]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
Change boolean options to bool instead of int
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "gdbsupport/vec.h"
53 #include "stack.h"
54 #include "gdbsupport/gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "gdbsupport/function-view.h"
64 #include "gdbsupport/byte-vector.h"
65 #include <algorithm>
66 #include <map>
67
68 /* Define whether or not the C operator '/' truncates towards zero for
69 differently signed operands (truncation direction is undefined in C).
70 Copied from valarith.c. */
71
72 #ifndef TRUNCATION_TOWARDS_ZERO
73 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
74 #endif
75
76 static struct type *desc_base_type (struct type *);
77
78 static struct type *desc_bounds_type (struct type *);
79
80 static struct value *desc_bounds (struct value *);
81
82 static int fat_pntr_bounds_bitpos (struct type *);
83
84 static int fat_pntr_bounds_bitsize (struct type *);
85
86 static struct type *desc_data_target_type (struct type *);
87
88 static struct value *desc_data (struct value *);
89
90 static int fat_pntr_data_bitpos (struct type *);
91
92 static int fat_pntr_data_bitsize (struct type *);
93
94 static struct value *desc_one_bound (struct value *, int, int);
95
96 static int desc_bound_bitpos (struct type *, int, int);
97
98 static int desc_bound_bitsize (struct type *, int, int);
99
100 static struct type *desc_index_type (struct type *, int);
101
102 static int desc_arity (struct type *);
103
104 static int ada_type_match (struct type *, struct type *, int);
105
106 static int ada_args_match (struct symbol *, struct value **, int);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *,
112 const lookup_name_info &lookup_name,
113 domain_enum, struct objfile *);
114
115 static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const lookup_name_info &lookup_name,
117 domain_enum, int, int *);
118
119 static int is_nonfunction (struct block_symbol *, int);
120
121 static void add_defn_to_vec (struct obstack *, struct symbol *,
122 const struct block *);
123
124 static int num_defns_collected (struct obstack *);
125
126 static struct block_symbol *defns_collected (struct obstack *, int);
127
128 static struct value *resolve_subexp (expression_up *, int *, int,
129 struct type *, int,
130 innermost_block_tracker *);
131
132 static void replace_operator_with_call (expression_up *, int, int, int,
133 struct symbol *, const struct block *);
134
135 static int possible_user_operator_p (enum exp_opcode, struct value **);
136
137 static const char *ada_op_name (enum exp_opcode);
138
139 static const char *ada_decoded_op_name (enum exp_opcode);
140
141 static int numeric_type_p (struct type *);
142
143 static int integer_type_p (struct type *);
144
145 static int scalar_type_p (struct type *);
146
147 static int discrete_type_p (struct type *);
148
149 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
150 int, int);
151
152 static struct value *evaluate_subexp_type (struct expression *, int *);
153
154 static struct type *ada_find_parallel_type_with_name (struct type *,
155 const char *);
156
157 static int is_dynamic_field (struct type *, int);
158
159 static struct type *to_fixed_variant_branch_type (struct type *,
160 const gdb_byte *,
161 CORE_ADDR, struct value *);
162
163 static struct type *to_fixed_array_type (struct type *, struct value *, int);
164
165 static struct type *to_fixed_range_type (struct type *, struct value *);
166
167 static struct type *to_static_fixed_type (struct type *);
168 static struct type *static_unwrap_type (struct type *type);
169
170 static struct value *unwrap_value (struct value *);
171
172 static struct type *constrained_packed_array_type (struct type *, long *);
173
174 static struct type *decode_constrained_packed_array_type (struct type *);
175
176 static long decode_packed_array_bitsize (struct type *);
177
178 static struct value *decode_constrained_packed_array (struct value *);
179
180 static int ada_is_packed_array_type (struct type *);
181
182 static int ada_is_unconstrained_packed_array_type (struct type *);
183
184 static struct value *value_subscript_packed (struct value *, int,
185 struct value **);
186
187 static struct value *coerce_unspec_val_to_type (struct value *,
188 struct type *);
189
190 static int lesseq_defined_than (struct symbol *, struct symbol *);
191
192 static int equiv_types (struct type *, struct type *);
193
194 static int is_name_suffix (const char *);
195
196 static int advance_wild_match (const char **, const char *, int);
197
198 static bool wild_match (const char *name, const char *patn);
199
200 static struct value *ada_coerce_ref (struct value *);
201
202 static LONGEST pos_atr (struct value *);
203
204 static struct value *value_pos_atr (struct type *, struct value *);
205
206 static struct value *value_val_atr (struct type *, struct value *);
207
208 static struct symbol *standard_lookup (const char *, const struct block *,
209 domain_enum);
210
211 static struct value *ada_search_struct_field (const char *, struct value *, int,
212 struct type *);
213
214 static struct value *ada_value_primitive_field (struct value *, int, int,
215 struct type *);
216
217 static int find_struct_field (const char *, struct type *, int,
218 struct type **, int *, int *, int *, int *);
219
220 static int ada_resolve_function (struct block_symbol *, int,
221 struct value **, int, const char *,
222 struct type *, int);
223
224 static int ada_is_direct_array_type (struct type *);
225
226 static void ada_language_arch_info (struct gdbarch *,
227 struct language_arch_info *);
228
229 static struct value *ada_index_struct_field (int, struct value *, int,
230 struct type *);
231
232 static struct value *assign_aggregate (struct value *, struct value *,
233 struct expression *,
234 int *, enum noside);
235
236 static void aggregate_assign_from_choices (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int *,
239 int, LONGEST, LONGEST);
240
241 static void aggregate_assign_positional (struct value *, struct value *,
242 struct expression *,
243 int *, LONGEST *, int *, int,
244 LONGEST, LONGEST);
245
246
247 static void aggregate_assign_others (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int, LONGEST, LONGEST);
250
251
252 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
253
254
255 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
256 int *, enum noside);
257
258 static void ada_forward_operator_length (struct expression *, int, int *,
259 int *);
260
261 static struct type *ada_find_any_type (const char *name);
262
263 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
264 (const lookup_name_info &lookup_name);
265
266 \f
267
268 /* The result of a symbol lookup to be stored in our symbol cache. */
269
270 struct cache_entry
271 {
272 /* The name used to perform the lookup. */
273 const char *name;
274 /* The namespace used during the lookup. */
275 domain_enum domain;
276 /* The symbol returned by the lookup, or NULL if no matching symbol
277 was found. */
278 struct symbol *sym;
279 /* The block where the symbol was found, or NULL if no matching
280 symbol was found. */
281 const struct block *block;
282 /* A pointer to the next entry with the same hash. */
283 struct cache_entry *next;
284 };
285
286 /* The Ada symbol cache, used to store the result of Ada-mode symbol
287 lookups in the course of executing the user's commands.
288
289 The cache is implemented using a simple, fixed-sized hash.
290 The size is fixed on the grounds that there are not likely to be
291 all that many symbols looked up during any given session, regardless
292 of the size of the symbol table. If we decide to go to a resizable
293 table, let's just use the stuff from libiberty instead. */
294
295 #define HASH_SIZE 1009
296
297 struct ada_symbol_cache
298 {
299 /* An obstack used to store the entries in our cache. */
300 struct obstack cache_space;
301
302 /* The root of the hash table used to implement our symbol cache. */
303 struct cache_entry *root[HASH_SIZE];
304 };
305
306 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
307
308 /* Maximum-sized dynamic type. */
309 static unsigned int varsize_limit;
310
311 static const char ada_completer_word_break_characters[] =
312 #ifdef VMS
313 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
314 #else
315 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
316 #endif
317
318 /* The name of the symbol to use to get the name of the main subprogram. */
319 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
320 = "__gnat_ada_main_program_name";
321
322 /* Limit on the number of warnings to raise per expression evaluation. */
323 static int warning_limit = 2;
324
325 /* Number of warning messages issued; reset to 0 by cleanups after
326 expression evaluation. */
327 static int warnings_issued = 0;
328
329 static const char *known_runtime_file_name_patterns[] = {
330 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
331 };
332
333 static const char *known_auxiliary_function_name_patterns[] = {
334 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
335 };
336
337 /* Maintenance-related settings for this module. */
338
339 static struct cmd_list_element *maint_set_ada_cmdlist;
340 static struct cmd_list_element *maint_show_ada_cmdlist;
341
342 /* Implement the "maintenance set ada" (prefix) command. */
343
344 static void
345 maint_set_ada_cmd (const char *args, int from_tty)
346 {
347 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
348 gdb_stdout);
349 }
350
351 /* Implement the "maintenance show ada" (prefix) command. */
352
353 static void
354 maint_show_ada_cmd (const char *args, int from_tty)
355 {
356 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
357 }
358
359 /* The "maintenance ada set/show ignore-descriptive-type" value. */
360
361 static bool ada_ignore_descriptive_types_p = false;
362
363 /* Inferior-specific data. */
364
365 /* Per-inferior data for this module. */
366
367 struct ada_inferior_data
368 {
369 /* The ada__tags__type_specific_data type, which is used when decoding
370 tagged types. With older versions of GNAT, this type was directly
371 accessible through a component ("tsd") in the object tag. But this
372 is no longer the case, so we cache it for each inferior. */
373 struct type *tsd_type = nullptr;
374
375 /* The exception_support_info data. This data is used to determine
376 how to implement support for Ada exception catchpoints in a given
377 inferior. */
378 const struct exception_support_info *exception_info = nullptr;
379 };
380
381 /* Our key to this module's inferior data. */
382 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
383
384 /* Return our inferior data for the given inferior (INF).
385
386 This function always returns a valid pointer to an allocated
387 ada_inferior_data structure. If INF's inferior data has not
388 been previously set, this functions creates a new one with all
389 fields set to zero, sets INF's inferior to it, and then returns
390 a pointer to that newly allocated ada_inferior_data. */
391
392 static struct ada_inferior_data *
393 get_ada_inferior_data (struct inferior *inf)
394 {
395 struct ada_inferior_data *data;
396
397 data = ada_inferior_data.get (inf);
398 if (data == NULL)
399 data = ada_inferior_data.emplace (inf);
400
401 return data;
402 }
403
404 /* Perform all necessary cleanups regarding our module's inferior data
405 that is required after the inferior INF just exited. */
406
407 static void
408 ada_inferior_exit (struct inferior *inf)
409 {
410 ada_inferior_data.clear (inf);
411 }
412
413
414 /* program-space-specific data. */
415
416 /* This module's per-program-space data. */
417 struct ada_pspace_data
418 {
419 ~ada_pspace_data ()
420 {
421 if (sym_cache != NULL)
422 ada_free_symbol_cache (sym_cache);
423 }
424
425 /* The Ada symbol cache. */
426 struct ada_symbol_cache *sym_cache = nullptr;
427 };
428
429 /* Key to our per-program-space data. */
430 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
431
432 /* Return this module's data for the given program space (PSPACE).
433 If not is found, add a zero'ed one now.
434
435 This function always returns a valid object. */
436
437 static struct ada_pspace_data *
438 get_ada_pspace_data (struct program_space *pspace)
439 {
440 struct ada_pspace_data *data;
441
442 data = ada_pspace_data_handle.get (pspace);
443 if (data == NULL)
444 data = ada_pspace_data_handle.emplace (pspace);
445
446 return data;
447 }
448
449 /* Utilities */
450
451 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
452 all typedef layers have been peeled. Otherwise, return TYPE.
453
454 Normally, we really expect a typedef type to only have 1 typedef layer.
455 In other words, we really expect the target type of a typedef type to be
456 a non-typedef type. This is particularly true for Ada units, because
457 the language does not have a typedef vs not-typedef distinction.
458 In that respect, the Ada compiler has been trying to eliminate as many
459 typedef definitions in the debugging information, since they generally
460 do not bring any extra information (we still use typedef under certain
461 circumstances related mostly to the GNAT encoding).
462
463 Unfortunately, we have seen situations where the debugging information
464 generated by the compiler leads to such multiple typedef layers. For
465 instance, consider the following example with stabs:
466
467 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
468 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
469
470 This is an error in the debugging information which causes type
471 pck__float_array___XUP to be defined twice, and the second time,
472 it is defined as a typedef of a typedef.
473
474 This is on the fringe of legality as far as debugging information is
475 concerned, and certainly unexpected. But it is easy to handle these
476 situations correctly, so we can afford to be lenient in this case. */
477
478 static struct type *
479 ada_typedef_target_type (struct type *type)
480 {
481 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
482 type = TYPE_TARGET_TYPE (type);
483 return type;
484 }
485
486 /* Given DECODED_NAME a string holding a symbol name in its
487 decoded form (ie using the Ada dotted notation), returns
488 its unqualified name. */
489
490 static const char *
491 ada_unqualified_name (const char *decoded_name)
492 {
493 const char *result;
494
495 /* If the decoded name starts with '<', it means that the encoded
496 name does not follow standard naming conventions, and thus that
497 it is not your typical Ada symbol name. Trying to unqualify it
498 is therefore pointless and possibly erroneous. */
499 if (decoded_name[0] == '<')
500 return decoded_name;
501
502 result = strrchr (decoded_name, '.');
503 if (result != NULL)
504 result++; /* Skip the dot... */
505 else
506 result = decoded_name;
507
508 return result;
509 }
510
511 /* Return a string starting with '<', followed by STR, and '>'. */
512
513 static std::string
514 add_angle_brackets (const char *str)
515 {
516 return string_printf ("<%s>", str);
517 }
518
519 static const char *
520 ada_get_gdb_completer_word_break_characters (void)
521 {
522 return ada_completer_word_break_characters;
523 }
524
525 /* Print an array element index using the Ada syntax. */
526
527 static void
528 ada_print_array_index (struct value *index_value, struct ui_file *stream,
529 const struct value_print_options *options)
530 {
531 LA_VALUE_PRINT (index_value, stream, options);
532 fprintf_filtered (stream, " => ");
533 }
534
535 /* la_watch_location_expression for Ada. */
536
537 gdb::unique_xmalloc_ptr<char>
538 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
539 {
540 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
541 std::string name = type_to_string (type);
542 return gdb::unique_xmalloc_ptr<char>
543 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
544 }
545
546 /* Assuming VECT points to an array of *SIZE objects of size
547 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
548 updating *SIZE as necessary and returning the (new) array. */
549
550 void *
551 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
552 {
553 if (*size < min_size)
554 {
555 *size *= 2;
556 if (*size < min_size)
557 *size = min_size;
558 vect = xrealloc (vect, *size * element_size);
559 }
560 return vect;
561 }
562
563 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
564 suffix of FIELD_NAME beginning "___". */
565
566 static int
567 field_name_match (const char *field_name, const char *target)
568 {
569 int len = strlen (target);
570
571 return
572 (strncmp (field_name, target, len) == 0
573 && (field_name[len] == '\0'
574 || (startswith (field_name + len, "___")
575 && strcmp (field_name + strlen (field_name) - 6,
576 "___XVN") != 0)));
577 }
578
579
580 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
581 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
582 and return its index. This function also handles fields whose name
583 have ___ suffixes because the compiler sometimes alters their name
584 by adding such a suffix to represent fields with certain constraints.
585 If the field could not be found, return a negative number if
586 MAYBE_MISSING is set. Otherwise raise an error. */
587
588 int
589 ada_get_field_index (const struct type *type, const char *field_name,
590 int maybe_missing)
591 {
592 int fieldno;
593 struct type *struct_type = check_typedef ((struct type *) type);
594
595 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
596 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
597 return fieldno;
598
599 if (!maybe_missing)
600 error (_("Unable to find field %s in struct %s. Aborting"),
601 field_name, TYPE_NAME (struct_type));
602
603 return -1;
604 }
605
606 /* The length of the prefix of NAME prior to any "___" suffix. */
607
608 int
609 ada_name_prefix_len (const char *name)
610 {
611 if (name == NULL)
612 return 0;
613 else
614 {
615 const char *p = strstr (name, "___");
616
617 if (p == NULL)
618 return strlen (name);
619 else
620 return p - name;
621 }
622 }
623
624 /* Return non-zero if SUFFIX is a suffix of STR.
625 Return zero if STR is null. */
626
627 static int
628 is_suffix (const char *str, const char *suffix)
629 {
630 int len1, len2;
631
632 if (str == NULL)
633 return 0;
634 len1 = strlen (str);
635 len2 = strlen (suffix);
636 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
637 }
638
639 /* The contents of value VAL, treated as a value of type TYPE. The
640 result is an lval in memory if VAL is. */
641
642 static struct value *
643 coerce_unspec_val_to_type (struct value *val, struct type *type)
644 {
645 type = ada_check_typedef (type);
646 if (value_type (val) == type)
647 return val;
648 else
649 {
650 struct value *result;
651
652 /* Make sure that the object size is not unreasonable before
653 trying to allocate some memory for it. */
654 ada_ensure_varsize_limit (type);
655
656 if (value_lazy (val)
657 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
658 result = allocate_value_lazy (type);
659 else
660 {
661 result = allocate_value (type);
662 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
663 }
664 set_value_component_location (result, val);
665 set_value_bitsize (result, value_bitsize (val));
666 set_value_bitpos (result, value_bitpos (val));
667 if (VALUE_LVAL (result) == lval_memory)
668 set_value_address (result, value_address (val));
669 return result;
670 }
671 }
672
673 static const gdb_byte *
674 cond_offset_host (const gdb_byte *valaddr, long offset)
675 {
676 if (valaddr == NULL)
677 return NULL;
678 else
679 return valaddr + offset;
680 }
681
682 static CORE_ADDR
683 cond_offset_target (CORE_ADDR address, long offset)
684 {
685 if (address == 0)
686 return 0;
687 else
688 return address + offset;
689 }
690
691 /* Issue a warning (as for the definition of warning in utils.c, but
692 with exactly one argument rather than ...), unless the limit on the
693 number of warnings has passed during the evaluation of the current
694 expression. */
695
696 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
697 provided by "complaint". */
698 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
699
700 static void
701 lim_warning (const char *format, ...)
702 {
703 va_list args;
704
705 va_start (args, format);
706 warnings_issued += 1;
707 if (warnings_issued <= warning_limit)
708 vwarning (format, args);
709
710 va_end (args);
711 }
712
713 /* Issue an error if the size of an object of type T is unreasonable,
714 i.e. if it would be a bad idea to allocate a value of this type in
715 GDB. */
716
717 void
718 ada_ensure_varsize_limit (const struct type *type)
719 {
720 if (TYPE_LENGTH (type) > varsize_limit)
721 error (_("object size is larger than varsize-limit"));
722 }
723
724 /* Maximum value of a SIZE-byte signed integer type. */
725 static LONGEST
726 max_of_size (int size)
727 {
728 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
729
730 return top_bit | (top_bit - 1);
731 }
732
733 /* Minimum value of a SIZE-byte signed integer type. */
734 static LONGEST
735 min_of_size (int size)
736 {
737 return -max_of_size (size) - 1;
738 }
739
740 /* Maximum value of a SIZE-byte unsigned integer type. */
741 static ULONGEST
742 umax_of_size (int size)
743 {
744 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
745
746 return top_bit | (top_bit - 1);
747 }
748
749 /* Maximum value of integral type T, as a signed quantity. */
750 static LONGEST
751 max_of_type (struct type *t)
752 {
753 if (TYPE_UNSIGNED (t))
754 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
755 else
756 return max_of_size (TYPE_LENGTH (t));
757 }
758
759 /* Minimum value of integral type T, as a signed quantity. */
760 static LONGEST
761 min_of_type (struct type *t)
762 {
763 if (TYPE_UNSIGNED (t))
764 return 0;
765 else
766 return min_of_size (TYPE_LENGTH (t));
767 }
768
769 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
770 LONGEST
771 ada_discrete_type_high_bound (struct type *type)
772 {
773 type = resolve_dynamic_type (type, NULL, 0);
774 switch (TYPE_CODE (type))
775 {
776 case TYPE_CODE_RANGE:
777 return TYPE_HIGH_BOUND (type);
778 case TYPE_CODE_ENUM:
779 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
780 case TYPE_CODE_BOOL:
781 return 1;
782 case TYPE_CODE_CHAR:
783 case TYPE_CODE_INT:
784 return max_of_type (type);
785 default:
786 error (_("Unexpected type in ada_discrete_type_high_bound."));
787 }
788 }
789
790 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
791 LONGEST
792 ada_discrete_type_low_bound (struct type *type)
793 {
794 type = resolve_dynamic_type (type, NULL, 0);
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_RANGE:
798 return TYPE_LOW_BOUND (type);
799 case TYPE_CODE_ENUM:
800 return TYPE_FIELD_ENUMVAL (type, 0);
801 case TYPE_CODE_BOOL:
802 return 0;
803 case TYPE_CODE_CHAR:
804 case TYPE_CODE_INT:
805 return min_of_type (type);
806 default:
807 error (_("Unexpected type in ada_discrete_type_low_bound."));
808 }
809 }
810
811 /* The identity on non-range types. For range types, the underlying
812 non-range scalar type. */
813
814 static struct type *
815 get_base_type (struct type *type)
816 {
817 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
818 {
819 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
820 return type;
821 type = TYPE_TARGET_TYPE (type);
822 }
823 return type;
824 }
825
826 /* Return a decoded version of the given VALUE. This means returning
827 a value whose type is obtained by applying all the GNAT-specific
828 encondings, making the resulting type a static but standard description
829 of the initial type. */
830
831 struct value *
832 ada_get_decoded_value (struct value *value)
833 {
834 struct type *type = ada_check_typedef (value_type (value));
835
836 if (ada_is_array_descriptor_type (type)
837 || (ada_is_constrained_packed_array_type (type)
838 && TYPE_CODE (type) != TYPE_CODE_PTR))
839 {
840 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
841 value = ada_coerce_to_simple_array_ptr (value);
842 else
843 value = ada_coerce_to_simple_array (value);
844 }
845 else
846 value = ada_to_fixed_value (value);
847
848 return value;
849 }
850
851 /* Same as ada_get_decoded_value, but with the given TYPE.
852 Because there is no associated actual value for this type,
853 the resulting type might be a best-effort approximation in
854 the case of dynamic types. */
855
856 struct type *
857 ada_get_decoded_type (struct type *type)
858 {
859 type = to_static_fixed_type (type);
860 if (ada_is_constrained_packed_array_type (type))
861 type = ada_coerce_to_simple_array_type (type);
862 return type;
863 }
864
865 \f
866
867 /* Language Selection */
868
869 /* If the main program is in Ada, return language_ada, otherwise return LANG
870 (the main program is in Ada iif the adainit symbol is found). */
871
872 enum language
873 ada_update_initial_language (enum language lang)
874 {
875 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
876 return language_ada;
877
878 return lang;
879 }
880
881 /* If the main procedure is written in Ada, then return its name.
882 The result is good until the next call. Return NULL if the main
883 procedure doesn't appear to be in Ada. */
884
885 char *
886 ada_main_name (void)
887 {
888 struct bound_minimal_symbol msym;
889 static gdb::unique_xmalloc_ptr<char> main_program_name;
890
891 /* For Ada, the name of the main procedure is stored in a specific
892 string constant, generated by the binder. Look for that symbol,
893 extract its address, and then read that string. If we didn't find
894 that string, then most probably the main procedure is not written
895 in Ada. */
896 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
897
898 if (msym.minsym != NULL)
899 {
900 CORE_ADDR main_program_name_addr;
901 int err_code;
902
903 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
904 if (main_program_name_addr == 0)
905 error (_("Invalid address for Ada main program name."));
906
907 target_read_string (main_program_name_addr, &main_program_name,
908 1024, &err_code);
909
910 if (err_code != 0)
911 return NULL;
912 return main_program_name.get ();
913 }
914
915 /* The main procedure doesn't seem to be in Ada. */
916 return NULL;
917 }
918 \f
919 /* Symbols */
920
921 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
922 of NULLs. */
923
924 const struct ada_opname_map ada_opname_table[] = {
925 {"Oadd", "\"+\"", BINOP_ADD},
926 {"Osubtract", "\"-\"", BINOP_SUB},
927 {"Omultiply", "\"*\"", BINOP_MUL},
928 {"Odivide", "\"/\"", BINOP_DIV},
929 {"Omod", "\"mod\"", BINOP_MOD},
930 {"Orem", "\"rem\"", BINOP_REM},
931 {"Oexpon", "\"**\"", BINOP_EXP},
932 {"Olt", "\"<\"", BINOP_LESS},
933 {"Ole", "\"<=\"", BINOP_LEQ},
934 {"Ogt", "\">\"", BINOP_GTR},
935 {"Oge", "\">=\"", BINOP_GEQ},
936 {"Oeq", "\"=\"", BINOP_EQUAL},
937 {"One", "\"/=\"", BINOP_NOTEQUAL},
938 {"Oand", "\"and\"", BINOP_BITWISE_AND},
939 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
940 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
941 {"Oconcat", "\"&\"", BINOP_CONCAT},
942 {"Oabs", "\"abs\"", UNOP_ABS},
943 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
944 {"Oadd", "\"+\"", UNOP_PLUS},
945 {"Osubtract", "\"-\"", UNOP_NEG},
946 {NULL, NULL}
947 };
948
949 /* The "encoded" form of DECODED, according to GNAT conventions. The
950 result is valid until the next call to ada_encode. If
951 THROW_ERRORS, throw an error if invalid operator name is found.
952 Otherwise, return NULL in that case. */
953
954 static char *
955 ada_encode_1 (const char *decoded, bool throw_errors)
956 {
957 static char *encoding_buffer = NULL;
958 static size_t encoding_buffer_size = 0;
959 const char *p;
960 int k;
961
962 if (decoded == NULL)
963 return NULL;
964
965 GROW_VECT (encoding_buffer, encoding_buffer_size,
966 2 * strlen (decoded) + 10);
967
968 k = 0;
969 for (p = decoded; *p != '\0'; p += 1)
970 {
971 if (*p == '.')
972 {
973 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
974 k += 2;
975 }
976 else if (*p == '"')
977 {
978 const struct ada_opname_map *mapping;
979
980 for (mapping = ada_opname_table;
981 mapping->encoded != NULL
982 && !startswith (p, mapping->decoded); mapping += 1)
983 ;
984 if (mapping->encoded == NULL)
985 {
986 if (throw_errors)
987 error (_("invalid Ada operator name: %s"), p);
988 else
989 return NULL;
990 }
991 strcpy (encoding_buffer + k, mapping->encoded);
992 k += strlen (mapping->encoded);
993 break;
994 }
995 else
996 {
997 encoding_buffer[k] = *p;
998 k += 1;
999 }
1000 }
1001
1002 encoding_buffer[k] = '\0';
1003 return encoding_buffer;
1004 }
1005
1006 /* The "encoded" form of DECODED, according to GNAT conventions.
1007 The result is valid until the next call to ada_encode. */
1008
1009 char *
1010 ada_encode (const char *decoded)
1011 {
1012 return ada_encode_1 (decoded, true);
1013 }
1014
1015 /* Return NAME folded to lower case, or, if surrounded by single
1016 quotes, unfolded, but with the quotes stripped away. Result good
1017 to next call. */
1018
1019 char *
1020 ada_fold_name (const char *name)
1021 {
1022 static char *fold_buffer = NULL;
1023 static size_t fold_buffer_size = 0;
1024
1025 int len = strlen (name);
1026 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1027
1028 if (name[0] == '\'')
1029 {
1030 strncpy (fold_buffer, name + 1, len - 2);
1031 fold_buffer[len - 2] = '\000';
1032 }
1033 else
1034 {
1035 int i;
1036
1037 for (i = 0; i <= len; i += 1)
1038 fold_buffer[i] = tolower (name[i]);
1039 }
1040
1041 return fold_buffer;
1042 }
1043
1044 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1045
1046 static int
1047 is_lower_alphanum (const char c)
1048 {
1049 return (isdigit (c) || (isalpha (c) && islower (c)));
1050 }
1051
1052 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1053 This function saves in LEN the length of that same symbol name but
1054 without either of these suffixes:
1055 . .{DIGIT}+
1056 . ${DIGIT}+
1057 . ___{DIGIT}+
1058 . __{DIGIT}+.
1059
1060 These are suffixes introduced by the compiler for entities such as
1061 nested subprogram for instance, in order to avoid name clashes.
1062 They do not serve any purpose for the debugger. */
1063
1064 static void
1065 ada_remove_trailing_digits (const char *encoded, int *len)
1066 {
1067 if (*len > 1 && isdigit (encoded[*len - 1]))
1068 {
1069 int i = *len - 2;
1070
1071 while (i > 0 && isdigit (encoded[i]))
1072 i--;
1073 if (i >= 0 && encoded[i] == '.')
1074 *len = i;
1075 else if (i >= 0 && encoded[i] == '$')
1076 *len = i;
1077 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1078 *len = i - 2;
1079 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1080 *len = i - 1;
1081 }
1082 }
1083
1084 /* Remove the suffix introduced by the compiler for protected object
1085 subprograms. */
1086
1087 static void
1088 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1089 {
1090 /* Remove trailing N. */
1091
1092 /* Protected entry subprograms are broken into two
1093 separate subprograms: The first one is unprotected, and has
1094 a 'N' suffix; the second is the protected version, and has
1095 the 'P' suffix. The second calls the first one after handling
1096 the protection. Since the P subprograms are internally generated,
1097 we leave these names undecoded, giving the user a clue that this
1098 entity is internal. */
1099
1100 if (*len > 1
1101 && encoded[*len - 1] == 'N'
1102 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1103 *len = *len - 1;
1104 }
1105
1106 /* If ENCODED follows the GNAT entity encoding conventions, then return
1107 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1108 replaced by ENCODED.
1109
1110 The resulting string is valid until the next call of ada_decode.
1111 If the string is unchanged by decoding, the original string pointer
1112 is returned. */
1113
1114 const char *
1115 ada_decode (const char *encoded)
1116 {
1117 int i, j;
1118 int len0;
1119 const char *p;
1120 char *decoded;
1121 int at_start_name;
1122 static char *decoding_buffer = NULL;
1123 static size_t decoding_buffer_size = 0;
1124
1125 /* With function descriptors on PPC64, the value of a symbol named
1126 ".FN", if it exists, is the entry point of the function "FN". */
1127 if (encoded[0] == '.')
1128 encoded += 1;
1129
1130 /* The name of the Ada main procedure starts with "_ada_".
1131 This prefix is not part of the decoded name, so skip this part
1132 if we see this prefix. */
1133 if (startswith (encoded, "_ada_"))
1134 encoded += 5;
1135
1136 /* If the name starts with '_', then it is not a properly encoded
1137 name, so do not attempt to decode it. Similarly, if the name
1138 starts with '<', the name should not be decoded. */
1139 if (encoded[0] == '_' || encoded[0] == '<')
1140 goto Suppress;
1141
1142 len0 = strlen (encoded);
1143
1144 ada_remove_trailing_digits (encoded, &len0);
1145 ada_remove_po_subprogram_suffix (encoded, &len0);
1146
1147 /* Remove the ___X.* suffix if present. Do not forget to verify that
1148 the suffix is located before the current "end" of ENCODED. We want
1149 to avoid re-matching parts of ENCODED that have previously been
1150 marked as discarded (by decrementing LEN0). */
1151 p = strstr (encoded, "___");
1152 if (p != NULL && p - encoded < len0 - 3)
1153 {
1154 if (p[3] == 'X')
1155 len0 = p - encoded;
1156 else
1157 goto Suppress;
1158 }
1159
1160 /* Remove any trailing TKB suffix. It tells us that this symbol
1161 is for the body of a task, but that information does not actually
1162 appear in the decoded name. */
1163
1164 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1165 len0 -= 3;
1166
1167 /* Remove any trailing TB suffix. The TB suffix is slightly different
1168 from the TKB suffix because it is used for non-anonymous task
1169 bodies. */
1170
1171 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1172 len0 -= 2;
1173
1174 /* Remove trailing "B" suffixes. */
1175 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1176
1177 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1178 len0 -= 1;
1179
1180 /* Make decoded big enough for possible expansion by operator name. */
1181
1182 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1183 decoded = decoding_buffer;
1184
1185 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1186
1187 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1188 {
1189 i = len0 - 2;
1190 while ((i >= 0 && isdigit (encoded[i]))
1191 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1192 i -= 1;
1193 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1194 len0 = i - 1;
1195 else if (encoded[i] == '$')
1196 len0 = i;
1197 }
1198
1199 /* The first few characters that are not alphabetic are not part
1200 of any encoding we use, so we can copy them over verbatim. */
1201
1202 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1203 decoded[j] = encoded[i];
1204
1205 at_start_name = 1;
1206 while (i < len0)
1207 {
1208 /* Is this a symbol function? */
1209 if (at_start_name && encoded[i] == 'O')
1210 {
1211 int k;
1212
1213 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1214 {
1215 int op_len = strlen (ada_opname_table[k].encoded);
1216 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1217 op_len - 1) == 0)
1218 && !isalnum (encoded[i + op_len]))
1219 {
1220 strcpy (decoded + j, ada_opname_table[k].decoded);
1221 at_start_name = 0;
1222 i += op_len;
1223 j += strlen (ada_opname_table[k].decoded);
1224 break;
1225 }
1226 }
1227 if (ada_opname_table[k].encoded != NULL)
1228 continue;
1229 }
1230 at_start_name = 0;
1231
1232 /* Replace "TK__" with "__", which will eventually be translated
1233 into "." (just below). */
1234
1235 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1236 i += 2;
1237
1238 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1239 be translated into "." (just below). These are internal names
1240 generated for anonymous blocks inside which our symbol is nested. */
1241
1242 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1243 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1244 && isdigit (encoded [i+4]))
1245 {
1246 int k = i + 5;
1247
1248 while (k < len0 && isdigit (encoded[k]))
1249 k++; /* Skip any extra digit. */
1250
1251 /* Double-check that the "__B_{DIGITS}+" sequence we found
1252 is indeed followed by "__". */
1253 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1254 i = k;
1255 }
1256
1257 /* Remove _E{DIGITS}+[sb] */
1258
1259 /* Just as for protected object subprograms, there are 2 categories
1260 of subprograms created by the compiler for each entry. The first
1261 one implements the actual entry code, and has a suffix following
1262 the convention above; the second one implements the barrier and
1263 uses the same convention as above, except that the 'E' is replaced
1264 by a 'B'.
1265
1266 Just as above, we do not decode the name of barrier functions
1267 to give the user a clue that the code he is debugging has been
1268 internally generated. */
1269
1270 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1271 && isdigit (encoded[i+2]))
1272 {
1273 int k = i + 3;
1274
1275 while (k < len0 && isdigit (encoded[k]))
1276 k++;
1277
1278 if (k < len0
1279 && (encoded[k] == 'b' || encoded[k] == 's'))
1280 {
1281 k++;
1282 /* Just as an extra precaution, make sure that if this
1283 suffix is followed by anything else, it is a '_'.
1284 Otherwise, we matched this sequence by accident. */
1285 if (k == len0
1286 || (k < len0 && encoded[k] == '_'))
1287 i = k;
1288 }
1289 }
1290
1291 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1292 the GNAT front-end in protected object subprograms. */
1293
1294 if (i < len0 + 3
1295 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1296 {
1297 /* Backtrack a bit up until we reach either the begining of
1298 the encoded name, or "__". Make sure that we only find
1299 digits or lowercase characters. */
1300 const char *ptr = encoded + i - 1;
1301
1302 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1303 ptr--;
1304 if (ptr < encoded
1305 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1306 i++;
1307 }
1308
1309 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1310 {
1311 /* This is a X[bn]* sequence not separated from the previous
1312 part of the name with a non-alpha-numeric character (in other
1313 words, immediately following an alpha-numeric character), then
1314 verify that it is placed at the end of the encoded name. If
1315 not, then the encoding is not valid and we should abort the
1316 decoding. Otherwise, just skip it, it is used in body-nested
1317 package names. */
1318 do
1319 i += 1;
1320 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1321 if (i < len0)
1322 goto Suppress;
1323 }
1324 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1325 {
1326 /* Replace '__' by '.'. */
1327 decoded[j] = '.';
1328 at_start_name = 1;
1329 i += 2;
1330 j += 1;
1331 }
1332 else
1333 {
1334 /* It's a character part of the decoded name, so just copy it
1335 over. */
1336 decoded[j] = encoded[i];
1337 i += 1;
1338 j += 1;
1339 }
1340 }
1341 decoded[j] = '\000';
1342
1343 /* Decoded names should never contain any uppercase character.
1344 Double-check this, and abort the decoding if we find one. */
1345
1346 for (i = 0; decoded[i] != '\0'; i += 1)
1347 if (isupper (decoded[i]) || decoded[i] == ' ')
1348 goto Suppress;
1349
1350 if (strcmp (decoded, encoded) == 0)
1351 return encoded;
1352 else
1353 return decoded;
1354
1355 Suppress:
1356 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1357 decoded = decoding_buffer;
1358 if (encoded[0] == '<')
1359 strcpy (decoded, encoded);
1360 else
1361 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1362 return decoded;
1363
1364 }
1365
1366 /* Table for keeping permanent unique copies of decoded names. Once
1367 allocated, names in this table are never released. While this is a
1368 storage leak, it should not be significant unless there are massive
1369 changes in the set of decoded names in successive versions of a
1370 symbol table loaded during a single session. */
1371 static struct htab *decoded_names_store;
1372
1373 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1374 in the language-specific part of GSYMBOL, if it has not been
1375 previously computed. Tries to save the decoded name in the same
1376 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1377 in any case, the decoded symbol has a lifetime at least that of
1378 GSYMBOL).
1379 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1380 const, but nevertheless modified to a semantically equivalent form
1381 when a decoded name is cached in it. */
1382
1383 const char *
1384 ada_decode_symbol (const struct general_symbol_info *arg)
1385 {
1386 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1387 const char **resultp =
1388 &gsymbol->language_specific.demangled_name;
1389
1390 if (!gsymbol->ada_mangled)
1391 {
1392 const char *decoded = ada_decode (gsymbol->name);
1393 struct obstack *obstack = gsymbol->language_specific.obstack;
1394
1395 gsymbol->ada_mangled = 1;
1396
1397 if (obstack != NULL)
1398 *resultp = obstack_strdup (obstack, decoded);
1399 else
1400 {
1401 /* Sometimes, we can't find a corresponding objfile, in
1402 which case, we put the result on the heap. Since we only
1403 decode when needed, we hope this usually does not cause a
1404 significant memory leak (FIXME). */
1405
1406 char **slot = (char **) htab_find_slot (decoded_names_store,
1407 decoded, INSERT);
1408
1409 if (*slot == NULL)
1410 *slot = xstrdup (decoded);
1411 *resultp = *slot;
1412 }
1413 }
1414
1415 return *resultp;
1416 }
1417
1418 static char *
1419 ada_la_decode (const char *encoded, int options)
1420 {
1421 return xstrdup (ada_decode (encoded));
1422 }
1423
1424 /* Implement la_sniff_from_mangled_name for Ada. */
1425
1426 static int
1427 ada_sniff_from_mangled_name (const char *mangled, char **out)
1428 {
1429 const char *demangled = ada_decode (mangled);
1430
1431 *out = NULL;
1432
1433 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1434 {
1435 /* Set the gsymbol language to Ada, but still return 0.
1436 Two reasons for that:
1437
1438 1. For Ada, we prefer computing the symbol's decoded name
1439 on the fly rather than pre-compute it, in order to save
1440 memory (Ada projects are typically very large).
1441
1442 2. There are some areas in the definition of the GNAT
1443 encoding where, with a bit of bad luck, we might be able
1444 to decode a non-Ada symbol, generating an incorrect
1445 demangled name (Eg: names ending with "TB" for instance
1446 are identified as task bodies and so stripped from
1447 the decoded name returned).
1448
1449 Returning 1, here, but not setting *DEMANGLED, helps us get a
1450 little bit of the best of both worlds. Because we're last,
1451 we should not affect any of the other languages that were
1452 able to demangle the symbol before us; we get to correctly
1453 tag Ada symbols as such; and even if we incorrectly tagged a
1454 non-Ada symbol, which should be rare, any routing through the
1455 Ada language should be transparent (Ada tries to behave much
1456 like C/C++ with non-Ada symbols). */
1457 return 1;
1458 }
1459
1460 return 0;
1461 }
1462
1463 \f
1464
1465 /* Arrays */
1466
1467 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1468 generated by the GNAT compiler to describe the index type used
1469 for each dimension of an array, check whether it follows the latest
1470 known encoding. If not, fix it up to conform to the latest encoding.
1471 Otherwise, do nothing. This function also does nothing if
1472 INDEX_DESC_TYPE is NULL.
1473
1474 The GNAT encoding used to describle the array index type evolved a bit.
1475 Initially, the information would be provided through the name of each
1476 field of the structure type only, while the type of these fields was
1477 described as unspecified and irrelevant. The debugger was then expected
1478 to perform a global type lookup using the name of that field in order
1479 to get access to the full index type description. Because these global
1480 lookups can be very expensive, the encoding was later enhanced to make
1481 the global lookup unnecessary by defining the field type as being
1482 the full index type description.
1483
1484 The purpose of this routine is to allow us to support older versions
1485 of the compiler by detecting the use of the older encoding, and by
1486 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1487 we essentially replace each field's meaningless type by the associated
1488 index subtype). */
1489
1490 void
1491 ada_fixup_array_indexes_type (struct type *index_desc_type)
1492 {
1493 int i;
1494
1495 if (index_desc_type == NULL)
1496 return;
1497 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1498
1499 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1500 to check one field only, no need to check them all). If not, return
1501 now.
1502
1503 If our INDEX_DESC_TYPE was generated using the older encoding,
1504 the field type should be a meaningless integer type whose name
1505 is not equal to the field name. */
1506 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1507 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1508 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1509 return;
1510
1511 /* Fixup each field of INDEX_DESC_TYPE. */
1512 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1513 {
1514 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1515 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1516
1517 if (raw_type)
1518 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1519 }
1520 }
1521
1522 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1523
1524 static const char *bound_name[] = {
1525 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1526 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1527 };
1528
1529 /* Maximum number of array dimensions we are prepared to handle. */
1530
1531 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1532
1533
1534 /* The desc_* routines return primitive portions of array descriptors
1535 (fat pointers). */
1536
1537 /* The descriptor or array type, if any, indicated by TYPE; removes
1538 level of indirection, if needed. */
1539
1540 static struct type *
1541 desc_base_type (struct type *type)
1542 {
1543 if (type == NULL)
1544 return NULL;
1545 type = ada_check_typedef (type);
1546 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1547 type = ada_typedef_target_type (type);
1548
1549 if (type != NULL
1550 && (TYPE_CODE (type) == TYPE_CODE_PTR
1551 || TYPE_CODE (type) == TYPE_CODE_REF))
1552 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1553 else
1554 return type;
1555 }
1556
1557 /* True iff TYPE indicates a "thin" array pointer type. */
1558
1559 static int
1560 is_thin_pntr (struct type *type)
1561 {
1562 return
1563 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1564 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1565 }
1566
1567 /* The descriptor type for thin pointer type TYPE. */
1568
1569 static struct type *
1570 thin_descriptor_type (struct type *type)
1571 {
1572 struct type *base_type = desc_base_type (type);
1573
1574 if (base_type == NULL)
1575 return NULL;
1576 if (is_suffix (ada_type_name (base_type), "___XVE"))
1577 return base_type;
1578 else
1579 {
1580 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1581
1582 if (alt_type == NULL)
1583 return base_type;
1584 else
1585 return alt_type;
1586 }
1587 }
1588
1589 /* A pointer to the array data for thin-pointer value VAL. */
1590
1591 static struct value *
1592 thin_data_pntr (struct value *val)
1593 {
1594 struct type *type = ada_check_typedef (value_type (val));
1595 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1596
1597 data_type = lookup_pointer_type (data_type);
1598
1599 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1600 return value_cast (data_type, value_copy (val));
1601 else
1602 return value_from_longest (data_type, value_address (val));
1603 }
1604
1605 /* True iff TYPE indicates a "thick" array pointer type. */
1606
1607 static int
1608 is_thick_pntr (struct type *type)
1609 {
1610 type = desc_base_type (type);
1611 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1612 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1613 }
1614
1615 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1616 pointer to one, the type of its bounds data; otherwise, NULL. */
1617
1618 static struct type *
1619 desc_bounds_type (struct type *type)
1620 {
1621 struct type *r;
1622
1623 type = desc_base_type (type);
1624
1625 if (type == NULL)
1626 return NULL;
1627 else if (is_thin_pntr (type))
1628 {
1629 type = thin_descriptor_type (type);
1630 if (type == NULL)
1631 return NULL;
1632 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1633 if (r != NULL)
1634 return ada_check_typedef (r);
1635 }
1636 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1637 {
1638 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1639 if (r != NULL)
1640 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1641 }
1642 return NULL;
1643 }
1644
1645 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1646 one, a pointer to its bounds data. Otherwise NULL. */
1647
1648 static struct value *
1649 desc_bounds (struct value *arr)
1650 {
1651 struct type *type = ada_check_typedef (value_type (arr));
1652
1653 if (is_thin_pntr (type))
1654 {
1655 struct type *bounds_type =
1656 desc_bounds_type (thin_descriptor_type (type));
1657 LONGEST addr;
1658
1659 if (bounds_type == NULL)
1660 error (_("Bad GNAT array descriptor"));
1661
1662 /* NOTE: The following calculation is not really kosher, but
1663 since desc_type is an XVE-encoded type (and shouldn't be),
1664 the correct calculation is a real pain. FIXME (and fix GCC). */
1665 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1666 addr = value_as_long (arr);
1667 else
1668 addr = value_address (arr);
1669
1670 return
1671 value_from_longest (lookup_pointer_type (bounds_type),
1672 addr - TYPE_LENGTH (bounds_type));
1673 }
1674
1675 else if (is_thick_pntr (type))
1676 {
1677 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1678 _("Bad GNAT array descriptor"));
1679 struct type *p_bounds_type = value_type (p_bounds);
1680
1681 if (p_bounds_type
1682 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1683 {
1684 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1685
1686 if (TYPE_STUB (target_type))
1687 p_bounds = value_cast (lookup_pointer_type
1688 (ada_check_typedef (target_type)),
1689 p_bounds);
1690 }
1691 else
1692 error (_("Bad GNAT array descriptor"));
1693
1694 return p_bounds;
1695 }
1696 else
1697 return NULL;
1698 }
1699
1700 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1701 position of the field containing the address of the bounds data. */
1702
1703 static int
1704 fat_pntr_bounds_bitpos (struct type *type)
1705 {
1706 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1707 }
1708
1709 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1710 size of the field containing the address of the bounds data. */
1711
1712 static int
1713 fat_pntr_bounds_bitsize (struct type *type)
1714 {
1715 type = desc_base_type (type);
1716
1717 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1718 return TYPE_FIELD_BITSIZE (type, 1);
1719 else
1720 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1721 }
1722
1723 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1724 pointer to one, the type of its array data (a array-with-no-bounds type);
1725 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1726 data. */
1727
1728 static struct type *
1729 desc_data_target_type (struct type *type)
1730 {
1731 type = desc_base_type (type);
1732
1733 /* NOTE: The following is bogus; see comment in desc_bounds. */
1734 if (is_thin_pntr (type))
1735 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1736 else if (is_thick_pntr (type))
1737 {
1738 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1739
1740 if (data_type
1741 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1742 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1743 }
1744
1745 return NULL;
1746 }
1747
1748 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1749 its array data. */
1750
1751 static struct value *
1752 desc_data (struct value *arr)
1753 {
1754 struct type *type = value_type (arr);
1755
1756 if (is_thin_pntr (type))
1757 return thin_data_pntr (arr);
1758 else if (is_thick_pntr (type))
1759 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1760 _("Bad GNAT array descriptor"));
1761 else
1762 return NULL;
1763 }
1764
1765
1766 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1767 position of the field containing the address of the data. */
1768
1769 static int
1770 fat_pntr_data_bitpos (struct type *type)
1771 {
1772 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1773 }
1774
1775 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1776 size of the field containing the address of the data. */
1777
1778 static int
1779 fat_pntr_data_bitsize (struct type *type)
1780 {
1781 type = desc_base_type (type);
1782
1783 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1784 return TYPE_FIELD_BITSIZE (type, 0);
1785 else
1786 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1787 }
1788
1789 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1790 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1791 bound, if WHICH is 1. The first bound is I=1. */
1792
1793 static struct value *
1794 desc_one_bound (struct value *bounds, int i, int which)
1795 {
1796 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1797 _("Bad GNAT array descriptor bounds"));
1798 }
1799
1800 /* If BOUNDS is an array-bounds structure type, return the bit position
1801 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1802 bound, if WHICH is 1. The first bound is I=1. */
1803
1804 static int
1805 desc_bound_bitpos (struct type *type, int i, int which)
1806 {
1807 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1808 }
1809
1810 /* If BOUNDS is an array-bounds structure type, return the bit field size
1811 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1812 bound, if WHICH is 1. The first bound is I=1. */
1813
1814 static int
1815 desc_bound_bitsize (struct type *type, int i, int which)
1816 {
1817 type = desc_base_type (type);
1818
1819 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1820 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1821 else
1822 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1823 }
1824
1825 /* If TYPE is the type of an array-bounds structure, the type of its
1826 Ith bound (numbering from 1). Otherwise, NULL. */
1827
1828 static struct type *
1829 desc_index_type (struct type *type, int i)
1830 {
1831 type = desc_base_type (type);
1832
1833 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1834 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1835 else
1836 return NULL;
1837 }
1838
1839 /* The number of index positions in the array-bounds type TYPE.
1840 Return 0 if TYPE is NULL. */
1841
1842 static int
1843 desc_arity (struct type *type)
1844 {
1845 type = desc_base_type (type);
1846
1847 if (type != NULL)
1848 return TYPE_NFIELDS (type) / 2;
1849 return 0;
1850 }
1851
1852 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1853 an array descriptor type (representing an unconstrained array
1854 type). */
1855
1856 static int
1857 ada_is_direct_array_type (struct type *type)
1858 {
1859 if (type == NULL)
1860 return 0;
1861 type = ada_check_typedef (type);
1862 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1863 || ada_is_array_descriptor_type (type));
1864 }
1865
1866 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1867 * to one. */
1868
1869 static int
1870 ada_is_array_type (struct type *type)
1871 {
1872 while (type != NULL
1873 && (TYPE_CODE (type) == TYPE_CODE_PTR
1874 || TYPE_CODE (type) == TYPE_CODE_REF))
1875 type = TYPE_TARGET_TYPE (type);
1876 return ada_is_direct_array_type (type);
1877 }
1878
1879 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1880
1881 int
1882 ada_is_simple_array_type (struct type *type)
1883 {
1884 if (type == NULL)
1885 return 0;
1886 type = ada_check_typedef (type);
1887 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1888 || (TYPE_CODE (type) == TYPE_CODE_PTR
1889 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1890 == TYPE_CODE_ARRAY));
1891 }
1892
1893 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1894
1895 int
1896 ada_is_array_descriptor_type (struct type *type)
1897 {
1898 struct type *data_type = desc_data_target_type (type);
1899
1900 if (type == NULL)
1901 return 0;
1902 type = ada_check_typedef (type);
1903 return (data_type != NULL
1904 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1905 && desc_arity (desc_bounds_type (type)) > 0);
1906 }
1907
1908 /* Non-zero iff type is a partially mal-formed GNAT array
1909 descriptor. FIXME: This is to compensate for some problems with
1910 debugging output from GNAT. Re-examine periodically to see if it
1911 is still needed. */
1912
1913 int
1914 ada_is_bogus_array_descriptor (struct type *type)
1915 {
1916 return
1917 type != NULL
1918 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1919 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1920 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1921 && !ada_is_array_descriptor_type (type);
1922 }
1923
1924
1925 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1926 (fat pointer) returns the type of the array data described---specifically,
1927 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1928 in from the descriptor; otherwise, they are left unspecified. If
1929 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1930 returns NULL. The result is simply the type of ARR if ARR is not
1931 a descriptor. */
1932 struct type *
1933 ada_type_of_array (struct value *arr, int bounds)
1934 {
1935 if (ada_is_constrained_packed_array_type (value_type (arr)))
1936 return decode_constrained_packed_array_type (value_type (arr));
1937
1938 if (!ada_is_array_descriptor_type (value_type (arr)))
1939 return value_type (arr);
1940
1941 if (!bounds)
1942 {
1943 struct type *array_type =
1944 ada_check_typedef (desc_data_target_type (value_type (arr)));
1945
1946 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1947 TYPE_FIELD_BITSIZE (array_type, 0) =
1948 decode_packed_array_bitsize (value_type (arr));
1949
1950 return array_type;
1951 }
1952 else
1953 {
1954 struct type *elt_type;
1955 int arity;
1956 struct value *descriptor;
1957
1958 elt_type = ada_array_element_type (value_type (arr), -1);
1959 arity = ada_array_arity (value_type (arr));
1960
1961 if (elt_type == NULL || arity == 0)
1962 return ada_check_typedef (value_type (arr));
1963
1964 descriptor = desc_bounds (arr);
1965 if (value_as_long (descriptor) == 0)
1966 return NULL;
1967 while (arity > 0)
1968 {
1969 struct type *range_type = alloc_type_copy (value_type (arr));
1970 struct type *array_type = alloc_type_copy (value_type (arr));
1971 struct value *low = desc_one_bound (descriptor, arity, 0);
1972 struct value *high = desc_one_bound (descriptor, arity, 1);
1973
1974 arity -= 1;
1975 create_static_range_type (range_type, value_type (low),
1976 longest_to_int (value_as_long (low)),
1977 longest_to_int (value_as_long (high)));
1978 elt_type = create_array_type (array_type, elt_type, range_type);
1979
1980 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1981 {
1982 /* We need to store the element packed bitsize, as well as
1983 recompute the array size, because it was previously
1984 computed based on the unpacked element size. */
1985 LONGEST lo = value_as_long (low);
1986 LONGEST hi = value_as_long (high);
1987
1988 TYPE_FIELD_BITSIZE (elt_type, 0) =
1989 decode_packed_array_bitsize (value_type (arr));
1990 /* If the array has no element, then the size is already
1991 zero, and does not need to be recomputed. */
1992 if (lo < hi)
1993 {
1994 int array_bitsize =
1995 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1996
1997 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1998 }
1999 }
2000 }
2001
2002 return lookup_pointer_type (elt_type);
2003 }
2004 }
2005
2006 /* If ARR does not represent an array, returns ARR unchanged.
2007 Otherwise, returns either a standard GDB array with bounds set
2008 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2009 GDB array. Returns NULL if ARR is a null fat pointer. */
2010
2011 struct value *
2012 ada_coerce_to_simple_array_ptr (struct value *arr)
2013 {
2014 if (ada_is_array_descriptor_type (value_type (arr)))
2015 {
2016 struct type *arrType = ada_type_of_array (arr, 1);
2017
2018 if (arrType == NULL)
2019 return NULL;
2020 return value_cast (arrType, value_copy (desc_data (arr)));
2021 }
2022 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2023 return decode_constrained_packed_array (arr);
2024 else
2025 return arr;
2026 }
2027
2028 /* If ARR does not represent an array, returns ARR unchanged.
2029 Otherwise, returns a standard GDB array describing ARR (which may
2030 be ARR itself if it already is in the proper form). */
2031
2032 struct value *
2033 ada_coerce_to_simple_array (struct value *arr)
2034 {
2035 if (ada_is_array_descriptor_type (value_type (arr)))
2036 {
2037 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2038
2039 if (arrVal == NULL)
2040 error (_("Bounds unavailable for null array pointer."));
2041 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2042 return value_ind (arrVal);
2043 }
2044 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2045 return decode_constrained_packed_array (arr);
2046 else
2047 return arr;
2048 }
2049
2050 /* If TYPE represents a GNAT array type, return it translated to an
2051 ordinary GDB array type (possibly with BITSIZE fields indicating
2052 packing). For other types, is the identity. */
2053
2054 struct type *
2055 ada_coerce_to_simple_array_type (struct type *type)
2056 {
2057 if (ada_is_constrained_packed_array_type (type))
2058 return decode_constrained_packed_array_type (type);
2059
2060 if (ada_is_array_descriptor_type (type))
2061 return ada_check_typedef (desc_data_target_type (type));
2062
2063 return type;
2064 }
2065
2066 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2067
2068 static int
2069 ada_is_packed_array_type (struct type *type)
2070 {
2071 if (type == NULL)
2072 return 0;
2073 type = desc_base_type (type);
2074 type = ada_check_typedef (type);
2075 return
2076 ada_type_name (type) != NULL
2077 && strstr (ada_type_name (type), "___XP") != NULL;
2078 }
2079
2080 /* Non-zero iff TYPE represents a standard GNAT constrained
2081 packed-array type. */
2082
2083 int
2084 ada_is_constrained_packed_array_type (struct type *type)
2085 {
2086 return ada_is_packed_array_type (type)
2087 && !ada_is_array_descriptor_type (type);
2088 }
2089
2090 /* Non-zero iff TYPE represents an array descriptor for a
2091 unconstrained packed-array type. */
2092
2093 static int
2094 ada_is_unconstrained_packed_array_type (struct type *type)
2095 {
2096 return ada_is_packed_array_type (type)
2097 && ada_is_array_descriptor_type (type);
2098 }
2099
2100 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2101 return the size of its elements in bits. */
2102
2103 static long
2104 decode_packed_array_bitsize (struct type *type)
2105 {
2106 const char *raw_name;
2107 const char *tail;
2108 long bits;
2109
2110 /* Access to arrays implemented as fat pointers are encoded as a typedef
2111 of the fat pointer type. We need the name of the fat pointer type
2112 to do the decoding, so strip the typedef layer. */
2113 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2114 type = ada_typedef_target_type (type);
2115
2116 raw_name = ada_type_name (ada_check_typedef (type));
2117 if (!raw_name)
2118 raw_name = ada_type_name (desc_base_type (type));
2119
2120 if (!raw_name)
2121 return 0;
2122
2123 tail = strstr (raw_name, "___XP");
2124 gdb_assert (tail != NULL);
2125
2126 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2127 {
2128 lim_warning
2129 (_("could not understand bit size information on packed array"));
2130 return 0;
2131 }
2132
2133 return bits;
2134 }
2135
2136 /* Given that TYPE is a standard GDB array type with all bounds filled
2137 in, and that the element size of its ultimate scalar constituents
2138 (that is, either its elements, or, if it is an array of arrays, its
2139 elements' elements, etc.) is *ELT_BITS, return an identical type,
2140 but with the bit sizes of its elements (and those of any
2141 constituent arrays) recorded in the BITSIZE components of its
2142 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2143 in bits.
2144
2145 Note that, for arrays whose index type has an XA encoding where
2146 a bound references a record discriminant, getting that discriminant,
2147 and therefore the actual value of that bound, is not possible
2148 because none of the given parameters gives us access to the record.
2149 This function assumes that it is OK in the context where it is being
2150 used to return an array whose bounds are still dynamic and where
2151 the length is arbitrary. */
2152
2153 static struct type *
2154 constrained_packed_array_type (struct type *type, long *elt_bits)
2155 {
2156 struct type *new_elt_type;
2157 struct type *new_type;
2158 struct type *index_type_desc;
2159 struct type *index_type;
2160 LONGEST low_bound, high_bound;
2161
2162 type = ada_check_typedef (type);
2163 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2164 return type;
2165
2166 index_type_desc = ada_find_parallel_type (type, "___XA");
2167 if (index_type_desc)
2168 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2169 NULL);
2170 else
2171 index_type = TYPE_INDEX_TYPE (type);
2172
2173 new_type = alloc_type_copy (type);
2174 new_elt_type =
2175 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2176 elt_bits);
2177 create_array_type (new_type, new_elt_type, index_type);
2178 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2179 TYPE_NAME (new_type) = ada_type_name (type);
2180
2181 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2182 && is_dynamic_type (check_typedef (index_type)))
2183 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2184 low_bound = high_bound = 0;
2185 if (high_bound < low_bound)
2186 *elt_bits = TYPE_LENGTH (new_type) = 0;
2187 else
2188 {
2189 *elt_bits *= (high_bound - low_bound + 1);
2190 TYPE_LENGTH (new_type) =
2191 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2192 }
2193
2194 TYPE_FIXED_INSTANCE (new_type) = 1;
2195 return new_type;
2196 }
2197
2198 /* The array type encoded by TYPE, where
2199 ada_is_constrained_packed_array_type (TYPE). */
2200
2201 static struct type *
2202 decode_constrained_packed_array_type (struct type *type)
2203 {
2204 const char *raw_name = ada_type_name (ada_check_typedef (type));
2205 char *name;
2206 const char *tail;
2207 struct type *shadow_type;
2208 long bits;
2209
2210 if (!raw_name)
2211 raw_name = ada_type_name (desc_base_type (type));
2212
2213 if (!raw_name)
2214 return NULL;
2215
2216 name = (char *) alloca (strlen (raw_name) + 1);
2217 tail = strstr (raw_name, "___XP");
2218 type = desc_base_type (type);
2219
2220 memcpy (name, raw_name, tail - raw_name);
2221 name[tail - raw_name] = '\000';
2222
2223 shadow_type = ada_find_parallel_type_with_name (type, name);
2224
2225 if (shadow_type == NULL)
2226 {
2227 lim_warning (_("could not find bounds information on packed array"));
2228 return NULL;
2229 }
2230 shadow_type = check_typedef (shadow_type);
2231
2232 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2233 {
2234 lim_warning (_("could not understand bounds "
2235 "information on packed array"));
2236 return NULL;
2237 }
2238
2239 bits = decode_packed_array_bitsize (type);
2240 return constrained_packed_array_type (shadow_type, &bits);
2241 }
2242
2243 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2244 array, returns a simple array that denotes that array. Its type is a
2245 standard GDB array type except that the BITSIZEs of the array
2246 target types are set to the number of bits in each element, and the
2247 type length is set appropriately. */
2248
2249 static struct value *
2250 decode_constrained_packed_array (struct value *arr)
2251 {
2252 struct type *type;
2253
2254 /* If our value is a pointer, then dereference it. Likewise if
2255 the value is a reference. Make sure that this operation does not
2256 cause the target type to be fixed, as this would indirectly cause
2257 this array to be decoded. The rest of the routine assumes that
2258 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2259 and "value_ind" routines to perform the dereferencing, as opposed
2260 to using "ada_coerce_ref" or "ada_value_ind". */
2261 arr = coerce_ref (arr);
2262 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2263 arr = value_ind (arr);
2264
2265 type = decode_constrained_packed_array_type (value_type (arr));
2266 if (type == NULL)
2267 {
2268 error (_("can't unpack array"));
2269 return NULL;
2270 }
2271
2272 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2273 && ada_is_modular_type (value_type (arr)))
2274 {
2275 /* This is a (right-justified) modular type representing a packed
2276 array with no wrapper. In order to interpret the value through
2277 the (left-justified) packed array type we just built, we must
2278 first left-justify it. */
2279 int bit_size, bit_pos;
2280 ULONGEST mod;
2281
2282 mod = ada_modulus (value_type (arr)) - 1;
2283 bit_size = 0;
2284 while (mod > 0)
2285 {
2286 bit_size += 1;
2287 mod >>= 1;
2288 }
2289 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2290 arr = ada_value_primitive_packed_val (arr, NULL,
2291 bit_pos / HOST_CHAR_BIT,
2292 bit_pos % HOST_CHAR_BIT,
2293 bit_size,
2294 type);
2295 }
2296
2297 return coerce_unspec_val_to_type (arr, type);
2298 }
2299
2300
2301 /* The value of the element of packed array ARR at the ARITY indices
2302 given in IND. ARR must be a simple array. */
2303
2304 static struct value *
2305 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2306 {
2307 int i;
2308 int bits, elt_off, bit_off;
2309 long elt_total_bit_offset;
2310 struct type *elt_type;
2311 struct value *v;
2312
2313 bits = 0;
2314 elt_total_bit_offset = 0;
2315 elt_type = ada_check_typedef (value_type (arr));
2316 for (i = 0; i < arity; i += 1)
2317 {
2318 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2319 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2320 error
2321 (_("attempt to do packed indexing of "
2322 "something other than a packed array"));
2323 else
2324 {
2325 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2326 LONGEST lowerbound, upperbound;
2327 LONGEST idx;
2328
2329 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2330 {
2331 lim_warning (_("don't know bounds of array"));
2332 lowerbound = upperbound = 0;
2333 }
2334
2335 idx = pos_atr (ind[i]);
2336 if (idx < lowerbound || idx > upperbound)
2337 lim_warning (_("packed array index %ld out of bounds"),
2338 (long) idx);
2339 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2340 elt_total_bit_offset += (idx - lowerbound) * bits;
2341 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2342 }
2343 }
2344 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2345 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2346
2347 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2348 bits, elt_type);
2349 return v;
2350 }
2351
2352 /* Non-zero iff TYPE includes negative integer values. */
2353
2354 static int
2355 has_negatives (struct type *type)
2356 {
2357 switch (TYPE_CODE (type))
2358 {
2359 default:
2360 return 0;
2361 case TYPE_CODE_INT:
2362 return !TYPE_UNSIGNED (type);
2363 case TYPE_CODE_RANGE:
2364 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2365 }
2366 }
2367
2368 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2369 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2370 the unpacked buffer.
2371
2372 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2373 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2374
2375 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2376 zero otherwise.
2377
2378 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2379
2380 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2381
2382 static void
2383 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2384 gdb_byte *unpacked, int unpacked_len,
2385 int is_big_endian, int is_signed_type,
2386 int is_scalar)
2387 {
2388 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2389 int src_idx; /* Index into the source area */
2390 int src_bytes_left; /* Number of source bytes left to process. */
2391 int srcBitsLeft; /* Number of source bits left to move */
2392 int unusedLS; /* Number of bits in next significant
2393 byte of source that are unused */
2394
2395 int unpacked_idx; /* Index into the unpacked buffer */
2396 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2397
2398 unsigned long accum; /* Staging area for bits being transferred */
2399 int accumSize; /* Number of meaningful bits in accum */
2400 unsigned char sign;
2401
2402 /* Transmit bytes from least to most significant; delta is the direction
2403 the indices move. */
2404 int delta = is_big_endian ? -1 : 1;
2405
2406 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2407 bits from SRC. .*/
2408 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2409 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2410 bit_size, unpacked_len);
2411
2412 srcBitsLeft = bit_size;
2413 src_bytes_left = src_len;
2414 unpacked_bytes_left = unpacked_len;
2415 sign = 0;
2416
2417 if (is_big_endian)
2418 {
2419 src_idx = src_len - 1;
2420 if (is_signed_type
2421 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2422 sign = ~0;
2423
2424 unusedLS =
2425 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2426 % HOST_CHAR_BIT;
2427
2428 if (is_scalar)
2429 {
2430 accumSize = 0;
2431 unpacked_idx = unpacked_len - 1;
2432 }
2433 else
2434 {
2435 /* Non-scalar values must be aligned at a byte boundary... */
2436 accumSize =
2437 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2438 /* ... And are placed at the beginning (most-significant) bytes
2439 of the target. */
2440 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2441 unpacked_bytes_left = unpacked_idx + 1;
2442 }
2443 }
2444 else
2445 {
2446 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2447
2448 src_idx = unpacked_idx = 0;
2449 unusedLS = bit_offset;
2450 accumSize = 0;
2451
2452 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2453 sign = ~0;
2454 }
2455
2456 accum = 0;
2457 while (src_bytes_left > 0)
2458 {
2459 /* Mask for removing bits of the next source byte that are not
2460 part of the value. */
2461 unsigned int unusedMSMask =
2462 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2463 1;
2464 /* Sign-extend bits for this byte. */
2465 unsigned int signMask = sign & ~unusedMSMask;
2466
2467 accum |=
2468 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2469 accumSize += HOST_CHAR_BIT - unusedLS;
2470 if (accumSize >= HOST_CHAR_BIT)
2471 {
2472 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2473 accumSize -= HOST_CHAR_BIT;
2474 accum >>= HOST_CHAR_BIT;
2475 unpacked_bytes_left -= 1;
2476 unpacked_idx += delta;
2477 }
2478 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2479 unusedLS = 0;
2480 src_bytes_left -= 1;
2481 src_idx += delta;
2482 }
2483 while (unpacked_bytes_left > 0)
2484 {
2485 accum |= sign << accumSize;
2486 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2487 accumSize -= HOST_CHAR_BIT;
2488 if (accumSize < 0)
2489 accumSize = 0;
2490 accum >>= HOST_CHAR_BIT;
2491 unpacked_bytes_left -= 1;
2492 unpacked_idx += delta;
2493 }
2494 }
2495
2496 /* Create a new value of type TYPE from the contents of OBJ starting
2497 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2498 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2499 assigning through the result will set the field fetched from.
2500 VALADDR is ignored unless OBJ is NULL, in which case,
2501 VALADDR+OFFSET must address the start of storage containing the
2502 packed value. The value returned in this case is never an lval.
2503 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2504
2505 struct value *
2506 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2507 long offset, int bit_offset, int bit_size,
2508 struct type *type)
2509 {
2510 struct value *v;
2511 const gdb_byte *src; /* First byte containing data to unpack */
2512 gdb_byte *unpacked;
2513 const int is_scalar = is_scalar_type (type);
2514 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2515 gdb::byte_vector staging;
2516
2517 type = ada_check_typedef (type);
2518
2519 if (obj == NULL)
2520 src = valaddr + offset;
2521 else
2522 src = value_contents (obj) + offset;
2523
2524 if (is_dynamic_type (type))
2525 {
2526 /* The length of TYPE might by dynamic, so we need to resolve
2527 TYPE in order to know its actual size, which we then use
2528 to create the contents buffer of the value we return.
2529 The difficulty is that the data containing our object is
2530 packed, and therefore maybe not at a byte boundary. So, what
2531 we do, is unpack the data into a byte-aligned buffer, and then
2532 use that buffer as our object's value for resolving the type. */
2533 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2534 staging.resize (staging_len);
2535
2536 ada_unpack_from_contents (src, bit_offset, bit_size,
2537 staging.data (), staging.size (),
2538 is_big_endian, has_negatives (type),
2539 is_scalar);
2540 type = resolve_dynamic_type (type, staging.data (), 0);
2541 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2542 {
2543 /* This happens when the length of the object is dynamic,
2544 and is actually smaller than the space reserved for it.
2545 For instance, in an array of variant records, the bit_size
2546 we're given is the array stride, which is constant and
2547 normally equal to the maximum size of its element.
2548 But, in reality, each element only actually spans a portion
2549 of that stride. */
2550 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2551 }
2552 }
2553
2554 if (obj == NULL)
2555 {
2556 v = allocate_value (type);
2557 src = valaddr + offset;
2558 }
2559 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2560 {
2561 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2562 gdb_byte *buf;
2563
2564 v = value_at (type, value_address (obj) + offset);
2565 buf = (gdb_byte *) alloca (src_len);
2566 read_memory (value_address (v), buf, src_len);
2567 src = buf;
2568 }
2569 else
2570 {
2571 v = allocate_value (type);
2572 src = value_contents (obj) + offset;
2573 }
2574
2575 if (obj != NULL)
2576 {
2577 long new_offset = offset;
2578
2579 set_value_component_location (v, obj);
2580 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2581 set_value_bitsize (v, bit_size);
2582 if (value_bitpos (v) >= HOST_CHAR_BIT)
2583 {
2584 ++new_offset;
2585 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2586 }
2587 set_value_offset (v, new_offset);
2588
2589 /* Also set the parent value. This is needed when trying to
2590 assign a new value (in inferior memory). */
2591 set_value_parent (v, obj);
2592 }
2593 else
2594 set_value_bitsize (v, bit_size);
2595 unpacked = value_contents_writeable (v);
2596
2597 if (bit_size == 0)
2598 {
2599 memset (unpacked, 0, TYPE_LENGTH (type));
2600 return v;
2601 }
2602
2603 if (staging.size () == TYPE_LENGTH (type))
2604 {
2605 /* Small short-cut: If we've unpacked the data into a buffer
2606 of the same size as TYPE's length, then we can reuse that,
2607 instead of doing the unpacking again. */
2608 memcpy (unpacked, staging.data (), staging.size ());
2609 }
2610 else
2611 ada_unpack_from_contents (src, bit_offset, bit_size,
2612 unpacked, TYPE_LENGTH (type),
2613 is_big_endian, has_negatives (type), is_scalar);
2614
2615 return v;
2616 }
2617
2618 /* Store the contents of FROMVAL into the location of TOVAL.
2619 Return a new value with the location of TOVAL and contents of
2620 FROMVAL. Handles assignment into packed fields that have
2621 floating-point or non-scalar types. */
2622
2623 static struct value *
2624 ada_value_assign (struct value *toval, struct value *fromval)
2625 {
2626 struct type *type = value_type (toval);
2627 int bits = value_bitsize (toval);
2628
2629 toval = ada_coerce_ref (toval);
2630 fromval = ada_coerce_ref (fromval);
2631
2632 if (ada_is_direct_array_type (value_type (toval)))
2633 toval = ada_coerce_to_simple_array (toval);
2634 if (ada_is_direct_array_type (value_type (fromval)))
2635 fromval = ada_coerce_to_simple_array (fromval);
2636
2637 if (!deprecated_value_modifiable (toval))
2638 error (_("Left operand of assignment is not a modifiable lvalue."));
2639
2640 if (VALUE_LVAL (toval) == lval_memory
2641 && bits > 0
2642 && (TYPE_CODE (type) == TYPE_CODE_FLT
2643 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2644 {
2645 int len = (value_bitpos (toval)
2646 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2647 int from_size;
2648 gdb_byte *buffer = (gdb_byte *) alloca (len);
2649 struct value *val;
2650 CORE_ADDR to_addr = value_address (toval);
2651
2652 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2653 fromval = value_cast (type, fromval);
2654
2655 read_memory (to_addr, buffer, len);
2656 from_size = value_bitsize (fromval);
2657 if (from_size == 0)
2658 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2659
2660 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2661 ULONGEST from_offset = 0;
2662 if (is_big_endian && is_scalar_type (value_type (fromval)))
2663 from_offset = from_size - bits;
2664 copy_bitwise (buffer, value_bitpos (toval),
2665 value_contents (fromval), from_offset,
2666 bits, is_big_endian);
2667 write_memory_with_notification (to_addr, buffer, len);
2668
2669 val = value_copy (toval);
2670 memcpy (value_contents_raw (val), value_contents (fromval),
2671 TYPE_LENGTH (type));
2672 deprecated_set_value_type (val, type);
2673
2674 return val;
2675 }
2676
2677 return value_assign (toval, fromval);
2678 }
2679
2680
2681 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2682 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2683 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2684 COMPONENT, and not the inferior's memory. The current contents
2685 of COMPONENT are ignored.
2686
2687 Although not part of the initial design, this function also works
2688 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2689 had a null address, and COMPONENT had an address which is equal to
2690 its offset inside CONTAINER. */
2691
2692 static void
2693 value_assign_to_component (struct value *container, struct value *component,
2694 struct value *val)
2695 {
2696 LONGEST offset_in_container =
2697 (LONGEST) (value_address (component) - value_address (container));
2698 int bit_offset_in_container =
2699 value_bitpos (component) - value_bitpos (container);
2700 int bits;
2701
2702 val = value_cast (value_type (component), val);
2703
2704 if (value_bitsize (component) == 0)
2705 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2706 else
2707 bits = value_bitsize (component);
2708
2709 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2710 {
2711 int src_offset;
2712
2713 if (is_scalar_type (check_typedef (value_type (component))))
2714 src_offset
2715 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2716 else
2717 src_offset = 0;
2718 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2719 value_bitpos (container) + bit_offset_in_container,
2720 value_contents (val), src_offset, bits, 1);
2721 }
2722 else
2723 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2724 value_bitpos (container) + bit_offset_in_container,
2725 value_contents (val), 0, bits, 0);
2726 }
2727
2728 /* Determine if TYPE is an access to an unconstrained array. */
2729
2730 bool
2731 ada_is_access_to_unconstrained_array (struct type *type)
2732 {
2733 return (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
2734 && is_thick_pntr (ada_typedef_target_type (type)));
2735 }
2736
2737 /* The value of the element of array ARR at the ARITY indices given in IND.
2738 ARR may be either a simple array, GNAT array descriptor, or pointer
2739 thereto. */
2740
2741 struct value *
2742 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2743 {
2744 int k;
2745 struct value *elt;
2746 struct type *elt_type;
2747
2748 elt = ada_coerce_to_simple_array (arr);
2749
2750 elt_type = ada_check_typedef (value_type (elt));
2751 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2752 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2753 return value_subscript_packed (elt, arity, ind);
2754
2755 for (k = 0; k < arity; k += 1)
2756 {
2757 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2758
2759 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2760 error (_("too many subscripts (%d expected)"), k);
2761
2762 elt = value_subscript (elt, pos_atr (ind[k]));
2763
2764 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2765 && TYPE_CODE (value_type (elt)) != TYPE_CODE_TYPEDEF)
2766 {
2767 /* The element is a typedef to an unconstrained array,
2768 except that the value_subscript call stripped the
2769 typedef layer. The typedef layer is GNAT's way to
2770 specify that the element is, at the source level, an
2771 access to the unconstrained array, rather than the
2772 unconstrained array. So, we need to restore that
2773 typedef layer, which we can do by forcing the element's
2774 type back to its original type. Otherwise, the returned
2775 value is going to be printed as the array, rather
2776 than as an access. Another symptom of the same issue
2777 would be that an expression trying to dereference the
2778 element would also be improperly rejected. */
2779 deprecated_set_value_type (elt, saved_elt_type);
2780 }
2781
2782 elt_type = ada_check_typedef (value_type (elt));
2783 }
2784
2785 return elt;
2786 }
2787
2788 /* Assuming ARR is a pointer to a GDB array, the value of the element
2789 of *ARR at the ARITY indices given in IND.
2790 Does not read the entire array into memory.
2791
2792 Note: Unlike what one would expect, this function is used instead of
2793 ada_value_subscript for basically all non-packed array types. The reason
2794 for this is that a side effect of doing our own pointer arithmetics instead
2795 of relying on value_subscript is that there is no implicit typedef peeling.
2796 This is important for arrays of array accesses, where it allows us to
2797 preserve the fact that the array's element is an array access, where the
2798 access part os encoded in a typedef layer. */
2799
2800 static struct value *
2801 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2802 {
2803 int k;
2804 struct value *array_ind = ada_value_ind (arr);
2805 struct type *type
2806 = check_typedef (value_enclosing_type (array_ind));
2807
2808 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2809 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2810 return value_subscript_packed (array_ind, arity, ind);
2811
2812 for (k = 0; k < arity; k += 1)
2813 {
2814 LONGEST lwb, upb;
2815 struct value *lwb_value;
2816
2817 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2818 error (_("too many subscripts (%d expected)"), k);
2819 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2820 value_copy (arr));
2821 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2822 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2823 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2824 type = TYPE_TARGET_TYPE (type);
2825 }
2826
2827 return value_ind (arr);
2828 }
2829
2830 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2831 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2832 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2833 this array is LOW, as per Ada rules. */
2834 static struct value *
2835 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2836 int low, int high)
2837 {
2838 struct type *type0 = ada_check_typedef (type);
2839 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2840 struct type *index_type
2841 = create_static_range_type (NULL, base_index_type, low, high);
2842 struct type *slice_type = create_array_type_with_stride
2843 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2844 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2845 TYPE_FIELD_BITSIZE (type0, 0));
2846 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2847 LONGEST base_low_pos, low_pos;
2848 CORE_ADDR base;
2849
2850 if (!discrete_position (base_index_type, low, &low_pos)
2851 || !discrete_position (base_index_type, base_low, &base_low_pos))
2852 {
2853 warning (_("unable to get positions in slice, use bounds instead"));
2854 low_pos = low;
2855 base_low_pos = base_low;
2856 }
2857
2858 base = value_as_address (array_ptr)
2859 + ((low_pos - base_low_pos)
2860 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2861 return value_at_lazy (slice_type, base);
2862 }
2863
2864
2865 static struct value *
2866 ada_value_slice (struct value *array, int low, int high)
2867 {
2868 struct type *type = ada_check_typedef (value_type (array));
2869 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2870 struct type *index_type
2871 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2872 struct type *slice_type = create_array_type_with_stride
2873 (NULL, TYPE_TARGET_TYPE (type), index_type,
2874 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2875 TYPE_FIELD_BITSIZE (type, 0));
2876 LONGEST low_pos, high_pos;
2877
2878 if (!discrete_position (base_index_type, low, &low_pos)
2879 || !discrete_position (base_index_type, high, &high_pos))
2880 {
2881 warning (_("unable to get positions in slice, use bounds instead"));
2882 low_pos = low;
2883 high_pos = high;
2884 }
2885
2886 return value_cast (slice_type,
2887 value_slice (array, low, high_pos - low_pos + 1));
2888 }
2889
2890 /* If type is a record type in the form of a standard GNAT array
2891 descriptor, returns the number of dimensions for type. If arr is a
2892 simple array, returns the number of "array of"s that prefix its
2893 type designation. Otherwise, returns 0. */
2894
2895 int
2896 ada_array_arity (struct type *type)
2897 {
2898 int arity;
2899
2900 if (type == NULL)
2901 return 0;
2902
2903 type = desc_base_type (type);
2904
2905 arity = 0;
2906 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2907 return desc_arity (desc_bounds_type (type));
2908 else
2909 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2910 {
2911 arity += 1;
2912 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2913 }
2914
2915 return arity;
2916 }
2917
2918 /* If TYPE is a record type in the form of a standard GNAT array
2919 descriptor or a simple array type, returns the element type for
2920 TYPE after indexing by NINDICES indices, or by all indices if
2921 NINDICES is -1. Otherwise, returns NULL. */
2922
2923 struct type *
2924 ada_array_element_type (struct type *type, int nindices)
2925 {
2926 type = desc_base_type (type);
2927
2928 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2929 {
2930 int k;
2931 struct type *p_array_type;
2932
2933 p_array_type = desc_data_target_type (type);
2934
2935 k = ada_array_arity (type);
2936 if (k == 0)
2937 return NULL;
2938
2939 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2940 if (nindices >= 0 && k > nindices)
2941 k = nindices;
2942 while (k > 0 && p_array_type != NULL)
2943 {
2944 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2945 k -= 1;
2946 }
2947 return p_array_type;
2948 }
2949 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2950 {
2951 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2952 {
2953 type = TYPE_TARGET_TYPE (type);
2954 nindices -= 1;
2955 }
2956 return type;
2957 }
2958
2959 return NULL;
2960 }
2961
2962 /* The type of nth index in arrays of given type (n numbering from 1).
2963 Does not examine memory. Throws an error if N is invalid or TYPE
2964 is not an array type. NAME is the name of the Ada attribute being
2965 evaluated ('range, 'first, 'last, or 'length); it is used in building
2966 the error message. */
2967
2968 static struct type *
2969 ada_index_type (struct type *type, int n, const char *name)
2970 {
2971 struct type *result_type;
2972
2973 type = desc_base_type (type);
2974
2975 if (n < 0 || n > ada_array_arity (type))
2976 error (_("invalid dimension number to '%s"), name);
2977
2978 if (ada_is_simple_array_type (type))
2979 {
2980 int i;
2981
2982 for (i = 1; i < n; i += 1)
2983 type = TYPE_TARGET_TYPE (type);
2984 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2985 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2986 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2987 perhaps stabsread.c would make more sense. */
2988 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2989 result_type = NULL;
2990 }
2991 else
2992 {
2993 result_type = desc_index_type (desc_bounds_type (type), n);
2994 if (result_type == NULL)
2995 error (_("attempt to take bound of something that is not an array"));
2996 }
2997
2998 return result_type;
2999 }
3000
3001 /* Given that arr is an array type, returns the lower bound of the
3002 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3003 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3004 array-descriptor type. It works for other arrays with bounds supplied
3005 by run-time quantities other than discriminants. */
3006
3007 static LONGEST
3008 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3009 {
3010 struct type *type, *index_type_desc, *index_type;
3011 int i;
3012
3013 gdb_assert (which == 0 || which == 1);
3014
3015 if (ada_is_constrained_packed_array_type (arr_type))
3016 arr_type = decode_constrained_packed_array_type (arr_type);
3017
3018 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3019 return (LONGEST) - which;
3020
3021 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3022 type = TYPE_TARGET_TYPE (arr_type);
3023 else
3024 type = arr_type;
3025
3026 if (TYPE_FIXED_INSTANCE (type))
3027 {
3028 /* The array has already been fixed, so we do not need to
3029 check the parallel ___XA type again. That encoding has
3030 already been applied, so ignore it now. */
3031 index_type_desc = NULL;
3032 }
3033 else
3034 {
3035 index_type_desc = ada_find_parallel_type (type, "___XA");
3036 ada_fixup_array_indexes_type (index_type_desc);
3037 }
3038
3039 if (index_type_desc != NULL)
3040 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3041 NULL);
3042 else
3043 {
3044 struct type *elt_type = check_typedef (type);
3045
3046 for (i = 1; i < n; i++)
3047 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3048
3049 index_type = TYPE_INDEX_TYPE (elt_type);
3050 }
3051
3052 return
3053 (LONGEST) (which == 0
3054 ? ada_discrete_type_low_bound (index_type)
3055 : ada_discrete_type_high_bound (index_type));
3056 }
3057
3058 /* Given that arr is an array value, returns the lower bound of the
3059 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3060 WHICH is 1. This routine will also work for arrays with bounds
3061 supplied by run-time quantities other than discriminants. */
3062
3063 static LONGEST
3064 ada_array_bound (struct value *arr, int n, int which)
3065 {
3066 struct type *arr_type;
3067
3068 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3069 arr = value_ind (arr);
3070 arr_type = value_enclosing_type (arr);
3071
3072 if (ada_is_constrained_packed_array_type (arr_type))
3073 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3074 else if (ada_is_simple_array_type (arr_type))
3075 return ada_array_bound_from_type (arr_type, n, which);
3076 else
3077 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3078 }
3079
3080 /* Given that arr is an array value, returns the length of the
3081 nth index. This routine will also work for arrays with bounds
3082 supplied by run-time quantities other than discriminants.
3083 Does not work for arrays indexed by enumeration types with representation
3084 clauses at the moment. */
3085
3086 static LONGEST
3087 ada_array_length (struct value *arr, int n)
3088 {
3089 struct type *arr_type, *index_type;
3090 int low, high;
3091
3092 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3093 arr = value_ind (arr);
3094 arr_type = value_enclosing_type (arr);
3095
3096 if (ada_is_constrained_packed_array_type (arr_type))
3097 return ada_array_length (decode_constrained_packed_array (arr), n);
3098
3099 if (ada_is_simple_array_type (arr_type))
3100 {
3101 low = ada_array_bound_from_type (arr_type, n, 0);
3102 high = ada_array_bound_from_type (arr_type, n, 1);
3103 }
3104 else
3105 {
3106 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3107 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3108 }
3109
3110 arr_type = check_typedef (arr_type);
3111 index_type = ada_index_type (arr_type, n, "length");
3112 if (index_type != NULL)
3113 {
3114 struct type *base_type;
3115 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3116 base_type = TYPE_TARGET_TYPE (index_type);
3117 else
3118 base_type = index_type;
3119
3120 low = pos_atr (value_from_longest (base_type, low));
3121 high = pos_atr (value_from_longest (base_type, high));
3122 }
3123 return high - low + 1;
3124 }
3125
3126 /* An array whose type is that of ARR_TYPE (an array type), with
3127 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3128 less than LOW, then LOW-1 is used. */
3129
3130 static struct value *
3131 empty_array (struct type *arr_type, int low, int high)
3132 {
3133 struct type *arr_type0 = ada_check_typedef (arr_type);
3134 struct type *index_type
3135 = create_static_range_type
3136 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low,
3137 high < low ? low - 1 : high);
3138 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3139
3140 return allocate_value (create_array_type (NULL, elt_type, index_type));
3141 }
3142 \f
3143
3144 /* Name resolution */
3145
3146 /* The "decoded" name for the user-definable Ada operator corresponding
3147 to OP. */
3148
3149 static const char *
3150 ada_decoded_op_name (enum exp_opcode op)
3151 {
3152 int i;
3153
3154 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3155 {
3156 if (ada_opname_table[i].op == op)
3157 return ada_opname_table[i].decoded;
3158 }
3159 error (_("Could not find operator name for opcode"));
3160 }
3161
3162
3163 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3164 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3165 undefined namespace) and converts operators that are
3166 user-defined into appropriate function calls. If CONTEXT_TYPE is
3167 non-null, it provides a preferred result type [at the moment, only
3168 type void has any effect---causing procedures to be preferred over
3169 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3170 return type is preferred. May change (expand) *EXP. */
3171
3172 static void
3173 resolve (expression_up *expp, int void_context_p, int parse_completion,
3174 innermost_block_tracker *tracker)
3175 {
3176 struct type *context_type = NULL;
3177 int pc = 0;
3178
3179 if (void_context_p)
3180 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3181
3182 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3183 }
3184
3185 /* Resolve the operator of the subexpression beginning at
3186 position *POS of *EXPP. "Resolving" consists of replacing
3187 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3188 with their resolutions, replacing built-in operators with
3189 function calls to user-defined operators, where appropriate, and,
3190 when DEPROCEDURE_P is non-zero, converting function-valued variables
3191 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3192 are as in ada_resolve, above. */
3193
3194 static struct value *
3195 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3196 struct type *context_type, int parse_completion,
3197 innermost_block_tracker *tracker)
3198 {
3199 int pc = *pos;
3200 int i;
3201 struct expression *exp; /* Convenience: == *expp. */
3202 enum exp_opcode op = (*expp)->elts[pc].opcode;
3203 struct value **argvec; /* Vector of operand types (alloca'ed). */
3204 int nargs; /* Number of operands. */
3205 int oplen;
3206
3207 argvec = NULL;
3208 nargs = 0;
3209 exp = expp->get ();
3210
3211 /* Pass one: resolve operands, saving their types and updating *pos,
3212 if needed. */
3213 switch (op)
3214 {
3215 case OP_FUNCALL:
3216 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3217 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3218 *pos += 7;
3219 else
3220 {
3221 *pos += 3;
3222 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3223 }
3224 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3225 break;
3226
3227 case UNOP_ADDR:
3228 *pos += 1;
3229 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3230 break;
3231
3232 case UNOP_QUAL:
3233 *pos += 3;
3234 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3235 parse_completion, tracker);
3236 break;
3237
3238 case OP_ATR_MODULUS:
3239 case OP_ATR_SIZE:
3240 case OP_ATR_TAG:
3241 case OP_ATR_FIRST:
3242 case OP_ATR_LAST:
3243 case OP_ATR_LENGTH:
3244 case OP_ATR_POS:
3245 case OP_ATR_VAL:
3246 case OP_ATR_MIN:
3247 case OP_ATR_MAX:
3248 case TERNOP_IN_RANGE:
3249 case BINOP_IN_BOUNDS:
3250 case UNOP_IN_RANGE:
3251 case OP_AGGREGATE:
3252 case OP_OTHERS:
3253 case OP_CHOICES:
3254 case OP_POSITIONAL:
3255 case OP_DISCRETE_RANGE:
3256 case OP_NAME:
3257 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3258 *pos += oplen;
3259 break;
3260
3261 case BINOP_ASSIGN:
3262 {
3263 struct value *arg1;
3264
3265 *pos += 1;
3266 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3267 if (arg1 == NULL)
3268 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3269 else
3270 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3271 tracker);
3272 break;
3273 }
3274
3275 case UNOP_CAST:
3276 *pos += 3;
3277 nargs = 1;
3278 break;
3279
3280 case BINOP_ADD:
3281 case BINOP_SUB:
3282 case BINOP_MUL:
3283 case BINOP_DIV:
3284 case BINOP_REM:
3285 case BINOP_MOD:
3286 case BINOP_EXP:
3287 case BINOP_CONCAT:
3288 case BINOP_LOGICAL_AND:
3289 case BINOP_LOGICAL_OR:
3290 case BINOP_BITWISE_AND:
3291 case BINOP_BITWISE_IOR:
3292 case BINOP_BITWISE_XOR:
3293
3294 case BINOP_EQUAL:
3295 case BINOP_NOTEQUAL:
3296 case BINOP_LESS:
3297 case BINOP_GTR:
3298 case BINOP_LEQ:
3299 case BINOP_GEQ:
3300
3301 case BINOP_REPEAT:
3302 case BINOP_SUBSCRIPT:
3303 case BINOP_COMMA:
3304 *pos += 1;
3305 nargs = 2;
3306 break;
3307
3308 case UNOP_NEG:
3309 case UNOP_PLUS:
3310 case UNOP_LOGICAL_NOT:
3311 case UNOP_ABS:
3312 case UNOP_IND:
3313 *pos += 1;
3314 nargs = 1;
3315 break;
3316
3317 case OP_LONG:
3318 case OP_FLOAT:
3319 case OP_VAR_VALUE:
3320 case OP_VAR_MSYM_VALUE:
3321 *pos += 4;
3322 break;
3323
3324 case OP_TYPE:
3325 case OP_BOOL:
3326 case OP_LAST:
3327 case OP_INTERNALVAR:
3328 *pos += 3;
3329 break;
3330
3331 case UNOP_MEMVAL:
3332 *pos += 3;
3333 nargs = 1;
3334 break;
3335
3336 case OP_REGISTER:
3337 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3338 break;
3339
3340 case STRUCTOP_STRUCT:
3341 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3342 nargs = 1;
3343 break;
3344
3345 case TERNOP_SLICE:
3346 *pos += 1;
3347 nargs = 3;
3348 break;
3349
3350 case OP_STRING:
3351 break;
3352
3353 default:
3354 error (_("Unexpected operator during name resolution"));
3355 }
3356
3357 argvec = XALLOCAVEC (struct value *, nargs + 1);
3358 for (i = 0; i < nargs; i += 1)
3359 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3360 tracker);
3361 argvec[i] = NULL;
3362 exp = expp->get ();
3363
3364 /* Pass two: perform any resolution on principal operator. */
3365 switch (op)
3366 {
3367 default:
3368 break;
3369
3370 case OP_VAR_VALUE:
3371 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3372 {
3373 std::vector<struct block_symbol> candidates;
3374 int n_candidates;
3375
3376 n_candidates =
3377 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3378 (exp->elts[pc + 2].symbol),
3379 exp->elts[pc + 1].block, VAR_DOMAIN,
3380 &candidates);
3381
3382 if (n_candidates > 1)
3383 {
3384 /* Types tend to get re-introduced locally, so if there
3385 are any local symbols that are not types, first filter
3386 out all types. */
3387 int j;
3388 for (j = 0; j < n_candidates; j += 1)
3389 switch (SYMBOL_CLASS (candidates[j].symbol))
3390 {
3391 case LOC_REGISTER:
3392 case LOC_ARG:
3393 case LOC_REF_ARG:
3394 case LOC_REGPARM_ADDR:
3395 case LOC_LOCAL:
3396 case LOC_COMPUTED:
3397 goto FoundNonType;
3398 default:
3399 break;
3400 }
3401 FoundNonType:
3402 if (j < n_candidates)
3403 {
3404 j = 0;
3405 while (j < n_candidates)
3406 {
3407 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3408 {
3409 candidates[j] = candidates[n_candidates - 1];
3410 n_candidates -= 1;
3411 }
3412 else
3413 j += 1;
3414 }
3415 }
3416 }
3417
3418 if (n_candidates == 0)
3419 error (_("No definition found for %s"),
3420 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3421 else if (n_candidates == 1)
3422 i = 0;
3423 else if (deprocedure_p
3424 && !is_nonfunction (candidates.data (), n_candidates))
3425 {
3426 i = ada_resolve_function
3427 (candidates.data (), n_candidates, NULL, 0,
3428 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3429 context_type, parse_completion);
3430 if (i < 0)
3431 error (_("Could not find a match for %s"),
3432 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3433 }
3434 else
3435 {
3436 printf_filtered (_("Multiple matches for %s\n"),
3437 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3438 user_select_syms (candidates.data (), n_candidates, 1);
3439 i = 0;
3440 }
3441
3442 exp->elts[pc + 1].block = candidates[i].block;
3443 exp->elts[pc + 2].symbol = candidates[i].symbol;
3444 tracker->update (candidates[i]);
3445 }
3446
3447 if (deprocedure_p
3448 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3449 == TYPE_CODE_FUNC))
3450 {
3451 replace_operator_with_call (expp, pc, 0, 4,
3452 exp->elts[pc + 2].symbol,
3453 exp->elts[pc + 1].block);
3454 exp = expp->get ();
3455 }
3456 break;
3457
3458 case OP_FUNCALL:
3459 {
3460 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3461 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3462 {
3463 std::vector<struct block_symbol> candidates;
3464 int n_candidates;
3465
3466 n_candidates =
3467 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3468 (exp->elts[pc + 5].symbol),
3469 exp->elts[pc + 4].block, VAR_DOMAIN,
3470 &candidates);
3471
3472 if (n_candidates == 1)
3473 i = 0;
3474 else
3475 {
3476 i = ada_resolve_function
3477 (candidates.data (), n_candidates,
3478 argvec, nargs,
3479 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3480 context_type, parse_completion);
3481 if (i < 0)
3482 error (_("Could not find a match for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3484 }
3485
3486 exp->elts[pc + 4].block = candidates[i].block;
3487 exp->elts[pc + 5].symbol = candidates[i].symbol;
3488 tracker->update (candidates[i]);
3489 }
3490 }
3491 break;
3492 case BINOP_ADD:
3493 case BINOP_SUB:
3494 case BINOP_MUL:
3495 case BINOP_DIV:
3496 case BINOP_REM:
3497 case BINOP_MOD:
3498 case BINOP_CONCAT:
3499 case BINOP_BITWISE_AND:
3500 case BINOP_BITWISE_IOR:
3501 case BINOP_BITWISE_XOR:
3502 case BINOP_EQUAL:
3503 case BINOP_NOTEQUAL:
3504 case BINOP_LESS:
3505 case BINOP_GTR:
3506 case BINOP_LEQ:
3507 case BINOP_GEQ:
3508 case BINOP_EXP:
3509 case UNOP_NEG:
3510 case UNOP_PLUS:
3511 case UNOP_LOGICAL_NOT:
3512 case UNOP_ABS:
3513 if (possible_user_operator_p (op, argvec))
3514 {
3515 std::vector<struct block_symbol> candidates;
3516 int n_candidates;
3517
3518 n_candidates =
3519 ada_lookup_symbol_list (ada_decoded_op_name (op),
3520 NULL, VAR_DOMAIN,
3521 &candidates);
3522
3523 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3524 nargs, ada_decoded_op_name (op), NULL,
3525 parse_completion);
3526 if (i < 0)
3527 break;
3528
3529 replace_operator_with_call (expp, pc, nargs, 1,
3530 candidates[i].symbol,
3531 candidates[i].block);
3532 exp = expp->get ();
3533 }
3534 break;
3535
3536 case OP_TYPE:
3537 case OP_REGISTER:
3538 return NULL;
3539 }
3540
3541 *pos = pc;
3542 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3543 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3544 exp->elts[pc + 1].objfile,
3545 exp->elts[pc + 2].msymbol);
3546 else
3547 return evaluate_subexp_type (exp, pos);
3548 }
3549
3550 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3551 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3552 a non-pointer. */
3553 /* The term "match" here is rather loose. The match is heuristic and
3554 liberal. */
3555
3556 static int
3557 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3558 {
3559 ftype = ada_check_typedef (ftype);
3560 atype = ada_check_typedef (atype);
3561
3562 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3563 ftype = TYPE_TARGET_TYPE (ftype);
3564 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3565 atype = TYPE_TARGET_TYPE (atype);
3566
3567 switch (TYPE_CODE (ftype))
3568 {
3569 default:
3570 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3571 case TYPE_CODE_PTR:
3572 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3573 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3574 TYPE_TARGET_TYPE (atype), 0);
3575 else
3576 return (may_deref
3577 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3578 case TYPE_CODE_INT:
3579 case TYPE_CODE_ENUM:
3580 case TYPE_CODE_RANGE:
3581 switch (TYPE_CODE (atype))
3582 {
3583 case TYPE_CODE_INT:
3584 case TYPE_CODE_ENUM:
3585 case TYPE_CODE_RANGE:
3586 return 1;
3587 default:
3588 return 0;
3589 }
3590
3591 case TYPE_CODE_ARRAY:
3592 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3593 || ada_is_array_descriptor_type (atype));
3594
3595 case TYPE_CODE_STRUCT:
3596 if (ada_is_array_descriptor_type (ftype))
3597 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3598 || ada_is_array_descriptor_type (atype));
3599 else
3600 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3601 && !ada_is_array_descriptor_type (atype));
3602
3603 case TYPE_CODE_UNION:
3604 case TYPE_CODE_FLT:
3605 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3606 }
3607 }
3608
3609 /* Return non-zero if the formals of FUNC "sufficiently match" the
3610 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3611 may also be an enumeral, in which case it is treated as a 0-
3612 argument function. */
3613
3614 static int
3615 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3616 {
3617 int i;
3618 struct type *func_type = SYMBOL_TYPE (func);
3619
3620 if (SYMBOL_CLASS (func) == LOC_CONST
3621 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3622 return (n_actuals == 0);
3623 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3624 return 0;
3625
3626 if (TYPE_NFIELDS (func_type) != n_actuals)
3627 return 0;
3628
3629 for (i = 0; i < n_actuals; i += 1)
3630 {
3631 if (actuals[i] == NULL)
3632 return 0;
3633 else
3634 {
3635 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3636 i));
3637 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3638
3639 if (!ada_type_match (ftype, atype, 1))
3640 return 0;
3641 }
3642 }
3643 return 1;
3644 }
3645
3646 /* False iff function type FUNC_TYPE definitely does not produce a value
3647 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3648 FUNC_TYPE is not a valid function type with a non-null return type
3649 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3650
3651 static int
3652 return_match (struct type *func_type, struct type *context_type)
3653 {
3654 struct type *return_type;
3655
3656 if (func_type == NULL)
3657 return 1;
3658
3659 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3660 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3661 else
3662 return_type = get_base_type (func_type);
3663 if (return_type == NULL)
3664 return 1;
3665
3666 context_type = get_base_type (context_type);
3667
3668 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3669 return context_type == NULL || return_type == context_type;
3670 else if (context_type == NULL)
3671 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3672 else
3673 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3674 }
3675
3676
3677 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3678 function (if any) that matches the types of the NARGS arguments in
3679 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3680 that returns that type, then eliminate matches that don't. If
3681 CONTEXT_TYPE is void and there is at least one match that does not
3682 return void, eliminate all matches that do.
3683
3684 Asks the user if there is more than one match remaining. Returns -1
3685 if there is no such symbol or none is selected. NAME is used
3686 solely for messages. May re-arrange and modify SYMS in
3687 the process; the index returned is for the modified vector. */
3688
3689 static int
3690 ada_resolve_function (struct block_symbol syms[],
3691 int nsyms, struct value **args, int nargs,
3692 const char *name, struct type *context_type,
3693 int parse_completion)
3694 {
3695 int fallback;
3696 int k;
3697 int m; /* Number of hits */
3698
3699 m = 0;
3700 /* In the first pass of the loop, we only accept functions matching
3701 context_type. If none are found, we add a second pass of the loop
3702 where every function is accepted. */
3703 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3704 {
3705 for (k = 0; k < nsyms; k += 1)
3706 {
3707 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3708
3709 if (ada_args_match (syms[k].symbol, args, nargs)
3710 && (fallback || return_match (type, context_type)))
3711 {
3712 syms[m] = syms[k];
3713 m += 1;
3714 }
3715 }
3716 }
3717
3718 /* If we got multiple matches, ask the user which one to use. Don't do this
3719 interactive thing during completion, though, as the purpose of the
3720 completion is providing a list of all possible matches. Prompting the
3721 user to filter it down would be completely unexpected in this case. */
3722 if (m == 0)
3723 return -1;
3724 else if (m > 1 && !parse_completion)
3725 {
3726 printf_filtered (_("Multiple matches for %s\n"), name);
3727 user_select_syms (syms, m, 1);
3728 return 0;
3729 }
3730 return 0;
3731 }
3732
3733 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3734 in a listing of choices during disambiguation (see sort_choices, below).
3735 The idea is that overloadings of a subprogram name from the
3736 same package should sort in their source order. We settle for ordering
3737 such symbols by their trailing number (__N or $N). */
3738
3739 static int
3740 encoded_ordered_before (const char *N0, const char *N1)
3741 {
3742 if (N1 == NULL)
3743 return 0;
3744 else if (N0 == NULL)
3745 return 1;
3746 else
3747 {
3748 int k0, k1;
3749
3750 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3751 ;
3752 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3753 ;
3754 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3755 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3756 {
3757 int n0, n1;
3758
3759 n0 = k0;
3760 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3761 n0 -= 1;
3762 n1 = k1;
3763 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3764 n1 -= 1;
3765 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3766 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3767 }
3768 return (strcmp (N0, N1) < 0);
3769 }
3770 }
3771
3772 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3773 encoded names. */
3774
3775 static void
3776 sort_choices (struct block_symbol syms[], int nsyms)
3777 {
3778 int i;
3779
3780 for (i = 1; i < nsyms; i += 1)
3781 {
3782 struct block_symbol sym = syms[i];
3783 int j;
3784
3785 for (j = i - 1; j >= 0; j -= 1)
3786 {
3787 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3788 SYMBOL_LINKAGE_NAME (sym.symbol)))
3789 break;
3790 syms[j + 1] = syms[j];
3791 }
3792 syms[j + 1] = sym;
3793 }
3794 }
3795
3796 /* Whether GDB should display formals and return types for functions in the
3797 overloads selection menu. */
3798 static bool print_signatures = true;
3799
3800 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3801 all but functions, the signature is just the name of the symbol. For
3802 functions, this is the name of the function, the list of types for formals
3803 and the return type (if any). */
3804
3805 static void
3806 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3807 const struct type_print_options *flags)
3808 {
3809 struct type *type = SYMBOL_TYPE (sym);
3810
3811 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3812 if (!print_signatures
3813 || type == NULL
3814 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3815 return;
3816
3817 if (TYPE_NFIELDS (type) > 0)
3818 {
3819 int i;
3820
3821 fprintf_filtered (stream, " (");
3822 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3823 {
3824 if (i > 0)
3825 fprintf_filtered (stream, "; ");
3826 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3827 flags);
3828 }
3829 fprintf_filtered (stream, ")");
3830 }
3831 if (TYPE_TARGET_TYPE (type) != NULL
3832 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3833 {
3834 fprintf_filtered (stream, " return ");
3835 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3836 }
3837 }
3838
3839 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3840 by asking the user (if necessary), returning the number selected,
3841 and setting the first elements of SYMS items. Error if no symbols
3842 selected. */
3843
3844 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3845 to be re-integrated one of these days. */
3846
3847 int
3848 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3849 {
3850 int i;
3851 int *chosen = XALLOCAVEC (int , nsyms);
3852 int n_chosen;
3853 int first_choice = (max_results == 1) ? 1 : 2;
3854 const char *select_mode = multiple_symbols_select_mode ();
3855
3856 if (max_results < 1)
3857 error (_("Request to select 0 symbols!"));
3858 if (nsyms <= 1)
3859 return nsyms;
3860
3861 if (select_mode == multiple_symbols_cancel)
3862 error (_("\
3863 canceled because the command is ambiguous\n\
3864 See set/show multiple-symbol."));
3865
3866 /* If select_mode is "all", then return all possible symbols.
3867 Only do that if more than one symbol can be selected, of course.
3868 Otherwise, display the menu as usual. */
3869 if (select_mode == multiple_symbols_all && max_results > 1)
3870 return nsyms;
3871
3872 printf_filtered (_("[0] cancel\n"));
3873 if (max_results > 1)
3874 printf_filtered (_("[1] all\n"));
3875
3876 sort_choices (syms, nsyms);
3877
3878 for (i = 0; i < nsyms; i += 1)
3879 {
3880 if (syms[i].symbol == NULL)
3881 continue;
3882
3883 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3884 {
3885 struct symtab_and_line sal =
3886 find_function_start_sal (syms[i].symbol, 1);
3887
3888 printf_filtered ("[%d] ", i + first_choice);
3889 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3890 &type_print_raw_options);
3891 if (sal.symtab == NULL)
3892 printf_filtered (_(" at <no source file available>:%d\n"),
3893 sal.line);
3894 else
3895 printf_filtered (_(" at %s:%d\n"),
3896 symtab_to_filename_for_display (sal.symtab),
3897 sal.line);
3898 continue;
3899 }
3900 else
3901 {
3902 int is_enumeral =
3903 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3904 && SYMBOL_TYPE (syms[i].symbol) != NULL
3905 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3906 struct symtab *symtab = NULL;
3907
3908 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3909 symtab = symbol_symtab (syms[i].symbol);
3910
3911 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3912 {
3913 printf_filtered ("[%d] ", i + first_choice);
3914 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3915 &type_print_raw_options);
3916 printf_filtered (_(" at %s:%d\n"),
3917 symtab_to_filename_for_display (symtab),
3918 SYMBOL_LINE (syms[i].symbol));
3919 }
3920 else if (is_enumeral
3921 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3922 {
3923 printf_filtered (("[%d] "), i + first_choice);
3924 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3925 gdb_stdout, -1, 0, &type_print_raw_options);
3926 printf_filtered (_("'(%s) (enumeral)\n"),
3927 SYMBOL_PRINT_NAME (syms[i].symbol));
3928 }
3929 else
3930 {
3931 printf_filtered ("[%d] ", i + first_choice);
3932 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3933 &type_print_raw_options);
3934
3935 if (symtab != NULL)
3936 printf_filtered (is_enumeral
3937 ? _(" in %s (enumeral)\n")
3938 : _(" at %s:?\n"),
3939 symtab_to_filename_for_display (symtab));
3940 else
3941 printf_filtered (is_enumeral
3942 ? _(" (enumeral)\n")
3943 : _(" at ?\n"));
3944 }
3945 }
3946 }
3947
3948 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3949 "overload-choice");
3950
3951 for (i = 0; i < n_chosen; i += 1)
3952 syms[i] = syms[chosen[i]];
3953
3954 return n_chosen;
3955 }
3956
3957 /* Read and validate a set of numeric choices from the user in the
3958 range 0 .. N_CHOICES-1. Place the results in increasing
3959 order in CHOICES[0 .. N-1], and return N.
3960
3961 The user types choices as a sequence of numbers on one line
3962 separated by blanks, encoding them as follows:
3963
3964 + A choice of 0 means to cancel the selection, throwing an error.
3965 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3966 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3967
3968 The user is not allowed to choose more than MAX_RESULTS values.
3969
3970 ANNOTATION_SUFFIX, if present, is used to annotate the input
3971 prompts (for use with the -f switch). */
3972
3973 int
3974 get_selections (int *choices, int n_choices, int max_results,
3975 int is_all_choice, const char *annotation_suffix)
3976 {
3977 char *args;
3978 const char *prompt;
3979 int n_chosen;
3980 int first_choice = is_all_choice ? 2 : 1;
3981
3982 prompt = getenv ("PS2");
3983 if (prompt == NULL)
3984 prompt = "> ";
3985
3986 args = command_line_input (prompt, annotation_suffix);
3987
3988 if (args == NULL)
3989 error_no_arg (_("one or more choice numbers"));
3990
3991 n_chosen = 0;
3992
3993 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3994 order, as given in args. Choices are validated. */
3995 while (1)
3996 {
3997 char *args2;
3998 int choice, j;
3999
4000 args = skip_spaces (args);
4001 if (*args == '\0' && n_chosen == 0)
4002 error_no_arg (_("one or more choice numbers"));
4003 else if (*args == '\0')
4004 break;
4005
4006 choice = strtol (args, &args2, 10);
4007 if (args == args2 || choice < 0
4008 || choice > n_choices + first_choice - 1)
4009 error (_("Argument must be choice number"));
4010 args = args2;
4011
4012 if (choice == 0)
4013 error (_("cancelled"));
4014
4015 if (choice < first_choice)
4016 {
4017 n_chosen = n_choices;
4018 for (j = 0; j < n_choices; j += 1)
4019 choices[j] = j;
4020 break;
4021 }
4022 choice -= first_choice;
4023
4024 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4025 {
4026 }
4027
4028 if (j < 0 || choice != choices[j])
4029 {
4030 int k;
4031
4032 for (k = n_chosen - 1; k > j; k -= 1)
4033 choices[k + 1] = choices[k];
4034 choices[j + 1] = choice;
4035 n_chosen += 1;
4036 }
4037 }
4038
4039 if (n_chosen > max_results)
4040 error (_("Select no more than %d of the above"), max_results);
4041
4042 return n_chosen;
4043 }
4044
4045 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4046 on the function identified by SYM and BLOCK, and taking NARGS
4047 arguments. Update *EXPP as needed to hold more space. */
4048
4049 static void
4050 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4051 int oplen, struct symbol *sym,
4052 const struct block *block)
4053 {
4054 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4055 symbol, -oplen for operator being replaced). */
4056 struct expression *newexp = (struct expression *)
4057 xzalloc (sizeof (struct expression)
4058 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4059 struct expression *exp = expp->get ();
4060
4061 newexp->nelts = exp->nelts + 7 - oplen;
4062 newexp->language_defn = exp->language_defn;
4063 newexp->gdbarch = exp->gdbarch;
4064 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4065 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4066 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4067
4068 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4069 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4070
4071 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4072 newexp->elts[pc + 4].block = block;
4073 newexp->elts[pc + 5].symbol = sym;
4074
4075 expp->reset (newexp);
4076 }
4077
4078 /* Type-class predicates */
4079
4080 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4081 or FLOAT). */
4082
4083 static int
4084 numeric_type_p (struct type *type)
4085 {
4086 if (type == NULL)
4087 return 0;
4088 else
4089 {
4090 switch (TYPE_CODE (type))
4091 {
4092 case TYPE_CODE_INT:
4093 case TYPE_CODE_FLT:
4094 return 1;
4095 case TYPE_CODE_RANGE:
4096 return (type == TYPE_TARGET_TYPE (type)
4097 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4098 default:
4099 return 0;
4100 }
4101 }
4102 }
4103
4104 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4105
4106 static int
4107 integer_type_p (struct type *type)
4108 {
4109 if (type == NULL)
4110 return 0;
4111 else
4112 {
4113 switch (TYPE_CODE (type))
4114 {
4115 case TYPE_CODE_INT:
4116 return 1;
4117 case TYPE_CODE_RANGE:
4118 return (type == TYPE_TARGET_TYPE (type)
4119 || integer_type_p (TYPE_TARGET_TYPE (type)));
4120 default:
4121 return 0;
4122 }
4123 }
4124 }
4125
4126 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4127
4128 static int
4129 scalar_type_p (struct type *type)
4130 {
4131 if (type == NULL)
4132 return 0;
4133 else
4134 {
4135 switch (TYPE_CODE (type))
4136 {
4137 case TYPE_CODE_INT:
4138 case TYPE_CODE_RANGE:
4139 case TYPE_CODE_ENUM:
4140 case TYPE_CODE_FLT:
4141 return 1;
4142 default:
4143 return 0;
4144 }
4145 }
4146 }
4147
4148 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4149
4150 static int
4151 discrete_type_p (struct type *type)
4152 {
4153 if (type == NULL)
4154 return 0;
4155 else
4156 {
4157 switch (TYPE_CODE (type))
4158 {
4159 case TYPE_CODE_INT:
4160 case TYPE_CODE_RANGE:
4161 case TYPE_CODE_ENUM:
4162 case TYPE_CODE_BOOL:
4163 return 1;
4164 default:
4165 return 0;
4166 }
4167 }
4168 }
4169
4170 /* Returns non-zero if OP with operands in the vector ARGS could be
4171 a user-defined function. Errs on the side of pre-defined operators
4172 (i.e., result 0). */
4173
4174 static int
4175 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4176 {
4177 struct type *type0 =
4178 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4179 struct type *type1 =
4180 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4181
4182 if (type0 == NULL)
4183 return 0;
4184
4185 switch (op)
4186 {
4187 default:
4188 return 0;
4189
4190 case BINOP_ADD:
4191 case BINOP_SUB:
4192 case BINOP_MUL:
4193 case BINOP_DIV:
4194 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4195
4196 case BINOP_REM:
4197 case BINOP_MOD:
4198 case BINOP_BITWISE_AND:
4199 case BINOP_BITWISE_IOR:
4200 case BINOP_BITWISE_XOR:
4201 return (!(integer_type_p (type0) && integer_type_p (type1)));
4202
4203 case BINOP_EQUAL:
4204 case BINOP_NOTEQUAL:
4205 case BINOP_LESS:
4206 case BINOP_GTR:
4207 case BINOP_LEQ:
4208 case BINOP_GEQ:
4209 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4210
4211 case BINOP_CONCAT:
4212 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4213
4214 case BINOP_EXP:
4215 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4216
4217 case UNOP_NEG:
4218 case UNOP_PLUS:
4219 case UNOP_LOGICAL_NOT:
4220 case UNOP_ABS:
4221 return (!numeric_type_p (type0));
4222
4223 }
4224 }
4225 \f
4226 /* Renaming */
4227
4228 /* NOTES:
4229
4230 1. In the following, we assume that a renaming type's name may
4231 have an ___XD suffix. It would be nice if this went away at some
4232 point.
4233 2. We handle both the (old) purely type-based representation of
4234 renamings and the (new) variable-based encoding. At some point,
4235 it is devoutly to be hoped that the former goes away
4236 (FIXME: hilfinger-2007-07-09).
4237 3. Subprogram renamings are not implemented, although the XRS
4238 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4239
4240 /* If SYM encodes a renaming,
4241
4242 <renaming> renames <renamed entity>,
4243
4244 sets *LEN to the length of the renamed entity's name,
4245 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4246 the string describing the subcomponent selected from the renamed
4247 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4248 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4249 are undefined). Otherwise, returns a value indicating the category
4250 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4251 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4252 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4253 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4254 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4255 may be NULL, in which case they are not assigned.
4256
4257 [Currently, however, GCC does not generate subprogram renamings.] */
4258
4259 enum ada_renaming_category
4260 ada_parse_renaming (struct symbol *sym,
4261 const char **renamed_entity, int *len,
4262 const char **renaming_expr)
4263 {
4264 enum ada_renaming_category kind;
4265 const char *info;
4266 const char *suffix;
4267
4268 if (sym == NULL)
4269 return ADA_NOT_RENAMING;
4270 switch (SYMBOL_CLASS (sym))
4271 {
4272 default:
4273 return ADA_NOT_RENAMING;
4274 case LOC_LOCAL:
4275 case LOC_STATIC:
4276 case LOC_COMPUTED:
4277 case LOC_OPTIMIZED_OUT:
4278 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4279 if (info == NULL)
4280 return ADA_NOT_RENAMING;
4281 switch (info[5])
4282 {
4283 case '_':
4284 kind = ADA_OBJECT_RENAMING;
4285 info += 6;
4286 break;
4287 case 'E':
4288 kind = ADA_EXCEPTION_RENAMING;
4289 info += 7;
4290 break;
4291 case 'P':
4292 kind = ADA_PACKAGE_RENAMING;
4293 info += 7;
4294 break;
4295 case 'S':
4296 kind = ADA_SUBPROGRAM_RENAMING;
4297 info += 7;
4298 break;
4299 default:
4300 return ADA_NOT_RENAMING;
4301 }
4302 }
4303
4304 if (renamed_entity != NULL)
4305 *renamed_entity = info;
4306 suffix = strstr (info, "___XE");
4307 if (suffix == NULL || suffix == info)
4308 return ADA_NOT_RENAMING;
4309 if (len != NULL)
4310 *len = strlen (info) - strlen (suffix);
4311 suffix += 5;
4312 if (renaming_expr != NULL)
4313 *renaming_expr = suffix;
4314 return kind;
4315 }
4316
4317 /* Compute the value of the given RENAMING_SYM, which is expected to
4318 be a symbol encoding a renaming expression. BLOCK is the block
4319 used to evaluate the renaming. */
4320
4321 static struct value *
4322 ada_read_renaming_var_value (struct symbol *renaming_sym,
4323 const struct block *block)
4324 {
4325 const char *sym_name;
4326
4327 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4328 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4329 return evaluate_expression (expr.get ());
4330 }
4331 \f
4332
4333 /* Evaluation: Function Calls */
4334
4335 /* Return an lvalue containing the value VAL. This is the identity on
4336 lvalues, and otherwise has the side-effect of allocating memory
4337 in the inferior where a copy of the value contents is copied. */
4338
4339 static struct value *
4340 ensure_lval (struct value *val)
4341 {
4342 if (VALUE_LVAL (val) == not_lval
4343 || VALUE_LVAL (val) == lval_internalvar)
4344 {
4345 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4346 const CORE_ADDR addr =
4347 value_as_long (value_allocate_space_in_inferior (len));
4348
4349 VALUE_LVAL (val) = lval_memory;
4350 set_value_address (val, addr);
4351 write_memory (addr, value_contents (val), len);
4352 }
4353
4354 return val;
4355 }
4356
4357 /* Return the value ACTUAL, converted to be an appropriate value for a
4358 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4359 allocating any necessary descriptors (fat pointers), or copies of
4360 values not residing in memory, updating it as needed. */
4361
4362 struct value *
4363 ada_convert_actual (struct value *actual, struct type *formal_type0)
4364 {
4365 struct type *actual_type = ada_check_typedef (value_type (actual));
4366 struct type *formal_type = ada_check_typedef (formal_type0);
4367 struct type *formal_target =
4368 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4369 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4370 struct type *actual_target =
4371 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4372 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4373
4374 if (ada_is_array_descriptor_type (formal_target)
4375 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4376 return make_array_descriptor (formal_type, actual);
4377 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4378 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4379 {
4380 struct value *result;
4381
4382 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4383 && ada_is_array_descriptor_type (actual_target))
4384 result = desc_data (actual);
4385 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4386 {
4387 if (VALUE_LVAL (actual) != lval_memory)
4388 {
4389 struct value *val;
4390
4391 actual_type = ada_check_typedef (value_type (actual));
4392 val = allocate_value (actual_type);
4393 memcpy ((char *) value_contents_raw (val),
4394 (char *) value_contents (actual),
4395 TYPE_LENGTH (actual_type));
4396 actual = ensure_lval (val);
4397 }
4398 result = value_addr (actual);
4399 }
4400 else
4401 return actual;
4402 return value_cast_pointers (formal_type, result, 0);
4403 }
4404 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4405 return ada_value_ind (actual);
4406 else if (ada_is_aligner_type (formal_type))
4407 {
4408 /* We need to turn this parameter into an aligner type
4409 as well. */
4410 struct value *aligner = allocate_value (formal_type);
4411 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4412
4413 value_assign_to_component (aligner, component, actual);
4414 return aligner;
4415 }
4416
4417 return actual;
4418 }
4419
4420 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4421 type TYPE. This is usually an inefficient no-op except on some targets
4422 (such as AVR) where the representation of a pointer and an address
4423 differs. */
4424
4425 static CORE_ADDR
4426 value_pointer (struct value *value, struct type *type)
4427 {
4428 struct gdbarch *gdbarch = get_type_arch (type);
4429 unsigned len = TYPE_LENGTH (type);
4430 gdb_byte *buf = (gdb_byte *) alloca (len);
4431 CORE_ADDR addr;
4432
4433 addr = value_address (value);
4434 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4435 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4436 return addr;
4437 }
4438
4439
4440 /* Push a descriptor of type TYPE for array value ARR on the stack at
4441 *SP, updating *SP to reflect the new descriptor. Return either
4442 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4443 to-descriptor type rather than a descriptor type), a struct value *
4444 representing a pointer to this descriptor. */
4445
4446 static struct value *
4447 make_array_descriptor (struct type *type, struct value *arr)
4448 {
4449 struct type *bounds_type = desc_bounds_type (type);
4450 struct type *desc_type = desc_base_type (type);
4451 struct value *descriptor = allocate_value (desc_type);
4452 struct value *bounds = allocate_value (bounds_type);
4453 int i;
4454
4455 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4456 i > 0; i -= 1)
4457 {
4458 modify_field (value_type (bounds), value_contents_writeable (bounds),
4459 ada_array_bound (arr, i, 0),
4460 desc_bound_bitpos (bounds_type, i, 0),
4461 desc_bound_bitsize (bounds_type, i, 0));
4462 modify_field (value_type (bounds), value_contents_writeable (bounds),
4463 ada_array_bound (arr, i, 1),
4464 desc_bound_bitpos (bounds_type, i, 1),
4465 desc_bound_bitsize (bounds_type, i, 1));
4466 }
4467
4468 bounds = ensure_lval (bounds);
4469
4470 modify_field (value_type (descriptor),
4471 value_contents_writeable (descriptor),
4472 value_pointer (ensure_lval (arr),
4473 TYPE_FIELD_TYPE (desc_type, 0)),
4474 fat_pntr_data_bitpos (desc_type),
4475 fat_pntr_data_bitsize (desc_type));
4476
4477 modify_field (value_type (descriptor),
4478 value_contents_writeable (descriptor),
4479 value_pointer (bounds,
4480 TYPE_FIELD_TYPE (desc_type, 1)),
4481 fat_pntr_bounds_bitpos (desc_type),
4482 fat_pntr_bounds_bitsize (desc_type));
4483
4484 descriptor = ensure_lval (descriptor);
4485
4486 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4487 return value_addr (descriptor);
4488 else
4489 return descriptor;
4490 }
4491 \f
4492 /* Symbol Cache Module */
4493
4494 /* Performance measurements made as of 2010-01-15 indicate that
4495 this cache does bring some noticeable improvements. Depending
4496 on the type of entity being printed, the cache can make it as much
4497 as an order of magnitude faster than without it.
4498
4499 The descriptive type DWARF extension has significantly reduced
4500 the need for this cache, at least when DWARF is being used. However,
4501 even in this case, some expensive name-based symbol searches are still
4502 sometimes necessary - to find an XVZ variable, mostly. */
4503
4504 /* Initialize the contents of SYM_CACHE. */
4505
4506 static void
4507 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4508 {
4509 obstack_init (&sym_cache->cache_space);
4510 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4511 }
4512
4513 /* Free the memory used by SYM_CACHE. */
4514
4515 static void
4516 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4517 {
4518 obstack_free (&sym_cache->cache_space, NULL);
4519 xfree (sym_cache);
4520 }
4521
4522 /* Return the symbol cache associated to the given program space PSPACE.
4523 If not allocated for this PSPACE yet, allocate and initialize one. */
4524
4525 static struct ada_symbol_cache *
4526 ada_get_symbol_cache (struct program_space *pspace)
4527 {
4528 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4529
4530 if (pspace_data->sym_cache == NULL)
4531 {
4532 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4533 ada_init_symbol_cache (pspace_data->sym_cache);
4534 }
4535
4536 return pspace_data->sym_cache;
4537 }
4538
4539 /* Clear all entries from the symbol cache. */
4540
4541 static void
4542 ada_clear_symbol_cache (void)
4543 {
4544 struct ada_symbol_cache *sym_cache
4545 = ada_get_symbol_cache (current_program_space);
4546
4547 obstack_free (&sym_cache->cache_space, NULL);
4548 ada_init_symbol_cache (sym_cache);
4549 }
4550
4551 /* Search our cache for an entry matching NAME and DOMAIN.
4552 Return it if found, or NULL otherwise. */
4553
4554 static struct cache_entry **
4555 find_entry (const char *name, domain_enum domain)
4556 {
4557 struct ada_symbol_cache *sym_cache
4558 = ada_get_symbol_cache (current_program_space);
4559 int h = msymbol_hash (name) % HASH_SIZE;
4560 struct cache_entry **e;
4561
4562 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4563 {
4564 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4565 return e;
4566 }
4567 return NULL;
4568 }
4569
4570 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4571 Return 1 if found, 0 otherwise.
4572
4573 If an entry was found and SYM is not NULL, set *SYM to the entry's
4574 SYM. Same principle for BLOCK if not NULL. */
4575
4576 static int
4577 lookup_cached_symbol (const char *name, domain_enum domain,
4578 struct symbol **sym, const struct block **block)
4579 {
4580 struct cache_entry **e = find_entry (name, domain);
4581
4582 if (e == NULL)
4583 return 0;
4584 if (sym != NULL)
4585 *sym = (*e)->sym;
4586 if (block != NULL)
4587 *block = (*e)->block;
4588 return 1;
4589 }
4590
4591 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4592 in domain DOMAIN, save this result in our symbol cache. */
4593
4594 static void
4595 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4596 const struct block *block)
4597 {
4598 struct ada_symbol_cache *sym_cache
4599 = ada_get_symbol_cache (current_program_space);
4600 int h;
4601 char *copy;
4602 struct cache_entry *e;
4603
4604 /* Symbols for builtin types don't have a block.
4605 For now don't cache such symbols. */
4606 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4607 return;
4608
4609 /* If the symbol is a local symbol, then do not cache it, as a search
4610 for that symbol depends on the context. To determine whether
4611 the symbol is local or not, we check the block where we found it
4612 against the global and static blocks of its associated symtab. */
4613 if (sym
4614 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4615 GLOBAL_BLOCK) != block
4616 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4617 STATIC_BLOCK) != block)
4618 return;
4619
4620 h = msymbol_hash (name) % HASH_SIZE;
4621 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4622 e->next = sym_cache->root[h];
4623 sym_cache->root[h] = e;
4624 e->name = copy
4625 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4626 strcpy (copy, name);
4627 e->sym = sym;
4628 e->domain = domain;
4629 e->block = block;
4630 }
4631 \f
4632 /* Symbol Lookup */
4633
4634 /* Return the symbol name match type that should be used used when
4635 searching for all symbols matching LOOKUP_NAME.
4636
4637 LOOKUP_NAME is expected to be a symbol name after transformation
4638 for Ada lookups. */
4639
4640 static symbol_name_match_type
4641 name_match_type_from_name (const char *lookup_name)
4642 {
4643 return (strstr (lookup_name, "__") == NULL
4644 ? symbol_name_match_type::WILD
4645 : symbol_name_match_type::FULL);
4646 }
4647
4648 /* Return the result of a standard (literal, C-like) lookup of NAME in
4649 given DOMAIN, visible from lexical block BLOCK. */
4650
4651 static struct symbol *
4652 standard_lookup (const char *name, const struct block *block,
4653 domain_enum domain)
4654 {
4655 /* Initialize it just to avoid a GCC false warning. */
4656 struct block_symbol sym = {};
4657
4658 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4659 return sym.symbol;
4660 ada_lookup_encoded_symbol (name, block, domain, &sym);
4661 cache_symbol (name, domain, sym.symbol, sym.block);
4662 return sym.symbol;
4663 }
4664
4665
4666 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4667 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4668 since they contend in overloading in the same way. */
4669 static int
4670 is_nonfunction (struct block_symbol syms[], int n)
4671 {
4672 int i;
4673
4674 for (i = 0; i < n; i += 1)
4675 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4676 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4677 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4678 return 1;
4679
4680 return 0;
4681 }
4682
4683 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4684 struct types. Otherwise, they may not. */
4685
4686 static int
4687 equiv_types (struct type *type0, struct type *type1)
4688 {
4689 if (type0 == type1)
4690 return 1;
4691 if (type0 == NULL || type1 == NULL
4692 || TYPE_CODE (type0) != TYPE_CODE (type1))
4693 return 0;
4694 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4695 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4696 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4697 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4698 return 1;
4699
4700 return 0;
4701 }
4702
4703 /* True iff SYM0 represents the same entity as SYM1, or one that is
4704 no more defined than that of SYM1. */
4705
4706 static int
4707 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4708 {
4709 if (sym0 == sym1)
4710 return 1;
4711 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4712 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4713 return 0;
4714
4715 switch (SYMBOL_CLASS (sym0))
4716 {
4717 case LOC_UNDEF:
4718 return 1;
4719 case LOC_TYPEDEF:
4720 {
4721 struct type *type0 = SYMBOL_TYPE (sym0);
4722 struct type *type1 = SYMBOL_TYPE (sym1);
4723 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4724 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4725 int len0 = strlen (name0);
4726
4727 return
4728 TYPE_CODE (type0) == TYPE_CODE (type1)
4729 && (equiv_types (type0, type1)
4730 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4731 && startswith (name1 + len0, "___XV")));
4732 }
4733 case LOC_CONST:
4734 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4735 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4736 default:
4737 return 0;
4738 }
4739 }
4740
4741 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4742 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4743
4744 static void
4745 add_defn_to_vec (struct obstack *obstackp,
4746 struct symbol *sym,
4747 const struct block *block)
4748 {
4749 int i;
4750 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4751
4752 /* Do not try to complete stub types, as the debugger is probably
4753 already scanning all symbols matching a certain name at the
4754 time when this function is called. Trying to replace the stub
4755 type by its associated full type will cause us to restart a scan
4756 which may lead to an infinite recursion. Instead, the client
4757 collecting the matching symbols will end up collecting several
4758 matches, with at least one of them complete. It can then filter
4759 out the stub ones if needed. */
4760
4761 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4762 {
4763 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4764 return;
4765 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4766 {
4767 prevDefns[i].symbol = sym;
4768 prevDefns[i].block = block;
4769 return;
4770 }
4771 }
4772
4773 {
4774 struct block_symbol info;
4775
4776 info.symbol = sym;
4777 info.block = block;
4778 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4779 }
4780 }
4781
4782 /* Number of block_symbol structures currently collected in current vector in
4783 OBSTACKP. */
4784
4785 static int
4786 num_defns_collected (struct obstack *obstackp)
4787 {
4788 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4789 }
4790
4791 /* Vector of block_symbol structures currently collected in current vector in
4792 OBSTACKP. If FINISH, close off the vector and return its final address. */
4793
4794 static struct block_symbol *
4795 defns_collected (struct obstack *obstackp, int finish)
4796 {
4797 if (finish)
4798 return (struct block_symbol *) obstack_finish (obstackp);
4799 else
4800 return (struct block_symbol *) obstack_base (obstackp);
4801 }
4802
4803 /* Return a bound minimal symbol matching NAME according to Ada
4804 decoding rules. Returns an invalid symbol if there is no such
4805 minimal symbol. Names prefixed with "standard__" are handled
4806 specially: "standard__" is first stripped off, and only static and
4807 global symbols are searched. */
4808
4809 struct bound_minimal_symbol
4810 ada_lookup_simple_minsym (const char *name)
4811 {
4812 struct bound_minimal_symbol result;
4813
4814 memset (&result, 0, sizeof (result));
4815
4816 symbol_name_match_type match_type = name_match_type_from_name (name);
4817 lookup_name_info lookup_name (name, match_type);
4818
4819 symbol_name_matcher_ftype *match_name
4820 = ada_get_symbol_name_matcher (lookup_name);
4821
4822 for (objfile *objfile : current_program_space->objfiles ())
4823 {
4824 for (minimal_symbol *msymbol : objfile->msymbols ())
4825 {
4826 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4827 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4828 {
4829 result.minsym = msymbol;
4830 result.objfile = objfile;
4831 break;
4832 }
4833 }
4834 }
4835
4836 return result;
4837 }
4838
4839 /* Return all the bound minimal symbols matching NAME according to Ada
4840 decoding rules. Returns an empty vector if there is no such
4841 minimal symbol. Names prefixed with "standard__" are handled
4842 specially: "standard__" is first stripped off, and only static and
4843 global symbols are searched. */
4844
4845 static std::vector<struct bound_minimal_symbol>
4846 ada_lookup_simple_minsyms (const char *name)
4847 {
4848 std::vector<struct bound_minimal_symbol> result;
4849
4850 symbol_name_match_type match_type = name_match_type_from_name (name);
4851 lookup_name_info lookup_name (name, match_type);
4852
4853 symbol_name_matcher_ftype *match_name
4854 = ada_get_symbol_name_matcher (lookup_name);
4855
4856 for (objfile *objfile : current_program_space->objfiles ())
4857 {
4858 for (minimal_symbol *msymbol : objfile->msymbols ())
4859 {
4860 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4861 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4862 result.push_back ({msymbol, objfile});
4863 }
4864 }
4865
4866 return result;
4867 }
4868
4869 /* For all subprograms that statically enclose the subprogram of the
4870 selected frame, add symbols matching identifier NAME in DOMAIN
4871 and their blocks to the list of data in OBSTACKP, as for
4872 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4873 with a wildcard prefix. */
4874
4875 static void
4876 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4877 const lookup_name_info &lookup_name,
4878 domain_enum domain)
4879 {
4880 }
4881
4882 /* True if TYPE is definitely an artificial type supplied to a symbol
4883 for which no debugging information was given in the symbol file. */
4884
4885 static int
4886 is_nondebugging_type (struct type *type)
4887 {
4888 const char *name = ada_type_name (type);
4889
4890 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4891 }
4892
4893 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4894 that are deemed "identical" for practical purposes.
4895
4896 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4897 types and that their number of enumerals is identical (in other
4898 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4899
4900 static int
4901 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4902 {
4903 int i;
4904
4905 /* The heuristic we use here is fairly conservative. We consider
4906 that 2 enumerate types are identical if they have the same
4907 number of enumerals and that all enumerals have the same
4908 underlying value and name. */
4909
4910 /* All enums in the type should have an identical underlying value. */
4911 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4912 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4913 return 0;
4914
4915 /* All enumerals should also have the same name (modulo any numerical
4916 suffix). */
4917 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4918 {
4919 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4920 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4921 int len_1 = strlen (name_1);
4922 int len_2 = strlen (name_2);
4923
4924 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4925 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4926 if (len_1 != len_2
4927 || strncmp (TYPE_FIELD_NAME (type1, i),
4928 TYPE_FIELD_NAME (type2, i),
4929 len_1) != 0)
4930 return 0;
4931 }
4932
4933 return 1;
4934 }
4935
4936 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4937 that are deemed "identical" for practical purposes. Sometimes,
4938 enumerals are not strictly identical, but their types are so similar
4939 that they can be considered identical.
4940
4941 For instance, consider the following code:
4942
4943 type Color is (Black, Red, Green, Blue, White);
4944 type RGB_Color is new Color range Red .. Blue;
4945
4946 Type RGB_Color is a subrange of an implicit type which is a copy
4947 of type Color. If we call that implicit type RGB_ColorB ("B" is
4948 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4949 As a result, when an expression references any of the enumeral
4950 by name (Eg. "print green"), the expression is technically
4951 ambiguous and the user should be asked to disambiguate. But
4952 doing so would only hinder the user, since it wouldn't matter
4953 what choice he makes, the outcome would always be the same.
4954 So, for practical purposes, we consider them as the same. */
4955
4956 static int
4957 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4958 {
4959 int i;
4960
4961 /* Before performing a thorough comparison check of each type,
4962 we perform a series of inexpensive checks. We expect that these
4963 checks will quickly fail in the vast majority of cases, and thus
4964 help prevent the unnecessary use of a more expensive comparison.
4965 Said comparison also expects us to make some of these checks
4966 (see ada_identical_enum_types_p). */
4967
4968 /* Quick check: All symbols should have an enum type. */
4969 for (i = 0; i < syms.size (); i++)
4970 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
4971 return 0;
4972
4973 /* Quick check: They should all have the same value. */
4974 for (i = 1; i < syms.size (); i++)
4975 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4976 return 0;
4977
4978 /* Quick check: They should all have the same number of enumerals. */
4979 for (i = 1; i < syms.size (); i++)
4980 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
4981 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
4982 return 0;
4983
4984 /* All the sanity checks passed, so we might have a set of
4985 identical enumeration types. Perform a more complete
4986 comparison of the type of each symbol. */
4987 for (i = 1; i < syms.size (); i++)
4988 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4989 SYMBOL_TYPE (syms[0].symbol)))
4990 return 0;
4991
4992 return 1;
4993 }
4994
4995 /* Remove any non-debugging symbols in SYMS that definitely
4996 duplicate other symbols in the list (The only case I know of where
4997 this happens is when object files containing stabs-in-ecoff are
4998 linked with files containing ordinary ecoff debugging symbols (or no
4999 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5000 Returns the number of items in the modified list. */
5001
5002 static int
5003 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5004 {
5005 int i, j;
5006
5007 /* We should never be called with less than 2 symbols, as there
5008 cannot be any extra symbol in that case. But it's easy to
5009 handle, since we have nothing to do in that case. */
5010 if (syms->size () < 2)
5011 return syms->size ();
5012
5013 i = 0;
5014 while (i < syms->size ())
5015 {
5016 int remove_p = 0;
5017
5018 /* If two symbols have the same name and one of them is a stub type,
5019 the get rid of the stub. */
5020
5021 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5022 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5023 {
5024 for (j = 0; j < syms->size (); j++)
5025 {
5026 if (j != i
5027 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5028 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5029 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5030 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5031 remove_p = 1;
5032 }
5033 }
5034
5035 /* Two symbols with the same name, same class and same address
5036 should be identical. */
5037
5038 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5039 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5040 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5041 {
5042 for (j = 0; j < syms->size (); j += 1)
5043 {
5044 if (i != j
5045 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5046 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5047 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5048 && SYMBOL_CLASS ((*syms)[i].symbol)
5049 == SYMBOL_CLASS ((*syms)[j].symbol)
5050 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5051 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5052 remove_p = 1;
5053 }
5054 }
5055
5056 if (remove_p)
5057 syms->erase (syms->begin () + i);
5058
5059 i += 1;
5060 }
5061
5062 /* If all the remaining symbols are identical enumerals, then
5063 just keep the first one and discard the rest.
5064
5065 Unlike what we did previously, we do not discard any entry
5066 unless they are ALL identical. This is because the symbol
5067 comparison is not a strict comparison, but rather a practical
5068 comparison. If all symbols are considered identical, then
5069 we can just go ahead and use the first one and discard the rest.
5070 But if we cannot reduce the list to a single element, we have
5071 to ask the user to disambiguate anyways. And if we have to
5072 present a multiple-choice menu, it's less confusing if the list
5073 isn't missing some choices that were identical and yet distinct. */
5074 if (symbols_are_identical_enums (*syms))
5075 syms->resize (1);
5076
5077 return syms->size ();
5078 }
5079
5080 /* Given a type that corresponds to a renaming entity, use the type name
5081 to extract the scope (package name or function name, fully qualified,
5082 and following the GNAT encoding convention) where this renaming has been
5083 defined. */
5084
5085 static std::string
5086 xget_renaming_scope (struct type *renaming_type)
5087 {
5088 /* The renaming types adhere to the following convention:
5089 <scope>__<rename>___<XR extension>.
5090 So, to extract the scope, we search for the "___XR" extension,
5091 and then backtrack until we find the first "__". */
5092
5093 const char *name = TYPE_NAME (renaming_type);
5094 const char *suffix = strstr (name, "___XR");
5095 const char *last;
5096
5097 /* Now, backtrack a bit until we find the first "__". Start looking
5098 at suffix - 3, as the <rename> part is at least one character long. */
5099
5100 for (last = suffix - 3; last > name; last--)
5101 if (last[0] == '_' && last[1] == '_')
5102 break;
5103
5104 /* Make a copy of scope and return it. */
5105 return std::string (name, last);
5106 }
5107
5108 /* Return nonzero if NAME corresponds to a package name. */
5109
5110 static int
5111 is_package_name (const char *name)
5112 {
5113 /* Here, We take advantage of the fact that no symbols are generated
5114 for packages, while symbols are generated for each function.
5115 So the condition for NAME represent a package becomes equivalent
5116 to NAME not existing in our list of symbols. There is only one
5117 small complication with library-level functions (see below). */
5118
5119 /* If it is a function that has not been defined at library level,
5120 then we should be able to look it up in the symbols. */
5121 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5122 return 0;
5123
5124 /* Library-level function names start with "_ada_". See if function
5125 "_ada_" followed by NAME can be found. */
5126
5127 /* Do a quick check that NAME does not contain "__", since library-level
5128 functions names cannot contain "__" in them. */
5129 if (strstr (name, "__") != NULL)
5130 return 0;
5131
5132 std::string fun_name = string_printf ("_ada_%s", name);
5133
5134 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5135 }
5136
5137 /* Return nonzero if SYM corresponds to a renaming entity that is
5138 not visible from FUNCTION_NAME. */
5139
5140 static int
5141 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5142 {
5143 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5144 return 0;
5145
5146 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5147
5148 /* If the rename has been defined in a package, then it is visible. */
5149 if (is_package_name (scope.c_str ()))
5150 return 0;
5151
5152 /* Check that the rename is in the current function scope by checking
5153 that its name starts with SCOPE. */
5154
5155 /* If the function name starts with "_ada_", it means that it is
5156 a library-level function. Strip this prefix before doing the
5157 comparison, as the encoding for the renaming does not contain
5158 this prefix. */
5159 if (startswith (function_name, "_ada_"))
5160 function_name += 5;
5161
5162 return !startswith (function_name, scope.c_str ());
5163 }
5164
5165 /* Remove entries from SYMS that corresponds to a renaming entity that
5166 is not visible from the function associated with CURRENT_BLOCK or
5167 that is superfluous due to the presence of more specific renaming
5168 information. Places surviving symbols in the initial entries of
5169 SYMS and returns the number of surviving symbols.
5170
5171 Rationale:
5172 First, in cases where an object renaming is implemented as a
5173 reference variable, GNAT may produce both the actual reference
5174 variable and the renaming encoding. In this case, we discard the
5175 latter.
5176
5177 Second, GNAT emits a type following a specified encoding for each renaming
5178 entity. Unfortunately, STABS currently does not support the definition
5179 of types that are local to a given lexical block, so all renamings types
5180 are emitted at library level. As a consequence, if an application
5181 contains two renaming entities using the same name, and a user tries to
5182 print the value of one of these entities, the result of the ada symbol
5183 lookup will also contain the wrong renaming type.
5184
5185 This function partially covers for this limitation by attempting to
5186 remove from the SYMS list renaming symbols that should be visible
5187 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5188 method with the current information available. The implementation
5189 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5190
5191 - When the user tries to print a rename in a function while there
5192 is another rename entity defined in a package: Normally, the
5193 rename in the function has precedence over the rename in the
5194 package, so the latter should be removed from the list. This is
5195 currently not the case.
5196
5197 - This function will incorrectly remove valid renames if
5198 the CURRENT_BLOCK corresponds to a function which symbol name
5199 has been changed by an "Export" pragma. As a consequence,
5200 the user will be unable to print such rename entities. */
5201
5202 static int
5203 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5204 const struct block *current_block)
5205 {
5206 struct symbol *current_function;
5207 const char *current_function_name;
5208 int i;
5209 int is_new_style_renaming;
5210
5211 /* If there is both a renaming foo___XR... encoded as a variable and
5212 a simple variable foo in the same block, discard the latter.
5213 First, zero out such symbols, then compress. */
5214 is_new_style_renaming = 0;
5215 for (i = 0; i < syms->size (); i += 1)
5216 {
5217 struct symbol *sym = (*syms)[i].symbol;
5218 const struct block *block = (*syms)[i].block;
5219 const char *name;
5220 const char *suffix;
5221
5222 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5223 continue;
5224 name = SYMBOL_LINKAGE_NAME (sym);
5225 suffix = strstr (name, "___XR");
5226
5227 if (suffix != NULL)
5228 {
5229 int name_len = suffix - name;
5230 int j;
5231
5232 is_new_style_renaming = 1;
5233 for (j = 0; j < syms->size (); j += 1)
5234 if (i != j && (*syms)[j].symbol != NULL
5235 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5236 name_len) == 0
5237 && block == (*syms)[j].block)
5238 (*syms)[j].symbol = NULL;
5239 }
5240 }
5241 if (is_new_style_renaming)
5242 {
5243 int j, k;
5244
5245 for (j = k = 0; j < syms->size (); j += 1)
5246 if ((*syms)[j].symbol != NULL)
5247 {
5248 (*syms)[k] = (*syms)[j];
5249 k += 1;
5250 }
5251 return k;
5252 }
5253
5254 /* Extract the function name associated to CURRENT_BLOCK.
5255 Abort if unable to do so. */
5256
5257 if (current_block == NULL)
5258 return syms->size ();
5259
5260 current_function = block_linkage_function (current_block);
5261 if (current_function == NULL)
5262 return syms->size ();
5263
5264 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5265 if (current_function_name == NULL)
5266 return syms->size ();
5267
5268 /* Check each of the symbols, and remove it from the list if it is
5269 a type corresponding to a renaming that is out of the scope of
5270 the current block. */
5271
5272 i = 0;
5273 while (i < syms->size ())
5274 {
5275 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5276 == ADA_OBJECT_RENAMING
5277 && old_renaming_is_invisible ((*syms)[i].symbol,
5278 current_function_name))
5279 syms->erase (syms->begin () + i);
5280 else
5281 i += 1;
5282 }
5283
5284 return syms->size ();
5285 }
5286
5287 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5288 whose name and domain match NAME and DOMAIN respectively.
5289 If no match was found, then extend the search to "enclosing"
5290 routines (in other words, if we're inside a nested function,
5291 search the symbols defined inside the enclosing functions).
5292 If WILD_MATCH_P is nonzero, perform the naming matching in
5293 "wild" mode (see function "wild_match" for more info).
5294
5295 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5296
5297 static void
5298 ada_add_local_symbols (struct obstack *obstackp,
5299 const lookup_name_info &lookup_name,
5300 const struct block *block, domain_enum domain)
5301 {
5302 int block_depth = 0;
5303
5304 while (block != NULL)
5305 {
5306 block_depth += 1;
5307 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5308
5309 /* If we found a non-function match, assume that's the one. */
5310 if (is_nonfunction (defns_collected (obstackp, 0),
5311 num_defns_collected (obstackp)))
5312 return;
5313
5314 block = BLOCK_SUPERBLOCK (block);
5315 }
5316
5317 /* If no luck so far, try to find NAME as a local symbol in some lexically
5318 enclosing subprogram. */
5319 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5320 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5321 }
5322
5323 /* An object of this type is used as the user_data argument when
5324 calling the map_matching_symbols method. */
5325
5326 struct match_data
5327 {
5328 struct objfile *objfile;
5329 struct obstack *obstackp;
5330 struct symbol *arg_sym;
5331 int found_sym;
5332 };
5333
5334 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5335 to a list of symbols. DATA is a pointer to a struct match_data *
5336 containing the obstack that collects the symbol list, the file that SYM
5337 must come from, a flag indicating whether a non-argument symbol has
5338 been found in the current block, and the last argument symbol
5339 passed in SYM within the current block (if any). When SYM is null,
5340 marking the end of a block, the argument symbol is added if no
5341 other has been found. */
5342
5343 static bool
5344 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5345 struct match_data *data)
5346 {
5347 const struct block *block = bsym->block;
5348 struct symbol *sym = bsym->symbol;
5349
5350 if (sym == NULL)
5351 {
5352 if (!data->found_sym && data->arg_sym != NULL)
5353 add_defn_to_vec (data->obstackp,
5354 fixup_symbol_section (data->arg_sym, data->objfile),
5355 block);
5356 data->found_sym = 0;
5357 data->arg_sym = NULL;
5358 }
5359 else
5360 {
5361 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5362 return true;
5363 else if (SYMBOL_IS_ARGUMENT (sym))
5364 data->arg_sym = sym;
5365 else
5366 {
5367 data->found_sym = 1;
5368 add_defn_to_vec (data->obstackp,
5369 fixup_symbol_section (sym, data->objfile),
5370 block);
5371 }
5372 }
5373 return true;
5374 }
5375
5376 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5377 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5378 symbols to OBSTACKP. Return whether we found such symbols. */
5379
5380 static int
5381 ada_add_block_renamings (struct obstack *obstackp,
5382 const struct block *block,
5383 const lookup_name_info &lookup_name,
5384 domain_enum domain)
5385 {
5386 struct using_direct *renaming;
5387 int defns_mark = num_defns_collected (obstackp);
5388
5389 symbol_name_matcher_ftype *name_match
5390 = ada_get_symbol_name_matcher (lookup_name);
5391
5392 for (renaming = block_using (block);
5393 renaming != NULL;
5394 renaming = renaming->next)
5395 {
5396 const char *r_name;
5397
5398 /* Avoid infinite recursions: skip this renaming if we are actually
5399 already traversing it.
5400
5401 Currently, symbol lookup in Ada don't use the namespace machinery from
5402 C++/Fortran support: skip namespace imports that use them. */
5403 if (renaming->searched
5404 || (renaming->import_src != NULL
5405 && renaming->import_src[0] != '\0')
5406 || (renaming->import_dest != NULL
5407 && renaming->import_dest[0] != '\0'))
5408 continue;
5409 renaming->searched = 1;
5410
5411 /* TODO: here, we perform another name-based symbol lookup, which can
5412 pull its own multiple overloads. In theory, we should be able to do
5413 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5414 not a simple name. But in order to do this, we would need to enhance
5415 the DWARF reader to associate a symbol to this renaming, instead of a
5416 name. So, for now, we do something simpler: re-use the C++/Fortran
5417 namespace machinery. */
5418 r_name = (renaming->alias != NULL
5419 ? renaming->alias
5420 : renaming->declaration);
5421 if (name_match (r_name, lookup_name, NULL))
5422 {
5423 lookup_name_info decl_lookup_name (renaming->declaration,
5424 lookup_name.match_type ());
5425 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5426 1, NULL);
5427 }
5428 renaming->searched = 0;
5429 }
5430 return num_defns_collected (obstackp) != defns_mark;
5431 }
5432
5433 /* Implements compare_names, but only applying the comparision using
5434 the given CASING. */
5435
5436 static int
5437 compare_names_with_case (const char *string1, const char *string2,
5438 enum case_sensitivity casing)
5439 {
5440 while (*string1 != '\0' && *string2 != '\0')
5441 {
5442 char c1, c2;
5443
5444 if (isspace (*string1) || isspace (*string2))
5445 return strcmp_iw_ordered (string1, string2);
5446
5447 if (casing == case_sensitive_off)
5448 {
5449 c1 = tolower (*string1);
5450 c2 = tolower (*string2);
5451 }
5452 else
5453 {
5454 c1 = *string1;
5455 c2 = *string2;
5456 }
5457 if (c1 != c2)
5458 break;
5459
5460 string1 += 1;
5461 string2 += 1;
5462 }
5463
5464 switch (*string1)
5465 {
5466 case '(':
5467 return strcmp_iw_ordered (string1, string2);
5468 case '_':
5469 if (*string2 == '\0')
5470 {
5471 if (is_name_suffix (string1))
5472 return 0;
5473 else
5474 return 1;
5475 }
5476 /* FALLTHROUGH */
5477 default:
5478 if (*string2 == '(')
5479 return strcmp_iw_ordered (string1, string2);
5480 else
5481 {
5482 if (casing == case_sensitive_off)
5483 return tolower (*string1) - tolower (*string2);
5484 else
5485 return *string1 - *string2;
5486 }
5487 }
5488 }
5489
5490 /* Compare STRING1 to STRING2, with results as for strcmp.
5491 Compatible with strcmp_iw_ordered in that...
5492
5493 strcmp_iw_ordered (STRING1, STRING2) <= 0
5494
5495 ... implies...
5496
5497 compare_names (STRING1, STRING2) <= 0
5498
5499 (they may differ as to what symbols compare equal). */
5500
5501 static int
5502 compare_names (const char *string1, const char *string2)
5503 {
5504 int result;
5505
5506 /* Similar to what strcmp_iw_ordered does, we need to perform
5507 a case-insensitive comparison first, and only resort to
5508 a second, case-sensitive, comparison if the first one was
5509 not sufficient to differentiate the two strings. */
5510
5511 result = compare_names_with_case (string1, string2, case_sensitive_off);
5512 if (result == 0)
5513 result = compare_names_with_case (string1, string2, case_sensitive_on);
5514
5515 return result;
5516 }
5517
5518 /* Convenience function to get at the Ada encoded lookup name for
5519 LOOKUP_NAME, as a C string. */
5520
5521 static const char *
5522 ada_lookup_name (const lookup_name_info &lookup_name)
5523 {
5524 return lookup_name.ada ().lookup_name ().c_str ();
5525 }
5526
5527 /* Add to OBSTACKP all non-local symbols whose name and domain match
5528 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5529 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5530 symbols otherwise. */
5531
5532 static void
5533 add_nonlocal_symbols (struct obstack *obstackp,
5534 const lookup_name_info &lookup_name,
5535 domain_enum domain, int global)
5536 {
5537 struct match_data data;
5538
5539 memset (&data, 0, sizeof data);
5540 data.obstackp = obstackp;
5541
5542 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5543
5544 auto callback = [&] (struct block_symbol *bsym)
5545 {
5546 return aux_add_nonlocal_symbols (bsym, &data);
5547 };
5548
5549 for (objfile *objfile : current_program_space->objfiles ())
5550 {
5551 data.objfile = objfile;
5552
5553 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5554 domain, global, callback,
5555 (is_wild_match
5556 ? NULL : compare_names));
5557
5558 for (compunit_symtab *cu : objfile->compunits ())
5559 {
5560 const struct block *global_block
5561 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5562
5563 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5564 domain))
5565 data.found_sym = 1;
5566 }
5567 }
5568
5569 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5570 {
5571 const char *name = ada_lookup_name (lookup_name);
5572 lookup_name_info name1 (std::string ("<_ada_") + name + '>',
5573 symbol_name_match_type::FULL);
5574
5575 for (objfile *objfile : current_program_space->objfiles ())
5576 {
5577 data.objfile = objfile;
5578 objfile->sf->qf->map_matching_symbols (objfile, name1,
5579 domain, global, callback,
5580 compare_names);
5581 }
5582 }
5583 }
5584
5585 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5586 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5587 returning the number of matches. Add these to OBSTACKP.
5588
5589 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5590 symbol match within the nest of blocks whose innermost member is BLOCK,
5591 is the one match returned (no other matches in that or
5592 enclosing blocks is returned). If there are any matches in or
5593 surrounding BLOCK, then these alone are returned.
5594
5595 Names prefixed with "standard__" are handled specially:
5596 "standard__" is first stripped off (by the lookup_name
5597 constructor), and only static and global symbols are searched.
5598
5599 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5600 to lookup global symbols. */
5601
5602 static void
5603 ada_add_all_symbols (struct obstack *obstackp,
5604 const struct block *block,
5605 const lookup_name_info &lookup_name,
5606 domain_enum domain,
5607 int full_search,
5608 int *made_global_lookup_p)
5609 {
5610 struct symbol *sym;
5611
5612 if (made_global_lookup_p)
5613 *made_global_lookup_p = 0;
5614
5615 /* Special case: If the user specifies a symbol name inside package
5616 Standard, do a non-wild matching of the symbol name without
5617 the "standard__" prefix. This was primarily introduced in order
5618 to allow the user to specifically access the standard exceptions
5619 using, for instance, Standard.Constraint_Error when Constraint_Error
5620 is ambiguous (due to the user defining its own Constraint_Error
5621 entity inside its program). */
5622 if (lookup_name.ada ().standard_p ())
5623 block = NULL;
5624
5625 /* Check the non-global symbols. If we have ANY match, then we're done. */
5626
5627 if (block != NULL)
5628 {
5629 if (full_search)
5630 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5631 else
5632 {
5633 /* In the !full_search case we're are being called by
5634 ada_iterate_over_symbols, and we don't want to search
5635 superblocks. */
5636 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5637 }
5638 if (num_defns_collected (obstackp) > 0 || !full_search)
5639 return;
5640 }
5641
5642 /* No non-global symbols found. Check our cache to see if we have
5643 already performed this search before. If we have, then return
5644 the same result. */
5645
5646 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5647 domain, &sym, &block))
5648 {
5649 if (sym != NULL)
5650 add_defn_to_vec (obstackp, sym, block);
5651 return;
5652 }
5653
5654 if (made_global_lookup_p)
5655 *made_global_lookup_p = 1;
5656
5657 /* Search symbols from all global blocks. */
5658
5659 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5660
5661 /* Now add symbols from all per-file blocks if we've gotten no hits
5662 (not strictly correct, but perhaps better than an error). */
5663
5664 if (num_defns_collected (obstackp) == 0)
5665 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5666 }
5667
5668 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5669 is non-zero, enclosing scope and in global scopes, returning the number of
5670 matches.
5671 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5672 found and the blocks and symbol tables (if any) in which they were
5673 found.
5674
5675 When full_search is non-zero, any non-function/non-enumeral
5676 symbol match within the nest of blocks whose innermost member is BLOCK,
5677 is the one match returned (no other matches in that or
5678 enclosing blocks is returned). If there are any matches in or
5679 surrounding BLOCK, then these alone are returned.
5680
5681 Names prefixed with "standard__" are handled specially: "standard__"
5682 is first stripped off, and only static and global symbols are searched. */
5683
5684 static int
5685 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5686 const struct block *block,
5687 domain_enum domain,
5688 std::vector<struct block_symbol> *results,
5689 int full_search)
5690 {
5691 int syms_from_global_search;
5692 int ndefns;
5693 auto_obstack obstack;
5694
5695 ada_add_all_symbols (&obstack, block, lookup_name,
5696 domain, full_search, &syms_from_global_search);
5697
5698 ndefns = num_defns_collected (&obstack);
5699
5700 struct block_symbol *base = defns_collected (&obstack, 1);
5701 for (int i = 0; i < ndefns; ++i)
5702 results->push_back (base[i]);
5703
5704 ndefns = remove_extra_symbols (results);
5705
5706 if (ndefns == 0 && full_search && syms_from_global_search)
5707 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5708
5709 if (ndefns == 1 && full_search && syms_from_global_search)
5710 cache_symbol (ada_lookup_name (lookup_name), domain,
5711 (*results)[0].symbol, (*results)[0].block);
5712
5713 ndefns = remove_irrelevant_renamings (results, block);
5714
5715 return ndefns;
5716 }
5717
5718 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5719 in global scopes, returning the number of matches, and filling *RESULTS
5720 with (SYM,BLOCK) tuples.
5721
5722 See ada_lookup_symbol_list_worker for further details. */
5723
5724 int
5725 ada_lookup_symbol_list (const char *name, const struct block *block,
5726 domain_enum domain,
5727 std::vector<struct block_symbol> *results)
5728 {
5729 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5730 lookup_name_info lookup_name (name, name_match_type);
5731
5732 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5733 }
5734
5735 /* Implementation of the la_iterate_over_symbols method. */
5736
5737 static bool
5738 ada_iterate_over_symbols
5739 (const struct block *block, const lookup_name_info &name,
5740 domain_enum domain,
5741 gdb::function_view<symbol_found_callback_ftype> callback)
5742 {
5743 int ndefs, i;
5744 std::vector<struct block_symbol> results;
5745
5746 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5747
5748 for (i = 0; i < ndefs; ++i)
5749 {
5750 if (!callback (&results[i]))
5751 return false;
5752 }
5753
5754 return true;
5755 }
5756
5757 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5758 to 1, but choosing the first symbol found if there are multiple
5759 choices.
5760
5761 The result is stored in *INFO, which must be non-NULL.
5762 If no match is found, INFO->SYM is set to NULL. */
5763
5764 void
5765 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5766 domain_enum domain,
5767 struct block_symbol *info)
5768 {
5769 /* Since we already have an encoded name, wrap it in '<>' to force a
5770 verbatim match. Otherwise, if the name happens to not look like
5771 an encoded name (because it doesn't include a "__"),
5772 ada_lookup_name_info would re-encode/fold it again, and that
5773 would e.g., incorrectly lowercase object renaming names like
5774 "R28b" -> "r28b". */
5775 std::string verbatim = std::string ("<") + name + '>';
5776
5777 gdb_assert (info != NULL);
5778 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5779 }
5780
5781 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5782 scope and in global scopes, or NULL if none. NAME is folded and
5783 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5784 choosing the first symbol if there are multiple choices. */
5785
5786 struct block_symbol
5787 ada_lookup_symbol (const char *name, const struct block *block0,
5788 domain_enum domain)
5789 {
5790 std::vector<struct block_symbol> candidates;
5791 int n_candidates;
5792
5793 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5794
5795 if (n_candidates == 0)
5796 return {};
5797
5798 block_symbol info = candidates[0];
5799 info.symbol = fixup_symbol_section (info.symbol, NULL);
5800 return info;
5801 }
5802
5803 static struct block_symbol
5804 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5805 const char *name,
5806 const struct block *block,
5807 const domain_enum domain)
5808 {
5809 struct block_symbol sym;
5810
5811 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5812 if (sym.symbol != NULL)
5813 return sym;
5814
5815 /* If we haven't found a match at this point, try the primitive
5816 types. In other languages, this search is performed before
5817 searching for global symbols in order to short-circuit that
5818 global-symbol search if it happens that the name corresponds
5819 to a primitive type. But we cannot do the same in Ada, because
5820 it is perfectly legitimate for a program to declare a type which
5821 has the same name as a standard type. If looking up a type in
5822 that situation, we have traditionally ignored the primitive type
5823 in favor of user-defined types. This is why, unlike most other
5824 languages, we search the primitive types this late and only after
5825 having searched the global symbols without success. */
5826
5827 if (domain == VAR_DOMAIN)
5828 {
5829 struct gdbarch *gdbarch;
5830
5831 if (block == NULL)
5832 gdbarch = target_gdbarch ();
5833 else
5834 gdbarch = block_gdbarch (block);
5835 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5836 if (sym.symbol != NULL)
5837 return sym;
5838 }
5839
5840 return {};
5841 }
5842
5843
5844 /* True iff STR is a possible encoded suffix of a normal Ada name
5845 that is to be ignored for matching purposes. Suffixes of parallel
5846 names (e.g., XVE) are not included here. Currently, the possible suffixes
5847 are given by any of the regular expressions:
5848
5849 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5850 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5851 TKB [subprogram suffix for task bodies]
5852 _E[0-9]+[bs]$ [protected object entry suffixes]
5853 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5854
5855 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5856 match is performed. This sequence is used to differentiate homonyms,
5857 is an optional part of a valid name suffix. */
5858
5859 static int
5860 is_name_suffix (const char *str)
5861 {
5862 int k;
5863 const char *matching;
5864 const int len = strlen (str);
5865
5866 /* Skip optional leading __[0-9]+. */
5867
5868 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5869 {
5870 str += 3;
5871 while (isdigit (str[0]))
5872 str += 1;
5873 }
5874
5875 /* [.$][0-9]+ */
5876
5877 if (str[0] == '.' || str[0] == '$')
5878 {
5879 matching = str + 1;
5880 while (isdigit (matching[0]))
5881 matching += 1;
5882 if (matching[0] == '\0')
5883 return 1;
5884 }
5885
5886 /* ___[0-9]+ */
5887
5888 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5889 {
5890 matching = str + 3;
5891 while (isdigit (matching[0]))
5892 matching += 1;
5893 if (matching[0] == '\0')
5894 return 1;
5895 }
5896
5897 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5898
5899 if (strcmp (str, "TKB") == 0)
5900 return 1;
5901
5902 #if 0
5903 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5904 with a N at the end. Unfortunately, the compiler uses the same
5905 convention for other internal types it creates. So treating
5906 all entity names that end with an "N" as a name suffix causes
5907 some regressions. For instance, consider the case of an enumerated
5908 type. To support the 'Image attribute, it creates an array whose
5909 name ends with N.
5910 Having a single character like this as a suffix carrying some
5911 information is a bit risky. Perhaps we should change the encoding
5912 to be something like "_N" instead. In the meantime, do not do
5913 the following check. */
5914 /* Protected Object Subprograms */
5915 if (len == 1 && str [0] == 'N')
5916 return 1;
5917 #endif
5918
5919 /* _E[0-9]+[bs]$ */
5920 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5921 {
5922 matching = str + 3;
5923 while (isdigit (matching[0]))
5924 matching += 1;
5925 if ((matching[0] == 'b' || matching[0] == 's')
5926 && matching [1] == '\0')
5927 return 1;
5928 }
5929
5930 /* ??? We should not modify STR directly, as we are doing below. This
5931 is fine in this case, but may become problematic later if we find
5932 that this alternative did not work, and want to try matching
5933 another one from the begining of STR. Since we modified it, we
5934 won't be able to find the begining of the string anymore! */
5935 if (str[0] == 'X')
5936 {
5937 str += 1;
5938 while (str[0] != '_' && str[0] != '\0')
5939 {
5940 if (str[0] != 'n' && str[0] != 'b')
5941 return 0;
5942 str += 1;
5943 }
5944 }
5945
5946 if (str[0] == '\000')
5947 return 1;
5948
5949 if (str[0] == '_')
5950 {
5951 if (str[1] != '_' || str[2] == '\000')
5952 return 0;
5953 if (str[2] == '_')
5954 {
5955 if (strcmp (str + 3, "JM") == 0)
5956 return 1;
5957 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5958 the LJM suffix in favor of the JM one. But we will
5959 still accept LJM as a valid suffix for a reasonable
5960 amount of time, just to allow ourselves to debug programs
5961 compiled using an older version of GNAT. */
5962 if (strcmp (str + 3, "LJM") == 0)
5963 return 1;
5964 if (str[3] != 'X')
5965 return 0;
5966 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5967 || str[4] == 'U' || str[4] == 'P')
5968 return 1;
5969 if (str[4] == 'R' && str[5] != 'T')
5970 return 1;
5971 return 0;
5972 }
5973 if (!isdigit (str[2]))
5974 return 0;
5975 for (k = 3; str[k] != '\0'; k += 1)
5976 if (!isdigit (str[k]) && str[k] != '_')
5977 return 0;
5978 return 1;
5979 }
5980 if (str[0] == '$' && isdigit (str[1]))
5981 {
5982 for (k = 2; str[k] != '\0'; k += 1)
5983 if (!isdigit (str[k]) && str[k] != '_')
5984 return 0;
5985 return 1;
5986 }
5987 return 0;
5988 }
5989
5990 /* Return non-zero if the string starting at NAME and ending before
5991 NAME_END contains no capital letters. */
5992
5993 static int
5994 is_valid_name_for_wild_match (const char *name0)
5995 {
5996 const char *decoded_name = ada_decode (name0);
5997 int i;
5998
5999 /* If the decoded name starts with an angle bracket, it means that
6000 NAME0 does not follow the GNAT encoding format. It should then
6001 not be allowed as a possible wild match. */
6002 if (decoded_name[0] == '<')
6003 return 0;
6004
6005 for (i=0; decoded_name[i] != '\0'; i++)
6006 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6007 return 0;
6008
6009 return 1;
6010 }
6011
6012 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6013 that could start a simple name. Assumes that *NAMEP points into
6014 the string beginning at NAME0. */
6015
6016 static int
6017 advance_wild_match (const char **namep, const char *name0, int target0)
6018 {
6019 const char *name = *namep;
6020
6021 while (1)
6022 {
6023 int t0, t1;
6024
6025 t0 = *name;
6026 if (t0 == '_')
6027 {
6028 t1 = name[1];
6029 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6030 {
6031 name += 1;
6032 if (name == name0 + 5 && startswith (name0, "_ada"))
6033 break;
6034 else
6035 name += 1;
6036 }
6037 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6038 || name[2] == target0))
6039 {
6040 name += 2;
6041 break;
6042 }
6043 else
6044 return 0;
6045 }
6046 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6047 name += 1;
6048 else
6049 return 0;
6050 }
6051
6052 *namep = name;
6053 return 1;
6054 }
6055
6056 /* Return true iff NAME encodes a name of the form prefix.PATN.
6057 Ignores any informational suffixes of NAME (i.e., for which
6058 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6059 simple name. */
6060
6061 static bool
6062 wild_match (const char *name, const char *patn)
6063 {
6064 const char *p;
6065 const char *name0 = name;
6066
6067 while (1)
6068 {
6069 const char *match = name;
6070
6071 if (*name == *patn)
6072 {
6073 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6074 if (*p != *name)
6075 break;
6076 if (*p == '\0' && is_name_suffix (name))
6077 return match == name0 || is_valid_name_for_wild_match (name0);
6078
6079 if (name[-1] == '_')
6080 name -= 1;
6081 }
6082 if (!advance_wild_match (&name, name0, *patn))
6083 return false;
6084 }
6085 }
6086
6087 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6088 any trailing suffixes that encode debugging information or leading
6089 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6090 information that is ignored). */
6091
6092 static bool
6093 full_match (const char *sym_name, const char *search_name)
6094 {
6095 size_t search_name_len = strlen (search_name);
6096
6097 if (strncmp (sym_name, search_name, search_name_len) == 0
6098 && is_name_suffix (sym_name + search_name_len))
6099 return true;
6100
6101 if (startswith (sym_name, "_ada_")
6102 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6103 && is_name_suffix (sym_name + search_name_len + 5))
6104 return true;
6105
6106 return false;
6107 }
6108
6109 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6110 *defn_symbols, updating the list of symbols in OBSTACKP (if
6111 necessary). OBJFILE is the section containing BLOCK. */
6112
6113 static void
6114 ada_add_block_symbols (struct obstack *obstackp,
6115 const struct block *block,
6116 const lookup_name_info &lookup_name,
6117 domain_enum domain, struct objfile *objfile)
6118 {
6119 struct block_iterator iter;
6120 /* A matching argument symbol, if any. */
6121 struct symbol *arg_sym;
6122 /* Set true when we find a matching non-argument symbol. */
6123 int found_sym;
6124 struct symbol *sym;
6125
6126 arg_sym = NULL;
6127 found_sym = 0;
6128 for (sym = block_iter_match_first (block, lookup_name, &iter);
6129 sym != NULL;
6130 sym = block_iter_match_next (lookup_name, &iter))
6131 {
6132 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6133 SYMBOL_DOMAIN (sym), domain))
6134 {
6135 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6136 {
6137 if (SYMBOL_IS_ARGUMENT (sym))
6138 arg_sym = sym;
6139 else
6140 {
6141 found_sym = 1;
6142 add_defn_to_vec (obstackp,
6143 fixup_symbol_section (sym, objfile),
6144 block);
6145 }
6146 }
6147 }
6148 }
6149
6150 /* Handle renamings. */
6151
6152 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6153 found_sym = 1;
6154
6155 if (!found_sym && arg_sym != NULL)
6156 {
6157 add_defn_to_vec (obstackp,
6158 fixup_symbol_section (arg_sym, objfile),
6159 block);
6160 }
6161
6162 if (!lookup_name.ada ().wild_match_p ())
6163 {
6164 arg_sym = NULL;
6165 found_sym = 0;
6166 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6167 const char *name = ada_lookup_name.c_str ();
6168 size_t name_len = ada_lookup_name.size ();
6169
6170 ALL_BLOCK_SYMBOLS (block, iter, sym)
6171 {
6172 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6173 SYMBOL_DOMAIN (sym), domain))
6174 {
6175 int cmp;
6176
6177 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6178 if (cmp == 0)
6179 {
6180 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6181 if (cmp == 0)
6182 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6183 name_len);
6184 }
6185
6186 if (cmp == 0
6187 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6188 {
6189 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6190 {
6191 if (SYMBOL_IS_ARGUMENT (sym))
6192 arg_sym = sym;
6193 else
6194 {
6195 found_sym = 1;
6196 add_defn_to_vec (obstackp,
6197 fixup_symbol_section (sym, objfile),
6198 block);
6199 }
6200 }
6201 }
6202 }
6203 }
6204
6205 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6206 They aren't parameters, right? */
6207 if (!found_sym && arg_sym != NULL)
6208 {
6209 add_defn_to_vec (obstackp,
6210 fixup_symbol_section (arg_sym, objfile),
6211 block);
6212 }
6213 }
6214 }
6215 \f
6216
6217 /* Symbol Completion */
6218
6219 /* See symtab.h. */
6220
6221 bool
6222 ada_lookup_name_info::matches
6223 (const char *sym_name,
6224 symbol_name_match_type match_type,
6225 completion_match_result *comp_match_res) const
6226 {
6227 bool match = false;
6228 const char *text = m_encoded_name.c_str ();
6229 size_t text_len = m_encoded_name.size ();
6230
6231 /* First, test against the fully qualified name of the symbol. */
6232
6233 if (strncmp (sym_name, text, text_len) == 0)
6234 match = true;
6235
6236 if (match && !m_encoded_p)
6237 {
6238 /* One needed check before declaring a positive match is to verify
6239 that iff we are doing a verbatim match, the decoded version
6240 of the symbol name starts with '<'. Otherwise, this symbol name
6241 is not a suitable completion. */
6242 const char *sym_name_copy = sym_name;
6243 bool has_angle_bracket;
6244
6245 sym_name = ada_decode (sym_name);
6246 has_angle_bracket = (sym_name[0] == '<');
6247 match = (has_angle_bracket == m_verbatim_p);
6248 sym_name = sym_name_copy;
6249 }
6250
6251 if (match && !m_verbatim_p)
6252 {
6253 /* When doing non-verbatim match, another check that needs to
6254 be done is to verify that the potentially matching symbol name
6255 does not include capital letters, because the ada-mode would
6256 not be able to understand these symbol names without the
6257 angle bracket notation. */
6258 const char *tmp;
6259
6260 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6261 if (*tmp != '\0')
6262 match = false;
6263 }
6264
6265 /* Second: Try wild matching... */
6266
6267 if (!match && m_wild_match_p)
6268 {
6269 /* Since we are doing wild matching, this means that TEXT
6270 may represent an unqualified symbol name. We therefore must
6271 also compare TEXT against the unqualified name of the symbol. */
6272 sym_name = ada_unqualified_name (ada_decode (sym_name));
6273
6274 if (strncmp (sym_name, text, text_len) == 0)
6275 match = true;
6276 }
6277
6278 /* Finally: If we found a match, prepare the result to return. */
6279
6280 if (!match)
6281 return false;
6282
6283 if (comp_match_res != NULL)
6284 {
6285 std::string &match_str = comp_match_res->match.storage ();
6286
6287 if (!m_encoded_p)
6288 match_str = ada_decode (sym_name);
6289 else
6290 {
6291 if (m_verbatim_p)
6292 match_str = add_angle_brackets (sym_name);
6293 else
6294 match_str = sym_name;
6295
6296 }
6297
6298 comp_match_res->set_match (match_str.c_str ());
6299 }
6300
6301 return true;
6302 }
6303
6304 /* Add the list of possible symbol names completing TEXT to TRACKER.
6305 WORD is the entire command on which completion is made. */
6306
6307 static void
6308 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6309 complete_symbol_mode mode,
6310 symbol_name_match_type name_match_type,
6311 const char *text, const char *word,
6312 enum type_code code)
6313 {
6314 struct symbol *sym;
6315 const struct block *b, *surrounding_static_block = 0;
6316 struct block_iterator iter;
6317
6318 gdb_assert (code == TYPE_CODE_UNDEF);
6319
6320 lookup_name_info lookup_name (text, name_match_type, true);
6321
6322 /* First, look at the partial symtab symbols. */
6323 expand_symtabs_matching (NULL,
6324 lookup_name,
6325 NULL,
6326 NULL,
6327 ALL_DOMAIN);
6328
6329 /* At this point scan through the misc symbol vectors and add each
6330 symbol you find to the list. Eventually we want to ignore
6331 anything that isn't a text symbol (everything else will be
6332 handled by the psymtab code above). */
6333
6334 for (objfile *objfile : current_program_space->objfiles ())
6335 {
6336 for (minimal_symbol *msymbol : objfile->msymbols ())
6337 {
6338 QUIT;
6339
6340 if (completion_skip_symbol (mode, msymbol))
6341 continue;
6342
6343 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6344
6345 /* Ada minimal symbols won't have their language set to Ada. If
6346 we let completion_list_add_name compare using the
6347 default/C-like matcher, then when completing e.g., symbols in a
6348 package named "pck", we'd match internal Ada symbols like
6349 "pckS", which are invalid in an Ada expression, unless you wrap
6350 them in '<' '>' to request a verbatim match.
6351
6352 Unfortunately, some Ada encoded names successfully demangle as
6353 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6354 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6355 with the wrong language set. Paper over that issue here. */
6356 if (symbol_language == language_auto
6357 || symbol_language == language_cplus)
6358 symbol_language = language_ada;
6359
6360 completion_list_add_name (tracker,
6361 symbol_language,
6362 MSYMBOL_LINKAGE_NAME (msymbol),
6363 lookup_name, text, word);
6364 }
6365 }
6366
6367 /* Search upwards from currently selected frame (so that we can
6368 complete on local vars. */
6369
6370 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6371 {
6372 if (!BLOCK_SUPERBLOCK (b))
6373 surrounding_static_block = b; /* For elmin of dups */
6374
6375 ALL_BLOCK_SYMBOLS (b, iter, sym)
6376 {
6377 if (completion_skip_symbol (mode, sym))
6378 continue;
6379
6380 completion_list_add_name (tracker,
6381 SYMBOL_LANGUAGE (sym),
6382 SYMBOL_LINKAGE_NAME (sym),
6383 lookup_name, text, word);
6384 }
6385 }
6386
6387 /* Go through the symtabs and check the externs and statics for
6388 symbols which match. */
6389
6390 for (objfile *objfile : current_program_space->objfiles ())
6391 {
6392 for (compunit_symtab *s : objfile->compunits ())
6393 {
6394 QUIT;
6395 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6396 ALL_BLOCK_SYMBOLS (b, iter, sym)
6397 {
6398 if (completion_skip_symbol (mode, sym))
6399 continue;
6400
6401 completion_list_add_name (tracker,
6402 SYMBOL_LANGUAGE (sym),
6403 SYMBOL_LINKAGE_NAME (sym),
6404 lookup_name, text, word);
6405 }
6406 }
6407 }
6408
6409 for (objfile *objfile : current_program_space->objfiles ())
6410 {
6411 for (compunit_symtab *s : objfile->compunits ())
6412 {
6413 QUIT;
6414 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6415 /* Don't do this block twice. */
6416 if (b == surrounding_static_block)
6417 continue;
6418 ALL_BLOCK_SYMBOLS (b, iter, sym)
6419 {
6420 if (completion_skip_symbol (mode, sym))
6421 continue;
6422
6423 completion_list_add_name (tracker,
6424 SYMBOL_LANGUAGE (sym),
6425 SYMBOL_LINKAGE_NAME (sym),
6426 lookup_name, text, word);
6427 }
6428 }
6429 }
6430 }
6431
6432 /* Field Access */
6433
6434 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6435 for tagged types. */
6436
6437 static int
6438 ada_is_dispatch_table_ptr_type (struct type *type)
6439 {
6440 const char *name;
6441
6442 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6443 return 0;
6444
6445 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6446 if (name == NULL)
6447 return 0;
6448
6449 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6450 }
6451
6452 /* Return non-zero if TYPE is an interface tag. */
6453
6454 static int
6455 ada_is_interface_tag (struct type *type)
6456 {
6457 const char *name = TYPE_NAME (type);
6458
6459 if (name == NULL)
6460 return 0;
6461
6462 return (strcmp (name, "ada__tags__interface_tag") == 0);
6463 }
6464
6465 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6466 to be invisible to users. */
6467
6468 int
6469 ada_is_ignored_field (struct type *type, int field_num)
6470 {
6471 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6472 return 1;
6473
6474 /* Check the name of that field. */
6475 {
6476 const char *name = TYPE_FIELD_NAME (type, field_num);
6477
6478 /* Anonymous field names should not be printed.
6479 brobecker/2007-02-20: I don't think this can actually happen
6480 but we don't want to print the value of annonymous fields anyway. */
6481 if (name == NULL)
6482 return 1;
6483
6484 /* Normally, fields whose name start with an underscore ("_")
6485 are fields that have been internally generated by the compiler,
6486 and thus should not be printed. The "_parent" field is special,
6487 however: This is a field internally generated by the compiler
6488 for tagged types, and it contains the components inherited from
6489 the parent type. This field should not be printed as is, but
6490 should not be ignored either. */
6491 if (name[0] == '_' && !startswith (name, "_parent"))
6492 return 1;
6493 }
6494
6495 /* If this is the dispatch table of a tagged type or an interface tag,
6496 then ignore. */
6497 if (ada_is_tagged_type (type, 1)
6498 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6499 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6500 return 1;
6501
6502 /* Not a special field, so it should not be ignored. */
6503 return 0;
6504 }
6505
6506 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6507 pointer or reference type whose ultimate target has a tag field. */
6508
6509 int
6510 ada_is_tagged_type (struct type *type, int refok)
6511 {
6512 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6513 }
6514
6515 /* True iff TYPE represents the type of X'Tag */
6516
6517 int
6518 ada_is_tag_type (struct type *type)
6519 {
6520 type = ada_check_typedef (type);
6521
6522 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6523 return 0;
6524 else
6525 {
6526 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6527
6528 return (name != NULL
6529 && strcmp (name, "ada__tags__dispatch_table") == 0);
6530 }
6531 }
6532
6533 /* The type of the tag on VAL. */
6534
6535 struct type *
6536 ada_tag_type (struct value *val)
6537 {
6538 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6539 }
6540
6541 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6542 retired at Ada 05). */
6543
6544 static int
6545 is_ada95_tag (struct value *tag)
6546 {
6547 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6548 }
6549
6550 /* The value of the tag on VAL. */
6551
6552 struct value *
6553 ada_value_tag (struct value *val)
6554 {
6555 return ada_value_struct_elt (val, "_tag", 0);
6556 }
6557
6558 /* The value of the tag on the object of type TYPE whose contents are
6559 saved at VALADDR, if it is non-null, or is at memory address
6560 ADDRESS. */
6561
6562 static struct value *
6563 value_tag_from_contents_and_address (struct type *type,
6564 const gdb_byte *valaddr,
6565 CORE_ADDR address)
6566 {
6567 int tag_byte_offset;
6568 struct type *tag_type;
6569
6570 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6571 NULL, NULL, NULL))
6572 {
6573 const gdb_byte *valaddr1 = ((valaddr == NULL)
6574 ? NULL
6575 : valaddr + tag_byte_offset);
6576 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6577
6578 return value_from_contents_and_address (tag_type, valaddr1, address1);
6579 }
6580 return NULL;
6581 }
6582
6583 static struct type *
6584 type_from_tag (struct value *tag)
6585 {
6586 const char *type_name = ada_tag_name (tag);
6587
6588 if (type_name != NULL)
6589 return ada_find_any_type (ada_encode (type_name));
6590 return NULL;
6591 }
6592
6593 /* Given a value OBJ of a tagged type, return a value of this
6594 type at the base address of the object. The base address, as
6595 defined in Ada.Tags, it is the address of the primary tag of
6596 the object, and therefore where the field values of its full
6597 view can be fetched. */
6598
6599 struct value *
6600 ada_tag_value_at_base_address (struct value *obj)
6601 {
6602 struct value *val;
6603 LONGEST offset_to_top = 0;
6604 struct type *ptr_type, *obj_type;
6605 struct value *tag;
6606 CORE_ADDR base_address;
6607
6608 obj_type = value_type (obj);
6609
6610 /* It is the responsability of the caller to deref pointers. */
6611
6612 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6613 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6614 return obj;
6615
6616 tag = ada_value_tag (obj);
6617 if (!tag)
6618 return obj;
6619
6620 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6621
6622 if (is_ada95_tag (tag))
6623 return obj;
6624
6625 ptr_type = language_lookup_primitive_type
6626 (language_def (language_ada), target_gdbarch(), "storage_offset");
6627 ptr_type = lookup_pointer_type (ptr_type);
6628 val = value_cast (ptr_type, tag);
6629 if (!val)
6630 return obj;
6631
6632 /* It is perfectly possible that an exception be raised while
6633 trying to determine the base address, just like for the tag;
6634 see ada_tag_name for more details. We do not print the error
6635 message for the same reason. */
6636
6637 try
6638 {
6639 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6640 }
6641
6642 catch (const gdb_exception_error &e)
6643 {
6644 return obj;
6645 }
6646
6647 /* If offset is null, nothing to do. */
6648
6649 if (offset_to_top == 0)
6650 return obj;
6651
6652 /* -1 is a special case in Ada.Tags; however, what should be done
6653 is not quite clear from the documentation. So do nothing for
6654 now. */
6655
6656 if (offset_to_top == -1)
6657 return obj;
6658
6659 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6660 from the base address. This was however incompatible with
6661 C++ dispatch table: C++ uses a *negative* value to *add*
6662 to the base address. Ada's convention has therefore been
6663 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6664 use the same convention. Here, we support both cases by
6665 checking the sign of OFFSET_TO_TOP. */
6666
6667 if (offset_to_top > 0)
6668 offset_to_top = -offset_to_top;
6669
6670 base_address = value_address (obj) + offset_to_top;
6671 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6672
6673 /* Make sure that we have a proper tag at the new address.
6674 Otherwise, offset_to_top is bogus (which can happen when
6675 the object is not initialized yet). */
6676
6677 if (!tag)
6678 return obj;
6679
6680 obj_type = type_from_tag (tag);
6681
6682 if (!obj_type)
6683 return obj;
6684
6685 return value_from_contents_and_address (obj_type, NULL, base_address);
6686 }
6687
6688 /* Return the "ada__tags__type_specific_data" type. */
6689
6690 static struct type *
6691 ada_get_tsd_type (struct inferior *inf)
6692 {
6693 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6694
6695 if (data->tsd_type == 0)
6696 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6697 return data->tsd_type;
6698 }
6699
6700 /* Return the TSD (type-specific data) associated to the given TAG.
6701 TAG is assumed to be the tag of a tagged-type entity.
6702
6703 May return NULL if we are unable to get the TSD. */
6704
6705 static struct value *
6706 ada_get_tsd_from_tag (struct value *tag)
6707 {
6708 struct value *val;
6709 struct type *type;
6710
6711 /* First option: The TSD is simply stored as a field of our TAG.
6712 Only older versions of GNAT would use this format, but we have
6713 to test it first, because there are no visible markers for
6714 the current approach except the absence of that field. */
6715
6716 val = ada_value_struct_elt (tag, "tsd", 1);
6717 if (val)
6718 return val;
6719
6720 /* Try the second representation for the dispatch table (in which
6721 there is no explicit 'tsd' field in the referent of the tag pointer,
6722 and instead the tsd pointer is stored just before the dispatch
6723 table. */
6724
6725 type = ada_get_tsd_type (current_inferior());
6726 if (type == NULL)
6727 return NULL;
6728 type = lookup_pointer_type (lookup_pointer_type (type));
6729 val = value_cast (type, tag);
6730 if (val == NULL)
6731 return NULL;
6732 return value_ind (value_ptradd (val, -1));
6733 }
6734
6735 /* Given the TSD of a tag (type-specific data), return a string
6736 containing the name of the associated type.
6737
6738 The returned value is good until the next call. May return NULL
6739 if we are unable to determine the tag name. */
6740
6741 static char *
6742 ada_tag_name_from_tsd (struct value *tsd)
6743 {
6744 static char name[1024];
6745 char *p;
6746 struct value *val;
6747
6748 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6749 if (val == NULL)
6750 return NULL;
6751 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6752 for (p = name; *p != '\0'; p += 1)
6753 if (isalpha (*p))
6754 *p = tolower (*p);
6755 return name;
6756 }
6757
6758 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6759 a C string.
6760
6761 Return NULL if the TAG is not an Ada tag, or if we were unable to
6762 determine the name of that tag. The result is good until the next
6763 call. */
6764
6765 const char *
6766 ada_tag_name (struct value *tag)
6767 {
6768 char *name = NULL;
6769
6770 if (!ada_is_tag_type (value_type (tag)))
6771 return NULL;
6772
6773 /* It is perfectly possible that an exception be raised while trying
6774 to determine the TAG's name, even under normal circumstances:
6775 The associated variable may be uninitialized or corrupted, for
6776 instance. We do not let any exception propagate past this point.
6777 instead we return NULL.
6778
6779 We also do not print the error message either (which often is very
6780 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6781 the caller print a more meaningful message if necessary. */
6782 try
6783 {
6784 struct value *tsd = ada_get_tsd_from_tag (tag);
6785
6786 if (tsd != NULL)
6787 name = ada_tag_name_from_tsd (tsd);
6788 }
6789 catch (const gdb_exception_error &e)
6790 {
6791 }
6792
6793 return name;
6794 }
6795
6796 /* The parent type of TYPE, or NULL if none. */
6797
6798 struct type *
6799 ada_parent_type (struct type *type)
6800 {
6801 int i;
6802
6803 type = ada_check_typedef (type);
6804
6805 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6806 return NULL;
6807
6808 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6809 if (ada_is_parent_field (type, i))
6810 {
6811 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6812
6813 /* If the _parent field is a pointer, then dereference it. */
6814 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6815 parent_type = TYPE_TARGET_TYPE (parent_type);
6816 /* If there is a parallel XVS type, get the actual base type. */
6817 parent_type = ada_get_base_type (parent_type);
6818
6819 return ada_check_typedef (parent_type);
6820 }
6821
6822 return NULL;
6823 }
6824
6825 /* True iff field number FIELD_NUM of structure type TYPE contains the
6826 parent-type (inherited) fields of a derived type. Assumes TYPE is
6827 a structure type with at least FIELD_NUM+1 fields. */
6828
6829 int
6830 ada_is_parent_field (struct type *type, int field_num)
6831 {
6832 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6833
6834 return (name != NULL
6835 && (startswith (name, "PARENT")
6836 || startswith (name, "_parent")));
6837 }
6838
6839 /* True iff field number FIELD_NUM of structure type TYPE is a
6840 transparent wrapper field (which should be silently traversed when doing
6841 field selection and flattened when printing). Assumes TYPE is a
6842 structure type with at least FIELD_NUM+1 fields. Such fields are always
6843 structures. */
6844
6845 int
6846 ada_is_wrapper_field (struct type *type, int field_num)
6847 {
6848 const char *name = TYPE_FIELD_NAME (type, field_num);
6849
6850 if (name != NULL && strcmp (name, "RETVAL") == 0)
6851 {
6852 /* This happens in functions with "out" or "in out" parameters
6853 which are passed by copy. For such functions, GNAT describes
6854 the function's return type as being a struct where the return
6855 value is in a field called RETVAL, and where the other "out"
6856 or "in out" parameters are fields of that struct. This is not
6857 a wrapper. */
6858 return 0;
6859 }
6860
6861 return (name != NULL
6862 && (startswith (name, "PARENT")
6863 || strcmp (name, "REP") == 0
6864 || startswith (name, "_parent")
6865 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6866 }
6867
6868 /* True iff field number FIELD_NUM of structure or union type TYPE
6869 is a variant wrapper. Assumes TYPE is a structure type with at least
6870 FIELD_NUM+1 fields. */
6871
6872 int
6873 ada_is_variant_part (struct type *type, int field_num)
6874 {
6875 /* Only Ada types are eligible. */
6876 if (!ADA_TYPE_P (type))
6877 return 0;
6878
6879 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6880
6881 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6882 || (is_dynamic_field (type, field_num)
6883 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6884 == TYPE_CODE_UNION)));
6885 }
6886
6887 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6888 whose discriminants are contained in the record type OUTER_TYPE,
6889 returns the type of the controlling discriminant for the variant.
6890 May return NULL if the type could not be found. */
6891
6892 struct type *
6893 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6894 {
6895 const char *name = ada_variant_discrim_name (var_type);
6896
6897 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6898 }
6899
6900 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6901 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6902 represents a 'when others' clause; otherwise 0. */
6903
6904 int
6905 ada_is_others_clause (struct type *type, int field_num)
6906 {
6907 const char *name = TYPE_FIELD_NAME (type, field_num);
6908
6909 return (name != NULL && name[0] == 'O');
6910 }
6911
6912 /* Assuming that TYPE0 is the type of the variant part of a record,
6913 returns the name of the discriminant controlling the variant.
6914 The value is valid until the next call to ada_variant_discrim_name. */
6915
6916 const char *
6917 ada_variant_discrim_name (struct type *type0)
6918 {
6919 static char *result = NULL;
6920 static size_t result_len = 0;
6921 struct type *type;
6922 const char *name;
6923 const char *discrim_end;
6924 const char *discrim_start;
6925
6926 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6927 type = TYPE_TARGET_TYPE (type0);
6928 else
6929 type = type0;
6930
6931 name = ada_type_name (type);
6932
6933 if (name == NULL || name[0] == '\000')
6934 return "";
6935
6936 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6937 discrim_end -= 1)
6938 {
6939 if (startswith (discrim_end, "___XVN"))
6940 break;
6941 }
6942 if (discrim_end == name)
6943 return "";
6944
6945 for (discrim_start = discrim_end; discrim_start != name + 3;
6946 discrim_start -= 1)
6947 {
6948 if (discrim_start == name + 1)
6949 return "";
6950 if ((discrim_start > name + 3
6951 && startswith (discrim_start - 3, "___"))
6952 || discrim_start[-1] == '.')
6953 break;
6954 }
6955
6956 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6957 strncpy (result, discrim_start, discrim_end - discrim_start);
6958 result[discrim_end - discrim_start] = '\0';
6959 return result;
6960 }
6961
6962 /* Scan STR for a subtype-encoded number, beginning at position K.
6963 Put the position of the character just past the number scanned in
6964 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6965 Return 1 if there was a valid number at the given position, and 0
6966 otherwise. A "subtype-encoded" number consists of the absolute value
6967 in decimal, followed by the letter 'm' to indicate a negative number.
6968 Assumes 0m does not occur. */
6969
6970 int
6971 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6972 {
6973 ULONGEST RU;
6974
6975 if (!isdigit (str[k]))
6976 return 0;
6977
6978 /* Do it the hard way so as not to make any assumption about
6979 the relationship of unsigned long (%lu scan format code) and
6980 LONGEST. */
6981 RU = 0;
6982 while (isdigit (str[k]))
6983 {
6984 RU = RU * 10 + (str[k] - '0');
6985 k += 1;
6986 }
6987
6988 if (str[k] == 'm')
6989 {
6990 if (R != NULL)
6991 *R = (-(LONGEST) (RU - 1)) - 1;
6992 k += 1;
6993 }
6994 else if (R != NULL)
6995 *R = (LONGEST) RU;
6996
6997 /* NOTE on the above: Technically, C does not say what the results of
6998 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6999 number representable as a LONGEST (although either would probably work
7000 in most implementations). When RU>0, the locution in the then branch
7001 above is always equivalent to the negative of RU. */
7002
7003 if (new_k != NULL)
7004 *new_k = k;
7005 return 1;
7006 }
7007
7008 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7009 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7010 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7011
7012 int
7013 ada_in_variant (LONGEST val, struct type *type, int field_num)
7014 {
7015 const char *name = TYPE_FIELD_NAME (type, field_num);
7016 int p;
7017
7018 p = 0;
7019 while (1)
7020 {
7021 switch (name[p])
7022 {
7023 case '\0':
7024 return 0;
7025 case 'S':
7026 {
7027 LONGEST W;
7028
7029 if (!ada_scan_number (name, p + 1, &W, &p))
7030 return 0;
7031 if (val == W)
7032 return 1;
7033 break;
7034 }
7035 case 'R':
7036 {
7037 LONGEST L, U;
7038
7039 if (!ada_scan_number (name, p + 1, &L, &p)
7040 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7041 return 0;
7042 if (val >= L && val <= U)
7043 return 1;
7044 break;
7045 }
7046 case 'O':
7047 return 1;
7048 default:
7049 return 0;
7050 }
7051 }
7052 }
7053
7054 /* FIXME: Lots of redundancy below. Try to consolidate. */
7055
7056 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7057 ARG_TYPE, extract and return the value of one of its (non-static)
7058 fields. FIELDNO says which field. Differs from value_primitive_field
7059 only in that it can handle packed values of arbitrary type. */
7060
7061 static struct value *
7062 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7063 struct type *arg_type)
7064 {
7065 struct type *type;
7066
7067 arg_type = ada_check_typedef (arg_type);
7068 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7069
7070 /* Handle packed fields. It might be that the field is not packed
7071 relative to its containing structure, but the structure itself is
7072 packed; in this case we must take the bit-field path. */
7073 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7074 {
7075 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7076 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7077
7078 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7079 offset + bit_pos / 8,
7080 bit_pos % 8, bit_size, type);
7081 }
7082 else
7083 return value_primitive_field (arg1, offset, fieldno, arg_type);
7084 }
7085
7086 /* Find field with name NAME in object of type TYPE. If found,
7087 set the following for each argument that is non-null:
7088 - *FIELD_TYPE_P to the field's type;
7089 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7090 an object of that type;
7091 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7092 - *BIT_SIZE_P to its size in bits if the field is packed, and
7093 0 otherwise;
7094 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7095 fields up to but not including the desired field, or by the total
7096 number of fields if not found. A NULL value of NAME never
7097 matches; the function just counts visible fields in this case.
7098
7099 Notice that we need to handle when a tagged record hierarchy
7100 has some components with the same name, like in this scenario:
7101
7102 type Top_T is tagged record
7103 N : Integer := 1;
7104 U : Integer := 974;
7105 A : Integer := 48;
7106 end record;
7107
7108 type Middle_T is new Top.Top_T with record
7109 N : Character := 'a';
7110 C : Integer := 3;
7111 end record;
7112
7113 type Bottom_T is new Middle.Middle_T with record
7114 N : Float := 4.0;
7115 C : Character := '5';
7116 X : Integer := 6;
7117 A : Character := 'J';
7118 end record;
7119
7120 Let's say we now have a variable declared and initialized as follow:
7121
7122 TC : Top_A := new Bottom_T;
7123
7124 And then we use this variable to call this function
7125
7126 procedure Assign (Obj: in out Top_T; TV : Integer);
7127
7128 as follow:
7129
7130 Assign (Top_T (B), 12);
7131
7132 Now, we're in the debugger, and we're inside that procedure
7133 then and we want to print the value of obj.c:
7134
7135 Usually, the tagged record or one of the parent type owns the
7136 component to print and there's no issue but in this particular
7137 case, what does it mean to ask for Obj.C? Since the actual
7138 type for object is type Bottom_T, it could mean two things: type
7139 component C from the Middle_T view, but also component C from
7140 Bottom_T. So in that "undefined" case, when the component is
7141 not found in the non-resolved type (which includes all the
7142 components of the parent type), then resolve it and see if we
7143 get better luck once expanded.
7144
7145 In the case of homonyms in the derived tagged type, we don't
7146 guaranty anything, and pick the one that's easiest for us
7147 to program.
7148
7149 Returns 1 if found, 0 otherwise. */
7150
7151 static int
7152 find_struct_field (const char *name, struct type *type, int offset,
7153 struct type **field_type_p,
7154 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7155 int *index_p)
7156 {
7157 int i;
7158 int parent_offset = -1;
7159
7160 type = ada_check_typedef (type);
7161
7162 if (field_type_p != NULL)
7163 *field_type_p = NULL;
7164 if (byte_offset_p != NULL)
7165 *byte_offset_p = 0;
7166 if (bit_offset_p != NULL)
7167 *bit_offset_p = 0;
7168 if (bit_size_p != NULL)
7169 *bit_size_p = 0;
7170
7171 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7172 {
7173 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7174 int fld_offset = offset + bit_pos / 8;
7175 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7176
7177 if (t_field_name == NULL)
7178 continue;
7179
7180 else if (ada_is_parent_field (type, i))
7181 {
7182 /* This is a field pointing us to the parent type of a tagged
7183 type. As hinted in this function's documentation, we give
7184 preference to fields in the current record first, so what
7185 we do here is just record the index of this field before
7186 we skip it. If it turns out we couldn't find our field
7187 in the current record, then we'll get back to it and search
7188 inside it whether the field might exist in the parent. */
7189
7190 parent_offset = i;
7191 continue;
7192 }
7193
7194 else if (name != NULL && field_name_match (t_field_name, name))
7195 {
7196 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7197
7198 if (field_type_p != NULL)
7199 *field_type_p = TYPE_FIELD_TYPE (type, i);
7200 if (byte_offset_p != NULL)
7201 *byte_offset_p = fld_offset;
7202 if (bit_offset_p != NULL)
7203 *bit_offset_p = bit_pos % 8;
7204 if (bit_size_p != NULL)
7205 *bit_size_p = bit_size;
7206 return 1;
7207 }
7208 else if (ada_is_wrapper_field (type, i))
7209 {
7210 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7211 field_type_p, byte_offset_p, bit_offset_p,
7212 bit_size_p, index_p))
7213 return 1;
7214 }
7215 else if (ada_is_variant_part (type, i))
7216 {
7217 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7218 fixed type?? */
7219 int j;
7220 struct type *field_type
7221 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7222
7223 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7224 {
7225 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7226 fld_offset
7227 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7228 field_type_p, byte_offset_p,
7229 bit_offset_p, bit_size_p, index_p))
7230 return 1;
7231 }
7232 }
7233 else if (index_p != NULL)
7234 *index_p += 1;
7235 }
7236
7237 /* Field not found so far. If this is a tagged type which
7238 has a parent, try finding that field in the parent now. */
7239
7240 if (parent_offset != -1)
7241 {
7242 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7243 int fld_offset = offset + bit_pos / 8;
7244
7245 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7246 fld_offset, field_type_p, byte_offset_p,
7247 bit_offset_p, bit_size_p, index_p))
7248 return 1;
7249 }
7250
7251 return 0;
7252 }
7253
7254 /* Number of user-visible fields in record type TYPE. */
7255
7256 static int
7257 num_visible_fields (struct type *type)
7258 {
7259 int n;
7260
7261 n = 0;
7262 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7263 return n;
7264 }
7265
7266 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7267 and search in it assuming it has (class) type TYPE.
7268 If found, return value, else return NULL.
7269
7270 Searches recursively through wrapper fields (e.g., '_parent').
7271
7272 In the case of homonyms in the tagged types, please refer to the
7273 long explanation in find_struct_field's function documentation. */
7274
7275 static struct value *
7276 ada_search_struct_field (const char *name, struct value *arg, int offset,
7277 struct type *type)
7278 {
7279 int i;
7280 int parent_offset = -1;
7281
7282 type = ada_check_typedef (type);
7283 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7284 {
7285 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7286
7287 if (t_field_name == NULL)
7288 continue;
7289
7290 else if (ada_is_parent_field (type, i))
7291 {
7292 /* This is a field pointing us to the parent type of a tagged
7293 type. As hinted in this function's documentation, we give
7294 preference to fields in the current record first, so what
7295 we do here is just record the index of this field before
7296 we skip it. If it turns out we couldn't find our field
7297 in the current record, then we'll get back to it and search
7298 inside it whether the field might exist in the parent. */
7299
7300 parent_offset = i;
7301 continue;
7302 }
7303
7304 else if (field_name_match (t_field_name, name))
7305 return ada_value_primitive_field (arg, offset, i, type);
7306
7307 else if (ada_is_wrapper_field (type, i))
7308 {
7309 struct value *v = /* Do not let indent join lines here. */
7310 ada_search_struct_field (name, arg,
7311 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7312 TYPE_FIELD_TYPE (type, i));
7313
7314 if (v != NULL)
7315 return v;
7316 }
7317
7318 else if (ada_is_variant_part (type, i))
7319 {
7320 /* PNH: Do we ever get here? See find_struct_field. */
7321 int j;
7322 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7323 i));
7324 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7325
7326 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7327 {
7328 struct value *v = ada_search_struct_field /* Force line
7329 break. */
7330 (name, arg,
7331 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7332 TYPE_FIELD_TYPE (field_type, j));
7333
7334 if (v != NULL)
7335 return v;
7336 }
7337 }
7338 }
7339
7340 /* Field not found so far. If this is a tagged type which
7341 has a parent, try finding that field in the parent now. */
7342
7343 if (parent_offset != -1)
7344 {
7345 struct value *v = ada_search_struct_field (
7346 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7347 TYPE_FIELD_TYPE (type, parent_offset));
7348
7349 if (v != NULL)
7350 return v;
7351 }
7352
7353 return NULL;
7354 }
7355
7356 static struct value *ada_index_struct_field_1 (int *, struct value *,
7357 int, struct type *);
7358
7359
7360 /* Return field #INDEX in ARG, where the index is that returned by
7361 * find_struct_field through its INDEX_P argument. Adjust the address
7362 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7363 * If found, return value, else return NULL. */
7364
7365 static struct value *
7366 ada_index_struct_field (int index, struct value *arg, int offset,
7367 struct type *type)
7368 {
7369 return ada_index_struct_field_1 (&index, arg, offset, type);
7370 }
7371
7372
7373 /* Auxiliary function for ada_index_struct_field. Like
7374 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7375 * *INDEX_P. */
7376
7377 static struct value *
7378 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7379 struct type *type)
7380 {
7381 int i;
7382 type = ada_check_typedef (type);
7383
7384 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7385 {
7386 if (TYPE_FIELD_NAME (type, i) == NULL)
7387 continue;
7388 else if (ada_is_wrapper_field (type, i))
7389 {
7390 struct value *v = /* Do not let indent join lines here. */
7391 ada_index_struct_field_1 (index_p, arg,
7392 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7393 TYPE_FIELD_TYPE (type, i));
7394
7395 if (v != NULL)
7396 return v;
7397 }
7398
7399 else if (ada_is_variant_part (type, i))
7400 {
7401 /* PNH: Do we ever get here? See ada_search_struct_field,
7402 find_struct_field. */
7403 error (_("Cannot assign this kind of variant record"));
7404 }
7405 else if (*index_p == 0)
7406 return ada_value_primitive_field (arg, offset, i, type);
7407 else
7408 *index_p -= 1;
7409 }
7410 return NULL;
7411 }
7412
7413 /* Given ARG, a value of type (pointer or reference to a)*
7414 structure/union, extract the component named NAME from the ultimate
7415 target structure/union and return it as a value with its
7416 appropriate type.
7417
7418 The routine searches for NAME among all members of the structure itself
7419 and (recursively) among all members of any wrapper members
7420 (e.g., '_parent').
7421
7422 If NO_ERR, then simply return NULL in case of error, rather than
7423 calling error. */
7424
7425 struct value *
7426 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7427 {
7428 struct type *t, *t1;
7429 struct value *v;
7430 int check_tag;
7431
7432 v = NULL;
7433 t1 = t = ada_check_typedef (value_type (arg));
7434 if (TYPE_CODE (t) == TYPE_CODE_REF)
7435 {
7436 t1 = TYPE_TARGET_TYPE (t);
7437 if (t1 == NULL)
7438 goto BadValue;
7439 t1 = ada_check_typedef (t1);
7440 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7441 {
7442 arg = coerce_ref (arg);
7443 t = t1;
7444 }
7445 }
7446
7447 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7448 {
7449 t1 = TYPE_TARGET_TYPE (t);
7450 if (t1 == NULL)
7451 goto BadValue;
7452 t1 = ada_check_typedef (t1);
7453 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7454 {
7455 arg = value_ind (arg);
7456 t = t1;
7457 }
7458 else
7459 break;
7460 }
7461
7462 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7463 goto BadValue;
7464
7465 if (t1 == t)
7466 v = ada_search_struct_field (name, arg, 0, t);
7467 else
7468 {
7469 int bit_offset, bit_size, byte_offset;
7470 struct type *field_type;
7471 CORE_ADDR address;
7472
7473 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7474 address = value_address (ada_value_ind (arg));
7475 else
7476 address = value_address (ada_coerce_ref (arg));
7477
7478 /* Check to see if this is a tagged type. We also need to handle
7479 the case where the type is a reference to a tagged type, but
7480 we have to be careful to exclude pointers to tagged types.
7481 The latter should be shown as usual (as a pointer), whereas
7482 a reference should mostly be transparent to the user. */
7483
7484 if (ada_is_tagged_type (t1, 0)
7485 || (TYPE_CODE (t1) == TYPE_CODE_REF
7486 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7487 {
7488 /* We first try to find the searched field in the current type.
7489 If not found then let's look in the fixed type. */
7490
7491 if (!find_struct_field (name, t1, 0,
7492 &field_type, &byte_offset, &bit_offset,
7493 &bit_size, NULL))
7494 check_tag = 1;
7495 else
7496 check_tag = 0;
7497 }
7498 else
7499 check_tag = 0;
7500
7501 /* Convert to fixed type in all cases, so that we have proper
7502 offsets to each field in unconstrained record types. */
7503 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7504 address, NULL, check_tag);
7505
7506 if (find_struct_field (name, t1, 0,
7507 &field_type, &byte_offset, &bit_offset,
7508 &bit_size, NULL))
7509 {
7510 if (bit_size != 0)
7511 {
7512 if (TYPE_CODE (t) == TYPE_CODE_REF)
7513 arg = ada_coerce_ref (arg);
7514 else
7515 arg = ada_value_ind (arg);
7516 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7517 bit_offset, bit_size,
7518 field_type);
7519 }
7520 else
7521 v = value_at_lazy (field_type, address + byte_offset);
7522 }
7523 }
7524
7525 if (v != NULL || no_err)
7526 return v;
7527 else
7528 error (_("There is no member named %s."), name);
7529
7530 BadValue:
7531 if (no_err)
7532 return NULL;
7533 else
7534 error (_("Attempt to extract a component of "
7535 "a value that is not a record."));
7536 }
7537
7538 /* Return a string representation of type TYPE. */
7539
7540 static std::string
7541 type_as_string (struct type *type)
7542 {
7543 string_file tmp_stream;
7544
7545 type_print (type, "", &tmp_stream, -1);
7546
7547 return std::move (tmp_stream.string ());
7548 }
7549
7550 /* Given a type TYPE, look up the type of the component of type named NAME.
7551 If DISPP is non-null, add its byte displacement from the beginning of a
7552 structure (pointed to by a value) of type TYPE to *DISPP (does not
7553 work for packed fields).
7554
7555 Matches any field whose name has NAME as a prefix, possibly
7556 followed by "___".
7557
7558 TYPE can be either a struct or union. If REFOK, TYPE may also
7559 be a (pointer or reference)+ to a struct or union, and the
7560 ultimate target type will be searched.
7561
7562 Looks recursively into variant clauses and parent types.
7563
7564 In the case of homonyms in the tagged types, please refer to the
7565 long explanation in find_struct_field's function documentation.
7566
7567 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7568 TYPE is not a type of the right kind. */
7569
7570 static struct type *
7571 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7572 int noerr)
7573 {
7574 int i;
7575 int parent_offset = -1;
7576
7577 if (name == NULL)
7578 goto BadName;
7579
7580 if (refok && type != NULL)
7581 while (1)
7582 {
7583 type = ada_check_typedef (type);
7584 if (TYPE_CODE (type) != TYPE_CODE_PTR
7585 && TYPE_CODE (type) != TYPE_CODE_REF)
7586 break;
7587 type = TYPE_TARGET_TYPE (type);
7588 }
7589
7590 if (type == NULL
7591 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7592 && TYPE_CODE (type) != TYPE_CODE_UNION))
7593 {
7594 if (noerr)
7595 return NULL;
7596
7597 error (_("Type %s is not a structure or union type"),
7598 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7599 }
7600
7601 type = to_static_fixed_type (type);
7602
7603 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7604 {
7605 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7606 struct type *t;
7607
7608 if (t_field_name == NULL)
7609 continue;
7610
7611 else if (ada_is_parent_field (type, i))
7612 {
7613 /* This is a field pointing us to the parent type of a tagged
7614 type. As hinted in this function's documentation, we give
7615 preference to fields in the current record first, so what
7616 we do here is just record the index of this field before
7617 we skip it. If it turns out we couldn't find our field
7618 in the current record, then we'll get back to it and search
7619 inside it whether the field might exist in the parent. */
7620
7621 parent_offset = i;
7622 continue;
7623 }
7624
7625 else if (field_name_match (t_field_name, name))
7626 return TYPE_FIELD_TYPE (type, i);
7627
7628 else if (ada_is_wrapper_field (type, i))
7629 {
7630 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7631 0, 1);
7632 if (t != NULL)
7633 return t;
7634 }
7635
7636 else if (ada_is_variant_part (type, i))
7637 {
7638 int j;
7639 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7640 i));
7641
7642 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7643 {
7644 /* FIXME pnh 2008/01/26: We check for a field that is
7645 NOT wrapped in a struct, since the compiler sometimes
7646 generates these for unchecked variant types. Revisit
7647 if the compiler changes this practice. */
7648 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7649
7650 if (v_field_name != NULL
7651 && field_name_match (v_field_name, name))
7652 t = TYPE_FIELD_TYPE (field_type, j);
7653 else
7654 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7655 j),
7656 name, 0, 1);
7657
7658 if (t != NULL)
7659 return t;
7660 }
7661 }
7662
7663 }
7664
7665 /* Field not found so far. If this is a tagged type which
7666 has a parent, try finding that field in the parent now. */
7667
7668 if (parent_offset != -1)
7669 {
7670 struct type *t;
7671
7672 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7673 name, 0, 1);
7674 if (t != NULL)
7675 return t;
7676 }
7677
7678 BadName:
7679 if (!noerr)
7680 {
7681 const char *name_str = name != NULL ? name : _("<null>");
7682
7683 error (_("Type %s has no component named %s"),
7684 type_as_string (type).c_str (), name_str);
7685 }
7686
7687 return NULL;
7688 }
7689
7690 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7691 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7692 represents an unchecked union (that is, the variant part of a
7693 record that is named in an Unchecked_Union pragma). */
7694
7695 static int
7696 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7697 {
7698 const char *discrim_name = ada_variant_discrim_name (var_type);
7699
7700 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7701 }
7702
7703
7704 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7705 within a value of type OUTER_TYPE that is stored in GDB at
7706 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7707 numbering from 0) is applicable. Returns -1 if none are. */
7708
7709 int
7710 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7711 const gdb_byte *outer_valaddr)
7712 {
7713 int others_clause;
7714 int i;
7715 const char *discrim_name = ada_variant_discrim_name (var_type);
7716 struct value *outer;
7717 struct value *discrim;
7718 LONGEST discrim_val;
7719
7720 /* Using plain value_from_contents_and_address here causes problems
7721 because we will end up trying to resolve a type that is currently
7722 being constructed. */
7723 outer = value_from_contents_and_address_unresolved (outer_type,
7724 outer_valaddr, 0);
7725 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7726 if (discrim == NULL)
7727 return -1;
7728 discrim_val = value_as_long (discrim);
7729
7730 others_clause = -1;
7731 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7732 {
7733 if (ada_is_others_clause (var_type, i))
7734 others_clause = i;
7735 else if (ada_in_variant (discrim_val, var_type, i))
7736 return i;
7737 }
7738
7739 return others_clause;
7740 }
7741 \f
7742
7743
7744 /* Dynamic-Sized Records */
7745
7746 /* Strategy: The type ostensibly attached to a value with dynamic size
7747 (i.e., a size that is not statically recorded in the debugging
7748 data) does not accurately reflect the size or layout of the value.
7749 Our strategy is to convert these values to values with accurate,
7750 conventional types that are constructed on the fly. */
7751
7752 /* There is a subtle and tricky problem here. In general, we cannot
7753 determine the size of dynamic records without its data. However,
7754 the 'struct value' data structure, which GDB uses to represent
7755 quantities in the inferior process (the target), requires the size
7756 of the type at the time of its allocation in order to reserve space
7757 for GDB's internal copy of the data. That's why the
7758 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7759 rather than struct value*s.
7760
7761 However, GDB's internal history variables ($1, $2, etc.) are
7762 struct value*s containing internal copies of the data that are not, in
7763 general, the same as the data at their corresponding addresses in
7764 the target. Fortunately, the types we give to these values are all
7765 conventional, fixed-size types (as per the strategy described
7766 above), so that we don't usually have to perform the
7767 'to_fixed_xxx_type' conversions to look at their values.
7768 Unfortunately, there is one exception: if one of the internal
7769 history variables is an array whose elements are unconstrained
7770 records, then we will need to create distinct fixed types for each
7771 element selected. */
7772
7773 /* The upshot of all of this is that many routines take a (type, host
7774 address, target address) triple as arguments to represent a value.
7775 The host address, if non-null, is supposed to contain an internal
7776 copy of the relevant data; otherwise, the program is to consult the
7777 target at the target address. */
7778
7779 /* Assuming that VAL0 represents a pointer value, the result of
7780 dereferencing it. Differs from value_ind in its treatment of
7781 dynamic-sized types. */
7782
7783 struct value *
7784 ada_value_ind (struct value *val0)
7785 {
7786 struct value *val = value_ind (val0);
7787
7788 if (ada_is_tagged_type (value_type (val), 0))
7789 val = ada_tag_value_at_base_address (val);
7790
7791 return ada_to_fixed_value (val);
7792 }
7793
7794 /* The value resulting from dereferencing any "reference to"
7795 qualifiers on VAL0. */
7796
7797 static struct value *
7798 ada_coerce_ref (struct value *val0)
7799 {
7800 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7801 {
7802 struct value *val = val0;
7803
7804 val = coerce_ref (val);
7805
7806 if (ada_is_tagged_type (value_type (val), 0))
7807 val = ada_tag_value_at_base_address (val);
7808
7809 return ada_to_fixed_value (val);
7810 }
7811 else
7812 return val0;
7813 }
7814
7815 /* Return OFF rounded upward if necessary to a multiple of
7816 ALIGNMENT (a power of 2). */
7817
7818 static unsigned int
7819 align_value (unsigned int off, unsigned int alignment)
7820 {
7821 return (off + alignment - 1) & ~(alignment - 1);
7822 }
7823
7824 /* Return the bit alignment required for field #F of template type TYPE. */
7825
7826 static unsigned int
7827 field_alignment (struct type *type, int f)
7828 {
7829 const char *name = TYPE_FIELD_NAME (type, f);
7830 int len;
7831 int align_offset;
7832
7833 /* The field name should never be null, unless the debugging information
7834 is somehow malformed. In this case, we assume the field does not
7835 require any alignment. */
7836 if (name == NULL)
7837 return 1;
7838
7839 len = strlen (name);
7840
7841 if (!isdigit (name[len - 1]))
7842 return 1;
7843
7844 if (isdigit (name[len - 2]))
7845 align_offset = len - 2;
7846 else
7847 align_offset = len - 1;
7848
7849 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7850 return TARGET_CHAR_BIT;
7851
7852 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7853 }
7854
7855 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7856
7857 static struct symbol *
7858 ada_find_any_type_symbol (const char *name)
7859 {
7860 struct symbol *sym;
7861
7862 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7863 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7864 return sym;
7865
7866 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7867 return sym;
7868 }
7869
7870 /* Find a type named NAME. Ignores ambiguity. This routine will look
7871 solely for types defined by debug info, it will not search the GDB
7872 primitive types. */
7873
7874 static struct type *
7875 ada_find_any_type (const char *name)
7876 {
7877 struct symbol *sym = ada_find_any_type_symbol (name);
7878
7879 if (sym != NULL)
7880 return SYMBOL_TYPE (sym);
7881
7882 return NULL;
7883 }
7884
7885 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7886 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7887 symbol, in which case it is returned. Otherwise, this looks for
7888 symbols whose name is that of NAME_SYM suffixed with "___XR".
7889 Return symbol if found, and NULL otherwise. */
7890
7891 static bool
7892 ada_is_renaming_symbol (struct symbol *name_sym)
7893 {
7894 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7895 return strstr (name, "___XR") != NULL;
7896 }
7897
7898 /* Because of GNAT encoding conventions, several GDB symbols may match a
7899 given type name. If the type denoted by TYPE0 is to be preferred to
7900 that of TYPE1 for purposes of type printing, return non-zero;
7901 otherwise return 0. */
7902
7903 int
7904 ada_prefer_type (struct type *type0, struct type *type1)
7905 {
7906 if (type1 == NULL)
7907 return 1;
7908 else if (type0 == NULL)
7909 return 0;
7910 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7911 return 1;
7912 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7913 return 0;
7914 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7915 return 1;
7916 else if (ada_is_constrained_packed_array_type (type0))
7917 return 1;
7918 else if (ada_is_array_descriptor_type (type0)
7919 && !ada_is_array_descriptor_type (type1))
7920 return 1;
7921 else
7922 {
7923 const char *type0_name = TYPE_NAME (type0);
7924 const char *type1_name = TYPE_NAME (type1);
7925
7926 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7927 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7928 return 1;
7929 }
7930 return 0;
7931 }
7932
7933 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7934 null. */
7935
7936 const char *
7937 ada_type_name (struct type *type)
7938 {
7939 if (type == NULL)
7940 return NULL;
7941 return TYPE_NAME (type);
7942 }
7943
7944 /* Search the list of "descriptive" types associated to TYPE for a type
7945 whose name is NAME. */
7946
7947 static struct type *
7948 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7949 {
7950 struct type *result, *tmp;
7951
7952 if (ada_ignore_descriptive_types_p)
7953 return NULL;
7954
7955 /* If there no descriptive-type info, then there is no parallel type
7956 to be found. */
7957 if (!HAVE_GNAT_AUX_INFO (type))
7958 return NULL;
7959
7960 result = TYPE_DESCRIPTIVE_TYPE (type);
7961 while (result != NULL)
7962 {
7963 const char *result_name = ada_type_name (result);
7964
7965 if (result_name == NULL)
7966 {
7967 warning (_("unexpected null name on descriptive type"));
7968 return NULL;
7969 }
7970
7971 /* If the names match, stop. */
7972 if (strcmp (result_name, name) == 0)
7973 break;
7974
7975 /* Otherwise, look at the next item on the list, if any. */
7976 if (HAVE_GNAT_AUX_INFO (result))
7977 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7978 else
7979 tmp = NULL;
7980
7981 /* If not found either, try after having resolved the typedef. */
7982 if (tmp != NULL)
7983 result = tmp;
7984 else
7985 {
7986 result = check_typedef (result);
7987 if (HAVE_GNAT_AUX_INFO (result))
7988 result = TYPE_DESCRIPTIVE_TYPE (result);
7989 else
7990 result = NULL;
7991 }
7992 }
7993
7994 /* If we didn't find a match, see whether this is a packed array. With
7995 older compilers, the descriptive type information is either absent or
7996 irrelevant when it comes to packed arrays so the above lookup fails.
7997 Fall back to using a parallel lookup by name in this case. */
7998 if (result == NULL && ada_is_constrained_packed_array_type (type))
7999 return ada_find_any_type (name);
8000
8001 return result;
8002 }
8003
8004 /* Find a parallel type to TYPE with the specified NAME, using the
8005 descriptive type taken from the debugging information, if available,
8006 and otherwise using the (slower) name-based method. */
8007
8008 static struct type *
8009 ada_find_parallel_type_with_name (struct type *type, const char *name)
8010 {
8011 struct type *result = NULL;
8012
8013 if (HAVE_GNAT_AUX_INFO (type))
8014 result = find_parallel_type_by_descriptive_type (type, name);
8015 else
8016 result = ada_find_any_type (name);
8017
8018 return result;
8019 }
8020
8021 /* Same as above, but specify the name of the parallel type by appending
8022 SUFFIX to the name of TYPE. */
8023
8024 struct type *
8025 ada_find_parallel_type (struct type *type, const char *suffix)
8026 {
8027 char *name;
8028 const char *type_name = ada_type_name (type);
8029 int len;
8030
8031 if (type_name == NULL)
8032 return NULL;
8033
8034 len = strlen (type_name);
8035
8036 name = (char *) alloca (len + strlen (suffix) + 1);
8037
8038 strcpy (name, type_name);
8039 strcpy (name + len, suffix);
8040
8041 return ada_find_parallel_type_with_name (type, name);
8042 }
8043
8044 /* If TYPE is a variable-size record type, return the corresponding template
8045 type describing its fields. Otherwise, return NULL. */
8046
8047 static struct type *
8048 dynamic_template_type (struct type *type)
8049 {
8050 type = ada_check_typedef (type);
8051
8052 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8053 || ada_type_name (type) == NULL)
8054 return NULL;
8055 else
8056 {
8057 int len = strlen (ada_type_name (type));
8058
8059 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8060 return type;
8061 else
8062 return ada_find_parallel_type (type, "___XVE");
8063 }
8064 }
8065
8066 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8067 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8068
8069 static int
8070 is_dynamic_field (struct type *templ_type, int field_num)
8071 {
8072 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8073
8074 return name != NULL
8075 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8076 && strstr (name, "___XVL") != NULL;
8077 }
8078
8079 /* The index of the variant field of TYPE, or -1 if TYPE does not
8080 represent a variant record type. */
8081
8082 static int
8083 variant_field_index (struct type *type)
8084 {
8085 int f;
8086
8087 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8088 return -1;
8089
8090 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8091 {
8092 if (ada_is_variant_part (type, f))
8093 return f;
8094 }
8095 return -1;
8096 }
8097
8098 /* A record type with no fields. */
8099
8100 static struct type *
8101 empty_record (struct type *templ)
8102 {
8103 struct type *type = alloc_type_copy (templ);
8104
8105 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8106 TYPE_NFIELDS (type) = 0;
8107 TYPE_FIELDS (type) = NULL;
8108 INIT_NONE_SPECIFIC (type);
8109 TYPE_NAME (type) = "<empty>";
8110 TYPE_LENGTH (type) = 0;
8111 return type;
8112 }
8113
8114 /* An ordinary record type (with fixed-length fields) that describes
8115 the value of type TYPE at VALADDR or ADDRESS (see comments at
8116 the beginning of this section) VAL according to GNAT conventions.
8117 DVAL0 should describe the (portion of a) record that contains any
8118 necessary discriminants. It should be NULL if value_type (VAL) is
8119 an outer-level type (i.e., as opposed to a branch of a variant.) A
8120 variant field (unless unchecked) is replaced by a particular branch
8121 of the variant.
8122
8123 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8124 length are not statically known are discarded. As a consequence,
8125 VALADDR, ADDRESS and DVAL0 are ignored.
8126
8127 NOTE: Limitations: For now, we assume that dynamic fields and
8128 variants occupy whole numbers of bytes. However, they need not be
8129 byte-aligned. */
8130
8131 struct type *
8132 ada_template_to_fixed_record_type_1 (struct type *type,
8133 const gdb_byte *valaddr,
8134 CORE_ADDR address, struct value *dval0,
8135 int keep_dynamic_fields)
8136 {
8137 struct value *mark = value_mark ();
8138 struct value *dval;
8139 struct type *rtype;
8140 int nfields, bit_len;
8141 int variant_field;
8142 long off;
8143 int fld_bit_len;
8144 int f;
8145
8146 /* Compute the number of fields in this record type that are going
8147 to be processed: unless keep_dynamic_fields, this includes only
8148 fields whose position and length are static will be processed. */
8149 if (keep_dynamic_fields)
8150 nfields = TYPE_NFIELDS (type);
8151 else
8152 {
8153 nfields = 0;
8154 while (nfields < TYPE_NFIELDS (type)
8155 && !ada_is_variant_part (type, nfields)
8156 && !is_dynamic_field (type, nfields))
8157 nfields++;
8158 }
8159
8160 rtype = alloc_type_copy (type);
8161 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8162 INIT_NONE_SPECIFIC (rtype);
8163 TYPE_NFIELDS (rtype) = nfields;
8164 TYPE_FIELDS (rtype) = (struct field *)
8165 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8166 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8167 TYPE_NAME (rtype) = ada_type_name (type);
8168 TYPE_FIXED_INSTANCE (rtype) = 1;
8169
8170 off = 0;
8171 bit_len = 0;
8172 variant_field = -1;
8173
8174 for (f = 0; f < nfields; f += 1)
8175 {
8176 off = align_value (off, field_alignment (type, f))
8177 + TYPE_FIELD_BITPOS (type, f);
8178 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8179 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8180
8181 if (ada_is_variant_part (type, f))
8182 {
8183 variant_field = f;
8184 fld_bit_len = 0;
8185 }
8186 else if (is_dynamic_field (type, f))
8187 {
8188 const gdb_byte *field_valaddr = valaddr;
8189 CORE_ADDR field_address = address;
8190 struct type *field_type =
8191 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8192
8193 if (dval0 == NULL)
8194 {
8195 /* rtype's length is computed based on the run-time
8196 value of discriminants. If the discriminants are not
8197 initialized, the type size may be completely bogus and
8198 GDB may fail to allocate a value for it. So check the
8199 size first before creating the value. */
8200 ada_ensure_varsize_limit (rtype);
8201 /* Using plain value_from_contents_and_address here
8202 causes problems because we will end up trying to
8203 resolve a type that is currently being
8204 constructed. */
8205 dval = value_from_contents_and_address_unresolved (rtype,
8206 valaddr,
8207 address);
8208 rtype = value_type (dval);
8209 }
8210 else
8211 dval = dval0;
8212
8213 /* If the type referenced by this field is an aligner type, we need
8214 to unwrap that aligner type, because its size might not be set.
8215 Keeping the aligner type would cause us to compute the wrong
8216 size for this field, impacting the offset of the all the fields
8217 that follow this one. */
8218 if (ada_is_aligner_type (field_type))
8219 {
8220 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8221
8222 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8223 field_address = cond_offset_target (field_address, field_offset);
8224 field_type = ada_aligned_type (field_type);
8225 }
8226
8227 field_valaddr = cond_offset_host (field_valaddr,
8228 off / TARGET_CHAR_BIT);
8229 field_address = cond_offset_target (field_address,
8230 off / TARGET_CHAR_BIT);
8231
8232 /* Get the fixed type of the field. Note that, in this case,
8233 we do not want to get the real type out of the tag: if
8234 the current field is the parent part of a tagged record,
8235 we will get the tag of the object. Clearly wrong: the real
8236 type of the parent is not the real type of the child. We
8237 would end up in an infinite loop. */
8238 field_type = ada_get_base_type (field_type);
8239 field_type = ada_to_fixed_type (field_type, field_valaddr,
8240 field_address, dval, 0);
8241 /* If the field size is already larger than the maximum
8242 object size, then the record itself will necessarily
8243 be larger than the maximum object size. We need to make
8244 this check now, because the size might be so ridiculously
8245 large (due to an uninitialized variable in the inferior)
8246 that it would cause an overflow when adding it to the
8247 record size. */
8248 ada_ensure_varsize_limit (field_type);
8249
8250 TYPE_FIELD_TYPE (rtype, f) = field_type;
8251 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8252 /* The multiplication can potentially overflow. But because
8253 the field length has been size-checked just above, and
8254 assuming that the maximum size is a reasonable value,
8255 an overflow should not happen in practice. So rather than
8256 adding overflow recovery code to this already complex code,
8257 we just assume that it's not going to happen. */
8258 fld_bit_len =
8259 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8260 }
8261 else
8262 {
8263 /* Note: If this field's type is a typedef, it is important
8264 to preserve the typedef layer.
8265
8266 Otherwise, we might be transforming a typedef to a fat
8267 pointer (encoding a pointer to an unconstrained array),
8268 into a basic fat pointer (encoding an unconstrained
8269 array). As both types are implemented using the same
8270 structure, the typedef is the only clue which allows us
8271 to distinguish between the two options. Stripping it
8272 would prevent us from printing this field appropriately. */
8273 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8274 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8275 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8276 fld_bit_len =
8277 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8278 else
8279 {
8280 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8281
8282 /* We need to be careful of typedefs when computing
8283 the length of our field. If this is a typedef,
8284 get the length of the target type, not the length
8285 of the typedef. */
8286 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8287 field_type = ada_typedef_target_type (field_type);
8288
8289 fld_bit_len =
8290 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8291 }
8292 }
8293 if (off + fld_bit_len > bit_len)
8294 bit_len = off + fld_bit_len;
8295 off += fld_bit_len;
8296 TYPE_LENGTH (rtype) =
8297 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8298 }
8299
8300 /* We handle the variant part, if any, at the end because of certain
8301 odd cases in which it is re-ordered so as NOT to be the last field of
8302 the record. This can happen in the presence of representation
8303 clauses. */
8304 if (variant_field >= 0)
8305 {
8306 struct type *branch_type;
8307
8308 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8309
8310 if (dval0 == NULL)
8311 {
8312 /* Using plain value_from_contents_and_address here causes
8313 problems because we will end up trying to resolve a type
8314 that is currently being constructed. */
8315 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8316 address);
8317 rtype = value_type (dval);
8318 }
8319 else
8320 dval = dval0;
8321
8322 branch_type =
8323 to_fixed_variant_branch_type
8324 (TYPE_FIELD_TYPE (type, variant_field),
8325 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8326 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8327 if (branch_type == NULL)
8328 {
8329 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8330 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8331 TYPE_NFIELDS (rtype) -= 1;
8332 }
8333 else
8334 {
8335 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8336 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8337 fld_bit_len =
8338 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8339 TARGET_CHAR_BIT;
8340 if (off + fld_bit_len > bit_len)
8341 bit_len = off + fld_bit_len;
8342 TYPE_LENGTH (rtype) =
8343 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8344 }
8345 }
8346
8347 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8348 should contain the alignment of that record, which should be a strictly
8349 positive value. If null or negative, then something is wrong, most
8350 probably in the debug info. In that case, we don't round up the size
8351 of the resulting type. If this record is not part of another structure,
8352 the current RTYPE length might be good enough for our purposes. */
8353 if (TYPE_LENGTH (type) <= 0)
8354 {
8355 if (TYPE_NAME (rtype))
8356 warning (_("Invalid type size for `%s' detected: %s."),
8357 TYPE_NAME (rtype), pulongest (TYPE_LENGTH (type)));
8358 else
8359 warning (_("Invalid type size for <unnamed> detected: %s."),
8360 pulongest (TYPE_LENGTH (type)));
8361 }
8362 else
8363 {
8364 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8365 TYPE_LENGTH (type));
8366 }
8367
8368 value_free_to_mark (mark);
8369 if (TYPE_LENGTH (rtype) > varsize_limit)
8370 error (_("record type with dynamic size is larger than varsize-limit"));
8371 return rtype;
8372 }
8373
8374 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8375 of 1. */
8376
8377 static struct type *
8378 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8379 CORE_ADDR address, struct value *dval0)
8380 {
8381 return ada_template_to_fixed_record_type_1 (type, valaddr,
8382 address, dval0, 1);
8383 }
8384
8385 /* An ordinary record type in which ___XVL-convention fields and
8386 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8387 static approximations, containing all possible fields. Uses
8388 no runtime values. Useless for use in values, but that's OK,
8389 since the results are used only for type determinations. Works on both
8390 structs and unions. Representation note: to save space, we memorize
8391 the result of this function in the TYPE_TARGET_TYPE of the
8392 template type. */
8393
8394 static struct type *
8395 template_to_static_fixed_type (struct type *type0)
8396 {
8397 struct type *type;
8398 int nfields;
8399 int f;
8400
8401 /* No need no do anything if the input type is already fixed. */
8402 if (TYPE_FIXED_INSTANCE (type0))
8403 return type0;
8404
8405 /* Likewise if we already have computed the static approximation. */
8406 if (TYPE_TARGET_TYPE (type0) != NULL)
8407 return TYPE_TARGET_TYPE (type0);
8408
8409 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8410 type = type0;
8411 nfields = TYPE_NFIELDS (type0);
8412
8413 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8414 recompute all over next time. */
8415 TYPE_TARGET_TYPE (type0) = type;
8416
8417 for (f = 0; f < nfields; f += 1)
8418 {
8419 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8420 struct type *new_type;
8421
8422 if (is_dynamic_field (type0, f))
8423 {
8424 field_type = ada_check_typedef (field_type);
8425 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8426 }
8427 else
8428 new_type = static_unwrap_type (field_type);
8429
8430 if (new_type != field_type)
8431 {
8432 /* Clone TYPE0 only the first time we get a new field type. */
8433 if (type == type0)
8434 {
8435 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8436 TYPE_CODE (type) = TYPE_CODE (type0);
8437 INIT_NONE_SPECIFIC (type);
8438 TYPE_NFIELDS (type) = nfields;
8439 TYPE_FIELDS (type) = (struct field *)
8440 TYPE_ALLOC (type, nfields * sizeof (struct field));
8441 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8442 sizeof (struct field) * nfields);
8443 TYPE_NAME (type) = ada_type_name (type0);
8444 TYPE_FIXED_INSTANCE (type) = 1;
8445 TYPE_LENGTH (type) = 0;
8446 }
8447 TYPE_FIELD_TYPE (type, f) = new_type;
8448 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8449 }
8450 }
8451
8452 return type;
8453 }
8454
8455 /* Given an object of type TYPE whose contents are at VALADDR and
8456 whose address in memory is ADDRESS, returns a revision of TYPE,
8457 which should be a non-dynamic-sized record, in which the variant
8458 part, if any, is replaced with the appropriate branch. Looks
8459 for discriminant values in DVAL0, which can be NULL if the record
8460 contains the necessary discriminant values. */
8461
8462 static struct type *
8463 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8464 CORE_ADDR address, struct value *dval0)
8465 {
8466 struct value *mark = value_mark ();
8467 struct value *dval;
8468 struct type *rtype;
8469 struct type *branch_type;
8470 int nfields = TYPE_NFIELDS (type);
8471 int variant_field = variant_field_index (type);
8472
8473 if (variant_field == -1)
8474 return type;
8475
8476 if (dval0 == NULL)
8477 {
8478 dval = value_from_contents_and_address (type, valaddr, address);
8479 type = value_type (dval);
8480 }
8481 else
8482 dval = dval0;
8483
8484 rtype = alloc_type_copy (type);
8485 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8486 INIT_NONE_SPECIFIC (rtype);
8487 TYPE_NFIELDS (rtype) = nfields;
8488 TYPE_FIELDS (rtype) =
8489 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8490 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8491 sizeof (struct field) * nfields);
8492 TYPE_NAME (rtype) = ada_type_name (type);
8493 TYPE_FIXED_INSTANCE (rtype) = 1;
8494 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8495
8496 branch_type = to_fixed_variant_branch_type
8497 (TYPE_FIELD_TYPE (type, variant_field),
8498 cond_offset_host (valaddr,
8499 TYPE_FIELD_BITPOS (type, variant_field)
8500 / TARGET_CHAR_BIT),
8501 cond_offset_target (address,
8502 TYPE_FIELD_BITPOS (type, variant_field)
8503 / TARGET_CHAR_BIT), dval);
8504 if (branch_type == NULL)
8505 {
8506 int f;
8507
8508 for (f = variant_field + 1; f < nfields; f += 1)
8509 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8510 TYPE_NFIELDS (rtype) -= 1;
8511 }
8512 else
8513 {
8514 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8515 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8516 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8517 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8518 }
8519 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8520
8521 value_free_to_mark (mark);
8522 return rtype;
8523 }
8524
8525 /* An ordinary record type (with fixed-length fields) that describes
8526 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8527 beginning of this section]. Any necessary discriminants' values
8528 should be in DVAL, a record value; it may be NULL if the object
8529 at ADDR itself contains any necessary discriminant values.
8530 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8531 values from the record are needed. Except in the case that DVAL,
8532 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8533 unchecked) is replaced by a particular branch of the variant.
8534
8535 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8536 is questionable and may be removed. It can arise during the
8537 processing of an unconstrained-array-of-record type where all the
8538 variant branches have exactly the same size. This is because in
8539 such cases, the compiler does not bother to use the XVS convention
8540 when encoding the record. I am currently dubious of this
8541 shortcut and suspect the compiler should be altered. FIXME. */
8542
8543 static struct type *
8544 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8545 CORE_ADDR address, struct value *dval)
8546 {
8547 struct type *templ_type;
8548
8549 if (TYPE_FIXED_INSTANCE (type0))
8550 return type0;
8551
8552 templ_type = dynamic_template_type (type0);
8553
8554 if (templ_type != NULL)
8555 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8556 else if (variant_field_index (type0) >= 0)
8557 {
8558 if (dval == NULL && valaddr == NULL && address == 0)
8559 return type0;
8560 return to_record_with_fixed_variant_part (type0, valaddr, address,
8561 dval);
8562 }
8563 else
8564 {
8565 TYPE_FIXED_INSTANCE (type0) = 1;
8566 return type0;
8567 }
8568
8569 }
8570
8571 /* An ordinary record type (with fixed-length fields) that describes
8572 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8573 union type. Any necessary discriminants' values should be in DVAL,
8574 a record value. That is, this routine selects the appropriate
8575 branch of the union at ADDR according to the discriminant value
8576 indicated in the union's type name. Returns VAR_TYPE0 itself if
8577 it represents a variant subject to a pragma Unchecked_Union. */
8578
8579 static struct type *
8580 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8581 CORE_ADDR address, struct value *dval)
8582 {
8583 int which;
8584 struct type *templ_type;
8585 struct type *var_type;
8586
8587 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8588 var_type = TYPE_TARGET_TYPE (var_type0);
8589 else
8590 var_type = var_type0;
8591
8592 templ_type = ada_find_parallel_type (var_type, "___XVU");
8593
8594 if (templ_type != NULL)
8595 var_type = templ_type;
8596
8597 if (is_unchecked_variant (var_type, value_type (dval)))
8598 return var_type0;
8599 which =
8600 ada_which_variant_applies (var_type,
8601 value_type (dval), value_contents (dval));
8602
8603 if (which < 0)
8604 return empty_record (var_type);
8605 else if (is_dynamic_field (var_type, which))
8606 return to_fixed_record_type
8607 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8608 valaddr, address, dval);
8609 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8610 return
8611 to_fixed_record_type
8612 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8613 else
8614 return TYPE_FIELD_TYPE (var_type, which);
8615 }
8616
8617 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8618 ENCODING_TYPE, a type following the GNAT conventions for discrete
8619 type encodings, only carries redundant information. */
8620
8621 static int
8622 ada_is_redundant_range_encoding (struct type *range_type,
8623 struct type *encoding_type)
8624 {
8625 const char *bounds_str;
8626 int n;
8627 LONGEST lo, hi;
8628
8629 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8630
8631 if (TYPE_CODE (get_base_type (range_type))
8632 != TYPE_CODE (get_base_type (encoding_type)))
8633 {
8634 /* The compiler probably used a simple base type to describe
8635 the range type instead of the range's actual base type,
8636 expecting us to get the real base type from the encoding
8637 anyway. In this situation, the encoding cannot be ignored
8638 as redundant. */
8639 return 0;
8640 }
8641
8642 if (is_dynamic_type (range_type))
8643 return 0;
8644
8645 if (TYPE_NAME (encoding_type) == NULL)
8646 return 0;
8647
8648 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8649 if (bounds_str == NULL)
8650 return 0;
8651
8652 n = 8; /* Skip "___XDLU_". */
8653 if (!ada_scan_number (bounds_str, n, &lo, &n))
8654 return 0;
8655 if (TYPE_LOW_BOUND (range_type) != lo)
8656 return 0;
8657
8658 n += 2; /* Skip the "__" separator between the two bounds. */
8659 if (!ada_scan_number (bounds_str, n, &hi, &n))
8660 return 0;
8661 if (TYPE_HIGH_BOUND (range_type) != hi)
8662 return 0;
8663
8664 return 1;
8665 }
8666
8667 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8668 a type following the GNAT encoding for describing array type
8669 indices, only carries redundant information. */
8670
8671 static int
8672 ada_is_redundant_index_type_desc (struct type *array_type,
8673 struct type *desc_type)
8674 {
8675 struct type *this_layer = check_typedef (array_type);
8676 int i;
8677
8678 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8679 {
8680 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8681 TYPE_FIELD_TYPE (desc_type, i)))
8682 return 0;
8683 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8684 }
8685
8686 return 1;
8687 }
8688
8689 /* Assuming that TYPE0 is an array type describing the type of a value
8690 at ADDR, and that DVAL describes a record containing any
8691 discriminants used in TYPE0, returns a type for the value that
8692 contains no dynamic components (that is, no components whose sizes
8693 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8694 true, gives an error message if the resulting type's size is over
8695 varsize_limit. */
8696
8697 static struct type *
8698 to_fixed_array_type (struct type *type0, struct value *dval,
8699 int ignore_too_big)
8700 {
8701 struct type *index_type_desc;
8702 struct type *result;
8703 int constrained_packed_array_p;
8704 static const char *xa_suffix = "___XA";
8705
8706 type0 = ada_check_typedef (type0);
8707 if (TYPE_FIXED_INSTANCE (type0))
8708 return type0;
8709
8710 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8711 if (constrained_packed_array_p)
8712 type0 = decode_constrained_packed_array_type (type0);
8713
8714 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8715
8716 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8717 encoding suffixed with 'P' may still be generated. If so,
8718 it should be used to find the XA type. */
8719
8720 if (index_type_desc == NULL)
8721 {
8722 const char *type_name = ada_type_name (type0);
8723
8724 if (type_name != NULL)
8725 {
8726 const int len = strlen (type_name);
8727 char *name = (char *) alloca (len + strlen (xa_suffix));
8728
8729 if (type_name[len - 1] == 'P')
8730 {
8731 strcpy (name, type_name);
8732 strcpy (name + len - 1, xa_suffix);
8733 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8734 }
8735 }
8736 }
8737
8738 ada_fixup_array_indexes_type (index_type_desc);
8739 if (index_type_desc != NULL
8740 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8741 {
8742 /* Ignore this ___XA parallel type, as it does not bring any
8743 useful information. This allows us to avoid creating fixed
8744 versions of the array's index types, which would be identical
8745 to the original ones. This, in turn, can also help avoid
8746 the creation of fixed versions of the array itself. */
8747 index_type_desc = NULL;
8748 }
8749
8750 if (index_type_desc == NULL)
8751 {
8752 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8753
8754 /* NOTE: elt_type---the fixed version of elt_type0---should never
8755 depend on the contents of the array in properly constructed
8756 debugging data. */
8757 /* Create a fixed version of the array element type.
8758 We're not providing the address of an element here,
8759 and thus the actual object value cannot be inspected to do
8760 the conversion. This should not be a problem, since arrays of
8761 unconstrained objects are not allowed. In particular, all
8762 the elements of an array of a tagged type should all be of
8763 the same type specified in the debugging info. No need to
8764 consult the object tag. */
8765 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8766
8767 /* Make sure we always create a new array type when dealing with
8768 packed array types, since we're going to fix-up the array
8769 type length and element bitsize a little further down. */
8770 if (elt_type0 == elt_type && !constrained_packed_array_p)
8771 result = type0;
8772 else
8773 result = create_array_type (alloc_type_copy (type0),
8774 elt_type, TYPE_INDEX_TYPE (type0));
8775 }
8776 else
8777 {
8778 int i;
8779 struct type *elt_type0;
8780
8781 elt_type0 = type0;
8782 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8783 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8784
8785 /* NOTE: result---the fixed version of elt_type0---should never
8786 depend on the contents of the array in properly constructed
8787 debugging data. */
8788 /* Create a fixed version of the array element type.
8789 We're not providing the address of an element here,
8790 and thus the actual object value cannot be inspected to do
8791 the conversion. This should not be a problem, since arrays of
8792 unconstrained objects are not allowed. In particular, all
8793 the elements of an array of a tagged type should all be of
8794 the same type specified in the debugging info. No need to
8795 consult the object tag. */
8796 result =
8797 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8798
8799 elt_type0 = type0;
8800 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8801 {
8802 struct type *range_type =
8803 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8804
8805 result = create_array_type (alloc_type_copy (elt_type0),
8806 result, range_type);
8807 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8808 }
8809 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8810 error (_("array type with dynamic size is larger than varsize-limit"));
8811 }
8812
8813 /* We want to preserve the type name. This can be useful when
8814 trying to get the type name of a value that has already been
8815 printed (for instance, if the user did "print VAR; whatis $". */
8816 TYPE_NAME (result) = TYPE_NAME (type0);
8817
8818 if (constrained_packed_array_p)
8819 {
8820 /* So far, the resulting type has been created as if the original
8821 type was a regular (non-packed) array type. As a result, the
8822 bitsize of the array elements needs to be set again, and the array
8823 length needs to be recomputed based on that bitsize. */
8824 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8825 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8826
8827 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8828 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8829 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8830 TYPE_LENGTH (result)++;
8831 }
8832
8833 TYPE_FIXED_INSTANCE (result) = 1;
8834 return result;
8835 }
8836
8837
8838 /* A standard type (containing no dynamically sized components)
8839 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8840 DVAL describes a record containing any discriminants used in TYPE0,
8841 and may be NULL if there are none, or if the object of type TYPE at
8842 ADDRESS or in VALADDR contains these discriminants.
8843
8844 If CHECK_TAG is not null, in the case of tagged types, this function
8845 attempts to locate the object's tag and use it to compute the actual
8846 type. However, when ADDRESS is null, we cannot use it to determine the
8847 location of the tag, and therefore compute the tagged type's actual type.
8848 So we return the tagged type without consulting the tag. */
8849
8850 static struct type *
8851 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8852 CORE_ADDR address, struct value *dval, int check_tag)
8853 {
8854 type = ada_check_typedef (type);
8855
8856 /* Only un-fixed types need to be handled here. */
8857 if (!HAVE_GNAT_AUX_INFO (type))
8858 return type;
8859
8860 switch (TYPE_CODE (type))
8861 {
8862 default:
8863 return type;
8864 case TYPE_CODE_STRUCT:
8865 {
8866 struct type *static_type = to_static_fixed_type (type);
8867 struct type *fixed_record_type =
8868 to_fixed_record_type (type, valaddr, address, NULL);
8869
8870 /* If STATIC_TYPE is a tagged type and we know the object's address,
8871 then we can determine its tag, and compute the object's actual
8872 type from there. Note that we have to use the fixed record
8873 type (the parent part of the record may have dynamic fields
8874 and the way the location of _tag is expressed may depend on
8875 them). */
8876
8877 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8878 {
8879 struct value *tag =
8880 value_tag_from_contents_and_address
8881 (fixed_record_type,
8882 valaddr,
8883 address);
8884 struct type *real_type = type_from_tag (tag);
8885 struct value *obj =
8886 value_from_contents_and_address (fixed_record_type,
8887 valaddr,
8888 address);
8889 fixed_record_type = value_type (obj);
8890 if (real_type != NULL)
8891 return to_fixed_record_type
8892 (real_type, NULL,
8893 value_address (ada_tag_value_at_base_address (obj)), NULL);
8894 }
8895
8896 /* Check to see if there is a parallel ___XVZ variable.
8897 If there is, then it provides the actual size of our type. */
8898 else if (ada_type_name (fixed_record_type) != NULL)
8899 {
8900 const char *name = ada_type_name (fixed_record_type);
8901 char *xvz_name
8902 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8903 bool xvz_found = false;
8904 LONGEST size;
8905
8906 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8907 try
8908 {
8909 xvz_found = get_int_var_value (xvz_name, size);
8910 }
8911 catch (const gdb_exception_error &except)
8912 {
8913 /* We found the variable, but somehow failed to read
8914 its value. Rethrow the same error, but with a little
8915 bit more information, to help the user understand
8916 what went wrong (Eg: the variable might have been
8917 optimized out). */
8918 throw_error (except.error,
8919 _("unable to read value of %s (%s)"),
8920 xvz_name, except.what ());
8921 }
8922
8923 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8924 {
8925 fixed_record_type = copy_type (fixed_record_type);
8926 TYPE_LENGTH (fixed_record_type) = size;
8927
8928 /* The FIXED_RECORD_TYPE may have be a stub. We have
8929 observed this when the debugging info is STABS, and
8930 apparently it is something that is hard to fix.
8931
8932 In practice, we don't need the actual type definition
8933 at all, because the presence of the XVZ variable allows us
8934 to assume that there must be a XVS type as well, which we
8935 should be able to use later, when we need the actual type
8936 definition.
8937
8938 In the meantime, pretend that the "fixed" type we are
8939 returning is NOT a stub, because this can cause trouble
8940 when using this type to create new types targeting it.
8941 Indeed, the associated creation routines often check
8942 whether the target type is a stub and will try to replace
8943 it, thus using a type with the wrong size. This, in turn,
8944 might cause the new type to have the wrong size too.
8945 Consider the case of an array, for instance, where the size
8946 of the array is computed from the number of elements in
8947 our array multiplied by the size of its element. */
8948 TYPE_STUB (fixed_record_type) = 0;
8949 }
8950 }
8951 return fixed_record_type;
8952 }
8953 case TYPE_CODE_ARRAY:
8954 return to_fixed_array_type (type, dval, 1);
8955 case TYPE_CODE_UNION:
8956 if (dval == NULL)
8957 return type;
8958 else
8959 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8960 }
8961 }
8962
8963 /* The same as ada_to_fixed_type_1, except that it preserves the type
8964 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8965
8966 The typedef layer needs be preserved in order to differentiate between
8967 arrays and array pointers when both types are implemented using the same
8968 fat pointer. In the array pointer case, the pointer is encoded as
8969 a typedef of the pointer type. For instance, considering:
8970
8971 type String_Access is access String;
8972 S1 : String_Access := null;
8973
8974 To the debugger, S1 is defined as a typedef of type String. But
8975 to the user, it is a pointer. So if the user tries to print S1,
8976 we should not dereference the array, but print the array address
8977 instead.
8978
8979 If we didn't preserve the typedef layer, we would lose the fact that
8980 the type is to be presented as a pointer (needs de-reference before
8981 being printed). And we would also use the source-level type name. */
8982
8983 struct type *
8984 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8985 CORE_ADDR address, struct value *dval, int check_tag)
8986
8987 {
8988 struct type *fixed_type =
8989 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8990
8991 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8992 then preserve the typedef layer.
8993
8994 Implementation note: We can only check the main-type portion of
8995 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8996 from TYPE now returns a type that has the same instance flags
8997 as TYPE. For instance, if TYPE is a "typedef const", and its
8998 target type is a "struct", then the typedef elimination will return
8999 a "const" version of the target type. See check_typedef for more
9000 details about how the typedef layer elimination is done.
9001
9002 brobecker/2010-11-19: It seems to me that the only case where it is
9003 useful to preserve the typedef layer is when dealing with fat pointers.
9004 Perhaps, we could add a check for that and preserve the typedef layer
9005 only in that situation. But this seems unecessary so far, probably
9006 because we call check_typedef/ada_check_typedef pretty much everywhere.
9007 */
9008 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9009 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9010 == TYPE_MAIN_TYPE (fixed_type)))
9011 return type;
9012
9013 return fixed_type;
9014 }
9015
9016 /* A standard (static-sized) type corresponding as well as possible to
9017 TYPE0, but based on no runtime data. */
9018
9019 static struct type *
9020 to_static_fixed_type (struct type *type0)
9021 {
9022 struct type *type;
9023
9024 if (type0 == NULL)
9025 return NULL;
9026
9027 if (TYPE_FIXED_INSTANCE (type0))
9028 return type0;
9029
9030 type0 = ada_check_typedef (type0);
9031
9032 switch (TYPE_CODE (type0))
9033 {
9034 default:
9035 return type0;
9036 case TYPE_CODE_STRUCT:
9037 type = dynamic_template_type (type0);
9038 if (type != NULL)
9039 return template_to_static_fixed_type (type);
9040 else
9041 return template_to_static_fixed_type (type0);
9042 case TYPE_CODE_UNION:
9043 type = ada_find_parallel_type (type0, "___XVU");
9044 if (type != NULL)
9045 return template_to_static_fixed_type (type);
9046 else
9047 return template_to_static_fixed_type (type0);
9048 }
9049 }
9050
9051 /* A static approximation of TYPE with all type wrappers removed. */
9052
9053 static struct type *
9054 static_unwrap_type (struct type *type)
9055 {
9056 if (ada_is_aligner_type (type))
9057 {
9058 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9059 if (ada_type_name (type1) == NULL)
9060 TYPE_NAME (type1) = ada_type_name (type);
9061
9062 return static_unwrap_type (type1);
9063 }
9064 else
9065 {
9066 struct type *raw_real_type = ada_get_base_type (type);
9067
9068 if (raw_real_type == type)
9069 return type;
9070 else
9071 return to_static_fixed_type (raw_real_type);
9072 }
9073 }
9074
9075 /* In some cases, incomplete and private types require
9076 cross-references that are not resolved as records (for example,
9077 type Foo;
9078 type FooP is access Foo;
9079 V: FooP;
9080 type Foo is array ...;
9081 ). In these cases, since there is no mechanism for producing
9082 cross-references to such types, we instead substitute for FooP a
9083 stub enumeration type that is nowhere resolved, and whose tag is
9084 the name of the actual type. Call these types "non-record stubs". */
9085
9086 /* A type equivalent to TYPE that is not a non-record stub, if one
9087 exists, otherwise TYPE. */
9088
9089 struct type *
9090 ada_check_typedef (struct type *type)
9091 {
9092 if (type == NULL)
9093 return NULL;
9094
9095 /* If our type is an access to an unconstrained array, which is encoded
9096 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
9097 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9098 what allows us to distinguish between fat pointers that represent
9099 array types, and fat pointers that represent array access types
9100 (in both cases, the compiler implements them as fat pointers). */
9101 if (ada_is_access_to_unconstrained_array (type))
9102 return type;
9103
9104 type = check_typedef (type);
9105 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9106 || !TYPE_STUB (type)
9107 || TYPE_NAME (type) == NULL)
9108 return type;
9109 else
9110 {
9111 const char *name = TYPE_NAME (type);
9112 struct type *type1 = ada_find_any_type (name);
9113
9114 if (type1 == NULL)
9115 return type;
9116
9117 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9118 stubs pointing to arrays, as we don't create symbols for array
9119 types, only for the typedef-to-array types). If that's the case,
9120 strip the typedef layer. */
9121 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9122 type1 = ada_check_typedef (type1);
9123
9124 return type1;
9125 }
9126 }
9127
9128 /* A value representing the data at VALADDR/ADDRESS as described by
9129 type TYPE0, but with a standard (static-sized) type that correctly
9130 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9131 type, then return VAL0 [this feature is simply to avoid redundant
9132 creation of struct values]. */
9133
9134 static struct value *
9135 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9136 struct value *val0)
9137 {
9138 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9139
9140 if (type == type0 && val0 != NULL)
9141 return val0;
9142
9143 if (VALUE_LVAL (val0) != lval_memory)
9144 {
9145 /* Our value does not live in memory; it could be a convenience
9146 variable, for instance. Create a not_lval value using val0's
9147 contents. */
9148 return value_from_contents (type, value_contents (val0));
9149 }
9150
9151 return value_from_contents_and_address (type, 0, address);
9152 }
9153
9154 /* A value representing VAL, but with a standard (static-sized) type
9155 that correctly describes it. Does not necessarily create a new
9156 value. */
9157
9158 struct value *
9159 ada_to_fixed_value (struct value *val)
9160 {
9161 val = unwrap_value (val);
9162 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9163 return val;
9164 }
9165 \f
9166
9167 /* Attributes */
9168
9169 /* Table mapping attribute numbers to names.
9170 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9171
9172 static const char *attribute_names[] = {
9173 "<?>",
9174
9175 "first",
9176 "last",
9177 "length",
9178 "image",
9179 "max",
9180 "min",
9181 "modulus",
9182 "pos",
9183 "size",
9184 "tag",
9185 "val",
9186 0
9187 };
9188
9189 const char *
9190 ada_attribute_name (enum exp_opcode n)
9191 {
9192 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9193 return attribute_names[n - OP_ATR_FIRST + 1];
9194 else
9195 return attribute_names[0];
9196 }
9197
9198 /* Evaluate the 'POS attribute applied to ARG. */
9199
9200 static LONGEST
9201 pos_atr (struct value *arg)
9202 {
9203 struct value *val = coerce_ref (arg);
9204 struct type *type = value_type (val);
9205 LONGEST result;
9206
9207 if (!discrete_type_p (type))
9208 error (_("'POS only defined on discrete types"));
9209
9210 if (!discrete_position (type, value_as_long (val), &result))
9211 error (_("enumeration value is invalid: can't find 'POS"));
9212
9213 return result;
9214 }
9215
9216 static struct value *
9217 value_pos_atr (struct type *type, struct value *arg)
9218 {
9219 return value_from_longest (type, pos_atr (arg));
9220 }
9221
9222 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9223
9224 static struct value *
9225 value_val_atr (struct type *type, struct value *arg)
9226 {
9227 if (!discrete_type_p (type))
9228 error (_("'VAL only defined on discrete types"));
9229 if (!integer_type_p (value_type (arg)))
9230 error (_("'VAL requires integral argument"));
9231
9232 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9233 {
9234 long pos = value_as_long (arg);
9235
9236 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9237 error (_("argument to 'VAL out of range"));
9238 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9239 }
9240 else
9241 return value_from_longest (type, value_as_long (arg));
9242 }
9243 \f
9244
9245 /* Evaluation */
9246
9247 /* True if TYPE appears to be an Ada character type.
9248 [At the moment, this is true only for Character and Wide_Character;
9249 It is a heuristic test that could stand improvement]. */
9250
9251 bool
9252 ada_is_character_type (struct type *type)
9253 {
9254 const char *name;
9255
9256 /* If the type code says it's a character, then assume it really is,
9257 and don't check any further. */
9258 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9259 return true;
9260
9261 /* Otherwise, assume it's a character type iff it is a discrete type
9262 with a known character type name. */
9263 name = ada_type_name (type);
9264 return (name != NULL
9265 && (TYPE_CODE (type) == TYPE_CODE_INT
9266 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9267 && (strcmp (name, "character") == 0
9268 || strcmp (name, "wide_character") == 0
9269 || strcmp (name, "wide_wide_character") == 0
9270 || strcmp (name, "unsigned char") == 0));
9271 }
9272
9273 /* True if TYPE appears to be an Ada string type. */
9274
9275 bool
9276 ada_is_string_type (struct type *type)
9277 {
9278 type = ada_check_typedef (type);
9279 if (type != NULL
9280 && TYPE_CODE (type) != TYPE_CODE_PTR
9281 && (ada_is_simple_array_type (type)
9282 || ada_is_array_descriptor_type (type))
9283 && ada_array_arity (type) == 1)
9284 {
9285 struct type *elttype = ada_array_element_type (type, 1);
9286
9287 return ada_is_character_type (elttype);
9288 }
9289 else
9290 return false;
9291 }
9292
9293 /* The compiler sometimes provides a parallel XVS type for a given
9294 PAD type. Normally, it is safe to follow the PAD type directly,
9295 but older versions of the compiler have a bug that causes the offset
9296 of its "F" field to be wrong. Following that field in that case
9297 would lead to incorrect results, but this can be worked around
9298 by ignoring the PAD type and using the associated XVS type instead.
9299
9300 Set to True if the debugger should trust the contents of PAD types.
9301 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9302 static bool trust_pad_over_xvs = true;
9303
9304 /* True if TYPE is a struct type introduced by the compiler to force the
9305 alignment of a value. Such types have a single field with a
9306 distinctive name. */
9307
9308 int
9309 ada_is_aligner_type (struct type *type)
9310 {
9311 type = ada_check_typedef (type);
9312
9313 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9314 return 0;
9315
9316 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9317 && TYPE_NFIELDS (type) == 1
9318 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9319 }
9320
9321 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9322 the parallel type. */
9323
9324 struct type *
9325 ada_get_base_type (struct type *raw_type)
9326 {
9327 struct type *real_type_namer;
9328 struct type *raw_real_type;
9329
9330 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9331 return raw_type;
9332
9333 if (ada_is_aligner_type (raw_type))
9334 /* The encoding specifies that we should always use the aligner type.
9335 So, even if this aligner type has an associated XVS type, we should
9336 simply ignore it.
9337
9338 According to the compiler gurus, an XVS type parallel to an aligner
9339 type may exist because of a stabs limitation. In stabs, aligner
9340 types are empty because the field has a variable-sized type, and
9341 thus cannot actually be used as an aligner type. As a result,
9342 we need the associated parallel XVS type to decode the type.
9343 Since the policy in the compiler is to not change the internal
9344 representation based on the debugging info format, we sometimes
9345 end up having a redundant XVS type parallel to the aligner type. */
9346 return raw_type;
9347
9348 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9349 if (real_type_namer == NULL
9350 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9351 || TYPE_NFIELDS (real_type_namer) != 1)
9352 return raw_type;
9353
9354 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9355 {
9356 /* This is an older encoding form where the base type needs to be
9357 looked up by name. We prefer the newer enconding because it is
9358 more efficient. */
9359 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9360 if (raw_real_type == NULL)
9361 return raw_type;
9362 else
9363 return raw_real_type;
9364 }
9365
9366 /* The field in our XVS type is a reference to the base type. */
9367 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9368 }
9369
9370 /* The type of value designated by TYPE, with all aligners removed. */
9371
9372 struct type *
9373 ada_aligned_type (struct type *type)
9374 {
9375 if (ada_is_aligner_type (type))
9376 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9377 else
9378 return ada_get_base_type (type);
9379 }
9380
9381
9382 /* The address of the aligned value in an object at address VALADDR
9383 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9384
9385 const gdb_byte *
9386 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9387 {
9388 if (ada_is_aligner_type (type))
9389 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9390 valaddr +
9391 TYPE_FIELD_BITPOS (type,
9392 0) / TARGET_CHAR_BIT);
9393 else
9394 return valaddr;
9395 }
9396
9397
9398
9399 /* The printed representation of an enumeration literal with encoded
9400 name NAME. The value is good to the next call of ada_enum_name. */
9401 const char *
9402 ada_enum_name (const char *name)
9403 {
9404 static char *result;
9405 static size_t result_len = 0;
9406 const char *tmp;
9407
9408 /* First, unqualify the enumeration name:
9409 1. Search for the last '.' character. If we find one, then skip
9410 all the preceding characters, the unqualified name starts
9411 right after that dot.
9412 2. Otherwise, we may be debugging on a target where the compiler
9413 translates dots into "__". Search forward for double underscores,
9414 but stop searching when we hit an overloading suffix, which is
9415 of the form "__" followed by digits. */
9416
9417 tmp = strrchr (name, '.');
9418 if (tmp != NULL)
9419 name = tmp + 1;
9420 else
9421 {
9422 while ((tmp = strstr (name, "__")) != NULL)
9423 {
9424 if (isdigit (tmp[2]))
9425 break;
9426 else
9427 name = tmp + 2;
9428 }
9429 }
9430
9431 if (name[0] == 'Q')
9432 {
9433 int v;
9434
9435 if (name[1] == 'U' || name[1] == 'W')
9436 {
9437 if (sscanf (name + 2, "%x", &v) != 1)
9438 return name;
9439 }
9440 else if (((name[1] >= '0' && name[1] <= '9')
9441 || (name[1] >= 'a' && name[1] <= 'z'))
9442 && name[2] == '\0')
9443 {
9444 GROW_VECT (result, result_len, 4);
9445 xsnprintf (result, result_len, "'%c'", name[1]);
9446 return result;
9447 }
9448 else
9449 return name;
9450
9451 GROW_VECT (result, result_len, 16);
9452 if (isascii (v) && isprint (v))
9453 xsnprintf (result, result_len, "'%c'", v);
9454 else if (name[1] == 'U')
9455 xsnprintf (result, result_len, "[\"%02x\"]", v);
9456 else
9457 xsnprintf (result, result_len, "[\"%04x\"]", v);
9458
9459 return result;
9460 }
9461 else
9462 {
9463 tmp = strstr (name, "__");
9464 if (tmp == NULL)
9465 tmp = strstr (name, "$");
9466 if (tmp != NULL)
9467 {
9468 GROW_VECT (result, result_len, tmp - name + 1);
9469 strncpy (result, name, tmp - name);
9470 result[tmp - name] = '\0';
9471 return result;
9472 }
9473
9474 return name;
9475 }
9476 }
9477
9478 /* Evaluate the subexpression of EXP starting at *POS as for
9479 evaluate_type, updating *POS to point just past the evaluated
9480 expression. */
9481
9482 static struct value *
9483 evaluate_subexp_type (struct expression *exp, int *pos)
9484 {
9485 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9486 }
9487
9488 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9489 value it wraps. */
9490
9491 static struct value *
9492 unwrap_value (struct value *val)
9493 {
9494 struct type *type = ada_check_typedef (value_type (val));
9495
9496 if (ada_is_aligner_type (type))
9497 {
9498 struct value *v = ada_value_struct_elt (val, "F", 0);
9499 struct type *val_type = ada_check_typedef (value_type (v));
9500
9501 if (ada_type_name (val_type) == NULL)
9502 TYPE_NAME (val_type) = ada_type_name (type);
9503
9504 return unwrap_value (v);
9505 }
9506 else
9507 {
9508 struct type *raw_real_type =
9509 ada_check_typedef (ada_get_base_type (type));
9510
9511 /* If there is no parallel XVS or XVE type, then the value is
9512 already unwrapped. Return it without further modification. */
9513 if ((type == raw_real_type)
9514 && ada_find_parallel_type (type, "___XVE") == NULL)
9515 return val;
9516
9517 return
9518 coerce_unspec_val_to_type
9519 (val, ada_to_fixed_type (raw_real_type, 0,
9520 value_address (val),
9521 NULL, 1));
9522 }
9523 }
9524
9525 static struct value *
9526 cast_from_fixed (struct type *type, struct value *arg)
9527 {
9528 struct value *scale = ada_scaling_factor (value_type (arg));
9529 arg = value_cast (value_type (scale), arg);
9530
9531 arg = value_binop (arg, scale, BINOP_MUL);
9532 return value_cast (type, arg);
9533 }
9534
9535 static struct value *
9536 cast_to_fixed (struct type *type, struct value *arg)
9537 {
9538 if (type == value_type (arg))
9539 return arg;
9540
9541 struct value *scale = ada_scaling_factor (type);
9542 if (ada_is_fixed_point_type (value_type (arg)))
9543 arg = cast_from_fixed (value_type (scale), arg);
9544 else
9545 arg = value_cast (value_type (scale), arg);
9546
9547 arg = value_binop (arg, scale, BINOP_DIV);
9548 return value_cast (type, arg);
9549 }
9550
9551 /* Given two array types T1 and T2, return nonzero iff both arrays
9552 contain the same number of elements. */
9553
9554 static int
9555 ada_same_array_size_p (struct type *t1, struct type *t2)
9556 {
9557 LONGEST lo1, hi1, lo2, hi2;
9558
9559 /* Get the array bounds in order to verify that the size of
9560 the two arrays match. */
9561 if (!get_array_bounds (t1, &lo1, &hi1)
9562 || !get_array_bounds (t2, &lo2, &hi2))
9563 error (_("unable to determine array bounds"));
9564
9565 /* To make things easier for size comparison, normalize a bit
9566 the case of empty arrays by making sure that the difference
9567 between upper bound and lower bound is always -1. */
9568 if (lo1 > hi1)
9569 hi1 = lo1 - 1;
9570 if (lo2 > hi2)
9571 hi2 = lo2 - 1;
9572
9573 return (hi1 - lo1 == hi2 - lo2);
9574 }
9575
9576 /* Assuming that VAL is an array of integrals, and TYPE represents
9577 an array with the same number of elements, but with wider integral
9578 elements, return an array "casted" to TYPE. In practice, this
9579 means that the returned array is built by casting each element
9580 of the original array into TYPE's (wider) element type. */
9581
9582 static struct value *
9583 ada_promote_array_of_integrals (struct type *type, struct value *val)
9584 {
9585 struct type *elt_type = TYPE_TARGET_TYPE (type);
9586 LONGEST lo, hi;
9587 struct value *res;
9588 LONGEST i;
9589
9590 /* Verify that both val and type are arrays of scalars, and
9591 that the size of val's elements is smaller than the size
9592 of type's element. */
9593 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9594 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9595 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9596 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9597 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9598 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9599
9600 if (!get_array_bounds (type, &lo, &hi))
9601 error (_("unable to determine array bounds"));
9602
9603 res = allocate_value (type);
9604
9605 /* Promote each array element. */
9606 for (i = 0; i < hi - lo + 1; i++)
9607 {
9608 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9609
9610 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9611 value_contents_all (elt), TYPE_LENGTH (elt_type));
9612 }
9613
9614 return res;
9615 }
9616
9617 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9618 return the converted value. */
9619
9620 static struct value *
9621 coerce_for_assign (struct type *type, struct value *val)
9622 {
9623 struct type *type2 = value_type (val);
9624
9625 if (type == type2)
9626 return val;
9627
9628 type2 = ada_check_typedef (type2);
9629 type = ada_check_typedef (type);
9630
9631 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9632 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9633 {
9634 val = ada_value_ind (val);
9635 type2 = value_type (val);
9636 }
9637
9638 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9639 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9640 {
9641 if (!ada_same_array_size_p (type, type2))
9642 error (_("cannot assign arrays of different length"));
9643
9644 if (is_integral_type (TYPE_TARGET_TYPE (type))
9645 && is_integral_type (TYPE_TARGET_TYPE (type2))
9646 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9647 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9648 {
9649 /* Allow implicit promotion of the array elements to
9650 a wider type. */
9651 return ada_promote_array_of_integrals (type, val);
9652 }
9653
9654 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9655 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9656 error (_("Incompatible types in assignment"));
9657 deprecated_set_value_type (val, type);
9658 }
9659 return val;
9660 }
9661
9662 static struct value *
9663 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9664 {
9665 struct value *val;
9666 struct type *type1, *type2;
9667 LONGEST v, v1, v2;
9668
9669 arg1 = coerce_ref (arg1);
9670 arg2 = coerce_ref (arg2);
9671 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9672 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9673
9674 if (TYPE_CODE (type1) != TYPE_CODE_INT
9675 || TYPE_CODE (type2) != TYPE_CODE_INT)
9676 return value_binop (arg1, arg2, op);
9677
9678 switch (op)
9679 {
9680 case BINOP_MOD:
9681 case BINOP_DIV:
9682 case BINOP_REM:
9683 break;
9684 default:
9685 return value_binop (arg1, arg2, op);
9686 }
9687
9688 v2 = value_as_long (arg2);
9689 if (v2 == 0)
9690 error (_("second operand of %s must not be zero."), op_string (op));
9691
9692 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9693 return value_binop (arg1, arg2, op);
9694
9695 v1 = value_as_long (arg1);
9696 switch (op)
9697 {
9698 case BINOP_DIV:
9699 v = v1 / v2;
9700 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9701 v += v > 0 ? -1 : 1;
9702 break;
9703 case BINOP_REM:
9704 v = v1 % v2;
9705 if (v * v1 < 0)
9706 v -= v2;
9707 break;
9708 default:
9709 /* Should not reach this point. */
9710 v = 0;
9711 }
9712
9713 val = allocate_value (type1);
9714 store_unsigned_integer (value_contents_raw (val),
9715 TYPE_LENGTH (value_type (val)),
9716 gdbarch_byte_order (get_type_arch (type1)), v);
9717 return val;
9718 }
9719
9720 static int
9721 ada_value_equal (struct value *arg1, struct value *arg2)
9722 {
9723 if (ada_is_direct_array_type (value_type (arg1))
9724 || ada_is_direct_array_type (value_type (arg2)))
9725 {
9726 struct type *arg1_type, *arg2_type;
9727
9728 /* Automatically dereference any array reference before
9729 we attempt to perform the comparison. */
9730 arg1 = ada_coerce_ref (arg1);
9731 arg2 = ada_coerce_ref (arg2);
9732
9733 arg1 = ada_coerce_to_simple_array (arg1);
9734 arg2 = ada_coerce_to_simple_array (arg2);
9735
9736 arg1_type = ada_check_typedef (value_type (arg1));
9737 arg2_type = ada_check_typedef (value_type (arg2));
9738
9739 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9740 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9741 error (_("Attempt to compare array with non-array"));
9742 /* FIXME: The following works only for types whose
9743 representations use all bits (no padding or undefined bits)
9744 and do not have user-defined equality. */
9745 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9746 && memcmp (value_contents (arg1), value_contents (arg2),
9747 TYPE_LENGTH (arg1_type)) == 0);
9748 }
9749 return value_equal (arg1, arg2);
9750 }
9751
9752 /* Total number of component associations in the aggregate starting at
9753 index PC in EXP. Assumes that index PC is the start of an
9754 OP_AGGREGATE. */
9755
9756 static int
9757 num_component_specs (struct expression *exp, int pc)
9758 {
9759 int n, m, i;
9760
9761 m = exp->elts[pc + 1].longconst;
9762 pc += 3;
9763 n = 0;
9764 for (i = 0; i < m; i += 1)
9765 {
9766 switch (exp->elts[pc].opcode)
9767 {
9768 default:
9769 n += 1;
9770 break;
9771 case OP_CHOICES:
9772 n += exp->elts[pc + 1].longconst;
9773 break;
9774 }
9775 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9776 }
9777 return n;
9778 }
9779
9780 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9781 component of LHS (a simple array or a record), updating *POS past
9782 the expression, assuming that LHS is contained in CONTAINER. Does
9783 not modify the inferior's memory, nor does it modify LHS (unless
9784 LHS == CONTAINER). */
9785
9786 static void
9787 assign_component (struct value *container, struct value *lhs, LONGEST index,
9788 struct expression *exp, int *pos)
9789 {
9790 struct value *mark = value_mark ();
9791 struct value *elt;
9792 struct type *lhs_type = check_typedef (value_type (lhs));
9793
9794 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9795 {
9796 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9797 struct value *index_val = value_from_longest (index_type, index);
9798
9799 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9800 }
9801 else
9802 {
9803 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9804 elt = ada_to_fixed_value (elt);
9805 }
9806
9807 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9808 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9809 else
9810 value_assign_to_component (container, elt,
9811 ada_evaluate_subexp (NULL, exp, pos,
9812 EVAL_NORMAL));
9813
9814 value_free_to_mark (mark);
9815 }
9816
9817 /* Assuming that LHS represents an lvalue having a record or array
9818 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9819 of that aggregate's value to LHS, advancing *POS past the
9820 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9821 lvalue containing LHS (possibly LHS itself). Does not modify
9822 the inferior's memory, nor does it modify the contents of
9823 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9824
9825 static struct value *
9826 assign_aggregate (struct value *container,
9827 struct value *lhs, struct expression *exp,
9828 int *pos, enum noside noside)
9829 {
9830 struct type *lhs_type;
9831 int n = exp->elts[*pos+1].longconst;
9832 LONGEST low_index, high_index;
9833 int num_specs;
9834 LONGEST *indices;
9835 int max_indices, num_indices;
9836 int i;
9837
9838 *pos += 3;
9839 if (noside != EVAL_NORMAL)
9840 {
9841 for (i = 0; i < n; i += 1)
9842 ada_evaluate_subexp (NULL, exp, pos, noside);
9843 return container;
9844 }
9845
9846 container = ada_coerce_ref (container);
9847 if (ada_is_direct_array_type (value_type (container)))
9848 container = ada_coerce_to_simple_array (container);
9849 lhs = ada_coerce_ref (lhs);
9850 if (!deprecated_value_modifiable (lhs))
9851 error (_("Left operand of assignment is not a modifiable lvalue."));
9852
9853 lhs_type = check_typedef (value_type (lhs));
9854 if (ada_is_direct_array_type (lhs_type))
9855 {
9856 lhs = ada_coerce_to_simple_array (lhs);
9857 lhs_type = check_typedef (value_type (lhs));
9858 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9859 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9860 }
9861 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9862 {
9863 low_index = 0;
9864 high_index = num_visible_fields (lhs_type) - 1;
9865 }
9866 else
9867 error (_("Left-hand side must be array or record."));
9868
9869 num_specs = num_component_specs (exp, *pos - 3);
9870 max_indices = 4 * num_specs + 4;
9871 indices = XALLOCAVEC (LONGEST, max_indices);
9872 indices[0] = indices[1] = low_index - 1;
9873 indices[2] = indices[3] = high_index + 1;
9874 num_indices = 4;
9875
9876 for (i = 0; i < n; i += 1)
9877 {
9878 switch (exp->elts[*pos].opcode)
9879 {
9880 case OP_CHOICES:
9881 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9882 &num_indices, max_indices,
9883 low_index, high_index);
9884 break;
9885 case OP_POSITIONAL:
9886 aggregate_assign_positional (container, lhs, exp, pos, indices,
9887 &num_indices, max_indices,
9888 low_index, high_index);
9889 break;
9890 case OP_OTHERS:
9891 if (i != n-1)
9892 error (_("Misplaced 'others' clause"));
9893 aggregate_assign_others (container, lhs, exp, pos, indices,
9894 num_indices, low_index, high_index);
9895 break;
9896 default:
9897 error (_("Internal error: bad aggregate clause"));
9898 }
9899 }
9900
9901 return container;
9902 }
9903
9904 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9905 construct at *POS, updating *POS past the construct, given that
9906 the positions are relative to lower bound LOW, where HIGH is the
9907 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9908 updating *NUM_INDICES as needed. CONTAINER is as for
9909 assign_aggregate. */
9910 static void
9911 aggregate_assign_positional (struct value *container,
9912 struct value *lhs, struct expression *exp,
9913 int *pos, LONGEST *indices, int *num_indices,
9914 int max_indices, LONGEST low, LONGEST high)
9915 {
9916 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9917
9918 if (ind - 1 == high)
9919 warning (_("Extra components in aggregate ignored."));
9920 if (ind <= high)
9921 {
9922 add_component_interval (ind, ind, indices, num_indices, max_indices);
9923 *pos += 3;
9924 assign_component (container, lhs, ind, exp, pos);
9925 }
9926 else
9927 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9928 }
9929
9930 /* Assign into the components of LHS indexed by the OP_CHOICES
9931 construct at *POS, updating *POS past the construct, given that
9932 the allowable indices are LOW..HIGH. Record the indices assigned
9933 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9934 needed. CONTAINER is as for assign_aggregate. */
9935 static void
9936 aggregate_assign_from_choices (struct value *container,
9937 struct value *lhs, struct expression *exp,
9938 int *pos, LONGEST *indices, int *num_indices,
9939 int max_indices, LONGEST low, LONGEST high)
9940 {
9941 int j;
9942 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9943 int choice_pos, expr_pc;
9944 int is_array = ada_is_direct_array_type (value_type (lhs));
9945
9946 choice_pos = *pos += 3;
9947
9948 for (j = 0; j < n_choices; j += 1)
9949 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9950 expr_pc = *pos;
9951 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9952
9953 for (j = 0; j < n_choices; j += 1)
9954 {
9955 LONGEST lower, upper;
9956 enum exp_opcode op = exp->elts[choice_pos].opcode;
9957
9958 if (op == OP_DISCRETE_RANGE)
9959 {
9960 choice_pos += 1;
9961 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9962 EVAL_NORMAL));
9963 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9964 EVAL_NORMAL));
9965 }
9966 else if (is_array)
9967 {
9968 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9969 EVAL_NORMAL));
9970 upper = lower;
9971 }
9972 else
9973 {
9974 int ind;
9975 const char *name;
9976
9977 switch (op)
9978 {
9979 case OP_NAME:
9980 name = &exp->elts[choice_pos + 2].string;
9981 break;
9982 case OP_VAR_VALUE:
9983 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9984 break;
9985 default:
9986 error (_("Invalid record component association."));
9987 }
9988 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9989 ind = 0;
9990 if (! find_struct_field (name, value_type (lhs), 0,
9991 NULL, NULL, NULL, NULL, &ind))
9992 error (_("Unknown component name: %s."), name);
9993 lower = upper = ind;
9994 }
9995
9996 if (lower <= upper && (lower < low || upper > high))
9997 error (_("Index in component association out of bounds."));
9998
9999 add_component_interval (lower, upper, indices, num_indices,
10000 max_indices);
10001 while (lower <= upper)
10002 {
10003 int pos1;
10004
10005 pos1 = expr_pc;
10006 assign_component (container, lhs, lower, exp, &pos1);
10007 lower += 1;
10008 }
10009 }
10010 }
10011
10012 /* Assign the value of the expression in the OP_OTHERS construct in
10013 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10014 have not been previously assigned. The index intervals already assigned
10015 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10016 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10017 static void
10018 aggregate_assign_others (struct value *container,
10019 struct value *lhs, struct expression *exp,
10020 int *pos, LONGEST *indices, int num_indices,
10021 LONGEST low, LONGEST high)
10022 {
10023 int i;
10024 int expr_pc = *pos + 1;
10025
10026 for (i = 0; i < num_indices - 2; i += 2)
10027 {
10028 LONGEST ind;
10029
10030 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10031 {
10032 int localpos;
10033
10034 localpos = expr_pc;
10035 assign_component (container, lhs, ind, exp, &localpos);
10036 }
10037 }
10038 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10039 }
10040
10041 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10042 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10043 modifying *SIZE as needed. It is an error if *SIZE exceeds
10044 MAX_SIZE. The resulting intervals do not overlap. */
10045 static void
10046 add_component_interval (LONGEST low, LONGEST high,
10047 LONGEST* indices, int *size, int max_size)
10048 {
10049 int i, j;
10050
10051 for (i = 0; i < *size; i += 2) {
10052 if (high >= indices[i] && low <= indices[i + 1])
10053 {
10054 int kh;
10055
10056 for (kh = i + 2; kh < *size; kh += 2)
10057 if (high < indices[kh])
10058 break;
10059 if (low < indices[i])
10060 indices[i] = low;
10061 indices[i + 1] = indices[kh - 1];
10062 if (high > indices[i + 1])
10063 indices[i + 1] = high;
10064 memcpy (indices + i + 2, indices + kh, *size - kh);
10065 *size -= kh - i - 2;
10066 return;
10067 }
10068 else if (high < indices[i])
10069 break;
10070 }
10071
10072 if (*size == max_size)
10073 error (_("Internal error: miscounted aggregate components."));
10074 *size += 2;
10075 for (j = *size-1; j >= i+2; j -= 1)
10076 indices[j] = indices[j - 2];
10077 indices[i] = low;
10078 indices[i + 1] = high;
10079 }
10080
10081 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10082 is different. */
10083
10084 static struct value *
10085 ada_value_cast (struct type *type, struct value *arg2)
10086 {
10087 if (type == ada_check_typedef (value_type (arg2)))
10088 return arg2;
10089
10090 if (ada_is_fixed_point_type (type))
10091 return cast_to_fixed (type, arg2);
10092
10093 if (ada_is_fixed_point_type (value_type (arg2)))
10094 return cast_from_fixed (type, arg2);
10095
10096 return value_cast (type, arg2);
10097 }
10098
10099 /* Evaluating Ada expressions, and printing their result.
10100 ------------------------------------------------------
10101
10102 1. Introduction:
10103 ----------------
10104
10105 We usually evaluate an Ada expression in order to print its value.
10106 We also evaluate an expression in order to print its type, which
10107 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10108 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10109 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10110 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10111 similar.
10112
10113 Evaluating expressions is a little more complicated for Ada entities
10114 than it is for entities in languages such as C. The main reason for
10115 this is that Ada provides types whose definition might be dynamic.
10116 One example of such types is variant records. Or another example
10117 would be an array whose bounds can only be known at run time.
10118
10119 The following description is a general guide as to what should be
10120 done (and what should NOT be done) in order to evaluate an expression
10121 involving such types, and when. This does not cover how the semantic
10122 information is encoded by GNAT as this is covered separatly. For the
10123 document used as the reference for the GNAT encoding, see exp_dbug.ads
10124 in the GNAT sources.
10125
10126 Ideally, we should embed each part of this description next to its
10127 associated code. Unfortunately, the amount of code is so vast right
10128 now that it's hard to see whether the code handling a particular
10129 situation might be duplicated or not. One day, when the code is
10130 cleaned up, this guide might become redundant with the comments
10131 inserted in the code, and we might want to remove it.
10132
10133 2. ``Fixing'' an Entity, the Simple Case:
10134 -----------------------------------------
10135
10136 When evaluating Ada expressions, the tricky issue is that they may
10137 reference entities whose type contents and size are not statically
10138 known. Consider for instance a variant record:
10139
10140 type Rec (Empty : Boolean := True) is record
10141 case Empty is
10142 when True => null;
10143 when False => Value : Integer;
10144 end case;
10145 end record;
10146 Yes : Rec := (Empty => False, Value => 1);
10147 No : Rec := (empty => True);
10148
10149 The size and contents of that record depends on the value of the
10150 descriminant (Rec.Empty). At this point, neither the debugging
10151 information nor the associated type structure in GDB are able to
10152 express such dynamic types. So what the debugger does is to create
10153 "fixed" versions of the type that applies to the specific object.
10154 We also informally refer to this opperation as "fixing" an object,
10155 which means creating its associated fixed type.
10156
10157 Example: when printing the value of variable "Yes" above, its fixed
10158 type would look like this:
10159
10160 type Rec is record
10161 Empty : Boolean;
10162 Value : Integer;
10163 end record;
10164
10165 On the other hand, if we printed the value of "No", its fixed type
10166 would become:
10167
10168 type Rec is record
10169 Empty : Boolean;
10170 end record;
10171
10172 Things become a little more complicated when trying to fix an entity
10173 with a dynamic type that directly contains another dynamic type,
10174 such as an array of variant records, for instance. There are
10175 two possible cases: Arrays, and records.
10176
10177 3. ``Fixing'' Arrays:
10178 ---------------------
10179
10180 The type structure in GDB describes an array in terms of its bounds,
10181 and the type of its elements. By design, all elements in the array
10182 have the same type and we cannot represent an array of variant elements
10183 using the current type structure in GDB. When fixing an array,
10184 we cannot fix the array element, as we would potentially need one
10185 fixed type per element of the array. As a result, the best we can do
10186 when fixing an array is to produce an array whose bounds and size
10187 are correct (allowing us to read it from memory), but without having
10188 touched its element type. Fixing each element will be done later,
10189 when (if) necessary.
10190
10191 Arrays are a little simpler to handle than records, because the same
10192 amount of memory is allocated for each element of the array, even if
10193 the amount of space actually used by each element differs from element
10194 to element. Consider for instance the following array of type Rec:
10195
10196 type Rec_Array is array (1 .. 2) of Rec;
10197
10198 The actual amount of memory occupied by each element might be different
10199 from element to element, depending on the value of their discriminant.
10200 But the amount of space reserved for each element in the array remains
10201 fixed regardless. So we simply need to compute that size using
10202 the debugging information available, from which we can then determine
10203 the array size (we multiply the number of elements of the array by
10204 the size of each element).
10205
10206 The simplest case is when we have an array of a constrained element
10207 type. For instance, consider the following type declarations:
10208
10209 type Bounded_String (Max_Size : Integer) is
10210 Length : Integer;
10211 Buffer : String (1 .. Max_Size);
10212 end record;
10213 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10214
10215 In this case, the compiler describes the array as an array of
10216 variable-size elements (identified by its XVS suffix) for which
10217 the size can be read in the parallel XVZ variable.
10218
10219 In the case of an array of an unconstrained element type, the compiler
10220 wraps the array element inside a private PAD type. This type should not
10221 be shown to the user, and must be "unwrap"'ed before printing. Note
10222 that we also use the adjective "aligner" in our code to designate
10223 these wrapper types.
10224
10225 In some cases, the size allocated for each element is statically
10226 known. In that case, the PAD type already has the correct size,
10227 and the array element should remain unfixed.
10228
10229 But there are cases when this size is not statically known.
10230 For instance, assuming that "Five" is an integer variable:
10231
10232 type Dynamic is array (1 .. Five) of Integer;
10233 type Wrapper (Has_Length : Boolean := False) is record
10234 Data : Dynamic;
10235 case Has_Length is
10236 when True => Length : Integer;
10237 when False => null;
10238 end case;
10239 end record;
10240 type Wrapper_Array is array (1 .. 2) of Wrapper;
10241
10242 Hello : Wrapper_Array := (others => (Has_Length => True,
10243 Data => (others => 17),
10244 Length => 1));
10245
10246
10247 The debugging info would describe variable Hello as being an
10248 array of a PAD type. The size of that PAD type is not statically
10249 known, but can be determined using a parallel XVZ variable.
10250 In that case, a copy of the PAD type with the correct size should
10251 be used for the fixed array.
10252
10253 3. ``Fixing'' record type objects:
10254 ----------------------------------
10255
10256 Things are slightly different from arrays in the case of dynamic
10257 record types. In this case, in order to compute the associated
10258 fixed type, we need to determine the size and offset of each of
10259 its components. This, in turn, requires us to compute the fixed
10260 type of each of these components.
10261
10262 Consider for instance the example:
10263
10264 type Bounded_String (Max_Size : Natural) is record
10265 Str : String (1 .. Max_Size);
10266 Length : Natural;
10267 end record;
10268 My_String : Bounded_String (Max_Size => 10);
10269
10270 In that case, the position of field "Length" depends on the size
10271 of field Str, which itself depends on the value of the Max_Size
10272 discriminant. In order to fix the type of variable My_String,
10273 we need to fix the type of field Str. Therefore, fixing a variant
10274 record requires us to fix each of its components.
10275
10276 However, if a component does not have a dynamic size, the component
10277 should not be fixed. In particular, fields that use a PAD type
10278 should not fixed. Here is an example where this might happen
10279 (assuming type Rec above):
10280
10281 type Container (Big : Boolean) is record
10282 First : Rec;
10283 After : Integer;
10284 case Big is
10285 when True => Another : Integer;
10286 when False => null;
10287 end case;
10288 end record;
10289 My_Container : Container := (Big => False,
10290 First => (Empty => True),
10291 After => 42);
10292
10293 In that example, the compiler creates a PAD type for component First,
10294 whose size is constant, and then positions the component After just
10295 right after it. The offset of component After is therefore constant
10296 in this case.
10297
10298 The debugger computes the position of each field based on an algorithm
10299 that uses, among other things, the actual position and size of the field
10300 preceding it. Let's now imagine that the user is trying to print
10301 the value of My_Container. If the type fixing was recursive, we would
10302 end up computing the offset of field After based on the size of the
10303 fixed version of field First. And since in our example First has
10304 only one actual field, the size of the fixed type is actually smaller
10305 than the amount of space allocated to that field, and thus we would
10306 compute the wrong offset of field After.
10307
10308 To make things more complicated, we need to watch out for dynamic
10309 components of variant records (identified by the ___XVL suffix in
10310 the component name). Even if the target type is a PAD type, the size
10311 of that type might not be statically known. So the PAD type needs
10312 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10313 we might end up with the wrong size for our component. This can be
10314 observed with the following type declarations:
10315
10316 type Octal is new Integer range 0 .. 7;
10317 type Octal_Array is array (Positive range <>) of Octal;
10318 pragma Pack (Octal_Array);
10319
10320 type Octal_Buffer (Size : Positive) is record
10321 Buffer : Octal_Array (1 .. Size);
10322 Length : Integer;
10323 end record;
10324
10325 In that case, Buffer is a PAD type whose size is unset and needs
10326 to be computed by fixing the unwrapped type.
10327
10328 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10329 ----------------------------------------------------------
10330
10331 Lastly, when should the sub-elements of an entity that remained unfixed
10332 thus far, be actually fixed?
10333
10334 The answer is: Only when referencing that element. For instance
10335 when selecting one component of a record, this specific component
10336 should be fixed at that point in time. Or when printing the value
10337 of a record, each component should be fixed before its value gets
10338 printed. Similarly for arrays, the element of the array should be
10339 fixed when printing each element of the array, or when extracting
10340 one element out of that array. On the other hand, fixing should
10341 not be performed on the elements when taking a slice of an array!
10342
10343 Note that one of the side effects of miscomputing the offset and
10344 size of each field is that we end up also miscomputing the size
10345 of the containing type. This can have adverse results when computing
10346 the value of an entity. GDB fetches the value of an entity based
10347 on the size of its type, and thus a wrong size causes GDB to fetch
10348 the wrong amount of memory. In the case where the computed size is
10349 too small, GDB fetches too little data to print the value of our
10350 entity. Results in this case are unpredictable, as we usually read
10351 past the buffer containing the data =:-o. */
10352
10353 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10354 for that subexpression cast to TO_TYPE. Advance *POS over the
10355 subexpression. */
10356
10357 static value *
10358 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10359 enum noside noside, struct type *to_type)
10360 {
10361 int pc = *pos;
10362
10363 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10364 || exp->elts[pc].opcode == OP_VAR_VALUE)
10365 {
10366 (*pos) += 4;
10367
10368 value *val;
10369 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10370 {
10371 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10372 return value_zero (to_type, not_lval);
10373
10374 val = evaluate_var_msym_value (noside,
10375 exp->elts[pc + 1].objfile,
10376 exp->elts[pc + 2].msymbol);
10377 }
10378 else
10379 val = evaluate_var_value (noside,
10380 exp->elts[pc + 1].block,
10381 exp->elts[pc + 2].symbol);
10382
10383 if (noside == EVAL_SKIP)
10384 return eval_skip_value (exp);
10385
10386 val = ada_value_cast (to_type, val);
10387
10388 /* Follow the Ada language semantics that do not allow taking
10389 an address of the result of a cast (view conversion in Ada). */
10390 if (VALUE_LVAL (val) == lval_memory)
10391 {
10392 if (value_lazy (val))
10393 value_fetch_lazy (val);
10394 VALUE_LVAL (val) = not_lval;
10395 }
10396 return val;
10397 }
10398
10399 value *val = evaluate_subexp (to_type, exp, pos, noside);
10400 if (noside == EVAL_SKIP)
10401 return eval_skip_value (exp);
10402 return ada_value_cast (to_type, val);
10403 }
10404
10405 /* Implement the evaluate_exp routine in the exp_descriptor structure
10406 for the Ada language. */
10407
10408 static struct value *
10409 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10410 int *pos, enum noside noside)
10411 {
10412 enum exp_opcode op;
10413 int tem;
10414 int pc;
10415 int preeval_pos;
10416 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10417 struct type *type;
10418 int nargs, oplen;
10419 struct value **argvec;
10420
10421 pc = *pos;
10422 *pos += 1;
10423 op = exp->elts[pc].opcode;
10424
10425 switch (op)
10426 {
10427 default:
10428 *pos -= 1;
10429 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10430
10431 if (noside == EVAL_NORMAL)
10432 arg1 = unwrap_value (arg1);
10433
10434 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10435 then we need to perform the conversion manually, because
10436 evaluate_subexp_standard doesn't do it. This conversion is
10437 necessary in Ada because the different kinds of float/fixed
10438 types in Ada have different representations.
10439
10440 Similarly, we need to perform the conversion from OP_LONG
10441 ourselves. */
10442 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10443 arg1 = ada_value_cast (expect_type, arg1);
10444
10445 return arg1;
10446
10447 case OP_STRING:
10448 {
10449 struct value *result;
10450
10451 *pos -= 1;
10452 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10453 /* The result type will have code OP_STRING, bashed there from
10454 OP_ARRAY. Bash it back. */
10455 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10456 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10457 return result;
10458 }
10459
10460 case UNOP_CAST:
10461 (*pos) += 2;
10462 type = exp->elts[pc + 1].type;
10463 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10464
10465 case UNOP_QUAL:
10466 (*pos) += 2;
10467 type = exp->elts[pc + 1].type;
10468 return ada_evaluate_subexp (type, exp, pos, noside);
10469
10470 case BINOP_ASSIGN:
10471 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10472 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10473 {
10474 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10475 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10476 return arg1;
10477 return ada_value_assign (arg1, arg1);
10478 }
10479 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10480 except if the lhs of our assignment is a convenience variable.
10481 In the case of assigning to a convenience variable, the lhs
10482 should be exactly the result of the evaluation of the rhs. */
10483 type = value_type (arg1);
10484 if (VALUE_LVAL (arg1) == lval_internalvar)
10485 type = NULL;
10486 arg2 = evaluate_subexp (type, exp, pos, noside);
10487 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10488 return arg1;
10489 if (VALUE_LVAL (arg1) == lval_internalvar)
10490 {
10491 /* Nothing. */
10492 }
10493 else if (ada_is_fixed_point_type (value_type (arg1)))
10494 arg2 = cast_to_fixed (value_type (arg1), arg2);
10495 else if (ada_is_fixed_point_type (value_type (arg2)))
10496 error
10497 (_("Fixed-point values must be assigned to fixed-point variables"));
10498 else
10499 arg2 = coerce_for_assign (value_type (arg1), arg2);
10500 return ada_value_assign (arg1, arg2);
10501
10502 case BINOP_ADD:
10503 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10504 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10505 if (noside == EVAL_SKIP)
10506 goto nosideret;
10507 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10508 return (value_from_longest
10509 (value_type (arg1),
10510 value_as_long (arg1) + value_as_long (arg2)));
10511 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10512 return (value_from_longest
10513 (value_type (arg2),
10514 value_as_long (arg1) + value_as_long (arg2)));
10515 if ((ada_is_fixed_point_type (value_type (arg1))
10516 || ada_is_fixed_point_type (value_type (arg2)))
10517 && value_type (arg1) != value_type (arg2))
10518 error (_("Operands of fixed-point addition must have the same type"));
10519 /* Do the addition, and cast the result to the type of the first
10520 argument. We cannot cast the result to a reference type, so if
10521 ARG1 is a reference type, find its underlying type. */
10522 type = value_type (arg1);
10523 while (TYPE_CODE (type) == TYPE_CODE_REF)
10524 type = TYPE_TARGET_TYPE (type);
10525 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10526 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10527
10528 case BINOP_SUB:
10529 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10530 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10531 if (noside == EVAL_SKIP)
10532 goto nosideret;
10533 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10534 return (value_from_longest
10535 (value_type (arg1),
10536 value_as_long (arg1) - value_as_long (arg2)));
10537 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10538 return (value_from_longest
10539 (value_type (arg2),
10540 value_as_long (arg1) - value_as_long (arg2)));
10541 if ((ada_is_fixed_point_type (value_type (arg1))
10542 || ada_is_fixed_point_type (value_type (arg2)))
10543 && value_type (arg1) != value_type (arg2))
10544 error (_("Operands of fixed-point subtraction "
10545 "must have the same type"));
10546 /* Do the substraction, and cast the result to the type of the first
10547 argument. We cannot cast the result to a reference type, so if
10548 ARG1 is a reference type, find its underlying type. */
10549 type = value_type (arg1);
10550 while (TYPE_CODE (type) == TYPE_CODE_REF)
10551 type = TYPE_TARGET_TYPE (type);
10552 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10553 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10554
10555 case BINOP_MUL:
10556 case BINOP_DIV:
10557 case BINOP_REM:
10558 case BINOP_MOD:
10559 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10560 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10561 if (noside == EVAL_SKIP)
10562 goto nosideret;
10563 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10564 {
10565 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10566 return value_zero (value_type (arg1), not_lval);
10567 }
10568 else
10569 {
10570 type = builtin_type (exp->gdbarch)->builtin_double;
10571 if (ada_is_fixed_point_type (value_type (arg1)))
10572 arg1 = cast_from_fixed (type, arg1);
10573 if (ada_is_fixed_point_type (value_type (arg2)))
10574 arg2 = cast_from_fixed (type, arg2);
10575 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10576 return ada_value_binop (arg1, arg2, op);
10577 }
10578
10579 case BINOP_EQUAL:
10580 case BINOP_NOTEQUAL:
10581 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10582 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10583 if (noside == EVAL_SKIP)
10584 goto nosideret;
10585 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10586 tem = 0;
10587 else
10588 {
10589 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10590 tem = ada_value_equal (arg1, arg2);
10591 }
10592 if (op == BINOP_NOTEQUAL)
10593 tem = !tem;
10594 type = language_bool_type (exp->language_defn, exp->gdbarch);
10595 return value_from_longest (type, (LONGEST) tem);
10596
10597 case UNOP_NEG:
10598 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10599 if (noside == EVAL_SKIP)
10600 goto nosideret;
10601 else if (ada_is_fixed_point_type (value_type (arg1)))
10602 return value_cast (value_type (arg1), value_neg (arg1));
10603 else
10604 {
10605 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10606 return value_neg (arg1);
10607 }
10608
10609 case BINOP_LOGICAL_AND:
10610 case BINOP_LOGICAL_OR:
10611 case UNOP_LOGICAL_NOT:
10612 {
10613 struct value *val;
10614
10615 *pos -= 1;
10616 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10617 type = language_bool_type (exp->language_defn, exp->gdbarch);
10618 return value_cast (type, val);
10619 }
10620
10621 case BINOP_BITWISE_AND:
10622 case BINOP_BITWISE_IOR:
10623 case BINOP_BITWISE_XOR:
10624 {
10625 struct value *val;
10626
10627 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10628 *pos = pc;
10629 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10630
10631 return value_cast (value_type (arg1), val);
10632 }
10633
10634 case OP_VAR_VALUE:
10635 *pos -= 1;
10636
10637 if (noside == EVAL_SKIP)
10638 {
10639 *pos += 4;
10640 goto nosideret;
10641 }
10642
10643 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10644 /* Only encountered when an unresolved symbol occurs in a
10645 context other than a function call, in which case, it is
10646 invalid. */
10647 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10648 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10649
10650 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10651 {
10652 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10653 /* Check to see if this is a tagged type. We also need to handle
10654 the case where the type is a reference to a tagged type, but
10655 we have to be careful to exclude pointers to tagged types.
10656 The latter should be shown as usual (as a pointer), whereas
10657 a reference should mostly be transparent to the user. */
10658 if (ada_is_tagged_type (type, 0)
10659 || (TYPE_CODE (type) == TYPE_CODE_REF
10660 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10661 {
10662 /* Tagged types are a little special in the fact that the real
10663 type is dynamic and can only be determined by inspecting the
10664 object's tag. This means that we need to get the object's
10665 value first (EVAL_NORMAL) and then extract the actual object
10666 type from its tag.
10667
10668 Note that we cannot skip the final step where we extract
10669 the object type from its tag, because the EVAL_NORMAL phase
10670 results in dynamic components being resolved into fixed ones.
10671 This can cause problems when trying to print the type
10672 description of tagged types whose parent has a dynamic size:
10673 We use the type name of the "_parent" component in order
10674 to print the name of the ancestor type in the type description.
10675 If that component had a dynamic size, the resolution into
10676 a fixed type would result in the loss of that type name,
10677 thus preventing us from printing the name of the ancestor
10678 type in the type description. */
10679 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10680
10681 if (TYPE_CODE (type) != TYPE_CODE_REF)
10682 {
10683 struct type *actual_type;
10684
10685 actual_type = type_from_tag (ada_value_tag (arg1));
10686 if (actual_type == NULL)
10687 /* If, for some reason, we were unable to determine
10688 the actual type from the tag, then use the static
10689 approximation that we just computed as a fallback.
10690 This can happen if the debugging information is
10691 incomplete, for instance. */
10692 actual_type = type;
10693 return value_zero (actual_type, not_lval);
10694 }
10695 else
10696 {
10697 /* In the case of a ref, ada_coerce_ref takes care
10698 of determining the actual type. But the evaluation
10699 should return a ref as it should be valid to ask
10700 for its address; so rebuild a ref after coerce. */
10701 arg1 = ada_coerce_ref (arg1);
10702 return value_ref (arg1, TYPE_CODE_REF);
10703 }
10704 }
10705
10706 /* Records and unions for which GNAT encodings have been
10707 generated need to be statically fixed as well.
10708 Otherwise, non-static fixing produces a type where
10709 all dynamic properties are removed, which prevents "ptype"
10710 from being able to completely describe the type.
10711 For instance, a case statement in a variant record would be
10712 replaced by the relevant components based on the actual
10713 value of the discriminants. */
10714 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10715 && dynamic_template_type (type) != NULL)
10716 || (TYPE_CODE (type) == TYPE_CODE_UNION
10717 && ada_find_parallel_type (type, "___XVU") != NULL))
10718 {
10719 *pos += 4;
10720 return value_zero (to_static_fixed_type (type), not_lval);
10721 }
10722 }
10723
10724 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10725 return ada_to_fixed_value (arg1);
10726
10727 case OP_FUNCALL:
10728 (*pos) += 2;
10729
10730 /* Allocate arg vector, including space for the function to be
10731 called in argvec[0] and a terminating NULL. */
10732 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10733 argvec = XALLOCAVEC (struct value *, nargs + 2);
10734
10735 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10736 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10737 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10738 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10739 else
10740 {
10741 for (tem = 0; tem <= nargs; tem += 1)
10742 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10743 argvec[tem] = 0;
10744
10745 if (noside == EVAL_SKIP)
10746 goto nosideret;
10747 }
10748
10749 if (ada_is_constrained_packed_array_type
10750 (desc_base_type (value_type (argvec[0]))))
10751 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10752 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10753 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10754 /* This is a packed array that has already been fixed, and
10755 therefore already coerced to a simple array. Nothing further
10756 to do. */
10757 ;
10758 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10759 {
10760 /* Make sure we dereference references so that all the code below
10761 feels like it's really handling the referenced value. Wrapping
10762 types (for alignment) may be there, so make sure we strip them as
10763 well. */
10764 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10765 }
10766 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10767 && VALUE_LVAL (argvec[0]) == lval_memory)
10768 argvec[0] = value_addr (argvec[0]);
10769
10770 type = ada_check_typedef (value_type (argvec[0]));
10771
10772 /* Ada allows us to implicitly dereference arrays when subscripting
10773 them. So, if this is an array typedef (encoding use for array
10774 access types encoded as fat pointers), strip it now. */
10775 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10776 type = ada_typedef_target_type (type);
10777
10778 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10779 {
10780 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10781 {
10782 case TYPE_CODE_FUNC:
10783 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10784 break;
10785 case TYPE_CODE_ARRAY:
10786 break;
10787 case TYPE_CODE_STRUCT:
10788 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10789 argvec[0] = ada_value_ind (argvec[0]);
10790 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10791 break;
10792 default:
10793 error (_("cannot subscript or call something of type `%s'"),
10794 ada_type_name (value_type (argvec[0])));
10795 break;
10796 }
10797 }
10798
10799 switch (TYPE_CODE (type))
10800 {
10801 case TYPE_CODE_FUNC:
10802 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10803 {
10804 if (TYPE_TARGET_TYPE (type) == NULL)
10805 error_call_unknown_return_type (NULL);
10806 return allocate_value (TYPE_TARGET_TYPE (type));
10807 }
10808 return call_function_by_hand (argvec[0], NULL,
10809 gdb::make_array_view (argvec + 1,
10810 nargs));
10811 case TYPE_CODE_INTERNAL_FUNCTION:
10812 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10813 /* We don't know anything about what the internal
10814 function might return, but we have to return
10815 something. */
10816 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10817 not_lval);
10818 else
10819 return call_internal_function (exp->gdbarch, exp->language_defn,
10820 argvec[0], nargs, argvec + 1);
10821
10822 case TYPE_CODE_STRUCT:
10823 {
10824 int arity;
10825
10826 arity = ada_array_arity (type);
10827 type = ada_array_element_type (type, nargs);
10828 if (type == NULL)
10829 error (_("cannot subscript or call a record"));
10830 if (arity != nargs)
10831 error (_("wrong number of subscripts; expecting %d"), arity);
10832 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10833 return value_zero (ada_aligned_type (type), lval_memory);
10834 return
10835 unwrap_value (ada_value_subscript
10836 (argvec[0], nargs, argvec + 1));
10837 }
10838 case TYPE_CODE_ARRAY:
10839 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10840 {
10841 type = ada_array_element_type (type, nargs);
10842 if (type == NULL)
10843 error (_("element type of array unknown"));
10844 else
10845 return value_zero (ada_aligned_type (type), lval_memory);
10846 }
10847 return
10848 unwrap_value (ada_value_subscript
10849 (ada_coerce_to_simple_array (argvec[0]),
10850 nargs, argvec + 1));
10851 case TYPE_CODE_PTR: /* Pointer to array */
10852 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10853 {
10854 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10855 type = ada_array_element_type (type, nargs);
10856 if (type == NULL)
10857 error (_("element type of array unknown"));
10858 else
10859 return value_zero (ada_aligned_type (type), lval_memory);
10860 }
10861 return
10862 unwrap_value (ada_value_ptr_subscript (argvec[0],
10863 nargs, argvec + 1));
10864
10865 default:
10866 error (_("Attempt to index or call something other than an "
10867 "array or function"));
10868 }
10869
10870 case TERNOP_SLICE:
10871 {
10872 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10873 struct value *low_bound_val =
10874 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10875 struct value *high_bound_val =
10876 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10877 LONGEST low_bound;
10878 LONGEST high_bound;
10879
10880 low_bound_val = coerce_ref (low_bound_val);
10881 high_bound_val = coerce_ref (high_bound_val);
10882 low_bound = value_as_long (low_bound_val);
10883 high_bound = value_as_long (high_bound_val);
10884
10885 if (noside == EVAL_SKIP)
10886 goto nosideret;
10887
10888 /* If this is a reference to an aligner type, then remove all
10889 the aligners. */
10890 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10891 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10892 TYPE_TARGET_TYPE (value_type (array)) =
10893 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10894
10895 if (ada_is_constrained_packed_array_type (value_type (array)))
10896 error (_("cannot slice a packed array"));
10897
10898 /* If this is a reference to an array or an array lvalue,
10899 convert to a pointer. */
10900 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10901 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10902 && VALUE_LVAL (array) == lval_memory))
10903 array = value_addr (array);
10904
10905 if (noside == EVAL_AVOID_SIDE_EFFECTS
10906 && ada_is_array_descriptor_type (ada_check_typedef
10907 (value_type (array))))
10908 return empty_array (ada_type_of_array (array, 0), low_bound,
10909 high_bound);
10910
10911 array = ada_coerce_to_simple_array_ptr (array);
10912
10913 /* If we have more than one level of pointer indirection,
10914 dereference the value until we get only one level. */
10915 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10916 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10917 == TYPE_CODE_PTR))
10918 array = value_ind (array);
10919
10920 /* Make sure we really do have an array type before going further,
10921 to avoid a SEGV when trying to get the index type or the target
10922 type later down the road if the debug info generated by
10923 the compiler is incorrect or incomplete. */
10924 if (!ada_is_simple_array_type (value_type (array)))
10925 error (_("cannot take slice of non-array"));
10926
10927 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10928 == TYPE_CODE_PTR)
10929 {
10930 struct type *type0 = ada_check_typedef (value_type (array));
10931
10932 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10933 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10934 else
10935 {
10936 struct type *arr_type0 =
10937 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10938
10939 return ada_value_slice_from_ptr (array, arr_type0,
10940 longest_to_int (low_bound),
10941 longest_to_int (high_bound));
10942 }
10943 }
10944 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10945 return array;
10946 else if (high_bound < low_bound)
10947 return empty_array (value_type (array), low_bound, high_bound);
10948 else
10949 return ada_value_slice (array, longest_to_int (low_bound),
10950 longest_to_int (high_bound));
10951 }
10952
10953 case UNOP_IN_RANGE:
10954 (*pos) += 2;
10955 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10956 type = check_typedef (exp->elts[pc + 1].type);
10957
10958 if (noside == EVAL_SKIP)
10959 goto nosideret;
10960
10961 switch (TYPE_CODE (type))
10962 {
10963 default:
10964 lim_warning (_("Membership test incompletely implemented; "
10965 "always returns true"));
10966 type = language_bool_type (exp->language_defn, exp->gdbarch);
10967 return value_from_longest (type, (LONGEST) 1);
10968
10969 case TYPE_CODE_RANGE:
10970 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10971 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10972 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10973 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10974 type = language_bool_type (exp->language_defn, exp->gdbarch);
10975 return
10976 value_from_longest (type,
10977 (value_less (arg1, arg3)
10978 || value_equal (arg1, arg3))
10979 && (value_less (arg2, arg1)
10980 || value_equal (arg2, arg1)));
10981 }
10982
10983 case BINOP_IN_BOUNDS:
10984 (*pos) += 2;
10985 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10986 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10987
10988 if (noside == EVAL_SKIP)
10989 goto nosideret;
10990
10991 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10992 {
10993 type = language_bool_type (exp->language_defn, exp->gdbarch);
10994 return value_zero (type, not_lval);
10995 }
10996
10997 tem = longest_to_int (exp->elts[pc + 1].longconst);
10998
10999 type = ada_index_type (value_type (arg2), tem, "range");
11000 if (!type)
11001 type = value_type (arg1);
11002
11003 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11004 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11005
11006 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11007 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11008 type = language_bool_type (exp->language_defn, exp->gdbarch);
11009 return
11010 value_from_longest (type,
11011 (value_less (arg1, arg3)
11012 || value_equal (arg1, arg3))
11013 && (value_less (arg2, arg1)
11014 || value_equal (arg2, arg1)));
11015
11016 case TERNOP_IN_RANGE:
11017 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11018 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11019 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11020
11021 if (noside == EVAL_SKIP)
11022 goto nosideret;
11023
11024 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11025 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11026 type = language_bool_type (exp->language_defn, exp->gdbarch);
11027 return
11028 value_from_longest (type,
11029 (value_less (arg1, arg3)
11030 || value_equal (arg1, arg3))
11031 && (value_less (arg2, arg1)
11032 || value_equal (arg2, arg1)));
11033
11034 case OP_ATR_FIRST:
11035 case OP_ATR_LAST:
11036 case OP_ATR_LENGTH:
11037 {
11038 struct type *type_arg;
11039
11040 if (exp->elts[*pos].opcode == OP_TYPE)
11041 {
11042 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11043 arg1 = NULL;
11044 type_arg = check_typedef (exp->elts[pc + 2].type);
11045 }
11046 else
11047 {
11048 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11049 type_arg = NULL;
11050 }
11051
11052 if (exp->elts[*pos].opcode != OP_LONG)
11053 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11054 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11055 *pos += 4;
11056
11057 if (noside == EVAL_SKIP)
11058 goto nosideret;
11059 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11060 {
11061 if (type_arg == NULL)
11062 type_arg = value_type (arg1);
11063
11064 if (ada_is_constrained_packed_array_type (type_arg))
11065 type_arg = decode_constrained_packed_array_type (type_arg);
11066
11067 if (!discrete_type_p (type_arg))
11068 {
11069 switch (op)
11070 {
11071 default: /* Should never happen. */
11072 error (_("unexpected attribute encountered"));
11073 case OP_ATR_FIRST:
11074 case OP_ATR_LAST:
11075 type_arg = ada_index_type (type_arg, tem,
11076 ada_attribute_name (op));
11077 break;
11078 case OP_ATR_LENGTH:
11079 type_arg = builtin_type (exp->gdbarch)->builtin_int;
11080 break;
11081 }
11082 }
11083
11084 return value_zero (type_arg, not_lval);
11085 }
11086 else if (type_arg == NULL)
11087 {
11088 arg1 = ada_coerce_ref (arg1);
11089
11090 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11091 arg1 = ada_coerce_to_simple_array (arg1);
11092
11093 if (op == OP_ATR_LENGTH)
11094 type = builtin_type (exp->gdbarch)->builtin_int;
11095 else
11096 {
11097 type = ada_index_type (value_type (arg1), tem,
11098 ada_attribute_name (op));
11099 if (type == NULL)
11100 type = builtin_type (exp->gdbarch)->builtin_int;
11101 }
11102
11103 switch (op)
11104 {
11105 default: /* Should never happen. */
11106 error (_("unexpected attribute encountered"));
11107 case OP_ATR_FIRST:
11108 return value_from_longest
11109 (type, ada_array_bound (arg1, tem, 0));
11110 case OP_ATR_LAST:
11111 return value_from_longest
11112 (type, ada_array_bound (arg1, tem, 1));
11113 case OP_ATR_LENGTH:
11114 return value_from_longest
11115 (type, ada_array_length (arg1, tem));
11116 }
11117 }
11118 else if (discrete_type_p (type_arg))
11119 {
11120 struct type *range_type;
11121 const char *name = ada_type_name (type_arg);
11122
11123 range_type = NULL;
11124 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11125 range_type = to_fixed_range_type (type_arg, NULL);
11126 if (range_type == NULL)
11127 range_type = type_arg;
11128 switch (op)
11129 {
11130 default:
11131 error (_("unexpected attribute encountered"));
11132 case OP_ATR_FIRST:
11133 return value_from_longest
11134 (range_type, ada_discrete_type_low_bound (range_type));
11135 case OP_ATR_LAST:
11136 return value_from_longest
11137 (range_type, ada_discrete_type_high_bound (range_type));
11138 case OP_ATR_LENGTH:
11139 error (_("the 'length attribute applies only to array types"));
11140 }
11141 }
11142 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11143 error (_("unimplemented type attribute"));
11144 else
11145 {
11146 LONGEST low, high;
11147
11148 if (ada_is_constrained_packed_array_type (type_arg))
11149 type_arg = decode_constrained_packed_array_type (type_arg);
11150
11151 if (op == OP_ATR_LENGTH)
11152 type = builtin_type (exp->gdbarch)->builtin_int;
11153 else
11154 {
11155 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11156 if (type == NULL)
11157 type = builtin_type (exp->gdbarch)->builtin_int;
11158 }
11159
11160 switch (op)
11161 {
11162 default:
11163 error (_("unexpected attribute encountered"));
11164 case OP_ATR_FIRST:
11165 low = ada_array_bound_from_type (type_arg, tem, 0);
11166 return value_from_longest (type, low);
11167 case OP_ATR_LAST:
11168 high = ada_array_bound_from_type (type_arg, tem, 1);
11169 return value_from_longest (type, high);
11170 case OP_ATR_LENGTH:
11171 low = ada_array_bound_from_type (type_arg, tem, 0);
11172 high = ada_array_bound_from_type (type_arg, tem, 1);
11173 return value_from_longest (type, high - low + 1);
11174 }
11175 }
11176 }
11177
11178 case OP_ATR_TAG:
11179 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11180 if (noside == EVAL_SKIP)
11181 goto nosideret;
11182
11183 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11184 return value_zero (ada_tag_type (arg1), not_lval);
11185
11186 return ada_value_tag (arg1);
11187
11188 case OP_ATR_MIN:
11189 case OP_ATR_MAX:
11190 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11191 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11192 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11193 if (noside == EVAL_SKIP)
11194 goto nosideret;
11195 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11196 return value_zero (value_type (arg1), not_lval);
11197 else
11198 {
11199 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11200 return value_binop (arg1, arg2,
11201 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11202 }
11203
11204 case OP_ATR_MODULUS:
11205 {
11206 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11207
11208 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11209 if (noside == EVAL_SKIP)
11210 goto nosideret;
11211
11212 if (!ada_is_modular_type (type_arg))
11213 error (_("'modulus must be applied to modular type"));
11214
11215 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11216 ada_modulus (type_arg));
11217 }
11218
11219
11220 case OP_ATR_POS:
11221 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11222 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11223 if (noside == EVAL_SKIP)
11224 goto nosideret;
11225 type = builtin_type (exp->gdbarch)->builtin_int;
11226 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11227 return value_zero (type, not_lval);
11228 else
11229 return value_pos_atr (type, arg1);
11230
11231 case OP_ATR_SIZE:
11232 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11233 type = value_type (arg1);
11234
11235 /* If the argument is a reference, then dereference its type, since
11236 the user is really asking for the size of the actual object,
11237 not the size of the pointer. */
11238 if (TYPE_CODE (type) == TYPE_CODE_REF)
11239 type = TYPE_TARGET_TYPE (type);
11240
11241 if (noside == EVAL_SKIP)
11242 goto nosideret;
11243 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11244 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11245 else
11246 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11247 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11248
11249 case OP_ATR_VAL:
11250 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11251 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11252 type = exp->elts[pc + 2].type;
11253 if (noside == EVAL_SKIP)
11254 goto nosideret;
11255 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11256 return value_zero (type, not_lval);
11257 else
11258 return value_val_atr (type, arg1);
11259
11260 case BINOP_EXP:
11261 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11262 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11263 if (noside == EVAL_SKIP)
11264 goto nosideret;
11265 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11266 return value_zero (value_type (arg1), not_lval);
11267 else
11268 {
11269 /* For integer exponentiation operations,
11270 only promote the first argument. */
11271 if (is_integral_type (value_type (arg2)))
11272 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11273 else
11274 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11275
11276 return value_binop (arg1, arg2, op);
11277 }
11278
11279 case UNOP_PLUS:
11280 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11281 if (noside == EVAL_SKIP)
11282 goto nosideret;
11283 else
11284 return arg1;
11285
11286 case UNOP_ABS:
11287 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11288 if (noside == EVAL_SKIP)
11289 goto nosideret;
11290 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11291 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11292 return value_neg (arg1);
11293 else
11294 return arg1;
11295
11296 case UNOP_IND:
11297 preeval_pos = *pos;
11298 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11299 if (noside == EVAL_SKIP)
11300 goto nosideret;
11301 type = ada_check_typedef (value_type (arg1));
11302 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11303 {
11304 if (ada_is_array_descriptor_type (type))
11305 /* GDB allows dereferencing GNAT array descriptors. */
11306 {
11307 struct type *arrType = ada_type_of_array (arg1, 0);
11308
11309 if (arrType == NULL)
11310 error (_("Attempt to dereference null array pointer."));
11311 return value_at_lazy (arrType, 0);
11312 }
11313 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11314 || TYPE_CODE (type) == TYPE_CODE_REF
11315 /* In C you can dereference an array to get the 1st elt. */
11316 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11317 {
11318 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11319 only be determined by inspecting the object's tag.
11320 This means that we need to evaluate completely the
11321 expression in order to get its type. */
11322
11323 if ((TYPE_CODE (type) == TYPE_CODE_REF
11324 || TYPE_CODE (type) == TYPE_CODE_PTR)
11325 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11326 {
11327 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11328 EVAL_NORMAL);
11329 type = value_type (ada_value_ind (arg1));
11330 }
11331 else
11332 {
11333 type = to_static_fixed_type
11334 (ada_aligned_type
11335 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11336 }
11337 ada_ensure_varsize_limit (type);
11338 return value_zero (type, lval_memory);
11339 }
11340 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11341 {
11342 /* GDB allows dereferencing an int. */
11343 if (expect_type == NULL)
11344 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11345 lval_memory);
11346 else
11347 {
11348 expect_type =
11349 to_static_fixed_type (ada_aligned_type (expect_type));
11350 return value_zero (expect_type, lval_memory);
11351 }
11352 }
11353 else
11354 error (_("Attempt to take contents of a non-pointer value."));
11355 }
11356 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11357 type = ada_check_typedef (value_type (arg1));
11358
11359 if (TYPE_CODE (type) == TYPE_CODE_INT)
11360 /* GDB allows dereferencing an int. If we were given
11361 the expect_type, then use that as the target type.
11362 Otherwise, assume that the target type is an int. */
11363 {
11364 if (expect_type != NULL)
11365 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11366 arg1));
11367 else
11368 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11369 (CORE_ADDR) value_as_address (arg1));
11370 }
11371
11372 if (ada_is_array_descriptor_type (type))
11373 /* GDB allows dereferencing GNAT array descriptors. */
11374 return ada_coerce_to_simple_array (arg1);
11375 else
11376 return ada_value_ind (arg1);
11377
11378 case STRUCTOP_STRUCT:
11379 tem = longest_to_int (exp->elts[pc + 1].longconst);
11380 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11381 preeval_pos = *pos;
11382 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11383 if (noside == EVAL_SKIP)
11384 goto nosideret;
11385 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11386 {
11387 struct type *type1 = value_type (arg1);
11388
11389 if (ada_is_tagged_type (type1, 1))
11390 {
11391 type = ada_lookup_struct_elt_type (type1,
11392 &exp->elts[pc + 2].string,
11393 1, 1);
11394
11395 /* If the field is not found, check if it exists in the
11396 extension of this object's type. This means that we
11397 need to evaluate completely the expression. */
11398
11399 if (type == NULL)
11400 {
11401 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11402 EVAL_NORMAL);
11403 arg1 = ada_value_struct_elt (arg1,
11404 &exp->elts[pc + 2].string,
11405 0);
11406 arg1 = unwrap_value (arg1);
11407 type = value_type (ada_to_fixed_value (arg1));
11408 }
11409 }
11410 else
11411 type =
11412 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11413 0);
11414
11415 return value_zero (ada_aligned_type (type), lval_memory);
11416 }
11417 else
11418 {
11419 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11420 arg1 = unwrap_value (arg1);
11421 return ada_to_fixed_value (arg1);
11422 }
11423
11424 case OP_TYPE:
11425 /* The value is not supposed to be used. This is here to make it
11426 easier to accommodate expressions that contain types. */
11427 (*pos) += 2;
11428 if (noside == EVAL_SKIP)
11429 goto nosideret;
11430 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11431 return allocate_value (exp->elts[pc + 1].type);
11432 else
11433 error (_("Attempt to use a type name as an expression"));
11434
11435 case OP_AGGREGATE:
11436 case OP_CHOICES:
11437 case OP_OTHERS:
11438 case OP_DISCRETE_RANGE:
11439 case OP_POSITIONAL:
11440 case OP_NAME:
11441 if (noside == EVAL_NORMAL)
11442 switch (op)
11443 {
11444 case OP_NAME:
11445 error (_("Undefined name, ambiguous name, or renaming used in "
11446 "component association: %s."), &exp->elts[pc+2].string);
11447 case OP_AGGREGATE:
11448 error (_("Aggregates only allowed on the right of an assignment"));
11449 default:
11450 internal_error (__FILE__, __LINE__,
11451 _("aggregate apparently mangled"));
11452 }
11453
11454 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11455 *pos += oplen - 1;
11456 for (tem = 0; tem < nargs; tem += 1)
11457 ada_evaluate_subexp (NULL, exp, pos, noside);
11458 goto nosideret;
11459 }
11460
11461 nosideret:
11462 return eval_skip_value (exp);
11463 }
11464 \f
11465
11466 /* Fixed point */
11467
11468 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11469 type name that encodes the 'small and 'delta information.
11470 Otherwise, return NULL. */
11471
11472 static const char *
11473 fixed_type_info (struct type *type)
11474 {
11475 const char *name = ada_type_name (type);
11476 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11477
11478 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11479 {
11480 const char *tail = strstr (name, "___XF_");
11481
11482 if (tail == NULL)
11483 return NULL;
11484 else
11485 return tail + 5;
11486 }
11487 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11488 return fixed_type_info (TYPE_TARGET_TYPE (type));
11489 else
11490 return NULL;
11491 }
11492
11493 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11494
11495 int
11496 ada_is_fixed_point_type (struct type *type)
11497 {
11498 return fixed_type_info (type) != NULL;
11499 }
11500
11501 /* Return non-zero iff TYPE represents a System.Address type. */
11502
11503 int
11504 ada_is_system_address_type (struct type *type)
11505 {
11506 return (TYPE_NAME (type)
11507 && strcmp (TYPE_NAME (type), "system__address") == 0);
11508 }
11509
11510 /* Assuming that TYPE is the representation of an Ada fixed-point
11511 type, return the target floating-point type to be used to represent
11512 of this type during internal computation. */
11513
11514 static struct type *
11515 ada_scaling_type (struct type *type)
11516 {
11517 return builtin_type (get_type_arch (type))->builtin_long_double;
11518 }
11519
11520 /* Assuming that TYPE is the representation of an Ada fixed-point
11521 type, return its delta, or NULL if the type is malformed and the
11522 delta cannot be determined. */
11523
11524 struct value *
11525 ada_delta (struct type *type)
11526 {
11527 const char *encoding = fixed_type_info (type);
11528 struct type *scale_type = ada_scaling_type (type);
11529
11530 long long num, den;
11531
11532 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11533 return nullptr;
11534 else
11535 return value_binop (value_from_longest (scale_type, num),
11536 value_from_longest (scale_type, den), BINOP_DIV);
11537 }
11538
11539 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11540 factor ('SMALL value) associated with the type. */
11541
11542 struct value *
11543 ada_scaling_factor (struct type *type)
11544 {
11545 const char *encoding = fixed_type_info (type);
11546 struct type *scale_type = ada_scaling_type (type);
11547
11548 long long num0, den0, num1, den1;
11549 int n;
11550
11551 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11552 &num0, &den0, &num1, &den1);
11553
11554 if (n < 2)
11555 return value_from_longest (scale_type, 1);
11556 else if (n == 4)
11557 return value_binop (value_from_longest (scale_type, num1),
11558 value_from_longest (scale_type, den1), BINOP_DIV);
11559 else
11560 return value_binop (value_from_longest (scale_type, num0),
11561 value_from_longest (scale_type, den0), BINOP_DIV);
11562 }
11563
11564 \f
11565
11566 /* Range types */
11567
11568 /* Scan STR beginning at position K for a discriminant name, and
11569 return the value of that discriminant field of DVAL in *PX. If
11570 PNEW_K is not null, put the position of the character beyond the
11571 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11572 not alter *PX and *PNEW_K if unsuccessful. */
11573
11574 static int
11575 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11576 int *pnew_k)
11577 {
11578 static char *bound_buffer = NULL;
11579 static size_t bound_buffer_len = 0;
11580 const char *pstart, *pend, *bound;
11581 struct value *bound_val;
11582
11583 if (dval == NULL || str == NULL || str[k] == '\0')
11584 return 0;
11585
11586 pstart = str + k;
11587 pend = strstr (pstart, "__");
11588 if (pend == NULL)
11589 {
11590 bound = pstart;
11591 k += strlen (bound);
11592 }
11593 else
11594 {
11595 int len = pend - pstart;
11596
11597 /* Strip __ and beyond. */
11598 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11599 strncpy (bound_buffer, pstart, len);
11600 bound_buffer[len] = '\0';
11601
11602 bound = bound_buffer;
11603 k = pend - str;
11604 }
11605
11606 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11607 if (bound_val == NULL)
11608 return 0;
11609
11610 *px = value_as_long (bound_val);
11611 if (pnew_k != NULL)
11612 *pnew_k = k;
11613 return 1;
11614 }
11615
11616 /* Value of variable named NAME in the current environment. If
11617 no such variable found, then if ERR_MSG is null, returns 0, and
11618 otherwise causes an error with message ERR_MSG. */
11619
11620 static struct value *
11621 get_var_value (const char *name, const char *err_msg)
11622 {
11623 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11624
11625 std::vector<struct block_symbol> syms;
11626 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11627 get_selected_block (0),
11628 VAR_DOMAIN, &syms, 1);
11629
11630 if (nsyms != 1)
11631 {
11632 if (err_msg == NULL)
11633 return 0;
11634 else
11635 error (("%s"), err_msg);
11636 }
11637
11638 return value_of_variable (syms[0].symbol, syms[0].block);
11639 }
11640
11641 /* Value of integer variable named NAME in the current environment.
11642 If no such variable is found, returns false. Otherwise, sets VALUE
11643 to the variable's value and returns true. */
11644
11645 bool
11646 get_int_var_value (const char *name, LONGEST &value)
11647 {
11648 struct value *var_val = get_var_value (name, 0);
11649
11650 if (var_val == 0)
11651 return false;
11652
11653 value = value_as_long (var_val);
11654 return true;
11655 }
11656
11657
11658 /* Return a range type whose base type is that of the range type named
11659 NAME in the current environment, and whose bounds are calculated
11660 from NAME according to the GNAT range encoding conventions.
11661 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11662 corresponding range type from debug information; fall back to using it
11663 if symbol lookup fails. If a new type must be created, allocate it
11664 like ORIG_TYPE was. The bounds information, in general, is encoded
11665 in NAME, the base type given in the named range type. */
11666
11667 static struct type *
11668 to_fixed_range_type (struct type *raw_type, struct value *dval)
11669 {
11670 const char *name;
11671 struct type *base_type;
11672 const char *subtype_info;
11673
11674 gdb_assert (raw_type != NULL);
11675 gdb_assert (TYPE_NAME (raw_type) != NULL);
11676
11677 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11678 base_type = TYPE_TARGET_TYPE (raw_type);
11679 else
11680 base_type = raw_type;
11681
11682 name = TYPE_NAME (raw_type);
11683 subtype_info = strstr (name, "___XD");
11684 if (subtype_info == NULL)
11685 {
11686 LONGEST L = ada_discrete_type_low_bound (raw_type);
11687 LONGEST U = ada_discrete_type_high_bound (raw_type);
11688
11689 if (L < INT_MIN || U > INT_MAX)
11690 return raw_type;
11691 else
11692 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11693 L, U);
11694 }
11695 else
11696 {
11697 static char *name_buf = NULL;
11698 static size_t name_len = 0;
11699 int prefix_len = subtype_info - name;
11700 LONGEST L, U;
11701 struct type *type;
11702 const char *bounds_str;
11703 int n;
11704
11705 GROW_VECT (name_buf, name_len, prefix_len + 5);
11706 strncpy (name_buf, name, prefix_len);
11707 name_buf[prefix_len] = '\0';
11708
11709 subtype_info += 5;
11710 bounds_str = strchr (subtype_info, '_');
11711 n = 1;
11712
11713 if (*subtype_info == 'L')
11714 {
11715 if (!ada_scan_number (bounds_str, n, &L, &n)
11716 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11717 return raw_type;
11718 if (bounds_str[n] == '_')
11719 n += 2;
11720 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11721 n += 1;
11722 subtype_info += 1;
11723 }
11724 else
11725 {
11726 strcpy (name_buf + prefix_len, "___L");
11727 if (!get_int_var_value (name_buf, L))
11728 {
11729 lim_warning (_("Unknown lower bound, using 1."));
11730 L = 1;
11731 }
11732 }
11733
11734 if (*subtype_info == 'U')
11735 {
11736 if (!ada_scan_number (bounds_str, n, &U, &n)
11737 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11738 return raw_type;
11739 }
11740 else
11741 {
11742 strcpy (name_buf + prefix_len, "___U");
11743 if (!get_int_var_value (name_buf, U))
11744 {
11745 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11746 U = L;
11747 }
11748 }
11749
11750 type = create_static_range_type (alloc_type_copy (raw_type),
11751 base_type, L, U);
11752 /* create_static_range_type alters the resulting type's length
11753 to match the size of the base_type, which is not what we want.
11754 Set it back to the original range type's length. */
11755 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11756 TYPE_NAME (type) = name;
11757 return type;
11758 }
11759 }
11760
11761 /* True iff NAME is the name of a range type. */
11762
11763 int
11764 ada_is_range_type_name (const char *name)
11765 {
11766 return (name != NULL && strstr (name, "___XD"));
11767 }
11768 \f
11769
11770 /* Modular types */
11771
11772 /* True iff TYPE is an Ada modular type. */
11773
11774 int
11775 ada_is_modular_type (struct type *type)
11776 {
11777 struct type *subranged_type = get_base_type (type);
11778
11779 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11780 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11781 && TYPE_UNSIGNED (subranged_type));
11782 }
11783
11784 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11785
11786 ULONGEST
11787 ada_modulus (struct type *type)
11788 {
11789 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11790 }
11791 \f
11792
11793 /* Ada exception catchpoint support:
11794 ---------------------------------
11795
11796 We support 3 kinds of exception catchpoints:
11797 . catchpoints on Ada exceptions
11798 . catchpoints on unhandled Ada exceptions
11799 . catchpoints on failed assertions
11800
11801 Exceptions raised during failed assertions, or unhandled exceptions
11802 could perfectly be caught with the general catchpoint on Ada exceptions.
11803 However, we can easily differentiate these two special cases, and having
11804 the option to distinguish these two cases from the rest can be useful
11805 to zero-in on certain situations.
11806
11807 Exception catchpoints are a specialized form of breakpoint,
11808 since they rely on inserting breakpoints inside known routines
11809 of the GNAT runtime. The implementation therefore uses a standard
11810 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11811 of breakpoint_ops.
11812
11813 Support in the runtime for exception catchpoints have been changed
11814 a few times already, and these changes affect the implementation
11815 of these catchpoints. In order to be able to support several
11816 variants of the runtime, we use a sniffer that will determine
11817 the runtime variant used by the program being debugged. */
11818
11819 /* Ada's standard exceptions.
11820
11821 The Ada 83 standard also defined Numeric_Error. But there so many
11822 situations where it was unclear from the Ada 83 Reference Manual
11823 (RM) whether Constraint_Error or Numeric_Error should be raised,
11824 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11825 Interpretation saying that anytime the RM says that Numeric_Error
11826 should be raised, the implementation may raise Constraint_Error.
11827 Ada 95 went one step further and pretty much removed Numeric_Error
11828 from the list of standard exceptions (it made it a renaming of
11829 Constraint_Error, to help preserve compatibility when compiling
11830 an Ada83 compiler). As such, we do not include Numeric_Error from
11831 this list of standard exceptions. */
11832
11833 static const char *standard_exc[] = {
11834 "constraint_error",
11835 "program_error",
11836 "storage_error",
11837 "tasking_error"
11838 };
11839
11840 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11841
11842 /* A structure that describes how to support exception catchpoints
11843 for a given executable. */
11844
11845 struct exception_support_info
11846 {
11847 /* The name of the symbol to break on in order to insert
11848 a catchpoint on exceptions. */
11849 const char *catch_exception_sym;
11850
11851 /* The name of the symbol to break on in order to insert
11852 a catchpoint on unhandled exceptions. */
11853 const char *catch_exception_unhandled_sym;
11854
11855 /* The name of the symbol to break on in order to insert
11856 a catchpoint on failed assertions. */
11857 const char *catch_assert_sym;
11858
11859 /* The name of the symbol to break on in order to insert
11860 a catchpoint on exception handling. */
11861 const char *catch_handlers_sym;
11862
11863 /* Assuming that the inferior just triggered an unhandled exception
11864 catchpoint, this function is responsible for returning the address
11865 in inferior memory where the name of that exception is stored.
11866 Return zero if the address could not be computed. */
11867 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11868 };
11869
11870 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11871 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11872
11873 /* The following exception support info structure describes how to
11874 implement exception catchpoints with the latest version of the
11875 Ada runtime (as of 2019-08-??). */
11876
11877 static const struct exception_support_info default_exception_support_info =
11878 {
11879 "__gnat_debug_raise_exception", /* catch_exception_sym */
11880 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11881 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11882 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11883 ada_unhandled_exception_name_addr
11884 };
11885
11886 /* The following exception support info structure describes how to
11887 implement exception catchpoints with an earlier version of the
11888 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11889
11890 static const struct exception_support_info exception_support_info_v0 =
11891 {
11892 "__gnat_debug_raise_exception", /* catch_exception_sym */
11893 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11894 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11895 "__gnat_begin_handler", /* catch_handlers_sym */
11896 ada_unhandled_exception_name_addr
11897 };
11898
11899 /* The following exception support info structure describes how to
11900 implement exception catchpoints with a slightly older version
11901 of the Ada runtime. */
11902
11903 static const struct exception_support_info exception_support_info_fallback =
11904 {
11905 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11906 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11907 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11908 "__gnat_begin_handler", /* catch_handlers_sym */
11909 ada_unhandled_exception_name_addr_from_raise
11910 };
11911
11912 /* Return nonzero if we can detect the exception support routines
11913 described in EINFO.
11914
11915 This function errors out if an abnormal situation is detected
11916 (for instance, if we find the exception support routines, but
11917 that support is found to be incomplete). */
11918
11919 static int
11920 ada_has_this_exception_support (const struct exception_support_info *einfo)
11921 {
11922 struct symbol *sym;
11923
11924 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11925 that should be compiled with debugging information. As a result, we
11926 expect to find that symbol in the symtabs. */
11927
11928 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11929 if (sym == NULL)
11930 {
11931 /* Perhaps we did not find our symbol because the Ada runtime was
11932 compiled without debugging info, or simply stripped of it.
11933 It happens on some GNU/Linux distributions for instance, where
11934 users have to install a separate debug package in order to get
11935 the runtime's debugging info. In that situation, let the user
11936 know why we cannot insert an Ada exception catchpoint.
11937
11938 Note: Just for the purpose of inserting our Ada exception
11939 catchpoint, we could rely purely on the associated minimal symbol.
11940 But we would be operating in degraded mode anyway, since we are
11941 still lacking the debugging info needed later on to extract
11942 the name of the exception being raised (this name is printed in
11943 the catchpoint message, and is also used when trying to catch
11944 a specific exception). We do not handle this case for now. */
11945 struct bound_minimal_symbol msym
11946 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11947
11948 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11949 error (_("Your Ada runtime appears to be missing some debugging "
11950 "information.\nCannot insert Ada exception catchpoint "
11951 "in this configuration."));
11952
11953 return 0;
11954 }
11955
11956 /* Make sure that the symbol we found corresponds to a function. */
11957
11958 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11959 {
11960 error (_("Symbol \"%s\" is not a function (class = %d)"),
11961 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11962 return 0;
11963 }
11964
11965 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11966 if (sym == NULL)
11967 {
11968 struct bound_minimal_symbol msym
11969 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11970
11971 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11972 error (_("Your Ada runtime appears to be missing some debugging "
11973 "information.\nCannot insert Ada exception catchpoint "
11974 "in this configuration."));
11975
11976 return 0;
11977 }
11978
11979 /* Make sure that the symbol we found corresponds to a function. */
11980
11981 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11982 {
11983 error (_("Symbol \"%s\" is not a function (class = %d)"),
11984 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11985 return 0;
11986 }
11987
11988 return 1;
11989 }
11990
11991 /* Inspect the Ada runtime and determine which exception info structure
11992 should be used to provide support for exception catchpoints.
11993
11994 This function will always set the per-inferior exception_info,
11995 or raise an error. */
11996
11997 static void
11998 ada_exception_support_info_sniffer (void)
11999 {
12000 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12001
12002 /* If the exception info is already known, then no need to recompute it. */
12003 if (data->exception_info != NULL)
12004 return;
12005
12006 /* Check the latest (default) exception support info. */
12007 if (ada_has_this_exception_support (&default_exception_support_info))
12008 {
12009 data->exception_info = &default_exception_support_info;
12010 return;
12011 }
12012
12013 /* Try the v0 exception suport info. */
12014 if (ada_has_this_exception_support (&exception_support_info_v0))
12015 {
12016 data->exception_info = &exception_support_info_v0;
12017 return;
12018 }
12019
12020 /* Try our fallback exception suport info. */
12021 if (ada_has_this_exception_support (&exception_support_info_fallback))
12022 {
12023 data->exception_info = &exception_support_info_fallback;
12024 return;
12025 }
12026
12027 /* Sometimes, it is normal for us to not be able to find the routine
12028 we are looking for. This happens when the program is linked with
12029 the shared version of the GNAT runtime, and the program has not been
12030 started yet. Inform the user of these two possible causes if
12031 applicable. */
12032
12033 if (ada_update_initial_language (language_unknown) != language_ada)
12034 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12035
12036 /* If the symbol does not exist, then check that the program is
12037 already started, to make sure that shared libraries have been
12038 loaded. If it is not started, this may mean that the symbol is
12039 in a shared library. */
12040
12041 if (inferior_ptid.pid () == 0)
12042 error (_("Unable to insert catchpoint. Try to start the program first."));
12043
12044 /* At this point, we know that we are debugging an Ada program and
12045 that the inferior has been started, but we still are not able to
12046 find the run-time symbols. That can mean that we are in
12047 configurable run time mode, or that a-except as been optimized
12048 out by the linker... In any case, at this point it is not worth
12049 supporting this feature. */
12050
12051 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12052 }
12053
12054 /* True iff FRAME is very likely to be that of a function that is
12055 part of the runtime system. This is all very heuristic, but is
12056 intended to be used as advice as to what frames are uninteresting
12057 to most users. */
12058
12059 static int
12060 is_known_support_routine (struct frame_info *frame)
12061 {
12062 enum language func_lang;
12063 int i;
12064 const char *fullname;
12065
12066 /* If this code does not have any debugging information (no symtab),
12067 This cannot be any user code. */
12068
12069 symtab_and_line sal = find_frame_sal (frame);
12070 if (sal.symtab == NULL)
12071 return 1;
12072
12073 /* If there is a symtab, but the associated source file cannot be
12074 located, then assume this is not user code: Selecting a frame
12075 for which we cannot display the code would not be very helpful
12076 for the user. This should also take care of case such as VxWorks
12077 where the kernel has some debugging info provided for a few units. */
12078
12079 fullname = symtab_to_fullname (sal.symtab);
12080 if (access (fullname, R_OK) != 0)
12081 return 1;
12082
12083 /* Check the unit filename againt the Ada runtime file naming.
12084 We also check the name of the objfile against the name of some
12085 known system libraries that sometimes come with debugging info
12086 too. */
12087
12088 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12089 {
12090 re_comp (known_runtime_file_name_patterns[i]);
12091 if (re_exec (lbasename (sal.symtab->filename)))
12092 return 1;
12093 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12094 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12095 return 1;
12096 }
12097
12098 /* Check whether the function is a GNAT-generated entity. */
12099
12100 gdb::unique_xmalloc_ptr<char> func_name
12101 = find_frame_funname (frame, &func_lang, NULL);
12102 if (func_name == NULL)
12103 return 1;
12104
12105 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12106 {
12107 re_comp (known_auxiliary_function_name_patterns[i]);
12108 if (re_exec (func_name.get ()))
12109 return 1;
12110 }
12111
12112 return 0;
12113 }
12114
12115 /* Find the first frame that contains debugging information and that is not
12116 part of the Ada run-time, starting from FI and moving upward. */
12117
12118 void
12119 ada_find_printable_frame (struct frame_info *fi)
12120 {
12121 for (; fi != NULL; fi = get_prev_frame (fi))
12122 {
12123 if (!is_known_support_routine (fi))
12124 {
12125 select_frame (fi);
12126 break;
12127 }
12128 }
12129
12130 }
12131
12132 /* Assuming that the inferior just triggered an unhandled exception
12133 catchpoint, return the address in inferior memory where the name
12134 of the exception is stored.
12135
12136 Return zero if the address could not be computed. */
12137
12138 static CORE_ADDR
12139 ada_unhandled_exception_name_addr (void)
12140 {
12141 return parse_and_eval_address ("e.full_name");
12142 }
12143
12144 /* Same as ada_unhandled_exception_name_addr, except that this function
12145 should be used when the inferior uses an older version of the runtime,
12146 where the exception name needs to be extracted from a specific frame
12147 several frames up in the callstack. */
12148
12149 static CORE_ADDR
12150 ada_unhandled_exception_name_addr_from_raise (void)
12151 {
12152 int frame_level;
12153 struct frame_info *fi;
12154 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12155
12156 /* To determine the name of this exception, we need to select
12157 the frame corresponding to RAISE_SYM_NAME. This frame is
12158 at least 3 levels up, so we simply skip the first 3 frames
12159 without checking the name of their associated function. */
12160 fi = get_current_frame ();
12161 for (frame_level = 0; frame_level < 3; frame_level += 1)
12162 if (fi != NULL)
12163 fi = get_prev_frame (fi);
12164
12165 while (fi != NULL)
12166 {
12167 enum language func_lang;
12168
12169 gdb::unique_xmalloc_ptr<char> func_name
12170 = find_frame_funname (fi, &func_lang, NULL);
12171 if (func_name != NULL)
12172 {
12173 if (strcmp (func_name.get (),
12174 data->exception_info->catch_exception_sym) == 0)
12175 break; /* We found the frame we were looking for... */
12176 }
12177 fi = get_prev_frame (fi);
12178 }
12179
12180 if (fi == NULL)
12181 return 0;
12182
12183 select_frame (fi);
12184 return parse_and_eval_address ("id.full_name");
12185 }
12186
12187 /* Assuming the inferior just triggered an Ada exception catchpoint
12188 (of any type), return the address in inferior memory where the name
12189 of the exception is stored, if applicable.
12190
12191 Assumes the selected frame is the current frame.
12192
12193 Return zero if the address could not be computed, or if not relevant. */
12194
12195 static CORE_ADDR
12196 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12197 struct breakpoint *b)
12198 {
12199 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12200
12201 switch (ex)
12202 {
12203 case ada_catch_exception:
12204 return (parse_and_eval_address ("e.full_name"));
12205 break;
12206
12207 case ada_catch_exception_unhandled:
12208 return data->exception_info->unhandled_exception_name_addr ();
12209 break;
12210
12211 case ada_catch_handlers:
12212 return 0; /* The runtimes does not provide access to the exception
12213 name. */
12214 break;
12215
12216 case ada_catch_assert:
12217 return 0; /* Exception name is not relevant in this case. */
12218 break;
12219
12220 default:
12221 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12222 break;
12223 }
12224
12225 return 0; /* Should never be reached. */
12226 }
12227
12228 /* Assuming the inferior is stopped at an exception catchpoint,
12229 return the message which was associated to the exception, if
12230 available. Return NULL if the message could not be retrieved.
12231
12232 Note: The exception message can be associated to an exception
12233 either through the use of the Raise_Exception function, or
12234 more simply (Ada 2005 and later), via:
12235
12236 raise Exception_Name with "exception message";
12237
12238 */
12239
12240 static gdb::unique_xmalloc_ptr<char>
12241 ada_exception_message_1 (void)
12242 {
12243 struct value *e_msg_val;
12244 int e_msg_len;
12245
12246 /* For runtimes that support this feature, the exception message
12247 is passed as an unbounded string argument called "message". */
12248 e_msg_val = parse_and_eval ("message");
12249 if (e_msg_val == NULL)
12250 return NULL; /* Exception message not supported. */
12251
12252 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12253 gdb_assert (e_msg_val != NULL);
12254 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12255
12256 /* If the message string is empty, then treat it as if there was
12257 no exception message. */
12258 if (e_msg_len <= 0)
12259 return NULL;
12260
12261 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12262 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12263 e_msg.get ()[e_msg_len] = '\0';
12264
12265 return e_msg;
12266 }
12267
12268 /* Same as ada_exception_message_1, except that all exceptions are
12269 contained here (returning NULL instead). */
12270
12271 static gdb::unique_xmalloc_ptr<char>
12272 ada_exception_message (void)
12273 {
12274 gdb::unique_xmalloc_ptr<char> e_msg;
12275
12276 try
12277 {
12278 e_msg = ada_exception_message_1 ();
12279 }
12280 catch (const gdb_exception_error &e)
12281 {
12282 e_msg.reset (nullptr);
12283 }
12284
12285 return e_msg;
12286 }
12287
12288 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12289 any error that ada_exception_name_addr_1 might cause to be thrown.
12290 When an error is intercepted, a warning with the error message is printed,
12291 and zero is returned. */
12292
12293 static CORE_ADDR
12294 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12295 struct breakpoint *b)
12296 {
12297 CORE_ADDR result = 0;
12298
12299 try
12300 {
12301 result = ada_exception_name_addr_1 (ex, b);
12302 }
12303
12304 catch (const gdb_exception_error &e)
12305 {
12306 warning (_("failed to get exception name: %s"), e.what ());
12307 return 0;
12308 }
12309
12310 return result;
12311 }
12312
12313 static std::string ada_exception_catchpoint_cond_string
12314 (const char *excep_string,
12315 enum ada_exception_catchpoint_kind ex);
12316
12317 /* Ada catchpoints.
12318
12319 In the case of catchpoints on Ada exceptions, the catchpoint will
12320 stop the target on every exception the program throws. When a user
12321 specifies the name of a specific exception, we translate this
12322 request into a condition expression (in text form), and then parse
12323 it into an expression stored in each of the catchpoint's locations.
12324 We then use this condition to check whether the exception that was
12325 raised is the one the user is interested in. If not, then the
12326 target is resumed again. We store the name of the requested
12327 exception, in order to be able to re-set the condition expression
12328 when symbols change. */
12329
12330 /* An instance of this type is used to represent an Ada catchpoint
12331 breakpoint location. */
12332
12333 class ada_catchpoint_location : public bp_location
12334 {
12335 public:
12336 ada_catchpoint_location (breakpoint *owner)
12337 : bp_location (owner, bp_loc_software_breakpoint)
12338 {}
12339
12340 /* The condition that checks whether the exception that was raised
12341 is the specific exception the user specified on catchpoint
12342 creation. */
12343 expression_up excep_cond_expr;
12344 };
12345
12346 /* An instance of this type is used to represent an Ada catchpoint. */
12347
12348 struct ada_catchpoint : public breakpoint
12349 {
12350 /* The name of the specific exception the user specified. */
12351 std::string excep_string;
12352 };
12353
12354 /* Parse the exception condition string in the context of each of the
12355 catchpoint's locations, and store them for later evaluation. */
12356
12357 static void
12358 create_excep_cond_exprs (struct ada_catchpoint *c,
12359 enum ada_exception_catchpoint_kind ex)
12360 {
12361 /* Nothing to do if there's no specific exception to catch. */
12362 if (c->excep_string.empty ())
12363 return;
12364
12365 /* Same if there are no locations... */
12366 if (c->loc == NULL)
12367 return;
12368
12369 /* We have to compute the expression once for each program space,
12370 because the expression may hold the addresses of multiple symbols
12371 in some cases. */
12372 std::multimap<program_space *, struct bp_location *> loc_map;
12373 for (bp_location *bl = c->loc; bl != NULL; bl = bl->next)
12374 loc_map.emplace (bl->pspace, bl);
12375
12376 scoped_restore_current_program_space save_pspace;
12377
12378 std::string cond_string;
12379 program_space *last_ps = nullptr;
12380 for (auto iter : loc_map)
12381 {
12382 struct ada_catchpoint_location *ada_loc
12383 = (struct ada_catchpoint_location *) iter.second;
12384
12385 if (ada_loc->pspace != last_ps)
12386 {
12387 last_ps = ada_loc->pspace;
12388 set_current_program_space (last_ps);
12389
12390 /* Compute the condition expression in text form, from the
12391 specific expection we want to catch. */
12392 cond_string
12393 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (),
12394 ex);
12395 }
12396
12397 expression_up exp;
12398
12399 if (!ada_loc->shlib_disabled)
12400 {
12401 const char *s;
12402
12403 s = cond_string.c_str ();
12404 try
12405 {
12406 exp = parse_exp_1 (&s, ada_loc->address,
12407 block_for_pc (ada_loc->address),
12408 0);
12409 }
12410 catch (const gdb_exception_error &e)
12411 {
12412 warning (_("failed to reevaluate internal exception condition "
12413 "for catchpoint %d: %s"),
12414 c->number, e.what ());
12415 }
12416 }
12417
12418 ada_loc->excep_cond_expr = std::move (exp);
12419 }
12420 }
12421
12422 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12423 structure for all exception catchpoint kinds. */
12424
12425 static struct bp_location *
12426 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12427 struct breakpoint *self)
12428 {
12429 return new ada_catchpoint_location (self);
12430 }
12431
12432 /* Implement the RE_SET method in the breakpoint_ops structure for all
12433 exception catchpoint kinds. */
12434
12435 static void
12436 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12437 {
12438 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12439
12440 /* Call the base class's method. This updates the catchpoint's
12441 locations. */
12442 bkpt_breakpoint_ops.re_set (b);
12443
12444 /* Reparse the exception conditional expressions. One for each
12445 location. */
12446 create_excep_cond_exprs (c, ex);
12447 }
12448
12449 /* Returns true if we should stop for this breakpoint hit. If the
12450 user specified a specific exception, we only want to cause a stop
12451 if the program thrown that exception. */
12452
12453 static int
12454 should_stop_exception (const struct bp_location *bl)
12455 {
12456 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12457 const struct ada_catchpoint_location *ada_loc
12458 = (const struct ada_catchpoint_location *) bl;
12459 int stop;
12460
12461 /* With no specific exception, should always stop. */
12462 if (c->excep_string.empty ())
12463 return 1;
12464
12465 if (ada_loc->excep_cond_expr == NULL)
12466 {
12467 /* We will have a NULL expression if back when we were creating
12468 the expressions, this location's had failed to parse. */
12469 return 1;
12470 }
12471
12472 stop = 1;
12473 try
12474 {
12475 struct value *mark;
12476
12477 mark = value_mark ();
12478 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12479 value_free_to_mark (mark);
12480 }
12481 catch (const gdb_exception &ex)
12482 {
12483 exception_fprintf (gdb_stderr, ex,
12484 _("Error in testing exception condition:\n"));
12485 }
12486
12487 return stop;
12488 }
12489
12490 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12491 for all exception catchpoint kinds. */
12492
12493 static void
12494 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12495 {
12496 bs->stop = should_stop_exception (bs->bp_location_at);
12497 }
12498
12499 /* Implement the PRINT_IT method in the breakpoint_ops structure
12500 for all exception catchpoint kinds. */
12501
12502 static enum print_stop_action
12503 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12504 {
12505 struct ui_out *uiout = current_uiout;
12506 struct breakpoint *b = bs->breakpoint_at;
12507
12508 annotate_catchpoint (b->number);
12509
12510 if (uiout->is_mi_like_p ())
12511 {
12512 uiout->field_string ("reason",
12513 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12514 uiout->field_string ("disp", bpdisp_text (b->disposition));
12515 }
12516
12517 uiout->text (b->disposition == disp_del
12518 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12519 uiout->field_signed ("bkptno", b->number);
12520 uiout->text (", ");
12521
12522 /* ada_exception_name_addr relies on the selected frame being the
12523 current frame. Need to do this here because this function may be
12524 called more than once when printing a stop, and below, we'll
12525 select the first frame past the Ada run-time (see
12526 ada_find_printable_frame). */
12527 select_frame (get_current_frame ());
12528
12529 switch (ex)
12530 {
12531 case ada_catch_exception:
12532 case ada_catch_exception_unhandled:
12533 case ada_catch_handlers:
12534 {
12535 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12536 char exception_name[256];
12537
12538 if (addr != 0)
12539 {
12540 read_memory (addr, (gdb_byte *) exception_name,
12541 sizeof (exception_name) - 1);
12542 exception_name [sizeof (exception_name) - 1] = '\0';
12543 }
12544 else
12545 {
12546 /* For some reason, we were unable to read the exception
12547 name. This could happen if the Runtime was compiled
12548 without debugging info, for instance. In that case,
12549 just replace the exception name by the generic string
12550 "exception" - it will read as "an exception" in the
12551 notification we are about to print. */
12552 memcpy (exception_name, "exception", sizeof ("exception"));
12553 }
12554 /* In the case of unhandled exception breakpoints, we print
12555 the exception name as "unhandled EXCEPTION_NAME", to make
12556 it clearer to the user which kind of catchpoint just got
12557 hit. We used ui_out_text to make sure that this extra
12558 info does not pollute the exception name in the MI case. */
12559 if (ex == ada_catch_exception_unhandled)
12560 uiout->text ("unhandled ");
12561 uiout->field_string ("exception-name", exception_name);
12562 }
12563 break;
12564 case ada_catch_assert:
12565 /* In this case, the name of the exception is not really
12566 important. Just print "failed assertion" to make it clearer
12567 that his program just hit an assertion-failure catchpoint.
12568 We used ui_out_text because this info does not belong in
12569 the MI output. */
12570 uiout->text ("failed assertion");
12571 break;
12572 }
12573
12574 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12575 if (exception_message != NULL)
12576 {
12577 uiout->text (" (");
12578 uiout->field_string ("exception-message", exception_message.get ());
12579 uiout->text (")");
12580 }
12581
12582 uiout->text (" at ");
12583 ada_find_printable_frame (get_current_frame ());
12584
12585 return PRINT_SRC_AND_LOC;
12586 }
12587
12588 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12589 for all exception catchpoint kinds. */
12590
12591 static void
12592 print_one_exception (enum ada_exception_catchpoint_kind ex,
12593 struct breakpoint *b, struct bp_location **last_loc)
12594 {
12595 struct ui_out *uiout = current_uiout;
12596 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12597 struct value_print_options opts;
12598
12599 get_user_print_options (&opts);
12600
12601 if (opts.addressprint)
12602 uiout->field_skip ("addr");
12603
12604 annotate_field (5);
12605 switch (ex)
12606 {
12607 case ada_catch_exception:
12608 if (!c->excep_string.empty ())
12609 {
12610 std::string msg = string_printf (_("`%s' Ada exception"),
12611 c->excep_string.c_str ());
12612
12613 uiout->field_string ("what", msg);
12614 }
12615 else
12616 uiout->field_string ("what", "all Ada exceptions");
12617
12618 break;
12619
12620 case ada_catch_exception_unhandled:
12621 uiout->field_string ("what", "unhandled Ada exceptions");
12622 break;
12623
12624 case ada_catch_handlers:
12625 if (!c->excep_string.empty ())
12626 {
12627 uiout->field_fmt ("what",
12628 _("`%s' Ada exception handlers"),
12629 c->excep_string.c_str ());
12630 }
12631 else
12632 uiout->field_string ("what", "all Ada exceptions handlers");
12633 break;
12634
12635 case ada_catch_assert:
12636 uiout->field_string ("what", "failed Ada assertions");
12637 break;
12638
12639 default:
12640 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12641 break;
12642 }
12643 }
12644
12645 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12646 for all exception catchpoint kinds. */
12647
12648 static void
12649 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12650 struct breakpoint *b)
12651 {
12652 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12653 struct ui_out *uiout = current_uiout;
12654
12655 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12656 : _("Catchpoint "));
12657 uiout->field_signed ("bkptno", b->number);
12658 uiout->text (": ");
12659
12660 switch (ex)
12661 {
12662 case ada_catch_exception:
12663 if (!c->excep_string.empty ())
12664 {
12665 std::string info = string_printf (_("`%s' Ada exception"),
12666 c->excep_string.c_str ());
12667 uiout->text (info.c_str ());
12668 }
12669 else
12670 uiout->text (_("all Ada exceptions"));
12671 break;
12672
12673 case ada_catch_exception_unhandled:
12674 uiout->text (_("unhandled Ada exceptions"));
12675 break;
12676
12677 case ada_catch_handlers:
12678 if (!c->excep_string.empty ())
12679 {
12680 std::string info
12681 = string_printf (_("`%s' Ada exception handlers"),
12682 c->excep_string.c_str ());
12683 uiout->text (info.c_str ());
12684 }
12685 else
12686 uiout->text (_("all Ada exceptions handlers"));
12687 break;
12688
12689 case ada_catch_assert:
12690 uiout->text (_("failed Ada assertions"));
12691 break;
12692
12693 default:
12694 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12695 break;
12696 }
12697 }
12698
12699 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12700 for all exception catchpoint kinds. */
12701
12702 static void
12703 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12704 struct breakpoint *b, struct ui_file *fp)
12705 {
12706 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12707
12708 switch (ex)
12709 {
12710 case ada_catch_exception:
12711 fprintf_filtered (fp, "catch exception");
12712 if (!c->excep_string.empty ())
12713 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12714 break;
12715
12716 case ada_catch_exception_unhandled:
12717 fprintf_filtered (fp, "catch exception unhandled");
12718 break;
12719
12720 case ada_catch_handlers:
12721 fprintf_filtered (fp, "catch handlers");
12722 break;
12723
12724 case ada_catch_assert:
12725 fprintf_filtered (fp, "catch assert");
12726 break;
12727
12728 default:
12729 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12730 }
12731 print_recreate_thread (b, fp);
12732 }
12733
12734 /* Virtual table for "catch exception" breakpoints. */
12735
12736 static struct bp_location *
12737 allocate_location_catch_exception (struct breakpoint *self)
12738 {
12739 return allocate_location_exception (ada_catch_exception, self);
12740 }
12741
12742 static void
12743 re_set_catch_exception (struct breakpoint *b)
12744 {
12745 re_set_exception (ada_catch_exception, b);
12746 }
12747
12748 static void
12749 check_status_catch_exception (bpstat bs)
12750 {
12751 check_status_exception (ada_catch_exception, bs);
12752 }
12753
12754 static enum print_stop_action
12755 print_it_catch_exception (bpstat bs)
12756 {
12757 return print_it_exception (ada_catch_exception, bs);
12758 }
12759
12760 static void
12761 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12762 {
12763 print_one_exception (ada_catch_exception, b, last_loc);
12764 }
12765
12766 static void
12767 print_mention_catch_exception (struct breakpoint *b)
12768 {
12769 print_mention_exception (ada_catch_exception, b);
12770 }
12771
12772 static void
12773 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12774 {
12775 print_recreate_exception (ada_catch_exception, b, fp);
12776 }
12777
12778 static struct breakpoint_ops catch_exception_breakpoint_ops;
12779
12780 /* Virtual table for "catch exception unhandled" breakpoints. */
12781
12782 static struct bp_location *
12783 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12784 {
12785 return allocate_location_exception (ada_catch_exception_unhandled, self);
12786 }
12787
12788 static void
12789 re_set_catch_exception_unhandled (struct breakpoint *b)
12790 {
12791 re_set_exception (ada_catch_exception_unhandled, b);
12792 }
12793
12794 static void
12795 check_status_catch_exception_unhandled (bpstat bs)
12796 {
12797 check_status_exception (ada_catch_exception_unhandled, bs);
12798 }
12799
12800 static enum print_stop_action
12801 print_it_catch_exception_unhandled (bpstat bs)
12802 {
12803 return print_it_exception (ada_catch_exception_unhandled, bs);
12804 }
12805
12806 static void
12807 print_one_catch_exception_unhandled (struct breakpoint *b,
12808 struct bp_location **last_loc)
12809 {
12810 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12811 }
12812
12813 static void
12814 print_mention_catch_exception_unhandled (struct breakpoint *b)
12815 {
12816 print_mention_exception (ada_catch_exception_unhandled, b);
12817 }
12818
12819 static void
12820 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12821 struct ui_file *fp)
12822 {
12823 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12824 }
12825
12826 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12827
12828 /* Virtual table for "catch assert" breakpoints. */
12829
12830 static struct bp_location *
12831 allocate_location_catch_assert (struct breakpoint *self)
12832 {
12833 return allocate_location_exception (ada_catch_assert, self);
12834 }
12835
12836 static void
12837 re_set_catch_assert (struct breakpoint *b)
12838 {
12839 re_set_exception (ada_catch_assert, b);
12840 }
12841
12842 static void
12843 check_status_catch_assert (bpstat bs)
12844 {
12845 check_status_exception (ada_catch_assert, bs);
12846 }
12847
12848 static enum print_stop_action
12849 print_it_catch_assert (bpstat bs)
12850 {
12851 return print_it_exception (ada_catch_assert, bs);
12852 }
12853
12854 static void
12855 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12856 {
12857 print_one_exception (ada_catch_assert, b, last_loc);
12858 }
12859
12860 static void
12861 print_mention_catch_assert (struct breakpoint *b)
12862 {
12863 print_mention_exception (ada_catch_assert, b);
12864 }
12865
12866 static void
12867 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12868 {
12869 print_recreate_exception (ada_catch_assert, b, fp);
12870 }
12871
12872 static struct breakpoint_ops catch_assert_breakpoint_ops;
12873
12874 /* Virtual table for "catch handlers" breakpoints. */
12875
12876 static struct bp_location *
12877 allocate_location_catch_handlers (struct breakpoint *self)
12878 {
12879 return allocate_location_exception (ada_catch_handlers, self);
12880 }
12881
12882 static void
12883 re_set_catch_handlers (struct breakpoint *b)
12884 {
12885 re_set_exception (ada_catch_handlers, b);
12886 }
12887
12888 static void
12889 check_status_catch_handlers (bpstat bs)
12890 {
12891 check_status_exception (ada_catch_handlers, bs);
12892 }
12893
12894 static enum print_stop_action
12895 print_it_catch_handlers (bpstat bs)
12896 {
12897 return print_it_exception (ada_catch_handlers, bs);
12898 }
12899
12900 static void
12901 print_one_catch_handlers (struct breakpoint *b,
12902 struct bp_location **last_loc)
12903 {
12904 print_one_exception (ada_catch_handlers, b, last_loc);
12905 }
12906
12907 static void
12908 print_mention_catch_handlers (struct breakpoint *b)
12909 {
12910 print_mention_exception (ada_catch_handlers, b);
12911 }
12912
12913 static void
12914 print_recreate_catch_handlers (struct breakpoint *b,
12915 struct ui_file *fp)
12916 {
12917 print_recreate_exception (ada_catch_handlers, b, fp);
12918 }
12919
12920 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12921
12922 /* See ada-lang.h. */
12923
12924 bool
12925 is_ada_exception_catchpoint (breakpoint *bp)
12926 {
12927 return (bp->ops == &catch_exception_breakpoint_ops
12928 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12929 || bp->ops == &catch_assert_breakpoint_ops
12930 || bp->ops == &catch_handlers_breakpoint_ops);
12931 }
12932
12933 /* Split the arguments specified in a "catch exception" command.
12934 Set EX to the appropriate catchpoint type.
12935 Set EXCEP_STRING to the name of the specific exception if
12936 specified by the user.
12937 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12938 "catch handlers" command. False otherwise.
12939 If a condition is found at the end of the arguments, the condition
12940 expression is stored in COND_STRING (memory must be deallocated
12941 after use). Otherwise COND_STRING is set to NULL. */
12942
12943 static void
12944 catch_ada_exception_command_split (const char *args,
12945 bool is_catch_handlers_cmd,
12946 enum ada_exception_catchpoint_kind *ex,
12947 std::string *excep_string,
12948 std::string *cond_string)
12949 {
12950 std::string exception_name;
12951
12952 exception_name = extract_arg (&args);
12953 if (exception_name == "if")
12954 {
12955 /* This is not an exception name; this is the start of a condition
12956 expression for a catchpoint on all exceptions. So, "un-get"
12957 this token, and set exception_name to NULL. */
12958 exception_name.clear ();
12959 args -= 2;
12960 }
12961
12962 /* Check to see if we have a condition. */
12963
12964 args = skip_spaces (args);
12965 if (startswith (args, "if")
12966 && (isspace (args[2]) || args[2] == '\0'))
12967 {
12968 args += 2;
12969 args = skip_spaces (args);
12970
12971 if (args[0] == '\0')
12972 error (_("Condition missing after `if' keyword"));
12973 *cond_string = args;
12974
12975 args += strlen (args);
12976 }
12977
12978 /* Check that we do not have any more arguments. Anything else
12979 is unexpected. */
12980
12981 if (args[0] != '\0')
12982 error (_("Junk at end of expression"));
12983
12984 if (is_catch_handlers_cmd)
12985 {
12986 /* Catch handling of exceptions. */
12987 *ex = ada_catch_handlers;
12988 *excep_string = exception_name;
12989 }
12990 else if (exception_name.empty ())
12991 {
12992 /* Catch all exceptions. */
12993 *ex = ada_catch_exception;
12994 excep_string->clear ();
12995 }
12996 else if (exception_name == "unhandled")
12997 {
12998 /* Catch unhandled exceptions. */
12999 *ex = ada_catch_exception_unhandled;
13000 excep_string->clear ();
13001 }
13002 else
13003 {
13004 /* Catch a specific exception. */
13005 *ex = ada_catch_exception;
13006 *excep_string = exception_name;
13007 }
13008 }
13009
13010 /* Return the name of the symbol on which we should break in order to
13011 implement a catchpoint of the EX kind. */
13012
13013 static const char *
13014 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13015 {
13016 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13017
13018 gdb_assert (data->exception_info != NULL);
13019
13020 switch (ex)
13021 {
13022 case ada_catch_exception:
13023 return (data->exception_info->catch_exception_sym);
13024 break;
13025 case ada_catch_exception_unhandled:
13026 return (data->exception_info->catch_exception_unhandled_sym);
13027 break;
13028 case ada_catch_assert:
13029 return (data->exception_info->catch_assert_sym);
13030 break;
13031 case ada_catch_handlers:
13032 return (data->exception_info->catch_handlers_sym);
13033 break;
13034 default:
13035 internal_error (__FILE__, __LINE__,
13036 _("unexpected catchpoint kind (%d)"), ex);
13037 }
13038 }
13039
13040 /* Return the breakpoint ops "virtual table" used for catchpoints
13041 of the EX kind. */
13042
13043 static const struct breakpoint_ops *
13044 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13045 {
13046 switch (ex)
13047 {
13048 case ada_catch_exception:
13049 return (&catch_exception_breakpoint_ops);
13050 break;
13051 case ada_catch_exception_unhandled:
13052 return (&catch_exception_unhandled_breakpoint_ops);
13053 break;
13054 case ada_catch_assert:
13055 return (&catch_assert_breakpoint_ops);
13056 break;
13057 case ada_catch_handlers:
13058 return (&catch_handlers_breakpoint_ops);
13059 break;
13060 default:
13061 internal_error (__FILE__, __LINE__,
13062 _("unexpected catchpoint kind (%d)"), ex);
13063 }
13064 }
13065
13066 /* Return the condition that will be used to match the current exception
13067 being raised with the exception that the user wants to catch. This
13068 assumes that this condition is used when the inferior just triggered
13069 an exception catchpoint.
13070 EX: the type of catchpoints used for catching Ada exceptions. */
13071
13072 static std::string
13073 ada_exception_catchpoint_cond_string (const char *excep_string,
13074 enum ada_exception_catchpoint_kind ex)
13075 {
13076 int i;
13077 std::string result;
13078 const char *name;
13079
13080 if (ex == ada_catch_handlers)
13081 {
13082 /* For exception handlers catchpoints, the condition string does
13083 not use the same parameter as for the other exceptions. */
13084 name = ("long_integer (GNAT_GCC_exception_Access"
13085 "(gcc_exception).all.occurrence.id)");
13086 }
13087 else
13088 name = "long_integer (e)";
13089
13090 /* The standard exceptions are a special case. They are defined in
13091 runtime units that have been compiled without debugging info; if
13092 EXCEP_STRING is the not-fully-qualified name of a standard
13093 exception (e.g. "constraint_error") then, during the evaluation
13094 of the condition expression, the symbol lookup on this name would
13095 *not* return this standard exception. The catchpoint condition
13096 may then be set only on user-defined exceptions which have the
13097 same not-fully-qualified name (e.g. my_package.constraint_error).
13098
13099 To avoid this unexcepted behavior, these standard exceptions are
13100 systematically prefixed by "standard". This means that "catch
13101 exception constraint_error" is rewritten into "catch exception
13102 standard.constraint_error".
13103
13104 If an exception named contraint_error is defined in another package of
13105 the inferior program, then the only way to specify this exception as a
13106 breakpoint condition is to use its fully-qualified named:
13107 e.g. my_package.constraint_error.
13108
13109 Furthermore, in some situations a standard exception's symbol may
13110 be present in more than one objfile, because the compiler may
13111 choose to emit copy relocations for them. So, we have to compare
13112 against all the possible addresses. */
13113
13114 /* Storage for a rewritten symbol name. */
13115 std::string std_name;
13116 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13117 {
13118 if (strcmp (standard_exc [i], excep_string) == 0)
13119 {
13120 std_name = std::string ("standard.") + excep_string;
13121 excep_string = std_name.c_str ();
13122 break;
13123 }
13124 }
13125
13126 excep_string = ada_encode (excep_string);
13127 std::vector<struct bound_minimal_symbol> symbols
13128 = ada_lookup_simple_minsyms (excep_string);
13129 for (const bound_minimal_symbol &msym : symbols)
13130 {
13131 if (!result.empty ())
13132 result += " or ";
13133 string_appendf (result, "%s = %s", name,
13134 pulongest (BMSYMBOL_VALUE_ADDRESS (msym)));
13135 }
13136
13137 return result;
13138 }
13139
13140 /* Return the symtab_and_line that should be used to insert an exception
13141 catchpoint of the TYPE kind.
13142
13143 ADDR_STRING returns the name of the function where the real
13144 breakpoint that implements the catchpoints is set, depending on the
13145 type of catchpoint we need to create. */
13146
13147 static struct symtab_and_line
13148 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13149 std::string *addr_string, const struct breakpoint_ops **ops)
13150 {
13151 const char *sym_name;
13152 struct symbol *sym;
13153
13154 /* First, find out which exception support info to use. */
13155 ada_exception_support_info_sniffer ();
13156
13157 /* Then lookup the function on which we will break in order to catch
13158 the Ada exceptions requested by the user. */
13159 sym_name = ada_exception_sym_name (ex);
13160 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13161
13162 if (sym == NULL)
13163 error (_("Catchpoint symbol not found: %s"), sym_name);
13164
13165 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
13166 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
13167
13168 /* Set ADDR_STRING. */
13169 *addr_string = sym_name;
13170
13171 /* Set OPS. */
13172 *ops = ada_exception_breakpoint_ops (ex);
13173
13174 return find_function_start_sal (sym, 1);
13175 }
13176
13177 /* Create an Ada exception catchpoint.
13178
13179 EX_KIND is the kind of exception catchpoint to be created.
13180
13181 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13182 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13183 of the exception to which this catchpoint applies.
13184
13185 COND_STRING, if not empty, is the catchpoint condition.
13186
13187 TEMPFLAG, if nonzero, means that the underlying breakpoint
13188 should be temporary.
13189
13190 FROM_TTY is the usual argument passed to all commands implementations. */
13191
13192 void
13193 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13194 enum ada_exception_catchpoint_kind ex_kind,
13195 const std::string &excep_string,
13196 const std::string &cond_string,
13197 int tempflag,
13198 int disabled,
13199 int from_tty)
13200 {
13201 std::string addr_string;
13202 const struct breakpoint_ops *ops = NULL;
13203 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13204
13205 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13206 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
13207 ops, tempflag, disabled, from_tty);
13208 c->excep_string = excep_string;
13209 create_excep_cond_exprs (c.get (), ex_kind);
13210 if (!cond_string.empty ())
13211 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13212 install_breakpoint (0, std::move (c), 1);
13213 }
13214
13215 /* Implement the "catch exception" command. */
13216
13217 static void
13218 catch_ada_exception_command (const char *arg_entry, int from_tty,
13219 struct cmd_list_element *command)
13220 {
13221 const char *arg = arg_entry;
13222 struct gdbarch *gdbarch = get_current_arch ();
13223 int tempflag;
13224 enum ada_exception_catchpoint_kind ex_kind;
13225 std::string excep_string;
13226 std::string cond_string;
13227
13228 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13229
13230 if (!arg)
13231 arg = "";
13232 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13233 &cond_string);
13234 create_ada_exception_catchpoint (gdbarch, ex_kind,
13235 excep_string, cond_string,
13236 tempflag, 1 /* enabled */,
13237 from_tty);
13238 }
13239
13240 /* Implement the "catch handlers" command. */
13241
13242 static void
13243 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13244 struct cmd_list_element *command)
13245 {
13246 const char *arg = arg_entry;
13247 struct gdbarch *gdbarch = get_current_arch ();
13248 int tempflag;
13249 enum ada_exception_catchpoint_kind ex_kind;
13250 std::string excep_string;
13251 std::string cond_string;
13252
13253 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13254
13255 if (!arg)
13256 arg = "";
13257 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13258 &cond_string);
13259 create_ada_exception_catchpoint (gdbarch, ex_kind,
13260 excep_string, cond_string,
13261 tempflag, 1 /* enabled */,
13262 from_tty);
13263 }
13264
13265 /* Completion function for the Ada "catch" commands. */
13266
13267 static void
13268 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
13269 const char *text, const char *word)
13270 {
13271 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
13272
13273 for (const ada_exc_info &info : exceptions)
13274 {
13275 if (startswith (info.name, word))
13276 tracker.add_completion (make_unique_xstrdup (info.name));
13277 }
13278 }
13279
13280 /* Split the arguments specified in a "catch assert" command.
13281
13282 ARGS contains the command's arguments (or the empty string if
13283 no arguments were passed).
13284
13285 If ARGS contains a condition, set COND_STRING to that condition
13286 (the memory needs to be deallocated after use). */
13287
13288 static void
13289 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13290 {
13291 args = skip_spaces (args);
13292
13293 /* Check whether a condition was provided. */
13294 if (startswith (args, "if")
13295 && (isspace (args[2]) || args[2] == '\0'))
13296 {
13297 args += 2;
13298 args = skip_spaces (args);
13299 if (args[0] == '\0')
13300 error (_("condition missing after `if' keyword"));
13301 cond_string.assign (args);
13302 }
13303
13304 /* Otherwise, there should be no other argument at the end of
13305 the command. */
13306 else if (args[0] != '\0')
13307 error (_("Junk at end of arguments."));
13308 }
13309
13310 /* Implement the "catch assert" command. */
13311
13312 static void
13313 catch_assert_command (const char *arg_entry, int from_tty,
13314 struct cmd_list_element *command)
13315 {
13316 const char *arg = arg_entry;
13317 struct gdbarch *gdbarch = get_current_arch ();
13318 int tempflag;
13319 std::string cond_string;
13320
13321 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13322
13323 if (!arg)
13324 arg = "";
13325 catch_ada_assert_command_split (arg, cond_string);
13326 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13327 "", cond_string,
13328 tempflag, 1 /* enabled */,
13329 from_tty);
13330 }
13331
13332 /* Return non-zero if the symbol SYM is an Ada exception object. */
13333
13334 static int
13335 ada_is_exception_sym (struct symbol *sym)
13336 {
13337 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13338
13339 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13340 && SYMBOL_CLASS (sym) != LOC_BLOCK
13341 && SYMBOL_CLASS (sym) != LOC_CONST
13342 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13343 && type_name != NULL && strcmp (type_name, "exception") == 0);
13344 }
13345
13346 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13347 Ada exception object. This matches all exceptions except the ones
13348 defined by the Ada language. */
13349
13350 static int
13351 ada_is_non_standard_exception_sym (struct symbol *sym)
13352 {
13353 int i;
13354
13355 if (!ada_is_exception_sym (sym))
13356 return 0;
13357
13358 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13359 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13360 return 0; /* A standard exception. */
13361
13362 /* Numeric_Error is also a standard exception, so exclude it.
13363 See the STANDARD_EXC description for more details as to why
13364 this exception is not listed in that array. */
13365 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13366 return 0;
13367
13368 return 1;
13369 }
13370
13371 /* A helper function for std::sort, comparing two struct ada_exc_info
13372 objects.
13373
13374 The comparison is determined first by exception name, and then
13375 by exception address. */
13376
13377 bool
13378 ada_exc_info::operator< (const ada_exc_info &other) const
13379 {
13380 int result;
13381
13382 result = strcmp (name, other.name);
13383 if (result < 0)
13384 return true;
13385 if (result == 0 && addr < other.addr)
13386 return true;
13387 return false;
13388 }
13389
13390 bool
13391 ada_exc_info::operator== (const ada_exc_info &other) const
13392 {
13393 return addr == other.addr && strcmp (name, other.name) == 0;
13394 }
13395
13396 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13397 routine, but keeping the first SKIP elements untouched.
13398
13399 All duplicates are also removed. */
13400
13401 static void
13402 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13403 int skip)
13404 {
13405 std::sort (exceptions->begin () + skip, exceptions->end ());
13406 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13407 exceptions->end ());
13408 }
13409
13410 /* Add all exceptions defined by the Ada standard whose name match
13411 a regular expression.
13412
13413 If PREG is not NULL, then this regexp_t object is used to
13414 perform the symbol name matching. Otherwise, no name-based
13415 filtering is performed.
13416
13417 EXCEPTIONS is a vector of exceptions to which matching exceptions
13418 gets pushed. */
13419
13420 static void
13421 ada_add_standard_exceptions (compiled_regex *preg,
13422 std::vector<ada_exc_info> *exceptions)
13423 {
13424 int i;
13425
13426 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13427 {
13428 if (preg == NULL
13429 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13430 {
13431 struct bound_minimal_symbol msymbol
13432 = ada_lookup_simple_minsym (standard_exc[i]);
13433
13434 if (msymbol.minsym != NULL)
13435 {
13436 struct ada_exc_info info
13437 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13438
13439 exceptions->push_back (info);
13440 }
13441 }
13442 }
13443 }
13444
13445 /* Add all Ada exceptions defined locally and accessible from the given
13446 FRAME.
13447
13448 If PREG is not NULL, then this regexp_t object is used to
13449 perform the symbol name matching. Otherwise, no name-based
13450 filtering is performed.
13451
13452 EXCEPTIONS is a vector of exceptions to which matching exceptions
13453 gets pushed. */
13454
13455 static void
13456 ada_add_exceptions_from_frame (compiled_regex *preg,
13457 struct frame_info *frame,
13458 std::vector<ada_exc_info> *exceptions)
13459 {
13460 const struct block *block = get_frame_block (frame, 0);
13461
13462 while (block != 0)
13463 {
13464 struct block_iterator iter;
13465 struct symbol *sym;
13466
13467 ALL_BLOCK_SYMBOLS (block, iter, sym)
13468 {
13469 switch (SYMBOL_CLASS (sym))
13470 {
13471 case LOC_TYPEDEF:
13472 case LOC_BLOCK:
13473 case LOC_CONST:
13474 break;
13475 default:
13476 if (ada_is_exception_sym (sym))
13477 {
13478 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13479 SYMBOL_VALUE_ADDRESS (sym)};
13480
13481 exceptions->push_back (info);
13482 }
13483 }
13484 }
13485 if (BLOCK_FUNCTION (block) != NULL)
13486 break;
13487 block = BLOCK_SUPERBLOCK (block);
13488 }
13489 }
13490
13491 /* Return true if NAME matches PREG or if PREG is NULL. */
13492
13493 static bool
13494 name_matches_regex (const char *name, compiled_regex *preg)
13495 {
13496 return (preg == NULL
13497 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13498 }
13499
13500 /* Add all exceptions defined globally whose name name match
13501 a regular expression, excluding standard exceptions.
13502
13503 The reason we exclude standard exceptions is that they need
13504 to be handled separately: Standard exceptions are defined inside
13505 a runtime unit which is normally not compiled with debugging info,
13506 and thus usually do not show up in our symbol search. However,
13507 if the unit was in fact built with debugging info, we need to
13508 exclude them because they would duplicate the entry we found
13509 during the special loop that specifically searches for those
13510 standard exceptions.
13511
13512 If PREG is not NULL, then this regexp_t object is used to
13513 perform the symbol name matching. Otherwise, no name-based
13514 filtering is performed.
13515
13516 EXCEPTIONS is a vector of exceptions to which matching exceptions
13517 gets pushed. */
13518
13519 static void
13520 ada_add_global_exceptions (compiled_regex *preg,
13521 std::vector<ada_exc_info> *exceptions)
13522 {
13523 /* In Ada, the symbol "search name" is a linkage name, whereas the
13524 regular expression used to do the matching refers to the natural
13525 name. So match against the decoded name. */
13526 expand_symtabs_matching (NULL,
13527 lookup_name_info::match_any (),
13528 [&] (const char *search_name)
13529 {
13530 const char *decoded = ada_decode (search_name);
13531 return name_matches_regex (decoded, preg);
13532 },
13533 NULL,
13534 VARIABLES_DOMAIN);
13535
13536 for (objfile *objfile : current_program_space->objfiles ())
13537 {
13538 for (compunit_symtab *s : objfile->compunits ())
13539 {
13540 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13541 int i;
13542
13543 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13544 {
13545 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13546 struct block_iterator iter;
13547 struct symbol *sym;
13548
13549 ALL_BLOCK_SYMBOLS (b, iter, sym)
13550 if (ada_is_non_standard_exception_sym (sym)
13551 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13552 {
13553 struct ada_exc_info info
13554 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13555
13556 exceptions->push_back (info);
13557 }
13558 }
13559 }
13560 }
13561 }
13562
13563 /* Implements ada_exceptions_list with the regular expression passed
13564 as a regex_t, rather than a string.
13565
13566 If not NULL, PREG is used to filter out exceptions whose names
13567 do not match. Otherwise, all exceptions are listed. */
13568
13569 static std::vector<ada_exc_info>
13570 ada_exceptions_list_1 (compiled_regex *preg)
13571 {
13572 std::vector<ada_exc_info> result;
13573 int prev_len;
13574
13575 /* First, list the known standard exceptions. These exceptions
13576 need to be handled separately, as they are usually defined in
13577 runtime units that have been compiled without debugging info. */
13578
13579 ada_add_standard_exceptions (preg, &result);
13580
13581 /* Next, find all exceptions whose scope is local and accessible
13582 from the currently selected frame. */
13583
13584 if (has_stack_frames ())
13585 {
13586 prev_len = result.size ();
13587 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13588 &result);
13589 if (result.size () > prev_len)
13590 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13591 }
13592
13593 /* Add all exceptions whose scope is global. */
13594
13595 prev_len = result.size ();
13596 ada_add_global_exceptions (preg, &result);
13597 if (result.size () > prev_len)
13598 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13599
13600 return result;
13601 }
13602
13603 /* Return a vector of ada_exc_info.
13604
13605 If REGEXP is NULL, all exceptions are included in the result.
13606 Otherwise, it should contain a valid regular expression,
13607 and only the exceptions whose names match that regular expression
13608 are included in the result.
13609
13610 The exceptions are sorted in the following order:
13611 - Standard exceptions (defined by the Ada language), in
13612 alphabetical order;
13613 - Exceptions only visible from the current frame, in
13614 alphabetical order;
13615 - Exceptions whose scope is global, in alphabetical order. */
13616
13617 std::vector<ada_exc_info>
13618 ada_exceptions_list (const char *regexp)
13619 {
13620 if (regexp == NULL)
13621 return ada_exceptions_list_1 (NULL);
13622
13623 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13624 return ada_exceptions_list_1 (&reg);
13625 }
13626
13627 /* Implement the "info exceptions" command. */
13628
13629 static void
13630 info_exceptions_command (const char *regexp, int from_tty)
13631 {
13632 struct gdbarch *gdbarch = get_current_arch ();
13633
13634 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13635
13636 if (regexp != NULL)
13637 printf_filtered
13638 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13639 else
13640 printf_filtered (_("All defined Ada exceptions:\n"));
13641
13642 for (const ada_exc_info &info : exceptions)
13643 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13644 }
13645
13646 /* Operators */
13647 /* Information about operators given special treatment in functions
13648 below. */
13649 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13650
13651 #define ADA_OPERATORS \
13652 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13653 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13654 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13655 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13656 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13657 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13658 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13659 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13660 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13661 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13662 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13663 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13664 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13665 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13666 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13667 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13668 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13669 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13670 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13671
13672 static void
13673 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13674 int *argsp)
13675 {
13676 switch (exp->elts[pc - 1].opcode)
13677 {
13678 default:
13679 operator_length_standard (exp, pc, oplenp, argsp);
13680 break;
13681
13682 #define OP_DEFN(op, len, args, binop) \
13683 case op: *oplenp = len; *argsp = args; break;
13684 ADA_OPERATORS;
13685 #undef OP_DEFN
13686
13687 case OP_AGGREGATE:
13688 *oplenp = 3;
13689 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13690 break;
13691
13692 case OP_CHOICES:
13693 *oplenp = 3;
13694 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13695 break;
13696 }
13697 }
13698
13699 /* Implementation of the exp_descriptor method operator_check. */
13700
13701 static int
13702 ada_operator_check (struct expression *exp, int pos,
13703 int (*objfile_func) (struct objfile *objfile, void *data),
13704 void *data)
13705 {
13706 const union exp_element *const elts = exp->elts;
13707 struct type *type = NULL;
13708
13709 switch (elts[pos].opcode)
13710 {
13711 case UNOP_IN_RANGE:
13712 case UNOP_QUAL:
13713 type = elts[pos + 1].type;
13714 break;
13715
13716 default:
13717 return operator_check_standard (exp, pos, objfile_func, data);
13718 }
13719
13720 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13721
13722 if (type && TYPE_OBJFILE (type)
13723 && (*objfile_func) (TYPE_OBJFILE (type), data))
13724 return 1;
13725
13726 return 0;
13727 }
13728
13729 static const char *
13730 ada_op_name (enum exp_opcode opcode)
13731 {
13732 switch (opcode)
13733 {
13734 default:
13735 return op_name_standard (opcode);
13736
13737 #define OP_DEFN(op, len, args, binop) case op: return #op;
13738 ADA_OPERATORS;
13739 #undef OP_DEFN
13740
13741 case OP_AGGREGATE:
13742 return "OP_AGGREGATE";
13743 case OP_CHOICES:
13744 return "OP_CHOICES";
13745 case OP_NAME:
13746 return "OP_NAME";
13747 }
13748 }
13749
13750 /* As for operator_length, but assumes PC is pointing at the first
13751 element of the operator, and gives meaningful results only for the
13752 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13753
13754 static void
13755 ada_forward_operator_length (struct expression *exp, int pc,
13756 int *oplenp, int *argsp)
13757 {
13758 switch (exp->elts[pc].opcode)
13759 {
13760 default:
13761 *oplenp = *argsp = 0;
13762 break;
13763
13764 #define OP_DEFN(op, len, args, binop) \
13765 case op: *oplenp = len; *argsp = args; break;
13766 ADA_OPERATORS;
13767 #undef OP_DEFN
13768
13769 case OP_AGGREGATE:
13770 *oplenp = 3;
13771 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13772 break;
13773
13774 case OP_CHOICES:
13775 *oplenp = 3;
13776 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13777 break;
13778
13779 case OP_STRING:
13780 case OP_NAME:
13781 {
13782 int len = longest_to_int (exp->elts[pc + 1].longconst);
13783
13784 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13785 *argsp = 0;
13786 break;
13787 }
13788 }
13789 }
13790
13791 static int
13792 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13793 {
13794 enum exp_opcode op = exp->elts[elt].opcode;
13795 int oplen, nargs;
13796 int pc = elt;
13797 int i;
13798
13799 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13800
13801 switch (op)
13802 {
13803 /* Ada attributes ('Foo). */
13804 case OP_ATR_FIRST:
13805 case OP_ATR_LAST:
13806 case OP_ATR_LENGTH:
13807 case OP_ATR_IMAGE:
13808 case OP_ATR_MAX:
13809 case OP_ATR_MIN:
13810 case OP_ATR_MODULUS:
13811 case OP_ATR_POS:
13812 case OP_ATR_SIZE:
13813 case OP_ATR_TAG:
13814 case OP_ATR_VAL:
13815 break;
13816
13817 case UNOP_IN_RANGE:
13818 case UNOP_QUAL:
13819 /* XXX: gdb_sprint_host_address, type_sprint */
13820 fprintf_filtered (stream, _("Type @"));
13821 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13822 fprintf_filtered (stream, " (");
13823 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13824 fprintf_filtered (stream, ")");
13825 break;
13826 case BINOP_IN_BOUNDS:
13827 fprintf_filtered (stream, " (%d)",
13828 longest_to_int (exp->elts[pc + 2].longconst));
13829 break;
13830 case TERNOP_IN_RANGE:
13831 break;
13832
13833 case OP_AGGREGATE:
13834 case OP_OTHERS:
13835 case OP_DISCRETE_RANGE:
13836 case OP_POSITIONAL:
13837 case OP_CHOICES:
13838 break;
13839
13840 case OP_NAME:
13841 case OP_STRING:
13842 {
13843 char *name = &exp->elts[elt + 2].string;
13844 int len = longest_to_int (exp->elts[elt + 1].longconst);
13845
13846 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13847 break;
13848 }
13849
13850 default:
13851 return dump_subexp_body_standard (exp, stream, elt);
13852 }
13853
13854 elt += oplen;
13855 for (i = 0; i < nargs; i += 1)
13856 elt = dump_subexp (exp, stream, elt);
13857
13858 return elt;
13859 }
13860
13861 /* The Ada extension of print_subexp (q.v.). */
13862
13863 static void
13864 ada_print_subexp (struct expression *exp, int *pos,
13865 struct ui_file *stream, enum precedence prec)
13866 {
13867 int oplen, nargs, i;
13868 int pc = *pos;
13869 enum exp_opcode op = exp->elts[pc].opcode;
13870
13871 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13872
13873 *pos += oplen;
13874 switch (op)
13875 {
13876 default:
13877 *pos -= oplen;
13878 print_subexp_standard (exp, pos, stream, prec);
13879 return;
13880
13881 case OP_VAR_VALUE:
13882 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13883 return;
13884
13885 case BINOP_IN_BOUNDS:
13886 /* XXX: sprint_subexp */
13887 print_subexp (exp, pos, stream, PREC_SUFFIX);
13888 fputs_filtered (" in ", stream);
13889 print_subexp (exp, pos, stream, PREC_SUFFIX);
13890 fputs_filtered ("'range", stream);
13891 if (exp->elts[pc + 1].longconst > 1)
13892 fprintf_filtered (stream, "(%ld)",
13893 (long) exp->elts[pc + 1].longconst);
13894 return;
13895
13896 case TERNOP_IN_RANGE:
13897 if (prec >= PREC_EQUAL)
13898 fputs_filtered ("(", stream);
13899 /* XXX: sprint_subexp */
13900 print_subexp (exp, pos, stream, PREC_SUFFIX);
13901 fputs_filtered (" in ", stream);
13902 print_subexp (exp, pos, stream, PREC_EQUAL);
13903 fputs_filtered (" .. ", stream);
13904 print_subexp (exp, pos, stream, PREC_EQUAL);
13905 if (prec >= PREC_EQUAL)
13906 fputs_filtered (")", stream);
13907 return;
13908
13909 case OP_ATR_FIRST:
13910 case OP_ATR_LAST:
13911 case OP_ATR_LENGTH:
13912 case OP_ATR_IMAGE:
13913 case OP_ATR_MAX:
13914 case OP_ATR_MIN:
13915 case OP_ATR_MODULUS:
13916 case OP_ATR_POS:
13917 case OP_ATR_SIZE:
13918 case OP_ATR_TAG:
13919 case OP_ATR_VAL:
13920 if (exp->elts[*pos].opcode == OP_TYPE)
13921 {
13922 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13923 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13924 &type_print_raw_options);
13925 *pos += 3;
13926 }
13927 else
13928 print_subexp (exp, pos, stream, PREC_SUFFIX);
13929 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13930 if (nargs > 1)
13931 {
13932 int tem;
13933
13934 for (tem = 1; tem < nargs; tem += 1)
13935 {
13936 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13937 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13938 }
13939 fputs_filtered (")", stream);
13940 }
13941 return;
13942
13943 case UNOP_QUAL:
13944 type_print (exp->elts[pc + 1].type, "", stream, 0);
13945 fputs_filtered ("'(", stream);
13946 print_subexp (exp, pos, stream, PREC_PREFIX);
13947 fputs_filtered (")", stream);
13948 return;
13949
13950 case UNOP_IN_RANGE:
13951 /* XXX: sprint_subexp */
13952 print_subexp (exp, pos, stream, PREC_SUFFIX);
13953 fputs_filtered (" in ", stream);
13954 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13955 &type_print_raw_options);
13956 return;
13957
13958 case OP_DISCRETE_RANGE:
13959 print_subexp (exp, pos, stream, PREC_SUFFIX);
13960 fputs_filtered ("..", stream);
13961 print_subexp (exp, pos, stream, PREC_SUFFIX);
13962 return;
13963
13964 case OP_OTHERS:
13965 fputs_filtered ("others => ", stream);
13966 print_subexp (exp, pos, stream, PREC_SUFFIX);
13967 return;
13968
13969 case OP_CHOICES:
13970 for (i = 0; i < nargs-1; i += 1)
13971 {
13972 if (i > 0)
13973 fputs_filtered ("|", stream);
13974 print_subexp (exp, pos, stream, PREC_SUFFIX);
13975 }
13976 fputs_filtered (" => ", stream);
13977 print_subexp (exp, pos, stream, PREC_SUFFIX);
13978 return;
13979
13980 case OP_POSITIONAL:
13981 print_subexp (exp, pos, stream, PREC_SUFFIX);
13982 return;
13983
13984 case OP_AGGREGATE:
13985 fputs_filtered ("(", stream);
13986 for (i = 0; i < nargs; i += 1)
13987 {
13988 if (i > 0)
13989 fputs_filtered (", ", stream);
13990 print_subexp (exp, pos, stream, PREC_SUFFIX);
13991 }
13992 fputs_filtered (")", stream);
13993 return;
13994 }
13995 }
13996
13997 /* Table mapping opcodes into strings for printing operators
13998 and precedences of the operators. */
13999
14000 static const struct op_print ada_op_print_tab[] = {
14001 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14002 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14003 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14004 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14005 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14006 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14007 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14008 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14009 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14010 {">=", BINOP_GEQ, PREC_ORDER, 0},
14011 {">", BINOP_GTR, PREC_ORDER, 0},
14012 {"<", BINOP_LESS, PREC_ORDER, 0},
14013 {">>", BINOP_RSH, PREC_SHIFT, 0},
14014 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14015 {"+", BINOP_ADD, PREC_ADD, 0},
14016 {"-", BINOP_SUB, PREC_ADD, 0},
14017 {"&", BINOP_CONCAT, PREC_ADD, 0},
14018 {"*", BINOP_MUL, PREC_MUL, 0},
14019 {"/", BINOP_DIV, PREC_MUL, 0},
14020 {"rem", BINOP_REM, PREC_MUL, 0},
14021 {"mod", BINOP_MOD, PREC_MUL, 0},
14022 {"**", BINOP_EXP, PREC_REPEAT, 0},
14023 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14024 {"-", UNOP_NEG, PREC_PREFIX, 0},
14025 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14026 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14027 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14028 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14029 {".all", UNOP_IND, PREC_SUFFIX, 1},
14030 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14031 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14032 {NULL, OP_NULL, PREC_SUFFIX, 0}
14033 };
14034 \f
14035 enum ada_primitive_types {
14036 ada_primitive_type_int,
14037 ada_primitive_type_long,
14038 ada_primitive_type_short,
14039 ada_primitive_type_char,
14040 ada_primitive_type_float,
14041 ada_primitive_type_double,
14042 ada_primitive_type_void,
14043 ada_primitive_type_long_long,
14044 ada_primitive_type_long_double,
14045 ada_primitive_type_natural,
14046 ada_primitive_type_positive,
14047 ada_primitive_type_system_address,
14048 ada_primitive_type_storage_offset,
14049 nr_ada_primitive_types
14050 };
14051
14052 static void
14053 ada_language_arch_info (struct gdbarch *gdbarch,
14054 struct language_arch_info *lai)
14055 {
14056 const struct builtin_type *builtin = builtin_type (gdbarch);
14057
14058 lai->primitive_type_vector
14059 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14060 struct type *);
14061
14062 lai->primitive_type_vector [ada_primitive_type_int]
14063 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14064 0, "integer");
14065 lai->primitive_type_vector [ada_primitive_type_long]
14066 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14067 0, "long_integer");
14068 lai->primitive_type_vector [ada_primitive_type_short]
14069 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14070 0, "short_integer");
14071 lai->string_char_type
14072 = lai->primitive_type_vector [ada_primitive_type_char]
14073 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14074 lai->primitive_type_vector [ada_primitive_type_float]
14075 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14076 "float", gdbarch_float_format (gdbarch));
14077 lai->primitive_type_vector [ada_primitive_type_double]
14078 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14079 "long_float", gdbarch_double_format (gdbarch));
14080 lai->primitive_type_vector [ada_primitive_type_long_long]
14081 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14082 0, "long_long_integer");
14083 lai->primitive_type_vector [ada_primitive_type_long_double]
14084 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14085 "long_long_float", gdbarch_long_double_format (gdbarch));
14086 lai->primitive_type_vector [ada_primitive_type_natural]
14087 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14088 0, "natural");
14089 lai->primitive_type_vector [ada_primitive_type_positive]
14090 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14091 0, "positive");
14092 lai->primitive_type_vector [ada_primitive_type_void]
14093 = builtin->builtin_void;
14094
14095 lai->primitive_type_vector [ada_primitive_type_system_address]
14096 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14097 "void"));
14098 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14099 = "system__address";
14100
14101 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14102 type. This is a signed integral type whose size is the same as
14103 the size of addresses. */
14104 {
14105 unsigned int addr_length = TYPE_LENGTH
14106 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14107
14108 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14109 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14110 "storage_offset");
14111 }
14112
14113 lai->bool_type_symbol = NULL;
14114 lai->bool_type_default = builtin->builtin_bool;
14115 }
14116 \f
14117 /* Language vector */
14118
14119 /* Not really used, but needed in the ada_language_defn. */
14120
14121 static void
14122 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14123 {
14124 ada_emit_char (c, type, stream, quoter, 1);
14125 }
14126
14127 static int
14128 parse (struct parser_state *ps)
14129 {
14130 warnings_issued = 0;
14131 return ada_parse (ps);
14132 }
14133
14134 static const struct exp_descriptor ada_exp_descriptor = {
14135 ada_print_subexp,
14136 ada_operator_length,
14137 ada_operator_check,
14138 ada_op_name,
14139 ada_dump_subexp_body,
14140 ada_evaluate_subexp
14141 };
14142
14143 /* symbol_name_matcher_ftype adapter for wild_match. */
14144
14145 static bool
14146 do_wild_match (const char *symbol_search_name,
14147 const lookup_name_info &lookup_name,
14148 completion_match_result *comp_match_res)
14149 {
14150 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14151 }
14152
14153 /* symbol_name_matcher_ftype adapter for full_match. */
14154
14155 static bool
14156 do_full_match (const char *symbol_search_name,
14157 const lookup_name_info &lookup_name,
14158 completion_match_result *comp_match_res)
14159 {
14160 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14161 }
14162
14163 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
14164
14165 static bool
14166 do_exact_match (const char *symbol_search_name,
14167 const lookup_name_info &lookup_name,
14168 completion_match_result *comp_match_res)
14169 {
14170 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
14171 }
14172
14173 /* Build the Ada lookup name for LOOKUP_NAME. */
14174
14175 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14176 {
14177 const std::string &user_name = lookup_name.name ();
14178
14179 if (user_name[0] == '<')
14180 {
14181 if (user_name.back () == '>')
14182 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14183 else
14184 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14185 m_encoded_p = true;
14186 m_verbatim_p = true;
14187 m_wild_match_p = false;
14188 m_standard_p = false;
14189 }
14190 else
14191 {
14192 m_verbatim_p = false;
14193
14194 m_encoded_p = user_name.find ("__") != std::string::npos;
14195
14196 if (!m_encoded_p)
14197 {
14198 const char *folded = ada_fold_name (user_name.c_str ());
14199 const char *encoded = ada_encode_1 (folded, false);
14200 if (encoded != NULL)
14201 m_encoded_name = encoded;
14202 else
14203 m_encoded_name = user_name;
14204 }
14205 else
14206 m_encoded_name = user_name;
14207
14208 /* Handle the 'package Standard' special case. See description
14209 of m_standard_p. */
14210 if (startswith (m_encoded_name.c_str (), "standard__"))
14211 {
14212 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14213 m_standard_p = true;
14214 }
14215 else
14216 m_standard_p = false;
14217
14218 /* If the name contains a ".", then the user is entering a fully
14219 qualified entity name, and the match must not be done in wild
14220 mode. Similarly, if the user wants to complete what looks
14221 like an encoded name, the match must not be done in wild
14222 mode. Also, in the standard__ special case always do
14223 non-wild matching. */
14224 m_wild_match_p
14225 = (lookup_name.match_type () != symbol_name_match_type::FULL
14226 && !m_encoded_p
14227 && !m_standard_p
14228 && user_name.find ('.') == std::string::npos);
14229 }
14230 }
14231
14232 /* symbol_name_matcher_ftype method for Ada. This only handles
14233 completion mode. */
14234
14235 static bool
14236 ada_symbol_name_matches (const char *symbol_search_name,
14237 const lookup_name_info &lookup_name,
14238 completion_match_result *comp_match_res)
14239 {
14240 return lookup_name.ada ().matches (symbol_search_name,
14241 lookup_name.match_type (),
14242 comp_match_res);
14243 }
14244
14245 /* A name matcher that matches the symbol name exactly, with
14246 strcmp. */
14247
14248 static bool
14249 literal_symbol_name_matcher (const char *symbol_search_name,
14250 const lookup_name_info &lookup_name,
14251 completion_match_result *comp_match_res)
14252 {
14253 const std::string &name = lookup_name.name ();
14254
14255 int cmp = (lookup_name.completion_mode ()
14256 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14257 : strcmp (symbol_search_name, name.c_str ()));
14258 if (cmp == 0)
14259 {
14260 if (comp_match_res != NULL)
14261 comp_match_res->set_match (symbol_search_name);
14262 return true;
14263 }
14264 else
14265 return false;
14266 }
14267
14268 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14269 Ada. */
14270
14271 static symbol_name_matcher_ftype *
14272 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14273 {
14274 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14275 return literal_symbol_name_matcher;
14276
14277 if (lookup_name.completion_mode ())
14278 return ada_symbol_name_matches;
14279 else
14280 {
14281 if (lookup_name.ada ().wild_match_p ())
14282 return do_wild_match;
14283 else if (lookup_name.ada ().verbatim_p ())
14284 return do_exact_match;
14285 else
14286 return do_full_match;
14287 }
14288 }
14289
14290 /* Implement the "la_read_var_value" language_defn method for Ada. */
14291
14292 static struct value *
14293 ada_read_var_value (struct symbol *var, const struct block *var_block,
14294 struct frame_info *frame)
14295 {
14296 /* The only case where default_read_var_value is not sufficient
14297 is when VAR is a renaming... */
14298 if (frame != nullptr)
14299 {
14300 const struct block *frame_block = get_frame_block (frame, NULL);
14301 if (frame_block != nullptr && ada_is_renaming_symbol (var))
14302 return ada_read_renaming_var_value (var, frame_block);
14303 }
14304
14305 /* This is a typical case where we expect the default_read_var_value
14306 function to work. */
14307 return default_read_var_value (var, var_block, frame);
14308 }
14309
14310 static const char *ada_extensions[] =
14311 {
14312 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14313 };
14314
14315 extern const struct language_defn ada_language_defn = {
14316 "ada", /* Language name */
14317 "Ada",
14318 language_ada,
14319 range_check_off,
14320 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14321 that's not quite what this means. */
14322 array_row_major,
14323 macro_expansion_no,
14324 ada_extensions,
14325 &ada_exp_descriptor,
14326 parse,
14327 resolve,
14328 ada_printchar, /* Print a character constant */
14329 ada_printstr, /* Function to print string constant */
14330 emit_char, /* Function to print single char (not used) */
14331 ada_print_type, /* Print a type using appropriate syntax */
14332 ada_print_typedef, /* Print a typedef using appropriate syntax */
14333 ada_val_print, /* Print a value using appropriate syntax */
14334 ada_value_print, /* Print a top-level value */
14335 ada_read_var_value, /* la_read_var_value */
14336 NULL, /* Language specific skip_trampoline */
14337 NULL, /* name_of_this */
14338 true, /* la_store_sym_names_in_linkage_form_p */
14339 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14340 basic_lookup_transparent_type, /* lookup_transparent_type */
14341 ada_la_decode, /* Language specific symbol demangler */
14342 ada_sniff_from_mangled_name,
14343 NULL, /* Language specific
14344 class_name_from_physname */
14345 ada_op_print_tab, /* expression operators for printing */
14346 0, /* c-style arrays */
14347 1, /* String lower bound */
14348 ada_get_gdb_completer_word_break_characters,
14349 ada_collect_symbol_completion_matches,
14350 ada_language_arch_info,
14351 ada_print_array_index,
14352 default_pass_by_reference,
14353 c_get_string,
14354 ada_watch_location_expression,
14355 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14356 ada_iterate_over_symbols,
14357 default_search_name_hash,
14358 &ada_varobj_ops,
14359 NULL,
14360 NULL,
14361 ada_is_string_type,
14362 "(...)" /* la_struct_too_deep_ellipsis */
14363 };
14364
14365 /* Command-list for the "set/show ada" prefix command. */
14366 static struct cmd_list_element *set_ada_list;
14367 static struct cmd_list_element *show_ada_list;
14368
14369 /* Implement the "set ada" prefix command. */
14370
14371 static void
14372 set_ada_command (const char *arg, int from_tty)
14373 {
14374 printf_unfiltered (_(\
14375 "\"set ada\" must be followed by the name of a setting.\n"));
14376 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14377 }
14378
14379 /* Implement the "show ada" prefix command. */
14380
14381 static void
14382 show_ada_command (const char *args, int from_tty)
14383 {
14384 cmd_show_list (show_ada_list, from_tty, "");
14385 }
14386
14387 static void
14388 initialize_ada_catchpoint_ops (void)
14389 {
14390 struct breakpoint_ops *ops;
14391
14392 initialize_breakpoint_ops ();
14393
14394 ops = &catch_exception_breakpoint_ops;
14395 *ops = bkpt_breakpoint_ops;
14396 ops->allocate_location = allocate_location_catch_exception;
14397 ops->re_set = re_set_catch_exception;
14398 ops->check_status = check_status_catch_exception;
14399 ops->print_it = print_it_catch_exception;
14400 ops->print_one = print_one_catch_exception;
14401 ops->print_mention = print_mention_catch_exception;
14402 ops->print_recreate = print_recreate_catch_exception;
14403
14404 ops = &catch_exception_unhandled_breakpoint_ops;
14405 *ops = bkpt_breakpoint_ops;
14406 ops->allocate_location = allocate_location_catch_exception_unhandled;
14407 ops->re_set = re_set_catch_exception_unhandled;
14408 ops->check_status = check_status_catch_exception_unhandled;
14409 ops->print_it = print_it_catch_exception_unhandled;
14410 ops->print_one = print_one_catch_exception_unhandled;
14411 ops->print_mention = print_mention_catch_exception_unhandled;
14412 ops->print_recreate = print_recreate_catch_exception_unhandled;
14413
14414 ops = &catch_assert_breakpoint_ops;
14415 *ops = bkpt_breakpoint_ops;
14416 ops->allocate_location = allocate_location_catch_assert;
14417 ops->re_set = re_set_catch_assert;
14418 ops->check_status = check_status_catch_assert;
14419 ops->print_it = print_it_catch_assert;
14420 ops->print_one = print_one_catch_assert;
14421 ops->print_mention = print_mention_catch_assert;
14422 ops->print_recreate = print_recreate_catch_assert;
14423
14424 ops = &catch_handlers_breakpoint_ops;
14425 *ops = bkpt_breakpoint_ops;
14426 ops->allocate_location = allocate_location_catch_handlers;
14427 ops->re_set = re_set_catch_handlers;
14428 ops->check_status = check_status_catch_handlers;
14429 ops->print_it = print_it_catch_handlers;
14430 ops->print_one = print_one_catch_handlers;
14431 ops->print_mention = print_mention_catch_handlers;
14432 ops->print_recreate = print_recreate_catch_handlers;
14433 }
14434
14435 /* This module's 'new_objfile' observer. */
14436
14437 static void
14438 ada_new_objfile_observer (struct objfile *objfile)
14439 {
14440 ada_clear_symbol_cache ();
14441 }
14442
14443 /* This module's 'free_objfile' observer. */
14444
14445 static void
14446 ada_free_objfile_observer (struct objfile *objfile)
14447 {
14448 ada_clear_symbol_cache ();
14449 }
14450
14451 void
14452 _initialize_ada_language (void)
14453 {
14454 initialize_ada_catchpoint_ops ();
14455
14456 add_prefix_cmd ("ada", no_class, set_ada_command,
14457 _("Prefix command for changing Ada-specific settings."),
14458 &set_ada_list, "set ada ", 0, &setlist);
14459
14460 add_prefix_cmd ("ada", no_class, show_ada_command,
14461 _("Generic command for showing Ada-specific settings."),
14462 &show_ada_list, "show ada ", 0, &showlist);
14463
14464 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14465 &trust_pad_over_xvs, _("\
14466 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14467 Show whether an optimization trusting PAD types over XVS types is activated."),
14468 _("\
14469 This is related to the encoding used by the GNAT compiler. The debugger\n\
14470 should normally trust the contents of PAD types, but certain older versions\n\
14471 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14472 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14473 work around this bug. It is always safe to turn this option \"off\", but\n\
14474 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14475 this option to \"off\" unless necessary."),
14476 NULL, NULL, &set_ada_list, &show_ada_list);
14477
14478 add_setshow_boolean_cmd ("print-signatures", class_vars,
14479 &print_signatures, _("\
14480 Enable or disable the output of formal and return types for functions in the \
14481 overloads selection menu."), _("\
14482 Show whether the output of formal and return types for functions in the \
14483 overloads selection menu is activated."),
14484 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14485
14486 add_catch_command ("exception", _("\
14487 Catch Ada exceptions, when raised.\n\
14488 Usage: catch exception [ARG] [if CONDITION]\n\
14489 Without any argument, stop when any Ada exception is raised.\n\
14490 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14491 being raised does not have a handler (and will therefore lead to the task's\n\
14492 termination).\n\
14493 Otherwise, the catchpoint only stops when the name of the exception being\n\
14494 raised is the same as ARG.\n\
14495 CONDITION is a boolean expression that is evaluated to see whether the\n\
14496 exception should cause a stop."),
14497 catch_ada_exception_command,
14498 catch_ada_completer,
14499 CATCH_PERMANENT,
14500 CATCH_TEMPORARY);
14501
14502 add_catch_command ("handlers", _("\
14503 Catch Ada exceptions, when handled.\n\
14504 Usage: catch handlers [ARG] [if CONDITION]\n\
14505 Without any argument, stop when any Ada exception is handled.\n\
14506 With an argument, catch only exceptions with the given name.\n\
14507 CONDITION is a boolean expression that is evaluated to see whether the\n\
14508 exception should cause a stop."),
14509 catch_ada_handlers_command,
14510 catch_ada_completer,
14511 CATCH_PERMANENT,
14512 CATCH_TEMPORARY);
14513 add_catch_command ("assert", _("\
14514 Catch failed Ada assertions, when raised.\n\
14515 Usage: catch assert [if CONDITION]\n\
14516 CONDITION is a boolean expression that is evaluated to see whether the\n\
14517 exception should cause a stop."),
14518 catch_assert_command,
14519 NULL,
14520 CATCH_PERMANENT,
14521 CATCH_TEMPORARY);
14522
14523 varsize_limit = 65536;
14524 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14525 &varsize_limit, _("\
14526 Set the maximum number of bytes allowed in a variable-size object."), _("\
14527 Show the maximum number of bytes allowed in a variable-size object."), _("\
14528 Attempts to access an object whose size is not a compile-time constant\n\
14529 and exceeds this limit will cause an error."),
14530 NULL, NULL, &setlist, &showlist);
14531
14532 add_info ("exceptions", info_exceptions_command,
14533 _("\
14534 List all Ada exception names.\n\
14535 Usage: info exceptions [REGEXP]\n\
14536 If a regular expression is passed as an argument, only those matching\n\
14537 the regular expression are listed."));
14538
14539 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14540 _("Set Ada maintenance-related variables."),
14541 &maint_set_ada_cmdlist, "maintenance set ada ",
14542 0/*allow-unknown*/, &maintenance_set_cmdlist);
14543
14544 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14545 _("Show Ada maintenance-related variables."),
14546 &maint_show_ada_cmdlist, "maintenance show ada ",
14547 0/*allow-unknown*/, &maintenance_show_cmdlist);
14548
14549 add_setshow_boolean_cmd
14550 ("ignore-descriptive-types", class_maintenance,
14551 &ada_ignore_descriptive_types_p,
14552 _("Set whether descriptive types generated by GNAT should be ignored."),
14553 _("Show whether descriptive types generated by GNAT should be ignored."),
14554 _("\
14555 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14556 DWARF attribute."),
14557 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14558
14559 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14560 NULL, xcalloc, xfree);
14561
14562 /* The ada-lang observers. */
14563 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14564 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14565 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14566 }