]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
gdb: remove BLOCK_SUPERBLOCK macro
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdbsupport/gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdbsupport/gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
53
54 #include "value.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
60 #include <algorithm>
61 #include "ada-exp.h"
62 #include "charset.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_args_match (struct symbol *, struct value **, int);
101
102 static struct value *make_array_descriptor (struct type *, struct value *);
103
104 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
105 const struct block *,
106 const lookup_name_info &lookup_name,
107 domain_enum, struct objfile *);
108
109 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, int, int *);
113
114 static int is_nonfunction (const std::vector<struct block_symbol> &);
115
116 static void add_defn_to_vec (std::vector<struct block_symbol> &,
117 struct symbol *,
118 const struct block *);
119
120 static int possible_user_operator_p (enum exp_opcode, struct value **);
121
122 static const char *ada_decoded_op_name (enum exp_opcode);
123
124 static int numeric_type_p (struct type *);
125
126 static int integer_type_p (struct type *);
127
128 static int scalar_type_p (struct type *);
129
130 static int discrete_type_p (struct type *);
131
132 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
133 int, int);
134
135 static struct type *ada_find_parallel_type_with_name (struct type *,
136 const char *);
137
138 static int is_dynamic_field (struct type *, int);
139
140 static struct type *to_fixed_variant_branch_type (struct type *,
141 const gdb_byte *,
142 CORE_ADDR, struct value *);
143
144 static struct type *to_fixed_array_type (struct type *, struct value *, int);
145
146 static struct type *to_fixed_range_type (struct type *, struct value *);
147
148 static struct type *to_static_fixed_type (struct type *);
149 static struct type *static_unwrap_type (struct type *type);
150
151 static struct value *unwrap_value (struct value *);
152
153 static struct type *constrained_packed_array_type (struct type *, long *);
154
155 static struct type *decode_constrained_packed_array_type (struct type *);
156
157 static long decode_packed_array_bitsize (struct type *);
158
159 static struct value *decode_constrained_packed_array (struct value *);
160
161 static int ada_is_unconstrained_packed_array_type (struct type *);
162
163 static struct value *value_subscript_packed (struct value *, int,
164 struct value **);
165
166 static struct value *coerce_unspec_val_to_type (struct value *,
167 struct type *);
168
169 static int lesseq_defined_than (struct symbol *, struct symbol *);
170
171 static int equiv_types (struct type *, struct type *);
172
173 static int is_name_suffix (const char *);
174
175 static int advance_wild_match (const char **, const char *, char);
176
177 static bool wild_match (const char *name, const char *patn);
178
179 static struct value *ada_coerce_ref (struct value *);
180
181 static LONGEST pos_atr (struct value *);
182
183 static struct value *val_atr (struct type *, LONGEST);
184
185 static struct symbol *standard_lookup (const char *, const struct block *,
186 domain_enum);
187
188 static struct value *ada_search_struct_field (const char *, struct value *, int,
189 struct type *);
190
191 static int find_struct_field (const char *, struct type *, int,
192 struct type **, int *, int *, int *, int *);
193
194 static int ada_resolve_function (std::vector<struct block_symbol> &,
195 struct value **, int, const char *,
196 struct type *, bool);
197
198 static int ada_is_direct_array_type (struct type *);
199
200 static struct value *ada_index_struct_field (int, struct value *, int,
201 struct type *);
202
203 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
204
205
206 static struct type *ada_find_any_type (const char *name);
207
208 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
209 (const lookup_name_info &lookup_name);
210
211 \f
212
213 /* The character set used for source files. */
214 static const char *ada_source_charset;
215
216 /* The string "UTF-8". This is here so we can check for the UTF-8
217 charset using == rather than strcmp. */
218 static const char ada_utf8[] = "UTF-8";
219
220 /* Each entry in the UTF-32 case-folding table is of this form. */
221 struct utf8_entry
222 {
223 /* The start and end, inclusive, of this range of codepoints. */
224 uint32_t start, end;
225 /* The delta to apply to get the upper-case form. 0 if this is
226 already upper-case. */
227 int upper_delta;
228 /* The delta to apply to get the lower-case form. 0 if this is
229 already lower-case. */
230 int lower_delta;
231
232 bool operator< (uint32_t val) const
233 {
234 return end < val;
235 }
236 };
237
238 static const utf8_entry ada_case_fold[] =
239 {
240 #include "ada-casefold.h"
241 };
242
243 \f
244
245 /* The result of a symbol lookup to be stored in our symbol cache. */
246
247 struct cache_entry
248 {
249 /* The name used to perform the lookup. */
250 const char *name;
251 /* The namespace used during the lookup. */
252 domain_enum domain;
253 /* The symbol returned by the lookup, or NULL if no matching symbol
254 was found. */
255 struct symbol *sym;
256 /* The block where the symbol was found, or NULL if no matching
257 symbol was found. */
258 const struct block *block;
259 /* A pointer to the next entry with the same hash. */
260 struct cache_entry *next;
261 };
262
263 /* The Ada symbol cache, used to store the result of Ada-mode symbol
264 lookups in the course of executing the user's commands.
265
266 The cache is implemented using a simple, fixed-sized hash.
267 The size is fixed on the grounds that there are not likely to be
268 all that many symbols looked up during any given session, regardless
269 of the size of the symbol table. If we decide to go to a resizable
270 table, let's just use the stuff from libiberty instead. */
271
272 #define HASH_SIZE 1009
273
274 struct ada_symbol_cache
275 {
276 /* An obstack used to store the entries in our cache. */
277 struct auto_obstack cache_space;
278
279 /* The root of the hash table used to implement our symbol cache. */
280 struct cache_entry *root[HASH_SIZE] {};
281 };
282
283 static const char ada_completer_word_break_characters[] =
284 #ifdef VMS
285 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
286 #else
287 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
288 #endif
289
290 /* The name of the symbol to use to get the name of the main subprogram. */
291 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
292 = "__gnat_ada_main_program_name";
293
294 /* Limit on the number of warnings to raise per expression evaluation. */
295 static int warning_limit = 2;
296
297 /* Number of warning messages issued; reset to 0 by cleanups after
298 expression evaluation. */
299 static int warnings_issued = 0;
300
301 static const char * const known_runtime_file_name_patterns[] = {
302 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
303 };
304
305 static const char * const known_auxiliary_function_name_patterns[] = {
306 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
307 };
308
309 /* Maintenance-related settings for this module. */
310
311 static struct cmd_list_element *maint_set_ada_cmdlist;
312 static struct cmd_list_element *maint_show_ada_cmdlist;
313
314 /* The "maintenance ada set/show ignore-descriptive-type" value. */
315
316 static bool ada_ignore_descriptive_types_p = false;
317
318 /* Inferior-specific data. */
319
320 /* Per-inferior data for this module. */
321
322 struct ada_inferior_data
323 {
324 /* The ada__tags__type_specific_data type, which is used when decoding
325 tagged types. With older versions of GNAT, this type was directly
326 accessible through a component ("tsd") in the object tag. But this
327 is no longer the case, so we cache it for each inferior. */
328 struct type *tsd_type = nullptr;
329
330 /* The exception_support_info data. This data is used to determine
331 how to implement support for Ada exception catchpoints in a given
332 inferior. */
333 const struct exception_support_info *exception_info = nullptr;
334 };
335
336 /* Our key to this module's inferior data. */
337 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
338
339 /* Return our inferior data for the given inferior (INF).
340
341 This function always returns a valid pointer to an allocated
342 ada_inferior_data structure. If INF's inferior data has not
343 been previously set, this functions creates a new one with all
344 fields set to zero, sets INF's inferior to it, and then returns
345 a pointer to that newly allocated ada_inferior_data. */
346
347 static struct ada_inferior_data *
348 get_ada_inferior_data (struct inferior *inf)
349 {
350 struct ada_inferior_data *data;
351
352 data = ada_inferior_data.get (inf);
353 if (data == NULL)
354 data = ada_inferior_data.emplace (inf);
355
356 return data;
357 }
358
359 /* Perform all necessary cleanups regarding our module's inferior data
360 that is required after the inferior INF just exited. */
361
362 static void
363 ada_inferior_exit (struct inferior *inf)
364 {
365 ada_inferior_data.clear (inf);
366 }
367
368
369 /* program-space-specific data. */
370
371 /* This module's per-program-space data. */
372 struct ada_pspace_data
373 {
374 /* The Ada symbol cache. */
375 std::unique_ptr<ada_symbol_cache> sym_cache;
376 };
377
378 /* Key to our per-program-space data. */
379 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
380
381 /* Return this module's data for the given program space (PSPACE).
382 If not is found, add a zero'ed one now.
383
384 This function always returns a valid object. */
385
386 static struct ada_pspace_data *
387 get_ada_pspace_data (struct program_space *pspace)
388 {
389 struct ada_pspace_data *data;
390
391 data = ada_pspace_data_handle.get (pspace);
392 if (data == NULL)
393 data = ada_pspace_data_handle.emplace (pspace);
394
395 return data;
396 }
397
398 /* Utilities */
399
400 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
401 all typedef layers have been peeled. Otherwise, return TYPE.
402
403 Normally, we really expect a typedef type to only have 1 typedef layer.
404 In other words, we really expect the target type of a typedef type to be
405 a non-typedef type. This is particularly true for Ada units, because
406 the language does not have a typedef vs not-typedef distinction.
407 In that respect, the Ada compiler has been trying to eliminate as many
408 typedef definitions in the debugging information, since they generally
409 do not bring any extra information (we still use typedef under certain
410 circumstances related mostly to the GNAT encoding).
411
412 Unfortunately, we have seen situations where the debugging information
413 generated by the compiler leads to such multiple typedef layers. For
414 instance, consider the following example with stabs:
415
416 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
417 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
418
419 This is an error in the debugging information which causes type
420 pck__float_array___XUP to be defined twice, and the second time,
421 it is defined as a typedef of a typedef.
422
423 This is on the fringe of legality as far as debugging information is
424 concerned, and certainly unexpected. But it is easy to handle these
425 situations correctly, so we can afford to be lenient in this case. */
426
427 static struct type *
428 ada_typedef_target_type (struct type *type)
429 {
430 while (type->code () == TYPE_CODE_TYPEDEF)
431 type = TYPE_TARGET_TYPE (type);
432 return type;
433 }
434
435 /* Given DECODED_NAME a string holding a symbol name in its
436 decoded form (ie using the Ada dotted notation), returns
437 its unqualified name. */
438
439 static const char *
440 ada_unqualified_name (const char *decoded_name)
441 {
442 const char *result;
443
444 /* If the decoded name starts with '<', it means that the encoded
445 name does not follow standard naming conventions, and thus that
446 it is not your typical Ada symbol name. Trying to unqualify it
447 is therefore pointless and possibly erroneous. */
448 if (decoded_name[0] == '<')
449 return decoded_name;
450
451 result = strrchr (decoded_name, '.');
452 if (result != NULL)
453 result++; /* Skip the dot... */
454 else
455 result = decoded_name;
456
457 return result;
458 }
459
460 /* Return a string starting with '<', followed by STR, and '>'. */
461
462 static std::string
463 add_angle_brackets (const char *str)
464 {
465 return string_printf ("<%s>", str);
466 }
467
468 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
469 suffix of FIELD_NAME beginning "___". */
470
471 static int
472 field_name_match (const char *field_name, const char *target)
473 {
474 int len = strlen (target);
475
476 return
477 (strncmp (field_name, target, len) == 0
478 && (field_name[len] == '\0'
479 || (startswith (field_name + len, "___")
480 && strcmp (field_name + strlen (field_name) - 6,
481 "___XVN") != 0)));
482 }
483
484
485 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
486 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
487 and return its index. This function also handles fields whose name
488 have ___ suffixes because the compiler sometimes alters their name
489 by adding such a suffix to represent fields with certain constraints.
490 If the field could not be found, return a negative number if
491 MAYBE_MISSING is set. Otherwise raise an error. */
492
493 int
494 ada_get_field_index (const struct type *type, const char *field_name,
495 int maybe_missing)
496 {
497 int fieldno;
498 struct type *struct_type = check_typedef ((struct type *) type);
499
500 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
501 if (field_name_match (struct_type->field (fieldno).name (), field_name))
502 return fieldno;
503
504 if (!maybe_missing)
505 error (_("Unable to find field %s in struct %s. Aborting"),
506 field_name, struct_type->name ());
507
508 return -1;
509 }
510
511 /* The length of the prefix of NAME prior to any "___" suffix. */
512
513 int
514 ada_name_prefix_len (const char *name)
515 {
516 if (name == NULL)
517 return 0;
518 else
519 {
520 const char *p = strstr (name, "___");
521
522 if (p == NULL)
523 return strlen (name);
524 else
525 return p - name;
526 }
527 }
528
529 /* Return non-zero if SUFFIX is a suffix of STR.
530 Return zero if STR is null. */
531
532 static int
533 is_suffix (const char *str, const char *suffix)
534 {
535 int len1, len2;
536
537 if (str == NULL)
538 return 0;
539 len1 = strlen (str);
540 len2 = strlen (suffix);
541 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
542 }
543
544 /* The contents of value VAL, treated as a value of type TYPE. The
545 result is an lval in memory if VAL is. */
546
547 static struct value *
548 coerce_unspec_val_to_type (struct value *val, struct type *type)
549 {
550 type = ada_check_typedef (type);
551 if (value_type (val) == type)
552 return val;
553 else
554 {
555 struct value *result;
556
557 if (value_optimized_out (val))
558 result = allocate_optimized_out_value (type);
559 else if (value_lazy (val)
560 /* Be careful not to make a lazy not_lval value. */
561 || (VALUE_LVAL (val) != not_lval
562 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
563 result = allocate_value_lazy (type);
564 else
565 {
566 result = allocate_value (type);
567 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
568 }
569 set_value_component_location (result, val);
570 set_value_bitsize (result, value_bitsize (val));
571 set_value_bitpos (result, value_bitpos (val));
572 if (VALUE_LVAL (result) == lval_memory)
573 set_value_address (result, value_address (val));
574 return result;
575 }
576 }
577
578 static const gdb_byte *
579 cond_offset_host (const gdb_byte *valaddr, long offset)
580 {
581 if (valaddr == NULL)
582 return NULL;
583 else
584 return valaddr + offset;
585 }
586
587 static CORE_ADDR
588 cond_offset_target (CORE_ADDR address, long offset)
589 {
590 if (address == 0)
591 return 0;
592 else
593 return address + offset;
594 }
595
596 /* Issue a warning (as for the definition of warning in utils.c, but
597 with exactly one argument rather than ...), unless the limit on the
598 number of warnings has passed during the evaluation of the current
599 expression. */
600
601 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
602 provided by "complaint". */
603 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
604
605 static void
606 lim_warning (const char *format, ...)
607 {
608 va_list args;
609
610 va_start (args, format);
611 warnings_issued += 1;
612 if (warnings_issued <= warning_limit)
613 vwarning (format, args);
614
615 va_end (args);
616 }
617
618 /* Maximum value of a SIZE-byte signed integer type. */
619 static LONGEST
620 max_of_size (int size)
621 {
622 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
623
624 return top_bit | (top_bit - 1);
625 }
626
627 /* Minimum value of a SIZE-byte signed integer type. */
628 static LONGEST
629 min_of_size (int size)
630 {
631 return -max_of_size (size) - 1;
632 }
633
634 /* Maximum value of a SIZE-byte unsigned integer type. */
635 static ULONGEST
636 umax_of_size (int size)
637 {
638 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
639
640 return top_bit | (top_bit - 1);
641 }
642
643 /* Maximum value of integral type T, as a signed quantity. */
644 static LONGEST
645 max_of_type (struct type *t)
646 {
647 if (t->is_unsigned ())
648 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
649 else
650 return max_of_size (TYPE_LENGTH (t));
651 }
652
653 /* Minimum value of integral type T, as a signed quantity. */
654 static LONGEST
655 min_of_type (struct type *t)
656 {
657 if (t->is_unsigned ())
658 return 0;
659 else
660 return min_of_size (TYPE_LENGTH (t));
661 }
662
663 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
664 LONGEST
665 ada_discrete_type_high_bound (struct type *type)
666 {
667 type = resolve_dynamic_type (type, {}, 0);
668 switch (type->code ())
669 {
670 case TYPE_CODE_RANGE:
671 {
672 const dynamic_prop &high = type->bounds ()->high;
673
674 if (high.kind () == PROP_CONST)
675 return high.const_val ();
676 else
677 {
678 gdb_assert (high.kind () == PROP_UNDEFINED);
679
680 /* This happens when trying to evaluate a type's dynamic bound
681 without a live target. There is nothing relevant for us to
682 return here, so return 0. */
683 return 0;
684 }
685 }
686 case TYPE_CODE_ENUM:
687 return type->field (type->num_fields () - 1).loc_enumval ();
688 case TYPE_CODE_BOOL:
689 return 1;
690 case TYPE_CODE_CHAR:
691 case TYPE_CODE_INT:
692 return max_of_type (type);
693 default:
694 error (_("Unexpected type in ada_discrete_type_high_bound."));
695 }
696 }
697
698 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
699 LONGEST
700 ada_discrete_type_low_bound (struct type *type)
701 {
702 type = resolve_dynamic_type (type, {}, 0);
703 switch (type->code ())
704 {
705 case TYPE_CODE_RANGE:
706 {
707 const dynamic_prop &low = type->bounds ()->low;
708
709 if (low.kind () == PROP_CONST)
710 return low.const_val ();
711 else
712 {
713 gdb_assert (low.kind () == PROP_UNDEFINED);
714
715 /* This happens when trying to evaluate a type's dynamic bound
716 without a live target. There is nothing relevant for us to
717 return here, so return 0. */
718 return 0;
719 }
720 }
721 case TYPE_CODE_ENUM:
722 return type->field (0).loc_enumval ();
723 case TYPE_CODE_BOOL:
724 return 0;
725 case TYPE_CODE_CHAR:
726 case TYPE_CODE_INT:
727 return min_of_type (type);
728 default:
729 error (_("Unexpected type in ada_discrete_type_low_bound."));
730 }
731 }
732
733 /* The identity on non-range types. For range types, the underlying
734 non-range scalar type. */
735
736 static struct type *
737 get_base_type (struct type *type)
738 {
739 while (type != NULL && type->code () == TYPE_CODE_RANGE)
740 {
741 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
742 return type;
743 type = TYPE_TARGET_TYPE (type);
744 }
745 return type;
746 }
747
748 /* Return a decoded version of the given VALUE. This means returning
749 a value whose type is obtained by applying all the GNAT-specific
750 encodings, making the resulting type a static but standard description
751 of the initial type. */
752
753 struct value *
754 ada_get_decoded_value (struct value *value)
755 {
756 struct type *type = ada_check_typedef (value_type (value));
757
758 if (ada_is_array_descriptor_type (type)
759 || (ada_is_constrained_packed_array_type (type)
760 && type->code () != TYPE_CODE_PTR))
761 {
762 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
763 value = ada_coerce_to_simple_array_ptr (value);
764 else
765 value = ada_coerce_to_simple_array (value);
766 }
767 else
768 value = ada_to_fixed_value (value);
769
770 return value;
771 }
772
773 /* Same as ada_get_decoded_value, but with the given TYPE.
774 Because there is no associated actual value for this type,
775 the resulting type might be a best-effort approximation in
776 the case of dynamic types. */
777
778 struct type *
779 ada_get_decoded_type (struct type *type)
780 {
781 type = to_static_fixed_type (type);
782 if (ada_is_constrained_packed_array_type (type))
783 type = ada_coerce_to_simple_array_type (type);
784 return type;
785 }
786
787 \f
788
789 /* Language Selection */
790
791 /* If the main program is in Ada, return language_ada, otherwise return LANG
792 (the main program is in Ada iif the adainit symbol is found). */
793
794 static enum language
795 ada_update_initial_language (enum language lang)
796 {
797 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
798 return language_ada;
799
800 return lang;
801 }
802
803 /* If the main procedure is written in Ada, then return its name.
804 The result is good until the next call. Return NULL if the main
805 procedure doesn't appear to be in Ada. */
806
807 char *
808 ada_main_name (void)
809 {
810 struct bound_minimal_symbol msym;
811 static gdb::unique_xmalloc_ptr<char> main_program_name;
812
813 /* For Ada, the name of the main procedure is stored in a specific
814 string constant, generated by the binder. Look for that symbol,
815 extract its address, and then read that string. If we didn't find
816 that string, then most probably the main procedure is not written
817 in Ada. */
818 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
819
820 if (msym.minsym != NULL)
821 {
822 CORE_ADDR main_program_name_addr = msym.value_address ();
823 if (main_program_name_addr == 0)
824 error (_("Invalid address for Ada main program name."));
825
826 main_program_name = target_read_string (main_program_name_addr, 1024);
827 return main_program_name.get ();
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832 }
833 \f
834 /* Symbols */
835
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
838
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
862 };
863
864 /* If STR is a decoded version of a compiler-provided suffix (like the
865 "[cold]" in "symbol[cold]"), return true. Otherwise, return
866 false. */
867
868 static bool
869 is_compiler_suffix (const char *str)
870 {
871 gdb_assert (*str == '[');
872 ++str;
873 while (*str != '\0' && isalpha (*str))
874 ++str;
875 /* We accept a missing "]" in order to support completion. */
876 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
877 }
878
879 /* Append a non-ASCII character to RESULT. */
880 static void
881 append_hex_encoded (std::string &result, uint32_t one_char)
882 {
883 if (one_char <= 0xff)
884 {
885 result.append ("U");
886 result.append (phex (one_char, 1));
887 }
888 else if (one_char <= 0xffff)
889 {
890 result.append ("W");
891 result.append (phex (one_char, 2));
892 }
893 else
894 {
895 result.append ("WW");
896 result.append (phex (one_char, 4));
897 }
898 }
899
900 /* Return a string that is a copy of the data in STORAGE, with
901 non-ASCII characters replaced by the appropriate hex encoding. A
902 template is used because, for UTF-8, we actually want to work with
903 UTF-32 codepoints. */
904 template<typename T>
905 std::string
906 copy_and_hex_encode (struct obstack *storage)
907 {
908 const T *chars = (T *) obstack_base (storage);
909 int num_chars = obstack_object_size (storage) / sizeof (T);
910 std::string result;
911 for (int i = 0; i < num_chars; ++i)
912 {
913 if (chars[i] <= 0x7f)
914 {
915 /* The host character set has to be a superset of ASCII, as
916 are all the other character sets we can use. */
917 result.push_back (chars[i]);
918 }
919 else
920 append_hex_encoded (result, chars[i]);
921 }
922 return result;
923 }
924
925 /* The "encoded" form of DECODED, according to GNAT conventions. If
926 THROW_ERRORS, throw an error if invalid operator name is found.
927 Otherwise, return the empty string in that case. */
928
929 static std::string
930 ada_encode_1 (const char *decoded, bool throw_errors)
931 {
932 if (decoded == NULL)
933 return {};
934
935 std::string encoding_buffer;
936 bool saw_non_ascii = false;
937 for (const char *p = decoded; *p != '\0'; p += 1)
938 {
939 if ((*p & 0x80) != 0)
940 saw_non_ascii = true;
941
942 if (*p == '.')
943 encoding_buffer.append ("__");
944 else if (*p == '[' && is_compiler_suffix (p))
945 {
946 encoding_buffer = encoding_buffer + "." + (p + 1);
947 if (encoding_buffer.back () == ']')
948 encoding_buffer.pop_back ();
949 break;
950 }
951 else if (*p == '"')
952 {
953 const struct ada_opname_map *mapping;
954
955 for (mapping = ada_opname_table;
956 mapping->encoded != NULL
957 && !startswith (p, mapping->decoded); mapping += 1)
958 ;
959 if (mapping->encoded == NULL)
960 {
961 if (throw_errors)
962 error (_("invalid Ada operator name: %s"), p);
963 else
964 return {};
965 }
966 encoding_buffer.append (mapping->encoded);
967 break;
968 }
969 else
970 encoding_buffer.push_back (*p);
971 }
972
973 /* If a non-ASCII character is seen, we must convert it to the
974 appropriate hex form. As this is more expensive, we keep track
975 of whether it is even necessary. */
976 if (saw_non_ascii)
977 {
978 auto_obstack storage;
979 bool is_utf8 = ada_source_charset == ada_utf8;
980 try
981 {
982 convert_between_encodings
983 (host_charset (),
984 is_utf8 ? HOST_UTF32 : ada_source_charset,
985 (const gdb_byte *) encoding_buffer.c_str (),
986 encoding_buffer.length (), 1,
987 &storage, translit_none);
988 }
989 catch (const gdb_exception &)
990 {
991 static bool warned = false;
992
993 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
994 might like to know why. */
995 if (!warned)
996 {
997 warned = true;
998 warning (_("charset conversion failure for '%s'.\n"
999 "You may have the wrong value for 'set ada source-charset'."),
1000 encoding_buffer.c_str ());
1001 }
1002
1003 /* We don't try to recover from errors. */
1004 return encoding_buffer;
1005 }
1006
1007 if (is_utf8)
1008 return copy_and_hex_encode<uint32_t> (&storage);
1009 return copy_and_hex_encode<gdb_byte> (&storage);
1010 }
1011
1012 return encoding_buffer;
1013 }
1014
1015 /* Find the entry for C in the case-folding table. Return nullptr if
1016 the entry does not cover C. */
1017 static const utf8_entry *
1018 find_case_fold_entry (uint32_t c)
1019 {
1020 auto iter = std::lower_bound (std::begin (ada_case_fold),
1021 std::end (ada_case_fold),
1022 c);
1023 if (iter == std::end (ada_case_fold)
1024 || c < iter->start
1025 || c > iter->end)
1026 return nullptr;
1027 return &*iter;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. If
1032 THROW_ON_ERROR is true, encoding failures will throw an exception
1033 rather than emitting a warning. Result good to next call. */
1034
1035 static const char *
1036 ada_fold_name (gdb::string_view name, bool throw_on_error = false)
1037 {
1038 static std::string fold_storage;
1039
1040 if (!name.empty () && name[0] == '\'')
1041 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
1042 else
1043 {
1044 /* Why convert to UTF-32 and implement our own case-folding,
1045 rather than convert to wchar_t and use the platform's
1046 functions? I'm glad you asked.
1047
1048 The main problem is that GNAT implements an unusual rule for
1049 case folding. For ASCII letters, letters in single-byte
1050 encodings (such as ISO-8859-*), and Unicode letters that fit
1051 in a single byte (i.e., code point is <= 0xff), the letter is
1052 folded to lower case. Other Unicode letters are folded to
1053 upper case.
1054
1055 This rule means that the code must be able to examine the
1056 value of the character. And, some hosts do not use Unicode
1057 for wchar_t, so examining the value of such characters is
1058 forbidden. */
1059 auto_obstack storage;
1060 try
1061 {
1062 convert_between_encodings
1063 (host_charset (), HOST_UTF32,
1064 (const gdb_byte *) name.data (),
1065 name.length (), 1,
1066 &storage, translit_none);
1067 }
1068 catch (const gdb_exception &)
1069 {
1070 if (throw_on_error)
1071 throw;
1072
1073 static bool warned = false;
1074
1075 /* Converting to UTF-32 shouldn't fail, so if it doesn't, we
1076 might like to know why. */
1077 if (!warned)
1078 {
1079 warned = true;
1080 warning (_("could not convert '%s' from the host encoding (%s) to UTF-32.\n"
1081 "This normally should not happen, please file a bug report."),
1082 gdb::to_string (name).c_str (), host_charset ());
1083 }
1084
1085 /* We don't try to recover from errors; just return the
1086 original string. */
1087 fold_storage = gdb::to_string (name);
1088 return fold_storage.c_str ();
1089 }
1090
1091 bool is_utf8 = ada_source_charset == ada_utf8;
1092 uint32_t *chars = (uint32_t *) obstack_base (&storage);
1093 int num_chars = obstack_object_size (&storage) / sizeof (uint32_t);
1094 for (int i = 0; i < num_chars; ++i)
1095 {
1096 const struct utf8_entry *entry = find_case_fold_entry (chars[i]);
1097 if (entry != nullptr)
1098 {
1099 uint32_t low = chars[i] + entry->lower_delta;
1100 if (!is_utf8 || low <= 0xff)
1101 chars[i] = low;
1102 else
1103 chars[i] = chars[i] + entry->upper_delta;
1104 }
1105 }
1106
1107 /* Now convert back to ordinary characters. */
1108 auto_obstack reconverted;
1109 try
1110 {
1111 convert_between_encodings (HOST_UTF32,
1112 host_charset (),
1113 (const gdb_byte *) chars,
1114 num_chars * sizeof (uint32_t),
1115 sizeof (uint32_t),
1116 &reconverted,
1117 translit_none);
1118 obstack_1grow (&reconverted, '\0');
1119 fold_storage = std::string ((const char *) obstack_base (&reconverted));
1120 }
1121 catch (const gdb_exception &)
1122 {
1123 if (throw_on_error)
1124 throw;
1125
1126 static bool warned = false;
1127
1128 /* Converting back from UTF-32 shouldn't normally fail, but
1129 there are some host encodings without upper/lower
1130 equivalence. */
1131 if (!warned)
1132 {
1133 warned = true;
1134 warning (_("could not convert the lower-cased variant of '%s'\n"
1135 "from UTF-32 to the host encoding (%s)."),
1136 gdb::to_string (name).c_str (), host_charset ());
1137 }
1138
1139 /* We don't try to recover from errors; just return the
1140 original string. */
1141 fold_storage = gdb::to_string (name);
1142 }
1143 }
1144
1145 return fold_storage.c_str ();
1146 }
1147
1148 /* The "encoded" form of DECODED, according to GNAT conventions. */
1149
1150 std::string
1151 ada_encode (const char *decoded)
1152 {
1153 if (decoded[0] != '<')
1154 decoded = ada_fold_name (decoded);
1155 return ada_encode_1 (decoded, true);
1156 }
1157
1158 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1159
1160 static int
1161 is_lower_alphanum (const char c)
1162 {
1163 return (isdigit (c) || (isalpha (c) && islower (c)));
1164 }
1165
1166 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1167 This function saves in LEN the length of that same symbol name but
1168 without either of these suffixes:
1169 . .{DIGIT}+
1170 . ${DIGIT}+
1171 . ___{DIGIT}+
1172 . __{DIGIT}+.
1173
1174 These are suffixes introduced by the compiler for entities such as
1175 nested subprogram for instance, in order to avoid name clashes.
1176 They do not serve any purpose for the debugger. */
1177
1178 static void
1179 ada_remove_trailing_digits (const char *encoded, int *len)
1180 {
1181 if (*len > 1 && isdigit (encoded[*len - 1]))
1182 {
1183 int i = *len - 2;
1184
1185 while (i > 0 && isdigit (encoded[i]))
1186 i--;
1187 if (i >= 0 && encoded[i] == '.')
1188 *len = i;
1189 else if (i >= 0 && encoded[i] == '$')
1190 *len = i;
1191 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1192 *len = i - 2;
1193 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1194 *len = i - 1;
1195 }
1196 }
1197
1198 /* Remove the suffix introduced by the compiler for protected object
1199 subprograms. */
1200
1201 static void
1202 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1203 {
1204 /* Remove trailing N. */
1205
1206 /* Protected entry subprograms are broken into two
1207 separate subprograms: The first one is unprotected, and has
1208 a 'N' suffix; the second is the protected version, and has
1209 the 'P' suffix. The second calls the first one after handling
1210 the protection. Since the P subprograms are internally generated,
1211 we leave these names undecoded, giving the user a clue that this
1212 entity is internal. */
1213
1214 if (*len > 1
1215 && encoded[*len - 1] == 'N'
1216 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1217 *len = *len - 1;
1218 }
1219
1220 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
1221 then update *LEN to remove the suffix and return the offset of the
1222 character just past the ".". Otherwise, return -1. */
1223
1224 static int
1225 remove_compiler_suffix (const char *encoded, int *len)
1226 {
1227 int offset = *len - 1;
1228 while (offset > 0 && isalpha (encoded[offset]))
1229 --offset;
1230 if (offset > 0 && encoded[offset] == '.')
1231 {
1232 *len = offset;
1233 return offset + 1;
1234 }
1235 return -1;
1236 }
1237
1238 /* Convert an ASCII hex string to a number. Reads exactly N
1239 characters from STR. Returns true on success, false if one of the
1240 digits was not a hex digit. */
1241 static bool
1242 convert_hex (const char *str, int n, uint32_t *out)
1243 {
1244 uint32_t result = 0;
1245
1246 for (int i = 0; i < n; ++i)
1247 {
1248 if (!isxdigit (str[i]))
1249 return false;
1250 result <<= 4;
1251 result |= fromhex (str[i]);
1252 }
1253
1254 *out = result;
1255 return true;
1256 }
1257
1258 /* Convert a wide character from its ASCII hex representation in STR
1259 (consisting of exactly N characters) to the host encoding,
1260 appending the resulting bytes to OUT. If N==2 and the Ada source
1261 charset is not UTF-8, then hex refers to an encoding in the
1262 ADA_SOURCE_CHARSET; otherwise, use UTF-32. Return true on success.
1263 Return false and do not modify OUT on conversion failure. */
1264 static bool
1265 convert_from_hex_encoded (std::string &out, const char *str, int n)
1266 {
1267 uint32_t value;
1268
1269 if (!convert_hex (str, n, &value))
1270 return false;
1271 try
1272 {
1273 auto_obstack bytes;
1274 /* In the 'U' case, the hex digits encode the character in the
1275 Ada source charset. However, if the source charset is UTF-8,
1276 this really means it is a single-byte UTF-32 character. */
1277 if (n == 2 && ada_source_charset != ada_utf8)
1278 {
1279 gdb_byte one_char = (gdb_byte) value;
1280
1281 convert_between_encodings (ada_source_charset, host_charset (),
1282 &one_char,
1283 sizeof (one_char), sizeof (one_char),
1284 &bytes, translit_none);
1285 }
1286 else
1287 convert_between_encodings (HOST_UTF32, host_charset (),
1288 (const gdb_byte *) &value,
1289 sizeof (value), sizeof (value),
1290 &bytes, translit_none);
1291 obstack_1grow (&bytes, '\0');
1292 out.append ((const char *) obstack_base (&bytes));
1293 }
1294 catch (const gdb_exception &)
1295 {
1296 /* On failure, the caller will just let the encoded form
1297 through, which seems basically reasonable. */
1298 return false;
1299 }
1300
1301 return true;
1302 }
1303
1304 /* See ada-lang.h. */
1305
1306 std::string
1307 ada_decode (const char *encoded, bool wrap, bool operators)
1308 {
1309 int i;
1310 int len0;
1311 const char *p;
1312 int at_start_name;
1313 std::string decoded;
1314 int suffix = -1;
1315
1316 /* With function descriptors on PPC64, the value of a symbol named
1317 ".FN", if it exists, is the entry point of the function "FN". */
1318 if (encoded[0] == '.')
1319 encoded += 1;
1320
1321 /* The name of the Ada main procedure starts with "_ada_".
1322 This prefix is not part of the decoded name, so skip this part
1323 if we see this prefix. */
1324 if (startswith (encoded, "_ada_"))
1325 encoded += 5;
1326 /* The "___ghost_" prefix is used for ghost entities. Normally
1327 these aren't preserved but when they are, it's useful to see
1328 them. */
1329 if (startswith (encoded, "___ghost_"))
1330 encoded += 9;
1331
1332 /* If the name starts with '_', then it is not a properly encoded
1333 name, so do not attempt to decode it. Similarly, if the name
1334 starts with '<', the name should not be decoded. */
1335 if (encoded[0] == '_' || encoded[0] == '<')
1336 goto Suppress;
1337
1338 len0 = strlen (encoded);
1339
1340 suffix = remove_compiler_suffix (encoded, &len0);
1341
1342 ada_remove_trailing_digits (encoded, &len0);
1343 ada_remove_po_subprogram_suffix (encoded, &len0);
1344
1345 /* Remove the ___X.* suffix if present. Do not forget to verify that
1346 the suffix is located before the current "end" of ENCODED. We want
1347 to avoid re-matching parts of ENCODED that have previously been
1348 marked as discarded (by decrementing LEN0). */
1349 p = strstr (encoded, "___");
1350 if (p != NULL && p - encoded < len0 - 3)
1351 {
1352 if (p[3] == 'X')
1353 len0 = p - encoded;
1354 else
1355 goto Suppress;
1356 }
1357
1358 /* Remove any trailing TKB suffix. It tells us that this symbol
1359 is for the body of a task, but that information does not actually
1360 appear in the decoded name. */
1361
1362 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1363 len0 -= 3;
1364
1365 /* Remove any trailing TB suffix. The TB suffix is slightly different
1366 from the TKB suffix because it is used for non-anonymous task
1367 bodies. */
1368
1369 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1370 len0 -= 2;
1371
1372 /* Remove trailing "B" suffixes. */
1373 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1374
1375 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1376 len0 -= 1;
1377
1378 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1379
1380 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1381 {
1382 i = len0 - 2;
1383 while ((i >= 0 && isdigit (encoded[i]))
1384 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1385 i -= 1;
1386 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1387 len0 = i - 1;
1388 else if (encoded[i] == '$')
1389 len0 = i;
1390 }
1391
1392 /* The first few characters that are not alphabetic are not part
1393 of any encoding we use, so we can copy them over verbatim. */
1394
1395 for (i = 0; i < len0 && !isalpha (encoded[i]); i += 1)
1396 decoded.push_back (encoded[i]);
1397
1398 at_start_name = 1;
1399 while (i < len0)
1400 {
1401 /* Is this a symbol function? */
1402 if (operators && at_start_name && encoded[i] == 'O')
1403 {
1404 int k;
1405
1406 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1407 {
1408 int op_len = strlen (ada_opname_table[k].encoded);
1409 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1410 op_len - 1) == 0)
1411 && !isalnum (encoded[i + op_len]))
1412 {
1413 decoded.append (ada_opname_table[k].decoded);
1414 at_start_name = 0;
1415 i += op_len;
1416 break;
1417 }
1418 }
1419 if (ada_opname_table[k].encoded != NULL)
1420 continue;
1421 }
1422 at_start_name = 0;
1423
1424 /* Replace "TK__" with "__", which will eventually be translated
1425 into "." (just below). */
1426
1427 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1428 i += 2;
1429
1430 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1431 be translated into "." (just below). These are internal names
1432 generated for anonymous blocks inside which our symbol is nested. */
1433
1434 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1435 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1436 && isdigit (encoded [i+4]))
1437 {
1438 int k = i + 5;
1439
1440 while (k < len0 && isdigit (encoded[k]))
1441 k++; /* Skip any extra digit. */
1442
1443 /* Double-check that the "__B_{DIGITS}+" sequence we found
1444 is indeed followed by "__". */
1445 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1446 i = k;
1447 }
1448
1449 /* Remove _E{DIGITS}+[sb] */
1450
1451 /* Just as for protected object subprograms, there are 2 categories
1452 of subprograms created by the compiler for each entry. The first
1453 one implements the actual entry code, and has a suffix following
1454 the convention above; the second one implements the barrier and
1455 uses the same convention as above, except that the 'E' is replaced
1456 by a 'B'.
1457
1458 Just as above, we do not decode the name of barrier functions
1459 to give the user a clue that the code he is debugging has been
1460 internally generated. */
1461
1462 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1463 && isdigit (encoded[i+2]))
1464 {
1465 int k = i + 3;
1466
1467 while (k < len0 && isdigit (encoded[k]))
1468 k++;
1469
1470 if (k < len0
1471 && (encoded[k] == 'b' || encoded[k] == 's'))
1472 {
1473 k++;
1474 /* Just as an extra precaution, make sure that if this
1475 suffix is followed by anything else, it is a '_'.
1476 Otherwise, we matched this sequence by accident. */
1477 if (k == len0
1478 || (k < len0 && encoded[k] == '_'))
1479 i = k;
1480 }
1481 }
1482
1483 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1484 the GNAT front-end in protected object subprograms. */
1485
1486 if (i < len0 + 3
1487 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1488 {
1489 /* Backtrack a bit up until we reach either the begining of
1490 the encoded name, or "__". Make sure that we only find
1491 digits or lowercase characters. */
1492 const char *ptr = encoded + i - 1;
1493
1494 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1495 ptr--;
1496 if (ptr < encoded
1497 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1498 i++;
1499 }
1500
1501 if (i < len0 + 3 && encoded[i] == 'U' && isxdigit (encoded[i + 1]))
1502 {
1503 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 2))
1504 {
1505 i += 3;
1506 continue;
1507 }
1508 }
1509 else if (i < len0 + 5 && encoded[i] == 'W' && isxdigit (encoded[i + 1]))
1510 {
1511 if (convert_from_hex_encoded (decoded, &encoded[i + 1], 4))
1512 {
1513 i += 5;
1514 continue;
1515 }
1516 }
1517 else if (i < len0 + 10 && encoded[i] == 'W' && encoded[i + 1] == 'W'
1518 && isxdigit (encoded[i + 2]))
1519 {
1520 if (convert_from_hex_encoded (decoded, &encoded[i + 2], 8))
1521 {
1522 i += 10;
1523 continue;
1524 }
1525 }
1526
1527 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1528 {
1529 /* This is a X[bn]* sequence not separated from the previous
1530 part of the name with a non-alpha-numeric character (in other
1531 words, immediately following an alpha-numeric character), then
1532 verify that it is placed at the end of the encoded name. If
1533 not, then the encoding is not valid and we should abort the
1534 decoding. Otherwise, just skip it, it is used in body-nested
1535 package names. */
1536 do
1537 i += 1;
1538 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1539 if (i < len0)
1540 goto Suppress;
1541 }
1542 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1543 {
1544 /* Replace '__' by '.'. */
1545 decoded.push_back ('.');
1546 at_start_name = 1;
1547 i += 2;
1548 }
1549 else
1550 {
1551 /* It's a character part of the decoded name, so just copy it
1552 over. */
1553 decoded.push_back (encoded[i]);
1554 i += 1;
1555 }
1556 }
1557
1558 /* Decoded names should never contain any uppercase character.
1559 Double-check this, and abort the decoding if we find one. */
1560
1561 if (operators)
1562 {
1563 for (i = 0; i < decoded.length(); ++i)
1564 if (isupper (decoded[i]) || decoded[i] == ' ')
1565 goto Suppress;
1566 }
1567
1568 /* If the compiler added a suffix, append it now. */
1569 if (suffix >= 0)
1570 decoded = decoded + "[" + &encoded[suffix] + "]";
1571
1572 return decoded;
1573
1574 Suppress:
1575 if (!wrap)
1576 return {};
1577
1578 if (encoded[0] == '<')
1579 decoded = encoded;
1580 else
1581 decoded = '<' + std::string(encoded) + '>';
1582 return decoded;
1583 }
1584
1585 /* Table for keeping permanent unique copies of decoded names. Once
1586 allocated, names in this table are never released. While this is a
1587 storage leak, it should not be significant unless there are massive
1588 changes in the set of decoded names in successive versions of a
1589 symbol table loaded during a single session. */
1590 static struct htab *decoded_names_store;
1591
1592 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1593 in the language-specific part of GSYMBOL, if it has not been
1594 previously computed. Tries to save the decoded name in the same
1595 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1596 in any case, the decoded symbol has a lifetime at least that of
1597 GSYMBOL).
1598 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1599 const, but nevertheless modified to a semantically equivalent form
1600 when a decoded name is cached in it. */
1601
1602 const char *
1603 ada_decode_symbol (const struct general_symbol_info *arg)
1604 {
1605 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1606 const char **resultp =
1607 &gsymbol->language_specific.demangled_name;
1608
1609 if (!gsymbol->ada_mangled)
1610 {
1611 std::string decoded = ada_decode (gsymbol->linkage_name ());
1612 struct obstack *obstack = gsymbol->language_specific.obstack;
1613
1614 gsymbol->ada_mangled = 1;
1615
1616 if (obstack != NULL)
1617 *resultp = obstack_strdup (obstack, decoded.c_str ());
1618 else
1619 {
1620 /* Sometimes, we can't find a corresponding objfile, in
1621 which case, we put the result on the heap. Since we only
1622 decode when needed, we hope this usually does not cause a
1623 significant memory leak (FIXME). */
1624
1625 char **slot = (char **) htab_find_slot (decoded_names_store,
1626 decoded.c_str (), INSERT);
1627
1628 if (*slot == NULL)
1629 *slot = xstrdup (decoded.c_str ());
1630 *resultp = *slot;
1631 }
1632 }
1633
1634 return *resultp;
1635 }
1636
1637 \f
1638
1639 /* Arrays */
1640
1641 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1642 generated by the GNAT compiler to describe the index type used
1643 for each dimension of an array, check whether it follows the latest
1644 known encoding. If not, fix it up to conform to the latest encoding.
1645 Otherwise, do nothing. This function also does nothing if
1646 INDEX_DESC_TYPE is NULL.
1647
1648 The GNAT encoding used to describe the array index type evolved a bit.
1649 Initially, the information would be provided through the name of each
1650 field of the structure type only, while the type of these fields was
1651 described as unspecified and irrelevant. The debugger was then expected
1652 to perform a global type lookup using the name of that field in order
1653 to get access to the full index type description. Because these global
1654 lookups can be very expensive, the encoding was later enhanced to make
1655 the global lookup unnecessary by defining the field type as being
1656 the full index type description.
1657
1658 The purpose of this routine is to allow us to support older versions
1659 of the compiler by detecting the use of the older encoding, and by
1660 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1661 we essentially replace each field's meaningless type by the associated
1662 index subtype). */
1663
1664 void
1665 ada_fixup_array_indexes_type (struct type *index_desc_type)
1666 {
1667 int i;
1668
1669 if (index_desc_type == NULL)
1670 return;
1671 gdb_assert (index_desc_type->num_fields () > 0);
1672
1673 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1674 to check one field only, no need to check them all). If not, return
1675 now.
1676
1677 If our INDEX_DESC_TYPE was generated using the older encoding,
1678 the field type should be a meaningless integer type whose name
1679 is not equal to the field name. */
1680 if (index_desc_type->field (0).type ()->name () != NULL
1681 && strcmp (index_desc_type->field (0).type ()->name (),
1682 index_desc_type->field (0).name ()) == 0)
1683 return;
1684
1685 /* Fixup each field of INDEX_DESC_TYPE. */
1686 for (i = 0; i < index_desc_type->num_fields (); i++)
1687 {
1688 const char *name = index_desc_type->field (i).name ();
1689 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1690
1691 if (raw_type)
1692 index_desc_type->field (i).set_type (raw_type);
1693 }
1694 }
1695
1696 /* The desc_* routines return primitive portions of array descriptors
1697 (fat pointers). */
1698
1699 /* The descriptor or array type, if any, indicated by TYPE; removes
1700 level of indirection, if needed. */
1701
1702 static struct type *
1703 desc_base_type (struct type *type)
1704 {
1705 if (type == NULL)
1706 return NULL;
1707 type = ada_check_typedef (type);
1708 if (type->code () == TYPE_CODE_TYPEDEF)
1709 type = ada_typedef_target_type (type);
1710
1711 if (type != NULL
1712 && (type->code () == TYPE_CODE_PTR
1713 || type->code () == TYPE_CODE_REF))
1714 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1715 else
1716 return type;
1717 }
1718
1719 /* True iff TYPE indicates a "thin" array pointer type. */
1720
1721 static int
1722 is_thin_pntr (struct type *type)
1723 {
1724 return
1725 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1726 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1727 }
1728
1729 /* The descriptor type for thin pointer type TYPE. */
1730
1731 static struct type *
1732 thin_descriptor_type (struct type *type)
1733 {
1734 struct type *base_type = desc_base_type (type);
1735
1736 if (base_type == NULL)
1737 return NULL;
1738 if (is_suffix (ada_type_name (base_type), "___XVE"))
1739 return base_type;
1740 else
1741 {
1742 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1743
1744 if (alt_type == NULL)
1745 return base_type;
1746 else
1747 return alt_type;
1748 }
1749 }
1750
1751 /* A pointer to the array data for thin-pointer value VAL. */
1752
1753 static struct value *
1754 thin_data_pntr (struct value *val)
1755 {
1756 struct type *type = ada_check_typedef (value_type (val));
1757 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1758
1759 data_type = lookup_pointer_type (data_type);
1760
1761 if (type->code () == TYPE_CODE_PTR)
1762 return value_cast (data_type, value_copy (val));
1763 else
1764 return value_from_longest (data_type, value_address (val));
1765 }
1766
1767 /* True iff TYPE indicates a "thick" array pointer type. */
1768
1769 static int
1770 is_thick_pntr (struct type *type)
1771 {
1772 type = desc_base_type (type);
1773 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1774 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1775 }
1776
1777 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1778 pointer to one, the type of its bounds data; otherwise, NULL. */
1779
1780 static struct type *
1781 desc_bounds_type (struct type *type)
1782 {
1783 struct type *r;
1784
1785 type = desc_base_type (type);
1786
1787 if (type == NULL)
1788 return NULL;
1789 else if (is_thin_pntr (type))
1790 {
1791 type = thin_descriptor_type (type);
1792 if (type == NULL)
1793 return NULL;
1794 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1795 if (r != NULL)
1796 return ada_check_typedef (r);
1797 }
1798 else if (type->code () == TYPE_CODE_STRUCT)
1799 {
1800 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1801 if (r != NULL)
1802 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1803 }
1804 return NULL;
1805 }
1806
1807 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1808 one, a pointer to its bounds data. Otherwise NULL. */
1809
1810 static struct value *
1811 desc_bounds (struct value *arr)
1812 {
1813 struct type *type = ada_check_typedef (value_type (arr));
1814
1815 if (is_thin_pntr (type))
1816 {
1817 struct type *bounds_type =
1818 desc_bounds_type (thin_descriptor_type (type));
1819 LONGEST addr;
1820
1821 if (bounds_type == NULL)
1822 error (_("Bad GNAT array descriptor"));
1823
1824 /* NOTE: The following calculation is not really kosher, but
1825 since desc_type is an XVE-encoded type (and shouldn't be),
1826 the correct calculation is a real pain. FIXME (and fix GCC). */
1827 if (type->code () == TYPE_CODE_PTR)
1828 addr = value_as_long (arr);
1829 else
1830 addr = value_address (arr);
1831
1832 return
1833 value_from_longest (lookup_pointer_type (bounds_type),
1834 addr - TYPE_LENGTH (bounds_type));
1835 }
1836
1837 else if (is_thick_pntr (type))
1838 {
1839 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1840 _("Bad GNAT array descriptor"));
1841 struct type *p_bounds_type = value_type (p_bounds);
1842
1843 if (p_bounds_type
1844 && p_bounds_type->code () == TYPE_CODE_PTR)
1845 {
1846 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1847
1848 if (target_type->is_stub ())
1849 p_bounds = value_cast (lookup_pointer_type
1850 (ada_check_typedef (target_type)),
1851 p_bounds);
1852 }
1853 else
1854 error (_("Bad GNAT array descriptor"));
1855
1856 return p_bounds;
1857 }
1858 else
1859 return NULL;
1860 }
1861
1862 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1863 position of the field containing the address of the bounds data. */
1864
1865 static int
1866 fat_pntr_bounds_bitpos (struct type *type)
1867 {
1868 return desc_base_type (type)->field (1).loc_bitpos ();
1869 }
1870
1871 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1872 size of the field containing the address of the bounds data. */
1873
1874 static int
1875 fat_pntr_bounds_bitsize (struct type *type)
1876 {
1877 type = desc_base_type (type);
1878
1879 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1880 return TYPE_FIELD_BITSIZE (type, 1);
1881 else
1882 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1883 }
1884
1885 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1886 pointer to one, the type of its array data (a array-with-no-bounds type);
1887 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1888 data. */
1889
1890 static struct type *
1891 desc_data_target_type (struct type *type)
1892 {
1893 type = desc_base_type (type);
1894
1895 /* NOTE: The following is bogus; see comment in desc_bounds. */
1896 if (is_thin_pntr (type))
1897 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1898 else if (is_thick_pntr (type))
1899 {
1900 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1901
1902 if (data_type
1903 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1904 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1905 }
1906
1907 return NULL;
1908 }
1909
1910 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1911 its array data. */
1912
1913 static struct value *
1914 desc_data (struct value *arr)
1915 {
1916 struct type *type = value_type (arr);
1917
1918 if (is_thin_pntr (type))
1919 return thin_data_pntr (arr);
1920 else if (is_thick_pntr (type))
1921 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1922 _("Bad GNAT array descriptor"));
1923 else
1924 return NULL;
1925 }
1926
1927
1928 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1929 position of the field containing the address of the data. */
1930
1931 static int
1932 fat_pntr_data_bitpos (struct type *type)
1933 {
1934 return desc_base_type (type)->field (0).loc_bitpos ();
1935 }
1936
1937 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1938 size of the field containing the address of the data. */
1939
1940 static int
1941 fat_pntr_data_bitsize (struct type *type)
1942 {
1943 type = desc_base_type (type);
1944
1945 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1946 return TYPE_FIELD_BITSIZE (type, 0);
1947 else
1948 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1949 }
1950
1951 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1952 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1953 bound, if WHICH is 1. The first bound is I=1. */
1954
1955 static struct value *
1956 desc_one_bound (struct value *bounds, int i, int which)
1957 {
1958 char bound_name[20];
1959 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1960 which ? 'U' : 'L', i - 1);
1961 return value_struct_elt (&bounds, {}, bound_name, NULL,
1962 _("Bad GNAT array descriptor bounds"));
1963 }
1964
1965 /* If BOUNDS is an array-bounds structure type, return the bit position
1966 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1967 bound, if WHICH is 1. The first bound is I=1. */
1968
1969 static int
1970 desc_bound_bitpos (struct type *type, int i, int which)
1971 {
1972 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
1973 }
1974
1975 /* If BOUNDS is an array-bounds structure type, return the bit field size
1976 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1977 bound, if WHICH is 1. The first bound is I=1. */
1978
1979 static int
1980 desc_bound_bitsize (struct type *type, int i, int which)
1981 {
1982 type = desc_base_type (type);
1983
1984 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1985 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1986 else
1987 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1988 }
1989
1990 /* If TYPE is the type of an array-bounds structure, the type of its
1991 Ith bound (numbering from 1). Otherwise, NULL. */
1992
1993 static struct type *
1994 desc_index_type (struct type *type, int i)
1995 {
1996 type = desc_base_type (type);
1997
1998 if (type->code () == TYPE_CODE_STRUCT)
1999 {
2000 char bound_name[20];
2001 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
2002 return lookup_struct_elt_type (type, bound_name, 1);
2003 }
2004 else
2005 return NULL;
2006 }
2007
2008 /* The number of index positions in the array-bounds type TYPE.
2009 Return 0 if TYPE is NULL. */
2010
2011 static int
2012 desc_arity (struct type *type)
2013 {
2014 type = desc_base_type (type);
2015
2016 if (type != NULL)
2017 return type->num_fields () / 2;
2018 return 0;
2019 }
2020
2021 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
2022 an array descriptor type (representing an unconstrained array
2023 type). */
2024
2025 static int
2026 ada_is_direct_array_type (struct type *type)
2027 {
2028 if (type == NULL)
2029 return 0;
2030 type = ada_check_typedef (type);
2031 return (type->code () == TYPE_CODE_ARRAY
2032 || ada_is_array_descriptor_type (type));
2033 }
2034
2035 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
2036 * to one. */
2037
2038 static int
2039 ada_is_array_type (struct type *type)
2040 {
2041 while (type != NULL
2042 && (type->code () == TYPE_CODE_PTR
2043 || type->code () == TYPE_CODE_REF))
2044 type = TYPE_TARGET_TYPE (type);
2045 return ada_is_direct_array_type (type);
2046 }
2047
2048 /* Non-zero iff TYPE is a simple array type or pointer to one. */
2049
2050 int
2051 ada_is_simple_array_type (struct type *type)
2052 {
2053 if (type == NULL)
2054 return 0;
2055 type = ada_check_typedef (type);
2056 return (type->code () == TYPE_CODE_ARRAY
2057 || (type->code () == TYPE_CODE_PTR
2058 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
2059 == TYPE_CODE_ARRAY)));
2060 }
2061
2062 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
2063
2064 int
2065 ada_is_array_descriptor_type (struct type *type)
2066 {
2067 struct type *data_type = desc_data_target_type (type);
2068
2069 if (type == NULL)
2070 return 0;
2071 type = ada_check_typedef (type);
2072 return (data_type != NULL
2073 && data_type->code () == TYPE_CODE_ARRAY
2074 && desc_arity (desc_bounds_type (type)) > 0);
2075 }
2076
2077 /* Non-zero iff type is a partially mal-formed GNAT array
2078 descriptor. FIXME: This is to compensate for some problems with
2079 debugging output from GNAT. Re-examine periodically to see if it
2080 is still needed. */
2081
2082 int
2083 ada_is_bogus_array_descriptor (struct type *type)
2084 {
2085 return
2086 type != NULL
2087 && type->code () == TYPE_CODE_STRUCT
2088 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
2089 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
2090 && !ada_is_array_descriptor_type (type);
2091 }
2092
2093
2094 /* If ARR has a record type in the form of a standard GNAT array descriptor,
2095 (fat pointer) returns the type of the array data described---specifically,
2096 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
2097 in from the descriptor; otherwise, they are left unspecified. If
2098 the ARR denotes a null array descriptor and BOUNDS is non-zero,
2099 returns NULL. The result is simply the type of ARR if ARR is not
2100 a descriptor. */
2101
2102 static struct type *
2103 ada_type_of_array (struct value *arr, int bounds)
2104 {
2105 if (ada_is_constrained_packed_array_type (value_type (arr)))
2106 return decode_constrained_packed_array_type (value_type (arr));
2107
2108 if (!ada_is_array_descriptor_type (value_type (arr)))
2109 return value_type (arr);
2110
2111 if (!bounds)
2112 {
2113 struct type *array_type =
2114 ada_check_typedef (desc_data_target_type (value_type (arr)));
2115
2116 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2117 TYPE_FIELD_BITSIZE (array_type, 0) =
2118 decode_packed_array_bitsize (value_type (arr));
2119
2120 return array_type;
2121 }
2122 else
2123 {
2124 struct type *elt_type;
2125 int arity;
2126 struct value *descriptor;
2127
2128 elt_type = ada_array_element_type (value_type (arr), -1);
2129 arity = ada_array_arity (value_type (arr));
2130
2131 if (elt_type == NULL || arity == 0)
2132 return ada_check_typedef (value_type (arr));
2133
2134 descriptor = desc_bounds (arr);
2135 if (value_as_long (descriptor) == 0)
2136 return NULL;
2137 while (arity > 0)
2138 {
2139 struct type *range_type = alloc_type_copy (value_type (arr));
2140 struct type *array_type = alloc_type_copy (value_type (arr));
2141 struct value *low = desc_one_bound (descriptor, arity, 0);
2142 struct value *high = desc_one_bound (descriptor, arity, 1);
2143
2144 arity -= 1;
2145 create_static_range_type (range_type, value_type (low),
2146 longest_to_int (value_as_long (low)),
2147 longest_to_int (value_as_long (high)));
2148 elt_type = create_array_type (array_type, elt_type, range_type);
2149
2150 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2151 {
2152 /* We need to store the element packed bitsize, as well as
2153 recompute the array size, because it was previously
2154 computed based on the unpacked element size. */
2155 LONGEST lo = value_as_long (low);
2156 LONGEST hi = value_as_long (high);
2157
2158 TYPE_FIELD_BITSIZE (elt_type, 0) =
2159 decode_packed_array_bitsize (value_type (arr));
2160 /* If the array has no element, then the size is already
2161 zero, and does not need to be recomputed. */
2162 if (lo < hi)
2163 {
2164 int array_bitsize =
2165 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2166
2167 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2168 }
2169 }
2170 }
2171
2172 return lookup_pointer_type (elt_type);
2173 }
2174 }
2175
2176 /* If ARR does not represent an array, returns ARR unchanged.
2177 Otherwise, returns either a standard GDB array with bounds set
2178 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2179 GDB array. Returns NULL if ARR is a null fat pointer. */
2180
2181 struct value *
2182 ada_coerce_to_simple_array_ptr (struct value *arr)
2183 {
2184 if (ada_is_array_descriptor_type (value_type (arr)))
2185 {
2186 struct type *arrType = ada_type_of_array (arr, 1);
2187
2188 if (arrType == NULL)
2189 return NULL;
2190 return value_cast (arrType, value_copy (desc_data (arr)));
2191 }
2192 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2193 return decode_constrained_packed_array (arr);
2194 else
2195 return arr;
2196 }
2197
2198 /* If ARR does not represent an array, returns ARR unchanged.
2199 Otherwise, returns a standard GDB array describing ARR (which may
2200 be ARR itself if it already is in the proper form). */
2201
2202 struct value *
2203 ada_coerce_to_simple_array (struct value *arr)
2204 {
2205 if (ada_is_array_descriptor_type (value_type (arr)))
2206 {
2207 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2208
2209 if (arrVal == NULL)
2210 error (_("Bounds unavailable for null array pointer."));
2211 return value_ind (arrVal);
2212 }
2213 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2214 return decode_constrained_packed_array (arr);
2215 else
2216 return arr;
2217 }
2218
2219 /* If TYPE represents a GNAT array type, return it translated to an
2220 ordinary GDB array type (possibly with BITSIZE fields indicating
2221 packing). For other types, is the identity. */
2222
2223 struct type *
2224 ada_coerce_to_simple_array_type (struct type *type)
2225 {
2226 if (ada_is_constrained_packed_array_type (type))
2227 return decode_constrained_packed_array_type (type);
2228
2229 if (ada_is_array_descriptor_type (type))
2230 return ada_check_typedef (desc_data_target_type (type));
2231
2232 return type;
2233 }
2234
2235 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2236
2237 static int
2238 ada_is_gnat_encoded_packed_array_type (struct type *type)
2239 {
2240 if (type == NULL)
2241 return 0;
2242 type = desc_base_type (type);
2243 type = ada_check_typedef (type);
2244 return
2245 ada_type_name (type) != NULL
2246 && strstr (ada_type_name (type), "___XP") != NULL;
2247 }
2248
2249 /* Non-zero iff TYPE represents a standard GNAT constrained
2250 packed-array type. */
2251
2252 int
2253 ada_is_constrained_packed_array_type (struct type *type)
2254 {
2255 return ada_is_gnat_encoded_packed_array_type (type)
2256 && !ada_is_array_descriptor_type (type);
2257 }
2258
2259 /* Non-zero iff TYPE represents an array descriptor for a
2260 unconstrained packed-array type. */
2261
2262 static int
2263 ada_is_unconstrained_packed_array_type (struct type *type)
2264 {
2265 if (!ada_is_array_descriptor_type (type))
2266 return 0;
2267
2268 if (ada_is_gnat_encoded_packed_array_type (type))
2269 return 1;
2270
2271 /* If we saw GNAT encodings, then the above code is sufficient.
2272 However, with minimal encodings, we will just have a thick
2273 pointer instead. */
2274 if (is_thick_pntr (type))
2275 {
2276 type = desc_base_type (type);
2277 /* The structure's first field is a pointer to an array, so this
2278 fetches the array type. */
2279 type = TYPE_TARGET_TYPE (type->field (0).type ());
2280 if (type->code () == TYPE_CODE_TYPEDEF)
2281 type = ada_typedef_target_type (type);
2282 /* Now we can see if the array elements are packed. */
2283 return TYPE_FIELD_BITSIZE (type, 0) > 0;
2284 }
2285
2286 return 0;
2287 }
2288
2289 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
2290 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
2291
2292 static bool
2293 ada_is_any_packed_array_type (struct type *type)
2294 {
2295 return (ada_is_constrained_packed_array_type (type)
2296 || (type->code () == TYPE_CODE_ARRAY
2297 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
2298 }
2299
2300 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2301 return the size of its elements in bits. */
2302
2303 static long
2304 decode_packed_array_bitsize (struct type *type)
2305 {
2306 const char *raw_name;
2307 const char *tail;
2308 long bits;
2309
2310 /* Access to arrays implemented as fat pointers are encoded as a typedef
2311 of the fat pointer type. We need the name of the fat pointer type
2312 to do the decoding, so strip the typedef layer. */
2313 if (type->code () == TYPE_CODE_TYPEDEF)
2314 type = ada_typedef_target_type (type);
2315
2316 raw_name = ada_type_name (ada_check_typedef (type));
2317 if (!raw_name)
2318 raw_name = ada_type_name (desc_base_type (type));
2319
2320 if (!raw_name)
2321 return 0;
2322
2323 tail = strstr (raw_name, "___XP");
2324 if (tail == nullptr)
2325 {
2326 gdb_assert (is_thick_pntr (type));
2327 /* The structure's first field is a pointer to an array, so this
2328 fetches the array type. */
2329 type = TYPE_TARGET_TYPE (type->field (0).type ());
2330 /* Now we can see if the array elements are packed. */
2331 return TYPE_FIELD_BITSIZE (type, 0);
2332 }
2333
2334 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2335 {
2336 lim_warning
2337 (_("could not understand bit size information on packed array"));
2338 return 0;
2339 }
2340
2341 return bits;
2342 }
2343
2344 /* Given that TYPE is a standard GDB array type with all bounds filled
2345 in, and that the element size of its ultimate scalar constituents
2346 (that is, either its elements, or, if it is an array of arrays, its
2347 elements' elements, etc.) is *ELT_BITS, return an identical type,
2348 but with the bit sizes of its elements (and those of any
2349 constituent arrays) recorded in the BITSIZE components of its
2350 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2351 in bits.
2352
2353 Note that, for arrays whose index type has an XA encoding where
2354 a bound references a record discriminant, getting that discriminant,
2355 and therefore the actual value of that bound, is not possible
2356 because none of the given parameters gives us access to the record.
2357 This function assumes that it is OK in the context where it is being
2358 used to return an array whose bounds are still dynamic and where
2359 the length is arbitrary. */
2360
2361 static struct type *
2362 constrained_packed_array_type (struct type *type, long *elt_bits)
2363 {
2364 struct type *new_elt_type;
2365 struct type *new_type;
2366 struct type *index_type_desc;
2367 struct type *index_type;
2368 LONGEST low_bound, high_bound;
2369
2370 type = ada_check_typedef (type);
2371 if (type->code () != TYPE_CODE_ARRAY)
2372 return type;
2373
2374 index_type_desc = ada_find_parallel_type (type, "___XA");
2375 if (index_type_desc)
2376 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2377 NULL);
2378 else
2379 index_type = type->index_type ();
2380
2381 new_type = alloc_type_copy (type);
2382 new_elt_type =
2383 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2384 elt_bits);
2385 create_array_type (new_type, new_elt_type, index_type);
2386 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2387 new_type->set_name (ada_type_name (type));
2388
2389 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2390 && is_dynamic_type (check_typedef (index_type)))
2391 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2392 low_bound = high_bound = 0;
2393 if (high_bound < low_bound)
2394 *elt_bits = TYPE_LENGTH (new_type) = 0;
2395 else
2396 {
2397 *elt_bits *= (high_bound - low_bound + 1);
2398 TYPE_LENGTH (new_type) =
2399 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2400 }
2401
2402 new_type->set_is_fixed_instance (true);
2403 return new_type;
2404 }
2405
2406 /* The array type encoded by TYPE, where
2407 ada_is_constrained_packed_array_type (TYPE). */
2408
2409 static struct type *
2410 decode_constrained_packed_array_type (struct type *type)
2411 {
2412 const char *raw_name = ada_type_name (ada_check_typedef (type));
2413 char *name;
2414 const char *tail;
2415 struct type *shadow_type;
2416 long bits;
2417
2418 if (!raw_name)
2419 raw_name = ada_type_name (desc_base_type (type));
2420
2421 if (!raw_name)
2422 return NULL;
2423
2424 name = (char *) alloca (strlen (raw_name) + 1);
2425 tail = strstr (raw_name, "___XP");
2426 type = desc_base_type (type);
2427
2428 memcpy (name, raw_name, tail - raw_name);
2429 name[tail - raw_name] = '\000';
2430
2431 shadow_type = ada_find_parallel_type_with_name (type, name);
2432
2433 if (shadow_type == NULL)
2434 {
2435 lim_warning (_("could not find bounds information on packed array"));
2436 return NULL;
2437 }
2438 shadow_type = check_typedef (shadow_type);
2439
2440 if (shadow_type->code () != TYPE_CODE_ARRAY)
2441 {
2442 lim_warning (_("could not understand bounds "
2443 "information on packed array"));
2444 return NULL;
2445 }
2446
2447 bits = decode_packed_array_bitsize (type);
2448 return constrained_packed_array_type (shadow_type, &bits);
2449 }
2450
2451 /* Helper function for decode_constrained_packed_array. Set the field
2452 bitsize on a series of packed arrays. Returns the number of
2453 elements in TYPE. */
2454
2455 static LONGEST
2456 recursively_update_array_bitsize (struct type *type)
2457 {
2458 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2459
2460 LONGEST low, high;
2461 if (!get_discrete_bounds (type->index_type (), &low, &high)
2462 || low > high)
2463 return 0;
2464 LONGEST our_len = high - low + 1;
2465
2466 struct type *elt_type = TYPE_TARGET_TYPE (type);
2467 if (elt_type->code () == TYPE_CODE_ARRAY)
2468 {
2469 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2470 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2471 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2472
2473 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2474 / HOST_CHAR_BIT);
2475 }
2476
2477 return our_len;
2478 }
2479
2480 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2481 array, returns a simple array that denotes that array. Its type is a
2482 standard GDB array type except that the BITSIZEs of the array
2483 target types are set to the number of bits in each element, and the
2484 type length is set appropriately. */
2485
2486 static struct value *
2487 decode_constrained_packed_array (struct value *arr)
2488 {
2489 struct type *type;
2490
2491 /* If our value is a pointer, then dereference it. Likewise if
2492 the value is a reference. Make sure that this operation does not
2493 cause the target type to be fixed, as this would indirectly cause
2494 this array to be decoded. The rest of the routine assumes that
2495 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2496 and "value_ind" routines to perform the dereferencing, as opposed
2497 to using "ada_coerce_ref" or "ada_value_ind". */
2498 arr = coerce_ref (arr);
2499 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2500 arr = value_ind (arr);
2501
2502 type = decode_constrained_packed_array_type (value_type (arr));
2503 if (type == NULL)
2504 {
2505 error (_("can't unpack array"));
2506 return NULL;
2507 }
2508
2509 /* Decoding the packed array type could not correctly set the field
2510 bitsizes for any dimension except the innermost, because the
2511 bounds may be variable and were not passed to that function. So,
2512 we further resolve the array bounds here and then update the
2513 sizes. */
2514 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
2515 CORE_ADDR address = value_address (arr);
2516 gdb::array_view<const gdb_byte> view
2517 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2518 type = resolve_dynamic_type (type, view, address);
2519 recursively_update_array_bitsize (type);
2520
2521 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2522 && ada_is_modular_type (value_type (arr)))
2523 {
2524 /* This is a (right-justified) modular type representing a packed
2525 array with no wrapper. In order to interpret the value through
2526 the (left-justified) packed array type we just built, we must
2527 first left-justify it. */
2528 int bit_size, bit_pos;
2529 ULONGEST mod;
2530
2531 mod = ada_modulus (value_type (arr)) - 1;
2532 bit_size = 0;
2533 while (mod > 0)
2534 {
2535 bit_size += 1;
2536 mod >>= 1;
2537 }
2538 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2539 arr = ada_value_primitive_packed_val (arr, NULL,
2540 bit_pos / HOST_CHAR_BIT,
2541 bit_pos % HOST_CHAR_BIT,
2542 bit_size,
2543 type);
2544 }
2545
2546 return coerce_unspec_val_to_type (arr, type);
2547 }
2548
2549
2550 /* The value of the element of packed array ARR at the ARITY indices
2551 given in IND. ARR must be a simple array. */
2552
2553 static struct value *
2554 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2555 {
2556 int i;
2557 int bits, elt_off, bit_off;
2558 long elt_total_bit_offset;
2559 struct type *elt_type;
2560 struct value *v;
2561
2562 bits = 0;
2563 elt_total_bit_offset = 0;
2564 elt_type = ada_check_typedef (value_type (arr));
2565 for (i = 0; i < arity; i += 1)
2566 {
2567 if (elt_type->code () != TYPE_CODE_ARRAY
2568 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2569 error
2570 (_("attempt to do packed indexing of "
2571 "something other than a packed array"));
2572 else
2573 {
2574 struct type *range_type = elt_type->index_type ();
2575 LONGEST lowerbound, upperbound;
2576 LONGEST idx;
2577
2578 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2579 {
2580 lim_warning (_("don't know bounds of array"));
2581 lowerbound = upperbound = 0;
2582 }
2583
2584 idx = pos_atr (ind[i]);
2585 if (idx < lowerbound || idx > upperbound)
2586 lim_warning (_("packed array index %ld out of bounds"),
2587 (long) idx);
2588 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2589 elt_total_bit_offset += (idx - lowerbound) * bits;
2590 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2591 }
2592 }
2593 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2594 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2595
2596 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2597 bits, elt_type);
2598 return v;
2599 }
2600
2601 /* Non-zero iff TYPE includes negative integer values. */
2602
2603 static int
2604 has_negatives (struct type *type)
2605 {
2606 switch (type->code ())
2607 {
2608 default:
2609 return 0;
2610 case TYPE_CODE_INT:
2611 return !type->is_unsigned ();
2612 case TYPE_CODE_RANGE:
2613 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2614 }
2615 }
2616
2617 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2618 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2619 the unpacked buffer.
2620
2621 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2622 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2623
2624 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2625 zero otherwise.
2626
2627 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2628
2629 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2630
2631 static void
2632 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2633 gdb_byte *unpacked, int unpacked_len,
2634 int is_big_endian, int is_signed_type,
2635 int is_scalar)
2636 {
2637 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2638 int src_idx; /* Index into the source area */
2639 int src_bytes_left; /* Number of source bytes left to process. */
2640 int srcBitsLeft; /* Number of source bits left to move */
2641 int unusedLS; /* Number of bits in next significant
2642 byte of source that are unused */
2643
2644 int unpacked_idx; /* Index into the unpacked buffer */
2645 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2646
2647 unsigned long accum; /* Staging area for bits being transferred */
2648 int accumSize; /* Number of meaningful bits in accum */
2649 unsigned char sign;
2650
2651 /* Transmit bytes from least to most significant; delta is the direction
2652 the indices move. */
2653 int delta = is_big_endian ? -1 : 1;
2654
2655 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2656 bits from SRC. .*/
2657 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2658 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2659 bit_size, unpacked_len);
2660
2661 srcBitsLeft = bit_size;
2662 src_bytes_left = src_len;
2663 unpacked_bytes_left = unpacked_len;
2664 sign = 0;
2665
2666 if (is_big_endian)
2667 {
2668 src_idx = src_len - 1;
2669 if (is_signed_type
2670 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2671 sign = ~0;
2672
2673 unusedLS =
2674 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2675 % HOST_CHAR_BIT;
2676
2677 if (is_scalar)
2678 {
2679 accumSize = 0;
2680 unpacked_idx = unpacked_len - 1;
2681 }
2682 else
2683 {
2684 /* Non-scalar values must be aligned at a byte boundary... */
2685 accumSize =
2686 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2687 /* ... And are placed at the beginning (most-significant) bytes
2688 of the target. */
2689 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2690 unpacked_bytes_left = unpacked_idx + 1;
2691 }
2692 }
2693 else
2694 {
2695 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2696
2697 src_idx = unpacked_idx = 0;
2698 unusedLS = bit_offset;
2699 accumSize = 0;
2700
2701 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2702 sign = ~0;
2703 }
2704
2705 accum = 0;
2706 while (src_bytes_left > 0)
2707 {
2708 /* Mask for removing bits of the next source byte that are not
2709 part of the value. */
2710 unsigned int unusedMSMask =
2711 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2712 1;
2713 /* Sign-extend bits for this byte. */
2714 unsigned int signMask = sign & ~unusedMSMask;
2715
2716 accum |=
2717 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2718 accumSize += HOST_CHAR_BIT - unusedLS;
2719 if (accumSize >= HOST_CHAR_BIT)
2720 {
2721 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2722 accumSize -= HOST_CHAR_BIT;
2723 accum >>= HOST_CHAR_BIT;
2724 unpacked_bytes_left -= 1;
2725 unpacked_idx += delta;
2726 }
2727 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2728 unusedLS = 0;
2729 src_bytes_left -= 1;
2730 src_idx += delta;
2731 }
2732 while (unpacked_bytes_left > 0)
2733 {
2734 accum |= sign << accumSize;
2735 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2736 accumSize -= HOST_CHAR_BIT;
2737 if (accumSize < 0)
2738 accumSize = 0;
2739 accum >>= HOST_CHAR_BIT;
2740 unpacked_bytes_left -= 1;
2741 unpacked_idx += delta;
2742 }
2743 }
2744
2745 /* Create a new value of type TYPE from the contents of OBJ starting
2746 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2747 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2748 assigning through the result will set the field fetched from.
2749 VALADDR is ignored unless OBJ is NULL, in which case,
2750 VALADDR+OFFSET must address the start of storage containing the
2751 packed value. The value returned in this case is never an lval.
2752 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2753
2754 struct value *
2755 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2756 long offset, int bit_offset, int bit_size,
2757 struct type *type)
2758 {
2759 struct value *v;
2760 const gdb_byte *src; /* First byte containing data to unpack */
2761 gdb_byte *unpacked;
2762 const int is_scalar = is_scalar_type (type);
2763 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2764 gdb::byte_vector staging;
2765
2766 type = ada_check_typedef (type);
2767
2768 if (obj == NULL)
2769 src = valaddr + offset;
2770 else
2771 src = value_contents (obj).data () + offset;
2772
2773 if (is_dynamic_type (type))
2774 {
2775 /* The length of TYPE might by dynamic, so we need to resolve
2776 TYPE in order to know its actual size, which we then use
2777 to create the contents buffer of the value we return.
2778 The difficulty is that the data containing our object is
2779 packed, and therefore maybe not at a byte boundary. So, what
2780 we do, is unpack the data into a byte-aligned buffer, and then
2781 use that buffer as our object's value for resolving the type. */
2782 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2783 staging.resize (staging_len);
2784
2785 ada_unpack_from_contents (src, bit_offset, bit_size,
2786 staging.data (), staging.size (),
2787 is_big_endian, has_negatives (type),
2788 is_scalar);
2789 type = resolve_dynamic_type (type, staging, 0);
2790 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2791 {
2792 /* This happens when the length of the object is dynamic,
2793 and is actually smaller than the space reserved for it.
2794 For instance, in an array of variant records, the bit_size
2795 we're given is the array stride, which is constant and
2796 normally equal to the maximum size of its element.
2797 But, in reality, each element only actually spans a portion
2798 of that stride. */
2799 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2800 }
2801 }
2802
2803 if (obj == NULL)
2804 {
2805 v = allocate_value (type);
2806 src = valaddr + offset;
2807 }
2808 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2809 {
2810 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2811 gdb_byte *buf;
2812
2813 v = value_at (type, value_address (obj) + offset);
2814 buf = (gdb_byte *) alloca (src_len);
2815 read_memory (value_address (v), buf, src_len);
2816 src = buf;
2817 }
2818 else
2819 {
2820 v = allocate_value (type);
2821 src = value_contents (obj).data () + offset;
2822 }
2823
2824 if (obj != NULL)
2825 {
2826 long new_offset = offset;
2827
2828 set_value_component_location (v, obj);
2829 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2830 set_value_bitsize (v, bit_size);
2831 if (value_bitpos (v) >= HOST_CHAR_BIT)
2832 {
2833 ++new_offset;
2834 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2835 }
2836 set_value_offset (v, new_offset);
2837
2838 /* Also set the parent value. This is needed when trying to
2839 assign a new value (in inferior memory). */
2840 set_value_parent (v, obj);
2841 }
2842 else
2843 set_value_bitsize (v, bit_size);
2844 unpacked = value_contents_writeable (v).data ();
2845
2846 if (bit_size == 0)
2847 {
2848 memset (unpacked, 0, TYPE_LENGTH (type));
2849 return v;
2850 }
2851
2852 if (staging.size () == TYPE_LENGTH (type))
2853 {
2854 /* Small short-cut: If we've unpacked the data into a buffer
2855 of the same size as TYPE's length, then we can reuse that,
2856 instead of doing the unpacking again. */
2857 memcpy (unpacked, staging.data (), staging.size ());
2858 }
2859 else
2860 ada_unpack_from_contents (src, bit_offset, bit_size,
2861 unpacked, TYPE_LENGTH (type),
2862 is_big_endian, has_negatives (type), is_scalar);
2863
2864 return v;
2865 }
2866
2867 /* Store the contents of FROMVAL into the location of TOVAL.
2868 Return a new value with the location of TOVAL and contents of
2869 FROMVAL. Handles assignment into packed fields that have
2870 floating-point or non-scalar types. */
2871
2872 static struct value *
2873 ada_value_assign (struct value *toval, struct value *fromval)
2874 {
2875 struct type *type = value_type (toval);
2876 int bits = value_bitsize (toval);
2877
2878 toval = ada_coerce_ref (toval);
2879 fromval = ada_coerce_ref (fromval);
2880
2881 if (ada_is_direct_array_type (value_type (toval)))
2882 toval = ada_coerce_to_simple_array (toval);
2883 if (ada_is_direct_array_type (value_type (fromval)))
2884 fromval = ada_coerce_to_simple_array (fromval);
2885
2886 if (!deprecated_value_modifiable (toval))
2887 error (_("Left operand of assignment is not a modifiable lvalue."));
2888
2889 if (VALUE_LVAL (toval) == lval_memory
2890 && bits > 0
2891 && (type->code () == TYPE_CODE_FLT
2892 || type->code () == TYPE_CODE_STRUCT))
2893 {
2894 int len = (value_bitpos (toval)
2895 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2896 int from_size;
2897 gdb_byte *buffer = (gdb_byte *) alloca (len);
2898 struct value *val;
2899 CORE_ADDR to_addr = value_address (toval);
2900
2901 if (type->code () == TYPE_CODE_FLT)
2902 fromval = value_cast (type, fromval);
2903
2904 read_memory (to_addr, buffer, len);
2905 from_size = value_bitsize (fromval);
2906 if (from_size == 0)
2907 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2908
2909 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2910 ULONGEST from_offset = 0;
2911 if (is_big_endian && is_scalar_type (value_type (fromval)))
2912 from_offset = from_size - bits;
2913 copy_bitwise (buffer, value_bitpos (toval),
2914 value_contents (fromval).data (), from_offset,
2915 bits, is_big_endian);
2916 write_memory_with_notification (to_addr, buffer, len);
2917
2918 val = value_copy (toval);
2919 memcpy (value_contents_raw (val).data (),
2920 value_contents (fromval).data (),
2921 TYPE_LENGTH (type));
2922 deprecated_set_value_type (val, type);
2923
2924 return val;
2925 }
2926
2927 return value_assign (toval, fromval);
2928 }
2929
2930
2931 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2932 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2933 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2934 COMPONENT, and not the inferior's memory. The current contents
2935 of COMPONENT are ignored.
2936
2937 Although not part of the initial design, this function also works
2938 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2939 had a null address, and COMPONENT had an address which is equal to
2940 its offset inside CONTAINER. */
2941
2942 static void
2943 value_assign_to_component (struct value *container, struct value *component,
2944 struct value *val)
2945 {
2946 LONGEST offset_in_container =
2947 (LONGEST) (value_address (component) - value_address (container));
2948 int bit_offset_in_container =
2949 value_bitpos (component) - value_bitpos (container);
2950 int bits;
2951
2952 val = value_cast (value_type (component), val);
2953
2954 if (value_bitsize (component) == 0)
2955 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2956 else
2957 bits = value_bitsize (component);
2958
2959 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2960 {
2961 int src_offset;
2962
2963 if (is_scalar_type (check_typedef (value_type (component))))
2964 src_offset
2965 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2966 else
2967 src_offset = 0;
2968 copy_bitwise ((value_contents_writeable (container).data ()
2969 + offset_in_container),
2970 value_bitpos (container) + bit_offset_in_container,
2971 value_contents (val).data (), src_offset, bits, 1);
2972 }
2973 else
2974 copy_bitwise ((value_contents_writeable (container).data ()
2975 + offset_in_container),
2976 value_bitpos (container) + bit_offset_in_container,
2977 value_contents (val).data (), 0, bits, 0);
2978 }
2979
2980 /* Determine if TYPE is an access to an unconstrained array. */
2981
2982 bool
2983 ada_is_access_to_unconstrained_array (struct type *type)
2984 {
2985 return (type->code () == TYPE_CODE_TYPEDEF
2986 && is_thick_pntr (ada_typedef_target_type (type)));
2987 }
2988
2989 /* The value of the element of array ARR at the ARITY indices given in IND.
2990 ARR may be either a simple array, GNAT array descriptor, or pointer
2991 thereto. */
2992
2993 struct value *
2994 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2995 {
2996 int k;
2997 struct value *elt;
2998 struct type *elt_type;
2999
3000 elt = ada_coerce_to_simple_array (arr);
3001
3002 elt_type = ada_check_typedef (value_type (elt));
3003 if (elt_type->code () == TYPE_CODE_ARRAY
3004 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
3005 return value_subscript_packed (elt, arity, ind);
3006
3007 for (k = 0; k < arity; k += 1)
3008 {
3009 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
3010
3011 if (elt_type->code () != TYPE_CODE_ARRAY)
3012 error (_("too many subscripts (%d expected)"), k);
3013
3014 elt = value_subscript (elt, pos_atr (ind[k]));
3015
3016 if (ada_is_access_to_unconstrained_array (saved_elt_type)
3017 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
3018 {
3019 /* The element is a typedef to an unconstrained array,
3020 except that the value_subscript call stripped the
3021 typedef layer. The typedef layer is GNAT's way to
3022 specify that the element is, at the source level, an
3023 access to the unconstrained array, rather than the
3024 unconstrained array. So, we need to restore that
3025 typedef layer, which we can do by forcing the element's
3026 type back to its original type. Otherwise, the returned
3027 value is going to be printed as the array, rather
3028 than as an access. Another symptom of the same issue
3029 would be that an expression trying to dereference the
3030 element would also be improperly rejected. */
3031 deprecated_set_value_type (elt, saved_elt_type);
3032 }
3033
3034 elt_type = ada_check_typedef (value_type (elt));
3035 }
3036
3037 return elt;
3038 }
3039
3040 /* Assuming ARR is a pointer to a GDB array, the value of the element
3041 of *ARR at the ARITY indices given in IND.
3042 Does not read the entire array into memory.
3043
3044 Note: Unlike what one would expect, this function is used instead of
3045 ada_value_subscript for basically all non-packed array types. The reason
3046 for this is that a side effect of doing our own pointer arithmetics instead
3047 of relying on value_subscript is that there is no implicit typedef peeling.
3048 This is important for arrays of array accesses, where it allows us to
3049 preserve the fact that the array's element is an array access, where the
3050 access part os encoded in a typedef layer. */
3051
3052 static struct value *
3053 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
3054 {
3055 int k;
3056 struct value *array_ind = ada_value_ind (arr);
3057 struct type *type
3058 = check_typedef (value_enclosing_type (array_ind));
3059
3060 if (type->code () == TYPE_CODE_ARRAY
3061 && TYPE_FIELD_BITSIZE (type, 0) > 0)
3062 return value_subscript_packed (array_ind, arity, ind);
3063
3064 for (k = 0; k < arity; k += 1)
3065 {
3066 LONGEST lwb, upb;
3067
3068 if (type->code () != TYPE_CODE_ARRAY)
3069 error (_("too many subscripts (%d expected)"), k);
3070 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3071 value_copy (arr));
3072 get_discrete_bounds (type->index_type (), &lwb, &upb);
3073 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
3074 type = TYPE_TARGET_TYPE (type);
3075 }
3076
3077 return value_ind (arr);
3078 }
3079
3080 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
3081 actual type of ARRAY_PTR is ignored), returns the Ada slice of
3082 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
3083 this array is LOW, as per Ada rules. */
3084 static struct value *
3085 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
3086 int low, int high)
3087 {
3088 struct type *type0 = ada_check_typedef (type);
3089 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
3090 struct type *index_type
3091 = create_static_range_type (NULL, base_index_type, low, high);
3092 struct type *slice_type = create_array_type_with_stride
3093 (NULL, TYPE_TARGET_TYPE (type0), index_type,
3094 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
3095 TYPE_FIELD_BITSIZE (type0, 0));
3096 int base_low = ada_discrete_type_low_bound (type0->index_type ());
3097 gdb::optional<LONGEST> base_low_pos, low_pos;
3098 CORE_ADDR base;
3099
3100 low_pos = discrete_position (base_index_type, low);
3101 base_low_pos = discrete_position (base_index_type, base_low);
3102
3103 if (!low_pos.has_value () || !base_low_pos.has_value ())
3104 {
3105 warning (_("unable to get positions in slice, use bounds instead"));
3106 low_pos = low;
3107 base_low_pos = base_low;
3108 }
3109
3110 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
3111 if (stride == 0)
3112 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
3113
3114 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
3115 return value_at_lazy (slice_type, base);
3116 }
3117
3118
3119 static struct value *
3120 ada_value_slice (struct value *array, int low, int high)
3121 {
3122 struct type *type = ada_check_typedef (value_type (array));
3123 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
3124 struct type *index_type
3125 = create_static_range_type (NULL, type->index_type (), low, high);
3126 struct type *slice_type = create_array_type_with_stride
3127 (NULL, TYPE_TARGET_TYPE (type), index_type,
3128 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
3129 TYPE_FIELD_BITSIZE (type, 0));
3130 gdb::optional<LONGEST> low_pos, high_pos;
3131
3132
3133 low_pos = discrete_position (base_index_type, low);
3134 high_pos = discrete_position (base_index_type, high);
3135
3136 if (!low_pos.has_value () || !high_pos.has_value ())
3137 {
3138 warning (_("unable to get positions in slice, use bounds instead"));
3139 low_pos = low;
3140 high_pos = high;
3141 }
3142
3143 return value_cast (slice_type,
3144 value_slice (array, low, *high_pos - *low_pos + 1));
3145 }
3146
3147 /* If type is a record type in the form of a standard GNAT array
3148 descriptor, returns the number of dimensions for type. If arr is a
3149 simple array, returns the number of "array of"s that prefix its
3150 type designation. Otherwise, returns 0. */
3151
3152 int
3153 ada_array_arity (struct type *type)
3154 {
3155 int arity;
3156
3157 if (type == NULL)
3158 return 0;
3159
3160 type = desc_base_type (type);
3161
3162 arity = 0;
3163 if (type->code () == TYPE_CODE_STRUCT)
3164 return desc_arity (desc_bounds_type (type));
3165 else
3166 while (type->code () == TYPE_CODE_ARRAY)
3167 {
3168 arity += 1;
3169 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
3170 }
3171
3172 return arity;
3173 }
3174
3175 /* If TYPE is a record type in the form of a standard GNAT array
3176 descriptor or a simple array type, returns the element type for
3177 TYPE after indexing by NINDICES indices, or by all indices if
3178 NINDICES is -1. Otherwise, returns NULL. */
3179
3180 struct type *
3181 ada_array_element_type (struct type *type, int nindices)
3182 {
3183 type = desc_base_type (type);
3184
3185 if (type->code () == TYPE_CODE_STRUCT)
3186 {
3187 int k;
3188 struct type *p_array_type;
3189
3190 p_array_type = desc_data_target_type (type);
3191
3192 k = ada_array_arity (type);
3193 if (k == 0)
3194 return NULL;
3195
3196 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3197 if (nindices >= 0 && k > nindices)
3198 k = nindices;
3199 while (k > 0 && p_array_type != NULL)
3200 {
3201 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3202 k -= 1;
3203 }
3204 return p_array_type;
3205 }
3206 else if (type->code () == TYPE_CODE_ARRAY)
3207 {
3208 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
3209 {
3210 type = TYPE_TARGET_TYPE (type);
3211 nindices -= 1;
3212 }
3213 return type;
3214 }
3215
3216 return NULL;
3217 }
3218
3219 /* See ada-lang.h. */
3220
3221 struct type *
3222 ada_index_type (struct type *type, int n, const char *name)
3223 {
3224 struct type *result_type;
3225
3226 type = desc_base_type (type);
3227
3228 if (n < 0 || n > ada_array_arity (type))
3229 error (_("invalid dimension number to '%s"), name);
3230
3231 if (ada_is_simple_array_type (type))
3232 {
3233 int i;
3234
3235 for (i = 1; i < n; i += 1)
3236 {
3237 type = ada_check_typedef (type);
3238 type = TYPE_TARGET_TYPE (type);
3239 }
3240 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
3241 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3242 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3243 perhaps stabsread.c would make more sense. */
3244 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
3245 result_type = NULL;
3246 }
3247 else
3248 {
3249 result_type = desc_index_type (desc_bounds_type (type), n);
3250 if (result_type == NULL)
3251 error (_("attempt to take bound of something that is not an array"));
3252 }
3253
3254 return result_type;
3255 }
3256
3257 /* Given that arr is an array type, returns the lower bound of the
3258 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3259 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3260 array-descriptor type. It works for other arrays with bounds supplied
3261 by run-time quantities other than discriminants. */
3262
3263 static LONGEST
3264 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3265 {
3266 struct type *type, *index_type_desc, *index_type;
3267 int i;
3268
3269 gdb_assert (which == 0 || which == 1);
3270
3271 if (ada_is_constrained_packed_array_type (arr_type))
3272 arr_type = decode_constrained_packed_array_type (arr_type);
3273
3274 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3275 return (LONGEST) - which;
3276
3277 if (arr_type->code () == TYPE_CODE_PTR)
3278 type = TYPE_TARGET_TYPE (arr_type);
3279 else
3280 type = arr_type;
3281
3282 if (type->is_fixed_instance ())
3283 {
3284 /* The array has already been fixed, so we do not need to
3285 check the parallel ___XA type again. That encoding has
3286 already been applied, so ignore it now. */
3287 index_type_desc = NULL;
3288 }
3289 else
3290 {
3291 index_type_desc = ada_find_parallel_type (type, "___XA");
3292 ada_fixup_array_indexes_type (index_type_desc);
3293 }
3294
3295 if (index_type_desc != NULL)
3296 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
3297 NULL);
3298 else
3299 {
3300 struct type *elt_type = check_typedef (type);
3301
3302 for (i = 1; i < n; i++)
3303 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3304
3305 index_type = elt_type->index_type ();
3306 }
3307
3308 return
3309 (LONGEST) (which == 0
3310 ? ada_discrete_type_low_bound (index_type)
3311 : ada_discrete_type_high_bound (index_type));
3312 }
3313
3314 /* Given that arr is an array value, returns the lower bound of the
3315 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3316 WHICH is 1. This routine will also work for arrays with bounds
3317 supplied by run-time quantities other than discriminants. */
3318
3319 static LONGEST
3320 ada_array_bound (struct value *arr, int n, int which)
3321 {
3322 struct type *arr_type;
3323
3324 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3325 arr = value_ind (arr);
3326 arr_type = value_enclosing_type (arr);
3327
3328 if (ada_is_constrained_packed_array_type (arr_type))
3329 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3330 else if (ada_is_simple_array_type (arr_type))
3331 return ada_array_bound_from_type (arr_type, n, which);
3332 else
3333 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3334 }
3335
3336 /* Given that arr is an array value, returns the length of the
3337 nth index. This routine will also work for arrays with bounds
3338 supplied by run-time quantities other than discriminants.
3339 Does not work for arrays indexed by enumeration types with representation
3340 clauses at the moment. */
3341
3342 static LONGEST
3343 ada_array_length (struct value *arr, int n)
3344 {
3345 struct type *arr_type, *index_type;
3346 int low, high;
3347
3348 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3349 arr = value_ind (arr);
3350 arr_type = value_enclosing_type (arr);
3351
3352 if (ada_is_constrained_packed_array_type (arr_type))
3353 return ada_array_length (decode_constrained_packed_array (arr), n);
3354
3355 if (ada_is_simple_array_type (arr_type))
3356 {
3357 low = ada_array_bound_from_type (arr_type, n, 0);
3358 high = ada_array_bound_from_type (arr_type, n, 1);
3359 }
3360 else
3361 {
3362 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3363 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3364 }
3365
3366 arr_type = check_typedef (arr_type);
3367 index_type = ada_index_type (arr_type, n, "length");
3368 if (index_type != NULL)
3369 {
3370 struct type *base_type;
3371 if (index_type->code () == TYPE_CODE_RANGE)
3372 base_type = TYPE_TARGET_TYPE (index_type);
3373 else
3374 base_type = index_type;
3375
3376 low = pos_atr (value_from_longest (base_type, low));
3377 high = pos_atr (value_from_longest (base_type, high));
3378 }
3379 return high - low + 1;
3380 }
3381
3382 /* An array whose type is that of ARR_TYPE (an array type), with
3383 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3384 less than LOW, then LOW-1 is used. */
3385
3386 static struct value *
3387 empty_array (struct type *arr_type, int low, int high)
3388 {
3389 struct type *arr_type0 = ada_check_typedef (arr_type);
3390 struct type *index_type
3391 = create_static_range_type
3392 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3393 high < low ? low - 1 : high);
3394 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3395
3396 return allocate_value (create_array_type (NULL, elt_type, index_type));
3397 }
3398 \f
3399
3400 /* Name resolution */
3401
3402 /* The "decoded" name for the user-definable Ada operator corresponding
3403 to OP. */
3404
3405 static const char *
3406 ada_decoded_op_name (enum exp_opcode op)
3407 {
3408 int i;
3409
3410 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3411 {
3412 if (ada_opname_table[i].op == op)
3413 return ada_opname_table[i].decoded;
3414 }
3415 error (_("Could not find operator name for opcode"));
3416 }
3417
3418 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3419 in a listing of choices during disambiguation (see sort_choices, below).
3420 The idea is that overloadings of a subprogram name from the
3421 same package should sort in their source order. We settle for ordering
3422 such symbols by their trailing number (__N or $N). */
3423
3424 static int
3425 encoded_ordered_before (const char *N0, const char *N1)
3426 {
3427 if (N1 == NULL)
3428 return 0;
3429 else if (N0 == NULL)
3430 return 1;
3431 else
3432 {
3433 int k0, k1;
3434
3435 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3436 ;
3437 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3438 ;
3439 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3440 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3441 {
3442 int n0, n1;
3443
3444 n0 = k0;
3445 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3446 n0 -= 1;
3447 n1 = k1;
3448 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3449 n1 -= 1;
3450 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3451 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3452 }
3453 return (strcmp (N0, N1) < 0);
3454 }
3455 }
3456
3457 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3458 encoded names. */
3459
3460 static void
3461 sort_choices (struct block_symbol syms[], int nsyms)
3462 {
3463 int i;
3464
3465 for (i = 1; i < nsyms; i += 1)
3466 {
3467 struct block_symbol sym = syms[i];
3468 int j;
3469
3470 for (j = i - 1; j >= 0; j -= 1)
3471 {
3472 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3473 sym.symbol->linkage_name ()))
3474 break;
3475 syms[j + 1] = syms[j];
3476 }
3477 syms[j + 1] = sym;
3478 }
3479 }
3480
3481 /* Whether GDB should display formals and return types for functions in the
3482 overloads selection menu. */
3483 static bool print_signatures = true;
3484
3485 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3486 all but functions, the signature is just the name of the symbol. For
3487 functions, this is the name of the function, the list of types for formals
3488 and the return type (if any). */
3489
3490 static void
3491 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3492 const struct type_print_options *flags)
3493 {
3494 struct type *type = sym->type ();
3495
3496 gdb_printf (stream, "%s", sym->print_name ());
3497 if (!print_signatures
3498 || type == NULL
3499 || type->code () != TYPE_CODE_FUNC)
3500 return;
3501
3502 if (type->num_fields () > 0)
3503 {
3504 int i;
3505
3506 gdb_printf (stream, " (");
3507 for (i = 0; i < type->num_fields (); ++i)
3508 {
3509 if (i > 0)
3510 gdb_printf (stream, "; ");
3511 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3512 flags);
3513 }
3514 gdb_printf (stream, ")");
3515 }
3516 if (TYPE_TARGET_TYPE (type) != NULL
3517 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3518 {
3519 gdb_printf (stream, " return ");
3520 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3521 }
3522 }
3523
3524 /* Read and validate a set of numeric choices from the user in the
3525 range 0 .. N_CHOICES-1. Place the results in increasing
3526 order in CHOICES[0 .. N-1], and return N.
3527
3528 The user types choices as a sequence of numbers on one line
3529 separated by blanks, encoding them as follows:
3530
3531 + A choice of 0 means to cancel the selection, throwing an error.
3532 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3533 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3534
3535 The user is not allowed to choose more than MAX_RESULTS values.
3536
3537 ANNOTATION_SUFFIX, if present, is used to annotate the input
3538 prompts (for use with the -f switch). */
3539
3540 static int
3541 get_selections (int *choices, int n_choices, int max_results,
3542 int is_all_choice, const char *annotation_suffix)
3543 {
3544 const char *args;
3545 const char *prompt;
3546 int n_chosen;
3547 int first_choice = is_all_choice ? 2 : 1;
3548
3549 prompt = getenv ("PS2");
3550 if (prompt == NULL)
3551 prompt = "> ";
3552
3553 args = command_line_input (prompt, annotation_suffix);
3554
3555 if (args == NULL)
3556 error_no_arg (_("one or more choice numbers"));
3557
3558 n_chosen = 0;
3559
3560 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3561 order, as given in args. Choices are validated. */
3562 while (1)
3563 {
3564 char *args2;
3565 int choice, j;
3566
3567 args = skip_spaces (args);
3568 if (*args == '\0' && n_chosen == 0)
3569 error_no_arg (_("one or more choice numbers"));
3570 else if (*args == '\0')
3571 break;
3572
3573 choice = strtol (args, &args2, 10);
3574 if (args == args2 || choice < 0
3575 || choice > n_choices + first_choice - 1)
3576 error (_("Argument must be choice number"));
3577 args = args2;
3578
3579 if (choice == 0)
3580 error (_("cancelled"));
3581
3582 if (choice < first_choice)
3583 {
3584 n_chosen = n_choices;
3585 for (j = 0; j < n_choices; j += 1)
3586 choices[j] = j;
3587 break;
3588 }
3589 choice -= first_choice;
3590
3591 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3592 {
3593 }
3594
3595 if (j < 0 || choice != choices[j])
3596 {
3597 int k;
3598
3599 for (k = n_chosen - 1; k > j; k -= 1)
3600 choices[k + 1] = choices[k];
3601 choices[j + 1] = choice;
3602 n_chosen += 1;
3603 }
3604 }
3605
3606 if (n_chosen > max_results)
3607 error (_("Select no more than %d of the above"), max_results);
3608
3609 return n_chosen;
3610 }
3611
3612 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3613 by asking the user (if necessary), returning the number selected,
3614 and setting the first elements of SYMS items. Error if no symbols
3615 selected. */
3616
3617 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3618 to be re-integrated one of these days. */
3619
3620 static int
3621 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3622 {
3623 int i;
3624 int *chosen = XALLOCAVEC (int , nsyms);
3625 int n_chosen;
3626 int first_choice = (max_results == 1) ? 1 : 2;
3627 const char *select_mode = multiple_symbols_select_mode ();
3628
3629 if (max_results < 1)
3630 error (_("Request to select 0 symbols!"));
3631 if (nsyms <= 1)
3632 return nsyms;
3633
3634 if (select_mode == multiple_symbols_cancel)
3635 error (_("\
3636 canceled because the command is ambiguous\n\
3637 See set/show multiple-symbol."));
3638
3639 /* If select_mode is "all", then return all possible symbols.
3640 Only do that if more than one symbol can be selected, of course.
3641 Otherwise, display the menu as usual. */
3642 if (select_mode == multiple_symbols_all && max_results > 1)
3643 return nsyms;
3644
3645 gdb_printf (_("[0] cancel\n"));
3646 if (max_results > 1)
3647 gdb_printf (_("[1] all\n"));
3648
3649 sort_choices (syms, nsyms);
3650
3651 for (i = 0; i < nsyms; i += 1)
3652 {
3653 if (syms[i].symbol == NULL)
3654 continue;
3655
3656 if (syms[i].symbol->aclass () == LOC_BLOCK)
3657 {
3658 struct symtab_and_line sal =
3659 find_function_start_sal (syms[i].symbol, 1);
3660
3661 gdb_printf ("[%d] ", i + first_choice);
3662 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3663 &type_print_raw_options);
3664 if (sal.symtab == NULL)
3665 gdb_printf (_(" at %p[<no source file available>%p]:%d\n"),
3666 metadata_style.style ().ptr (), nullptr, sal.line);
3667 else
3668 gdb_printf
3669 (_(" at %ps:%d\n"),
3670 styled_string (file_name_style.style (),
3671 symtab_to_filename_for_display (sal.symtab)),
3672 sal.line);
3673 continue;
3674 }
3675 else
3676 {
3677 int is_enumeral =
3678 (syms[i].symbol->aclass () == LOC_CONST
3679 && syms[i].symbol->type () != NULL
3680 && syms[i].symbol->type ()->code () == TYPE_CODE_ENUM);
3681 struct symtab *symtab = NULL;
3682
3683 if (syms[i].symbol->is_objfile_owned ())
3684 symtab = syms[i].symbol->symtab ();
3685
3686 if (syms[i].symbol->line () != 0 && symtab != NULL)
3687 {
3688 gdb_printf ("[%d] ", i + first_choice);
3689 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3690 &type_print_raw_options);
3691 gdb_printf (_(" at %s:%d\n"),
3692 symtab_to_filename_for_display (symtab),
3693 syms[i].symbol->line ());
3694 }
3695 else if (is_enumeral
3696 && syms[i].symbol->type ()->name () != NULL)
3697 {
3698 gdb_printf (("[%d] "), i + first_choice);
3699 ada_print_type (syms[i].symbol->type (), NULL,
3700 gdb_stdout, -1, 0, &type_print_raw_options);
3701 gdb_printf (_("'(%s) (enumeral)\n"),
3702 syms[i].symbol->print_name ());
3703 }
3704 else
3705 {
3706 gdb_printf ("[%d] ", i + first_choice);
3707 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3708 &type_print_raw_options);
3709
3710 if (symtab != NULL)
3711 gdb_printf (is_enumeral
3712 ? _(" in %s (enumeral)\n")
3713 : _(" at %s:?\n"),
3714 symtab_to_filename_for_display (symtab));
3715 else
3716 gdb_printf (is_enumeral
3717 ? _(" (enumeral)\n")
3718 : _(" at ?\n"));
3719 }
3720 }
3721 }
3722
3723 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3724 "overload-choice");
3725
3726 for (i = 0; i < n_chosen; i += 1)
3727 syms[i] = syms[chosen[i]];
3728
3729 return n_chosen;
3730 }
3731
3732 /* See ada-lang.h. */
3733
3734 block_symbol
3735 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3736 int nargs, value *argvec[])
3737 {
3738 if (possible_user_operator_p (op, argvec))
3739 {
3740 std::vector<struct block_symbol> candidates
3741 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3742 NULL, VAR_DOMAIN);
3743
3744 int i = ada_resolve_function (candidates, argvec,
3745 nargs, ada_decoded_op_name (op), NULL,
3746 parse_completion);
3747 if (i >= 0)
3748 return candidates[i];
3749 }
3750 return {};
3751 }
3752
3753 /* See ada-lang.h. */
3754
3755 block_symbol
3756 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3757 struct type *context_type,
3758 bool parse_completion,
3759 int nargs, value *argvec[],
3760 innermost_block_tracker *tracker)
3761 {
3762 std::vector<struct block_symbol> candidates
3763 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3764
3765 int i;
3766 if (candidates.size () == 1)
3767 i = 0;
3768 else
3769 {
3770 i = ada_resolve_function
3771 (candidates,
3772 argvec, nargs,
3773 sym->linkage_name (),
3774 context_type, parse_completion);
3775 if (i < 0)
3776 error (_("Could not find a match for %s"), sym->print_name ());
3777 }
3778
3779 tracker->update (candidates[i]);
3780 return candidates[i];
3781 }
3782
3783 /* Resolve a mention of a name where the context type is an
3784 enumeration type. */
3785
3786 static int
3787 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3788 const char *name, struct type *context_type,
3789 bool parse_completion)
3790 {
3791 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3792 context_type = ada_check_typedef (context_type);
3793
3794 for (int i = 0; i < syms.size (); ++i)
3795 {
3796 /* We already know the name matches, so we're just looking for
3797 an element of the correct enum type. */
3798 if (ada_check_typedef (syms[i].symbol->type ()) == context_type)
3799 return i;
3800 }
3801
3802 error (_("No name '%s' in enumeration type '%s'"), name,
3803 ada_type_name (context_type));
3804 }
3805
3806 /* See ada-lang.h. */
3807
3808 block_symbol
3809 ada_resolve_variable (struct symbol *sym, const struct block *block,
3810 struct type *context_type,
3811 bool parse_completion,
3812 int deprocedure_p,
3813 innermost_block_tracker *tracker)
3814 {
3815 std::vector<struct block_symbol> candidates
3816 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3817
3818 if (std::any_of (candidates.begin (),
3819 candidates.end (),
3820 [] (block_symbol &bsym)
3821 {
3822 switch (bsym.symbol->aclass ())
3823 {
3824 case LOC_REGISTER:
3825 case LOC_ARG:
3826 case LOC_REF_ARG:
3827 case LOC_REGPARM_ADDR:
3828 case LOC_LOCAL:
3829 case LOC_COMPUTED:
3830 return true;
3831 default:
3832 return false;
3833 }
3834 }))
3835 {
3836 /* Types tend to get re-introduced locally, so if there
3837 are any local symbols that are not types, first filter
3838 out all types. */
3839 candidates.erase
3840 (std::remove_if
3841 (candidates.begin (),
3842 candidates.end (),
3843 [] (block_symbol &bsym)
3844 {
3845 return bsym.symbol->aclass () == LOC_TYPEDEF;
3846 }),
3847 candidates.end ());
3848 }
3849
3850 /* Filter out artificial symbols. */
3851 candidates.erase
3852 (std::remove_if
3853 (candidates.begin (),
3854 candidates.end (),
3855 [] (block_symbol &bsym)
3856 {
3857 return bsym.symbol->is_artificial ();
3858 }),
3859 candidates.end ());
3860
3861 int i;
3862 if (candidates.empty ())
3863 error (_("No definition found for %s"), sym->print_name ());
3864 else if (candidates.size () == 1)
3865 i = 0;
3866 else if (context_type != nullptr
3867 && context_type->code () == TYPE_CODE_ENUM)
3868 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3869 parse_completion);
3870 else if (deprocedure_p && !is_nonfunction (candidates))
3871 {
3872 i = ada_resolve_function
3873 (candidates, NULL, 0,
3874 sym->linkage_name (),
3875 context_type, parse_completion);
3876 if (i < 0)
3877 error (_("Could not find a match for %s"), sym->print_name ());
3878 }
3879 else
3880 {
3881 gdb_printf (_("Multiple matches for %s\n"), sym->print_name ());
3882 user_select_syms (candidates.data (), candidates.size (), 1);
3883 i = 0;
3884 }
3885
3886 tracker->update (candidates[i]);
3887 return candidates[i];
3888 }
3889
3890 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3891 /* The term "match" here is rather loose. The match is heuristic and
3892 liberal. */
3893
3894 static int
3895 ada_type_match (struct type *ftype, struct type *atype)
3896 {
3897 ftype = ada_check_typedef (ftype);
3898 atype = ada_check_typedef (atype);
3899
3900 if (ftype->code () == TYPE_CODE_REF)
3901 ftype = TYPE_TARGET_TYPE (ftype);
3902 if (atype->code () == TYPE_CODE_REF)
3903 atype = TYPE_TARGET_TYPE (atype);
3904
3905 switch (ftype->code ())
3906 {
3907 default:
3908 return ftype->code () == atype->code ();
3909 case TYPE_CODE_PTR:
3910 if (atype->code () != TYPE_CODE_PTR)
3911 return 0;
3912 atype = TYPE_TARGET_TYPE (atype);
3913 /* This can only happen if the actual argument is 'null'. */
3914 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3915 return 1;
3916 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3917 case TYPE_CODE_INT:
3918 case TYPE_CODE_ENUM:
3919 case TYPE_CODE_RANGE:
3920 switch (atype->code ())
3921 {
3922 case TYPE_CODE_INT:
3923 case TYPE_CODE_ENUM:
3924 case TYPE_CODE_RANGE:
3925 return 1;
3926 default:
3927 return 0;
3928 }
3929
3930 case TYPE_CODE_ARRAY:
3931 return (atype->code () == TYPE_CODE_ARRAY
3932 || ada_is_array_descriptor_type (atype));
3933
3934 case TYPE_CODE_STRUCT:
3935 if (ada_is_array_descriptor_type (ftype))
3936 return (atype->code () == TYPE_CODE_ARRAY
3937 || ada_is_array_descriptor_type (atype));
3938 else
3939 return (atype->code () == TYPE_CODE_STRUCT
3940 && !ada_is_array_descriptor_type (atype));
3941
3942 case TYPE_CODE_UNION:
3943 case TYPE_CODE_FLT:
3944 return (atype->code () == ftype->code ());
3945 }
3946 }
3947
3948 /* Return non-zero if the formals of FUNC "sufficiently match" the
3949 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3950 may also be an enumeral, in which case it is treated as a 0-
3951 argument function. */
3952
3953 static int
3954 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3955 {
3956 int i;
3957 struct type *func_type = func->type ();
3958
3959 if (func->aclass () == LOC_CONST
3960 && func_type->code () == TYPE_CODE_ENUM)
3961 return (n_actuals == 0);
3962 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3963 return 0;
3964
3965 if (func_type->num_fields () != n_actuals)
3966 return 0;
3967
3968 for (i = 0; i < n_actuals; i += 1)
3969 {
3970 if (actuals[i] == NULL)
3971 return 0;
3972 else
3973 {
3974 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3975 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3976
3977 if (!ada_type_match (ftype, atype))
3978 return 0;
3979 }
3980 }
3981 return 1;
3982 }
3983
3984 /* False iff function type FUNC_TYPE definitely does not produce a value
3985 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3986 FUNC_TYPE is not a valid function type with a non-null return type
3987 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3988
3989 static int
3990 return_match (struct type *func_type, struct type *context_type)
3991 {
3992 struct type *return_type;
3993
3994 if (func_type == NULL)
3995 return 1;
3996
3997 if (func_type->code () == TYPE_CODE_FUNC)
3998 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3999 else
4000 return_type = get_base_type (func_type);
4001 if (return_type == NULL)
4002 return 1;
4003
4004 context_type = get_base_type (context_type);
4005
4006 if (return_type->code () == TYPE_CODE_ENUM)
4007 return context_type == NULL || return_type == context_type;
4008 else if (context_type == NULL)
4009 return return_type->code () != TYPE_CODE_VOID;
4010 else
4011 return return_type->code () == context_type->code ();
4012 }
4013
4014
4015 /* Returns the index in SYMS that contains the symbol for the
4016 function (if any) that matches the types of the NARGS arguments in
4017 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
4018 that returns that type, then eliminate matches that don't. If
4019 CONTEXT_TYPE is void and there is at least one match that does not
4020 return void, eliminate all matches that do.
4021
4022 Asks the user if there is more than one match remaining. Returns -1
4023 if there is no such symbol or none is selected. NAME is used
4024 solely for messages. May re-arrange and modify SYMS in
4025 the process; the index returned is for the modified vector. */
4026
4027 static int
4028 ada_resolve_function (std::vector<struct block_symbol> &syms,
4029 struct value **args, int nargs,
4030 const char *name, struct type *context_type,
4031 bool parse_completion)
4032 {
4033 int fallback;
4034 int k;
4035 int m; /* Number of hits */
4036
4037 m = 0;
4038 /* In the first pass of the loop, we only accept functions matching
4039 context_type. If none are found, we add a second pass of the loop
4040 where every function is accepted. */
4041 for (fallback = 0; m == 0 && fallback < 2; fallback++)
4042 {
4043 for (k = 0; k < syms.size (); k += 1)
4044 {
4045 struct type *type = ada_check_typedef (syms[k].symbol->type ());
4046
4047 if (ada_args_match (syms[k].symbol, args, nargs)
4048 && (fallback || return_match (type, context_type)))
4049 {
4050 syms[m] = syms[k];
4051 m += 1;
4052 }
4053 }
4054 }
4055
4056 /* If we got multiple matches, ask the user which one to use. Don't do this
4057 interactive thing during completion, though, as the purpose of the
4058 completion is providing a list of all possible matches. Prompting the
4059 user to filter it down would be completely unexpected in this case. */
4060 if (m == 0)
4061 return -1;
4062 else if (m > 1 && !parse_completion)
4063 {
4064 gdb_printf (_("Multiple matches for %s\n"), name);
4065 user_select_syms (syms.data (), m, 1);
4066 return 0;
4067 }
4068 return 0;
4069 }
4070
4071 /* Type-class predicates */
4072
4073 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4074 or FLOAT). */
4075
4076 static int
4077 numeric_type_p (struct type *type)
4078 {
4079 if (type == NULL)
4080 return 0;
4081 else
4082 {
4083 switch (type->code ())
4084 {
4085 case TYPE_CODE_INT:
4086 case TYPE_CODE_FLT:
4087 case TYPE_CODE_FIXED_POINT:
4088 return 1;
4089 case TYPE_CODE_RANGE:
4090 return (type == TYPE_TARGET_TYPE (type)
4091 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4092 default:
4093 return 0;
4094 }
4095 }
4096 }
4097
4098 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4099
4100 static int
4101 integer_type_p (struct type *type)
4102 {
4103 if (type == NULL)
4104 return 0;
4105 else
4106 {
4107 switch (type->code ())
4108 {
4109 case TYPE_CODE_INT:
4110 return 1;
4111 case TYPE_CODE_RANGE:
4112 return (type == TYPE_TARGET_TYPE (type)
4113 || integer_type_p (TYPE_TARGET_TYPE (type)));
4114 default:
4115 return 0;
4116 }
4117 }
4118 }
4119
4120 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4121
4122 static int
4123 scalar_type_p (struct type *type)
4124 {
4125 if (type == NULL)
4126 return 0;
4127 else
4128 {
4129 switch (type->code ())
4130 {
4131 case TYPE_CODE_INT:
4132 case TYPE_CODE_RANGE:
4133 case TYPE_CODE_ENUM:
4134 case TYPE_CODE_FLT:
4135 case TYPE_CODE_FIXED_POINT:
4136 return 1;
4137 default:
4138 return 0;
4139 }
4140 }
4141 }
4142
4143 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4144
4145 static int
4146 discrete_type_p (struct type *type)
4147 {
4148 if (type == NULL)
4149 return 0;
4150 else
4151 {
4152 switch (type->code ())
4153 {
4154 case TYPE_CODE_INT:
4155 case TYPE_CODE_RANGE:
4156 case TYPE_CODE_ENUM:
4157 case TYPE_CODE_BOOL:
4158 return 1;
4159 default:
4160 return 0;
4161 }
4162 }
4163 }
4164
4165 /* Returns non-zero if OP with operands in the vector ARGS could be
4166 a user-defined function. Errs on the side of pre-defined operators
4167 (i.e., result 0). */
4168
4169 static int
4170 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4171 {
4172 struct type *type0 =
4173 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4174 struct type *type1 =
4175 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4176
4177 if (type0 == NULL)
4178 return 0;
4179
4180 switch (op)
4181 {
4182 default:
4183 return 0;
4184
4185 case BINOP_ADD:
4186 case BINOP_SUB:
4187 case BINOP_MUL:
4188 case BINOP_DIV:
4189 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4190
4191 case BINOP_REM:
4192 case BINOP_MOD:
4193 case BINOP_BITWISE_AND:
4194 case BINOP_BITWISE_IOR:
4195 case BINOP_BITWISE_XOR:
4196 return (!(integer_type_p (type0) && integer_type_p (type1)));
4197
4198 case BINOP_EQUAL:
4199 case BINOP_NOTEQUAL:
4200 case BINOP_LESS:
4201 case BINOP_GTR:
4202 case BINOP_LEQ:
4203 case BINOP_GEQ:
4204 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4205
4206 case BINOP_CONCAT:
4207 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4208
4209 case BINOP_EXP:
4210 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4211
4212 case UNOP_NEG:
4213 case UNOP_PLUS:
4214 case UNOP_LOGICAL_NOT:
4215 case UNOP_ABS:
4216 return (!numeric_type_p (type0));
4217
4218 }
4219 }
4220 \f
4221 /* Renaming */
4222
4223 /* NOTES:
4224
4225 1. In the following, we assume that a renaming type's name may
4226 have an ___XD suffix. It would be nice if this went away at some
4227 point.
4228 2. We handle both the (old) purely type-based representation of
4229 renamings and the (new) variable-based encoding. At some point,
4230 it is devoutly to be hoped that the former goes away
4231 (FIXME: hilfinger-2007-07-09).
4232 3. Subprogram renamings are not implemented, although the XRS
4233 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4234
4235 /* If SYM encodes a renaming,
4236
4237 <renaming> renames <renamed entity>,
4238
4239 sets *LEN to the length of the renamed entity's name,
4240 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4241 the string describing the subcomponent selected from the renamed
4242 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4243 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4244 are undefined). Otherwise, returns a value indicating the category
4245 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4246 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4247 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4248 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4249 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4250 may be NULL, in which case they are not assigned.
4251
4252 [Currently, however, GCC does not generate subprogram renamings.] */
4253
4254 enum ada_renaming_category
4255 ada_parse_renaming (struct symbol *sym,
4256 const char **renamed_entity, int *len,
4257 const char **renaming_expr)
4258 {
4259 enum ada_renaming_category kind;
4260 const char *info;
4261 const char *suffix;
4262
4263 if (sym == NULL)
4264 return ADA_NOT_RENAMING;
4265 switch (sym->aclass ())
4266 {
4267 default:
4268 return ADA_NOT_RENAMING;
4269 case LOC_LOCAL:
4270 case LOC_STATIC:
4271 case LOC_COMPUTED:
4272 case LOC_OPTIMIZED_OUT:
4273 info = strstr (sym->linkage_name (), "___XR");
4274 if (info == NULL)
4275 return ADA_NOT_RENAMING;
4276 switch (info[5])
4277 {
4278 case '_':
4279 kind = ADA_OBJECT_RENAMING;
4280 info += 6;
4281 break;
4282 case 'E':
4283 kind = ADA_EXCEPTION_RENAMING;
4284 info += 7;
4285 break;
4286 case 'P':
4287 kind = ADA_PACKAGE_RENAMING;
4288 info += 7;
4289 break;
4290 case 'S':
4291 kind = ADA_SUBPROGRAM_RENAMING;
4292 info += 7;
4293 break;
4294 default:
4295 return ADA_NOT_RENAMING;
4296 }
4297 }
4298
4299 if (renamed_entity != NULL)
4300 *renamed_entity = info;
4301 suffix = strstr (info, "___XE");
4302 if (suffix == NULL || suffix == info)
4303 return ADA_NOT_RENAMING;
4304 if (len != NULL)
4305 *len = strlen (info) - strlen (suffix);
4306 suffix += 5;
4307 if (renaming_expr != NULL)
4308 *renaming_expr = suffix;
4309 return kind;
4310 }
4311
4312 /* Compute the value of the given RENAMING_SYM, which is expected to
4313 be a symbol encoding a renaming expression. BLOCK is the block
4314 used to evaluate the renaming. */
4315
4316 static struct value *
4317 ada_read_renaming_var_value (struct symbol *renaming_sym,
4318 const struct block *block)
4319 {
4320 const char *sym_name;
4321
4322 sym_name = renaming_sym->linkage_name ();
4323 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4324 return evaluate_expression (expr.get ());
4325 }
4326 \f
4327
4328 /* Evaluation: Function Calls */
4329
4330 /* Return an lvalue containing the value VAL. This is the identity on
4331 lvalues, and otherwise has the side-effect of allocating memory
4332 in the inferior where a copy of the value contents is copied. */
4333
4334 static struct value *
4335 ensure_lval (struct value *val)
4336 {
4337 if (VALUE_LVAL (val) == not_lval
4338 || VALUE_LVAL (val) == lval_internalvar)
4339 {
4340 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4341 const CORE_ADDR addr =
4342 value_as_long (value_allocate_space_in_inferior (len));
4343
4344 VALUE_LVAL (val) = lval_memory;
4345 set_value_address (val, addr);
4346 write_memory (addr, value_contents (val).data (), len);
4347 }
4348
4349 return val;
4350 }
4351
4352 /* Given ARG, a value of type (pointer or reference to a)*
4353 structure/union, extract the component named NAME from the ultimate
4354 target structure/union and return it as a value with its
4355 appropriate type.
4356
4357 The routine searches for NAME among all members of the structure itself
4358 and (recursively) among all members of any wrapper members
4359 (e.g., '_parent').
4360
4361 If NO_ERR, then simply return NULL in case of error, rather than
4362 calling error. */
4363
4364 static struct value *
4365 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4366 {
4367 struct type *t, *t1;
4368 struct value *v;
4369 int check_tag;
4370
4371 v = NULL;
4372 t1 = t = ada_check_typedef (value_type (arg));
4373 if (t->code () == TYPE_CODE_REF)
4374 {
4375 t1 = TYPE_TARGET_TYPE (t);
4376 if (t1 == NULL)
4377 goto BadValue;
4378 t1 = ada_check_typedef (t1);
4379 if (t1->code () == TYPE_CODE_PTR)
4380 {
4381 arg = coerce_ref (arg);
4382 t = t1;
4383 }
4384 }
4385
4386 while (t->code () == TYPE_CODE_PTR)
4387 {
4388 t1 = TYPE_TARGET_TYPE (t);
4389 if (t1 == NULL)
4390 goto BadValue;
4391 t1 = ada_check_typedef (t1);
4392 if (t1->code () == TYPE_CODE_PTR)
4393 {
4394 arg = value_ind (arg);
4395 t = t1;
4396 }
4397 else
4398 break;
4399 }
4400
4401 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4402 goto BadValue;
4403
4404 if (t1 == t)
4405 v = ada_search_struct_field (name, arg, 0, t);
4406 else
4407 {
4408 int bit_offset, bit_size, byte_offset;
4409 struct type *field_type;
4410 CORE_ADDR address;
4411
4412 if (t->code () == TYPE_CODE_PTR)
4413 address = value_address (ada_value_ind (arg));
4414 else
4415 address = value_address (ada_coerce_ref (arg));
4416
4417 /* Check to see if this is a tagged type. We also need to handle
4418 the case where the type is a reference to a tagged type, but
4419 we have to be careful to exclude pointers to tagged types.
4420 The latter should be shown as usual (as a pointer), whereas
4421 a reference should mostly be transparent to the user. */
4422
4423 if (ada_is_tagged_type (t1, 0)
4424 || (t1->code () == TYPE_CODE_REF
4425 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4426 {
4427 /* We first try to find the searched field in the current type.
4428 If not found then let's look in the fixed type. */
4429
4430 if (!find_struct_field (name, t1, 0,
4431 nullptr, nullptr, nullptr,
4432 nullptr, nullptr))
4433 check_tag = 1;
4434 else
4435 check_tag = 0;
4436 }
4437 else
4438 check_tag = 0;
4439
4440 /* Convert to fixed type in all cases, so that we have proper
4441 offsets to each field in unconstrained record types. */
4442 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4443 address, NULL, check_tag);
4444
4445 /* Resolve the dynamic type as well. */
4446 arg = value_from_contents_and_address (t1, nullptr, address);
4447 t1 = value_type (arg);
4448
4449 if (find_struct_field (name, t1, 0,
4450 &field_type, &byte_offset, &bit_offset,
4451 &bit_size, NULL))
4452 {
4453 if (bit_size != 0)
4454 {
4455 if (t->code () == TYPE_CODE_REF)
4456 arg = ada_coerce_ref (arg);
4457 else
4458 arg = ada_value_ind (arg);
4459 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4460 bit_offset, bit_size,
4461 field_type);
4462 }
4463 else
4464 v = value_at_lazy (field_type, address + byte_offset);
4465 }
4466 }
4467
4468 if (v != NULL || no_err)
4469 return v;
4470 else
4471 error (_("There is no member named %s."), name);
4472
4473 BadValue:
4474 if (no_err)
4475 return NULL;
4476 else
4477 error (_("Attempt to extract a component of "
4478 "a value that is not a record."));
4479 }
4480
4481 /* Return the value ACTUAL, converted to be an appropriate value for a
4482 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4483 allocating any necessary descriptors (fat pointers), or copies of
4484 values not residing in memory, updating it as needed. */
4485
4486 struct value *
4487 ada_convert_actual (struct value *actual, struct type *formal_type0)
4488 {
4489 struct type *actual_type = ada_check_typedef (value_type (actual));
4490 struct type *formal_type = ada_check_typedef (formal_type0);
4491 struct type *formal_target =
4492 formal_type->code () == TYPE_CODE_PTR
4493 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4494 struct type *actual_target =
4495 actual_type->code () == TYPE_CODE_PTR
4496 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4497
4498 if (ada_is_array_descriptor_type (formal_target)
4499 && actual_target->code () == TYPE_CODE_ARRAY)
4500 return make_array_descriptor (formal_type, actual);
4501 else if (formal_type->code () == TYPE_CODE_PTR
4502 || formal_type->code () == TYPE_CODE_REF)
4503 {
4504 struct value *result;
4505
4506 if (formal_target->code () == TYPE_CODE_ARRAY
4507 && ada_is_array_descriptor_type (actual_target))
4508 result = desc_data (actual);
4509 else if (formal_type->code () != TYPE_CODE_PTR)
4510 {
4511 if (VALUE_LVAL (actual) != lval_memory)
4512 {
4513 struct value *val;
4514
4515 actual_type = ada_check_typedef (value_type (actual));
4516 val = allocate_value (actual_type);
4517 copy (value_contents (actual), value_contents_raw (val));
4518 actual = ensure_lval (val);
4519 }
4520 result = value_addr (actual);
4521 }
4522 else
4523 return actual;
4524 return value_cast_pointers (formal_type, result, 0);
4525 }
4526 else if (actual_type->code () == TYPE_CODE_PTR)
4527 return ada_value_ind (actual);
4528 else if (ada_is_aligner_type (formal_type))
4529 {
4530 /* We need to turn this parameter into an aligner type
4531 as well. */
4532 struct value *aligner = allocate_value (formal_type);
4533 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4534
4535 value_assign_to_component (aligner, component, actual);
4536 return aligner;
4537 }
4538
4539 return actual;
4540 }
4541
4542 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4543 type TYPE. This is usually an inefficient no-op except on some targets
4544 (such as AVR) where the representation of a pointer and an address
4545 differs. */
4546
4547 static CORE_ADDR
4548 value_pointer (struct value *value, struct type *type)
4549 {
4550 unsigned len = TYPE_LENGTH (type);
4551 gdb_byte *buf = (gdb_byte *) alloca (len);
4552 CORE_ADDR addr;
4553
4554 addr = value_address (value);
4555 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4556 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4557 return addr;
4558 }
4559
4560
4561 /* Push a descriptor of type TYPE for array value ARR on the stack at
4562 *SP, updating *SP to reflect the new descriptor. Return either
4563 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4564 to-descriptor type rather than a descriptor type), a struct value *
4565 representing a pointer to this descriptor. */
4566
4567 static struct value *
4568 make_array_descriptor (struct type *type, struct value *arr)
4569 {
4570 struct type *bounds_type = desc_bounds_type (type);
4571 struct type *desc_type = desc_base_type (type);
4572 struct value *descriptor = allocate_value (desc_type);
4573 struct value *bounds = allocate_value (bounds_type);
4574 int i;
4575
4576 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4577 i > 0; i -= 1)
4578 {
4579 modify_field (value_type (bounds),
4580 value_contents_writeable (bounds).data (),
4581 ada_array_bound (arr, i, 0),
4582 desc_bound_bitpos (bounds_type, i, 0),
4583 desc_bound_bitsize (bounds_type, i, 0));
4584 modify_field (value_type (bounds),
4585 value_contents_writeable (bounds).data (),
4586 ada_array_bound (arr, i, 1),
4587 desc_bound_bitpos (bounds_type, i, 1),
4588 desc_bound_bitsize (bounds_type, i, 1));
4589 }
4590
4591 bounds = ensure_lval (bounds);
4592
4593 modify_field (value_type (descriptor),
4594 value_contents_writeable (descriptor).data (),
4595 value_pointer (ensure_lval (arr),
4596 desc_type->field (0).type ()),
4597 fat_pntr_data_bitpos (desc_type),
4598 fat_pntr_data_bitsize (desc_type));
4599
4600 modify_field (value_type (descriptor),
4601 value_contents_writeable (descriptor).data (),
4602 value_pointer (bounds,
4603 desc_type->field (1).type ()),
4604 fat_pntr_bounds_bitpos (desc_type),
4605 fat_pntr_bounds_bitsize (desc_type));
4606
4607 descriptor = ensure_lval (descriptor);
4608
4609 if (type->code () == TYPE_CODE_PTR)
4610 return value_addr (descriptor);
4611 else
4612 return descriptor;
4613 }
4614 \f
4615 /* Symbol Cache Module */
4616
4617 /* Performance measurements made as of 2010-01-15 indicate that
4618 this cache does bring some noticeable improvements. Depending
4619 on the type of entity being printed, the cache can make it as much
4620 as an order of magnitude faster than without it.
4621
4622 The descriptive type DWARF extension has significantly reduced
4623 the need for this cache, at least when DWARF is being used. However,
4624 even in this case, some expensive name-based symbol searches are still
4625 sometimes necessary - to find an XVZ variable, mostly. */
4626
4627 /* Return the symbol cache associated to the given program space PSPACE.
4628 If not allocated for this PSPACE yet, allocate and initialize one. */
4629
4630 static struct ada_symbol_cache *
4631 ada_get_symbol_cache (struct program_space *pspace)
4632 {
4633 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4634
4635 if (pspace_data->sym_cache == nullptr)
4636 pspace_data->sym_cache.reset (new ada_symbol_cache);
4637
4638 return pspace_data->sym_cache.get ();
4639 }
4640
4641 /* Clear all entries from the symbol cache. */
4642
4643 static void
4644 ada_clear_symbol_cache ()
4645 {
4646 struct ada_pspace_data *pspace_data
4647 = get_ada_pspace_data (current_program_space);
4648
4649 if (pspace_data->sym_cache != nullptr)
4650 pspace_data->sym_cache.reset ();
4651 }
4652
4653 /* Search our cache for an entry matching NAME and DOMAIN.
4654 Return it if found, or NULL otherwise. */
4655
4656 static struct cache_entry **
4657 find_entry (const char *name, domain_enum domain)
4658 {
4659 struct ada_symbol_cache *sym_cache
4660 = ada_get_symbol_cache (current_program_space);
4661 int h = msymbol_hash (name) % HASH_SIZE;
4662 struct cache_entry **e;
4663
4664 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4665 {
4666 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4667 return e;
4668 }
4669 return NULL;
4670 }
4671
4672 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4673 Return 1 if found, 0 otherwise.
4674
4675 If an entry was found and SYM is not NULL, set *SYM to the entry's
4676 SYM. Same principle for BLOCK if not NULL. */
4677
4678 static int
4679 lookup_cached_symbol (const char *name, domain_enum domain,
4680 struct symbol **sym, const struct block **block)
4681 {
4682 struct cache_entry **e = find_entry (name, domain);
4683
4684 if (e == NULL)
4685 return 0;
4686 if (sym != NULL)
4687 *sym = (*e)->sym;
4688 if (block != NULL)
4689 *block = (*e)->block;
4690 return 1;
4691 }
4692
4693 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4694 in domain DOMAIN, save this result in our symbol cache. */
4695
4696 static void
4697 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4698 const struct block *block)
4699 {
4700 struct ada_symbol_cache *sym_cache
4701 = ada_get_symbol_cache (current_program_space);
4702 int h;
4703 struct cache_entry *e;
4704
4705 /* Symbols for builtin types don't have a block.
4706 For now don't cache such symbols. */
4707 if (sym != NULL && !sym->is_objfile_owned ())
4708 return;
4709
4710 /* If the symbol is a local symbol, then do not cache it, as a search
4711 for that symbol depends on the context. To determine whether
4712 the symbol is local or not, we check the block where we found it
4713 against the global and static blocks of its associated symtab. */
4714 if (sym
4715 && BLOCKVECTOR_BLOCK (sym->symtab ()->compunit ()->blockvector (),
4716 GLOBAL_BLOCK) != block
4717 && BLOCKVECTOR_BLOCK (sym->symtab ()->compunit ()->blockvector (),
4718 STATIC_BLOCK) != block)
4719 return;
4720
4721 h = msymbol_hash (name) % HASH_SIZE;
4722 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4723 e->next = sym_cache->root[h];
4724 sym_cache->root[h] = e;
4725 e->name = obstack_strdup (&sym_cache->cache_space, name);
4726 e->sym = sym;
4727 e->domain = domain;
4728 e->block = block;
4729 }
4730 \f
4731 /* Symbol Lookup */
4732
4733 /* Return the symbol name match type that should be used used when
4734 searching for all symbols matching LOOKUP_NAME.
4735
4736 LOOKUP_NAME is expected to be a symbol name after transformation
4737 for Ada lookups. */
4738
4739 static symbol_name_match_type
4740 name_match_type_from_name (const char *lookup_name)
4741 {
4742 return (strstr (lookup_name, "__") == NULL
4743 ? symbol_name_match_type::WILD
4744 : symbol_name_match_type::FULL);
4745 }
4746
4747 /* Return the result of a standard (literal, C-like) lookup of NAME in
4748 given DOMAIN, visible from lexical block BLOCK. */
4749
4750 static struct symbol *
4751 standard_lookup (const char *name, const struct block *block,
4752 domain_enum domain)
4753 {
4754 /* Initialize it just to avoid a GCC false warning. */
4755 struct block_symbol sym = {};
4756
4757 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4758 return sym.symbol;
4759 ada_lookup_encoded_symbol (name, block, domain, &sym);
4760 cache_symbol (name, domain, sym.symbol, sym.block);
4761 return sym.symbol;
4762 }
4763
4764
4765 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4766 in the symbol fields of SYMS. We treat enumerals as functions,
4767 since they contend in overloading in the same way. */
4768 static int
4769 is_nonfunction (const std::vector<struct block_symbol> &syms)
4770 {
4771 for (const block_symbol &sym : syms)
4772 if (sym.symbol->type ()->code () != TYPE_CODE_FUNC
4773 && (sym.symbol->type ()->code () != TYPE_CODE_ENUM
4774 || sym.symbol->aclass () != LOC_CONST))
4775 return 1;
4776
4777 return 0;
4778 }
4779
4780 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4781 struct types. Otherwise, they may not. */
4782
4783 static int
4784 equiv_types (struct type *type0, struct type *type1)
4785 {
4786 if (type0 == type1)
4787 return 1;
4788 if (type0 == NULL || type1 == NULL
4789 || type0->code () != type1->code ())
4790 return 0;
4791 if ((type0->code () == TYPE_CODE_STRUCT
4792 || type0->code () == TYPE_CODE_ENUM)
4793 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4794 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4795 return 1;
4796
4797 return 0;
4798 }
4799
4800 /* True iff SYM0 represents the same entity as SYM1, or one that is
4801 no more defined than that of SYM1. */
4802
4803 static int
4804 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4805 {
4806 if (sym0 == sym1)
4807 return 1;
4808 if (sym0->domain () != sym1->domain ()
4809 || sym0->aclass () != sym1->aclass ())
4810 return 0;
4811
4812 switch (sym0->aclass ())
4813 {
4814 case LOC_UNDEF:
4815 return 1;
4816 case LOC_TYPEDEF:
4817 {
4818 struct type *type0 = sym0->type ();
4819 struct type *type1 = sym1->type ();
4820 const char *name0 = sym0->linkage_name ();
4821 const char *name1 = sym1->linkage_name ();
4822 int len0 = strlen (name0);
4823
4824 return
4825 type0->code () == type1->code ()
4826 && (equiv_types (type0, type1)
4827 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4828 && startswith (name1 + len0, "___XV")));
4829 }
4830 case LOC_CONST:
4831 return sym0->value_longest () == sym1->value_longest ()
4832 && equiv_types (sym0->type (), sym1->type ());
4833
4834 case LOC_STATIC:
4835 {
4836 const char *name0 = sym0->linkage_name ();
4837 const char *name1 = sym1->linkage_name ();
4838 return (strcmp (name0, name1) == 0
4839 && sym0->value_address () == sym1->value_address ());
4840 }
4841
4842 default:
4843 return 0;
4844 }
4845 }
4846
4847 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4848 records in RESULT. Do nothing if SYM is a duplicate. */
4849
4850 static void
4851 add_defn_to_vec (std::vector<struct block_symbol> &result,
4852 struct symbol *sym,
4853 const struct block *block)
4854 {
4855 /* Do not try to complete stub types, as the debugger is probably
4856 already scanning all symbols matching a certain name at the
4857 time when this function is called. Trying to replace the stub
4858 type by its associated full type will cause us to restart a scan
4859 which may lead to an infinite recursion. Instead, the client
4860 collecting the matching symbols will end up collecting several
4861 matches, with at least one of them complete. It can then filter
4862 out the stub ones if needed. */
4863
4864 for (int i = result.size () - 1; i >= 0; i -= 1)
4865 {
4866 if (lesseq_defined_than (sym, result[i].symbol))
4867 return;
4868 else if (lesseq_defined_than (result[i].symbol, sym))
4869 {
4870 result[i].symbol = sym;
4871 result[i].block = block;
4872 return;
4873 }
4874 }
4875
4876 struct block_symbol info;
4877 info.symbol = sym;
4878 info.block = block;
4879 result.push_back (info);
4880 }
4881
4882 /* Return a bound minimal symbol matching NAME according to Ada
4883 decoding rules. Returns an invalid symbol if there is no such
4884 minimal symbol. Names prefixed with "standard__" are handled
4885 specially: "standard__" is first stripped off, and only static and
4886 global symbols are searched. */
4887
4888 struct bound_minimal_symbol
4889 ada_lookup_simple_minsym (const char *name)
4890 {
4891 struct bound_minimal_symbol result;
4892
4893 symbol_name_match_type match_type = name_match_type_from_name (name);
4894 lookup_name_info lookup_name (name, match_type);
4895
4896 symbol_name_matcher_ftype *match_name
4897 = ada_get_symbol_name_matcher (lookup_name);
4898
4899 for (objfile *objfile : current_program_space->objfiles ())
4900 {
4901 for (minimal_symbol *msymbol : objfile->msymbols ())
4902 {
4903 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4904 && msymbol->type () != mst_solib_trampoline)
4905 {
4906 result.minsym = msymbol;
4907 result.objfile = objfile;
4908 break;
4909 }
4910 }
4911 }
4912
4913 return result;
4914 }
4915
4916 /* True if TYPE is definitely an artificial type supplied to a symbol
4917 for which no debugging information was given in the symbol file. */
4918
4919 static int
4920 is_nondebugging_type (struct type *type)
4921 {
4922 const char *name = ada_type_name (type);
4923
4924 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4925 }
4926
4927 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4928 that are deemed "identical" for practical purposes.
4929
4930 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4931 types and that their number of enumerals is identical (in other
4932 words, type1->num_fields () == type2->num_fields ()). */
4933
4934 static int
4935 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4936 {
4937 int i;
4938
4939 /* The heuristic we use here is fairly conservative. We consider
4940 that 2 enumerate types are identical if they have the same
4941 number of enumerals and that all enumerals have the same
4942 underlying value and name. */
4943
4944 /* All enums in the type should have an identical underlying value. */
4945 for (i = 0; i < type1->num_fields (); i++)
4946 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
4947 return 0;
4948
4949 /* All enumerals should also have the same name (modulo any numerical
4950 suffix). */
4951 for (i = 0; i < type1->num_fields (); i++)
4952 {
4953 const char *name_1 = type1->field (i).name ();
4954 const char *name_2 = type2->field (i).name ();
4955 int len_1 = strlen (name_1);
4956 int len_2 = strlen (name_2);
4957
4958 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4959 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4960 if (len_1 != len_2
4961 || strncmp (type1->field (i).name (),
4962 type2->field (i).name (),
4963 len_1) != 0)
4964 return 0;
4965 }
4966
4967 return 1;
4968 }
4969
4970 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4971 that are deemed "identical" for practical purposes. Sometimes,
4972 enumerals are not strictly identical, but their types are so similar
4973 that they can be considered identical.
4974
4975 For instance, consider the following code:
4976
4977 type Color is (Black, Red, Green, Blue, White);
4978 type RGB_Color is new Color range Red .. Blue;
4979
4980 Type RGB_Color is a subrange of an implicit type which is a copy
4981 of type Color. If we call that implicit type RGB_ColorB ("B" is
4982 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4983 As a result, when an expression references any of the enumeral
4984 by name (Eg. "print green"), the expression is technically
4985 ambiguous and the user should be asked to disambiguate. But
4986 doing so would only hinder the user, since it wouldn't matter
4987 what choice he makes, the outcome would always be the same.
4988 So, for practical purposes, we consider them as the same. */
4989
4990 static int
4991 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4992 {
4993 int i;
4994
4995 /* Before performing a thorough comparison check of each type,
4996 we perform a series of inexpensive checks. We expect that these
4997 checks will quickly fail in the vast majority of cases, and thus
4998 help prevent the unnecessary use of a more expensive comparison.
4999 Said comparison also expects us to make some of these checks
5000 (see ada_identical_enum_types_p). */
5001
5002 /* Quick check: All symbols should have an enum type. */
5003 for (i = 0; i < syms.size (); i++)
5004 if (syms[i].symbol->type ()->code () != TYPE_CODE_ENUM)
5005 return 0;
5006
5007 /* Quick check: They should all have the same value. */
5008 for (i = 1; i < syms.size (); i++)
5009 if (syms[i].symbol->value_longest () != syms[0].symbol->value_longest ())
5010 return 0;
5011
5012 /* Quick check: They should all have the same number of enumerals. */
5013 for (i = 1; i < syms.size (); i++)
5014 if (syms[i].symbol->type ()->num_fields ()
5015 != syms[0].symbol->type ()->num_fields ())
5016 return 0;
5017
5018 /* All the sanity checks passed, so we might have a set of
5019 identical enumeration types. Perform a more complete
5020 comparison of the type of each symbol. */
5021 for (i = 1; i < syms.size (); i++)
5022 if (!ada_identical_enum_types_p (syms[i].symbol->type (),
5023 syms[0].symbol->type ()))
5024 return 0;
5025
5026 return 1;
5027 }
5028
5029 /* Remove any non-debugging symbols in SYMS that definitely
5030 duplicate other symbols in the list (The only case I know of where
5031 this happens is when object files containing stabs-in-ecoff are
5032 linked with files containing ordinary ecoff debugging symbols (or no
5033 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
5034
5035 static void
5036 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5037 {
5038 int i, j;
5039
5040 /* We should never be called with less than 2 symbols, as there
5041 cannot be any extra symbol in that case. But it's easy to
5042 handle, since we have nothing to do in that case. */
5043 if (syms->size () < 2)
5044 return;
5045
5046 i = 0;
5047 while (i < syms->size ())
5048 {
5049 int remove_p = 0;
5050
5051 /* If two symbols have the same name and one of them is a stub type,
5052 the get rid of the stub. */
5053
5054 if ((*syms)[i].symbol->type ()->is_stub ()
5055 && (*syms)[i].symbol->linkage_name () != NULL)
5056 {
5057 for (j = 0; j < syms->size (); j++)
5058 {
5059 if (j != i
5060 && !(*syms)[j].symbol->type ()->is_stub ()
5061 && (*syms)[j].symbol->linkage_name () != NULL
5062 && strcmp ((*syms)[i].symbol->linkage_name (),
5063 (*syms)[j].symbol->linkage_name ()) == 0)
5064 remove_p = 1;
5065 }
5066 }
5067
5068 /* Two symbols with the same name, same class and same address
5069 should be identical. */
5070
5071 else if ((*syms)[i].symbol->linkage_name () != NULL
5072 && (*syms)[i].symbol->aclass () == LOC_STATIC
5073 && is_nondebugging_type ((*syms)[i].symbol->type ()))
5074 {
5075 for (j = 0; j < syms->size (); j += 1)
5076 {
5077 if (i != j
5078 && (*syms)[j].symbol->linkage_name () != NULL
5079 && strcmp ((*syms)[i].symbol->linkage_name (),
5080 (*syms)[j].symbol->linkage_name ()) == 0
5081 && ((*syms)[i].symbol->aclass ()
5082 == (*syms)[j].symbol->aclass ())
5083 && (*syms)[i].symbol->value_address ()
5084 == (*syms)[j].symbol->value_address ())
5085 remove_p = 1;
5086 }
5087 }
5088
5089 if (remove_p)
5090 syms->erase (syms->begin () + i);
5091 else
5092 i += 1;
5093 }
5094
5095 /* If all the remaining symbols are identical enumerals, then
5096 just keep the first one and discard the rest.
5097
5098 Unlike what we did previously, we do not discard any entry
5099 unless they are ALL identical. This is because the symbol
5100 comparison is not a strict comparison, but rather a practical
5101 comparison. If all symbols are considered identical, then
5102 we can just go ahead and use the first one and discard the rest.
5103 But if we cannot reduce the list to a single element, we have
5104 to ask the user to disambiguate anyways. And if we have to
5105 present a multiple-choice menu, it's less confusing if the list
5106 isn't missing some choices that were identical and yet distinct. */
5107 if (symbols_are_identical_enums (*syms))
5108 syms->resize (1);
5109 }
5110
5111 /* Given a type that corresponds to a renaming entity, use the type name
5112 to extract the scope (package name or function name, fully qualified,
5113 and following the GNAT encoding convention) where this renaming has been
5114 defined. */
5115
5116 static std::string
5117 xget_renaming_scope (struct type *renaming_type)
5118 {
5119 /* The renaming types adhere to the following convention:
5120 <scope>__<rename>___<XR extension>.
5121 So, to extract the scope, we search for the "___XR" extension,
5122 and then backtrack until we find the first "__". */
5123
5124 const char *name = renaming_type->name ();
5125 const char *suffix = strstr (name, "___XR");
5126 const char *last;
5127
5128 /* Now, backtrack a bit until we find the first "__". Start looking
5129 at suffix - 3, as the <rename> part is at least one character long. */
5130
5131 for (last = suffix - 3; last > name; last--)
5132 if (last[0] == '_' && last[1] == '_')
5133 break;
5134
5135 /* Make a copy of scope and return it. */
5136 return std::string (name, last);
5137 }
5138
5139 /* Return nonzero if NAME corresponds to a package name. */
5140
5141 static int
5142 is_package_name (const char *name)
5143 {
5144 /* Here, We take advantage of the fact that no symbols are generated
5145 for packages, while symbols are generated for each function.
5146 So the condition for NAME represent a package becomes equivalent
5147 to NAME not existing in our list of symbols. There is only one
5148 small complication with library-level functions (see below). */
5149
5150 /* If it is a function that has not been defined at library level,
5151 then we should be able to look it up in the symbols. */
5152 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5153 return 0;
5154
5155 /* Library-level function names start with "_ada_". See if function
5156 "_ada_" followed by NAME can be found. */
5157
5158 /* Do a quick check that NAME does not contain "__", since library-level
5159 functions names cannot contain "__" in them. */
5160 if (strstr (name, "__") != NULL)
5161 return 0;
5162
5163 std::string fun_name = string_printf ("_ada_%s", name);
5164
5165 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5166 }
5167
5168 /* Return nonzero if SYM corresponds to a renaming entity that is
5169 not visible from FUNCTION_NAME. */
5170
5171 static int
5172 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5173 {
5174 if (sym->aclass () != LOC_TYPEDEF)
5175 return 0;
5176
5177 std::string scope = xget_renaming_scope (sym->type ());
5178
5179 /* If the rename has been defined in a package, then it is visible. */
5180 if (is_package_name (scope.c_str ()))
5181 return 0;
5182
5183 /* Check that the rename is in the current function scope by checking
5184 that its name starts with SCOPE. */
5185
5186 /* If the function name starts with "_ada_", it means that it is
5187 a library-level function. Strip this prefix before doing the
5188 comparison, as the encoding for the renaming does not contain
5189 this prefix. */
5190 if (startswith (function_name, "_ada_"))
5191 function_name += 5;
5192
5193 return !startswith (function_name, scope.c_str ());
5194 }
5195
5196 /* Remove entries from SYMS that corresponds to a renaming entity that
5197 is not visible from the function associated with CURRENT_BLOCK or
5198 that is superfluous due to the presence of more specific renaming
5199 information. Places surviving symbols in the initial entries of
5200 SYMS.
5201
5202 Rationale:
5203 First, in cases where an object renaming is implemented as a
5204 reference variable, GNAT may produce both the actual reference
5205 variable and the renaming encoding. In this case, we discard the
5206 latter.
5207
5208 Second, GNAT emits a type following a specified encoding for each renaming
5209 entity. Unfortunately, STABS currently does not support the definition
5210 of types that are local to a given lexical block, so all renamings types
5211 are emitted at library level. As a consequence, if an application
5212 contains two renaming entities using the same name, and a user tries to
5213 print the value of one of these entities, the result of the ada symbol
5214 lookup will also contain the wrong renaming type.
5215
5216 This function partially covers for this limitation by attempting to
5217 remove from the SYMS list renaming symbols that should be visible
5218 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5219 method with the current information available. The implementation
5220 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5221
5222 - When the user tries to print a rename in a function while there
5223 is another rename entity defined in a package: Normally, the
5224 rename in the function has precedence over the rename in the
5225 package, so the latter should be removed from the list. This is
5226 currently not the case.
5227
5228 - This function will incorrectly remove valid renames if
5229 the CURRENT_BLOCK corresponds to a function which symbol name
5230 has been changed by an "Export" pragma. As a consequence,
5231 the user will be unable to print such rename entities. */
5232
5233 static void
5234 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5235 const struct block *current_block)
5236 {
5237 struct symbol *current_function;
5238 const char *current_function_name;
5239 int i;
5240 int is_new_style_renaming;
5241
5242 /* If there is both a renaming foo___XR... encoded as a variable and
5243 a simple variable foo in the same block, discard the latter.
5244 First, zero out such symbols, then compress. */
5245 is_new_style_renaming = 0;
5246 for (i = 0; i < syms->size (); i += 1)
5247 {
5248 struct symbol *sym = (*syms)[i].symbol;
5249 const struct block *block = (*syms)[i].block;
5250 const char *name;
5251 const char *suffix;
5252
5253 if (sym == NULL || sym->aclass () == LOC_TYPEDEF)
5254 continue;
5255 name = sym->linkage_name ();
5256 suffix = strstr (name, "___XR");
5257
5258 if (suffix != NULL)
5259 {
5260 int name_len = suffix - name;
5261 int j;
5262
5263 is_new_style_renaming = 1;
5264 for (j = 0; j < syms->size (); j += 1)
5265 if (i != j && (*syms)[j].symbol != NULL
5266 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5267 name_len) == 0
5268 && block == (*syms)[j].block)
5269 (*syms)[j].symbol = NULL;
5270 }
5271 }
5272 if (is_new_style_renaming)
5273 {
5274 int j, k;
5275
5276 for (j = k = 0; j < syms->size (); j += 1)
5277 if ((*syms)[j].symbol != NULL)
5278 {
5279 (*syms)[k] = (*syms)[j];
5280 k += 1;
5281 }
5282 syms->resize (k);
5283 return;
5284 }
5285
5286 /* Extract the function name associated to CURRENT_BLOCK.
5287 Abort if unable to do so. */
5288
5289 if (current_block == NULL)
5290 return;
5291
5292 current_function = block_linkage_function (current_block);
5293 if (current_function == NULL)
5294 return;
5295
5296 current_function_name = current_function->linkage_name ();
5297 if (current_function_name == NULL)
5298 return;
5299
5300 /* Check each of the symbols, and remove it from the list if it is
5301 a type corresponding to a renaming that is out of the scope of
5302 the current block. */
5303
5304 i = 0;
5305 while (i < syms->size ())
5306 {
5307 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5308 == ADA_OBJECT_RENAMING
5309 && old_renaming_is_invisible ((*syms)[i].symbol,
5310 current_function_name))
5311 syms->erase (syms->begin () + i);
5312 else
5313 i += 1;
5314 }
5315 }
5316
5317 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
5318 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
5319
5320 Note: This function assumes that RESULT is empty. */
5321
5322 static void
5323 ada_add_local_symbols (std::vector<struct block_symbol> &result,
5324 const lookup_name_info &lookup_name,
5325 const struct block *block, domain_enum domain)
5326 {
5327 while (block != NULL)
5328 {
5329 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5330
5331 /* If we found a non-function match, assume that's the one. We
5332 only check this when finding a function boundary, so that we
5333 can accumulate all results from intervening blocks first. */
5334 if (block->function () != nullptr && is_nonfunction (result))
5335 return;
5336
5337 block = block->superblock ();
5338 }
5339 }
5340
5341 /* An object of this type is used as the callback argument when
5342 calling the map_matching_symbols method. */
5343
5344 struct match_data
5345 {
5346 explicit match_data (std::vector<struct block_symbol> *rp)
5347 : resultp (rp)
5348 {
5349 }
5350 DISABLE_COPY_AND_ASSIGN (match_data);
5351
5352 bool operator() (struct block_symbol *bsym);
5353
5354 struct objfile *objfile = nullptr;
5355 std::vector<struct block_symbol> *resultp;
5356 struct symbol *arg_sym = nullptr;
5357 bool found_sym = false;
5358 };
5359
5360 /* A callback for add_nonlocal_symbols that adds symbol, found in
5361 BSYM, to a list of symbols. */
5362
5363 bool
5364 match_data::operator() (struct block_symbol *bsym)
5365 {
5366 const struct block *block = bsym->block;
5367 struct symbol *sym = bsym->symbol;
5368
5369 if (sym == NULL)
5370 {
5371 if (!found_sym && arg_sym != NULL)
5372 add_defn_to_vec (*resultp,
5373 fixup_symbol_section (arg_sym, objfile),
5374 block);
5375 found_sym = false;
5376 arg_sym = NULL;
5377 }
5378 else
5379 {
5380 if (sym->aclass () == LOC_UNRESOLVED)
5381 return true;
5382 else if (sym->is_argument ())
5383 arg_sym = sym;
5384 else
5385 {
5386 found_sym = true;
5387 add_defn_to_vec (*resultp,
5388 fixup_symbol_section (sym, objfile),
5389 block);
5390 }
5391 }
5392 return true;
5393 }
5394
5395 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5396 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5397 symbols to RESULT. Return whether we found such symbols. */
5398
5399 static int
5400 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5401 const struct block *block,
5402 const lookup_name_info &lookup_name,
5403 domain_enum domain)
5404 {
5405 struct using_direct *renaming;
5406 int defns_mark = result.size ();
5407
5408 symbol_name_matcher_ftype *name_match
5409 = ada_get_symbol_name_matcher (lookup_name);
5410
5411 for (renaming = block_using (block);
5412 renaming != NULL;
5413 renaming = renaming->next)
5414 {
5415 const char *r_name;
5416
5417 /* Avoid infinite recursions: skip this renaming if we are actually
5418 already traversing it.
5419
5420 Currently, symbol lookup in Ada don't use the namespace machinery from
5421 C++/Fortran support: skip namespace imports that use them. */
5422 if (renaming->searched
5423 || (renaming->import_src != NULL
5424 && renaming->import_src[0] != '\0')
5425 || (renaming->import_dest != NULL
5426 && renaming->import_dest[0] != '\0'))
5427 continue;
5428 renaming->searched = 1;
5429
5430 /* TODO: here, we perform another name-based symbol lookup, which can
5431 pull its own multiple overloads. In theory, we should be able to do
5432 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5433 not a simple name. But in order to do this, we would need to enhance
5434 the DWARF reader to associate a symbol to this renaming, instead of a
5435 name. So, for now, we do something simpler: re-use the C++/Fortran
5436 namespace machinery. */
5437 r_name = (renaming->alias != NULL
5438 ? renaming->alias
5439 : renaming->declaration);
5440 if (name_match (r_name, lookup_name, NULL))
5441 {
5442 lookup_name_info decl_lookup_name (renaming->declaration,
5443 lookup_name.match_type ());
5444 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5445 1, NULL);
5446 }
5447 renaming->searched = 0;
5448 }
5449 return result.size () != defns_mark;
5450 }
5451
5452 /* Implements compare_names, but only applying the comparision using
5453 the given CASING. */
5454
5455 static int
5456 compare_names_with_case (const char *string1, const char *string2,
5457 enum case_sensitivity casing)
5458 {
5459 while (*string1 != '\0' && *string2 != '\0')
5460 {
5461 char c1, c2;
5462
5463 if (isspace (*string1) || isspace (*string2))
5464 return strcmp_iw_ordered (string1, string2);
5465
5466 if (casing == case_sensitive_off)
5467 {
5468 c1 = tolower (*string1);
5469 c2 = tolower (*string2);
5470 }
5471 else
5472 {
5473 c1 = *string1;
5474 c2 = *string2;
5475 }
5476 if (c1 != c2)
5477 break;
5478
5479 string1 += 1;
5480 string2 += 1;
5481 }
5482
5483 switch (*string1)
5484 {
5485 case '(':
5486 return strcmp_iw_ordered (string1, string2);
5487 case '_':
5488 if (*string2 == '\0')
5489 {
5490 if (is_name_suffix (string1))
5491 return 0;
5492 else
5493 return 1;
5494 }
5495 /* FALLTHROUGH */
5496 default:
5497 if (*string2 == '(')
5498 return strcmp_iw_ordered (string1, string2);
5499 else
5500 {
5501 if (casing == case_sensitive_off)
5502 return tolower (*string1) - tolower (*string2);
5503 else
5504 return *string1 - *string2;
5505 }
5506 }
5507 }
5508
5509 /* Compare STRING1 to STRING2, with results as for strcmp.
5510 Compatible with strcmp_iw_ordered in that...
5511
5512 strcmp_iw_ordered (STRING1, STRING2) <= 0
5513
5514 ... implies...
5515
5516 compare_names (STRING1, STRING2) <= 0
5517
5518 (they may differ as to what symbols compare equal). */
5519
5520 static int
5521 compare_names (const char *string1, const char *string2)
5522 {
5523 int result;
5524
5525 /* Similar to what strcmp_iw_ordered does, we need to perform
5526 a case-insensitive comparison first, and only resort to
5527 a second, case-sensitive, comparison if the first one was
5528 not sufficient to differentiate the two strings. */
5529
5530 result = compare_names_with_case (string1, string2, case_sensitive_off);
5531 if (result == 0)
5532 result = compare_names_with_case (string1, string2, case_sensitive_on);
5533
5534 return result;
5535 }
5536
5537 /* Convenience function to get at the Ada encoded lookup name for
5538 LOOKUP_NAME, as a C string. */
5539
5540 static const char *
5541 ada_lookup_name (const lookup_name_info &lookup_name)
5542 {
5543 return lookup_name.ada ().lookup_name ().c_str ();
5544 }
5545
5546 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5547 for OBJFILE, then walk the objfile's symtabs and update the
5548 results. */
5549
5550 static void
5551 map_matching_symbols (struct objfile *objfile,
5552 const lookup_name_info &lookup_name,
5553 bool is_wild_match,
5554 domain_enum domain,
5555 int global,
5556 match_data &data)
5557 {
5558 data.objfile = objfile;
5559 objfile->expand_matching_symbols (lookup_name, domain, global,
5560 is_wild_match ? nullptr : compare_names);
5561
5562 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5563 for (compunit_symtab *symtab : objfile->compunits ())
5564 {
5565 const struct block *block
5566 = BLOCKVECTOR_BLOCK (symtab->blockvector (), block_kind);
5567 if (!iterate_over_symbols_terminated (block, lookup_name,
5568 domain, data))
5569 break;
5570 }
5571 }
5572
5573 /* Add to RESULT all non-local symbols whose name and domain match
5574 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5575 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5576 symbols otherwise. */
5577
5578 static void
5579 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5580 const lookup_name_info &lookup_name,
5581 domain_enum domain, int global)
5582 {
5583 struct match_data data (&result);
5584
5585 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5586
5587 for (objfile *objfile : current_program_space->objfiles ())
5588 {
5589 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5590 global, data);
5591
5592 for (compunit_symtab *cu : objfile->compunits ())
5593 {
5594 const struct block *global_block
5595 = BLOCKVECTOR_BLOCK (cu->blockvector (), GLOBAL_BLOCK);
5596
5597 if (ada_add_block_renamings (result, global_block, lookup_name,
5598 domain))
5599 data.found_sym = true;
5600 }
5601 }
5602
5603 if (result.empty () && global && !is_wild_match)
5604 {
5605 const char *name = ada_lookup_name (lookup_name);
5606 std::string bracket_name = std::string ("<_ada_") + name + '>';
5607 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5608
5609 for (objfile *objfile : current_program_space->objfiles ())
5610 map_matching_symbols (objfile, name1, false, domain, global, data);
5611 }
5612 }
5613
5614 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5615 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5616 returning the number of matches. Add these to RESULT.
5617
5618 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5619 symbol match within the nest of blocks whose innermost member is BLOCK,
5620 is the one match returned (no other matches in that or
5621 enclosing blocks is returned). If there are any matches in or
5622 surrounding BLOCK, then these alone are returned.
5623
5624 Names prefixed with "standard__" are handled specially:
5625 "standard__" is first stripped off (by the lookup_name
5626 constructor), and only static and global symbols are searched.
5627
5628 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5629 to lookup global symbols. */
5630
5631 static void
5632 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5633 const struct block *block,
5634 const lookup_name_info &lookup_name,
5635 domain_enum domain,
5636 int full_search,
5637 int *made_global_lookup_p)
5638 {
5639 struct symbol *sym;
5640
5641 if (made_global_lookup_p)
5642 *made_global_lookup_p = 0;
5643
5644 /* Special case: If the user specifies a symbol name inside package
5645 Standard, do a non-wild matching of the symbol name without
5646 the "standard__" prefix. This was primarily introduced in order
5647 to allow the user to specifically access the standard exceptions
5648 using, for instance, Standard.Constraint_Error when Constraint_Error
5649 is ambiguous (due to the user defining its own Constraint_Error
5650 entity inside its program). */
5651 if (lookup_name.ada ().standard_p ())
5652 block = NULL;
5653
5654 /* Check the non-global symbols. If we have ANY match, then we're done. */
5655
5656 if (block != NULL)
5657 {
5658 if (full_search)
5659 ada_add_local_symbols (result, lookup_name, block, domain);
5660 else
5661 {
5662 /* In the !full_search case we're are being called by
5663 iterate_over_symbols, and we don't want to search
5664 superblocks. */
5665 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5666 }
5667 if (!result.empty () || !full_search)
5668 return;
5669 }
5670
5671 /* No non-global symbols found. Check our cache to see if we have
5672 already performed this search before. If we have, then return
5673 the same result. */
5674
5675 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5676 domain, &sym, &block))
5677 {
5678 if (sym != NULL)
5679 add_defn_to_vec (result, sym, block);
5680 return;
5681 }
5682
5683 if (made_global_lookup_p)
5684 *made_global_lookup_p = 1;
5685
5686 /* Search symbols from all global blocks. */
5687
5688 add_nonlocal_symbols (result, lookup_name, domain, 1);
5689
5690 /* Now add symbols from all per-file blocks if we've gotten no hits
5691 (not strictly correct, but perhaps better than an error). */
5692
5693 if (result.empty ())
5694 add_nonlocal_symbols (result, lookup_name, domain, 0);
5695 }
5696
5697 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5698 is non-zero, enclosing scope and in global scopes.
5699
5700 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5701 blocks and symbol tables (if any) in which they were found.
5702
5703 When full_search is non-zero, any non-function/non-enumeral
5704 symbol match within the nest of blocks whose innermost member is BLOCK,
5705 is the one match returned (no other matches in that or
5706 enclosing blocks is returned). If there are any matches in or
5707 surrounding BLOCK, then these alone are returned.
5708
5709 Names prefixed with "standard__" are handled specially: "standard__"
5710 is first stripped off, and only static and global symbols are searched. */
5711
5712 static std::vector<struct block_symbol>
5713 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5714 const struct block *block,
5715 domain_enum domain,
5716 int full_search)
5717 {
5718 int syms_from_global_search;
5719 std::vector<struct block_symbol> results;
5720
5721 ada_add_all_symbols (results, block, lookup_name,
5722 domain, full_search, &syms_from_global_search);
5723
5724 remove_extra_symbols (&results);
5725
5726 if (results.empty () && full_search && syms_from_global_search)
5727 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5728
5729 if (results.size () == 1 && full_search && syms_from_global_search)
5730 cache_symbol (ada_lookup_name (lookup_name), domain,
5731 results[0].symbol, results[0].block);
5732
5733 remove_irrelevant_renamings (&results, block);
5734 return results;
5735 }
5736
5737 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5738 in global scopes, returning (SYM,BLOCK) tuples.
5739
5740 See ada_lookup_symbol_list_worker for further details. */
5741
5742 std::vector<struct block_symbol>
5743 ada_lookup_symbol_list (const char *name, const struct block *block,
5744 domain_enum domain)
5745 {
5746 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5747 lookup_name_info lookup_name (name, name_match_type);
5748
5749 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5750 }
5751
5752 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5753 to 1, but choosing the first symbol found if there are multiple
5754 choices.
5755
5756 The result is stored in *INFO, which must be non-NULL.
5757 If no match is found, INFO->SYM is set to NULL. */
5758
5759 void
5760 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5761 domain_enum domain,
5762 struct block_symbol *info)
5763 {
5764 /* Since we already have an encoded name, wrap it in '<>' to force a
5765 verbatim match. Otherwise, if the name happens to not look like
5766 an encoded name (because it doesn't include a "__"),
5767 ada_lookup_name_info would re-encode/fold it again, and that
5768 would e.g., incorrectly lowercase object renaming names like
5769 "R28b" -> "r28b". */
5770 std::string verbatim = add_angle_brackets (name);
5771
5772 gdb_assert (info != NULL);
5773 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5774 }
5775
5776 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5777 scope and in global scopes, or NULL if none. NAME is folded and
5778 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5779 choosing the first symbol if there are multiple choices. */
5780
5781 struct block_symbol
5782 ada_lookup_symbol (const char *name, const struct block *block0,
5783 domain_enum domain)
5784 {
5785 std::vector<struct block_symbol> candidates
5786 = ada_lookup_symbol_list (name, block0, domain);
5787
5788 if (candidates.empty ())
5789 return {};
5790
5791 block_symbol info = candidates[0];
5792 info.symbol = fixup_symbol_section (info.symbol, NULL);
5793 return info;
5794 }
5795
5796
5797 /* True iff STR is a possible encoded suffix of a normal Ada name
5798 that is to be ignored for matching purposes. Suffixes of parallel
5799 names (e.g., XVE) are not included here. Currently, the possible suffixes
5800 are given by any of the regular expressions:
5801
5802 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5803 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5804 TKB [subprogram suffix for task bodies]
5805 _E[0-9]+[bs]$ [protected object entry suffixes]
5806 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5807
5808 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5809 match is performed. This sequence is used to differentiate homonyms,
5810 is an optional part of a valid name suffix. */
5811
5812 static int
5813 is_name_suffix (const char *str)
5814 {
5815 int k;
5816 const char *matching;
5817 const int len = strlen (str);
5818
5819 /* Skip optional leading __[0-9]+. */
5820
5821 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5822 {
5823 str += 3;
5824 while (isdigit (str[0]))
5825 str += 1;
5826 }
5827
5828 /* [.$][0-9]+ */
5829
5830 if (str[0] == '.' || str[0] == '$')
5831 {
5832 matching = str + 1;
5833 while (isdigit (matching[0]))
5834 matching += 1;
5835 if (matching[0] == '\0')
5836 return 1;
5837 }
5838
5839 /* ___[0-9]+ */
5840
5841 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5842 {
5843 matching = str + 3;
5844 while (isdigit (matching[0]))
5845 matching += 1;
5846 if (matching[0] == '\0')
5847 return 1;
5848 }
5849
5850 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5851
5852 if (strcmp (str, "TKB") == 0)
5853 return 1;
5854
5855 #if 0
5856 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5857 with a N at the end. Unfortunately, the compiler uses the same
5858 convention for other internal types it creates. So treating
5859 all entity names that end with an "N" as a name suffix causes
5860 some regressions. For instance, consider the case of an enumerated
5861 type. To support the 'Image attribute, it creates an array whose
5862 name ends with N.
5863 Having a single character like this as a suffix carrying some
5864 information is a bit risky. Perhaps we should change the encoding
5865 to be something like "_N" instead. In the meantime, do not do
5866 the following check. */
5867 /* Protected Object Subprograms */
5868 if (len == 1 && str [0] == 'N')
5869 return 1;
5870 #endif
5871
5872 /* _E[0-9]+[bs]$ */
5873 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5874 {
5875 matching = str + 3;
5876 while (isdigit (matching[0]))
5877 matching += 1;
5878 if ((matching[0] == 'b' || matching[0] == 's')
5879 && matching [1] == '\0')
5880 return 1;
5881 }
5882
5883 /* ??? We should not modify STR directly, as we are doing below. This
5884 is fine in this case, but may become problematic later if we find
5885 that this alternative did not work, and want to try matching
5886 another one from the begining of STR. Since we modified it, we
5887 won't be able to find the begining of the string anymore! */
5888 if (str[0] == 'X')
5889 {
5890 str += 1;
5891 while (str[0] != '_' && str[0] != '\0')
5892 {
5893 if (str[0] != 'n' && str[0] != 'b')
5894 return 0;
5895 str += 1;
5896 }
5897 }
5898
5899 if (str[0] == '\000')
5900 return 1;
5901
5902 if (str[0] == '_')
5903 {
5904 if (str[1] != '_' || str[2] == '\000')
5905 return 0;
5906 if (str[2] == '_')
5907 {
5908 if (strcmp (str + 3, "JM") == 0)
5909 return 1;
5910 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5911 the LJM suffix in favor of the JM one. But we will
5912 still accept LJM as a valid suffix for a reasonable
5913 amount of time, just to allow ourselves to debug programs
5914 compiled using an older version of GNAT. */
5915 if (strcmp (str + 3, "LJM") == 0)
5916 return 1;
5917 if (str[3] != 'X')
5918 return 0;
5919 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5920 || str[4] == 'U' || str[4] == 'P')
5921 return 1;
5922 if (str[4] == 'R' && str[5] != 'T')
5923 return 1;
5924 return 0;
5925 }
5926 if (!isdigit (str[2]))
5927 return 0;
5928 for (k = 3; str[k] != '\0'; k += 1)
5929 if (!isdigit (str[k]) && str[k] != '_')
5930 return 0;
5931 return 1;
5932 }
5933 if (str[0] == '$' && isdigit (str[1]))
5934 {
5935 for (k = 2; str[k] != '\0'; k += 1)
5936 if (!isdigit (str[k]) && str[k] != '_')
5937 return 0;
5938 return 1;
5939 }
5940 return 0;
5941 }
5942
5943 /* Return non-zero if the string starting at NAME and ending before
5944 NAME_END contains no capital letters. */
5945
5946 static int
5947 is_valid_name_for_wild_match (const char *name0)
5948 {
5949 std::string decoded_name = ada_decode (name0);
5950 int i;
5951
5952 /* If the decoded name starts with an angle bracket, it means that
5953 NAME0 does not follow the GNAT encoding format. It should then
5954 not be allowed as a possible wild match. */
5955 if (decoded_name[0] == '<')
5956 return 0;
5957
5958 for (i=0; decoded_name[i] != '\0'; i++)
5959 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5960 return 0;
5961
5962 return 1;
5963 }
5964
5965 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5966 character which could start a simple name. Assumes that *NAMEP points
5967 somewhere inside the string beginning at NAME0. */
5968
5969 static int
5970 advance_wild_match (const char **namep, const char *name0, char target0)
5971 {
5972 const char *name = *namep;
5973
5974 while (1)
5975 {
5976 char t0, t1;
5977
5978 t0 = *name;
5979 if (t0 == '_')
5980 {
5981 t1 = name[1];
5982 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5983 {
5984 name += 1;
5985 if (name == name0 + 5 && startswith (name0, "_ada"))
5986 break;
5987 else
5988 name += 1;
5989 }
5990 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5991 || name[2] == target0))
5992 {
5993 name += 2;
5994 break;
5995 }
5996 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5997 {
5998 /* Names like "pkg__B_N__name", where N is a number, are
5999 block-local. We can handle these by simply skipping
6000 the "B_" here. */
6001 name += 4;
6002 }
6003 else
6004 return 0;
6005 }
6006 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6007 name += 1;
6008 else
6009 return 0;
6010 }
6011
6012 *namep = name;
6013 return 1;
6014 }
6015
6016 /* Return true iff NAME encodes a name of the form prefix.PATN.
6017 Ignores any informational suffixes of NAME (i.e., for which
6018 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6019 simple name. */
6020
6021 static bool
6022 wild_match (const char *name, const char *patn)
6023 {
6024 const char *p;
6025 const char *name0 = name;
6026
6027 if (startswith (name, "___ghost_"))
6028 name += 9;
6029
6030 while (1)
6031 {
6032 const char *match = name;
6033
6034 if (*name == *patn)
6035 {
6036 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6037 if (*p != *name)
6038 break;
6039 if (*p == '\0' && is_name_suffix (name))
6040 return match == name0 || is_valid_name_for_wild_match (name0);
6041
6042 if (name[-1] == '_')
6043 name -= 1;
6044 }
6045 if (!advance_wild_match (&name, name0, *patn))
6046 return false;
6047 }
6048 }
6049
6050 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
6051 necessary). OBJFILE is the section containing BLOCK. */
6052
6053 static void
6054 ada_add_block_symbols (std::vector<struct block_symbol> &result,
6055 const struct block *block,
6056 const lookup_name_info &lookup_name,
6057 domain_enum domain, struct objfile *objfile)
6058 {
6059 struct block_iterator iter;
6060 /* A matching argument symbol, if any. */
6061 struct symbol *arg_sym;
6062 /* Set true when we find a matching non-argument symbol. */
6063 bool found_sym;
6064 struct symbol *sym;
6065
6066 arg_sym = NULL;
6067 found_sym = false;
6068 for (sym = block_iter_match_first (block, lookup_name, &iter);
6069 sym != NULL;
6070 sym = block_iter_match_next (lookup_name, &iter))
6071 {
6072 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
6073 {
6074 if (sym->aclass () != LOC_UNRESOLVED)
6075 {
6076 if (sym->is_argument ())
6077 arg_sym = sym;
6078 else
6079 {
6080 found_sym = true;
6081 add_defn_to_vec (result,
6082 fixup_symbol_section (sym, objfile),
6083 block);
6084 }
6085 }
6086 }
6087 }
6088
6089 /* Handle renamings. */
6090
6091 if (ada_add_block_renamings (result, block, lookup_name, domain))
6092 found_sym = true;
6093
6094 if (!found_sym && arg_sym != NULL)
6095 {
6096 add_defn_to_vec (result,
6097 fixup_symbol_section (arg_sym, objfile),
6098 block);
6099 }
6100
6101 if (!lookup_name.ada ().wild_match_p ())
6102 {
6103 arg_sym = NULL;
6104 found_sym = false;
6105 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6106 const char *name = ada_lookup_name.c_str ();
6107 size_t name_len = ada_lookup_name.size ();
6108
6109 ALL_BLOCK_SYMBOLS (block, iter, sym)
6110 {
6111 if (symbol_matches_domain (sym->language (),
6112 sym->domain (), domain))
6113 {
6114 int cmp;
6115
6116 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6117 if (cmp == 0)
6118 {
6119 cmp = !startswith (sym->linkage_name (), "_ada_");
6120 if (cmp == 0)
6121 cmp = strncmp (name, sym->linkage_name () + 5,
6122 name_len);
6123 }
6124
6125 if (cmp == 0
6126 && is_name_suffix (sym->linkage_name () + name_len + 5))
6127 {
6128 if (sym->aclass () != LOC_UNRESOLVED)
6129 {
6130 if (sym->is_argument ())
6131 arg_sym = sym;
6132 else
6133 {
6134 found_sym = true;
6135 add_defn_to_vec (result,
6136 fixup_symbol_section (sym, objfile),
6137 block);
6138 }
6139 }
6140 }
6141 }
6142 }
6143
6144 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6145 They aren't parameters, right? */
6146 if (!found_sym && arg_sym != NULL)
6147 {
6148 add_defn_to_vec (result,
6149 fixup_symbol_section (arg_sym, objfile),
6150 block);
6151 }
6152 }
6153 }
6154 \f
6155
6156 /* Symbol Completion */
6157
6158 /* See symtab.h. */
6159
6160 bool
6161 ada_lookup_name_info::matches
6162 (const char *sym_name,
6163 symbol_name_match_type match_type,
6164 completion_match_result *comp_match_res) const
6165 {
6166 bool match = false;
6167 const char *text = m_encoded_name.c_str ();
6168 size_t text_len = m_encoded_name.size ();
6169
6170 /* First, test against the fully qualified name of the symbol. */
6171
6172 if (strncmp (sym_name, text, text_len) == 0)
6173 match = true;
6174
6175 std::string decoded_name = ada_decode (sym_name);
6176 if (match && !m_encoded_p)
6177 {
6178 /* One needed check before declaring a positive match is to verify
6179 that iff we are doing a verbatim match, the decoded version
6180 of the symbol name starts with '<'. Otherwise, this symbol name
6181 is not a suitable completion. */
6182
6183 bool has_angle_bracket = (decoded_name[0] == '<');
6184 match = (has_angle_bracket == m_verbatim_p);
6185 }
6186
6187 if (match && !m_verbatim_p)
6188 {
6189 /* When doing non-verbatim match, another check that needs to
6190 be done is to verify that the potentially matching symbol name
6191 does not include capital letters, because the ada-mode would
6192 not be able to understand these symbol names without the
6193 angle bracket notation. */
6194 const char *tmp;
6195
6196 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6197 if (*tmp != '\0')
6198 match = false;
6199 }
6200
6201 /* Second: Try wild matching... */
6202
6203 if (!match && m_wild_match_p)
6204 {
6205 /* Since we are doing wild matching, this means that TEXT
6206 may represent an unqualified symbol name. We therefore must
6207 also compare TEXT against the unqualified name of the symbol. */
6208 sym_name = ada_unqualified_name (decoded_name.c_str ());
6209
6210 if (strncmp (sym_name, text, text_len) == 0)
6211 match = true;
6212 }
6213
6214 /* Finally: If we found a match, prepare the result to return. */
6215
6216 if (!match)
6217 return false;
6218
6219 if (comp_match_res != NULL)
6220 {
6221 std::string &match_str = comp_match_res->match.storage ();
6222
6223 if (!m_encoded_p)
6224 match_str = ada_decode (sym_name);
6225 else
6226 {
6227 if (m_verbatim_p)
6228 match_str = add_angle_brackets (sym_name);
6229 else
6230 match_str = sym_name;
6231
6232 }
6233
6234 comp_match_res->set_match (match_str.c_str ());
6235 }
6236
6237 return true;
6238 }
6239
6240 /* Field Access */
6241
6242 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6243 for tagged types. */
6244
6245 static int
6246 ada_is_dispatch_table_ptr_type (struct type *type)
6247 {
6248 const char *name;
6249
6250 if (type->code () != TYPE_CODE_PTR)
6251 return 0;
6252
6253 name = TYPE_TARGET_TYPE (type)->name ();
6254 if (name == NULL)
6255 return 0;
6256
6257 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6258 }
6259
6260 /* Return non-zero if TYPE is an interface tag. */
6261
6262 static int
6263 ada_is_interface_tag (struct type *type)
6264 {
6265 const char *name = type->name ();
6266
6267 if (name == NULL)
6268 return 0;
6269
6270 return (strcmp (name, "ada__tags__interface_tag") == 0);
6271 }
6272
6273 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6274 to be invisible to users. */
6275
6276 int
6277 ada_is_ignored_field (struct type *type, int field_num)
6278 {
6279 if (field_num < 0 || field_num > type->num_fields ())
6280 return 1;
6281
6282 /* Check the name of that field. */
6283 {
6284 const char *name = type->field (field_num).name ();
6285
6286 /* Anonymous field names should not be printed.
6287 brobecker/2007-02-20: I don't think this can actually happen
6288 but we don't want to print the value of anonymous fields anyway. */
6289 if (name == NULL)
6290 return 1;
6291
6292 /* Normally, fields whose name start with an underscore ("_")
6293 are fields that have been internally generated by the compiler,
6294 and thus should not be printed. The "_parent" field is special,
6295 however: This is a field internally generated by the compiler
6296 for tagged types, and it contains the components inherited from
6297 the parent type. This field should not be printed as is, but
6298 should not be ignored either. */
6299 if (name[0] == '_' && !startswith (name, "_parent"))
6300 return 1;
6301
6302 /* The compiler doesn't document this, but sometimes it emits
6303 a field whose name starts with a capital letter, like 'V148s'.
6304 These aren't marked as artificial in any way, but we know they
6305 should be ignored. However, wrapper fields should not be
6306 ignored. */
6307 if (name[0] == 'S' || name[0] == 'R' || name[0] == 'O')
6308 {
6309 /* Wrapper field. */
6310 }
6311 else if (isupper (name[0]))
6312 return 1;
6313 }
6314
6315 /* If this is the dispatch table of a tagged type or an interface tag,
6316 then ignore. */
6317 if (ada_is_tagged_type (type, 1)
6318 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6319 || ada_is_interface_tag (type->field (field_num).type ())))
6320 return 1;
6321
6322 /* Not a special field, so it should not be ignored. */
6323 return 0;
6324 }
6325
6326 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6327 pointer or reference type whose ultimate target has a tag field. */
6328
6329 int
6330 ada_is_tagged_type (struct type *type, int refok)
6331 {
6332 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6333 }
6334
6335 /* True iff TYPE represents the type of X'Tag */
6336
6337 int
6338 ada_is_tag_type (struct type *type)
6339 {
6340 type = ada_check_typedef (type);
6341
6342 if (type == NULL || type->code () != TYPE_CODE_PTR)
6343 return 0;
6344 else
6345 {
6346 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6347
6348 return (name != NULL
6349 && strcmp (name, "ada__tags__dispatch_table") == 0);
6350 }
6351 }
6352
6353 /* The type of the tag on VAL. */
6354
6355 static struct type *
6356 ada_tag_type (struct value *val)
6357 {
6358 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6359 }
6360
6361 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6362 retired at Ada 05). */
6363
6364 static int
6365 is_ada95_tag (struct value *tag)
6366 {
6367 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6368 }
6369
6370 /* The value of the tag on VAL. */
6371
6372 static struct value *
6373 ada_value_tag (struct value *val)
6374 {
6375 return ada_value_struct_elt (val, "_tag", 0);
6376 }
6377
6378 /* The value of the tag on the object of type TYPE whose contents are
6379 saved at VALADDR, if it is non-null, or is at memory address
6380 ADDRESS. */
6381
6382 static struct value *
6383 value_tag_from_contents_and_address (struct type *type,
6384 const gdb_byte *valaddr,
6385 CORE_ADDR address)
6386 {
6387 int tag_byte_offset;
6388 struct type *tag_type;
6389
6390 gdb::array_view<const gdb_byte> contents;
6391 if (valaddr != nullptr)
6392 contents = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
6393 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6394 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
6395 NULL, NULL, NULL))
6396 {
6397 const gdb_byte *valaddr1 = ((valaddr == NULL)
6398 ? NULL
6399 : valaddr + tag_byte_offset);
6400 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6401
6402 return value_from_contents_and_address (tag_type, valaddr1, address1);
6403 }
6404 return NULL;
6405 }
6406
6407 static struct type *
6408 type_from_tag (struct value *tag)
6409 {
6410 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6411
6412 if (type_name != NULL)
6413 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6414 return NULL;
6415 }
6416
6417 /* Given a value OBJ of a tagged type, return a value of this
6418 type at the base address of the object. The base address, as
6419 defined in Ada.Tags, it is the address of the primary tag of
6420 the object, and therefore where the field values of its full
6421 view can be fetched. */
6422
6423 struct value *
6424 ada_tag_value_at_base_address (struct value *obj)
6425 {
6426 struct value *val;
6427 LONGEST offset_to_top = 0;
6428 struct type *ptr_type, *obj_type;
6429 struct value *tag;
6430 CORE_ADDR base_address;
6431
6432 obj_type = value_type (obj);
6433
6434 /* It is the responsability of the caller to deref pointers. */
6435
6436 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6437 return obj;
6438
6439 tag = ada_value_tag (obj);
6440 if (!tag)
6441 return obj;
6442
6443 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6444
6445 if (is_ada95_tag (tag))
6446 return obj;
6447
6448 struct type *offset_type
6449 = language_lookup_primitive_type (language_def (language_ada),
6450 target_gdbarch(), "storage_offset");
6451 ptr_type = lookup_pointer_type (offset_type);
6452 val = value_cast (ptr_type, tag);
6453 if (!val)
6454 return obj;
6455
6456 /* It is perfectly possible that an exception be raised while
6457 trying to determine the base address, just like for the tag;
6458 see ada_tag_name for more details. We do not print the error
6459 message for the same reason. */
6460
6461 try
6462 {
6463 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6464 }
6465
6466 catch (const gdb_exception_error &e)
6467 {
6468 return obj;
6469 }
6470
6471 /* If offset is null, nothing to do. */
6472
6473 if (offset_to_top == 0)
6474 return obj;
6475
6476 /* -1 is a special case in Ada.Tags; however, what should be done
6477 is not quite clear from the documentation. So do nothing for
6478 now. */
6479
6480 if (offset_to_top == -1)
6481 return obj;
6482
6483 /* Storage_Offset'Last is used to indicate that a dynamic offset to
6484 top is used. In this situation the offset is stored just after
6485 the tag, in the object itself. */
6486 ULONGEST last = (((ULONGEST) 1) << (8 * TYPE_LENGTH (offset_type) - 1)) - 1;
6487 if (offset_to_top == last)
6488 {
6489 struct value *tem = value_addr (tag);
6490 tem = value_ptradd (tem, 1);
6491 tem = value_cast (ptr_type, tem);
6492 offset_to_top = value_as_long (value_ind (tem));
6493 }
6494 else if (offset_to_top > 0)
6495 {
6496 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6497 from the base address. This was however incompatible with
6498 C++ dispatch table: C++ uses a *negative* value to *add*
6499 to the base address. Ada's convention has therefore been
6500 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6501 use the same convention. Here, we support both cases by
6502 checking the sign of OFFSET_TO_TOP. */
6503 offset_to_top = -offset_to_top;
6504 }
6505
6506 base_address = value_address (obj) + offset_to_top;
6507 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6508
6509 /* Make sure that we have a proper tag at the new address.
6510 Otherwise, offset_to_top is bogus (which can happen when
6511 the object is not initialized yet). */
6512
6513 if (!tag)
6514 return obj;
6515
6516 obj_type = type_from_tag (tag);
6517
6518 if (!obj_type)
6519 return obj;
6520
6521 return value_from_contents_and_address (obj_type, NULL, base_address);
6522 }
6523
6524 /* Return the "ada__tags__type_specific_data" type. */
6525
6526 static struct type *
6527 ada_get_tsd_type (struct inferior *inf)
6528 {
6529 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6530
6531 if (data->tsd_type == 0)
6532 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6533 return data->tsd_type;
6534 }
6535
6536 /* Return the TSD (type-specific data) associated to the given TAG.
6537 TAG is assumed to be the tag of a tagged-type entity.
6538
6539 May return NULL if we are unable to get the TSD. */
6540
6541 static struct value *
6542 ada_get_tsd_from_tag (struct value *tag)
6543 {
6544 struct value *val;
6545 struct type *type;
6546
6547 /* First option: The TSD is simply stored as a field of our TAG.
6548 Only older versions of GNAT would use this format, but we have
6549 to test it first, because there are no visible markers for
6550 the current approach except the absence of that field. */
6551
6552 val = ada_value_struct_elt (tag, "tsd", 1);
6553 if (val)
6554 return val;
6555
6556 /* Try the second representation for the dispatch table (in which
6557 there is no explicit 'tsd' field in the referent of the tag pointer,
6558 and instead the tsd pointer is stored just before the dispatch
6559 table. */
6560
6561 type = ada_get_tsd_type (current_inferior());
6562 if (type == NULL)
6563 return NULL;
6564 type = lookup_pointer_type (lookup_pointer_type (type));
6565 val = value_cast (type, tag);
6566 if (val == NULL)
6567 return NULL;
6568 return value_ind (value_ptradd (val, -1));
6569 }
6570
6571 /* Given the TSD of a tag (type-specific data), return a string
6572 containing the name of the associated type.
6573
6574 May return NULL if we are unable to determine the tag name. */
6575
6576 static gdb::unique_xmalloc_ptr<char>
6577 ada_tag_name_from_tsd (struct value *tsd)
6578 {
6579 struct value *val;
6580
6581 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6582 if (val == NULL)
6583 return NULL;
6584 gdb::unique_xmalloc_ptr<char> buffer
6585 = target_read_string (value_as_address (val), INT_MAX);
6586 if (buffer == nullptr)
6587 return nullptr;
6588
6589 try
6590 {
6591 /* Let this throw an exception on error. If the data is
6592 uninitialized, we'd rather not have the user see a
6593 warning. */
6594 const char *folded = ada_fold_name (buffer.get (), true);
6595 return make_unique_xstrdup (folded);
6596 }
6597 catch (const gdb_exception &)
6598 {
6599 return nullptr;
6600 }
6601 }
6602
6603 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6604 a C string.
6605
6606 Return NULL if the TAG is not an Ada tag, or if we were unable to
6607 determine the name of that tag. */
6608
6609 gdb::unique_xmalloc_ptr<char>
6610 ada_tag_name (struct value *tag)
6611 {
6612 gdb::unique_xmalloc_ptr<char> name;
6613
6614 if (!ada_is_tag_type (value_type (tag)))
6615 return NULL;
6616
6617 /* It is perfectly possible that an exception be raised while trying
6618 to determine the TAG's name, even under normal circumstances:
6619 The associated variable may be uninitialized or corrupted, for
6620 instance. We do not let any exception propagate past this point.
6621 instead we return NULL.
6622
6623 We also do not print the error message either (which often is very
6624 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6625 the caller print a more meaningful message if necessary. */
6626 try
6627 {
6628 struct value *tsd = ada_get_tsd_from_tag (tag);
6629
6630 if (tsd != NULL)
6631 name = ada_tag_name_from_tsd (tsd);
6632 }
6633 catch (const gdb_exception_error &e)
6634 {
6635 }
6636
6637 return name;
6638 }
6639
6640 /* The parent type of TYPE, or NULL if none. */
6641
6642 struct type *
6643 ada_parent_type (struct type *type)
6644 {
6645 int i;
6646
6647 type = ada_check_typedef (type);
6648
6649 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6650 return NULL;
6651
6652 for (i = 0; i < type->num_fields (); i += 1)
6653 if (ada_is_parent_field (type, i))
6654 {
6655 struct type *parent_type = type->field (i).type ();
6656
6657 /* If the _parent field is a pointer, then dereference it. */
6658 if (parent_type->code () == TYPE_CODE_PTR)
6659 parent_type = TYPE_TARGET_TYPE (parent_type);
6660 /* If there is a parallel XVS type, get the actual base type. */
6661 parent_type = ada_get_base_type (parent_type);
6662
6663 return ada_check_typedef (parent_type);
6664 }
6665
6666 return NULL;
6667 }
6668
6669 /* True iff field number FIELD_NUM of structure type TYPE contains the
6670 parent-type (inherited) fields of a derived type. Assumes TYPE is
6671 a structure type with at least FIELD_NUM+1 fields. */
6672
6673 int
6674 ada_is_parent_field (struct type *type, int field_num)
6675 {
6676 const char *name = ada_check_typedef (type)->field (field_num).name ();
6677
6678 return (name != NULL
6679 && (startswith (name, "PARENT")
6680 || startswith (name, "_parent")));
6681 }
6682
6683 /* True iff field number FIELD_NUM of structure type TYPE is a
6684 transparent wrapper field (which should be silently traversed when doing
6685 field selection and flattened when printing). Assumes TYPE is a
6686 structure type with at least FIELD_NUM+1 fields. Such fields are always
6687 structures. */
6688
6689 int
6690 ada_is_wrapper_field (struct type *type, int field_num)
6691 {
6692 const char *name = type->field (field_num).name ();
6693
6694 if (name != NULL && strcmp (name, "RETVAL") == 0)
6695 {
6696 /* This happens in functions with "out" or "in out" parameters
6697 which are passed by copy. For such functions, GNAT describes
6698 the function's return type as being a struct where the return
6699 value is in a field called RETVAL, and where the other "out"
6700 or "in out" parameters are fields of that struct. This is not
6701 a wrapper. */
6702 return 0;
6703 }
6704
6705 return (name != NULL
6706 && (startswith (name, "PARENT")
6707 || strcmp (name, "REP") == 0
6708 || startswith (name, "_parent")
6709 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6710 }
6711
6712 /* True iff field number FIELD_NUM of structure or union type TYPE
6713 is a variant wrapper. Assumes TYPE is a structure type with at least
6714 FIELD_NUM+1 fields. */
6715
6716 int
6717 ada_is_variant_part (struct type *type, int field_num)
6718 {
6719 /* Only Ada types are eligible. */
6720 if (!ADA_TYPE_P (type))
6721 return 0;
6722
6723 struct type *field_type = type->field (field_num).type ();
6724
6725 return (field_type->code () == TYPE_CODE_UNION
6726 || (is_dynamic_field (type, field_num)
6727 && (TYPE_TARGET_TYPE (field_type)->code ()
6728 == TYPE_CODE_UNION)));
6729 }
6730
6731 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6732 whose discriminants are contained in the record type OUTER_TYPE,
6733 returns the type of the controlling discriminant for the variant.
6734 May return NULL if the type could not be found. */
6735
6736 struct type *
6737 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6738 {
6739 const char *name = ada_variant_discrim_name (var_type);
6740
6741 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6742 }
6743
6744 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6745 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6746 represents a 'when others' clause; otherwise 0. */
6747
6748 static int
6749 ada_is_others_clause (struct type *type, int field_num)
6750 {
6751 const char *name = type->field (field_num).name ();
6752
6753 return (name != NULL && name[0] == 'O');
6754 }
6755
6756 /* Assuming that TYPE0 is the type of the variant part of a record,
6757 returns the name of the discriminant controlling the variant.
6758 The value is valid until the next call to ada_variant_discrim_name. */
6759
6760 const char *
6761 ada_variant_discrim_name (struct type *type0)
6762 {
6763 static std::string result;
6764 struct type *type;
6765 const char *name;
6766 const char *discrim_end;
6767 const char *discrim_start;
6768
6769 if (type0->code () == TYPE_CODE_PTR)
6770 type = TYPE_TARGET_TYPE (type0);
6771 else
6772 type = type0;
6773
6774 name = ada_type_name (type);
6775
6776 if (name == NULL || name[0] == '\000')
6777 return "";
6778
6779 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6780 discrim_end -= 1)
6781 {
6782 if (startswith (discrim_end, "___XVN"))
6783 break;
6784 }
6785 if (discrim_end == name)
6786 return "";
6787
6788 for (discrim_start = discrim_end; discrim_start != name + 3;
6789 discrim_start -= 1)
6790 {
6791 if (discrim_start == name + 1)
6792 return "";
6793 if ((discrim_start > name + 3
6794 && startswith (discrim_start - 3, "___"))
6795 || discrim_start[-1] == '.')
6796 break;
6797 }
6798
6799 result = std::string (discrim_start, discrim_end - discrim_start);
6800 return result.c_str ();
6801 }
6802
6803 /* Scan STR for a subtype-encoded number, beginning at position K.
6804 Put the position of the character just past the number scanned in
6805 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6806 Return 1 if there was a valid number at the given position, and 0
6807 otherwise. A "subtype-encoded" number consists of the absolute value
6808 in decimal, followed by the letter 'm' to indicate a negative number.
6809 Assumes 0m does not occur. */
6810
6811 int
6812 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6813 {
6814 ULONGEST RU;
6815
6816 if (!isdigit (str[k]))
6817 return 0;
6818
6819 /* Do it the hard way so as not to make any assumption about
6820 the relationship of unsigned long (%lu scan format code) and
6821 LONGEST. */
6822 RU = 0;
6823 while (isdigit (str[k]))
6824 {
6825 RU = RU * 10 + (str[k] - '0');
6826 k += 1;
6827 }
6828
6829 if (str[k] == 'm')
6830 {
6831 if (R != NULL)
6832 *R = (-(LONGEST) (RU - 1)) - 1;
6833 k += 1;
6834 }
6835 else if (R != NULL)
6836 *R = (LONGEST) RU;
6837
6838 /* NOTE on the above: Technically, C does not say what the results of
6839 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6840 number representable as a LONGEST (although either would probably work
6841 in most implementations). When RU>0, the locution in the then branch
6842 above is always equivalent to the negative of RU. */
6843
6844 if (new_k != NULL)
6845 *new_k = k;
6846 return 1;
6847 }
6848
6849 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6850 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6851 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6852
6853 static int
6854 ada_in_variant (LONGEST val, struct type *type, int field_num)
6855 {
6856 const char *name = type->field (field_num).name ();
6857 int p;
6858
6859 p = 0;
6860 while (1)
6861 {
6862 switch (name[p])
6863 {
6864 case '\0':
6865 return 0;
6866 case 'S':
6867 {
6868 LONGEST W;
6869
6870 if (!ada_scan_number (name, p + 1, &W, &p))
6871 return 0;
6872 if (val == W)
6873 return 1;
6874 break;
6875 }
6876 case 'R':
6877 {
6878 LONGEST L, U;
6879
6880 if (!ada_scan_number (name, p + 1, &L, &p)
6881 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6882 return 0;
6883 if (val >= L && val <= U)
6884 return 1;
6885 break;
6886 }
6887 case 'O':
6888 return 1;
6889 default:
6890 return 0;
6891 }
6892 }
6893 }
6894
6895 /* FIXME: Lots of redundancy below. Try to consolidate. */
6896
6897 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6898 ARG_TYPE, extract and return the value of one of its (non-static)
6899 fields. FIELDNO says which field. Differs from value_primitive_field
6900 only in that it can handle packed values of arbitrary type. */
6901
6902 struct value *
6903 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6904 struct type *arg_type)
6905 {
6906 struct type *type;
6907
6908 arg_type = ada_check_typedef (arg_type);
6909 type = arg_type->field (fieldno).type ();
6910
6911 /* Handle packed fields. It might be that the field is not packed
6912 relative to its containing structure, but the structure itself is
6913 packed; in this case we must take the bit-field path. */
6914 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6915 {
6916 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
6917 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6918
6919 return ada_value_primitive_packed_val (arg1,
6920 value_contents (arg1).data (),
6921 offset + bit_pos / 8,
6922 bit_pos % 8, bit_size, type);
6923 }
6924 else
6925 return value_primitive_field (arg1, offset, fieldno, arg_type);
6926 }
6927
6928 /* Find field with name NAME in object of type TYPE. If found,
6929 set the following for each argument that is non-null:
6930 - *FIELD_TYPE_P to the field's type;
6931 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6932 an object of that type;
6933 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6934 - *BIT_SIZE_P to its size in bits if the field is packed, and
6935 0 otherwise;
6936 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6937 fields up to but not including the desired field, or by the total
6938 number of fields if not found. A NULL value of NAME never
6939 matches; the function just counts visible fields in this case.
6940
6941 Notice that we need to handle when a tagged record hierarchy
6942 has some components with the same name, like in this scenario:
6943
6944 type Top_T is tagged record
6945 N : Integer := 1;
6946 U : Integer := 974;
6947 A : Integer := 48;
6948 end record;
6949
6950 type Middle_T is new Top.Top_T with record
6951 N : Character := 'a';
6952 C : Integer := 3;
6953 end record;
6954
6955 type Bottom_T is new Middle.Middle_T with record
6956 N : Float := 4.0;
6957 C : Character := '5';
6958 X : Integer := 6;
6959 A : Character := 'J';
6960 end record;
6961
6962 Let's say we now have a variable declared and initialized as follow:
6963
6964 TC : Top_A := new Bottom_T;
6965
6966 And then we use this variable to call this function
6967
6968 procedure Assign (Obj: in out Top_T; TV : Integer);
6969
6970 as follow:
6971
6972 Assign (Top_T (B), 12);
6973
6974 Now, we're in the debugger, and we're inside that procedure
6975 then and we want to print the value of obj.c:
6976
6977 Usually, the tagged record or one of the parent type owns the
6978 component to print and there's no issue but in this particular
6979 case, what does it mean to ask for Obj.C? Since the actual
6980 type for object is type Bottom_T, it could mean two things: type
6981 component C from the Middle_T view, but also component C from
6982 Bottom_T. So in that "undefined" case, when the component is
6983 not found in the non-resolved type (which includes all the
6984 components of the parent type), then resolve it and see if we
6985 get better luck once expanded.
6986
6987 In the case of homonyms in the derived tagged type, we don't
6988 guaranty anything, and pick the one that's easiest for us
6989 to program.
6990
6991 Returns 1 if found, 0 otherwise. */
6992
6993 static int
6994 find_struct_field (const char *name, struct type *type, int offset,
6995 struct type **field_type_p,
6996 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6997 int *index_p)
6998 {
6999 int i;
7000 int parent_offset = -1;
7001
7002 type = ada_check_typedef (type);
7003
7004 if (field_type_p != NULL)
7005 *field_type_p = NULL;
7006 if (byte_offset_p != NULL)
7007 *byte_offset_p = 0;
7008 if (bit_offset_p != NULL)
7009 *bit_offset_p = 0;
7010 if (bit_size_p != NULL)
7011 *bit_size_p = 0;
7012
7013 for (i = 0; i < type->num_fields (); i += 1)
7014 {
7015 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
7016 type. However, we only need the values to be correct when
7017 the caller asks for them. */
7018 int bit_pos = 0, fld_offset = 0;
7019 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7020 {
7021 bit_pos = type->field (i).loc_bitpos ();
7022 fld_offset = offset + bit_pos / 8;
7023 }
7024
7025 const char *t_field_name = type->field (i).name ();
7026
7027 if (t_field_name == NULL)
7028 continue;
7029
7030 else if (ada_is_parent_field (type, i))
7031 {
7032 /* This is a field pointing us to the parent type of a tagged
7033 type. As hinted in this function's documentation, we give
7034 preference to fields in the current record first, so what
7035 we do here is just record the index of this field before
7036 we skip it. If it turns out we couldn't find our field
7037 in the current record, then we'll get back to it and search
7038 inside it whether the field might exist in the parent. */
7039
7040 parent_offset = i;
7041 continue;
7042 }
7043
7044 else if (name != NULL && field_name_match (t_field_name, name))
7045 {
7046 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7047
7048 if (field_type_p != NULL)
7049 *field_type_p = type->field (i).type ();
7050 if (byte_offset_p != NULL)
7051 *byte_offset_p = fld_offset;
7052 if (bit_offset_p != NULL)
7053 *bit_offset_p = bit_pos % 8;
7054 if (bit_size_p != NULL)
7055 *bit_size_p = bit_size;
7056 return 1;
7057 }
7058 else if (ada_is_wrapper_field (type, i))
7059 {
7060 if (find_struct_field (name, type->field (i).type (), fld_offset,
7061 field_type_p, byte_offset_p, bit_offset_p,
7062 bit_size_p, index_p))
7063 return 1;
7064 }
7065 else if (ada_is_variant_part (type, i))
7066 {
7067 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7068 fixed type?? */
7069 int j;
7070 struct type *field_type
7071 = ada_check_typedef (type->field (i).type ());
7072
7073 for (j = 0; j < field_type->num_fields (); j += 1)
7074 {
7075 if (find_struct_field (name, field_type->field (j).type (),
7076 fld_offset
7077 + field_type->field (j).loc_bitpos () / 8,
7078 field_type_p, byte_offset_p,
7079 bit_offset_p, bit_size_p, index_p))
7080 return 1;
7081 }
7082 }
7083 else if (index_p != NULL)
7084 *index_p += 1;
7085 }
7086
7087 /* Field not found so far. If this is a tagged type which
7088 has a parent, try finding that field in the parent now. */
7089
7090 if (parent_offset != -1)
7091 {
7092 /* As above, only compute the offset when truly needed. */
7093 int fld_offset = offset;
7094 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
7095 {
7096 int bit_pos = type->field (parent_offset).loc_bitpos ();
7097 fld_offset += bit_pos / 8;
7098 }
7099
7100 if (find_struct_field (name, type->field (parent_offset).type (),
7101 fld_offset, field_type_p, byte_offset_p,
7102 bit_offset_p, bit_size_p, index_p))
7103 return 1;
7104 }
7105
7106 return 0;
7107 }
7108
7109 /* Number of user-visible fields in record type TYPE. */
7110
7111 static int
7112 num_visible_fields (struct type *type)
7113 {
7114 int n;
7115
7116 n = 0;
7117 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7118 return n;
7119 }
7120
7121 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7122 and search in it assuming it has (class) type TYPE.
7123 If found, return value, else return NULL.
7124
7125 Searches recursively through wrapper fields (e.g., '_parent').
7126
7127 In the case of homonyms in the tagged types, please refer to the
7128 long explanation in find_struct_field's function documentation. */
7129
7130 static struct value *
7131 ada_search_struct_field (const char *name, struct value *arg, int offset,
7132 struct type *type)
7133 {
7134 int i;
7135 int parent_offset = -1;
7136
7137 type = ada_check_typedef (type);
7138 for (i = 0; i < type->num_fields (); i += 1)
7139 {
7140 const char *t_field_name = type->field (i).name ();
7141
7142 if (t_field_name == NULL)
7143 continue;
7144
7145 else if (ada_is_parent_field (type, i))
7146 {
7147 /* This is a field pointing us to the parent type of a tagged
7148 type. As hinted in this function's documentation, we give
7149 preference to fields in the current record first, so what
7150 we do here is just record the index of this field before
7151 we skip it. If it turns out we couldn't find our field
7152 in the current record, then we'll get back to it and search
7153 inside it whether the field might exist in the parent. */
7154
7155 parent_offset = i;
7156 continue;
7157 }
7158
7159 else if (field_name_match (t_field_name, name))
7160 return ada_value_primitive_field (arg, offset, i, type);
7161
7162 else if (ada_is_wrapper_field (type, i))
7163 {
7164 struct value *v = /* Do not let indent join lines here. */
7165 ada_search_struct_field (name, arg,
7166 offset + type->field (i).loc_bitpos () / 8,
7167 type->field (i).type ());
7168
7169 if (v != NULL)
7170 return v;
7171 }
7172
7173 else if (ada_is_variant_part (type, i))
7174 {
7175 /* PNH: Do we ever get here? See find_struct_field. */
7176 int j;
7177 struct type *field_type = ada_check_typedef (type->field (i).type ());
7178 int var_offset = offset + type->field (i).loc_bitpos () / 8;
7179
7180 for (j = 0; j < field_type->num_fields (); j += 1)
7181 {
7182 struct value *v = ada_search_struct_field /* Force line
7183 break. */
7184 (name, arg,
7185 var_offset + field_type->field (j).loc_bitpos () / 8,
7186 field_type->field (j).type ());
7187
7188 if (v != NULL)
7189 return v;
7190 }
7191 }
7192 }
7193
7194 /* Field not found so far. If this is a tagged type which
7195 has a parent, try finding that field in the parent now. */
7196
7197 if (parent_offset != -1)
7198 {
7199 struct value *v = ada_search_struct_field (
7200 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
7201 type->field (parent_offset).type ());
7202
7203 if (v != NULL)
7204 return v;
7205 }
7206
7207 return NULL;
7208 }
7209
7210 static struct value *ada_index_struct_field_1 (int *, struct value *,
7211 int, struct type *);
7212
7213
7214 /* Return field #INDEX in ARG, where the index is that returned by
7215 * find_struct_field through its INDEX_P argument. Adjust the address
7216 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7217 * If found, return value, else return NULL. */
7218
7219 static struct value *
7220 ada_index_struct_field (int index, struct value *arg, int offset,
7221 struct type *type)
7222 {
7223 return ada_index_struct_field_1 (&index, arg, offset, type);
7224 }
7225
7226
7227 /* Auxiliary function for ada_index_struct_field. Like
7228 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7229 * *INDEX_P. */
7230
7231 static struct value *
7232 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7233 struct type *type)
7234 {
7235 int i;
7236 type = ada_check_typedef (type);
7237
7238 for (i = 0; i < type->num_fields (); i += 1)
7239 {
7240 if (type->field (i).name () == NULL)
7241 continue;
7242 else if (ada_is_wrapper_field (type, i))
7243 {
7244 struct value *v = /* Do not let indent join lines here. */
7245 ada_index_struct_field_1 (index_p, arg,
7246 offset + type->field (i).loc_bitpos () / 8,
7247 type->field (i).type ());
7248
7249 if (v != NULL)
7250 return v;
7251 }
7252
7253 else if (ada_is_variant_part (type, i))
7254 {
7255 /* PNH: Do we ever get here? See ada_search_struct_field,
7256 find_struct_field. */
7257 error (_("Cannot assign this kind of variant record"));
7258 }
7259 else if (*index_p == 0)
7260 return ada_value_primitive_field (arg, offset, i, type);
7261 else
7262 *index_p -= 1;
7263 }
7264 return NULL;
7265 }
7266
7267 /* Return a string representation of type TYPE. */
7268
7269 static std::string
7270 type_as_string (struct type *type)
7271 {
7272 string_file tmp_stream;
7273
7274 type_print (type, "", &tmp_stream, -1);
7275
7276 return tmp_stream.release ();
7277 }
7278
7279 /* Given a type TYPE, look up the type of the component of type named NAME.
7280 If DISPP is non-null, add its byte displacement from the beginning of a
7281 structure (pointed to by a value) of type TYPE to *DISPP (does not
7282 work for packed fields).
7283
7284 Matches any field whose name has NAME as a prefix, possibly
7285 followed by "___".
7286
7287 TYPE can be either a struct or union. If REFOK, TYPE may also
7288 be a (pointer or reference)+ to a struct or union, and the
7289 ultimate target type will be searched.
7290
7291 Looks recursively into variant clauses and parent types.
7292
7293 In the case of homonyms in the tagged types, please refer to the
7294 long explanation in find_struct_field's function documentation.
7295
7296 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7297 TYPE is not a type of the right kind. */
7298
7299 static struct type *
7300 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7301 int noerr)
7302 {
7303 int i;
7304 int parent_offset = -1;
7305
7306 if (name == NULL)
7307 goto BadName;
7308
7309 if (refok && type != NULL)
7310 while (1)
7311 {
7312 type = ada_check_typedef (type);
7313 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7314 break;
7315 type = TYPE_TARGET_TYPE (type);
7316 }
7317
7318 if (type == NULL
7319 || (type->code () != TYPE_CODE_STRUCT
7320 && type->code () != TYPE_CODE_UNION))
7321 {
7322 if (noerr)
7323 return NULL;
7324
7325 error (_("Type %s is not a structure or union type"),
7326 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7327 }
7328
7329 type = to_static_fixed_type (type);
7330
7331 for (i = 0; i < type->num_fields (); i += 1)
7332 {
7333 const char *t_field_name = type->field (i).name ();
7334 struct type *t;
7335
7336 if (t_field_name == NULL)
7337 continue;
7338
7339 else if (ada_is_parent_field (type, i))
7340 {
7341 /* This is a field pointing us to the parent type of a tagged
7342 type. As hinted in this function's documentation, we give
7343 preference to fields in the current record first, so what
7344 we do here is just record the index of this field before
7345 we skip it. If it turns out we couldn't find our field
7346 in the current record, then we'll get back to it and search
7347 inside it whether the field might exist in the parent. */
7348
7349 parent_offset = i;
7350 continue;
7351 }
7352
7353 else if (field_name_match (t_field_name, name))
7354 return type->field (i).type ();
7355
7356 else if (ada_is_wrapper_field (type, i))
7357 {
7358 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7359 0, 1);
7360 if (t != NULL)
7361 return t;
7362 }
7363
7364 else if (ada_is_variant_part (type, i))
7365 {
7366 int j;
7367 struct type *field_type = ada_check_typedef (type->field (i).type ());
7368
7369 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7370 {
7371 /* FIXME pnh 2008/01/26: We check for a field that is
7372 NOT wrapped in a struct, since the compiler sometimes
7373 generates these for unchecked variant types. Revisit
7374 if the compiler changes this practice. */
7375 const char *v_field_name = field_type->field (j).name ();
7376
7377 if (v_field_name != NULL
7378 && field_name_match (v_field_name, name))
7379 t = field_type->field (j).type ();
7380 else
7381 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7382 name, 0, 1);
7383
7384 if (t != NULL)
7385 return t;
7386 }
7387 }
7388
7389 }
7390
7391 /* Field not found so far. If this is a tagged type which
7392 has a parent, try finding that field in the parent now. */
7393
7394 if (parent_offset != -1)
7395 {
7396 struct type *t;
7397
7398 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7399 name, 0, 1);
7400 if (t != NULL)
7401 return t;
7402 }
7403
7404 BadName:
7405 if (!noerr)
7406 {
7407 const char *name_str = name != NULL ? name : _("<null>");
7408
7409 error (_("Type %s has no component named %s"),
7410 type_as_string (type).c_str (), name_str);
7411 }
7412
7413 return NULL;
7414 }
7415
7416 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7417 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7418 represents an unchecked union (that is, the variant part of a
7419 record that is named in an Unchecked_Union pragma). */
7420
7421 static int
7422 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7423 {
7424 const char *discrim_name = ada_variant_discrim_name (var_type);
7425
7426 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7427 }
7428
7429
7430 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7431 within OUTER, determine which variant clause (field number in VAR_TYPE,
7432 numbering from 0) is applicable. Returns -1 if none are. */
7433
7434 int
7435 ada_which_variant_applies (struct type *var_type, struct value *outer)
7436 {
7437 int others_clause;
7438 int i;
7439 const char *discrim_name = ada_variant_discrim_name (var_type);
7440 struct value *discrim;
7441 LONGEST discrim_val;
7442
7443 /* Using plain value_from_contents_and_address here causes problems
7444 because we will end up trying to resolve a type that is currently
7445 being constructed. */
7446 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7447 if (discrim == NULL)
7448 return -1;
7449 discrim_val = value_as_long (discrim);
7450
7451 others_clause = -1;
7452 for (i = 0; i < var_type->num_fields (); i += 1)
7453 {
7454 if (ada_is_others_clause (var_type, i))
7455 others_clause = i;
7456 else if (ada_in_variant (discrim_val, var_type, i))
7457 return i;
7458 }
7459
7460 return others_clause;
7461 }
7462 \f
7463
7464
7465 /* Dynamic-Sized Records */
7466
7467 /* Strategy: The type ostensibly attached to a value with dynamic size
7468 (i.e., a size that is not statically recorded in the debugging
7469 data) does not accurately reflect the size or layout of the value.
7470 Our strategy is to convert these values to values with accurate,
7471 conventional types that are constructed on the fly. */
7472
7473 /* There is a subtle and tricky problem here. In general, we cannot
7474 determine the size of dynamic records without its data. However,
7475 the 'struct value' data structure, which GDB uses to represent
7476 quantities in the inferior process (the target), requires the size
7477 of the type at the time of its allocation in order to reserve space
7478 for GDB's internal copy of the data. That's why the
7479 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7480 rather than struct value*s.
7481
7482 However, GDB's internal history variables ($1, $2, etc.) are
7483 struct value*s containing internal copies of the data that are not, in
7484 general, the same as the data at their corresponding addresses in
7485 the target. Fortunately, the types we give to these values are all
7486 conventional, fixed-size types (as per the strategy described
7487 above), so that we don't usually have to perform the
7488 'to_fixed_xxx_type' conversions to look at their values.
7489 Unfortunately, there is one exception: if one of the internal
7490 history variables is an array whose elements are unconstrained
7491 records, then we will need to create distinct fixed types for each
7492 element selected. */
7493
7494 /* The upshot of all of this is that many routines take a (type, host
7495 address, target address) triple as arguments to represent a value.
7496 The host address, if non-null, is supposed to contain an internal
7497 copy of the relevant data; otherwise, the program is to consult the
7498 target at the target address. */
7499
7500 /* Assuming that VAL0 represents a pointer value, the result of
7501 dereferencing it. Differs from value_ind in its treatment of
7502 dynamic-sized types. */
7503
7504 struct value *
7505 ada_value_ind (struct value *val0)
7506 {
7507 struct value *val = value_ind (val0);
7508
7509 if (ada_is_tagged_type (value_type (val), 0))
7510 val = ada_tag_value_at_base_address (val);
7511
7512 return ada_to_fixed_value (val);
7513 }
7514
7515 /* The value resulting from dereferencing any "reference to"
7516 qualifiers on VAL0. */
7517
7518 static struct value *
7519 ada_coerce_ref (struct value *val0)
7520 {
7521 if (value_type (val0)->code () == TYPE_CODE_REF)
7522 {
7523 struct value *val = val0;
7524
7525 val = coerce_ref (val);
7526
7527 if (ada_is_tagged_type (value_type (val), 0))
7528 val = ada_tag_value_at_base_address (val);
7529
7530 return ada_to_fixed_value (val);
7531 }
7532 else
7533 return val0;
7534 }
7535
7536 /* Return the bit alignment required for field #F of template type TYPE. */
7537
7538 static unsigned int
7539 field_alignment (struct type *type, int f)
7540 {
7541 const char *name = type->field (f).name ();
7542 int len;
7543 int align_offset;
7544
7545 /* The field name should never be null, unless the debugging information
7546 is somehow malformed. In this case, we assume the field does not
7547 require any alignment. */
7548 if (name == NULL)
7549 return 1;
7550
7551 len = strlen (name);
7552
7553 if (!isdigit (name[len - 1]))
7554 return 1;
7555
7556 if (isdigit (name[len - 2]))
7557 align_offset = len - 2;
7558 else
7559 align_offset = len - 1;
7560
7561 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7562 return TARGET_CHAR_BIT;
7563
7564 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7565 }
7566
7567 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7568
7569 static struct symbol *
7570 ada_find_any_type_symbol (const char *name)
7571 {
7572 struct symbol *sym;
7573
7574 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7575 if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
7576 return sym;
7577
7578 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7579 return sym;
7580 }
7581
7582 /* Find a type named NAME. Ignores ambiguity. This routine will look
7583 solely for types defined by debug info, it will not search the GDB
7584 primitive types. */
7585
7586 static struct type *
7587 ada_find_any_type (const char *name)
7588 {
7589 struct symbol *sym = ada_find_any_type_symbol (name);
7590
7591 if (sym != NULL)
7592 return sym->type ();
7593
7594 return NULL;
7595 }
7596
7597 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7598 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7599 symbol, in which case it is returned. Otherwise, this looks for
7600 symbols whose name is that of NAME_SYM suffixed with "___XR".
7601 Return symbol if found, and NULL otherwise. */
7602
7603 static bool
7604 ada_is_renaming_symbol (struct symbol *name_sym)
7605 {
7606 const char *name = name_sym->linkage_name ();
7607 return strstr (name, "___XR") != NULL;
7608 }
7609
7610 /* Because of GNAT encoding conventions, several GDB symbols may match a
7611 given type name. If the type denoted by TYPE0 is to be preferred to
7612 that of TYPE1 for purposes of type printing, return non-zero;
7613 otherwise return 0. */
7614
7615 int
7616 ada_prefer_type (struct type *type0, struct type *type1)
7617 {
7618 if (type1 == NULL)
7619 return 1;
7620 else if (type0 == NULL)
7621 return 0;
7622 else if (type1->code () == TYPE_CODE_VOID)
7623 return 1;
7624 else if (type0->code () == TYPE_CODE_VOID)
7625 return 0;
7626 else if (type1->name () == NULL && type0->name () != NULL)
7627 return 1;
7628 else if (ada_is_constrained_packed_array_type (type0))
7629 return 1;
7630 else if (ada_is_array_descriptor_type (type0)
7631 && !ada_is_array_descriptor_type (type1))
7632 return 1;
7633 else
7634 {
7635 const char *type0_name = type0->name ();
7636 const char *type1_name = type1->name ();
7637
7638 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7639 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7640 return 1;
7641 }
7642 return 0;
7643 }
7644
7645 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7646 null. */
7647
7648 const char *
7649 ada_type_name (struct type *type)
7650 {
7651 if (type == NULL)
7652 return NULL;
7653 return type->name ();
7654 }
7655
7656 /* Search the list of "descriptive" types associated to TYPE for a type
7657 whose name is NAME. */
7658
7659 static struct type *
7660 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7661 {
7662 struct type *result, *tmp;
7663
7664 if (ada_ignore_descriptive_types_p)
7665 return NULL;
7666
7667 /* If there no descriptive-type info, then there is no parallel type
7668 to be found. */
7669 if (!HAVE_GNAT_AUX_INFO (type))
7670 return NULL;
7671
7672 result = TYPE_DESCRIPTIVE_TYPE (type);
7673 while (result != NULL)
7674 {
7675 const char *result_name = ada_type_name (result);
7676
7677 if (result_name == NULL)
7678 {
7679 warning (_("unexpected null name on descriptive type"));
7680 return NULL;
7681 }
7682
7683 /* If the names match, stop. */
7684 if (strcmp (result_name, name) == 0)
7685 break;
7686
7687 /* Otherwise, look at the next item on the list, if any. */
7688 if (HAVE_GNAT_AUX_INFO (result))
7689 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7690 else
7691 tmp = NULL;
7692
7693 /* If not found either, try after having resolved the typedef. */
7694 if (tmp != NULL)
7695 result = tmp;
7696 else
7697 {
7698 result = check_typedef (result);
7699 if (HAVE_GNAT_AUX_INFO (result))
7700 result = TYPE_DESCRIPTIVE_TYPE (result);
7701 else
7702 result = NULL;
7703 }
7704 }
7705
7706 /* If we didn't find a match, see whether this is a packed array. With
7707 older compilers, the descriptive type information is either absent or
7708 irrelevant when it comes to packed arrays so the above lookup fails.
7709 Fall back to using a parallel lookup by name in this case. */
7710 if (result == NULL && ada_is_constrained_packed_array_type (type))
7711 return ada_find_any_type (name);
7712
7713 return result;
7714 }
7715
7716 /* Find a parallel type to TYPE with the specified NAME, using the
7717 descriptive type taken from the debugging information, if available,
7718 and otherwise using the (slower) name-based method. */
7719
7720 static struct type *
7721 ada_find_parallel_type_with_name (struct type *type, const char *name)
7722 {
7723 struct type *result = NULL;
7724
7725 if (HAVE_GNAT_AUX_INFO (type))
7726 result = find_parallel_type_by_descriptive_type (type, name);
7727 else
7728 result = ada_find_any_type (name);
7729
7730 return result;
7731 }
7732
7733 /* Same as above, but specify the name of the parallel type by appending
7734 SUFFIX to the name of TYPE. */
7735
7736 struct type *
7737 ada_find_parallel_type (struct type *type, const char *suffix)
7738 {
7739 char *name;
7740 const char *type_name = ada_type_name (type);
7741 int len;
7742
7743 if (type_name == NULL)
7744 return NULL;
7745
7746 len = strlen (type_name);
7747
7748 name = (char *) alloca (len + strlen (suffix) + 1);
7749
7750 strcpy (name, type_name);
7751 strcpy (name + len, suffix);
7752
7753 return ada_find_parallel_type_with_name (type, name);
7754 }
7755
7756 /* If TYPE is a variable-size record type, return the corresponding template
7757 type describing its fields. Otherwise, return NULL. */
7758
7759 static struct type *
7760 dynamic_template_type (struct type *type)
7761 {
7762 type = ada_check_typedef (type);
7763
7764 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7765 || ada_type_name (type) == NULL)
7766 return NULL;
7767 else
7768 {
7769 int len = strlen (ada_type_name (type));
7770
7771 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7772 return type;
7773 else
7774 return ada_find_parallel_type (type, "___XVE");
7775 }
7776 }
7777
7778 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7779 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7780
7781 static int
7782 is_dynamic_field (struct type *templ_type, int field_num)
7783 {
7784 const char *name = templ_type->field (field_num).name ();
7785
7786 return name != NULL
7787 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7788 && strstr (name, "___XVL") != NULL;
7789 }
7790
7791 /* The index of the variant field of TYPE, or -1 if TYPE does not
7792 represent a variant record type. */
7793
7794 static int
7795 variant_field_index (struct type *type)
7796 {
7797 int f;
7798
7799 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7800 return -1;
7801
7802 for (f = 0; f < type->num_fields (); f += 1)
7803 {
7804 if (ada_is_variant_part (type, f))
7805 return f;
7806 }
7807 return -1;
7808 }
7809
7810 /* A record type with no fields. */
7811
7812 static struct type *
7813 empty_record (struct type *templ)
7814 {
7815 struct type *type = alloc_type_copy (templ);
7816
7817 type->set_code (TYPE_CODE_STRUCT);
7818 INIT_NONE_SPECIFIC (type);
7819 type->set_name ("<empty>");
7820 TYPE_LENGTH (type) = 0;
7821 return type;
7822 }
7823
7824 /* An ordinary record type (with fixed-length fields) that describes
7825 the value of type TYPE at VALADDR or ADDRESS (see comments at
7826 the beginning of this section) VAL according to GNAT conventions.
7827 DVAL0 should describe the (portion of a) record that contains any
7828 necessary discriminants. It should be NULL if value_type (VAL) is
7829 an outer-level type (i.e., as opposed to a branch of a variant.) A
7830 variant field (unless unchecked) is replaced by a particular branch
7831 of the variant.
7832
7833 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7834 length are not statically known are discarded. As a consequence,
7835 VALADDR, ADDRESS and DVAL0 are ignored.
7836
7837 NOTE: Limitations: For now, we assume that dynamic fields and
7838 variants occupy whole numbers of bytes. However, they need not be
7839 byte-aligned. */
7840
7841 struct type *
7842 ada_template_to_fixed_record_type_1 (struct type *type,
7843 const gdb_byte *valaddr,
7844 CORE_ADDR address, struct value *dval0,
7845 int keep_dynamic_fields)
7846 {
7847 struct value *mark = value_mark ();
7848 struct value *dval;
7849 struct type *rtype;
7850 int nfields, bit_len;
7851 int variant_field;
7852 long off;
7853 int fld_bit_len;
7854 int f;
7855
7856 /* Compute the number of fields in this record type that are going
7857 to be processed: unless keep_dynamic_fields, this includes only
7858 fields whose position and length are static will be processed. */
7859 if (keep_dynamic_fields)
7860 nfields = type->num_fields ();
7861 else
7862 {
7863 nfields = 0;
7864 while (nfields < type->num_fields ()
7865 && !ada_is_variant_part (type, nfields)
7866 && !is_dynamic_field (type, nfields))
7867 nfields++;
7868 }
7869
7870 rtype = alloc_type_copy (type);
7871 rtype->set_code (TYPE_CODE_STRUCT);
7872 INIT_NONE_SPECIFIC (rtype);
7873 rtype->set_num_fields (nfields);
7874 rtype->set_fields
7875 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7876 rtype->set_name (ada_type_name (type));
7877 rtype->set_is_fixed_instance (true);
7878
7879 off = 0;
7880 bit_len = 0;
7881 variant_field = -1;
7882
7883 for (f = 0; f < nfields; f += 1)
7884 {
7885 off = align_up (off, field_alignment (type, f))
7886 + type->field (f).loc_bitpos ();
7887 rtype->field (f).set_loc_bitpos (off);
7888 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7889
7890 if (ada_is_variant_part (type, f))
7891 {
7892 variant_field = f;
7893 fld_bit_len = 0;
7894 }
7895 else if (is_dynamic_field (type, f))
7896 {
7897 const gdb_byte *field_valaddr = valaddr;
7898 CORE_ADDR field_address = address;
7899 struct type *field_type =
7900 TYPE_TARGET_TYPE (type->field (f).type ());
7901
7902 if (dval0 == NULL)
7903 {
7904 /* Using plain value_from_contents_and_address here
7905 causes problems because we will end up trying to
7906 resolve a type that is currently being
7907 constructed. */
7908 dval = value_from_contents_and_address_unresolved (rtype,
7909 valaddr,
7910 address);
7911 rtype = value_type (dval);
7912 }
7913 else
7914 dval = dval0;
7915
7916 /* If the type referenced by this field is an aligner type, we need
7917 to unwrap that aligner type, because its size might not be set.
7918 Keeping the aligner type would cause us to compute the wrong
7919 size for this field, impacting the offset of the all the fields
7920 that follow this one. */
7921 if (ada_is_aligner_type (field_type))
7922 {
7923 long field_offset = type->field (f).loc_bitpos ();
7924
7925 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7926 field_address = cond_offset_target (field_address, field_offset);
7927 field_type = ada_aligned_type (field_type);
7928 }
7929
7930 field_valaddr = cond_offset_host (field_valaddr,
7931 off / TARGET_CHAR_BIT);
7932 field_address = cond_offset_target (field_address,
7933 off / TARGET_CHAR_BIT);
7934
7935 /* Get the fixed type of the field. Note that, in this case,
7936 we do not want to get the real type out of the tag: if
7937 the current field is the parent part of a tagged record,
7938 we will get the tag of the object. Clearly wrong: the real
7939 type of the parent is not the real type of the child. We
7940 would end up in an infinite loop. */
7941 field_type = ada_get_base_type (field_type);
7942 field_type = ada_to_fixed_type (field_type, field_valaddr,
7943 field_address, dval, 0);
7944
7945 rtype->field (f).set_type (field_type);
7946 rtype->field (f).set_name (type->field (f).name ());
7947 /* The multiplication can potentially overflow. But because
7948 the field length has been size-checked just above, and
7949 assuming that the maximum size is a reasonable value,
7950 an overflow should not happen in practice. So rather than
7951 adding overflow recovery code to this already complex code,
7952 we just assume that it's not going to happen. */
7953 fld_bit_len =
7954 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7955 }
7956 else
7957 {
7958 /* Note: If this field's type is a typedef, it is important
7959 to preserve the typedef layer.
7960
7961 Otherwise, we might be transforming a typedef to a fat
7962 pointer (encoding a pointer to an unconstrained array),
7963 into a basic fat pointer (encoding an unconstrained
7964 array). As both types are implemented using the same
7965 structure, the typedef is the only clue which allows us
7966 to distinguish between the two options. Stripping it
7967 would prevent us from printing this field appropriately. */
7968 rtype->field (f).set_type (type->field (f).type ());
7969 rtype->field (f).set_name (type->field (f).name ());
7970 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7971 fld_bit_len =
7972 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7973 else
7974 {
7975 struct type *field_type = type->field (f).type ();
7976
7977 /* We need to be careful of typedefs when computing
7978 the length of our field. If this is a typedef,
7979 get the length of the target type, not the length
7980 of the typedef. */
7981 if (field_type->code () == TYPE_CODE_TYPEDEF)
7982 field_type = ada_typedef_target_type (field_type);
7983
7984 fld_bit_len =
7985 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7986 }
7987 }
7988 if (off + fld_bit_len > bit_len)
7989 bit_len = off + fld_bit_len;
7990 off += fld_bit_len;
7991 TYPE_LENGTH (rtype) =
7992 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7993 }
7994
7995 /* We handle the variant part, if any, at the end because of certain
7996 odd cases in which it is re-ordered so as NOT to be the last field of
7997 the record. This can happen in the presence of representation
7998 clauses. */
7999 if (variant_field >= 0)
8000 {
8001 struct type *branch_type;
8002
8003 off = rtype->field (variant_field).loc_bitpos ();
8004
8005 if (dval0 == NULL)
8006 {
8007 /* Using plain value_from_contents_and_address here causes
8008 problems because we will end up trying to resolve a type
8009 that is currently being constructed. */
8010 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8011 address);
8012 rtype = value_type (dval);
8013 }
8014 else
8015 dval = dval0;
8016
8017 branch_type =
8018 to_fixed_variant_branch_type
8019 (type->field (variant_field).type (),
8020 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8021 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8022 if (branch_type == NULL)
8023 {
8024 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8025 rtype->field (f - 1) = rtype->field (f);
8026 rtype->set_num_fields (rtype->num_fields () - 1);
8027 }
8028 else
8029 {
8030 rtype->field (variant_field).set_type (branch_type);
8031 rtype->field (variant_field).set_name ("S");
8032 fld_bit_len =
8033 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8034 TARGET_CHAR_BIT;
8035 if (off + fld_bit_len > bit_len)
8036 bit_len = off + fld_bit_len;
8037 TYPE_LENGTH (rtype) =
8038 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8039 }
8040 }
8041
8042 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8043 should contain the alignment of that record, which should be a strictly
8044 positive value. If null or negative, then something is wrong, most
8045 probably in the debug info. In that case, we don't round up the size
8046 of the resulting type. If this record is not part of another structure,
8047 the current RTYPE length might be good enough for our purposes. */
8048 if (TYPE_LENGTH (type) <= 0)
8049 {
8050 if (rtype->name ())
8051 warning (_("Invalid type size for `%s' detected: %s."),
8052 rtype->name (), pulongest (TYPE_LENGTH (type)));
8053 else
8054 warning (_("Invalid type size for <unnamed> detected: %s."),
8055 pulongest (TYPE_LENGTH (type)));
8056 }
8057 else
8058 {
8059 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8060 TYPE_LENGTH (type));
8061 }
8062
8063 value_free_to_mark (mark);
8064 return rtype;
8065 }
8066
8067 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8068 of 1. */
8069
8070 static struct type *
8071 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8072 CORE_ADDR address, struct value *dval0)
8073 {
8074 return ada_template_to_fixed_record_type_1 (type, valaddr,
8075 address, dval0, 1);
8076 }
8077
8078 /* An ordinary record type in which ___XVL-convention fields and
8079 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8080 static approximations, containing all possible fields. Uses
8081 no runtime values. Useless for use in values, but that's OK,
8082 since the results are used only for type determinations. Works on both
8083 structs and unions. Representation note: to save space, we memorize
8084 the result of this function in the TYPE_TARGET_TYPE of the
8085 template type. */
8086
8087 static struct type *
8088 template_to_static_fixed_type (struct type *type0)
8089 {
8090 struct type *type;
8091 int nfields;
8092 int f;
8093
8094 /* No need no do anything if the input type is already fixed. */
8095 if (type0->is_fixed_instance ())
8096 return type0;
8097
8098 /* Likewise if we already have computed the static approximation. */
8099 if (TYPE_TARGET_TYPE (type0) != NULL)
8100 return TYPE_TARGET_TYPE (type0);
8101
8102 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8103 type = type0;
8104 nfields = type0->num_fields ();
8105
8106 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8107 recompute all over next time. */
8108 TYPE_TARGET_TYPE (type0) = type;
8109
8110 for (f = 0; f < nfields; f += 1)
8111 {
8112 struct type *field_type = type0->field (f).type ();
8113 struct type *new_type;
8114
8115 if (is_dynamic_field (type0, f))
8116 {
8117 field_type = ada_check_typedef (field_type);
8118 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8119 }
8120 else
8121 new_type = static_unwrap_type (field_type);
8122
8123 if (new_type != field_type)
8124 {
8125 /* Clone TYPE0 only the first time we get a new field type. */
8126 if (type == type0)
8127 {
8128 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8129 type->set_code (type0->code ());
8130 INIT_NONE_SPECIFIC (type);
8131 type->set_num_fields (nfields);
8132
8133 field *fields =
8134 ((struct field *)
8135 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8136 memcpy (fields, type0->fields (),
8137 sizeof (struct field) * nfields);
8138 type->set_fields (fields);
8139
8140 type->set_name (ada_type_name (type0));
8141 type->set_is_fixed_instance (true);
8142 TYPE_LENGTH (type) = 0;
8143 }
8144 type->field (f).set_type (new_type);
8145 type->field (f).set_name (type0->field (f).name ());
8146 }
8147 }
8148
8149 return type;
8150 }
8151
8152 /* Given an object of type TYPE whose contents are at VALADDR and
8153 whose address in memory is ADDRESS, returns a revision of TYPE,
8154 which should be a non-dynamic-sized record, in which the variant
8155 part, if any, is replaced with the appropriate branch. Looks
8156 for discriminant values in DVAL0, which can be NULL if the record
8157 contains the necessary discriminant values. */
8158
8159 static struct type *
8160 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8161 CORE_ADDR address, struct value *dval0)
8162 {
8163 struct value *mark = value_mark ();
8164 struct value *dval;
8165 struct type *rtype;
8166 struct type *branch_type;
8167 int nfields = type->num_fields ();
8168 int variant_field = variant_field_index (type);
8169
8170 if (variant_field == -1)
8171 return type;
8172
8173 if (dval0 == NULL)
8174 {
8175 dval = value_from_contents_and_address (type, valaddr, address);
8176 type = value_type (dval);
8177 }
8178 else
8179 dval = dval0;
8180
8181 rtype = alloc_type_copy (type);
8182 rtype->set_code (TYPE_CODE_STRUCT);
8183 INIT_NONE_SPECIFIC (rtype);
8184 rtype->set_num_fields (nfields);
8185
8186 field *fields =
8187 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8188 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8189 rtype->set_fields (fields);
8190
8191 rtype->set_name (ada_type_name (type));
8192 rtype->set_is_fixed_instance (true);
8193 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8194
8195 branch_type = to_fixed_variant_branch_type
8196 (type->field (variant_field).type (),
8197 cond_offset_host (valaddr,
8198 type->field (variant_field).loc_bitpos ()
8199 / TARGET_CHAR_BIT),
8200 cond_offset_target (address,
8201 type->field (variant_field).loc_bitpos ()
8202 / TARGET_CHAR_BIT), dval);
8203 if (branch_type == NULL)
8204 {
8205 int f;
8206
8207 for (f = variant_field + 1; f < nfields; f += 1)
8208 rtype->field (f - 1) = rtype->field (f);
8209 rtype->set_num_fields (rtype->num_fields () - 1);
8210 }
8211 else
8212 {
8213 rtype->field (variant_field).set_type (branch_type);
8214 rtype->field (variant_field).set_name ("S");
8215 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8216 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8217 }
8218 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8219
8220 value_free_to_mark (mark);
8221 return rtype;
8222 }
8223
8224 /* An ordinary record type (with fixed-length fields) that describes
8225 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8226 beginning of this section]. Any necessary discriminants' values
8227 should be in DVAL, a record value; it may be NULL if the object
8228 at ADDR itself contains any necessary discriminant values.
8229 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8230 values from the record are needed. Except in the case that DVAL,
8231 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8232 unchecked) is replaced by a particular branch of the variant.
8233
8234 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8235 is questionable and may be removed. It can arise during the
8236 processing of an unconstrained-array-of-record type where all the
8237 variant branches have exactly the same size. This is because in
8238 such cases, the compiler does not bother to use the XVS convention
8239 when encoding the record. I am currently dubious of this
8240 shortcut and suspect the compiler should be altered. FIXME. */
8241
8242 static struct type *
8243 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8244 CORE_ADDR address, struct value *dval)
8245 {
8246 struct type *templ_type;
8247
8248 if (type0->is_fixed_instance ())
8249 return type0;
8250
8251 templ_type = dynamic_template_type (type0);
8252
8253 if (templ_type != NULL)
8254 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8255 else if (variant_field_index (type0) >= 0)
8256 {
8257 if (dval == NULL && valaddr == NULL && address == 0)
8258 return type0;
8259 return to_record_with_fixed_variant_part (type0, valaddr, address,
8260 dval);
8261 }
8262 else
8263 {
8264 type0->set_is_fixed_instance (true);
8265 return type0;
8266 }
8267
8268 }
8269
8270 /* An ordinary record type (with fixed-length fields) that describes
8271 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8272 union type. Any necessary discriminants' values should be in DVAL,
8273 a record value. That is, this routine selects the appropriate
8274 branch of the union at ADDR according to the discriminant value
8275 indicated in the union's type name. Returns VAR_TYPE0 itself if
8276 it represents a variant subject to a pragma Unchecked_Union. */
8277
8278 static struct type *
8279 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8280 CORE_ADDR address, struct value *dval)
8281 {
8282 int which;
8283 struct type *templ_type;
8284 struct type *var_type;
8285
8286 if (var_type0->code () == TYPE_CODE_PTR)
8287 var_type = TYPE_TARGET_TYPE (var_type0);
8288 else
8289 var_type = var_type0;
8290
8291 templ_type = ada_find_parallel_type (var_type, "___XVU");
8292
8293 if (templ_type != NULL)
8294 var_type = templ_type;
8295
8296 if (is_unchecked_variant (var_type, value_type (dval)))
8297 return var_type0;
8298 which = ada_which_variant_applies (var_type, dval);
8299
8300 if (which < 0)
8301 return empty_record (var_type);
8302 else if (is_dynamic_field (var_type, which))
8303 return to_fixed_record_type
8304 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8305 valaddr, address, dval);
8306 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8307 return
8308 to_fixed_record_type
8309 (var_type->field (which).type (), valaddr, address, dval);
8310 else
8311 return var_type->field (which).type ();
8312 }
8313
8314 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8315 ENCODING_TYPE, a type following the GNAT conventions for discrete
8316 type encodings, only carries redundant information. */
8317
8318 static int
8319 ada_is_redundant_range_encoding (struct type *range_type,
8320 struct type *encoding_type)
8321 {
8322 const char *bounds_str;
8323 int n;
8324 LONGEST lo, hi;
8325
8326 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8327
8328 if (get_base_type (range_type)->code ()
8329 != get_base_type (encoding_type)->code ())
8330 {
8331 /* The compiler probably used a simple base type to describe
8332 the range type instead of the range's actual base type,
8333 expecting us to get the real base type from the encoding
8334 anyway. In this situation, the encoding cannot be ignored
8335 as redundant. */
8336 return 0;
8337 }
8338
8339 if (is_dynamic_type (range_type))
8340 return 0;
8341
8342 if (encoding_type->name () == NULL)
8343 return 0;
8344
8345 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8346 if (bounds_str == NULL)
8347 return 0;
8348
8349 n = 8; /* Skip "___XDLU_". */
8350 if (!ada_scan_number (bounds_str, n, &lo, &n))
8351 return 0;
8352 if (range_type->bounds ()->low.const_val () != lo)
8353 return 0;
8354
8355 n += 2; /* Skip the "__" separator between the two bounds. */
8356 if (!ada_scan_number (bounds_str, n, &hi, &n))
8357 return 0;
8358 if (range_type->bounds ()->high.const_val () != hi)
8359 return 0;
8360
8361 return 1;
8362 }
8363
8364 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8365 a type following the GNAT encoding for describing array type
8366 indices, only carries redundant information. */
8367
8368 static int
8369 ada_is_redundant_index_type_desc (struct type *array_type,
8370 struct type *desc_type)
8371 {
8372 struct type *this_layer = check_typedef (array_type);
8373 int i;
8374
8375 for (i = 0; i < desc_type->num_fields (); i++)
8376 {
8377 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8378 desc_type->field (i).type ()))
8379 return 0;
8380 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8381 }
8382
8383 return 1;
8384 }
8385
8386 /* Assuming that TYPE0 is an array type describing the type of a value
8387 at ADDR, and that DVAL describes a record containing any
8388 discriminants used in TYPE0, returns a type for the value that
8389 contains no dynamic components (that is, no components whose sizes
8390 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8391 true, gives an error message if the resulting type's size is over
8392 varsize_limit. */
8393
8394 static struct type *
8395 to_fixed_array_type (struct type *type0, struct value *dval,
8396 int ignore_too_big)
8397 {
8398 struct type *index_type_desc;
8399 struct type *result;
8400 int constrained_packed_array_p;
8401 static const char *xa_suffix = "___XA";
8402
8403 type0 = ada_check_typedef (type0);
8404 if (type0->is_fixed_instance ())
8405 return type0;
8406
8407 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8408 if (constrained_packed_array_p)
8409 {
8410 type0 = decode_constrained_packed_array_type (type0);
8411 if (type0 == nullptr)
8412 error (_("could not decode constrained packed array type"));
8413 }
8414
8415 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8416
8417 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8418 encoding suffixed with 'P' may still be generated. If so,
8419 it should be used to find the XA type. */
8420
8421 if (index_type_desc == NULL)
8422 {
8423 const char *type_name = ada_type_name (type0);
8424
8425 if (type_name != NULL)
8426 {
8427 const int len = strlen (type_name);
8428 char *name = (char *) alloca (len + strlen (xa_suffix));
8429
8430 if (type_name[len - 1] == 'P')
8431 {
8432 strcpy (name, type_name);
8433 strcpy (name + len - 1, xa_suffix);
8434 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8435 }
8436 }
8437 }
8438
8439 ada_fixup_array_indexes_type (index_type_desc);
8440 if (index_type_desc != NULL
8441 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8442 {
8443 /* Ignore this ___XA parallel type, as it does not bring any
8444 useful information. This allows us to avoid creating fixed
8445 versions of the array's index types, which would be identical
8446 to the original ones. This, in turn, can also help avoid
8447 the creation of fixed versions of the array itself. */
8448 index_type_desc = NULL;
8449 }
8450
8451 if (index_type_desc == NULL)
8452 {
8453 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8454
8455 /* NOTE: elt_type---the fixed version of elt_type0---should never
8456 depend on the contents of the array in properly constructed
8457 debugging data. */
8458 /* Create a fixed version of the array element type.
8459 We're not providing the address of an element here,
8460 and thus the actual object value cannot be inspected to do
8461 the conversion. This should not be a problem, since arrays of
8462 unconstrained objects are not allowed. In particular, all
8463 the elements of an array of a tagged type should all be of
8464 the same type specified in the debugging info. No need to
8465 consult the object tag. */
8466 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8467
8468 /* Make sure we always create a new array type when dealing with
8469 packed array types, since we're going to fix-up the array
8470 type length and element bitsize a little further down. */
8471 if (elt_type0 == elt_type && !constrained_packed_array_p)
8472 result = type0;
8473 else
8474 result = create_array_type (alloc_type_copy (type0),
8475 elt_type, type0->index_type ());
8476 }
8477 else
8478 {
8479 int i;
8480 struct type *elt_type0;
8481
8482 elt_type0 = type0;
8483 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8484 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8485
8486 /* NOTE: result---the fixed version of elt_type0---should never
8487 depend on the contents of the array in properly constructed
8488 debugging data. */
8489 /* Create a fixed version of the array element type.
8490 We're not providing the address of an element here,
8491 and thus the actual object value cannot be inspected to do
8492 the conversion. This should not be a problem, since arrays of
8493 unconstrained objects are not allowed. In particular, all
8494 the elements of an array of a tagged type should all be of
8495 the same type specified in the debugging info. No need to
8496 consult the object tag. */
8497 result =
8498 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8499
8500 elt_type0 = type0;
8501 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8502 {
8503 struct type *range_type =
8504 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8505
8506 result = create_array_type (alloc_type_copy (elt_type0),
8507 result, range_type);
8508 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8509 }
8510 }
8511
8512 /* We want to preserve the type name. This can be useful when
8513 trying to get the type name of a value that has already been
8514 printed (for instance, if the user did "print VAR; whatis $". */
8515 result->set_name (type0->name ());
8516
8517 if (constrained_packed_array_p)
8518 {
8519 /* So far, the resulting type has been created as if the original
8520 type was a regular (non-packed) array type. As a result, the
8521 bitsize of the array elements needs to be set again, and the array
8522 length needs to be recomputed based on that bitsize. */
8523 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8524 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8525
8526 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8527 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8528 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8529 TYPE_LENGTH (result)++;
8530 }
8531
8532 result->set_is_fixed_instance (true);
8533 return result;
8534 }
8535
8536
8537 /* A standard type (containing no dynamically sized components)
8538 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8539 DVAL describes a record containing any discriminants used in TYPE0,
8540 and may be NULL if there are none, or if the object of type TYPE at
8541 ADDRESS or in VALADDR contains these discriminants.
8542
8543 If CHECK_TAG is not null, in the case of tagged types, this function
8544 attempts to locate the object's tag and use it to compute the actual
8545 type. However, when ADDRESS is null, we cannot use it to determine the
8546 location of the tag, and therefore compute the tagged type's actual type.
8547 So we return the tagged type without consulting the tag. */
8548
8549 static struct type *
8550 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8551 CORE_ADDR address, struct value *dval, int check_tag)
8552 {
8553 type = ada_check_typedef (type);
8554
8555 /* Only un-fixed types need to be handled here. */
8556 if (!HAVE_GNAT_AUX_INFO (type))
8557 return type;
8558
8559 switch (type->code ())
8560 {
8561 default:
8562 return type;
8563 case TYPE_CODE_STRUCT:
8564 {
8565 struct type *static_type = to_static_fixed_type (type);
8566 struct type *fixed_record_type =
8567 to_fixed_record_type (type, valaddr, address, NULL);
8568
8569 /* If STATIC_TYPE is a tagged type and we know the object's address,
8570 then we can determine its tag, and compute the object's actual
8571 type from there. Note that we have to use the fixed record
8572 type (the parent part of the record may have dynamic fields
8573 and the way the location of _tag is expressed may depend on
8574 them). */
8575
8576 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8577 {
8578 struct value *tag =
8579 value_tag_from_contents_and_address
8580 (fixed_record_type,
8581 valaddr,
8582 address);
8583 struct type *real_type = type_from_tag (tag);
8584 struct value *obj =
8585 value_from_contents_and_address (fixed_record_type,
8586 valaddr,
8587 address);
8588 fixed_record_type = value_type (obj);
8589 if (real_type != NULL)
8590 return to_fixed_record_type
8591 (real_type, NULL,
8592 value_address (ada_tag_value_at_base_address (obj)), NULL);
8593 }
8594
8595 /* Check to see if there is a parallel ___XVZ variable.
8596 If there is, then it provides the actual size of our type. */
8597 else if (ada_type_name (fixed_record_type) != NULL)
8598 {
8599 const char *name = ada_type_name (fixed_record_type);
8600 char *xvz_name
8601 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8602 bool xvz_found = false;
8603 LONGEST size;
8604
8605 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8606 try
8607 {
8608 xvz_found = get_int_var_value (xvz_name, size);
8609 }
8610 catch (const gdb_exception_error &except)
8611 {
8612 /* We found the variable, but somehow failed to read
8613 its value. Rethrow the same error, but with a little
8614 bit more information, to help the user understand
8615 what went wrong (Eg: the variable might have been
8616 optimized out). */
8617 throw_error (except.error,
8618 _("unable to read value of %s (%s)"),
8619 xvz_name, except.what ());
8620 }
8621
8622 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8623 {
8624 fixed_record_type = copy_type (fixed_record_type);
8625 TYPE_LENGTH (fixed_record_type) = size;
8626
8627 /* The FIXED_RECORD_TYPE may have be a stub. We have
8628 observed this when the debugging info is STABS, and
8629 apparently it is something that is hard to fix.
8630
8631 In practice, we don't need the actual type definition
8632 at all, because the presence of the XVZ variable allows us
8633 to assume that there must be a XVS type as well, which we
8634 should be able to use later, when we need the actual type
8635 definition.
8636
8637 In the meantime, pretend that the "fixed" type we are
8638 returning is NOT a stub, because this can cause trouble
8639 when using this type to create new types targeting it.
8640 Indeed, the associated creation routines often check
8641 whether the target type is a stub and will try to replace
8642 it, thus using a type with the wrong size. This, in turn,
8643 might cause the new type to have the wrong size too.
8644 Consider the case of an array, for instance, where the size
8645 of the array is computed from the number of elements in
8646 our array multiplied by the size of its element. */
8647 fixed_record_type->set_is_stub (false);
8648 }
8649 }
8650 return fixed_record_type;
8651 }
8652 case TYPE_CODE_ARRAY:
8653 return to_fixed_array_type (type, dval, 1);
8654 case TYPE_CODE_UNION:
8655 if (dval == NULL)
8656 return type;
8657 else
8658 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8659 }
8660 }
8661
8662 /* The same as ada_to_fixed_type_1, except that it preserves the type
8663 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8664
8665 The typedef layer needs be preserved in order to differentiate between
8666 arrays and array pointers when both types are implemented using the same
8667 fat pointer. In the array pointer case, the pointer is encoded as
8668 a typedef of the pointer type. For instance, considering:
8669
8670 type String_Access is access String;
8671 S1 : String_Access := null;
8672
8673 To the debugger, S1 is defined as a typedef of type String. But
8674 to the user, it is a pointer. So if the user tries to print S1,
8675 we should not dereference the array, but print the array address
8676 instead.
8677
8678 If we didn't preserve the typedef layer, we would lose the fact that
8679 the type is to be presented as a pointer (needs de-reference before
8680 being printed). And we would also use the source-level type name. */
8681
8682 struct type *
8683 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8684 CORE_ADDR address, struct value *dval, int check_tag)
8685
8686 {
8687 struct type *fixed_type =
8688 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8689
8690 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8691 then preserve the typedef layer.
8692
8693 Implementation note: We can only check the main-type portion of
8694 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8695 from TYPE now returns a type that has the same instance flags
8696 as TYPE. For instance, if TYPE is a "typedef const", and its
8697 target type is a "struct", then the typedef elimination will return
8698 a "const" version of the target type. See check_typedef for more
8699 details about how the typedef layer elimination is done.
8700
8701 brobecker/2010-11-19: It seems to me that the only case where it is
8702 useful to preserve the typedef layer is when dealing with fat pointers.
8703 Perhaps, we could add a check for that and preserve the typedef layer
8704 only in that situation. But this seems unnecessary so far, probably
8705 because we call check_typedef/ada_check_typedef pretty much everywhere.
8706 */
8707 if (type->code () == TYPE_CODE_TYPEDEF
8708 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8709 == TYPE_MAIN_TYPE (fixed_type)))
8710 return type;
8711
8712 return fixed_type;
8713 }
8714
8715 /* A standard (static-sized) type corresponding as well as possible to
8716 TYPE0, but based on no runtime data. */
8717
8718 static struct type *
8719 to_static_fixed_type (struct type *type0)
8720 {
8721 struct type *type;
8722
8723 if (type0 == NULL)
8724 return NULL;
8725
8726 if (type0->is_fixed_instance ())
8727 return type0;
8728
8729 type0 = ada_check_typedef (type0);
8730
8731 switch (type0->code ())
8732 {
8733 default:
8734 return type0;
8735 case TYPE_CODE_STRUCT:
8736 type = dynamic_template_type (type0);
8737 if (type != NULL)
8738 return template_to_static_fixed_type (type);
8739 else
8740 return template_to_static_fixed_type (type0);
8741 case TYPE_CODE_UNION:
8742 type = ada_find_parallel_type (type0, "___XVU");
8743 if (type != NULL)
8744 return template_to_static_fixed_type (type);
8745 else
8746 return template_to_static_fixed_type (type0);
8747 }
8748 }
8749
8750 /* A static approximation of TYPE with all type wrappers removed. */
8751
8752 static struct type *
8753 static_unwrap_type (struct type *type)
8754 {
8755 if (ada_is_aligner_type (type))
8756 {
8757 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8758 if (ada_type_name (type1) == NULL)
8759 type1->set_name (ada_type_name (type));
8760
8761 return static_unwrap_type (type1);
8762 }
8763 else
8764 {
8765 struct type *raw_real_type = ada_get_base_type (type);
8766
8767 if (raw_real_type == type)
8768 return type;
8769 else
8770 return to_static_fixed_type (raw_real_type);
8771 }
8772 }
8773
8774 /* In some cases, incomplete and private types require
8775 cross-references that are not resolved as records (for example,
8776 type Foo;
8777 type FooP is access Foo;
8778 V: FooP;
8779 type Foo is array ...;
8780 ). In these cases, since there is no mechanism for producing
8781 cross-references to such types, we instead substitute for FooP a
8782 stub enumeration type that is nowhere resolved, and whose tag is
8783 the name of the actual type. Call these types "non-record stubs". */
8784
8785 /* A type equivalent to TYPE that is not a non-record stub, if one
8786 exists, otherwise TYPE. */
8787
8788 struct type *
8789 ada_check_typedef (struct type *type)
8790 {
8791 if (type == NULL)
8792 return NULL;
8793
8794 /* If our type is an access to an unconstrained array, which is encoded
8795 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8796 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8797 what allows us to distinguish between fat pointers that represent
8798 array types, and fat pointers that represent array access types
8799 (in both cases, the compiler implements them as fat pointers). */
8800 if (ada_is_access_to_unconstrained_array (type))
8801 return type;
8802
8803 type = check_typedef (type);
8804 if (type == NULL || type->code () != TYPE_CODE_ENUM
8805 || !type->is_stub ()
8806 || type->name () == NULL)
8807 return type;
8808 else
8809 {
8810 const char *name = type->name ();
8811 struct type *type1 = ada_find_any_type (name);
8812
8813 if (type1 == NULL)
8814 return type;
8815
8816 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8817 stubs pointing to arrays, as we don't create symbols for array
8818 types, only for the typedef-to-array types). If that's the case,
8819 strip the typedef layer. */
8820 if (type1->code () == TYPE_CODE_TYPEDEF)
8821 type1 = ada_check_typedef (type1);
8822
8823 return type1;
8824 }
8825 }
8826
8827 /* A value representing the data at VALADDR/ADDRESS as described by
8828 type TYPE0, but with a standard (static-sized) type that correctly
8829 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8830 type, then return VAL0 [this feature is simply to avoid redundant
8831 creation of struct values]. */
8832
8833 static struct value *
8834 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8835 struct value *val0)
8836 {
8837 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8838
8839 if (type == type0 && val0 != NULL)
8840 return val0;
8841
8842 if (VALUE_LVAL (val0) != lval_memory)
8843 {
8844 /* Our value does not live in memory; it could be a convenience
8845 variable, for instance. Create a not_lval value using val0's
8846 contents. */
8847 return value_from_contents (type, value_contents (val0).data ());
8848 }
8849
8850 return value_from_contents_and_address (type, 0, address);
8851 }
8852
8853 /* A value representing VAL, but with a standard (static-sized) type
8854 that correctly describes it. Does not necessarily create a new
8855 value. */
8856
8857 struct value *
8858 ada_to_fixed_value (struct value *val)
8859 {
8860 val = unwrap_value (val);
8861 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8862 return val;
8863 }
8864 \f
8865
8866 /* Attributes */
8867
8868 /* Table mapping attribute numbers to names.
8869 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8870
8871 static const char * const attribute_names[] = {
8872 "<?>",
8873
8874 "first",
8875 "last",
8876 "length",
8877 "image",
8878 "max",
8879 "min",
8880 "modulus",
8881 "pos",
8882 "size",
8883 "tag",
8884 "val",
8885 0
8886 };
8887
8888 static const char *
8889 ada_attribute_name (enum exp_opcode n)
8890 {
8891 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8892 return attribute_names[n - OP_ATR_FIRST + 1];
8893 else
8894 return attribute_names[0];
8895 }
8896
8897 /* Evaluate the 'POS attribute applied to ARG. */
8898
8899 static LONGEST
8900 pos_atr (struct value *arg)
8901 {
8902 struct value *val = coerce_ref (arg);
8903 struct type *type = value_type (val);
8904
8905 if (!discrete_type_p (type))
8906 error (_("'POS only defined on discrete types"));
8907
8908 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8909 if (!result.has_value ())
8910 error (_("enumeration value is invalid: can't find 'POS"));
8911
8912 return *result;
8913 }
8914
8915 struct value *
8916 ada_pos_atr (struct type *expect_type,
8917 struct expression *exp,
8918 enum noside noside, enum exp_opcode op,
8919 struct value *arg)
8920 {
8921 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8922 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8923 return value_zero (type, not_lval);
8924 return value_from_longest (type, pos_atr (arg));
8925 }
8926
8927 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8928
8929 static struct value *
8930 val_atr (struct type *type, LONGEST val)
8931 {
8932 gdb_assert (discrete_type_p (type));
8933 if (type->code () == TYPE_CODE_RANGE)
8934 type = TYPE_TARGET_TYPE (type);
8935 if (type->code () == TYPE_CODE_ENUM)
8936 {
8937 if (val < 0 || val >= type->num_fields ())
8938 error (_("argument to 'VAL out of range"));
8939 val = type->field (val).loc_enumval ();
8940 }
8941 return value_from_longest (type, val);
8942 }
8943
8944 struct value *
8945 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8946 {
8947 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8948 return value_zero (type, not_lval);
8949
8950 if (!discrete_type_p (type))
8951 error (_("'VAL only defined on discrete types"));
8952 if (!integer_type_p (value_type (arg)))
8953 error (_("'VAL requires integral argument"));
8954
8955 return val_atr (type, value_as_long (arg));
8956 }
8957 \f
8958
8959 /* Evaluation */
8960
8961 /* True if TYPE appears to be an Ada character type.
8962 [At the moment, this is true only for Character and Wide_Character;
8963 It is a heuristic test that could stand improvement]. */
8964
8965 bool
8966 ada_is_character_type (struct type *type)
8967 {
8968 const char *name;
8969
8970 /* If the type code says it's a character, then assume it really is,
8971 and don't check any further. */
8972 if (type->code () == TYPE_CODE_CHAR)
8973 return true;
8974
8975 /* Otherwise, assume it's a character type iff it is a discrete type
8976 with a known character type name. */
8977 name = ada_type_name (type);
8978 return (name != NULL
8979 && (type->code () == TYPE_CODE_INT
8980 || type->code () == TYPE_CODE_RANGE)
8981 && (strcmp (name, "character") == 0
8982 || strcmp (name, "wide_character") == 0
8983 || strcmp (name, "wide_wide_character") == 0
8984 || strcmp (name, "unsigned char") == 0));
8985 }
8986
8987 /* True if TYPE appears to be an Ada string type. */
8988
8989 bool
8990 ada_is_string_type (struct type *type)
8991 {
8992 type = ada_check_typedef (type);
8993 if (type != NULL
8994 && type->code () != TYPE_CODE_PTR
8995 && (ada_is_simple_array_type (type)
8996 || ada_is_array_descriptor_type (type))
8997 && ada_array_arity (type) == 1)
8998 {
8999 struct type *elttype = ada_array_element_type (type, 1);
9000
9001 return ada_is_character_type (elttype);
9002 }
9003 else
9004 return false;
9005 }
9006
9007 /* The compiler sometimes provides a parallel XVS type for a given
9008 PAD type. Normally, it is safe to follow the PAD type directly,
9009 but older versions of the compiler have a bug that causes the offset
9010 of its "F" field to be wrong. Following that field in that case
9011 would lead to incorrect results, but this can be worked around
9012 by ignoring the PAD type and using the associated XVS type instead.
9013
9014 Set to True if the debugger should trust the contents of PAD types.
9015 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9016 static bool trust_pad_over_xvs = true;
9017
9018 /* True if TYPE is a struct type introduced by the compiler to force the
9019 alignment of a value. Such types have a single field with a
9020 distinctive name. */
9021
9022 int
9023 ada_is_aligner_type (struct type *type)
9024 {
9025 type = ada_check_typedef (type);
9026
9027 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9028 return 0;
9029
9030 return (type->code () == TYPE_CODE_STRUCT
9031 && type->num_fields () == 1
9032 && strcmp (type->field (0).name (), "F") == 0);
9033 }
9034
9035 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9036 the parallel type. */
9037
9038 struct type *
9039 ada_get_base_type (struct type *raw_type)
9040 {
9041 struct type *real_type_namer;
9042 struct type *raw_real_type;
9043
9044 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9045 return raw_type;
9046
9047 if (ada_is_aligner_type (raw_type))
9048 /* The encoding specifies that we should always use the aligner type.
9049 So, even if this aligner type has an associated XVS type, we should
9050 simply ignore it.
9051
9052 According to the compiler gurus, an XVS type parallel to an aligner
9053 type may exist because of a stabs limitation. In stabs, aligner
9054 types are empty because the field has a variable-sized type, and
9055 thus cannot actually be used as an aligner type. As a result,
9056 we need the associated parallel XVS type to decode the type.
9057 Since the policy in the compiler is to not change the internal
9058 representation based on the debugging info format, we sometimes
9059 end up having a redundant XVS type parallel to the aligner type. */
9060 return raw_type;
9061
9062 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9063 if (real_type_namer == NULL
9064 || real_type_namer->code () != TYPE_CODE_STRUCT
9065 || real_type_namer->num_fields () != 1)
9066 return raw_type;
9067
9068 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9069 {
9070 /* This is an older encoding form where the base type needs to be
9071 looked up by name. We prefer the newer encoding because it is
9072 more efficient. */
9073 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
9074 if (raw_real_type == NULL)
9075 return raw_type;
9076 else
9077 return raw_real_type;
9078 }
9079
9080 /* The field in our XVS type is a reference to the base type. */
9081 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9082 }
9083
9084 /* The type of value designated by TYPE, with all aligners removed. */
9085
9086 struct type *
9087 ada_aligned_type (struct type *type)
9088 {
9089 if (ada_is_aligner_type (type))
9090 return ada_aligned_type (type->field (0).type ());
9091 else
9092 return ada_get_base_type (type);
9093 }
9094
9095
9096 /* The address of the aligned value in an object at address VALADDR
9097 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9098
9099 const gdb_byte *
9100 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9101 {
9102 if (ada_is_aligner_type (type))
9103 return ada_aligned_value_addr
9104 (type->field (0).type (),
9105 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
9106 else
9107 return valaddr;
9108 }
9109
9110
9111
9112 /* The printed representation of an enumeration literal with encoded
9113 name NAME. The value is good to the next call of ada_enum_name. */
9114 const char *
9115 ada_enum_name (const char *name)
9116 {
9117 static std::string storage;
9118 const char *tmp;
9119
9120 /* First, unqualify the enumeration name:
9121 1. Search for the last '.' character. If we find one, then skip
9122 all the preceding characters, the unqualified name starts
9123 right after that dot.
9124 2. Otherwise, we may be debugging on a target where the compiler
9125 translates dots into "__". Search forward for double underscores,
9126 but stop searching when we hit an overloading suffix, which is
9127 of the form "__" followed by digits. */
9128
9129 tmp = strrchr (name, '.');
9130 if (tmp != NULL)
9131 name = tmp + 1;
9132 else
9133 {
9134 while ((tmp = strstr (name, "__")) != NULL)
9135 {
9136 if (isdigit (tmp[2]))
9137 break;
9138 else
9139 name = tmp + 2;
9140 }
9141 }
9142
9143 if (name[0] == 'Q')
9144 {
9145 int v;
9146
9147 if (name[1] == 'U' || name[1] == 'W')
9148 {
9149 int offset = 2;
9150 if (name[1] == 'W' && name[2] == 'W')
9151 {
9152 /* Also handle the QWW case. */
9153 ++offset;
9154 }
9155 if (sscanf (name + offset, "%x", &v) != 1)
9156 return name;
9157 }
9158 else if (((name[1] >= '0' && name[1] <= '9')
9159 || (name[1] >= 'a' && name[1] <= 'z'))
9160 && name[2] == '\0')
9161 {
9162 storage = string_printf ("'%c'", name[1]);
9163 return storage.c_str ();
9164 }
9165 else
9166 return name;
9167
9168 if (isascii (v) && isprint (v))
9169 storage = string_printf ("'%c'", v);
9170 else if (name[1] == 'U')
9171 storage = string_printf ("'[\"%02x\"]'", v);
9172 else if (name[2] != 'W')
9173 storage = string_printf ("'[\"%04x\"]'", v);
9174 else
9175 storage = string_printf ("'[\"%06x\"]'", v);
9176
9177 return storage.c_str ();
9178 }
9179 else
9180 {
9181 tmp = strstr (name, "__");
9182 if (tmp == NULL)
9183 tmp = strstr (name, "$");
9184 if (tmp != NULL)
9185 {
9186 storage = std::string (name, tmp - name);
9187 return storage.c_str ();
9188 }
9189
9190 return name;
9191 }
9192 }
9193
9194 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9195 value it wraps. */
9196
9197 static struct value *
9198 unwrap_value (struct value *val)
9199 {
9200 struct type *type = ada_check_typedef (value_type (val));
9201
9202 if (ada_is_aligner_type (type))
9203 {
9204 struct value *v = ada_value_struct_elt (val, "F", 0);
9205 struct type *val_type = ada_check_typedef (value_type (v));
9206
9207 if (ada_type_name (val_type) == NULL)
9208 val_type->set_name (ada_type_name (type));
9209
9210 return unwrap_value (v);
9211 }
9212 else
9213 {
9214 struct type *raw_real_type =
9215 ada_check_typedef (ada_get_base_type (type));
9216
9217 /* If there is no parallel XVS or XVE type, then the value is
9218 already unwrapped. Return it without further modification. */
9219 if ((type == raw_real_type)
9220 && ada_find_parallel_type (type, "___XVE") == NULL)
9221 return val;
9222
9223 return
9224 coerce_unspec_val_to_type
9225 (val, ada_to_fixed_type (raw_real_type, 0,
9226 value_address (val),
9227 NULL, 1));
9228 }
9229 }
9230
9231 /* Given two array types T1 and T2, return nonzero iff both arrays
9232 contain the same number of elements. */
9233
9234 static int
9235 ada_same_array_size_p (struct type *t1, struct type *t2)
9236 {
9237 LONGEST lo1, hi1, lo2, hi2;
9238
9239 /* Get the array bounds in order to verify that the size of
9240 the two arrays match. */
9241 if (!get_array_bounds (t1, &lo1, &hi1)
9242 || !get_array_bounds (t2, &lo2, &hi2))
9243 error (_("unable to determine array bounds"));
9244
9245 /* To make things easier for size comparison, normalize a bit
9246 the case of empty arrays by making sure that the difference
9247 between upper bound and lower bound is always -1. */
9248 if (lo1 > hi1)
9249 hi1 = lo1 - 1;
9250 if (lo2 > hi2)
9251 hi2 = lo2 - 1;
9252
9253 return (hi1 - lo1 == hi2 - lo2);
9254 }
9255
9256 /* Assuming that VAL is an array of integrals, and TYPE represents
9257 an array with the same number of elements, but with wider integral
9258 elements, return an array "casted" to TYPE. In practice, this
9259 means that the returned array is built by casting each element
9260 of the original array into TYPE's (wider) element type. */
9261
9262 static struct value *
9263 ada_promote_array_of_integrals (struct type *type, struct value *val)
9264 {
9265 struct type *elt_type = TYPE_TARGET_TYPE (type);
9266 LONGEST lo, hi;
9267 LONGEST i;
9268
9269 /* Verify that both val and type are arrays of scalars, and
9270 that the size of val's elements is smaller than the size
9271 of type's element. */
9272 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9273 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9274 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9275 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9276 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9277 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9278
9279 if (!get_array_bounds (type, &lo, &hi))
9280 error (_("unable to determine array bounds"));
9281
9282 value *res = allocate_value (type);
9283 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
9284
9285 /* Promote each array element. */
9286 for (i = 0; i < hi - lo + 1; i++)
9287 {
9288 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9289 int elt_len = TYPE_LENGTH (elt_type);
9290
9291 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
9292 }
9293
9294 return res;
9295 }
9296
9297 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9298 return the converted value. */
9299
9300 static struct value *
9301 coerce_for_assign (struct type *type, struct value *val)
9302 {
9303 struct type *type2 = value_type (val);
9304
9305 if (type == type2)
9306 return val;
9307
9308 type2 = ada_check_typedef (type2);
9309 type = ada_check_typedef (type);
9310
9311 if (type2->code () == TYPE_CODE_PTR
9312 && type->code () == TYPE_CODE_ARRAY)
9313 {
9314 val = ada_value_ind (val);
9315 type2 = value_type (val);
9316 }
9317
9318 if (type2->code () == TYPE_CODE_ARRAY
9319 && type->code () == TYPE_CODE_ARRAY)
9320 {
9321 if (!ada_same_array_size_p (type, type2))
9322 error (_("cannot assign arrays of different length"));
9323
9324 if (is_integral_type (TYPE_TARGET_TYPE (type))
9325 && is_integral_type (TYPE_TARGET_TYPE (type2))
9326 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9327 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9328 {
9329 /* Allow implicit promotion of the array elements to
9330 a wider type. */
9331 return ada_promote_array_of_integrals (type, val);
9332 }
9333
9334 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9335 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9336 error (_("Incompatible types in assignment"));
9337 deprecated_set_value_type (val, type);
9338 }
9339 return val;
9340 }
9341
9342 static struct value *
9343 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9344 {
9345 struct value *val;
9346 struct type *type1, *type2;
9347 LONGEST v, v1, v2;
9348
9349 arg1 = coerce_ref (arg1);
9350 arg2 = coerce_ref (arg2);
9351 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9352 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9353
9354 if (type1->code () != TYPE_CODE_INT
9355 || type2->code () != TYPE_CODE_INT)
9356 return value_binop (arg1, arg2, op);
9357
9358 switch (op)
9359 {
9360 case BINOP_MOD:
9361 case BINOP_DIV:
9362 case BINOP_REM:
9363 break;
9364 default:
9365 return value_binop (arg1, arg2, op);
9366 }
9367
9368 v2 = value_as_long (arg2);
9369 if (v2 == 0)
9370 {
9371 const char *name;
9372 if (op == BINOP_MOD)
9373 name = "mod";
9374 else if (op == BINOP_DIV)
9375 name = "/";
9376 else
9377 {
9378 gdb_assert (op == BINOP_REM);
9379 name = "rem";
9380 }
9381
9382 error (_("second operand of %s must not be zero."), name);
9383 }
9384
9385 if (type1->is_unsigned () || op == BINOP_MOD)
9386 return value_binop (arg1, arg2, op);
9387
9388 v1 = value_as_long (arg1);
9389 switch (op)
9390 {
9391 case BINOP_DIV:
9392 v = v1 / v2;
9393 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9394 v += v > 0 ? -1 : 1;
9395 break;
9396 case BINOP_REM:
9397 v = v1 % v2;
9398 if (v * v1 < 0)
9399 v -= v2;
9400 break;
9401 default:
9402 /* Should not reach this point. */
9403 v = 0;
9404 }
9405
9406 val = allocate_value (type1);
9407 store_unsigned_integer (value_contents_raw (val).data (),
9408 TYPE_LENGTH (value_type (val)),
9409 type_byte_order (type1), v);
9410 return val;
9411 }
9412
9413 static int
9414 ada_value_equal (struct value *arg1, struct value *arg2)
9415 {
9416 if (ada_is_direct_array_type (value_type (arg1))
9417 || ada_is_direct_array_type (value_type (arg2)))
9418 {
9419 struct type *arg1_type, *arg2_type;
9420
9421 /* Automatically dereference any array reference before
9422 we attempt to perform the comparison. */
9423 arg1 = ada_coerce_ref (arg1);
9424 arg2 = ada_coerce_ref (arg2);
9425
9426 arg1 = ada_coerce_to_simple_array (arg1);
9427 arg2 = ada_coerce_to_simple_array (arg2);
9428
9429 arg1_type = ada_check_typedef (value_type (arg1));
9430 arg2_type = ada_check_typedef (value_type (arg2));
9431
9432 if (arg1_type->code () != TYPE_CODE_ARRAY
9433 || arg2_type->code () != TYPE_CODE_ARRAY)
9434 error (_("Attempt to compare array with non-array"));
9435 /* FIXME: The following works only for types whose
9436 representations use all bits (no padding or undefined bits)
9437 and do not have user-defined equality. */
9438 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9439 && memcmp (value_contents (arg1).data (),
9440 value_contents (arg2).data (),
9441 TYPE_LENGTH (arg1_type)) == 0);
9442 }
9443 return value_equal (arg1, arg2);
9444 }
9445
9446 namespace expr
9447 {
9448
9449 bool
9450 check_objfile (const std::unique_ptr<ada_component> &comp,
9451 struct objfile *objfile)
9452 {
9453 return comp->uses_objfile (objfile);
9454 }
9455
9456 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9457 component of LHS (a simple array or a record). Does not modify the
9458 inferior's memory, nor does it modify LHS (unless LHS ==
9459 CONTAINER). */
9460
9461 static void
9462 assign_component (struct value *container, struct value *lhs, LONGEST index,
9463 struct expression *exp, operation_up &arg)
9464 {
9465 scoped_value_mark mark;
9466
9467 struct value *elt;
9468 struct type *lhs_type = check_typedef (value_type (lhs));
9469
9470 if (lhs_type->code () == TYPE_CODE_ARRAY)
9471 {
9472 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9473 struct value *index_val = value_from_longest (index_type, index);
9474
9475 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9476 }
9477 else
9478 {
9479 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9480 elt = ada_to_fixed_value (elt);
9481 }
9482
9483 ada_aggregate_operation *ag_op
9484 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9485 if (ag_op != nullptr)
9486 ag_op->assign_aggregate (container, elt, exp);
9487 else
9488 value_assign_to_component (container, elt,
9489 arg->evaluate (nullptr, exp,
9490 EVAL_NORMAL));
9491 }
9492
9493 bool
9494 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9495 {
9496 for (const auto &item : m_components)
9497 if (item->uses_objfile (objfile))
9498 return true;
9499 return false;
9500 }
9501
9502 void
9503 ada_aggregate_component::dump (ui_file *stream, int depth)
9504 {
9505 gdb_printf (stream, _("%*sAggregate\n"), depth, "");
9506 for (const auto &item : m_components)
9507 item->dump (stream, depth + 1);
9508 }
9509
9510 void
9511 ada_aggregate_component::assign (struct value *container,
9512 struct value *lhs, struct expression *exp,
9513 std::vector<LONGEST> &indices,
9514 LONGEST low, LONGEST high)
9515 {
9516 for (auto &item : m_components)
9517 item->assign (container, lhs, exp, indices, low, high);
9518 }
9519
9520 /* See ada-exp.h. */
9521
9522 value *
9523 ada_aggregate_operation::assign_aggregate (struct value *container,
9524 struct value *lhs,
9525 struct expression *exp)
9526 {
9527 struct type *lhs_type;
9528 LONGEST low_index, high_index;
9529
9530 container = ada_coerce_ref (container);
9531 if (ada_is_direct_array_type (value_type (container)))
9532 container = ada_coerce_to_simple_array (container);
9533 lhs = ada_coerce_ref (lhs);
9534 if (!deprecated_value_modifiable (lhs))
9535 error (_("Left operand of assignment is not a modifiable lvalue."));
9536
9537 lhs_type = check_typedef (value_type (lhs));
9538 if (ada_is_direct_array_type (lhs_type))
9539 {
9540 lhs = ada_coerce_to_simple_array (lhs);
9541 lhs_type = check_typedef (value_type (lhs));
9542 low_index = lhs_type->bounds ()->low.const_val ();
9543 high_index = lhs_type->bounds ()->high.const_val ();
9544 }
9545 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9546 {
9547 low_index = 0;
9548 high_index = num_visible_fields (lhs_type) - 1;
9549 }
9550 else
9551 error (_("Left-hand side must be array or record."));
9552
9553 std::vector<LONGEST> indices (4);
9554 indices[0] = indices[1] = low_index - 1;
9555 indices[2] = indices[3] = high_index + 1;
9556
9557 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9558 low_index, high_index);
9559
9560 return container;
9561 }
9562
9563 bool
9564 ada_positional_component::uses_objfile (struct objfile *objfile)
9565 {
9566 return m_op->uses_objfile (objfile);
9567 }
9568
9569 void
9570 ada_positional_component::dump (ui_file *stream, int depth)
9571 {
9572 gdb_printf (stream, _("%*sPositional, index = %d\n"),
9573 depth, "", m_index);
9574 m_op->dump (stream, depth + 1);
9575 }
9576
9577 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9578 construct, given that the positions are relative to lower bound
9579 LOW, where HIGH is the upper bound. Record the position in
9580 INDICES. CONTAINER is as for assign_aggregate. */
9581 void
9582 ada_positional_component::assign (struct value *container,
9583 struct value *lhs, struct expression *exp,
9584 std::vector<LONGEST> &indices,
9585 LONGEST low, LONGEST high)
9586 {
9587 LONGEST ind = m_index + low;
9588
9589 if (ind - 1 == high)
9590 warning (_("Extra components in aggregate ignored."));
9591 if (ind <= high)
9592 {
9593 add_component_interval (ind, ind, indices);
9594 assign_component (container, lhs, ind, exp, m_op);
9595 }
9596 }
9597
9598 bool
9599 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9600 {
9601 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9602 }
9603
9604 void
9605 ada_discrete_range_association::dump (ui_file *stream, int depth)
9606 {
9607 gdb_printf (stream, _("%*sDiscrete range:\n"), depth, "");
9608 m_low->dump (stream, depth + 1);
9609 m_high->dump (stream, depth + 1);
9610 }
9611
9612 void
9613 ada_discrete_range_association::assign (struct value *container,
9614 struct value *lhs,
9615 struct expression *exp,
9616 std::vector<LONGEST> &indices,
9617 LONGEST low, LONGEST high,
9618 operation_up &op)
9619 {
9620 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9621 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9622
9623 if (lower <= upper && (lower < low || upper > high))
9624 error (_("Index in component association out of bounds."));
9625
9626 add_component_interval (lower, upper, indices);
9627 while (lower <= upper)
9628 {
9629 assign_component (container, lhs, lower, exp, op);
9630 lower += 1;
9631 }
9632 }
9633
9634 bool
9635 ada_name_association::uses_objfile (struct objfile *objfile)
9636 {
9637 return m_val->uses_objfile (objfile);
9638 }
9639
9640 void
9641 ada_name_association::dump (ui_file *stream, int depth)
9642 {
9643 gdb_printf (stream, _("%*sName:\n"), depth, "");
9644 m_val->dump (stream, depth + 1);
9645 }
9646
9647 void
9648 ada_name_association::assign (struct value *container,
9649 struct value *lhs,
9650 struct expression *exp,
9651 std::vector<LONGEST> &indices,
9652 LONGEST low, LONGEST high,
9653 operation_up &op)
9654 {
9655 int index;
9656
9657 if (ada_is_direct_array_type (value_type (lhs)))
9658 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9659 EVAL_NORMAL)));
9660 else
9661 {
9662 ada_string_operation *strop
9663 = dynamic_cast<ada_string_operation *> (m_val.get ());
9664
9665 const char *name;
9666 if (strop != nullptr)
9667 name = strop->get_name ();
9668 else
9669 {
9670 ada_var_value_operation *vvo
9671 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9672 if (vvo != nullptr)
9673 error (_("Invalid record component association."));
9674 name = vvo->get_symbol ()->natural_name ();
9675 }
9676
9677 index = 0;
9678 if (! find_struct_field (name, value_type (lhs), 0,
9679 NULL, NULL, NULL, NULL, &index))
9680 error (_("Unknown component name: %s."), name);
9681 }
9682
9683 add_component_interval (index, index, indices);
9684 assign_component (container, lhs, index, exp, op);
9685 }
9686
9687 bool
9688 ada_choices_component::uses_objfile (struct objfile *objfile)
9689 {
9690 if (m_op->uses_objfile (objfile))
9691 return true;
9692 for (const auto &item : m_assocs)
9693 if (item->uses_objfile (objfile))
9694 return true;
9695 return false;
9696 }
9697
9698 void
9699 ada_choices_component::dump (ui_file *stream, int depth)
9700 {
9701 gdb_printf (stream, _("%*sChoices:\n"), depth, "");
9702 m_op->dump (stream, depth + 1);
9703 for (const auto &item : m_assocs)
9704 item->dump (stream, depth + 1);
9705 }
9706
9707 /* Assign into the components of LHS indexed by the OP_CHOICES
9708 construct at *POS, updating *POS past the construct, given that
9709 the allowable indices are LOW..HIGH. Record the indices assigned
9710 to in INDICES. CONTAINER is as for assign_aggregate. */
9711 void
9712 ada_choices_component::assign (struct value *container,
9713 struct value *lhs, struct expression *exp,
9714 std::vector<LONGEST> &indices,
9715 LONGEST low, LONGEST high)
9716 {
9717 for (auto &item : m_assocs)
9718 item->assign (container, lhs, exp, indices, low, high, m_op);
9719 }
9720
9721 bool
9722 ada_others_component::uses_objfile (struct objfile *objfile)
9723 {
9724 return m_op->uses_objfile (objfile);
9725 }
9726
9727 void
9728 ada_others_component::dump (ui_file *stream, int depth)
9729 {
9730 gdb_printf (stream, _("%*sOthers:\n"), depth, "");
9731 m_op->dump (stream, depth + 1);
9732 }
9733
9734 /* Assign the value of the expression in the OP_OTHERS construct in
9735 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9736 have not been previously assigned. The index intervals already assigned
9737 are in INDICES. CONTAINER is as for assign_aggregate. */
9738 void
9739 ada_others_component::assign (struct value *container,
9740 struct value *lhs, struct expression *exp,
9741 std::vector<LONGEST> &indices,
9742 LONGEST low, LONGEST high)
9743 {
9744 int num_indices = indices.size ();
9745 for (int i = 0; i < num_indices - 2; i += 2)
9746 {
9747 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9748 assign_component (container, lhs, ind, exp, m_op);
9749 }
9750 }
9751
9752 struct value *
9753 ada_assign_operation::evaluate (struct type *expect_type,
9754 struct expression *exp,
9755 enum noside noside)
9756 {
9757 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9758
9759 ada_aggregate_operation *ag_op
9760 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9761 if (ag_op != nullptr)
9762 {
9763 if (noside != EVAL_NORMAL)
9764 return arg1;
9765
9766 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9767 return ada_value_assign (arg1, arg1);
9768 }
9769 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9770 except if the lhs of our assignment is a convenience variable.
9771 In the case of assigning to a convenience variable, the lhs
9772 should be exactly the result of the evaluation of the rhs. */
9773 struct type *type = value_type (arg1);
9774 if (VALUE_LVAL (arg1) == lval_internalvar)
9775 type = NULL;
9776 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9777 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9778 return arg1;
9779 if (VALUE_LVAL (arg1) == lval_internalvar)
9780 {
9781 /* Nothing. */
9782 }
9783 else
9784 arg2 = coerce_for_assign (value_type (arg1), arg2);
9785 return ada_value_assign (arg1, arg2);
9786 }
9787
9788 } /* namespace expr */
9789
9790 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9791 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9792 overlap. */
9793 static void
9794 add_component_interval (LONGEST low, LONGEST high,
9795 std::vector<LONGEST> &indices)
9796 {
9797 int i, j;
9798
9799 int size = indices.size ();
9800 for (i = 0; i < size; i += 2) {
9801 if (high >= indices[i] && low <= indices[i + 1])
9802 {
9803 int kh;
9804
9805 for (kh = i + 2; kh < size; kh += 2)
9806 if (high < indices[kh])
9807 break;
9808 if (low < indices[i])
9809 indices[i] = low;
9810 indices[i + 1] = indices[kh - 1];
9811 if (high > indices[i + 1])
9812 indices[i + 1] = high;
9813 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9814 indices.resize (kh - i - 2);
9815 return;
9816 }
9817 else if (high < indices[i])
9818 break;
9819 }
9820
9821 indices.resize (indices.size () + 2);
9822 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9823 indices[j] = indices[j - 2];
9824 indices[i] = low;
9825 indices[i + 1] = high;
9826 }
9827
9828 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9829 is different. */
9830
9831 static struct value *
9832 ada_value_cast (struct type *type, struct value *arg2)
9833 {
9834 if (type == ada_check_typedef (value_type (arg2)))
9835 return arg2;
9836
9837 return value_cast (type, arg2);
9838 }
9839
9840 /* Evaluating Ada expressions, and printing their result.
9841 ------------------------------------------------------
9842
9843 1. Introduction:
9844 ----------------
9845
9846 We usually evaluate an Ada expression in order to print its value.
9847 We also evaluate an expression in order to print its type, which
9848 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9849 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9850 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9851 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9852 similar.
9853
9854 Evaluating expressions is a little more complicated for Ada entities
9855 than it is for entities in languages such as C. The main reason for
9856 this is that Ada provides types whose definition might be dynamic.
9857 One example of such types is variant records. Or another example
9858 would be an array whose bounds can only be known at run time.
9859
9860 The following description is a general guide as to what should be
9861 done (and what should NOT be done) in order to evaluate an expression
9862 involving such types, and when. This does not cover how the semantic
9863 information is encoded by GNAT as this is covered separatly. For the
9864 document used as the reference for the GNAT encoding, see exp_dbug.ads
9865 in the GNAT sources.
9866
9867 Ideally, we should embed each part of this description next to its
9868 associated code. Unfortunately, the amount of code is so vast right
9869 now that it's hard to see whether the code handling a particular
9870 situation might be duplicated or not. One day, when the code is
9871 cleaned up, this guide might become redundant with the comments
9872 inserted in the code, and we might want to remove it.
9873
9874 2. ``Fixing'' an Entity, the Simple Case:
9875 -----------------------------------------
9876
9877 When evaluating Ada expressions, the tricky issue is that they may
9878 reference entities whose type contents and size are not statically
9879 known. Consider for instance a variant record:
9880
9881 type Rec (Empty : Boolean := True) is record
9882 case Empty is
9883 when True => null;
9884 when False => Value : Integer;
9885 end case;
9886 end record;
9887 Yes : Rec := (Empty => False, Value => 1);
9888 No : Rec := (empty => True);
9889
9890 The size and contents of that record depends on the value of the
9891 descriminant (Rec.Empty). At this point, neither the debugging
9892 information nor the associated type structure in GDB are able to
9893 express such dynamic types. So what the debugger does is to create
9894 "fixed" versions of the type that applies to the specific object.
9895 We also informally refer to this operation as "fixing" an object,
9896 which means creating its associated fixed type.
9897
9898 Example: when printing the value of variable "Yes" above, its fixed
9899 type would look like this:
9900
9901 type Rec is record
9902 Empty : Boolean;
9903 Value : Integer;
9904 end record;
9905
9906 On the other hand, if we printed the value of "No", its fixed type
9907 would become:
9908
9909 type Rec is record
9910 Empty : Boolean;
9911 end record;
9912
9913 Things become a little more complicated when trying to fix an entity
9914 with a dynamic type that directly contains another dynamic type,
9915 such as an array of variant records, for instance. There are
9916 two possible cases: Arrays, and records.
9917
9918 3. ``Fixing'' Arrays:
9919 ---------------------
9920
9921 The type structure in GDB describes an array in terms of its bounds,
9922 and the type of its elements. By design, all elements in the array
9923 have the same type and we cannot represent an array of variant elements
9924 using the current type structure in GDB. When fixing an array,
9925 we cannot fix the array element, as we would potentially need one
9926 fixed type per element of the array. As a result, the best we can do
9927 when fixing an array is to produce an array whose bounds and size
9928 are correct (allowing us to read it from memory), but without having
9929 touched its element type. Fixing each element will be done later,
9930 when (if) necessary.
9931
9932 Arrays are a little simpler to handle than records, because the same
9933 amount of memory is allocated for each element of the array, even if
9934 the amount of space actually used by each element differs from element
9935 to element. Consider for instance the following array of type Rec:
9936
9937 type Rec_Array is array (1 .. 2) of Rec;
9938
9939 The actual amount of memory occupied by each element might be different
9940 from element to element, depending on the value of their discriminant.
9941 But the amount of space reserved for each element in the array remains
9942 fixed regardless. So we simply need to compute that size using
9943 the debugging information available, from which we can then determine
9944 the array size (we multiply the number of elements of the array by
9945 the size of each element).
9946
9947 The simplest case is when we have an array of a constrained element
9948 type. For instance, consider the following type declarations:
9949
9950 type Bounded_String (Max_Size : Integer) is
9951 Length : Integer;
9952 Buffer : String (1 .. Max_Size);
9953 end record;
9954 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9955
9956 In this case, the compiler describes the array as an array of
9957 variable-size elements (identified by its XVS suffix) for which
9958 the size can be read in the parallel XVZ variable.
9959
9960 In the case of an array of an unconstrained element type, the compiler
9961 wraps the array element inside a private PAD type. This type should not
9962 be shown to the user, and must be "unwrap"'ed before printing. Note
9963 that we also use the adjective "aligner" in our code to designate
9964 these wrapper types.
9965
9966 In some cases, the size allocated for each element is statically
9967 known. In that case, the PAD type already has the correct size,
9968 and the array element should remain unfixed.
9969
9970 But there are cases when this size is not statically known.
9971 For instance, assuming that "Five" is an integer variable:
9972
9973 type Dynamic is array (1 .. Five) of Integer;
9974 type Wrapper (Has_Length : Boolean := False) is record
9975 Data : Dynamic;
9976 case Has_Length is
9977 when True => Length : Integer;
9978 when False => null;
9979 end case;
9980 end record;
9981 type Wrapper_Array is array (1 .. 2) of Wrapper;
9982
9983 Hello : Wrapper_Array := (others => (Has_Length => True,
9984 Data => (others => 17),
9985 Length => 1));
9986
9987
9988 The debugging info would describe variable Hello as being an
9989 array of a PAD type. The size of that PAD type is not statically
9990 known, but can be determined using a parallel XVZ variable.
9991 In that case, a copy of the PAD type with the correct size should
9992 be used for the fixed array.
9993
9994 3. ``Fixing'' record type objects:
9995 ----------------------------------
9996
9997 Things are slightly different from arrays in the case of dynamic
9998 record types. In this case, in order to compute the associated
9999 fixed type, we need to determine the size and offset of each of
10000 its components. This, in turn, requires us to compute the fixed
10001 type of each of these components.
10002
10003 Consider for instance the example:
10004
10005 type Bounded_String (Max_Size : Natural) is record
10006 Str : String (1 .. Max_Size);
10007 Length : Natural;
10008 end record;
10009 My_String : Bounded_String (Max_Size => 10);
10010
10011 In that case, the position of field "Length" depends on the size
10012 of field Str, which itself depends on the value of the Max_Size
10013 discriminant. In order to fix the type of variable My_String,
10014 we need to fix the type of field Str. Therefore, fixing a variant
10015 record requires us to fix each of its components.
10016
10017 However, if a component does not have a dynamic size, the component
10018 should not be fixed. In particular, fields that use a PAD type
10019 should not fixed. Here is an example where this might happen
10020 (assuming type Rec above):
10021
10022 type Container (Big : Boolean) is record
10023 First : Rec;
10024 After : Integer;
10025 case Big is
10026 when True => Another : Integer;
10027 when False => null;
10028 end case;
10029 end record;
10030 My_Container : Container := (Big => False,
10031 First => (Empty => True),
10032 After => 42);
10033
10034 In that example, the compiler creates a PAD type for component First,
10035 whose size is constant, and then positions the component After just
10036 right after it. The offset of component After is therefore constant
10037 in this case.
10038
10039 The debugger computes the position of each field based on an algorithm
10040 that uses, among other things, the actual position and size of the field
10041 preceding it. Let's now imagine that the user is trying to print
10042 the value of My_Container. If the type fixing was recursive, we would
10043 end up computing the offset of field After based on the size of the
10044 fixed version of field First. And since in our example First has
10045 only one actual field, the size of the fixed type is actually smaller
10046 than the amount of space allocated to that field, and thus we would
10047 compute the wrong offset of field After.
10048
10049 To make things more complicated, we need to watch out for dynamic
10050 components of variant records (identified by the ___XVL suffix in
10051 the component name). Even if the target type is a PAD type, the size
10052 of that type might not be statically known. So the PAD type needs
10053 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10054 we might end up with the wrong size for our component. This can be
10055 observed with the following type declarations:
10056
10057 type Octal is new Integer range 0 .. 7;
10058 type Octal_Array is array (Positive range <>) of Octal;
10059 pragma Pack (Octal_Array);
10060
10061 type Octal_Buffer (Size : Positive) is record
10062 Buffer : Octal_Array (1 .. Size);
10063 Length : Integer;
10064 end record;
10065
10066 In that case, Buffer is a PAD type whose size is unset and needs
10067 to be computed by fixing the unwrapped type.
10068
10069 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10070 ----------------------------------------------------------
10071
10072 Lastly, when should the sub-elements of an entity that remained unfixed
10073 thus far, be actually fixed?
10074
10075 The answer is: Only when referencing that element. For instance
10076 when selecting one component of a record, this specific component
10077 should be fixed at that point in time. Or when printing the value
10078 of a record, each component should be fixed before its value gets
10079 printed. Similarly for arrays, the element of the array should be
10080 fixed when printing each element of the array, or when extracting
10081 one element out of that array. On the other hand, fixing should
10082 not be performed on the elements when taking a slice of an array!
10083
10084 Note that one of the side effects of miscomputing the offset and
10085 size of each field is that we end up also miscomputing the size
10086 of the containing type. This can have adverse results when computing
10087 the value of an entity. GDB fetches the value of an entity based
10088 on the size of its type, and thus a wrong size causes GDB to fetch
10089 the wrong amount of memory. In the case where the computed size is
10090 too small, GDB fetches too little data to print the value of our
10091 entity. Results in this case are unpredictable, as we usually read
10092 past the buffer containing the data =:-o. */
10093
10094 /* A helper function for TERNOP_IN_RANGE. */
10095
10096 static value *
10097 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
10098 enum noside noside,
10099 value *arg1, value *arg2, value *arg3)
10100 {
10101 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10102 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10103 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10104 return
10105 value_from_longest (type,
10106 (value_less (arg1, arg3)
10107 || value_equal (arg1, arg3))
10108 && (value_less (arg2, arg1)
10109 || value_equal (arg2, arg1)));
10110 }
10111
10112 /* A helper function for UNOP_NEG. */
10113
10114 value *
10115 ada_unop_neg (struct type *expect_type,
10116 struct expression *exp,
10117 enum noside noside, enum exp_opcode op,
10118 struct value *arg1)
10119 {
10120 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10121 return value_neg (arg1);
10122 }
10123
10124 /* A helper function for UNOP_IN_RANGE. */
10125
10126 value *
10127 ada_unop_in_range (struct type *expect_type,
10128 struct expression *exp,
10129 enum noside noside, enum exp_opcode op,
10130 struct value *arg1, struct type *type)
10131 {
10132 struct value *arg2, *arg3;
10133 switch (type->code ())
10134 {
10135 default:
10136 lim_warning (_("Membership test incompletely implemented; "
10137 "always returns true"));
10138 type = language_bool_type (exp->language_defn, exp->gdbarch);
10139 return value_from_longest (type, (LONGEST) 1);
10140
10141 case TYPE_CODE_RANGE:
10142 arg2 = value_from_longest (type,
10143 type->bounds ()->low.const_val ());
10144 arg3 = value_from_longest (type,
10145 type->bounds ()->high.const_val ());
10146 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10147 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10148 type = language_bool_type (exp->language_defn, exp->gdbarch);
10149 return
10150 value_from_longest (type,
10151 (value_less (arg1, arg3)
10152 || value_equal (arg1, arg3))
10153 && (value_less (arg2, arg1)
10154 || value_equal (arg2, arg1)));
10155 }
10156 }
10157
10158 /* A helper function for OP_ATR_TAG. */
10159
10160 value *
10161 ada_atr_tag (struct type *expect_type,
10162 struct expression *exp,
10163 enum noside noside, enum exp_opcode op,
10164 struct value *arg1)
10165 {
10166 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10167 return value_zero (ada_tag_type (arg1), not_lval);
10168
10169 return ada_value_tag (arg1);
10170 }
10171
10172 /* A helper function for OP_ATR_SIZE. */
10173
10174 value *
10175 ada_atr_size (struct type *expect_type,
10176 struct expression *exp,
10177 enum noside noside, enum exp_opcode op,
10178 struct value *arg1)
10179 {
10180 struct type *type = value_type (arg1);
10181
10182 /* If the argument is a reference, then dereference its type, since
10183 the user is really asking for the size of the actual object,
10184 not the size of the pointer. */
10185 if (type->code () == TYPE_CODE_REF)
10186 type = TYPE_TARGET_TYPE (type);
10187
10188 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10189 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10190 else
10191 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10192 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10193 }
10194
10195 /* A helper function for UNOP_ABS. */
10196
10197 value *
10198 ada_abs (struct type *expect_type,
10199 struct expression *exp,
10200 enum noside noside, enum exp_opcode op,
10201 struct value *arg1)
10202 {
10203 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10204 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10205 return value_neg (arg1);
10206 else
10207 return arg1;
10208 }
10209
10210 /* A helper function for BINOP_MUL. */
10211
10212 value *
10213 ada_mult_binop (struct type *expect_type,
10214 struct expression *exp,
10215 enum noside noside, enum exp_opcode op,
10216 struct value *arg1, struct value *arg2)
10217 {
10218 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10219 {
10220 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10221 return value_zero (value_type (arg1), not_lval);
10222 }
10223 else
10224 {
10225 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10226 return ada_value_binop (arg1, arg2, op);
10227 }
10228 }
10229
10230 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
10231
10232 value *
10233 ada_equal_binop (struct type *expect_type,
10234 struct expression *exp,
10235 enum noside noside, enum exp_opcode op,
10236 struct value *arg1, struct value *arg2)
10237 {
10238 int tem;
10239 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10240 tem = 0;
10241 else
10242 {
10243 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10244 tem = ada_value_equal (arg1, arg2);
10245 }
10246 if (op == BINOP_NOTEQUAL)
10247 tem = !tem;
10248 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
10249 return value_from_longest (type, (LONGEST) tem);
10250 }
10251
10252 /* A helper function for TERNOP_SLICE. */
10253
10254 value *
10255 ada_ternop_slice (struct expression *exp,
10256 enum noside noside,
10257 struct value *array, struct value *low_bound_val,
10258 struct value *high_bound_val)
10259 {
10260 LONGEST low_bound;
10261 LONGEST high_bound;
10262
10263 low_bound_val = coerce_ref (low_bound_val);
10264 high_bound_val = coerce_ref (high_bound_val);
10265 low_bound = value_as_long (low_bound_val);
10266 high_bound = value_as_long (high_bound_val);
10267
10268 /* If this is a reference to an aligner type, then remove all
10269 the aligners. */
10270 if (value_type (array)->code () == TYPE_CODE_REF
10271 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10272 TYPE_TARGET_TYPE (value_type (array)) =
10273 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10274
10275 if (ada_is_any_packed_array_type (value_type (array)))
10276 error (_("cannot slice a packed array"));
10277
10278 /* If this is a reference to an array or an array lvalue,
10279 convert to a pointer. */
10280 if (value_type (array)->code () == TYPE_CODE_REF
10281 || (value_type (array)->code () == TYPE_CODE_ARRAY
10282 && VALUE_LVAL (array) == lval_memory))
10283 array = value_addr (array);
10284
10285 if (noside == EVAL_AVOID_SIDE_EFFECTS
10286 && ada_is_array_descriptor_type (ada_check_typedef
10287 (value_type (array))))
10288 return empty_array (ada_type_of_array (array, 0), low_bound,
10289 high_bound);
10290
10291 array = ada_coerce_to_simple_array_ptr (array);
10292
10293 /* If we have more than one level of pointer indirection,
10294 dereference the value until we get only one level. */
10295 while (value_type (array)->code () == TYPE_CODE_PTR
10296 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10297 == TYPE_CODE_PTR))
10298 array = value_ind (array);
10299
10300 /* Make sure we really do have an array type before going further,
10301 to avoid a SEGV when trying to get the index type or the target
10302 type later down the road if the debug info generated by
10303 the compiler is incorrect or incomplete. */
10304 if (!ada_is_simple_array_type (value_type (array)))
10305 error (_("cannot take slice of non-array"));
10306
10307 if (ada_check_typedef (value_type (array))->code ()
10308 == TYPE_CODE_PTR)
10309 {
10310 struct type *type0 = ada_check_typedef (value_type (array));
10311
10312 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10313 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10314 else
10315 {
10316 struct type *arr_type0 =
10317 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10318
10319 return ada_value_slice_from_ptr (array, arr_type0,
10320 longest_to_int (low_bound),
10321 longest_to_int (high_bound));
10322 }
10323 }
10324 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10325 return array;
10326 else if (high_bound < low_bound)
10327 return empty_array (value_type (array), low_bound, high_bound);
10328 else
10329 return ada_value_slice (array, longest_to_int (low_bound),
10330 longest_to_int (high_bound));
10331 }
10332
10333 /* A helper function for BINOP_IN_BOUNDS. */
10334
10335 value *
10336 ada_binop_in_bounds (struct expression *exp, enum noside noside,
10337 struct value *arg1, struct value *arg2, int n)
10338 {
10339 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10340 {
10341 struct type *type = language_bool_type (exp->language_defn,
10342 exp->gdbarch);
10343 return value_zero (type, not_lval);
10344 }
10345
10346 struct type *type = ada_index_type (value_type (arg2), n, "range");
10347 if (!type)
10348 type = value_type (arg1);
10349
10350 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
10351 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
10352
10353 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10354 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10355 type = language_bool_type (exp->language_defn, exp->gdbarch);
10356 return value_from_longest (type,
10357 (value_less (arg1, arg3)
10358 || value_equal (arg1, arg3))
10359 && (value_less (arg2, arg1)
10360 || value_equal (arg2, arg1)));
10361 }
10362
10363 /* A helper function for some attribute operations. */
10364
10365 static value *
10366 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10367 struct value *arg1, struct type *type_arg, int tem)
10368 {
10369 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10370 {
10371 if (type_arg == NULL)
10372 type_arg = value_type (arg1);
10373
10374 if (ada_is_constrained_packed_array_type (type_arg))
10375 type_arg = decode_constrained_packed_array_type (type_arg);
10376
10377 if (!discrete_type_p (type_arg))
10378 {
10379 switch (op)
10380 {
10381 default: /* Should never happen. */
10382 error (_("unexpected attribute encountered"));
10383 case OP_ATR_FIRST:
10384 case OP_ATR_LAST:
10385 type_arg = ada_index_type (type_arg, tem,
10386 ada_attribute_name (op));
10387 break;
10388 case OP_ATR_LENGTH:
10389 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10390 break;
10391 }
10392 }
10393
10394 return value_zero (type_arg, not_lval);
10395 }
10396 else if (type_arg == NULL)
10397 {
10398 arg1 = ada_coerce_ref (arg1);
10399
10400 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10401 arg1 = ada_coerce_to_simple_array (arg1);
10402
10403 struct type *type;
10404 if (op == OP_ATR_LENGTH)
10405 type = builtin_type (exp->gdbarch)->builtin_int;
10406 else
10407 {
10408 type = ada_index_type (value_type (arg1), tem,
10409 ada_attribute_name (op));
10410 if (type == NULL)
10411 type = builtin_type (exp->gdbarch)->builtin_int;
10412 }
10413
10414 switch (op)
10415 {
10416 default: /* Should never happen. */
10417 error (_("unexpected attribute encountered"));
10418 case OP_ATR_FIRST:
10419 return value_from_longest
10420 (type, ada_array_bound (arg1, tem, 0));
10421 case OP_ATR_LAST:
10422 return value_from_longest
10423 (type, ada_array_bound (arg1, tem, 1));
10424 case OP_ATR_LENGTH:
10425 return value_from_longest
10426 (type, ada_array_length (arg1, tem));
10427 }
10428 }
10429 else if (discrete_type_p (type_arg))
10430 {
10431 struct type *range_type;
10432 const char *name = ada_type_name (type_arg);
10433
10434 range_type = NULL;
10435 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10436 range_type = to_fixed_range_type (type_arg, NULL);
10437 if (range_type == NULL)
10438 range_type = type_arg;
10439 switch (op)
10440 {
10441 default:
10442 error (_("unexpected attribute encountered"));
10443 case OP_ATR_FIRST:
10444 return value_from_longest
10445 (range_type, ada_discrete_type_low_bound (range_type));
10446 case OP_ATR_LAST:
10447 return value_from_longest
10448 (range_type, ada_discrete_type_high_bound (range_type));
10449 case OP_ATR_LENGTH:
10450 error (_("the 'length attribute applies only to array types"));
10451 }
10452 }
10453 else if (type_arg->code () == TYPE_CODE_FLT)
10454 error (_("unimplemented type attribute"));
10455 else
10456 {
10457 LONGEST low, high;
10458
10459 if (ada_is_constrained_packed_array_type (type_arg))
10460 type_arg = decode_constrained_packed_array_type (type_arg);
10461
10462 struct type *type;
10463 if (op == OP_ATR_LENGTH)
10464 type = builtin_type (exp->gdbarch)->builtin_int;
10465 else
10466 {
10467 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10468 if (type == NULL)
10469 type = builtin_type (exp->gdbarch)->builtin_int;
10470 }
10471
10472 switch (op)
10473 {
10474 default:
10475 error (_("unexpected attribute encountered"));
10476 case OP_ATR_FIRST:
10477 low = ada_array_bound_from_type (type_arg, tem, 0);
10478 return value_from_longest (type, low);
10479 case OP_ATR_LAST:
10480 high = ada_array_bound_from_type (type_arg, tem, 1);
10481 return value_from_longest (type, high);
10482 case OP_ATR_LENGTH:
10483 low = ada_array_bound_from_type (type_arg, tem, 0);
10484 high = ada_array_bound_from_type (type_arg, tem, 1);
10485 return value_from_longest (type, high - low + 1);
10486 }
10487 }
10488 }
10489
10490 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10491
10492 struct value *
10493 ada_binop_minmax (struct type *expect_type,
10494 struct expression *exp,
10495 enum noside noside, enum exp_opcode op,
10496 struct value *arg1, struct value *arg2)
10497 {
10498 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10499 return value_zero (value_type (arg1), not_lval);
10500 else
10501 {
10502 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10503 return value_binop (arg1, arg2, op);
10504 }
10505 }
10506
10507 /* A helper function for BINOP_EXP. */
10508
10509 struct value *
10510 ada_binop_exp (struct type *expect_type,
10511 struct expression *exp,
10512 enum noside noside, enum exp_opcode op,
10513 struct value *arg1, struct value *arg2)
10514 {
10515 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10516 return value_zero (value_type (arg1), not_lval);
10517 else
10518 {
10519 /* For integer exponentiation operations,
10520 only promote the first argument. */
10521 if (is_integral_type (value_type (arg2)))
10522 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10523 else
10524 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10525
10526 return value_binop (arg1, arg2, op);
10527 }
10528 }
10529
10530 namespace expr
10531 {
10532
10533 /* See ada-exp.h. */
10534
10535 operation_up
10536 ada_resolvable::replace (operation_up &&owner,
10537 struct expression *exp,
10538 bool deprocedure_p,
10539 bool parse_completion,
10540 innermost_block_tracker *tracker,
10541 struct type *context_type)
10542 {
10543 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10544 return (make_operation<ada_funcall_operation>
10545 (std::move (owner),
10546 std::vector<operation_up> ()));
10547 return std::move (owner);
10548 }
10549
10550 /* Convert the character literal whose value would be VAL to the
10551 appropriate value of type TYPE, if there is a translation.
10552 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10553 the literal 'A' (VAL == 65), returns 0. */
10554
10555 static LONGEST
10556 convert_char_literal (struct type *type, LONGEST val)
10557 {
10558 char name[12];
10559 int f;
10560
10561 if (type == NULL)
10562 return val;
10563 type = check_typedef (type);
10564 if (type->code () != TYPE_CODE_ENUM)
10565 return val;
10566
10567 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10568 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10569 else if (val >= 0 && val < 256)
10570 xsnprintf (name, sizeof (name), "QU%02x", (unsigned) val);
10571 else if (val >= 0 && val < 0x10000)
10572 xsnprintf (name, sizeof (name), "QW%04x", (unsigned) val);
10573 else
10574 xsnprintf (name, sizeof (name), "QWW%08lx", (unsigned long) val);
10575 size_t len = strlen (name);
10576 for (f = 0; f < type->num_fields (); f += 1)
10577 {
10578 /* Check the suffix because an enum constant in a package will
10579 have a name like "pkg__QUxx". This is safe enough because we
10580 already have the correct type, and because mangling means
10581 there can't be clashes. */
10582 const char *ename = type->field (f).name ();
10583 size_t elen = strlen (ename);
10584
10585 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10586 return type->field (f).loc_enumval ();
10587 }
10588 return val;
10589 }
10590
10591 value *
10592 ada_char_operation::evaluate (struct type *expect_type,
10593 struct expression *exp,
10594 enum noside noside)
10595 {
10596 value *result = long_const_operation::evaluate (expect_type, exp, noside);
10597 if (expect_type != nullptr)
10598 result = ada_value_cast (expect_type, result);
10599 return result;
10600 }
10601
10602 /* See ada-exp.h. */
10603
10604 operation_up
10605 ada_char_operation::replace (operation_up &&owner,
10606 struct expression *exp,
10607 bool deprocedure_p,
10608 bool parse_completion,
10609 innermost_block_tracker *tracker,
10610 struct type *context_type)
10611 {
10612 operation_up result = std::move (owner);
10613
10614 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10615 {
10616 gdb_assert (result.get () == this);
10617 std::get<0> (m_storage) = context_type;
10618 std::get<1> (m_storage)
10619 = convert_char_literal (context_type, std::get<1> (m_storage));
10620 }
10621
10622 return result;
10623 }
10624
10625 value *
10626 ada_wrapped_operation::evaluate (struct type *expect_type,
10627 struct expression *exp,
10628 enum noside noside)
10629 {
10630 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10631 if (noside == EVAL_NORMAL)
10632 result = unwrap_value (result);
10633
10634 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10635 then we need to perform the conversion manually, because
10636 evaluate_subexp_standard doesn't do it. This conversion is
10637 necessary in Ada because the different kinds of float/fixed
10638 types in Ada have different representations.
10639
10640 Similarly, we need to perform the conversion from OP_LONG
10641 ourselves. */
10642 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10643 result = ada_value_cast (expect_type, result);
10644
10645 return result;
10646 }
10647
10648 value *
10649 ada_string_operation::evaluate (struct type *expect_type,
10650 struct expression *exp,
10651 enum noside noside)
10652 {
10653 struct type *char_type;
10654 if (expect_type != nullptr && ada_is_string_type (expect_type))
10655 char_type = ada_array_element_type (expect_type, 1);
10656 else
10657 char_type = language_string_char_type (exp->language_defn, exp->gdbarch);
10658
10659 const std::string &str = std::get<0> (m_storage);
10660 const char *encoding;
10661 switch (TYPE_LENGTH (char_type))
10662 {
10663 case 1:
10664 {
10665 /* Simply copy over the data -- this isn't perhaps strictly
10666 correct according to the encodings, but it is gdb's
10667 historical behavior. */
10668 struct type *stringtype
10669 = lookup_array_range_type (char_type, 1, str.length ());
10670 struct value *val = allocate_value (stringtype);
10671 memcpy (value_contents_raw (val).data (), str.c_str (),
10672 str.length ());
10673 return val;
10674 }
10675
10676 case 2:
10677 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10678 encoding = "UTF-16BE";
10679 else
10680 encoding = "UTF-16LE";
10681 break;
10682
10683 case 4:
10684 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
10685 encoding = "UTF-32BE";
10686 else
10687 encoding = "UTF-32LE";
10688 break;
10689
10690 default:
10691 error (_("unexpected character type size %s"),
10692 pulongest (TYPE_LENGTH (char_type)));
10693 }
10694
10695 auto_obstack converted;
10696 convert_between_encodings (host_charset (), encoding,
10697 (const gdb_byte *) str.c_str (),
10698 str.length (), 1,
10699 &converted, translit_none);
10700
10701 struct type *stringtype
10702 = lookup_array_range_type (char_type, 1,
10703 obstack_object_size (&converted)
10704 / TYPE_LENGTH (char_type));
10705 struct value *val = allocate_value (stringtype);
10706 memcpy (value_contents_raw (val).data (),
10707 obstack_base (&converted),
10708 obstack_object_size (&converted));
10709 return val;
10710 }
10711
10712 value *
10713 ada_concat_operation::evaluate (struct type *expect_type,
10714 struct expression *exp,
10715 enum noside noside)
10716 {
10717 /* If one side is a literal, evaluate the other side first so that
10718 the expected type can be set properly. */
10719 const operation_up &lhs_expr = std::get<0> (m_storage);
10720 const operation_up &rhs_expr = std::get<1> (m_storage);
10721
10722 value *lhs, *rhs;
10723 if (dynamic_cast<ada_string_operation *> (lhs_expr.get ()) != nullptr)
10724 {
10725 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10726 lhs = lhs_expr->evaluate (value_type (rhs), exp, noside);
10727 }
10728 else if (dynamic_cast<ada_char_operation *> (lhs_expr.get ()) != nullptr)
10729 {
10730 rhs = rhs_expr->evaluate (nullptr, exp, noside);
10731 struct type *rhs_type = check_typedef (value_type (rhs));
10732 struct type *elt_type = nullptr;
10733 if (rhs_type->code () == TYPE_CODE_ARRAY)
10734 elt_type = TYPE_TARGET_TYPE (rhs_type);
10735 lhs = lhs_expr->evaluate (elt_type, exp, noside);
10736 }
10737 else if (dynamic_cast<ada_string_operation *> (rhs_expr.get ()) != nullptr)
10738 {
10739 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10740 rhs = rhs_expr->evaluate (value_type (lhs), exp, noside);
10741 }
10742 else if (dynamic_cast<ada_char_operation *> (rhs_expr.get ()) != nullptr)
10743 {
10744 lhs = lhs_expr->evaluate (nullptr, exp, noside);
10745 struct type *lhs_type = check_typedef (value_type (lhs));
10746 struct type *elt_type = nullptr;
10747 if (lhs_type->code () == TYPE_CODE_ARRAY)
10748 elt_type = TYPE_TARGET_TYPE (lhs_type);
10749 rhs = rhs_expr->evaluate (elt_type, exp, noside);
10750 }
10751 else
10752 return concat_operation::evaluate (expect_type, exp, noside);
10753
10754 return value_concat (lhs, rhs);
10755 }
10756
10757 value *
10758 ada_qual_operation::evaluate (struct type *expect_type,
10759 struct expression *exp,
10760 enum noside noside)
10761 {
10762 struct type *type = std::get<1> (m_storage);
10763 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10764 }
10765
10766 value *
10767 ada_ternop_range_operation::evaluate (struct type *expect_type,
10768 struct expression *exp,
10769 enum noside noside)
10770 {
10771 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10772 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10773 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10774 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10775 }
10776
10777 value *
10778 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10779 struct expression *exp,
10780 enum noside noside)
10781 {
10782 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10783 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10784
10785 auto do_op = [=] (LONGEST x, LONGEST y)
10786 {
10787 if (std::get<0> (m_storage) == BINOP_ADD)
10788 return x + y;
10789 return x - y;
10790 };
10791
10792 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10793 return (value_from_longest
10794 (value_type (arg1),
10795 do_op (value_as_long (arg1), value_as_long (arg2))));
10796 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10797 return (value_from_longest
10798 (value_type (arg2),
10799 do_op (value_as_long (arg1), value_as_long (arg2))));
10800 /* Preserve the original type for use by the range case below.
10801 We cannot cast the result to a reference type, so if ARG1 is
10802 a reference type, find its underlying type. */
10803 struct type *type = value_type (arg1);
10804 while (type->code () == TYPE_CODE_REF)
10805 type = TYPE_TARGET_TYPE (type);
10806 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10807 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10808 /* We need to special-case the result with a range.
10809 This is done for the benefit of "ptype". gdb's Ada support
10810 historically used the LHS to set the result type here, so
10811 preserve this behavior. */
10812 if (type->code () == TYPE_CODE_RANGE)
10813 arg1 = value_cast (type, arg1);
10814 return arg1;
10815 }
10816
10817 value *
10818 ada_unop_atr_operation::evaluate (struct type *expect_type,
10819 struct expression *exp,
10820 enum noside noside)
10821 {
10822 struct type *type_arg = nullptr;
10823 value *val = nullptr;
10824
10825 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10826 {
10827 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10828 EVAL_AVOID_SIDE_EFFECTS);
10829 type_arg = value_type (tem);
10830 }
10831 else
10832 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10833
10834 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10835 val, type_arg, std::get<2> (m_storage));
10836 }
10837
10838 value *
10839 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10840 struct expression *exp,
10841 enum noside noside)
10842 {
10843 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10844 return value_zero (expect_type, not_lval);
10845
10846 const bound_minimal_symbol &b = std::get<0> (m_storage);
10847 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10848
10849 val = ada_value_cast (expect_type, val);
10850
10851 /* Follow the Ada language semantics that do not allow taking
10852 an address of the result of a cast (view conversion in Ada). */
10853 if (VALUE_LVAL (val) == lval_memory)
10854 {
10855 if (value_lazy (val))
10856 value_fetch_lazy (val);
10857 VALUE_LVAL (val) = not_lval;
10858 }
10859 return val;
10860 }
10861
10862 value *
10863 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10864 struct expression *exp,
10865 enum noside noside)
10866 {
10867 value *val = evaluate_var_value (noside,
10868 std::get<0> (m_storage).block,
10869 std::get<0> (m_storage).symbol);
10870
10871 val = ada_value_cast (expect_type, val);
10872
10873 /* Follow the Ada language semantics that do not allow taking
10874 an address of the result of a cast (view conversion in Ada). */
10875 if (VALUE_LVAL (val) == lval_memory)
10876 {
10877 if (value_lazy (val))
10878 value_fetch_lazy (val);
10879 VALUE_LVAL (val) = not_lval;
10880 }
10881 return val;
10882 }
10883
10884 value *
10885 ada_var_value_operation::evaluate (struct type *expect_type,
10886 struct expression *exp,
10887 enum noside noside)
10888 {
10889 symbol *sym = std::get<0> (m_storage).symbol;
10890
10891 if (sym->domain () == UNDEF_DOMAIN)
10892 /* Only encountered when an unresolved symbol occurs in a
10893 context other than a function call, in which case, it is
10894 invalid. */
10895 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10896 sym->print_name ());
10897
10898 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10899 {
10900 struct type *type = static_unwrap_type (sym->type ());
10901 /* Check to see if this is a tagged type. We also need to handle
10902 the case where the type is a reference to a tagged type, but
10903 we have to be careful to exclude pointers to tagged types.
10904 The latter should be shown as usual (as a pointer), whereas
10905 a reference should mostly be transparent to the user. */
10906 if (ada_is_tagged_type (type, 0)
10907 || (type->code () == TYPE_CODE_REF
10908 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10909 {
10910 /* Tagged types are a little special in the fact that the real
10911 type is dynamic and can only be determined by inspecting the
10912 object's tag. This means that we need to get the object's
10913 value first (EVAL_NORMAL) and then extract the actual object
10914 type from its tag.
10915
10916 Note that we cannot skip the final step where we extract
10917 the object type from its tag, because the EVAL_NORMAL phase
10918 results in dynamic components being resolved into fixed ones.
10919 This can cause problems when trying to print the type
10920 description of tagged types whose parent has a dynamic size:
10921 We use the type name of the "_parent" component in order
10922 to print the name of the ancestor type in the type description.
10923 If that component had a dynamic size, the resolution into
10924 a fixed type would result in the loss of that type name,
10925 thus preventing us from printing the name of the ancestor
10926 type in the type description. */
10927 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10928
10929 if (type->code () != TYPE_CODE_REF)
10930 {
10931 struct type *actual_type;
10932
10933 actual_type = type_from_tag (ada_value_tag (arg1));
10934 if (actual_type == NULL)
10935 /* If, for some reason, we were unable to determine
10936 the actual type from the tag, then use the static
10937 approximation that we just computed as a fallback.
10938 This can happen if the debugging information is
10939 incomplete, for instance. */
10940 actual_type = type;
10941 return value_zero (actual_type, not_lval);
10942 }
10943 else
10944 {
10945 /* In the case of a ref, ada_coerce_ref takes care
10946 of determining the actual type. But the evaluation
10947 should return a ref as it should be valid to ask
10948 for its address; so rebuild a ref after coerce. */
10949 arg1 = ada_coerce_ref (arg1);
10950 return value_ref (arg1, TYPE_CODE_REF);
10951 }
10952 }
10953
10954 /* Records and unions for which GNAT encodings have been
10955 generated need to be statically fixed as well.
10956 Otherwise, non-static fixing produces a type where
10957 all dynamic properties are removed, which prevents "ptype"
10958 from being able to completely describe the type.
10959 For instance, a case statement in a variant record would be
10960 replaced by the relevant components based on the actual
10961 value of the discriminants. */
10962 if ((type->code () == TYPE_CODE_STRUCT
10963 && dynamic_template_type (type) != NULL)
10964 || (type->code () == TYPE_CODE_UNION
10965 && ada_find_parallel_type (type, "___XVU") != NULL))
10966 return value_zero (to_static_fixed_type (type), not_lval);
10967 }
10968
10969 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10970 return ada_to_fixed_value (arg1);
10971 }
10972
10973 bool
10974 ada_var_value_operation::resolve (struct expression *exp,
10975 bool deprocedure_p,
10976 bool parse_completion,
10977 innermost_block_tracker *tracker,
10978 struct type *context_type)
10979 {
10980 symbol *sym = std::get<0> (m_storage).symbol;
10981 if (sym->domain () == UNDEF_DOMAIN)
10982 {
10983 block_symbol resolved
10984 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10985 context_type, parse_completion,
10986 deprocedure_p, tracker);
10987 std::get<0> (m_storage) = resolved;
10988 }
10989
10990 if (deprocedure_p
10991 && (std::get<0> (m_storage).symbol->type ()->code ()
10992 == TYPE_CODE_FUNC))
10993 return true;
10994
10995 return false;
10996 }
10997
10998 value *
10999 ada_atr_val_operation::evaluate (struct type *expect_type,
11000 struct expression *exp,
11001 enum noside noside)
11002 {
11003 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
11004 return ada_val_atr (noside, std::get<0> (m_storage), arg);
11005 }
11006
11007 value *
11008 ada_unop_ind_operation::evaluate (struct type *expect_type,
11009 struct expression *exp,
11010 enum noside noside)
11011 {
11012 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
11013
11014 struct type *type = ada_check_typedef (value_type (arg1));
11015 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11016 {
11017 if (ada_is_array_descriptor_type (type))
11018 /* GDB allows dereferencing GNAT array descriptors. */
11019 {
11020 struct type *arrType = ada_type_of_array (arg1, 0);
11021
11022 if (arrType == NULL)
11023 error (_("Attempt to dereference null array pointer."));
11024 return value_at_lazy (arrType, 0);
11025 }
11026 else if (type->code () == TYPE_CODE_PTR
11027 || type->code () == TYPE_CODE_REF
11028 /* In C you can dereference an array to get the 1st elt. */
11029 || type->code () == TYPE_CODE_ARRAY)
11030 {
11031 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11032 only be determined by inspecting the object's tag.
11033 This means that we need to evaluate completely the
11034 expression in order to get its type. */
11035
11036 if ((type->code () == TYPE_CODE_REF
11037 || type->code () == TYPE_CODE_PTR)
11038 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11039 {
11040 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11041 EVAL_NORMAL);
11042 type = value_type (ada_value_ind (arg1));
11043 }
11044 else
11045 {
11046 type = to_static_fixed_type
11047 (ada_aligned_type
11048 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11049 }
11050 return value_zero (type, lval_memory);
11051 }
11052 else if (type->code () == TYPE_CODE_INT)
11053 {
11054 /* GDB allows dereferencing an int. */
11055 if (expect_type == NULL)
11056 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11057 lval_memory);
11058 else
11059 {
11060 expect_type =
11061 to_static_fixed_type (ada_aligned_type (expect_type));
11062 return value_zero (expect_type, lval_memory);
11063 }
11064 }
11065 else
11066 error (_("Attempt to take contents of a non-pointer value."));
11067 }
11068 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11069 type = ada_check_typedef (value_type (arg1));
11070
11071 if (type->code () == TYPE_CODE_INT)
11072 /* GDB allows dereferencing an int. If we were given
11073 the expect_type, then use that as the target type.
11074 Otherwise, assume that the target type is an int. */
11075 {
11076 if (expect_type != NULL)
11077 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11078 arg1));
11079 else
11080 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11081 (CORE_ADDR) value_as_address (arg1));
11082 }
11083
11084 if (ada_is_array_descriptor_type (type))
11085 /* GDB allows dereferencing GNAT array descriptors. */
11086 return ada_coerce_to_simple_array (arg1);
11087 else
11088 return ada_value_ind (arg1);
11089 }
11090
11091 value *
11092 ada_structop_operation::evaluate (struct type *expect_type,
11093 struct expression *exp,
11094 enum noside noside)
11095 {
11096 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
11097 const char *str = std::get<1> (m_storage).c_str ();
11098 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11099 {
11100 struct type *type;
11101 struct type *type1 = value_type (arg1);
11102
11103 if (ada_is_tagged_type (type1, 1))
11104 {
11105 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
11106
11107 /* If the field is not found, check if it exists in the
11108 extension of this object's type. This means that we
11109 need to evaluate completely the expression. */
11110
11111 if (type == NULL)
11112 {
11113 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
11114 EVAL_NORMAL);
11115 arg1 = ada_value_struct_elt (arg1, str, 0);
11116 arg1 = unwrap_value (arg1);
11117 type = value_type (ada_to_fixed_value (arg1));
11118 }
11119 }
11120 else
11121 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
11122
11123 return value_zero (ada_aligned_type (type), lval_memory);
11124 }
11125 else
11126 {
11127 arg1 = ada_value_struct_elt (arg1, str, 0);
11128 arg1 = unwrap_value (arg1);
11129 return ada_to_fixed_value (arg1);
11130 }
11131 }
11132
11133 value *
11134 ada_funcall_operation::evaluate (struct type *expect_type,
11135 struct expression *exp,
11136 enum noside noside)
11137 {
11138 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11139 int nargs = args_up.size ();
11140 std::vector<value *> argvec (nargs);
11141 operation_up &callee_op = std::get<0> (m_storage);
11142
11143 ada_var_value_operation *avv
11144 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11145 if (avv != nullptr
11146 && avv->get_symbol ()->domain () == UNDEF_DOMAIN)
11147 error (_("Unexpected unresolved symbol, %s, during evaluation"),
11148 avv->get_symbol ()->print_name ());
11149
11150 value *callee = callee_op->evaluate (nullptr, exp, noside);
11151 for (int i = 0; i < args_up.size (); ++i)
11152 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
11153
11154 if (ada_is_constrained_packed_array_type
11155 (desc_base_type (value_type (callee))))
11156 callee = ada_coerce_to_simple_array (callee);
11157 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11158 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
11159 /* This is a packed array that has already been fixed, and
11160 therefore already coerced to a simple array. Nothing further
11161 to do. */
11162 ;
11163 else if (value_type (callee)->code () == TYPE_CODE_REF)
11164 {
11165 /* Make sure we dereference references so that all the code below
11166 feels like it's really handling the referenced value. Wrapping
11167 types (for alignment) may be there, so make sure we strip them as
11168 well. */
11169 callee = ada_to_fixed_value (coerce_ref (callee));
11170 }
11171 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
11172 && VALUE_LVAL (callee) == lval_memory)
11173 callee = value_addr (callee);
11174
11175 struct type *type = ada_check_typedef (value_type (callee));
11176
11177 /* Ada allows us to implicitly dereference arrays when subscripting
11178 them. So, if this is an array typedef (encoding use for array
11179 access types encoded as fat pointers), strip it now. */
11180 if (type->code () == TYPE_CODE_TYPEDEF)
11181 type = ada_typedef_target_type (type);
11182
11183 if (type->code () == TYPE_CODE_PTR)
11184 {
11185 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
11186 {
11187 case TYPE_CODE_FUNC:
11188 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
11189 break;
11190 case TYPE_CODE_ARRAY:
11191 break;
11192 case TYPE_CODE_STRUCT:
11193 if (noside != EVAL_AVOID_SIDE_EFFECTS)
11194 callee = ada_value_ind (callee);
11195 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
11196 break;
11197 default:
11198 error (_("cannot subscript or call something of type `%s'"),
11199 ada_type_name (value_type (callee)));
11200 break;
11201 }
11202 }
11203
11204 switch (type->code ())
11205 {
11206 case TYPE_CODE_FUNC:
11207 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11208 {
11209 if (TYPE_TARGET_TYPE (type) == NULL)
11210 error_call_unknown_return_type (NULL);
11211 return allocate_value (TYPE_TARGET_TYPE (type));
11212 }
11213 return call_function_by_hand (callee, NULL, argvec);
11214 case TYPE_CODE_INTERNAL_FUNCTION:
11215 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11216 /* We don't know anything about what the internal
11217 function might return, but we have to return
11218 something. */
11219 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11220 not_lval);
11221 else
11222 return call_internal_function (exp->gdbarch, exp->language_defn,
11223 callee, nargs,
11224 argvec.data ());
11225
11226 case TYPE_CODE_STRUCT:
11227 {
11228 int arity;
11229
11230 arity = ada_array_arity (type);
11231 type = ada_array_element_type (type, nargs);
11232 if (type == NULL)
11233 error (_("cannot subscript or call a record"));
11234 if (arity != nargs)
11235 error (_("wrong number of subscripts; expecting %d"), arity);
11236 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11237 return value_zero (ada_aligned_type (type), lval_memory);
11238 return
11239 unwrap_value (ada_value_subscript
11240 (callee, nargs, argvec.data ()));
11241 }
11242 case TYPE_CODE_ARRAY:
11243 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11244 {
11245 type = ada_array_element_type (type, nargs);
11246 if (type == NULL)
11247 error (_("element type of array unknown"));
11248 else
11249 return value_zero (ada_aligned_type (type), lval_memory);
11250 }
11251 return
11252 unwrap_value (ada_value_subscript
11253 (ada_coerce_to_simple_array (callee),
11254 nargs, argvec.data ()));
11255 case TYPE_CODE_PTR: /* Pointer to array */
11256 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11257 {
11258 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11259 type = ada_array_element_type (type, nargs);
11260 if (type == NULL)
11261 error (_("element type of array unknown"));
11262 else
11263 return value_zero (ada_aligned_type (type), lval_memory);
11264 }
11265 return
11266 unwrap_value (ada_value_ptr_subscript (callee, nargs,
11267 argvec.data ()));
11268
11269 default:
11270 error (_("Attempt to index or call something other than an "
11271 "array or function"));
11272 }
11273 }
11274
11275 bool
11276 ada_funcall_operation::resolve (struct expression *exp,
11277 bool deprocedure_p,
11278 bool parse_completion,
11279 innermost_block_tracker *tracker,
11280 struct type *context_type)
11281 {
11282 operation_up &callee_op = std::get<0> (m_storage);
11283
11284 ada_var_value_operation *avv
11285 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
11286 if (avv == nullptr)
11287 return false;
11288
11289 symbol *sym = avv->get_symbol ();
11290 if (sym->domain () != UNDEF_DOMAIN)
11291 return false;
11292
11293 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
11294 int nargs = args_up.size ();
11295 std::vector<value *> argvec (nargs);
11296
11297 for (int i = 0; i < args_up.size (); ++i)
11298 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
11299
11300 const block *block = avv->get_block ();
11301 block_symbol resolved
11302 = ada_resolve_funcall (sym, block,
11303 context_type, parse_completion,
11304 nargs, argvec.data (),
11305 tracker);
11306
11307 std::get<0> (m_storage)
11308 = make_operation<ada_var_value_operation> (resolved);
11309 return false;
11310 }
11311
11312 bool
11313 ada_ternop_slice_operation::resolve (struct expression *exp,
11314 bool deprocedure_p,
11315 bool parse_completion,
11316 innermost_block_tracker *tracker,
11317 struct type *context_type)
11318 {
11319 /* Historically this check was done during resolution, so we
11320 continue that here. */
11321 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
11322 EVAL_AVOID_SIDE_EFFECTS);
11323 if (ada_is_any_packed_array_type (value_type (v)))
11324 error (_("cannot slice a packed array"));
11325 return false;
11326 }
11327
11328 }
11329
11330 \f
11331
11332 /* Return non-zero iff TYPE represents a System.Address type. */
11333
11334 int
11335 ada_is_system_address_type (struct type *type)
11336 {
11337 return (type->name () && strcmp (type->name (), "system__address") == 0);
11338 }
11339
11340 \f
11341
11342 /* Range types */
11343
11344 /* Scan STR beginning at position K for a discriminant name, and
11345 return the value of that discriminant field of DVAL in *PX. If
11346 PNEW_K is not null, put the position of the character beyond the
11347 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11348 not alter *PX and *PNEW_K if unsuccessful. */
11349
11350 static int
11351 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11352 int *pnew_k)
11353 {
11354 static std::string storage;
11355 const char *pstart, *pend, *bound;
11356 struct value *bound_val;
11357
11358 if (dval == NULL || str == NULL || str[k] == '\0')
11359 return 0;
11360
11361 pstart = str + k;
11362 pend = strstr (pstart, "__");
11363 if (pend == NULL)
11364 {
11365 bound = pstart;
11366 k += strlen (bound);
11367 }
11368 else
11369 {
11370 int len = pend - pstart;
11371
11372 /* Strip __ and beyond. */
11373 storage = std::string (pstart, len);
11374 bound = storage.c_str ();
11375 k = pend - str;
11376 }
11377
11378 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11379 if (bound_val == NULL)
11380 return 0;
11381
11382 *px = value_as_long (bound_val);
11383 if (pnew_k != NULL)
11384 *pnew_k = k;
11385 return 1;
11386 }
11387
11388 /* Value of variable named NAME. Only exact matches are considered.
11389 If no such variable found, then if ERR_MSG is null, returns 0, and
11390 otherwise causes an error with message ERR_MSG. */
11391
11392 static struct value *
11393 get_var_value (const char *name, const char *err_msg)
11394 {
11395 std::string quoted_name = add_angle_brackets (name);
11396
11397 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
11398
11399 std::vector<struct block_symbol> syms
11400 = ada_lookup_symbol_list_worker (lookup_name,
11401 get_selected_block (0),
11402 VAR_DOMAIN, 1);
11403
11404 if (syms.size () != 1)
11405 {
11406 if (err_msg == NULL)
11407 return 0;
11408 else
11409 error (("%s"), err_msg);
11410 }
11411
11412 return value_of_variable (syms[0].symbol, syms[0].block);
11413 }
11414
11415 /* Value of integer variable named NAME in the current environment.
11416 If no such variable is found, returns false. Otherwise, sets VALUE
11417 to the variable's value and returns true. */
11418
11419 bool
11420 get_int_var_value (const char *name, LONGEST &value)
11421 {
11422 struct value *var_val = get_var_value (name, 0);
11423
11424 if (var_val == 0)
11425 return false;
11426
11427 value = value_as_long (var_val);
11428 return true;
11429 }
11430
11431
11432 /* Return a range type whose base type is that of the range type named
11433 NAME in the current environment, and whose bounds are calculated
11434 from NAME according to the GNAT range encoding conventions.
11435 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11436 corresponding range type from debug information; fall back to using it
11437 if symbol lookup fails. If a new type must be created, allocate it
11438 like ORIG_TYPE was. The bounds information, in general, is encoded
11439 in NAME, the base type given in the named range type. */
11440
11441 static struct type *
11442 to_fixed_range_type (struct type *raw_type, struct value *dval)
11443 {
11444 const char *name;
11445 struct type *base_type;
11446 const char *subtype_info;
11447
11448 gdb_assert (raw_type != NULL);
11449 gdb_assert (raw_type->name () != NULL);
11450
11451 if (raw_type->code () == TYPE_CODE_RANGE)
11452 base_type = TYPE_TARGET_TYPE (raw_type);
11453 else
11454 base_type = raw_type;
11455
11456 name = raw_type->name ();
11457 subtype_info = strstr (name, "___XD");
11458 if (subtype_info == NULL)
11459 {
11460 LONGEST L = ada_discrete_type_low_bound (raw_type);
11461 LONGEST U = ada_discrete_type_high_bound (raw_type);
11462
11463 if (L < INT_MIN || U > INT_MAX)
11464 return raw_type;
11465 else
11466 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11467 L, U);
11468 }
11469 else
11470 {
11471 int prefix_len = subtype_info - name;
11472 LONGEST L, U;
11473 struct type *type;
11474 const char *bounds_str;
11475 int n;
11476
11477 subtype_info += 5;
11478 bounds_str = strchr (subtype_info, '_');
11479 n = 1;
11480
11481 if (*subtype_info == 'L')
11482 {
11483 if (!ada_scan_number (bounds_str, n, &L, &n)
11484 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11485 return raw_type;
11486 if (bounds_str[n] == '_')
11487 n += 2;
11488 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11489 n += 1;
11490 subtype_info += 1;
11491 }
11492 else
11493 {
11494 std::string name_buf = std::string (name, prefix_len) + "___L";
11495 if (!get_int_var_value (name_buf.c_str (), L))
11496 {
11497 lim_warning (_("Unknown lower bound, using 1."));
11498 L = 1;
11499 }
11500 }
11501
11502 if (*subtype_info == 'U')
11503 {
11504 if (!ada_scan_number (bounds_str, n, &U, &n)
11505 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11506 return raw_type;
11507 }
11508 else
11509 {
11510 std::string name_buf = std::string (name, prefix_len) + "___U";
11511 if (!get_int_var_value (name_buf.c_str (), U))
11512 {
11513 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11514 U = L;
11515 }
11516 }
11517
11518 type = create_static_range_type (alloc_type_copy (raw_type),
11519 base_type, L, U);
11520 /* create_static_range_type alters the resulting type's length
11521 to match the size of the base_type, which is not what we want.
11522 Set it back to the original range type's length. */
11523 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11524 type->set_name (name);
11525 return type;
11526 }
11527 }
11528
11529 /* True iff NAME is the name of a range type. */
11530
11531 int
11532 ada_is_range_type_name (const char *name)
11533 {
11534 return (name != NULL && strstr (name, "___XD"));
11535 }
11536 \f
11537
11538 /* Modular types */
11539
11540 /* True iff TYPE is an Ada modular type. */
11541
11542 int
11543 ada_is_modular_type (struct type *type)
11544 {
11545 struct type *subranged_type = get_base_type (type);
11546
11547 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11548 && subranged_type->code () == TYPE_CODE_INT
11549 && subranged_type->is_unsigned ());
11550 }
11551
11552 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11553
11554 ULONGEST
11555 ada_modulus (struct type *type)
11556 {
11557 const dynamic_prop &high = type->bounds ()->high;
11558
11559 if (high.kind () == PROP_CONST)
11560 return (ULONGEST) high.const_val () + 1;
11561
11562 /* If TYPE is unresolved, the high bound might be a location list. Return
11563 0, for lack of a better value to return. */
11564 return 0;
11565 }
11566 \f
11567
11568 /* Ada exception catchpoint support:
11569 ---------------------------------
11570
11571 We support 3 kinds of exception catchpoints:
11572 . catchpoints on Ada exceptions
11573 . catchpoints on unhandled Ada exceptions
11574 . catchpoints on failed assertions
11575
11576 Exceptions raised during failed assertions, or unhandled exceptions
11577 could perfectly be caught with the general catchpoint on Ada exceptions.
11578 However, we can easily differentiate these two special cases, and having
11579 the option to distinguish these two cases from the rest can be useful
11580 to zero-in on certain situations.
11581
11582 Exception catchpoints are a specialized form of breakpoint,
11583 since they rely on inserting breakpoints inside known routines
11584 of the GNAT runtime. The implementation therefore uses a standard
11585 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11586 of breakpoint_ops.
11587
11588 Support in the runtime for exception catchpoints have been changed
11589 a few times already, and these changes affect the implementation
11590 of these catchpoints. In order to be able to support several
11591 variants of the runtime, we use a sniffer that will determine
11592 the runtime variant used by the program being debugged. */
11593
11594 /* Ada's standard exceptions.
11595
11596 The Ada 83 standard also defined Numeric_Error. But there so many
11597 situations where it was unclear from the Ada 83 Reference Manual
11598 (RM) whether Constraint_Error or Numeric_Error should be raised,
11599 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11600 Interpretation saying that anytime the RM says that Numeric_Error
11601 should be raised, the implementation may raise Constraint_Error.
11602 Ada 95 went one step further and pretty much removed Numeric_Error
11603 from the list of standard exceptions (it made it a renaming of
11604 Constraint_Error, to help preserve compatibility when compiling
11605 an Ada83 compiler). As such, we do not include Numeric_Error from
11606 this list of standard exceptions. */
11607
11608 static const char * const standard_exc[] = {
11609 "constraint_error",
11610 "program_error",
11611 "storage_error",
11612 "tasking_error"
11613 };
11614
11615 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11616
11617 /* A structure that describes how to support exception catchpoints
11618 for a given executable. */
11619
11620 struct exception_support_info
11621 {
11622 /* The name of the symbol to break on in order to insert
11623 a catchpoint on exceptions. */
11624 const char *catch_exception_sym;
11625
11626 /* The name of the symbol to break on in order to insert
11627 a catchpoint on unhandled exceptions. */
11628 const char *catch_exception_unhandled_sym;
11629
11630 /* The name of the symbol to break on in order to insert
11631 a catchpoint on failed assertions. */
11632 const char *catch_assert_sym;
11633
11634 /* The name of the symbol to break on in order to insert
11635 a catchpoint on exception handling. */
11636 const char *catch_handlers_sym;
11637
11638 /* Assuming that the inferior just triggered an unhandled exception
11639 catchpoint, this function is responsible for returning the address
11640 in inferior memory where the name of that exception is stored.
11641 Return zero if the address could not be computed. */
11642 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11643 };
11644
11645 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11646 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11647
11648 /* The following exception support info structure describes how to
11649 implement exception catchpoints with the latest version of the
11650 Ada runtime (as of 2019-08-??). */
11651
11652 static const struct exception_support_info default_exception_support_info =
11653 {
11654 "__gnat_debug_raise_exception", /* catch_exception_sym */
11655 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11656 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11657 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11658 ada_unhandled_exception_name_addr
11659 };
11660
11661 /* The following exception support info structure describes how to
11662 implement exception catchpoints with an earlier version of the
11663 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11664
11665 static const struct exception_support_info exception_support_info_v0 =
11666 {
11667 "__gnat_debug_raise_exception", /* catch_exception_sym */
11668 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11669 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11670 "__gnat_begin_handler", /* catch_handlers_sym */
11671 ada_unhandled_exception_name_addr
11672 };
11673
11674 /* The following exception support info structure describes how to
11675 implement exception catchpoints with a slightly older version
11676 of the Ada runtime. */
11677
11678 static const struct exception_support_info exception_support_info_fallback =
11679 {
11680 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11681 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11682 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11683 "__gnat_begin_handler", /* catch_handlers_sym */
11684 ada_unhandled_exception_name_addr_from_raise
11685 };
11686
11687 /* Return nonzero if we can detect the exception support routines
11688 described in EINFO.
11689
11690 This function errors out if an abnormal situation is detected
11691 (for instance, if we find the exception support routines, but
11692 that support is found to be incomplete). */
11693
11694 static int
11695 ada_has_this_exception_support (const struct exception_support_info *einfo)
11696 {
11697 struct symbol *sym;
11698
11699 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11700 that should be compiled with debugging information. As a result, we
11701 expect to find that symbol in the symtabs. */
11702
11703 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11704 if (sym == NULL)
11705 {
11706 /* Perhaps we did not find our symbol because the Ada runtime was
11707 compiled without debugging info, or simply stripped of it.
11708 It happens on some GNU/Linux distributions for instance, where
11709 users have to install a separate debug package in order to get
11710 the runtime's debugging info. In that situation, let the user
11711 know why we cannot insert an Ada exception catchpoint.
11712
11713 Note: Just for the purpose of inserting our Ada exception
11714 catchpoint, we could rely purely on the associated minimal symbol.
11715 But we would be operating in degraded mode anyway, since we are
11716 still lacking the debugging info needed later on to extract
11717 the name of the exception being raised (this name is printed in
11718 the catchpoint message, and is also used when trying to catch
11719 a specific exception). We do not handle this case for now. */
11720 struct bound_minimal_symbol msym
11721 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11722
11723 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
11724 error (_("Your Ada runtime appears to be missing some debugging "
11725 "information.\nCannot insert Ada exception catchpoint "
11726 "in this configuration."));
11727
11728 return 0;
11729 }
11730
11731 /* Make sure that the symbol we found corresponds to a function. */
11732
11733 if (sym->aclass () != LOC_BLOCK)
11734 {
11735 error (_("Symbol \"%s\" is not a function (class = %d)"),
11736 sym->linkage_name (), sym->aclass ());
11737 return 0;
11738 }
11739
11740 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11741 if (sym == NULL)
11742 {
11743 struct bound_minimal_symbol msym
11744 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11745
11746 if (msym.minsym && msym.minsym->type () != mst_solib_trampoline)
11747 error (_("Your Ada runtime appears to be missing some debugging "
11748 "information.\nCannot insert Ada exception catchpoint "
11749 "in this configuration."));
11750
11751 return 0;
11752 }
11753
11754 /* Make sure that the symbol we found corresponds to a function. */
11755
11756 if (sym->aclass () != LOC_BLOCK)
11757 {
11758 error (_("Symbol \"%s\" is not a function (class = %d)"),
11759 sym->linkage_name (), sym->aclass ());
11760 return 0;
11761 }
11762
11763 return 1;
11764 }
11765
11766 /* Inspect the Ada runtime and determine which exception info structure
11767 should be used to provide support for exception catchpoints.
11768
11769 This function will always set the per-inferior exception_info,
11770 or raise an error. */
11771
11772 static void
11773 ada_exception_support_info_sniffer (void)
11774 {
11775 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11776
11777 /* If the exception info is already known, then no need to recompute it. */
11778 if (data->exception_info != NULL)
11779 return;
11780
11781 /* Check the latest (default) exception support info. */
11782 if (ada_has_this_exception_support (&default_exception_support_info))
11783 {
11784 data->exception_info = &default_exception_support_info;
11785 return;
11786 }
11787
11788 /* Try the v0 exception suport info. */
11789 if (ada_has_this_exception_support (&exception_support_info_v0))
11790 {
11791 data->exception_info = &exception_support_info_v0;
11792 return;
11793 }
11794
11795 /* Try our fallback exception suport info. */
11796 if (ada_has_this_exception_support (&exception_support_info_fallback))
11797 {
11798 data->exception_info = &exception_support_info_fallback;
11799 return;
11800 }
11801
11802 /* Sometimes, it is normal for us to not be able to find the routine
11803 we are looking for. This happens when the program is linked with
11804 the shared version of the GNAT runtime, and the program has not been
11805 started yet. Inform the user of these two possible causes if
11806 applicable. */
11807
11808 if (ada_update_initial_language (language_unknown) != language_ada)
11809 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11810
11811 /* If the symbol does not exist, then check that the program is
11812 already started, to make sure that shared libraries have been
11813 loaded. If it is not started, this may mean that the symbol is
11814 in a shared library. */
11815
11816 if (inferior_ptid.pid () == 0)
11817 error (_("Unable to insert catchpoint. Try to start the program first."));
11818
11819 /* At this point, we know that we are debugging an Ada program and
11820 that the inferior has been started, but we still are not able to
11821 find the run-time symbols. That can mean that we are in
11822 configurable run time mode, or that a-except as been optimized
11823 out by the linker... In any case, at this point it is not worth
11824 supporting this feature. */
11825
11826 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11827 }
11828
11829 /* True iff FRAME is very likely to be that of a function that is
11830 part of the runtime system. This is all very heuristic, but is
11831 intended to be used as advice as to what frames are uninteresting
11832 to most users. */
11833
11834 static int
11835 is_known_support_routine (struct frame_info *frame)
11836 {
11837 enum language func_lang;
11838 int i;
11839 const char *fullname;
11840
11841 /* If this code does not have any debugging information (no symtab),
11842 This cannot be any user code. */
11843
11844 symtab_and_line sal = find_frame_sal (frame);
11845 if (sal.symtab == NULL)
11846 return 1;
11847
11848 /* If there is a symtab, but the associated source file cannot be
11849 located, then assume this is not user code: Selecting a frame
11850 for which we cannot display the code would not be very helpful
11851 for the user. This should also take care of case such as VxWorks
11852 where the kernel has some debugging info provided for a few units. */
11853
11854 fullname = symtab_to_fullname (sal.symtab);
11855 if (access (fullname, R_OK) != 0)
11856 return 1;
11857
11858 /* Check the unit filename against the Ada runtime file naming.
11859 We also check the name of the objfile against the name of some
11860 known system libraries that sometimes come with debugging info
11861 too. */
11862
11863 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11864 {
11865 re_comp (known_runtime_file_name_patterns[i]);
11866 if (re_exec (lbasename (sal.symtab->filename)))
11867 return 1;
11868 if (sal.symtab->compunit ()->objfile () != NULL
11869 && re_exec (objfile_name (sal.symtab->compunit ()->objfile ())))
11870 return 1;
11871 }
11872
11873 /* Check whether the function is a GNAT-generated entity. */
11874
11875 gdb::unique_xmalloc_ptr<char> func_name
11876 = find_frame_funname (frame, &func_lang, NULL);
11877 if (func_name == NULL)
11878 return 1;
11879
11880 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11881 {
11882 re_comp (known_auxiliary_function_name_patterns[i]);
11883 if (re_exec (func_name.get ()))
11884 return 1;
11885 }
11886
11887 return 0;
11888 }
11889
11890 /* Find the first frame that contains debugging information and that is not
11891 part of the Ada run-time, starting from FI and moving upward. */
11892
11893 void
11894 ada_find_printable_frame (struct frame_info *fi)
11895 {
11896 for (; fi != NULL; fi = get_prev_frame (fi))
11897 {
11898 if (!is_known_support_routine (fi))
11899 {
11900 select_frame (fi);
11901 break;
11902 }
11903 }
11904
11905 }
11906
11907 /* Assuming that the inferior just triggered an unhandled exception
11908 catchpoint, return the address in inferior memory where the name
11909 of the exception is stored.
11910
11911 Return zero if the address could not be computed. */
11912
11913 static CORE_ADDR
11914 ada_unhandled_exception_name_addr (void)
11915 {
11916 return parse_and_eval_address ("e.full_name");
11917 }
11918
11919 /* Same as ada_unhandled_exception_name_addr, except that this function
11920 should be used when the inferior uses an older version of the runtime,
11921 where the exception name needs to be extracted from a specific frame
11922 several frames up in the callstack. */
11923
11924 static CORE_ADDR
11925 ada_unhandled_exception_name_addr_from_raise (void)
11926 {
11927 int frame_level;
11928 struct frame_info *fi;
11929 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11930
11931 /* To determine the name of this exception, we need to select
11932 the frame corresponding to RAISE_SYM_NAME. This frame is
11933 at least 3 levels up, so we simply skip the first 3 frames
11934 without checking the name of their associated function. */
11935 fi = get_current_frame ();
11936 for (frame_level = 0; frame_level < 3; frame_level += 1)
11937 if (fi != NULL)
11938 fi = get_prev_frame (fi);
11939
11940 while (fi != NULL)
11941 {
11942 enum language func_lang;
11943
11944 gdb::unique_xmalloc_ptr<char> func_name
11945 = find_frame_funname (fi, &func_lang, NULL);
11946 if (func_name != NULL)
11947 {
11948 if (strcmp (func_name.get (),
11949 data->exception_info->catch_exception_sym) == 0)
11950 break; /* We found the frame we were looking for... */
11951 }
11952 fi = get_prev_frame (fi);
11953 }
11954
11955 if (fi == NULL)
11956 return 0;
11957
11958 select_frame (fi);
11959 return parse_and_eval_address ("id.full_name");
11960 }
11961
11962 /* Assuming the inferior just triggered an Ada exception catchpoint
11963 (of any type), return the address in inferior memory where the name
11964 of the exception is stored, if applicable.
11965
11966 Assumes the selected frame is the current frame.
11967
11968 Return zero if the address could not be computed, or if not relevant. */
11969
11970 static CORE_ADDR
11971 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11972 struct breakpoint *b)
11973 {
11974 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11975
11976 switch (ex)
11977 {
11978 case ada_catch_exception:
11979 return (parse_and_eval_address ("e.full_name"));
11980 break;
11981
11982 case ada_catch_exception_unhandled:
11983 return data->exception_info->unhandled_exception_name_addr ();
11984 break;
11985
11986 case ada_catch_handlers:
11987 return 0; /* The runtimes does not provide access to the exception
11988 name. */
11989 break;
11990
11991 case ada_catch_assert:
11992 return 0; /* Exception name is not relevant in this case. */
11993 break;
11994
11995 default:
11996 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11997 break;
11998 }
11999
12000 return 0; /* Should never be reached. */
12001 }
12002
12003 /* Assuming the inferior is stopped at an exception catchpoint,
12004 return the message which was associated to the exception, if
12005 available. Return NULL if the message could not be retrieved.
12006
12007 Note: The exception message can be associated to an exception
12008 either through the use of the Raise_Exception function, or
12009 more simply (Ada 2005 and later), via:
12010
12011 raise Exception_Name with "exception message";
12012
12013 */
12014
12015 static gdb::unique_xmalloc_ptr<char>
12016 ada_exception_message_1 (void)
12017 {
12018 struct value *e_msg_val;
12019 int e_msg_len;
12020
12021 /* For runtimes that support this feature, the exception message
12022 is passed as an unbounded string argument called "message". */
12023 e_msg_val = parse_and_eval ("message");
12024 if (e_msg_val == NULL)
12025 return NULL; /* Exception message not supported. */
12026
12027 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12028 gdb_assert (e_msg_val != NULL);
12029 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12030
12031 /* If the message string is empty, then treat it as if there was
12032 no exception message. */
12033 if (e_msg_len <= 0)
12034 return NULL;
12035
12036 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12037 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
12038 e_msg_len);
12039 e_msg.get ()[e_msg_len] = '\0';
12040
12041 return e_msg;
12042 }
12043
12044 /* Same as ada_exception_message_1, except that all exceptions are
12045 contained here (returning NULL instead). */
12046
12047 static gdb::unique_xmalloc_ptr<char>
12048 ada_exception_message (void)
12049 {
12050 gdb::unique_xmalloc_ptr<char> e_msg;
12051
12052 try
12053 {
12054 e_msg = ada_exception_message_1 ();
12055 }
12056 catch (const gdb_exception_error &e)
12057 {
12058 e_msg.reset (nullptr);
12059 }
12060
12061 return e_msg;
12062 }
12063
12064 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12065 any error that ada_exception_name_addr_1 might cause to be thrown.
12066 When an error is intercepted, a warning with the error message is printed,
12067 and zero is returned. */
12068
12069 static CORE_ADDR
12070 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12071 struct breakpoint *b)
12072 {
12073 CORE_ADDR result = 0;
12074
12075 try
12076 {
12077 result = ada_exception_name_addr_1 (ex, b);
12078 }
12079
12080 catch (const gdb_exception_error &e)
12081 {
12082 warning (_("failed to get exception name: %s"), e.what ());
12083 return 0;
12084 }
12085
12086 return result;
12087 }
12088
12089 static std::string ada_exception_catchpoint_cond_string
12090 (const char *excep_string,
12091 enum ada_exception_catchpoint_kind ex);
12092
12093 /* Ada catchpoints.
12094
12095 In the case of catchpoints on Ada exceptions, the catchpoint will
12096 stop the target on every exception the program throws. When a user
12097 specifies the name of a specific exception, we translate this
12098 request into a condition expression (in text form), and then parse
12099 it into an expression stored in each of the catchpoint's locations.
12100 We then use this condition to check whether the exception that was
12101 raised is the one the user is interested in. If not, then the
12102 target is resumed again. We store the name of the requested
12103 exception, in order to be able to re-set the condition expression
12104 when symbols change. */
12105
12106 /* An instance of this type is used to represent an Ada catchpoint
12107 breakpoint location. */
12108
12109 class ada_catchpoint_location : public bp_location
12110 {
12111 public:
12112 ada_catchpoint_location (breakpoint *owner)
12113 : bp_location (owner, bp_loc_software_breakpoint)
12114 {}
12115
12116 /* The condition that checks whether the exception that was raised
12117 is the specific exception the user specified on catchpoint
12118 creation. */
12119 expression_up excep_cond_expr;
12120 };
12121
12122 /* An instance of this type is used to represent an Ada catchpoint. */
12123
12124 struct ada_catchpoint : public breakpoint
12125 {
12126 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12127 : m_kind (kind)
12128 {
12129 }
12130
12131 /* The name of the specific exception the user specified. */
12132 std::string excep_string;
12133
12134 /* What kind of catchpoint this is. */
12135 enum ada_exception_catchpoint_kind m_kind;
12136 };
12137
12138 /* Parse the exception condition string in the context of each of the
12139 catchpoint's locations, and store them for later evaluation. */
12140
12141 static void
12142 create_excep_cond_exprs (struct ada_catchpoint *c,
12143 enum ada_exception_catchpoint_kind ex)
12144 {
12145 /* Nothing to do if there's no specific exception to catch. */
12146 if (c->excep_string.empty ())
12147 return;
12148
12149 /* Same if there are no locations... */
12150 if (c->loc == NULL)
12151 return;
12152
12153 /* Compute the condition expression in text form, from the specific
12154 expection we want to catch. */
12155 std::string cond_string
12156 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12157
12158 /* Iterate over all the catchpoint's locations, and parse an
12159 expression for each. */
12160 for (bp_location *bl : c->locations ())
12161 {
12162 struct ada_catchpoint_location *ada_loc
12163 = (struct ada_catchpoint_location *) bl;
12164 expression_up exp;
12165
12166 if (!bl->shlib_disabled)
12167 {
12168 const char *s;
12169
12170 s = cond_string.c_str ();
12171 try
12172 {
12173 exp = parse_exp_1 (&s, bl->address,
12174 block_for_pc (bl->address),
12175 0);
12176 }
12177 catch (const gdb_exception_error &e)
12178 {
12179 warning (_("failed to reevaluate internal exception condition "
12180 "for catchpoint %d: %s"),
12181 c->number, e.what ());
12182 }
12183 }
12184
12185 ada_loc->excep_cond_expr = std::move (exp);
12186 }
12187 }
12188
12189 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12190 structure for all exception catchpoint kinds. */
12191
12192 static struct bp_location *
12193 allocate_location_exception (struct breakpoint *self)
12194 {
12195 return new ada_catchpoint_location (self);
12196 }
12197
12198 /* Implement the RE_SET method in the breakpoint_ops structure for all
12199 exception catchpoint kinds. */
12200
12201 static void
12202 re_set_exception (struct breakpoint *b)
12203 {
12204 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12205
12206 /* Call the base class's method. This updates the catchpoint's
12207 locations. */
12208 bkpt_breakpoint_ops.re_set (b);
12209
12210 /* Reparse the exception conditional expressions. One for each
12211 location. */
12212 create_excep_cond_exprs (c, c->m_kind);
12213 }
12214
12215 /* Returns true if we should stop for this breakpoint hit. If the
12216 user specified a specific exception, we only want to cause a stop
12217 if the program thrown that exception. */
12218
12219 static bool
12220 should_stop_exception (const struct bp_location *bl)
12221 {
12222 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12223 const struct ada_catchpoint_location *ada_loc
12224 = (const struct ada_catchpoint_location *) bl;
12225 bool stop;
12226
12227 struct internalvar *var = lookup_internalvar ("_ada_exception");
12228 if (c->m_kind == ada_catch_assert)
12229 clear_internalvar (var);
12230 else
12231 {
12232 try
12233 {
12234 const char *expr;
12235
12236 if (c->m_kind == ada_catch_handlers)
12237 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12238 ".all.occurrence.id");
12239 else
12240 expr = "e";
12241
12242 struct value *exc = parse_and_eval (expr);
12243 set_internalvar (var, exc);
12244 }
12245 catch (const gdb_exception_error &ex)
12246 {
12247 clear_internalvar (var);
12248 }
12249 }
12250
12251 /* With no specific exception, should always stop. */
12252 if (c->excep_string.empty ())
12253 return true;
12254
12255 if (ada_loc->excep_cond_expr == NULL)
12256 {
12257 /* We will have a NULL expression if back when we were creating
12258 the expressions, this location's had failed to parse. */
12259 return true;
12260 }
12261
12262 stop = true;
12263 try
12264 {
12265 struct value *mark;
12266
12267 mark = value_mark ();
12268 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12269 value_free_to_mark (mark);
12270 }
12271 catch (const gdb_exception &ex)
12272 {
12273 exception_fprintf (gdb_stderr, ex,
12274 _("Error in testing exception condition:\n"));
12275 }
12276
12277 return stop;
12278 }
12279
12280 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12281 for all exception catchpoint kinds. */
12282
12283 static void
12284 check_status_exception (bpstat *bs)
12285 {
12286 bs->stop = should_stop_exception (bs->bp_location_at.get ());
12287 }
12288
12289 /* Implement the PRINT_IT method in the breakpoint_ops structure
12290 for all exception catchpoint kinds. */
12291
12292 static enum print_stop_action
12293 print_it_exception (bpstat *bs)
12294 {
12295 struct ui_out *uiout = current_uiout;
12296 struct breakpoint *b = bs->breakpoint_at;
12297
12298 annotate_catchpoint (b->number);
12299
12300 if (uiout->is_mi_like_p ())
12301 {
12302 uiout->field_string ("reason",
12303 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12304 uiout->field_string ("disp", bpdisp_text (b->disposition));
12305 }
12306
12307 uiout->text (b->disposition == disp_del
12308 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12309 uiout->field_signed ("bkptno", b->number);
12310 uiout->text (", ");
12311
12312 /* ada_exception_name_addr relies on the selected frame being the
12313 current frame. Need to do this here because this function may be
12314 called more than once when printing a stop, and below, we'll
12315 select the first frame past the Ada run-time (see
12316 ada_find_printable_frame). */
12317 select_frame (get_current_frame ());
12318
12319 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12320 switch (c->m_kind)
12321 {
12322 case ada_catch_exception:
12323 case ada_catch_exception_unhandled:
12324 case ada_catch_handlers:
12325 {
12326 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12327 char exception_name[256];
12328
12329 if (addr != 0)
12330 {
12331 read_memory (addr, (gdb_byte *) exception_name,
12332 sizeof (exception_name) - 1);
12333 exception_name [sizeof (exception_name) - 1] = '\0';
12334 }
12335 else
12336 {
12337 /* For some reason, we were unable to read the exception
12338 name. This could happen if the Runtime was compiled
12339 without debugging info, for instance. In that case,
12340 just replace the exception name by the generic string
12341 "exception" - it will read as "an exception" in the
12342 notification we are about to print. */
12343 memcpy (exception_name, "exception", sizeof ("exception"));
12344 }
12345 /* In the case of unhandled exception breakpoints, we print
12346 the exception name as "unhandled EXCEPTION_NAME", to make
12347 it clearer to the user which kind of catchpoint just got
12348 hit. We used ui_out_text to make sure that this extra
12349 info does not pollute the exception name in the MI case. */
12350 if (c->m_kind == ada_catch_exception_unhandled)
12351 uiout->text ("unhandled ");
12352 uiout->field_string ("exception-name", exception_name);
12353 }
12354 break;
12355 case ada_catch_assert:
12356 /* In this case, the name of the exception is not really
12357 important. Just print "failed assertion" to make it clearer
12358 that his program just hit an assertion-failure catchpoint.
12359 We used ui_out_text because this info does not belong in
12360 the MI output. */
12361 uiout->text ("failed assertion");
12362 break;
12363 }
12364
12365 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12366 if (exception_message != NULL)
12367 {
12368 uiout->text (" (");
12369 uiout->field_string ("exception-message", exception_message.get ());
12370 uiout->text (")");
12371 }
12372
12373 uiout->text (" at ");
12374 ada_find_printable_frame (get_current_frame ());
12375
12376 return PRINT_SRC_AND_LOC;
12377 }
12378
12379 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12380 for all exception catchpoint kinds. */
12381
12382 static void
12383 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12384 {
12385 struct ui_out *uiout = current_uiout;
12386 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12387 struct value_print_options opts;
12388
12389 get_user_print_options (&opts);
12390
12391 if (opts.addressprint)
12392 uiout->field_skip ("addr");
12393
12394 annotate_field (5);
12395 switch (c->m_kind)
12396 {
12397 case ada_catch_exception:
12398 if (!c->excep_string.empty ())
12399 {
12400 std::string msg = string_printf (_("`%s' Ada exception"),
12401 c->excep_string.c_str ());
12402
12403 uiout->field_string ("what", msg);
12404 }
12405 else
12406 uiout->field_string ("what", "all Ada exceptions");
12407
12408 break;
12409
12410 case ada_catch_exception_unhandled:
12411 uiout->field_string ("what", "unhandled Ada exceptions");
12412 break;
12413
12414 case ada_catch_handlers:
12415 if (!c->excep_string.empty ())
12416 {
12417 uiout->field_fmt ("what",
12418 _("`%s' Ada exception handlers"),
12419 c->excep_string.c_str ());
12420 }
12421 else
12422 uiout->field_string ("what", "all Ada exceptions handlers");
12423 break;
12424
12425 case ada_catch_assert:
12426 uiout->field_string ("what", "failed Ada assertions");
12427 break;
12428
12429 default:
12430 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12431 break;
12432 }
12433 }
12434
12435 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12436 for all exception catchpoint kinds. */
12437
12438 static void
12439 print_mention_exception (struct breakpoint *b)
12440 {
12441 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12442 struct ui_out *uiout = current_uiout;
12443
12444 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12445 : _("Catchpoint "));
12446 uiout->field_signed ("bkptno", b->number);
12447 uiout->text (": ");
12448
12449 switch (c->m_kind)
12450 {
12451 case ada_catch_exception:
12452 if (!c->excep_string.empty ())
12453 {
12454 std::string info = string_printf (_("`%s' Ada exception"),
12455 c->excep_string.c_str ());
12456 uiout->text (info);
12457 }
12458 else
12459 uiout->text (_("all Ada exceptions"));
12460 break;
12461
12462 case ada_catch_exception_unhandled:
12463 uiout->text (_("unhandled Ada exceptions"));
12464 break;
12465
12466 case ada_catch_handlers:
12467 if (!c->excep_string.empty ())
12468 {
12469 std::string info
12470 = string_printf (_("`%s' Ada exception handlers"),
12471 c->excep_string.c_str ());
12472 uiout->text (info);
12473 }
12474 else
12475 uiout->text (_("all Ada exceptions handlers"));
12476 break;
12477
12478 case ada_catch_assert:
12479 uiout->text (_("failed Ada assertions"));
12480 break;
12481
12482 default:
12483 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12484 break;
12485 }
12486 }
12487
12488 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12489 for all exception catchpoint kinds. */
12490
12491 static void
12492 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12493 {
12494 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12495
12496 switch (c->m_kind)
12497 {
12498 case ada_catch_exception:
12499 gdb_printf (fp, "catch exception");
12500 if (!c->excep_string.empty ())
12501 gdb_printf (fp, " %s", c->excep_string.c_str ());
12502 break;
12503
12504 case ada_catch_exception_unhandled:
12505 gdb_printf (fp, "catch exception unhandled");
12506 break;
12507
12508 case ada_catch_handlers:
12509 gdb_printf (fp, "catch handlers");
12510 break;
12511
12512 case ada_catch_assert:
12513 gdb_printf (fp, "catch assert");
12514 break;
12515
12516 default:
12517 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12518 }
12519 print_recreate_thread (b, fp);
12520 }
12521
12522 /* Virtual table for breakpoint type. */
12523 static struct breakpoint_ops catch_exception_breakpoint_ops;
12524
12525 /* See ada-lang.h. */
12526
12527 bool
12528 is_ada_exception_catchpoint (breakpoint *bp)
12529 {
12530 return bp->ops == &catch_exception_breakpoint_ops;
12531 }
12532
12533 /* Split the arguments specified in a "catch exception" command.
12534 Set EX to the appropriate catchpoint type.
12535 Set EXCEP_STRING to the name of the specific exception if
12536 specified by the user.
12537 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12538 "catch handlers" command. False otherwise.
12539 If a condition is found at the end of the arguments, the condition
12540 expression is stored in COND_STRING (memory must be deallocated
12541 after use). Otherwise COND_STRING is set to NULL. */
12542
12543 static void
12544 catch_ada_exception_command_split (const char *args,
12545 bool is_catch_handlers_cmd,
12546 enum ada_exception_catchpoint_kind *ex,
12547 std::string *excep_string,
12548 std::string *cond_string)
12549 {
12550 std::string exception_name;
12551
12552 exception_name = extract_arg (&args);
12553 if (exception_name == "if")
12554 {
12555 /* This is not an exception name; this is the start of a condition
12556 expression for a catchpoint on all exceptions. So, "un-get"
12557 this token, and set exception_name to NULL. */
12558 exception_name.clear ();
12559 args -= 2;
12560 }
12561
12562 /* Check to see if we have a condition. */
12563
12564 args = skip_spaces (args);
12565 if (startswith (args, "if")
12566 && (isspace (args[2]) || args[2] == '\0'))
12567 {
12568 args += 2;
12569 args = skip_spaces (args);
12570
12571 if (args[0] == '\0')
12572 error (_("Condition missing after `if' keyword"));
12573 *cond_string = args;
12574
12575 args += strlen (args);
12576 }
12577
12578 /* Check that we do not have any more arguments. Anything else
12579 is unexpected. */
12580
12581 if (args[0] != '\0')
12582 error (_("Junk at end of expression"));
12583
12584 if (is_catch_handlers_cmd)
12585 {
12586 /* Catch handling of exceptions. */
12587 *ex = ada_catch_handlers;
12588 *excep_string = exception_name;
12589 }
12590 else if (exception_name.empty ())
12591 {
12592 /* Catch all exceptions. */
12593 *ex = ada_catch_exception;
12594 excep_string->clear ();
12595 }
12596 else if (exception_name == "unhandled")
12597 {
12598 /* Catch unhandled exceptions. */
12599 *ex = ada_catch_exception_unhandled;
12600 excep_string->clear ();
12601 }
12602 else
12603 {
12604 /* Catch a specific exception. */
12605 *ex = ada_catch_exception;
12606 *excep_string = exception_name;
12607 }
12608 }
12609
12610 /* Return the name of the symbol on which we should break in order to
12611 implement a catchpoint of the EX kind. */
12612
12613 static const char *
12614 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12615 {
12616 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12617
12618 gdb_assert (data->exception_info != NULL);
12619
12620 switch (ex)
12621 {
12622 case ada_catch_exception:
12623 return (data->exception_info->catch_exception_sym);
12624 break;
12625 case ada_catch_exception_unhandled:
12626 return (data->exception_info->catch_exception_unhandled_sym);
12627 break;
12628 case ada_catch_assert:
12629 return (data->exception_info->catch_assert_sym);
12630 break;
12631 case ada_catch_handlers:
12632 return (data->exception_info->catch_handlers_sym);
12633 break;
12634 default:
12635 internal_error (__FILE__, __LINE__,
12636 _("unexpected catchpoint kind (%d)"), ex);
12637 }
12638 }
12639
12640 /* Return the condition that will be used to match the current exception
12641 being raised with the exception that the user wants to catch. This
12642 assumes that this condition is used when the inferior just triggered
12643 an exception catchpoint.
12644 EX: the type of catchpoints used for catching Ada exceptions. */
12645
12646 static std::string
12647 ada_exception_catchpoint_cond_string (const char *excep_string,
12648 enum ada_exception_catchpoint_kind ex)
12649 {
12650 bool is_standard_exc = false;
12651 std::string result;
12652
12653 if (ex == ada_catch_handlers)
12654 {
12655 /* For exception handlers catchpoints, the condition string does
12656 not use the same parameter as for the other exceptions. */
12657 result = ("long_integer (GNAT_GCC_exception_Access"
12658 "(gcc_exception).all.occurrence.id)");
12659 }
12660 else
12661 result = "long_integer (e)";
12662
12663 /* The standard exceptions are a special case. They are defined in
12664 runtime units that have been compiled without debugging info; if
12665 EXCEP_STRING is the not-fully-qualified name of a standard
12666 exception (e.g. "constraint_error") then, during the evaluation
12667 of the condition expression, the symbol lookup on this name would
12668 *not* return this standard exception. The catchpoint condition
12669 may then be set only on user-defined exceptions which have the
12670 same not-fully-qualified name (e.g. my_package.constraint_error).
12671
12672 To avoid this unexcepted behavior, these standard exceptions are
12673 systematically prefixed by "standard". This means that "catch
12674 exception constraint_error" is rewritten into "catch exception
12675 standard.constraint_error".
12676
12677 If an exception named constraint_error is defined in another package of
12678 the inferior program, then the only way to specify this exception as a
12679 breakpoint condition is to use its fully-qualified named:
12680 e.g. my_package.constraint_error. */
12681
12682 for (const char *name : standard_exc)
12683 {
12684 if (strcmp (name, excep_string) == 0)
12685 {
12686 is_standard_exc = true;
12687 break;
12688 }
12689 }
12690
12691 result += " = ";
12692
12693 if (is_standard_exc)
12694 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12695 else
12696 string_appendf (result, "long_integer (&%s)", excep_string);
12697
12698 return result;
12699 }
12700
12701 /* Return the symtab_and_line that should be used to insert an exception
12702 catchpoint of the TYPE kind.
12703
12704 ADDR_STRING returns the name of the function where the real
12705 breakpoint that implements the catchpoints is set, depending on the
12706 type of catchpoint we need to create. */
12707
12708 static struct symtab_and_line
12709 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12710 std::string *addr_string, const struct breakpoint_ops **ops)
12711 {
12712 const char *sym_name;
12713 struct symbol *sym;
12714
12715 /* First, find out which exception support info to use. */
12716 ada_exception_support_info_sniffer ();
12717
12718 /* Then lookup the function on which we will break in order to catch
12719 the Ada exceptions requested by the user. */
12720 sym_name = ada_exception_sym_name (ex);
12721 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12722
12723 if (sym == NULL)
12724 error (_("Catchpoint symbol not found: %s"), sym_name);
12725
12726 if (sym->aclass () != LOC_BLOCK)
12727 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12728
12729 /* Set ADDR_STRING. */
12730 *addr_string = sym_name;
12731
12732 /* Set OPS. */
12733 *ops = &catch_exception_breakpoint_ops;
12734
12735 return find_function_start_sal (sym, 1);
12736 }
12737
12738 /* Create an Ada exception catchpoint.
12739
12740 EX_KIND is the kind of exception catchpoint to be created.
12741
12742 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12743 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12744 of the exception to which this catchpoint applies.
12745
12746 COND_STRING, if not empty, is the catchpoint condition.
12747
12748 TEMPFLAG, if nonzero, means that the underlying breakpoint
12749 should be temporary.
12750
12751 FROM_TTY is the usual argument passed to all commands implementations. */
12752
12753 void
12754 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12755 enum ada_exception_catchpoint_kind ex_kind,
12756 const std::string &excep_string,
12757 const std::string &cond_string,
12758 int tempflag,
12759 int disabled,
12760 int from_tty)
12761 {
12762 std::string addr_string;
12763 const struct breakpoint_ops *ops = NULL;
12764 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12765
12766 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12767 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12768 ops, tempflag, disabled, from_tty);
12769 c->excep_string = excep_string;
12770 create_excep_cond_exprs (c.get (), ex_kind);
12771 if (!cond_string.empty ())
12772 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12773 install_breakpoint (0, std::move (c), 1);
12774 }
12775
12776 /* Implement the "catch exception" command. */
12777
12778 static void
12779 catch_ada_exception_command (const char *arg_entry, int from_tty,
12780 struct cmd_list_element *command)
12781 {
12782 const char *arg = arg_entry;
12783 struct gdbarch *gdbarch = get_current_arch ();
12784 int tempflag;
12785 enum ada_exception_catchpoint_kind ex_kind;
12786 std::string excep_string;
12787 std::string cond_string;
12788
12789 tempflag = command->context () == CATCH_TEMPORARY;
12790
12791 if (!arg)
12792 arg = "";
12793 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12794 &cond_string);
12795 create_ada_exception_catchpoint (gdbarch, ex_kind,
12796 excep_string, cond_string,
12797 tempflag, 1 /* enabled */,
12798 from_tty);
12799 }
12800
12801 /* Implement the "catch handlers" command. */
12802
12803 static void
12804 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12805 struct cmd_list_element *command)
12806 {
12807 const char *arg = arg_entry;
12808 struct gdbarch *gdbarch = get_current_arch ();
12809 int tempflag;
12810 enum ada_exception_catchpoint_kind ex_kind;
12811 std::string excep_string;
12812 std::string cond_string;
12813
12814 tempflag = command->context () == CATCH_TEMPORARY;
12815
12816 if (!arg)
12817 arg = "";
12818 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12819 &cond_string);
12820 create_ada_exception_catchpoint (gdbarch, ex_kind,
12821 excep_string, cond_string,
12822 tempflag, 1 /* enabled */,
12823 from_tty);
12824 }
12825
12826 /* Completion function for the Ada "catch" commands. */
12827
12828 static void
12829 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12830 const char *text, const char *word)
12831 {
12832 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12833
12834 for (const ada_exc_info &info : exceptions)
12835 {
12836 if (startswith (info.name, word))
12837 tracker.add_completion (make_unique_xstrdup (info.name));
12838 }
12839 }
12840
12841 /* Split the arguments specified in a "catch assert" command.
12842
12843 ARGS contains the command's arguments (or the empty string if
12844 no arguments were passed).
12845
12846 If ARGS contains a condition, set COND_STRING to that condition
12847 (the memory needs to be deallocated after use). */
12848
12849 static void
12850 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12851 {
12852 args = skip_spaces (args);
12853
12854 /* Check whether a condition was provided. */
12855 if (startswith (args, "if")
12856 && (isspace (args[2]) || args[2] == '\0'))
12857 {
12858 args += 2;
12859 args = skip_spaces (args);
12860 if (args[0] == '\0')
12861 error (_("condition missing after `if' keyword"));
12862 cond_string.assign (args);
12863 }
12864
12865 /* Otherwise, there should be no other argument at the end of
12866 the command. */
12867 else if (args[0] != '\0')
12868 error (_("Junk at end of arguments."));
12869 }
12870
12871 /* Implement the "catch assert" command. */
12872
12873 static void
12874 catch_assert_command (const char *arg_entry, int from_tty,
12875 struct cmd_list_element *command)
12876 {
12877 const char *arg = arg_entry;
12878 struct gdbarch *gdbarch = get_current_arch ();
12879 int tempflag;
12880 std::string cond_string;
12881
12882 tempflag = command->context () == CATCH_TEMPORARY;
12883
12884 if (!arg)
12885 arg = "";
12886 catch_ada_assert_command_split (arg, cond_string);
12887 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12888 "", cond_string,
12889 tempflag, 1 /* enabled */,
12890 from_tty);
12891 }
12892
12893 /* Return non-zero if the symbol SYM is an Ada exception object. */
12894
12895 static int
12896 ada_is_exception_sym (struct symbol *sym)
12897 {
12898 const char *type_name = sym->type ()->name ();
12899
12900 return (sym->aclass () != LOC_TYPEDEF
12901 && sym->aclass () != LOC_BLOCK
12902 && sym->aclass () != LOC_CONST
12903 && sym->aclass () != LOC_UNRESOLVED
12904 && type_name != NULL && strcmp (type_name, "exception") == 0);
12905 }
12906
12907 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12908 Ada exception object. This matches all exceptions except the ones
12909 defined by the Ada language. */
12910
12911 static int
12912 ada_is_non_standard_exception_sym (struct symbol *sym)
12913 {
12914 if (!ada_is_exception_sym (sym))
12915 return 0;
12916
12917 for (const char *name : standard_exc)
12918 if (strcmp (sym->linkage_name (), name) == 0)
12919 return 0; /* A standard exception. */
12920
12921 /* Numeric_Error is also a standard exception, so exclude it.
12922 See the STANDARD_EXC description for more details as to why
12923 this exception is not listed in that array. */
12924 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12925 return 0;
12926
12927 return 1;
12928 }
12929
12930 /* A helper function for std::sort, comparing two struct ada_exc_info
12931 objects.
12932
12933 The comparison is determined first by exception name, and then
12934 by exception address. */
12935
12936 bool
12937 ada_exc_info::operator< (const ada_exc_info &other) const
12938 {
12939 int result;
12940
12941 result = strcmp (name, other.name);
12942 if (result < 0)
12943 return true;
12944 if (result == 0 && addr < other.addr)
12945 return true;
12946 return false;
12947 }
12948
12949 bool
12950 ada_exc_info::operator== (const ada_exc_info &other) const
12951 {
12952 return addr == other.addr && strcmp (name, other.name) == 0;
12953 }
12954
12955 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12956 routine, but keeping the first SKIP elements untouched.
12957
12958 All duplicates are also removed. */
12959
12960 static void
12961 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12962 int skip)
12963 {
12964 std::sort (exceptions->begin () + skip, exceptions->end ());
12965 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12966 exceptions->end ());
12967 }
12968
12969 /* Add all exceptions defined by the Ada standard whose name match
12970 a regular expression.
12971
12972 If PREG is not NULL, then this regexp_t object is used to
12973 perform the symbol name matching. Otherwise, no name-based
12974 filtering is performed.
12975
12976 EXCEPTIONS is a vector of exceptions to which matching exceptions
12977 gets pushed. */
12978
12979 static void
12980 ada_add_standard_exceptions (compiled_regex *preg,
12981 std::vector<ada_exc_info> *exceptions)
12982 {
12983 for (const char *name : standard_exc)
12984 {
12985 if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
12986 {
12987 struct bound_minimal_symbol msymbol
12988 = ada_lookup_simple_minsym (name);
12989
12990 if (msymbol.minsym != NULL)
12991 {
12992 struct ada_exc_info info
12993 = {name, msymbol.value_address ()};
12994
12995 exceptions->push_back (info);
12996 }
12997 }
12998 }
12999 }
13000
13001 /* Add all Ada exceptions defined locally and accessible from the given
13002 FRAME.
13003
13004 If PREG is not NULL, then this regexp_t object is used to
13005 perform the symbol name matching. Otherwise, no name-based
13006 filtering is performed.
13007
13008 EXCEPTIONS is a vector of exceptions to which matching exceptions
13009 gets pushed. */
13010
13011 static void
13012 ada_add_exceptions_from_frame (compiled_regex *preg,
13013 struct frame_info *frame,
13014 std::vector<ada_exc_info> *exceptions)
13015 {
13016 const struct block *block = get_frame_block (frame, 0);
13017
13018 while (block != 0)
13019 {
13020 struct block_iterator iter;
13021 struct symbol *sym;
13022
13023 ALL_BLOCK_SYMBOLS (block, iter, sym)
13024 {
13025 switch (sym->aclass ())
13026 {
13027 case LOC_TYPEDEF:
13028 case LOC_BLOCK:
13029 case LOC_CONST:
13030 break;
13031 default:
13032 if (ada_is_exception_sym (sym))
13033 {
13034 struct ada_exc_info info = {sym->print_name (),
13035 sym->value_address ()};
13036
13037 exceptions->push_back (info);
13038 }
13039 }
13040 }
13041 if (block->function () != NULL)
13042 break;
13043 block = block->superblock ();
13044 }
13045 }
13046
13047 /* Return true if NAME matches PREG or if PREG is NULL. */
13048
13049 static bool
13050 name_matches_regex (const char *name, compiled_regex *preg)
13051 {
13052 return (preg == NULL
13053 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13054 }
13055
13056 /* Add all exceptions defined globally whose name name match
13057 a regular expression, excluding standard exceptions.
13058
13059 The reason we exclude standard exceptions is that they need
13060 to be handled separately: Standard exceptions are defined inside
13061 a runtime unit which is normally not compiled with debugging info,
13062 and thus usually do not show up in our symbol search. However,
13063 if the unit was in fact built with debugging info, we need to
13064 exclude them because they would duplicate the entry we found
13065 during the special loop that specifically searches for those
13066 standard exceptions.
13067
13068 If PREG is not NULL, then this regexp_t object is used to
13069 perform the symbol name matching. Otherwise, no name-based
13070 filtering is performed.
13071
13072 EXCEPTIONS is a vector of exceptions to which matching exceptions
13073 gets pushed. */
13074
13075 static void
13076 ada_add_global_exceptions (compiled_regex *preg,
13077 std::vector<ada_exc_info> *exceptions)
13078 {
13079 /* In Ada, the symbol "search name" is a linkage name, whereas the
13080 regular expression used to do the matching refers to the natural
13081 name. So match against the decoded name. */
13082 expand_symtabs_matching (NULL,
13083 lookup_name_info::match_any (),
13084 [&] (const char *search_name)
13085 {
13086 std::string decoded = ada_decode (search_name);
13087 return name_matches_regex (decoded.c_str (), preg);
13088 },
13089 NULL,
13090 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13091 VARIABLES_DOMAIN);
13092
13093 for (objfile *objfile : current_program_space->objfiles ())
13094 {
13095 for (compunit_symtab *s : objfile->compunits ())
13096 {
13097 const struct blockvector *bv = s->blockvector ();
13098 int i;
13099
13100 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13101 {
13102 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13103 struct block_iterator iter;
13104 struct symbol *sym;
13105
13106 ALL_BLOCK_SYMBOLS (b, iter, sym)
13107 if (ada_is_non_standard_exception_sym (sym)
13108 && name_matches_regex (sym->natural_name (), preg))
13109 {
13110 struct ada_exc_info info
13111 = {sym->print_name (), sym->value_address ()};
13112
13113 exceptions->push_back (info);
13114 }
13115 }
13116 }
13117 }
13118 }
13119
13120 /* Implements ada_exceptions_list with the regular expression passed
13121 as a regex_t, rather than a string.
13122
13123 If not NULL, PREG is used to filter out exceptions whose names
13124 do not match. Otherwise, all exceptions are listed. */
13125
13126 static std::vector<ada_exc_info>
13127 ada_exceptions_list_1 (compiled_regex *preg)
13128 {
13129 std::vector<ada_exc_info> result;
13130 int prev_len;
13131
13132 /* First, list the known standard exceptions. These exceptions
13133 need to be handled separately, as they are usually defined in
13134 runtime units that have been compiled without debugging info. */
13135
13136 ada_add_standard_exceptions (preg, &result);
13137
13138 /* Next, find all exceptions whose scope is local and accessible
13139 from the currently selected frame. */
13140
13141 if (has_stack_frames ())
13142 {
13143 prev_len = result.size ();
13144 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13145 &result);
13146 if (result.size () > prev_len)
13147 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13148 }
13149
13150 /* Add all exceptions whose scope is global. */
13151
13152 prev_len = result.size ();
13153 ada_add_global_exceptions (preg, &result);
13154 if (result.size () > prev_len)
13155 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13156
13157 return result;
13158 }
13159
13160 /* Return a vector of ada_exc_info.
13161
13162 If REGEXP is NULL, all exceptions are included in the result.
13163 Otherwise, it should contain a valid regular expression,
13164 and only the exceptions whose names match that regular expression
13165 are included in the result.
13166
13167 The exceptions are sorted in the following order:
13168 - Standard exceptions (defined by the Ada language), in
13169 alphabetical order;
13170 - Exceptions only visible from the current frame, in
13171 alphabetical order;
13172 - Exceptions whose scope is global, in alphabetical order. */
13173
13174 std::vector<ada_exc_info>
13175 ada_exceptions_list (const char *regexp)
13176 {
13177 if (regexp == NULL)
13178 return ada_exceptions_list_1 (NULL);
13179
13180 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13181 return ada_exceptions_list_1 (&reg);
13182 }
13183
13184 /* Implement the "info exceptions" command. */
13185
13186 static void
13187 info_exceptions_command (const char *regexp, int from_tty)
13188 {
13189 struct gdbarch *gdbarch = get_current_arch ();
13190
13191 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13192
13193 if (regexp != NULL)
13194 gdb_printf
13195 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13196 else
13197 gdb_printf (_("All defined Ada exceptions:\n"));
13198
13199 for (const ada_exc_info &info : exceptions)
13200 gdb_printf ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13201 }
13202
13203 \f
13204 /* Language vector */
13205
13206 /* symbol_name_matcher_ftype adapter for wild_match. */
13207
13208 static bool
13209 do_wild_match (const char *symbol_search_name,
13210 const lookup_name_info &lookup_name,
13211 completion_match_result *comp_match_res)
13212 {
13213 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13214 }
13215
13216 /* symbol_name_matcher_ftype adapter for full_match. */
13217
13218 static bool
13219 do_full_match (const char *symbol_search_name,
13220 const lookup_name_info &lookup_name,
13221 completion_match_result *comp_match_res)
13222 {
13223 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
13224
13225 /* If both symbols start with "_ada_", just let the loop below
13226 handle the comparison. However, if only the symbol name starts
13227 with "_ada_", skip the prefix and let the match proceed as
13228 usual. */
13229 if (startswith (symbol_search_name, "_ada_")
13230 && !startswith (lname, "_ada"))
13231 symbol_search_name += 5;
13232 /* Likewise for ghost entities. */
13233 if (startswith (symbol_search_name, "___ghost_")
13234 && !startswith (lname, "___ghost_"))
13235 symbol_search_name += 9;
13236
13237 int uscore_count = 0;
13238 while (*lname != '\0')
13239 {
13240 if (*symbol_search_name != *lname)
13241 {
13242 if (*symbol_search_name == 'B' && uscore_count == 2
13243 && symbol_search_name[1] == '_')
13244 {
13245 symbol_search_name += 2;
13246 while (isdigit (*symbol_search_name))
13247 ++symbol_search_name;
13248 if (symbol_search_name[0] == '_'
13249 && symbol_search_name[1] == '_')
13250 {
13251 symbol_search_name += 2;
13252 continue;
13253 }
13254 }
13255 return false;
13256 }
13257
13258 if (*symbol_search_name == '_')
13259 ++uscore_count;
13260 else
13261 uscore_count = 0;
13262
13263 ++symbol_search_name;
13264 ++lname;
13265 }
13266
13267 return is_name_suffix (symbol_search_name);
13268 }
13269
13270 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13271
13272 static bool
13273 do_exact_match (const char *symbol_search_name,
13274 const lookup_name_info &lookup_name,
13275 completion_match_result *comp_match_res)
13276 {
13277 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13278 }
13279
13280 /* Build the Ada lookup name for LOOKUP_NAME. */
13281
13282 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13283 {
13284 gdb::string_view user_name = lookup_name.name ();
13285
13286 if (!user_name.empty () && user_name[0] == '<')
13287 {
13288 if (user_name.back () == '>')
13289 m_encoded_name
13290 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
13291 else
13292 m_encoded_name
13293 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
13294 m_encoded_p = true;
13295 m_verbatim_p = true;
13296 m_wild_match_p = false;
13297 m_standard_p = false;
13298 }
13299 else
13300 {
13301 m_verbatim_p = false;
13302
13303 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13304
13305 if (!m_encoded_p)
13306 {
13307 const char *folded = ada_fold_name (user_name);
13308 m_encoded_name = ada_encode_1 (folded, false);
13309 if (m_encoded_name.empty ())
13310 m_encoded_name = gdb::to_string (user_name);
13311 }
13312 else
13313 m_encoded_name = gdb::to_string (user_name);
13314
13315 /* Handle the 'package Standard' special case. See description
13316 of m_standard_p. */
13317 if (startswith (m_encoded_name.c_str (), "standard__"))
13318 {
13319 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13320 m_standard_p = true;
13321 }
13322 else
13323 m_standard_p = false;
13324
13325 /* If the name contains a ".", then the user is entering a fully
13326 qualified entity name, and the match must not be done in wild
13327 mode. Similarly, if the user wants to complete what looks
13328 like an encoded name, the match must not be done in wild
13329 mode. Also, in the standard__ special case always do
13330 non-wild matching. */
13331 m_wild_match_p
13332 = (lookup_name.match_type () != symbol_name_match_type::FULL
13333 && !m_encoded_p
13334 && !m_standard_p
13335 && user_name.find ('.') == std::string::npos);
13336 }
13337 }
13338
13339 /* symbol_name_matcher_ftype method for Ada. This only handles
13340 completion mode. */
13341
13342 static bool
13343 ada_symbol_name_matches (const char *symbol_search_name,
13344 const lookup_name_info &lookup_name,
13345 completion_match_result *comp_match_res)
13346 {
13347 return lookup_name.ada ().matches (symbol_search_name,
13348 lookup_name.match_type (),
13349 comp_match_res);
13350 }
13351
13352 /* A name matcher that matches the symbol name exactly, with
13353 strcmp. */
13354
13355 static bool
13356 literal_symbol_name_matcher (const char *symbol_search_name,
13357 const lookup_name_info &lookup_name,
13358 completion_match_result *comp_match_res)
13359 {
13360 gdb::string_view name_view = lookup_name.name ();
13361
13362 if (lookup_name.completion_mode ()
13363 ? (strncmp (symbol_search_name, name_view.data (),
13364 name_view.size ()) == 0)
13365 : symbol_search_name == name_view)
13366 {
13367 if (comp_match_res != NULL)
13368 comp_match_res->set_match (symbol_search_name);
13369 return true;
13370 }
13371 else
13372 return false;
13373 }
13374
13375 /* Implement the "get_symbol_name_matcher" language_defn method for
13376 Ada. */
13377
13378 static symbol_name_matcher_ftype *
13379 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13380 {
13381 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13382 return literal_symbol_name_matcher;
13383
13384 if (lookup_name.completion_mode ())
13385 return ada_symbol_name_matches;
13386 else
13387 {
13388 if (lookup_name.ada ().wild_match_p ())
13389 return do_wild_match;
13390 else if (lookup_name.ada ().verbatim_p ())
13391 return do_exact_match;
13392 else
13393 return do_full_match;
13394 }
13395 }
13396
13397 /* Class representing the Ada language. */
13398
13399 class ada_language : public language_defn
13400 {
13401 public:
13402 ada_language ()
13403 : language_defn (language_ada)
13404 { /* Nothing. */ }
13405
13406 /* See language.h. */
13407
13408 const char *name () const override
13409 { return "ada"; }
13410
13411 /* See language.h. */
13412
13413 const char *natural_name () const override
13414 { return "Ada"; }
13415
13416 /* See language.h. */
13417
13418 const std::vector<const char *> &filename_extensions () const override
13419 {
13420 static const std::vector<const char *> extensions
13421 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13422 return extensions;
13423 }
13424
13425 /* Print an array element index using the Ada syntax. */
13426
13427 void print_array_index (struct type *index_type,
13428 LONGEST index,
13429 struct ui_file *stream,
13430 const value_print_options *options) const override
13431 {
13432 struct value *index_value = val_atr (index_type, index);
13433
13434 value_print (index_value, stream, options);
13435 gdb_printf (stream, " => ");
13436 }
13437
13438 /* Implement the "read_var_value" language_defn method for Ada. */
13439
13440 struct value *read_var_value (struct symbol *var,
13441 const struct block *var_block,
13442 struct frame_info *frame) const override
13443 {
13444 /* The only case where default_read_var_value is not sufficient
13445 is when VAR is a renaming... */
13446 if (frame != nullptr)
13447 {
13448 const struct block *frame_block = get_frame_block (frame, NULL);
13449 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13450 return ada_read_renaming_var_value (var, frame_block);
13451 }
13452
13453 /* This is a typical case where we expect the default_read_var_value
13454 function to work. */
13455 return language_defn::read_var_value (var, var_block, frame);
13456 }
13457
13458 /* See language.h. */
13459 bool symbol_printing_suppressed (struct symbol *symbol) const override
13460 {
13461 return symbol->is_artificial ();
13462 }
13463
13464 /* See language.h. */
13465 void language_arch_info (struct gdbarch *gdbarch,
13466 struct language_arch_info *lai) const override
13467 {
13468 const struct builtin_type *builtin = builtin_type (gdbarch);
13469
13470 /* Helper function to allow shorter lines below. */
13471 auto add = [&] (struct type *t)
13472 {
13473 lai->add_primitive_type (t);
13474 };
13475
13476 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13477 0, "integer"));
13478 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13479 0, "long_integer"));
13480 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13481 0, "short_integer"));
13482 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13483 1, "character");
13484 lai->set_string_char_type (char_type);
13485 add (char_type);
13486 add (arch_character_type (gdbarch, 16, 1, "wide_character"));
13487 add (arch_character_type (gdbarch, 32, 1, "wide_wide_character"));
13488 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13489 "float", gdbarch_float_format (gdbarch)));
13490 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13491 "long_float", gdbarch_double_format (gdbarch)));
13492 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13493 0, "long_long_integer"));
13494 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13495 "long_long_float",
13496 gdbarch_long_double_format (gdbarch)));
13497 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13498 0, "natural"));
13499 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13500 0, "positive"));
13501 add (builtin->builtin_void);
13502
13503 struct type *system_addr_ptr
13504 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13505 "void"));
13506 system_addr_ptr->set_name ("system__address");
13507 add (system_addr_ptr);
13508
13509 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13510 type. This is a signed integral type whose size is the same as
13511 the size of addresses. */
13512 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13513 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13514 "storage_offset"));
13515
13516 lai->set_bool_type (builtin->builtin_bool);
13517 }
13518
13519 /* See language.h. */
13520
13521 bool iterate_over_symbols
13522 (const struct block *block, const lookup_name_info &name,
13523 domain_enum domain,
13524 gdb::function_view<symbol_found_callback_ftype> callback) const override
13525 {
13526 std::vector<struct block_symbol> results
13527 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13528 for (block_symbol &sym : results)
13529 {
13530 if (!callback (&sym))
13531 return false;
13532 }
13533
13534 return true;
13535 }
13536
13537 /* See language.h. */
13538 bool sniff_from_mangled_name
13539 (const char *mangled,
13540 gdb::unique_xmalloc_ptr<char> *out) const override
13541 {
13542 std::string demangled = ada_decode (mangled);
13543
13544 *out = NULL;
13545
13546 if (demangled != mangled && demangled[0] != '<')
13547 {
13548 /* Set the gsymbol language to Ada, but still return 0.
13549 Two reasons for that:
13550
13551 1. For Ada, we prefer computing the symbol's decoded name
13552 on the fly rather than pre-compute it, in order to save
13553 memory (Ada projects are typically very large).
13554
13555 2. There are some areas in the definition of the GNAT
13556 encoding where, with a bit of bad luck, we might be able
13557 to decode a non-Ada symbol, generating an incorrect
13558 demangled name (Eg: names ending with "TB" for instance
13559 are identified as task bodies and so stripped from
13560 the decoded name returned).
13561
13562 Returning true, here, but not setting *DEMANGLED, helps us get
13563 a little bit of the best of both worlds. Because we're last,
13564 we should not affect any of the other languages that were
13565 able to demangle the symbol before us; we get to correctly
13566 tag Ada symbols as such; and even if we incorrectly tagged a
13567 non-Ada symbol, which should be rare, any routing through the
13568 Ada language should be transparent (Ada tries to behave much
13569 like C/C++ with non-Ada symbols). */
13570 return true;
13571 }
13572
13573 return false;
13574 }
13575
13576 /* See language.h. */
13577
13578 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13579 int options) const override
13580 {
13581 return make_unique_xstrdup (ada_decode (mangled).c_str ());
13582 }
13583
13584 /* See language.h. */
13585
13586 void print_type (struct type *type, const char *varstring,
13587 struct ui_file *stream, int show, int level,
13588 const struct type_print_options *flags) const override
13589 {
13590 ada_print_type (type, varstring, stream, show, level, flags);
13591 }
13592
13593 /* See language.h. */
13594
13595 const char *word_break_characters (void) const override
13596 {
13597 return ada_completer_word_break_characters;
13598 }
13599
13600 /* See language.h. */
13601
13602 void collect_symbol_completion_matches (completion_tracker &tracker,
13603 complete_symbol_mode mode,
13604 symbol_name_match_type name_match_type,
13605 const char *text, const char *word,
13606 enum type_code code) const override
13607 {
13608 struct symbol *sym;
13609 const struct block *b, *surrounding_static_block = 0;
13610 struct block_iterator iter;
13611
13612 gdb_assert (code == TYPE_CODE_UNDEF);
13613
13614 lookup_name_info lookup_name (text, name_match_type, true);
13615
13616 /* First, look at the partial symtab symbols. */
13617 expand_symtabs_matching (NULL,
13618 lookup_name,
13619 NULL,
13620 NULL,
13621 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13622 ALL_DOMAIN);
13623
13624 /* At this point scan through the misc symbol vectors and add each
13625 symbol you find to the list. Eventually we want to ignore
13626 anything that isn't a text symbol (everything else will be
13627 handled by the psymtab code above). */
13628
13629 for (objfile *objfile : current_program_space->objfiles ())
13630 {
13631 for (minimal_symbol *msymbol : objfile->msymbols ())
13632 {
13633 QUIT;
13634
13635 if (completion_skip_symbol (mode, msymbol))
13636 continue;
13637
13638 language symbol_language = msymbol->language ();
13639
13640 /* Ada minimal symbols won't have their language set to Ada. If
13641 we let completion_list_add_name compare using the
13642 default/C-like matcher, then when completing e.g., symbols in a
13643 package named "pck", we'd match internal Ada symbols like
13644 "pckS", which are invalid in an Ada expression, unless you wrap
13645 them in '<' '>' to request a verbatim match.
13646
13647 Unfortunately, some Ada encoded names successfully demangle as
13648 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13649 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13650 with the wrong language set. Paper over that issue here. */
13651 if (symbol_language == language_auto
13652 || symbol_language == language_cplus)
13653 symbol_language = language_ada;
13654
13655 completion_list_add_name (tracker,
13656 symbol_language,
13657 msymbol->linkage_name (),
13658 lookup_name, text, word);
13659 }
13660 }
13661
13662 /* Search upwards from currently selected frame (so that we can
13663 complete on local vars. */
13664
13665 for (b = get_selected_block (0); b != NULL; b = b->superblock ())
13666 {
13667 if (!b->superblock ())
13668 surrounding_static_block = b; /* For elmin of dups */
13669
13670 ALL_BLOCK_SYMBOLS (b, iter, sym)
13671 {
13672 if (completion_skip_symbol (mode, sym))
13673 continue;
13674
13675 completion_list_add_name (tracker,
13676 sym->language (),
13677 sym->linkage_name (),
13678 lookup_name, text, word);
13679 }
13680 }
13681
13682 /* Go through the symtabs and check the externs and statics for
13683 symbols which match. */
13684
13685 for (objfile *objfile : current_program_space->objfiles ())
13686 {
13687 for (compunit_symtab *s : objfile->compunits ())
13688 {
13689 QUIT;
13690 b = BLOCKVECTOR_BLOCK (s->blockvector (), GLOBAL_BLOCK);
13691 ALL_BLOCK_SYMBOLS (b, iter, sym)
13692 {
13693 if (completion_skip_symbol (mode, sym))
13694 continue;
13695
13696 completion_list_add_name (tracker,
13697 sym->language (),
13698 sym->linkage_name (),
13699 lookup_name, text, word);
13700 }
13701 }
13702 }
13703
13704 for (objfile *objfile : current_program_space->objfiles ())
13705 {
13706 for (compunit_symtab *s : objfile->compunits ())
13707 {
13708 QUIT;
13709 b = BLOCKVECTOR_BLOCK (s->blockvector (), STATIC_BLOCK);
13710 /* Don't do this block twice. */
13711 if (b == surrounding_static_block)
13712 continue;
13713 ALL_BLOCK_SYMBOLS (b, iter, sym)
13714 {
13715 if (completion_skip_symbol (mode, sym))
13716 continue;
13717
13718 completion_list_add_name (tracker,
13719 sym->language (),
13720 sym->linkage_name (),
13721 lookup_name, text, word);
13722 }
13723 }
13724 }
13725 }
13726
13727 /* See language.h. */
13728
13729 gdb::unique_xmalloc_ptr<char> watch_location_expression
13730 (struct type *type, CORE_ADDR addr) const override
13731 {
13732 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13733 std::string name = type_to_string (type);
13734 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
13735 }
13736
13737 /* See language.h. */
13738
13739 void value_print (struct value *val, struct ui_file *stream,
13740 const struct value_print_options *options) const override
13741 {
13742 return ada_value_print (val, stream, options);
13743 }
13744
13745 /* See language.h. */
13746
13747 void value_print_inner
13748 (struct value *val, struct ui_file *stream, int recurse,
13749 const struct value_print_options *options) const override
13750 {
13751 return ada_value_print_inner (val, stream, recurse, options);
13752 }
13753
13754 /* See language.h. */
13755
13756 struct block_symbol lookup_symbol_nonlocal
13757 (const char *name, const struct block *block,
13758 const domain_enum domain) const override
13759 {
13760 struct block_symbol sym;
13761
13762 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13763 if (sym.symbol != NULL)
13764 return sym;
13765
13766 /* If we haven't found a match at this point, try the primitive
13767 types. In other languages, this search is performed before
13768 searching for global symbols in order to short-circuit that
13769 global-symbol search if it happens that the name corresponds
13770 to a primitive type. But we cannot do the same in Ada, because
13771 it is perfectly legitimate for a program to declare a type which
13772 has the same name as a standard type. If looking up a type in
13773 that situation, we have traditionally ignored the primitive type
13774 in favor of user-defined types. This is why, unlike most other
13775 languages, we search the primitive types this late and only after
13776 having searched the global symbols without success. */
13777
13778 if (domain == VAR_DOMAIN)
13779 {
13780 struct gdbarch *gdbarch;
13781
13782 if (block == NULL)
13783 gdbarch = target_gdbarch ();
13784 else
13785 gdbarch = block_gdbarch (block);
13786 sym.symbol
13787 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13788 if (sym.symbol != NULL)
13789 return sym;
13790 }
13791
13792 return {};
13793 }
13794
13795 /* See language.h. */
13796
13797 int parser (struct parser_state *ps) const override
13798 {
13799 warnings_issued = 0;
13800 return ada_parse (ps);
13801 }
13802
13803 /* See language.h. */
13804
13805 void emitchar (int ch, struct type *chtype,
13806 struct ui_file *stream, int quoter) const override
13807 {
13808 ada_emit_char (ch, chtype, stream, quoter, 1);
13809 }
13810
13811 /* See language.h. */
13812
13813 void printchar (int ch, struct type *chtype,
13814 struct ui_file *stream) const override
13815 {
13816 ada_printchar (ch, chtype, stream);
13817 }
13818
13819 /* See language.h. */
13820
13821 void printstr (struct ui_file *stream, struct type *elttype,
13822 const gdb_byte *string, unsigned int length,
13823 const char *encoding, int force_ellipses,
13824 const struct value_print_options *options) const override
13825 {
13826 ada_printstr (stream, elttype, string, length, encoding,
13827 force_ellipses, options);
13828 }
13829
13830 /* See language.h. */
13831
13832 void print_typedef (struct type *type, struct symbol *new_symbol,
13833 struct ui_file *stream) const override
13834 {
13835 ada_print_typedef (type, new_symbol, stream);
13836 }
13837
13838 /* See language.h. */
13839
13840 bool is_string_type_p (struct type *type) const override
13841 {
13842 return ada_is_string_type (type);
13843 }
13844
13845 /* See language.h. */
13846
13847 const char *struct_too_deep_ellipsis () const override
13848 { return "(...)"; }
13849
13850 /* See language.h. */
13851
13852 bool c_style_arrays_p () const override
13853 { return false; }
13854
13855 /* See language.h. */
13856
13857 bool store_sym_names_in_linkage_form_p () const override
13858 { return true; }
13859
13860 /* See language.h. */
13861
13862 const struct lang_varobj_ops *varobj_ops () const override
13863 { return &ada_varobj_ops; }
13864
13865 protected:
13866 /* See language.h. */
13867
13868 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13869 (const lookup_name_info &lookup_name) const override
13870 {
13871 return ada_get_symbol_name_matcher (lookup_name);
13872 }
13873 };
13874
13875 /* Single instance of the Ada language class. */
13876
13877 static ada_language ada_language_defn;
13878
13879 /* Command-list for the "set/show ada" prefix command. */
13880 static struct cmd_list_element *set_ada_list;
13881 static struct cmd_list_element *show_ada_list;
13882
13883 static void
13884 initialize_ada_catchpoint_ops (void)
13885 {
13886 struct breakpoint_ops *ops;
13887
13888 initialize_breakpoint_ops ();
13889
13890 ops = &catch_exception_breakpoint_ops;
13891 *ops = bkpt_breakpoint_ops;
13892 ops->allocate_location = allocate_location_exception;
13893 ops->re_set = re_set_exception;
13894 ops->check_status = check_status_exception;
13895 ops->print_it = print_it_exception;
13896 ops->print_one = print_one_exception;
13897 ops->print_mention = print_mention_exception;
13898 ops->print_recreate = print_recreate_exception;
13899 }
13900
13901 /* This module's 'new_objfile' observer. */
13902
13903 static void
13904 ada_new_objfile_observer (struct objfile *objfile)
13905 {
13906 ada_clear_symbol_cache ();
13907 }
13908
13909 /* This module's 'free_objfile' observer. */
13910
13911 static void
13912 ada_free_objfile_observer (struct objfile *objfile)
13913 {
13914 ada_clear_symbol_cache ();
13915 }
13916
13917 /* Charsets known to GNAT. */
13918 static const char * const gnat_source_charsets[] =
13919 {
13920 /* Note that code below assumes that the default comes first.
13921 Latin-1 is the default here, because that is also GNAT's
13922 default. */
13923 "ISO-8859-1",
13924 "ISO-8859-2",
13925 "ISO-8859-3",
13926 "ISO-8859-4",
13927 "ISO-8859-5",
13928 "ISO-8859-15",
13929 "CP437",
13930 "CP850",
13931 /* Note that this value is special-cased in the encoder and
13932 decoder. */
13933 ada_utf8,
13934 nullptr
13935 };
13936
13937 void _initialize_ada_language ();
13938 void
13939 _initialize_ada_language ()
13940 {
13941 initialize_ada_catchpoint_ops ();
13942
13943 add_setshow_prefix_cmd
13944 ("ada", no_class,
13945 _("Prefix command for changing Ada-specific settings."),
13946 _("Generic command for showing Ada-specific settings."),
13947 &set_ada_list, &show_ada_list,
13948 &setlist, &showlist);
13949
13950 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13951 &trust_pad_over_xvs, _("\
13952 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13953 Show whether an optimization trusting PAD types over XVS types is activated."),
13954 _("\
13955 This is related to the encoding used by the GNAT compiler. The debugger\n\
13956 should normally trust the contents of PAD types, but certain older versions\n\
13957 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13958 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13959 work around this bug. It is always safe to turn this option \"off\", but\n\
13960 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13961 this option to \"off\" unless necessary."),
13962 NULL, NULL, &set_ada_list, &show_ada_list);
13963
13964 add_setshow_boolean_cmd ("print-signatures", class_vars,
13965 &print_signatures, _("\
13966 Enable or disable the output of formal and return types for functions in the \
13967 overloads selection menu."), _("\
13968 Show whether the output of formal and return types for functions in the \
13969 overloads selection menu is activated."),
13970 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13971
13972 ada_source_charset = gnat_source_charsets[0];
13973 add_setshow_enum_cmd ("source-charset", class_files,
13974 gnat_source_charsets,
13975 &ada_source_charset, _("\
13976 Set the Ada source character set."), _("\
13977 Show the Ada source character set."), _("\
13978 The character set used for Ada source files.\n\
13979 This must correspond to the '-gnati' or '-gnatW' option passed to GNAT."),
13980 nullptr, nullptr,
13981 &set_ada_list, &show_ada_list);
13982
13983 add_catch_command ("exception", _("\
13984 Catch Ada exceptions, when raised.\n\
13985 Usage: catch exception [ARG] [if CONDITION]\n\
13986 Without any argument, stop when any Ada exception is raised.\n\
13987 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13988 being raised does not have a handler (and will therefore lead to the task's\n\
13989 termination).\n\
13990 Otherwise, the catchpoint only stops when the name of the exception being\n\
13991 raised is the same as ARG.\n\
13992 CONDITION is a boolean expression that is evaluated to see whether the\n\
13993 exception should cause a stop."),
13994 catch_ada_exception_command,
13995 catch_ada_completer,
13996 CATCH_PERMANENT,
13997 CATCH_TEMPORARY);
13998
13999 add_catch_command ("handlers", _("\
14000 Catch Ada exceptions, when handled.\n\
14001 Usage: catch handlers [ARG] [if CONDITION]\n\
14002 Without any argument, stop when any Ada exception is handled.\n\
14003 With an argument, catch only exceptions with the given name.\n\
14004 CONDITION is a boolean expression that is evaluated to see whether the\n\
14005 exception should cause a stop."),
14006 catch_ada_handlers_command,
14007 catch_ada_completer,
14008 CATCH_PERMANENT,
14009 CATCH_TEMPORARY);
14010 add_catch_command ("assert", _("\
14011 Catch failed Ada assertions, when raised.\n\
14012 Usage: catch assert [if CONDITION]\n\
14013 CONDITION is a boolean expression that is evaluated to see whether the\n\
14014 exception should cause a stop."),
14015 catch_assert_command,
14016 NULL,
14017 CATCH_PERMANENT,
14018 CATCH_TEMPORARY);
14019
14020 add_info ("exceptions", info_exceptions_command,
14021 _("\
14022 List all Ada exception names.\n\
14023 Usage: info exceptions [REGEXP]\n\
14024 If a regular expression is passed as an argument, only those matching\n\
14025 the regular expression are listed."));
14026
14027 add_setshow_prefix_cmd ("ada", class_maintenance,
14028 _("Set Ada maintenance-related variables."),
14029 _("Show Ada maintenance-related variables."),
14030 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
14031 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
14032
14033 add_setshow_boolean_cmd
14034 ("ignore-descriptive-types", class_maintenance,
14035 &ada_ignore_descriptive_types_p,
14036 _("Set whether descriptive types generated by GNAT should be ignored."),
14037 _("Show whether descriptive types generated by GNAT should be ignored."),
14038 _("\
14039 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14040 DWARF attribute."),
14041 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14042
14043 decoded_names_store = htab_create_alloc (256, htab_hash_string,
14044 htab_eq_string,
14045 NULL, xcalloc, xfree);
14046
14047 /* The ada-lang observers. */
14048 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
14049 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
14050 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
14051 }