]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
Automatic Copyright Year update after running gdb/copyright.py
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52 #include "cli/cli-decode.h"
53
54 #include "value.h"
55 #include "mi/mi-common.h"
56 #include "arch-utils.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/function-view.h"
59 #include "gdbsupport/byte-vector.h"
60 #include <algorithm>
61 #include "ada-exp.h"
62
63 /* Define whether or not the C operator '/' truncates towards zero for
64 differently signed operands (truncation direction is undefined in C).
65 Copied from valarith.c. */
66
67 #ifndef TRUNCATION_TOWARDS_ZERO
68 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 #endif
70
71 static struct type *desc_base_type (struct type *);
72
73 static struct type *desc_bounds_type (struct type *);
74
75 static struct value *desc_bounds (struct value *);
76
77 static int fat_pntr_bounds_bitpos (struct type *);
78
79 static int fat_pntr_bounds_bitsize (struct type *);
80
81 static struct type *desc_data_target_type (struct type *);
82
83 static struct value *desc_data (struct value *);
84
85 static int fat_pntr_data_bitpos (struct type *);
86
87 static int fat_pntr_data_bitsize (struct type *);
88
89 static struct value *desc_one_bound (struct value *, int, int);
90
91 static int desc_bound_bitpos (struct type *, int, int);
92
93 static int desc_bound_bitsize (struct type *, int, int);
94
95 static struct type *desc_index_type (struct type *, int);
96
97 static int desc_arity (struct type *);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (std::vector<struct block_symbol> &,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (std::vector<struct block_symbol> &,
109 const struct block *,
110 const lookup_name_info &lookup_name,
111 domain_enum, int, int *);
112
113 static int is_nonfunction (const std::vector<struct block_symbol> &);
114
115 static void add_defn_to_vec (std::vector<struct block_symbol> &,
116 struct symbol *,
117 const struct block *);
118
119 static int possible_user_operator_p (enum exp_opcode, struct value **);
120
121 static const char *ada_decoded_op_name (enum exp_opcode);
122
123 static int numeric_type_p (struct type *);
124
125 static int integer_type_p (struct type *);
126
127 static int scalar_type_p (struct type *);
128
129 static int discrete_type_p (struct type *);
130
131 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
132 int, int);
133
134 static struct type *ada_find_parallel_type_with_name (struct type *,
135 const char *);
136
137 static int is_dynamic_field (struct type *, int);
138
139 static struct type *to_fixed_variant_branch_type (struct type *,
140 const gdb_byte *,
141 CORE_ADDR, struct value *);
142
143 static struct type *to_fixed_array_type (struct type *, struct value *, int);
144
145 static struct type *to_fixed_range_type (struct type *, struct value *);
146
147 static struct type *to_static_fixed_type (struct type *);
148 static struct type *static_unwrap_type (struct type *type);
149
150 static struct value *unwrap_value (struct value *);
151
152 static struct type *constrained_packed_array_type (struct type *, long *);
153
154 static struct type *decode_constrained_packed_array_type (struct type *);
155
156 static long decode_packed_array_bitsize (struct type *);
157
158 static struct value *decode_constrained_packed_array (struct value *);
159
160 static int ada_is_unconstrained_packed_array_type (struct type *);
161
162 static struct value *value_subscript_packed (struct value *, int,
163 struct value **);
164
165 static struct value *coerce_unspec_val_to_type (struct value *,
166 struct type *);
167
168 static int lesseq_defined_than (struct symbol *, struct symbol *);
169
170 static int equiv_types (struct type *, struct type *);
171
172 static int is_name_suffix (const char *);
173
174 static int advance_wild_match (const char **, const char *, char);
175
176 static bool wild_match (const char *name, const char *patn);
177
178 static struct value *ada_coerce_ref (struct value *);
179
180 static LONGEST pos_atr (struct value *);
181
182 static struct value *val_atr (struct type *, LONGEST);
183
184 static struct symbol *standard_lookup (const char *, const struct block *,
185 domain_enum);
186
187 static struct value *ada_search_struct_field (const char *, struct value *, int,
188 struct type *);
189
190 static int find_struct_field (const char *, struct type *, int,
191 struct type **, int *, int *, int *, int *);
192
193 static int ada_resolve_function (std::vector<struct block_symbol> &,
194 struct value **, int, const char *,
195 struct type *, bool);
196
197 static int ada_is_direct_array_type (struct type *);
198
199 static struct value *ada_index_struct_field (int, struct value *, int,
200 struct type *);
201
202 static void add_component_interval (LONGEST, LONGEST, std::vector<LONGEST> &);
203
204
205 static struct type *ada_find_any_type (const char *name);
206
207 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
208 (const lookup_name_info &lookup_name);
209
210 \f
211
212 /* The result of a symbol lookup to be stored in our symbol cache. */
213
214 struct cache_entry
215 {
216 /* The name used to perform the lookup. */
217 const char *name;
218 /* The namespace used during the lookup. */
219 domain_enum domain;
220 /* The symbol returned by the lookup, or NULL if no matching symbol
221 was found. */
222 struct symbol *sym;
223 /* The block where the symbol was found, or NULL if no matching
224 symbol was found. */
225 const struct block *block;
226 /* A pointer to the next entry with the same hash. */
227 struct cache_entry *next;
228 };
229
230 /* The Ada symbol cache, used to store the result of Ada-mode symbol
231 lookups in the course of executing the user's commands.
232
233 The cache is implemented using a simple, fixed-sized hash.
234 The size is fixed on the grounds that there are not likely to be
235 all that many symbols looked up during any given session, regardless
236 of the size of the symbol table. If we decide to go to a resizable
237 table, let's just use the stuff from libiberty instead. */
238
239 #define HASH_SIZE 1009
240
241 struct ada_symbol_cache
242 {
243 /* An obstack used to store the entries in our cache. */
244 struct auto_obstack cache_space;
245
246 /* The root of the hash table used to implement our symbol cache. */
247 struct cache_entry *root[HASH_SIZE] {};
248 };
249
250 static const char ada_completer_word_break_characters[] =
251 #ifdef VMS
252 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
253 #else
254 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
255 #endif
256
257 /* The name of the symbol to use to get the name of the main subprogram. */
258 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
259 = "__gnat_ada_main_program_name";
260
261 /* Limit on the number of warnings to raise per expression evaluation. */
262 static int warning_limit = 2;
263
264 /* Number of warning messages issued; reset to 0 by cleanups after
265 expression evaluation. */
266 static int warnings_issued = 0;
267
268 static const char * const known_runtime_file_name_patterns[] = {
269 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
270 };
271
272 static const char * const known_auxiliary_function_name_patterns[] = {
273 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
274 };
275
276 /* Maintenance-related settings for this module. */
277
278 static struct cmd_list_element *maint_set_ada_cmdlist;
279 static struct cmd_list_element *maint_show_ada_cmdlist;
280
281 /* The "maintenance ada set/show ignore-descriptive-type" value. */
282
283 static bool ada_ignore_descriptive_types_p = false;
284
285 /* Inferior-specific data. */
286
287 /* Per-inferior data for this module. */
288
289 struct ada_inferior_data
290 {
291 /* The ada__tags__type_specific_data type, which is used when decoding
292 tagged types. With older versions of GNAT, this type was directly
293 accessible through a component ("tsd") in the object tag. But this
294 is no longer the case, so we cache it for each inferior. */
295 struct type *tsd_type = nullptr;
296
297 /* The exception_support_info data. This data is used to determine
298 how to implement support for Ada exception catchpoints in a given
299 inferior. */
300 const struct exception_support_info *exception_info = nullptr;
301 };
302
303 /* Our key to this module's inferior data. */
304 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
305
306 /* Return our inferior data for the given inferior (INF).
307
308 This function always returns a valid pointer to an allocated
309 ada_inferior_data structure. If INF's inferior data has not
310 been previously set, this functions creates a new one with all
311 fields set to zero, sets INF's inferior to it, and then returns
312 a pointer to that newly allocated ada_inferior_data. */
313
314 static struct ada_inferior_data *
315 get_ada_inferior_data (struct inferior *inf)
316 {
317 struct ada_inferior_data *data;
318
319 data = ada_inferior_data.get (inf);
320 if (data == NULL)
321 data = ada_inferior_data.emplace (inf);
322
323 return data;
324 }
325
326 /* Perform all necessary cleanups regarding our module's inferior data
327 that is required after the inferior INF just exited. */
328
329 static void
330 ada_inferior_exit (struct inferior *inf)
331 {
332 ada_inferior_data.clear (inf);
333 }
334
335
336 /* program-space-specific data. */
337
338 /* This module's per-program-space data. */
339 struct ada_pspace_data
340 {
341 /* The Ada symbol cache. */
342 std::unique_ptr<ada_symbol_cache> sym_cache;
343 };
344
345 /* Key to our per-program-space data. */
346 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
347
348 /* Return this module's data for the given program space (PSPACE).
349 If not is found, add a zero'ed one now.
350
351 This function always returns a valid object. */
352
353 static struct ada_pspace_data *
354 get_ada_pspace_data (struct program_space *pspace)
355 {
356 struct ada_pspace_data *data;
357
358 data = ada_pspace_data_handle.get (pspace);
359 if (data == NULL)
360 data = ada_pspace_data_handle.emplace (pspace);
361
362 return data;
363 }
364
365 /* Utilities */
366
367 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
368 all typedef layers have been peeled. Otherwise, return TYPE.
369
370 Normally, we really expect a typedef type to only have 1 typedef layer.
371 In other words, we really expect the target type of a typedef type to be
372 a non-typedef type. This is particularly true for Ada units, because
373 the language does not have a typedef vs not-typedef distinction.
374 In that respect, the Ada compiler has been trying to eliminate as many
375 typedef definitions in the debugging information, since they generally
376 do not bring any extra information (we still use typedef under certain
377 circumstances related mostly to the GNAT encoding).
378
379 Unfortunately, we have seen situations where the debugging information
380 generated by the compiler leads to such multiple typedef layers. For
381 instance, consider the following example with stabs:
382
383 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
384 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
385
386 This is an error in the debugging information which causes type
387 pck__float_array___XUP to be defined twice, and the second time,
388 it is defined as a typedef of a typedef.
389
390 This is on the fringe of legality as far as debugging information is
391 concerned, and certainly unexpected. But it is easy to handle these
392 situations correctly, so we can afford to be lenient in this case. */
393
394 static struct type *
395 ada_typedef_target_type (struct type *type)
396 {
397 while (type->code () == TYPE_CODE_TYPEDEF)
398 type = TYPE_TARGET_TYPE (type);
399 return type;
400 }
401
402 /* Given DECODED_NAME a string holding a symbol name in its
403 decoded form (ie using the Ada dotted notation), returns
404 its unqualified name. */
405
406 static const char *
407 ada_unqualified_name (const char *decoded_name)
408 {
409 const char *result;
410
411 /* If the decoded name starts with '<', it means that the encoded
412 name does not follow standard naming conventions, and thus that
413 it is not your typical Ada symbol name. Trying to unqualify it
414 is therefore pointless and possibly erroneous. */
415 if (decoded_name[0] == '<')
416 return decoded_name;
417
418 result = strrchr (decoded_name, '.');
419 if (result != NULL)
420 result++; /* Skip the dot... */
421 else
422 result = decoded_name;
423
424 return result;
425 }
426
427 /* Return a string starting with '<', followed by STR, and '>'. */
428
429 static std::string
430 add_angle_brackets (const char *str)
431 {
432 return string_printf ("<%s>", str);
433 }
434
435 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
436 suffix of FIELD_NAME beginning "___". */
437
438 static int
439 field_name_match (const char *field_name, const char *target)
440 {
441 int len = strlen (target);
442
443 return
444 (strncmp (field_name, target, len) == 0
445 && (field_name[len] == '\0'
446 || (startswith (field_name + len, "___")
447 && strcmp (field_name + strlen (field_name) - 6,
448 "___XVN") != 0)));
449 }
450
451
452 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
453 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
454 and return its index. This function also handles fields whose name
455 have ___ suffixes because the compiler sometimes alters their name
456 by adding such a suffix to represent fields with certain constraints.
457 If the field could not be found, return a negative number if
458 MAYBE_MISSING is set. Otherwise raise an error. */
459
460 int
461 ada_get_field_index (const struct type *type, const char *field_name,
462 int maybe_missing)
463 {
464 int fieldno;
465 struct type *struct_type = check_typedef ((struct type *) type);
466
467 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
468 if (field_name_match (struct_type->field (fieldno).name (), field_name))
469 return fieldno;
470
471 if (!maybe_missing)
472 error (_("Unable to find field %s in struct %s. Aborting"),
473 field_name, struct_type->name ());
474
475 return -1;
476 }
477
478 /* The length of the prefix of NAME prior to any "___" suffix. */
479
480 int
481 ada_name_prefix_len (const char *name)
482 {
483 if (name == NULL)
484 return 0;
485 else
486 {
487 const char *p = strstr (name, "___");
488
489 if (p == NULL)
490 return strlen (name);
491 else
492 return p - name;
493 }
494 }
495
496 /* Return non-zero if SUFFIX is a suffix of STR.
497 Return zero if STR is null. */
498
499 static int
500 is_suffix (const char *str, const char *suffix)
501 {
502 int len1, len2;
503
504 if (str == NULL)
505 return 0;
506 len1 = strlen (str);
507 len2 = strlen (suffix);
508 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
509 }
510
511 /* The contents of value VAL, treated as a value of type TYPE. The
512 result is an lval in memory if VAL is. */
513
514 static struct value *
515 coerce_unspec_val_to_type (struct value *val, struct type *type)
516 {
517 type = ada_check_typedef (type);
518 if (value_type (val) == type)
519 return val;
520 else
521 {
522 struct value *result;
523
524 if (value_optimized_out (val))
525 result = allocate_optimized_out_value (type);
526 else if (value_lazy (val)
527 /* Be careful not to make a lazy not_lval value. */
528 || (VALUE_LVAL (val) != not_lval
529 && TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val))))
530 result = allocate_value_lazy (type);
531 else
532 {
533 result = allocate_value (type);
534 value_contents_copy (result, 0, val, 0, TYPE_LENGTH (type));
535 }
536 set_value_component_location (result, val);
537 set_value_bitsize (result, value_bitsize (val));
538 set_value_bitpos (result, value_bitpos (val));
539 if (VALUE_LVAL (result) == lval_memory)
540 set_value_address (result, value_address (val));
541 return result;
542 }
543 }
544
545 static const gdb_byte *
546 cond_offset_host (const gdb_byte *valaddr, long offset)
547 {
548 if (valaddr == NULL)
549 return NULL;
550 else
551 return valaddr + offset;
552 }
553
554 static CORE_ADDR
555 cond_offset_target (CORE_ADDR address, long offset)
556 {
557 if (address == 0)
558 return 0;
559 else
560 return address + offset;
561 }
562
563 /* Issue a warning (as for the definition of warning in utils.c, but
564 with exactly one argument rather than ...), unless the limit on the
565 number of warnings has passed during the evaluation of the current
566 expression. */
567
568 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
569 provided by "complaint". */
570 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
571
572 static void
573 lim_warning (const char *format, ...)
574 {
575 va_list args;
576
577 va_start (args, format);
578 warnings_issued += 1;
579 if (warnings_issued <= warning_limit)
580 vwarning (format, args);
581
582 va_end (args);
583 }
584
585 /* Maximum value of a SIZE-byte signed integer type. */
586 static LONGEST
587 max_of_size (int size)
588 {
589 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
590
591 return top_bit | (top_bit - 1);
592 }
593
594 /* Minimum value of a SIZE-byte signed integer type. */
595 static LONGEST
596 min_of_size (int size)
597 {
598 return -max_of_size (size) - 1;
599 }
600
601 /* Maximum value of a SIZE-byte unsigned integer type. */
602 static ULONGEST
603 umax_of_size (int size)
604 {
605 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
606
607 return top_bit | (top_bit - 1);
608 }
609
610 /* Maximum value of integral type T, as a signed quantity. */
611 static LONGEST
612 max_of_type (struct type *t)
613 {
614 if (t->is_unsigned ())
615 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
616 else
617 return max_of_size (TYPE_LENGTH (t));
618 }
619
620 /* Minimum value of integral type T, as a signed quantity. */
621 static LONGEST
622 min_of_type (struct type *t)
623 {
624 if (t->is_unsigned ())
625 return 0;
626 else
627 return min_of_size (TYPE_LENGTH (t));
628 }
629
630 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
631 LONGEST
632 ada_discrete_type_high_bound (struct type *type)
633 {
634 type = resolve_dynamic_type (type, {}, 0);
635 switch (type->code ())
636 {
637 case TYPE_CODE_RANGE:
638 {
639 const dynamic_prop &high = type->bounds ()->high;
640
641 if (high.kind () == PROP_CONST)
642 return high.const_val ();
643 else
644 {
645 gdb_assert (high.kind () == PROP_UNDEFINED);
646
647 /* This happens when trying to evaluate a type's dynamic bound
648 without a live target. There is nothing relevant for us to
649 return here, so return 0. */
650 return 0;
651 }
652 }
653 case TYPE_CODE_ENUM:
654 return type->field (type->num_fields () - 1).loc_enumval ();
655 case TYPE_CODE_BOOL:
656 return 1;
657 case TYPE_CODE_CHAR:
658 case TYPE_CODE_INT:
659 return max_of_type (type);
660 default:
661 error (_("Unexpected type in ada_discrete_type_high_bound."));
662 }
663 }
664
665 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
666 LONGEST
667 ada_discrete_type_low_bound (struct type *type)
668 {
669 type = resolve_dynamic_type (type, {}, 0);
670 switch (type->code ())
671 {
672 case TYPE_CODE_RANGE:
673 {
674 const dynamic_prop &low = type->bounds ()->low;
675
676 if (low.kind () == PROP_CONST)
677 return low.const_val ();
678 else
679 {
680 gdb_assert (low.kind () == PROP_UNDEFINED);
681
682 /* This happens when trying to evaluate a type's dynamic bound
683 without a live target. There is nothing relevant for us to
684 return here, so return 0. */
685 return 0;
686 }
687 }
688 case TYPE_CODE_ENUM:
689 return type->field (0).loc_enumval ();
690 case TYPE_CODE_BOOL:
691 return 0;
692 case TYPE_CODE_CHAR:
693 case TYPE_CODE_INT:
694 return min_of_type (type);
695 default:
696 error (_("Unexpected type in ada_discrete_type_low_bound."));
697 }
698 }
699
700 /* The identity on non-range types. For range types, the underlying
701 non-range scalar type. */
702
703 static struct type *
704 get_base_type (struct type *type)
705 {
706 while (type != NULL && type->code () == TYPE_CODE_RANGE)
707 {
708 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
709 return type;
710 type = TYPE_TARGET_TYPE (type);
711 }
712 return type;
713 }
714
715 /* Return a decoded version of the given VALUE. This means returning
716 a value whose type is obtained by applying all the GNAT-specific
717 encodings, making the resulting type a static but standard description
718 of the initial type. */
719
720 struct value *
721 ada_get_decoded_value (struct value *value)
722 {
723 struct type *type = ada_check_typedef (value_type (value));
724
725 if (ada_is_array_descriptor_type (type)
726 || (ada_is_constrained_packed_array_type (type)
727 && type->code () != TYPE_CODE_PTR))
728 {
729 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
730 value = ada_coerce_to_simple_array_ptr (value);
731 else
732 value = ada_coerce_to_simple_array (value);
733 }
734 else
735 value = ada_to_fixed_value (value);
736
737 return value;
738 }
739
740 /* Same as ada_get_decoded_value, but with the given TYPE.
741 Because there is no associated actual value for this type,
742 the resulting type might be a best-effort approximation in
743 the case of dynamic types. */
744
745 struct type *
746 ada_get_decoded_type (struct type *type)
747 {
748 type = to_static_fixed_type (type);
749 if (ada_is_constrained_packed_array_type (type))
750 type = ada_coerce_to_simple_array_type (type);
751 return type;
752 }
753
754 \f
755
756 /* Language Selection */
757
758 /* If the main program is in Ada, return language_ada, otherwise return LANG
759 (the main program is in Ada iif the adainit symbol is found). */
760
761 static enum language
762 ada_update_initial_language (enum language lang)
763 {
764 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
765 return language_ada;
766
767 return lang;
768 }
769
770 /* If the main procedure is written in Ada, then return its name.
771 The result is good until the next call. Return NULL if the main
772 procedure doesn't appear to be in Ada. */
773
774 char *
775 ada_main_name (void)
776 {
777 struct bound_minimal_symbol msym;
778 static gdb::unique_xmalloc_ptr<char> main_program_name;
779
780 /* For Ada, the name of the main procedure is stored in a specific
781 string constant, generated by the binder. Look for that symbol,
782 extract its address, and then read that string. If we didn't find
783 that string, then most probably the main procedure is not written
784 in Ada. */
785 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
786
787 if (msym.minsym != NULL)
788 {
789 CORE_ADDR main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
790 if (main_program_name_addr == 0)
791 error (_("Invalid address for Ada main program name."));
792
793 main_program_name = target_read_string (main_program_name_addr, 1024);
794 return main_program_name.get ();
795 }
796
797 /* The main procedure doesn't seem to be in Ada. */
798 return NULL;
799 }
800 \f
801 /* Symbols */
802
803 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
804 of NULLs. */
805
806 const struct ada_opname_map ada_opname_table[] = {
807 {"Oadd", "\"+\"", BINOP_ADD},
808 {"Osubtract", "\"-\"", BINOP_SUB},
809 {"Omultiply", "\"*\"", BINOP_MUL},
810 {"Odivide", "\"/\"", BINOP_DIV},
811 {"Omod", "\"mod\"", BINOP_MOD},
812 {"Orem", "\"rem\"", BINOP_REM},
813 {"Oexpon", "\"**\"", BINOP_EXP},
814 {"Olt", "\"<\"", BINOP_LESS},
815 {"Ole", "\"<=\"", BINOP_LEQ},
816 {"Ogt", "\">\"", BINOP_GTR},
817 {"Oge", "\">=\"", BINOP_GEQ},
818 {"Oeq", "\"=\"", BINOP_EQUAL},
819 {"One", "\"/=\"", BINOP_NOTEQUAL},
820 {"Oand", "\"and\"", BINOP_BITWISE_AND},
821 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
822 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
823 {"Oconcat", "\"&\"", BINOP_CONCAT},
824 {"Oabs", "\"abs\"", UNOP_ABS},
825 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
826 {"Oadd", "\"+\"", UNOP_PLUS},
827 {"Osubtract", "\"-\"", UNOP_NEG},
828 {NULL, NULL}
829 };
830
831 /* If STR is a decoded version of a compiler-provided suffix (like the
832 "[cold]" in "symbol[cold]"), return true. Otherwise, return
833 false. */
834
835 static bool
836 is_compiler_suffix (const char *str)
837 {
838 gdb_assert (*str == '[');
839 ++str;
840 while (*str != '\0' && isalpha (*str))
841 ++str;
842 /* We accept a missing "]" in order to support completion. */
843 return *str == '\0' || (str[0] == ']' && str[1] == '\0');
844 }
845
846 /* The "encoded" form of DECODED, according to GNAT conventions. If
847 THROW_ERRORS, throw an error if invalid operator name is found.
848 Otherwise, return the empty string in that case. */
849
850 static std::string
851 ada_encode_1 (const char *decoded, bool throw_errors)
852 {
853 if (decoded == NULL)
854 return {};
855
856 std::string encoding_buffer;
857 for (const char *p = decoded; *p != '\0'; p += 1)
858 {
859 if (*p == '.')
860 encoding_buffer.append ("__");
861 else if (*p == '[' && is_compiler_suffix (p))
862 {
863 encoding_buffer = encoding_buffer + "." + (p + 1);
864 if (encoding_buffer.back () == ']')
865 encoding_buffer.pop_back ();
866 break;
867 }
868 else if (*p == '"')
869 {
870 const struct ada_opname_map *mapping;
871
872 for (mapping = ada_opname_table;
873 mapping->encoded != NULL
874 && !startswith (p, mapping->decoded); mapping += 1)
875 ;
876 if (mapping->encoded == NULL)
877 {
878 if (throw_errors)
879 error (_("invalid Ada operator name: %s"), p);
880 else
881 return {};
882 }
883 encoding_buffer.append (mapping->encoded);
884 break;
885 }
886 else
887 encoding_buffer.push_back (*p);
888 }
889
890 return encoding_buffer;
891 }
892
893 /* The "encoded" form of DECODED, according to GNAT conventions. */
894
895 std::string
896 ada_encode (const char *decoded)
897 {
898 return ada_encode_1 (decoded, true);
899 }
900
901 /* Return NAME folded to lower case, or, if surrounded by single
902 quotes, unfolded, but with the quotes stripped away. Result good
903 to next call. */
904
905 static const char *
906 ada_fold_name (gdb::string_view name)
907 {
908 static std::string fold_storage;
909
910 if (!name.empty () && name[0] == '\'')
911 fold_storage = gdb::to_string (name.substr (1, name.size () - 2));
912 else
913 {
914 fold_storage = gdb::to_string (name);
915 for (int i = 0; i < name.size (); i += 1)
916 fold_storage[i] = tolower (fold_storage[i]);
917 }
918
919 return fold_storage.c_str ();
920 }
921
922 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
923
924 static int
925 is_lower_alphanum (const char c)
926 {
927 return (isdigit (c) || (isalpha (c) && islower (c)));
928 }
929
930 /* ENCODED is the linkage name of a symbol and LEN contains its length.
931 This function saves in LEN the length of that same symbol name but
932 without either of these suffixes:
933 . .{DIGIT}+
934 . ${DIGIT}+
935 . ___{DIGIT}+
936 . __{DIGIT}+.
937
938 These are suffixes introduced by the compiler for entities such as
939 nested subprogram for instance, in order to avoid name clashes.
940 They do not serve any purpose for the debugger. */
941
942 static void
943 ada_remove_trailing_digits (const char *encoded, int *len)
944 {
945 if (*len > 1 && isdigit (encoded[*len - 1]))
946 {
947 int i = *len - 2;
948
949 while (i > 0 && isdigit (encoded[i]))
950 i--;
951 if (i >= 0 && encoded[i] == '.')
952 *len = i;
953 else if (i >= 0 && encoded[i] == '$')
954 *len = i;
955 else if (i >= 2 && startswith (encoded + i - 2, "___"))
956 *len = i - 2;
957 else if (i >= 1 && startswith (encoded + i - 1, "__"))
958 *len = i - 1;
959 }
960 }
961
962 /* Remove the suffix introduced by the compiler for protected object
963 subprograms. */
964
965 static void
966 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
967 {
968 /* Remove trailing N. */
969
970 /* Protected entry subprograms are broken into two
971 separate subprograms: The first one is unprotected, and has
972 a 'N' suffix; the second is the protected version, and has
973 the 'P' suffix. The second calls the first one after handling
974 the protection. Since the P subprograms are internally generated,
975 we leave these names undecoded, giving the user a clue that this
976 entity is internal. */
977
978 if (*len > 1
979 && encoded[*len - 1] == 'N'
980 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
981 *len = *len - 1;
982 }
983
984 /* If ENCODED ends with a compiler-provided suffix (like ".cold"),
985 then update *LEN to remove the suffix and return the offset of the
986 character just past the ".". Otherwise, return -1. */
987
988 static int
989 remove_compiler_suffix (const char *encoded, int *len)
990 {
991 int offset = *len - 1;
992 while (offset > 0 && isalpha (encoded[offset]))
993 --offset;
994 if (offset > 0 && encoded[offset] == '.')
995 {
996 *len = offset;
997 return offset + 1;
998 }
999 return -1;
1000 }
1001
1002 /* See ada-lang.h. */
1003
1004 std::string
1005 ada_decode (const char *encoded, bool wrap)
1006 {
1007 int i, j;
1008 int len0;
1009 const char *p;
1010 int at_start_name;
1011 std::string decoded;
1012 int suffix = -1;
1013
1014 /* With function descriptors on PPC64, the value of a symbol named
1015 ".FN", if it exists, is the entry point of the function "FN". */
1016 if (encoded[0] == '.')
1017 encoded += 1;
1018
1019 /* The name of the Ada main procedure starts with "_ada_".
1020 This prefix is not part of the decoded name, so skip this part
1021 if we see this prefix. */
1022 if (startswith (encoded, "_ada_"))
1023 encoded += 5;
1024
1025 /* If the name starts with '_', then it is not a properly encoded
1026 name, so do not attempt to decode it. Similarly, if the name
1027 starts with '<', the name should not be decoded. */
1028 if (encoded[0] == '_' || encoded[0] == '<')
1029 goto Suppress;
1030
1031 len0 = strlen (encoded);
1032
1033 suffix = remove_compiler_suffix (encoded, &len0);
1034
1035 ada_remove_trailing_digits (encoded, &len0);
1036 ada_remove_po_subprogram_suffix (encoded, &len0);
1037
1038 /* Remove the ___X.* suffix if present. Do not forget to verify that
1039 the suffix is located before the current "end" of ENCODED. We want
1040 to avoid re-matching parts of ENCODED that have previously been
1041 marked as discarded (by decrementing LEN0). */
1042 p = strstr (encoded, "___");
1043 if (p != NULL && p - encoded < len0 - 3)
1044 {
1045 if (p[3] == 'X')
1046 len0 = p - encoded;
1047 else
1048 goto Suppress;
1049 }
1050
1051 /* Remove any trailing TKB suffix. It tells us that this symbol
1052 is for the body of a task, but that information does not actually
1053 appear in the decoded name. */
1054
1055 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1056 len0 -= 3;
1057
1058 /* Remove any trailing TB suffix. The TB suffix is slightly different
1059 from the TKB suffix because it is used for non-anonymous task
1060 bodies. */
1061
1062 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1063 len0 -= 2;
1064
1065 /* Remove trailing "B" suffixes. */
1066 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1067
1068 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1069 len0 -= 1;
1070
1071 /* Make decoded big enough for possible expansion by operator name. */
1072
1073 decoded.resize (2 * len0 + 1, 'X');
1074
1075 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1076
1077 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1078 {
1079 i = len0 - 2;
1080 while ((i >= 0 && isdigit (encoded[i]))
1081 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1082 i -= 1;
1083 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1084 len0 = i - 1;
1085 else if (encoded[i] == '$')
1086 len0 = i;
1087 }
1088
1089 /* The first few characters that are not alphabetic are not part
1090 of any encoding we use, so we can copy them over verbatim. */
1091
1092 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1093 decoded[j] = encoded[i];
1094
1095 at_start_name = 1;
1096 while (i < len0)
1097 {
1098 /* Is this a symbol function? */
1099 if (at_start_name && encoded[i] == 'O')
1100 {
1101 int k;
1102
1103 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1104 {
1105 int op_len = strlen (ada_opname_table[k].encoded);
1106 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1107 op_len - 1) == 0)
1108 && !isalnum (encoded[i + op_len]))
1109 {
1110 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1111 at_start_name = 0;
1112 i += op_len;
1113 j += strlen (ada_opname_table[k].decoded);
1114 break;
1115 }
1116 }
1117 if (ada_opname_table[k].encoded != NULL)
1118 continue;
1119 }
1120 at_start_name = 0;
1121
1122 /* Replace "TK__" with "__", which will eventually be translated
1123 into "." (just below). */
1124
1125 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1126 i += 2;
1127
1128 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1129 be translated into "." (just below). These are internal names
1130 generated for anonymous blocks inside which our symbol is nested. */
1131
1132 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1133 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1134 && isdigit (encoded [i+4]))
1135 {
1136 int k = i + 5;
1137
1138 while (k < len0 && isdigit (encoded[k]))
1139 k++; /* Skip any extra digit. */
1140
1141 /* Double-check that the "__B_{DIGITS}+" sequence we found
1142 is indeed followed by "__". */
1143 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1144 i = k;
1145 }
1146
1147 /* Remove _E{DIGITS}+[sb] */
1148
1149 /* Just as for protected object subprograms, there are 2 categories
1150 of subprograms created by the compiler for each entry. The first
1151 one implements the actual entry code, and has a suffix following
1152 the convention above; the second one implements the barrier and
1153 uses the same convention as above, except that the 'E' is replaced
1154 by a 'B'.
1155
1156 Just as above, we do not decode the name of barrier functions
1157 to give the user a clue that the code he is debugging has been
1158 internally generated. */
1159
1160 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1161 && isdigit (encoded[i+2]))
1162 {
1163 int k = i + 3;
1164
1165 while (k < len0 && isdigit (encoded[k]))
1166 k++;
1167
1168 if (k < len0
1169 && (encoded[k] == 'b' || encoded[k] == 's'))
1170 {
1171 k++;
1172 /* Just as an extra precaution, make sure that if this
1173 suffix is followed by anything else, it is a '_'.
1174 Otherwise, we matched this sequence by accident. */
1175 if (k == len0
1176 || (k < len0 && encoded[k] == '_'))
1177 i = k;
1178 }
1179 }
1180
1181 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1182 the GNAT front-end in protected object subprograms. */
1183
1184 if (i < len0 + 3
1185 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1186 {
1187 /* Backtrack a bit up until we reach either the begining of
1188 the encoded name, or "__". Make sure that we only find
1189 digits or lowercase characters. */
1190 const char *ptr = encoded + i - 1;
1191
1192 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1193 ptr--;
1194 if (ptr < encoded
1195 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1196 i++;
1197 }
1198
1199 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1200 {
1201 /* This is a X[bn]* sequence not separated from the previous
1202 part of the name with a non-alpha-numeric character (in other
1203 words, immediately following an alpha-numeric character), then
1204 verify that it is placed at the end of the encoded name. If
1205 not, then the encoding is not valid and we should abort the
1206 decoding. Otherwise, just skip it, it is used in body-nested
1207 package names. */
1208 do
1209 i += 1;
1210 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1211 if (i < len0)
1212 goto Suppress;
1213 }
1214 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1215 {
1216 /* Replace '__' by '.'. */
1217 decoded[j] = '.';
1218 at_start_name = 1;
1219 i += 2;
1220 j += 1;
1221 }
1222 else
1223 {
1224 /* It's a character part of the decoded name, so just copy it
1225 over. */
1226 decoded[j] = encoded[i];
1227 i += 1;
1228 j += 1;
1229 }
1230 }
1231 decoded.resize (j);
1232
1233 /* Decoded names should never contain any uppercase character.
1234 Double-check this, and abort the decoding if we find one. */
1235
1236 for (i = 0; i < decoded.length(); ++i)
1237 if (isupper (decoded[i]) || decoded[i] == ' ')
1238 goto Suppress;
1239
1240 /* If the compiler added a suffix, append it now. */
1241 if (suffix >= 0)
1242 decoded = decoded + "[" + &encoded[suffix] + "]";
1243
1244 return decoded;
1245
1246 Suppress:
1247 if (!wrap)
1248 return {};
1249
1250 if (encoded[0] == '<')
1251 decoded = encoded;
1252 else
1253 decoded = '<' + std::string(encoded) + '>';
1254 return decoded;
1255 }
1256
1257 /* Table for keeping permanent unique copies of decoded names. Once
1258 allocated, names in this table are never released. While this is a
1259 storage leak, it should not be significant unless there are massive
1260 changes in the set of decoded names in successive versions of a
1261 symbol table loaded during a single session. */
1262 static struct htab *decoded_names_store;
1263
1264 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1265 in the language-specific part of GSYMBOL, if it has not been
1266 previously computed. Tries to save the decoded name in the same
1267 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1268 in any case, the decoded symbol has a lifetime at least that of
1269 GSYMBOL).
1270 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1271 const, but nevertheless modified to a semantically equivalent form
1272 when a decoded name is cached in it. */
1273
1274 const char *
1275 ada_decode_symbol (const struct general_symbol_info *arg)
1276 {
1277 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1278 const char **resultp =
1279 &gsymbol->language_specific.demangled_name;
1280
1281 if (!gsymbol->ada_mangled)
1282 {
1283 std::string decoded = ada_decode (gsymbol->linkage_name ());
1284 struct obstack *obstack = gsymbol->language_specific.obstack;
1285
1286 gsymbol->ada_mangled = 1;
1287
1288 if (obstack != NULL)
1289 *resultp = obstack_strdup (obstack, decoded.c_str ());
1290 else
1291 {
1292 /* Sometimes, we can't find a corresponding objfile, in
1293 which case, we put the result on the heap. Since we only
1294 decode when needed, we hope this usually does not cause a
1295 significant memory leak (FIXME). */
1296
1297 char **slot = (char **) htab_find_slot (decoded_names_store,
1298 decoded.c_str (), INSERT);
1299
1300 if (*slot == NULL)
1301 *slot = xstrdup (decoded.c_str ());
1302 *resultp = *slot;
1303 }
1304 }
1305
1306 return *resultp;
1307 }
1308
1309 \f
1310
1311 /* Arrays */
1312
1313 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1314 generated by the GNAT compiler to describe the index type used
1315 for each dimension of an array, check whether it follows the latest
1316 known encoding. If not, fix it up to conform to the latest encoding.
1317 Otherwise, do nothing. This function also does nothing if
1318 INDEX_DESC_TYPE is NULL.
1319
1320 The GNAT encoding used to describe the array index type evolved a bit.
1321 Initially, the information would be provided through the name of each
1322 field of the structure type only, while the type of these fields was
1323 described as unspecified and irrelevant. The debugger was then expected
1324 to perform a global type lookup using the name of that field in order
1325 to get access to the full index type description. Because these global
1326 lookups can be very expensive, the encoding was later enhanced to make
1327 the global lookup unnecessary by defining the field type as being
1328 the full index type description.
1329
1330 The purpose of this routine is to allow us to support older versions
1331 of the compiler by detecting the use of the older encoding, and by
1332 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1333 we essentially replace each field's meaningless type by the associated
1334 index subtype). */
1335
1336 void
1337 ada_fixup_array_indexes_type (struct type *index_desc_type)
1338 {
1339 int i;
1340
1341 if (index_desc_type == NULL)
1342 return;
1343 gdb_assert (index_desc_type->num_fields () > 0);
1344
1345 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1346 to check one field only, no need to check them all). If not, return
1347 now.
1348
1349 If our INDEX_DESC_TYPE was generated using the older encoding,
1350 the field type should be a meaningless integer type whose name
1351 is not equal to the field name. */
1352 if (index_desc_type->field (0).type ()->name () != NULL
1353 && strcmp (index_desc_type->field (0).type ()->name (),
1354 index_desc_type->field (0).name ()) == 0)
1355 return;
1356
1357 /* Fixup each field of INDEX_DESC_TYPE. */
1358 for (i = 0; i < index_desc_type->num_fields (); i++)
1359 {
1360 const char *name = index_desc_type->field (i).name ();
1361 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1362
1363 if (raw_type)
1364 index_desc_type->field (i).set_type (raw_type);
1365 }
1366 }
1367
1368 /* The desc_* routines return primitive portions of array descriptors
1369 (fat pointers). */
1370
1371 /* The descriptor or array type, if any, indicated by TYPE; removes
1372 level of indirection, if needed. */
1373
1374 static struct type *
1375 desc_base_type (struct type *type)
1376 {
1377 if (type == NULL)
1378 return NULL;
1379 type = ada_check_typedef (type);
1380 if (type->code () == TYPE_CODE_TYPEDEF)
1381 type = ada_typedef_target_type (type);
1382
1383 if (type != NULL
1384 && (type->code () == TYPE_CODE_PTR
1385 || type->code () == TYPE_CODE_REF))
1386 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1387 else
1388 return type;
1389 }
1390
1391 /* True iff TYPE indicates a "thin" array pointer type. */
1392
1393 static int
1394 is_thin_pntr (struct type *type)
1395 {
1396 return
1397 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1398 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1399 }
1400
1401 /* The descriptor type for thin pointer type TYPE. */
1402
1403 static struct type *
1404 thin_descriptor_type (struct type *type)
1405 {
1406 struct type *base_type = desc_base_type (type);
1407
1408 if (base_type == NULL)
1409 return NULL;
1410 if (is_suffix (ada_type_name (base_type), "___XVE"))
1411 return base_type;
1412 else
1413 {
1414 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1415
1416 if (alt_type == NULL)
1417 return base_type;
1418 else
1419 return alt_type;
1420 }
1421 }
1422
1423 /* A pointer to the array data for thin-pointer value VAL. */
1424
1425 static struct value *
1426 thin_data_pntr (struct value *val)
1427 {
1428 struct type *type = ada_check_typedef (value_type (val));
1429 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1430
1431 data_type = lookup_pointer_type (data_type);
1432
1433 if (type->code () == TYPE_CODE_PTR)
1434 return value_cast (data_type, value_copy (val));
1435 else
1436 return value_from_longest (data_type, value_address (val));
1437 }
1438
1439 /* True iff TYPE indicates a "thick" array pointer type. */
1440
1441 static int
1442 is_thick_pntr (struct type *type)
1443 {
1444 type = desc_base_type (type);
1445 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1446 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1447 }
1448
1449 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1450 pointer to one, the type of its bounds data; otherwise, NULL. */
1451
1452 static struct type *
1453 desc_bounds_type (struct type *type)
1454 {
1455 struct type *r;
1456
1457 type = desc_base_type (type);
1458
1459 if (type == NULL)
1460 return NULL;
1461 else if (is_thin_pntr (type))
1462 {
1463 type = thin_descriptor_type (type);
1464 if (type == NULL)
1465 return NULL;
1466 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1467 if (r != NULL)
1468 return ada_check_typedef (r);
1469 }
1470 else if (type->code () == TYPE_CODE_STRUCT)
1471 {
1472 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1473 if (r != NULL)
1474 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1475 }
1476 return NULL;
1477 }
1478
1479 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1480 one, a pointer to its bounds data. Otherwise NULL. */
1481
1482 static struct value *
1483 desc_bounds (struct value *arr)
1484 {
1485 struct type *type = ada_check_typedef (value_type (arr));
1486
1487 if (is_thin_pntr (type))
1488 {
1489 struct type *bounds_type =
1490 desc_bounds_type (thin_descriptor_type (type));
1491 LONGEST addr;
1492
1493 if (bounds_type == NULL)
1494 error (_("Bad GNAT array descriptor"));
1495
1496 /* NOTE: The following calculation is not really kosher, but
1497 since desc_type is an XVE-encoded type (and shouldn't be),
1498 the correct calculation is a real pain. FIXME (and fix GCC). */
1499 if (type->code () == TYPE_CODE_PTR)
1500 addr = value_as_long (arr);
1501 else
1502 addr = value_address (arr);
1503
1504 return
1505 value_from_longest (lookup_pointer_type (bounds_type),
1506 addr - TYPE_LENGTH (bounds_type));
1507 }
1508
1509 else if (is_thick_pntr (type))
1510 {
1511 struct value *p_bounds = value_struct_elt (&arr, {}, "P_BOUNDS", NULL,
1512 _("Bad GNAT array descriptor"));
1513 struct type *p_bounds_type = value_type (p_bounds);
1514
1515 if (p_bounds_type
1516 && p_bounds_type->code () == TYPE_CODE_PTR)
1517 {
1518 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1519
1520 if (target_type->is_stub ())
1521 p_bounds = value_cast (lookup_pointer_type
1522 (ada_check_typedef (target_type)),
1523 p_bounds);
1524 }
1525 else
1526 error (_("Bad GNAT array descriptor"));
1527
1528 return p_bounds;
1529 }
1530 else
1531 return NULL;
1532 }
1533
1534 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1535 position of the field containing the address of the bounds data. */
1536
1537 static int
1538 fat_pntr_bounds_bitpos (struct type *type)
1539 {
1540 return desc_base_type (type)->field (1).loc_bitpos ();
1541 }
1542
1543 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1544 size of the field containing the address of the bounds data. */
1545
1546 static int
1547 fat_pntr_bounds_bitsize (struct type *type)
1548 {
1549 type = desc_base_type (type);
1550
1551 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1552 return TYPE_FIELD_BITSIZE (type, 1);
1553 else
1554 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1555 }
1556
1557 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1558 pointer to one, the type of its array data (a array-with-no-bounds type);
1559 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1560 data. */
1561
1562 static struct type *
1563 desc_data_target_type (struct type *type)
1564 {
1565 type = desc_base_type (type);
1566
1567 /* NOTE: The following is bogus; see comment in desc_bounds. */
1568 if (is_thin_pntr (type))
1569 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1570 else if (is_thick_pntr (type))
1571 {
1572 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1573
1574 if (data_type
1575 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1576 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1577 }
1578
1579 return NULL;
1580 }
1581
1582 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1583 its array data. */
1584
1585 static struct value *
1586 desc_data (struct value *arr)
1587 {
1588 struct type *type = value_type (arr);
1589
1590 if (is_thin_pntr (type))
1591 return thin_data_pntr (arr);
1592 else if (is_thick_pntr (type))
1593 return value_struct_elt (&arr, {}, "P_ARRAY", NULL,
1594 _("Bad GNAT array descriptor"));
1595 else
1596 return NULL;
1597 }
1598
1599
1600 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1601 position of the field containing the address of the data. */
1602
1603 static int
1604 fat_pntr_data_bitpos (struct type *type)
1605 {
1606 return desc_base_type (type)->field (0).loc_bitpos ();
1607 }
1608
1609 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1610 size of the field containing the address of the data. */
1611
1612 static int
1613 fat_pntr_data_bitsize (struct type *type)
1614 {
1615 type = desc_base_type (type);
1616
1617 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1618 return TYPE_FIELD_BITSIZE (type, 0);
1619 else
1620 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1621 }
1622
1623 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1624 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1625 bound, if WHICH is 1. The first bound is I=1. */
1626
1627 static struct value *
1628 desc_one_bound (struct value *bounds, int i, int which)
1629 {
1630 char bound_name[20];
1631 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1632 which ? 'U' : 'L', i - 1);
1633 return value_struct_elt (&bounds, {}, bound_name, NULL,
1634 _("Bad GNAT array descriptor bounds"));
1635 }
1636
1637 /* If BOUNDS is an array-bounds structure type, return the bit position
1638 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1639 bound, if WHICH is 1. The first bound is I=1. */
1640
1641 static int
1642 desc_bound_bitpos (struct type *type, int i, int which)
1643 {
1644 return desc_base_type (type)->field (2 * i + which - 2).loc_bitpos ();
1645 }
1646
1647 /* If BOUNDS is an array-bounds structure type, return the bit field size
1648 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1649 bound, if WHICH is 1. The first bound is I=1. */
1650
1651 static int
1652 desc_bound_bitsize (struct type *type, int i, int which)
1653 {
1654 type = desc_base_type (type);
1655
1656 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1657 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1658 else
1659 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1660 }
1661
1662 /* If TYPE is the type of an array-bounds structure, the type of its
1663 Ith bound (numbering from 1). Otherwise, NULL. */
1664
1665 static struct type *
1666 desc_index_type (struct type *type, int i)
1667 {
1668 type = desc_base_type (type);
1669
1670 if (type->code () == TYPE_CODE_STRUCT)
1671 {
1672 char bound_name[20];
1673 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1674 return lookup_struct_elt_type (type, bound_name, 1);
1675 }
1676 else
1677 return NULL;
1678 }
1679
1680 /* The number of index positions in the array-bounds type TYPE.
1681 Return 0 if TYPE is NULL. */
1682
1683 static int
1684 desc_arity (struct type *type)
1685 {
1686 type = desc_base_type (type);
1687
1688 if (type != NULL)
1689 return type->num_fields () / 2;
1690 return 0;
1691 }
1692
1693 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1694 an array descriptor type (representing an unconstrained array
1695 type). */
1696
1697 static int
1698 ada_is_direct_array_type (struct type *type)
1699 {
1700 if (type == NULL)
1701 return 0;
1702 type = ada_check_typedef (type);
1703 return (type->code () == TYPE_CODE_ARRAY
1704 || ada_is_array_descriptor_type (type));
1705 }
1706
1707 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1708 * to one. */
1709
1710 static int
1711 ada_is_array_type (struct type *type)
1712 {
1713 while (type != NULL
1714 && (type->code () == TYPE_CODE_PTR
1715 || type->code () == TYPE_CODE_REF))
1716 type = TYPE_TARGET_TYPE (type);
1717 return ada_is_direct_array_type (type);
1718 }
1719
1720 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1721
1722 int
1723 ada_is_simple_array_type (struct type *type)
1724 {
1725 if (type == NULL)
1726 return 0;
1727 type = ada_check_typedef (type);
1728 return (type->code () == TYPE_CODE_ARRAY
1729 || (type->code () == TYPE_CODE_PTR
1730 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1731 == TYPE_CODE_ARRAY)));
1732 }
1733
1734 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1735
1736 int
1737 ada_is_array_descriptor_type (struct type *type)
1738 {
1739 struct type *data_type = desc_data_target_type (type);
1740
1741 if (type == NULL)
1742 return 0;
1743 type = ada_check_typedef (type);
1744 return (data_type != NULL
1745 && data_type->code () == TYPE_CODE_ARRAY
1746 && desc_arity (desc_bounds_type (type)) > 0);
1747 }
1748
1749 /* Non-zero iff type is a partially mal-formed GNAT array
1750 descriptor. FIXME: This is to compensate for some problems with
1751 debugging output from GNAT. Re-examine periodically to see if it
1752 is still needed. */
1753
1754 int
1755 ada_is_bogus_array_descriptor (struct type *type)
1756 {
1757 return
1758 type != NULL
1759 && type->code () == TYPE_CODE_STRUCT
1760 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1761 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1762 && !ada_is_array_descriptor_type (type);
1763 }
1764
1765
1766 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1767 (fat pointer) returns the type of the array data described---specifically,
1768 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1769 in from the descriptor; otherwise, they are left unspecified. If
1770 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1771 returns NULL. The result is simply the type of ARR if ARR is not
1772 a descriptor. */
1773
1774 static struct type *
1775 ada_type_of_array (struct value *arr, int bounds)
1776 {
1777 if (ada_is_constrained_packed_array_type (value_type (arr)))
1778 return decode_constrained_packed_array_type (value_type (arr));
1779
1780 if (!ada_is_array_descriptor_type (value_type (arr)))
1781 return value_type (arr);
1782
1783 if (!bounds)
1784 {
1785 struct type *array_type =
1786 ada_check_typedef (desc_data_target_type (value_type (arr)));
1787
1788 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1789 TYPE_FIELD_BITSIZE (array_type, 0) =
1790 decode_packed_array_bitsize (value_type (arr));
1791
1792 return array_type;
1793 }
1794 else
1795 {
1796 struct type *elt_type;
1797 int arity;
1798 struct value *descriptor;
1799
1800 elt_type = ada_array_element_type (value_type (arr), -1);
1801 arity = ada_array_arity (value_type (arr));
1802
1803 if (elt_type == NULL || arity == 0)
1804 return ada_check_typedef (value_type (arr));
1805
1806 descriptor = desc_bounds (arr);
1807 if (value_as_long (descriptor) == 0)
1808 return NULL;
1809 while (arity > 0)
1810 {
1811 struct type *range_type = alloc_type_copy (value_type (arr));
1812 struct type *array_type = alloc_type_copy (value_type (arr));
1813 struct value *low = desc_one_bound (descriptor, arity, 0);
1814 struct value *high = desc_one_bound (descriptor, arity, 1);
1815
1816 arity -= 1;
1817 create_static_range_type (range_type, value_type (low),
1818 longest_to_int (value_as_long (low)),
1819 longest_to_int (value_as_long (high)));
1820 elt_type = create_array_type (array_type, elt_type, range_type);
1821
1822 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1823 {
1824 /* We need to store the element packed bitsize, as well as
1825 recompute the array size, because it was previously
1826 computed based on the unpacked element size. */
1827 LONGEST lo = value_as_long (low);
1828 LONGEST hi = value_as_long (high);
1829
1830 TYPE_FIELD_BITSIZE (elt_type, 0) =
1831 decode_packed_array_bitsize (value_type (arr));
1832 /* If the array has no element, then the size is already
1833 zero, and does not need to be recomputed. */
1834 if (lo < hi)
1835 {
1836 int array_bitsize =
1837 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1838
1839 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1840 }
1841 }
1842 }
1843
1844 return lookup_pointer_type (elt_type);
1845 }
1846 }
1847
1848 /* If ARR does not represent an array, returns ARR unchanged.
1849 Otherwise, returns either a standard GDB array with bounds set
1850 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1851 GDB array. Returns NULL if ARR is a null fat pointer. */
1852
1853 struct value *
1854 ada_coerce_to_simple_array_ptr (struct value *arr)
1855 {
1856 if (ada_is_array_descriptor_type (value_type (arr)))
1857 {
1858 struct type *arrType = ada_type_of_array (arr, 1);
1859
1860 if (arrType == NULL)
1861 return NULL;
1862 return value_cast (arrType, value_copy (desc_data (arr)));
1863 }
1864 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1865 return decode_constrained_packed_array (arr);
1866 else
1867 return arr;
1868 }
1869
1870 /* If ARR does not represent an array, returns ARR unchanged.
1871 Otherwise, returns a standard GDB array describing ARR (which may
1872 be ARR itself if it already is in the proper form). */
1873
1874 struct value *
1875 ada_coerce_to_simple_array (struct value *arr)
1876 {
1877 if (ada_is_array_descriptor_type (value_type (arr)))
1878 {
1879 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1880
1881 if (arrVal == NULL)
1882 error (_("Bounds unavailable for null array pointer."));
1883 return value_ind (arrVal);
1884 }
1885 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1886 return decode_constrained_packed_array (arr);
1887 else
1888 return arr;
1889 }
1890
1891 /* If TYPE represents a GNAT array type, return it translated to an
1892 ordinary GDB array type (possibly with BITSIZE fields indicating
1893 packing). For other types, is the identity. */
1894
1895 struct type *
1896 ada_coerce_to_simple_array_type (struct type *type)
1897 {
1898 if (ada_is_constrained_packed_array_type (type))
1899 return decode_constrained_packed_array_type (type);
1900
1901 if (ada_is_array_descriptor_type (type))
1902 return ada_check_typedef (desc_data_target_type (type));
1903
1904 return type;
1905 }
1906
1907 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1908
1909 static int
1910 ada_is_gnat_encoded_packed_array_type (struct type *type)
1911 {
1912 if (type == NULL)
1913 return 0;
1914 type = desc_base_type (type);
1915 type = ada_check_typedef (type);
1916 return
1917 ada_type_name (type) != NULL
1918 && strstr (ada_type_name (type), "___XP") != NULL;
1919 }
1920
1921 /* Non-zero iff TYPE represents a standard GNAT constrained
1922 packed-array type. */
1923
1924 int
1925 ada_is_constrained_packed_array_type (struct type *type)
1926 {
1927 return ada_is_gnat_encoded_packed_array_type (type)
1928 && !ada_is_array_descriptor_type (type);
1929 }
1930
1931 /* Non-zero iff TYPE represents an array descriptor for a
1932 unconstrained packed-array type. */
1933
1934 static int
1935 ada_is_unconstrained_packed_array_type (struct type *type)
1936 {
1937 if (!ada_is_array_descriptor_type (type))
1938 return 0;
1939
1940 if (ada_is_gnat_encoded_packed_array_type (type))
1941 return 1;
1942
1943 /* If we saw GNAT encodings, then the above code is sufficient.
1944 However, with minimal encodings, we will just have a thick
1945 pointer instead. */
1946 if (is_thick_pntr (type))
1947 {
1948 type = desc_base_type (type);
1949 /* The structure's first field is a pointer to an array, so this
1950 fetches the array type. */
1951 type = TYPE_TARGET_TYPE (type->field (0).type ());
1952 if (type->code () == TYPE_CODE_TYPEDEF)
1953 type = ada_typedef_target_type (type);
1954 /* Now we can see if the array elements are packed. */
1955 return TYPE_FIELD_BITSIZE (type, 0) > 0;
1956 }
1957
1958 return 0;
1959 }
1960
1961 /* Return true if TYPE is a (Gnat-encoded) constrained packed array
1962 type, or if it is an ordinary (non-Gnat-encoded) packed array. */
1963
1964 static bool
1965 ada_is_any_packed_array_type (struct type *type)
1966 {
1967 return (ada_is_constrained_packed_array_type (type)
1968 || (type->code () == TYPE_CODE_ARRAY
1969 && TYPE_FIELD_BITSIZE (type, 0) % 8 != 0));
1970 }
1971
1972 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1973 return the size of its elements in bits. */
1974
1975 static long
1976 decode_packed_array_bitsize (struct type *type)
1977 {
1978 const char *raw_name;
1979 const char *tail;
1980 long bits;
1981
1982 /* Access to arrays implemented as fat pointers are encoded as a typedef
1983 of the fat pointer type. We need the name of the fat pointer type
1984 to do the decoding, so strip the typedef layer. */
1985 if (type->code () == TYPE_CODE_TYPEDEF)
1986 type = ada_typedef_target_type (type);
1987
1988 raw_name = ada_type_name (ada_check_typedef (type));
1989 if (!raw_name)
1990 raw_name = ada_type_name (desc_base_type (type));
1991
1992 if (!raw_name)
1993 return 0;
1994
1995 tail = strstr (raw_name, "___XP");
1996 if (tail == nullptr)
1997 {
1998 gdb_assert (is_thick_pntr (type));
1999 /* The structure's first field is a pointer to an array, so this
2000 fetches the array type. */
2001 type = TYPE_TARGET_TYPE (type->field (0).type ());
2002 /* Now we can see if the array elements are packed. */
2003 return TYPE_FIELD_BITSIZE (type, 0);
2004 }
2005
2006 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2007 {
2008 lim_warning
2009 (_("could not understand bit size information on packed array"));
2010 return 0;
2011 }
2012
2013 return bits;
2014 }
2015
2016 /* Given that TYPE is a standard GDB array type with all bounds filled
2017 in, and that the element size of its ultimate scalar constituents
2018 (that is, either its elements, or, if it is an array of arrays, its
2019 elements' elements, etc.) is *ELT_BITS, return an identical type,
2020 but with the bit sizes of its elements (and those of any
2021 constituent arrays) recorded in the BITSIZE components of its
2022 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2023 in bits.
2024
2025 Note that, for arrays whose index type has an XA encoding where
2026 a bound references a record discriminant, getting that discriminant,
2027 and therefore the actual value of that bound, is not possible
2028 because none of the given parameters gives us access to the record.
2029 This function assumes that it is OK in the context where it is being
2030 used to return an array whose bounds are still dynamic and where
2031 the length is arbitrary. */
2032
2033 static struct type *
2034 constrained_packed_array_type (struct type *type, long *elt_bits)
2035 {
2036 struct type *new_elt_type;
2037 struct type *new_type;
2038 struct type *index_type_desc;
2039 struct type *index_type;
2040 LONGEST low_bound, high_bound;
2041
2042 type = ada_check_typedef (type);
2043 if (type->code () != TYPE_CODE_ARRAY)
2044 return type;
2045
2046 index_type_desc = ada_find_parallel_type (type, "___XA");
2047 if (index_type_desc)
2048 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2049 NULL);
2050 else
2051 index_type = type->index_type ();
2052
2053 new_type = alloc_type_copy (type);
2054 new_elt_type =
2055 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2056 elt_bits);
2057 create_array_type (new_type, new_elt_type, index_type);
2058 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2059 new_type->set_name (ada_type_name (type));
2060
2061 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2062 && is_dynamic_type (check_typedef (index_type)))
2063 || !get_discrete_bounds (index_type, &low_bound, &high_bound))
2064 low_bound = high_bound = 0;
2065 if (high_bound < low_bound)
2066 *elt_bits = TYPE_LENGTH (new_type) = 0;
2067 else
2068 {
2069 *elt_bits *= (high_bound - low_bound + 1);
2070 TYPE_LENGTH (new_type) =
2071 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2072 }
2073
2074 new_type->set_is_fixed_instance (true);
2075 return new_type;
2076 }
2077
2078 /* The array type encoded by TYPE, where
2079 ada_is_constrained_packed_array_type (TYPE). */
2080
2081 static struct type *
2082 decode_constrained_packed_array_type (struct type *type)
2083 {
2084 const char *raw_name = ada_type_name (ada_check_typedef (type));
2085 char *name;
2086 const char *tail;
2087 struct type *shadow_type;
2088 long bits;
2089
2090 if (!raw_name)
2091 raw_name = ada_type_name (desc_base_type (type));
2092
2093 if (!raw_name)
2094 return NULL;
2095
2096 name = (char *) alloca (strlen (raw_name) + 1);
2097 tail = strstr (raw_name, "___XP");
2098 type = desc_base_type (type);
2099
2100 memcpy (name, raw_name, tail - raw_name);
2101 name[tail - raw_name] = '\000';
2102
2103 shadow_type = ada_find_parallel_type_with_name (type, name);
2104
2105 if (shadow_type == NULL)
2106 {
2107 lim_warning (_("could not find bounds information on packed array"));
2108 return NULL;
2109 }
2110 shadow_type = check_typedef (shadow_type);
2111
2112 if (shadow_type->code () != TYPE_CODE_ARRAY)
2113 {
2114 lim_warning (_("could not understand bounds "
2115 "information on packed array"));
2116 return NULL;
2117 }
2118
2119 bits = decode_packed_array_bitsize (type);
2120 return constrained_packed_array_type (shadow_type, &bits);
2121 }
2122
2123 /* Helper function for decode_constrained_packed_array. Set the field
2124 bitsize on a series of packed arrays. Returns the number of
2125 elements in TYPE. */
2126
2127 static LONGEST
2128 recursively_update_array_bitsize (struct type *type)
2129 {
2130 gdb_assert (type->code () == TYPE_CODE_ARRAY);
2131
2132 LONGEST low, high;
2133 if (!get_discrete_bounds (type->index_type (), &low, &high)
2134 || low > high)
2135 return 0;
2136 LONGEST our_len = high - low + 1;
2137
2138 struct type *elt_type = TYPE_TARGET_TYPE (type);
2139 if (elt_type->code () == TYPE_CODE_ARRAY)
2140 {
2141 LONGEST elt_len = recursively_update_array_bitsize (elt_type);
2142 LONGEST elt_bitsize = elt_len * TYPE_FIELD_BITSIZE (elt_type, 0);
2143 TYPE_FIELD_BITSIZE (type, 0) = elt_bitsize;
2144
2145 TYPE_LENGTH (type) = ((our_len * elt_bitsize + HOST_CHAR_BIT - 1)
2146 / HOST_CHAR_BIT);
2147 }
2148
2149 return our_len;
2150 }
2151
2152 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2153 array, returns a simple array that denotes that array. Its type is a
2154 standard GDB array type except that the BITSIZEs of the array
2155 target types are set to the number of bits in each element, and the
2156 type length is set appropriately. */
2157
2158 static struct value *
2159 decode_constrained_packed_array (struct value *arr)
2160 {
2161 struct type *type;
2162
2163 /* If our value is a pointer, then dereference it. Likewise if
2164 the value is a reference. Make sure that this operation does not
2165 cause the target type to be fixed, as this would indirectly cause
2166 this array to be decoded. The rest of the routine assumes that
2167 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2168 and "value_ind" routines to perform the dereferencing, as opposed
2169 to using "ada_coerce_ref" or "ada_value_ind". */
2170 arr = coerce_ref (arr);
2171 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2172 arr = value_ind (arr);
2173
2174 type = decode_constrained_packed_array_type (value_type (arr));
2175 if (type == NULL)
2176 {
2177 error (_("can't unpack array"));
2178 return NULL;
2179 }
2180
2181 /* Decoding the packed array type could not correctly set the field
2182 bitsizes for any dimension except the innermost, because the
2183 bounds may be variable and were not passed to that function. So,
2184 we further resolve the array bounds here and then update the
2185 sizes. */
2186 const gdb_byte *valaddr = value_contents_for_printing (arr).data ();
2187 CORE_ADDR address = value_address (arr);
2188 gdb::array_view<const gdb_byte> view
2189 = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
2190 type = resolve_dynamic_type (type, view, address);
2191 recursively_update_array_bitsize (type);
2192
2193 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2194 && ada_is_modular_type (value_type (arr)))
2195 {
2196 /* This is a (right-justified) modular type representing a packed
2197 array with no wrapper. In order to interpret the value through
2198 the (left-justified) packed array type we just built, we must
2199 first left-justify it. */
2200 int bit_size, bit_pos;
2201 ULONGEST mod;
2202
2203 mod = ada_modulus (value_type (arr)) - 1;
2204 bit_size = 0;
2205 while (mod > 0)
2206 {
2207 bit_size += 1;
2208 mod >>= 1;
2209 }
2210 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2211 arr = ada_value_primitive_packed_val (arr, NULL,
2212 bit_pos / HOST_CHAR_BIT,
2213 bit_pos % HOST_CHAR_BIT,
2214 bit_size,
2215 type);
2216 }
2217
2218 return coerce_unspec_val_to_type (arr, type);
2219 }
2220
2221
2222 /* The value of the element of packed array ARR at the ARITY indices
2223 given in IND. ARR must be a simple array. */
2224
2225 static struct value *
2226 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2227 {
2228 int i;
2229 int bits, elt_off, bit_off;
2230 long elt_total_bit_offset;
2231 struct type *elt_type;
2232 struct value *v;
2233
2234 bits = 0;
2235 elt_total_bit_offset = 0;
2236 elt_type = ada_check_typedef (value_type (arr));
2237 for (i = 0; i < arity; i += 1)
2238 {
2239 if (elt_type->code () != TYPE_CODE_ARRAY
2240 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2241 error
2242 (_("attempt to do packed indexing of "
2243 "something other than a packed array"));
2244 else
2245 {
2246 struct type *range_type = elt_type->index_type ();
2247 LONGEST lowerbound, upperbound;
2248 LONGEST idx;
2249
2250 if (!get_discrete_bounds (range_type, &lowerbound, &upperbound))
2251 {
2252 lim_warning (_("don't know bounds of array"));
2253 lowerbound = upperbound = 0;
2254 }
2255
2256 idx = pos_atr (ind[i]);
2257 if (idx < lowerbound || idx > upperbound)
2258 lim_warning (_("packed array index %ld out of bounds"),
2259 (long) idx);
2260 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2261 elt_total_bit_offset += (idx - lowerbound) * bits;
2262 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2263 }
2264 }
2265 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2266 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2267
2268 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2269 bits, elt_type);
2270 return v;
2271 }
2272
2273 /* Non-zero iff TYPE includes negative integer values. */
2274
2275 static int
2276 has_negatives (struct type *type)
2277 {
2278 switch (type->code ())
2279 {
2280 default:
2281 return 0;
2282 case TYPE_CODE_INT:
2283 return !type->is_unsigned ();
2284 case TYPE_CODE_RANGE:
2285 return type->bounds ()->low.const_val () - type->bounds ()->bias < 0;
2286 }
2287 }
2288
2289 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2290 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2291 the unpacked buffer.
2292
2293 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2294 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2295
2296 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2297 zero otherwise.
2298
2299 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2300
2301 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2302
2303 static void
2304 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2305 gdb_byte *unpacked, int unpacked_len,
2306 int is_big_endian, int is_signed_type,
2307 int is_scalar)
2308 {
2309 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2310 int src_idx; /* Index into the source area */
2311 int src_bytes_left; /* Number of source bytes left to process. */
2312 int srcBitsLeft; /* Number of source bits left to move */
2313 int unusedLS; /* Number of bits in next significant
2314 byte of source that are unused */
2315
2316 int unpacked_idx; /* Index into the unpacked buffer */
2317 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2318
2319 unsigned long accum; /* Staging area for bits being transferred */
2320 int accumSize; /* Number of meaningful bits in accum */
2321 unsigned char sign;
2322
2323 /* Transmit bytes from least to most significant; delta is the direction
2324 the indices move. */
2325 int delta = is_big_endian ? -1 : 1;
2326
2327 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2328 bits from SRC. .*/
2329 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2330 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2331 bit_size, unpacked_len);
2332
2333 srcBitsLeft = bit_size;
2334 src_bytes_left = src_len;
2335 unpacked_bytes_left = unpacked_len;
2336 sign = 0;
2337
2338 if (is_big_endian)
2339 {
2340 src_idx = src_len - 1;
2341 if (is_signed_type
2342 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2343 sign = ~0;
2344
2345 unusedLS =
2346 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2347 % HOST_CHAR_BIT;
2348
2349 if (is_scalar)
2350 {
2351 accumSize = 0;
2352 unpacked_idx = unpacked_len - 1;
2353 }
2354 else
2355 {
2356 /* Non-scalar values must be aligned at a byte boundary... */
2357 accumSize =
2358 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2359 /* ... And are placed at the beginning (most-significant) bytes
2360 of the target. */
2361 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2362 unpacked_bytes_left = unpacked_idx + 1;
2363 }
2364 }
2365 else
2366 {
2367 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2368
2369 src_idx = unpacked_idx = 0;
2370 unusedLS = bit_offset;
2371 accumSize = 0;
2372
2373 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2374 sign = ~0;
2375 }
2376
2377 accum = 0;
2378 while (src_bytes_left > 0)
2379 {
2380 /* Mask for removing bits of the next source byte that are not
2381 part of the value. */
2382 unsigned int unusedMSMask =
2383 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2384 1;
2385 /* Sign-extend bits for this byte. */
2386 unsigned int signMask = sign & ~unusedMSMask;
2387
2388 accum |=
2389 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2390 accumSize += HOST_CHAR_BIT - unusedLS;
2391 if (accumSize >= HOST_CHAR_BIT)
2392 {
2393 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2394 accumSize -= HOST_CHAR_BIT;
2395 accum >>= HOST_CHAR_BIT;
2396 unpacked_bytes_left -= 1;
2397 unpacked_idx += delta;
2398 }
2399 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2400 unusedLS = 0;
2401 src_bytes_left -= 1;
2402 src_idx += delta;
2403 }
2404 while (unpacked_bytes_left > 0)
2405 {
2406 accum |= sign << accumSize;
2407 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2408 accumSize -= HOST_CHAR_BIT;
2409 if (accumSize < 0)
2410 accumSize = 0;
2411 accum >>= HOST_CHAR_BIT;
2412 unpacked_bytes_left -= 1;
2413 unpacked_idx += delta;
2414 }
2415 }
2416
2417 /* Create a new value of type TYPE from the contents of OBJ starting
2418 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2419 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2420 assigning through the result will set the field fetched from.
2421 VALADDR is ignored unless OBJ is NULL, in which case,
2422 VALADDR+OFFSET must address the start of storage containing the
2423 packed value. The value returned in this case is never an lval.
2424 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2425
2426 struct value *
2427 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2428 long offset, int bit_offset, int bit_size,
2429 struct type *type)
2430 {
2431 struct value *v;
2432 const gdb_byte *src; /* First byte containing data to unpack */
2433 gdb_byte *unpacked;
2434 const int is_scalar = is_scalar_type (type);
2435 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2436 gdb::byte_vector staging;
2437
2438 type = ada_check_typedef (type);
2439
2440 if (obj == NULL)
2441 src = valaddr + offset;
2442 else
2443 src = value_contents (obj).data () + offset;
2444
2445 if (is_dynamic_type (type))
2446 {
2447 /* The length of TYPE might by dynamic, so we need to resolve
2448 TYPE in order to know its actual size, which we then use
2449 to create the contents buffer of the value we return.
2450 The difficulty is that the data containing our object is
2451 packed, and therefore maybe not at a byte boundary. So, what
2452 we do, is unpack the data into a byte-aligned buffer, and then
2453 use that buffer as our object's value for resolving the type. */
2454 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2455 staging.resize (staging_len);
2456
2457 ada_unpack_from_contents (src, bit_offset, bit_size,
2458 staging.data (), staging.size (),
2459 is_big_endian, has_negatives (type),
2460 is_scalar);
2461 type = resolve_dynamic_type (type, staging, 0);
2462 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2463 {
2464 /* This happens when the length of the object is dynamic,
2465 and is actually smaller than the space reserved for it.
2466 For instance, in an array of variant records, the bit_size
2467 we're given is the array stride, which is constant and
2468 normally equal to the maximum size of its element.
2469 But, in reality, each element only actually spans a portion
2470 of that stride. */
2471 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2472 }
2473 }
2474
2475 if (obj == NULL)
2476 {
2477 v = allocate_value (type);
2478 src = valaddr + offset;
2479 }
2480 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2481 {
2482 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2483 gdb_byte *buf;
2484
2485 v = value_at (type, value_address (obj) + offset);
2486 buf = (gdb_byte *) alloca (src_len);
2487 read_memory (value_address (v), buf, src_len);
2488 src = buf;
2489 }
2490 else
2491 {
2492 v = allocate_value (type);
2493 src = value_contents (obj).data () + offset;
2494 }
2495
2496 if (obj != NULL)
2497 {
2498 long new_offset = offset;
2499
2500 set_value_component_location (v, obj);
2501 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2502 set_value_bitsize (v, bit_size);
2503 if (value_bitpos (v) >= HOST_CHAR_BIT)
2504 {
2505 ++new_offset;
2506 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2507 }
2508 set_value_offset (v, new_offset);
2509
2510 /* Also set the parent value. This is needed when trying to
2511 assign a new value (in inferior memory). */
2512 set_value_parent (v, obj);
2513 }
2514 else
2515 set_value_bitsize (v, bit_size);
2516 unpacked = value_contents_writeable (v).data ();
2517
2518 if (bit_size == 0)
2519 {
2520 memset (unpacked, 0, TYPE_LENGTH (type));
2521 return v;
2522 }
2523
2524 if (staging.size () == TYPE_LENGTH (type))
2525 {
2526 /* Small short-cut: If we've unpacked the data into a buffer
2527 of the same size as TYPE's length, then we can reuse that,
2528 instead of doing the unpacking again. */
2529 memcpy (unpacked, staging.data (), staging.size ());
2530 }
2531 else
2532 ada_unpack_from_contents (src, bit_offset, bit_size,
2533 unpacked, TYPE_LENGTH (type),
2534 is_big_endian, has_negatives (type), is_scalar);
2535
2536 return v;
2537 }
2538
2539 /* Store the contents of FROMVAL into the location of TOVAL.
2540 Return a new value with the location of TOVAL and contents of
2541 FROMVAL. Handles assignment into packed fields that have
2542 floating-point or non-scalar types. */
2543
2544 static struct value *
2545 ada_value_assign (struct value *toval, struct value *fromval)
2546 {
2547 struct type *type = value_type (toval);
2548 int bits = value_bitsize (toval);
2549
2550 toval = ada_coerce_ref (toval);
2551 fromval = ada_coerce_ref (fromval);
2552
2553 if (ada_is_direct_array_type (value_type (toval)))
2554 toval = ada_coerce_to_simple_array (toval);
2555 if (ada_is_direct_array_type (value_type (fromval)))
2556 fromval = ada_coerce_to_simple_array (fromval);
2557
2558 if (!deprecated_value_modifiable (toval))
2559 error (_("Left operand of assignment is not a modifiable lvalue."));
2560
2561 if (VALUE_LVAL (toval) == lval_memory
2562 && bits > 0
2563 && (type->code () == TYPE_CODE_FLT
2564 || type->code () == TYPE_CODE_STRUCT))
2565 {
2566 int len = (value_bitpos (toval)
2567 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2568 int from_size;
2569 gdb_byte *buffer = (gdb_byte *) alloca (len);
2570 struct value *val;
2571 CORE_ADDR to_addr = value_address (toval);
2572
2573 if (type->code () == TYPE_CODE_FLT)
2574 fromval = value_cast (type, fromval);
2575
2576 read_memory (to_addr, buffer, len);
2577 from_size = value_bitsize (fromval);
2578 if (from_size == 0)
2579 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2580
2581 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2582 ULONGEST from_offset = 0;
2583 if (is_big_endian && is_scalar_type (value_type (fromval)))
2584 from_offset = from_size - bits;
2585 copy_bitwise (buffer, value_bitpos (toval),
2586 value_contents (fromval).data (), from_offset,
2587 bits, is_big_endian);
2588 write_memory_with_notification (to_addr, buffer, len);
2589
2590 val = value_copy (toval);
2591 memcpy (value_contents_raw (val).data (),
2592 value_contents (fromval).data (),
2593 TYPE_LENGTH (type));
2594 deprecated_set_value_type (val, type);
2595
2596 return val;
2597 }
2598
2599 return value_assign (toval, fromval);
2600 }
2601
2602
2603 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2604 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2605 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2606 COMPONENT, and not the inferior's memory. The current contents
2607 of COMPONENT are ignored.
2608
2609 Although not part of the initial design, this function also works
2610 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2611 had a null address, and COMPONENT had an address which is equal to
2612 its offset inside CONTAINER. */
2613
2614 static void
2615 value_assign_to_component (struct value *container, struct value *component,
2616 struct value *val)
2617 {
2618 LONGEST offset_in_container =
2619 (LONGEST) (value_address (component) - value_address (container));
2620 int bit_offset_in_container =
2621 value_bitpos (component) - value_bitpos (container);
2622 int bits;
2623
2624 val = value_cast (value_type (component), val);
2625
2626 if (value_bitsize (component) == 0)
2627 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2628 else
2629 bits = value_bitsize (component);
2630
2631 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2632 {
2633 int src_offset;
2634
2635 if (is_scalar_type (check_typedef (value_type (component))))
2636 src_offset
2637 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2638 else
2639 src_offset = 0;
2640 copy_bitwise ((value_contents_writeable (container).data ()
2641 + offset_in_container),
2642 value_bitpos (container) + bit_offset_in_container,
2643 value_contents (val).data (), src_offset, bits, 1);
2644 }
2645 else
2646 copy_bitwise ((value_contents_writeable (container).data ()
2647 + offset_in_container),
2648 value_bitpos (container) + bit_offset_in_container,
2649 value_contents (val).data (), 0, bits, 0);
2650 }
2651
2652 /* Determine if TYPE is an access to an unconstrained array. */
2653
2654 bool
2655 ada_is_access_to_unconstrained_array (struct type *type)
2656 {
2657 return (type->code () == TYPE_CODE_TYPEDEF
2658 && is_thick_pntr (ada_typedef_target_type (type)));
2659 }
2660
2661 /* The value of the element of array ARR at the ARITY indices given in IND.
2662 ARR may be either a simple array, GNAT array descriptor, or pointer
2663 thereto. */
2664
2665 struct value *
2666 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2667 {
2668 int k;
2669 struct value *elt;
2670 struct type *elt_type;
2671
2672 elt = ada_coerce_to_simple_array (arr);
2673
2674 elt_type = ada_check_typedef (value_type (elt));
2675 if (elt_type->code () == TYPE_CODE_ARRAY
2676 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2677 return value_subscript_packed (elt, arity, ind);
2678
2679 for (k = 0; k < arity; k += 1)
2680 {
2681 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2682
2683 if (elt_type->code () != TYPE_CODE_ARRAY)
2684 error (_("too many subscripts (%d expected)"), k);
2685
2686 elt = value_subscript (elt, pos_atr (ind[k]));
2687
2688 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2689 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2690 {
2691 /* The element is a typedef to an unconstrained array,
2692 except that the value_subscript call stripped the
2693 typedef layer. The typedef layer is GNAT's way to
2694 specify that the element is, at the source level, an
2695 access to the unconstrained array, rather than the
2696 unconstrained array. So, we need to restore that
2697 typedef layer, which we can do by forcing the element's
2698 type back to its original type. Otherwise, the returned
2699 value is going to be printed as the array, rather
2700 than as an access. Another symptom of the same issue
2701 would be that an expression trying to dereference the
2702 element would also be improperly rejected. */
2703 deprecated_set_value_type (elt, saved_elt_type);
2704 }
2705
2706 elt_type = ada_check_typedef (value_type (elt));
2707 }
2708
2709 return elt;
2710 }
2711
2712 /* Assuming ARR is a pointer to a GDB array, the value of the element
2713 of *ARR at the ARITY indices given in IND.
2714 Does not read the entire array into memory.
2715
2716 Note: Unlike what one would expect, this function is used instead of
2717 ada_value_subscript for basically all non-packed array types. The reason
2718 for this is that a side effect of doing our own pointer arithmetics instead
2719 of relying on value_subscript is that there is no implicit typedef peeling.
2720 This is important for arrays of array accesses, where it allows us to
2721 preserve the fact that the array's element is an array access, where the
2722 access part os encoded in a typedef layer. */
2723
2724 static struct value *
2725 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2726 {
2727 int k;
2728 struct value *array_ind = ada_value_ind (arr);
2729 struct type *type
2730 = check_typedef (value_enclosing_type (array_ind));
2731
2732 if (type->code () == TYPE_CODE_ARRAY
2733 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2734 return value_subscript_packed (array_ind, arity, ind);
2735
2736 for (k = 0; k < arity; k += 1)
2737 {
2738 LONGEST lwb, upb;
2739
2740 if (type->code () != TYPE_CODE_ARRAY)
2741 error (_("too many subscripts (%d expected)"), k);
2742 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2743 value_copy (arr));
2744 get_discrete_bounds (type->index_type (), &lwb, &upb);
2745 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2746 type = TYPE_TARGET_TYPE (type);
2747 }
2748
2749 return value_ind (arr);
2750 }
2751
2752 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2753 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2754 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2755 this array is LOW, as per Ada rules. */
2756 static struct value *
2757 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2758 int low, int high)
2759 {
2760 struct type *type0 = ada_check_typedef (type);
2761 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2762 struct type *index_type
2763 = create_static_range_type (NULL, base_index_type, low, high);
2764 struct type *slice_type = create_array_type_with_stride
2765 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2766 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2767 TYPE_FIELD_BITSIZE (type0, 0));
2768 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2769 gdb::optional<LONGEST> base_low_pos, low_pos;
2770 CORE_ADDR base;
2771
2772 low_pos = discrete_position (base_index_type, low);
2773 base_low_pos = discrete_position (base_index_type, base_low);
2774
2775 if (!low_pos.has_value () || !base_low_pos.has_value ())
2776 {
2777 warning (_("unable to get positions in slice, use bounds instead"));
2778 low_pos = low;
2779 base_low_pos = base_low;
2780 }
2781
2782 ULONGEST stride = TYPE_FIELD_BITSIZE (slice_type, 0) / 8;
2783 if (stride == 0)
2784 stride = TYPE_LENGTH (TYPE_TARGET_TYPE (type0));
2785
2786 base = value_as_address (array_ptr) + (*low_pos - *base_low_pos) * stride;
2787 return value_at_lazy (slice_type, base);
2788 }
2789
2790
2791 static struct value *
2792 ada_value_slice (struct value *array, int low, int high)
2793 {
2794 struct type *type = ada_check_typedef (value_type (array));
2795 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2796 struct type *index_type
2797 = create_static_range_type (NULL, type->index_type (), low, high);
2798 struct type *slice_type = create_array_type_with_stride
2799 (NULL, TYPE_TARGET_TYPE (type), index_type,
2800 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2801 TYPE_FIELD_BITSIZE (type, 0));
2802 gdb::optional<LONGEST> low_pos, high_pos;
2803
2804
2805 low_pos = discrete_position (base_index_type, low);
2806 high_pos = discrete_position (base_index_type, high);
2807
2808 if (!low_pos.has_value () || !high_pos.has_value ())
2809 {
2810 warning (_("unable to get positions in slice, use bounds instead"));
2811 low_pos = low;
2812 high_pos = high;
2813 }
2814
2815 return value_cast (slice_type,
2816 value_slice (array, low, *high_pos - *low_pos + 1));
2817 }
2818
2819 /* If type is a record type in the form of a standard GNAT array
2820 descriptor, returns the number of dimensions for type. If arr is a
2821 simple array, returns the number of "array of"s that prefix its
2822 type designation. Otherwise, returns 0. */
2823
2824 int
2825 ada_array_arity (struct type *type)
2826 {
2827 int arity;
2828
2829 if (type == NULL)
2830 return 0;
2831
2832 type = desc_base_type (type);
2833
2834 arity = 0;
2835 if (type->code () == TYPE_CODE_STRUCT)
2836 return desc_arity (desc_bounds_type (type));
2837 else
2838 while (type->code () == TYPE_CODE_ARRAY)
2839 {
2840 arity += 1;
2841 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2842 }
2843
2844 return arity;
2845 }
2846
2847 /* If TYPE is a record type in the form of a standard GNAT array
2848 descriptor or a simple array type, returns the element type for
2849 TYPE after indexing by NINDICES indices, or by all indices if
2850 NINDICES is -1. Otherwise, returns NULL. */
2851
2852 struct type *
2853 ada_array_element_type (struct type *type, int nindices)
2854 {
2855 type = desc_base_type (type);
2856
2857 if (type->code () == TYPE_CODE_STRUCT)
2858 {
2859 int k;
2860 struct type *p_array_type;
2861
2862 p_array_type = desc_data_target_type (type);
2863
2864 k = ada_array_arity (type);
2865 if (k == 0)
2866 return NULL;
2867
2868 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2869 if (nindices >= 0 && k > nindices)
2870 k = nindices;
2871 while (k > 0 && p_array_type != NULL)
2872 {
2873 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2874 k -= 1;
2875 }
2876 return p_array_type;
2877 }
2878 else if (type->code () == TYPE_CODE_ARRAY)
2879 {
2880 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2881 {
2882 type = TYPE_TARGET_TYPE (type);
2883 nindices -= 1;
2884 }
2885 return type;
2886 }
2887
2888 return NULL;
2889 }
2890
2891 /* See ada-lang.h. */
2892
2893 struct type *
2894 ada_index_type (struct type *type, int n, const char *name)
2895 {
2896 struct type *result_type;
2897
2898 type = desc_base_type (type);
2899
2900 if (n < 0 || n > ada_array_arity (type))
2901 error (_("invalid dimension number to '%s"), name);
2902
2903 if (ada_is_simple_array_type (type))
2904 {
2905 int i;
2906
2907 for (i = 1; i < n; i += 1)
2908 {
2909 type = ada_check_typedef (type);
2910 type = TYPE_TARGET_TYPE (type);
2911 }
2912 result_type = TYPE_TARGET_TYPE (ada_check_typedef (type)->index_type ());
2913 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2914 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2915 perhaps stabsread.c would make more sense. */
2916 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2917 result_type = NULL;
2918 }
2919 else
2920 {
2921 result_type = desc_index_type (desc_bounds_type (type), n);
2922 if (result_type == NULL)
2923 error (_("attempt to take bound of something that is not an array"));
2924 }
2925
2926 return result_type;
2927 }
2928
2929 /* Given that arr is an array type, returns the lower bound of the
2930 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2931 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2932 array-descriptor type. It works for other arrays with bounds supplied
2933 by run-time quantities other than discriminants. */
2934
2935 static LONGEST
2936 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2937 {
2938 struct type *type, *index_type_desc, *index_type;
2939 int i;
2940
2941 gdb_assert (which == 0 || which == 1);
2942
2943 if (ada_is_constrained_packed_array_type (arr_type))
2944 arr_type = decode_constrained_packed_array_type (arr_type);
2945
2946 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2947 return (LONGEST) - which;
2948
2949 if (arr_type->code () == TYPE_CODE_PTR)
2950 type = TYPE_TARGET_TYPE (arr_type);
2951 else
2952 type = arr_type;
2953
2954 if (type->is_fixed_instance ())
2955 {
2956 /* The array has already been fixed, so we do not need to
2957 check the parallel ___XA type again. That encoding has
2958 already been applied, so ignore it now. */
2959 index_type_desc = NULL;
2960 }
2961 else
2962 {
2963 index_type_desc = ada_find_parallel_type (type, "___XA");
2964 ada_fixup_array_indexes_type (index_type_desc);
2965 }
2966
2967 if (index_type_desc != NULL)
2968 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2969 NULL);
2970 else
2971 {
2972 struct type *elt_type = check_typedef (type);
2973
2974 for (i = 1; i < n; i++)
2975 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2976
2977 index_type = elt_type->index_type ();
2978 }
2979
2980 return
2981 (LONGEST) (which == 0
2982 ? ada_discrete_type_low_bound (index_type)
2983 : ada_discrete_type_high_bound (index_type));
2984 }
2985
2986 /* Given that arr is an array value, returns the lower bound of the
2987 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2988 WHICH is 1. This routine will also work for arrays with bounds
2989 supplied by run-time quantities other than discriminants. */
2990
2991 static LONGEST
2992 ada_array_bound (struct value *arr, int n, int which)
2993 {
2994 struct type *arr_type;
2995
2996 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2997 arr = value_ind (arr);
2998 arr_type = value_enclosing_type (arr);
2999
3000 if (ada_is_constrained_packed_array_type (arr_type))
3001 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3002 else if (ada_is_simple_array_type (arr_type))
3003 return ada_array_bound_from_type (arr_type, n, which);
3004 else
3005 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3006 }
3007
3008 /* Given that arr is an array value, returns the length of the
3009 nth index. This routine will also work for arrays with bounds
3010 supplied by run-time quantities other than discriminants.
3011 Does not work for arrays indexed by enumeration types with representation
3012 clauses at the moment. */
3013
3014 static LONGEST
3015 ada_array_length (struct value *arr, int n)
3016 {
3017 struct type *arr_type, *index_type;
3018 int low, high;
3019
3020 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3021 arr = value_ind (arr);
3022 arr_type = value_enclosing_type (arr);
3023
3024 if (ada_is_constrained_packed_array_type (arr_type))
3025 return ada_array_length (decode_constrained_packed_array (arr), n);
3026
3027 if (ada_is_simple_array_type (arr_type))
3028 {
3029 low = ada_array_bound_from_type (arr_type, n, 0);
3030 high = ada_array_bound_from_type (arr_type, n, 1);
3031 }
3032 else
3033 {
3034 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3035 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3036 }
3037
3038 arr_type = check_typedef (arr_type);
3039 index_type = ada_index_type (arr_type, n, "length");
3040 if (index_type != NULL)
3041 {
3042 struct type *base_type;
3043 if (index_type->code () == TYPE_CODE_RANGE)
3044 base_type = TYPE_TARGET_TYPE (index_type);
3045 else
3046 base_type = index_type;
3047
3048 low = pos_atr (value_from_longest (base_type, low));
3049 high = pos_atr (value_from_longest (base_type, high));
3050 }
3051 return high - low + 1;
3052 }
3053
3054 /* An array whose type is that of ARR_TYPE (an array type), with
3055 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3056 less than LOW, then LOW-1 is used. */
3057
3058 static struct value *
3059 empty_array (struct type *arr_type, int low, int high)
3060 {
3061 struct type *arr_type0 = ada_check_typedef (arr_type);
3062 struct type *index_type
3063 = create_static_range_type
3064 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3065 high < low ? low - 1 : high);
3066 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3067
3068 return allocate_value (create_array_type (NULL, elt_type, index_type));
3069 }
3070 \f
3071
3072 /* Name resolution */
3073
3074 /* The "decoded" name for the user-definable Ada operator corresponding
3075 to OP. */
3076
3077 static const char *
3078 ada_decoded_op_name (enum exp_opcode op)
3079 {
3080 int i;
3081
3082 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3083 {
3084 if (ada_opname_table[i].op == op)
3085 return ada_opname_table[i].decoded;
3086 }
3087 error (_("Could not find operator name for opcode"));
3088 }
3089
3090 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3091 in a listing of choices during disambiguation (see sort_choices, below).
3092 The idea is that overloadings of a subprogram name from the
3093 same package should sort in their source order. We settle for ordering
3094 such symbols by their trailing number (__N or $N). */
3095
3096 static int
3097 encoded_ordered_before (const char *N0, const char *N1)
3098 {
3099 if (N1 == NULL)
3100 return 0;
3101 else if (N0 == NULL)
3102 return 1;
3103 else
3104 {
3105 int k0, k1;
3106
3107 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3108 ;
3109 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3110 ;
3111 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3112 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3113 {
3114 int n0, n1;
3115
3116 n0 = k0;
3117 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3118 n0 -= 1;
3119 n1 = k1;
3120 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3121 n1 -= 1;
3122 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3123 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3124 }
3125 return (strcmp (N0, N1) < 0);
3126 }
3127 }
3128
3129 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3130 encoded names. */
3131
3132 static void
3133 sort_choices (struct block_symbol syms[], int nsyms)
3134 {
3135 int i;
3136
3137 for (i = 1; i < nsyms; i += 1)
3138 {
3139 struct block_symbol sym = syms[i];
3140 int j;
3141
3142 for (j = i - 1; j >= 0; j -= 1)
3143 {
3144 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3145 sym.symbol->linkage_name ()))
3146 break;
3147 syms[j + 1] = syms[j];
3148 }
3149 syms[j + 1] = sym;
3150 }
3151 }
3152
3153 /* Whether GDB should display formals and return types for functions in the
3154 overloads selection menu. */
3155 static bool print_signatures = true;
3156
3157 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3158 all but functions, the signature is just the name of the symbol. For
3159 functions, this is the name of the function, the list of types for formals
3160 and the return type (if any). */
3161
3162 static void
3163 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3164 const struct type_print_options *flags)
3165 {
3166 struct type *type = SYMBOL_TYPE (sym);
3167
3168 fprintf_filtered (stream, "%s", sym->print_name ());
3169 if (!print_signatures
3170 || type == NULL
3171 || type->code () != TYPE_CODE_FUNC)
3172 return;
3173
3174 if (type->num_fields () > 0)
3175 {
3176 int i;
3177
3178 fprintf_filtered (stream, " (");
3179 for (i = 0; i < type->num_fields (); ++i)
3180 {
3181 if (i > 0)
3182 fprintf_filtered (stream, "; ");
3183 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3184 flags);
3185 }
3186 fprintf_filtered (stream, ")");
3187 }
3188 if (TYPE_TARGET_TYPE (type) != NULL
3189 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3190 {
3191 fprintf_filtered (stream, " return ");
3192 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3193 }
3194 }
3195
3196 /* Read and validate a set of numeric choices from the user in the
3197 range 0 .. N_CHOICES-1. Place the results in increasing
3198 order in CHOICES[0 .. N-1], and return N.
3199
3200 The user types choices as a sequence of numbers on one line
3201 separated by blanks, encoding them as follows:
3202
3203 + A choice of 0 means to cancel the selection, throwing an error.
3204 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3205 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3206
3207 The user is not allowed to choose more than MAX_RESULTS values.
3208
3209 ANNOTATION_SUFFIX, if present, is used to annotate the input
3210 prompts (for use with the -f switch). */
3211
3212 static int
3213 get_selections (int *choices, int n_choices, int max_results,
3214 int is_all_choice, const char *annotation_suffix)
3215 {
3216 const char *args;
3217 const char *prompt;
3218 int n_chosen;
3219 int first_choice = is_all_choice ? 2 : 1;
3220
3221 prompt = getenv ("PS2");
3222 if (prompt == NULL)
3223 prompt = "> ";
3224
3225 args = command_line_input (prompt, annotation_suffix);
3226
3227 if (args == NULL)
3228 error_no_arg (_("one or more choice numbers"));
3229
3230 n_chosen = 0;
3231
3232 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3233 order, as given in args. Choices are validated. */
3234 while (1)
3235 {
3236 char *args2;
3237 int choice, j;
3238
3239 args = skip_spaces (args);
3240 if (*args == '\0' && n_chosen == 0)
3241 error_no_arg (_("one or more choice numbers"));
3242 else if (*args == '\0')
3243 break;
3244
3245 choice = strtol (args, &args2, 10);
3246 if (args == args2 || choice < 0
3247 || choice > n_choices + first_choice - 1)
3248 error (_("Argument must be choice number"));
3249 args = args2;
3250
3251 if (choice == 0)
3252 error (_("cancelled"));
3253
3254 if (choice < first_choice)
3255 {
3256 n_chosen = n_choices;
3257 for (j = 0; j < n_choices; j += 1)
3258 choices[j] = j;
3259 break;
3260 }
3261 choice -= first_choice;
3262
3263 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3264 {
3265 }
3266
3267 if (j < 0 || choice != choices[j])
3268 {
3269 int k;
3270
3271 for (k = n_chosen - 1; k > j; k -= 1)
3272 choices[k + 1] = choices[k];
3273 choices[j + 1] = choice;
3274 n_chosen += 1;
3275 }
3276 }
3277
3278 if (n_chosen > max_results)
3279 error (_("Select no more than %d of the above"), max_results);
3280
3281 return n_chosen;
3282 }
3283
3284 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3285 by asking the user (if necessary), returning the number selected,
3286 and setting the first elements of SYMS items. Error if no symbols
3287 selected. */
3288
3289 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3290 to be re-integrated one of these days. */
3291
3292 static int
3293 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3294 {
3295 int i;
3296 int *chosen = XALLOCAVEC (int , nsyms);
3297 int n_chosen;
3298 int first_choice = (max_results == 1) ? 1 : 2;
3299 const char *select_mode = multiple_symbols_select_mode ();
3300
3301 if (max_results < 1)
3302 error (_("Request to select 0 symbols!"));
3303 if (nsyms <= 1)
3304 return nsyms;
3305
3306 if (select_mode == multiple_symbols_cancel)
3307 error (_("\
3308 canceled because the command is ambiguous\n\
3309 See set/show multiple-symbol."));
3310
3311 /* If select_mode is "all", then return all possible symbols.
3312 Only do that if more than one symbol can be selected, of course.
3313 Otherwise, display the menu as usual. */
3314 if (select_mode == multiple_symbols_all && max_results > 1)
3315 return nsyms;
3316
3317 printf_filtered (_("[0] cancel\n"));
3318 if (max_results > 1)
3319 printf_filtered (_("[1] all\n"));
3320
3321 sort_choices (syms, nsyms);
3322
3323 for (i = 0; i < nsyms; i += 1)
3324 {
3325 if (syms[i].symbol == NULL)
3326 continue;
3327
3328 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3329 {
3330 struct symtab_and_line sal =
3331 find_function_start_sal (syms[i].symbol, 1);
3332
3333 printf_filtered ("[%d] ", i + first_choice);
3334 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3335 &type_print_raw_options);
3336 if (sal.symtab == NULL)
3337 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3338 metadata_style.style ().ptr (), nullptr, sal.line);
3339 else
3340 printf_filtered
3341 (_(" at %ps:%d\n"),
3342 styled_string (file_name_style.style (),
3343 symtab_to_filename_for_display (sal.symtab)),
3344 sal.line);
3345 continue;
3346 }
3347 else
3348 {
3349 int is_enumeral =
3350 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3351 && SYMBOL_TYPE (syms[i].symbol) != NULL
3352 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3353 struct symtab *symtab = NULL;
3354
3355 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3356 symtab = symbol_symtab (syms[i].symbol);
3357
3358 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3359 {
3360 printf_filtered ("[%d] ", i + first_choice);
3361 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3362 &type_print_raw_options);
3363 printf_filtered (_(" at %s:%d\n"),
3364 symtab_to_filename_for_display (symtab),
3365 SYMBOL_LINE (syms[i].symbol));
3366 }
3367 else if (is_enumeral
3368 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3369 {
3370 printf_filtered (("[%d] "), i + first_choice);
3371 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3372 gdb_stdout, -1, 0, &type_print_raw_options);
3373 printf_filtered (_("'(%s) (enumeral)\n"),
3374 syms[i].symbol->print_name ());
3375 }
3376 else
3377 {
3378 printf_filtered ("[%d] ", i + first_choice);
3379 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3380 &type_print_raw_options);
3381
3382 if (symtab != NULL)
3383 printf_filtered (is_enumeral
3384 ? _(" in %s (enumeral)\n")
3385 : _(" at %s:?\n"),
3386 symtab_to_filename_for_display (symtab));
3387 else
3388 printf_filtered (is_enumeral
3389 ? _(" (enumeral)\n")
3390 : _(" at ?\n"));
3391 }
3392 }
3393 }
3394
3395 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3396 "overload-choice");
3397
3398 for (i = 0; i < n_chosen; i += 1)
3399 syms[i] = syms[chosen[i]];
3400
3401 return n_chosen;
3402 }
3403
3404 /* See ada-lang.h. */
3405
3406 block_symbol
3407 ada_find_operator_symbol (enum exp_opcode op, bool parse_completion,
3408 int nargs, value *argvec[])
3409 {
3410 if (possible_user_operator_p (op, argvec))
3411 {
3412 std::vector<struct block_symbol> candidates
3413 = ada_lookup_symbol_list (ada_decoded_op_name (op),
3414 NULL, VAR_DOMAIN);
3415
3416 int i = ada_resolve_function (candidates, argvec,
3417 nargs, ada_decoded_op_name (op), NULL,
3418 parse_completion);
3419 if (i >= 0)
3420 return candidates[i];
3421 }
3422 return {};
3423 }
3424
3425 /* See ada-lang.h. */
3426
3427 block_symbol
3428 ada_resolve_funcall (struct symbol *sym, const struct block *block,
3429 struct type *context_type,
3430 bool parse_completion,
3431 int nargs, value *argvec[],
3432 innermost_block_tracker *tracker)
3433 {
3434 std::vector<struct block_symbol> candidates
3435 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3436
3437 int i;
3438 if (candidates.size () == 1)
3439 i = 0;
3440 else
3441 {
3442 i = ada_resolve_function
3443 (candidates,
3444 argvec, nargs,
3445 sym->linkage_name (),
3446 context_type, parse_completion);
3447 if (i < 0)
3448 error (_("Could not find a match for %s"), sym->print_name ());
3449 }
3450
3451 tracker->update (candidates[i]);
3452 return candidates[i];
3453 }
3454
3455 /* Resolve a mention of a name where the context type is an
3456 enumeration type. */
3457
3458 static int
3459 ada_resolve_enum (std::vector<struct block_symbol> &syms,
3460 const char *name, struct type *context_type,
3461 bool parse_completion)
3462 {
3463 gdb_assert (context_type->code () == TYPE_CODE_ENUM);
3464 context_type = ada_check_typedef (context_type);
3465
3466 for (int i = 0; i < syms.size (); ++i)
3467 {
3468 /* We already know the name matches, so we're just looking for
3469 an element of the correct enum type. */
3470 if (ada_check_typedef (SYMBOL_TYPE (syms[i].symbol)) == context_type)
3471 return i;
3472 }
3473
3474 error (_("No name '%s' in enumeration type '%s'"), name,
3475 ada_type_name (context_type));
3476 }
3477
3478 /* See ada-lang.h. */
3479
3480 block_symbol
3481 ada_resolve_variable (struct symbol *sym, const struct block *block,
3482 struct type *context_type,
3483 bool parse_completion,
3484 int deprocedure_p,
3485 innermost_block_tracker *tracker)
3486 {
3487 std::vector<struct block_symbol> candidates
3488 = ada_lookup_symbol_list (sym->linkage_name (), block, VAR_DOMAIN);
3489
3490 if (std::any_of (candidates.begin (),
3491 candidates.end (),
3492 [] (block_symbol &bsym)
3493 {
3494 switch (SYMBOL_CLASS (bsym.symbol))
3495 {
3496 case LOC_REGISTER:
3497 case LOC_ARG:
3498 case LOC_REF_ARG:
3499 case LOC_REGPARM_ADDR:
3500 case LOC_LOCAL:
3501 case LOC_COMPUTED:
3502 return true;
3503 default:
3504 return false;
3505 }
3506 }))
3507 {
3508 /* Types tend to get re-introduced locally, so if there
3509 are any local symbols that are not types, first filter
3510 out all types. */
3511 candidates.erase
3512 (std::remove_if
3513 (candidates.begin (),
3514 candidates.end (),
3515 [] (block_symbol &bsym)
3516 {
3517 return SYMBOL_CLASS (bsym.symbol) == LOC_TYPEDEF;
3518 }),
3519 candidates.end ());
3520 }
3521
3522 /* Filter out artificial symbols. */
3523 candidates.erase
3524 (std::remove_if
3525 (candidates.begin (),
3526 candidates.end (),
3527 [] (block_symbol &bsym)
3528 {
3529 return bsym.symbol->artificial;
3530 }),
3531 candidates.end ());
3532
3533 int i;
3534 if (candidates.empty ())
3535 error (_("No definition found for %s"), sym->print_name ());
3536 else if (candidates.size () == 1)
3537 i = 0;
3538 else if (context_type != nullptr
3539 && context_type->code () == TYPE_CODE_ENUM)
3540 i = ada_resolve_enum (candidates, sym->linkage_name (), context_type,
3541 parse_completion);
3542 else if (deprocedure_p && !is_nonfunction (candidates))
3543 {
3544 i = ada_resolve_function
3545 (candidates, NULL, 0,
3546 sym->linkage_name (),
3547 context_type, parse_completion);
3548 if (i < 0)
3549 error (_("Could not find a match for %s"), sym->print_name ());
3550 }
3551 else
3552 {
3553 printf_filtered (_("Multiple matches for %s\n"), sym->print_name ());
3554 user_select_syms (candidates.data (), candidates.size (), 1);
3555 i = 0;
3556 }
3557
3558 tracker->update (candidates[i]);
3559 return candidates[i];
3560 }
3561
3562 /* Return non-zero if formal type FTYPE matches actual type ATYPE. */
3563 /* The term "match" here is rather loose. The match is heuristic and
3564 liberal. */
3565
3566 static int
3567 ada_type_match (struct type *ftype, struct type *atype)
3568 {
3569 ftype = ada_check_typedef (ftype);
3570 atype = ada_check_typedef (atype);
3571
3572 if (ftype->code () == TYPE_CODE_REF)
3573 ftype = TYPE_TARGET_TYPE (ftype);
3574 if (atype->code () == TYPE_CODE_REF)
3575 atype = TYPE_TARGET_TYPE (atype);
3576
3577 switch (ftype->code ())
3578 {
3579 default:
3580 return ftype->code () == atype->code ();
3581 case TYPE_CODE_PTR:
3582 if (atype->code () != TYPE_CODE_PTR)
3583 return 0;
3584 atype = TYPE_TARGET_TYPE (atype);
3585 /* This can only happen if the actual argument is 'null'. */
3586 if (atype->code () == TYPE_CODE_INT && TYPE_LENGTH (atype) == 0)
3587 return 1;
3588 return ada_type_match (TYPE_TARGET_TYPE (ftype), atype);
3589 case TYPE_CODE_INT:
3590 case TYPE_CODE_ENUM:
3591 case TYPE_CODE_RANGE:
3592 switch (atype->code ())
3593 {
3594 case TYPE_CODE_INT:
3595 case TYPE_CODE_ENUM:
3596 case TYPE_CODE_RANGE:
3597 return 1;
3598 default:
3599 return 0;
3600 }
3601
3602 case TYPE_CODE_ARRAY:
3603 return (atype->code () == TYPE_CODE_ARRAY
3604 || ada_is_array_descriptor_type (atype));
3605
3606 case TYPE_CODE_STRUCT:
3607 if (ada_is_array_descriptor_type (ftype))
3608 return (atype->code () == TYPE_CODE_ARRAY
3609 || ada_is_array_descriptor_type (atype));
3610 else
3611 return (atype->code () == TYPE_CODE_STRUCT
3612 && !ada_is_array_descriptor_type (atype));
3613
3614 case TYPE_CODE_UNION:
3615 case TYPE_CODE_FLT:
3616 return (atype->code () == ftype->code ());
3617 }
3618 }
3619
3620 /* Return non-zero if the formals of FUNC "sufficiently match" the
3621 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3622 may also be an enumeral, in which case it is treated as a 0-
3623 argument function. */
3624
3625 static int
3626 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3627 {
3628 int i;
3629 struct type *func_type = SYMBOL_TYPE (func);
3630
3631 if (SYMBOL_CLASS (func) == LOC_CONST
3632 && func_type->code () == TYPE_CODE_ENUM)
3633 return (n_actuals == 0);
3634 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3635 return 0;
3636
3637 if (func_type->num_fields () != n_actuals)
3638 return 0;
3639
3640 for (i = 0; i < n_actuals; i += 1)
3641 {
3642 if (actuals[i] == NULL)
3643 return 0;
3644 else
3645 {
3646 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3647 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3648
3649 if (!ada_type_match (ftype, atype))
3650 return 0;
3651 }
3652 }
3653 return 1;
3654 }
3655
3656 /* False iff function type FUNC_TYPE definitely does not produce a value
3657 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3658 FUNC_TYPE is not a valid function type with a non-null return type
3659 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3660
3661 static int
3662 return_match (struct type *func_type, struct type *context_type)
3663 {
3664 struct type *return_type;
3665
3666 if (func_type == NULL)
3667 return 1;
3668
3669 if (func_type->code () == TYPE_CODE_FUNC)
3670 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3671 else
3672 return_type = get_base_type (func_type);
3673 if (return_type == NULL)
3674 return 1;
3675
3676 context_type = get_base_type (context_type);
3677
3678 if (return_type->code () == TYPE_CODE_ENUM)
3679 return context_type == NULL || return_type == context_type;
3680 else if (context_type == NULL)
3681 return return_type->code () != TYPE_CODE_VOID;
3682 else
3683 return return_type->code () == context_type->code ();
3684 }
3685
3686
3687 /* Returns the index in SYMS that contains the symbol for the
3688 function (if any) that matches the types of the NARGS arguments in
3689 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3690 that returns that type, then eliminate matches that don't. If
3691 CONTEXT_TYPE is void and there is at least one match that does not
3692 return void, eliminate all matches that do.
3693
3694 Asks the user if there is more than one match remaining. Returns -1
3695 if there is no such symbol or none is selected. NAME is used
3696 solely for messages. May re-arrange and modify SYMS in
3697 the process; the index returned is for the modified vector. */
3698
3699 static int
3700 ada_resolve_function (std::vector<struct block_symbol> &syms,
3701 struct value **args, int nargs,
3702 const char *name, struct type *context_type,
3703 bool parse_completion)
3704 {
3705 int fallback;
3706 int k;
3707 int m; /* Number of hits */
3708
3709 m = 0;
3710 /* In the first pass of the loop, we only accept functions matching
3711 context_type. If none are found, we add a second pass of the loop
3712 where every function is accepted. */
3713 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3714 {
3715 for (k = 0; k < syms.size (); k += 1)
3716 {
3717 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3718
3719 if (ada_args_match (syms[k].symbol, args, nargs)
3720 && (fallback || return_match (type, context_type)))
3721 {
3722 syms[m] = syms[k];
3723 m += 1;
3724 }
3725 }
3726 }
3727
3728 /* If we got multiple matches, ask the user which one to use. Don't do this
3729 interactive thing during completion, though, as the purpose of the
3730 completion is providing a list of all possible matches. Prompting the
3731 user to filter it down would be completely unexpected in this case. */
3732 if (m == 0)
3733 return -1;
3734 else if (m > 1 && !parse_completion)
3735 {
3736 printf_filtered (_("Multiple matches for %s\n"), name);
3737 user_select_syms (syms.data (), m, 1);
3738 return 0;
3739 }
3740 return 0;
3741 }
3742
3743 /* Type-class predicates */
3744
3745 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3746 or FLOAT). */
3747
3748 static int
3749 numeric_type_p (struct type *type)
3750 {
3751 if (type == NULL)
3752 return 0;
3753 else
3754 {
3755 switch (type->code ())
3756 {
3757 case TYPE_CODE_INT:
3758 case TYPE_CODE_FLT:
3759 case TYPE_CODE_FIXED_POINT:
3760 return 1;
3761 case TYPE_CODE_RANGE:
3762 return (type == TYPE_TARGET_TYPE (type)
3763 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3764 default:
3765 return 0;
3766 }
3767 }
3768 }
3769
3770 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3771
3772 static int
3773 integer_type_p (struct type *type)
3774 {
3775 if (type == NULL)
3776 return 0;
3777 else
3778 {
3779 switch (type->code ())
3780 {
3781 case TYPE_CODE_INT:
3782 return 1;
3783 case TYPE_CODE_RANGE:
3784 return (type == TYPE_TARGET_TYPE (type)
3785 || integer_type_p (TYPE_TARGET_TYPE (type)));
3786 default:
3787 return 0;
3788 }
3789 }
3790 }
3791
3792 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3793
3794 static int
3795 scalar_type_p (struct type *type)
3796 {
3797 if (type == NULL)
3798 return 0;
3799 else
3800 {
3801 switch (type->code ())
3802 {
3803 case TYPE_CODE_INT:
3804 case TYPE_CODE_RANGE:
3805 case TYPE_CODE_ENUM:
3806 case TYPE_CODE_FLT:
3807 case TYPE_CODE_FIXED_POINT:
3808 return 1;
3809 default:
3810 return 0;
3811 }
3812 }
3813 }
3814
3815 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3816
3817 static int
3818 discrete_type_p (struct type *type)
3819 {
3820 if (type == NULL)
3821 return 0;
3822 else
3823 {
3824 switch (type->code ())
3825 {
3826 case TYPE_CODE_INT:
3827 case TYPE_CODE_RANGE:
3828 case TYPE_CODE_ENUM:
3829 case TYPE_CODE_BOOL:
3830 return 1;
3831 default:
3832 return 0;
3833 }
3834 }
3835 }
3836
3837 /* Returns non-zero if OP with operands in the vector ARGS could be
3838 a user-defined function. Errs on the side of pre-defined operators
3839 (i.e., result 0). */
3840
3841 static int
3842 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3843 {
3844 struct type *type0 =
3845 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3846 struct type *type1 =
3847 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3848
3849 if (type0 == NULL)
3850 return 0;
3851
3852 switch (op)
3853 {
3854 default:
3855 return 0;
3856
3857 case BINOP_ADD:
3858 case BINOP_SUB:
3859 case BINOP_MUL:
3860 case BINOP_DIV:
3861 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3862
3863 case BINOP_REM:
3864 case BINOP_MOD:
3865 case BINOP_BITWISE_AND:
3866 case BINOP_BITWISE_IOR:
3867 case BINOP_BITWISE_XOR:
3868 return (!(integer_type_p (type0) && integer_type_p (type1)));
3869
3870 case BINOP_EQUAL:
3871 case BINOP_NOTEQUAL:
3872 case BINOP_LESS:
3873 case BINOP_GTR:
3874 case BINOP_LEQ:
3875 case BINOP_GEQ:
3876 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3877
3878 case BINOP_CONCAT:
3879 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3880
3881 case BINOP_EXP:
3882 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3883
3884 case UNOP_NEG:
3885 case UNOP_PLUS:
3886 case UNOP_LOGICAL_NOT:
3887 case UNOP_ABS:
3888 return (!numeric_type_p (type0));
3889
3890 }
3891 }
3892 \f
3893 /* Renaming */
3894
3895 /* NOTES:
3896
3897 1. In the following, we assume that a renaming type's name may
3898 have an ___XD suffix. It would be nice if this went away at some
3899 point.
3900 2. We handle both the (old) purely type-based representation of
3901 renamings and the (new) variable-based encoding. At some point,
3902 it is devoutly to be hoped that the former goes away
3903 (FIXME: hilfinger-2007-07-09).
3904 3. Subprogram renamings are not implemented, although the XRS
3905 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3906
3907 /* If SYM encodes a renaming,
3908
3909 <renaming> renames <renamed entity>,
3910
3911 sets *LEN to the length of the renamed entity's name,
3912 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3913 the string describing the subcomponent selected from the renamed
3914 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3915 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3916 are undefined). Otherwise, returns a value indicating the category
3917 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3918 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3919 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3920 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3921 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3922 may be NULL, in which case they are not assigned.
3923
3924 [Currently, however, GCC does not generate subprogram renamings.] */
3925
3926 enum ada_renaming_category
3927 ada_parse_renaming (struct symbol *sym,
3928 const char **renamed_entity, int *len,
3929 const char **renaming_expr)
3930 {
3931 enum ada_renaming_category kind;
3932 const char *info;
3933 const char *suffix;
3934
3935 if (sym == NULL)
3936 return ADA_NOT_RENAMING;
3937 switch (SYMBOL_CLASS (sym))
3938 {
3939 default:
3940 return ADA_NOT_RENAMING;
3941 case LOC_LOCAL:
3942 case LOC_STATIC:
3943 case LOC_COMPUTED:
3944 case LOC_OPTIMIZED_OUT:
3945 info = strstr (sym->linkage_name (), "___XR");
3946 if (info == NULL)
3947 return ADA_NOT_RENAMING;
3948 switch (info[5])
3949 {
3950 case '_':
3951 kind = ADA_OBJECT_RENAMING;
3952 info += 6;
3953 break;
3954 case 'E':
3955 kind = ADA_EXCEPTION_RENAMING;
3956 info += 7;
3957 break;
3958 case 'P':
3959 kind = ADA_PACKAGE_RENAMING;
3960 info += 7;
3961 break;
3962 case 'S':
3963 kind = ADA_SUBPROGRAM_RENAMING;
3964 info += 7;
3965 break;
3966 default:
3967 return ADA_NOT_RENAMING;
3968 }
3969 }
3970
3971 if (renamed_entity != NULL)
3972 *renamed_entity = info;
3973 suffix = strstr (info, "___XE");
3974 if (suffix == NULL || suffix == info)
3975 return ADA_NOT_RENAMING;
3976 if (len != NULL)
3977 *len = strlen (info) - strlen (suffix);
3978 suffix += 5;
3979 if (renaming_expr != NULL)
3980 *renaming_expr = suffix;
3981 return kind;
3982 }
3983
3984 /* Compute the value of the given RENAMING_SYM, which is expected to
3985 be a symbol encoding a renaming expression. BLOCK is the block
3986 used to evaluate the renaming. */
3987
3988 static struct value *
3989 ada_read_renaming_var_value (struct symbol *renaming_sym,
3990 const struct block *block)
3991 {
3992 const char *sym_name;
3993
3994 sym_name = renaming_sym->linkage_name ();
3995 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
3996 return evaluate_expression (expr.get ());
3997 }
3998 \f
3999
4000 /* Evaluation: Function Calls */
4001
4002 /* Return an lvalue containing the value VAL. This is the identity on
4003 lvalues, and otherwise has the side-effect of allocating memory
4004 in the inferior where a copy of the value contents is copied. */
4005
4006 static struct value *
4007 ensure_lval (struct value *val)
4008 {
4009 if (VALUE_LVAL (val) == not_lval
4010 || VALUE_LVAL (val) == lval_internalvar)
4011 {
4012 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4013 const CORE_ADDR addr =
4014 value_as_long (value_allocate_space_in_inferior (len));
4015
4016 VALUE_LVAL (val) = lval_memory;
4017 set_value_address (val, addr);
4018 write_memory (addr, value_contents (val).data (), len);
4019 }
4020
4021 return val;
4022 }
4023
4024 /* Given ARG, a value of type (pointer or reference to a)*
4025 structure/union, extract the component named NAME from the ultimate
4026 target structure/union and return it as a value with its
4027 appropriate type.
4028
4029 The routine searches for NAME among all members of the structure itself
4030 and (recursively) among all members of any wrapper members
4031 (e.g., '_parent').
4032
4033 If NO_ERR, then simply return NULL in case of error, rather than
4034 calling error. */
4035
4036 static struct value *
4037 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4038 {
4039 struct type *t, *t1;
4040 struct value *v;
4041 int check_tag;
4042
4043 v = NULL;
4044 t1 = t = ada_check_typedef (value_type (arg));
4045 if (t->code () == TYPE_CODE_REF)
4046 {
4047 t1 = TYPE_TARGET_TYPE (t);
4048 if (t1 == NULL)
4049 goto BadValue;
4050 t1 = ada_check_typedef (t1);
4051 if (t1->code () == TYPE_CODE_PTR)
4052 {
4053 arg = coerce_ref (arg);
4054 t = t1;
4055 }
4056 }
4057
4058 while (t->code () == TYPE_CODE_PTR)
4059 {
4060 t1 = TYPE_TARGET_TYPE (t);
4061 if (t1 == NULL)
4062 goto BadValue;
4063 t1 = ada_check_typedef (t1);
4064 if (t1->code () == TYPE_CODE_PTR)
4065 {
4066 arg = value_ind (arg);
4067 t = t1;
4068 }
4069 else
4070 break;
4071 }
4072
4073 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4074 goto BadValue;
4075
4076 if (t1 == t)
4077 v = ada_search_struct_field (name, arg, 0, t);
4078 else
4079 {
4080 int bit_offset, bit_size, byte_offset;
4081 struct type *field_type;
4082 CORE_ADDR address;
4083
4084 if (t->code () == TYPE_CODE_PTR)
4085 address = value_address (ada_value_ind (arg));
4086 else
4087 address = value_address (ada_coerce_ref (arg));
4088
4089 /* Check to see if this is a tagged type. We also need to handle
4090 the case where the type is a reference to a tagged type, but
4091 we have to be careful to exclude pointers to tagged types.
4092 The latter should be shown as usual (as a pointer), whereas
4093 a reference should mostly be transparent to the user. */
4094
4095 if (ada_is_tagged_type (t1, 0)
4096 || (t1->code () == TYPE_CODE_REF
4097 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4098 {
4099 /* We first try to find the searched field in the current type.
4100 If not found then let's look in the fixed type. */
4101
4102 if (!find_struct_field (name, t1, 0,
4103 nullptr, nullptr, nullptr,
4104 nullptr, nullptr))
4105 check_tag = 1;
4106 else
4107 check_tag = 0;
4108 }
4109 else
4110 check_tag = 0;
4111
4112 /* Convert to fixed type in all cases, so that we have proper
4113 offsets to each field in unconstrained record types. */
4114 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4115 address, NULL, check_tag);
4116
4117 /* Resolve the dynamic type as well. */
4118 arg = value_from_contents_and_address (t1, nullptr, address);
4119 t1 = value_type (arg);
4120
4121 if (find_struct_field (name, t1, 0,
4122 &field_type, &byte_offset, &bit_offset,
4123 &bit_size, NULL))
4124 {
4125 if (bit_size != 0)
4126 {
4127 if (t->code () == TYPE_CODE_REF)
4128 arg = ada_coerce_ref (arg);
4129 else
4130 arg = ada_value_ind (arg);
4131 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4132 bit_offset, bit_size,
4133 field_type);
4134 }
4135 else
4136 v = value_at_lazy (field_type, address + byte_offset);
4137 }
4138 }
4139
4140 if (v != NULL || no_err)
4141 return v;
4142 else
4143 error (_("There is no member named %s."), name);
4144
4145 BadValue:
4146 if (no_err)
4147 return NULL;
4148 else
4149 error (_("Attempt to extract a component of "
4150 "a value that is not a record."));
4151 }
4152
4153 /* Return the value ACTUAL, converted to be an appropriate value for a
4154 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4155 allocating any necessary descriptors (fat pointers), or copies of
4156 values not residing in memory, updating it as needed. */
4157
4158 struct value *
4159 ada_convert_actual (struct value *actual, struct type *formal_type0)
4160 {
4161 struct type *actual_type = ada_check_typedef (value_type (actual));
4162 struct type *formal_type = ada_check_typedef (formal_type0);
4163 struct type *formal_target =
4164 formal_type->code () == TYPE_CODE_PTR
4165 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4166 struct type *actual_target =
4167 actual_type->code () == TYPE_CODE_PTR
4168 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4169
4170 if (ada_is_array_descriptor_type (formal_target)
4171 && actual_target->code () == TYPE_CODE_ARRAY)
4172 return make_array_descriptor (formal_type, actual);
4173 else if (formal_type->code () == TYPE_CODE_PTR
4174 || formal_type->code () == TYPE_CODE_REF)
4175 {
4176 struct value *result;
4177
4178 if (formal_target->code () == TYPE_CODE_ARRAY
4179 && ada_is_array_descriptor_type (actual_target))
4180 result = desc_data (actual);
4181 else if (formal_type->code () != TYPE_CODE_PTR)
4182 {
4183 if (VALUE_LVAL (actual) != lval_memory)
4184 {
4185 struct value *val;
4186
4187 actual_type = ada_check_typedef (value_type (actual));
4188 val = allocate_value (actual_type);
4189 copy (value_contents (actual), value_contents_raw (val));
4190 actual = ensure_lval (val);
4191 }
4192 result = value_addr (actual);
4193 }
4194 else
4195 return actual;
4196 return value_cast_pointers (formal_type, result, 0);
4197 }
4198 else if (actual_type->code () == TYPE_CODE_PTR)
4199 return ada_value_ind (actual);
4200 else if (ada_is_aligner_type (formal_type))
4201 {
4202 /* We need to turn this parameter into an aligner type
4203 as well. */
4204 struct value *aligner = allocate_value (formal_type);
4205 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4206
4207 value_assign_to_component (aligner, component, actual);
4208 return aligner;
4209 }
4210
4211 return actual;
4212 }
4213
4214 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4215 type TYPE. This is usually an inefficient no-op except on some targets
4216 (such as AVR) where the representation of a pointer and an address
4217 differs. */
4218
4219 static CORE_ADDR
4220 value_pointer (struct value *value, struct type *type)
4221 {
4222 unsigned len = TYPE_LENGTH (type);
4223 gdb_byte *buf = (gdb_byte *) alloca (len);
4224 CORE_ADDR addr;
4225
4226 addr = value_address (value);
4227 gdbarch_address_to_pointer (type->arch (), type, buf, addr);
4228 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4229 return addr;
4230 }
4231
4232
4233 /* Push a descriptor of type TYPE for array value ARR on the stack at
4234 *SP, updating *SP to reflect the new descriptor. Return either
4235 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4236 to-descriptor type rather than a descriptor type), a struct value *
4237 representing a pointer to this descriptor. */
4238
4239 static struct value *
4240 make_array_descriptor (struct type *type, struct value *arr)
4241 {
4242 struct type *bounds_type = desc_bounds_type (type);
4243 struct type *desc_type = desc_base_type (type);
4244 struct value *descriptor = allocate_value (desc_type);
4245 struct value *bounds = allocate_value (bounds_type);
4246 int i;
4247
4248 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4249 i > 0; i -= 1)
4250 {
4251 modify_field (value_type (bounds),
4252 value_contents_writeable (bounds).data (),
4253 ada_array_bound (arr, i, 0),
4254 desc_bound_bitpos (bounds_type, i, 0),
4255 desc_bound_bitsize (bounds_type, i, 0));
4256 modify_field (value_type (bounds),
4257 value_contents_writeable (bounds).data (),
4258 ada_array_bound (arr, i, 1),
4259 desc_bound_bitpos (bounds_type, i, 1),
4260 desc_bound_bitsize (bounds_type, i, 1));
4261 }
4262
4263 bounds = ensure_lval (bounds);
4264
4265 modify_field (value_type (descriptor),
4266 value_contents_writeable (descriptor).data (),
4267 value_pointer (ensure_lval (arr),
4268 desc_type->field (0).type ()),
4269 fat_pntr_data_bitpos (desc_type),
4270 fat_pntr_data_bitsize (desc_type));
4271
4272 modify_field (value_type (descriptor),
4273 value_contents_writeable (descriptor).data (),
4274 value_pointer (bounds,
4275 desc_type->field (1).type ()),
4276 fat_pntr_bounds_bitpos (desc_type),
4277 fat_pntr_bounds_bitsize (desc_type));
4278
4279 descriptor = ensure_lval (descriptor);
4280
4281 if (type->code () == TYPE_CODE_PTR)
4282 return value_addr (descriptor);
4283 else
4284 return descriptor;
4285 }
4286 \f
4287 /* Symbol Cache Module */
4288
4289 /* Performance measurements made as of 2010-01-15 indicate that
4290 this cache does bring some noticeable improvements. Depending
4291 on the type of entity being printed, the cache can make it as much
4292 as an order of magnitude faster than without it.
4293
4294 The descriptive type DWARF extension has significantly reduced
4295 the need for this cache, at least when DWARF is being used. However,
4296 even in this case, some expensive name-based symbol searches are still
4297 sometimes necessary - to find an XVZ variable, mostly. */
4298
4299 /* Return the symbol cache associated to the given program space PSPACE.
4300 If not allocated for this PSPACE yet, allocate and initialize one. */
4301
4302 static struct ada_symbol_cache *
4303 ada_get_symbol_cache (struct program_space *pspace)
4304 {
4305 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4306
4307 if (pspace_data->sym_cache == nullptr)
4308 pspace_data->sym_cache.reset (new ada_symbol_cache);
4309
4310 return pspace_data->sym_cache.get ();
4311 }
4312
4313 /* Clear all entries from the symbol cache. */
4314
4315 static void
4316 ada_clear_symbol_cache ()
4317 {
4318 struct ada_pspace_data *pspace_data
4319 = get_ada_pspace_data (current_program_space);
4320
4321 if (pspace_data->sym_cache != nullptr)
4322 pspace_data->sym_cache.reset ();
4323 }
4324
4325 /* Search our cache for an entry matching NAME and DOMAIN.
4326 Return it if found, or NULL otherwise. */
4327
4328 static struct cache_entry **
4329 find_entry (const char *name, domain_enum domain)
4330 {
4331 struct ada_symbol_cache *sym_cache
4332 = ada_get_symbol_cache (current_program_space);
4333 int h = msymbol_hash (name) % HASH_SIZE;
4334 struct cache_entry **e;
4335
4336 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4337 {
4338 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4339 return e;
4340 }
4341 return NULL;
4342 }
4343
4344 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4345 Return 1 if found, 0 otherwise.
4346
4347 If an entry was found and SYM is not NULL, set *SYM to the entry's
4348 SYM. Same principle for BLOCK if not NULL. */
4349
4350 static int
4351 lookup_cached_symbol (const char *name, domain_enum domain,
4352 struct symbol **sym, const struct block **block)
4353 {
4354 struct cache_entry **e = find_entry (name, domain);
4355
4356 if (e == NULL)
4357 return 0;
4358 if (sym != NULL)
4359 *sym = (*e)->sym;
4360 if (block != NULL)
4361 *block = (*e)->block;
4362 return 1;
4363 }
4364
4365 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4366 in domain DOMAIN, save this result in our symbol cache. */
4367
4368 static void
4369 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4370 const struct block *block)
4371 {
4372 struct ada_symbol_cache *sym_cache
4373 = ada_get_symbol_cache (current_program_space);
4374 int h;
4375 struct cache_entry *e;
4376
4377 /* Symbols for builtin types don't have a block.
4378 For now don't cache such symbols. */
4379 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4380 return;
4381
4382 /* If the symbol is a local symbol, then do not cache it, as a search
4383 for that symbol depends on the context. To determine whether
4384 the symbol is local or not, we check the block where we found it
4385 against the global and static blocks of its associated symtab. */
4386 if (sym
4387 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4388 GLOBAL_BLOCK) != block
4389 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4390 STATIC_BLOCK) != block)
4391 return;
4392
4393 h = msymbol_hash (name) % HASH_SIZE;
4394 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4395 e->next = sym_cache->root[h];
4396 sym_cache->root[h] = e;
4397 e->name = obstack_strdup (&sym_cache->cache_space, name);
4398 e->sym = sym;
4399 e->domain = domain;
4400 e->block = block;
4401 }
4402 \f
4403 /* Symbol Lookup */
4404
4405 /* Return the symbol name match type that should be used used when
4406 searching for all symbols matching LOOKUP_NAME.
4407
4408 LOOKUP_NAME is expected to be a symbol name after transformation
4409 for Ada lookups. */
4410
4411 static symbol_name_match_type
4412 name_match_type_from_name (const char *lookup_name)
4413 {
4414 return (strstr (lookup_name, "__") == NULL
4415 ? symbol_name_match_type::WILD
4416 : symbol_name_match_type::FULL);
4417 }
4418
4419 /* Return the result of a standard (literal, C-like) lookup of NAME in
4420 given DOMAIN, visible from lexical block BLOCK. */
4421
4422 static struct symbol *
4423 standard_lookup (const char *name, const struct block *block,
4424 domain_enum domain)
4425 {
4426 /* Initialize it just to avoid a GCC false warning. */
4427 struct block_symbol sym = {};
4428
4429 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4430 return sym.symbol;
4431 ada_lookup_encoded_symbol (name, block, domain, &sym);
4432 cache_symbol (name, domain, sym.symbol, sym.block);
4433 return sym.symbol;
4434 }
4435
4436
4437 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4438 in the symbol fields of SYMS. We treat enumerals as functions,
4439 since they contend in overloading in the same way. */
4440 static int
4441 is_nonfunction (const std::vector<struct block_symbol> &syms)
4442 {
4443 for (const block_symbol &sym : syms)
4444 if (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_FUNC
4445 && (SYMBOL_TYPE (sym.symbol)->code () != TYPE_CODE_ENUM
4446 || SYMBOL_CLASS (sym.symbol) != LOC_CONST))
4447 return 1;
4448
4449 return 0;
4450 }
4451
4452 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4453 struct types. Otherwise, they may not. */
4454
4455 static int
4456 equiv_types (struct type *type0, struct type *type1)
4457 {
4458 if (type0 == type1)
4459 return 1;
4460 if (type0 == NULL || type1 == NULL
4461 || type0->code () != type1->code ())
4462 return 0;
4463 if ((type0->code () == TYPE_CODE_STRUCT
4464 || type0->code () == TYPE_CODE_ENUM)
4465 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4466 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4467 return 1;
4468
4469 return 0;
4470 }
4471
4472 /* True iff SYM0 represents the same entity as SYM1, or one that is
4473 no more defined than that of SYM1. */
4474
4475 static int
4476 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4477 {
4478 if (sym0 == sym1)
4479 return 1;
4480 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4481 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4482 return 0;
4483
4484 switch (SYMBOL_CLASS (sym0))
4485 {
4486 case LOC_UNDEF:
4487 return 1;
4488 case LOC_TYPEDEF:
4489 {
4490 struct type *type0 = SYMBOL_TYPE (sym0);
4491 struct type *type1 = SYMBOL_TYPE (sym1);
4492 const char *name0 = sym0->linkage_name ();
4493 const char *name1 = sym1->linkage_name ();
4494 int len0 = strlen (name0);
4495
4496 return
4497 type0->code () == type1->code ()
4498 && (equiv_types (type0, type1)
4499 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4500 && startswith (name1 + len0, "___XV")));
4501 }
4502 case LOC_CONST:
4503 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4504 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4505
4506 case LOC_STATIC:
4507 {
4508 const char *name0 = sym0->linkage_name ();
4509 const char *name1 = sym1->linkage_name ();
4510 return (strcmp (name0, name1) == 0
4511 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4512 }
4513
4514 default:
4515 return 0;
4516 }
4517 }
4518
4519 /* Append (SYM,BLOCK) to the end of the array of struct block_symbol
4520 records in RESULT. Do nothing if SYM is a duplicate. */
4521
4522 static void
4523 add_defn_to_vec (std::vector<struct block_symbol> &result,
4524 struct symbol *sym,
4525 const struct block *block)
4526 {
4527 /* Do not try to complete stub types, as the debugger is probably
4528 already scanning all symbols matching a certain name at the
4529 time when this function is called. Trying to replace the stub
4530 type by its associated full type will cause us to restart a scan
4531 which may lead to an infinite recursion. Instead, the client
4532 collecting the matching symbols will end up collecting several
4533 matches, with at least one of them complete. It can then filter
4534 out the stub ones if needed. */
4535
4536 for (int i = result.size () - 1; i >= 0; i -= 1)
4537 {
4538 if (lesseq_defined_than (sym, result[i].symbol))
4539 return;
4540 else if (lesseq_defined_than (result[i].symbol, sym))
4541 {
4542 result[i].symbol = sym;
4543 result[i].block = block;
4544 return;
4545 }
4546 }
4547
4548 struct block_symbol info;
4549 info.symbol = sym;
4550 info.block = block;
4551 result.push_back (info);
4552 }
4553
4554 /* Return a bound minimal symbol matching NAME according to Ada
4555 decoding rules. Returns an invalid symbol if there is no such
4556 minimal symbol. Names prefixed with "standard__" are handled
4557 specially: "standard__" is first stripped off, and only static and
4558 global symbols are searched. */
4559
4560 struct bound_minimal_symbol
4561 ada_lookup_simple_minsym (const char *name)
4562 {
4563 struct bound_minimal_symbol result;
4564
4565 memset (&result, 0, sizeof (result));
4566
4567 symbol_name_match_type match_type = name_match_type_from_name (name);
4568 lookup_name_info lookup_name (name, match_type);
4569
4570 symbol_name_matcher_ftype *match_name
4571 = ada_get_symbol_name_matcher (lookup_name);
4572
4573 for (objfile *objfile : current_program_space->objfiles ())
4574 {
4575 for (minimal_symbol *msymbol : objfile->msymbols ())
4576 {
4577 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4578 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4579 {
4580 result.minsym = msymbol;
4581 result.objfile = objfile;
4582 break;
4583 }
4584 }
4585 }
4586
4587 return result;
4588 }
4589
4590 /* True if TYPE is definitely an artificial type supplied to a symbol
4591 for which no debugging information was given in the symbol file. */
4592
4593 static int
4594 is_nondebugging_type (struct type *type)
4595 {
4596 const char *name = ada_type_name (type);
4597
4598 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4599 }
4600
4601 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4602 that are deemed "identical" for practical purposes.
4603
4604 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4605 types and that their number of enumerals is identical (in other
4606 words, type1->num_fields () == type2->num_fields ()). */
4607
4608 static int
4609 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4610 {
4611 int i;
4612
4613 /* The heuristic we use here is fairly conservative. We consider
4614 that 2 enumerate types are identical if they have the same
4615 number of enumerals and that all enumerals have the same
4616 underlying value and name. */
4617
4618 /* All enums in the type should have an identical underlying value. */
4619 for (i = 0; i < type1->num_fields (); i++)
4620 if (type1->field (i).loc_enumval () != type2->field (i).loc_enumval ())
4621 return 0;
4622
4623 /* All enumerals should also have the same name (modulo any numerical
4624 suffix). */
4625 for (i = 0; i < type1->num_fields (); i++)
4626 {
4627 const char *name_1 = type1->field (i).name ();
4628 const char *name_2 = type2->field (i).name ();
4629 int len_1 = strlen (name_1);
4630 int len_2 = strlen (name_2);
4631
4632 ada_remove_trailing_digits (type1->field (i).name (), &len_1);
4633 ada_remove_trailing_digits (type2->field (i).name (), &len_2);
4634 if (len_1 != len_2
4635 || strncmp (type1->field (i).name (),
4636 type2->field (i).name (),
4637 len_1) != 0)
4638 return 0;
4639 }
4640
4641 return 1;
4642 }
4643
4644 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4645 that are deemed "identical" for practical purposes. Sometimes,
4646 enumerals are not strictly identical, but their types are so similar
4647 that they can be considered identical.
4648
4649 For instance, consider the following code:
4650
4651 type Color is (Black, Red, Green, Blue, White);
4652 type RGB_Color is new Color range Red .. Blue;
4653
4654 Type RGB_Color is a subrange of an implicit type which is a copy
4655 of type Color. If we call that implicit type RGB_ColorB ("B" is
4656 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4657 As a result, when an expression references any of the enumeral
4658 by name (Eg. "print green"), the expression is technically
4659 ambiguous and the user should be asked to disambiguate. But
4660 doing so would only hinder the user, since it wouldn't matter
4661 what choice he makes, the outcome would always be the same.
4662 So, for practical purposes, we consider them as the same. */
4663
4664 static int
4665 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4666 {
4667 int i;
4668
4669 /* Before performing a thorough comparison check of each type,
4670 we perform a series of inexpensive checks. We expect that these
4671 checks will quickly fail in the vast majority of cases, and thus
4672 help prevent the unnecessary use of a more expensive comparison.
4673 Said comparison also expects us to make some of these checks
4674 (see ada_identical_enum_types_p). */
4675
4676 /* Quick check: All symbols should have an enum type. */
4677 for (i = 0; i < syms.size (); i++)
4678 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4679 return 0;
4680
4681 /* Quick check: They should all have the same value. */
4682 for (i = 1; i < syms.size (); i++)
4683 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4684 return 0;
4685
4686 /* Quick check: They should all have the same number of enumerals. */
4687 for (i = 1; i < syms.size (); i++)
4688 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4689 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4690 return 0;
4691
4692 /* All the sanity checks passed, so we might have a set of
4693 identical enumeration types. Perform a more complete
4694 comparison of the type of each symbol. */
4695 for (i = 1; i < syms.size (); i++)
4696 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4697 SYMBOL_TYPE (syms[0].symbol)))
4698 return 0;
4699
4700 return 1;
4701 }
4702
4703 /* Remove any non-debugging symbols in SYMS that definitely
4704 duplicate other symbols in the list (The only case I know of where
4705 this happens is when object files containing stabs-in-ecoff are
4706 linked with files containing ordinary ecoff debugging symbols (or no
4707 debugging symbols)). Modifies SYMS to squeeze out deleted entries. */
4708
4709 static void
4710 remove_extra_symbols (std::vector<struct block_symbol> *syms)
4711 {
4712 int i, j;
4713
4714 /* We should never be called with less than 2 symbols, as there
4715 cannot be any extra symbol in that case. But it's easy to
4716 handle, since we have nothing to do in that case. */
4717 if (syms->size () < 2)
4718 return;
4719
4720 i = 0;
4721 while (i < syms->size ())
4722 {
4723 int remove_p = 0;
4724
4725 /* If two symbols have the same name and one of them is a stub type,
4726 the get rid of the stub. */
4727
4728 if (SYMBOL_TYPE ((*syms)[i].symbol)->is_stub ()
4729 && (*syms)[i].symbol->linkage_name () != NULL)
4730 {
4731 for (j = 0; j < syms->size (); j++)
4732 {
4733 if (j != i
4734 && !SYMBOL_TYPE ((*syms)[j].symbol)->is_stub ()
4735 && (*syms)[j].symbol->linkage_name () != NULL
4736 && strcmp ((*syms)[i].symbol->linkage_name (),
4737 (*syms)[j].symbol->linkage_name ()) == 0)
4738 remove_p = 1;
4739 }
4740 }
4741
4742 /* Two symbols with the same name, same class and same address
4743 should be identical. */
4744
4745 else if ((*syms)[i].symbol->linkage_name () != NULL
4746 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
4747 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
4748 {
4749 for (j = 0; j < syms->size (); j += 1)
4750 {
4751 if (i != j
4752 && (*syms)[j].symbol->linkage_name () != NULL
4753 && strcmp ((*syms)[i].symbol->linkage_name (),
4754 (*syms)[j].symbol->linkage_name ()) == 0
4755 && SYMBOL_CLASS ((*syms)[i].symbol)
4756 == SYMBOL_CLASS ((*syms)[j].symbol)
4757 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
4758 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
4759 remove_p = 1;
4760 }
4761 }
4762
4763 if (remove_p)
4764 syms->erase (syms->begin () + i);
4765 else
4766 i += 1;
4767 }
4768
4769 /* If all the remaining symbols are identical enumerals, then
4770 just keep the first one and discard the rest.
4771
4772 Unlike what we did previously, we do not discard any entry
4773 unless they are ALL identical. This is because the symbol
4774 comparison is not a strict comparison, but rather a practical
4775 comparison. If all symbols are considered identical, then
4776 we can just go ahead and use the first one and discard the rest.
4777 But if we cannot reduce the list to a single element, we have
4778 to ask the user to disambiguate anyways. And if we have to
4779 present a multiple-choice menu, it's less confusing if the list
4780 isn't missing some choices that were identical and yet distinct. */
4781 if (symbols_are_identical_enums (*syms))
4782 syms->resize (1);
4783 }
4784
4785 /* Given a type that corresponds to a renaming entity, use the type name
4786 to extract the scope (package name or function name, fully qualified,
4787 and following the GNAT encoding convention) where this renaming has been
4788 defined. */
4789
4790 static std::string
4791 xget_renaming_scope (struct type *renaming_type)
4792 {
4793 /* The renaming types adhere to the following convention:
4794 <scope>__<rename>___<XR extension>.
4795 So, to extract the scope, we search for the "___XR" extension,
4796 and then backtrack until we find the first "__". */
4797
4798 const char *name = renaming_type->name ();
4799 const char *suffix = strstr (name, "___XR");
4800 const char *last;
4801
4802 /* Now, backtrack a bit until we find the first "__". Start looking
4803 at suffix - 3, as the <rename> part is at least one character long. */
4804
4805 for (last = suffix - 3; last > name; last--)
4806 if (last[0] == '_' && last[1] == '_')
4807 break;
4808
4809 /* Make a copy of scope and return it. */
4810 return std::string (name, last);
4811 }
4812
4813 /* Return nonzero if NAME corresponds to a package name. */
4814
4815 static int
4816 is_package_name (const char *name)
4817 {
4818 /* Here, We take advantage of the fact that no symbols are generated
4819 for packages, while symbols are generated for each function.
4820 So the condition for NAME represent a package becomes equivalent
4821 to NAME not existing in our list of symbols. There is only one
4822 small complication with library-level functions (see below). */
4823
4824 /* If it is a function that has not been defined at library level,
4825 then we should be able to look it up in the symbols. */
4826 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4827 return 0;
4828
4829 /* Library-level function names start with "_ada_". See if function
4830 "_ada_" followed by NAME can be found. */
4831
4832 /* Do a quick check that NAME does not contain "__", since library-level
4833 functions names cannot contain "__" in them. */
4834 if (strstr (name, "__") != NULL)
4835 return 0;
4836
4837 std::string fun_name = string_printf ("_ada_%s", name);
4838
4839 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
4840 }
4841
4842 /* Return nonzero if SYM corresponds to a renaming entity that is
4843 not visible from FUNCTION_NAME. */
4844
4845 static int
4846 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4847 {
4848 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4849 return 0;
4850
4851 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4852
4853 /* If the rename has been defined in a package, then it is visible. */
4854 if (is_package_name (scope.c_str ()))
4855 return 0;
4856
4857 /* Check that the rename is in the current function scope by checking
4858 that its name starts with SCOPE. */
4859
4860 /* If the function name starts with "_ada_", it means that it is
4861 a library-level function. Strip this prefix before doing the
4862 comparison, as the encoding for the renaming does not contain
4863 this prefix. */
4864 if (startswith (function_name, "_ada_"))
4865 function_name += 5;
4866
4867 return !startswith (function_name, scope.c_str ());
4868 }
4869
4870 /* Remove entries from SYMS that corresponds to a renaming entity that
4871 is not visible from the function associated with CURRENT_BLOCK or
4872 that is superfluous due to the presence of more specific renaming
4873 information. Places surviving symbols in the initial entries of
4874 SYMS.
4875
4876 Rationale:
4877 First, in cases where an object renaming is implemented as a
4878 reference variable, GNAT may produce both the actual reference
4879 variable and the renaming encoding. In this case, we discard the
4880 latter.
4881
4882 Second, GNAT emits a type following a specified encoding for each renaming
4883 entity. Unfortunately, STABS currently does not support the definition
4884 of types that are local to a given lexical block, so all renamings types
4885 are emitted at library level. As a consequence, if an application
4886 contains two renaming entities using the same name, and a user tries to
4887 print the value of one of these entities, the result of the ada symbol
4888 lookup will also contain the wrong renaming type.
4889
4890 This function partially covers for this limitation by attempting to
4891 remove from the SYMS list renaming symbols that should be visible
4892 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4893 method with the current information available. The implementation
4894 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4895
4896 - When the user tries to print a rename in a function while there
4897 is another rename entity defined in a package: Normally, the
4898 rename in the function has precedence over the rename in the
4899 package, so the latter should be removed from the list. This is
4900 currently not the case.
4901
4902 - This function will incorrectly remove valid renames if
4903 the CURRENT_BLOCK corresponds to a function which symbol name
4904 has been changed by an "Export" pragma. As a consequence,
4905 the user will be unable to print such rename entities. */
4906
4907 static void
4908 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
4909 const struct block *current_block)
4910 {
4911 struct symbol *current_function;
4912 const char *current_function_name;
4913 int i;
4914 int is_new_style_renaming;
4915
4916 /* If there is both a renaming foo___XR... encoded as a variable and
4917 a simple variable foo in the same block, discard the latter.
4918 First, zero out such symbols, then compress. */
4919 is_new_style_renaming = 0;
4920 for (i = 0; i < syms->size (); i += 1)
4921 {
4922 struct symbol *sym = (*syms)[i].symbol;
4923 const struct block *block = (*syms)[i].block;
4924 const char *name;
4925 const char *suffix;
4926
4927 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4928 continue;
4929 name = sym->linkage_name ();
4930 suffix = strstr (name, "___XR");
4931
4932 if (suffix != NULL)
4933 {
4934 int name_len = suffix - name;
4935 int j;
4936
4937 is_new_style_renaming = 1;
4938 for (j = 0; j < syms->size (); j += 1)
4939 if (i != j && (*syms)[j].symbol != NULL
4940 && strncmp (name, (*syms)[j].symbol->linkage_name (),
4941 name_len) == 0
4942 && block == (*syms)[j].block)
4943 (*syms)[j].symbol = NULL;
4944 }
4945 }
4946 if (is_new_style_renaming)
4947 {
4948 int j, k;
4949
4950 for (j = k = 0; j < syms->size (); j += 1)
4951 if ((*syms)[j].symbol != NULL)
4952 {
4953 (*syms)[k] = (*syms)[j];
4954 k += 1;
4955 }
4956 syms->resize (k);
4957 return;
4958 }
4959
4960 /* Extract the function name associated to CURRENT_BLOCK.
4961 Abort if unable to do so. */
4962
4963 if (current_block == NULL)
4964 return;
4965
4966 current_function = block_linkage_function (current_block);
4967 if (current_function == NULL)
4968 return;
4969
4970 current_function_name = current_function->linkage_name ();
4971 if (current_function_name == NULL)
4972 return;
4973
4974 /* Check each of the symbols, and remove it from the list if it is
4975 a type corresponding to a renaming that is out of the scope of
4976 the current block. */
4977
4978 i = 0;
4979 while (i < syms->size ())
4980 {
4981 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
4982 == ADA_OBJECT_RENAMING
4983 && old_renaming_is_invisible ((*syms)[i].symbol,
4984 current_function_name))
4985 syms->erase (syms->begin () + i);
4986 else
4987 i += 1;
4988 }
4989 }
4990
4991 /* Add to RESULT all symbols from BLOCK (and its super-blocks)
4992 whose name and domain match LOOKUP_NAME and DOMAIN respectively.
4993
4994 Note: This function assumes that RESULT is empty. */
4995
4996 static void
4997 ada_add_local_symbols (std::vector<struct block_symbol> &result,
4998 const lookup_name_info &lookup_name,
4999 const struct block *block, domain_enum domain)
5000 {
5001 while (block != NULL)
5002 {
5003 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5004
5005 /* If we found a non-function match, assume that's the one. We
5006 only check this when finding a function boundary, so that we
5007 can accumulate all results from intervening blocks first. */
5008 if (BLOCK_FUNCTION (block) != nullptr && is_nonfunction (result))
5009 return;
5010
5011 block = BLOCK_SUPERBLOCK (block);
5012 }
5013 }
5014
5015 /* An object of this type is used as the callback argument when
5016 calling the map_matching_symbols method. */
5017
5018 struct match_data
5019 {
5020 explicit match_data (std::vector<struct block_symbol> *rp)
5021 : resultp (rp)
5022 {
5023 }
5024 DISABLE_COPY_AND_ASSIGN (match_data);
5025
5026 bool operator() (struct block_symbol *bsym);
5027
5028 struct objfile *objfile = nullptr;
5029 std::vector<struct block_symbol> *resultp;
5030 struct symbol *arg_sym = nullptr;
5031 bool found_sym = false;
5032 };
5033
5034 /* A callback for add_nonlocal_symbols that adds symbol, found in
5035 BSYM, to a list of symbols. */
5036
5037 bool
5038 match_data::operator() (struct block_symbol *bsym)
5039 {
5040 const struct block *block = bsym->block;
5041 struct symbol *sym = bsym->symbol;
5042
5043 if (sym == NULL)
5044 {
5045 if (!found_sym && arg_sym != NULL)
5046 add_defn_to_vec (*resultp,
5047 fixup_symbol_section (arg_sym, objfile),
5048 block);
5049 found_sym = false;
5050 arg_sym = NULL;
5051 }
5052 else
5053 {
5054 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5055 return true;
5056 else if (SYMBOL_IS_ARGUMENT (sym))
5057 arg_sym = sym;
5058 else
5059 {
5060 found_sym = true;
5061 add_defn_to_vec (*resultp,
5062 fixup_symbol_section (sym, objfile),
5063 block);
5064 }
5065 }
5066 return true;
5067 }
5068
5069 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5070 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5071 symbols to RESULT. Return whether we found such symbols. */
5072
5073 static int
5074 ada_add_block_renamings (std::vector<struct block_symbol> &result,
5075 const struct block *block,
5076 const lookup_name_info &lookup_name,
5077 domain_enum domain)
5078 {
5079 struct using_direct *renaming;
5080 int defns_mark = result.size ();
5081
5082 symbol_name_matcher_ftype *name_match
5083 = ada_get_symbol_name_matcher (lookup_name);
5084
5085 for (renaming = block_using (block);
5086 renaming != NULL;
5087 renaming = renaming->next)
5088 {
5089 const char *r_name;
5090
5091 /* Avoid infinite recursions: skip this renaming if we are actually
5092 already traversing it.
5093
5094 Currently, symbol lookup in Ada don't use the namespace machinery from
5095 C++/Fortran support: skip namespace imports that use them. */
5096 if (renaming->searched
5097 || (renaming->import_src != NULL
5098 && renaming->import_src[0] != '\0')
5099 || (renaming->import_dest != NULL
5100 && renaming->import_dest[0] != '\0'))
5101 continue;
5102 renaming->searched = 1;
5103
5104 /* TODO: here, we perform another name-based symbol lookup, which can
5105 pull its own multiple overloads. In theory, we should be able to do
5106 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5107 not a simple name. But in order to do this, we would need to enhance
5108 the DWARF reader to associate a symbol to this renaming, instead of a
5109 name. So, for now, we do something simpler: re-use the C++/Fortran
5110 namespace machinery. */
5111 r_name = (renaming->alias != NULL
5112 ? renaming->alias
5113 : renaming->declaration);
5114 if (name_match (r_name, lookup_name, NULL))
5115 {
5116 lookup_name_info decl_lookup_name (renaming->declaration,
5117 lookup_name.match_type ());
5118 ada_add_all_symbols (result, block, decl_lookup_name, domain,
5119 1, NULL);
5120 }
5121 renaming->searched = 0;
5122 }
5123 return result.size () != defns_mark;
5124 }
5125
5126 /* Implements compare_names, but only applying the comparision using
5127 the given CASING. */
5128
5129 static int
5130 compare_names_with_case (const char *string1, const char *string2,
5131 enum case_sensitivity casing)
5132 {
5133 while (*string1 != '\0' && *string2 != '\0')
5134 {
5135 char c1, c2;
5136
5137 if (isspace (*string1) || isspace (*string2))
5138 return strcmp_iw_ordered (string1, string2);
5139
5140 if (casing == case_sensitive_off)
5141 {
5142 c1 = tolower (*string1);
5143 c2 = tolower (*string2);
5144 }
5145 else
5146 {
5147 c1 = *string1;
5148 c2 = *string2;
5149 }
5150 if (c1 != c2)
5151 break;
5152
5153 string1 += 1;
5154 string2 += 1;
5155 }
5156
5157 switch (*string1)
5158 {
5159 case '(':
5160 return strcmp_iw_ordered (string1, string2);
5161 case '_':
5162 if (*string2 == '\0')
5163 {
5164 if (is_name_suffix (string1))
5165 return 0;
5166 else
5167 return 1;
5168 }
5169 /* FALLTHROUGH */
5170 default:
5171 if (*string2 == '(')
5172 return strcmp_iw_ordered (string1, string2);
5173 else
5174 {
5175 if (casing == case_sensitive_off)
5176 return tolower (*string1) - tolower (*string2);
5177 else
5178 return *string1 - *string2;
5179 }
5180 }
5181 }
5182
5183 /* Compare STRING1 to STRING2, with results as for strcmp.
5184 Compatible with strcmp_iw_ordered in that...
5185
5186 strcmp_iw_ordered (STRING1, STRING2) <= 0
5187
5188 ... implies...
5189
5190 compare_names (STRING1, STRING2) <= 0
5191
5192 (they may differ as to what symbols compare equal). */
5193
5194 static int
5195 compare_names (const char *string1, const char *string2)
5196 {
5197 int result;
5198
5199 /* Similar to what strcmp_iw_ordered does, we need to perform
5200 a case-insensitive comparison first, and only resort to
5201 a second, case-sensitive, comparison if the first one was
5202 not sufficient to differentiate the two strings. */
5203
5204 result = compare_names_with_case (string1, string2, case_sensitive_off);
5205 if (result == 0)
5206 result = compare_names_with_case (string1, string2, case_sensitive_on);
5207
5208 return result;
5209 }
5210
5211 /* Convenience function to get at the Ada encoded lookup name for
5212 LOOKUP_NAME, as a C string. */
5213
5214 static const char *
5215 ada_lookup_name (const lookup_name_info &lookup_name)
5216 {
5217 return lookup_name.ada ().lookup_name ().c_str ();
5218 }
5219
5220 /* A helper for add_nonlocal_symbols. Call expand_matching_symbols
5221 for OBJFILE, then walk the objfile's symtabs and update the
5222 results. */
5223
5224 static void
5225 map_matching_symbols (struct objfile *objfile,
5226 const lookup_name_info &lookup_name,
5227 bool is_wild_match,
5228 domain_enum domain,
5229 int global,
5230 match_data &data)
5231 {
5232 data.objfile = objfile;
5233 objfile->expand_matching_symbols (lookup_name, domain, global,
5234 is_wild_match ? nullptr : compare_names);
5235
5236 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5237 for (compunit_symtab *symtab : objfile->compunits ())
5238 {
5239 const struct block *block
5240 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (symtab), block_kind);
5241 if (!iterate_over_symbols_terminated (block, lookup_name,
5242 domain, data))
5243 break;
5244 }
5245 }
5246
5247 /* Add to RESULT all non-local symbols whose name and domain match
5248 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5249 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5250 symbols otherwise. */
5251
5252 static void
5253 add_nonlocal_symbols (std::vector<struct block_symbol> &result,
5254 const lookup_name_info &lookup_name,
5255 domain_enum domain, int global)
5256 {
5257 struct match_data data (&result);
5258
5259 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5260
5261 for (objfile *objfile : current_program_space->objfiles ())
5262 {
5263 map_matching_symbols (objfile, lookup_name, is_wild_match, domain,
5264 global, data);
5265
5266 for (compunit_symtab *cu : objfile->compunits ())
5267 {
5268 const struct block *global_block
5269 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5270
5271 if (ada_add_block_renamings (result, global_block, lookup_name,
5272 domain))
5273 data.found_sym = true;
5274 }
5275 }
5276
5277 if (result.empty () && global && !is_wild_match)
5278 {
5279 const char *name = ada_lookup_name (lookup_name);
5280 std::string bracket_name = std::string ("<_ada_") + name + '>';
5281 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5282
5283 for (objfile *objfile : current_program_space->objfiles ())
5284 map_matching_symbols (objfile, name1, false, domain, global, data);
5285 }
5286 }
5287
5288 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5289 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5290 returning the number of matches. Add these to RESULT.
5291
5292 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5293 symbol match within the nest of blocks whose innermost member is BLOCK,
5294 is the one match returned (no other matches in that or
5295 enclosing blocks is returned). If there are any matches in or
5296 surrounding BLOCK, then these alone are returned.
5297
5298 Names prefixed with "standard__" are handled specially:
5299 "standard__" is first stripped off (by the lookup_name
5300 constructor), and only static and global symbols are searched.
5301
5302 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5303 to lookup global symbols. */
5304
5305 static void
5306 ada_add_all_symbols (std::vector<struct block_symbol> &result,
5307 const struct block *block,
5308 const lookup_name_info &lookup_name,
5309 domain_enum domain,
5310 int full_search,
5311 int *made_global_lookup_p)
5312 {
5313 struct symbol *sym;
5314
5315 if (made_global_lookup_p)
5316 *made_global_lookup_p = 0;
5317
5318 /* Special case: If the user specifies a symbol name inside package
5319 Standard, do a non-wild matching of the symbol name without
5320 the "standard__" prefix. This was primarily introduced in order
5321 to allow the user to specifically access the standard exceptions
5322 using, for instance, Standard.Constraint_Error when Constraint_Error
5323 is ambiguous (due to the user defining its own Constraint_Error
5324 entity inside its program). */
5325 if (lookup_name.ada ().standard_p ())
5326 block = NULL;
5327
5328 /* Check the non-global symbols. If we have ANY match, then we're done. */
5329
5330 if (block != NULL)
5331 {
5332 if (full_search)
5333 ada_add_local_symbols (result, lookup_name, block, domain);
5334 else
5335 {
5336 /* In the !full_search case we're are being called by
5337 iterate_over_symbols, and we don't want to search
5338 superblocks. */
5339 ada_add_block_symbols (result, block, lookup_name, domain, NULL);
5340 }
5341 if (!result.empty () || !full_search)
5342 return;
5343 }
5344
5345 /* No non-global symbols found. Check our cache to see if we have
5346 already performed this search before. If we have, then return
5347 the same result. */
5348
5349 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5350 domain, &sym, &block))
5351 {
5352 if (sym != NULL)
5353 add_defn_to_vec (result, sym, block);
5354 return;
5355 }
5356
5357 if (made_global_lookup_p)
5358 *made_global_lookup_p = 1;
5359
5360 /* Search symbols from all global blocks. */
5361
5362 add_nonlocal_symbols (result, lookup_name, domain, 1);
5363
5364 /* Now add symbols from all per-file blocks if we've gotten no hits
5365 (not strictly correct, but perhaps better than an error). */
5366
5367 if (result.empty ())
5368 add_nonlocal_symbols (result, lookup_name, domain, 0);
5369 }
5370
5371 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5372 is non-zero, enclosing scope and in global scopes.
5373
5374 Returns (SYM,BLOCK) tuples, indicating the symbols found and the
5375 blocks and symbol tables (if any) in which they were found.
5376
5377 When full_search is non-zero, any non-function/non-enumeral
5378 symbol match within the nest of blocks whose innermost member is BLOCK,
5379 is the one match returned (no other matches in that or
5380 enclosing blocks is returned). If there are any matches in or
5381 surrounding BLOCK, then these alone are returned.
5382
5383 Names prefixed with "standard__" are handled specially: "standard__"
5384 is first stripped off, and only static and global symbols are searched. */
5385
5386 static std::vector<struct block_symbol>
5387 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5388 const struct block *block,
5389 domain_enum domain,
5390 int full_search)
5391 {
5392 int syms_from_global_search;
5393 std::vector<struct block_symbol> results;
5394
5395 ada_add_all_symbols (results, block, lookup_name,
5396 domain, full_search, &syms_from_global_search);
5397
5398 remove_extra_symbols (&results);
5399
5400 if (results.empty () && full_search && syms_from_global_search)
5401 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5402
5403 if (results.size () == 1 && full_search && syms_from_global_search)
5404 cache_symbol (ada_lookup_name (lookup_name), domain,
5405 results[0].symbol, results[0].block);
5406
5407 remove_irrelevant_renamings (&results, block);
5408 return results;
5409 }
5410
5411 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5412 in global scopes, returning (SYM,BLOCK) tuples.
5413
5414 See ada_lookup_symbol_list_worker for further details. */
5415
5416 std::vector<struct block_symbol>
5417 ada_lookup_symbol_list (const char *name, const struct block *block,
5418 domain_enum domain)
5419 {
5420 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5421 lookup_name_info lookup_name (name, name_match_type);
5422
5423 return ada_lookup_symbol_list_worker (lookup_name, block, domain, 1);
5424 }
5425
5426 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5427 to 1, but choosing the first symbol found if there are multiple
5428 choices.
5429
5430 The result is stored in *INFO, which must be non-NULL.
5431 If no match is found, INFO->SYM is set to NULL. */
5432
5433 void
5434 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5435 domain_enum domain,
5436 struct block_symbol *info)
5437 {
5438 /* Since we already have an encoded name, wrap it in '<>' to force a
5439 verbatim match. Otherwise, if the name happens to not look like
5440 an encoded name (because it doesn't include a "__"),
5441 ada_lookup_name_info would re-encode/fold it again, and that
5442 would e.g., incorrectly lowercase object renaming names like
5443 "R28b" -> "r28b". */
5444 std::string verbatim = add_angle_brackets (name);
5445
5446 gdb_assert (info != NULL);
5447 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5448 }
5449
5450 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5451 scope and in global scopes, or NULL if none. NAME is folded and
5452 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5453 choosing the first symbol if there are multiple choices. */
5454
5455 struct block_symbol
5456 ada_lookup_symbol (const char *name, const struct block *block0,
5457 domain_enum domain)
5458 {
5459 std::vector<struct block_symbol> candidates
5460 = ada_lookup_symbol_list (name, block0, domain);
5461
5462 if (candidates.empty ())
5463 return {};
5464
5465 block_symbol info = candidates[0];
5466 info.symbol = fixup_symbol_section (info.symbol, NULL);
5467 return info;
5468 }
5469
5470
5471 /* True iff STR is a possible encoded suffix of a normal Ada name
5472 that is to be ignored for matching purposes. Suffixes of parallel
5473 names (e.g., XVE) are not included here. Currently, the possible suffixes
5474 are given by any of the regular expressions:
5475
5476 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5477 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5478 TKB [subprogram suffix for task bodies]
5479 _E[0-9]+[bs]$ [protected object entry suffixes]
5480 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5481
5482 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5483 match is performed. This sequence is used to differentiate homonyms,
5484 is an optional part of a valid name suffix. */
5485
5486 static int
5487 is_name_suffix (const char *str)
5488 {
5489 int k;
5490 const char *matching;
5491 const int len = strlen (str);
5492
5493 /* Skip optional leading __[0-9]+. */
5494
5495 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5496 {
5497 str += 3;
5498 while (isdigit (str[0]))
5499 str += 1;
5500 }
5501
5502 /* [.$][0-9]+ */
5503
5504 if (str[0] == '.' || str[0] == '$')
5505 {
5506 matching = str + 1;
5507 while (isdigit (matching[0]))
5508 matching += 1;
5509 if (matching[0] == '\0')
5510 return 1;
5511 }
5512
5513 /* ___[0-9]+ */
5514
5515 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5516 {
5517 matching = str + 3;
5518 while (isdigit (matching[0]))
5519 matching += 1;
5520 if (matching[0] == '\0')
5521 return 1;
5522 }
5523
5524 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5525
5526 if (strcmp (str, "TKB") == 0)
5527 return 1;
5528
5529 #if 0
5530 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5531 with a N at the end. Unfortunately, the compiler uses the same
5532 convention for other internal types it creates. So treating
5533 all entity names that end with an "N" as a name suffix causes
5534 some regressions. For instance, consider the case of an enumerated
5535 type. To support the 'Image attribute, it creates an array whose
5536 name ends with N.
5537 Having a single character like this as a suffix carrying some
5538 information is a bit risky. Perhaps we should change the encoding
5539 to be something like "_N" instead. In the meantime, do not do
5540 the following check. */
5541 /* Protected Object Subprograms */
5542 if (len == 1 && str [0] == 'N')
5543 return 1;
5544 #endif
5545
5546 /* _E[0-9]+[bs]$ */
5547 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5548 {
5549 matching = str + 3;
5550 while (isdigit (matching[0]))
5551 matching += 1;
5552 if ((matching[0] == 'b' || matching[0] == 's')
5553 && matching [1] == '\0')
5554 return 1;
5555 }
5556
5557 /* ??? We should not modify STR directly, as we are doing below. This
5558 is fine in this case, but may become problematic later if we find
5559 that this alternative did not work, and want to try matching
5560 another one from the begining of STR. Since we modified it, we
5561 won't be able to find the begining of the string anymore! */
5562 if (str[0] == 'X')
5563 {
5564 str += 1;
5565 while (str[0] != '_' && str[0] != '\0')
5566 {
5567 if (str[0] != 'n' && str[0] != 'b')
5568 return 0;
5569 str += 1;
5570 }
5571 }
5572
5573 if (str[0] == '\000')
5574 return 1;
5575
5576 if (str[0] == '_')
5577 {
5578 if (str[1] != '_' || str[2] == '\000')
5579 return 0;
5580 if (str[2] == '_')
5581 {
5582 if (strcmp (str + 3, "JM") == 0)
5583 return 1;
5584 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5585 the LJM suffix in favor of the JM one. But we will
5586 still accept LJM as a valid suffix for a reasonable
5587 amount of time, just to allow ourselves to debug programs
5588 compiled using an older version of GNAT. */
5589 if (strcmp (str + 3, "LJM") == 0)
5590 return 1;
5591 if (str[3] != 'X')
5592 return 0;
5593 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5594 || str[4] == 'U' || str[4] == 'P')
5595 return 1;
5596 if (str[4] == 'R' && str[5] != 'T')
5597 return 1;
5598 return 0;
5599 }
5600 if (!isdigit (str[2]))
5601 return 0;
5602 for (k = 3; str[k] != '\0'; k += 1)
5603 if (!isdigit (str[k]) && str[k] != '_')
5604 return 0;
5605 return 1;
5606 }
5607 if (str[0] == '$' && isdigit (str[1]))
5608 {
5609 for (k = 2; str[k] != '\0'; k += 1)
5610 if (!isdigit (str[k]) && str[k] != '_')
5611 return 0;
5612 return 1;
5613 }
5614 return 0;
5615 }
5616
5617 /* Return non-zero if the string starting at NAME and ending before
5618 NAME_END contains no capital letters. */
5619
5620 static int
5621 is_valid_name_for_wild_match (const char *name0)
5622 {
5623 std::string decoded_name = ada_decode (name0);
5624 int i;
5625
5626 /* If the decoded name starts with an angle bracket, it means that
5627 NAME0 does not follow the GNAT encoding format. It should then
5628 not be allowed as a possible wild match. */
5629 if (decoded_name[0] == '<')
5630 return 0;
5631
5632 for (i=0; decoded_name[i] != '\0'; i++)
5633 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5634 return 0;
5635
5636 return 1;
5637 }
5638
5639 /* Advance *NAMEP to next occurrence in the string NAME0 of the TARGET0
5640 character which could start a simple name. Assumes that *NAMEP points
5641 somewhere inside the string beginning at NAME0. */
5642
5643 static int
5644 advance_wild_match (const char **namep, const char *name0, char target0)
5645 {
5646 const char *name = *namep;
5647
5648 while (1)
5649 {
5650 char t0, t1;
5651
5652 t0 = *name;
5653 if (t0 == '_')
5654 {
5655 t1 = name[1];
5656 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5657 {
5658 name += 1;
5659 if (name == name0 + 5 && startswith (name0, "_ada"))
5660 break;
5661 else
5662 name += 1;
5663 }
5664 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5665 || name[2] == target0))
5666 {
5667 name += 2;
5668 break;
5669 }
5670 else if (t1 == '_' && name[2] == 'B' && name[3] == '_')
5671 {
5672 /* Names like "pkg__B_N__name", where N is a number, are
5673 block-local. We can handle these by simply skipping
5674 the "B_" here. */
5675 name += 4;
5676 }
5677 else
5678 return 0;
5679 }
5680 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5681 name += 1;
5682 else
5683 return 0;
5684 }
5685
5686 *namep = name;
5687 return 1;
5688 }
5689
5690 /* Return true iff NAME encodes a name of the form prefix.PATN.
5691 Ignores any informational suffixes of NAME (i.e., for which
5692 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5693 simple name. */
5694
5695 static bool
5696 wild_match (const char *name, const char *patn)
5697 {
5698 const char *p;
5699 const char *name0 = name;
5700
5701 while (1)
5702 {
5703 const char *match = name;
5704
5705 if (*name == *patn)
5706 {
5707 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5708 if (*p != *name)
5709 break;
5710 if (*p == '\0' && is_name_suffix (name))
5711 return match == name0 || is_valid_name_for_wild_match (name0);
5712
5713 if (name[-1] == '_')
5714 name -= 1;
5715 }
5716 if (!advance_wild_match (&name, name0, *patn))
5717 return false;
5718 }
5719 }
5720
5721 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to RESULT (if
5722 necessary). OBJFILE is the section containing BLOCK. */
5723
5724 static void
5725 ada_add_block_symbols (std::vector<struct block_symbol> &result,
5726 const struct block *block,
5727 const lookup_name_info &lookup_name,
5728 domain_enum domain, struct objfile *objfile)
5729 {
5730 struct block_iterator iter;
5731 /* A matching argument symbol, if any. */
5732 struct symbol *arg_sym;
5733 /* Set true when we find a matching non-argument symbol. */
5734 bool found_sym;
5735 struct symbol *sym;
5736
5737 arg_sym = NULL;
5738 found_sym = false;
5739 for (sym = block_iter_match_first (block, lookup_name, &iter);
5740 sym != NULL;
5741 sym = block_iter_match_next (lookup_name, &iter))
5742 {
5743 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
5744 {
5745 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5746 {
5747 if (SYMBOL_IS_ARGUMENT (sym))
5748 arg_sym = sym;
5749 else
5750 {
5751 found_sym = true;
5752 add_defn_to_vec (result,
5753 fixup_symbol_section (sym, objfile),
5754 block);
5755 }
5756 }
5757 }
5758 }
5759
5760 /* Handle renamings. */
5761
5762 if (ada_add_block_renamings (result, block, lookup_name, domain))
5763 found_sym = true;
5764
5765 if (!found_sym && arg_sym != NULL)
5766 {
5767 add_defn_to_vec (result,
5768 fixup_symbol_section (arg_sym, objfile),
5769 block);
5770 }
5771
5772 if (!lookup_name.ada ().wild_match_p ())
5773 {
5774 arg_sym = NULL;
5775 found_sym = false;
5776 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
5777 const char *name = ada_lookup_name.c_str ();
5778 size_t name_len = ada_lookup_name.size ();
5779
5780 ALL_BLOCK_SYMBOLS (block, iter, sym)
5781 {
5782 if (symbol_matches_domain (sym->language (),
5783 SYMBOL_DOMAIN (sym), domain))
5784 {
5785 int cmp;
5786
5787 cmp = (int) '_' - (int) sym->linkage_name ()[0];
5788 if (cmp == 0)
5789 {
5790 cmp = !startswith (sym->linkage_name (), "_ada_");
5791 if (cmp == 0)
5792 cmp = strncmp (name, sym->linkage_name () + 5,
5793 name_len);
5794 }
5795
5796 if (cmp == 0
5797 && is_name_suffix (sym->linkage_name () + name_len + 5))
5798 {
5799 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5800 {
5801 if (SYMBOL_IS_ARGUMENT (sym))
5802 arg_sym = sym;
5803 else
5804 {
5805 found_sym = true;
5806 add_defn_to_vec (result,
5807 fixup_symbol_section (sym, objfile),
5808 block);
5809 }
5810 }
5811 }
5812 }
5813 }
5814
5815 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5816 They aren't parameters, right? */
5817 if (!found_sym && arg_sym != NULL)
5818 {
5819 add_defn_to_vec (result,
5820 fixup_symbol_section (arg_sym, objfile),
5821 block);
5822 }
5823 }
5824 }
5825 \f
5826
5827 /* Symbol Completion */
5828
5829 /* See symtab.h. */
5830
5831 bool
5832 ada_lookup_name_info::matches
5833 (const char *sym_name,
5834 symbol_name_match_type match_type,
5835 completion_match_result *comp_match_res) const
5836 {
5837 bool match = false;
5838 const char *text = m_encoded_name.c_str ();
5839 size_t text_len = m_encoded_name.size ();
5840
5841 /* First, test against the fully qualified name of the symbol. */
5842
5843 if (strncmp (sym_name, text, text_len) == 0)
5844 match = true;
5845
5846 std::string decoded_name = ada_decode (sym_name);
5847 if (match && !m_encoded_p)
5848 {
5849 /* One needed check before declaring a positive match is to verify
5850 that iff we are doing a verbatim match, the decoded version
5851 of the symbol name starts with '<'. Otherwise, this symbol name
5852 is not a suitable completion. */
5853
5854 bool has_angle_bracket = (decoded_name[0] == '<');
5855 match = (has_angle_bracket == m_verbatim_p);
5856 }
5857
5858 if (match && !m_verbatim_p)
5859 {
5860 /* When doing non-verbatim match, another check that needs to
5861 be done is to verify that the potentially matching symbol name
5862 does not include capital letters, because the ada-mode would
5863 not be able to understand these symbol names without the
5864 angle bracket notation. */
5865 const char *tmp;
5866
5867 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5868 if (*tmp != '\0')
5869 match = false;
5870 }
5871
5872 /* Second: Try wild matching... */
5873
5874 if (!match && m_wild_match_p)
5875 {
5876 /* Since we are doing wild matching, this means that TEXT
5877 may represent an unqualified symbol name. We therefore must
5878 also compare TEXT against the unqualified name of the symbol. */
5879 sym_name = ada_unqualified_name (decoded_name.c_str ());
5880
5881 if (strncmp (sym_name, text, text_len) == 0)
5882 match = true;
5883 }
5884
5885 /* Finally: If we found a match, prepare the result to return. */
5886
5887 if (!match)
5888 return false;
5889
5890 if (comp_match_res != NULL)
5891 {
5892 std::string &match_str = comp_match_res->match.storage ();
5893
5894 if (!m_encoded_p)
5895 match_str = ada_decode (sym_name);
5896 else
5897 {
5898 if (m_verbatim_p)
5899 match_str = add_angle_brackets (sym_name);
5900 else
5901 match_str = sym_name;
5902
5903 }
5904
5905 comp_match_res->set_match (match_str.c_str ());
5906 }
5907
5908 return true;
5909 }
5910
5911 /* Field Access */
5912
5913 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5914 for tagged types. */
5915
5916 static int
5917 ada_is_dispatch_table_ptr_type (struct type *type)
5918 {
5919 const char *name;
5920
5921 if (type->code () != TYPE_CODE_PTR)
5922 return 0;
5923
5924 name = TYPE_TARGET_TYPE (type)->name ();
5925 if (name == NULL)
5926 return 0;
5927
5928 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5929 }
5930
5931 /* Return non-zero if TYPE is an interface tag. */
5932
5933 static int
5934 ada_is_interface_tag (struct type *type)
5935 {
5936 const char *name = type->name ();
5937
5938 if (name == NULL)
5939 return 0;
5940
5941 return (strcmp (name, "ada__tags__interface_tag") == 0);
5942 }
5943
5944 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5945 to be invisible to users. */
5946
5947 int
5948 ada_is_ignored_field (struct type *type, int field_num)
5949 {
5950 if (field_num < 0 || field_num > type->num_fields ())
5951 return 1;
5952
5953 /* Check the name of that field. */
5954 {
5955 const char *name = type->field (field_num).name ();
5956
5957 /* Anonymous field names should not be printed.
5958 brobecker/2007-02-20: I don't think this can actually happen
5959 but we don't want to print the value of anonymous fields anyway. */
5960 if (name == NULL)
5961 return 1;
5962
5963 /* Normally, fields whose name start with an underscore ("_")
5964 are fields that have been internally generated by the compiler,
5965 and thus should not be printed. The "_parent" field is special,
5966 however: This is a field internally generated by the compiler
5967 for tagged types, and it contains the components inherited from
5968 the parent type. This field should not be printed as is, but
5969 should not be ignored either. */
5970 if (name[0] == '_' && !startswith (name, "_parent"))
5971 return 1;
5972 }
5973
5974 /* If this is the dispatch table of a tagged type or an interface tag,
5975 then ignore. */
5976 if (ada_is_tagged_type (type, 1)
5977 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
5978 || ada_is_interface_tag (type->field (field_num).type ())))
5979 return 1;
5980
5981 /* Not a special field, so it should not be ignored. */
5982 return 0;
5983 }
5984
5985 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5986 pointer or reference type whose ultimate target has a tag field. */
5987
5988 int
5989 ada_is_tagged_type (struct type *type, int refok)
5990 {
5991 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
5992 }
5993
5994 /* True iff TYPE represents the type of X'Tag */
5995
5996 int
5997 ada_is_tag_type (struct type *type)
5998 {
5999 type = ada_check_typedef (type);
6000
6001 if (type == NULL || type->code () != TYPE_CODE_PTR)
6002 return 0;
6003 else
6004 {
6005 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6006
6007 return (name != NULL
6008 && strcmp (name, "ada__tags__dispatch_table") == 0);
6009 }
6010 }
6011
6012 /* The type of the tag on VAL. */
6013
6014 static struct type *
6015 ada_tag_type (struct value *val)
6016 {
6017 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6018 }
6019
6020 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6021 retired at Ada 05). */
6022
6023 static int
6024 is_ada95_tag (struct value *tag)
6025 {
6026 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6027 }
6028
6029 /* The value of the tag on VAL. */
6030
6031 static struct value *
6032 ada_value_tag (struct value *val)
6033 {
6034 return ada_value_struct_elt (val, "_tag", 0);
6035 }
6036
6037 /* The value of the tag on the object of type TYPE whose contents are
6038 saved at VALADDR, if it is non-null, or is at memory address
6039 ADDRESS. */
6040
6041 static struct value *
6042 value_tag_from_contents_and_address (struct type *type,
6043 const gdb_byte *valaddr,
6044 CORE_ADDR address)
6045 {
6046 int tag_byte_offset;
6047 struct type *tag_type;
6048
6049 gdb::array_view<const gdb_byte> contents;
6050 if (valaddr != nullptr)
6051 contents = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
6052 struct type *resolved_type = resolve_dynamic_type (type, contents, address);
6053 if (find_struct_field ("_tag", resolved_type, 0, &tag_type, &tag_byte_offset,
6054 NULL, NULL, NULL))
6055 {
6056 const gdb_byte *valaddr1 = ((valaddr == NULL)
6057 ? NULL
6058 : valaddr + tag_byte_offset);
6059 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6060
6061 return value_from_contents_and_address (tag_type, valaddr1, address1);
6062 }
6063 return NULL;
6064 }
6065
6066 static struct type *
6067 type_from_tag (struct value *tag)
6068 {
6069 gdb::unique_xmalloc_ptr<char> type_name = ada_tag_name (tag);
6070
6071 if (type_name != NULL)
6072 return ada_find_any_type (ada_encode (type_name.get ()).c_str ());
6073 return NULL;
6074 }
6075
6076 /* Given a value OBJ of a tagged type, return a value of this
6077 type at the base address of the object. The base address, as
6078 defined in Ada.Tags, it is the address of the primary tag of
6079 the object, and therefore where the field values of its full
6080 view can be fetched. */
6081
6082 struct value *
6083 ada_tag_value_at_base_address (struct value *obj)
6084 {
6085 struct value *val;
6086 LONGEST offset_to_top = 0;
6087 struct type *ptr_type, *obj_type;
6088 struct value *tag;
6089 CORE_ADDR base_address;
6090
6091 obj_type = value_type (obj);
6092
6093 /* It is the responsability of the caller to deref pointers. */
6094
6095 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6096 return obj;
6097
6098 tag = ada_value_tag (obj);
6099 if (!tag)
6100 return obj;
6101
6102 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6103
6104 if (is_ada95_tag (tag))
6105 return obj;
6106
6107 ptr_type = language_lookup_primitive_type
6108 (language_def (language_ada), target_gdbarch(), "storage_offset");
6109 ptr_type = lookup_pointer_type (ptr_type);
6110 val = value_cast (ptr_type, tag);
6111 if (!val)
6112 return obj;
6113
6114 /* It is perfectly possible that an exception be raised while
6115 trying to determine the base address, just like for the tag;
6116 see ada_tag_name for more details. We do not print the error
6117 message for the same reason. */
6118
6119 try
6120 {
6121 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6122 }
6123
6124 catch (const gdb_exception_error &e)
6125 {
6126 return obj;
6127 }
6128
6129 /* If offset is null, nothing to do. */
6130
6131 if (offset_to_top == 0)
6132 return obj;
6133
6134 /* -1 is a special case in Ada.Tags; however, what should be done
6135 is not quite clear from the documentation. So do nothing for
6136 now. */
6137
6138 if (offset_to_top == -1)
6139 return obj;
6140
6141 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6142 from the base address. This was however incompatible with
6143 C++ dispatch table: C++ uses a *negative* value to *add*
6144 to the base address. Ada's convention has therefore been
6145 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6146 use the same convention. Here, we support both cases by
6147 checking the sign of OFFSET_TO_TOP. */
6148
6149 if (offset_to_top > 0)
6150 offset_to_top = -offset_to_top;
6151
6152 base_address = value_address (obj) + offset_to_top;
6153 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6154
6155 /* Make sure that we have a proper tag at the new address.
6156 Otherwise, offset_to_top is bogus (which can happen when
6157 the object is not initialized yet). */
6158
6159 if (!tag)
6160 return obj;
6161
6162 obj_type = type_from_tag (tag);
6163
6164 if (!obj_type)
6165 return obj;
6166
6167 return value_from_contents_and_address (obj_type, NULL, base_address);
6168 }
6169
6170 /* Return the "ada__tags__type_specific_data" type. */
6171
6172 static struct type *
6173 ada_get_tsd_type (struct inferior *inf)
6174 {
6175 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6176
6177 if (data->tsd_type == 0)
6178 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6179 return data->tsd_type;
6180 }
6181
6182 /* Return the TSD (type-specific data) associated to the given TAG.
6183 TAG is assumed to be the tag of a tagged-type entity.
6184
6185 May return NULL if we are unable to get the TSD. */
6186
6187 static struct value *
6188 ada_get_tsd_from_tag (struct value *tag)
6189 {
6190 struct value *val;
6191 struct type *type;
6192
6193 /* First option: The TSD is simply stored as a field of our TAG.
6194 Only older versions of GNAT would use this format, but we have
6195 to test it first, because there are no visible markers for
6196 the current approach except the absence of that field. */
6197
6198 val = ada_value_struct_elt (tag, "tsd", 1);
6199 if (val)
6200 return val;
6201
6202 /* Try the second representation for the dispatch table (in which
6203 there is no explicit 'tsd' field in the referent of the tag pointer,
6204 and instead the tsd pointer is stored just before the dispatch
6205 table. */
6206
6207 type = ada_get_tsd_type (current_inferior());
6208 if (type == NULL)
6209 return NULL;
6210 type = lookup_pointer_type (lookup_pointer_type (type));
6211 val = value_cast (type, tag);
6212 if (val == NULL)
6213 return NULL;
6214 return value_ind (value_ptradd (val, -1));
6215 }
6216
6217 /* Given the TSD of a tag (type-specific data), return a string
6218 containing the name of the associated type.
6219
6220 May return NULL if we are unable to determine the tag name. */
6221
6222 static gdb::unique_xmalloc_ptr<char>
6223 ada_tag_name_from_tsd (struct value *tsd)
6224 {
6225 char *p;
6226 struct value *val;
6227
6228 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6229 if (val == NULL)
6230 return NULL;
6231 gdb::unique_xmalloc_ptr<char> buffer
6232 = target_read_string (value_as_address (val), INT_MAX);
6233 if (buffer == nullptr)
6234 return nullptr;
6235
6236 for (p = buffer.get (); *p != '\0'; ++p)
6237 {
6238 if (isalpha (*p))
6239 *p = tolower (*p);
6240 }
6241
6242 return buffer;
6243 }
6244
6245 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6246 a C string.
6247
6248 Return NULL if the TAG is not an Ada tag, or if we were unable to
6249 determine the name of that tag. */
6250
6251 gdb::unique_xmalloc_ptr<char>
6252 ada_tag_name (struct value *tag)
6253 {
6254 gdb::unique_xmalloc_ptr<char> name;
6255
6256 if (!ada_is_tag_type (value_type (tag)))
6257 return NULL;
6258
6259 /* It is perfectly possible that an exception be raised while trying
6260 to determine the TAG's name, even under normal circumstances:
6261 The associated variable may be uninitialized or corrupted, for
6262 instance. We do not let any exception propagate past this point.
6263 instead we return NULL.
6264
6265 We also do not print the error message either (which often is very
6266 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6267 the caller print a more meaningful message if necessary. */
6268 try
6269 {
6270 struct value *tsd = ada_get_tsd_from_tag (tag);
6271
6272 if (tsd != NULL)
6273 name = ada_tag_name_from_tsd (tsd);
6274 }
6275 catch (const gdb_exception_error &e)
6276 {
6277 }
6278
6279 return name;
6280 }
6281
6282 /* The parent type of TYPE, or NULL if none. */
6283
6284 struct type *
6285 ada_parent_type (struct type *type)
6286 {
6287 int i;
6288
6289 type = ada_check_typedef (type);
6290
6291 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6292 return NULL;
6293
6294 for (i = 0; i < type->num_fields (); i += 1)
6295 if (ada_is_parent_field (type, i))
6296 {
6297 struct type *parent_type = type->field (i).type ();
6298
6299 /* If the _parent field is a pointer, then dereference it. */
6300 if (parent_type->code () == TYPE_CODE_PTR)
6301 parent_type = TYPE_TARGET_TYPE (parent_type);
6302 /* If there is a parallel XVS type, get the actual base type. */
6303 parent_type = ada_get_base_type (parent_type);
6304
6305 return ada_check_typedef (parent_type);
6306 }
6307
6308 return NULL;
6309 }
6310
6311 /* True iff field number FIELD_NUM of structure type TYPE contains the
6312 parent-type (inherited) fields of a derived type. Assumes TYPE is
6313 a structure type with at least FIELD_NUM+1 fields. */
6314
6315 int
6316 ada_is_parent_field (struct type *type, int field_num)
6317 {
6318 const char *name = ada_check_typedef (type)->field (field_num).name ();
6319
6320 return (name != NULL
6321 && (startswith (name, "PARENT")
6322 || startswith (name, "_parent")));
6323 }
6324
6325 /* True iff field number FIELD_NUM of structure type TYPE is a
6326 transparent wrapper field (which should be silently traversed when doing
6327 field selection and flattened when printing). Assumes TYPE is a
6328 structure type with at least FIELD_NUM+1 fields. Such fields are always
6329 structures. */
6330
6331 int
6332 ada_is_wrapper_field (struct type *type, int field_num)
6333 {
6334 const char *name = type->field (field_num).name ();
6335
6336 if (name != NULL && strcmp (name, "RETVAL") == 0)
6337 {
6338 /* This happens in functions with "out" or "in out" parameters
6339 which are passed by copy. For such functions, GNAT describes
6340 the function's return type as being a struct where the return
6341 value is in a field called RETVAL, and where the other "out"
6342 or "in out" parameters are fields of that struct. This is not
6343 a wrapper. */
6344 return 0;
6345 }
6346
6347 return (name != NULL
6348 && (startswith (name, "PARENT")
6349 || strcmp (name, "REP") == 0
6350 || startswith (name, "_parent")
6351 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6352 }
6353
6354 /* True iff field number FIELD_NUM of structure or union type TYPE
6355 is a variant wrapper. Assumes TYPE is a structure type with at least
6356 FIELD_NUM+1 fields. */
6357
6358 int
6359 ada_is_variant_part (struct type *type, int field_num)
6360 {
6361 /* Only Ada types are eligible. */
6362 if (!ADA_TYPE_P (type))
6363 return 0;
6364
6365 struct type *field_type = type->field (field_num).type ();
6366
6367 return (field_type->code () == TYPE_CODE_UNION
6368 || (is_dynamic_field (type, field_num)
6369 && (TYPE_TARGET_TYPE (field_type)->code ()
6370 == TYPE_CODE_UNION)));
6371 }
6372
6373 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6374 whose discriminants are contained in the record type OUTER_TYPE,
6375 returns the type of the controlling discriminant for the variant.
6376 May return NULL if the type could not be found. */
6377
6378 struct type *
6379 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6380 {
6381 const char *name = ada_variant_discrim_name (var_type);
6382
6383 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6384 }
6385
6386 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6387 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6388 represents a 'when others' clause; otherwise 0. */
6389
6390 static int
6391 ada_is_others_clause (struct type *type, int field_num)
6392 {
6393 const char *name = type->field (field_num).name ();
6394
6395 return (name != NULL && name[0] == 'O');
6396 }
6397
6398 /* Assuming that TYPE0 is the type of the variant part of a record,
6399 returns the name of the discriminant controlling the variant.
6400 The value is valid until the next call to ada_variant_discrim_name. */
6401
6402 const char *
6403 ada_variant_discrim_name (struct type *type0)
6404 {
6405 static std::string result;
6406 struct type *type;
6407 const char *name;
6408 const char *discrim_end;
6409 const char *discrim_start;
6410
6411 if (type0->code () == TYPE_CODE_PTR)
6412 type = TYPE_TARGET_TYPE (type0);
6413 else
6414 type = type0;
6415
6416 name = ada_type_name (type);
6417
6418 if (name == NULL || name[0] == '\000')
6419 return "";
6420
6421 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6422 discrim_end -= 1)
6423 {
6424 if (startswith (discrim_end, "___XVN"))
6425 break;
6426 }
6427 if (discrim_end == name)
6428 return "";
6429
6430 for (discrim_start = discrim_end; discrim_start != name + 3;
6431 discrim_start -= 1)
6432 {
6433 if (discrim_start == name + 1)
6434 return "";
6435 if ((discrim_start > name + 3
6436 && startswith (discrim_start - 3, "___"))
6437 || discrim_start[-1] == '.')
6438 break;
6439 }
6440
6441 result = std::string (discrim_start, discrim_end - discrim_start);
6442 return result.c_str ();
6443 }
6444
6445 /* Scan STR for a subtype-encoded number, beginning at position K.
6446 Put the position of the character just past the number scanned in
6447 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6448 Return 1 if there was a valid number at the given position, and 0
6449 otherwise. A "subtype-encoded" number consists of the absolute value
6450 in decimal, followed by the letter 'm' to indicate a negative number.
6451 Assumes 0m does not occur. */
6452
6453 int
6454 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6455 {
6456 ULONGEST RU;
6457
6458 if (!isdigit (str[k]))
6459 return 0;
6460
6461 /* Do it the hard way so as not to make any assumption about
6462 the relationship of unsigned long (%lu scan format code) and
6463 LONGEST. */
6464 RU = 0;
6465 while (isdigit (str[k]))
6466 {
6467 RU = RU * 10 + (str[k] - '0');
6468 k += 1;
6469 }
6470
6471 if (str[k] == 'm')
6472 {
6473 if (R != NULL)
6474 *R = (-(LONGEST) (RU - 1)) - 1;
6475 k += 1;
6476 }
6477 else if (R != NULL)
6478 *R = (LONGEST) RU;
6479
6480 /* NOTE on the above: Technically, C does not say what the results of
6481 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6482 number representable as a LONGEST (although either would probably work
6483 in most implementations). When RU>0, the locution in the then branch
6484 above is always equivalent to the negative of RU. */
6485
6486 if (new_k != NULL)
6487 *new_k = k;
6488 return 1;
6489 }
6490
6491 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6492 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6493 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6494
6495 static int
6496 ada_in_variant (LONGEST val, struct type *type, int field_num)
6497 {
6498 const char *name = type->field (field_num).name ();
6499 int p;
6500
6501 p = 0;
6502 while (1)
6503 {
6504 switch (name[p])
6505 {
6506 case '\0':
6507 return 0;
6508 case 'S':
6509 {
6510 LONGEST W;
6511
6512 if (!ada_scan_number (name, p + 1, &W, &p))
6513 return 0;
6514 if (val == W)
6515 return 1;
6516 break;
6517 }
6518 case 'R':
6519 {
6520 LONGEST L, U;
6521
6522 if (!ada_scan_number (name, p + 1, &L, &p)
6523 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6524 return 0;
6525 if (val >= L && val <= U)
6526 return 1;
6527 break;
6528 }
6529 case 'O':
6530 return 1;
6531 default:
6532 return 0;
6533 }
6534 }
6535 }
6536
6537 /* FIXME: Lots of redundancy below. Try to consolidate. */
6538
6539 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6540 ARG_TYPE, extract and return the value of one of its (non-static)
6541 fields. FIELDNO says which field. Differs from value_primitive_field
6542 only in that it can handle packed values of arbitrary type. */
6543
6544 struct value *
6545 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6546 struct type *arg_type)
6547 {
6548 struct type *type;
6549
6550 arg_type = ada_check_typedef (arg_type);
6551 type = arg_type->field (fieldno).type ();
6552
6553 /* Handle packed fields. It might be that the field is not packed
6554 relative to its containing structure, but the structure itself is
6555 packed; in this case we must take the bit-field path. */
6556 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
6557 {
6558 int bit_pos = arg_type->field (fieldno).loc_bitpos ();
6559 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6560
6561 return ada_value_primitive_packed_val (arg1,
6562 value_contents (arg1).data (),
6563 offset + bit_pos / 8,
6564 bit_pos % 8, bit_size, type);
6565 }
6566 else
6567 return value_primitive_field (arg1, offset, fieldno, arg_type);
6568 }
6569
6570 /* Find field with name NAME in object of type TYPE. If found,
6571 set the following for each argument that is non-null:
6572 - *FIELD_TYPE_P to the field's type;
6573 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6574 an object of that type;
6575 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6576 - *BIT_SIZE_P to its size in bits if the field is packed, and
6577 0 otherwise;
6578 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6579 fields up to but not including the desired field, or by the total
6580 number of fields if not found. A NULL value of NAME never
6581 matches; the function just counts visible fields in this case.
6582
6583 Notice that we need to handle when a tagged record hierarchy
6584 has some components with the same name, like in this scenario:
6585
6586 type Top_T is tagged record
6587 N : Integer := 1;
6588 U : Integer := 974;
6589 A : Integer := 48;
6590 end record;
6591
6592 type Middle_T is new Top.Top_T with record
6593 N : Character := 'a';
6594 C : Integer := 3;
6595 end record;
6596
6597 type Bottom_T is new Middle.Middle_T with record
6598 N : Float := 4.0;
6599 C : Character := '5';
6600 X : Integer := 6;
6601 A : Character := 'J';
6602 end record;
6603
6604 Let's say we now have a variable declared and initialized as follow:
6605
6606 TC : Top_A := new Bottom_T;
6607
6608 And then we use this variable to call this function
6609
6610 procedure Assign (Obj: in out Top_T; TV : Integer);
6611
6612 as follow:
6613
6614 Assign (Top_T (B), 12);
6615
6616 Now, we're in the debugger, and we're inside that procedure
6617 then and we want to print the value of obj.c:
6618
6619 Usually, the tagged record or one of the parent type owns the
6620 component to print and there's no issue but in this particular
6621 case, what does it mean to ask for Obj.C? Since the actual
6622 type for object is type Bottom_T, it could mean two things: type
6623 component C from the Middle_T view, but also component C from
6624 Bottom_T. So in that "undefined" case, when the component is
6625 not found in the non-resolved type (which includes all the
6626 components of the parent type), then resolve it and see if we
6627 get better luck once expanded.
6628
6629 In the case of homonyms in the derived tagged type, we don't
6630 guaranty anything, and pick the one that's easiest for us
6631 to program.
6632
6633 Returns 1 if found, 0 otherwise. */
6634
6635 static int
6636 find_struct_field (const char *name, struct type *type, int offset,
6637 struct type **field_type_p,
6638 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6639 int *index_p)
6640 {
6641 int i;
6642 int parent_offset = -1;
6643
6644 type = ada_check_typedef (type);
6645
6646 if (field_type_p != NULL)
6647 *field_type_p = NULL;
6648 if (byte_offset_p != NULL)
6649 *byte_offset_p = 0;
6650 if (bit_offset_p != NULL)
6651 *bit_offset_p = 0;
6652 if (bit_size_p != NULL)
6653 *bit_size_p = 0;
6654
6655 for (i = 0; i < type->num_fields (); i += 1)
6656 {
6657 /* These can't be computed using TYPE_FIELD_BITPOS for a dynamic
6658 type. However, we only need the values to be correct when
6659 the caller asks for them. */
6660 int bit_pos = 0, fld_offset = 0;
6661 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
6662 {
6663 bit_pos = type->field (i).loc_bitpos ();
6664 fld_offset = offset + bit_pos / 8;
6665 }
6666
6667 const char *t_field_name = type->field (i).name ();
6668
6669 if (t_field_name == NULL)
6670 continue;
6671
6672 else if (ada_is_parent_field (type, i))
6673 {
6674 /* This is a field pointing us to the parent type of a tagged
6675 type. As hinted in this function's documentation, we give
6676 preference to fields in the current record first, so what
6677 we do here is just record the index of this field before
6678 we skip it. If it turns out we couldn't find our field
6679 in the current record, then we'll get back to it and search
6680 inside it whether the field might exist in the parent. */
6681
6682 parent_offset = i;
6683 continue;
6684 }
6685
6686 else if (name != NULL && field_name_match (t_field_name, name))
6687 {
6688 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6689
6690 if (field_type_p != NULL)
6691 *field_type_p = type->field (i).type ();
6692 if (byte_offset_p != NULL)
6693 *byte_offset_p = fld_offset;
6694 if (bit_offset_p != NULL)
6695 *bit_offset_p = bit_pos % 8;
6696 if (bit_size_p != NULL)
6697 *bit_size_p = bit_size;
6698 return 1;
6699 }
6700 else if (ada_is_wrapper_field (type, i))
6701 {
6702 if (find_struct_field (name, type->field (i).type (), fld_offset,
6703 field_type_p, byte_offset_p, bit_offset_p,
6704 bit_size_p, index_p))
6705 return 1;
6706 }
6707 else if (ada_is_variant_part (type, i))
6708 {
6709 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6710 fixed type?? */
6711 int j;
6712 struct type *field_type
6713 = ada_check_typedef (type->field (i).type ());
6714
6715 for (j = 0; j < field_type->num_fields (); j += 1)
6716 {
6717 if (find_struct_field (name, field_type->field (j).type (),
6718 fld_offset
6719 + field_type->field (j).loc_bitpos () / 8,
6720 field_type_p, byte_offset_p,
6721 bit_offset_p, bit_size_p, index_p))
6722 return 1;
6723 }
6724 }
6725 else if (index_p != NULL)
6726 *index_p += 1;
6727 }
6728
6729 /* Field not found so far. If this is a tagged type which
6730 has a parent, try finding that field in the parent now. */
6731
6732 if (parent_offset != -1)
6733 {
6734 /* As above, only compute the offset when truly needed. */
6735 int fld_offset = offset;
6736 if (byte_offset_p != nullptr || bit_offset_p != nullptr)
6737 {
6738 int bit_pos = type->field (parent_offset).loc_bitpos ();
6739 fld_offset += bit_pos / 8;
6740 }
6741
6742 if (find_struct_field (name, type->field (parent_offset).type (),
6743 fld_offset, field_type_p, byte_offset_p,
6744 bit_offset_p, bit_size_p, index_p))
6745 return 1;
6746 }
6747
6748 return 0;
6749 }
6750
6751 /* Number of user-visible fields in record type TYPE. */
6752
6753 static int
6754 num_visible_fields (struct type *type)
6755 {
6756 int n;
6757
6758 n = 0;
6759 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6760 return n;
6761 }
6762
6763 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6764 and search in it assuming it has (class) type TYPE.
6765 If found, return value, else return NULL.
6766
6767 Searches recursively through wrapper fields (e.g., '_parent').
6768
6769 In the case of homonyms in the tagged types, please refer to the
6770 long explanation in find_struct_field's function documentation. */
6771
6772 static struct value *
6773 ada_search_struct_field (const char *name, struct value *arg, int offset,
6774 struct type *type)
6775 {
6776 int i;
6777 int parent_offset = -1;
6778
6779 type = ada_check_typedef (type);
6780 for (i = 0; i < type->num_fields (); i += 1)
6781 {
6782 const char *t_field_name = type->field (i).name ();
6783
6784 if (t_field_name == NULL)
6785 continue;
6786
6787 else if (ada_is_parent_field (type, i))
6788 {
6789 /* This is a field pointing us to the parent type of a tagged
6790 type. As hinted in this function's documentation, we give
6791 preference to fields in the current record first, so what
6792 we do here is just record the index of this field before
6793 we skip it. If it turns out we couldn't find our field
6794 in the current record, then we'll get back to it and search
6795 inside it whether the field might exist in the parent. */
6796
6797 parent_offset = i;
6798 continue;
6799 }
6800
6801 else if (field_name_match (t_field_name, name))
6802 return ada_value_primitive_field (arg, offset, i, type);
6803
6804 else if (ada_is_wrapper_field (type, i))
6805 {
6806 struct value *v = /* Do not let indent join lines here. */
6807 ada_search_struct_field (name, arg,
6808 offset + type->field (i).loc_bitpos () / 8,
6809 type->field (i).type ());
6810
6811 if (v != NULL)
6812 return v;
6813 }
6814
6815 else if (ada_is_variant_part (type, i))
6816 {
6817 /* PNH: Do we ever get here? See find_struct_field. */
6818 int j;
6819 struct type *field_type = ada_check_typedef (type->field (i).type ());
6820 int var_offset = offset + type->field (i).loc_bitpos () / 8;
6821
6822 for (j = 0; j < field_type->num_fields (); j += 1)
6823 {
6824 struct value *v = ada_search_struct_field /* Force line
6825 break. */
6826 (name, arg,
6827 var_offset + field_type->field (j).loc_bitpos () / 8,
6828 field_type->field (j).type ());
6829
6830 if (v != NULL)
6831 return v;
6832 }
6833 }
6834 }
6835
6836 /* Field not found so far. If this is a tagged type which
6837 has a parent, try finding that field in the parent now. */
6838
6839 if (parent_offset != -1)
6840 {
6841 struct value *v = ada_search_struct_field (
6842 name, arg, offset + type->field (parent_offset).loc_bitpos () / 8,
6843 type->field (parent_offset).type ());
6844
6845 if (v != NULL)
6846 return v;
6847 }
6848
6849 return NULL;
6850 }
6851
6852 static struct value *ada_index_struct_field_1 (int *, struct value *,
6853 int, struct type *);
6854
6855
6856 /* Return field #INDEX in ARG, where the index is that returned by
6857 * find_struct_field through its INDEX_P argument. Adjust the address
6858 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6859 * If found, return value, else return NULL. */
6860
6861 static struct value *
6862 ada_index_struct_field (int index, struct value *arg, int offset,
6863 struct type *type)
6864 {
6865 return ada_index_struct_field_1 (&index, arg, offset, type);
6866 }
6867
6868
6869 /* Auxiliary function for ada_index_struct_field. Like
6870 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6871 * *INDEX_P. */
6872
6873 static struct value *
6874 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6875 struct type *type)
6876 {
6877 int i;
6878 type = ada_check_typedef (type);
6879
6880 for (i = 0; i < type->num_fields (); i += 1)
6881 {
6882 if (type->field (i).name () == NULL)
6883 continue;
6884 else if (ada_is_wrapper_field (type, i))
6885 {
6886 struct value *v = /* Do not let indent join lines here. */
6887 ada_index_struct_field_1 (index_p, arg,
6888 offset + type->field (i).loc_bitpos () / 8,
6889 type->field (i).type ());
6890
6891 if (v != NULL)
6892 return v;
6893 }
6894
6895 else if (ada_is_variant_part (type, i))
6896 {
6897 /* PNH: Do we ever get here? See ada_search_struct_field,
6898 find_struct_field. */
6899 error (_("Cannot assign this kind of variant record"));
6900 }
6901 else if (*index_p == 0)
6902 return ada_value_primitive_field (arg, offset, i, type);
6903 else
6904 *index_p -= 1;
6905 }
6906 return NULL;
6907 }
6908
6909 /* Return a string representation of type TYPE. */
6910
6911 static std::string
6912 type_as_string (struct type *type)
6913 {
6914 string_file tmp_stream;
6915
6916 type_print (type, "", &tmp_stream, -1);
6917
6918 return std::move (tmp_stream.string ());
6919 }
6920
6921 /* Given a type TYPE, look up the type of the component of type named NAME.
6922 If DISPP is non-null, add its byte displacement from the beginning of a
6923 structure (pointed to by a value) of type TYPE to *DISPP (does not
6924 work for packed fields).
6925
6926 Matches any field whose name has NAME as a prefix, possibly
6927 followed by "___".
6928
6929 TYPE can be either a struct or union. If REFOK, TYPE may also
6930 be a (pointer or reference)+ to a struct or union, and the
6931 ultimate target type will be searched.
6932
6933 Looks recursively into variant clauses and parent types.
6934
6935 In the case of homonyms in the tagged types, please refer to the
6936 long explanation in find_struct_field's function documentation.
6937
6938 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6939 TYPE is not a type of the right kind. */
6940
6941 static struct type *
6942 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
6943 int noerr)
6944 {
6945 int i;
6946 int parent_offset = -1;
6947
6948 if (name == NULL)
6949 goto BadName;
6950
6951 if (refok && type != NULL)
6952 while (1)
6953 {
6954 type = ada_check_typedef (type);
6955 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
6956 break;
6957 type = TYPE_TARGET_TYPE (type);
6958 }
6959
6960 if (type == NULL
6961 || (type->code () != TYPE_CODE_STRUCT
6962 && type->code () != TYPE_CODE_UNION))
6963 {
6964 if (noerr)
6965 return NULL;
6966
6967 error (_("Type %s is not a structure or union type"),
6968 type != NULL ? type_as_string (type).c_str () : _("(null)"));
6969 }
6970
6971 type = to_static_fixed_type (type);
6972
6973 for (i = 0; i < type->num_fields (); i += 1)
6974 {
6975 const char *t_field_name = type->field (i).name ();
6976 struct type *t;
6977
6978 if (t_field_name == NULL)
6979 continue;
6980
6981 else if (ada_is_parent_field (type, i))
6982 {
6983 /* This is a field pointing us to the parent type of a tagged
6984 type. As hinted in this function's documentation, we give
6985 preference to fields in the current record first, so what
6986 we do here is just record the index of this field before
6987 we skip it. If it turns out we couldn't find our field
6988 in the current record, then we'll get back to it and search
6989 inside it whether the field might exist in the parent. */
6990
6991 parent_offset = i;
6992 continue;
6993 }
6994
6995 else if (field_name_match (t_field_name, name))
6996 return type->field (i).type ();
6997
6998 else if (ada_is_wrapper_field (type, i))
6999 {
7000 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7001 0, 1);
7002 if (t != NULL)
7003 return t;
7004 }
7005
7006 else if (ada_is_variant_part (type, i))
7007 {
7008 int j;
7009 struct type *field_type = ada_check_typedef (type->field (i).type ());
7010
7011 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7012 {
7013 /* FIXME pnh 2008/01/26: We check for a field that is
7014 NOT wrapped in a struct, since the compiler sometimes
7015 generates these for unchecked variant types. Revisit
7016 if the compiler changes this practice. */
7017 const char *v_field_name = field_type->field (j).name ();
7018
7019 if (v_field_name != NULL
7020 && field_name_match (v_field_name, name))
7021 t = field_type->field (j).type ();
7022 else
7023 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7024 name, 0, 1);
7025
7026 if (t != NULL)
7027 return t;
7028 }
7029 }
7030
7031 }
7032
7033 /* Field not found so far. If this is a tagged type which
7034 has a parent, try finding that field in the parent now. */
7035
7036 if (parent_offset != -1)
7037 {
7038 struct type *t;
7039
7040 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7041 name, 0, 1);
7042 if (t != NULL)
7043 return t;
7044 }
7045
7046 BadName:
7047 if (!noerr)
7048 {
7049 const char *name_str = name != NULL ? name : _("<null>");
7050
7051 error (_("Type %s has no component named %s"),
7052 type_as_string (type).c_str (), name_str);
7053 }
7054
7055 return NULL;
7056 }
7057
7058 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7059 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7060 represents an unchecked union (that is, the variant part of a
7061 record that is named in an Unchecked_Union pragma). */
7062
7063 static int
7064 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7065 {
7066 const char *discrim_name = ada_variant_discrim_name (var_type);
7067
7068 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7069 }
7070
7071
7072 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7073 within OUTER, determine which variant clause (field number in VAR_TYPE,
7074 numbering from 0) is applicable. Returns -1 if none are. */
7075
7076 int
7077 ada_which_variant_applies (struct type *var_type, struct value *outer)
7078 {
7079 int others_clause;
7080 int i;
7081 const char *discrim_name = ada_variant_discrim_name (var_type);
7082 struct value *discrim;
7083 LONGEST discrim_val;
7084
7085 /* Using plain value_from_contents_and_address here causes problems
7086 because we will end up trying to resolve a type that is currently
7087 being constructed. */
7088 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7089 if (discrim == NULL)
7090 return -1;
7091 discrim_val = value_as_long (discrim);
7092
7093 others_clause = -1;
7094 for (i = 0; i < var_type->num_fields (); i += 1)
7095 {
7096 if (ada_is_others_clause (var_type, i))
7097 others_clause = i;
7098 else if (ada_in_variant (discrim_val, var_type, i))
7099 return i;
7100 }
7101
7102 return others_clause;
7103 }
7104 \f
7105
7106
7107 /* Dynamic-Sized Records */
7108
7109 /* Strategy: The type ostensibly attached to a value with dynamic size
7110 (i.e., a size that is not statically recorded in the debugging
7111 data) does not accurately reflect the size or layout of the value.
7112 Our strategy is to convert these values to values with accurate,
7113 conventional types that are constructed on the fly. */
7114
7115 /* There is a subtle and tricky problem here. In general, we cannot
7116 determine the size of dynamic records without its data. However,
7117 the 'struct value' data structure, which GDB uses to represent
7118 quantities in the inferior process (the target), requires the size
7119 of the type at the time of its allocation in order to reserve space
7120 for GDB's internal copy of the data. That's why the
7121 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7122 rather than struct value*s.
7123
7124 However, GDB's internal history variables ($1, $2, etc.) are
7125 struct value*s containing internal copies of the data that are not, in
7126 general, the same as the data at their corresponding addresses in
7127 the target. Fortunately, the types we give to these values are all
7128 conventional, fixed-size types (as per the strategy described
7129 above), so that we don't usually have to perform the
7130 'to_fixed_xxx_type' conversions to look at their values.
7131 Unfortunately, there is one exception: if one of the internal
7132 history variables is an array whose elements are unconstrained
7133 records, then we will need to create distinct fixed types for each
7134 element selected. */
7135
7136 /* The upshot of all of this is that many routines take a (type, host
7137 address, target address) triple as arguments to represent a value.
7138 The host address, if non-null, is supposed to contain an internal
7139 copy of the relevant data; otherwise, the program is to consult the
7140 target at the target address. */
7141
7142 /* Assuming that VAL0 represents a pointer value, the result of
7143 dereferencing it. Differs from value_ind in its treatment of
7144 dynamic-sized types. */
7145
7146 struct value *
7147 ada_value_ind (struct value *val0)
7148 {
7149 struct value *val = value_ind (val0);
7150
7151 if (ada_is_tagged_type (value_type (val), 0))
7152 val = ada_tag_value_at_base_address (val);
7153
7154 return ada_to_fixed_value (val);
7155 }
7156
7157 /* The value resulting from dereferencing any "reference to"
7158 qualifiers on VAL0. */
7159
7160 static struct value *
7161 ada_coerce_ref (struct value *val0)
7162 {
7163 if (value_type (val0)->code () == TYPE_CODE_REF)
7164 {
7165 struct value *val = val0;
7166
7167 val = coerce_ref (val);
7168
7169 if (ada_is_tagged_type (value_type (val), 0))
7170 val = ada_tag_value_at_base_address (val);
7171
7172 return ada_to_fixed_value (val);
7173 }
7174 else
7175 return val0;
7176 }
7177
7178 /* Return the bit alignment required for field #F of template type TYPE. */
7179
7180 static unsigned int
7181 field_alignment (struct type *type, int f)
7182 {
7183 const char *name = type->field (f).name ();
7184 int len;
7185 int align_offset;
7186
7187 /* The field name should never be null, unless the debugging information
7188 is somehow malformed. In this case, we assume the field does not
7189 require any alignment. */
7190 if (name == NULL)
7191 return 1;
7192
7193 len = strlen (name);
7194
7195 if (!isdigit (name[len - 1]))
7196 return 1;
7197
7198 if (isdigit (name[len - 2]))
7199 align_offset = len - 2;
7200 else
7201 align_offset = len - 1;
7202
7203 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7204 return TARGET_CHAR_BIT;
7205
7206 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7207 }
7208
7209 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7210
7211 static struct symbol *
7212 ada_find_any_type_symbol (const char *name)
7213 {
7214 struct symbol *sym;
7215
7216 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7217 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7218 return sym;
7219
7220 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7221 return sym;
7222 }
7223
7224 /* Find a type named NAME. Ignores ambiguity. This routine will look
7225 solely for types defined by debug info, it will not search the GDB
7226 primitive types. */
7227
7228 static struct type *
7229 ada_find_any_type (const char *name)
7230 {
7231 struct symbol *sym = ada_find_any_type_symbol (name);
7232
7233 if (sym != NULL)
7234 return SYMBOL_TYPE (sym);
7235
7236 return NULL;
7237 }
7238
7239 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7240 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7241 symbol, in which case it is returned. Otherwise, this looks for
7242 symbols whose name is that of NAME_SYM suffixed with "___XR".
7243 Return symbol if found, and NULL otherwise. */
7244
7245 static bool
7246 ada_is_renaming_symbol (struct symbol *name_sym)
7247 {
7248 const char *name = name_sym->linkage_name ();
7249 return strstr (name, "___XR") != NULL;
7250 }
7251
7252 /* Because of GNAT encoding conventions, several GDB symbols may match a
7253 given type name. If the type denoted by TYPE0 is to be preferred to
7254 that of TYPE1 for purposes of type printing, return non-zero;
7255 otherwise return 0. */
7256
7257 int
7258 ada_prefer_type (struct type *type0, struct type *type1)
7259 {
7260 if (type1 == NULL)
7261 return 1;
7262 else if (type0 == NULL)
7263 return 0;
7264 else if (type1->code () == TYPE_CODE_VOID)
7265 return 1;
7266 else if (type0->code () == TYPE_CODE_VOID)
7267 return 0;
7268 else if (type1->name () == NULL && type0->name () != NULL)
7269 return 1;
7270 else if (ada_is_constrained_packed_array_type (type0))
7271 return 1;
7272 else if (ada_is_array_descriptor_type (type0)
7273 && !ada_is_array_descriptor_type (type1))
7274 return 1;
7275 else
7276 {
7277 const char *type0_name = type0->name ();
7278 const char *type1_name = type1->name ();
7279
7280 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7281 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7282 return 1;
7283 }
7284 return 0;
7285 }
7286
7287 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7288 null. */
7289
7290 const char *
7291 ada_type_name (struct type *type)
7292 {
7293 if (type == NULL)
7294 return NULL;
7295 return type->name ();
7296 }
7297
7298 /* Search the list of "descriptive" types associated to TYPE for a type
7299 whose name is NAME. */
7300
7301 static struct type *
7302 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7303 {
7304 struct type *result, *tmp;
7305
7306 if (ada_ignore_descriptive_types_p)
7307 return NULL;
7308
7309 /* If there no descriptive-type info, then there is no parallel type
7310 to be found. */
7311 if (!HAVE_GNAT_AUX_INFO (type))
7312 return NULL;
7313
7314 result = TYPE_DESCRIPTIVE_TYPE (type);
7315 while (result != NULL)
7316 {
7317 const char *result_name = ada_type_name (result);
7318
7319 if (result_name == NULL)
7320 {
7321 warning (_("unexpected null name on descriptive type"));
7322 return NULL;
7323 }
7324
7325 /* If the names match, stop. */
7326 if (strcmp (result_name, name) == 0)
7327 break;
7328
7329 /* Otherwise, look at the next item on the list, if any. */
7330 if (HAVE_GNAT_AUX_INFO (result))
7331 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7332 else
7333 tmp = NULL;
7334
7335 /* If not found either, try after having resolved the typedef. */
7336 if (tmp != NULL)
7337 result = tmp;
7338 else
7339 {
7340 result = check_typedef (result);
7341 if (HAVE_GNAT_AUX_INFO (result))
7342 result = TYPE_DESCRIPTIVE_TYPE (result);
7343 else
7344 result = NULL;
7345 }
7346 }
7347
7348 /* If we didn't find a match, see whether this is a packed array. With
7349 older compilers, the descriptive type information is either absent or
7350 irrelevant when it comes to packed arrays so the above lookup fails.
7351 Fall back to using a parallel lookup by name in this case. */
7352 if (result == NULL && ada_is_constrained_packed_array_type (type))
7353 return ada_find_any_type (name);
7354
7355 return result;
7356 }
7357
7358 /* Find a parallel type to TYPE with the specified NAME, using the
7359 descriptive type taken from the debugging information, if available,
7360 and otherwise using the (slower) name-based method. */
7361
7362 static struct type *
7363 ada_find_parallel_type_with_name (struct type *type, const char *name)
7364 {
7365 struct type *result = NULL;
7366
7367 if (HAVE_GNAT_AUX_INFO (type))
7368 result = find_parallel_type_by_descriptive_type (type, name);
7369 else
7370 result = ada_find_any_type (name);
7371
7372 return result;
7373 }
7374
7375 /* Same as above, but specify the name of the parallel type by appending
7376 SUFFIX to the name of TYPE. */
7377
7378 struct type *
7379 ada_find_parallel_type (struct type *type, const char *suffix)
7380 {
7381 char *name;
7382 const char *type_name = ada_type_name (type);
7383 int len;
7384
7385 if (type_name == NULL)
7386 return NULL;
7387
7388 len = strlen (type_name);
7389
7390 name = (char *) alloca (len + strlen (suffix) + 1);
7391
7392 strcpy (name, type_name);
7393 strcpy (name + len, suffix);
7394
7395 return ada_find_parallel_type_with_name (type, name);
7396 }
7397
7398 /* If TYPE is a variable-size record type, return the corresponding template
7399 type describing its fields. Otherwise, return NULL. */
7400
7401 static struct type *
7402 dynamic_template_type (struct type *type)
7403 {
7404 type = ada_check_typedef (type);
7405
7406 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7407 || ada_type_name (type) == NULL)
7408 return NULL;
7409 else
7410 {
7411 int len = strlen (ada_type_name (type));
7412
7413 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7414 return type;
7415 else
7416 return ada_find_parallel_type (type, "___XVE");
7417 }
7418 }
7419
7420 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7421 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7422
7423 static int
7424 is_dynamic_field (struct type *templ_type, int field_num)
7425 {
7426 const char *name = templ_type->field (field_num).name ();
7427
7428 return name != NULL
7429 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7430 && strstr (name, "___XVL") != NULL;
7431 }
7432
7433 /* The index of the variant field of TYPE, or -1 if TYPE does not
7434 represent a variant record type. */
7435
7436 static int
7437 variant_field_index (struct type *type)
7438 {
7439 int f;
7440
7441 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7442 return -1;
7443
7444 for (f = 0; f < type->num_fields (); f += 1)
7445 {
7446 if (ada_is_variant_part (type, f))
7447 return f;
7448 }
7449 return -1;
7450 }
7451
7452 /* A record type with no fields. */
7453
7454 static struct type *
7455 empty_record (struct type *templ)
7456 {
7457 struct type *type = alloc_type_copy (templ);
7458
7459 type->set_code (TYPE_CODE_STRUCT);
7460 INIT_NONE_SPECIFIC (type);
7461 type->set_name ("<empty>");
7462 TYPE_LENGTH (type) = 0;
7463 return type;
7464 }
7465
7466 /* An ordinary record type (with fixed-length fields) that describes
7467 the value of type TYPE at VALADDR or ADDRESS (see comments at
7468 the beginning of this section) VAL according to GNAT conventions.
7469 DVAL0 should describe the (portion of a) record that contains any
7470 necessary discriminants. It should be NULL if value_type (VAL) is
7471 an outer-level type (i.e., as opposed to a branch of a variant.) A
7472 variant field (unless unchecked) is replaced by a particular branch
7473 of the variant.
7474
7475 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7476 length are not statically known are discarded. As a consequence,
7477 VALADDR, ADDRESS and DVAL0 are ignored.
7478
7479 NOTE: Limitations: For now, we assume that dynamic fields and
7480 variants occupy whole numbers of bytes. However, they need not be
7481 byte-aligned. */
7482
7483 struct type *
7484 ada_template_to_fixed_record_type_1 (struct type *type,
7485 const gdb_byte *valaddr,
7486 CORE_ADDR address, struct value *dval0,
7487 int keep_dynamic_fields)
7488 {
7489 struct value *mark = value_mark ();
7490 struct value *dval;
7491 struct type *rtype;
7492 int nfields, bit_len;
7493 int variant_field;
7494 long off;
7495 int fld_bit_len;
7496 int f;
7497
7498 /* Compute the number of fields in this record type that are going
7499 to be processed: unless keep_dynamic_fields, this includes only
7500 fields whose position and length are static will be processed. */
7501 if (keep_dynamic_fields)
7502 nfields = type->num_fields ();
7503 else
7504 {
7505 nfields = 0;
7506 while (nfields < type->num_fields ()
7507 && !ada_is_variant_part (type, nfields)
7508 && !is_dynamic_field (type, nfields))
7509 nfields++;
7510 }
7511
7512 rtype = alloc_type_copy (type);
7513 rtype->set_code (TYPE_CODE_STRUCT);
7514 INIT_NONE_SPECIFIC (rtype);
7515 rtype->set_num_fields (nfields);
7516 rtype->set_fields
7517 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
7518 rtype->set_name (ada_type_name (type));
7519 rtype->set_is_fixed_instance (true);
7520
7521 off = 0;
7522 bit_len = 0;
7523 variant_field = -1;
7524
7525 for (f = 0; f < nfields; f += 1)
7526 {
7527 off = align_up (off, field_alignment (type, f))
7528 + type->field (f).loc_bitpos ();
7529 rtype->field (f).set_loc_bitpos (off);
7530 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7531
7532 if (ada_is_variant_part (type, f))
7533 {
7534 variant_field = f;
7535 fld_bit_len = 0;
7536 }
7537 else if (is_dynamic_field (type, f))
7538 {
7539 const gdb_byte *field_valaddr = valaddr;
7540 CORE_ADDR field_address = address;
7541 struct type *field_type =
7542 TYPE_TARGET_TYPE (type->field (f).type ());
7543
7544 if (dval0 == NULL)
7545 {
7546 /* Using plain value_from_contents_and_address here
7547 causes problems because we will end up trying to
7548 resolve a type that is currently being
7549 constructed. */
7550 dval = value_from_contents_and_address_unresolved (rtype,
7551 valaddr,
7552 address);
7553 rtype = value_type (dval);
7554 }
7555 else
7556 dval = dval0;
7557
7558 /* If the type referenced by this field is an aligner type, we need
7559 to unwrap that aligner type, because its size might not be set.
7560 Keeping the aligner type would cause us to compute the wrong
7561 size for this field, impacting the offset of the all the fields
7562 that follow this one. */
7563 if (ada_is_aligner_type (field_type))
7564 {
7565 long field_offset = type->field (f).loc_bitpos ();
7566
7567 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7568 field_address = cond_offset_target (field_address, field_offset);
7569 field_type = ada_aligned_type (field_type);
7570 }
7571
7572 field_valaddr = cond_offset_host (field_valaddr,
7573 off / TARGET_CHAR_BIT);
7574 field_address = cond_offset_target (field_address,
7575 off / TARGET_CHAR_BIT);
7576
7577 /* Get the fixed type of the field. Note that, in this case,
7578 we do not want to get the real type out of the tag: if
7579 the current field is the parent part of a tagged record,
7580 we will get the tag of the object. Clearly wrong: the real
7581 type of the parent is not the real type of the child. We
7582 would end up in an infinite loop. */
7583 field_type = ada_get_base_type (field_type);
7584 field_type = ada_to_fixed_type (field_type, field_valaddr,
7585 field_address, dval, 0);
7586
7587 rtype->field (f).set_type (field_type);
7588 rtype->field (f).set_name (type->field (f).name ());
7589 /* The multiplication can potentially overflow. But because
7590 the field length has been size-checked just above, and
7591 assuming that the maximum size is a reasonable value,
7592 an overflow should not happen in practice. So rather than
7593 adding overflow recovery code to this already complex code,
7594 we just assume that it's not going to happen. */
7595 fld_bit_len =
7596 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
7597 }
7598 else
7599 {
7600 /* Note: If this field's type is a typedef, it is important
7601 to preserve the typedef layer.
7602
7603 Otherwise, we might be transforming a typedef to a fat
7604 pointer (encoding a pointer to an unconstrained array),
7605 into a basic fat pointer (encoding an unconstrained
7606 array). As both types are implemented using the same
7607 structure, the typedef is the only clue which allows us
7608 to distinguish between the two options. Stripping it
7609 would prevent us from printing this field appropriately. */
7610 rtype->field (f).set_type (type->field (f).type ());
7611 rtype->field (f).set_name (type->field (f).name ());
7612 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7613 fld_bit_len =
7614 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7615 else
7616 {
7617 struct type *field_type = type->field (f).type ();
7618
7619 /* We need to be careful of typedefs when computing
7620 the length of our field. If this is a typedef,
7621 get the length of the target type, not the length
7622 of the typedef. */
7623 if (field_type->code () == TYPE_CODE_TYPEDEF)
7624 field_type = ada_typedef_target_type (field_type);
7625
7626 fld_bit_len =
7627 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7628 }
7629 }
7630 if (off + fld_bit_len > bit_len)
7631 bit_len = off + fld_bit_len;
7632 off += fld_bit_len;
7633 TYPE_LENGTH (rtype) =
7634 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7635 }
7636
7637 /* We handle the variant part, if any, at the end because of certain
7638 odd cases in which it is re-ordered so as NOT to be the last field of
7639 the record. This can happen in the presence of representation
7640 clauses. */
7641 if (variant_field >= 0)
7642 {
7643 struct type *branch_type;
7644
7645 off = rtype->field (variant_field).loc_bitpos ();
7646
7647 if (dval0 == NULL)
7648 {
7649 /* Using plain value_from_contents_and_address here causes
7650 problems because we will end up trying to resolve a type
7651 that is currently being constructed. */
7652 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
7653 address);
7654 rtype = value_type (dval);
7655 }
7656 else
7657 dval = dval0;
7658
7659 branch_type =
7660 to_fixed_variant_branch_type
7661 (type->field (variant_field).type (),
7662 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7663 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7664 if (branch_type == NULL)
7665 {
7666 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
7667 rtype->field (f - 1) = rtype->field (f);
7668 rtype->set_num_fields (rtype->num_fields () - 1);
7669 }
7670 else
7671 {
7672 rtype->field (variant_field).set_type (branch_type);
7673 rtype->field (variant_field).set_name ("S");
7674 fld_bit_len =
7675 TYPE_LENGTH (rtype->field (variant_field).type ()) *
7676 TARGET_CHAR_BIT;
7677 if (off + fld_bit_len > bit_len)
7678 bit_len = off + fld_bit_len;
7679 TYPE_LENGTH (rtype) =
7680 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7681 }
7682 }
7683
7684 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7685 should contain the alignment of that record, which should be a strictly
7686 positive value. If null or negative, then something is wrong, most
7687 probably in the debug info. In that case, we don't round up the size
7688 of the resulting type. If this record is not part of another structure,
7689 the current RTYPE length might be good enough for our purposes. */
7690 if (TYPE_LENGTH (type) <= 0)
7691 {
7692 if (rtype->name ())
7693 warning (_("Invalid type size for `%s' detected: %s."),
7694 rtype->name (), pulongest (TYPE_LENGTH (type)));
7695 else
7696 warning (_("Invalid type size for <unnamed> detected: %s."),
7697 pulongest (TYPE_LENGTH (type)));
7698 }
7699 else
7700 {
7701 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
7702 TYPE_LENGTH (type));
7703 }
7704
7705 value_free_to_mark (mark);
7706 return rtype;
7707 }
7708
7709 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7710 of 1. */
7711
7712 static struct type *
7713 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7714 CORE_ADDR address, struct value *dval0)
7715 {
7716 return ada_template_to_fixed_record_type_1 (type, valaddr,
7717 address, dval0, 1);
7718 }
7719
7720 /* An ordinary record type in which ___XVL-convention fields and
7721 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7722 static approximations, containing all possible fields. Uses
7723 no runtime values. Useless for use in values, but that's OK,
7724 since the results are used only for type determinations. Works on both
7725 structs and unions. Representation note: to save space, we memorize
7726 the result of this function in the TYPE_TARGET_TYPE of the
7727 template type. */
7728
7729 static struct type *
7730 template_to_static_fixed_type (struct type *type0)
7731 {
7732 struct type *type;
7733 int nfields;
7734 int f;
7735
7736 /* No need no do anything if the input type is already fixed. */
7737 if (type0->is_fixed_instance ())
7738 return type0;
7739
7740 /* Likewise if we already have computed the static approximation. */
7741 if (TYPE_TARGET_TYPE (type0) != NULL)
7742 return TYPE_TARGET_TYPE (type0);
7743
7744 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
7745 type = type0;
7746 nfields = type0->num_fields ();
7747
7748 /* Whether or not we cloned TYPE0, cache the result so that we don't do
7749 recompute all over next time. */
7750 TYPE_TARGET_TYPE (type0) = type;
7751
7752 for (f = 0; f < nfields; f += 1)
7753 {
7754 struct type *field_type = type0->field (f).type ();
7755 struct type *new_type;
7756
7757 if (is_dynamic_field (type0, f))
7758 {
7759 field_type = ada_check_typedef (field_type);
7760 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7761 }
7762 else
7763 new_type = static_unwrap_type (field_type);
7764
7765 if (new_type != field_type)
7766 {
7767 /* Clone TYPE0 only the first time we get a new field type. */
7768 if (type == type0)
7769 {
7770 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7771 type->set_code (type0->code ());
7772 INIT_NONE_SPECIFIC (type);
7773 type->set_num_fields (nfields);
7774
7775 field *fields =
7776 ((struct field *)
7777 TYPE_ALLOC (type, nfields * sizeof (struct field)));
7778 memcpy (fields, type0->fields (),
7779 sizeof (struct field) * nfields);
7780 type->set_fields (fields);
7781
7782 type->set_name (ada_type_name (type0));
7783 type->set_is_fixed_instance (true);
7784 TYPE_LENGTH (type) = 0;
7785 }
7786 type->field (f).set_type (new_type);
7787 type->field (f).set_name (type0->field (f).name ());
7788 }
7789 }
7790
7791 return type;
7792 }
7793
7794 /* Given an object of type TYPE whose contents are at VALADDR and
7795 whose address in memory is ADDRESS, returns a revision of TYPE,
7796 which should be a non-dynamic-sized record, in which the variant
7797 part, if any, is replaced with the appropriate branch. Looks
7798 for discriminant values in DVAL0, which can be NULL if the record
7799 contains the necessary discriminant values. */
7800
7801 static struct type *
7802 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7803 CORE_ADDR address, struct value *dval0)
7804 {
7805 struct value *mark = value_mark ();
7806 struct value *dval;
7807 struct type *rtype;
7808 struct type *branch_type;
7809 int nfields = type->num_fields ();
7810 int variant_field = variant_field_index (type);
7811
7812 if (variant_field == -1)
7813 return type;
7814
7815 if (dval0 == NULL)
7816 {
7817 dval = value_from_contents_and_address (type, valaddr, address);
7818 type = value_type (dval);
7819 }
7820 else
7821 dval = dval0;
7822
7823 rtype = alloc_type_copy (type);
7824 rtype->set_code (TYPE_CODE_STRUCT);
7825 INIT_NONE_SPECIFIC (rtype);
7826 rtype->set_num_fields (nfields);
7827
7828 field *fields =
7829 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7830 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
7831 rtype->set_fields (fields);
7832
7833 rtype->set_name (ada_type_name (type));
7834 rtype->set_is_fixed_instance (true);
7835 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7836
7837 branch_type = to_fixed_variant_branch_type
7838 (type->field (variant_field).type (),
7839 cond_offset_host (valaddr,
7840 type->field (variant_field).loc_bitpos ()
7841 / TARGET_CHAR_BIT),
7842 cond_offset_target (address,
7843 type->field (variant_field).loc_bitpos ()
7844 / TARGET_CHAR_BIT), dval);
7845 if (branch_type == NULL)
7846 {
7847 int f;
7848
7849 for (f = variant_field + 1; f < nfields; f += 1)
7850 rtype->field (f - 1) = rtype->field (f);
7851 rtype->set_num_fields (rtype->num_fields () - 1);
7852 }
7853 else
7854 {
7855 rtype->field (variant_field).set_type (branch_type);
7856 rtype->field (variant_field).set_name ("S");
7857 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7858 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7859 }
7860 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
7861
7862 value_free_to_mark (mark);
7863 return rtype;
7864 }
7865
7866 /* An ordinary record type (with fixed-length fields) that describes
7867 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7868 beginning of this section]. Any necessary discriminants' values
7869 should be in DVAL, a record value; it may be NULL if the object
7870 at ADDR itself contains any necessary discriminant values.
7871 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7872 values from the record are needed. Except in the case that DVAL,
7873 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7874 unchecked) is replaced by a particular branch of the variant.
7875
7876 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7877 is questionable and may be removed. It can arise during the
7878 processing of an unconstrained-array-of-record type where all the
7879 variant branches have exactly the same size. This is because in
7880 such cases, the compiler does not bother to use the XVS convention
7881 when encoding the record. I am currently dubious of this
7882 shortcut and suspect the compiler should be altered. FIXME. */
7883
7884 static struct type *
7885 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7886 CORE_ADDR address, struct value *dval)
7887 {
7888 struct type *templ_type;
7889
7890 if (type0->is_fixed_instance ())
7891 return type0;
7892
7893 templ_type = dynamic_template_type (type0);
7894
7895 if (templ_type != NULL)
7896 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7897 else if (variant_field_index (type0) >= 0)
7898 {
7899 if (dval == NULL && valaddr == NULL && address == 0)
7900 return type0;
7901 return to_record_with_fixed_variant_part (type0, valaddr, address,
7902 dval);
7903 }
7904 else
7905 {
7906 type0->set_is_fixed_instance (true);
7907 return type0;
7908 }
7909
7910 }
7911
7912 /* An ordinary record type (with fixed-length fields) that describes
7913 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7914 union type. Any necessary discriminants' values should be in DVAL,
7915 a record value. That is, this routine selects the appropriate
7916 branch of the union at ADDR according to the discriminant value
7917 indicated in the union's type name. Returns VAR_TYPE0 itself if
7918 it represents a variant subject to a pragma Unchecked_Union. */
7919
7920 static struct type *
7921 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7922 CORE_ADDR address, struct value *dval)
7923 {
7924 int which;
7925 struct type *templ_type;
7926 struct type *var_type;
7927
7928 if (var_type0->code () == TYPE_CODE_PTR)
7929 var_type = TYPE_TARGET_TYPE (var_type0);
7930 else
7931 var_type = var_type0;
7932
7933 templ_type = ada_find_parallel_type (var_type, "___XVU");
7934
7935 if (templ_type != NULL)
7936 var_type = templ_type;
7937
7938 if (is_unchecked_variant (var_type, value_type (dval)))
7939 return var_type0;
7940 which = ada_which_variant_applies (var_type, dval);
7941
7942 if (which < 0)
7943 return empty_record (var_type);
7944 else if (is_dynamic_field (var_type, which))
7945 return to_fixed_record_type
7946 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
7947 valaddr, address, dval);
7948 else if (variant_field_index (var_type->field (which).type ()) >= 0)
7949 return
7950 to_fixed_record_type
7951 (var_type->field (which).type (), valaddr, address, dval);
7952 else
7953 return var_type->field (which).type ();
7954 }
7955
7956 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
7957 ENCODING_TYPE, a type following the GNAT conventions for discrete
7958 type encodings, only carries redundant information. */
7959
7960 static int
7961 ada_is_redundant_range_encoding (struct type *range_type,
7962 struct type *encoding_type)
7963 {
7964 const char *bounds_str;
7965 int n;
7966 LONGEST lo, hi;
7967
7968 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
7969
7970 if (get_base_type (range_type)->code ()
7971 != get_base_type (encoding_type)->code ())
7972 {
7973 /* The compiler probably used a simple base type to describe
7974 the range type instead of the range's actual base type,
7975 expecting us to get the real base type from the encoding
7976 anyway. In this situation, the encoding cannot be ignored
7977 as redundant. */
7978 return 0;
7979 }
7980
7981 if (is_dynamic_type (range_type))
7982 return 0;
7983
7984 if (encoding_type->name () == NULL)
7985 return 0;
7986
7987 bounds_str = strstr (encoding_type->name (), "___XDLU_");
7988 if (bounds_str == NULL)
7989 return 0;
7990
7991 n = 8; /* Skip "___XDLU_". */
7992 if (!ada_scan_number (bounds_str, n, &lo, &n))
7993 return 0;
7994 if (range_type->bounds ()->low.const_val () != lo)
7995 return 0;
7996
7997 n += 2; /* Skip the "__" separator between the two bounds. */
7998 if (!ada_scan_number (bounds_str, n, &hi, &n))
7999 return 0;
8000 if (range_type->bounds ()->high.const_val () != hi)
8001 return 0;
8002
8003 return 1;
8004 }
8005
8006 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8007 a type following the GNAT encoding for describing array type
8008 indices, only carries redundant information. */
8009
8010 static int
8011 ada_is_redundant_index_type_desc (struct type *array_type,
8012 struct type *desc_type)
8013 {
8014 struct type *this_layer = check_typedef (array_type);
8015 int i;
8016
8017 for (i = 0; i < desc_type->num_fields (); i++)
8018 {
8019 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8020 desc_type->field (i).type ()))
8021 return 0;
8022 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8023 }
8024
8025 return 1;
8026 }
8027
8028 /* Assuming that TYPE0 is an array type describing the type of a value
8029 at ADDR, and that DVAL describes a record containing any
8030 discriminants used in TYPE0, returns a type for the value that
8031 contains no dynamic components (that is, no components whose sizes
8032 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8033 true, gives an error message if the resulting type's size is over
8034 varsize_limit. */
8035
8036 static struct type *
8037 to_fixed_array_type (struct type *type0, struct value *dval,
8038 int ignore_too_big)
8039 {
8040 struct type *index_type_desc;
8041 struct type *result;
8042 int constrained_packed_array_p;
8043 static const char *xa_suffix = "___XA";
8044
8045 type0 = ada_check_typedef (type0);
8046 if (type0->is_fixed_instance ())
8047 return type0;
8048
8049 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8050 if (constrained_packed_array_p)
8051 {
8052 type0 = decode_constrained_packed_array_type (type0);
8053 if (type0 == nullptr)
8054 error (_("could not decode constrained packed array type"));
8055 }
8056
8057 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8058
8059 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8060 encoding suffixed with 'P' may still be generated. If so,
8061 it should be used to find the XA type. */
8062
8063 if (index_type_desc == NULL)
8064 {
8065 const char *type_name = ada_type_name (type0);
8066
8067 if (type_name != NULL)
8068 {
8069 const int len = strlen (type_name);
8070 char *name = (char *) alloca (len + strlen (xa_suffix));
8071
8072 if (type_name[len - 1] == 'P')
8073 {
8074 strcpy (name, type_name);
8075 strcpy (name + len - 1, xa_suffix);
8076 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8077 }
8078 }
8079 }
8080
8081 ada_fixup_array_indexes_type (index_type_desc);
8082 if (index_type_desc != NULL
8083 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8084 {
8085 /* Ignore this ___XA parallel type, as it does not bring any
8086 useful information. This allows us to avoid creating fixed
8087 versions of the array's index types, which would be identical
8088 to the original ones. This, in turn, can also help avoid
8089 the creation of fixed versions of the array itself. */
8090 index_type_desc = NULL;
8091 }
8092
8093 if (index_type_desc == NULL)
8094 {
8095 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8096
8097 /* NOTE: elt_type---the fixed version of elt_type0---should never
8098 depend on the contents of the array in properly constructed
8099 debugging data. */
8100 /* Create a fixed version of the array element type.
8101 We're not providing the address of an element here,
8102 and thus the actual object value cannot be inspected to do
8103 the conversion. This should not be a problem, since arrays of
8104 unconstrained objects are not allowed. In particular, all
8105 the elements of an array of a tagged type should all be of
8106 the same type specified in the debugging info. No need to
8107 consult the object tag. */
8108 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8109
8110 /* Make sure we always create a new array type when dealing with
8111 packed array types, since we're going to fix-up the array
8112 type length and element bitsize a little further down. */
8113 if (elt_type0 == elt_type && !constrained_packed_array_p)
8114 result = type0;
8115 else
8116 result = create_array_type (alloc_type_copy (type0),
8117 elt_type, type0->index_type ());
8118 }
8119 else
8120 {
8121 int i;
8122 struct type *elt_type0;
8123
8124 elt_type0 = type0;
8125 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8126 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8127
8128 /* NOTE: result---the fixed version of elt_type0---should never
8129 depend on the contents of the array in properly constructed
8130 debugging data. */
8131 /* Create a fixed version of the array element type.
8132 We're not providing the address of an element here,
8133 and thus the actual object value cannot be inspected to do
8134 the conversion. This should not be a problem, since arrays of
8135 unconstrained objects are not allowed. In particular, all
8136 the elements of an array of a tagged type should all be of
8137 the same type specified in the debugging info. No need to
8138 consult the object tag. */
8139 result =
8140 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8141
8142 elt_type0 = type0;
8143 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8144 {
8145 struct type *range_type =
8146 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8147
8148 result = create_array_type (alloc_type_copy (elt_type0),
8149 result, range_type);
8150 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8151 }
8152 }
8153
8154 /* We want to preserve the type name. This can be useful when
8155 trying to get the type name of a value that has already been
8156 printed (for instance, if the user did "print VAR; whatis $". */
8157 result->set_name (type0->name ());
8158
8159 if (constrained_packed_array_p)
8160 {
8161 /* So far, the resulting type has been created as if the original
8162 type was a regular (non-packed) array type. As a result, the
8163 bitsize of the array elements needs to be set again, and the array
8164 length needs to be recomputed based on that bitsize. */
8165 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8166 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8167
8168 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8169 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8170 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8171 TYPE_LENGTH (result)++;
8172 }
8173
8174 result->set_is_fixed_instance (true);
8175 return result;
8176 }
8177
8178
8179 /* A standard type (containing no dynamically sized components)
8180 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8181 DVAL describes a record containing any discriminants used in TYPE0,
8182 and may be NULL if there are none, or if the object of type TYPE at
8183 ADDRESS or in VALADDR contains these discriminants.
8184
8185 If CHECK_TAG is not null, in the case of tagged types, this function
8186 attempts to locate the object's tag and use it to compute the actual
8187 type. However, when ADDRESS is null, we cannot use it to determine the
8188 location of the tag, and therefore compute the tagged type's actual type.
8189 So we return the tagged type without consulting the tag. */
8190
8191 static struct type *
8192 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8193 CORE_ADDR address, struct value *dval, int check_tag)
8194 {
8195 type = ada_check_typedef (type);
8196
8197 /* Only un-fixed types need to be handled here. */
8198 if (!HAVE_GNAT_AUX_INFO (type))
8199 return type;
8200
8201 switch (type->code ())
8202 {
8203 default:
8204 return type;
8205 case TYPE_CODE_STRUCT:
8206 {
8207 struct type *static_type = to_static_fixed_type (type);
8208 struct type *fixed_record_type =
8209 to_fixed_record_type (type, valaddr, address, NULL);
8210
8211 /* If STATIC_TYPE is a tagged type and we know the object's address,
8212 then we can determine its tag, and compute the object's actual
8213 type from there. Note that we have to use the fixed record
8214 type (the parent part of the record may have dynamic fields
8215 and the way the location of _tag is expressed may depend on
8216 them). */
8217
8218 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8219 {
8220 struct value *tag =
8221 value_tag_from_contents_and_address
8222 (fixed_record_type,
8223 valaddr,
8224 address);
8225 struct type *real_type = type_from_tag (tag);
8226 struct value *obj =
8227 value_from_contents_and_address (fixed_record_type,
8228 valaddr,
8229 address);
8230 fixed_record_type = value_type (obj);
8231 if (real_type != NULL)
8232 return to_fixed_record_type
8233 (real_type, NULL,
8234 value_address (ada_tag_value_at_base_address (obj)), NULL);
8235 }
8236
8237 /* Check to see if there is a parallel ___XVZ variable.
8238 If there is, then it provides the actual size of our type. */
8239 else if (ada_type_name (fixed_record_type) != NULL)
8240 {
8241 const char *name = ada_type_name (fixed_record_type);
8242 char *xvz_name
8243 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8244 bool xvz_found = false;
8245 LONGEST size;
8246
8247 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8248 try
8249 {
8250 xvz_found = get_int_var_value (xvz_name, size);
8251 }
8252 catch (const gdb_exception_error &except)
8253 {
8254 /* We found the variable, but somehow failed to read
8255 its value. Rethrow the same error, but with a little
8256 bit more information, to help the user understand
8257 what went wrong (Eg: the variable might have been
8258 optimized out). */
8259 throw_error (except.error,
8260 _("unable to read value of %s (%s)"),
8261 xvz_name, except.what ());
8262 }
8263
8264 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8265 {
8266 fixed_record_type = copy_type (fixed_record_type);
8267 TYPE_LENGTH (fixed_record_type) = size;
8268
8269 /* The FIXED_RECORD_TYPE may have be a stub. We have
8270 observed this when the debugging info is STABS, and
8271 apparently it is something that is hard to fix.
8272
8273 In practice, we don't need the actual type definition
8274 at all, because the presence of the XVZ variable allows us
8275 to assume that there must be a XVS type as well, which we
8276 should be able to use later, when we need the actual type
8277 definition.
8278
8279 In the meantime, pretend that the "fixed" type we are
8280 returning is NOT a stub, because this can cause trouble
8281 when using this type to create new types targeting it.
8282 Indeed, the associated creation routines often check
8283 whether the target type is a stub and will try to replace
8284 it, thus using a type with the wrong size. This, in turn,
8285 might cause the new type to have the wrong size too.
8286 Consider the case of an array, for instance, where the size
8287 of the array is computed from the number of elements in
8288 our array multiplied by the size of its element. */
8289 fixed_record_type->set_is_stub (false);
8290 }
8291 }
8292 return fixed_record_type;
8293 }
8294 case TYPE_CODE_ARRAY:
8295 return to_fixed_array_type (type, dval, 1);
8296 case TYPE_CODE_UNION:
8297 if (dval == NULL)
8298 return type;
8299 else
8300 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8301 }
8302 }
8303
8304 /* The same as ada_to_fixed_type_1, except that it preserves the type
8305 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8306
8307 The typedef layer needs be preserved in order to differentiate between
8308 arrays and array pointers when both types are implemented using the same
8309 fat pointer. In the array pointer case, the pointer is encoded as
8310 a typedef of the pointer type. For instance, considering:
8311
8312 type String_Access is access String;
8313 S1 : String_Access := null;
8314
8315 To the debugger, S1 is defined as a typedef of type String. But
8316 to the user, it is a pointer. So if the user tries to print S1,
8317 we should not dereference the array, but print the array address
8318 instead.
8319
8320 If we didn't preserve the typedef layer, we would lose the fact that
8321 the type is to be presented as a pointer (needs de-reference before
8322 being printed). And we would also use the source-level type name. */
8323
8324 struct type *
8325 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8326 CORE_ADDR address, struct value *dval, int check_tag)
8327
8328 {
8329 struct type *fixed_type =
8330 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8331
8332 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8333 then preserve the typedef layer.
8334
8335 Implementation note: We can only check the main-type portion of
8336 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8337 from TYPE now returns a type that has the same instance flags
8338 as TYPE. For instance, if TYPE is a "typedef const", and its
8339 target type is a "struct", then the typedef elimination will return
8340 a "const" version of the target type. See check_typedef for more
8341 details about how the typedef layer elimination is done.
8342
8343 brobecker/2010-11-19: It seems to me that the only case where it is
8344 useful to preserve the typedef layer is when dealing with fat pointers.
8345 Perhaps, we could add a check for that and preserve the typedef layer
8346 only in that situation. But this seems unnecessary so far, probably
8347 because we call check_typedef/ada_check_typedef pretty much everywhere.
8348 */
8349 if (type->code () == TYPE_CODE_TYPEDEF
8350 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8351 == TYPE_MAIN_TYPE (fixed_type)))
8352 return type;
8353
8354 return fixed_type;
8355 }
8356
8357 /* A standard (static-sized) type corresponding as well as possible to
8358 TYPE0, but based on no runtime data. */
8359
8360 static struct type *
8361 to_static_fixed_type (struct type *type0)
8362 {
8363 struct type *type;
8364
8365 if (type0 == NULL)
8366 return NULL;
8367
8368 if (type0->is_fixed_instance ())
8369 return type0;
8370
8371 type0 = ada_check_typedef (type0);
8372
8373 switch (type0->code ())
8374 {
8375 default:
8376 return type0;
8377 case TYPE_CODE_STRUCT:
8378 type = dynamic_template_type (type0);
8379 if (type != NULL)
8380 return template_to_static_fixed_type (type);
8381 else
8382 return template_to_static_fixed_type (type0);
8383 case TYPE_CODE_UNION:
8384 type = ada_find_parallel_type (type0, "___XVU");
8385 if (type != NULL)
8386 return template_to_static_fixed_type (type);
8387 else
8388 return template_to_static_fixed_type (type0);
8389 }
8390 }
8391
8392 /* A static approximation of TYPE with all type wrappers removed. */
8393
8394 static struct type *
8395 static_unwrap_type (struct type *type)
8396 {
8397 if (ada_is_aligner_type (type))
8398 {
8399 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8400 if (ada_type_name (type1) == NULL)
8401 type1->set_name (ada_type_name (type));
8402
8403 return static_unwrap_type (type1);
8404 }
8405 else
8406 {
8407 struct type *raw_real_type = ada_get_base_type (type);
8408
8409 if (raw_real_type == type)
8410 return type;
8411 else
8412 return to_static_fixed_type (raw_real_type);
8413 }
8414 }
8415
8416 /* In some cases, incomplete and private types require
8417 cross-references that are not resolved as records (for example,
8418 type Foo;
8419 type FooP is access Foo;
8420 V: FooP;
8421 type Foo is array ...;
8422 ). In these cases, since there is no mechanism for producing
8423 cross-references to such types, we instead substitute for FooP a
8424 stub enumeration type that is nowhere resolved, and whose tag is
8425 the name of the actual type. Call these types "non-record stubs". */
8426
8427 /* A type equivalent to TYPE that is not a non-record stub, if one
8428 exists, otherwise TYPE. */
8429
8430 struct type *
8431 ada_check_typedef (struct type *type)
8432 {
8433 if (type == NULL)
8434 return NULL;
8435
8436 /* If our type is an access to an unconstrained array, which is encoded
8437 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8438 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8439 what allows us to distinguish between fat pointers that represent
8440 array types, and fat pointers that represent array access types
8441 (in both cases, the compiler implements them as fat pointers). */
8442 if (ada_is_access_to_unconstrained_array (type))
8443 return type;
8444
8445 type = check_typedef (type);
8446 if (type == NULL || type->code () != TYPE_CODE_ENUM
8447 || !type->is_stub ()
8448 || type->name () == NULL)
8449 return type;
8450 else
8451 {
8452 const char *name = type->name ();
8453 struct type *type1 = ada_find_any_type (name);
8454
8455 if (type1 == NULL)
8456 return type;
8457
8458 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8459 stubs pointing to arrays, as we don't create symbols for array
8460 types, only for the typedef-to-array types). If that's the case,
8461 strip the typedef layer. */
8462 if (type1->code () == TYPE_CODE_TYPEDEF)
8463 type1 = ada_check_typedef (type1);
8464
8465 return type1;
8466 }
8467 }
8468
8469 /* A value representing the data at VALADDR/ADDRESS as described by
8470 type TYPE0, but with a standard (static-sized) type that correctly
8471 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8472 type, then return VAL0 [this feature is simply to avoid redundant
8473 creation of struct values]. */
8474
8475 static struct value *
8476 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8477 struct value *val0)
8478 {
8479 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8480
8481 if (type == type0 && val0 != NULL)
8482 return val0;
8483
8484 if (VALUE_LVAL (val0) != lval_memory)
8485 {
8486 /* Our value does not live in memory; it could be a convenience
8487 variable, for instance. Create a not_lval value using val0's
8488 contents. */
8489 return value_from_contents (type, value_contents (val0).data ());
8490 }
8491
8492 return value_from_contents_and_address (type, 0, address);
8493 }
8494
8495 /* A value representing VAL, but with a standard (static-sized) type
8496 that correctly describes it. Does not necessarily create a new
8497 value. */
8498
8499 struct value *
8500 ada_to_fixed_value (struct value *val)
8501 {
8502 val = unwrap_value (val);
8503 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
8504 return val;
8505 }
8506 \f
8507
8508 /* Attributes */
8509
8510 /* Table mapping attribute numbers to names.
8511 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8512
8513 static const char * const attribute_names[] = {
8514 "<?>",
8515
8516 "first",
8517 "last",
8518 "length",
8519 "image",
8520 "max",
8521 "min",
8522 "modulus",
8523 "pos",
8524 "size",
8525 "tag",
8526 "val",
8527 0
8528 };
8529
8530 static const char *
8531 ada_attribute_name (enum exp_opcode n)
8532 {
8533 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8534 return attribute_names[n - OP_ATR_FIRST + 1];
8535 else
8536 return attribute_names[0];
8537 }
8538
8539 /* Evaluate the 'POS attribute applied to ARG. */
8540
8541 static LONGEST
8542 pos_atr (struct value *arg)
8543 {
8544 struct value *val = coerce_ref (arg);
8545 struct type *type = value_type (val);
8546
8547 if (!discrete_type_p (type))
8548 error (_("'POS only defined on discrete types"));
8549
8550 gdb::optional<LONGEST> result = discrete_position (type, value_as_long (val));
8551 if (!result.has_value ())
8552 error (_("enumeration value is invalid: can't find 'POS"));
8553
8554 return *result;
8555 }
8556
8557 struct value *
8558 ada_pos_atr (struct type *expect_type,
8559 struct expression *exp,
8560 enum noside noside, enum exp_opcode op,
8561 struct value *arg)
8562 {
8563 struct type *type = builtin_type (exp->gdbarch)->builtin_int;
8564 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8565 return value_zero (type, not_lval);
8566 return value_from_longest (type, pos_atr (arg));
8567 }
8568
8569 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8570
8571 static struct value *
8572 val_atr (struct type *type, LONGEST val)
8573 {
8574 gdb_assert (discrete_type_p (type));
8575 if (type->code () == TYPE_CODE_RANGE)
8576 type = TYPE_TARGET_TYPE (type);
8577 if (type->code () == TYPE_CODE_ENUM)
8578 {
8579 if (val < 0 || val >= type->num_fields ())
8580 error (_("argument to 'VAL out of range"));
8581 val = type->field (val).loc_enumval ();
8582 }
8583 return value_from_longest (type, val);
8584 }
8585
8586 struct value *
8587 ada_val_atr (enum noside noside, struct type *type, struct value *arg)
8588 {
8589 if (noside == EVAL_AVOID_SIDE_EFFECTS)
8590 return value_zero (type, not_lval);
8591
8592 if (!discrete_type_p (type))
8593 error (_("'VAL only defined on discrete types"));
8594 if (!integer_type_p (value_type (arg)))
8595 error (_("'VAL requires integral argument"));
8596
8597 return val_atr (type, value_as_long (arg));
8598 }
8599 \f
8600
8601 /* Evaluation */
8602
8603 /* True if TYPE appears to be an Ada character type.
8604 [At the moment, this is true only for Character and Wide_Character;
8605 It is a heuristic test that could stand improvement]. */
8606
8607 bool
8608 ada_is_character_type (struct type *type)
8609 {
8610 const char *name;
8611
8612 /* If the type code says it's a character, then assume it really is,
8613 and don't check any further. */
8614 if (type->code () == TYPE_CODE_CHAR)
8615 return true;
8616
8617 /* Otherwise, assume it's a character type iff it is a discrete type
8618 with a known character type name. */
8619 name = ada_type_name (type);
8620 return (name != NULL
8621 && (type->code () == TYPE_CODE_INT
8622 || type->code () == TYPE_CODE_RANGE)
8623 && (strcmp (name, "character") == 0
8624 || strcmp (name, "wide_character") == 0
8625 || strcmp (name, "wide_wide_character") == 0
8626 || strcmp (name, "unsigned char") == 0));
8627 }
8628
8629 /* True if TYPE appears to be an Ada string type. */
8630
8631 bool
8632 ada_is_string_type (struct type *type)
8633 {
8634 type = ada_check_typedef (type);
8635 if (type != NULL
8636 && type->code () != TYPE_CODE_PTR
8637 && (ada_is_simple_array_type (type)
8638 || ada_is_array_descriptor_type (type))
8639 && ada_array_arity (type) == 1)
8640 {
8641 struct type *elttype = ada_array_element_type (type, 1);
8642
8643 return ada_is_character_type (elttype);
8644 }
8645 else
8646 return false;
8647 }
8648
8649 /* The compiler sometimes provides a parallel XVS type for a given
8650 PAD type. Normally, it is safe to follow the PAD type directly,
8651 but older versions of the compiler have a bug that causes the offset
8652 of its "F" field to be wrong. Following that field in that case
8653 would lead to incorrect results, but this can be worked around
8654 by ignoring the PAD type and using the associated XVS type instead.
8655
8656 Set to True if the debugger should trust the contents of PAD types.
8657 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8658 static bool trust_pad_over_xvs = true;
8659
8660 /* True if TYPE is a struct type introduced by the compiler to force the
8661 alignment of a value. Such types have a single field with a
8662 distinctive name. */
8663
8664 int
8665 ada_is_aligner_type (struct type *type)
8666 {
8667 type = ada_check_typedef (type);
8668
8669 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8670 return 0;
8671
8672 return (type->code () == TYPE_CODE_STRUCT
8673 && type->num_fields () == 1
8674 && strcmp (type->field (0).name (), "F") == 0);
8675 }
8676
8677 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8678 the parallel type. */
8679
8680 struct type *
8681 ada_get_base_type (struct type *raw_type)
8682 {
8683 struct type *real_type_namer;
8684 struct type *raw_real_type;
8685
8686 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
8687 return raw_type;
8688
8689 if (ada_is_aligner_type (raw_type))
8690 /* The encoding specifies that we should always use the aligner type.
8691 So, even if this aligner type has an associated XVS type, we should
8692 simply ignore it.
8693
8694 According to the compiler gurus, an XVS type parallel to an aligner
8695 type may exist because of a stabs limitation. In stabs, aligner
8696 types are empty because the field has a variable-sized type, and
8697 thus cannot actually be used as an aligner type. As a result,
8698 we need the associated parallel XVS type to decode the type.
8699 Since the policy in the compiler is to not change the internal
8700 representation based on the debugging info format, we sometimes
8701 end up having a redundant XVS type parallel to the aligner type. */
8702 return raw_type;
8703
8704 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8705 if (real_type_namer == NULL
8706 || real_type_namer->code () != TYPE_CODE_STRUCT
8707 || real_type_namer->num_fields () != 1)
8708 return raw_type;
8709
8710 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
8711 {
8712 /* This is an older encoding form where the base type needs to be
8713 looked up by name. We prefer the newer encoding because it is
8714 more efficient. */
8715 raw_real_type = ada_find_any_type (real_type_namer->field (0).name ());
8716 if (raw_real_type == NULL)
8717 return raw_type;
8718 else
8719 return raw_real_type;
8720 }
8721
8722 /* The field in our XVS type is a reference to the base type. */
8723 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
8724 }
8725
8726 /* The type of value designated by TYPE, with all aligners removed. */
8727
8728 struct type *
8729 ada_aligned_type (struct type *type)
8730 {
8731 if (ada_is_aligner_type (type))
8732 return ada_aligned_type (type->field (0).type ());
8733 else
8734 return ada_get_base_type (type);
8735 }
8736
8737
8738 /* The address of the aligned value in an object at address VALADDR
8739 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8740
8741 const gdb_byte *
8742 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8743 {
8744 if (ada_is_aligner_type (type))
8745 return ada_aligned_value_addr
8746 (type->field (0).type (),
8747 valaddr + type->field (0).loc_bitpos () / TARGET_CHAR_BIT);
8748 else
8749 return valaddr;
8750 }
8751
8752
8753
8754 /* The printed representation of an enumeration literal with encoded
8755 name NAME. The value is good to the next call of ada_enum_name. */
8756 const char *
8757 ada_enum_name (const char *name)
8758 {
8759 static std::string storage;
8760 const char *tmp;
8761
8762 /* First, unqualify the enumeration name:
8763 1. Search for the last '.' character. If we find one, then skip
8764 all the preceding characters, the unqualified name starts
8765 right after that dot.
8766 2. Otherwise, we may be debugging on a target where the compiler
8767 translates dots into "__". Search forward for double underscores,
8768 but stop searching when we hit an overloading suffix, which is
8769 of the form "__" followed by digits. */
8770
8771 tmp = strrchr (name, '.');
8772 if (tmp != NULL)
8773 name = tmp + 1;
8774 else
8775 {
8776 while ((tmp = strstr (name, "__")) != NULL)
8777 {
8778 if (isdigit (tmp[2]))
8779 break;
8780 else
8781 name = tmp + 2;
8782 }
8783 }
8784
8785 if (name[0] == 'Q')
8786 {
8787 int v;
8788
8789 if (name[1] == 'U' || name[1] == 'W')
8790 {
8791 if (sscanf (name + 2, "%x", &v) != 1)
8792 return name;
8793 }
8794 else if (((name[1] >= '0' && name[1] <= '9')
8795 || (name[1] >= 'a' && name[1] <= 'z'))
8796 && name[2] == '\0')
8797 {
8798 storage = string_printf ("'%c'", name[1]);
8799 return storage.c_str ();
8800 }
8801 else
8802 return name;
8803
8804 if (isascii (v) && isprint (v))
8805 storage = string_printf ("'%c'", v);
8806 else if (name[1] == 'U')
8807 storage = string_printf ("[\"%02x\"]", v);
8808 else
8809 storage = string_printf ("[\"%04x\"]", v);
8810
8811 return storage.c_str ();
8812 }
8813 else
8814 {
8815 tmp = strstr (name, "__");
8816 if (tmp == NULL)
8817 tmp = strstr (name, "$");
8818 if (tmp != NULL)
8819 {
8820 storage = std::string (name, tmp - name);
8821 return storage.c_str ();
8822 }
8823
8824 return name;
8825 }
8826 }
8827
8828 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8829 value it wraps. */
8830
8831 static struct value *
8832 unwrap_value (struct value *val)
8833 {
8834 struct type *type = ada_check_typedef (value_type (val));
8835
8836 if (ada_is_aligner_type (type))
8837 {
8838 struct value *v = ada_value_struct_elt (val, "F", 0);
8839 struct type *val_type = ada_check_typedef (value_type (v));
8840
8841 if (ada_type_name (val_type) == NULL)
8842 val_type->set_name (ada_type_name (type));
8843
8844 return unwrap_value (v);
8845 }
8846 else
8847 {
8848 struct type *raw_real_type =
8849 ada_check_typedef (ada_get_base_type (type));
8850
8851 /* If there is no parallel XVS or XVE type, then the value is
8852 already unwrapped. Return it without further modification. */
8853 if ((type == raw_real_type)
8854 && ada_find_parallel_type (type, "___XVE") == NULL)
8855 return val;
8856
8857 return
8858 coerce_unspec_val_to_type
8859 (val, ada_to_fixed_type (raw_real_type, 0,
8860 value_address (val),
8861 NULL, 1));
8862 }
8863 }
8864
8865 /* Given two array types T1 and T2, return nonzero iff both arrays
8866 contain the same number of elements. */
8867
8868 static int
8869 ada_same_array_size_p (struct type *t1, struct type *t2)
8870 {
8871 LONGEST lo1, hi1, lo2, hi2;
8872
8873 /* Get the array bounds in order to verify that the size of
8874 the two arrays match. */
8875 if (!get_array_bounds (t1, &lo1, &hi1)
8876 || !get_array_bounds (t2, &lo2, &hi2))
8877 error (_("unable to determine array bounds"));
8878
8879 /* To make things easier for size comparison, normalize a bit
8880 the case of empty arrays by making sure that the difference
8881 between upper bound and lower bound is always -1. */
8882 if (lo1 > hi1)
8883 hi1 = lo1 - 1;
8884 if (lo2 > hi2)
8885 hi2 = lo2 - 1;
8886
8887 return (hi1 - lo1 == hi2 - lo2);
8888 }
8889
8890 /* Assuming that VAL is an array of integrals, and TYPE represents
8891 an array with the same number of elements, but with wider integral
8892 elements, return an array "casted" to TYPE. In practice, this
8893 means that the returned array is built by casting each element
8894 of the original array into TYPE's (wider) element type. */
8895
8896 static struct value *
8897 ada_promote_array_of_integrals (struct type *type, struct value *val)
8898 {
8899 struct type *elt_type = TYPE_TARGET_TYPE (type);
8900 LONGEST lo, hi;
8901 LONGEST i;
8902
8903 /* Verify that both val and type are arrays of scalars, and
8904 that the size of val's elements is smaller than the size
8905 of type's element. */
8906 gdb_assert (type->code () == TYPE_CODE_ARRAY);
8907 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8908 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
8909 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8910 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8911 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8912
8913 if (!get_array_bounds (type, &lo, &hi))
8914 error (_("unable to determine array bounds"));
8915
8916 value *res = allocate_value (type);
8917 gdb::array_view<gdb_byte> res_contents = value_contents_writeable (res);
8918
8919 /* Promote each array element. */
8920 for (i = 0; i < hi - lo + 1; i++)
8921 {
8922 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8923 int elt_len = TYPE_LENGTH (elt_type);
8924
8925 copy (value_contents_all (elt), res_contents.slice (elt_len * i, elt_len));
8926 }
8927
8928 return res;
8929 }
8930
8931 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8932 return the converted value. */
8933
8934 static struct value *
8935 coerce_for_assign (struct type *type, struct value *val)
8936 {
8937 struct type *type2 = value_type (val);
8938
8939 if (type == type2)
8940 return val;
8941
8942 type2 = ada_check_typedef (type2);
8943 type = ada_check_typedef (type);
8944
8945 if (type2->code () == TYPE_CODE_PTR
8946 && type->code () == TYPE_CODE_ARRAY)
8947 {
8948 val = ada_value_ind (val);
8949 type2 = value_type (val);
8950 }
8951
8952 if (type2->code () == TYPE_CODE_ARRAY
8953 && type->code () == TYPE_CODE_ARRAY)
8954 {
8955 if (!ada_same_array_size_p (type, type2))
8956 error (_("cannot assign arrays of different length"));
8957
8958 if (is_integral_type (TYPE_TARGET_TYPE (type))
8959 && is_integral_type (TYPE_TARGET_TYPE (type2))
8960 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8961 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8962 {
8963 /* Allow implicit promotion of the array elements to
8964 a wider type. */
8965 return ada_promote_array_of_integrals (type, val);
8966 }
8967
8968 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8969 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8970 error (_("Incompatible types in assignment"));
8971 deprecated_set_value_type (val, type);
8972 }
8973 return val;
8974 }
8975
8976 static struct value *
8977 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8978 {
8979 struct value *val;
8980 struct type *type1, *type2;
8981 LONGEST v, v1, v2;
8982
8983 arg1 = coerce_ref (arg1);
8984 arg2 = coerce_ref (arg2);
8985 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8986 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8987
8988 if (type1->code () != TYPE_CODE_INT
8989 || type2->code () != TYPE_CODE_INT)
8990 return value_binop (arg1, arg2, op);
8991
8992 switch (op)
8993 {
8994 case BINOP_MOD:
8995 case BINOP_DIV:
8996 case BINOP_REM:
8997 break;
8998 default:
8999 return value_binop (arg1, arg2, op);
9000 }
9001
9002 v2 = value_as_long (arg2);
9003 if (v2 == 0)
9004 {
9005 const char *name;
9006 if (op == BINOP_MOD)
9007 name = "mod";
9008 else if (op == BINOP_DIV)
9009 name = "/";
9010 else
9011 {
9012 gdb_assert (op == BINOP_REM);
9013 name = "rem";
9014 }
9015
9016 error (_("second operand of %s must not be zero."), name);
9017 }
9018
9019 if (type1->is_unsigned () || op == BINOP_MOD)
9020 return value_binop (arg1, arg2, op);
9021
9022 v1 = value_as_long (arg1);
9023 switch (op)
9024 {
9025 case BINOP_DIV:
9026 v = v1 / v2;
9027 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9028 v += v > 0 ? -1 : 1;
9029 break;
9030 case BINOP_REM:
9031 v = v1 % v2;
9032 if (v * v1 < 0)
9033 v -= v2;
9034 break;
9035 default:
9036 /* Should not reach this point. */
9037 v = 0;
9038 }
9039
9040 val = allocate_value (type1);
9041 store_unsigned_integer (value_contents_raw (val).data (),
9042 TYPE_LENGTH (value_type (val)),
9043 type_byte_order (type1), v);
9044 return val;
9045 }
9046
9047 static int
9048 ada_value_equal (struct value *arg1, struct value *arg2)
9049 {
9050 if (ada_is_direct_array_type (value_type (arg1))
9051 || ada_is_direct_array_type (value_type (arg2)))
9052 {
9053 struct type *arg1_type, *arg2_type;
9054
9055 /* Automatically dereference any array reference before
9056 we attempt to perform the comparison. */
9057 arg1 = ada_coerce_ref (arg1);
9058 arg2 = ada_coerce_ref (arg2);
9059
9060 arg1 = ada_coerce_to_simple_array (arg1);
9061 arg2 = ada_coerce_to_simple_array (arg2);
9062
9063 arg1_type = ada_check_typedef (value_type (arg1));
9064 arg2_type = ada_check_typedef (value_type (arg2));
9065
9066 if (arg1_type->code () != TYPE_CODE_ARRAY
9067 || arg2_type->code () != TYPE_CODE_ARRAY)
9068 error (_("Attempt to compare array with non-array"));
9069 /* FIXME: The following works only for types whose
9070 representations use all bits (no padding or undefined bits)
9071 and do not have user-defined equality. */
9072 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9073 && memcmp (value_contents (arg1).data (),
9074 value_contents (arg2).data (),
9075 TYPE_LENGTH (arg1_type)) == 0);
9076 }
9077 return value_equal (arg1, arg2);
9078 }
9079
9080 namespace expr
9081 {
9082
9083 bool
9084 check_objfile (const std::unique_ptr<ada_component> &comp,
9085 struct objfile *objfile)
9086 {
9087 return comp->uses_objfile (objfile);
9088 }
9089
9090 /* Assign the result of evaluating ARG starting at *POS to the INDEXth
9091 component of LHS (a simple array or a record). Does not modify the
9092 inferior's memory, nor does it modify LHS (unless LHS ==
9093 CONTAINER). */
9094
9095 static void
9096 assign_component (struct value *container, struct value *lhs, LONGEST index,
9097 struct expression *exp, operation_up &arg)
9098 {
9099 scoped_value_mark mark;
9100
9101 struct value *elt;
9102 struct type *lhs_type = check_typedef (value_type (lhs));
9103
9104 if (lhs_type->code () == TYPE_CODE_ARRAY)
9105 {
9106 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9107 struct value *index_val = value_from_longest (index_type, index);
9108
9109 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9110 }
9111 else
9112 {
9113 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9114 elt = ada_to_fixed_value (elt);
9115 }
9116
9117 ada_aggregate_operation *ag_op
9118 = dynamic_cast<ada_aggregate_operation *> (arg.get ());
9119 if (ag_op != nullptr)
9120 ag_op->assign_aggregate (container, elt, exp);
9121 else
9122 value_assign_to_component (container, elt,
9123 arg->evaluate (nullptr, exp,
9124 EVAL_NORMAL));
9125 }
9126
9127 bool
9128 ada_aggregate_component::uses_objfile (struct objfile *objfile)
9129 {
9130 for (const auto &item : m_components)
9131 if (item->uses_objfile (objfile))
9132 return true;
9133 return false;
9134 }
9135
9136 void
9137 ada_aggregate_component::dump (ui_file *stream, int depth)
9138 {
9139 fprintf_filtered (stream, _("%*sAggregate\n"), depth, "");
9140 for (const auto &item : m_components)
9141 item->dump (stream, depth + 1);
9142 }
9143
9144 void
9145 ada_aggregate_component::assign (struct value *container,
9146 struct value *lhs, struct expression *exp,
9147 std::vector<LONGEST> &indices,
9148 LONGEST low, LONGEST high)
9149 {
9150 for (auto &item : m_components)
9151 item->assign (container, lhs, exp, indices, low, high);
9152 }
9153
9154 /* See ada-exp.h. */
9155
9156 value *
9157 ada_aggregate_operation::assign_aggregate (struct value *container,
9158 struct value *lhs,
9159 struct expression *exp)
9160 {
9161 struct type *lhs_type;
9162 LONGEST low_index, high_index;
9163
9164 container = ada_coerce_ref (container);
9165 if (ada_is_direct_array_type (value_type (container)))
9166 container = ada_coerce_to_simple_array (container);
9167 lhs = ada_coerce_ref (lhs);
9168 if (!deprecated_value_modifiable (lhs))
9169 error (_("Left operand of assignment is not a modifiable lvalue."));
9170
9171 lhs_type = check_typedef (value_type (lhs));
9172 if (ada_is_direct_array_type (lhs_type))
9173 {
9174 lhs = ada_coerce_to_simple_array (lhs);
9175 lhs_type = check_typedef (value_type (lhs));
9176 low_index = lhs_type->bounds ()->low.const_val ();
9177 high_index = lhs_type->bounds ()->high.const_val ();
9178 }
9179 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9180 {
9181 low_index = 0;
9182 high_index = num_visible_fields (lhs_type) - 1;
9183 }
9184 else
9185 error (_("Left-hand side must be array or record."));
9186
9187 std::vector<LONGEST> indices (4);
9188 indices[0] = indices[1] = low_index - 1;
9189 indices[2] = indices[3] = high_index + 1;
9190
9191 std::get<0> (m_storage)->assign (container, lhs, exp, indices,
9192 low_index, high_index);
9193
9194 return container;
9195 }
9196
9197 bool
9198 ada_positional_component::uses_objfile (struct objfile *objfile)
9199 {
9200 return m_op->uses_objfile (objfile);
9201 }
9202
9203 void
9204 ada_positional_component::dump (ui_file *stream, int depth)
9205 {
9206 fprintf_filtered (stream, _("%*sPositional, index = %d\n"),
9207 depth, "", m_index);
9208 m_op->dump (stream, depth + 1);
9209 }
9210
9211 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9212 construct, given that the positions are relative to lower bound
9213 LOW, where HIGH is the upper bound. Record the position in
9214 INDICES. CONTAINER is as for assign_aggregate. */
9215 void
9216 ada_positional_component::assign (struct value *container,
9217 struct value *lhs, struct expression *exp,
9218 std::vector<LONGEST> &indices,
9219 LONGEST low, LONGEST high)
9220 {
9221 LONGEST ind = m_index + low;
9222
9223 if (ind - 1 == high)
9224 warning (_("Extra components in aggregate ignored."));
9225 if (ind <= high)
9226 {
9227 add_component_interval (ind, ind, indices);
9228 assign_component (container, lhs, ind, exp, m_op);
9229 }
9230 }
9231
9232 bool
9233 ada_discrete_range_association::uses_objfile (struct objfile *objfile)
9234 {
9235 return m_low->uses_objfile (objfile) || m_high->uses_objfile (objfile);
9236 }
9237
9238 void
9239 ada_discrete_range_association::dump (ui_file *stream, int depth)
9240 {
9241 fprintf_filtered (stream, _("%*sDiscrete range:\n"), depth, "");
9242 m_low->dump (stream, depth + 1);
9243 m_high->dump (stream, depth + 1);
9244 }
9245
9246 void
9247 ada_discrete_range_association::assign (struct value *container,
9248 struct value *lhs,
9249 struct expression *exp,
9250 std::vector<LONGEST> &indices,
9251 LONGEST low, LONGEST high,
9252 operation_up &op)
9253 {
9254 LONGEST lower = value_as_long (m_low->evaluate (nullptr, exp, EVAL_NORMAL));
9255 LONGEST upper = value_as_long (m_high->evaluate (nullptr, exp, EVAL_NORMAL));
9256
9257 if (lower <= upper && (lower < low || upper > high))
9258 error (_("Index in component association out of bounds."));
9259
9260 add_component_interval (lower, upper, indices);
9261 while (lower <= upper)
9262 {
9263 assign_component (container, lhs, lower, exp, op);
9264 lower += 1;
9265 }
9266 }
9267
9268 bool
9269 ada_name_association::uses_objfile (struct objfile *objfile)
9270 {
9271 return m_val->uses_objfile (objfile);
9272 }
9273
9274 void
9275 ada_name_association::dump (ui_file *stream, int depth)
9276 {
9277 fprintf_filtered (stream, _("%*sName:\n"), depth, "");
9278 m_val->dump (stream, depth + 1);
9279 }
9280
9281 void
9282 ada_name_association::assign (struct value *container,
9283 struct value *lhs,
9284 struct expression *exp,
9285 std::vector<LONGEST> &indices,
9286 LONGEST low, LONGEST high,
9287 operation_up &op)
9288 {
9289 int index;
9290
9291 if (ada_is_direct_array_type (value_type (lhs)))
9292 index = longest_to_int (value_as_long (m_val->evaluate (nullptr, exp,
9293 EVAL_NORMAL)));
9294 else
9295 {
9296 ada_string_operation *strop
9297 = dynamic_cast<ada_string_operation *> (m_val.get ());
9298
9299 const char *name;
9300 if (strop != nullptr)
9301 name = strop->get_name ();
9302 else
9303 {
9304 ada_var_value_operation *vvo
9305 = dynamic_cast<ada_var_value_operation *> (m_val.get ());
9306 if (vvo != nullptr)
9307 error (_("Invalid record component association."));
9308 name = vvo->get_symbol ()->natural_name ();
9309 }
9310
9311 index = 0;
9312 if (! find_struct_field (name, value_type (lhs), 0,
9313 NULL, NULL, NULL, NULL, &index))
9314 error (_("Unknown component name: %s."), name);
9315 }
9316
9317 add_component_interval (index, index, indices);
9318 assign_component (container, lhs, index, exp, op);
9319 }
9320
9321 bool
9322 ada_choices_component::uses_objfile (struct objfile *objfile)
9323 {
9324 if (m_op->uses_objfile (objfile))
9325 return true;
9326 for (const auto &item : m_assocs)
9327 if (item->uses_objfile (objfile))
9328 return true;
9329 return false;
9330 }
9331
9332 void
9333 ada_choices_component::dump (ui_file *stream, int depth)
9334 {
9335 fprintf_filtered (stream, _("%*sChoices:\n"), depth, "");
9336 m_op->dump (stream, depth + 1);
9337 for (const auto &item : m_assocs)
9338 item->dump (stream, depth + 1);
9339 }
9340
9341 /* Assign into the components of LHS indexed by the OP_CHOICES
9342 construct at *POS, updating *POS past the construct, given that
9343 the allowable indices are LOW..HIGH. Record the indices assigned
9344 to in INDICES. CONTAINER is as for assign_aggregate. */
9345 void
9346 ada_choices_component::assign (struct value *container,
9347 struct value *lhs, struct expression *exp,
9348 std::vector<LONGEST> &indices,
9349 LONGEST low, LONGEST high)
9350 {
9351 for (auto &item : m_assocs)
9352 item->assign (container, lhs, exp, indices, low, high, m_op);
9353 }
9354
9355 bool
9356 ada_others_component::uses_objfile (struct objfile *objfile)
9357 {
9358 return m_op->uses_objfile (objfile);
9359 }
9360
9361 void
9362 ada_others_component::dump (ui_file *stream, int depth)
9363 {
9364 fprintf_filtered (stream, _("%*sOthers:\n"), depth, "");
9365 m_op->dump (stream, depth + 1);
9366 }
9367
9368 /* Assign the value of the expression in the OP_OTHERS construct in
9369 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9370 have not been previously assigned. The index intervals already assigned
9371 are in INDICES. CONTAINER is as for assign_aggregate. */
9372 void
9373 ada_others_component::assign (struct value *container,
9374 struct value *lhs, struct expression *exp,
9375 std::vector<LONGEST> &indices,
9376 LONGEST low, LONGEST high)
9377 {
9378 int num_indices = indices.size ();
9379 for (int i = 0; i < num_indices - 2; i += 2)
9380 {
9381 for (LONGEST ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9382 assign_component (container, lhs, ind, exp, m_op);
9383 }
9384 }
9385
9386 struct value *
9387 ada_assign_operation::evaluate (struct type *expect_type,
9388 struct expression *exp,
9389 enum noside noside)
9390 {
9391 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
9392
9393 ada_aggregate_operation *ag_op
9394 = dynamic_cast<ada_aggregate_operation *> (std::get<1> (m_storage).get ());
9395 if (ag_op != nullptr)
9396 {
9397 if (noside != EVAL_NORMAL)
9398 return arg1;
9399
9400 arg1 = ag_op->assign_aggregate (arg1, arg1, exp);
9401 return ada_value_assign (arg1, arg1);
9402 }
9403 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9404 except if the lhs of our assignment is a convenience variable.
9405 In the case of assigning to a convenience variable, the lhs
9406 should be exactly the result of the evaluation of the rhs. */
9407 struct type *type = value_type (arg1);
9408 if (VALUE_LVAL (arg1) == lval_internalvar)
9409 type = NULL;
9410 value *arg2 = std::get<1> (m_storage)->evaluate (type, exp, noside);
9411 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9412 return arg1;
9413 if (VALUE_LVAL (arg1) == lval_internalvar)
9414 {
9415 /* Nothing. */
9416 }
9417 else
9418 arg2 = coerce_for_assign (value_type (arg1), arg2);
9419 return ada_value_assign (arg1, arg2);
9420 }
9421
9422 } /* namespace expr */
9423
9424 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9425 [ INDICES[0] .. INDICES[1] ],... The resulting intervals do not
9426 overlap. */
9427 static void
9428 add_component_interval (LONGEST low, LONGEST high,
9429 std::vector<LONGEST> &indices)
9430 {
9431 int i, j;
9432
9433 int size = indices.size ();
9434 for (i = 0; i < size; i += 2) {
9435 if (high >= indices[i] && low <= indices[i + 1])
9436 {
9437 int kh;
9438
9439 for (kh = i + 2; kh < size; kh += 2)
9440 if (high < indices[kh])
9441 break;
9442 if (low < indices[i])
9443 indices[i] = low;
9444 indices[i + 1] = indices[kh - 1];
9445 if (high > indices[i + 1])
9446 indices[i + 1] = high;
9447 memcpy (indices.data () + i + 2, indices.data () + kh, size - kh);
9448 indices.resize (kh - i - 2);
9449 return;
9450 }
9451 else if (high < indices[i])
9452 break;
9453 }
9454
9455 indices.resize (indices.size () + 2);
9456 for (j = indices.size () - 1; j >= i + 2; j -= 1)
9457 indices[j] = indices[j - 2];
9458 indices[i] = low;
9459 indices[i + 1] = high;
9460 }
9461
9462 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9463 is different. */
9464
9465 static struct value *
9466 ada_value_cast (struct type *type, struct value *arg2)
9467 {
9468 if (type == ada_check_typedef (value_type (arg2)))
9469 return arg2;
9470
9471 return value_cast (type, arg2);
9472 }
9473
9474 /* Evaluating Ada expressions, and printing their result.
9475 ------------------------------------------------------
9476
9477 1. Introduction:
9478 ----------------
9479
9480 We usually evaluate an Ada expression in order to print its value.
9481 We also evaluate an expression in order to print its type, which
9482 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9483 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9484 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9485 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9486 similar.
9487
9488 Evaluating expressions is a little more complicated for Ada entities
9489 than it is for entities in languages such as C. The main reason for
9490 this is that Ada provides types whose definition might be dynamic.
9491 One example of such types is variant records. Or another example
9492 would be an array whose bounds can only be known at run time.
9493
9494 The following description is a general guide as to what should be
9495 done (and what should NOT be done) in order to evaluate an expression
9496 involving such types, and when. This does not cover how the semantic
9497 information is encoded by GNAT as this is covered separatly. For the
9498 document used as the reference for the GNAT encoding, see exp_dbug.ads
9499 in the GNAT sources.
9500
9501 Ideally, we should embed each part of this description next to its
9502 associated code. Unfortunately, the amount of code is so vast right
9503 now that it's hard to see whether the code handling a particular
9504 situation might be duplicated or not. One day, when the code is
9505 cleaned up, this guide might become redundant with the comments
9506 inserted in the code, and we might want to remove it.
9507
9508 2. ``Fixing'' an Entity, the Simple Case:
9509 -----------------------------------------
9510
9511 When evaluating Ada expressions, the tricky issue is that they may
9512 reference entities whose type contents and size are not statically
9513 known. Consider for instance a variant record:
9514
9515 type Rec (Empty : Boolean := True) is record
9516 case Empty is
9517 when True => null;
9518 when False => Value : Integer;
9519 end case;
9520 end record;
9521 Yes : Rec := (Empty => False, Value => 1);
9522 No : Rec := (empty => True);
9523
9524 The size and contents of that record depends on the value of the
9525 descriminant (Rec.Empty). At this point, neither the debugging
9526 information nor the associated type structure in GDB are able to
9527 express such dynamic types. So what the debugger does is to create
9528 "fixed" versions of the type that applies to the specific object.
9529 We also informally refer to this operation as "fixing" an object,
9530 which means creating its associated fixed type.
9531
9532 Example: when printing the value of variable "Yes" above, its fixed
9533 type would look like this:
9534
9535 type Rec is record
9536 Empty : Boolean;
9537 Value : Integer;
9538 end record;
9539
9540 On the other hand, if we printed the value of "No", its fixed type
9541 would become:
9542
9543 type Rec is record
9544 Empty : Boolean;
9545 end record;
9546
9547 Things become a little more complicated when trying to fix an entity
9548 with a dynamic type that directly contains another dynamic type,
9549 such as an array of variant records, for instance. There are
9550 two possible cases: Arrays, and records.
9551
9552 3. ``Fixing'' Arrays:
9553 ---------------------
9554
9555 The type structure in GDB describes an array in terms of its bounds,
9556 and the type of its elements. By design, all elements in the array
9557 have the same type and we cannot represent an array of variant elements
9558 using the current type structure in GDB. When fixing an array,
9559 we cannot fix the array element, as we would potentially need one
9560 fixed type per element of the array. As a result, the best we can do
9561 when fixing an array is to produce an array whose bounds and size
9562 are correct (allowing us to read it from memory), but without having
9563 touched its element type. Fixing each element will be done later,
9564 when (if) necessary.
9565
9566 Arrays are a little simpler to handle than records, because the same
9567 amount of memory is allocated for each element of the array, even if
9568 the amount of space actually used by each element differs from element
9569 to element. Consider for instance the following array of type Rec:
9570
9571 type Rec_Array is array (1 .. 2) of Rec;
9572
9573 The actual amount of memory occupied by each element might be different
9574 from element to element, depending on the value of their discriminant.
9575 But the amount of space reserved for each element in the array remains
9576 fixed regardless. So we simply need to compute that size using
9577 the debugging information available, from which we can then determine
9578 the array size (we multiply the number of elements of the array by
9579 the size of each element).
9580
9581 The simplest case is when we have an array of a constrained element
9582 type. For instance, consider the following type declarations:
9583
9584 type Bounded_String (Max_Size : Integer) is
9585 Length : Integer;
9586 Buffer : String (1 .. Max_Size);
9587 end record;
9588 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9589
9590 In this case, the compiler describes the array as an array of
9591 variable-size elements (identified by its XVS suffix) for which
9592 the size can be read in the parallel XVZ variable.
9593
9594 In the case of an array of an unconstrained element type, the compiler
9595 wraps the array element inside a private PAD type. This type should not
9596 be shown to the user, and must be "unwrap"'ed before printing. Note
9597 that we also use the adjective "aligner" in our code to designate
9598 these wrapper types.
9599
9600 In some cases, the size allocated for each element is statically
9601 known. In that case, the PAD type already has the correct size,
9602 and the array element should remain unfixed.
9603
9604 But there are cases when this size is not statically known.
9605 For instance, assuming that "Five" is an integer variable:
9606
9607 type Dynamic is array (1 .. Five) of Integer;
9608 type Wrapper (Has_Length : Boolean := False) is record
9609 Data : Dynamic;
9610 case Has_Length is
9611 when True => Length : Integer;
9612 when False => null;
9613 end case;
9614 end record;
9615 type Wrapper_Array is array (1 .. 2) of Wrapper;
9616
9617 Hello : Wrapper_Array := (others => (Has_Length => True,
9618 Data => (others => 17),
9619 Length => 1));
9620
9621
9622 The debugging info would describe variable Hello as being an
9623 array of a PAD type. The size of that PAD type is not statically
9624 known, but can be determined using a parallel XVZ variable.
9625 In that case, a copy of the PAD type with the correct size should
9626 be used for the fixed array.
9627
9628 3. ``Fixing'' record type objects:
9629 ----------------------------------
9630
9631 Things are slightly different from arrays in the case of dynamic
9632 record types. In this case, in order to compute the associated
9633 fixed type, we need to determine the size and offset of each of
9634 its components. This, in turn, requires us to compute the fixed
9635 type of each of these components.
9636
9637 Consider for instance the example:
9638
9639 type Bounded_String (Max_Size : Natural) is record
9640 Str : String (1 .. Max_Size);
9641 Length : Natural;
9642 end record;
9643 My_String : Bounded_String (Max_Size => 10);
9644
9645 In that case, the position of field "Length" depends on the size
9646 of field Str, which itself depends on the value of the Max_Size
9647 discriminant. In order to fix the type of variable My_String,
9648 we need to fix the type of field Str. Therefore, fixing a variant
9649 record requires us to fix each of its components.
9650
9651 However, if a component does not have a dynamic size, the component
9652 should not be fixed. In particular, fields that use a PAD type
9653 should not fixed. Here is an example where this might happen
9654 (assuming type Rec above):
9655
9656 type Container (Big : Boolean) is record
9657 First : Rec;
9658 After : Integer;
9659 case Big is
9660 when True => Another : Integer;
9661 when False => null;
9662 end case;
9663 end record;
9664 My_Container : Container := (Big => False,
9665 First => (Empty => True),
9666 After => 42);
9667
9668 In that example, the compiler creates a PAD type for component First,
9669 whose size is constant, and then positions the component After just
9670 right after it. The offset of component After is therefore constant
9671 in this case.
9672
9673 The debugger computes the position of each field based on an algorithm
9674 that uses, among other things, the actual position and size of the field
9675 preceding it. Let's now imagine that the user is trying to print
9676 the value of My_Container. If the type fixing was recursive, we would
9677 end up computing the offset of field After based on the size of the
9678 fixed version of field First. And since in our example First has
9679 only one actual field, the size of the fixed type is actually smaller
9680 than the amount of space allocated to that field, and thus we would
9681 compute the wrong offset of field After.
9682
9683 To make things more complicated, we need to watch out for dynamic
9684 components of variant records (identified by the ___XVL suffix in
9685 the component name). Even if the target type is a PAD type, the size
9686 of that type might not be statically known. So the PAD type needs
9687 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9688 we might end up with the wrong size for our component. This can be
9689 observed with the following type declarations:
9690
9691 type Octal is new Integer range 0 .. 7;
9692 type Octal_Array is array (Positive range <>) of Octal;
9693 pragma Pack (Octal_Array);
9694
9695 type Octal_Buffer (Size : Positive) is record
9696 Buffer : Octal_Array (1 .. Size);
9697 Length : Integer;
9698 end record;
9699
9700 In that case, Buffer is a PAD type whose size is unset and needs
9701 to be computed by fixing the unwrapped type.
9702
9703 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9704 ----------------------------------------------------------
9705
9706 Lastly, when should the sub-elements of an entity that remained unfixed
9707 thus far, be actually fixed?
9708
9709 The answer is: Only when referencing that element. For instance
9710 when selecting one component of a record, this specific component
9711 should be fixed at that point in time. Or when printing the value
9712 of a record, each component should be fixed before its value gets
9713 printed. Similarly for arrays, the element of the array should be
9714 fixed when printing each element of the array, or when extracting
9715 one element out of that array. On the other hand, fixing should
9716 not be performed on the elements when taking a slice of an array!
9717
9718 Note that one of the side effects of miscomputing the offset and
9719 size of each field is that we end up also miscomputing the size
9720 of the containing type. This can have adverse results when computing
9721 the value of an entity. GDB fetches the value of an entity based
9722 on the size of its type, and thus a wrong size causes GDB to fetch
9723 the wrong amount of memory. In the case where the computed size is
9724 too small, GDB fetches too little data to print the value of our
9725 entity. Results in this case are unpredictable, as we usually read
9726 past the buffer containing the data =:-o. */
9727
9728 /* A helper function for TERNOP_IN_RANGE. */
9729
9730 static value *
9731 eval_ternop_in_range (struct type *expect_type, struct expression *exp,
9732 enum noside noside,
9733 value *arg1, value *arg2, value *arg3)
9734 {
9735 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9736 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9737 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9738 return
9739 value_from_longest (type,
9740 (value_less (arg1, arg3)
9741 || value_equal (arg1, arg3))
9742 && (value_less (arg2, arg1)
9743 || value_equal (arg2, arg1)));
9744 }
9745
9746 /* A helper function for UNOP_NEG. */
9747
9748 value *
9749 ada_unop_neg (struct type *expect_type,
9750 struct expression *exp,
9751 enum noside noside, enum exp_opcode op,
9752 struct value *arg1)
9753 {
9754 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9755 return value_neg (arg1);
9756 }
9757
9758 /* A helper function for UNOP_IN_RANGE. */
9759
9760 value *
9761 ada_unop_in_range (struct type *expect_type,
9762 struct expression *exp,
9763 enum noside noside, enum exp_opcode op,
9764 struct value *arg1, struct type *type)
9765 {
9766 struct value *arg2, *arg3;
9767 switch (type->code ())
9768 {
9769 default:
9770 lim_warning (_("Membership test incompletely implemented; "
9771 "always returns true"));
9772 type = language_bool_type (exp->language_defn, exp->gdbarch);
9773 return value_from_longest (type, (LONGEST) 1);
9774
9775 case TYPE_CODE_RANGE:
9776 arg2 = value_from_longest (type,
9777 type->bounds ()->low.const_val ());
9778 arg3 = value_from_longest (type,
9779 type->bounds ()->high.const_val ());
9780 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9781 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9782 type = language_bool_type (exp->language_defn, exp->gdbarch);
9783 return
9784 value_from_longest (type,
9785 (value_less (arg1, arg3)
9786 || value_equal (arg1, arg3))
9787 && (value_less (arg2, arg1)
9788 || value_equal (arg2, arg1)));
9789 }
9790 }
9791
9792 /* A helper function for OP_ATR_TAG. */
9793
9794 value *
9795 ada_atr_tag (struct type *expect_type,
9796 struct expression *exp,
9797 enum noside noside, enum exp_opcode op,
9798 struct value *arg1)
9799 {
9800 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9801 return value_zero (ada_tag_type (arg1), not_lval);
9802
9803 return ada_value_tag (arg1);
9804 }
9805
9806 /* A helper function for OP_ATR_SIZE. */
9807
9808 value *
9809 ada_atr_size (struct type *expect_type,
9810 struct expression *exp,
9811 enum noside noside, enum exp_opcode op,
9812 struct value *arg1)
9813 {
9814 struct type *type = value_type (arg1);
9815
9816 /* If the argument is a reference, then dereference its type, since
9817 the user is really asking for the size of the actual object,
9818 not the size of the pointer. */
9819 if (type->code () == TYPE_CODE_REF)
9820 type = TYPE_TARGET_TYPE (type);
9821
9822 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9823 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
9824 else
9825 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
9826 TARGET_CHAR_BIT * TYPE_LENGTH (type));
9827 }
9828
9829 /* A helper function for UNOP_ABS. */
9830
9831 value *
9832 ada_abs (struct type *expect_type,
9833 struct expression *exp,
9834 enum noside noside, enum exp_opcode op,
9835 struct value *arg1)
9836 {
9837 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9838 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
9839 return value_neg (arg1);
9840 else
9841 return arg1;
9842 }
9843
9844 /* A helper function for BINOP_MUL. */
9845
9846 value *
9847 ada_mult_binop (struct type *expect_type,
9848 struct expression *exp,
9849 enum noside noside, enum exp_opcode op,
9850 struct value *arg1, struct value *arg2)
9851 {
9852 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9853 {
9854 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9855 return value_zero (value_type (arg1), not_lval);
9856 }
9857 else
9858 {
9859 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9860 return ada_value_binop (arg1, arg2, op);
9861 }
9862 }
9863
9864 /* A helper function for BINOP_EQUAL and BINOP_NOTEQUAL. */
9865
9866 value *
9867 ada_equal_binop (struct type *expect_type,
9868 struct expression *exp,
9869 enum noside noside, enum exp_opcode op,
9870 struct value *arg1, struct value *arg2)
9871 {
9872 int tem;
9873 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9874 tem = 0;
9875 else
9876 {
9877 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9878 tem = ada_value_equal (arg1, arg2);
9879 }
9880 if (op == BINOP_NOTEQUAL)
9881 tem = !tem;
9882 struct type *type = language_bool_type (exp->language_defn, exp->gdbarch);
9883 return value_from_longest (type, (LONGEST) tem);
9884 }
9885
9886 /* A helper function for TERNOP_SLICE. */
9887
9888 value *
9889 ada_ternop_slice (struct expression *exp,
9890 enum noside noside,
9891 struct value *array, struct value *low_bound_val,
9892 struct value *high_bound_val)
9893 {
9894 LONGEST low_bound;
9895 LONGEST high_bound;
9896
9897 low_bound_val = coerce_ref (low_bound_val);
9898 high_bound_val = coerce_ref (high_bound_val);
9899 low_bound = value_as_long (low_bound_val);
9900 high_bound = value_as_long (high_bound_val);
9901
9902 /* If this is a reference to an aligner type, then remove all
9903 the aligners. */
9904 if (value_type (array)->code () == TYPE_CODE_REF
9905 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9906 TYPE_TARGET_TYPE (value_type (array)) =
9907 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9908
9909 if (ada_is_any_packed_array_type (value_type (array)))
9910 error (_("cannot slice a packed array"));
9911
9912 /* If this is a reference to an array or an array lvalue,
9913 convert to a pointer. */
9914 if (value_type (array)->code () == TYPE_CODE_REF
9915 || (value_type (array)->code () == TYPE_CODE_ARRAY
9916 && VALUE_LVAL (array) == lval_memory))
9917 array = value_addr (array);
9918
9919 if (noside == EVAL_AVOID_SIDE_EFFECTS
9920 && ada_is_array_descriptor_type (ada_check_typedef
9921 (value_type (array))))
9922 return empty_array (ada_type_of_array (array, 0), low_bound,
9923 high_bound);
9924
9925 array = ada_coerce_to_simple_array_ptr (array);
9926
9927 /* If we have more than one level of pointer indirection,
9928 dereference the value until we get only one level. */
9929 while (value_type (array)->code () == TYPE_CODE_PTR
9930 && (TYPE_TARGET_TYPE (value_type (array))->code ()
9931 == TYPE_CODE_PTR))
9932 array = value_ind (array);
9933
9934 /* Make sure we really do have an array type before going further,
9935 to avoid a SEGV when trying to get the index type or the target
9936 type later down the road if the debug info generated by
9937 the compiler is incorrect or incomplete. */
9938 if (!ada_is_simple_array_type (value_type (array)))
9939 error (_("cannot take slice of non-array"));
9940
9941 if (ada_check_typedef (value_type (array))->code ()
9942 == TYPE_CODE_PTR)
9943 {
9944 struct type *type0 = ada_check_typedef (value_type (array));
9945
9946 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9947 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
9948 else
9949 {
9950 struct type *arr_type0 =
9951 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9952
9953 return ada_value_slice_from_ptr (array, arr_type0,
9954 longest_to_int (low_bound),
9955 longest_to_int (high_bound));
9956 }
9957 }
9958 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9959 return array;
9960 else if (high_bound < low_bound)
9961 return empty_array (value_type (array), low_bound, high_bound);
9962 else
9963 return ada_value_slice (array, longest_to_int (low_bound),
9964 longest_to_int (high_bound));
9965 }
9966
9967 /* A helper function for BINOP_IN_BOUNDS. */
9968
9969 value *
9970 ada_binop_in_bounds (struct expression *exp, enum noside noside,
9971 struct value *arg1, struct value *arg2, int n)
9972 {
9973 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9974 {
9975 struct type *type = language_bool_type (exp->language_defn,
9976 exp->gdbarch);
9977 return value_zero (type, not_lval);
9978 }
9979
9980 struct type *type = ada_index_type (value_type (arg2), n, "range");
9981 if (!type)
9982 type = value_type (arg1);
9983
9984 value *arg3 = value_from_longest (type, ada_array_bound (arg2, n, 1));
9985 arg2 = value_from_longest (type, ada_array_bound (arg2, n, 0));
9986
9987 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9988 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9989 type = language_bool_type (exp->language_defn, exp->gdbarch);
9990 return value_from_longest (type,
9991 (value_less (arg1, arg3)
9992 || value_equal (arg1, arg3))
9993 && (value_less (arg2, arg1)
9994 || value_equal (arg2, arg1)));
9995 }
9996
9997 /* A helper function for some attribute operations. */
9998
9999 static value *
10000 ada_unop_atr (struct expression *exp, enum noside noside, enum exp_opcode op,
10001 struct value *arg1, struct type *type_arg, int tem)
10002 {
10003 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10004 {
10005 if (type_arg == NULL)
10006 type_arg = value_type (arg1);
10007
10008 if (ada_is_constrained_packed_array_type (type_arg))
10009 type_arg = decode_constrained_packed_array_type (type_arg);
10010
10011 if (!discrete_type_p (type_arg))
10012 {
10013 switch (op)
10014 {
10015 default: /* Should never happen. */
10016 error (_("unexpected attribute encountered"));
10017 case OP_ATR_FIRST:
10018 case OP_ATR_LAST:
10019 type_arg = ada_index_type (type_arg, tem,
10020 ada_attribute_name (op));
10021 break;
10022 case OP_ATR_LENGTH:
10023 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10024 break;
10025 }
10026 }
10027
10028 return value_zero (type_arg, not_lval);
10029 }
10030 else if (type_arg == NULL)
10031 {
10032 arg1 = ada_coerce_ref (arg1);
10033
10034 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10035 arg1 = ada_coerce_to_simple_array (arg1);
10036
10037 struct type *type;
10038 if (op == OP_ATR_LENGTH)
10039 type = builtin_type (exp->gdbarch)->builtin_int;
10040 else
10041 {
10042 type = ada_index_type (value_type (arg1), tem,
10043 ada_attribute_name (op));
10044 if (type == NULL)
10045 type = builtin_type (exp->gdbarch)->builtin_int;
10046 }
10047
10048 switch (op)
10049 {
10050 default: /* Should never happen. */
10051 error (_("unexpected attribute encountered"));
10052 case OP_ATR_FIRST:
10053 return value_from_longest
10054 (type, ada_array_bound (arg1, tem, 0));
10055 case OP_ATR_LAST:
10056 return value_from_longest
10057 (type, ada_array_bound (arg1, tem, 1));
10058 case OP_ATR_LENGTH:
10059 return value_from_longest
10060 (type, ada_array_length (arg1, tem));
10061 }
10062 }
10063 else if (discrete_type_p (type_arg))
10064 {
10065 struct type *range_type;
10066 const char *name = ada_type_name (type_arg);
10067
10068 range_type = NULL;
10069 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10070 range_type = to_fixed_range_type (type_arg, NULL);
10071 if (range_type == NULL)
10072 range_type = type_arg;
10073 switch (op)
10074 {
10075 default:
10076 error (_("unexpected attribute encountered"));
10077 case OP_ATR_FIRST:
10078 return value_from_longest
10079 (range_type, ada_discrete_type_low_bound (range_type));
10080 case OP_ATR_LAST:
10081 return value_from_longest
10082 (range_type, ada_discrete_type_high_bound (range_type));
10083 case OP_ATR_LENGTH:
10084 error (_("the 'length attribute applies only to array types"));
10085 }
10086 }
10087 else if (type_arg->code () == TYPE_CODE_FLT)
10088 error (_("unimplemented type attribute"));
10089 else
10090 {
10091 LONGEST low, high;
10092
10093 if (ada_is_constrained_packed_array_type (type_arg))
10094 type_arg = decode_constrained_packed_array_type (type_arg);
10095
10096 struct type *type;
10097 if (op == OP_ATR_LENGTH)
10098 type = builtin_type (exp->gdbarch)->builtin_int;
10099 else
10100 {
10101 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10102 if (type == NULL)
10103 type = builtin_type (exp->gdbarch)->builtin_int;
10104 }
10105
10106 switch (op)
10107 {
10108 default:
10109 error (_("unexpected attribute encountered"));
10110 case OP_ATR_FIRST:
10111 low = ada_array_bound_from_type (type_arg, tem, 0);
10112 return value_from_longest (type, low);
10113 case OP_ATR_LAST:
10114 high = ada_array_bound_from_type (type_arg, tem, 1);
10115 return value_from_longest (type, high);
10116 case OP_ATR_LENGTH:
10117 low = ada_array_bound_from_type (type_arg, tem, 0);
10118 high = ada_array_bound_from_type (type_arg, tem, 1);
10119 return value_from_longest (type, high - low + 1);
10120 }
10121 }
10122 }
10123
10124 /* A helper function for OP_ATR_MIN and OP_ATR_MAX. */
10125
10126 struct value *
10127 ada_binop_minmax (struct type *expect_type,
10128 struct expression *exp,
10129 enum noside noside, enum exp_opcode op,
10130 struct value *arg1, struct value *arg2)
10131 {
10132 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10133 return value_zero (value_type (arg1), not_lval);
10134 else
10135 {
10136 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10137 return value_binop (arg1, arg2, op);
10138 }
10139 }
10140
10141 /* A helper function for BINOP_EXP. */
10142
10143 struct value *
10144 ada_binop_exp (struct type *expect_type,
10145 struct expression *exp,
10146 enum noside noside, enum exp_opcode op,
10147 struct value *arg1, struct value *arg2)
10148 {
10149 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10150 return value_zero (value_type (arg1), not_lval);
10151 else
10152 {
10153 /* For integer exponentiation operations,
10154 only promote the first argument. */
10155 if (is_integral_type (value_type (arg2)))
10156 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10157 else
10158 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10159
10160 return value_binop (arg1, arg2, op);
10161 }
10162 }
10163
10164 namespace expr
10165 {
10166
10167 /* See ada-exp.h. */
10168
10169 operation_up
10170 ada_resolvable::replace (operation_up &&owner,
10171 struct expression *exp,
10172 bool deprocedure_p,
10173 bool parse_completion,
10174 innermost_block_tracker *tracker,
10175 struct type *context_type)
10176 {
10177 if (resolve (exp, deprocedure_p, parse_completion, tracker, context_type))
10178 return (make_operation<ada_funcall_operation>
10179 (std::move (owner),
10180 std::vector<operation_up> ()));
10181 return std::move (owner);
10182 }
10183
10184 /* Convert the character literal whose ASCII value would be VAL to the
10185 appropriate value of type TYPE, if there is a translation.
10186 Otherwise return VAL. Hence, in an enumeration type ('A', 'B'),
10187 the literal 'A' (VAL == 65), returns 0. */
10188
10189 static LONGEST
10190 convert_char_literal (struct type *type, LONGEST val)
10191 {
10192 char name[7];
10193 int f;
10194
10195 if (type == NULL)
10196 return val;
10197 type = check_typedef (type);
10198 if (type->code () != TYPE_CODE_ENUM)
10199 return val;
10200
10201 if ((val >= 'a' && val <= 'z') || (val >= '0' && val <= '9'))
10202 xsnprintf (name, sizeof (name), "Q%c", (int) val);
10203 else
10204 xsnprintf (name, sizeof (name), "QU%02x", (int) val);
10205 size_t len = strlen (name);
10206 for (f = 0; f < type->num_fields (); f += 1)
10207 {
10208 /* Check the suffix because an enum constant in a package will
10209 have a name like "pkg__QUxx". This is safe enough because we
10210 already have the correct type, and because mangling means
10211 there can't be clashes. */
10212 const char *ename = type->field (f).name ();
10213 size_t elen = strlen (ename);
10214
10215 if (elen >= len && strcmp (name, ename + elen - len) == 0)
10216 return type->field (f).loc_enumval ();
10217 }
10218 return val;
10219 }
10220
10221 /* See ada-exp.h. */
10222
10223 operation_up
10224 ada_char_operation::replace (operation_up &&owner,
10225 struct expression *exp,
10226 bool deprocedure_p,
10227 bool parse_completion,
10228 innermost_block_tracker *tracker,
10229 struct type *context_type)
10230 {
10231 operation_up result = std::move (owner);
10232
10233 if (context_type != nullptr && context_type->code () == TYPE_CODE_ENUM)
10234 {
10235 gdb_assert (result.get () == this);
10236 std::get<0> (m_storage) = context_type;
10237 std::get<1> (m_storage)
10238 = convert_char_literal (context_type, std::get<1> (m_storage));
10239 }
10240
10241 return make_operation<ada_wrapped_operation> (std::move (result));
10242 }
10243
10244 value *
10245 ada_wrapped_operation::evaluate (struct type *expect_type,
10246 struct expression *exp,
10247 enum noside noside)
10248 {
10249 value *result = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10250 if (noside == EVAL_NORMAL)
10251 result = unwrap_value (result);
10252
10253 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10254 then we need to perform the conversion manually, because
10255 evaluate_subexp_standard doesn't do it. This conversion is
10256 necessary in Ada because the different kinds of float/fixed
10257 types in Ada have different representations.
10258
10259 Similarly, we need to perform the conversion from OP_LONG
10260 ourselves. */
10261 if ((opcode () == OP_FLOAT || opcode () == OP_LONG) && expect_type != NULL)
10262 result = ada_value_cast (expect_type, result);
10263
10264 return result;
10265 }
10266
10267 value *
10268 ada_string_operation::evaluate (struct type *expect_type,
10269 struct expression *exp,
10270 enum noside noside)
10271 {
10272 value *result = string_operation::evaluate (expect_type, exp, noside);
10273 /* The result type will have code OP_STRING, bashed there from
10274 OP_ARRAY. Bash it back. */
10275 if (value_type (result)->code () == TYPE_CODE_STRING)
10276 value_type (result)->set_code (TYPE_CODE_ARRAY);
10277 return result;
10278 }
10279
10280 value *
10281 ada_qual_operation::evaluate (struct type *expect_type,
10282 struct expression *exp,
10283 enum noside noside)
10284 {
10285 struct type *type = std::get<1> (m_storage);
10286 return std::get<0> (m_storage)->evaluate (type, exp, noside);
10287 }
10288
10289 value *
10290 ada_ternop_range_operation::evaluate (struct type *expect_type,
10291 struct expression *exp,
10292 enum noside noside)
10293 {
10294 value *arg0 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10295 value *arg1 = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10296 value *arg2 = std::get<2> (m_storage)->evaluate (nullptr, exp, noside);
10297 return eval_ternop_in_range (expect_type, exp, noside, arg0, arg1, arg2);
10298 }
10299
10300 value *
10301 ada_binop_addsub_operation::evaluate (struct type *expect_type,
10302 struct expression *exp,
10303 enum noside noside)
10304 {
10305 value *arg1 = std::get<1> (m_storage)->evaluate_with_coercion (exp, noside);
10306 value *arg2 = std::get<2> (m_storage)->evaluate_with_coercion (exp, noside);
10307
10308 auto do_op = [=] (LONGEST x, LONGEST y)
10309 {
10310 if (std::get<0> (m_storage) == BINOP_ADD)
10311 return x + y;
10312 return x - y;
10313 };
10314
10315 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10316 return (value_from_longest
10317 (value_type (arg1),
10318 do_op (value_as_long (arg1), value_as_long (arg2))));
10319 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10320 return (value_from_longest
10321 (value_type (arg2),
10322 do_op (value_as_long (arg1), value_as_long (arg2))));
10323 /* Preserve the original type for use by the range case below.
10324 We cannot cast the result to a reference type, so if ARG1 is
10325 a reference type, find its underlying type. */
10326 struct type *type = value_type (arg1);
10327 while (type->code () == TYPE_CODE_REF)
10328 type = TYPE_TARGET_TYPE (type);
10329 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10330 arg1 = value_binop (arg1, arg2, std::get<0> (m_storage));
10331 /* We need to special-case the result with a range.
10332 This is done for the benefit of "ptype". gdb's Ada support
10333 historically used the LHS to set the result type here, so
10334 preserve this behavior. */
10335 if (type->code () == TYPE_CODE_RANGE)
10336 arg1 = value_cast (type, arg1);
10337 return arg1;
10338 }
10339
10340 value *
10341 ada_unop_atr_operation::evaluate (struct type *expect_type,
10342 struct expression *exp,
10343 enum noside noside)
10344 {
10345 struct type *type_arg = nullptr;
10346 value *val = nullptr;
10347
10348 if (std::get<0> (m_storage)->opcode () == OP_TYPE)
10349 {
10350 value *tem = std::get<0> (m_storage)->evaluate (nullptr, exp,
10351 EVAL_AVOID_SIDE_EFFECTS);
10352 type_arg = value_type (tem);
10353 }
10354 else
10355 val = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10356
10357 return ada_unop_atr (exp, noside, std::get<1> (m_storage),
10358 val, type_arg, std::get<2> (m_storage));
10359 }
10360
10361 value *
10362 ada_var_msym_value_operation::evaluate_for_cast (struct type *expect_type,
10363 struct expression *exp,
10364 enum noside noside)
10365 {
10366 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10367 return value_zero (expect_type, not_lval);
10368
10369 const bound_minimal_symbol &b = std::get<0> (m_storage);
10370 value *val = evaluate_var_msym_value (noside, b.objfile, b.minsym);
10371
10372 val = ada_value_cast (expect_type, val);
10373
10374 /* Follow the Ada language semantics that do not allow taking
10375 an address of the result of a cast (view conversion in Ada). */
10376 if (VALUE_LVAL (val) == lval_memory)
10377 {
10378 if (value_lazy (val))
10379 value_fetch_lazy (val);
10380 VALUE_LVAL (val) = not_lval;
10381 }
10382 return val;
10383 }
10384
10385 value *
10386 ada_var_value_operation::evaluate_for_cast (struct type *expect_type,
10387 struct expression *exp,
10388 enum noside noside)
10389 {
10390 value *val = evaluate_var_value (noside,
10391 std::get<0> (m_storage).block,
10392 std::get<0> (m_storage).symbol);
10393
10394 val = ada_value_cast (expect_type, val);
10395
10396 /* Follow the Ada language semantics that do not allow taking
10397 an address of the result of a cast (view conversion in Ada). */
10398 if (VALUE_LVAL (val) == lval_memory)
10399 {
10400 if (value_lazy (val))
10401 value_fetch_lazy (val);
10402 VALUE_LVAL (val) = not_lval;
10403 }
10404 return val;
10405 }
10406
10407 value *
10408 ada_var_value_operation::evaluate (struct type *expect_type,
10409 struct expression *exp,
10410 enum noside noside)
10411 {
10412 symbol *sym = std::get<0> (m_storage).symbol;
10413
10414 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10415 /* Only encountered when an unresolved symbol occurs in a
10416 context other than a function call, in which case, it is
10417 invalid. */
10418 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10419 sym->print_name ());
10420
10421 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10422 {
10423 struct type *type = static_unwrap_type (SYMBOL_TYPE (sym));
10424 /* Check to see if this is a tagged type. We also need to handle
10425 the case where the type is a reference to a tagged type, but
10426 we have to be careful to exclude pointers to tagged types.
10427 The latter should be shown as usual (as a pointer), whereas
10428 a reference should mostly be transparent to the user. */
10429 if (ada_is_tagged_type (type, 0)
10430 || (type->code () == TYPE_CODE_REF
10431 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10432 {
10433 /* Tagged types are a little special in the fact that the real
10434 type is dynamic and can only be determined by inspecting the
10435 object's tag. This means that we need to get the object's
10436 value first (EVAL_NORMAL) and then extract the actual object
10437 type from its tag.
10438
10439 Note that we cannot skip the final step where we extract
10440 the object type from its tag, because the EVAL_NORMAL phase
10441 results in dynamic components being resolved into fixed ones.
10442 This can cause problems when trying to print the type
10443 description of tagged types whose parent has a dynamic size:
10444 We use the type name of the "_parent" component in order
10445 to print the name of the ancestor type in the type description.
10446 If that component had a dynamic size, the resolution into
10447 a fixed type would result in the loss of that type name,
10448 thus preventing us from printing the name of the ancestor
10449 type in the type description. */
10450 value *arg1 = evaluate (nullptr, exp, EVAL_NORMAL);
10451
10452 if (type->code () != TYPE_CODE_REF)
10453 {
10454 struct type *actual_type;
10455
10456 actual_type = type_from_tag (ada_value_tag (arg1));
10457 if (actual_type == NULL)
10458 /* If, for some reason, we were unable to determine
10459 the actual type from the tag, then use the static
10460 approximation that we just computed as a fallback.
10461 This can happen if the debugging information is
10462 incomplete, for instance. */
10463 actual_type = type;
10464 return value_zero (actual_type, not_lval);
10465 }
10466 else
10467 {
10468 /* In the case of a ref, ada_coerce_ref takes care
10469 of determining the actual type. But the evaluation
10470 should return a ref as it should be valid to ask
10471 for its address; so rebuild a ref after coerce. */
10472 arg1 = ada_coerce_ref (arg1);
10473 return value_ref (arg1, TYPE_CODE_REF);
10474 }
10475 }
10476
10477 /* Records and unions for which GNAT encodings have been
10478 generated need to be statically fixed as well.
10479 Otherwise, non-static fixing produces a type where
10480 all dynamic properties are removed, which prevents "ptype"
10481 from being able to completely describe the type.
10482 For instance, a case statement in a variant record would be
10483 replaced by the relevant components based on the actual
10484 value of the discriminants. */
10485 if ((type->code () == TYPE_CODE_STRUCT
10486 && dynamic_template_type (type) != NULL)
10487 || (type->code () == TYPE_CODE_UNION
10488 && ada_find_parallel_type (type, "___XVU") != NULL))
10489 return value_zero (to_static_fixed_type (type), not_lval);
10490 }
10491
10492 value *arg1 = var_value_operation::evaluate (expect_type, exp, noside);
10493 return ada_to_fixed_value (arg1);
10494 }
10495
10496 bool
10497 ada_var_value_operation::resolve (struct expression *exp,
10498 bool deprocedure_p,
10499 bool parse_completion,
10500 innermost_block_tracker *tracker,
10501 struct type *context_type)
10502 {
10503 symbol *sym = std::get<0> (m_storage).symbol;
10504 if (SYMBOL_DOMAIN (sym) == UNDEF_DOMAIN)
10505 {
10506 block_symbol resolved
10507 = ada_resolve_variable (sym, std::get<0> (m_storage).block,
10508 context_type, parse_completion,
10509 deprocedure_p, tracker);
10510 std::get<0> (m_storage) = resolved;
10511 }
10512
10513 if (deprocedure_p
10514 && (SYMBOL_TYPE (std::get<0> (m_storage).symbol)->code ()
10515 == TYPE_CODE_FUNC))
10516 return true;
10517
10518 return false;
10519 }
10520
10521 value *
10522 ada_atr_val_operation::evaluate (struct type *expect_type,
10523 struct expression *exp,
10524 enum noside noside)
10525 {
10526 value *arg = std::get<1> (m_storage)->evaluate (nullptr, exp, noside);
10527 return ada_val_atr (noside, std::get<0> (m_storage), arg);
10528 }
10529
10530 value *
10531 ada_unop_ind_operation::evaluate (struct type *expect_type,
10532 struct expression *exp,
10533 enum noside noside)
10534 {
10535 value *arg1 = std::get<0> (m_storage)->evaluate (expect_type, exp, noside);
10536
10537 struct type *type = ada_check_typedef (value_type (arg1));
10538 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10539 {
10540 if (ada_is_array_descriptor_type (type))
10541 /* GDB allows dereferencing GNAT array descriptors. */
10542 {
10543 struct type *arrType = ada_type_of_array (arg1, 0);
10544
10545 if (arrType == NULL)
10546 error (_("Attempt to dereference null array pointer."));
10547 return value_at_lazy (arrType, 0);
10548 }
10549 else if (type->code () == TYPE_CODE_PTR
10550 || type->code () == TYPE_CODE_REF
10551 /* In C you can dereference an array to get the 1st elt. */
10552 || type->code () == TYPE_CODE_ARRAY)
10553 {
10554 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10555 only be determined by inspecting the object's tag.
10556 This means that we need to evaluate completely the
10557 expression in order to get its type. */
10558
10559 if ((type->code () == TYPE_CODE_REF
10560 || type->code () == TYPE_CODE_PTR)
10561 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
10562 {
10563 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10564 EVAL_NORMAL);
10565 type = value_type (ada_value_ind (arg1));
10566 }
10567 else
10568 {
10569 type = to_static_fixed_type
10570 (ada_aligned_type
10571 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10572 }
10573 return value_zero (type, lval_memory);
10574 }
10575 else if (type->code () == TYPE_CODE_INT)
10576 {
10577 /* GDB allows dereferencing an int. */
10578 if (expect_type == NULL)
10579 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10580 lval_memory);
10581 else
10582 {
10583 expect_type =
10584 to_static_fixed_type (ada_aligned_type (expect_type));
10585 return value_zero (expect_type, lval_memory);
10586 }
10587 }
10588 else
10589 error (_("Attempt to take contents of a non-pointer value."));
10590 }
10591 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10592 type = ada_check_typedef (value_type (arg1));
10593
10594 if (type->code () == TYPE_CODE_INT)
10595 /* GDB allows dereferencing an int. If we were given
10596 the expect_type, then use that as the target type.
10597 Otherwise, assume that the target type is an int. */
10598 {
10599 if (expect_type != NULL)
10600 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10601 arg1));
10602 else
10603 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10604 (CORE_ADDR) value_as_address (arg1));
10605 }
10606
10607 if (ada_is_array_descriptor_type (type))
10608 /* GDB allows dereferencing GNAT array descriptors. */
10609 return ada_coerce_to_simple_array (arg1);
10610 else
10611 return ada_value_ind (arg1);
10612 }
10613
10614 value *
10615 ada_structop_operation::evaluate (struct type *expect_type,
10616 struct expression *exp,
10617 enum noside noside)
10618 {
10619 value *arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp, noside);
10620 const char *str = std::get<1> (m_storage).c_str ();
10621 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10622 {
10623 struct type *type;
10624 struct type *type1 = value_type (arg1);
10625
10626 if (ada_is_tagged_type (type1, 1))
10627 {
10628 type = ada_lookup_struct_elt_type (type1, str, 1, 1);
10629
10630 /* If the field is not found, check if it exists in the
10631 extension of this object's type. This means that we
10632 need to evaluate completely the expression. */
10633
10634 if (type == NULL)
10635 {
10636 arg1 = std::get<0> (m_storage)->evaluate (nullptr, exp,
10637 EVAL_NORMAL);
10638 arg1 = ada_value_struct_elt (arg1, str, 0);
10639 arg1 = unwrap_value (arg1);
10640 type = value_type (ada_to_fixed_value (arg1));
10641 }
10642 }
10643 else
10644 type = ada_lookup_struct_elt_type (type1, str, 1, 0);
10645
10646 return value_zero (ada_aligned_type (type), lval_memory);
10647 }
10648 else
10649 {
10650 arg1 = ada_value_struct_elt (arg1, str, 0);
10651 arg1 = unwrap_value (arg1);
10652 return ada_to_fixed_value (arg1);
10653 }
10654 }
10655
10656 value *
10657 ada_funcall_operation::evaluate (struct type *expect_type,
10658 struct expression *exp,
10659 enum noside noside)
10660 {
10661 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10662 int nargs = args_up.size ();
10663 std::vector<value *> argvec (nargs);
10664 operation_up &callee_op = std::get<0> (m_storage);
10665
10666 ada_var_value_operation *avv
10667 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10668 if (avv != nullptr
10669 && SYMBOL_DOMAIN (avv->get_symbol ()) == UNDEF_DOMAIN)
10670 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10671 avv->get_symbol ()->print_name ());
10672
10673 value *callee = callee_op->evaluate (nullptr, exp, noside);
10674 for (int i = 0; i < args_up.size (); ++i)
10675 argvec[i] = args_up[i]->evaluate (nullptr, exp, noside);
10676
10677 if (ada_is_constrained_packed_array_type
10678 (desc_base_type (value_type (callee))))
10679 callee = ada_coerce_to_simple_array (callee);
10680 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10681 && TYPE_FIELD_BITSIZE (value_type (callee), 0) != 0)
10682 /* This is a packed array that has already been fixed, and
10683 therefore already coerced to a simple array. Nothing further
10684 to do. */
10685 ;
10686 else if (value_type (callee)->code () == TYPE_CODE_REF)
10687 {
10688 /* Make sure we dereference references so that all the code below
10689 feels like it's really handling the referenced value. Wrapping
10690 types (for alignment) may be there, so make sure we strip them as
10691 well. */
10692 callee = ada_to_fixed_value (coerce_ref (callee));
10693 }
10694 else if (value_type (callee)->code () == TYPE_CODE_ARRAY
10695 && VALUE_LVAL (callee) == lval_memory)
10696 callee = value_addr (callee);
10697
10698 struct type *type = ada_check_typedef (value_type (callee));
10699
10700 /* Ada allows us to implicitly dereference arrays when subscripting
10701 them. So, if this is an array typedef (encoding use for array
10702 access types encoded as fat pointers), strip it now. */
10703 if (type->code () == TYPE_CODE_TYPEDEF)
10704 type = ada_typedef_target_type (type);
10705
10706 if (type->code () == TYPE_CODE_PTR)
10707 {
10708 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10709 {
10710 case TYPE_CODE_FUNC:
10711 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10712 break;
10713 case TYPE_CODE_ARRAY:
10714 break;
10715 case TYPE_CODE_STRUCT:
10716 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10717 callee = ada_value_ind (callee);
10718 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10719 break;
10720 default:
10721 error (_("cannot subscript or call something of type `%s'"),
10722 ada_type_name (value_type (callee)));
10723 break;
10724 }
10725 }
10726
10727 switch (type->code ())
10728 {
10729 case TYPE_CODE_FUNC:
10730 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10731 {
10732 if (TYPE_TARGET_TYPE (type) == NULL)
10733 error_call_unknown_return_type (NULL);
10734 return allocate_value (TYPE_TARGET_TYPE (type));
10735 }
10736 return call_function_by_hand (callee, NULL, argvec);
10737 case TYPE_CODE_INTERNAL_FUNCTION:
10738 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10739 /* We don't know anything about what the internal
10740 function might return, but we have to return
10741 something. */
10742 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10743 not_lval);
10744 else
10745 return call_internal_function (exp->gdbarch, exp->language_defn,
10746 callee, nargs,
10747 argvec.data ());
10748
10749 case TYPE_CODE_STRUCT:
10750 {
10751 int arity;
10752
10753 arity = ada_array_arity (type);
10754 type = ada_array_element_type (type, nargs);
10755 if (type == NULL)
10756 error (_("cannot subscript or call a record"));
10757 if (arity != nargs)
10758 error (_("wrong number of subscripts; expecting %d"), arity);
10759 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10760 return value_zero (ada_aligned_type (type), lval_memory);
10761 return
10762 unwrap_value (ada_value_subscript
10763 (callee, nargs, argvec.data ()));
10764 }
10765 case TYPE_CODE_ARRAY:
10766 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10767 {
10768 type = ada_array_element_type (type, nargs);
10769 if (type == NULL)
10770 error (_("element type of array unknown"));
10771 else
10772 return value_zero (ada_aligned_type (type), lval_memory);
10773 }
10774 return
10775 unwrap_value (ada_value_subscript
10776 (ada_coerce_to_simple_array (callee),
10777 nargs, argvec.data ()));
10778 case TYPE_CODE_PTR: /* Pointer to array */
10779 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10780 {
10781 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10782 type = ada_array_element_type (type, nargs);
10783 if (type == NULL)
10784 error (_("element type of array unknown"));
10785 else
10786 return value_zero (ada_aligned_type (type), lval_memory);
10787 }
10788 return
10789 unwrap_value (ada_value_ptr_subscript (callee, nargs,
10790 argvec.data ()));
10791
10792 default:
10793 error (_("Attempt to index or call something other than an "
10794 "array or function"));
10795 }
10796 }
10797
10798 bool
10799 ada_funcall_operation::resolve (struct expression *exp,
10800 bool deprocedure_p,
10801 bool parse_completion,
10802 innermost_block_tracker *tracker,
10803 struct type *context_type)
10804 {
10805 operation_up &callee_op = std::get<0> (m_storage);
10806
10807 ada_var_value_operation *avv
10808 = dynamic_cast<ada_var_value_operation *> (callee_op.get ());
10809 if (avv == nullptr)
10810 return false;
10811
10812 symbol *sym = avv->get_symbol ();
10813 if (SYMBOL_DOMAIN (sym) != UNDEF_DOMAIN)
10814 return false;
10815
10816 const std::vector<operation_up> &args_up = std::get<1> (m_storage);
10817 int nargs = args_up.size ();
10818 std::vector<value *> argvec (nargs);
10819
10820 for (int i = 0; i < args_up.size (); ++i)
10821 argvec[i] = args_up[i]->evaluate (nullptr, exp, EVAL_AVOID_SIDE_EFFECTS);
10822
10823 const block *block = avv->get_block ();
10824 block_symbol resolved
10825 = ada_resolve_funcall (sym, block,
10826 context_type, parse_completion,
10827 nargs, argvec.data (),
10828 tracker);
10829
10830 std::get<0> (m_storage)
10831 = make_operation<ada_var_value_operation> (resolved);
10832 return false;
10833 }
10834
10835 bool
10836 ada_ternop_slice_operation::resolve (struct expression *exp,
10837 bool deprocedure_p,
10838 bool parse_completion,
10839 innermost_block_tracker *tracker,
10840 struct type *context_type)
10841 {
10842 /* Historically this check was done during resolution, so we
10843 continue that here. */
10844 value *v = std::get<0> (m_storage)->evaluate (context_type, exp,
10845 EVAL_AVOID_SIDE_EFFECTS);
10846 if (ada_is_any_packed_array_type (value_type (v)))
10847 error (_("cannot slice a packed array"));
10848 return false;
10849 }
10850
10851 }
10852
10853 \f
10854
10855 /* Return non-zero iff TYPE represents a System.Address type. */
10856
10857 int
10858 ada_is_system_address_type (struct type *type)
10859 {
10860 return (type->name () && strcmp (type->name (), "system__address") == 0);
10861 }
10862
10863 \f
10864
10865 /* Range types */
10866
10867 /* Scan STR beginning at position K for a discriminant name, and
10868 return the value of that discriminant field of DVAL in *PX. If
10869 PNEW_K is not null, put the position of the character beyond the
10870 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10871 not alter *PX and *PNEW_K if unsuccessful. */
10872
10873 static int
10874 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
10875 int *pnew_k)
10876 {
10877 static std::string storage;
10878 const char *pstart, *pend, *bound;
10879 struct value *bound_val;
10880
10881 if (dval == NULL || str == NULL || str[k] == '\0')
10882 return 0;
10883
10884 pstart = str + k;
10885 pend = strstr (pstart, "__");
10886 if (pend == NULL)
10887 {
10888 bound = pstart;
10889 k += strlen (bound);
10890 }
10891 else
10892 {
10893 int len = pend - pstart;
10894
10895 /* Strip __ and beyond. */
10896 storage = std::string (pstart, len);
10897 bound = storage.c_str ();
10898 k = pend - str;
10899 }
10900
10901 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10902 if (bound_val == NULL)
10903 return 0;
10904
10905 *px = value_as_long (bound_val);
10906 if (pnew_k != NULL)
10907 *pnew_k = k;
10908 return 1;
10909 }
10910
10911 /* Value of variable named NAME. Only exact matches are considered.
10912 If no such variable found, then if ERR_MSG is null, returns 0, and
10913 otherwise causes an error with message ERR_MSG. */
10914
10915 static struct value *
10916 get_var_value (const char *name, const char *err_msg)
10917 {
10918 std::string quoted_name = add_angle_brackets (name);
10919
10920 lookup_name_info lookup_name (quoted_name, symbol_name_match_type::FULL);
10921
10922 std::vector<struct block_symbol> syms
10923 = ada_lookup_symbol_list_worker (lookup_name,
10924 get_selected_block (0),
10925 VAR_DOMAIN, 1);
10926
10927 if (syms.size () != 1)
10928 {
10929 if (err_msg == NULL)
10930 return 0;
10931 else
10932 error (("%s"), err_msg);
10933 }
10934
10935 return value_of_variable (syms[0].symbol, syms[0].block);
10936 }
10937
10938 /* Value of integer variable named NAME in the current environment.
10939 If no such variable is found, returns false. Otherwise, sets VALUE
10940 to the variable's value and returns true. */
10941
10942 bool
10943 get_int_var_value (const char *name, LONGEST &value)
10944 {
10945 struct value *var_val = get_var_value (name, 0);
10946
10947 if (var_val == 0)
10948 return false;
10949
10950 value = value_as_long (var_val);
10951 return true;
10952 }
10953
10954
10955 /* Return a range type whose base type is that of the range type named
10956 NAME in the current environment, and whose bounds are calculated
10957 from NAME according to the GNAT range encoding conventions.
10958 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10959 corresponding range type from debug information; fall back to using it
10960 if symbol lookup fails. If a new type must be created, allocate it
10961 like ORIG_TYPE was. The bounds information, in general, is encoded
10962 in NAME, the base type given in the named range type. */
10963
10964 static struct type *
10965 to_fixed_range_type (struct type *raw_type, struct value *dval)
10966 {
10967 const char *name;
10968 struct type *base_type;
10969 const char *subtype_info;
10970
10971 gdb_assert (raw_type != NULL);
10972 gdb_assert (raw_type->name () != NULL);
10973
10974 if (raw_type->code () == TYPE_CODE_RANGE)
10975 base_type = TYPE_TARGET_TYPE (raw_type);
10976 else
10977 base_type = raw_type;
10978
10979 name = raw_type->name ();
10980 subtype_info = strstr (name, "___XD");
10981 if (subtype_info == NULL)
10982 {
10983 LONGEST L = ada_discrete_type_low_bound (raw_type);
10984 LONGEST U = ada_discrete_type_high_bound (raw_type);
10985
10986 if (L < INT_MIN || U > INT_MAX)
10987 return raw_type;
10988 else
10989 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
10990 L, U);
10991 }
10992 else
10993 {
10994 int prefix_len = subtype_info - name;
10995 LONGEST L, U;
10996 struct type *type;
10997 const char *bounds_str;
10998 int n;
10999
11000 subtype_info += 5;
11001 bounds_str = strchr (subtype_info, '_');
11002 n = 1;
11003
11004 if (*subtype_info == 'L')
11005 {
11006 if (!ada_scan_number (bounds_str, n, &L, &n)
11007 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11008 return raw_type;
11009 if (bounds_str[n] == '_')
11010 n += 2;
11011 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11012 n += 1;
11013 subtype_info += 1;
11014 }
11015 else
11016 {
11017 std::string name_buf = std::string (name, prefix_len) + "___L";
11018 if (!get_int_var_value (name_buf.c_str (), L))
11019 {
11020 lim_warning (_("Unknown lower bound, using 1."));
11021 L = 1;
11022 }
11023 }
11024
11025 if (*subtype_info == 'U')
11026 {
11027 if (!ada_scan_number (bounds_str, n, &U, &n)
11028 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11029 return raw_type;
11030 }
11031 else
11032 {
11033 std::string name_buf = std::string (name, prefix_len) + "___U";
11034 if (!get_int_var_value (name_buf.c_str (), U))
11035 {
11036 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11037 U = L;
11038 }
11039 }
11040
11041 type = create_static_range_type (alloc_type_copy (raw_type),
11042 base_type, L, U);
11043 /* create_static_range_type alters the resulting type's length
11044 to match the size of the base_type, which is not what we want.
11045 Set it back to the original range type's length. */
11046 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11047 type->set_name (name);
11048 return type;
11049 }
11050 }
11051
11052 /* True iff NAME is the name of a range type. */
11053
11054 int
11055 ada_is_range_type_name (const char *name)
11056 {
11057 return (name != NULL && strstr (name, "___XD"));
11058 }
11059 \f
11060
11061 /* Modular types */
11062
11063 /* True iff TYPE is an Ada modular type. */
11064
11065 int
11066 ada_is_modular_type (struct type *type)
11067 {
11068 struct type *subranged_type = get_base_type (type);
11069
11070 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11071 && subranged_type->code () == TYPE_CODE_INT
11072 && subranged_type->is_unsigned ());
11073 }
11074
11075 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11076
11077 ULONGEST
11078 ada_modulus (struct type *type)
11079 {
11080 const dynamic_prop &high = type->bounds ()->high;
11081
11082 if (high.kind () == PROP_CONST)
11083 return (ULONGEST) high.const_val () + 1;
11084
11085 /* If TYPE is unresolved, the high bound might be a location list. Return
11086 0, for lack of a better value to return. */
11087 return 0;
11088 }
11089 \f
11090
11091 /* Ada exception catchpoint support:
11092 ---------------------------------
11093
11094 We support 3 kinds of exception catchpoints:
11095 . catchpoints on Ada exceptions
11096 . catchpoints on unhandled Ada exceptions
11097 . catchpoints on failed assertions
11098
11099 Exceptions raised during failed assertions, or unhandled exceptions
11100 could perfectly be caught with the general catchpoint on Ada exceptions.
11101 However, we can easily differentiate these two special cases, and having
11102 the option to distinguish these two cases from the rest can be useful
11103 to zero-in on certain situations.
11104
11105 Exception catchpoints are a specialized form of breakpoint,
11106 since they rely on inserting breakpoints inside known routines
11107 of the GNAT runtime. The implementation therefore uses a standard
11108 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11109 of breakpoint_ops.
11110
11111 Support in the runtime for exception catchpoints have been changed
11112 a few times already, and these changes affect the implementation
11113 of these catchpoints. In order to be able to support several
11114 variants of the runtime, we use a sniffer that will determine
11115 the runtime variant used by the program being debugged. */
11116
11117 /* Ada's standard exceptions.
11118
11119 The Ada 83 standard also defined Numeric_Error. But there so many
11120 situations where it was unclear from the Ada 83 Reference Manual
11121 (RM) whether Constraint_Error or Numeric_Error should be raised,
11122 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11123 Interpretation saying that anytime the RM says that Numeric_Error
11124 should be raised, the implementation may raise Constraint_Error.
11125 Ada 95 went one step further and pretty much removed Numeric_Error
11126 from the list of standard exceptions (it made it a renaming of
11127 Constraint_Error, to help preserve compatibility when compiling
11128 an Ada83 compiler). As such, we do not include Numeric_Error from
11129 this list of standard exceptions. */
11130
11131 static const char * const standard_exc[] = {
11132 "constraint_error",
11133 "program_error",
11134 "storage_error",
11135 "tasking_error"
11136 };
11137
11138 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11139
11140 /* A structure that describes how to support exception catchpoints
11141 for a given executable. */
11142
11143 struct exception_support_info
11144 {
11145 /* The name of the symbol to break on in order to insert
11146 a catchpoint on exceptions. */
11147 const char *catch_exception_sym;
11148
11149 /* The name of the symbol to break on in order to insert
11150 a catchpoint on unhandled exceptions. */
11151 const char *catch_exception_unhandled_sym;
11152
11153 /* The name of the symbol to break on in order to insert
11154 a catchpoint on failed assertions. */
11155 const char *catch_assert_sym;
11156
11157 /* The name of the symbol to break on in order to insert
11158 a catchpoint on exception handling. */
11159 const char *catch_handlers_sym;
11160
11161 /* Assuming that the inferior just triggered an unhandled exception
11162 catchpoint, this function is responsible for returning the address
11163 in inferior memory where the name of that exception is stored.
11164 Return zero if the address could not be computed. */
11165 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11166 };
11167
11168 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11169 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11170
11171 /* The following exception support info structure describes how to
11172 implement exception catchpoints with the latest version of the
11173 Ada runtime (as of 2019-08-??). */
11174
11175 static const struct exception_support_info default_exception_support_info =
11176 {
11177 "__gnat_debug_raise_exception", /* catch_exception_sym */
11178 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11179 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11180 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11181 ada_unhandled_exception_name_addr
11182 };
11183
11184 /* The following exception support info structure describes how to
11185 implement exception catchpoints with an earlier version of the
11186 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11187
11188 static const struct exception_support_info exception_support_info_v0 =
11189 {
11190 "__gnat_debug_raise_exception", /* catch_exception_sym */
11191 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11192 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11193 "__gnat_begin_handler", /* catch_handlers_sym */
11194 ada_unhandled_exception_name_addr
11195 };
11196
11197 /* The following exception support info structure describes how to
11198 implement exception catchpoints with a slightly older version
11199 of the Ada runtime. */
11200
11201 static const struct exception_support_info exception_support_info_fallback =
11202 {
11203 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11204 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11205 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11206 "__gnat_begin_handler", /* catch_handlers_sym */
11207 ada_unhandled_exception_name_addr_from_raise
11208 };
11209
11210 /* Return nonzero if we can detect the exception support routines
11211 described in EINFO.
11212
11213 This function errors out if an abnormal situation is detected
11214 (for instance, if we find the exception support routines, but
11215 that support is found to be incomplete). */
11216
11217 static int
11218 ada_has_this_exception_support (const struct exception_support_info *einfo)
11219 {
11220 struct symbol *sym;
11221
11222 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11223 that should be compiled with debugging information. As a result, we
11224 expect to find that symbol in the symtabs. */
11225
11226 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11227 if (sym == NULL)
11228 {
11229 /* Perhaps we did not find our symbol because the Ada runtime was
11230 compiled without debugging info, or simply stripped of it.
11231 It happens on some GNU/Linux distributions for instance, where
11232 users have to install a separate debug package in order to get
11233 the runtime's debugging info. In that situation, let the user
11234 know why we cannot insert an Ada exception catchpoint.
11235
11236 Note: Just for the purpose of inserting our Ada exception
11237 catchpoint, we could rely purely on the associated minimal symbol.
11238 But we would be operating in degraded mode anyway, since we are
11239 still lacking the debugging info needed later on to extract
11240 the name of the exception being raised (this name is printed in
11241 the catchpoint message, and is also used when trying to catch
11242 a specific exception). We do not handle this case for now. */
11243 struct bound_minimal_symbol msym
11244 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11245
11246 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11247 error (_("Your Ada runtime appears to be missing some debugging "
11248 "information.\nCannot insert Ada exception catchpoint "
11249 "in this configuration."));
11250
11251 return 0;
11252 }
11253
11254 /* Make sure that the symbol we found corresponds to a function. */
11255
11256 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11257 {
11258 error (_("Symbol \"%s\" is not a function (class = %d)"),
11259 sym->linkage_name (), SYMBOL_CLASS (sym));
11260 return 0;
11261 }
11262
11263 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11264 if (sym == NULL)
11265 {
11266 struct bound_minimal_symbol msym
11267 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11268
11269 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11270 error (_("Your Ada runtime appears to be missing some debugging "
11271 "information.\nCannot insert Ada exception catchpoint "
11272 "in this configuration."));
11273
11274 return 0;
11275 }
11276
11277 /* Make sure that the symbol we found corresponds to a function. */
11278
11279 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11280 {
11281 error (_("Symbol \"%s\" is not a function (class = %d)"),
11282 sym->linkage_name (), SYMBOL_CLASS (sym));
11283 return 0;
11284 }
11285
11286 return 1;
11287 }
11288
11289 /* Inspect the Ada runtime and determine which exception info structure
11290 should be used to provide support for exception catchpoints.
11291
11292 This function will always set the per-inferior exception_info,
11293 or raise an error. */
11294
11295 static void
11296 ada_exception_support_info_sniffer (void)
11297 {
11298 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11299
11300 /* If the exception info is already known, then no need to recompute it. */
11301 if (data->exception_info != NULL)
11302 return;
11303
11304 /* Check the latest (default) exception support info. */
11305 if (ada_has_this_exception_support (&default_exception_support_info))
11306 {
11307 data->exception_info = &default_exception_support_info;
11308 return;
11309 }
11310
11311 /* Try the v0 exception suport info. */
11312 if (ada_has_this_exception_support (&exception_support_info_v0))
11313 {
11314 data->exception_info = &exception_support_info_v0;
11315 return;
11316 }
11317
11318 /* Try our fallback exception suport info. */
11319 if (ada_has_this_exception_support (&exception_support_info_fallback))
11320 {
11321 data->exception_info = &exception_support_info_fallback;
11322 return;
11323 }
11324
11325 /* Sometimes, it is normal for us to not be able to find the routine
11326 we are looking for. This happens when the program is linked with
11327 the shared version of the GNAT runtime, and the program has not been
11328 started yet. Inform the user of these two possible causes if
11329 applicable. */
11330
11331 if (ada_update_initial_language (language_unknown) != language_ada)
11332 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11333
11334 /* If the symbol does not exist, then check that the program is
11335 already started, to make sure that shared libraries have been
11336 loaded. If it is not started, this may mean that the symbol is
11337 in a shared library. */
11338
11339 if (inferior_ptid.pid () == 0)
11340 error (_("Unable to insert catchpoint. Try to start the program first."));
11341
11342 /* At this point, we know that we are debugging an Ada program and
11343 that the inferior has been started, but we still are not able to
11344 find the run-time symbols. That can mean that we are in
11345 configurable run time mode, or that a-except as been optimized
11346 out by the linker... In any case, at this point it is not worth
11347 supporting this feature. */
11348
11349 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11350 }
11351
11352 /* True iff FRAME is very likely to be that of a function that is
11353 part of the runtime system. This is all very heuristic, but is
11354 intended to be used as advice as to what frames are uninteresting
11355 to most users. */
11356
11357 static int
11358 is_known_support_routine (struct frame_info *frame)
11359 {
11360 enum language func_lang;
11361 int i;
11362 const char *fullname;
11363
11364 /* If this code does not have any debugging information (no symtab),
11365 This cannot be any user code. */
11366
11367 symtab_and_line sal = find_frame_sal (frame);
11368 if (sal.symtab == NULL)
11369 return 1;
11370
11371 /* If there is a symtab, but the associated source file cannot be
11372 located, then assume this is not user code: Selecting a frame
11373 for which we cannot display the code would not be very helpful
11374 for the user. This should also take care of case such as VxWorks
11375 where the kernel has some debugging info provided for a few units. */
11376
11377 fullname = symtab_to_fullname (sal.symtab);
11378 if (access (fullname, R_OK) != 0)
11379 return 1;
11380
11381 /* Check the unit filename against the Ada runtime file naming.
11382 We also check the name of the objfile against the name of some
11383 known system libraries that sometimes come with debugging info
11384 too. */
11385
11386 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11387 {
11388 re_comp (known_runtime_file_name_patterns[i]);
11389 if (re_exec (lbasename (sal.symtab->filename)))
11390 return 1;
11391 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11392 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11393 return 1;
11394 }
11395
11396 /* Check whether the function is a GNAT-generated entity. */
11397
11398 gdb::unique_xmalloc_ptr<char> func_name
11399 = find_frame_funname (frame, &func_lang, NULL);
11400 if (func_name == NULL)
11401 return 1;
11402
11403 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11404 {
11405 re_comp (known_auxiliary_function_name_patterns[i]);
11406 if (re_exec (func_name.get ()))
11407 return 1;
11408 }
11409
11410 return 0;
11411 }
11412
11413 /* Find the first frame that contains debugging information and that is not
11414 part of the Ada run-time, starting from FI and moving upward. */
11415
11416 void
11417 ada_find_printable_frame (struct frame_info *fi)
11418 {
11419 for (; fi != NULL; fi = get_prev_frame (fi))
11420 {
11421 if (!is_known_support_routine (fi))
11422 {
11423 select_frame (fi);
11424 break;
11425 }
11426 }
11427
11428 }
11429
11430 /* Assuming that the inferior just triggered an unhandled exception
11431 catchpoint, return the address in inferior memory where the name
11432 of the exception is stored.
11433
11434 Return zero if the address could not be computed. */
11435
11436 static CORE_ADDR
11437 ada_unhandled_exception_name_addr (void)
11438 {
11439 return parse_and_eval_address ("e.full_name");
11440 }
11441
11442 /* Same as ada_unhandled_exception_name_addr, except that this function
11443 should be used when the inferior uses an older version of the runtime,
11444 where the exception name needs to be extracted from a specific frame
11445 several frames up in the callstack. */
11446
11447 static CORE_ADDR
11448 ada_unhandled_exception_name_addr_from_raise (void)
11449 {
11450 int frame_level;
11451 struct frame_info *fi;
11452 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11453
11454 /* To determine the name of this exception, we need to select
11455 the frame corresponding to RAISE_SYM_NAME. This frame is
11456 at least 3 levels up, so we simply skip the first 3 frames
11457 without checking the name of their associated function. */
11458 fi = get_current_frame ();
11459 for (frame_level = 0; frame_level < 3; frame_level += 1)
11460 if (fi != NULL)
11461 fi = get_prev_frame (fi);
11462
11463 while (fi != NULL)
11464 {
11465 enum language func_lang;
11466
11467 gdb::unique_xmalloc_ptr<char> func_name
11468 = find_frame_funname (fi, &func_lang, NULL);
11469 if (func_name != NULL)
11470 {
11471 if (strcmp (func_name.get (),
11472 data->exception_info->catch_exception_sym) == 0)
11473 break; /* We found the frame we were looking for... */
11474 }
11475 fi = get_prev_frame (fi);
11476 }
11477
11478 if (fi == NULL)
11479 return 0;
11480
11481 select_frame (fi);
11482 return parse_and_eval_address ("id.full_name");
11483 }
11484
11485 /* Assuming the inferior just triggered an Ada exception catchpoint
11486 (of any type), return the address in inferior memory where the name
11487 of the exception is stored, if applicable.
11488
11489 Assumes the selected frame is the current frame.
11490
11491 Return zero if the address could not be computed, or if not relevant. */
11492
11493 static CORE_ADDR
11494 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
11495 struct breakpoint *b)
11496 {
11497 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11498
11499 switch (ex)
11500 {
11501 case ada_catch_exception:
11502 return (parse_and_eval_address ("e.full_name"));
11503 break;
11504
11505 case ada_catch_exception_unhandled:
11506 return data->exception_info->unhandled_exception_name_addr ();
11507 break;
11508
11509 case ada_catch_handlers:
11510 return 0; /* The runtimes does not provide access to the exception
11511 name. */
11512 break;
11513
11514 case ada_catch_assert:
11515 return 0; /* Exception name is not relevant in this case. */
11516 break;
11517
11518 default:
11519 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11520 break;
11521 }
11522
11523 return 0; /* Should never be reached. */
11524 }
11525
11526 /* Assuming the inferior is stopped at an exception catchpoint,
11527 return the message which was associated to the exception, if
11528 available. Return NULL if the message could not be retrieved.
11529
11530 Note: The exception message can be associated to an exception
11531 either through the use of the Raise_Exception function, or
11532 more simply (Ada 2005 and later), via:
11533
11534 raise Exception_Name with "exception message";
11535
11536 */
11537
11538 static gdb::unique_xmalloc_ptr<char>
11539 ada_exception_message_1 (void)
11540 {
11541 struct value *e_msg_val;
11542 int e_msg_len;
11543
11544 /* For runtimes that support this feature, the exception message
11545 is passed as an unbounded string argument called "message". */
11546 e_msg_val = parse_and_eval ("message");
11547 if (e_msg_val == NULL)
11548 return NULL; /* Exception message not supported. */
11549
11550 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
11551 gdb_assert (e_msg_val != NULL);
11552 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
11553
11554 /* If the message string is empty, then treat it as if there was
11555 no exception message. */
11556 if (e_msg_len <= 0)
11557 return NULL;
11558
11559 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
11560 read_memory (value_address (e_msg_val), (gdb_byte *) e_msg.get (),
11561 e_msg_len);
11562 e_msg.get ()[e_msg_len] = '\0';
11563
11564 return e_msg;
11565 }
11566
11567 /* Same as ada_exception_message_1, except that all exceptions are
11568 contained here (returning NULL instead). */
11569
11570 static gdb::unique_xmalloc_ptr<char>
11571 ada_exception_message (void)
11572 {
11573 gdb::unique_xmalloc_ptr<char> e_msg;
11574
11575 try
11576 {
11577 e_msg = ada_exception_message_1 ();
11578 }
11579 catch (const gdb_exception_error &e)
11580 {
11581 e_msg.reset (nullptr);
11582 }
11583
11584 return e_msg;
11585 }
11586
11587 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11588 any error that ada_exception_name_addr_1 might cause to be thrown.
11589 When an error is intercepted, a warning with the error message is printed,
11590 and zero is returned. */
11591
11592 static CORE_ADDR
11593 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
11594 struct breakpoint *b)
11595 {
11596 CORE_ADDR result = 0;
11597
11598 try
11599 {
11600 result = ada_exception_name_addr_1 (ex, b);
11601 }
11602
11603 catch (const gdb_exception_error &e)
11604 {
11605 warning (_("failed to get exception name: %s"), e.what ());
11606 return 0;
11607 }
11608
11609 return result;
11610 }
11611
11612 static std::string ada_exception_catchpoint_cond_string
11613 (const char *excep_string,
11614 enum ada_exception_catchpoint_kind ex);
11615
11616 /* Ada catchpoints.
11617
11618 In the case of catchpoints on Ada exceptions, the catchpoint will
11619 stop the target on every exception the program throws. When a user
11620 specifies the name of a specific exception, we translate this
11621 request into a condition expression (in text form), and then parse
11622 it into an expression stored in each of the catchpoint's locations.
11623 We then use this condition to check whether the exception that was
11624 raised is the one the user is interested in. If not, then the
11625 target is resumed again. We store the name of the requested
11626 exception, in order to be able to re-set the condition expression
11627 when symbols change. */
11628
11629 /* An instance of this type is used to represent an Ada catchpoint
11630 breakpoint location. */
11631
11632 class ada_catchpoint_location : public bp_location
11633 {
11634 public:
11635 ada_catchpoint_location (breakpoint *owner)
11636 : bp_location (owner, bp_loc_software_breakpoint)
11637 {}
11638
11639 /* The condition that checks whether the exception that was raised
11640 is the specific exception the user specified on catchpoint
11641 creation. */
11642 expression_up excep_cond_expr;
11643 };
11644
11645 /* An instance of this type is used to represent an Ada catchpoint. */
11646
11647 struct ada_catchpoint : public breakpoint
11648 {
11649 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
11650 : m_kind (kind)
11651 {
11652 }
11653
11654 /* The name of the specific exception the user specified. */
11655 std::string excep_string;
11656
11657 /* What kind of catchpoint this is. */
11658 enum ada_exception_catchpoint_kind m_kind;
11659 };
11660
11661 /* Parse the exception condition string in the context of each of the
11662 catchpoint's locations, and store them for later evaluation. */
11663
11664 static void
11665 create_excep_cond_exprs (struct ada_catchpoint *c,
11666 enum ada_exception_catchpoint_kind ex)
11667 {
11668 /* Nothing to do if there's no specific exception to catch. */
11669 if (c->excep_string.empty ())
11670 return;
11671
11672 /* Same if there are no locations... */
11673 if (c->loc == NULL)
11674 return;
11675
11676 /* Compute the condition expression in text form, from the specific
11677 expection we want to catch. */
11678 std::string cond_string
11679 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
11680
11681 /* Iterate over all the catchpoint's locations, and parse an
11682 expression for each. */
11683 for (bp_location *bl : c->locations ())
11684 {
11685 struct ada_catchpoint_location *ada_loc
11686 = (struct ada_catchpoint_location *) bl;
11687 expression_up exp;
11688
11689 if (!bl->shlib_disabled)
11690 {
11691 const char *s;
11692
11693 s = cond_string.c_str ();
11694 try
11695 {
11696 exp = parse_exp_1 (&s, bl->address,
11697 block_for_pc (bl->address),
11698 0);
11699 }
11700 catch (const gdb_exception_error &e)
11701 {
11702 warning (_("failed to reevaluate internal exception condition "
11703 "for catchpoint %d: %s"),
11704 c->number, e.what ());
11705 }
11706 }
11707
11708 ada_loc->excep_cond_expr = std::move (exp);
11709 }
11710 }
11711
11712 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11713 structure for all exception catchpoint kinds. */
11714
11715 static struct bp_location *
11716 allocate_location_exception (struct breakpoint *self)
11717 {
11718 return new ada_catchpoint_location (self);
11719 }
11720
11721 /* Implement the RE_SET method in the breakpoint_ops structure for all
11722 exception catchpoint kinds. */
11723
11724 static void
11725 re_set_exception (struct breakpoint *b)
11726 {
11727 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11728
11729 /* Call the base class's method. This updates the catchpoint's
11730 locations. */
11731 bkpt_breakpoint_ops.re_set (b);
11732
11733 /* Reparse the exception conditional expressions. One for each
11734 location. */
11735 create_excep_cond_exprs (c, c->m_kind);
11736 }
11737
11738 /* Returns true if we should stop for this breakpoint hit. If the
11739 user specified a specific exception, we only want to cause a stop
11740 if the program thrown that exception. */
11741
11742 static bool
11743 should_stop_exception (const struct bp_location *bl)
11744 {
11745 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11746 const struct ada_catchpoint_location *ada_loc
11747 = (const struct ada_catchpoint_location *) bl;
11748 bool stop;
11749
11750 struct internalvar *var = lookup_internalvar ("_ada_exception");
11751 if (c->m_kind == ada_catch_assert)
11752 clear_internalvar (var);
11753 else
11754 {
11755 try
11756 {
11757 const char *expr;
11758
11759 if (c->m_kind == ada_catch_handlers)
11760 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
11761 ".all.occurrence.id");
11762 else
11763 expr = "e";
11764
11765 struct value *exc = parse_and_eval (expr);
11766 set_internalvar (var, exc);
11767 }
11768 catch (const gdb_exception_error &ex)
11769 {
11770 clear_internalvar (var);
11771 }
11772 }
11773
11774 /* With no specific exception, should always stop. */
11775 if (c->excep_string.empty ())
11776 return true;
11777
11778 if (ada_loc->excep_cond_expr == NULL)
11779 {
11780 /* We will have a NULL expression if back when we were creating
11781 the expressions, this location's had failed to parse. */
11782 return true;
11783 }
11784
11785 stop = true;
11786 try
11787 {
11788 struct value *mark;
11789
11790 mark = value_mark ();
11791 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
11792 value_free_to_mark (mark);
11793 }
11794 catch (const gdb_exception &ex)
11795 {
11796 exception_fprintf (gdb_stderr, ex,
11797 _("Error in testing exception condition:\n"));
11798 }
11799
11800 return stop;
11801 }
11802
11803 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11804 for all exception catchpoint kinds. */
11805
11806 static void
11807 check_status_exception (bpstat *bs)
11808 {
11809 bs->stop = should_stop_exception (bs->bp_location_at.get ());
11810 }
11811
11812 /* Implement the PRINT_IT method in the breakpoint_ops structure
11813 for all exception catchpoint kinds. */
11814
11815 static enum print_stop_action
11816 print_it_exception (bpstat *bs)
11817 {
11818 struct ui_out *uiout = current_uiout;
11819 struct breakpoint *b = bs->breakpoint_at;
11820
11821 annotate_catchpoint (b->number);
11822
11823 if (uiout->is_mi_like_p ())
11824 {
11825 uiout->field_string ("reason",
11826 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11827 uiout->field_string ("disp", bpdisp_text (b->disposition));
11828 }
11829
11830 uiout->text (b->disposition == disp_del
11831 ? "\nTemporary catchpoint " : "\nCatchpoint ");
11832 uiout->field_signed ("bkptno", b->number);
11833 uiout->text (", ");
11834
11835 /* ada_exception_name_addr relies on the selected frame being the
11836 current frame. Need to do this here because this function may be
11837 called more than once when printing a stop, and below, we'll
11838 select the first frame past the Ada run-time (see
11839 ada_find_printable_frame). */
11840 select_frame (get_current_frame ());
11841
11842 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11843 switch (c->m_kind)
11844 {
11845 case ada_catch_exception:
11846 case ada_catch_exception_unhandled:
11847 case ada_catch_handlers:
11848 {
11849 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
11850 char exception_name[256];
11851
11852 if (addr != 0)
11853 {
11854 read_memory (addr, (gdb_byte *) exception_name,
11855 sizeof (exception_name) - 1);
11856 exception_name [sizeof (exception_name) - 1] = '\0';
11857 }
11858 else
11859 {
11860 /* For some reason, we were unable to read the exception
11861 name. This could happen if the Runtime was compiled
11862 without debugging info, for instance. In that case,
11863 just replace the exception name by the generic string
11864 "exception" - it will read as "an exception" in the
11865 notification we are about to print. */
11866 memcpy (exception_name, "exception", sizeof ("exception"));
11867 }
11868 /* In the case of unhandled exception breakpoints, we print
11869 the exception name as "unhandled EXCEPTION_NAME", to make
11870 it clearer to the user which kind of catchpoint just got
11871 hit. We used ui_out_text to make sure that this extra
11872 info does not pollute the exception name in the MI case. */
11873 if (c->m_kind == ada_catch_exception_unhandled)
11874 uiout->text ("unhandled ");
11875 uiout->field_string ("exception-name", exception_name);
11876 }
11877 break;
11878 case ada_catch_assert:
11879 /* In this case, the name of the exception is not really
11880 important. Just print "failed assertion" to make it clearer
11881 that his program just hit an assertion-failure catchpoint.
11882 We used ui_out_text because this info does not belong in
11883 the MI output. */
11884 uiout->text ("failed assertion");
11885 break;
11886 }
11887
11888 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
11889 if (exception_message != NULL)
11890 {
11891 uiout->text (" (");
11892 uiout->field_string ("exception-message", exception_message.get ());
11893 uiout->text (")");
11894 }
11895
11896 uiout->text (" at ");
11897 ada_find_printable_frame (get_current_frame ());
11898
11899 return PRINT_SRC_AND_LOC;
11900 }
11901
11902 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11903 for all exception catchpoint kinds. */
11904
11905 static void
11906 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
11907 {
11908 struct ui_out *uiout = current_uiout;
11909 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11910 struct value_print_options opts;
11911
11912 get_user_print_options (&opts);
11913
11914 if (opts.addressprint)
11915 uiout->field_skip ("addr");
11916
11917 annotate_field (5);
11918 switch (c->m_kind)
11919 {
11920 case ada_catch_exception:
11921 if (!c->excep_string.empty ())
11922 {
11923 std::string msg = string_printf (_("`%s' Ada exception"),
11924 c->excep_string.c_str ());
11925
11926 uiout->field_string ("what", msg);
11927 }
11928 else
11929 uiout->field_string ("what", "all Ada exceptions");
11930
11931 break;
11932
11933 case ada_catch_exception_unhandled:
11934 uiout->field_string ("what", "unhandled Ada exceptions");
11935 break;
11936
11937 case ada_catch_handlers:
11938 if (!c->excep_string.empty ())
11939 {
11940 uiout->field_fmt ("what",
11941 _("`%s' Ada exception handlers"),
11942 c->excep_string.c_str ());
11943 }
11944 else
11945 uiout->field_string ("what", "all Ada exceptions handlers");
11946 break;
11947
11948 case ada_catch_assert:
11949 uiout->field_string ("what", "failed Ada assertions");
11950 break;
11951
11952 default:
11953 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11954 break;
11955 }
11956 }
11957
11958 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11959 for all exception catchpoint kinds. */
11960
11961 static void
11962 print_mention_exception (struct breakpoint *b)
11963 {
11964 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11965 struct ui_out *uiout = current_uiout;
11966
11967 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
11968 : _("Catchpoint "));
11969 uiout->field_signed ("bkptno", b->number);
11970 uiout->text (": ");
11971
11972 switch (c->m_kind)
11973 {
11974 case ada_catch_exception:
11975 if (!c->excep_string.empty ())
11976 {
11977 std::string info = string_printf (_("`%s' Ada exception"),
11978 c->excep_string.c_str ());
11979 uiout->text (info);
11980 }
11981 else
11982 uiout->text (_("all Ada exceptions"));
11983 break;
11984
11985 case ada_catch_exception_unhandled:
11986 uiout->text (_("unhandled Ada exceptions"));
11987 break;
11988
11989 case ada_catch_handlers:
11990 if (!c->excep_string.empty ())
11991 {
11992 std::string info
11993 = string_printf (_("`%s' Ada exception handlers"),
11994 c->excep_string.c_str ());
11995 uiout->text (info);
11996 }
11997 else
11998 uiout->text (_("all Ada exceptions handlers"));
11999 break;
12000
12001 case ada_catch_assert:
12002 uiout->text (_("failed Ada assertions"));
12003 break;
12004
12005 default:
12006 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12007 break;
12008 }
12009 }
12010
12011 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12012 for all exception catchpoint kinds. */
12013
12014 static void
12015 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12016 {
12017 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12018
12019 switch (c->m_kind)
12020 {
12021 case ada_catch_exception:
12022 fprintf_filtered (fp, "catch exception");
12023 if (!c->excep_string.empty ())
12024 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12025 break;
12026
12027 case ada_catch_exception_unhandled:
12028 fprintf_filtered (fp, "catch exception unhandled");
12029 break;
12030
12031 case ada_catch_handlers:
12032 fprintf_filtered (fp, "catch handlers");
12033 break;
12034
12035 case ada_catch_assert:
12036 fprintf_filtered (fp, "catch assert");
12037 break;
12038
12039 default:
12040 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12041 }
12042 print_recreate_thread (b, fp);
12043 }
12044
12045 /* Virtual tables for various breakpoint types. */
12046 static struct breakpoint_ops catch_exception_breakpoint_ops;
12047 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12048 static struct breakpoint_ops catch_assert_breakpoint_ops;
12049 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12050
12051 /* See ada-lang.h. */
12052
12053 bool
12054 is_ada_exception_catchpoint (breakpoint *bp)
12055 {
12056 return (bp->ops == &catch_exception_breakpoint_ops
12057 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12058 || bp->ops == &catch_assert_breakpoint_ops
12059 || bp->ops == &catch_handlers_breakpoint_ops);
12060 }
12061
12062 /* Split the arguments specified in a "catch exception" command.
12063 Set EX to the appropriate catchpoint type.
12064 Set EXCEP_STRING to the name of the specific exception if
12065 specified by the user.
12066 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12067 "catch handlers" command. False otherwise.
12068 If a condition is found at the end of the arguments, the condition
12069 expression is stored in COND_STRING (memory must be deallocated
12070 after use). Otherwise COND_STRING is set to NULL. */
12071
12072 static void
12073 catch_ada_exception_command_split (const char *args,
12074 bool is_catch_handlers_cmd,
12075 enum ada_exception_catchpoint_kind *ex,
12076 std::string *excep_string,
12077 std::string *cond_string)
12078 {
12079 std::string exception_name;
12080
12081 exception_name = extract_arg (&args);
12082 if (exception_name == "if")
12083 {
12084 /* This is not an exception name; this is the start of a condition
12085 expression for a catchpoint on all exceptions. So, "un-get"
12086 this token, and set exception_name to NULL. */
12087 exception_name.clear ();
12088 args -= 2;
12089 }
12090
12091 /* Check to see if we have a condition. */
12092
12093 args = skip_spaces (args);
12094 if (startswith (args, "if")
12095 && (isspace (args[2]) || args[2] == '\0'))
12096 {
12097 args += 2;
12098 args = skip_spaces (args);
12099
12100 if (args[0] == '\0')
12101 error (_("Condition missing after `if' keyword"));
12102 *cond_string = args;
12103
12104 args += strlen (args);
12105 }
12106
12107 /* Check that we do not have any more arguments. Anything else
12108 is unexpected. */
12109
12110 if (args[0] != '\0')
12111 error (_("Junk at end of expression"));
12112
12113 if (is_catch_handlers_cmd)
12114 {
12115 /* Catch handling of exceptions. */
12116 *ex = ada_catch_handlers;
12117 *excep_string = exception_name;
12118 }
12119 else if (exception_name.empty ())
12120 {
12121 /* Catch all exceptions. */
12122 *ex = ada_catch_exception;
12123 excep_string->clear ();
12124 }
12125 else if (exception_name == "unhandled")
12126 {
12127 /* Catch unhandled exceptions. */
12128 *ex = ada_catch_exception_unhandled;
12129 excep_string->clear ();
12130 }
12131 else
12132 {
12133 /* Catch a specific exception. */
12134 *ex = ada_catch_exception;
12135 *excep_string = exception_name;
12136 }
12137 }
12138
12139 /* Return the name of the symbol on which we should break in order to
12140 implement a catchpoint of the EX kind. */
12141
12142 static const char *
12143 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12144 {
12145 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12146
12147 gdb_assert (data->exception_info != NULL);
12148
12149 switch (ex)
12150 {
12151 case ada_catch_exception:
12152 return (data->exception_info->catch_exception_sym);
12153 break;
12154 case ada_catch_exception_unhandled:
12155 return (data->exception_info->catch_exception_unhandled_sym);
12156 break;
12157 case ada_catch_assert:
12158 return (data->exception_info->catch_assert_sym);
12159 break;
12160 case ada_catch_handlers:
12161 return (data->exception_info->catch_handlers_sym);
12162 break;
12163 default:
12164 internal_error (__FILE__, __LINE__,
12165 _("unexpected catchpoint kind (%d)"), ex);
12166 }
12167 }
12168
12169 /* Return the breakpoint ops "virtual table" used for catchpoints
12170 of the EX kind. */
12171
12172 static const struct breakpoint_ops *
12173 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12174 {
12175 switch (ex)
12176 {
12177 case ada_catch_exception:
12178 return (&catch_exception_breakpoint_ops);
12179 break;
12180 case ada_catch_exception_unhandled:
12181 return (&catch_exception_unhandled_breakpoint_ops);
12182 break;
12183 case ada_catch_assert:
12184 return (&catch_assert_breakpoint_ops);
12185 break;
12186 case ada_catch_handlers:
12187 return (&catch_handlers_breakpoint_ops);
12188 break;
12189 default:
12190 internal_error (__FILE__, __LINE__,
12191 _("unexpected catchpoint kind (%d)"), ex);
12192 }
12193 }
12194
12195 /* Return the condition that will be used to match the current exception
12196 being raised with the exception that the user wants to catch. This
12197 assumes that this condition is used when the inferior just triggered
12198 an exception catchpoint.
12199 EX: the type of catchpoints used for catching Ada exceptions. */
12200
12201 static std::string
12202 ada_exception_catchpoint_cond_string (const char *excep_string,
12203 enum ada_exception_catchpoint_kind ex)
12204 {
12205 bool is_standard_exc = false;
12206 std::string result;
12207
12208 if (ex == ada_catch_handlers)
12209 {
12210 /* For exception handlers catchpoints, the condition string does
12211 not use the same parameter as for the other exceptions. */
12212 result = ("long_integer (GNAT_GCC_exception_Access"
12213 "(gcc_exception).all.occurrence.id)");
12214 }
12215 else
12216 result = "long_integer (e)";
12217
12218 /* The standard exceptions are a special case. They are defined in
12219 runtime units that have been compiled without debugging info; if
12220 EXCEP_STRING is the not-fully-qualified name of a standard
12221 exception (e.g. "constraint_error") then, during the evaluation
12222 of the condition expression, the symbol lookup on this name would
12223 *not* return this standard exception. The catchpoint condition
12224 may then be set only on user-defined exceptions which have the
12225 same not-fully-qualified name (e.g. my_package.constraint_error).
12226
12227 To avoid this unexcepted behavior, these standard exceptions are
12228 systematically prefixed by "standard". This means that "catch
12229 exception constraint_error" is rewritten into "catch exception
12230 standard.constraint_error".
12231
12232 If an exception named constraint_error is defined in another package of
12233 the inferior program, then the only way to specify this exception as a
12234 breakpoint condition is to use its fully-qualified named:
12235 e.g. my_package.constraint_error. */
12236
12237 for (const char *name : standard_exc)
12238 {
12239 if (strcmp (name, excep_string) == 0)
12240 {
12241 is_standard_exc = true;
12242 break;
12243 }
12244 }
12245
12246 result += " = ";
12247
12248 if (is_standard_exc)
12249 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12250 else
12251 string_appendf (result, "long_integer (&%s)", excep_string);
12252
12253 return result;
12254 }
12255
12256 /* Return the symtab_and_line that should be used to insert an exception
12257 catchpoint of the TYPE kind.
12258
12259 ADDR_STRING returns the name of the function where the real
12260 breakpoint that implements the catchpoints is set, depending on the
12261 type of catchpoint we need to create. */
12262
12263 static struct symtab_and_line
12264 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12265 std::string *addr_string, const struct breakpoint_ops **ops)
12266 {
12267 const char *sym_name;
12268 struct symbol *sym;
12269
12270 /* First, find out which exception support info to use. */
12271 ada_exception_support_info_sniffer ();
12272
12273 /* Then lookup the function on which we will break in order to catch
12274 the Ada exceptions requested by the user. */
12275 sym_name = ada_exception_sym_name (ex);
12276 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12277
12278 if (sym == NULL)
12279 error (_("Catchpoint symbol not found: %s"), sym_name);
12280
12281 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12282 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12283
12284 /* Set ADDR_STRING. */
12285 *addr_string = sym_name;
12286
12287 /* Set OPS. */
12288 *ops = ada_exception_breakpoint_ops (ex);
12289
12290 return find_function_start_sal (sym, 1);
12291 }
12292
12293 /* Create an Ada exception catchpoint.
12294
12295 EX_KIND is the kind of exception catchpoint to be created.
12296
12297 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12298 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12299 of the exception to which this catchpoint applies.
12300
12301 COND_STRING, if not empty, is the catchpoint condition.
12302
12303 TEMPFLAG, if nonzero, means that the underlying breakpoint
12304 should be temporary.
12305
12306 FROM_TTY is the usual argument passed to all commands implementations. */
12307
12308 void
12309 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12310 enum ada_exception_catchpoint_kind ex_kind,
12311 const std::string &excep_string,
12312 const std::string &cond_string,
12313 int tempflag,
12314 int disabled,
12315 int from_tty)
12316 {
12317 std::string addr_string;
12318 const struct breakpoint_ops *ops = NULL;
12319 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12320
12321 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12322 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12323 ops, tempflag, disabled, from_tty);
12324 c->excep_string = excep_string;
12325 create_excep_cond_exprs (c.get (), ex_kind);
12326 if (!cond_string.empty ())
12327 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty, false);
12328 install_breakpoint (0, std::move (c), 1);
12329 }
12330
12331 /* Implement the "catch exception" command. */
12332
12333 static void
12334 catch_ada_exception_command (const char *arg_entry, int from_tty,
12335 struct cmd_list_element *command)
12336 {
12337 const char *arg = arg_entry;
12338 struct gdbarch *gdbarch = get_current_arch ();
12339 int tempflag;
12340 enum ada_exception_catchpoint_kind ex_kind;
12341 std::string excep_string;
12342 std::string cond_string;
12343
12344 tempflag = command->context () == CATCH_TEMPORARY;
12345
12346 if (!arg)
12347 arg = "";
12348 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12349 &cond_string);
12350 create_ada_exception_catchpoint (gdbarch, ex_kind,
12351 excep_string, cond_string,
12352 tempflag, 1 /* enabled */,
12353 from_tty);
12354 }
12355
12356 /* Implement the "catch handlers" command. */
12357
12358 static void
12359 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12360 struct cmd_list_element *command)
12361 {
12362 const char *arg = arg_entry;
12363 struct gdbarch *gdbarch = get_current_arch ();
12364 int tempflag;
12365 enum ada_exception_catchpoint_kind ex_kind;
12366 std::string excep_string;
12367 std::string cond_string;
12368
12369 tempflag = command->context () == CATCH_TEMPORARY;
12370
12371 if (!arg)
12372 arg = "";
12373 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12374 &cond_string);
12375 create_ada_exception_catchpoint (gdbarch, ex_kind,
12376 excep_string, cond_string,
12377 tempflag, 1 /* enabled */,
12378 from_tty);
12379 }
12380
12381 /* Completion function for the Ada "catch" commands. */
12382
12383 static void
12384 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12385 const char *text, const char *word)
12386 {
12387 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12388
12389 for (const ada_exc_info &info : exceptions)
12390 {
12391 if (startswith (info.name, word))
12392 tracker.add_completion (make_unique_xstrdup (info.name));
12393 }
12394 }
12395
12396 /* Split the arguments specified in a "catch assert" command.
12397
12398 ARGS contains the command's arguments (or the empty string if
12399 no arguments were passed).
12400
12401 If ARGS contains a condition, set COND_STRING to that condition
12402 (the memory needs to be deallocated after use). */
12403
12404 static void
12405 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12406 {
12407 args = skip_spaces (args);
12408
12409 /* Check whether a condition was provided. */
12410 if (startswith (args, "if")
12411 && (isspace (args[2]) || args[2] == '\0'))
12412 {
12413 args += 2;
12414 args = skip_spaces (args);
12415 if (args[0] == '\0')
12416 error (_("condition missing after `if' keyword"));
12417 cond_string.assign (args);
12418 }
12419
12420 /* Otherwise, there should be no other argument at the end of
12421 the command. */
12422 else if (args[0] != '\0')
12423 error (_("Junk at end of arguments."));
12424 }
12425
12426 /* Implement the "catch assert" command. */
12427
12428 static void
12429 catch_assert_command (const char *arg_entry, int from_tty,
12430 struct cmd_list_element *command)
12431 {
12432 const char *arg = arg_entry;
12433 struct gdbarch *gdbarch = get_current_arch ();
12434 int tempflag;
12435 std::string cond_string;
12436
12437 tempflag = command->context () == CATCH_TEMPORARY;
12438
12439 if (!arg)
12440 arg = "";
12441 catch_ada_assert_command_split (arg, cond_string);
12442 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12443 "", cond_string,
12444 tempflag, 1 /* enabled */,
12445 from_tty);
12446 }
12447
12448 /* Return non-zero if the symbol SYM is an Ada exception object. */
12449
12450 static int
12451 ada_is_exception_sym (struct symbol *sym)
12452 {
12453 const char *type_name = SYMBOL_TYPE (sym)->name ();
12454
12455 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12456 && SYMBOL_CLASS (sym) != LOC_BLOCK
12457 && SYMBOL_CLASS (sym) != LOC_CONST
12458 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
12459 && type_name != NULL && strcmp (type_name, "exception") == 0);
12460 }
12461
12462 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12463 Ada exception object. This matches all exceptions except the ones
12464 defined by the Ada language. */
12465
12466 static int
12467 ada_is_non_standard_exception_sym (struct symbol *sym)
12468 {
12469 if (!ada_is_exception_sym (sym))
12470 return 0;
12471
12472 for (const char *name : standard_exc)
12473 if (strcmp (sym->linkage_name (), name) == 0)
12474 return 0; /* A standard exception. */
12475
12476 /* Numeric_Error is also a standard exception, so exclude it.
12477 See the STANDARD_EXC description for more details as to why
12478 this exception is not listed in that array. */
12479 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
12480 return 0;
12481
12482 return 1;
12483 }
12484
12485 /* A helper function for std::sort, comparing two struct ada_exc_info
12486 objects.
12487
12488 The comparison is determined first by exception name, and then
12489 by exception address. */
12490
12491 bool
12492 ada_exc_info::operator< (const ada_exc_info &other) const
12493 {
12494 int result;
12495
12496 result = strcmp (name, other.name);
12497 if (result < 0)
12498 return true;
12499 if (result == 0 && addr < other.addr)
12500 return true;
12501 return false;
12502 }
12503
12504 bool
12505 ada_exc_info::operator== (const ada_exc_info &other) const
12506 {
12507 return addr == other.addr && strcmp (name, other.name) == 0;
12508 }
12509
12510 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12511 routine, but keeping the first SKIP elements untouched.
12512
12513 All duplicates are also removed. */
12514
12515 static void
12516 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
12517 int skip)
12518 {
12519 std::sort (exceptions->begin () + skip, exceptions->end ());
12520 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
12521 exceptions->end ());
12522 }
12523
12524 /* Add all exceptions defined by the Ada standard whose name match
12525 a regular expression.
12526
12527 If PREG is not NULL, then this regexp_t object is used to
12528 perform the symbol name matching. Otherwise, no name-based
12529 filtering is performed.
12530
12531 EXCEPTIONS is a vector of exceptions to which matching exceptions
12532 gets pushed. */
12533
12534 static void
12535 ada_add_standard_exceptions (compiled_regex *preg,
12536 std::vector<ada_exc_info> *exceptions)
12537 {
12538 for (const char *name : standard_exc)
12539 {
12540 if (preg == NULL || preg->exec (name, 0, NULL, 0) == 0)
12541 {
12542 struct bound_minimal_symbol msymbol
12543 = ada_lookup_simple_minsym (name);
12544
12545 if (msymbol.minsym != NULL)
12546 {
12547 struct ada_exc_info info
12548 = {name, BMSYMBOL_VALUE_ADDRESS (msymbol)};
12549
12550 exceptions->push_back (info);
12551 }
12552 }
12553 }
12554 }
12555
12556 /* Add all Ada exceptions defined locally and accessible from the given
12557 FRAME.
12558
12559 If PREG is not NULL, then this regexp_t object is used to
12560 perform the symbol name matching. Otherwise, no name-based
12561 filtering is performed.
12562
12563 EXCEPTIONS is a vector of exceptions to which matching exceptions
12564 gets pushed. */
12565
12566 static void
12567 ada_add_exceptions_from_frame (compiled_regex *preg,
12568 struct frame_info *frame,
12569 std::vector<ada_exc_info> *exceptions)
12570 {
12571 const struct block *block = get_frame_block (frame, 0);
12572
12573 while (block != 0)
12574 {
12575 struct block_iterator iter;
12576 struct symbol *sym;
12577
12578 ALL_BLOCK_SYMBOLS (block, iter, sym)
12579 {
12580 switch (SYMBOL_CLASS (sym))
12581 {
12582 case LOC_TYPEDEF:
12583 case LOC_BLOCK:
12584 case LOC_CONST:
12585 break;
12586 default:
12587 if (ada_is_exception_sym (sym))
12588 {
12589 struct ada_exc_info info = {sym->print_name (),
12590 SYMBOL_VALUE_ADDRESS (sym)};
12591
12592 exceptions->push_back (info);
12593 }
12594 }
12595 }
12596 if (BLOCK_FUNCTION (block) != NULL)
12597 break;
12598 block = BLOCK_SUPERBLOCK (block);
12599 }
12600 }
12601
12602 /* Return true if NAME matches PREG or if PREG is NULL. */
12603
12604 static bool
12605 name_matches_regex (const char *name, compiled_regex *preg)
12606 {
12607 return (preg == NULL
12608 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
12609 }
12610
12611 /* Add all exceptions defined globally whose name name match
12612 a regular expression, excluding standard exceptions.
12613
12614 The reason we exclude standard exceptions is that they need
12615 to be handled separately: Standard exceptions are defined inside
12616 a runtime unit which is normally not compiled with debugging info,
12617 and thus usually do not show up in our symbol search. However,
12618 if the unit was in fact built with debugging info, we need to
12619 exclude them because they would duplicate the entry we found
12620 during the special loop that specifically searches for those
12621 standard exceptions.
12622
12623 If PREG is not NULL, then this regexp_t object is used to
12624 perform the symbol name matching. Otherwise, no name-based
12625 filtering is performed.
12626
12627 EXCEPTIONS is a vector of exceptions to which matching exceptions
12628 gets pushed. */
12629
12630 static void
12631 ada_add_global_exceptions (compiled_regex *preg,
12632 std::vector<ada_exc_info> *exceptions)
12633 {
12634 /* In Ada, the symbol "search name" is a linkage name, whereas the
12635 regular expression used to do the matching refers to the natural
12636 name. So match against the decoded name. */
12637 expand_symtabs_matching (NULL,
12638 lookup_name_info::match_any (),
12639 [&] (const char *search_name)
12640 {
12641 std::string decoded = ada_decode (search_name);
12642 return name_matches_regex (decoded.c_str (), preg);
12643 },
12644 NULL,
12645 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
12646 VARIABLES_DOMAIN);
12647
12648 for (objfile *objfile : current_program_space->objfiles ())
12649 {
12650 for (compunit_symtab *s : objfile->compunits ())
12651 {
12652 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
12653 int i;
12654
12655 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
12656 {
12657 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
12658 struct block_iterator iter;
12659 struct symbol *sym;
12660
12661 ALL_BLOCK_SYMBOLS (b, iter, sym)
12662 if (ada_is_non_standard_exception_sym (sym)
12663 && name_matches_regex (sym->natural_name (), preg))
12664 {
12665 struct ada_exc_info info
12666 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
12667
12668 exceptions->push_back (info);
12669 }
12670 }
12671 }
12672 }
12673 }
12674
12675 /* Implements ada_exceptions_list with the regular expression passed
12676 as a regex_t, rather than a string.
12677
12678 If not NULL, PREG is used to filter out exceptions whose names
12679 do not match. Otherwise, all exceptions are listed. */
12680
12681 static std::vector<ada_exc_info>
12682 ada_exceptions_list_1 (compiled_regex *preg)
12683 {
12684 std::vector<ada_exc_info> result;
12685 int prev_len;
12686
12687 /* First, list the known standard exceptions. These exceptions
12688 need to be handled separately, as they are usually defined in
12689 runtime units that have been compiled without debugging info. */
12690
12691 ada_add_standard_exceptions (preg, &result);
12692
12693 /* Next, find all exceptions whose scope is local and accessible
12694 from the currently selected frame. */
12695
12696 if (has_stack_frames ())
12697 {
12698 prev_len = result.size ();
12699 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
12700 &result);
12701 if (result.size () > prev_len)
12702 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12703 }
12704
12705 /* Add all exceptions whose scope is global. */
12706
12707 prev_len = result.size ();
12708 ada_add_global_exceptions (preg, &result);
12709 if (result.size () > prev_len)
12710 sort_remove_dups_ada_exceptions_list (&result, prev_len);
12711
12712 return result;
12713 }
12714
12715 /* Return a vector of ada_exc_info.
12716
12717 If REGEXP is NULL, all exceptions are included in the result.
12718 Otherwise, it should contain a valid regular expression,
12719 and only the exceptions whose names match that regular expression
12720 are included in the result.
12721
12722 The exceptions are sorted in the following order:
12723 - Standard exceptions (defined by the Ada language), in
12724 alphabetical order;
12725 - Exceptions only visible from the current frame, in
12726 alphabetical order;
12727 - Exceptions whose scope is global, in alphabetical order. */
12728
12729 std::vector<ada_exc_info>
12730 ada_exceptions_list (const char *regexp)
12731 {
12732 if (regexp == NULL)
12733 return ada_exceptions_list_1 (NULL);
12734
12735 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
12736 return ada_exceptions_list_1 (&reg);
12737 }
12738
12739 /* Implement the "info exceptions" command. */
12740
12741 static void
12742 info_exceptions_command (const char *regexp, int from_tty)
12743 {
12744 struct gdbarch *gdbarch = get_current_arch ();
12745
12746 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
12747
12748 if (regexp != NULL)
12749 printf_filtered
12750 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
12751 else
12752 printf_filtered (_("All defined Ada exceptions:\n"));
12753
12754 for (const ada_exc_info &info : exceptions)
12755 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
12756 }
12757
12758 \f
12759 /* Language vector */
12760
12761 /* symbol_name_matcher_ftype adapter for wild_match. */
12762
12763 static bool
12764 do_wild_match (const char *symbol_search_name,
12765 const lookup_name_info &lookup_name,
12766 completion_match_result *comp_match_res)
12767 {
12768 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
12769 }
12770
12771 /* symbol_name_matcher_ftype adapter for full_match. */
12772
12773 static bool
12774 do_full_match (const char *symbol_search_name,
12775 const lookup_name_info &lookup_name,
12776 completion_match_result *comp_match_res)
12777 {
12778 const char *lname = lookup_name.ada ().lookup_name ().c_str ();
12779
12780 /* If both symbols start with "_ada_", just let the loop below
12781 handle the comparison. However, if only the symbol name starts
12782 with "_ada_", skip the prefix and let the match proceed as
12783 usual. */
12784 if (startswith (symbol_search_name, "_ada_")
12785 && !startswith (lname, "_ada"))
12786 symbol_search_name += 5;
12787
12788 int uscore_count = 0;
12789 while (*lname != '\0')
12790 {
12791 if (*symbol_search_name != *lname)
12792 {
12793 if (*symbol_search_name == 'B' && uscore_count == 2
12794 && symbol_search_name[1] == '_')
12795 {
12796 symbol_search_name += 2;
12797 while (isdigit (*symbol_search_name))
12798 ++symbol_search_name;
12799 if (symbol_search_name[0] == '_'
12800 && symbol_search_name[1] == '_')
12801 {
12802 symbol_search_name += 2;
12803 continue;
12804 }
12805 }
12806 return false;
12807 }
12808
12809 if (*symbol_search_name == '_')
12810 ++uscore_count;
12811 else
12812 uscore_count = 0;
12813
12814 ++symbol_search_name;
12815 ++lname;
12816 }
12817
12818 return is_name_suffix (symbol_search_name);
12819 }
12820
12821 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
12822
12823 static bool
12824 do_exact_match (const char *symbol_search_name,
12825 const lookup_name_info &lookup_name,
12826 completion_match_result *comp_match_res)
12827 {
12828 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
12829 }
12830
12831 /* Build the Ada lookup name for LOOKUP_NAME. */
12832
12833 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
12834 {
12835 gdb::string_view user_name = lookup_name.name ();
12836
12837 if (!user_name.empty () && user_name[0] == '<')
12838 {
12839 if (user_name.back () == '>')
12840 m_encoded_name
12841 = gdb::to_string (user_name.substr (1, user_name.size () - 2));
12842 else
12843 m_encoded_name
12844 = gdb::to_string (user_name.substr (1, user_name.size () - 1));
12845 m_encoded_p = true;
12846 m_verbatim_p = true;
12847 m_wild_match_p = false;
12848 m_standard_p = false;
12849 }
12850 else
12851 {
12852 m_verbatim_p = false;
12853
12854 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
12855
12856 if (!m_encoded_p)
12857 {
12858 const char *folded = ada_fold_name (user_name);
12859 m_encoded_name = ada_encode_1 (folded, false);
12860 if (m_encoded_name.empty ())
12861 m_encoded_name = gdb::to_string (user_name);
12862 }
12863 else
12864 m_encoded_name = gdb::to_string (user_name);
12865
12866 /* Handle the 'package Standard' special case. See description
12867 of m_standard_p. */
12868 if (startswith (m_encoded_name.c_str (), "standard__"))
12869 {
12870 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
12871 m_standard_p = true;
12872 }
12873 else
12874 m_standard_p = false;
12875
12876 /* If the name contains a ".", then the user is entering a fully
12877 qualified entity name, and the match must not be done in wild
12878 mode. Similarly, if the user wants to complete what looks
12879 like an encoded name, the match must not be done in wild
12880 mode. Also, in the standard__ special case always do
12881 non-wild matching. */
12882 m_wild_match_p
12883 = (lookup_name.match_type () != symbol_name_match_type::FULL
12884 && !m_encoded_p
12885 && !m_standard_p
12886 && user_name.find ('.') == std::string::npos);
12887 }
12888 }
12889
12890 /* symbol_name_matcher_ftype method for Ada. This only handles
12891 completion mode. */
12892
12893 static bool
12894 ada_symbol_name_matches (const char *symbol_search_name,
12895 const lookup_name_info &lookup_name,
12896 completion_match_result *comp_match_res)
12897 {
12898 return lookup_name.ada ().matches (symbol_search_name,
12899 lookup_name.match_type (),
12900 comp_match_res);
12901 }
12902
12903 /* A name matcher that matches the symbol name exactly, with
12904 strcmp. */
12905
12906 static bool
12907 literal_symbol_name_matcher (const char *symbol_search_name,
12908 const lookup_name_info &lookup_name,
12909 completion_match_result *comp_match_res)
12910 {
12911 gdb::string_view name_view = lookup_name.name ();
12912
12913 if (lookup_name.completion_mode ()
12914 ? (strncmp (symbol_search_name, name_view.data (),
12915 name_view.size ()) == 0)
12916 : symbol_search_name == name_view)
12917 {
12918 if (comp_match_res != NULL)
12919 comp_match_res->set_match (symbol_search_name);
12920 return true;
12921 }
12922 else
12923 return false;
12924 }
12925
12926 /* Implement the "get_symbol_name_matcher" language_defn method for
12927 Ada. */
12928
12929 static symbol_name_matcher_ftype *
12930 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
12931 {
12932 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
12933 return literal_symbol_name_matcher;
12934
12935 if (lookup_name.completion_mode ())
12936 return ada_symbol_name_matches;
12937 else
12938 {
12939 if (lookup_name.ada ().wild_match_p ())
12940 return do_wild_match;
12941 else if (lookup_name.ada ().verbatim_p ())
12942 return do_exact_match;
12943 else
12944 return do_full_match;
12945 }
12946 }
12947
12948 /* Class representing the Ada language. */
12949
12950 class ada_language : public language_defn
12951 {
12952 public:
12953 ada_language ()
12954 : language_defn (language_ada)
12955 { /* Nothing. */ }
12956
12957 /* See language.h. */
12958
12959 const char *name () const override
12960 { return "ada"; }
12961
12962 /* See language.h. */
12963
12964 const char *natural_name () const override
12965 { return "Ada"; }
12966
12967 /* See language.h. */
12968
12969 const std::vector<const char *> &filename_extensions () const override
12970 {
12971 static const std::vector<const char *> extensions
12972 = { ".adb", ".ads", ".a", ".ada", ".dg" };
12973 return extensions;
12974 }
12975
12976 /* Print an array element index using the Ada syntax. */
12977
12978 void print_array_index (struct type *index_type,
12979 LONGEST index,
12980 struct ui_file *stream,
12981 const value_print_options *options) const override
12982 {
12983 struct value *index_value = val_atr (index_type, index);
12984
12985 value_print (index_value, stream, options);
12986 fprintf_filtered (stream, " => ");
12987 }
12988
12989 /* Implement the "read_var_value" language_defn method for Ada. */
12990
12991 struct value *read_var_value (struct symbol *var,
12992 const struct block *var_block,
12993 struct frame_info *frame) const override
12994 {
12995 /* The only case where default_read_var_value is not sufficient
12996 is when VAR is a renaming... */
12997 if (frame != nullptr)
12998 {
12999 const struct block *frame_block = get_frame_block (frame, NULL);
13000 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13001 return ada_read_renaming_var_value (var, frame_block);
13002 }
13003
13004 /* This is a typical case where we expect the default_read_var_value
13005 function to work. */
13006 return language_defn::read_var_value (var, var_block, frame);
13007 }
13008
13009 /* See language.h. */
13010 virtual bool symbol_printing_suppressed (struct symbol *symbol) const override
13011 {
13012 return symbol->artificial;
13013 }
13014
13015 /* See language.h. */
13016 void language_arch_info (struct gdbarch *gdbarch,
13017 struct language_arch_info *lai) const override
13018 {
13019 const struct builtin_type *builtin = builtin_type (gdbarch);
13020
13021 /* Helper function to allow shorter lines below. */
13022 auto add = [&] (struct type *t)
13023 {
13024 lai->add_primitive_type (t);
13025 };
13026
13027 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13028 0, "integer"));
13029 add (arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13030 0, "long_integer"));
13031 add (arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13032 0, "short_integer"));
13033 struct type *char_type = arch_character_type (gdbarch, TARGET_CHAR_BIT,
13034 0, "character");
13035 lai->set_string_char_type (char_type);
13036 add (char_type);
13037 add (arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13038 "float", gdbarch_float_format (gdbarch)));
13039 add (arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13040 "long_float", gdbarch_double_format (gdbarch)));
13041 add (arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13042 0, "long_long_integer"));
13043 add (arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13044 "long_long_float",
13045 gdbarch_long_double_format (gdbarch)));
13046 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13047 0, "natural"));
13048 add (arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13049 0, "positive"));
13050 add (builtin->builtin_void);
13051
13052 struct type *system_addr_ptr
13053 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13054 "void"));
13055 system_addr_ptr->set_name ("system__address");
13056 add (system_addr_ptr);
13057
13058 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13059 type. This is a signed integral type whose size is the same as
13060 the size of addresses. */
13061 unsigned int addr_length = TYPE_LENGTH (system_addr_ptr);
13062 add (arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
13063 "storage_offset"));
13064
13065 lai->set_bool_type (builtin->builtin_bool);
13066 }
13067
13068 /* See language.h. */
13069
13070 bool iterate_over_symbols
13071 (const struct block *block, const lookup_name_info &name,
13072 domain_enum domain,
13073 gdb::function_view<symbol_found_callback_ftype> callback) const override
13074 {
13075 std::vector<struct block_symbol> results
13076 = ada_lookup_symbol_list_worker (name, block, domain, 0);
13077 for (block_symbol &sym : results)
13078 {
13079 if (!callback (&sym))
13080 return false;
13081 }
13082
13083 return true;
13084 }
13085
13086 /* See language.h. */
13087 bool sniff_from_mangled_name
13088 (const char *mangled,
13089 gdb::unique_xmalloc_ptr<char> *out) const override
13090 {
13091 std::string demangled = ada_decode (mangled);
13092
13093 *out = NULL;
13094
13095 if (demangled != mangled && demangled[0] != '<')
13096 {
13097 /* Set the gsymbol language to Ada, but still return 0.
13098 Two reasons for that:
13099
13100 1. For Ada, we prefer computing the symbol's decoded name
13101 on the fly rather than pre-compute it, in order to save
13102 memory (Ada projects are typically very large).
13103
13104 2. There are some areas in the definition of the GNAT
13105 encoding where, with a bit of bad luck, we might be able
13106 to decode a non-Ada symbol, generating an incorrect
13107 demangled name (Eg: names ending with "TB" for instance
13108 are identified as task bodies and so stripped from
13109 the decoded name returned).
13110
13111 Returning true, here, but not setting *DEMANGLED, helps us get
13112 a little bit of the best of both worlds. Because we're last,
13113 we should not affect any of the other languages that were
13114 able to demangle the symbol before us; we get to correctly
13115 tag Ada symbols as such; and even if we incorrectly tagged a
13116 non-Ada symbol, which should be rare, any routing through the
13117 Ada language should be transparent (Ada tries to behave much
13118 like C/C++ with non-Ada symbols). */
13119 return true;
13120 }
13121
13122 return false;
13123 }
13124
13125 /* See language.h. */
13126
13127 gdb::unique_xmalloc_ptr<char> demangle_symbol (const char *mangled,
13128 int options) const override
13129 {
13130 return make_unique_xstrdup (ada_decode (mangled).c_str ());
13131 }
13132
13133 /* See language.h. */
13134
13135 void print_type (struct type *type, const char *varstring,
13136 struct ui_file *stream, int show, int level,
13137 const struct type_print_options *flags) const override
13138 {
13139 ada_print_type (type, varstring, stream, show, level, flags);
13140 }
13141
13142 /* See language.h. */
13143
13144 const char *word_break_characters (void) const override
13145 {
13146 return ada_completer_word_break_characters;
13147 }
13148
13149 /* See language.h. */
13150
13151 void collect_symbol_completion_matches (completion_tracker &tracker,
13152 complete_symbol_mode mode,
13153 symbol_name_match_type name_match_type,
13154 const char *text, const char *word,
13155 enum type_code code) const override
13156 {
13157 struct symbol *sym;
13158 const struct block *b, *surrounding_static_block = 0;
13159 struct block_iterator iter;
13160
13161 gdb_assert (code == TYPE_CODE_UNDEF);
13162
13163 lookup_name_info lookup_name (text, name_match_type, true);
13164
13165 /* First, look at the partial symtab symbols. */
13166 expand_symtabs_matching (NULL,
13167 lookup_name,
13168 NULL,
13169 NULL,
13170 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
13171 ALL_DOMAIN);
13172
13173 /* At this point scan through the misc symbol vectors and add each
13174 symbol you find to the list. Eventually we want to ignore
13175 anything that isn't a text symbol (everything else will be
13176 handled by the psymtab code above). */
13177
13178 for (objfile *objfile : current_program_space->objfiles ())
13179 {
13180 for (minimal_symbol *msymbol : objfile->msymbols ())
13181 {
13182 QUIT;
13183
13184 if (completion_skip_symbol (mode, msymbol))
13185 continue;
13186
13187 language symbol_language = msymbol->language ();
13188
13189 /* Ada minimal symbols won't have their language set to Ada. If
13190 we let completion_list_add_name compare using the
13191 default/C-like matcher, then when completing e.g., symbols in a
13192 package named "pck", we'd match internal Ada symbols like
13193 "pckS", which are invalid in an Ada expression, unless you wrap
13194 them in '<' '>' to request a verbatim match.
13195
13196 Unfortunately, some Ada encoded names successfully demangle as
13197 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13198 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13199 with the wrong language set. Paper over that issue here. */
13200 if (symbol_language == language_auto
13201 || symbol_language == language_cplus)
13202 symbol_language = language_ada;
13203
13204 completion_list_add_name (tracker,
13205 symbol_language,
13206 msymbol->linkage_name (),
13207 lookup_name, text, word);
13208 }
13209 }
13210
13211 /* Search upwards from currently selected frame (so that we can
13212 complete on local vars. */
13213
13214 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
13215 {
13216 if (!BLOCK_SUPERBLOCK (b))
13217 surrounding_static_block = b; /* For elmin of dups */
13218
13219 ALL_BLOCK_SYMBOLS (b, iter, sym)
13220 {
13221 if (completion_skip_symbol (mode, sym))
13222 continue;
13223
13224 completion_list_add_name (tracker,
13225 sym->language (),
13226 sym->linkage_name (),
13227 lookup_name, text, word);
13228 }
13229 }
13230
13231 /* Go through the symtabs and check the externs and statics for
13232 symbols which match. */
13233
13234 for (objfile *objfile : current_program_space->objfiles ())
13235 {
13236 for (compunit_symtab *s : objfile->compunits ())
13237 {
13238 QUIT;
13239 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
13240 ALL_BLOCK_SYMBOLS (b, iter, sym)
13241 {
13242 if (completion_skip_symbol (mode, sym))
13243 continue;
13244
13245 completion_list_add_name (tracker,
13246 sym->language (),
13247 sym->linkage_name (),
13248 lookup_name, text, word);
13249 }
13250 }
13251 }
13252
13253 for (objfile *objfile : current_program_space->objfiles ())
13254 {
13255 for (compunit_symtab *s : objfile->compunits ())
13256 {
13257 QUIT;
13258 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
13259 /* Don't do this block twice. */
13260 if (b == surrounding_static_block)
13261 continue;
13262 ALL_BLOCK_SYMBOLS (b, iter, sym)
13263 {
13264 if (completion_skip_symbol (mode, sym))
13265 continue;
13266
13267 completion_list_add_name (tracker,
13268 sym->language (),
13269 sym->linkage_name (),
13270 lookup_name, text, word);
13271 }
13272 }
13273 }
13274 }
13275
13276 /* See language.h. */
13277
13278 gdb::unique_xmalloc_ptr<char> watch_location_expression
13279 (struct type *type, CORE_ADDR addr) const override
13280 {
13281 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
13282 std::string name = type_to_string (type);
13283 return xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr));
13284 }
13285
13286 /* See language.h. */
13287
13288 void value_print (struct value *val, struct ui_file *stream,
13289 const struct value_print_options *options) const override
13290 {
13291 return ada_value_print (val, stream, options);
13292 }
13293
13294 /* See language.h. */
13295
13296 void value_print_inner
13297 (struct value *val, struct ui_file *stream, int recurse,
13298 const struct value_print_options *options) const override
13299 {
13300 return ada_value_print_inner (val, stream, recurse, options);
13301 }
13302
13303 /* See language.h. */
13304
13305 struct block_symbol lookup_symbol_nonlocal
13306 (const char *name, const struct block *block,
13307 const domain_enum domain) const override
13308 {
13309 struct block_symbol sym;
13310
13311 sym = ada_lookup_symbol (name, block_static_block (block), domain);
13312 if (sym.symbol != NULL)
13313 return sym;
13314
13315 /* If we haven't found a match at this point, try the primitive
13316 types. In other languages, this search is performed before
13317 searching for global symbols in order to short-circuit that
13318 global-symbol search if it happens that the name corresponds
13319 to a primitive type. But we cannot do the same in Ada, because
13320 it is perfectly legitimate for a program to declare a type which
13321 has the same name as a standard type. If looking up a type in
13322 that situation, we have traditionally ignored the primitive type
13323 in favor of user-defined types. This is why, unlike most other
13324 languages, we search the primitive types this late and only after
13325 having searched the global symbols without success. */
13326
13327 if (domain == VAR_DOMAIN)
13328 {
13329 struct gdbarch *gdbarch;
13330
13331 if (block == NULL)
13332 gdbarch = target_gdbarch ();
13333 else
13334 gdbarch = block_gdbarch (block);
13335 sym.symbol
13336 = language_lookup_primitive_type_as_symbol (this, gdbarch, name);
13337 if (sym.symbol != NULL)
13338 return sym;
13339 }
13340
13341 return {};
13342 }
13343
13344 /* See language.h. */
13345
13346 int parser (struct parser_state *ps) const override
13347 {
13348 warnings_issued = 0;
13349 return ada_parse (ps);
13350 }
13351
13352 /* See language.h. */
13353
13354 void emitchar (int ch, struct type *chtype,
13355 struct ui_file *stream, int quoter) const override
13356 {
13357 ada_emit_char (ch, chtype, stream, quoter, 1);
13358 }
13359
13360 /* See language.h. */
13361
13362 void printchar (int ch, struct type *chtype,
13363 struct ui_file *stream) const override
13364 {
13365 ada_printchar (ch, chtype, stream);
13366 }
13367
13368 /* See language.h. */
13369
13370 void printstr (struct ui_file *stream, struct type *elttype,
13371 const gdb_byte *string, unsigned int length,
13372 const char *encoding, int force_ellipses,
13373 const struct value_print_options *options) const override
13374 {
13375 ada_printstr (stream, elttype, string, length, encoding,
13376 force_ellipses, options);
13377 }
13378
13379 /* See language.h. */
13380
13381 void print_typedef (struct type *type, struct symbol *new_symbol,
13382 struct ui_file *stream) const override
13383 {
13384 ada_print_typedef (type, new_symbol, stream);
13385 }
13386
13387 /* See language.h. */
13388
13389 bool is_string_type_p (struct type *type) const override
13390 {
13391 return ada_is_string_type (type);
13392 }
13393
13394 /* See language.h. */
13395
13396 const char *struct_too_deep_ellipsis () const override
13397 { return "(...)"; }
13398
13399 /* See language.h. */
13400
13401 bool c_style_arrays_p () const override
13402 { return false; }
13403
13404 /* See language.h. */
13405
13406 bool store_sym_names_in_linkage_form_p () const override
13407 { return true; }
13408
13409 /* See language.h. */
13410
13411 const struct lang_varobj_ops *varobj_ops () const override
13412 { return &ada_varobj_ops; }
13413
13414 protected:
13415 /* See language.h. */
13416
13417 symbol_name_matcher_ftype *get_symbol_name_matcher_inner
13418 (const lookup_name_info &lookup_name) const override
13419 {
13420 return ada_get_symbol_name_matcher (lookup_name);
13421 }
13422 };
13423
13424 /* Single instance of the Ada language class. */
13425
13426 static ada_language ada_language_defn;
13427
13428 /* Command-list for the "set/show ada" prefix command. */
13429 static struct cmd_list_element *set_ada_list;
13430 static struct cmd_list_element *show_ada_list;
13431
13432 static void
13433 initialize_ada_catchpoint_ops (void)
13434 {
13435 struct breakpoint_ops *ops;
13436
13437 initialize_breakpoint_ops ();
13438
13439 ops = &catch_exception_breakpoint_ops;
13440 *ops = bkpt_breakpoint_ops;
13441 ops->allocate_location = allocate_location_exception;
13442 ops->re_set = re_set_exception;
13443 ops->check_status = check_status_exception;
13444 ops->print_it = print_it_exception;
13445 ops->print_one = print_one_exception;
13446 ops->print_mention = print_mention_exception;
13447 ops->print_recreate = print_recreate_exception;
13448
13449 ops = &catch_exception_unhandled_breakpoint_ops;
13450 *ops = bkpt_breakpoint_ops;
13451 ops->allocate_location = allocate_location_exception;
13452 ops->re_set = re_set_exception;
13453 ops->check_status = check_status_exception;
13454 ops->print_it = print_it_exception;
13455 ops->print_one = print_one_exception;
13456 ops->print_mention = print_mention_exception;
13457 ops->print_recreate = print_recreate_exception;
13458
13459 ops = &catch_assert_breakpoint_ops;
13460 *ops = bkpt_breakpoint_ops;
13461 ops->allocate_location = allocate_location_exception;
13462 ops->re_set = re_set_exception;
13463 ops->check_status = check_status_exception;
13464 ops->print_it = print_it_exception;
13465 ops->print_one = print_one_exception;
13466 ops->print_mention = print_mention_exception;
13467 ops->print_recreate = print_recreate_exception;
13468
13469 ops = &catch_handlers_breakpoint_ops;
13470 *ops = bkpt_breakpoint_ops;
13471 ops->allocate_location = allocate_location_exception;
13472 ops->re_set = re_set_exception;
13473 ops->check_status = check_status_exception;
13474 ops->print_it = print_it_exception;
13475 ops->print_one = print_one_exception;
13476 ops->print_mention = print_mention_exception;
13477 ops->print_recreate = print_recreate_exception;
13478 }
13479
13480 /* This module's 'new_objfile' observer. */
13481
13482 static void
13483 ada_new_objfile_observer (struct objfile *objfile)
13484 {
13485 ada_clear_symbol_cache ();
13486 }
13487
13488 /* This module's 'free_objfile' observer. */
13489
13490 static void
13491 ada_free_objfile_observer (struct objfile *objfile)
13492 {
13493 ada_clear_symbol_cache ();
13494 }
13495
13496 void _initialize_ada_language ();
13497 void
13498 _initialize_ada_language ()
13499 {
13500 initialize_ada_catchpoint_ops ();
13501
13502 add_setshow_prefix_cmd
13503 ("ada", no_class,
13504 _("Prefix command for changing Ada-specific settings."),
13505 _("Generic command for showing Ada-specific settings."),
13506 &set_ada_list, &show_ada_list,
13507 &setlist, &showlist);
13508
13509 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
13510 &trust_pad_over_xvs, _("\
13511 Enable or disable an optimization trusting PAD types over XVS types."), _("\
13512 Show whether an optimization trusting PAD types over XVS types is activated."),
13513 _("\
13514 This is related to the encoding used by the GNAT compiler. The debugger\n\
13515 should normally trust the contents of PAD types, but certain older versions\n\
13516 of GNAT have a bug that sometimes causes the information in the PAD type\n\
13517 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
13518 work around this bug. It is always safe to turn this option \"off\", but\n\
13519 this incurs a slight performance penalty, so it is recommended to NOT change\n\
13520 this option to \"off\" unless necessary."),
13521 NULL, NULL, &set_ada_list, &show_ada_list);
13522
13523 add_setshow_boolean_cmd ("print-signatures", class_vars,
13524 &print_signatures, _("\
13525 Enable or disable the output of formal and return types for functions in the \
13526 overloads selection menu."), _("\
13527 Show whether the output of formal and return types for functions in the \
13528 overloads selection menu is activated."),
13529 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
13530
13531 add_catch_command ("exception", _("\
13532 Catch Ada exceptions, when raised.\n\
13533 Usage: catch exception [ARG] [if CONDITION]\n\
13534 Without any argument, stop when any Ada exception is raised.\n\
13535 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
13536 being raised does not have a handler (and will therefore lead to the task's\n\
13537 termination).\n\
13538 Otherwise, the catchpoint only stops when the name of the exception being\n\
13539 raised is the same as ARG.\n\
13540 CONDITION is a boolean expression that is evaluated to see whether the\n\
13541 exception should cause a stop."),
13542 catch_ada_exception_command,
13543 catch_ada_completer,
13544 CATCH_PERMANENT,
13545 CATCH_TEMPORARY);
13546
13547 add_catch_command ("handlers", _("\
13548 Catch Ada exceptions, when handled.\n\
13549 Usage: catch handlers [ARG] [if CONDITION]\n\
13550 Without any argument, stop when any Ada exception is handled.\n\
13551 With an argument, catch only exceptions with the given name.\n\
13552 CONDITION is a boolean expression that is evaluated to see whether the\n\
13553 exception should cause a stop."),
13554 catch_ada_handlers_command,
13555 catch_ada_completer,
13556 CATCH_PERMANENT,
13557 CATCH_TEMPORARY);
13558 add_catch_command ("assert", _("\
13559 Catch failed Ada assertions, when raised.\n\
13560 Usage: catch assert [if CONDITION]\n\
13561 CONDITION is a boolean expression that is evaluated to see whether the\n\
13562 exception should cause a stop."),
13563 catch_assert_command,
13564 NULL,
13565 CATCH_PERMANENT,
13566 CATCH_TEMPORARY);
13567
13568 add_info ("exceptions", info_exceptions_command,
13569 _("\
13570 List all Ada exception names.\n\
13571 Usage: info exceptions [REGEXP]\n\
13572 If a regular expression is passed as an argument, only those matching\n\
13573 the regular expression are listed."));
13574
13575 add_setshow_prefix_cmd ("ada", class_maintenance,
13576 _("Set Ada maintenance-related variables."),
13577 _("Show Ada maintenance-related variables."),
13578 &maint_set_ada_cmdlist, &maint_show_ada_cmdlist,
13579 &maintenance_set_cmdlist, &maintenance_show_cmdlist);
13580
13581 add_setshow_boolean_cmd
13582 ("ignore-descriptive-types", class_maintenance,
13583 &ada_ignore_descriptive_types_p,
13584 _("Set whether descriptive types generated by GNAT should be ignored."),
13585 _("Show whether descriptive types generated by GNAT should be ignored."),
13586 _("\
13587 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
13588 DWARF attribute."),
13589 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
13590
13591 decoded_names_store = htab_create_alloc (256, htab_hash_string,
13592 htab_eq_string,
13593 NULL, xcalloc, xfree);
13594
13595 /* The ada-lang observers. */
13596 gdb::observers::new_objfile.attach (ada_new_objfile_observer, "ada-lang");
13597 gdb::observers::free_objfile.attach (ada_free_objfile_observer, "ada-lang");
13598 gdb::observers::inferior_exit.attach (ada_inferior_exit, "ada-lang");
13599 }