180 its components. This, in turn, requires us to compute the fixed
10181 type of each of these components.
10182
10183 Consider for instance the example:
10184
10185 type Bounded_String (Max_Size : Natural) is record
10186 Str : String (1 .. Max_Size);
10187 Length : Natural;
10188 end record;
10189 My_String : Bounded_String (Max_Size => 10);
10190
10191 In that case, the position of field "Length" depends on the size
10192 of field Str, which itself depends on the value of the Max_Size
10193 discriminant. In order to fix the type of variable My_String,
10194 we need to fix the type of field Str. Therefore, fixing a variant
10195 record requires us to fix each of its components.
10196
10197 However, if a component does not have a dynamic size, the component
10198 should not be fixed. In particular, fields that use a PAD type
10199 should not fixed. Here is an example where this might happen
10200 (assuming type Rec above):
10201
10202 type Container (Big : Boolean) is record
10203 First : Rec;
10204 After : Integer;
10205 case Big is
10206 when True => Another : Integer;
10207 when False => null;
10208 end case;
10209 end record;
10210 My_Container : Container := (Big => False,
10211 First => (Empty => True),
10212 After => 42);
10213
10214 In that example, the compiler creates a PAD type for component First,
10215 whose size is constant, and then positions the component After just
10216 right after it. The offset of component After is therefore constant
10217 in this case.
10218
10219 The debugger computes the position of each field based on an algorithm
10220 that uses, among other things, the actual position and size of the field
10221 preceding it. Let's now imagine that the user is trying to print
10222 the value of My_Container. If the type fixing was recursive, we would
10223 end up computing the offset of field After based on the size of the
10224 fixed version of field First. And since in our example First has
10225 only one actual field, the size of the fixed type is actually smaller
10226 than the amount of space allocated to that field, and thus we would
10227 compute the wrong offset of field After.
10228
10229 To make things more complicated, we need to watch out for dynamic
10230 components of variant records (identified by the ___XVL suffix in
10231 the component name). Even if the target type is a PAD type, the size
10232 of that type might not be statically known. So the PAD type needs
10233 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10234 we might end up with the wrong size for our component. This can be
10235 observed with the following type declarations:
10236
10237 type Octal is new Integer range 0 .. 7;
10238 type Octal_Array is array (Positive range <>) of Octal;
10239 pragma Pack (Octal_Array);
10240
10241 type Octal_Buffer (Size : Positive) is record
10242 Buffer : Octal_Array (1 .. Size);
10243 Length : Integer;
10244 end record;
10245
10246 In that case, Buffer is a PAD type whose size is unset and needs
10247 to be computed by fixing the unwrapped type.
10248
10249 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10250 ----------------------------------------------------------
10251
10252 Lastly, when should the sub-elements of an entity that remained unfixed
10253 thus far, be actually fixed?
10254
10255 The answer is: Only when referencing that element. For instance
10256 when selecting one component of a record, this specific component
10257 should be fixed at that point in time. Or when printing the value
10258 of a record, each component should be fixed before its value gets
10259 printed. Similarly for arrays, the element of the array should be
10260 fixed when printing each element of the array, or when extracting
10261 one element out of that array. On the other hand, fixing should
10262 not be performed on the elements when taking a slice of an array!
10263
10264 Note that one of the side effects of miscomputing the offset and
10265 size of each field is that we end up also miscomputing the size
10266 of the containing type. This can have adverse results when computing
10267 the value of an entity. GDB fetches the value of an entity based
10268 on the size of its type, and thus a wrong size causes GDB to fetch
10269 the wrong amount of memory. In the case where the computed size is
10270 too small, GDB fetches too little data to print the value of our
10271 entity. Results in this case are unpredictable, as we usually read
10272 past the buffer containing the data =:-o. */
10273
10274 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10275 for that subexpression cast to TO_TYPE. Advance *POS over the
10276 subexpression. */
10277
10278 static value *
10279 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10280 enum noside noside, struct type *to_type)
10281 {
10282 int pc = *pos;
10283
10284 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10285 || exp->elts[pc].opcode == OP_VAR_VALUE)
10286 {
10287 (*pos) += 4;
10288
10289 value *val;
10290 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10291 {
10292 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10293 return value_zero (to_type, not_lval);
10294
10295 val = evaluate_var_msym_value (noside,
10296 exp->elts[pc + 1].objfile,
10297 exp->elts[pc + 2].msymbol);
10298 }
10299 else
10300 val = evaluate_var_value (noside,
10301 exp->elts[pc + 1].block,
10302 exp->elts[pc + 2].symbol);
10303
10304 if (noside == EVAL_SKIP)
10305 return eval_skip_value (exp);
10306
10307 val = ada_value_cast (to_type, val);
10308
10309 /* Follow the Ada language semantics that do not allow taking
10310 an address of the result of a cast (view conversion in Ada). */
10311 if (VALUE_LVAL (val) == lval_memory)
10312 {
10313 if (value_lazy (val))
10314 value_fetch_lazy (val);
10315 VALUE_LVAL (val) = not_lval;
10316 }
10317 return val;
10318 }
10319
10320 value *val = evaluate_subexp (to_type, exp, pos, noside);
10321 if (noside == EVAL_SKIP)
10322 return eval_skip_value (exp);
10323 return ada_value_cast (to_type, val);
10324 }
10325
10326 /* Implement the evaluate_exp routine in the exp_descriptor structure
10327 for the Ada language. */
10328
10329 static struct value *
10330 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10331 int *pos, enum noside noside)
10332 {
10333 enum exp_opcode op;
10334 int tem;
10335 int pc;
10336 int preeval_pos;
10337 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10338 struct type *type;
10339 int nargs, oplen;
10340 struct value **argvec;
10341
10342 pc = *pos;
10343 *pos += 1;
10344 op = exp->elts[pc].opcode;
10345
10346 switch (op)
10347 {
10348 default:
10349 *pos -= 1;
10350 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10351
10352 if (noside == EVAL_NORMAL)
10353 arg1 = unwrap_value (arg1);
10354
10355 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10356 then we need to perform the conversion manually, because
10357 evaluate_subexp_standard doesn't do it. This conversion is
10358 necessary in Ada because the different kinds of float/fixed
10359 types in Ada have different representations.
10360
10361 Similarly, we need to perform the conversion from OP_LONG
10362 ourselves. */
10363 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10364 arg1 = ada_value_cast (expect_type, arg1);
10365
10366 return arg1;
10367
10368 case OP_STRING:
10369 {
10370 struct value *result;
10371
10372 *pos -= 1;
10373 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10374 /* The result type will have code OP_STRING, bashed there from
10375 OP_ARRAY. Bash it back. */
10376 if (value_type (result)->code () == TYPE_CODE_STRING)
10377 value_type (result)->set_code (TYPE_CODE_ARRAY);
10378 return result;
10379 }
10380
10381 case UNOP_CAST:
10382 (*pos) += 2;
10383 type = exp->elts[pc + 1].type;
10384 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10385
10386 case UNOP_QUAL:
10387 (*pos) += 2;
10388 type = exp->elts[pc + 1].type;
10389 return ada_evaluate_subexp (type, exp, pos, noside);
10390
10391 case BINOP_ASSIGN:
10392 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10393 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10394 {
10395 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10396 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10397 return arg1;
10398 return ada_value_assign (arg1, arg1);
10399 }
10400 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10401 except if the lhs of our assignment is a convenience variable.
10402 In the case of assigning to a convenience variable, the lhs
10403 should be exactly the result of the evaluation of the rhs. */
10404 type = value_type (arg1);
10405 if (VALUE_LVAL (arg1) == lval_internalvar)
10406 type = NULL;
10407 arg2 = evaluate_subexp (type, exp, pos, noside);
10408 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10409 return arg1;
10410 if (VALUE_LVAL (arg1) == lval_internalvar)
10411 {
10412 /* Nothing. */
10413 }
10414 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10415 arg2 = cast_to_fixed (value_type (arg1), arg2);
10416 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10417 error
10418 (_("Fixed-point values must be assigned to fixed-point variables"));
10419 else
10420 arg2 = coerce_for_assign (value_type (arg1), arg2);
10421 return ada_value_assign (arg1, arg2);
10422
10423 case BINOP_ADD:
10424 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10425 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10426 if (noside == EVAL_SKIP)
10427 goto nosideret;
10428 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10429 return (value_from_longest
10430 (value_type (arg1),
10431 value_as_long (arg1) + value_as_long (arg2)));
10432 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10433 return (value_from_longest
10434 (value_type (arg2),
10435 value_as_long (arg1) + value_as_long (arg2)));
10436 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10437 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10438 && value_type (arg1) != value_type (arg2))
10439 error (_("Operands of fixed-point addition must have the same type"));
10440 /* Do the addition, and cast the result to the type of the first
10441 argument. We cannot cast the result to a reference type, so if
10442 ARG1 is a reference type, find its underlying type. */
10443 type = value_type (arg1);
10444 while (type->code () == TYPE_CODE_REF)
10445 type = TYPE_TARGET_TYPE (type);
10446 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10447 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10448
10449 case BINOP_SUB:
10450 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10451 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10452 if (noside == EVAL_SKIP)
10453 goto nosideret;
10454 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10455 return (value_from_longest
10456 (value_type (arg1),
10457 value_as_long (arg1) - value_as_long (arg2)));
10458 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10459 return (value_from_longest
10460 (value_type (arg2),
10461 value_as_long (arg1) - value_as_long (arg2)));
10462 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10463 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10464 && value_type (arg1) != value_type (arg2))
10465 error (_("Operands of fixed-point subtraction "
10466 "must have the same type"));
10467 /* Do the substraction, and cast the result to the type of the first
10468 argument. We cannot cast the result to a reference type, so if
10469 ARG1 is a reference type, find its underlying type. */
10470 type = value_type (arg1);
10471 while (type->code () == TYPE_CODE_REF)
10472 type = TYPE_TARGET_TYPE (type);
10473 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10474 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10475
10476 case BINOP_MUL:
10477 case BINOP_DIV:
10478 case BINOP_REM:
10479 case BINOP_MOD:
10480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10481 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10482 if (noside == EVAL_SKIP)
10483 goto nosideret;
10484 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10485 {
10486 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10487 return value_zero (value_type (arg1), not_lval);
10488 }
10489 else
10490 {
10491 type = builtin_type (exp->gdbarch)->builtin_double;
10492 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10493 arg1 = cast_from_fixed (type, arg1);
10494 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10495 arg2 = cast_from_fixed (type, arg2);
10496 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10497 return ada_value_binop (arg1, arg2, op);
10498 }
10499
10500 case BINOP_EQUAL:
10501 case BINOP_NOTEQUAL:
10502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10503 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10504 if (noside == EVAL_SKIP)
10505 goto nosideret;
10506 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10507 tem = 0;
10508 else
10509 {
10510 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10511 tem = ada_value_equal (arg1, arg2);
10512 }
10513 if (op == BINOP_NOTEQUAL)
10514 tem = !tem;
10515 type = language_bool_type (exp->language_defn, exp->gdbarch);
10516 return value_from_longest (type, (LONGEST) tem);
10517
10518 case UNOP_NEG:
10519 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10520 if (noside == EVAL_SKIP)
10521 goto nosideret;
10522 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10523 return value_cast (value_type (arg1), value_neg (arg1));
10524 else
10525 {
10526 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10527 return value_neg (arg1);
10528 }
10529
10530 case BINOP_LOGICAL_AND:
10531 case BINOP_LOGICAL_OR:
10532 case UNOP_LOGICAL_NOT:
10533 {
10534 struct value *val;
10535
10536 *pos -= 1;
10537 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10538 type = language_bool_type (exp->language_defn, exp->gdbarch);
10539 return value_cast (type, val);
10540 }
10541
10542 case BINOP_BITWISE_AND:
10543 case BINOP_BITWISE_IOR:
10544 case BINOP_BITWISE_XOR:
10545 {
10546 struct value *val;
10547
10548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10549 *pos = pc;
10550 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10551
10552 return value_cast (value_type (arg1), val);
10553 }
10554
10555 case OP_VAR_VALUE:
10556 *pos -= 1;
10557
10558 if (noside == EVAL_SKIP)
10559 {
10560 *pos += 4;
10561 goto nosideret;
10562 }
10563
10564 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10565 /* Only encountered when an unresolved symbol occurs in a
10566 context other than a function call, in which case, it is
10567 invalid. */
10568 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10569 exp->elts[pc + 2].symbol->print_name ());
10570
10571 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10572 {
10573 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10574 /* Check to see if this is a tagged type. We also need to handle
10575 the case where the type is a reference to a tagged type, but
10576 we have to be careful to exclude pointers to tagged types.
10577 The latter should be shown as usual (as a pointer), whereas
10578 a reference should mostly be transparent to the user. */
10579 if (ada_is_tagged_type (type, 0)
10580 || (type->code () == TYPE_CODE_REF
10581 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10582 {
10583 /* Tagged types are a little special in the fact that the real
10584 type is dynamic and can only be determined by inspecting the
10585 object's tag. This means that we need to get the object's
10586 value first (EVAL_NORMAL) and then extract the actual object
10587 type from its tag.
10588
10589 Note that we cannot skip the final step where we extract
10590 the object type from its tag, because the EVAL_NORMAL phase
10591 results in dynamic components being resolved into fixed ones.
10592 This can cause problems when trying to print the type
10593 description of tagged types whose parent has a dynamic size:
10594 We use the type name of the "_parent" component in order
10595 to print the name of the ancestor type in the type description.
10596 If that component had a dynamic size, the resolution into
10597 a fixed type would result in the loss of that type name,
10598 thus preventing us from printing the name of the ancestor
10599 type in the type description. */
10600 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10601
10602 if (type->code () != TYPE_CODE_REF)
10603 {
10604 struct type *actual_type;
10605
10606 actual_type = type_from_tag (ada_value_tag (arg1));
10607 if (actual_type == NULL)
10608 /* If, for some reason, we were unable to determine
10609 the actual type from the tag, then use the static
10610 approximation that we just computed as a fallback.
10611 This can happen if the debugging information is
10612 incomplete, for instance. */
10613 actual_type = type;
10614 return value_zero (actual_type, not_lval);
10615 }
10616 else
10617 {
10618 /* In the case of a ref, ada_coerce_ref takes care
10619 of determining the actual type. But the evaluation
10620 should return a ref as it should be valid to ask
10621 for its address; so rebuild a ref after coerce. */
10622 arg1 = ada_coerce_ref (arg1);
10623 return value_ref (arg1, TYPE_CODE_REF);
10624 }
10625 }
10626
10627 /* Records and unions for which GNAT encodings have been
10628 generated need to be statically fixed as well.
10629 Otherwise, non-static fixing produces a type where
10630 all dynamic properties are removed, which prevents "ptype"
10631 from being able to completely describe the type.
10632 For instance, a case statement in a variant record would be
10633 replaced by the relevant components based on the actual
10634 value of the discriminants. */
10635 if ((type->code () == TYPE_CODE_STRUCT
10636 && dynamic_template_type (type) != NULL)
10637 || (type->code () == TYPE_CODE_UNION
10638 && ada_find_parallel_type (type, "___XVU") != NULL))
10639 {
10640 *pos += 4;
10641 return value_zero (to_static_fixed_type (type), not_lval);
10642 }
10643 }
10644
10645 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10646 return ada_to_fixed_value (arg1);
10647
10648 case OP_FUNCALL:
10649 (*pos) += 2;
10650
10651 /* Allocate arg vector, including space for the function to be
10652 called in argvec[0] and a terminating NULL. */
10653 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10654 argvec = XALLOCAVEC (struct value *, nargs + 2);
10655
10656 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10657 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10658 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10659 exp->elts[pc + 5].symbol->print_name ());
10660 else
10661 {
10662 for (tem = 0; tem <= nargs; tem += 1)
10663 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10664 argvec[tem] = 0;
10665
10666 if (noside == EVAL_SKIP)
10667 goto nosideret;
10668 }
10669
10670 if (ada_is_constrained_packed_array_type
10671 (desc_base_type (value_type (argvec[0]))))
10672 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10673 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10674 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10675 /* This is a packed array that has already been fixed, and
10676 therefore already coerced to a simple array. Nothing further
10677 to do. */
10678 ;
10679 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10680 {
10681 /* Make sure we dereference references so that all the code below
10682 feels like it's really handling the referenced value. Wrapping
10683 types (for alignment) may be there, so make sure we strip them as
10684 well. */
10685 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10686 }
10687 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10688 && VALUE_LVAL (argvec[0]) == lval_memory)
10689 argvec[0] = value_addr (argvec[0]);
10690
10691 type = ada_check_typedef (value_type (argvec[0]));
10692
10693 /* Ada allows us to implicitly dereference arrays when subscripting
10694 them. So, if this is an array typedef (encoding use for array
10695 access types encoded as fat pointers), strip it now. */
10696 if (type->code () == TYPE_CODE_TYPEDEF)
10697 type = ada_typedef_target_type (type);
10698
10699 if (type->code () == TYPE_CODE_PTR)
10700 {
10701 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10702 {
10703 case TYPE_CODE_FUNC:
10704 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10705 break;
10706 case TYPE_CODE_ARRAY:
10707 break;
10708 case TYPE_CODE_STRUCT:
10709 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10710 argvec[0] = ada_value_ind (argvec[0]);
10711 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10712 break;
10713 default:
10714 error (_("cannot subscript or call something of type `%s'"),
10715 ada_type_name (value_type (argvec[0])));
10716 break;
10717 }
10718 }
10719
10720 switch (type->code ())
10721 {
10722 case TYPE_CODE_FUNC:
10723 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10724 {
10725 if (TYPE_TARGET_TYPE (type) == NULL)
10726 error_call_unknown_return_type (NULL);
10727 return allocate_value (TYPE_TARGET_TYPE (type));
10728 }
10729 return call_function_by_hand (argvec[0], NULL,
10730 gdb::make_array_view (argvec + 1,
10731 nargs));
10732 case TYPE_CODE_INTERNAL_FUNCTION:
10733 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10734 /* We don't know anything about what the internal
10735 function might return, but we have to return
10736 something. */
10737 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10738 not_lval);
10739 else
10740 return call_internal_function (exp->gdbarch, exp->language_defn,
10741 argvec[0], nargs, argvec + 1);
10742
10743 case TYPE_CODE_STRUCT:
10744 {
10745 int arity;
10746
10747 arity = ada_array_arity (type);
10748 type = ada_array_element_type (type, nargs);
10749 if (type == NULL)
10750 error (_("cannot subscript or call a record"));
10751 if (arity != nargs)
10752 error (_("wrong number of subscripts; expecting %d"), arity);
10753 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10754 return value_zero (ada_aligned_type (type), lval_memory);
10755 return
10756 unwrap_value (ada_value_subscript
10757 (argvec[0], nargs, argvec + 1));
10758 }
10759 case TYPE_CODE_ARRAY:
10760 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10761 {
10762 type = ada_array_element_type (type, nargs);
10763 if (type == NULL)
10764 error (_("element type of array unknown"));
10765 else
10766 return value_zero (ada_aligned_type (type), lval_memory);
10767 }
10768 return
10769 unwrap_value (ada_value_subscript
10770 (ada_coerce_to_simple_array (argvec[0]),
10771 nargs, argvec + 1));
10772 case TYPE_CODE_PTR: /* Pointer to array */
10773 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10774 {
10775 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10776 type = ada_array_element_type (type, nargs);
10777 if (type == NULL)
10778 error (_("element type of array unknown"));
10779 else
10780 return value_zero (ada_aligned_type (type), lval_memory);
10781 }
10782 return
10783 unwrap_value (ada_value_ptr_subscript (argvec[0],
10784 nargs, argvec + 1));
10785
10786 default:
10787 error (_("Attempt to index or call something other than an "
10788 "array or function"));
10789 }
10790
10791 case TERNOP_SLICE:
10792 {
10793 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10794 struct value *low_bound_val =
10795 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10796 struct value *high_bound_val =
10797 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10798 LONGEST low_bound;
10799 LONGEST high_bound;
10800
10801 low_bound_val = coerce_ref (low_bound_val);
10802 high_bound_val = coerce_ref (high_bound_val);
10803 low_bound = value_as_long (low_bound_val);
10804 high_bound = value_as_long (high_bound_val);
10805
10806 if (noside == EVAL_SKIP)
10807 goto nosideret;
10808
10809 /* If this is a reference to an aligner type, then remove all
10810 the aligners. */
10811 if (value_type (array)->code () == TYPE_CODE_REF
10812 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10813 TYPE_TARGET_TYPE (value_type (array)) =
10814 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10815
10816 if (ada_is_constrained_packed_array_type (value_type (array)))
10817 error (_("cannot slice a packed array"));
10818
10819 /* If this is a reference to an array or an array lvalue,
10820 convert to a pointer. */
10821 if (value_type (array)->code () == TYPE_CODE_REF
10822 || (value_type (array)->code () == TYPE_CODE_ARRAY
10823 && VALUE_LVAL (array) == lval_memory))
10824 array = value_addr (array);
10825
10826 if (noside == EVAL_AVOID_SIDE_EFFECTS
10827 && ada_is_array_descriptor_type (ada_check_typedef
10828 (value_type (array))))
10829 return empty_array (ada_type_of_array (array, 0), low_bound,
10830 high_bound);
10831
10832 array = ada_coerce_to_simple_array_ptr (array);
10833
10834 /* If we have more than one level of pointer indirection,
10835 dereference the value until we get only one level. */
10836 while (value_type (array)->code () == TYPE_CODE_PTR
10837 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10838 == TYPE_CODE_PTR))
10839 array = value_ind (array);
10840
10841 /* Make sure we really do have an array type before going further,
10842 to avoid a SEGV when trying to get the index type or the target
10843 type later down the road if the debug info generated by
10844 the compiler is incorrect or incomplete. */
10845 if (!ada_is_simple_array_type (value_type (array)))
10846 error (_("cannot take slice of non-array"));
10847
10848 if (ada_check_typedef (value_type (array))->code ()
10849 == TYPE_CODE_PTR)
10850 {
10851 struct type *type0 = ada_check_typedef (value_type (array));
10852
10853 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10854 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10855 else
10856 {
10857 struct type *arr_type0 =
10858 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10859
10860 return ada_value_slice_from_ptr (array, arr_type0,
10861 longest_to_int (low_bound),
10862 longest_to_int (high_bound));
10863 }
10864 }
10865 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10866 return array;
10867 else if (high_bound < low_bound)
10868 return empty_array (value_type (array), low_bound, high_bound);
10869 else
10870 return ada_value_slice (array, longest_to_int (low_bound),
10871 longest_to_int (high_bound));
10872 }
10873
10874 case UNOP_IN_RANGE:
10875 (*pos) += 2;
10876 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10877 type = check_typedef (exp->elts[pc + 1].type);
10878
10879 if (noside == EVAL_SKIP)
10880 goto nosideret;
10881
10882 switch (type->code ())
10883 {
10884 default:
10885 lim_warning (_("Membership test incompletely implemented; "
10886 "always returns true"));
10887 type = language_bool_type (exp->language_defn, exp->gdbarch);
10888 return value_from_longest (type, (LONGEST) 1);
10889
10890 case TYPE_CODE_RANGE:
10891 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10892 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10893 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10894 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10895 type = language_bool_type (exp->language_defn, exp->gdbarch);
10896 return
10897 value_from_longest (type,
10898 (value_less (arg1, arg3)
10899 || value_equal (arg1, arg3))
10900 && (value_less (arg2, arg1)
10901 || value_equal (arg2, arg1)));
10902 }
10903
10904 case BINOP_IN_BOUNDS:
10905 (*pos) += 2;
10906 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10907 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10908
10909 if (noside == EVAL_SKIP)
10910 goto nosideret;
10911
10912 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10913 {
10914 type = language_bool_type (exp->language_defn, exp->gdbarch);
10915 return value_zero (type, not_lval);
10916 }
10917
10918 tem = longest_to_int (exp->elts[pc + 1].longconst);
10919
10920 type = ada_index_type (value_type (arg2), tem, "range");
10921 if (!type)
10922 type = value_type (arg1);
10923
10924 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10925 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10926
10927 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10928 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10929 type = language_bool_type (exp->language_defn, exp->gdbarch);
10930 return
10931 value_from_longest (type,
10932 (value_less (arg1, arg3)
10933 || value_equal (arg1, arg3))
10934 && (value_less (arg2, arg1)
10935 || value_equal (arg2, arg1)));
10936
10937 case TERNOP_IN_RANGE:
10938 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10939 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10940 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10941
10942 if (noside == EVAL_SKIP)
10943 goto nosideret;
10944
10945 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10946 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10947 type = language_bool_type (exp->language_defn, exp->gdbarch);
10948 return
10949 value_from_longest (type,
10950 (value_less (arg1, arg3)
10951 || value_equal (arg1, arg3))
10952 && (value_less (arg2, arg1)
10953 || value_equal (arg2, arg1)));
10954
10955 case OP_ATR_FIRST:
10956 case OP_ATR_LAST:
10957 case OP_ATR_LENGTH:
10958 {
10959 struct type *type_arg;
10960
10961 if (exp->elts[*pos].opcode == OP_TYPE)
10962 {
10963 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10964 arg1 = NULL;
10965 type_arg = check_typedef (exp->elts[pc + 2].type);
10966 }
10967 else
10968 {
10969 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10970 type_arg = NULL;
10971 }
10972
10973 if (exp->elts[*pos].opcode != OP_LONG)
10974 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10975 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10976 *pos += 4;
10977
10978 if (noside == EVAL_SKIP)
10979 goto nosideret;
10980 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10981 {
10982 if (type_arg == NULL)
10983 type_arg = value_type (arg1);
10984
10985 if (ada_is_constrained_packed_array_type (type_arg))
10986 type_arg = decode_constrained_packed_array_type (type_arg);
10987
10988 if (!discrete_type_p (type_arg))
10989 {
10990 switch (op)
10991 {
10992 default: /* Should never happen. */
10993 error (_("unexpected attribute encountered"));
10994 case OP_ATR_FIRST:
10995 case OP_ATR_LAST:
10996 type_arg = ada_index_type (type_arg, tem,
10997 ada_attribute_name (op));
10998 break;
10999 case OP_ATR_LENGTH:
11000 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11001 break;
11002 }
11003 }
11004
11005 return value_zero (type_arg, not_lval);
11006 }
11007 else if (type_arg == NULL)
11008 {
11009 arg1 = ada_coerce_ref (arg1);
11010
11011 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11012 arg1 = ada_coerce_to_simple_array (arg1);
11013
11014 if (op == OP_ATR_LENGTH)
11015 type = builtin_type (exp->gdbarch)->builtin_int;
11016 else
11017 {
11018 type = ada_index_type (value_type (arg1), tem,
11019 ada_attribute_name (op));
11020 if (type == NULL)
11021 type = builtin_type (exp->gdbarch)->builtin_int;
11022 }
11023
11024 switch (op)
11025 {
11026 default: /* Should never happen. */
11027 error (_("unexpected attribute encountered"));
11028 case OP_ATR_FIRST:
11029 return value_from_longest
11030 (type, ada_array_bound (arg1, tem, 0));
11031 case OP_ATR_LAST:
11032 return value_from_longest
11033 (type, ada_array_bound (arg1, tem, 1));
11034 case OP_ATR_LENGTH:
11035 return value_from_longest
11036 (type, ada_array_length (arg1, tem));
11037 }
11038 }
11039 else if (discrete_type_p (type_arg))
11040 {
11041 struct type *range_type;
11042 const char *name = ada_type_name (type_arg);
11043
11044 range_type = NULL;
11045 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
11046 range_type = to_fixed_range_type (type_arg, NULL);
11047 if (range_type == NULL)
11048 range_type = type_arg;
11049 switch (op)
11050 {
11051 default:
11052 error (_("unexpected attribute encountered"));
11053 case OP_ATR_FIRST:
11054 return value_from_longest
11055 (range_type, ada_discrete_type_low_bound (range_type));
11056 case OP_ATR_LAST:
11057 return value_from_longest
11058 (range_type, ada_discrete_type_high_bound (range_type));
11059 case OP_ATR_LENGTH:
11060 error (_("the 'length attribute applies only to array types"));
11061 }
11062 }
11063 else if (type_arg->code () == TYPE_CODE_FLT)
11064 error (_("unimplemented type attribute"));
11065 else
11066 {
11067 LONGEST low, high;
11068
11069 if (ada_is_constrained_packed_array_type (type_arg))
11070 type_arg = decode_constrained_packed_array_type (type_arg);
11071
11072 if (op == OP_ATR_LENGTH)
11073 type = builtin_type (exp->gdbarch)->builtin_int;
11074 else
11075 {
11076 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11077 if (type == NULL)
11078 type = builtin_type (exp->gdbarch)->builtin_int;
11079 }
11080
11081 switch (op)
11082 {
11083 default:
11084 error (_("unexpected attribute encountered"));
11085 case OP_ATR_FIRST:
11086 low = ada_array_bound_from_type (type_arg, tem, 0);
11087 return value_from_longest (type, low);
11088 case OP_ATR_LAST:
11089 high = ada_array_bound_from_type (type_arg, tem, 1);
11090 return value_from_longest (type, high);
11091 case OP_ATR_LENGTH:
11092 low = ada_array_bound_from_type (type_arg, tem, 0);
11093 high = ada_array_bound_from_type (type_arg, tem, 1);
11094 return value_from_longest (type, high - low + 1);
11095 }
11096 }
11097 }
11098
11099 case OP_ATR_TAG:
11100 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11101 if (noside == EVAL_SKIP)
11102 goto nosideret;
11103
11104 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11105 return value_zero (ada_tag_type (arg1), not_lval);
11106
11107 return ada_value_tag (arg1);
11108
11109 case OP_ATR_MIN:
11110 case OP_ATR_MAX:
11111 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11112 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11113 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11114 if (noside == EVAL_SKIP)
11115 goto nosideret;
11116 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11117 return value_zero (value_type (arg1), not_lval);
11118 else
11119 {
11120 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11121 return value_binop (arg1, arg2,
11122 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11123 }
11124
11125 case OP_ATR_MODULUS:
11126 {
11127 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11128
11129 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11130 if (noside == EVAL_SKIP)
11131 goto nosideret;
11132
11133 if (!ada_is_modular_type (type_arg))
11134 error (_("'modulus must be applied to modular type"));
11135
11136 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11137 ada_modulus (type_arg));
11138 }
11139
11140
11141 case OP_ATR_POS:
11142 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11143 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11144 if (noside == EVAL_SKIP)
11145 goto nosideret;
11146 type = builtin_type (exp->gdbarch)->builtin_int;
11147 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11148 return value_zero (type, not_lval);
11149 else
11150 return value_pos_atr (type, arg1);
11151
11152 case OP_ATR_SIZE:
11153 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11154 type = value_type (arg1);
11155
11156 /* If the argument is a reference, then dereference its type, since
11157 the user is really asking for the size of the actual object,
11158 not the size of the pointer. */
11159 if (type->code () == TYPE_CODE_REF)
11160 type = TYPE_TARGET_TYPE (type);
11161
11162 if (noside == EVAL_SKIP)
11163 goto nosideret;
11164 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11165 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11166 else
11167 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11168 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11169
11170 case OP_ATR_VAL:
11171 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11172 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11173 type = exp->elts[pc + 2].type;
11174 if (noside == EVAL_SKIP)
11175 goto nosideret;
11176 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11177 return value_zero (type, not_lval);
11178 else
11179 return value_val_atr (type, arg1);
11180
11181 case BINOP_EXP:
11182 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11183 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11184 if (noside == EVAL_SKIP)
11185 goto nosideret;
11186 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11187 return value_zero (value_type (arg1), not_lval);
11188 else
11189 {
11190 /* For integer exponentiation operations,
11191 only promote the first argument. */
11192 if (is_integral_type (value_type (arg2)))
11193 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11194 else
11195 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11196
11197 return value_binop (arg1, arg2, op);
11198 }
11199
11200 case UNOP_PLUS:
11201 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11202 if (noside == EVAL_SKIP)
11203 goto nosideret;
11204 else
11205 return arg1;
11206
11207 case UNOP_ABS:
11208 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11209 if (noside == EVAL_SKIP)
11210 goto nosideret;
11211 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11212 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11213 return value_neg (arg1);
11214 else
11215 return arg1;
11216
11217 case UNOP_IND:
11218 preeval_pos = *pos;
11219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11220 if (noside == EVAL_SKIP)
11221 goto nosideret;
11222 type = ada_check_typedef (value_type (arg1));
11223 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11224 {
11225 if (ada_is_array_descriptor_type (type))
11226 /* GDB allows dereferencing GNAT array descriptors. */
11227 {
11228 struct type *arrType = ada_type_of_array (arg1, 0);
11229
11230 if (arrType == NULL)
11231 error (_("Attempt to dereference null array pointer."));
11232 return value_at_lazy (arrType, 0);
11233 }
11234 else if (type->code () == TYPE_CODE_PTR
11235 || type->code () == TYPE_CODE_REF
11236 /* In C you can dereference an array to get the 1st elt. */
11237 || type->code () == TYPE_CODE_ARRAY)
11238 {
11239 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11240 only be determined by inspecting the object's tag.
11241 This means that we need to evaluate completely the
11242 expression in order to get its type. */
11243
11244 if ((type->code () == TYPE_CODE_REF
11245 || type->code () == TYPE_CODE_PTR)
11246 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11247 {
11248 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11249 EVAL_NORMAL);
11250 type = value_type (ada_value_ind (arg1));
11251 }
11252 else
11253 {
11254 type = to_static_fixed_type
11255 (ada_aligned_type
11256 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11257 }
11258 ada_ensure_varsize_limit (type);
11259 return value_zero (type, lval_memory);
11260 }
11261 else if (type->code () == TYPE_CODE_INT)
11262 {
11263 /* GDB allows dereferencing an int. */
11264 if (expect_type == NULL)
11265 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11266 lval_memory);
11267 else
11268 {
11269 expect_type =
11270 to_static_fixed_type (ada_aligned_type (expect_type));
11271 return value_zero (expect_type, lval_memory);
11272 }
11273 }
11274 else
11275 error (_("Attempt to take contents of a non-pointer value."));
11276 }
11277 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11278 type = ada_check_typedef (value_type (arg1));
11279
11280 if (type->code () == TYPE_CODE_INT)
11281 /* GDB allows dereferencing an int. If we were given
11282 the expect_type, then use that as the target type.
11283 Otherwise, assume that the target type is an int. */
11284 {
11285 if (expect_type != NULL)
11286 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11287 arg1));
11288 else
11289 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11290 (CORE_ADDR) value_as_address (arg1));
11291 }
11292
11293 if (ada_is_array_descriptor_type (type))
11294 /* GDB allows dereferencing GNAT array descriptors. */
11295 return ada_coerce_to_simple_array (arg1);
11296 else
11297 return ada_value_ind (arg1);
11298
11299 case STRUCTOP_STRUCT:
11300 tem = longest_to_int (exp->elts[pc + 1].longconst);
11301 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11302 preeval_pos = *pos;
11303 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11304 if (noside == EVAL_SKIP)
11305 goto nosideret;
11306 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11307 {
11308 struct type *type1 = value_type (arg1);
11309
11310 if (ada_is_tagged_type (type1, 1))
11311 {
11312 type = ada_lookup_struct_elt_type (type1,
11313 &exp->elts[pc + 2].string,
11314 1, 1);
11315
11316 /* If the field is not found, check if it exists in the
11317 extension of this object's type. This means that we
11318 need to evaluate completely the expression. */
11319
11320 if (type == NULL)
11321 {
11322 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11323 EVAL_NORMAL);
11324 arg1 = ada_value_struct_elt (arg1,
11325 &exp->elts[pc + 2].string,
11326 0);
11327 arg1 = unwrap_value (arg1);
11328 type = value_type (ada_to_fixed_value (arg1));
11329 }
11330 }
11331 else
11332 type =
11333 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11334 0);
11335
11336 return value_zero (ada_aligned_type (type), lval_memory);
11337 }
11338 else
11339 {
11340 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11341 arg1 = unwrap_value (arg1);
11342 return ada_to_fixed_value (arg1);
11343 }
11344
11345 case OP_TYPE:
11346 /* The value is not supposed to be used. This is here to make it
11347 easier to accommodate expressions that contain types. */
11348 (*pos) += 2;
11349 if (noside == EVAL_SKIP)
11350 goto nosideret;
11351 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11352 return allocate_value (exp->elts[pc + 1].type);
11353 else
11354 error (_("Attempt to use a type name as an expression"));
11355
11356 case OP_AGGREGATE:
11357 case OP_CHOICES:
11358 case OP_OTHERS:
11359 case OP_DISCRETE_RANGE:
11360 case OP_POSITIONAL:
11361 case OP_NAME:
11362 if (noside == EVAL_NORMAL)
11363 switch (op)
11364 {
11365 case OP_NAME:
11366 error (_("Undefined name, ambiguous name, or renaming used in "
11367 "component association: %s."), &exp->elts[pc+2].string);
11368 case OP_AGGREGATE:
11369 error (_("Aggregates only allowed on the right of an assignment"));
11370 default:
11371 internal_error (__FILE__, __LINE__,
11372 _("aggregate apparently mangled"));
11373 }
11374
11375 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11376 *pos += oplen - 1;
11377 for (tem = 0; tem < nargs; tem += 1)
11378 ada_evaluate_subexp (NULL, exp, pos, noside);
11379 goto nosideret;
11380 }
11381
11382 nosideret:
11383 return eval_skip_value (exp);
11384 }
11385 \f
11386
11387 /* Fixed point */
11388
11389 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11390 type name that encodes the 'small and 'delta information.
11391 Otherwise, return NULL. */
11392
11393 static const char *
11394 gnat_encoded_fixed_type_info (struct type *type)
11395 {
11396 const char *name = ada_type_name (type);
11397 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11398
11399 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11400 {
11401 const char *tail = strstr (name, "___XF_");
11402
11403 if (tail == NULL)
11404 return NULL;
11405 else
11406 return tail + 5;
11407 }
11408 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11409 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
11410 else
11411 return NULL;
11412 }
11413
11414 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11415
11416 int
11417 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11418 {
11419 return gnat_encoded_fixed_type_info (type) != NULL;
11420 }
11421
11422 /* Return non-zero iff TYPE represents a System.Address type. */
11423
11424 int
11425 ada_is_system_address_type (struct type *type)
11426 {
11427 return (type->name () && strcmp (type->name (), "system__address") == 0);
11428 }
11429
11430 /* Assuming that TYPE is the representation of an Ada fixed-point
11431 type, return the target floating-point type to be used to represent
11432 of this type during internal computation. */
11433
11434 static struct type *
11435 ada_scaling_type (struct type *type)
11436 {
11437 return builtin_type (get_type_arch (type))->builtin_long_double;
11438 }
11439
11440 /* Assuming that TYPE is the representation of an Ada fixed-point
11441 type, return its delta, or NULL if the type is malformed and the
11442 delta cannot be determined. */
11443
11444 struct value *
11445 gnat_encoded_fixed_point_delta (struct type *type)
11446 {
11447 const char *encoding = gnat_encoded_fixed_type_info (type);
11448 struct type *scale_type = ada_scaling_type (type);
11449
11450 long long num, den;
11451
11452 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11453 return nullptr;
11454 else
11455 return value_binop (value_from_longest (scale_type, num),
11456 value_from_longest (scale_type, den), BINOP_DIV);
11457 }
11458
11459 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11460 the scaling factor ('SMALL value) associated with the type. */
11461
11462 struct value *
11463 ada_scaling_factor (struct type *type)
11464 {
11465 const char *encoding = gnat_encoded_fixed_type_info (type);
11466 struct type *scale_type = ada_scaling_type (type);
11467
11468 long long num0, den0, num1, den1;
11469 int n;
11470
11471 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11472 &num0, &den0, &num1, &den1);
11473
11474 if (n < 2)
11475 return value_from_longest (scale_type, 1);
11476 else if (n == 4)
11477 return value_binop (value_from_longest (scale_type, num1),
11478 value_from_longest (scale_type, den1), BINOP_DIV);
11479 else
11480 return value_binop (value_from_longest (scale_type, num0),
11481 value_from_longest (scale_type, den0), BINOP_DIV);
11482 }
11483
11484 \f
11485
11486 /* Range types */
11487
11488 /* Scan STR beginning at position K for a discriminant name, and
11489 return the value of that discriminant field of DVAL in *PX. If
11490 PNEW_K is not null, put the position of the character beyond the
11491 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11492 not alter *PX and *PNEW_K if unsuccessful. */
11493
11494 static int
11495 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11496 int *pnew_k)
11497 {
11498 static char *bound_buffer = NULL;
11499 static size_t bound_buffer_len = 0;
11500 const char *pstart, *pend, *bound;
11501 struct value *bound_val;
11502
11503 if (dval == NULL || str == NULL || str[k] == '\0')
11504 return 0;
11505
11506 pstart = str + k;
11507 pend = strstr (pstart, "__");
11508 if (pend == NULL)
11509 {
11510 bound = pstart;
11511 k += strlen (bound);
11512 }
11513 else
11514 {
11515 int len = pend - pstart;
11516
11517 /* Strip __ and beyond. */
11518 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11519 strncpy (bound_buffer, pstart, len);
11520 bound_buffer[len] = '\0';
11521
11522 bound = bound_buffer;
11523 k = pend - str;
11524 }
11525
11526 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11527 if (bound_val == NULL)
11528 return 0;
11529
11530 *px = value_as_long (bound_val);
11531 if (pnew_k != NULL)
11532 *pnew_k = k;
11533 return 1;
11534 }
11535
11536 /* Value of variable named NAME in the current environment. If
11537 no such variable found, then if ERR_MSG is null, returns 0, and
11538 otherwise causes an error with message ERR_MSG. */
11539
11540 static struct value *
11541 get_var_value (const char *name, const char *err_msg)
11542 {
11543 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11544
11545 std::vector<struct block_symbol> syms;
11546 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11547 get_selected_block (0),
11548 VAR_DOMAIN, &syms, 1);
11549
11550 if (nsyms != 1)
11551 {
11552 if (err_msg == NULL)
11553 return 0;
11554 else
11555 error (("%s"), err_msg);
11556 }
11557
11558 return value_of_variable (syms[0].symbol, syms[0].block);
11559 }
11560
11561 /* Value of integer variable named NAME in the current environment.
11562 If no such variable is found, returns false. Otherwise, sets VALUE
11563 to the variable's value and returns true. */
11564
11565 bool
11566 get_int_var_value (const char *name, LONGEST &value)
11567 {
11568 struct value *var_val = get_var_value (name, 0);
11569
11570 if (var_val == 0)
11571 return false;
11572
11573 value = value_as_long (var_val);
11574 return true;
11575 }
11576
11577
11578 /* Return a range type whose base type is that of the range type named
11579 NAME in the current environment, and whose bounds are calculated
11580 from NAME according to the GNAT range encoding conventions.
11581 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11582 corresponding range type from debug information; fall back to using it
11583 if symbol lookup fails. If a new type must be created, allocate it
11584 like ORIG_TYPE was. The bounds information, in general, is encoded
11585 in NAME, the base type given in the named range type. */
11586
11587 static struct type *
11588 to_fixed_range_type (struct type *raw_type, struct value *dval)
11589 {
11590 const char *name;
11591 struct type *base_type;
11592 const char *subtype_info;
11593
11594 gdb_assert (raw_type != NULL);
11595 gdb_assert (raw_type->name () != NULL);
11596
11597 if (raw_type->code () == TYPE_CODE_RANGE)
11598 base_type = TYPE_TARGET_TYPE (raw_type);
11599 else
11600 base_type = raw_type;
11601
11602 name = raw_type->name ();
11603 subtype_info = strstr (name, "___XD");
11604 if (subtype_info == NULL)
11605 {
11606 LONGEST L = ada_discrete_type_low_bound (raw_type);
11607 LONGEST U = ada_discrete_type_high_bound (raw_type);
11608
11609 if (L < INT_MIN || U > INT_MAX)
11610 return raw_type;
11611 else
11612 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11613 L, U);
11614 }
11615 else
11616 {
11617 static char *name_buf = NULL;
11618 static size_t name_len = 0;
11619 int prefix_len = subtype_info - name;
11620 LONGEST L, U;
11621 struct type *type;
11622 const char *bounds_str;
11623 int n;
11624
11625 GROW_VECT (name_buf, name_len, prefix_len + 5);
11626 strncpy (name_buf, name, prefix_len);
11627 name_buf[prefix_len] = '\0';
11628
11629 subtype_info += 5;
11630 bounds_str = strchr (subtype_info, '_');
11631 n = 1;
11632
11633 if (*subtype_info == 'L')
11634 {
11635 if (!ada_scan_number (bounds_str, n, &L, &n)
11636 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11637 return raw_type;
11638 if (bounds_str[n] == '_')
11639 n += 2;
11640 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11641 n += 1;
11642 subtype_info += 1;
11643 }
11644 else
11645 {
11646 strcpy (name_buf + prefix_len, "___L");
11647 if (!get_int_var_value (name_buf, L))
11648 {
11649 lim_warning (_("Unknown lower bound, using 1."));
11650 L = 1;
11651 }
11652 }
11653
11654 if (*subtype_info == 'U')
11655 {
11656 if (!ada_scan_number (bounds_str, n, &U, &n)
11657 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11658 return raw_type;
11659 }
11660 else
11661 {
11662 strcpy (name_buf + prefix_len, "___U");
11663 if (!get_int_var_value (name_buf, U))
11664 {
11665 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11666 U = L;
11667 }
11668 }
11669
11670 type = create_static_range_type (alloc_type_copy (raw_type),
11671 base_type, L, U);
11672 /* create_static_range_type alters the resulting type's length
11673 to match the size of the base_type, which is not what we want.
11674 Set it back to the original range type's length. */
11675 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11676 type->set_name (name);
11677 return type;
11678 }
11679 }
11680
11681 /* True iff NAME is the name of a range type. */
11682
11683 int
11684 ada_is_range_type_name (const char *name)
11685 {
11686 return (name != NULL && strstr (name, "___XD"));
11687 }
11688 \f
11689
11690 /* Modular types */
11691
11692 /* True iff TYPE is an Ada modular type. */
11693
11694 int
11695 ada_is_modular_type (struct type *type)
11696 {
11697 struct type *subranged_type = get_base_type (type);
11698
11699 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11700 && subranged_type->code () == TYPE_CODE_INT
11701 && TYPE_UNSIGNED (subranged_type));
11702 }
11703
11704 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11705
11706 ULONGEST
11707 ada_modulus (struct type *type)
11708 {
11709 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11710 }
11711 \f
11712
11713 /* Ada exception catchpoint support:
11714 ---------------------------------
11715
11716 We support 3 kinds of exception catchpoints:
11717 . catchpoints on Ada exceptions
11718 . catchpoints on unhandled Ada exceptions
11719 . catchpoints on failed assertions
11720
11721 Exceptions raised during failed assertions, or unhandled exceptions
11722 could perfectly be caught with the general catchpoint on Ada exceptions.
11723 However, we can easily differentiate these two special cases, and having
11724 the option to distinguish these two cases from the rest can be useful
11725 to zero-in on certain situations.
11726
11727 Exception catchpoints are a specialized form of breakpoint,
11728 since they rely on inserting breakpoints inside known routines
11729 of the GNAT runtime. The implementation therefore uses a standard
11730 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11731 of breakpoint_ops.
11732
11733 Support in the runtime for exception catchpoints have been changed
11734 a few times already, and these changes affect the implementation
11735 of these catchpoints. In order to be able to support several
11736 variants of the runtime, we use a sniffer that will determine
11737 the runtime variant used by the program being debugged. */
11738
11739 /* Ada's standard exceptions.
11740
11741 The Ada 83 standard also defined Numeric_Error. But there so many
11742 situations where it was unclear from the Ada 83 Reference Manual
11743 (RM) whether Constraint_Error or Numeric_Error should be raised,
11744 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11745 Interpretation saying that anytime the RM says that Numeric_Error
11746 should be raised, the implementation may raise Constraint_Error.
11747 Ada 95 went one step further and pretty much removed Numeric_Error
11748 from the list of standard exceptions (it made it a renaming of
11749 Constraint_Error, to help preserve compatibility when compiling
11750 an Ada83 compiler). As such, we do not include Numeric_Error from
11751 this list of standard exceptions. */
11752
11753 static const char *standard_exc[] = {
11754 "constraint_error",
11755 "program_error",
11756 "storage_error",
11757 "tasking_error"
11758 };
11759
11760 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11761
11762 /* A structure that describes how to support exception catchpoints
11763 for a given executable. */
11764
11765 struct exception_support_info
11766 {
11767 /* The name of the symbol to break on in order to insert
11768 a catchpoint on exceptions. */
11769 const char *catch_exception_sym;
11770
11771 /* The name of the symbol to break on in order to insert
11772 a catchpoint on unhandled exceptions. */
11773 const char *catch_exception_unhandled_sym;
11774
11775 /* The name of the symbol to break on in order to insert
11776 a catchpoint on failed assertions. */
11777 const char *catch_assert_sym;
11778
11779 /* The name of the symbol to break on in order to insert
11780 a catchpoint on exception handling. */
11781 const char *catch_handlers_sym;
11782
11783 /* Assuming that the inferior just triggered an unhandled exception
11784 catchpoint, this function is responsible for returning the address
11785 in inferior memory where the name of that exception is stored.
11786 Return zero if the address could not be computed. */
11787 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11788 };
11789
11790 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11791 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11792
11793 /* The following exception support info structure describes how to
11794 implement exception catchpoints with the latest version of the
11795 Ada runtime (as of 2019-08-??). */
11796
11797 static const struct exception_support_info default_exception_support_info =
11798 {
11799 "__gnat_debug_raise_exception", /* catch_exception_sym */
11800 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11801 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11802 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11803 ada_unhandled_exception_name_addr
11804 };
11805
11806 /* The following exception support info structure describes how to
11807 implement exception catchpoints with an earlier version of the
11808 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11809
11810 static const struct exception_support_info exception_support_info_v0 =
11811 {
11812 "__gnat_debug_raise_exception", /* catch_exception_sym */
11813 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11814 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11815 "__gnat_begin_handler", /* catch_handlers_sym */
11816 ada_unhandled_exception_name_addr
11817 };
11818
11819 /* The following exception support info structure describes how to
11820 implement exception catchpoints with a slightly older version
11821 of the Ada runtime. */
11822
11823 static const struct exception_support_info exception_support_info_fallback =
11824 {
11825 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11826 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11827 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11828 "__gnat_begin_handler", /* catch_handlers_sym */
11829 ada_unhandled_exception_name_addr_from_raise
11830 };
11831
11832 /* Return nonzero if we can detect the exception support routines
11833 described in EINFO.
11834
11835 This function errors out if an abnormal situation is detected
11836 (for instance, if we find the exception support routines, but
11837 that support is found to be incomplete). */
11838
11839 static int
11840 ada_has_this_exception_support (const struct exception_support_info *einfo)
11841 {
11842 struct symbol *sym;
11843
11844 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11845 that should be compiled with debugging information. As a result, we
11846 expect to find that symbol in the symtabs. */
11847
11848 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11849 if (sym == NULL)
11850 {
11851 /* Perhaps we did not find our symbol because the Ada runtime was
11852 compiled without debugging info, or simply stripped of it.
11853 It happens on some GNU/Linux distributions for instance, where
11854 users have to install a separate debug package in order to get
11855 the runtime's debugging info. In that situation, let the user
11856 know why we cannot insert an Ada exception catchpoint.
11857
11858 Note: Just for the purpose of inserting our Ada exception
11859 catchpoint, we could rely purely on the associated minimal symbol.
11860 But we would be operating in degraded mode anyway, since we are
11861 still lacking the debugging info needed later on to extract
11862 the name of the exception being raised (this name is printed in
11863 the catchpoint message, and is also used when trying to catch
11864 a specific exception). We do not handle this case for now. */
11865 struct bound_minimal_symbol msym
11866 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11867
11868 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11869 error (_("Your Ada runtime appears to be missing some debugging "
11870 "information.\nCannot insert Ada exception catchpoint "
11871 "in this configuration."));
11872
11873 return 0;
11874 }
11875
11876 /* Make sure that the symbol we found corresponds to a function. */
11877
11878 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11879 {
11880 error (_("Symbol \"%s\" is not a function (class = %d)"),
11881 sym->linkage_name (), SYMBOL_CLASS (sym));
11882 return 0;
11883 }
11884
11885 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11886 if (sym == NULL)
11887 {
11888 struct bound_minimal_symbol msym
11889 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11890
11891 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11892 error (_("Your Ada runtime appears to be missing some debugging "
11893 "information.\nCannot insert Ada exception catchpoint "
11894 "in this configuration."));
11895
11896 return 0;
11897 }
11898
11899 /* Make sure that the symbol we found corresponds to a function. */
11900
11901 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11902 {
11903 error (_("Symbol \"%s\" is not a function (class = %d)"),
11904 sym->linkage_name (), SYMBOL_CLASS (sym));
11905 return 0;
11906 }
11907
11908 return 1;
11909 }
11910
11911 /* Inspect the Ada runtime and determine which exception info structure
11912 should be used to provide support for exception catchpoints.
11913
11914 This function will always set the per-inferior exception_info,
11915 or raise an error. */
11916
11917 static void
11918 ada_exception_support_info_sniffer (void)
11919 {
11920 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11921
11922 /* If the exception info is already known, then no need to recompute it. */
11923 if (data->exception_info != NULL)
11924 return;
11925
11926 /* Check the latest (default) exception support info. */
11927 if (ada_has_this_exception_support (&default_exception_support_info))
11928 {
11929 data->exception_info = &default_exception_support_info;
11930 return;
11931 }
11932
11933 /* Try the v0 exception suport info. */
11934 if (ada_has_this_exception_support (&exception_support_info_v0))
11935 {
11936 data->exception_info = &exception_support_info_v0;
11937 return;
11938 }
11939
11940 /* Try our fallback exception suport info. */
11941 if (ada_has_this_exception_support (&exception_support_info_fallback))
11942 {
11943 data->exception_info = &exception_support_info_fallback;
11944 return;
11945 }
11946
11947 /* Sometimes, it is normal for us to not be able to find the routine
11948 we are looking for. This happens when the program is linked with
11949 the shared version of the GNAT runtime, and the program has not been
11950 started yet. Inform the user of these two possible causes if
11951 applicable. */
11952
11953 if (ada_update_initial_language (language_unknown) != language_ada)
11954 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11955
11956 /* If the symbol does not exist, then check that the program is
11957 already started, to make sure that shared libraries have been
11958 loaded. If it is not started, this may mean that the symbol is
11959 in a shared library. */
11960
11961 if (inferior_ptid.pid () == 0)
11962 error (_("Unable to insert catchpoint. Try to start the program first."));
11963
11964 /* At this point, we know that we are debugging an Ada program and
11965 that the inferior has been started, but we still are not able to
11966 find the run-time symbols. That can mean that we are in
11967 configurable run time mode, or that a-except as been optimized
11968 out by the linker... In any case, at this point it is not worth
11969 supporting this feature. */
11970
11971 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11972 }
11973
11974 /* True iff FRAME is very likely to be that of a function that is
11975 part of the runtime system. This is all very heuristic, but is
11976 intended to be used as advice as to what frames are uninteresting
11977 to most users. */
11978
11979 static int
11980 is_known_support_routine (struct frame_info *frame)
11981 {
11982 enum language func_lang;
11983 int i;
11984 const char *fullname;
11985
11986 /* If this code does not have any debugging information (no symtab),
11987 This cannot be any user code. */
11988
11989 symtab_and_line sal = find_frame_sal (frame);
11990 if (sal.symtab == NULL)
11991 return 1;
11992
11993 /* If there is a symtab, but the associated source file cannot be
11994 located, then assume this is not user code: Selecting a frame
11995 for which we cannot display the code would not be very helpful
11996 for the user. This should also take care of case such as VxWorks
11997 where the kernel has some debugging info provided for a few units. */
11998
11999 fullname = symtab_to_fullname (sal.symtab);
12000 if (access (fullname, R_OK) != 0)
12001 return 1;
12002
12003 /* Check the unit filename against the Ada runtime file naming.
12004 We also check the name of the objfile against the name of some
12005 known system libraries that sometimes come with debugging info
12006 too. */
12007
12008 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12009 {
12010 re_comp (known_runtime_file_name_patterns[i]);
12011 if (re_exec (lbasename (sal.symtab->filename)))
12012 return 1;
12013 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12014 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12015 return 1;
12016 }
12017
12018 /* Check whether the function is a GNAT-generated entity. */
12019
12020 gdb::unique_xmalloc_ptr<char> func_name
12021 = find_frame_funname (frame, &func_lang, NULL);
12022 if (func_name == NULL)
12023 return 1;
12024
12025 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12026 {
12027 re_comp (known_auxiliary_function_name_patterns[i]);
12028 if (re_exec (func_name.get ()))
12029 return 1;
12030 }
12031
12032 return 0;
12033 }
12034
12035 /* Find the first frame that contains debugging information and that is not
12036 part of the Ada run-time, starting from FI and moving upward. */
12037
12038 void
12039 ada_find_printable_frame (struct frame_info *fi)
12040 {
12041 for (; fi != NULL; fi = get_prev_frame (fi))
12042 {
12043 if (!is_known_support_routine (fi))
12044 {
12045 select_frame (fi);
12046 break;
12047 }
12048 }
12049
12050 }
12051
12052 /* Assuming that the inferior just triggered an unhandled exception
12053 catchpoint, return the address in inferior memory where the name
12054 of the exception is stored.
12055
12056 Return zero if the address could not be computed. */
12057
12058 static CORE_ADDR
12059 ada_unhandled_exception_name_addr (void)
12060 {
12061 return parse_and_eval_address ("e.full_name");
12062 }
12063
12064 /* Same as ada_unhandled_exception_name_addr, except that this function
12065 should be used when the inferior uses an older version of the runtime,
12066 where the exception name needs to be extracted from a specific frame
12067 several frames up in the callstack. */
12068
12069 static CORE_ADDR
12070 ada_unhandled_exception_name_addr_from_raise (void)
12071 {
12072 int frame_level;
12073 struct frame_info *fi;
12074 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12075
12076 /* To determine the name of this exception, we need to select
12077 the frame corresponding to RAISE_SYM_NAME. This frame is
12078 at least 3 levels up, so we simply skip the first 3 frames
12079 without checking the name of their associated function. */
12080 fi = get_current_frame ();
12081 for (frame_level = 0; frame_level < 3; frame_level += 1)
12082 if (fi != NULL)
12083 fi = get_prev_frame (fi);
12084
12085 while (fi != NULL)
12086 {
12087 enum language func_lang;
12088
12089 gdb::unique_xmalloc_ptr<char> func_name
12090 = find_frame_funname (fi, &func_lang, NULL);
12091 if (func_name != NULL)
12092 {
12093 if (strcmp (func_name.get (),
12094 data->exception_info->catch_exception_sym) == 0)
12095 break; /* We found the frame we were looking for... */
12096 }
12097 fi = get_prev_frame (fi);
12098 }
12099
12100 if (fi == NULL)
12101 return 0;
12102
12103 select_frame (fi);
12104 return parse_and_eval_address ("id.full_name");
12105 }
12106
12107 /* Assuming the inferior just triggered an Ada exception catchpoint
12108 (of any type), return the address in inferior memory where the name
12109 of the exception is stored, if applicable.
12110
12111 Assumes the selected frame is the current frame.
12112
12113 Return zero if the address could not be computed, or if not relevant. */
12114
12115 static CORE_ADDR
12116 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12117 struct breakpoint *b)
12118 {
12119 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12120
12121 switch (ex)
12122 {
12123 case ada_catch_exception:
12124 return (parse_and_eval_address ("e.full_name"));
12125 break;
12126
12127 case ada_catch_exception_unhandled:
12128 return data->exception_info->unhandled_exception_name_addr ();
12129 break;
12130
12131 case ada_catch_handlers:
12132 return 0; /* The runtimes does not provide access to the exception
12133 name. */
12134 break;
12135
12136 case ada_catch_assert:
12137 return 0; /* Exception name is not relevant in this case. */
12138 break;
12139
12140 default:
12141 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12142 break;
12143 }
12144
12145 return 0; /* Should never be reached. */
12146 }
12147
12148 /* Assuming the inferior is stopped at an exception catchpoint,
12149 return the message which was associated to the exception, if
12150 available. Return NULL if the message could not be retrieved.
12151
12152 Note: The exception message can be associated to an exception
12153 either through the use of the Raise_Exception function, or
12154 more simply (Ada 2005 and later), via:
12155
12156 raise Exception_Name with "exception message";
12157
12158 */
12159
12160 static gdb::unique_xmalloc_ptr<char>
12161 ada_exception_message_1 (void)
12162 {
12163 struct value *e_msg_val;
12164 int e_msg_len;
12165
12166 /* For runtimes that support this feature, the exception message
12167 is passed as an unbounded string argument called "message". */
12168 e_msg_val = parse_and_eval ("message");
12169 if (e_msg_val == NULL)
12170 return NULL; /* Exception message not supported. */
12171
12172 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12173 gdb_assert (e_msg_val != NULL);
12174 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12175
12176 /* If the message string is empty, then treat it as if there was
12177 no exception message. */
12178 if (e_msg_len <= 0)
12179 return NULL;
12180
12181 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12182 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12183 e_msg.get ()[e_msg_len] = '\0';
12184
12185 return e_msg;
12186 }
12187
12188 /* Same as ada_exception_message_1, except that all exceptions are
12189 contained here (returning NULL instead). */
12190
12191 static gdb::unique_xmalloc_ptr<char>
12192 ada_exception_message (void)
12193 {
12194 gdb::unique_xmalloc_ptr<char> e_msg;
12195
12196 try
12197 {
12198 e_msg = ada_exception_message_1 ();
12199 }
12200 catch (const gdb_exception_error &e)
12201 {
12202 e_msg.reset (nullptr);
12203 }
12204
12205 return e_msg;
12206 }
12207
12208 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12209 any error that ada_exception_name_addr_1 might cause to be thrown.
12210 When an error is intercepted, a warning with the error message is printed,
12211 and zero is returned. */
12212
12213 static CORE_ADDR
12214 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12215 struct breakpoint *b)
12216 {
12217 CORE_ADDR result = 0;
12218
12219 try
12220 {
12221 result = ada_exception_name_addr_1 (ex, b);
12222 }
12223
12224 catch (const gdb_exception_error &e)
12225 {
12226 warning (_("failed to get exception name: %s"), e.what ());
12227 return 0;
12228 }
12229
12230 return result;
12231 }
12232
12233 static std::string ada_exception_catchpoint_cond_string
12234 (const char *excep_string,
12235 enum ada_exception_catchpoint_kind ex);
12236
12237 /* Ada catchpoints.
12238
12239 In the case of catchpoints on Ada exceptions, the catchpoint will
12240 stop the target on every exception the program throws. When a user
12241 specifies the name of a specific exception, we translate this
12242 request into a condition expression (in text form), and then parse
12243 it into an expression stored in each of the catchpoint's locations.
12244 We then use this condition to check whether the exception that was
12245 raised is the one the user is interested in. If not, then the
12246 target is resumed again. We store the name of the requested
12247 exception, in order to be able to re-set the condition expression
12248 when symbols change. */
12249
12250 /* An instance of this type is used to represent an Ada catchpoint
12251 breakpoint location. */
12252
12253 class ada_catchpoint_location : public bp_location
12254 {
12255 public:
12256 ada_catchpoint_location (breakpoint *owner)
12257 : bp_location (owner, bp_loc_software_breakpoint)
12258 {}
12259
12260 /* The condition that checks whether the exception that was raised
12261 is the specific exception the user specified on catchpoint
12262 creation. */
12263 expression_up excep_cond_expr;
12264 };
12265
12266 /* An instance of this type is used to represent an Ada catchpoint. */
12267
12268 struct ada_catchpoint : public breakpoint
12269 {
12270 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12271 : m_kind (kind)
12272 {
12273 }
12274
12275 /* The name of the specific exception the user specified. */
12276 std::string excep_string;
12277
12278 /* What kind of catchpoint this is. */
12279 enum ada_exception_catchpoint_kind m_kind;
12280 };
12281
12282 /* Parse the exception condition string in the context of each of the
12283 catchpoint's locations, and store them for later evaluation. */
12284
12285 static void
12286 create_excep_cond_exprs (struct ada_catchpoint *c,
12287 enum ada_exception_catchpoint_kind ex)
12288 {
12289 struct bp_location *bl;
12290
12291 /* Nothing to do if there's no specific exception to catch. */
12292 if (c->excep_string.empty ())
12293 return;
12294
12295 /* Same if there are no locations... */
12296 if (c->loc == NULL)
12297 return;
12298
12299 /* Compute the condition expression in text form, from the specific
12300 expection we want to catch. */
12301 std::string cond_string
12302 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12303
12304 /* Iterate over all the catchpoint's locations, and parse an
12305 expression for each. */
12306 for (bl = c->loc; bl != NULL; bl = bl->next)
12307 {
12308 struct ada_catchpoint_location *ada_loc
12309 = (struct ada_catchpoint_location *) bl;
12310 expression_up exp;
12311
12312 if (!bl->shlib_disabled)
12313 {
12314 const char *s;
12315
12316 s = cond_string.c_str ();
12317 try
12318 {
12319 exp = parse_exp_1 (&s, bl->address,
12320 block_for_pc (bl->address),
12321 0);
12322 }
12323 catch (const gdb_exception_error &e)
12324 {
12325 warning (_("failed to reevaluate internal exception condition "
12326 "for catchpoint %d: %s"),
12327 c->number, e.what ());
12328 }
12329 }
12330
12331 ada_loc->excep_cond_expr = std::move (exp);
12332 }
12333 }
12334
12335 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12336 structure for all exception catchpoint kinds. */
12337
12338 static struct bp_location *
12339 allocate_location_exception (struct breakpoint *self)
12340 {
12341 return new ada_catchpoint_location (self);
12342 }
12343
12344 /* Implement the RE_SET method in the breakpoint_ops structure for all
12345 exception catchpoint kinds. */
12346
12347 static void
12348 re_set_exception (struct breakpoint *b)
12349 {
12350 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12351
12352 /* Call the base class's method. This updates the catchpoint's
12353 locations. */
12354 bkpt_breakpoint_ops.re_set (b);
12355
12356 /* Reparse the exception conditional expressions. One for each
12357 location. */
12358 create_excep_cond_exprs (c, c->m_kind);
12359 }
12360
12361 /* Returns true if we should stop for this breakpoint hit. If the
12362 user specified a specific exception, we only want to cause a stop
12363 if the program thrown that exception. */
12364
12365 static int
12366 should_stop_exception (const struct bp_location *bl)
12367 {
12368 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12369 const struct ada_catchpoint_location *ada_loc
12370 = (const struct ada_catchpoint_location *) bl;
12371 int stop;
12372
12373 struct internalvar *var = lookup_internalvar ("_ada_exception");
12374 if (c->m_kind == ada_catch_assert)
12375 clear_internalvar (var);
12376 else
12377 {
12378 try
12379 {
12380 const char *expr;
12381
12382 if (c->m_kind == ada_catch_handlers)
12383 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12384 ".all.occurrence.id");
12385 else
12386 expr = "e";
12387
12388 struct value *exc = parse_and_eval (expr);
12389 set_internalvar (var, exc);
12390 }
12391 catch (const gdb_exception_error &ex)
12392 {
12393 clear_internalvar (var);
12394 }
12395 }
12396
12397 /* With no specific exception, should always stop. */
12398 if (c->excep_string.empty ())
12399 return 1;
12400
12401 if (ada_loc->excep_cond_expr == NULL)
12402 {
12403 /* We will have a NULL expression if back when we were creating
12404 the expressions, this location's had failed to parse. */
12405 return 1;
12406 }
12407
12408 stop = 1;
12409 try
12410 {
12411 struct value *mark;
12412
12413 mark = value_mark ();
12414 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12415 value_free_to_mark (mark);
12416 }
12417 catch (const gdb_exception &ex)
12418 {
12419 exception_fprintf (gdb_stderr, ex,
12420 _("Error in testing exception condition:\n"));
12421 }
12422
12423 return stop;
12424 }
12425
12426 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12427 for all exception catchpoint kinds. */
12428
12429 static void
12430 check_status_exception (bpstat bs)
12431 {
12432 bs->stop = should_stop_exception (bs->bp_location_at);
12433 }
12434
12435 /* Implement the PRINT_IT method in the breakpoint_ops structure
12436 for all exception catchpoint kinds. */
12437
12438 static enum print_stop_action
12439 print_it_exception (bpstat bs)
12440 {
12441 struct ui_out *uiout = current_uiout;
12442 struct breakpoint *b = bs->breakpoint_at;
12443
12444 annotate_catchpoint (b->number);
12445
12446 if (uiout->is_mi_like_p ())
12447 {
12448 uiout->field_string ("reason",
12449 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12450 uiout->field_string ("disp", bpdisp_text (b->disposition));
12451 }
12452
12453 uiout->text (b->disposition == disp_del
12454 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12455 uiout->field_signed ("bkptno", b->number);
12456 uiout->text (", ");
12457
12458 /* ada_exception_name_addr relies on the selected frame being the
12459 current frame. Need to do this here because this function may be
12460 called more than once when printing a stop, and below, we'll
12461 select the first frame past the Ada run-time (see
12462 ada_find_printable_frame). */
12463 select_frame (get_current_frame ());
12464
12465 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12466 switch (c->m_kind)
12467 {
12468 case ada_catch_exception:
12469 case ada_catch_exception_unhandled:
12470 case ada_catch_handlers:
12471 {
12472 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12473 char exception_name[256];
12474
12475 if (addr != 0)
12476 {
12477 read_memory (addr, (gdb_byte *) exception_name,
12478 sizeof (exception_name) - 1);
12479 exception_name [sizeof (exception_name) - 1] = '\0';
12480 }
12481 else
12482 {
12483 /* For some reason, we were unable to read the exception
12484 name. This could happen if the Runtime was compiled
12485 without debugging info, for instance. In that case,
12486 just replace the exception name by the generic string
12487 "exception" - it will read as "an exception" in the
12488 notification we are about to print. */
12489 memcpy (exception_name, "exception", sizeof ("exception"));
12490 }
12491 /* In the case of unhandled exception breakpoints, we print
12492 the exception name as "unhandled EXCEPTION_NAME", to make
12493 it clearer to the user which kind of catchpoint just got
12494 hit. We used ui_out_text to make sure that this extra
12495 info does not pollute the exception name in the MI case. */
12496 if (c->m_kind == ada_catch_exception_unhandled)
12497 uiout->text ("unhandled ");
12498 uiout->field_string ("exception-name", exception_name);
12499 }
12500 break;
12501 case ada_catch_assert:
12502 /* In this case, the name of the exception is not really
12503 important. Just print "failed assertion" to make it clearer
12504 that his program just hit an assertion-failure catchpoint.
12505 We used ui_out_text because this info does not belong in
12506 the MI output. */
12507 uiout->text ("failed assertion");
12508 break;
12509 }
12510
12511 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12512 if (exception_message != NULL)
12513 {
12514 uiout->text (" (");
12515 uiout->field_string ("exception-message", exception_message.get ());
12516 uiout->text (")");
12517 }
12518
12519 uiout->text (" at ");
12520 ada_find_printable_frame (get_current_frame ());
12521
12522 return PRINT_SRC_AND_LOC;
12523 }
12524
12525 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12526 for all exception catchpoint kinds. */
12527
12528 static void
12529 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12530 {
12531 struct ui_out *uiout = current_uiout;
12532 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12533 struct value_print_options opts;
12534
12535 get_user_print_options (&opts);
12536
12537 if (opts.addressprint)
12538 uiout->field_skip ("addr");
12539
12540 annotate_field (5);
12541 switch (c->m_kind)
12542 {
12543 case ada_catch_exception:
12544 if (!c->excep_string.empty ())
12545 {
12546 std::string msg = string_printf (_("`%s' Ada exception"),
12547 c->excep_string.c_str ());
12548
12549 uiout->field_string ("what", msg);
12550 }
12551 else
12552 uiout->field_string ("what", "all Ada exceptions");
12553
12554 break;
12555
12556 case ada_catch_exception_unhandled:
12557 uiout->field_string ("what", "unhandled Ada exceptions");
12558 break;
12559
12560 case ada_catch_handlers:
12561 if (!c->excep_string.empty ())
12562 {
12563 uiout->field_fmt ("what",
12564 _("`%s' Ada exception handlers"),
12565 c->excep_string.c_str ());
12566 }
12567 else
12568 uiout->field_string ("what", "all Ada exceptions handlers");
12569 break;
12570
12571 case ada_catch_assert:
12572 uiout->field_string ("what", "failed Ada assertions");
12573 break;
12574
12575 default:
12576 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12577 break;
12578 }
12579 }
12580
12581 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12582 for all exception catchpoint kinds. */
12583
12584 static void
12585 print_mention_exception (struct breakpoint *b)
12586 {
12587 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12588 struct ui_out *uiout = current_uiout;
12589
12590 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12591 : _("Catchpoint "));
12592 uiout->field_signed ("bkptno", b->number);
12593 uiout->text (": ");
12594
12595 switch (c->m_kind)
12596 {
12597 case ada_catch_exception:
12598 if (!c->excep_string.empty ())
12599 {
12600 std::string info = string_printf (_("`%s' Ada exception"),
12601 c->excep_string.c_str ());
12602 uiout->text (info.c_str ());
12603 }
12604 else
12605 uiout->text (_("all Ada exceptions"));
12606 break;
12607
12608 case ada_catch_exception_unhandled:
12609 uiout->text (_("unhandled Ada exceptions"));
12610 break;
12611
12612 case ada_catch_handlers:
12613 if (!c->excep_string.empty ())
12614 {
12615 std::string info
12616 = string_printf (_("`%s' Ada exception handlers"),
12617 c->excep_string.c_str ());
12618 uiout->text (info.c_str ());
12619 }
12620 else
12621 uiout->text (_("all Ada exceptions handlers"));
12622 break;
12623
12624 case ada_catch_assert:
12625 uiout->text (_("failed Ada assertions"));
12626 break;
12627
12628 default:
12629 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12630 break;
12631 }
12632 }
12633
12634 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12635 for all exception catchpoint kinds. */
12636
12637 static void
12638 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12639 {
12640 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12641
12642 switch (c->m_kind)
12643 {
12644 case ada_catch_exception:
12645 fprintf_filtered (fp, "catch exception");
12646 if (!c->excep_string.empty ())
12647 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12648 break;
12649
12650 case ada_catch_exception_unhandled:
12651 fprintf_filtered (fp, "catch exception unhandled");
12652 break;
12653
12654 case ada_catch_handlers:
12655 fprintf_filtered (fp, "catch handlers");
12656 break;
12657
12658 case ada_catch_assert:
12659 fprintf_filtered (fp, "catch assert");
12660 break;
12661
12662 default:
12663 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12664 }
12665 print_recreate_thread (b, fp);
12666 }
12667
12668 /* Virtual tables for various breakpoint types. */
12669 static struct breakpoint_ops catch_exception_breakpoint_ops;
12670 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12671 static struct breakpoint_ops catch_assert_breakpoint_ops;
12672 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12673
12674 /* See ada-lang.h. */
12675
12676 bool
12677 is_ada_exception_catchpoint (breakpoint *bp)
12678 {
12679 return (bp->ops == &catch_exception_breakpoint_ops
12680 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12681 || bp->ops == &catch_assert_breakpoint_ops
12682 || bp->ops == &catch_handlers_breakpoint_ops);
12683 }
12684
12685 /* Split the arguments specified in a "catch exception" command.
12686 Set EX to the appropriate catchpoint type.
12687 Set EXCEP_STRING to the name of the specific exception if
12688 specified by the user.
12689 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12690 "catch handlers" command. False otherwise.
12691 If a condition is found at the end of the arguments, the condition
12692 expression is stored in COND_STRING (memory must be deallocated
12693 after use). Otherwise COND_STRING is set to NULL. */
12694
12695 static void
12696 catch_ada_exception_command_split (const char *args,
12697 bool is_catch_handlers_cmd,
12698 enum ada_exception_catchpoint_kind *ex,
12699 std::string *excep_string,
12700 std::string *cond_string)
12701 {
12702 std::string exception_name;
12703
12704 exception_name = extract_arg (&args);
12705 if (exception_name == "if")
12706 {
12707 /* This is not an exception name; this is the start of a condition
12708 expression for a catchpoint on all exceptions. So, "un-get"
12709 this token, and set exception_name to NULL. */
12710 exception_name.clear ();
12711 args -= 2;
12712 }
12713
12714 /* Check to see if we have a condition. */
12715
12716 args = skip_spaces (args);
12717 if (startswith (args, "if")
12718 && (isspace (args[2]) || args[2] == '\0'))
12719 {
12720 args += 2;
12721 args = skip_spaces (args);
12722
12723 if (args[0] == '\0')
12724 error (_("Condition missing after `if' keyword"));
12725 *cond_string = args;
12726
12727 args += strlen (args);
12728 }
12729
12730 /* Check that we do not have any more arguments. Anything else
12731 is unexpected. */
12732
12733 if (args[0] != '\0')
12734 error (_("Junk at end of expression"));
12735
12736 if (is_catch_handlers_cmd)
12737 {
12738 /* Catch handling of exceptions. */
12739 *ex = ada_catch_handlers;
12740 *excep_string = exception_name;
12741 }
12742 else if (exception_name.empty ())
12743 {
12744 /* Catch all exceptions. */
12745 *ex = ada_catch_exception;
12746 excep_string->clear ();
12747 }
12748 else if (exception_name == "unhandled")
12749 {
12750 /* Catch unhandled exceptions. */
12751 *ex = ada_catch_exception_unhandled;
12752 excep_string->clear ();
12753 }
12754 else
12755 {
12756 /* Catch a specific exception. */
12757 *ex = ada_catch_exception;
12758 *excep_string = exception_name;
12759 }
12760 }
12761
12762 /* Return the name of the symbol on which we should break in order to
12763 implement a catchpoint of the EX kind. */
12764
12765 static const char *
12766 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12767 {
12768 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12769
12770 gdb_assert (data->exception_info != NULL);
12771
12772 switch (ex)
12773 {
12774 case ada_catch_exception:
12775 return (data->exception_info->catch_exception_sym);
12776 break;
12777 case ada_catch_exception_unhandled:
12778 return (data->exception_info->catch_exception_unhandled_sym);
12779 break;
12780 case ada_catch_assert:
12781 return (data->exception_info->catch_assert_sym);
12782 break;
12783 case ada_catch_handlers:
12784 return (data->exception_info->catch_handlers_sym);
12785 break;
12786 default:
12787 internal_error (__FILE__, __LINE__,
12788 _("unexpected catchpoint kind (%d)"), ex);
12789 }
12790 }
12791
12792 /* Return the breakpoint ops "virtual table" used for catchpoints
12793 of the EX kind. */
12794
12795 static const struct breakpoint_ops *
12796 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12797 {
12798 switch (ex)
12799 {
12800 case ada_catch_exception:
12801 return (&catch_exception_breakpoint_ops);
12802 break;
12803 case ada_catch_exception_unhandled:
12804 return (&catch_exception_unhandled_breakpoint_ops);
12805 break;
12806 case ada_catch_assert:
12807 return (&catch_assert_breakpoint_ops);
12808 break;
12809 case ada_catch_handlers:
12810 return (&catch_handlers_breakpoint_ops);
12811 break;
12812 default:
12813 internal_error (__FILE__, __LINE__,
12814 _("unexpected catchpoint kind (%d)"), ex);
12815 }
12816 }
12817
12818 /* Return the condition that will be used to match the current exception
12819 being raised with the exception that the user wants to catch. This
12820 assumes that this condition is used when the inferior just triggered
12821 an exception catchpoint.
12822 EX: the type of catchpoints used for catching Ada exceptions. */
12823
12824 static std::string
12825 ada_exception_catchpoint_cond_string (const char *excep_string,
12826 enum ada_exception_catchpoint_kind ex)
12827 {
12828 int i;
12829 bool is_standard_exc = false;
12830 std::string result;
12831
12832 if (ex == ada_catch_handlers)
12833 {
12834 /* For exception handlers catchpoints, the condition string does
12835 not use the same parameter as for the other exceptions. */
12836 result = ("long_integer (GNAT_GCC_exception_Access"
12837 "(gcc_exception).all.occurrence.id)");
12838 }
12839 else
12840 result = "long_integer (e)";
12841
12842 /* The standard exceptions are a special case. They are defined in
12843 runtime units that have been compiled without debugging info; if
12844 EXCEP_STRING is the not-fully-qualified name of a standard
12845 exception (e.g. "constraint_error") then, during the evaluation
12846 of the condition expression, the symbol lookup on this name would
12847 *not* return this standard exception. The catchpoint condition
12848 may then be set only on user-defined exceptions which have the
12849 same not-fully-qualified name (e.g. my_package.constraint_error).
12850
12851 To avoid this unexcepted behavior, these standard exceptions are
12852 systematically prefixed by "standard". This means that "catch
12853 exception constraint_error" is rewritten into "catch exception
12854 standard.constraint_error".
12855
12856 If an exception named constraint_error is defined in another package of
12857 the inferior program, then the only way to specify this exception as a
12858 breakpoint condition is to use its fully-qualified named:
12859 e.g. my_package.constraint_error. */
12860
12861 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12862 {
12863 if (strcmp (standard_exc [i], excep_string) == 0)
12864 {
12865 is_standard_exc = true;
12866 break;
12867 }
12868 }
12869
12870 result += " = ";
12871
12872 if (is_standard_exc)
12873 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12874 else
12875 string_appendf (result, "long_integer (&%s)", excep_string);
12876
12877 return result;
12878 }
12879
12880 /* Return the symtab_and_line that should be used to insert an exception
12881 catchpoint of the TYPE kind.
12882
12883 ADDR_STRING returns the name of the function where the real
12884 breakpoint that implements the catchpoints is set, depending on the
12885 type of catchpoint we need to create. */
12886
12887 static struct symtab_and_line
12888 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12889 std::string *addr_string, const struct breakpoint_ops **ops)
12890 {
12891 const char *sym_name;
12892 struct symbol *sym;
12893
12894 /* First, find out which exception support info to use. */
12895 ada_exception_support_info_sniffer ();
12896
12897 /* Then lookup the function on which we will break in order to catch
12898 the Ada exceptions requested by the user. */
12899 sym_name = ada_exception_sym_name (ex);
12900 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12901
12902 if (sym == NULL)
12903 error (_("Catchpoint symbol not found: %s"), sym_name);
12904
12905 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12906 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12907
12908 /* Set ADDR_STRING. */
12909 *addr_string = sym_name;
12910
12911 /* Set OPS. */
12912 *ops = ada_exception_breakpoint_ops (ex);
12913
12914 return find_function_start_sal (sym, 1);
12915 }
12916
12917 /* Create an Ada exception catchpoint.
12918
12919 EX_KIND is the kind of exception catchpoint to be created.
12920
12921 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12922 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12923 of the exception to which this catchpoint applies.
12924
12925 COND_STRING, if not empty, is the catchpoint condition.
12926
12927 TEMPFLAG, if nonzero, means that the underlying breakpoint
12928 should be temporary.
12929
12930 FROM_TTY is the usual argument passed to all commands implementations. */
12931
12932 void
12933 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12934 enum ada_exception_catchpoint_kind ex_kind,
12935 const std::string &excep_string,
12936 const std::string &cond_string,
12937 int tempflag,
12938 int disabled,
12939 int from_tty)
12940 {
12941 std::string addr_string;
12942 const struct breakpoint_ops *ops = NULL;
12943 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12944
12945 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12946 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12947 ops, tempflag, disabled, from_tty);
12948 c->excep_string = excep_string;
12949 create_excep_cond_exprs (c.get (), ex_kind);
12950 if (!cond_string.empty ())
12951 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12952 install_breakpoint (0, std::move (c), 1);
12953 }
12954
12955 /* Implement the "catch exception" command. */
12956
12957 static void
12958 catch_ada_exception_command (const char *arg_entry, int from_tty,
12959 struct cmd_list_element *command)
12960 {
12961 const char *arg = arg_entry;
12962 struct gdbarch *gdbarch = get_current_arch ();
12963 int tempflag;
12964 enum ada_exception_catchpoint_kind ex_kind;
12965 std::string excep_string;
12966 std::string cond_string;
12967
12968 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12969
12970 if (!arg)
12971 arg = "";
12972 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12973 &cond_string);
12974 create_ada_exception_catchpoint (gdbarch, ex_kind,
12975 excep_string, cond_string,
12976 tempflag, 1 /* enabled */,
12977 from_tty);
12978 }
12979
12980 /* Implement the "catch handlers" command. */
12981
12982 static void
12983 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12984 struct cmd_list_element *command)
12985 {
12986 const char *arg = arg_entry;
12987 struct gdbarch *gdbarch = get_current_arch ();
12988 int tempflag;
12989 enum ada_exception_catchpoint_kind ex_kind;
12990 std::string excep_string;
12991 std::string cond_string;
12992
12993 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12994
12995 if (!arg)
12996 arg = "";
12997 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12998 &cond_string);
12999 create_ada_exception_catchpoint (gdbarch, ex_kind,
13000 excep_string, cond_string,
13001 tempflag, 1 /* enabled */,
13002 from_tty);
13003 }
13004
13005 /* Completion function for the Ada "catch" commands. */
13006
13007 static void
13008 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13009 const char *text, const char *word)
13010 {
13011 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13012
13013 for (const ada_exc_info &info : exceptions)
13014 {
13015 if (startswith (info.name, word))
13016 tracker.add_completion (make_unique_xstrdup (info.name));
13017 }
13018 }
13019
13020 /* Split the arguments specified in a "catch assert" command.
13021
13022 ARGS contains the command's arguments (or the empty string if
13023 no arguments were passed).
13024
13025 If ARGS contains a condition, set COND_STRING to that condition
13026 (the memory needs to be deallocated after use). */
13027
13028 static void
13029 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13030 {
13031 args = skip_spaces (args);
13032
13033 /* Check whether a condition was provided. */
13034 if (startswith (args, "if")
13035 && (isspace (args[2]) || args[2] == '\0'))
13036 {
13037 args += 2;
13038 args = skip_spaces (args);
13039 if (args[0] == '\0')
13040 error (_("condition missing after `if' keyword"));
13041 cond_string.assign (args);
13042 }
13043
13044 /* Otherwise, there should be no other argument at the end of
13045 the command. */
13046 else if (args[0] != '\0')
13047 error (_("Junk at end of arguments."));
13048 }
13049
13050 /* Implement the "catch assert" command. */
13051
13052 static void
13053 catch_assert_command (const char *arg_entry, int from_tty,
13054 struct cmd_list_element *command)
13055 {
13056 const char *arg = arg_entry;
13057 struct gdbarch *gdbarch = get_current_arch ();
13058 int tempflag;
13059 std::string cond_string;
13060
13061 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13062
13063 if (!arg)
13064 arg = "";
13065 catch_ada_assert_command_split (arg, cond_string);
13066 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13067 "", cond_string,
13068 tempflag, 1 /* enabled */,
13069 from_tty);
13070 }
13071
13072 /* Return non-zero if the symbol SYM is an Ada exception object. */
13073
13074 static int
13075 ada_is_exception_sym (struct symbol *sym)
13076 {
13077 const char *type_name = SYMBOL_TYPE (sym)->name ();
13078
13079 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13080 && SYMBOL_CLASS (sym) != LOC_BLOCK
13081 && SYMBOL_CLASS (sym) != LOC_CONST
13082 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13083 && type_name != NULL && strcmp (type_name, "exception") == 0);
13084 }
13085
13086 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13087 Ada exception object. This matches all exceptions except the ones
13088 defined by the Ada language. */
13089
13090 static int
13091 ada_is_non_standard_exception_sym (struct symbol *sym)
13092 {
13093 int i;
13094
13095 if (!ada_is_exception_sym (sym))
13096 return 0;
13097
13098 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13099 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
13100 return 0; /* A standard exception. */
13101
13102 /* Numeric_Error is also a standard exception, so exclude it.
13103 See the STANDARD_EXC description for more details as to why
13104 this exception is not listed in that array. */
13105 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
13106 return 0;
13107
13108 return 1;
13109 }
13110
13111 /* A helper function for std::sort, comparing two struct ada_exc_info
13112 objects.
13113
13114 The comparison is determined first by exception name, and then
13115 by exception address. */
13116
13117 bool
13118 ada_exc_info::operator< (const ada_exc_info &other) const
13119 {
13120 int result;
13121
13122 result = strcmp (name, other.name);
13123 if (result < 0)
13124 return true;
13125 if (result == 0 && addr < other.addr)
13126 return true;
13127 return false;
13128 }
13129
13130 bool
13131 ada_exc_info::operator== (const ada_exc_info &other) const
13132 {
13133 return addr == other.addr && strcmp (name, other.name) == 0;
13134 }
13135
13136 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13137 routine, but keeping the first SKIP elements untouched.
13138
13139 All duplicates are also removed. */
13140
13141 static void
13142 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13143 int skip)
13144 {
13145 std::sort (exceptions->begin () + skip, exceptions->end ());
13146 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13147 exceptions->end ());
13148 }
13149
13150 /* Add all exceptions defined by the Ada standard whose name match
13151 a regular expression.
13152
13153 If PREG is not NULL, then this regexp_t object is used to
13154 perform the symbol name matching. Otherwise, no name-based
13155 filtering is performed.
13156
13157 EXCEPTIONS is a vector of exceptions to which matching exceptions
13158 gets pushed. */
13159
13160 static void
13161 ada_add_standard_exceptions (compiled_regex *preg,
13162 std::vector<ada_exc_info> *exceptions)
13163 {
13164 int i;
13165
13166 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13167 {
13168 if (preg == NULL
13169 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13170 {
13171 struct bound_minimal_symbol msymbol
13172 = ada_lookup_simple_minsym (standard_exc[i]);
13173
13174 if (msymbol.minsym != NULL)
13175 {
13176 struct ada_exc_info info
13177 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13178
13179 exceptions->push_back (info);
13180 }
13181 }
13182 }
13183 }
13184
13185 /* Add all Ada exceptions defined locally and accessible from the given
13186 FRAME.
13187
13188 If PREG is not NULL, then this regexp_t object is used to
13189 perform the symbol name matching. Otherwise, no name-based
13190 filtering is performed.
13191
13192 EXCEPTIONS is a vector of exceptions to which matching exceptions
13193 gets pushed. */
13194
13195 static void
13196 ada_add_exceptions_from_frame (compiled_regex *preg,
13197 struct frame_info *frame,
13198 std::vector<ada_exc_info> *exceptions)
13199 {
13200 const struct block *block = get_frame_block (frame, 0);
13201
13202 while (block != 0)
13203 {
13204 struct block_iterator iter;
13205 struct symbol *sym;
13206
13207 ALL_BLOCK_SYMBOLS (block, iter, sym)
13208 {
13209 switch (SYMBOL_CLASS (sym))
13210 {
13211 case LOC_TYPEDEF:
13212 case LOC_BLOCK:
13213 case LOC_CONST:
13214 break;
13215 default:
13216 if (ada_is_exception_sym (sym))
13217 {
13218 struct ada_exc_info info = {sym->print_name (),
13219 SYMBOL_VALUE_ADDRESS (sym)};
13220
13221 exceptions->push_back (info);
13222 }
13223 }
13224 }
13225 if (BLOCK_FUNCTION (block) != NULL)
13226 break;
13227 block = BLOCK_SUPERBLOCK (block);
13228 }
13229 }
13230
13231 /* Return true if NAME matches PREG or if PREG is NULL. */
13232
13233 static bool
13234 name_matches_regex (const char *name, compiled_regex *preg)
13235 {
13236 return (preg == NULL
13237 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13238 }
13239
13240 /* Add all exceptions defined globally whose name name match
13241 a regular expression, excluding standard exceptions.
13242
13243 The reason we exclude standard exceptions is that they need
13244 to be handled separately: Standard exceptions are defined inside
13245 a runtime unit which is normally not compiled with debugging info,
13246 and thus usually do not show up in our symbol search. However,
13247 if the unit was in fact built with debugging info, we need to
13248 exclude them because they would duplicate the entry we found
13249 during the special loop that specifically searches for those
13250 standard exceptions.
13251
13252 If PREG is not NULL, then this regexp_t object is used to
13253 perform the symbol name matching. Otherwise, no name-based
13254 filtering is performed.
13255
13256 EXCEPTIONS is a vector of exceptions to which matching exceptions
13257 gets pushed. */
13258
13259 static void
13260 ada_add_global_exceptions (compiled_regex *preg,
13261 std::vector<ada_exc_info> *exceptions)
13262 {
13263 /* In Ada, the symbol "search name" is a linkage name, whereas the
13264 regular expression used to do the matching refers to the natural
13265 name. So match against the decoded name. */
13266 expand_symtabs_matching (NULL,
13267 lookup_name_info::match_any (),
13268 [&] (const char *search_name)
13269 {
13270 std::string decoded = ada_decode (search_name);
13271 return name_matches_regex (decoded.c_str (), preg);
13272 },
13273 NULL,
13274 VARIABLES_DOMAIN);
13275
13276 for (objfile *objfile : current_program_space->objfiles ())
13277 {
13278 for (compunit_symtab *s : objfile->compunits ())
13279 {
13280 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13281 int i;
13282
13283 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13284 {
13285 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13286 struct block_iterator iter;
13287 struct symbol *sym;
13288
13289 ALL_BLOCK_SYMBOLS (b, iter, sym)
13290 if (ada_is_non_standard_exception_sym (sym)
13291 && name_matches_regex (sym->natural_name (), preg))
13292 {
13293 struct ada_exc_info info
13294 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13295
13296 exceptions->push_back (info);
13297 }
13298 }
13299 }
13300 }
13301 }
13302
13303 /* Implements ada_exceptions_list with the regular expression passed
13304 as a regex_t, rather than a string.
13305
13306 If not NULL, PREG is used to filter out exceptions whose names
13307 do not match. Otherwise, all exceptions are listed. */
13308
13309 static std::vector<ada_exc_info>
13310 ada_exceptions_list_1 (compiled_regex *preg)
13311 {
13312 std::vector<ada_exc_info> result;
13313 int prev_len;
13314
13315 /* First, list the known standard exceptions. These exceptions
13316 need to be handled separately, as they are usually defined in
13317 runtime units that have been compiled without debugging info. */
13318
13319 ada_add_standard_exceptions (preg, &result);
13320
13321 /* Next, find all exceptions whose scope is local and accessible
13322 from the currently selected frame. */
13323
13324 if (has_stack_frames ())
13325 {
13326 prev_len = result.size ();
13327 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13328 &result);
13329 if (result.size () > prev_len)
13330 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13331 }
13332
13333 /* Add all exceptions whose scope is global. */
13334
13335 prev_len = result.size ();
13336 ada_add_global_exceptions (preg, &result);
13337 if (result.size () > prev_len)
13338 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13339
13340 return result;
13341 }
13342
13343 /* Return a vector of ada_exc_info.
13344
13345 If REGEXP is NULL, all exceptions are included in the result.
13346 Otherwise, it should contain a valid regular expression,
13347 and only the exceptions whose names match that regular expression
13348 are included in the result.
13349
13350 The exceptions are sorted in the following order:
13351 - Standard exceptions (defined by the Ada language), in
13352 alphabetical order;
13353 - Exceptions only visible from the current frame, in
13354 alphabetical order;
13355 - Exceptions whose scope is global, in alphabetical order. */
13356
13357 std::vector<ada_exc_info>
13358 ada_exceptions_list (const char *regexp)
13359 {
13360 if (regexp == NULL)
13361 return ada_exceptions_list_1 (NULL);
13362
13363 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13364 return ada_exceptions_list_1 (&reg);
13365 }
13366
13367 /* Implement the "info exceptions" command. */
13368
13369 static void
13370 info_exceptions_command (const char *regexp, int from_tty)
13371 {
13372 struct gdbarch *gdbarch = get_current_arch ();
13373
13374 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13375
13376 if (regexp != NULL)
13377 printf_filtered
13378 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13379 else
13380 printf_filtered (_("All defined Ada exceptions:\n"));
13381
13382 for (const ada_exc_info &info : exceptions)
13383 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13384 }
13385
13386 /* Operators */
13387 /* Information about operators given special treatment in functions
13388 below. */
13389 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13390
13391 #define ADA_OPERATORS \
13392 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13393 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13394 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13395 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13396 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13397 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13398 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13399 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13400 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13401 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13402 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13403 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13404 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13405 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13406 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13407 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13408 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13409 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13410 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13411
13412 static void
13413 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13414 int *argsp)
13415 {
13416 switch (exp->elts[pc - 1].opcode)
13417 {
13418 default:
13419 operator_length_standard (exp, pc, oplenp, argsp);
13420 break;
13421
13422 #define OP_DEFN(op, len, args, binop) \
13423 case op: *oplenp = len; *argsp = args; break;
13424 ADA_OPERATORS;
13425 #undef OP_DEFN
13426
13427 case OP_AGGREGATE:
13428 *oplenp = 3;
13429 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13430 break;
13431
13432 case OP_CHOICES:
13433 *oplenp = 3;
13434 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13435 break;
13436 }
13437 }
13438
13439 /* Implementation of the exp_descriptor method operator_check. */
13440
13441 static int
13442 ada_operator_check (struct expression *exp, int pos,
13443 int (*objfile_func) (struct objfile *objfile, void *data),
13444 void *data)
13445 {
13446 const union exp_element *const elts = exp->elts;
13447 struct type *type = NULL;
13448
13449 switch (elts[pos].opcode)
13450 {
13451 case UNOP_IN_RANGE:
13452 case UNOP_QUAL:
13453 type = elts[pos + 1].type;
13454 break;
13455
13456 default:
13457 return operator_check_standard (exp, pos, objfile_func, data);
13458 }
13459
13460 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13461
13462 if (type && TYPE_OBJFILE (type)
13463 && (*objfile_func) (TYPE_OBJFILE (type), data))
13464 return 1;
13465
13466 return 0;
13467 }
13468
13469 static const char *
13470 ada_op_name (enum exp_opcode opcode)
13471 {
13472 switch (opcode)
13473 {
13474 default:
13475 return op_name_standard (opcode);
13476
13477 #define OP_DEFN(op, len, args, binop) case op: return #op;
13478 ADA_OPERATORS;
13479 #undef OP_DEFN
13480
13481 case OP_AGGREGATE:
13482 return "OP_AGGREGATE";
13483 case OP_CHOICES:
13484 return "OP_CHOICES";
13485 case OP_NAME:
13486 return "OP_NAME";
13487 }
13488 }
13489
13490 /* As for operator_length, but assumes PC is pointing at the first
13491 element of the operator, and gives meaningful results only for the
13492 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13493
13494 static void
13495 ada_forward_operator_length (struct expression *exp, int pc,
13496 int *oplenp, int *argsp)
13497 {
13498 switch (exp->elts[pc].opcode)
13499 {
13500 default:
13501 *oplenp = *argsp = 0;
13502 break;
13503
13504 #define OP_DEFN(op, len, args, binop) \
13505 case op: *oplenp = len; *argsp = args; break;
13506 ADA_OPERATORS;
13507 #undef OP_DEFN
13508
13509 case OP_AGGREGATE:
13510 *oplenp = 3;
13511 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13512 break;
13513
13514 case OP_CHOICES:
13515 *oplenp = 3;
13516 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13517 break;
13518
13519 case OP_STRING:
13520 case OP_NAME:
13521 {
13522 int len = longest_to_int (exp->elts[pc + 1].longconst);
13523
13524 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13525 *argsp = 0;
13526 break;
13527 }
13528 }
13529 }
13530
13531 static int
13532 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13533 {
13534 enum exp_opcode op = exp->elts[elt].opcode;
13535 int oplen, nargs;
13536 int pc = elt;
13537 int i;
13538
13539 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13540
13541 switch (op)
13542 {
13543 /* Ada attributes ('Foo). */
13544 case OP_ATR_FIRST:
13545 case OP_ATR_LAST:
13546 case OP_ATR_LENGTH:
13547 case OP_ATR_IMAGE:
13548 case OP_ATR_MAX:
13549 case OP_ATR_MIN:
13550 case OP_ATR_MODULUS:
13551 case OP_ATR_POS:
13552 case OP_ATR_SIZE:
13553 case OP_ATR_TAG:
13554 case OP_ATR_VAL:
13555 break;
13556
13557 case UNOP_IN_RANGE:
13558 case UNOP_QUAL:
13559 /* XXX: gdb_sprint_host_address, type_sprint */
13560 fprintf_filtered (stream, _("Type @"));
13561 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13562 fprintf_filtered (stream, " (");
13563 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13564 fprintf_filtered (stream, ")");
13565 break;
13566 case BINOP_IN_BOUNDS:
13567 fprintf_filtered (stream, " (%d)",
13568 longest_to_int (exp->elts[pc + 2].longconst));
13569 break;
13570 case TERNOP_IN_RANGE:
13571 break;
13572
13573 case OP_AGGREGATE:
13574 case OP_OTHERS:
13575 case OP_DISCRETE_RANGE:
13576 case OP_POSITIONAL:
13577 case OP_CHOICES:
13578 break;
13579
13580 case OP_NAME:
13581 case OP_STRING:
13582 {
13583 char *name = &exp->elts[elt + 2].string;
13584 int len = longest_to_int (exp->elts[elt + 1].longconst);
13585
13586 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13587 break;
13588 }
13589
13590 default:
13591 return dump_subexp_body_standard (exp, stream, elt);
13592 }
13593
13594 elt += oplen;
13595 for (i = 0; i < nargs; i += 1)
13596 elt = dump_subexp (exp, stream, elt);
13597
13598 return elt;
13599 }
13600
13601 /* The Ada extension of print_subexp (q.v.). */
13602
13603 static void
13604 ada_print_subexp (struct expression *exp, int *pos,
13605 struct ui_file *stream, enum precedence prec)
13606 {
13607 int oplen, nargs, i;
13608 int pc = *pos;
13609 enum exp_opcode op = exp->elts[pc].opcode;
13610
13611 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13612
13613 *pos += oplen;
13614 switch (op)
13615 {
13616 default:
13617 *pos -= oplen;
13618 print_subexp_standard (exp, pos, stream, prec);
13619 return;
13620
13621 case OP_VAR_VALUE:
13622 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13623 return;
13624
13625 case BINOP_IN_BOUNDS:
13626 /* XXX: sprint_subexp */
13627 print_subexp (exp, pos, stream, PREC_SUFFIX);
13628 fputs_filtered (" in ", stream);
13629 print_subexp (exp, pos, stream, PREC_SUFFIX);
13630 fputs_filtered ("'range", stream);
13631 if (exp->elts[pc + 1].longconst > 1)
13632 fprintf_filtered (stream, "(%ld)",
13633 (long) exp->elts[pc + 1].longconst);
13634 return;
13635
13636 case TERNOP_IN_RANGE:
13637 if (prec >= PREC_EQUAL)
13638 fputs_filtered ("(", stream);
13639 /* XXX: sprint_subexp */
13640 print_subexp (exp, pos, stream, PREC_SUFFIX);
13641 fputs_filtered (" in ", stream);
13642 print_subexp (exp, pos, stream, PREC_EQUAL);
13643 fputs_filtered (" .. ", stream);
13644 print_subexp (exp, pos, stream, PREC_EQUAL);
13645 if (prec >= PREC_EQUAL)
13646 fputs_filtered (")", stream);
13647 return;
13648
13649 case OP_ATR_FIRST:
13650 case OP_ATR_LAST:
13651 case OP_ATR_LENGTH:
13652 case OP_ATR_IMAGE:
13653 case OP_ATR_MAX:
13654 case OP_ATR_MIN:
13655 case OP_ATR_MODULUS:
13656 case OP_ATR_POS:
13657 case OP_ATR_SIZE:
13658 case OP_ATR_TAG:
13659 case OP_ATR_VAL:
13660 if (exp->elts[*pos].opcode == OP_TYPE)
13661 {
13662 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13663 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13664 &type_print_raw_options);
13665 *pos += 3;
13666 }
13667 else
13668 print_subexp (exp, pos, stream, PREC_SUFFIX);
13669 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13670 if (nargs > 1)
13671 {
13672 int tem;
13673
13674 for (tem = 1; tem < nargs; tem += 1)
13675 {
13676 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13677 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13678 }
13679 fputs_filtered (")", stream);
13680 }
13681 return;
13682
13683 case UNOP_QUAL:
13684 type_print (exp->elts[pc + 1].type, "", stream, 0);
13685 fputs_filtered ("'(", stream);
13686 print_subexp (exp, pos, stream, PREC_PREFIX);
13687 fputs_filtered (")", stream);
13688 return;
13689
13690 case UNOP_IN_RANGE:
13691 /* XXX: sprint_subexp */
13692 print_subexp (exp, pos, stream, PREC_SUFFIX);
13693 fputs_filtered (" in ", stream);
13694 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13695 &type_print_raw_options);
13696 return;
13697
13698 case OP_DISCRETE_RANGE:
13699 print_subexp (exp, pos, stream, PREC_SUFFIX);
13700 fputs_filtered ("..", stream);
13701 print_subexp (exp, pos, stream, PREC_SUFFIX);
13702 return;
13703
13704 case OP_OTHERS:
13705 fputs_filtered ("others => ", stream);
13706 print_subexp (exp, pos, stream, PREC_SUFFIX);
13707 return;
13708
13709 case OP_CHOICES:
13710 for (i = 0; i < nargs-1; i += 1)
13711 {
13712 if (i > 0)
13713 fputs_filtered ("|", stream);
13714 print_subexp (exp, pos, stream, PREC_SUFFIX);
13715 }
13716 fputs_filtered (" => ", stream);
13717 print_subexp (exp, pos, stream, PREC_SUFFIX);
13718 return;
13719
13720 case OP_POSITIONAL:
13721 print_subexp (exp, pos, stream, PREC_SUFFIX);
13722 return;
13723
13724 case OP_AGGREGATE:
13725 fputs_filtered ("(", stream);
13726 for (i = 0; i < nargs; i += 1)
13727 {
13728 if (i > 0)
13729 fputs_filtered (", ", stream);
13730 print_subexp (exp, pos, stream, PREC_SUFFIX);
13731 }
13732 fputs_filtered (")", stream);
13733 return;
13734 }
13735 }
13736
13737 /* Table mapping opcodes into strings for printing operators
13738 and precedences of the operators. */
13739
13740 static const struct op_print ada_op_print_tab[] = {
13741 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13742 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13743 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13744 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13745 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13746 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13747 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13748 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13749 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13750 {">=", BINOP_GEQ, PREC_ORDER, 0},
13751 {">", BINOP_GTR, PREC_ORDER, 0},
13752 {"<", BINOP_LESS, PREC_ORDER, 0},
13753 {">>", BINOP_RSH, PREC_SHIFT, 0},
13754 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13755 {"+", BINOP_ADD, PREC_ADD, 0},
13756 {"-", BINOP_SUB, PREC_ADD, 0},
13757 {"&", BINOP_CONCAT, PREC_ADD, 0},
13758 {"*", BINOP_MUL, PREC_MUL, 0},
13759 {"/", BINOP_DIV, PREC_MUL, 0},
13760 {"rem", BINOP_REM, PREC_MUL, 0},
13761 {"mod", BINOP_MOD, PREC_MUL, 0},
13762 {"**", BINOP_EXP, PREC_REPEAT, 0},
13763 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13764 {"-", UNOP_NEG, PREC_PREFIX, 0},
13765 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13766 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13767 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13768 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13769 {".all", UNOP_IND, PREC_SUFFIX, 1},
13770 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13771 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13772 {NULL, OP_NULL, PREC_SUFFIX, 0}
13773 };
13774 \f
13775 enum ada_primitive_types {
13776 ada_primitive_type_int,
13777 ada_primitive_type_long,
13778 ada_primitive_type_short,
13779 ada_primitive_type_char,
13780 ada_primitive_type_float,
13781 ada_primitive_type_double,
13782 ada_primitive_type_void,
13783 ada_primitive_type_long_long,
13784 ada_primitive_type_long_double,
13785 ada_primitive_type_natural,
13786 ada_primitive_type_positive,
13787 ada_primitive_type_system_address,
13788 ada_primitive_type_storage_offset,
13789 nr_ada_primitive_types
13790 };
13791
13792 static void
13793 ada_language_arch_info (struct gdbarch *gdbarch,
13794 struct language_arch_info *lai)
13795 {
13796 const struct builtin_type *builtin = builtin_type (gdbarch);
13797
13798 lai->primitive_type_vector
13799 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13800 struct type *);
13801
13802 lai->primitive_type_vector [ada_primitive_type_int]
13803 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13804 0, "integer");
13805 lai->primitive_type_vector [ada_primitive_type_long]
13806 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13807 0, "long_integer");
13808 lai->primitive_type_vector [ada_primitive_type_short]
13809 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13810 0, "short_integer");
13811 lai->string_char_type
13812 = lai->primitive_type_vector [ada_primitive_type_char]
13813 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13814 lai->primitive_type_vector [ada_primitive_type_float]
13815 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13816 "float", gdbarch_float_format (gdbarch));
13817 lai->primitive_type_vector [ada_primitive_type_double]
13818 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13819 "long_float", gdbarch_double_format (gdbarch));
13820 lai->primitive_type_vector [ada_primitive_type_long_long]
13821 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13822 0, "long_long_integer");
13823 lai->primitive_type_vector [ada_primitive_type_long_double]
13824 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13825 "long_long_float", gdbarch_long_double_format (gdbarch));
13826 lai->primitive_type_vector [ada_primitive_type_natural]
13827 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13828 0, "natural");
13829 lai->primitive_type_vector [ada_primitive_type_positive]
13830 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13831 0, "positive");
13832 lai->primitive_type_vector [ada_primitive_type_void]
13833 = builtin->builtin_void;
13834
13835 lai->primitive_type_vector [ada_primitive_type_system_address]
13836 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13837 "void"));
13838 lai->primitive_type_vector [ada_primitive_type_system_address]
13839 ->set_name ("system__address");
13840
13841 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13842 type. This is a signed integral type whose size is the same as
13843 the size of addresses. */
13844 {
13845 unsigned int addr_length = TYPE_LENGTH
13846 (lai->primitive_type_vector [ada_primitive_type_system_address]);
13847
13848 lai->primitive_type_vector [ada_primitive_type_storage_offset]
13849 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13850 "storage_offset");
13851 }
13852
13853 lai->bool_type_symbol = NULL;
13854 lai->bool_type_default = builtin->builtin_bool;
13855 }
13856 \f
13857 /* Language vector */
13858
13859 /* Not really used, but needed in the ada_language_defn. */
13860
13861 static void
13862 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13863 {
13864 ada_emit_char (c, type, stream, quoter, 1);
13865 }
13866
13867 static int
13868 parse (struct parser_state *ps)
13869 {
13870 warnings_issued = 0;
13871 return ada_parse (ps);
13872 }
13873
13874 static const struct exp_descriptor ada_exp_descriptor = {
13875 ada_print_subexp,
13876 ada_operator_length,
13877 ada_operator_check,
13878 ada_op_name,
13879 ada_dump_subexp_body,
13880 ada_evaluate_subexp
13881 };
13882
13883 /* symbol_name_matcher_ftype adapter for wild_match. */
13884
13885 static bool
13886 do_wild_match (const char *symbol_search_name,
13887 const lookup_name_info &lookup_name,
13888 completion_match_result *comp_match_res)
13889 {
13890 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13891 }
13892
13893 /* symbol_name_matcher_ftype adapter for full_match. */
13894
13895 static bool
13896 do_full_match (const char *symbol_search_name,
13897 const lookup_name_info &lookup_name,
13898 completion_match_result *comp_match_res)
13899 {
13900 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13901 }
13902
13903 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13904
13905 static bool
13906 do_exact_match (const char *symbol_search_name,
13907 const lookup_name_info &lookup_name,
13908 completion_match_result *comp_match_res)
13909 {
13910 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13911 }
13912
13913 /* Build the Ada lookup name for LOOKUP_NAME. */
13914
13915 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13916 {
13917 gdb::string_view user_name = lookup_name.name ();
13918
13919 if (user_name[0] == '<')
13920 {
13921 if (user_name.back () == '>')
13922 m_encoded_name
13923 = user_name.substr (1, user_name.size () - 2).to_string ();
13924 else
13925 m_encoded_name
13926 = user_name.substr (1, user_name.size () - 1).to_string ();
13927 m_encoded_p = true;
13928 m_verbatim_p = true;
13929 m_wild_match_p = false;
13930 m_standard_p = false;
13931 }
13932 else
13933 {
13934 m_verbatim_p = false;
13935
13936 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13937
13938 if (!m_encoded_p)
13939 {
13940 const char *folded = ada_fold_name (user_name);
13941 const char *encoded = ada_encode_1 (folded, false);
13942 if (encoded != NULL)
13943 m_encoded_name = encoded;
13944 else
13945 m_encoded_name = user_name.to_string ();
13946 }
13947 else
13948 m_encoded_name = user_name.to_string ();
13949
13950 /* Handle the 'package Standard' special case. See description
13951 of m_standard_p. */
13952 if (startswith (m_encoded_name.c_str (), "standard__"))
13953 {
13954 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13955 m_standard_p = true;
13956 }
13957 else
13958 m_standard_p = false;
13959
13960 /* If the name contains a ".", then the user is entering a fully
13961 qualified entity name, and the match must not be done in wild
13962 mode. Similarly, if the user wants to complete what looks
13963 like an encoded name, the match must not be done in wild
13964 mode. Also, in the standard__ special case always do
13965 non-wild matching. */
13966 m_wild_match_p
13967 = (lookup_name.match_type () != symbol_name_match_type::FULL
13968 && !m_encoded_p
13969 && !m_standard_p
13970 && user_name.find ('.') == std::string::npos);
13971 }
13972 }
13973
13974 /* symbol_name_matcher_ftype method for Ada. This only handles
13975 completion mode. */
13976
13977 static bool
13978 ada_symbol_name_matches (const char *symbol_search_name,
13979 const lookup_name_info &lookup_name,
13980 completion_match_result *comp_match_res)
13981 {
13982 return lookup_name.ada ().matches (symbol_search_name,
13983 lookup_name.match_type (),
13984 comp_match_res);
13985 }
13986
13987 /* A name matcher that matches the symbol name exactly, with
13988 strcmp. */
13989
13990 static bool
13991 literal_symbol_name_matcher (const char *symbol_search_name,
13992 const lookup_name_info &lookup_name,
13993 completion_match_result *comp_match_res)
13994 {
13995 gdb::string_view name_view = lookup_name.name ();
13996
13997 if (lookup_name.completion_mode ()
13998 ? (strncmp (symbol_search_name, name_view.data (),
13999 name_view.size ()) == 0)
14000 : symbol_search_name == name_view)
14001 {
14002 if (comp_match_res != NULL)
14003 comp_match_res->set_match (symbol_search_name);
14004 return true;
14005 }
14006 else
14007 return false;
14008 }
14009
14010 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14011 Ada. */
14012
14013 static symbol_name_matcher_ftype *
14014 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14015 {
14016 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14017 return literal_symbol_name_matcher;
14018
14019 if (lookup_name.completion_mode ())
14020 return ada_symbol_name_matches;
14021 else
14022 {
14023 if (lookup_name.ada ().wild_match_p ())
14024 return do_wild_match;
14025 else if (lookup_name.ada ().verbatim_p ())
14026 return do_exact_match;
14027 else
14028 return do_full_match;
14029 }
14030 }
14031
14032 /* Implement the "la_read_var_value" language_defn method for Ada. */
14033
14034 static struct value *
14035 ada_read_var_value (struct symbol *var, const struct block *var_block,
14036 struct frame_info *frame)
14037 {
14038 /* The only case where default_read_var_value is not sufficient
14039 is when VAR is a renaming... */
14040 if (frame != nullptr)
14041 {
14042 const struct block *frame_block = get_frame_block (frame, NULL);
14043 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14044 return ada_read_renaming_var_value (var, frame_block);
14045 }
14046
14047 /* This is a typical case where we expect the default_read_var_value
14048 function to work. */
14049 return default_read_var_value (var, var_block, frame);
14050 }
14051
14052 static const char *ada_extensions[] =
14053 {
14054 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14055 };
14056
14057 extern const struct language_defn ada_language_defn = {
14058 "ada", /* Language name */
14059 "Ada",
14060 language_ada,
14061 range_check_off,
14062 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14063 that's not quite what this means. */
14064 array_row_major,
14065 macro_expansion_no,
14066 ada_extensions,
14067 &ada_exp_descriptor,
14068 parse,
14069 resolve,
14070 ada_printchar, /* Print a character constant */
14071 ada_printstr, /* Function to print string constant */
14072 emit_char, /* Function to print single char (not used) */
14073 ada_print_type, /* Print a type using appropriate syntax */
14074 ada_print_typedef, /* Print a typedef using appropriate syntax */
14075 ada_value_print_inner, /* la_value_print_inner */
14076 ada_value_print, /* Print a top-level value */
14077 ada_read_var_value, /* la_read_var_value */
14078 NULL, /* Language specific skip_trampoline */
14079 NULL, /* name_of_this */
14080 true, /* la_store_sym_names_in_linkage_form_p */
14081 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14082 basic_lookup_transparent_type, /* lookup_transparent_type */
14083 ada_la_decode, /* Language specific symbol demangler */
14084 ada_sniff_from_mangled_name,
14085 NULL, /* Language specific
14086 class_name_from_physname */
14087 ada_op_print_tab, /* expression operators for printing */
14088 0, /* c-style arrays */
14089 1, /* String lower bound */
14090 ada_get_gdb_completer_word_break_characters,
14091 ada_collect_symbol_completion_matches,
14092 ada_language_arch_info,
14093 ada_print_array_index,
14094 default_pass_by_reference,
14095 ada_watch_location_expression,
14096 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14097 ada_iterate_over_symbols,
14098 default_search_name_hash,
14099 &ada_varobj_ops,
14100 NULL,
14101 NULL,
14102 ada_is_string_type,
14103 "(...)" /* la_struct_too_deep_ellipsis */
14104 };
14105
14106 /* Command-list for the "set/show ada" prefix command. */
14107 static struct cmd_list_element *set_ada_list;
14108 static struct cmd_list_element *show_ada_list;
14109
14110 static void
14111 initialize_ada_catchpoint_ops (void)
14112 {
14113 struct breakpoint_ops *ops;
14114
14115 initialize_breakpoint_ops ();
14116
14117 ops = &catch_exception_breakpoint_ops;
14118 *ops = bkpt_breakpoint_ops;
14119 ops->allocate_location = allocate_location_exception;
14120 ops->re_set = re_set_exception;
14121 ops->check_status = check_status_exception;
14122 ops->print_it = print_it_exception;
14123 ops->print_one = print_one_exception;
14124 ops->print_mention = print_mention_exception;
14125 ops->print_recreate = print_recreate_exception;
14126
14127 ops = &catch_exception_unhandled_breakpoint_ops;
14128 *ops = bkpt_breakpoint_ops;
14129 ops->allocate_location = allocate_location_exception;
14130 ops->re_set = re_set_exception;
14131 ops->check_status = check_status_exception;
14132 ops->print_it = print_it_exception;
14133 ops->print_one = print_one_exception;
14134 ops->print_mention = print_mention_exception;
14135 ops->print_recreate = print_recreate_exception;
14136
14137 ops = &catch_assert_breakpoint_ops;
14138 *ops = bkpt_breakpoint_ops;
14139 ops->allocate_location = allocate_location_exception;
14140 ops->re_set = re_set_exception;
14141 ops->check_status = check_status_exception;
14142 ops->print_it = print_it_exception;
14143 ops->print_one = print_one_exception;
14144 ops->print_mention = print_mention_exception;
14145 ops->print_recreate = print_recreate_exception;
14146
14147 ops = &catch_handlers_breakpoint_ops;
14148 *ops = bkpt_breakpoint_ops;
14149 ops->allocate_location = allocate_location_exception;
14150 ops->re_set = re_set_exception;
14151 ops->check_status = check_status_exception;
14152 ops->print_it = print_it_exception;
14153 ops->print_one = print_one_exception;
14154 ops->print_mention = print_mention_exception;
14155 ops->print_recreate = print_recreate_exception;
14156 }
14157
14158 /* This module's 'new_objfile' observer. */
14159
14160 static void
14161 ada_new_objfile_observer (struct objfile *objfile)
14162 {
14163 ada_clear_symbol_cache ();
14164 }
14165
14166 /* This module's 'free_objfile' observer. */
14167
14168 static void
14169 ada_free_objfile_observer (struct objfile *objfile)
14170 {
14171 ada_clear_symbol_cache ();
14172 }
14173
14174 void _initialize_ada_language ();
14175 void
14176 _initialize_ada_language ()
14177 {
14178 initialize_ada_catchpoint_ops ();
14179
14180 add_basic_prefix_cmd ("ada", no_class,
14181 _("Prefix command for changing Ada-specific settings."),
14182 &set_ada_list, "set ada ", 0, &setlist);
14183
14184 add_show_prefix_cmd ("ada", no_class,
14185 _("Generic command for showing Ada-specific settings."),
14186 &show_ada_list, "show ada ", 0, &showlist);
14187
14188 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14189 &trust_pad_over_xvs, _("\
14190 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14191 Show whether an optimization trusting PAD types over XVS types is activated."),
14192 _("\
14193 This is related to the encoding used by the GNAT compiler. The debugger\n\
14194 should normally trust the contents of PAD types, but certain older versions\n\
14195 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14196 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14197 work around this bug. It is always safe to turn this option \"off\", but\n\
14198 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14199 this option to \"off\" unless necessary."),
14200 NULL, NULL, &set_ada_list, &show_ada_list);
14201
14202 add_setshow_boolean_cmd ("print-signatures", class_vars,
14203 &print_signatures, _("\
14204 Enable or disable the output of formal and return types for functions in the \
14205 overloads selection menu."), _("\
14206 Show whether the output of formal and return types for functions in the \
14207 overloads selection menu is activated."),
14208 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14209
14210 add_catch_command ("exception", _("\
14211 Catch Ada exceptions, when raised.\n\
14212 Usage: catch exception [ARG] [if CONDITION]\n\
14213 Without any argument, stop when any Ada exception is raised.\n\
14214 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14215 being raised does not have a handler (and will therefore lead to the task's\n\
14216 termination).\n\
14217 Otherwise, the catchpoint only stops when the name of the exception being\n\
14218 raised is the same as ARG.\n\
14219 CONDITION is a boolean expression that is evaluated to see whether the\n\
14220 exception should cause a stop."),
14221 catch_ada_exception_command,
14222 catch_ada_completer,
14223 CATCH_PERMANENT,
14224 CATCH_TEMPORARY);
14225
14226 add_catch_command ("handlers", _("\
14227 Catch Ada exceptions, when handled.\n\
14228 Usage: catch handlers [ARG] [if CONDITION]\n\
14229 Without any argument, stop when any Ada exception is handled.\n\
14230 With an argument, catch only exceptions with the given name.\n\
14231 CONDITION is a boolean expression that is evaluated to see whether the\n\
14232 exception should cause a stop."),
14233 catch_ada_handlers_command,
14234 catch_ada_completer,
14235 CATCH_PERMANENT,
14236 CATCH_TEMPORARY);
14237 add_catch_command ("assert", _("\
14238 Catch failed Ada assertions, when raised.\n\
14239 Usage: catch assert [if CONDITION]\n\
14240 CONDITION is a boolean expression that is evaluated to see whether the\n\
14241 exception should cause a stop."),
14242 catch_assert_command,
14243 NULL,
14244 CATCH_PERMANENT,
14245 CATCH_TEMPORARY);
14246
14247 varsize_limit = 65536;
14248 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14249 &varsize_limit, _("\
14250 Set the maximum number of bytes allowed in a variable-size object."), _("\
14251 Show the maximum number of bytes allowed in a variable-size object."), _("\
14252 Attempts to access an object whose size is not a compile-time constant\n\
14253 and exceeds this limit will cause an error."),
14254 NULL, NULL, &setlist, &showlist);
14255
14256 add_info ("exceptions", info_exceptions_command,
14257 _("\
14258 List all Ada exception names.\n\
14259 Usage: info exceptions [REGEXP]\n\
14260 If a regular expression is passed as an argument, only those matching\n\
14261 the regular expression are listed."));
14262
14263 add_basic_prefix_cmd ("ada", class_maintenance,
14264 _("Set Ada maintenance-related variables."),
14265 &maint_set_ada_cmdlist, "maintenance set ada ",
14266 0/*allow-unknown*/, &maintenance_set_cmdlist);
14267
14268 add_show_prefix_cmd ("ada", class_maintenance,
14269 _("Show Ada maintenance-related variables."),
14270 &maint_show_ada_cmdlist, "maintenance show ada ",
14271 0/*allow-unknown*/, &maintenance_show_cmdlist);
14272
14273 add_setshow_boolean_cmd
14274 ("ignore-descriptive-types", class_maintenance,
14275 &ada_ignore_descriptive_types_p,
14276 _("Set whether descriptive types generated by GNAT should be ignored."),
14277 _("Show whether descriptive types generated by GNAT should be ignored."),
14278 _("\
14279 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14280 DWARF attribute."),
14281 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14282
14283 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14284 NULL, xcalloc, xfree);
14285
14286 /* The ada-lang observers. */
14287 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14288 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14289 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14290 }