]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
gdb: remove TYPE_FIELD_TYPE macro
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "gdb_regex.h"
24 #include "frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "expression.h"
29 #include "parser-defs.h"
30 #include "language.h"
31 #include "varobj.h"
32 #include "inferior.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "breakpoint.h"
36 #include "gdbcore.h"
37 #include "hashtab.h"
38 #include "gdb_obstack.h"
39 #include "ada-lang.h"
40 #include "completer.h"
41 #include "ui-out.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "annotate.h"
45 #include "valprint.h"
46 #include "source.h"
47 #include "observable.h"
48 #include "stack.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
52
53 #include "value.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
59 #include <algorithm>
60
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
64
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
67 #endif
68
69 static struct type *desc_base_type (struct type *);
70
71 static struct type *desc_bounds_type (struct type *);
72
73 static struct value *desc_bounds (struct value *);
74
75 static int fat_pntr_bounds_bitpos (struct type *);
76
77 static int fat_pntr_bounds_bitsize (struct type *);
78
79 static struct type *desc_data_target_type (struct type *);
80
81 static struct value *desc_data (struct value *);
82
83 static int fat_pntr_data_bitpos (struct type *);
84
85 static int fat_pntr_data_bitsize (struct type *);
86
87 static struct value *desc_one_bound (struct value *, int, int);
88
89 static int desc_bound_bitpos (struct type *, int, int);
90
91 static int desc_bound_bitsize (struct type *, int, int);
92
93 static struct type *desc_index_type (struct type *, int);
94
95 static int desc_arity (struct type *);
96
97 static int ada_type_match (struct type *, struct type *, int);
98
99 static int ada_args_match (struct symbol *, struct value **, int);
100
101 static struct value *make_array_descriptor (struct type *, struct value *);
102
103 static void ada_add_block_symbols (struct obstack *,
104 const struct block *,
105 const lookup_name_info &lookup_name,
106 domain_enum, struct objfile *);
107
108 static void ada_add_all_symbols (struct obstack *, const struct block *,
109 const lookup_name_info &lookup_name,
110 domain_enum, int, int *);
111
112 static int is_nonfunction (struct block_symbol *, int);
113
114 static void add_defn_to_vec (struct obstack *, struct symbol *,
115 const struct block *);
116
117 static int num_defns_collected (struct obstack *);
118
119 static struct block_symbol *defns_collected (struct obstack *, int);
120
121 static struct value *resolve_subexp (expression_up *, int *, int,
122 struct type *, int,
123 innermost_block_tracker *);
124
125 static void replace_operator_with_call (expression_up *, int, int, int,
126 struct symbol *, const struct block *);
127
128 static int possible_user_operator_p (enum exp_opcode, struct value **);
129
130 static const char *ada_op_name (enum exp_opcode);
131
132 static const char *ada_decoded_op_name (enum exp_opcode);
133
134 static int numeric_type_p (struct type *);
135
136 static int integer_type_p (struct type *);
137
138 static int scalar_type_p (struct type *);
139
140 static int discrete_type_p (struct type *);
141
142 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
143 int, int);
144
145 static struct value *evaluate_subexp_type (struct expression *, int *);
146
147 static struct type *ada_find_parallel_type_with_name (struct type *,
148 const char *);
149
150 static int is_dynamic_field (struct type *, int);
151
152 static struct type *to_fixed_variant_branch_type (struct type *,
153 const gdb_byte *,
154 CORE_ADDR, struct value *);
155
156 static struct type *to_fixed_array_type (struct type *, struct value *, int);
157
158 static struct type *to_fixed_range_type (struct type *, struct value *);
159
160 static struct type *to_static_fixed_type (struct type *);
161 static struct type *static_unwrap_type (struct type *type);
162
163 static struct value *unwrap_value (struct value *);
164
165 static struct type *constrained_packed_array_type (struct type *, long *);
166
167 static struct type *decode_constrained_packed_array_type (struct type *);
168
169 static long decode_packed_array_bitsize (struct type *);
170
171 static struct value *decode_constrained_packed_array (struct value *);
172
173 static int ada_is_packed_array_type (struct type *);
174
175 static int ada_is_unconstrained_packed_array_type (struct type *);
176
177 static struct value *value_subscript_packed (struct value *, int,
178 struct value **);
179
180 static struct value *coerce_unspec_val_to_type (struct value *,
181 struct type *);
182
183 static int lesseq_defined_than (struct symbol *, struct symbol *);
184
185 static int equiv_types (struct type *, struct type *);
186
187 static int is_name_suffix (const char *);
188
189 static int advance_wild_match (const char **, const char *, int);
190
191 static bool wild_match (const char *name, const char *patn);
192
193 static struct value *ada_coerce_ref (struct value *);
194
195 static LONGEST pos_atr (struct value *);
196
197 static struct value *value_pos_atr (struct type *, struct value *);
198
199 static struct value *val_atr (struct type *, LONGEST);
200
201 static struct value *value_val_atr (struct type *, struct value *);
202
203 static struct symbol *standard_lookup (const char *, const struct block *,
204 domain_enum);
205
206 static struct value *ada_search_struct_field (const char *, struct value *, int,
207 struct type *);
208
209 static int find_struct_field (const char *, struct type *, int,
210 struct type **, int *, int *, int *, int *);
211
212 static int ada_resolve_function (struct block_symbol *, int,
213 struct value **, int, const char *,
214 struct type *, int);
215
216 static int ada_is_direct_array_type (struct type *);
217
218 static struct value *ada_index_struct_field (int, struct value *, int,
219 struct type *);
220
221 static struct value *assign_aggregate (struct value *, struct value *,
222 struct expression *,
223 int *, enum noside);
224
225 static void aggregate_assign_from_choices (struct value *, struct value *,
226 struct expression *,
227 int *, LONGEST *, int *,
228 int, LONGEST, LONGEST);
229
230 static void aggregate_assign_positional (struct value *, struct value *,
231 struct expression *,
232 int *, LONGEST *, int *, int,
233 LONGEST, LONGEST);
234
235
236 static void aggregate_assign_others (struct value *, struct value *,
237 struct expression *,
238 int *, LONGEST *, int, LONGEST, LONGEST);
239
240
241 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
242
243
244 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
245 int *, enum noside);
246
247 static void ada_forward_operator_length (struct expression *, int, int *,
248 int *);
249
250 static struct type *ada_find_any_type (const char *name);
251
252 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
253 (const lookup_name_info &lookup_name);
254
255 \f
256
257 /* The result of a symbol lookup to be stored in our symbol cache. */
258
259 struct cache_entry
260 {
261 /* The name used to perform the lookup. */
262 const char *name;
263 /* The namespace used during the lookup. */
264 domain_enum domain;
265 /* The symbol returned by the lookup, or NULL if no matching symbol
266 was found. */
267 struct symbol *sym;
268 /* The block where the symbol was found, or NULL if no matching
269 symbol was found. */
270 const struct block *block;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry *next;
273 };
274
275 /* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
277
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
283
284 #define HASH_SIZE 1009
285
286 struct ada_symbol_cache
287 {
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space;
290
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry *root[HASH_SIZE];
293 };
294
295 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
296
297 /* Maximum-sized dynamic type. */
298 static unsigned int varsize_limit;
299
300 static const char ada_completer_word_break_characters[] =
301 #ifdef VMS
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
303 #else
304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
305 #endif
306
307 /* The name of the symbol to use to get the name of the main subprogram. */
308 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
309 = "__gnat_ada_main_program_name";
310
311 /* Limit on the number of warnings to raise per expression evaluation. */
312 static int warning_limit = 2;
313
314 /* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316 static int warnings_issued = 0;
317
318 static const char *known_runtime_file_name_patterns[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
320 };
321
322 static const char *known_auxiliary_function_name_patterns[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
324 };
325
326 /* Maintenance-related settings for this module. */
327
328 static struct cmd_list_element *maint_set_ada_cmdlist;
329 static struct cmd_list_element *maint_show_ada_cmdlist;
330
331 /* The "maintenance ada set/show ignore-descriptive-type" value. */
332
333 static bool ada_ignore_descriptive_types_p = false;
334
335 /* Inferior-specific data. */
336
337 /* Per-inferior data for this module. */
338
339 struct ada_inferior_data
340 {
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
345 struct type *tsd_type = nullptr;
346
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
349 inferior. */
350 const struct exception_support_info *exception_info = nullptr;
351 };
352
353 /* Our key to this module's inferior data. */
354 static const struct inferior_key<ada_inferior_data> ada_inferior_data;
355
356 /* Return our inferior data for the given inferior (INF).
357
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
363
364 static struct ada_inferior_data *
365 get_ada_inferior_data (struct inferior *inf)
366 {
367 struct ada_inferior_data *data;
368
369 data = ada_inferior_data.get (inf);
370 if (data == NULL)
371 data = ada_inferior_data.emplace (inf);
372
373 return data;
374 }
375
376 /* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
378
379 static void
380 ada_inferior_exit (struct inferior *inf)
381 {
382 ada_inferior_data.clear (inf);
383 }
384
385
386 /* program-space-specific data. */
387
388 /* This module's per-program-space data. */
389 struct ada_pspace_data
390 {
391 ~ada_pspace_data ()
392 {
393 if (sym_cache != NULL)
394 ada_free_symbol_cache (sym_cache);
395 }
396
397 /* The Ada symbol cache. */
398 struct ada_symbol_cache *sym_cache = nullptr;
399 };
400
401 /* Key to our per-program-space data. */
402 static const struct program_space_key<ada_pspace_data> ada_pspace_data_handle;
403
404 /* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
406
407 This function always returns a valid object. */
408
409 static struct ada_pspace_data *
410 get_ada_pspace_data (struct program_space *pspace)
411 {
412 struct ada_pspace_data *data;
413
414 data = ada_pspace_data_handle.get (pspace);
415 if (data == NULL)
416 data = ada_pspace_data_handle.emplace (pspace);
417
418 return data;
419 }
420
421 /* Utilities */
422
423 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
424 all typedef layers have been peeled. Otherwise, return TYPE.
425
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
434
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
438
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
441
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
445
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
449
450 static struct type *
451 ada_typedef_target_type (struct type *type)
452 {
453 while (type->code () == TYPE_CODE_TYPEDEF)
454 type = TYPE_TARGET_TYPE (type);
455 return type;
456 }
457
458 /* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
461
462 static const char *
463 ada_unqualified_name (const char *decoded_name)
464 {
465 const char *result;
466
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name[0] == '<')
472 return decoded_name;
473
474 result = strrchr (decoded_name, '.');
475 if (result != NULL)
476 result++; /* Skip the dot... */
477 else
478 result = decoded_name;
479
480 return result;
481 }
482
483 /* Return a string starting with '<', followed by STR, and '>'. */
484
485 static std::string
486 add_angle_brackets (const char *str)
487 {
488 return string_printf ("<%s>", str);
489 }
490
491 static const char *
492 ada_get_gdb_completer_word_break_characters (void)
493 {
494 return ada_completer_word_break_characters;
495 }
496
497 /* la_watch_location_expression for Ada. */
498
499 static gdb::unique_xmalloc_ptr<char>
500 ada_watch_location_expression (struct type *type, CORE_ADDR addr)
501 {
502 type = check_typedef (TYPE_TARGET_TYPE (check_typedef (type)));
503 std::string name = type_to_string (type);
504 return gdb::unique_xmalloc_ptr<char>
505 (xstrprintf ("{%s} %s", name.c_str (), core_addr_to_string (addr)));
506 }
507
508 /* Assuming V points to an array of S objects, make sure that it contains at
509 least M objects, updating V and S as necessary. */
510
511 #define GROW_VECT(v, s, m) \
512 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
513
514 /* Assuming VECT points to an array of *SIZE objects of size
515 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
516 updating *SIZE as necessary and returning the (new) array. */
517
518 static void *
519 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
520 {
521 if (*size < min_size)
522 {
523 *size *= 2;
524 if (*size < min_size)
525 *size = min_size;
526 vect = xrealloc (vect, *size * element_size);
527 }
528 return vect;
529 }
530
531 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
532 suffix of FIELD_NAME beginning "___". */
533
534 static int
535 field_name_match (const char *field_name, const char *target)
536 {
537 int len = strlen (target);
538
539 return
540 (strncmp (field_name, target, len) == 0
541 && (field_name[len] == '\0'
542 || (startswith (field_name + len, "___")
543 && strcmp (field_name + strlen (field_name) - 6,
544 "___XVN") != 0)));
545 }
546
547
548 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
549 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
550 and return its index. This function also handles fields whose name
551 have ___ suffixes because the compiler sometimes alters their name
552 by adding such a suffix to represent fields with certain constraints.
553 If the field could not be found, return a negative number if
554 MAYBE_MISSING is set. Otherwise raise an error. */
555
556 int
557 ada_get_field_index (const struct type *type, const char *field_name,
558 int maybe_missing)
559 {
560 int fieldno;
561 struct type *struct_type = check_typedef ((struct type *) type);
562
563 for (fieldno = 0; fieldno < struct_type->num_fields (); fieldno++)
564 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
565 return fieldno;
566
567 if (!maybe_missing)
568 error (_("Unable to find field %s in struct %s. Aborting"),
569 field_name, struct_type->name ());
570
571 return -1;
572 }
573
574 /* The length of the prefix of NAME prior to any "___" suffix. */
575
576 int
577 ada_name_prefix_len (const char *name)
578 {
579 if (name == NULL)
580 return 0;
581 else
582 {
583 const char *p = strstr (name, "___");
584
585 if (p == NULL)
586 return strlen (name);
587 else
588 return p - name;
589 }
590 }
591
592 /* Return non-zero if SUFFIX is a suffix of STR.
593 Return zero if STR is null. */
594
595 static int
596 is_suffix (const char *str, const char *suffix)
597 {
598 int len1, len2;
599
600 if (str == NULL)
601 return 0;
602 len1 = strlen (str);
603 len2 = strlen (suffix);
604 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
605 }
606
607 /* The contents of value VAL, treated as a value of type TYPE. The
608 result is an lval in memory if VAL is. */
609
610 static struct value *
611 coerce_unspec_val_to_type (struct value *val, struct type *type)
612 {
613 type = ada_check_typedef (type);
614 if (value_type (val) == type)
615 return val;
616 else
617 {
618 struct value *result;
619
620 /* Make sure that the object size is not unreasonable before
621 trying to allocate some memory for it. */
622 ada_ensure_varsize_limit (type);
623
624 if (value_lazy (val)
625 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
626 result = allocate_value_lazy (type);
627 else
628 {
629 result = allocate_value (type);
630 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
631 }
632 set_value_component_location (result, val);
633 set_value_bitsize (result, value_bitsize (val));
634 set_value_bitpos (result, value_bitpos (val));
635 if (VALUE_LVAL (result) == lval_memory)
636 set_value_address (result, value_address (val));
637 return result;
638 }
639 }
640
641 static const gdb_byte *
642 cond_offset_host (const gdb_byte *valaddr, long offset)
643 {
644 if (valaddr == NULL)
645 return NULL;
646 else
647 return valaddr + offset;
648 }
649
650 static CORE_ADDR
651 cond_offset_target (CORE_ADDR address, long offset)
652 {
653 if (address == 0)
654 return 0;
655 else
656 return address + offset;
657 }
658
659 /* Issue a warning (as for the definition of warning in utils.c, but
660 with exactly one argument rather than ...), unless the limit on the
661 number of warnings has passed during the evaluation of the current
662 expression. */
663
664 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
665 provided by "complaint". */
666 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
667
668 static void
669 lim_warning (const char *format, ...)
670 {
671 va_list args;
672
673 va_start (args, format);
674 warnings_issued += 1;
675 if (warnings_issued <= warning_limit)
676 vwarning (format, args);
677
678 va_end (args);
679 }
680
681 /* Issue an error if the size of an object of type T is unreasonable,
682 i.e. if it would be a bad idea to allocate a value of this type in
683 GDB. */
684
685 void
686 ada_ensure_varsize_limit (const struct type *type)
687 {
688 if (TYPE_LENGTH (type) > varsize_limit)
689 error (_("object size is larger than varsize-limit"));
690 }
691
692 /* Maximum value of a SIZE-byte signed integer type. */
693 static LONGEST
694 max_of_size (int size)
695 {
696 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
697
698 return top_bit | (top_bit - 1);
699 }
700
701 /* Minimum value of a SIZE-byte signed integer type. */
702 static LONGEST
703 min_of_size (int size)
704 {
705 return -max_of_size (size) - 1;
706 }
707
708 /* Maximum value of a SIZE-byte unsigned integer type. */
709 static ULONGEST
710 umax_of_size (int size)
711 {
712 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
713
714 return top_bit | (top_bit - 1);
715 }
716
717 /* Maximum value of integral type T, as a signed quantity. */
718 static LONGEST
719 max_of_type (struct type *t)
720 {
721 if (TYPE_UNSIGNED (t))
722 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
723 else
724 return max_of_size (TYPE_LENGTH (t));
725 }
726
727 /* Minimum value of integral type T, as a signed quantity. */
728 static LONGEST
729 min_of_type (struct type *t)
730 {
731 if (TYPE_UNSIGNED (t))
732 return 0;
733 else
734 return min_of_size (TYPE_LENGTH (t));
735 }
736
737 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
738 LONGEST
739 ada_discrete_type_high_bound (struct type *type)
740 {
741 type = resolve_dynamic_type (type, {}, 0);
742 switch (type->code ())
743 {
744 case TYPE_CODE_RANGE:
745 return TYPE_HIGH_BOUND (type);
746 case TYPE_CODE_ENUM:
747 return TYPE_FIELD_ENUMVAL (type, type->num_fields () - 1);
748 case TYPE_CODE_BOOL:
749 return 1;
750 case TYPE_CODE_CHAR:
751 case TYPE_CODE_INT:
752 return max_of_type (type);
753 default:
754 error (_("Unexpected type in ada_discrete_type_high_bound."));
755 }
756 }
757
758 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
759 LONGEST
760 ada_discrete_type_low_bound (struct type *type)
761 {
762 type = resolve_dynamic_type (type, {}, 0);
763 switch (type->code ())
764 {
765 case TYPE_CODE_RANGE:
766 return TYPE_LOW_BOUND (type);
767 case TYPE_CODE_ENUM:
768 return TYPE_FIELD_ENUMVAL (type, 0);
769 case TYPE_CODE_BOOL:
770 return 0;
771 case TYPE_CODE_CHAR:
772 case TYPE_CODE_INT:
773 return min_of_type (type);
774 default:
775 error (_("Unexpected type in ada_discrete_type_low_bound."));
776 }
777 }
778
779 /* The identity on non-range types. For range types, the underlying
780 non-range scalar type. */
781
782 static struct type *
783 get_base_type (struct type *type)
784 {
785 while (type != NULL && type->code () == TYPE_CODE_RANGE)
786 {
787 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
788 return type;
789 type = TYPE_TARGET_TYPE (type);
790 }
791 return type;
792 }
793
794 /* Return a decoded version of the given VALUE. This means returning
795 a value whose type is obtained by applying all the GNAT-specific
796 encodings, making the resulting type a static but standard description
797 of the initial type. */
798
799 struct value *
800 ada_get_decoded_value (struct value *value)
801 {
802 struct type *type = ada_check_typedef (value_type (value));
803
804 if (ada_is_array_descriptor_type (type)
805 || (ada_is_constrained_packed_array_type (type)
806 && type->code () != TYPE_CODE_PTR))
807 {
808 if (type->code () == TYPE_CODE_TYPEDEF) /* array access type. */
809 value = ada_coerce_to_simple_array_ptr (value);
810 else
811 value = ada_coerce_to_simple_array (value);
812 }
813 else
814 value = ada_to_fixed_value (value);
815
816 return value;
817 }
818
819 /* Same as ada_get_decoded_value, but with the given TYPE.
820 Because there is no associated actual value for this type,
821 the resulting type might be a best-effort approximation in
822 the case of dynamic types. */
823
824 struct type *
825 ada_get_decoded_type (struct type *type)
826 {
827 type = to_static_fixed_type (type);
828 if (ada_is_constrained_packed_array_type (type))
829 type = ada_coerce_to_simple_array_type (type);
830 return type;
831 }
832
833 \f
834
835 /* Language Selection */
836
837 /* If the main program is in Ada, return language_ada, otherwise return LANG
838 (the main program is in Ada iif the adainit symbol is found). */
839
840 static enum language
841 ada_update_initial_language (enum language lang)
842 {
843 if (lookup_minimal_symbol ("adainit", NULL, NULL).minsym != NULL)
844 return language_ada;
845
846 return lang;
847 }
848
849 /* If the main procedure is written in Ada, then return its name.
850 The result is good until the next call. Return NULL if the main
851 procedure doesn't appear to be in Ada. */
852
853 char *
854 ada_main_name (void)
855 {
856 struct bound_minimal_symbol msym;
857 static gdb::unique_xmalloc_ptr<char> main_program_name;
858
859 /* For Ada, the name of the main procedure is stored in a specific
860 string constant, generated by the binder. Look for that symbol,
861 extract its address, and then read that string. If we didn't find
862 that string, then most probably the main procedure is not written
863 in Ada. */
864 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
865
866 if (msym.minsym != NULL)
867 {
868 CORE_ADDR main_program_name_addr;
869 int err_code;
870
871 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
872 if (main_program_name_addr == 0)
873 error (_("Invalid address for Ada main program name."));
874
875 target_read_string (main_program_name_addr, &main_program_name,
876 1024, &err_code);
877
878 if (err_code != 0)
879 return NULL;
880 return main_program_name.get ();
881 }
882
883 /* The main procedure doesn't seem to be in Ada. */
884 return NULL;
885 }
886 \f
887 /* Symbols */
888
889 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
890 of NULLs. */
891
892 const struct ada_opname_map ada_opname_table[] = {
893 {"Oadd", "\"+\"", BINOP_ADD},
894 {"Osubtract", "\"-\"", BINOP_SUB},
895 {"Omultiply", "\"*\"", BINOP_MUL},
896 {"Odivide", "\"/\"", BINOP_DIV},
897 {"Omod", "\"mod\"", BINOP_MOD},
898 {"Orem", "\"rem\"", BINOP_REM},
899 {"Oexpon", "\"**\"", BINOP_EXP},
900 {"Olt", "\"<\"", BINOP_LESS},
901 {"Ole", "\"<=\"", BINOP_LEQ},
902 {"Ogt", "\">\"", BINOP_GTR},
903 {"Oge", "\">=\"", BINOP_GEQ},
904 {"Oeq", "\"=\"", BINOP_EQUAL},
905 {"One", "\"/=\"", BINOP_NOTEQUAL},
906 {"Oand", "\"and\"", BINOP_BITWISE_AND},
907 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
908 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
909 {"Oconcat", "\"&\"", BINOP_CONCAT},
910 {"Oabs", "\"abs\"", UNOP_ABS},
911 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
912 {"Oadd", "\"+\"", UNOP_PLUS},
913 {"Osubtract", "\"-\"", UNOP_NEG},
914 {NULL, NULL}
915 };
916
917 /* The "encoded" form of DECODED, according to GNAT conventions. The
918 result is valid until the next call to ada_encode. If
919 THROW_ERRORS, throw an error if invalid operator name is found.
920 Otherwise, return NULL in that case. */
921
922 static char *
923 ada_encode_1 (const char *decoded, bool throw_errors)
924 {
925 static char *encoding_buffer = NULL;
926 static size_t encoding_buffer_size = 0;
927 const char *p;
928 int k;
929
930 if (decoded == NULL)
931 return NULL;
932
933 GROW_VECT (encoding_buffer, encoding_buffer_size,
934 2 * strlen (decoded) + 10);
935
936 k = 0;
937 for (p = decoded; *p != '\0'; p += 1)
938 {
939 if (*p == '.')
940 {
941 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
942 k += 2;
943 }
944 else if (*p == '"')
945 {
946 const struct ada_opname_map *mapping;
947
948 for (mapping = ada_opname_table;
949 mapping->encoded != NULL
950 && !startswith (p, mapping->decoded); mapping += 1)
951 ;
952 if (mapping->encoded == NULL)
953 {
954 if (throw_errors)
955 error (_("invalid Ada operator name: %s"), p);
956 else
957 return NULL;
958 }
959 strcpy (encoding_buffer + k, mapping->encoded);
960 k += strlen (mapping->encoded);
961 break;
962 }
963 else
964 {
965 encoding_buffer[k] = *p;
966 k += 1;
967 }
968 }
969
970 encoding_buffer[k] = '\0';
971 return encoding_buffer;
972 }
973
974 /* The "encoded" form of DECODED, according to GNAT conventions.
975 The result is valid until the next call to ada_encode. */
976
977 char *
978 ada_encode (const char *decoded)
979 {
980 return ada_encode_1 (decoded, true);
981 }
982
983 /* Return NAME folded to lower case, or, if surrounded by single
984 quotes, unfolded, but with the quotes stripped away. Result good
985 to next call. */
986
987 static char *
988 ada_fold_name (gdb::string_view name)
989 {
990 static char *fold_buffer = NULL;
991 static size_t fold_buffer_size = 0;
992
993 int len = name.size ();
994 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
995
996 if (name[0] == '\'')
997 {
998 strncpy (fold_buffer, name.data () + 1, len - 2);
999 fold_buffer[len - 2] = '\000';
1000 }
1001 else
1002 {
1003 int i;
1004
1005 for (i = 0; i <= len; i += 1)
1006 fold_buffer[i] = tolower (name[i]);
1007 }
1008
1009 return fold_buffer;
1010 }
1011
1012 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1013
1014 static int
1015 is_lower_alphanum (const char c)
1016 {
1017 return (isdigit (c) || (isalpha (c) && islower (c)));
1018 }
1019
1020 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1021 This function saves in LEN the length of that same symbol name but
1022 without either of these suffixes:
1023 . .{DIGIT}+
1024 . ${DIGIT}+
1025 . ___{DIGIT}+
1026 . __{DIGIT}+.
1027
1028 These are suffixes introduced by the compiler for entities such as
1029 nested subprogram for instance, in order to avoid name clashes.
1030 They do not serve any purpose for the debugger. */
1031
1032 static void
1033 ada_remove_trailing_digits (const char *encoded, int *len)
1034 {
1035 if (*len > 1 && isdigit (encoded[*len - 1]))
1036 {
1037 int i = *len - 2;
1038
1039 while (i > 0 && isdigit (encoded[i]))
1040 i--;
1041 if (i >= 0 && encoded[i] == '.')
1042 *len = i;
1043 else if (i >= 0 && encoded[i] == '$')
1044 *len = i;
1045 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1046 *len = i - 2;
1047 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1048 *len = i - 1;
1049 }
1050 }
1051
1052 /* Remove the suffix introduced by the compiler for protected object
1053 subprograms. */
1054
1055 static void
1056 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1057 {
1058 /* Remove trailing N. */
1059
1060 /* Protected entry subprograms are broken into two
1061 separate subprograms: The first one is unprotected, and has
1062 a 'N' suffix; the second is the protected version, and has
1063 the 'P' suffix. The second calls the first one after handling
1064 the protection. Since the P subprograms are internally generated,
1065 we leave these names undecoded, giving the user a clue that this
1066 entity is internal. */
1067
1068 if (*len > 1
1069 && encoded[*len - 1] == 'N'
1070 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1071 *len = *len - 1;
1072 }
1073
1074 /* If ENCODED follows the GNAT entity encoding conventions, then return
1075 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1076 replaced by ENCODED. */
1077
1078 std::string
1079 ada_decode (const char *encoded)
1080 {
1081 int i, j;
1082 int len0;
1083 const char *p;
1084 int at_start_name;
1085 std::string decoded;
1086
1087 /* With function descriptors on PPC64, the value of a symbol named
1088 ".FN", if it exists, is the entry point of the function "FN". */
1089 if (encoded[0] == '.')
1090 encoded += 1;
1091
1092 /* The name of the Ada main procedure starts with "_ada_".
1093 This prefix is not part of the decoded name, so skip this part
1094 if we see this prefix. */
1095 if (startswith (encoded, "_ada_"))
1096 encoded += 5;
1097
1098 /* If the name starts with '_', then it is not a properly encoded
1099 name, so do not attempt to decode it. Similarly, if the name
1100 starts with '<', the name should not be decoded. */
1101 if (encoded[0] == '_' || encoded[0] == '<')
1102 goto Suppress;
1103
1104 len0 = strlen (encoded);
1105
1106 ada_remove_trailing_digits (encoded, &len0);
1107 ada_remove_po_subprogram_suffix (encoded, &len0);
1108
1109 /* Remove the ___X.* suffix if present. Do not forget to verify that
1110 the suffix is located before the current "end" of ENCODED. We want
1111 to avoid re-matching parts of ENCODED that have previously been
1112 marked as discarded (by decrementing LEN0). */
1113 p = strstr (encoded, "___");
1114 if (p != NULL && p - encoded < len0 - 3)
1115 {
1116 if (p[3] == 'X')
1117 len0 = p - encoded;
1118 else
1119 goto Suppress;
1120 }
1121
1122 /* Remove any trailing TKB suffix. It tells us that this symbol
1123 is for the body of a task, but that information does not actually
1124 appear in the decoded name. */
1125
1126 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1127 len0 -= 3;
1128
1129 /* Remove any trailing TB suffix. The TB suffix is slightly different
1130 from the TKB suffix because it is used for non-anonymous task
1131 bodies. */
1132
1133 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1134 len0 -= 2;
1135
1136 /* Remove trailing "B" suffixes. */
1137 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1138
1139 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1140 len0 -= 1;
1141
1142 /* Make decoded big enough for possible expansion by operator name. */
1143
1144 decoded.resize (2 * len0 + 1, 'X');
1145
1146 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1147
1148 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1149 {
1150 i = len0 - 2;
1151 while ((i >= 0 && isdigit (encoded[i]))
1152 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1153 i -= 1;
1154 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1155 len0 = i - 1;
1156 else if (encoded[i] == '$')
1157 len0 = i;
1158 }
1159
1160 /* The first few characters that are not alphabetic are not part
1161 of any encoding we use, so we can copy them over verbatim. */
1162
1163 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1164 decoded[j] = encoded[i];
1165
1166 at_start_name = 1;
1167 while (i < len0)
1168 {
1169 /* Is this a symbol function? */
1170 if (at_start_name && encoded[i] == 'O')
1171 {
1172 int k;
1173
1174 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1175 {
1176 int op_len = strlen (ada_opname_table[k].encoded);
1177 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1178 op_len - 1) == 0)
1179 && !isalnum (encoded[i + op_len]))
1180 {
1181 strcpy (&decoded.front() + j, ada_opname_table[k].decoded);
1182 at_start_name = 0;
1183 i += op_len;
1184 j += strlen (ada_opname_table[k].decoded);
1185 break;
1186 }
1187 }
1188 if (ada_opname_table[k].encoded != NULL)
1189 continue;
1190 }
1191 at_start_name = 0;
1192
1193 /* Replace "TK__" with "__", which will eventually be translated
1194 into "." (just below). */
1195
1196 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1197 i += 2;
1198
1199 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1200 be translated into "." (just below). These are internal names
1201 generated for anonymous blocks inside which our symbol is nested. */
1202
1203 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1204 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1205 && isdigit (encoded [i+4]))
1206 {
1207 int k = i + 5;
1208
1209 while (k < len0 && isdigit (encoded[k]))
1210 k++; /* Skip any extra digit. */
1211
1212 /* Double-check that the "__B_{DIGITS}+" sequence we found
1213 is indeed followed by "__". */
1214 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1215 i = k;
1216 }
1217
1218 /* Remove _E{DIGITS}+[sb] */
1219
1220 /* Just as for protected object subprograms, there are 2 categories
1221 of subprograms created by the compiler for each entry. The first
1222 one implements the actual entry code, and has a suffix following
1223 the convention above; the second one implements the barrier and
1224 uses the same convention as above, except that the 'E' is replaced
1225 by a 'B'.
1226
1227 Just as above, we do not decode the name of barrier functions
1228 to give the user a clue that the code he is debugging has been
1229 internally generated. */
1230
1231 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1232 && isdigit (encoded[i+2]))
1233 {
1234 int k = i + 3;
1235
1236 while (k < len0 && isdigit (encoded[k]))
1237 k++;
1238
1239 if (k < len0
1240 && (encoded[k] == 'b' || encoded[k] == 's'))
1241 {
1242 k++;
1243 /* Just as an extra precaution, make sure that if this
1244 suffix is followed by anything else, it is a '_'.
1245 Otherwise, we matched this sequence by accident. */
1246 if (k == len0
1247 || (k < len0 && encoded[k] == '_'))
1248 i = k;
1249 }
1250 }
1251
1252 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1253 the GNAT front-end in protected object subprograms. */
1254
1255 if (i < len0 + 3
1256 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1257 {
1258 /* Backtrack a bit up until we reach either the begining of
1259 the encoded name, or "__". Make sure that we only find
1260 digits or lowercase characters. */
1261 const char *ptr = encoded + i - 1;
1262
1263 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1264 ptr--;
1265 if (ptr < encoded
1266 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1267 i++;
1268 }
1269
1270 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1271 {
1272 /* This is a X[bn]* sequence not separated from the previous
1273 part of the name with a non-alpha-numeric character (in other
1274 words, immediately following an alpha-numeric character), then
1275 verify that it is placed at the end of the encoded name. If
1276 not, then the encoding is not valid and we should abort the
1277 decoding. Otherwise, just skip it, it is used in body-nested
1278 package names. */
1279 do
1280 i += 1;
1281 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1282 if (i < len0)
1283 goto Suppress;
1284 }
1285 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1286 {
1287 /* Replace '__' by '.'. */
1288 decoded[j] = '.';
1289 at_start_name = 1;
1290 i += 2;
1291 j += 1;
1292 }
1293 else
1294 {
1295 /* It's a character part of the decoded name, so just copy it
1296 over. */
1297 decoded[j] = encoded[i];
1298 i += 1;
1299 j += 1;
1300 }
1301 }
1302 decoded.resize (j);
1303
1304 /* Decoded names should never contain any uppercase character.
1305 Double-check this, and abort the decoding if we find one. */
1306
1307 for (i = 0; i < decoded.length(); ++i)
1308 if (isupper (decoded[i]) || decoded[i] == ' ')
1309 goto Suppress;
1310
1311 return decoded;
1312
1313 Suppress:
1314 if (encoded[0] == '<')
1315 decoded = encoded;
1316 else
1317 decoded = '<' + std::string(encoded) + '>';
1318 return decoded;
1319
1320 }
1321
1322 /* Table for keeping permanent unique copies of decoded names. Once
1323 allocated, names in this table are never released. While this is a
1324 storage leak, it should not be significant unless there are massive
1325 changes in the set of decoded names in successive versions of a
1326 symbol table loaded during a single session. */
1327 static struct htab *decoded_names_store;
1328
1329 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1330 in the language-specific part of GSYMBOL, if it has not been
1331 previously computed. Tries to save the decoded name in the same
1332 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1333 in any case, the decoded symbol has a lifetime at least that of
1334 GSYMBOL).
1335 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1336 const, but nevertheless modified to a semantically equivalent form
1337 when a decoded name is cached in it. */
1338
1339 const char *
1340 ada_decode_symbol (const struct general_symbol_info *arg)
1341 {
1342 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1343 const char **resultp =
1344 &gsymbol->language_specific.demangled_name;
1345
1346 if (!gsymbol->ada_mangled)
1347 {
1348 std::string decoded = ada_decode (gsymbol->linkage_name ());
1349 struct obstack *obstack = gsymbol->language_specific.obstack;
1350
1351 gsymbol->ada_mangled = 1;
1352
1353 if (obstack != NULL)
1354 *resultp = obstack_strdup (obstack, decoded.c_str ());
1355 else
1356 {
1357 /* Sometimes, we can't find a corresponding objfile, in
1358 which case, we put the result on the heap. Since we only
1359 decode when needed, we hope this usually does not cause a
1360 significant memory leak (FIXME). */
1361
1362 char **slot = (char **) htab_find_slot (decoded_names_store,
1363 decoded.c_str (), INSERT);
1364
1365 if (*slot == NULL)
1366 *slot = xstrdup (decoded.c_str ());
1367 *resultp = *slot;
1368 }
1369 }
1370
1371 return *resultp;
1372 }
1373
1374 static char *
1375 ada_la_decode (const char *encoded, int options)
1376 {
1377 return xstrdup (ada_decode (encoded).c_str ());
1378 }
1379
1380 \f
1381
1382 /* Arrays */
1383
1384 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1385 generated by the GNAT compiler to describe the index type used
1386 for each dimension of an array, check whether it follows the latest
1387 known encoding. If not, fix it up to conform to the latest encoding.
1388 Otherwise, do nothing. This function also does nothing if
1389 INDEX_DESC_TYPE is NULL.
1390
1391 The GNAT encoding used to describe the array index type evolved a bit.
1392 Initially, the information would be provided through the name of each
1393 field of the structure type only, while the type of these fields was
1394 described as unspecified and irrelevant. The debugger was then expected
1395 to perform a global type lookup using the name of that field in order
1396 to get access to the full index type description. Because these global
1397 lookups can be very expensive, the encoding was later enhanced to make
1398 the global lookup unnecessary by defining the field type as being
1399 the full index type description.
1400
1401 The purpose of this routine is to allow us to support older versions
1402 of the compiler by detecting the use of the older encoding, and by
1403 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1404 we essentially replace each field's meaningless type by the associated
1405 index subtype). */
1406
1407 void
1408 ada_fixup_array_indexes_type (struct type *index_desc_type)
1409 {
1410 int i;
1411
1412 if (index_desc_type == NULL)
1413 return;
1414 gdb_assert (index_desc_type->num_fields () > 0);
1415
1416 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1417 to check one field only, no need to check them all). If not, return
1418 now.
1419
1420 If our INDEX_DESC_TYPE was generated using the older encoding,
1421 the field type should be a meaningless integer type whose name
1422 is not equal to the field name. */
1423 if (index_desc_type->field (0).type ()->name () != NULL
1424 && strcmp (index_desc_type->field (0).type ()->name (),
1425 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1426 return;
1427
1428 /* Fixup each field of INDEX_DESC_TYPE. */
1429 for (i = 0; i < index_desc_type->num_fields (); i++)
1430 {
1431 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1432 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1433
1434 if (raw_type)
1435 index_desc_type->field (i).set_type (raw_type);
1436 }
1437 }
1438
1439 /* The desc_* routines return primitive portions of array descriptors
1440 (fat pointers). */
1441
1442 /* The descriptor or array type, if any, indicated by TYPE; removes
1443 level of indirection, if needed. */
1444
1445 static struct type *
1446 desc_base_type (struct type *type)
1447 {
1448 if (type == NULL)
1449 return NULL;
1450 type = ada_check_typedef (type);
1451 if (type->code () == TYPE_CODE_TYPEDEF)
1452 type = ada_typedef_target_type (type);
1453
1454 if (type != NULL
1455 && (type->code () == TYPE_CODE_PTR
1456 || type->code () == TYPE_CODE_REF))
1457 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1458 else
1459 return type;
1460 }
1461
1462 /* True iff TYPE indicates a "thin" array pointer type. */
1463
1464 static int
1465 is_thin_pntr (struct type *type)
1466 {
1467 return
1468 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1469 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1470 }
1471
1472 /* The descriptor type for thin pointer type TYPE. */
1473
1474 static struct type *
1475 thin_descriptor_type (struct type *type)
1476 {
1477 struct type *base_type = desc_base_type (type);
1478
1479 if (base_type == NULL)
1480 return NULL;
1481 if (is_suffix (ada_type_name (base_type), "___XVE"))
1482 return base_type;
1483 else
1484 {
1485 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1486
1487 if (alt_type == NULL)
1488 return base_type;
1489 else
1490 return alt_type;
1491 }
1492 }
1493
1494 /* A pointer to the array data for thin-pointer value VAL. */
1495
1496 static struct value *
1497 thin_data_pntr (struct value *val)
1498 {
1499 struct type *type = ada_check_typedef (value_type (val));
1500 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1501
1502 data_type = lookup_pointer_type (data_type);
1503
1504 if (type->code () == TYPE_CODE_PTR)
1505 return value_cast (data_type, value_copy (val));
1506 else
1507 return value_from_longest (data_type, value_address (val));
1508 }
1509
1510 /* True iff TYPE indicates a "thick" array pointer type. */
1511
1512 static int
1513 is_thick_pntr (struct type *type)
1514 {
1515 type = desc_base_type (type);
1516 return (type != NULL && type->code () == TYPE_CODE_STRUCT
1517 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1518 }
1519
1520 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1521 pointer to one, the type of its bounds data; otherwise, NULL. */
1522
1523 static struct type *
1524 desc_bounds_type (struct type *type)
1525 {
1526 struct type *r;
1527
1528 type = desc_base_type (type);
1529
1530 if (type == NULL)
1531 return NULL;
1532 else if (is_thin_pntr (type))
1533 {
1534 type = thin_descriptor_type (type);
1535 if (type == NULL)
1536 return NULL;
1537 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1538 if (r != NULL)
1539 return ada_check_typedef (r);
1540 }
1541 else if (type->code () == TYPE_CODE_STRUCT)
1542 {
1543 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1544 if (r != NULL)
1545 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1546 }
1547 return NULL;
1548 }
1549
1550 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1551 one, a pointer to its bounds data. Otherwise NULL. */
1552
1553 static struct value *
1554 desc_bounds (struct value *arr)
1555 {
1556 struct type *type = ada_check_typedef (value_type (arr));
1557
1558 if (is_thin_pntr (type))
1559 {
1560 struct type *bounds_type =
1561 desc_bounds_type (thin_descriptor_type (type));
1562 LONGEST addr;
1563
1564 if (bounds_type == NULL)
1565 error (_("Bad GNAT array descriptor"));
1566
1567 /* NOTE: The following calculation is not really kosher, but
1568 since desc_type is an XVE-encoded type (and shouldn't be),
1569 the correct calculation is a real pain. FIXME (and fix GCC). */
1570 if (type->code () == TYPE_CODE_PTR)
1571 addr = value_as_long (arr);
1572 else
1573 addr = value_address (arr);
1574
1575 return
1576 value_from_longest (lookup_pointer_type (bounds_type),
1577 addr - TYPE_LENGTH (bounds_type));
1578 }
1579
1580 else if (is_thick_pntr (type))
1581 {
1582 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1583 _("Bad GNAT array descriptor"));
1584 struct type *p_bounds_type = value_type (p_bounds);
1585
1586 if (p_bounds_type
1587 && p_bounds_type->code () == TYPE_CODE_PTR)
1588 {
1589 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1590
1591 if (TYPE_STUB (target_type))
1592 p_bounds = value_cast (lookup_pointer_type
1593 (ada_check_typedef (target_type)),
1594 p_bounds);
1595 }
1596 else
1597 error (_("Bad GNAT array descriptor"));
1598
1599 return p_bounds;
1600 }
1601 else
1602 return NULL;
1603 }
1604
1605 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1606 position of the field containing the address of the bounds data. */
1607
1608 static int
1609 fat_pntr_bounds_bitpos (struct type *type)
1610 {
1611 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1612 }
1613
1614 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1615 size of the field containing the address of the bounds data. */
1616
1617 static int
1618 fat_pntr_bounds_bitsize (struct type *type)
1619 {
1620 type = desc_base_type (type);
1621
1622 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1623 return TYPE_FIELD_BITSIZE (type, 1);
1624 else
1625 return 8 * TYPE_LENGTH (ada_check_typedef (type->field (1).type ()));
1626 }
1627
1628 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1629 pointer to one, the type of its array data (a array-with-no-bounds type);
1630 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1631 data. */
1632
1633 static struct type *
1634 desc_data_target_type (struct type *type)
1635 {
1636 type = desc_base_type (type);
1637
1638 /* NOTE: The following is bogus; see comment in desc_bounds. */
1639 if (is_thin_pntr (type))
1640 return desc_base_type (thin_descriptor_type (type)->field (1).type ());
1641 else if (is_thick_pntr (type))
1642 {
1643 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1644
1645 if (data_type
1646 && ada_check_typedef (data_type)->code () == TYPE_CODE_PTR)
1647 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1648 }
1649
1650 return NULL;
1651 }
1652
1653 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1654 its array data. */
1655
1656 static struct value *
1657 desc_data (struct value *arr)
1658 {
1659 struct type *type = value_type (arr);
1660
1661 if (is_thin_pntr (type))
1662 return thin_data_pntr (arr);
1663 else if (is_thick_pntr (type))
1664 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1665 _("Bad GNAT array descriptor"));
1666 else
1667 return NULL;
1668 }
1669
1670
1671 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1672 position of the field containing the address of the data. */
1673
1674 static int
1675 fat_pntr_data_bitpos (struct type *type)
1676 {
1677 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1678 }
1679
1680 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1681 size of the field containing the address of the data. */
1682
1683 static int
1684 fat_pntr_data_bitsize (struct type *type)
1685 {
1686 type = desc_base_type (type);
1687
1688 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1689 return TYPE_FIELD_BITSIZE (type, 0);
1690 else
1691 return TARGET_CHAR_BIT * TYPE_LENGTH (type->field (0).type ());
1692 }
1693
1694 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1695 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1696 bound, if WHICH is 1. The first bound is I=1. */
1697
1698 static struct value *
1699 desc_one_bound (struct value *bounds, int i, int which)
1700 {
1701 char bound_name[20];
1702 xsnprintf (bound_name, sizeof (bound_name), "%cB%d",
1703 which ? 'U' : 'L', i - 1);
1704 return value_struct_elt (&bounds, NULL, bound_name, NULL,
1705 _("Bad GNAT array descriptor bounds"));
1706 }
1707
1708 /* If BOUNDS is an array-bounds structure type, return the bit position
1709 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1710 bound, if WHICH is 1. The first bound is I=1. */
1711
1712 static int
1713 desc_bound_bitpos (struct type *type, int i, int which)
1714 {
1715 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1716 }
1717
1718 /* If BOUNDS is an array-bounds structure type, return the bit field size
1719 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1720 bound, if WHICH is 1. The first bound is I=1. */
1721
1722 static int
1723 desc_bound_bitsize (struct type *type, int i, int which)
1724 {
1725 type = desc_base_type (type);
1726
1727 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1728 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1729 else
1730 return 8 * TYPE_LENGTH (type->field (2 * i + which - 2).type ());
1731 }
1732
1733 /* If TYPE is the type of an array-bounds structure, the type of its
1734 Ith bound (numbering from 1). Otherwise, NULL. */
1735
1736 static struct type *
1737 desc_index_type (struct type *type, int i)
1738 {
1739 type = desc_base_type (type);
1740
1741 if (type->code () == TYPE_CODE_STRUCT)
1742 {
1743 char bound_name[20];
1744 xsnprintf (bound_name, sizeof (bound_name), "LB%d", i - 1);
1745 return lookup_struct_elt_type (type, bound_name, 1);
1746 }
1747 else
1748 return NULL;
1749 }
1750
1751 /* The number of index positions in the array-bounds type TYPE.
1752 Return 0 if TYPE is NULL. */
1753
1754 static int
1755 desc_arity (struct type *type)
1756 {
1757 type = desc_base_type (type);
1758
1759 if (type != NULL)
1760 return type->num_fields () / 2;
1761 return 0;
1762 }
1763
1764 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1765 an array descriptor type (representing an unconstrained array
1766 type). */
1767
1768 static int
1769 ada_is_direct_array_type (struct type *type)
1770 {
1771 if (type == NULL)
1772 return 0;
1773 type = ada_check_typedef (type);
1774 return (type->code () == TYPE_CODE_ARRAY
1775 || ada_is_array_descriptor_type (type));
1776 }
1777
1778 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1779 * to one. */
1780
1781 static int
1782 ada_is_array_type (struct type *type)
1783 {
1784 while (type != NULL
1785 && (type->code () == TYPE_CODE_PTR
1786 || type->code () == TYPE_CODE_REF))
1787 type = TYPE_TARGET_TYPE (type);
1788 return ada_is_direct_array_type (type);
1789 }
1790
1791 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1792
1793 int
1794 ada_is_simple_array_type (struct type *type)
1795 {
1796 if (type == NULL)
1797 return 0;
1798 type = ada_check_typedef (type);
1799 return (type->code () == TYPE_CODE_ARRAY
1800 || (type->code () == TYPE_CODE_PTR
1801 && (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ()
1802 == TYPE_CODE_ARRAY)));
1803 }
1804
1805 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1806
1807 int
1808 ada_is_array_descriptor_type (struct type *type)
1809 {
1810 struct type *data_type = desc_data_target_type (type);
1811
1812 if (type == NULL)
1813 return 0;
1814 type = ada_check_typedef (type);
1815 return (data_type != NULL
1816 && data_type->code () == TYPE_CODE_ARRAY
1817 && desc_arity (desc_bounds_type (type)) > 0);
1818 }
1819
1820 /* Non-zero iff type is a partially mal-formed GNAT array
1821 descriptor. FIXME: This is to compensate for some problems with
1822 debugging output from GNAT. Re-examine periodically to see if it
1823 is still needed. */
1824
1825 int
1826 ada_is_bogus_array_descriptor (struct type *type)
1827 {
1828 return
1829 type != NULL
1830 && type->code () == TYPE_CODE_STRUCT
1831 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1832 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1833 && !ada_is_array_descriptor_type (type);
1834 }
1835
1836
1837 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1838 (fat pointer) returns the type of the array data described---specifically,
1839 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1840 in from the descriptor; otherwise, they are left unspecified. If
1841 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1842 returns NULL. The result is simply the type of ARR if ARR is not
1843 a descriptor. */
1844
1845 static struct type *
1846 ada_type_of_array (struct value *arr, int bounds)
1847 {
1848 if (ada_is_constrained_packed_array_type (value_type (arr)))
1849 return decode_constrained_packed_array_type (value_type (arr));
1850
1851 if (!ada_is_array_descriptor_type (value_type (arr)))
1852 return value_type (arr);
1853
1854 if (!bounds)
1855 {
1856 struct type *array_type =
1857 ada_check_typedef (desc_data_target_type (value_type (arr)));
1858
1859 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1860 TYPE_FIELD_BITSIZE (array_type, 0) =
1861 decode_packed_array_bitsize (value_type (arr));
1862
1863 return array_type;
1864 }
1865 else
1866 {
1867 struct type *elt_type;
1868 int arity;
1869 struct value *descriptor;
1870
1871 elt_type = ada_array_element_type (value_type (arr), -1);
1872 arity = ada_array_arity (value_type (arr));
1873
1874 if (elt_type == NULL || arity == 0)
1875 return ada_check_typedef (value_type (arr));
1876
1877 descriptor = desc_bounds (arr);
1878 if (value_as_long (descriptor) == 0)
1879 return NULL;
1880 while (arity > 0)
1881 {
1882 struct type *range_type = alloc_type_copy (value_type (arr));
1883 struct type *array_type = alloc_type_copy (value_type (arr));
1884 struct value *low = desc_one_bound (descriptor, arity, 0);
1885 struct value *high = desc_one_bound (descriptor, arity, 1);
1886
1887 arity -= 1;
1888 create_static_range_type (range_type, value_type (low),
1889 longest_to_int (value_as_long (low)),
1890 longest_to_int (value_as_long (high)));
1891 elt_type = create_array_type (array_type, elt_type, range_type);
1892
1893 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1894 {
1895 /* We need to store the element packed bitsize, as well as
1896 recompute the array size, because it was previously
1897 computed based on the unpacked element size. */
1898 LONGEST lo = value_as_long (low);
1899 LONGEST hi = value_as_long (high);
1900
1901 TYPE_FIELD_BITSIZE (elt_type, 0) =
1902 decode_packed_array_bitsize (value_type (arr));
1903 /* If the array has no element, then the size is already
1904 zero, and does not need to be recomputed. */
1905 if (lo < hi)
1906 {
1907 int array_bitsize =
1908 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1909
1910 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1911 }
1912 }
1913 }
1914
1915 return lookup_pointer_type (elt_type);
1916 }
1917 }
1918
1919 /* If ARR does not represent an array, returns ARR unchanged.
1920 Otherwise, returns either a standard GDB array with bounds set
1921 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1922 GDB array. Returns NULL if ARR is a null fat pointer. */
1923
1924 struct value *
1925 ada_coerce_to_simple_array_ptr (struct value *arr)
1926 {
1927 if (ada_is_array_descriptor_type (value_type (arr)))
1928 {
1929 struct type *arrType = ada_type_of_array (arr, 1);
1930
1931 if (arrType == NULL)
1932 return NULL;
1933 return value_cast (arrType, value_copy (desc_data (arr)));
1934 }
1935 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1936 return decode_constrained_packed_array (arr);
1937 else
1938 return arr;
1939 }
1940
1941 /* If ARR does not represent an array, returns ARR unchanged.
1942 Otherwise, returns a standard GDB array describing ARR (which may
1943 be ARR itself if it already is in the proper form). */
1944
1945 struct value *
1946 ada_coerce_to_simple_array (struct value *arr)
1947 {
1948 if (ada_is_array_descriptor_type (value_type (arr)))
1949 {
1950 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1951
1952 if (arrVal == NULL)
1953 error (_("Bounds unavailable for null array pointer."));
1954 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
1955 return value_ind (arrVal);
1956 }
1957 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1958 return decode_constrained_packed_array (arr);
1959 else
1960 return arr;
1961 }
1962
1963 /* If TYPE represents a GNAT array type, return it translated to an
1964 ordinary GDB array type (possibly with BITSIZE fields indicating
1965 packing). For other types, is the identity. */
1966
1967 struct type *
1968 ada_coerce_to_simple_array_type (struct type *type)
1969 {
1970 if (ada_is_constrained_packed_array_type (type))
1971 return decode_constrained_packed_array_type (type);
1972
1973 if (ada_is_array_descriptor_type (type))
1974 return ada_check_typedef (desc_data_target_type (type));
1975
1976 return type;
1977 }
1978
1979 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1980
1981 static int
1982 ada_is_packed_array_type (struct type *type)
1983 {
1984 if (type == NULL)
1985 return 0;
1986 type = desc_base_type (type);
1987 type = ada_check_typedef (type);
1988 return
1989 ada_type_name (type) != NULL
1990 && strstr (ada_type_name (type), "___XP") != NULL;
1991 }
1992
1993 /* Non-zero iff TYPE represents a standard GNAT constrained
1994 packed-array type. */
1995
1996 int
1997 ada_is_constrained_packed_array_type (struct type *type)
1998 {
1999 return ada_is_packed_array_type (type)
2000 && !ada_is_array_descriptor_type (type);
2001 }
2002
2003 /* Non-zero iff TYPE represents an array descriptor for a
2004 unconstrained packed-array type. */
2005
2006 static int
2007 ada_is_unconstrained_packed_array_type (struct type *type)
2008 {
2009 return ada_is_packed_array_type (type)
2010 && ada_is_array_descriptor_type (type);
2011 }
2012
2013 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2014 return the size of its elements in bits. */
2015
2016 static long
2017 decode_packed_array_bitsize (struct type *type)
2018 {
2019 const char *raw_name;
2020 const char *tail;
2021 long bits;
2022
2023 /* Access to arrays implemented as fat pointers are encoded as a typedef
2024 of the fat pointer type. We need the name of the fat pointer type
2025 to do the decoding, so strip the typedef layer. */
2026 if (type->code () == TYPE_CODE_TYPEDEF)
2027 type = ada_typedef_target_type (type);
2028
2029 raw_name = ada_type_name (ada_check_typedef (type));
2030 if (!raw_name)
2031 raw_name = ada_type_name (desc_base_type (type));
2032
2033 if (!raw_name)
2034 return 0;
2035
2036 tail = strstr (raw_name, "___XP");
2037 gdb_assert (tail != NULL);
2038
2039 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2040 {
2041 lim_warning
2042 (_("could not understand bit size information on packed array"));
2043 return 0;
2044 }
2045
2046 return bits;
2047 }
2048
2049 /* Given that TYPE is a standard GDB array type with all bounds filled
2050 in, and that the element size of its ultimate scalar constituents
2051 (that is, either its elements, or, if it is an array of arrays, its
2052 elements' elements, etc.) is *ELT_BITS, return an identical type,
2053 but with the bit sizes of its elements (and those of any
2054 constituent arrays) recorded in the BITSIZE components of its
2055 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2056 in bits.
2057
2058 Note that, for arrays whose index type has an XA encoding where
2059 a bound references a record discriminant, getting that discriminant,
2060 and therefore the actual value of that bound, is not possible
2061 because none of the given parameters gives us access to the record.
2062 This function assumes that it is OK in the context where it is being
2063 used to return an array whose bounds are still dynamic and where
2064 the length is arbitrary. */
2065
2066 static struct type *
2067 constrained_packed_array_type (struct type *type, long *elt_bits)
2068 {
2069 struct type *new_elt_type;
2070 struct type *new_type;
2071 struct type *index_type_desc;
2072 struct type *index_type;
2073 LONGEST low_bound, high_bound;
2074
2075 type = ada_check_typedef (type);
2076 if (type->code () != TYPE_CODE_ARRAY)
2077 return type;
2078
2079 index_type_desc = ada_find_parallel_type (type, "___XA");
2080 if (index_type_desc)
2081 index_type = to_fixed_range_type (index_type_desc->field (0).type (),
2082 NULL);
2083 else
2084 index_type = type->index_type ();
2085
2086 new_type = alloc_type_copy (type);
2087 new_elt_type =
2088 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2089 elt_bits);
2090 create_array_type (new_type, new_elt_type, index_type);
2091 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2092 new_type->set_name (ada_type_name (type));
2093
2094 if ((check_typedef (index_type)->code () == TYPE_CODE_RANGE
2095 && is_dynamic_type (check_typedef (index_type)))
2096 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2097 low_bound = high_bound = 0;
2098 if (high_bound < low_bound)
2099 *elt_bits = TYPE_LENGTH (new_type) = 0;
2100 else
2101 {
2102 *elt_bits *= (high_bound - low_bound + 1);
2103 TYPE_LENGTH (new_type) =
2104 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2105 }
2106
2107 TYPE_FIXED_INSTANCE (new_type) = 1;
2108 return new_type;
2109 }
2110
2111 /* The array type encoded by TYPE, where
2112 ada_is_constrained_packed_array_type (TYPE). */
2113
2114 static struct type *
2115 decode_constrained_packed_array_type (struct type *type)
2116 {
2117 const char *raw_name = ada_type_name (ada_check_typedef (type));
2118 char *name;
2119 const char *tail;
2120 struct type *shadow_type;
2121 long bits;
2122
2123 if (!raw_name)
2124 raw_name = ada_type_name (desc_base_type (type));
2125
2126 if (!raw_name)
2127 return NULL;
2128
2129 name = (char *) alloca (strlen (raw_name) + 1);
2130 tail = strstr (raw_name, "___XP");
2131 type = desc_base_type (type);
2132
2133 memcpy (name, raw_name, tail - raw_name);
2134 name[tail - raw_name] = '\000';
2135
2136 shadow_type = ada_find_parallel_type_with_name (type, name);
2137
2138 if (shadow_type == NULL)
2139 {
2140 lim_warning (_("could not find bounds information on packed array"));
2141 return NULL;
2142 }
2143 shadow_type = check_typedef (shadow_type);
2144
2145 if (shadow_type->code () != TYPE_CODE_ARRAY)
2146 {
2147 lim_warning (_("could not understand bounds "
2148 "information on packed array"));
2149 return NULL;
2150 }
2151
2152 bits = decode_packed_array_bitsize (type);
2153 return constrained_packed_array_type (shadow_type, &bits);
2154 }
2155
2156 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2157 array, returns a simple array that denotes that array. Its type is a
2158 standard GDB array type except that the BITSIZEs of the array
2159 target types are set to the number of bits in each element, and the
2160 type length is set appropriately. */
2161
2162 static struct value *
2163 decode_constrained_packed_array (struct value *arr)
2164 {
2165 struct type *type;
2166
2167 /* If our value is a pointer, then dereference it. Likewise if
2168 the value is a reference. Make sure that this operation does not
2169 cause the target type to be fixed, as this would indirectly cause
2170 this array to be decoded. The rest of the routine assumes that
2171 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2172 and "value_ind" routines to perform the dereferencing, as opposed
2173 to using "ada_coerce_ref" or "ada_value_ind". */
2174 arr = coerce_ref (arr);
2175 if (ada_check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2176 arr = value_ind (arr);
2177
2178 type = decode_constrained_packed_array_type (value_type (arr));
2179 if (type == NULL)
2180 {
2181 error (_("can't unpack array"));
2182 return NULL;
2183 }
2184
2185 if (type_byte_order (value_type (arr)) == BFD_ENDIAN_BIG
2186 && ada_is_modular_type (value_type (arr)))
2187 {
2188 /* This is a (right-justified) modular type representing a packed
2189 array with no wrapper. In order to interpret the value through
2190 the (left-justified) packed array type we just built, we must
2191 first left-justify it. */
2192 int bit_size, bit_pos;
2193 ULONGEST mod;
2194
2195 mod = ada_modulus (value_type (arr)) - 1;
2196 bit_size = 0;
2197 while (mod > 0)
2198 {
2199 bit_size += 1;
2200 mod >>= 1;
2201 }
2202 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2203 arr = ada_value_primitive_packed_val (arr, NULL,
2204 bit_pos / HOST_CHAR_BIT,
2205 bit_pos % HOST_CHAR_BIT,
2206 bit_size,
2207 type);
2208 }
2209
2210 return coerce_unspec_val_to_type (arr, type);
2211 }
2212
2213
2214 /* The value of the element of packed array ARR at the ARITY indices
2215 given in IND. ARR must be a simple array. */
2216
2217 static struct value *
2218 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2219 {
2220 int i;
2221 int bits, elt_off, bit_off;
2222 long elt_total_bit_offset;
2223 struct type *elt_type;
2224 struct value *v;
2225
2226 bits = 0;
2227 elt_total_bit_offset = 0;
2228 elt_type = ada_check_typedef (value_type (arr));
2229 for (i = 0; i < arity; i += 1)
2230 {
2231 if (elt_type->code () != TYPE_CODE_ARRAY
2232 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2233 error
2234 (_("attempt to do packed indexing of "
2235 "something other than a packed array"));
2236 else
2237 {
2238 struct type *range_type = elt_type->index_type ();
2239 LONGEST lowerbound, upperbound;
2240 LONGEST idx;
2241
2242 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2243 {
2244 lim_warning (_("don't know bounds of array"));
2245 lowerbound = upperbound = 0;
2246 }
2247
2248 idx = pos_atr (ind[i]);
2249 if (idx < lowerbound || idx > upperbound)
2250 lim_warning (_("packed array index %ld out of bounds"),
2251 (long) idx);
2252 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2253 elt_total_bit_offset += (idx - lowerbound) * bits;
2254 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2255 }
2256 }
2257 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2258 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2259
2260 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2261 bits, elt_type);
2262 return v;
2263 }
2264
2265 /* Non-zero iff TYPE includes negative integer values. */
2266
2267 static int
2268 has_negatives (struct type *type)
2269 {
2270 switch (type->code ())
2271 {
2272 default:
2273 return 0;
2274 case TYPE_CODE_INT:
2275 return !TYPE_UNSIGNED (type);
2276 case TYPE_CODE_RANGE:
2277 return TYPE_LOW_BOUND (type) - TYPE_RANGE_DATA (type)->bias < 0;
2278 }
2279 }
2280
2281 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2282 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2283 the unpacked buffer.
2284
2285 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2286 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2287
2288 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2289 zero otherwise.
2290
2291 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2292
2293 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2294
2295 static void
2296 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2297 gdb_byte *unpacked, int unpacked_len,
2298 int is_big_endian, int is_signed_type,
2299 int is_scalar)
2300 {
2301 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2302 int src_idx; /* Index into the source area */
2303 int src_bytes_left; /* Number of source bytes left to process. */
2304 int srcBitsLeft; /* Number of source bits left to move */
2305 int unusedLS; /* Number of bits in next significant
2306 byte of source that are unused */
2307
2308 int unpacked_idx; /* Index into the unpacked buffer */
2309 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2310
2311 unsigned long accum; /* Staging area for bits being transferred */
2312 int accumSize; /* Number of meaningful bits in accum */
2313 unsigned char sign;
2314
2315 /* Transmit bytes from least to most significant; delta is the direction
2316 the indices move. */
2317 int delta = is_big_endian ? -1 : 1;
2318
2319 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2320 bits from SRC. .*/
2321 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2322 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2323 bit_size, unpacked_len);
2324
2325 srcBitsLeft = bit_size;
2326 src_bytes_left = src_len;
2327 unpacked_bytes_left = unpacked_len;
2328 sign = 0;
2329
2330 if (is_big_endian)
2331 {
2332 src_idx = src_len - 1;
2333 if (is_signed_type
2334 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2335 sign = ~0;
2336
2337 unusedLS =
2338 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2339 % HOST_CHAR_BIT;
2340
2341 if (is_scalar)
2342 {
2343 accumSize = 0;
2344 unpacked_idx = unpacked_len - 1;
2345 }
2346 else
2347 {
2348 /* Non-scalar values must be aligned at a byte boundary... */
2349 accumSize =
2350 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2351 /* ... And are placed at the beginning (most-significant) bytes
2352 of the target. */
2353 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2354 unpacked_bytes_left = unpacked_idx + 1;
2355 }
2356 }
2357 else
2358 {
2359 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2360
2361 src_idx = unpacked_idx = 0;
2362 unusedLS = bit_offset;
2363 accumSize = 0;
2364
2365 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2366 sign = ~0;
2367 }
2368
2369 accum = 0;
2370 while (src_bytes_left > 0)
2371 {
2372 /* Mask for removing bits of the next source byte that are not
2373 part of the value. */
2374 unsigned int unusedMSMask =
2375 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2376 1;
2377 /* Sign-extend bits for this byte. */
2378 unsigned int signMask = sign & ~unusedMSMask;
2379
2380 accum |=
2381 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2382 accumSize += HOST_CHAR_BIT - unusedLS;
2383 if (accumSize >= HOST_CHAR_BIT)
2384 {
2385 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2386 accumSize -= HOST_CHAR_BIT;
2387 accum >>= HOST_CHAR_BIT;
2388 unpacked_bytes_left -= 1;
2389 unpacked_idx += delta;
2390 }
2391 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2392 unusedLS = 0;
2393 src_bytes_left -= 1;
2394 src_idx += delta;
2395 }
2396 while (unpacked_bytes_left > 0)
2397 {
2398 accum |= sign << accumSize;
2399 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2400 accumSize -= HOST_CHAR_BIT;
2401 if (accumSize < 0)
2402 accumSize = 0;
2403 accum >>= HOST_CHAR_BIT;
2404 unpacked_bytes_left -= 1;
2405 unpacked_idx += delta;
2406 }
2407 }
2408
2409 /* Create a new value of type TYPE from the contents of OBJ starting
2410 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2411 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2412 assigning through the result will set the field fetched from.
2413 VALADDR is ignored unless OBJ is NULL, in which case,
2414 VALADDR+OFFSET must address the start of storage containing the
2415 packed value. The value returned in this case is never an lval.
2416 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2417
2418 struct value *
2419 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2420 long offset, int bit_offset, int bit_size,
2421 struct type *type)
2422 {
2423 struct value *v;
2424 const gdb_byte *src; /* First byte containing data to unpack */
2425 gdb_byte *unpacked;
2426 const int is_scalar = is_scalar_type (type);
2427 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2428 gdb::byte_vector staging;
2429
2430 type = ada_check_typedef (type);
2431
2432 if (obj == NULL)
2433 src = valaddr + offset;
2434 else
2435 src = value_contents (obj) + offset;
2436
2437 if (is_dynamic_type (type))
2438 {
2439 /* The length of TYPE might by dynamic, so we need to resolve
2440 TYPE in order to know its actual size, which we then use
2441 to create the contents buffer of the value we return.
2442 The difficulty is that the data containing our object is
2443 packed, and therefore maybe not at a byte boundary. So, what
2444 we do, is unpack the data into a byte-aligned buffer, and then
2445 use that buffer as our object's value for resolving the type. */
2446 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2447 staging.resize (staging_len);
2448
2449 ada_unpack_from_contents (src, bit_offset, bit_size,
2450 staging.data (), staging.size (),
2451 is_big_endian, has_negatives (type),
2452 is_scalar);
2453 type = resolve_dynamic_type (type, staging, 0);
2454 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2455 {
2456 /* This happens when the length of the object is dynamic,
2457 and is actually smaller than the space reserved for it.
2458 For instance, in an array of variant records, the bit_size
2459 we're given is the array stride, which is constant and
2460 normally equal to the maximum size of its element.
2461 But, in reality, each element only actually spans a portion
2462 of that stride. */
2463 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2464 }
2465 }
2466
2467 if (obj == NULL)
2468 {
2469 v = allocate_value (type);
2470 src = valaddr + offset;
2471 }
2472 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2473 {
2474 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2475 gdb_byte *buf;
2476
2477 v = value_at (type, value_address (obj) + offset);
2478 buf = (gdb_byte *) alloca (src_len);
2479 read_memory (value_address (v), buf, src_len);
2480 src = buf;
2481 }
2482 else
2483 {
2484 v = allocate_value (type);
2485 src = value_contents (obj) + offset;
2486 }
2487
2488 if (obj != NULL)
2489 {
2490 long new_offset = offset;
2491
2492 set_value_component_location (v, obj);
2493 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2494 set_value_bitsize (v, bit_size);
2495 if (value_bitpos (v) >= HOST_CHAR_BIT)
2496 {
2497 ++new_offset;
2498 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2499 }
2500 set_value_offset (v, new_offset);
2501
2502 /* Also set the parent value. This is needed when trying to
2503 assign a new value (in inferior memory). */
2504 set_value_parent (v, obj);
2505 }
2506 else
2507 set_value_bitsize (v, bit_size);
2508 unpacked = value_contents_writeable (v);
2509
2510 if (bit_size == 0)
2511 {
2512 memset (unpacked, 0, TYPE_LENGTH (type));
2513 return v;
2514 }
2515
2516 if (staging.size () == TYPE_LENGTH (type))
2517 {
2518 /* Small short-cut: If we've unpacked the data into a buffer
2519 of the same size as TYPE's length, then we can reuse that,
2520 instead of doing the unpacking again. */
2521 memcpy (unpacked, staging.data (), staging.size ());
2522 }
2523 else
2524 ada_unpack_from_contents (src, bit_offset, bit_size,
2525 unpacked, TYPE_LENGTH (type),
2526 is_big_endian, has_negatives (type), is_scalar);
2527
2528 return v;
2529 }
2530
2531 /* Store the contents of FROMVAL into the location of TOVAL.
2532 Return a new value with the location of TOVAL and contents of
2533 FROMVAL. Handles assignment into packed fields that have
2534 floating-point or non-scalar types. */
2535
2536 static struct value *
2537 ada_value_assign (struct value *toval, struct value *fromval)
2538 {
2539 struct type *type = value_type (toval);
2540 int bits = value_bitsize (toval);
2541
2542 toval = ada_coerce_ref (toval);
2543 fromval = ada_coerce_ref (fromval);
2544
2545 if (ada_is_direct_array_type (value_type (toval)))
2546 toval = ada_coerce_to_simple_array (toval);
2547 if (ada_is_direct_array_type (value_type (fromval)))
2548 fromval = ada_coerce_to_simple_array (fromval);
2549
2550 if (!deprecated_value_modifiable (toval))
2551 error (_("Left operand of assignment is not a modifiable lvalue."));
2552
2553 if (VALUE_LVAL (toval) == lval_memory
2554 && bits > 0
2555 && (type->code () == TYPE_CODE_FLT
2556 || type->code () == TYPE_CODE_STRUCT))
2557 {
2558 int len = (value_bitpos (toval)
2559 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2560 int from_size;
2561 gdb_byte *buffer = (gdb_byte *) alloca (len);
2562 struct value *val;
2563 CORE_ADDR to_addr = value_address (toval);
2564
2565 if (type->code () == TYPE_CODE_FLT)
2566 fromval = value_cast (type, fromval);
2567
2568 read_memory (to_addr, buffer, len);
2569 from_size = value_bitsize (fromval);
2570 if (from_size == 0)
2571 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2572
2573 const int is_big_endian = type_byte_order (type) == BFD_ENDIAN_BIG;
2574 ULONGEST from_offset = 0;
2575 if (is_big_endian && is_scalar_type (value_type (fromval)))
2576 from_offset = from_size - bits;
2577 copy_bitwise (buffer, value_bitpos (toval),
2578 value_contents (fromval), from_offset,
2579 bits, is_big_endian);
2580 write_memory_with_notification (to_addr, buffer, len);
2581
2582 val = value_copy (toval);
2583 memcpy (value_contents_raw (val), value_contents (fromval),
2584 TYPE_LENGTH (type));
2585 deprecated_set_value_type (val, type);
2586
2587 return val;
2588 }
2589
2590 return value_assign (toval, fromval);
2591 }
2592
2593
2594 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2595 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2596 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2597 COMPONENT, and not the inferior's memory. The current contents
2598 of COMPONENT are ignored.
2599
2600 Although not part of the initial design, this function also works
2601 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2602 had a null address, and COMPONENT had an address which is equal to
2603 its offset inside CONTAINER. */
2604
2605 static void
2606 value_assign_to_component (struct value *container, struct value *component,
2607 struct value *val)
2608 {
2609 LONGEST offset_in_container =
2610 (LONGEST) (value_address (component) - value_address (container));
2611 int bit_offset_in_container =
2612 value_bitpos (component) - value_bitpos (container);
2613 int bits;
2614
2615 val = value_cast (value_type (component), val);
2616
2617 if (value_bitsize (component) == 0)
2618 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2619 else
2620 bits = value_bitsize (component);
2621
2622 if (type_byte_order (value_type (container)) == BFD_ENDIAN_BIG)
2623 {
2624 int src_offset;
2625
2626 if (is_scalar_type (check_typedef (value_type (component))))
2627 src_offset
2628 = TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits;
2629 else
2630 src_offset = 0;
2631 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2632 value_bitpos (container) + bit_offset_in_container,
2633 value_contents (val), src_offset, bits, 1);
2634 }
2635 else
2636 copy_bitwise (value_contents_writeable (container) + offset_in_container,
2637 value_bitpos (container) + bit_offset_in_container,
2638 value_contents (val), 0, bits, 0);
2639 }
2640
2641 /* Determine if TYPE is an access to an unconstrained array. */
2642
2643 bool
2644 ada_is_access_to_unconstrained_array (struct type *type)
2645 {
2646 return (type->code () == TYPE_CODE_TYPEDEF
2647 && is_thick_pntr (ada_typedef_target_type (type)));
2648 }
2649
2650 /* The value of the element of array ARR at the ARITY indices given in IND.
2651 ARR may be either a simple array, GNAT array descriptor, or pointer
2652 thereto. */
2653
2654 struct value *
2655 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2656 {
2657 int k;
2658 struct value *elt;
2659 struct type *elt_type;
2660
2661 elt = ada_coerce_to_simple_array (arr);
2662
2663 elt_type = ada_check_typedef (value_type (elt));
2664 if (elt_type->code () == TYPE_CODE_ARRAY
2665 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2666 return value_subscript_packed (elt, arity, ind);
2667
2668 for (k = 0; k < arity; k += 1)
2669 {
2670 struct type *saved_elt_type = TYPE_TARGET_TYPE (elt_type);
2671
2672 if (elt_type->code () != TYPE_CODE_ARRAY)
2673 error (_("too many subscripts (%d expected)"), k);
2674
2675 elt = value_subscript (elt, pos_atr (ind[k]));
2676
2677 if (ada_is_access_to_unconstrained_array (saved_elt_type)
2678 && value_type (elt)->code () != TYPE_CODE_TYPEDEF)
2679 {
2680 /* The element is a typedef to an unconstrained array,
2681 except that the value_subscript call stripped the
2682 typedef layer. The typedef layer is GNAT's way to
2683 specify that the element is, at the source level, an
2684 access to the unconstrained array, rather than the
2685 unconstrained array. So, we need to restore that
2686 typedef layer, which we can do by forcing the element's
2687 type back to its original type. Otherwise, the returned
2688 value is going to be printed as the array, rather
2689 than as an access. Another symptom of the same issue
2690 would be that an expression trying to dereference the
2691 element would also be improperly rejected. */
2692 deprecated_set_value_type (elt, saved_elt_type);
2693 }
2694
2695 elt_type = ada_check_typedef (value_type (elt));
2696 }
2697
2698 return elt;
2699 }
2700
2701 /* Assuming ARR is a pointer to a GDB array, the value of the element
2702 of *ARR at the ARITY indices given in IND.
2703 Does not read the entire array into memory.
2704
2705 Note: Unlike what one would expect, this function is used instead of
2706 ada_value_subscript for basically all non-packed array types. The reason
2707 for this is that a side effect of doing our own pointer arithmetics instead
2708 of relying on value_subscript is that there is no implicit typedef peeling.
2709 This is important for arrays of array accesses, where it allows us to
2710 preserve the fact that the array's element is an array access, where the
2711 access part os encoded in a typedef layer. */
2712
2713 static struct value *
2714 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2715 {
2716 int k;
2717 struct value *array_ind = ada_value_ind (arr);
2718 struct type *type
2719 = check_typedef (value_enclosing_type (array_ind));
2720
2721 if (type->code () == TYPE_CODE_ARRAY
2722 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2723 return value_subscript_packed (array_ind, arity, ind);
2724
2725 for (k = 0; k < arity; k += 1)
2726 {
2727 LONGEST lwb, upb;
2728
2729 if (type->code () != TYPE_CODE_ARRAY)
2730 error (_("too many subscripts (%d expected)"), k);
2731 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2732 value_copy (arr));
2733 get_discrete_bounds (type->index_type (), &lwb, &upb);
2734 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2735 type = TYPE_TARGET_TYPE (type);
2736 }
2737
2738 return value_ind (arr);
2739 }
2740
2741 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2742 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2743 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2744 this array is LOW, as per Ada rules. */
2745 static struct value *
2746 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2747 int low, int high)
2748 {
2749 struct type *type0 = ada_check_typedef (type);
2750 struct type *base_index_type = TYPE_TARGET_TYPE (type0->index_type ());
2751 struct type *index_type
2752 = create_static_range_type (NULL, base_index_type, low, high);
2753 struct type *slice_type = create_array_type_with_stride
2754 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2755 type0->dyn_prop (DYN_PROP_BYTE_STRIDE),
2756 TYPE_FIELD_BITSIZE (type0, 0));
2757 int base_low = ada_discrete_type_low_bound (type0->index_type ());
2758 LONGEST base_low_pos, low_pos;
2759 CORE_ADDR base;
2760
2761 if (!discrete_position (base_index_type, low, &low_pos)
2762 || !discrete_position (base_index_type, base_low, &base_low_pos))
2763 {
2764 warning (_("unable to get positions in slice, use bounds instead"));
2765 low_pos = low;
2766 base_low_pos = base_low;
2767 }
2768
2769 base = value_as_address (array_ptr)
2770 + ((low_pos - base_low_pos)
2771 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2772 return value_at_lazy (slice_type, base);
2773 }
2774
2775
2776 static struct value *
2777 ada_value_slice (struct value *array, int low, int high)
2778 {
2779 struct type *type = ada_check_typedef (value_type (array));
2780 struct type *base_index_type = TYPE_TARGET_TYPE (type->index_type ());
2781 struct type *index_type
2782 = create_static_range_type (NULL, type->index_type (), low, high);
2783 struct type *slice_type = create_array_type_with_stride
2784 (NULL, TYPE_TARGET_TYPE (type), index_type,
2785 type->dyn_prop (DYN_PROP_BYTE_STRIDE),
2786 TYPE_FIELD_BITSIZE (type, 0));
2787 LONGEST low_pos, high_pos;
2788
2789 if (!discrete_position (base_index_type, low, &low_pos)
2790 || !discrete_position (base_index_type, high, &high_pos))
2791 {
2792 warning (_("unable to get positions in slice, use bounds instead"));
2793 low_pos = low;
2794 high_pos = high;
2795 }
2796
2797 return value_cast (slice_type,
2798 value_slice (array, low, high_pos - low_pos + 1));
2799 }
2800
2801 /* If type is a record type in the form of a standard GNAT array
2802 descriptor, returns the number of dimensions for type. If arr is a
2803 simple array, returns the number of "array of"s that prefix its
2804 type designation. Otherwise, returns 0. */
2805
2806 int
2807 ada_array_arity (struct type *type)
2808 {
2809 int arity;
2810
2811 if (type == NULL)
2812 return 0;
2813
2814 type = desc_base_type (type);
2815
2816 arity = 0;
2817 if (type->code () == TYPE_CODE_STRUCT)
2818 return desc_arity (desc_bounds_type (type));
2819 else
2820 while (type->code () == TYPE_CODE_ARRAY)
2821 {
2822 arity += 1;
2823 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2824 }
2825
2826 return arity;
2827 }
2828
2829 /* If TYPE is a record type in the form of a standard GNAT array
2830 descriptor or a simple array type, returns the element type for
2831 TYPE after indexing by NINDICES indices, or by all indices if
2832 NINDICES is -1. Otherwise, returns NULL. */
2833
2834 struct type *
2835 ada_array_element_type (struct type *type, int nindices)
2836 {
2837 type = desc_base_type (type);
2838
2839 if (type->code () == TYPE_CODE_STRUCT)
2840 {
2841 int k;
2842 struct type *p_array_type;
2843
2844 p_array_type = desc_data_target_type (type);
2845
2846 k = ada_array_arity (type);
2847 if (k == 0)
2848 return NULL;
2849
2850 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2851 if (nindices >= 0 && k > nindices)
2852 k = nindices;
2853 while (k > 0 && p_array_type != NULL)
2854 {
2855 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2856 k -= 1;
2857 }
2858 return p_array_type;
2859 }
2860 else if (type->code () == TYPE_CODE_ARRAY)
2861 {
2862 while (nindices != 0 && type->code () == TYPE_CODE_ARRAY)
2863 {
2864 type = TYPE_TARGET_TYPE (type);
2865 nindices -= 1;
2866 }
2867 return type;
2868 }
2869
2870 return NULL;
2871 }
2872
2873 /* The type of nth index in arrays of given type (n numbering from 1).
2874 Does not examine memory. Throws an error if N is invalid or TYPE
2875 is not an array type. NAME is the name of the Ada attribute being
2876 evaluated ('range, 'first, 'last, or 'length); it is used in building
2877 the error message. */
2878
2879 static struct type *
2880 ada_index_type (struct type *type, int n, const char *name)
2881 {
2882 struct type *result_type;
2883
2884 type = desc_base_type (type);
2885
2886 if (n < 0 || n > ada_array_arity (type))
2887 error (_("invalid dimension number to '%s"), name);
2888
2889 if (ada_is_simple_array_type (type))
2890 {
2891 int i;
2892
2893 for (i = 1; i < n; i += 1)
2894 type = TYPE_TARGET_TYPE (type);
2895 result_type = TYPE_TARGET_TYPE (type->index_type ());
2896 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2897 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2898 perhaps stabsread.c would make more sense. */
2899 if (result_type && result_type->code () == TYPE_CODE_UNDEF)
2900 result_type = NULL;
2901 }
2902 else
2903 {
2904 result_type = desc_index_type (desc_bounds_type (type), n);
2905 if (result_type == NULL)
2906 error (_("attempt to take bound of something that is not an array"));
2907 }
2908
2909 return result_type;
2910 }
2911
2912 /* Given that arr is an array type, returns the lower bound of the
2913 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2914 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2915 array-descriptor type. It works for other arrays with bounds supplied
2916 by run-time quantities other than discriminants. */
2917
2918 static LONGEST
2919 ada_array_bound_from_type (struct type *arr_type, int n, int which)
2920 {
2921 struct type *type, *index_type_desc, *index_type;
2922 int i;
2923
2924 gdb_assert (which == 0 || which == 1);
2925
2926 if (ada_is_constrained_packed_array_type (arr_type))
2927 arr_type = decode_constrained_packed_array_type (arr_type);
2928
2929 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2930 return (LONGEST) - which;
2931
2932 if (arr_type->code () == TYPE_CODE_PTR)
2933 type = TYPE_TARGET_TYPE (arr_type);
2934 else
2935 type = arr_type;
2936
2937 if (TYPE_FIXED_INSTANCE (type))
2938 {
2939 /* The array has already been fixed, so we do not need to
2940 check the parallel ___XA type again. That encoding has
2941 already been applied, so ignore it now. */
2942 index_type_desc = NULL;
2943 }
2944 else
2945 {
2946 index_type_desc = ada_find_parallel_type (type, "___XA");
2947 ada_fixup_array_indexes_type (index_type_desc);
2948 }
2949
2950 if (index_type_desc != NULL)
2951 index_type = to_fixed_range_type (index_type_desc->field (n - 1).type (),
2952 NULL);
2953 else
2954 {
2955 struct type *elt_type = check_typedef (type);
2956
2957 for (i = 1; i < n; i++)
2958 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
2959
2960 index_type = elt_type->index_type ();
2961 }
2962
2963 return
2964 (LONGEST) (which == 0
2965 ? ada_discrete_type_low_bound (index_type)
2966 : ada_discrete_type_high_bound (index_type));
2967 }
2968
2969 /* Given that arr is an array value, returns the lower bound of the
2970 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2971 WHICH is 1. This routine will also work for arrays with bounds
2972 supplied by run-time quantities other than discriminants. */
2973
2974 static LONGEST
2975 ada_array_bound (struct value *arr, int n, int which)
2976 {
2977 struct type *arr_type;
2978
2979 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
2980 arr = value_ind (arr);
2981 arr_type = value_enclosing_type (arr);
2982
2983 if (ada_is_constrained_packed_array_type (arr_type))
2984 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2985 else if (ada_is_simple_array_type (arr_type))
2986 return ada_array_bound_from_type (arr_type, n, which);
2987 else
2988 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2989 }
2990
2991 /* Given that arr is an array value, returns the length of the
2992 nth index. This routine will also work for arrays with bounds
2993 supplied by run-time quantities other than discriminants.
2994 Does not work for arrays indexed by enumeration types with representation
2995 clauses at the moment. */
2996
2997 static LONGEST
2998 ada_array_length (struct value *arr, int n)
2999 {
3000 struct type *arr_type, *index_type;
3001 int low, high;
3002
3003 if (check_typedef (value_type (arr))->code () == TYPE_CODE_PTR)
3004 arr = value_ind (arr);
3005 arr_type = value_enclosing_type (arr);
3006
3007 if (ada_is_constrained_packed_array_type (arr_type))
3008 return ada_array_length (decode_constrained_packed_array (arr), n);
3009
3010 if (ada_is_simple_array_type (arr_type))
3011 {
3012 low = ada_array_bound_from_type (arr_type, n, 0);
3013 high = ada_array_bound_from_type (arr_type, n, 1);
3014 }
3015 else
3016 {
3017 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3018 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3019 }
3020
3021 arr_type = check_typedef (arr_type);
3022 index_type = ada_index_type (arr_type, n, "length");
3023 if (index_type != NULL)
3024 {
3025 struct type *base_type;
3026 if (index_type->code () == TYPE_CODE_RANGE)
3027 base_type = TYPE_TARGET_TYPE (index_type);
3028 else
3029 base_type = index_type;
3030
3031 low = pos_atr (value_from_longest (base_type, low));
3032 high = pos_atr (value_from_longest (base_type, high));
3033 }
3034 return high - low + 1;
3035 }
3036
3037 /* An array whose type is that of ARR_TYPE (an array type), with
3038 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3039 less than LOW, then LOW-1 is used. */
3040
3041 static struct value *
3042 empty_array (struct type *arr_type, int low, int high)
3043 {
3044 struct type *arr_type0 = ada_check_typedef (arr_type);
3045 struct type *index_type
3046 = create_static_range_type
3047 (NULL, TYPE_TARGET_TYPE (arr_type0->index_type ()), low,
3048 high < low ? low - 1 : high);
3049 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3050
3051 return allocate_value (create_array_type (NULL, elt_type, index_type));
3052 }
3053 \f
3054
3055 /* Name resolution */
3056
3057 /* The "decoded" name for the user-definable Ada operator corresponding
3058 to OP. */
3059
3060 static const char *
3061 ada_decoded_op_name (enum exp_opcode op)
3062 {
3063 int i;
3064
3065 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3066 {
3067 if (ada_opname_table[i].op == op)
3068 return ada_opname_table[i].decoded;
3069 }
3070 error (_("Could not find operator name for opcode"));
3071 }
3072
3073 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3074 in a listing of choices during disambiguation (see sort_choices, below).
3075 The idea is that overloadings of a subprogram name from the
3076 same package should sort in their source order. We settle for ordering
3077 such symbols by their trailing number (__N or $N). */
3078
3079 static int
3080 encoded_ordered_before (const char *N0, const char *N1)
3081 {
3082 if (N1 == NULL)
3083 return 0;
3084 else if (N0 == NULL)
3085 return 1;
3086 else
3087 {
3088 int k0, k1;
3089
3090 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3091 ;
3092 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3093 ;
3094 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3095 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3096 {
3097 int n0, n1;
3098
3099 n0 = k0;
3100 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3101 n0 -= 1;
3102 n1 = k1;
3103 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3104 n1 -= 1;
3105 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3106 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3107 }
3108 return (strcmp (N0, N1) < 0);
3109 }
3110 }
3111
3112 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3113 encoded names. */
3114
3115 static void
3116 sort_choices (struct block_symbol syms[], int nsyms)
3117 {
3118 int i;
3119
3120 for (i = 1; i < nsyms; i += 1)
3121 {
3122 struct block_symbol sym = syms[i];
3123 int j;
3124
3125 for (j = i - 1; j >= 0; j -= 1)
3126 {
3127 if (encoded_ordered_before (syms[j].symbol->linkage_name (),
3128 sym.symbol->linkage_name ()))
3129 break;
3130 syms[j + 1] = syms[j];
3131 }
3132 syms[j + 1] = sym;
3133 }
3134 }
3135
3136 /* Whether GDB should display formals and return types for functions in the
3137 overloads selection menu. */
3138 static bool print_signatures = true;
3139
3140 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3141 all but functions, the signature is just the name of the symbol. For
3142 functions, this is the name of the function, the list of types for formals
3143 and the return type (if any). */
3144
3145 static void
3146 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3147 const struct type_print_options *flags)
3148 {
3149 struct type *type = SYMBOL_TYPE (sym);
3150
3151 fprintf_filtered (stream, "%s", sym->print_name ());
3152 if (!print_signatures
3153 || type == NULL
3154 || type->code () != TYPE_CODE_FUNC)
3155 return;
3156
3157 if (type->num_fields () > 0)
3158 {
3159 int i;
3160
3161 fprintf_filtered (stream, " (");
3162 for (i = 0; i < type->num_fields (); ++i)
3163 {
3164 if (i > 0)
3165 fprintf_filtered (stream, "; ");
3166 ada_print_type (type->field (i).type (), NULL, stream, -1, 0,
3167 flags);
3168 }
3169 fprintf_filtered (stream, ")");
3170 }
3171 if (TYPE_TARGET_TYPE (type) != NULL
3172 && TYPE_TARGET_TYPE (type)->code () != TYPE_CODE_VOID)
3173 {
3174 fprintf_filtered (stream, " return ");
3175 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3176 }
3177 }
3178
3179 /* Read and validate a set of numeric choices from the user in the
3180 range 0 .. N_CHOICES-1. Place the results in increasing
3181 order in CHOICES[0 .. N-1], and return N.
3182
3183 The user types choices as a sequence of numbers on one line
3184 separated by blanks, encoding them as follows:
3185
3186 + A choice of 0 means to cancel the selection, throwing an error.
3187 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3188 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3189
3190 The user is not allowed to choose more than MAX_RESULTS values.
3191
3192 ANNOTATION_SUFFIX, if present, is used to annotate the input
3193 prompts (for use with the -f switch). */
3194
3195 static int
3196 get_selections (int *choices, int n_choices, int max_results,
3197 int is_all_choice, const char *annotation_suffix)
3198 {
3199 const char *args;
3200 const char *prompt;
3201 int n_chosen;
3202 int first_choice = is_all_choice ? 2 : 1;
3203
3204 prompt = getenv ("PS2");
3205 if (prompt == NULL)
3206 prompt = "> ";
3207
3208 args = command_line_input (prompt, annotation_suffix);
3209
3210 if (args == NULL)
3211 error_no_arg (_("one or more choice numbers"));
3212
3213 n_chosen = 0;
3214
3215 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3216 order, as given in args. Choices are validated. */
3217 while (1)
3218 {
3219 char *args2;
3220 int choice, j;
3221
3222 args = skip_spaces (args);
3223 if (*args == '\0' && n_chosen == 0)
3224 error_no_arg (_("one or more choice numbers"));
3225 else if (*args == '\0')
3226 break;
3227
3228 choice = strtol (args, &args2, 10);
3229 if (args == args2 || choice < 0
3230 || choice > n_choices + first_choice - 1)
3231 error (_("Argument must be choice number"));
3232 args = args2;
3233
3234 if (choice == 0)
3235 error (_("cancelled"));
3236
3237 if (choice < first_choice)
3238 {
3239 n_chosen = n_choices;
3240 for (j = 0; j < n_choices; j += 1)
3241 choices[j] = j;
3242 break;
3243 }
3244 choice -= first_choice;
3245
3246 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3247 {
3248 }
3249
3250 if (j < 0 || choice != choices[j])
3251 {
3252 int k;
3253
3254 for (k = n_chosen - 1; k > j; k -= 1)
3255 choices[k + 1] = choices[k];
3256 choices[j + 1] = choice;
3257 n_chosen += 1;
3258 }
3259 }
3260
3261 if (n_chosen > max_results)
3262 error (_("Select no more than %d of the above"), max_results);
3263
3264 return n_chosen;
3265 }
3266
3267 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3268 by asking the user (if necessary), returning the number selected,
3269 and setting the first elements of SYMS items. Error if no symbols
3270 selected. */
3271
3272 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3273 to be re-integrated one of these days. */
3274
3275 static int
3276 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3277 {
3278 int i;
3279 int *chosen = XALLOCAVEC (int , nsyms);
3280 int n_chosen;
3281 int first_choice = (max_results == 1) ? 1 : 2;
3282 const char *select_mode = multiple_symbols_select_mode ();
3283
3284 if (max_results < 1)
3285 error (_("Request to select 0 symbols!"));
3286 if (nsyms <= 1)
3287 return nsyms;
3288
3289 if (select_mode == multiple_symbols_cancel)
3290 error (_("\
3291 canceled because the command is ambiguous\n\
3292 See set/show multiple-symbol."));
3293
3294 /* If select_mode is "all", then return all possible symbols.
3295 Only do that if more than one symbol can be selected, of course.
3296 Otherwise, display the menu as usual. */
3297 if (select_mode == multiple_symbols_all && max_results > 1)
3298 return nsyms;
3299
3300 printf_filtered (_("[0] cancel\n"));
3301 if (max_results > 1)
3302 printf_filtered (_("[1] all\n"));
3303
3304 sort_choices (syms, nsyms);
3305
3306 for (i = 0; i < nsyms; i += 1)
3307 {
3308 if (syms[i].symbol == NULL)
3309 continue;
3310
3311 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3312 {
3313 struct symtab_and_line sal =
3314 find_function_start_sal (syms[i].symbol, 1);
3315
3316 printf_filtered ("[%d] ", i + first_choice);
3317 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3318 &type_print_raw_options);
3319 if (sal.symtab == NULL)
3320 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3321 metadata_style.style ().ptr (), nullptr, sal.line);
3322 else
3323 printf_filtered
3324 (_(" at %ps:%d\n"),
3325 styled_string (file_name_style.style (),
3326 symtab_to_filename_for_display (sal.symtab)),
3327 sal.line);
3328 continue;
3329 }
3330 else
3331 {
3332 int is_enumeral =
3333 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3334 && SYMBOL_TYPE (syms[i].symbol) != NULL
3335 && SYMBOL_TYPE (syms[i].symbol)->code () == TYPE_CODE_ENUM);
3336 struct symtab *symtab = NULL;
3337
3338 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3339 symtab = symbol_symtab (syms[i].symbol);
3340
3341 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3342 {
3343 printf_filtered ("[%d] ", i + first_choice);
3344 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3345 &type_print_raw_options);
3346 printf_filtered (_(" at %s:%d\n"),
3347 symtab_to_filename_for_display (symtab),
3348 SYMBOL_LINE (syms[i].symbol));
3349 }
3350 else if (is_enumeral
3351 && SYMBOL_TYPE (syms[i].symbol)->name () != NULL)
3352 {
3353 printf_filtered (("[%d] "), i + first_choice);
3354 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3355 gdb_stdout, -1, 0, &type_print_raw_options);
3356 printf_filtered (_("'(%s) (enumeral)\n"),
3357 syms[i].symbol->print_name ());
3358 }
3359 else
3360 {
3361 printf_filtered ("[%d] ", i + first_choice);
3362 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3363 &type_print_raw_options);
3364
3365 if (symtab != NULL)
3366 printf_filtered (is_enumeral
3367 ? _(" in %s (enumeral)\n")
3368 : _(" at %s:?\n"),
3369 symtab_to_filename_for_display (symtab));
3370 else
3371 printf_filtered (is_enumeral
3372 ? _(" (enumeral)\n")
3373 : _(" at ?\n"));
3374 }
3375 }
3376 }
3377
3378 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3379 "overload-choice");
3380
3381 for (i = 0; i < n_chosen; i += 1)
3382 syms[i] = syms[chosen[i]];
3383
3384 return n_chosen;
3385 }
3386
3387 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3388 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3389 undefined namespace) and converts operators that are
3390 user-defined into appropriate function calls. If CONTEXT_TYPE is
3391 non-null, it provides a preferred result type [at the moment, only
3392 type void has any effect---causing procedures to be preferred over
3393 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3394 return type is preferred. May change (expand) *EXP. */
3395
3396 static void
3397 resolve (expression_up *expp, int void_context_p, int parse_completion,
3398 innermost_block_tracker *tracker)
3399 {
3400 struct type *context_type = NULL;
3401 int pc = 0;
3402
3403 if (void_context_p)
3404 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3405
3406 resolve_subexp (expp, &pc, 1, context_type, parse_completion, tracker);
3407 }
3408
3409 /* Resolve the operator of the subexpression beginning at
3410 position *POS of *EXPP. "Resolving" consists of replacing
3411 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3412 with their resolutions, replacing built-in operators with
3413 function calls to user-defined operators, where appropriate, and,
3414 when DEPROCEDURE_P is non-zero, converting function-valued variables
3415 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3416 are as in ada_resolve, above. */
3417
3418 static struct value *
3419 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3420 struct type *context_type, int parse_completion,
3421 innermost_block_tracker *tracker)
3422 {
3423 int pc = *pos;
3424 int i;
3425 struct expression *exp; /* Convenience: == *expp. */
3426 enum exp_opcode op = (*expp)->elts[pc].opcode;
3427 struct value **argvec; /* Vector of operand types (alloca'ed). */
3428 int nargs; /* Number of operands. */
3429 int oplen;
3430
3431 argvec = NULL;
3432 nargs = 0;
3433 exp = expp->get ();
3434
3435 /* Pass one: resolve operands, saving their types and updating *pos,
3436 if needed. */
3437 switch (op)
3438 {
3439 case OP_FUNCALL:
3440 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3441 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3442 *pos += 7;
3443 else
3444 {
3445 *pos += 3;
3446 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3447 }
3448 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3449 break;
3450
3451 case UNOP_ADDR:
3452 *pos += 1;
3453 resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3454 break;
3455
3456 case UNOP_QUAL:
3457 *pos += 3;
3458 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type),
3459 parse_completion, tracker);
3460 break;
3461
3462 case OP_ATR_MODULUS:
3463 case OP_ATR_SIZE:
3464 case OP_ATR_TAG:
3465 case OP_ATR_FIRST:
3466 case OP_ATR_LAST:
3467 case OP_ATR_LENGTH:
3468 case OP_ATR_POS:
3469 case OP_ATR_VAL:
3470 case OP_ATR_MIN:
3471 case OP_ATR_MAX:
3472 case TERNOP_IN_RANGE:
3473 case BINOP_IN_BOUNDS:
3474 case UNOP_IN_RANGE:
3475 case OP_AGGREGATE:
3476 case OP_OTHERS:
3477 case OP_CHOICES:
3478 case OP_POSITIONAL:
3479 case OP_DISCRETE_RANGE:
3480 case OP_NAME:
3481 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3482 *pos += oplen;
3483 break;
3484
3485 case BINOP_ASSIGN:
3486 {
3487 struct value *arg1;
3488
3489 *pos += 1;
3490 arg1 = resolve_subexp (expp, pos, 0, NULL, parse_completion, tracker);
3491 if (arg1 == NULL)
3492 resolve_subexp (expp, pos, 1, NULL, parse_completion, tracker);
3493 else
3494 resolve_subexp (expp, pos, 1, value_type (arg1), parse_completion,
3495 tracker);
3496 break;
3497 }
3498
3499 case UNOP_CAST:
3500 *pos += 3;
3501 nargs = 1;
3502 break;
3503
3504 case BINOP_ADD:
3505 case BINOP_SUB:
3506 case BINOP_MUL:
3507 case BINOP_DIV:
3508 case BINOP_REM:
3509 case BINOP_MOD:
3510 case BINOP_EXP:
3511 case BINOP_CONCAT:
3512 case BINOP_LOGICAL_AND:
3513 case BINOP_LOGICAL_OR:
3514 case BINOP_BITWISE_AND:
3515 case BINOP_BITWISE_IOR:
3516 case BINOP_BITWISE_XOR:
3517
3518 case BINOP_EQUAL:
3519 case BINOP_NOTEQUAL:
3520 case BINOP_LESS:
3521 case BINOP_GTR:
3522 case BINOP_LEQ:
3523 case BINOP_GEQ:
3524
3525 case BINOP_REPEAT:
3526 case BINOP_SUBSCRIPT:
3527 case BINOP_COMMA:
3528 *pos += 1;
3529 nargs = 2;
3530 break;
3531
3532 case UNOP_NEG:
3533 case UNOP_PLUS:
3534 case UNOP_LOGICAL_NOT:
3535 case UNOP_ABS:
3536 case UNOP_IND:
3537 *pos += 1;
3538 nargs = 1;
3539 break;
3540
3541 case OP_LONG:
3542 case OP_FLOAT:
3543 case OP_VAR_VALUE:
3544 case OP_VAR_MSYM_VALUE:
3545 *pos += 4;
3546 break;
3547
3548 case OP_TYPE:
3549 case OP_BOOL:
3550 case OP_LAST:
3551 case OP_INTERNALVAR:
3552 *pos += 3;
3553 break;
3554
3555 case UNOP_MEMVAL:
3556 *pos += 3;
3557 nargs = 1;
3558 break;
3559
3560 case OP_REGISTER:
3561 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3562 break;
3563
3564 case STRUCTOP_STRUCT:
3565 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3566 nargs = 1;
3567 break;
3568
3569 case TERNOP_SLICE:
3570 *pos += 1;
3571 nargs = 3;
3572 break;
3573
3574 case OP_STRING:
3575 break;
3576
3577 default:
3578 error (_("Unexpected operator during name resolution"));
3579 }
3580
3581 argvec = XALLOCAVEC (struct value *, nargs + 1);
3582 for (i = 0; i < nargs; i += 1)
3583 argvec[i] = resolve_subexp (expp, pos, 1, NULL, parse_completion,
3584 tracker);
3585 argvec[i] = NULL;
3586 exp = expp->get ();
3587
3588 /* Pass two: perform any resolution on principal operator. */
3589 switch (op)
3590 {
3591 default:
3592 break;
3593
3594 case OP_VAR_VALUE:
3595 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3596 {
3597 std::vector<struct block_symbol> candidates;
3598 int n_candidates;
3599
3600 n_candidates =
3601 ada_lookup_symbol_list (exp->elts[pc + 2].symbol->linkage_name (),
3602 exp->elts[pc + 1].block, VAR_DOMAIN,
3603 &candidates);
3604
3605 if (n_candidates > 1)
3606 {
3607 /* Types tend to get re-introduced locally, so if there
3608 are any local symbols that are not types, first filter
3609 out all types. */
3610 int j;
3611 for (j = 0; j < n_candidates; j += 1)
3612 switch (SYMBOL_CLASS (candidates[j].symbol))
3613 {
3614 case LOC_REGISTER:
3615 case LOC_ARG:
3616 case LOC_REF_ARG:
3617 case LOC_REGPARM_ADDR:
3618 case LOC_LOCAL:
3619 case LOC_COMPUTED:
3620 goto FoundNonType;
3621 default:
3622 break;
3623 }
3624 FoundNonType:
3625 if (j < n_candidates)
3626 {
3627 j = 0;
3628 while (j < n_candidates)
3629 {
3630 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3631 {
3632 candidates[j] = candidates[n_candidates - 1];
3633 n_candidates -= 1;
3634 }
3635 else
3636 j += 1;
3637 }
3638 }
3639 }
3640
3641 if (n_candidates == 0)
3642 error (_("No definition found for %s"),
3643 exp->elts[pc + 2].symbol->print_name ());
3644 else if (n_candidates == 1)
3645 i = 0;
3646 else if (deprocedure_p
3647 && !is_nonfunction (candidates.data (), n_candidates))
3648 {
3649 i = ada_resolve_function
3650 (candidates.data (), n_candidates, NULL, 0,
3651 exp->elts[pc + 2].symbol->linkage_name (),
3652 context_type, parse_completion);
3653 if (i < 0)
3654 error (_("Could not find a match for %s"),
3655 exp->elts[pc + 2].symbol->print_name ());
3656 }
3657 else
3658 {
3659 printf_filtered (_("Multiple matches for %s\n"),
3660 exp->elts[pc + 2].symbol->print_name ());
3661 user_select_syms (candidates.data (), n_candidates, 1);
3662 i = 0;
3663 }
3664
3665 exp->elts[pc + 1].block = candidates[i].block;
3666 exp->elts[pc + 2].symbol = candidates[i].symbol;
3667 tracker->update (candidates[i]);
3668 }
3669
3670 if (deprocedure_p
3671 && (SYMBOL_TYPE (exp->elts[pc + 2].symbol)->code ()
3672 == TYPE_CODE_FUNC))
3673 {
3674 replace_operator_with_call (expp, pc, 0, 4,
3675 exp->elts[pc + 2].symbol,
3676 exp->elts[pc + 1].block);
3677 exp = expp->get ();
3678 }
3679 break;
3680
3681 case OP_FUNCALL:
3682 {
3683 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3684 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3685 {
3686 std::vector<struct block_symbol> candidates;
3687 int n_candidates;
3688
3689 n_candidates =
3690 ada_lookup_symbol_list (exp->elts[pc + 5].symbol->linkage_name (),
3691 exp->elts[pc + 4].block, VAR_DOMAIN,
3692 &candidates);
3693
3694 if (n_candidates == 1)
3695 i = 0;
3696 else
3697 {
3698 i = ada_resolve_function
3699 (candidates.data (), n_candidates,
3700 argvec, nargs,
3701 exp->elts[pc + 5].symbol->linkage_name (),
3702 context_type, parse_completion);
3703 if (i < 0)
3704 error (_("Could not find a match for %s"),
3705 exp->elts[pc + 5].symbol->print_name ());
3706 }
3707
3708 exp->elts[pc + 4].block = candidates[i].block;
3709 exp->elts[pc + 5].symbol = candidates[i].symbol;
3710 tracker->update (candidates[i]);
3711 }
3712 }
3713 break;
3714 case BINOP_ADD:
3715 case BINOP_SUB:
3716 case BINOP_MUL:
3717 case BINOP_DIV:
3718 case BINOP_REM:
3719 case BINOP_MOD:
3720 case BINOP_CONCAT:
3721 case BINOP_BITWISE_AND:
3722 case BINOP_BITWISE_IOR:
3723 case BINOP_BITWISE_XOR:
3724 case BINOP_EQUAL:
3725 case BINOP_NOTEQUAL:
3726 case BINOP_LESS:
3727 case BINOP_GTR:
3728 case BINOP_LEQ:
3729 case BINOP_GEQ:
3730 case BINOP_EXP:
3731 case UNOP_NEG:
3732 case UNOP_PLUS:
3733 case UNOP_LOGICAL_NOT:
3734 case UNOP_ABS:
3735 if (possible_user_operator_p (op, argvec))
3736 {
3737 std::vector<struct block_symbol> candidates;
3738 int n_candidates;
3739
3740 n_candidates =
3741 ada_lookup_symbol_list (ada_decoded_op_name (op),
3742 NULL, VAR_DOMAIN,
3743 &candidates);
3744
3745 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3746 nargs, ada_decoded_op_name (op), NULL,
3747 parse_completion);
3748 if (i < 0)
3749 break;
3750
3751 replace_operator_with_call (expp, pc, nargs, 1,
3752 candidates[i].symbol,
3753 candidates[i].block);
3754 exp = expp->get ();
3755 }
3756 break;
3757
3758 case OP_TYPE:
3759 case OP_REGISTER:
3760 return NULL;
3761 }
3762
3763 *pos = pc;
3764 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3765 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3766 exp->elts[pc + 1].objfile,
3767 exp->elts[pc + 2].msymbol);
3768 else
3769 return evaluate_subexp_type (exp, pos);
3770 }
3771
3772 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3773 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3774 a non-pointer. */
3775 /* The term "match" here is rather loose. The match is heuristic and
3776 liberal. */
3777
3778 static int
3779 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3780 {
3781 ftype = ada_check_typedef (ftype);
3782 atype = ada_check_typedef (atype);
3783
3784 if (ftype->code () == TYPE_CODE_REF)
3785 ftype = TYPE_TARGET_TYPE (ftype);
3786 if (atype->code () == TYPE_CODE_REF)
3787 atype = TYPE_TARGET_TYPE (atype);
3788
3789 switch (ftype->code ())
3790 {
3791 default:
3792 return ftype->code () == atype->code ();
3793 case TYPE_CODE_PTR:
3794 if (atype->code () == TYPE_CODE_PTR)
3795 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3796 TYPE_TARGET_TYPE (atype), 0);
3797 else
3798 return (may_deref
3799 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3800 case TYPE_CODE_INT:
3801 case TYPE_CODE_ENUM:
3802 case TYPE_CODE_RANGE:
3803 switch (atype->code ())
3804 {
3805 case TYPE_CODE_INT:
3806 case TYPE_CODE_ENUM:
3807 case TYPE_CODE_RANGE:
3808 return 1;
3809 default:
3810 return 0;
3811 }
3812
3813 case TYPE_CODE_ARRAY:
3814 return (atype->code () == TYPE_CODE_ARRAY
3815 || ada_is_array_descriptor_type (atype));
3816
3817 case TYPE_CODE_STRUCT:
3818 if (ada_is_array_descriptor_type (ftype))
3819 return (atype->code () == TYPE_CODE_ARRAY
3820 || ada_is_array_descriptor_type (atype));
3821 else
3822 return (atype->code () == TYPE_CODE_STRUCT
3823 && !ada_is_array_descriptor_type (atype));
3824
3825 case TYPE_CODE_UNION:
3826 case TYPE_CODE_FLT:
3827 return (atype->code () == ftype->code ());
3828 }
3829 }
3830
3831 /* Return non-zero if the formals of FUNC "sufficiently match" the
3832 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3833 may also be an enumeral, in which case it is treated as a 0-
3834 argument function. */
3835
3836 static int
3837 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3838 {
3839 int i;
3840 struct type *func_type = SYMBOL_TYPE (func);
3841
3842 if (SYMBOL_CLASS (func) == LOC_CONST
3843 && func_type->code () == TYPE_CODE_ENUM)
3844 return (n_actuals == 0);
3845 else if (func_type == NULL || func_type->code () != TYPE_CODE_FUNC)
3846 return 0;
3847
3848 if (func_type->num_fields () != n_actuals)
3849 return 0;
3850
3851 for (i = 0; i < n_actuals; i += 1)
3852 {
3853 if (actuals[i] == NULL)
3854 return 0;
3855 else
3856 {
3857 struct type *ftype = ada_check_typedef (func_type->field (i).type ());
3858 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3859
3860 if (!ada_type_match (ftype, atype, 1))
3861 return 0;
3862 }
3863 }
3864 return 1;
3865 }
3866
3867 /* False iff function type FUNC_TYPE definitely does not produce a value
3868 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3869 FUNC_TYPE is not a valid function type with a non-null return type
3870 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3871
3872 static int
3873 return_match (struct type *func_type, struct type *context_type)
3874 {
3875 struct type *return_type;
3876
3877 if (func_type == NULL)
3878 return 1;
3879
3880 if (func_type->code () == TYPE_CODE_FUNC)
3881 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3882 else
3883 return_type = get_base_type (func_type);
3884 if (return_type == NULL)
3885 return 1;
3886
3887 context_type = get_base_type (context_type);
3888
3889 if (return_type->code () == TYPE_CODE_ENUM)
3890 return context_type == NULL || return_type == context_type;
3891 else if (context_type == NULL)
3892 return return_type->code () != TYPE_CODE_VOID;
3893 else
3894 return return_type->code () == context_type->code ();
3895 }
3896
3897
3898 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3899 function (if any) that matches the types of the NARGS arguments in
3900 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3901 that returns that type, then eliminate matches that don't. If
3902 CONTEXT_TYPE is void and there is at least one match that does not
3903 return void, eliminate all matches that do.
3904
3905 Asks the user if there is more than one match remaining. Returns -1
3906 if there is no such symbol or none is selected. NAME is used
3907 solely for messages. May re-arrange and modify SYMS in
3908 the process; the index returned is for the modified vector. */
3909
3910 static int
3911 ada_resolve_function (struct block_symbol syms[],
3912 int nsyms, struct value **args, int nargs,
3913 const char *name, struct type *context_type,
3914 int parse_completion)
3915 {
3916 int fallback;
3917 int k;
3918 int m; /* Number of hits */
3919
3920 m = 0;
3921 /* In the first pass of the loop, we only accept functions matching
3922 context_type. If none are found, we add a second pass of the loop
3923 where every function is accepted. */
3924 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3925 {
3926 for (k = 0; k < nsyms; k += 1)
3927 {
3928 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3929
3930 if (ada_args_match (syms[k].symbol, args, nargs)
3931 && (fallback || return_match (type, context_type)))
3932 {
3933 syms[m] = syms[k];
3934 m += 1;
3935 }
3936 }
3937 }
3938
3939 /* If we got multiple matches, ask the user which one to use. Don't do this
3940 interactive thing during completion, though, as the purpose of the
3941 completion is providing a list of all possible matches. Prompting the
3942 user to filter it down would be completely unexpected in this case. */
3943 if (m == 0)
3944 return -1;
3945 else if (m > 1 && !parse_completion)
3946 {
3947 printf_filtered (_("Multiple matches for %s\n"), name);
3948 user_select_syms (syms, m, 1);
3949 return 0;
3950 }
3951 return 0;
3952 }
3953
3954 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3955 on the function identified by SYM and BLOCK, and taking NARGS
3956 arguments. Update *EXPP as needed to hold more space. */
3957
3958 static void
3959 replace_operator_with_call (expression_up *expp, int pc, int nargs,
3960 int oplen, struct symbol *sym,
3961 const struct block *block)
3962 {
3963 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3964 symbol, -oplen for operator being replaced). */
3965 struct expression *newexp = (struct expression *)
3966 xzalloc (sizeof (struct expression)
3967 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3968 struct expression *exp = expp->get ();
3969
3970 newexp->nelts = exp->nelts + 7 - oplen;
3971 newexp->language_defn = exp->language_defn;
3972 newexp->gdbarch = exp->gdbarch;
3973 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3974 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3975 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3976
3977 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3978 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3979
3980 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3981 newexp->elts[pc + 4].block = block;
3982 newexp->elts[pc + 5].symbol = sym;
3983
3984 expp->reset (newexp);
3985 }
3986
3987 /* Type-class predicates */
3988
3989 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3990 or FLOAT). */
3991
3992 static int
3993 numeric_type_p (struct type *type)
3994 {
3995 if (type == NULL)
3996 return 0;
3997 else
3998 {
3999 switch (type->code ())
4000 {
4001 case TYPE_CODE_INT:
4002 case TYPE_CODE_FLT:
4003 return 1;
4004 case TYPE_CODE_RANGE:
4005 return (type == TYPE_TARGET_TYPE (type)
4006 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4007 default:
4008 return 0;
4009 }
4010 }
4011 }
4012
4013 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4014
4015 static int
4016 integer_type_p (struct type *type)
4017 {
4018 if (type == NULL)
4019 return 0;
4020 else
4021 {
4022 switch (type->code ())
4023 {
4024 case TYPE_CODE_INT:
4025 return 1;
4026 case TYPE_CODE_RANGE:
4027 return (type == TYPE_TARGET_TYPE (type)
4028 || integer_type_p (TYPE_TARGET_TYPE (type)));
4029 default:
4030 return 0;
4031 }
4032 }
4033 }
4034
4035 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4036
4037 static int
4038 scalar_type_p (struct type *type)
4039 {
4040 if (type == NULL)
4041 return 0;
4042 else
4043 {
4044 switch (type->code ())
4045 {
4046 case TYPE_CODE_INT:
4047 case TYPE_CODE_RANGE:
4048 case TYPE_CODE_ENUM:
4049 case TYPE_CODE_FLT:
4050 return 1;
4051 default:
4052 return 0;
4053 }
4054 }
4055 }
4056
4057 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4058
4059 static int
4060 discrete_type_p (struct type *type)
4061 {
4062 if (type == NULL)
4063 return 0;
4064 else
4065 {
4066 switch (type->code ())
4067 {
4068 case TYPE_CODE_INT:
4069 case TYPE_CODE_RANGE:
4070 case TYPE_CODE_ENUM:
4071 case TYPE_CODE_BOOL:
4072 return 1;
4073 default:
4074 return 0;
4075 }
4076 }
4077 }
4078
4079 /* Returns non-zero if OP with operands in the vector ARGS could be
4080 a user-defined function. Errs on the side of pre-defined operators
4081 (i.e., result 0). */
4082
4083 static int
4084 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4085 {
4086 struct type *type0 =
4087 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4088 struct type *type1 =
4089 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4090
4091 if (type0 == NULL)
4092 return 0;
4093
4094 switch (op)
4095 {
4096 default:
4097 return 0;
4098
4099 case BINOP_ADD:
4100 case BINOP_SUB:
4101 case BINOP_MUL:
4102 case BINOP_DIV:
4103 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4104
4105 case BINOP_REM:
4106 case BINOP_MOD:
4107 case BINOP_BITWISE_AND:
4108 case BINOP_BITWISE_IOR:
4109 case BINOP_BITWISE_XOR:
4110 return (!(integer_type_p (type0) && integer_type_p (type1)));
4111
4112 case BINOP_EQUAL:
4113 case BINOP_NOTEQUAL:
4114 case BINOP_LESS:
4115 case BINOP_GTR:
4116 case BINOP_LEQ:
4117 case BINOP_GEQ:
4118 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4119
4120 case BINOP_CONCAT:
4121 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4122
4123 case BINOP_EXP:
4124 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4125
4126 case UNOP_NEG:
4127 case UNOP_PLUS:
4128 case UNOP_LOGICAL_NOT:
4129 case UNOP_ABS:
4130 return (!numeric_type_p (type0));
4131
4132 }
4133 }
4134 \f
4135 /* Renaming */
4136
4137 /* NOTES:
4138
4139 1. In the following, we assume that a renaming type's name may
4140 have an ___XD suffix. It would be nice if this went away at some
4141 point.
4142 2. We handle both the (old) purely type-based representation of
4143 renamings and the (new) variable-based encoding. At some point,
4144 it is devoutly to be hoped that the former goes away
4145 (FIXME: hilfinger-2007-07-09).
4146 3. Subprogram renamings are not implemented, although the XRS
4147 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4148
4149 /* If SYM encodes a renaming,
4150
4151 <renaming> renames <renamed entity>,
4152
4153 sets *LEN to the length of the renamed entity's name,
4154 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4155 the string describing the subcomponent selected from the renamed
4156 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4157 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4158 are undefined). Otherwise, returns a value indicating the category
4159 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4160 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4161 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4162 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4163 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4164 may be NULL, in which case they are not assigned.
4165
4166 [Currently, however, GCC does not generate subprogram renamings.] */
4167
4168 enum ada_renaming_category
4169 ada_parse_renaming (struct symbol *sym,
4170 const char **renamed_entity, int *len,
4171 const char **renaming_expr)
4172 {
4173 enum ada_renaming_category kind;
4174 const char *info;
4175 const char *suffix;
4176
4177 if (sym == NULL)
4178 return ADA_NOT_RENAMING;
4179 switch (SYMBOL_CLASS (sym))
4180 {
4181 default:
4182 return ADA_NOT_RENAMING;
4183 case LOC_LOCAL:
4184 case LOC_STATIC:
4185 case LOC_COMPUTED:
4186 case LOC_OPTIMIZED_OUT:
4187 info = strstr (sym->linkage_name (), "___XR");
4188 if (info == NULL)
4189 return ADA_NOT_RENAMING;
4190 switch (info[5])
4191 {
4192 case '_':
4193 kind = ADA_OBJECT_RENAMING;
4194 info += 6;
4195 break;
4196 case 'E':
4197 kind = ADA_EXCEPTION_RENAMING;
4198 info += 7;
4199 break;
4200 case 'P':
4201 kind = ADA_PACKAGE_RENAMING;
4202 info += 7;
4203 break;
4204 case 'S':
4205 kind = ADA_SUBPROGRAM_RENAMING;
4206 info += 7;
4207 break;
4208 default:
4209 return ADA_NOT_RENAMING;
4210 }
4211 }
4212
4213 if (renamed_entity != NULL)
4214 *renamed_entity = info;
4215 suffix = strstr (info, "___XE");
4216 if (suffix == NULL || suffix == info)
4217 return ADA_NOT_RENAMING;
4218 if (len != NULL)
4219 *len = strlen (info) - strlen (suffix);
4220 suffix += 5;
4221 if (renaming_expr != NULL)
4222 *renaming_expr = suffix;
4223 return kind;
4224 }
4225
4226 /* Compute the value of the given RENAMING_SYM, which is expected to
4227 be a symbol encoding a renaming expression. BLOCK is the block
4228 used to evaluate the renaming. */
4229
4230 static struct value *
4231 ada_read_renaming_var_value (struct symbol *renaming_sym,
4232 const struct block *block)
4233 {
4234 const char *sym_name;
4235
4236 sym_name = renaming_sym->linkage_name ();
4237 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4238 return evaluate_expression (expr.get ());
4239 }
4240 \f
4241
4242 /* Evaluation: Function Calls */
4243
4244 /* Return an lvalue containing the value VAL. This is the identity on
4245 lvalues, and otherwise has the side-effect of allocating memory
4246 in the inferior where a copy of the value contents is copied. */
4247
4248 static struct value *
4249 ensure_lval (struct value *val)
4250 {
4251 if (VALUE_LVAL (val) == not_lval
4252 || VALUE_LVAL (val) == lval_internalvar)
4253 {
4254 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4255 const CORE_ADDR addr =
4256 value_as_long (value_allocate_space_in_inferior (len));
4257
4258 VALUE_LVAL (val) = lval_memory;
4259 set_value_address (val, addr);
4260 write_memory (addr, value_contents (val), len);
4261 }
4262
4263 return val;
4264 }
4265
4266 /* Given ARG, a value of type (pointer or reference to a)*
4267 structure/union, extract the component named NAME from the ultimate
4268 target structure/union and return it as a value with its
4269 appropriate type.
4270
4271 The routine searches for NAME among all members of the structure itself
4272 and (recursively) among all members of any wrapper members
4273 (e.g., '_parent').
4274
4275 If NO_ERR, then simply return NULL in case of error, rather than
4276 calling error. */
4277
4278 static struct value *
4279 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
4280 {
4281 struct type *t, *t1;
4282 struct value *v;
4283 int check_tag;
4284
4285 v = NULL;
4286 t1 = t = ada_check_typedef (value_type (arg));
4287 if (t->code () == TYPE_CODE_REF)
4288 {
4289 t1 = TYPE_TARGET_TYPE (t);
4290 if (t1 == NULL)
4291 goto BadValue;
4292 t1 = ada_check_typedef (t1);
4293 if (t1->code () == TYPE_CODE_PTR)
4294 {
4295 arg = coerce_ref (arg);
4296 t = t1;
4297 }
4298 }
4299
4300 while (t->code () == TYPE_CODE_PTR)
4301 {
4302 t1 = TYPE_TARGET_TYPE (t);
4303 if (t1 == NULL)
4304 goto BadValue;
4305 t1 = ada_check_typedef (t1);
4306 if (t1->code () == TYPE_CODE_PTR)
4307 {
4308 arg = value_ind (arg);
4309 t = t1;
4310 }
4311 else
4312 break;
4313 }
4314
4315 if (t1->code () != TYPE_CODE_STRUCT && t1->code () != TYPE_CODE_UNION)
4316 goto BadValue;
4317
4318 if (t1 == t)
4319 v = ada_search_struct_field (name, arg, 0, t);
4320 else
4321 {
4322 int bit_offset, bit_size, byte_offset;
4323 struct type *field_type;
4324 CORE_ADDR address;
4325
4326 if (t->code () == TYPE_CODE_PTR)
4327 address = value_address (ada_value_ind (arg));
4328 else
4329 address = value_address (ada_coerce_ref (arg));
4330
4331 /* Check to see if this is a tagged type. We also need to handle
4332 the case where the type is a reference to a tagged type, but
4333 we have to be careful to exclude pointers to tagged types.
4334 The latter should be shown as usual (as a pointer), whereas
4335 a reference should mostly be transparent to the user. */
4336
4337 if (ada_is_tagged_type (t1, 0)
4338 || (t1->code () == TYPE_CODE_REF
4339 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
4340 {
4341 /* We first try to find the searched field in the current type.
4342 If not found then let's look in the fixed type. */
4343
4344 if (!find_struct_field (name, t1, 0,
4345 &field_type, &byte_offset, &bit_offset,
4346 &bit_size, NULL))
4347 check_tag = 1;
4348 else
4349 check_tag = 0;
4350 }
4351 else
4352 check_tag = 0;
4353
4354 /* Convert to fixed type in all cases, so that we have proper
4355 offsets to each field in unconstrained record types. */
4356 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
4357 address, NULL, check_tag);
4358
4359 if (find_struct_field (name, t1, 0,
4360 &field_type, &byte_offset, &bit_offset,
4361 &bit_size, NULL))
4362 {
4363 if (bit_size != 0)
4364 {
4365 if (t->code () == TYPE_CODE_REF)
4366 arg = ada_coerce_ref (arg);
4367 else
4368 arg = ada_value_ind (arg);
4369 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
4370 bit_offset, bit_size,
4371 field_type);
4372 }
4373 else
4374 v = value_at_lazy (field_type, address + byte_offset);
4375 }
4376 }
4377
4378 if (v != NULL || no_err)
4379 return v;
4380 else
4381 error (_("There is no member named %s."), name);
4382
4383 BadValue:
4384 if (no_err)
4385 return NULL;
4386 else
4387 error (_("Attempt to extract a component of "
4388 "a value that is not a record."));
4389 }
4390
4391 /* Return the value ACTUAL, converted to be an appropriate value for a
4392 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4393 allocating any necessary descriptors (fat pointers), or copies of
4394 values not residing in memory, updating it as needed. */
4395
4396 struct value *
4397 ada_convert_actual (struct value *actual, struct type *formal_type0)
4398 {
4399 struct type *actual_type = ada_check_typedef (value_type (actual));
4400 struct type *formal_type = ada_check_typedef (formal_type0);
4401 struct type *formal_target =
4402 formal_type->code () == TYPE_CODE_PTR
4403 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4404 struct type *actual_target =
4405 actual_type->code () == TYPE_CODE_PTR
4406 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4407
4408 if (ada_is_array_descriptor_type (formal_target)
4409 && actual_target->code () == TYPE_CODE_ARRAY)
4410 return make_array_descriptor (formal_type, actual);
4411 else if (formal_type->code () == TYPE_CODE_PTR
4412 || formal_type->code () == TYPE_CODE_REF)
4413 {
4414 struct value *result;
4415
4416 if (formal_target->code () == TYPE_CODE_ARRAY
4417 && ada_is_array_descriptor_type (actual_target))
4418 result = desc_data (actual);
4419 else if (formal_type->code () != TYPE_CODE_PTR)
4420 {
4421 if (VALUE_LVAL (actual) != lval_memory)
4422 {
4423 struct value *val;
4424
4425 actual_type = ada_check_typedef (value_type (actual));
4426 val = allocate_value (actual_type);
4427 memcpy ((char *) value_contents_raw (val),
4428 (char *) value_contents (actual),
4429 TYPE_LENGTH (actual_type));
4430 actual = ensure_lval (val);
4431 }
4432 result = value_addr (actual);
4433 }
4434 else
4435 return actual;
4436 return value_cast_pointers (formal_type, result, 0);
4437 }
4438 else if (actual_type->code () == TYPE_CODE_PTR)
4439 return ada_value_ind (actual);
4440 else if (ada_is_aligner_type (formal_type))
4441 {
4442 /* We need to turn this parameter into an aligner type
4443 as well. */
4444 struct value *aligner = allocate_value (formal_type);
4445 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4446
4447 value_assign_to_component (aligner, component, actual);
4448 return aligner;
4449 }
4450
4451 return actual;
4452 }
4453
4454 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4455 type TYPE. This is usually an inefficient no-op except on some targets
4456 (such as AVR) where the representation of a pointer and an address
4457 differs. */
4458
4459 static CORE_ADDR
4460 value_pointer (struct value *value, struct type *type)
4461 {
4462 struct gdbarch *gdbarch = get_type_arch (type);
4463 unsigned len = TYPE_LENGTH (type);
4464 gdb_byte *buf = (gdb_byte *) alloca (len);
4465 CORE_ADDR addr;
4466
4467 addr = value_address (value);
4468 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4469 addr = extract_unsigned_integer (buf, len, type_byte_order (type));
4470 return addr;
4471 }
4472
4473
4474 /* Push a descriptor of type TYPE for array value ARR on the stack at
4475 *SP, updating *SP to reflect the new descriptor. Return either
4476 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4477 to-descriptor type rather than a descriptor type), a struct value *
4478 representing a pointer to this descriptor. */
4479
4480 static struct value *
4481 make_array_descriptor (struct type *type, struct value *arr)
4482 {
4483 struct type *bounds_type = desc_bounds_type (type);
4484 struct type *desc_type = desc_base_type (type);
4485 struct value *descriptor = allocate_value (desc_type);
4486 struct value *bounds = allocate_value (bounds_type);
4487 int i;
4488
4489 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4490 i > 0; i -= 1)
4491 {
4492 modify_field (value_type (bounds), value_contents_writeable (bounds),
4493 ada_array_bound (arr, i, 0),
4494 desc_bound_bitpos (bounds_type, i, 0),
4495 desc_bound_bitsize (bounds_type, i, 0));
4496 modify_field (value_type (bounds), value_contents_writeable (bounds),
4497 ada_array_bound (arr, i, 1),
4498 desc_bound_bitpos (bounds_type, i, 1),
4499 desc_bound_bitsize (bounds_type, i, 1));
4500 }
4501
4502 bounds = ensure_lval (bounds);
4503
4504 modify_field (value_type (descriptor),
4505 value_contents_writeable (descriptor),
4506 value_pointer (ensure_lval (arr),
4507 desc_type->field (0).type ()),
4508 fat_pntr_data_bitpos (desc_type),
4509 fat_pntr_data_bitsize (desc_type));
4510
4511 modify_field (value_type (descriptor),
4512 value_contents_writeable (descriptor),
4513 value_pointer (bounds,
4514 desc_type->field (1).type ()),
4515 fat_pntr_bounds_bitpos (desc_type),
4516 fat_pntr_bounds_bitsize (desc_type));
4517
4518 descriptor = ensure_lval (descriptor);
4519
4520 if (type->code () == TYPE_CODE_PTR)
4521 return value_addr (descriptor);
4522 else
4523 return descriptor;
4524 }
4525 \f
4526 /* Symbol Cache Module */
4527
4528 /* Performance measurements made as of 2010-01-15 indicate that
4529 this cache does bring some noticeable improvements. Depending
4530 on the type of entity being printed, the cache can make it as much
4531 as an order of magnitude faster than without it.
4532
4533 The descriptive type DWARF extension has significantly reduced
4534 the need for this cache, at least when DWARF is being used. However,
4535 even in this case, some expensive name-based symbol searches are still
4536 sometimes necessary - to find an XVZ variable, mostly. */
4537
4538 /* Initialize the contents of SYM_CACHE. */
4539
4540 static void
4541 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4542 {
4543 obstack_init (&sym_cache->cache_space);
4544 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4545 }
4546
4547 /* Free the memory used by SYM_CACHE. */
4548
4549 static void
4550 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4551 {
4552 obstack_free (&sym_cache->cache_space, NULL);
4553 xfree (sym_cache);
4554 }
4555
4556 /* Return the symbol cache associated to the given program space PSPACE.
4557 If not allocated for this PSPACE yet, allocate and initialize one. */
4558
4559 static struct ada_symbol_cache *
4560 ada_get_symbol_cache (struct program_space *pspace)
4561 {
4562 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4563
4564 if (pspace_data->sym_cache == NULL)
4565 {
4566 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4567 ada_init_symbol_cache (pspace_data->sym_cache);
4568 }
4569
4570 return pspace_data->sym_cache;
4571 }
4572
4573 /* Clear all entries from the symbol cache. */
4574
4575 static void
4576 ada_clear_symbol_cache (void)
4577 {
4578 struct ada_symbol_cache *sym_cache
4579 = ada_get_symbol_cache (current_program_space);
4580
4581 obstack_free (&sym_cache->cache_space, NULL);
4582 ada_init_symbol_cache (sym_cache);
4583 }
4584
4585 /* Search our cache for an entry matching NAME and DOMAIN.
4586 Return it if found, or NULL otherwise. */
4587
4588 static struct cache_entry **
4589 find_entry (const char *name, domain_enum domain)
4590 {
4591 struct ada_symbol_cache *sym_cache
4592 = ada_get_symbol_cache (current_program_space);
4593 int h = msymbol_hash (name) % HASH_SIZE;
4594 struct cache_entry **e;
4595
4596 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4597 {
4598 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4599 return e;
4600 }
4601 return NULL;
4602 }
4603
4604 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4605 Return 1 if found, 0 otherwise.
4606
4607 If an entry was found and SYM is not NULL, set *SYM to the entry's
4608 SYM. Same principle for BLOCK if not NULL. */
4609
4610 static int
4611 lookup_cached_symbol (const char *name, domain_enum domain,
4612 struct symbol **sym, const struct block **block)
4613 {
4614 struct cache_entry **e = find_entry (name, domain);
4615
4616 if (e == NULL)
4617 return 0;
4618 if (sym != NULL)
4619 *sym = (*e)->sym;
4620 if (block != NULL)
4621 *block = (*e)->block;
4622 return 1;
4623 }
4624
4625 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4626 in domain DOMAIN, save this result in our symbol cache. */
4627
4628 static void
4629 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4630 const struct block *block)
4631 {
4632 struct ada_symbol_cache *sym_cache
4633 = ada_get_symbol_cache (current_program_space);
4634 int h;
4635 struct cache_entry *e;
4636
4637 /* Symbols for builtin types don't have a block.
4638 For now don't cache such symbols. */
4639 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4640 return;
4641
4642 /* If the symbol is a local symbol, then do not cache it, as a search
4643 for that symbol depends on the context. To determine whether
4644 the symbol is local or not, we check the block where we found it
4645 against the global and static blocks of its associated symtab. */
4646 if (sym
4647 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4648 GLOBAL_BLOCK) != block
4649 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4650 STATIC_BLOCK) != block)
4651 return;
4652
4653 h = msymbol_hash (name) % HASH_SIZE;
4654 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4655 e->next = sym_cache->root[h];
4656 sym_cache->root[h] = e;
4657 e->name = obstack_strdup (&sym_cache->cache_space, name);
4658 e->sym = sym;
4659 e->domain = domain;
4660 e->block = block;
4661 }
4662 \f
4663 /* Symbol Lookup */
4664
4665 /* Return the symbol name match type that should be used used when
4666 searching for all symbols matching LOOKUP_NAME.
4667
4668 LOOKUP_NAME is expected to be a symbol name after transformation
4669 for Ada lookups. */
4670
4671 static symbol_name_match_type
4672 name_match_type_from_name (const char *lookup_name)
4673 {
4674 return (strstr (lookup_name, "__") == NULL
4675 ? symbol_name_match_type::WILD
4676 : symbol_name_match_type::FULL);
4677 }
4678
4679 /* Return the result of a standard (literal, C-like) lookup of NAME in
4680 given DOMAIN, visible from lexical block BLOCK. */
4681
4682 static struct symbol *
4683 standard_lookup (const char *name, const struct block *block,
4684 domain_enum domain)
4685 {
4686 /* Initialize it just to avoid a GCC false warning. */
4687 struct block_symbol sym = {};
4688
4689 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4690 return sym.symbol;
4691 ada_lookup_encoded_symbol (name, block, domain, &sym);
4692 cache_symbol (name, domain, sym.symbol, sym.block);
4693 return sym.symbol;
4694 }
4695
4696
4697 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4698 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4699 since they contend in overloading in the same way. */
4700 static int
4701 is_nonfunction (struct block_symbol syms[], int n)
4702 {
4703 int i;
4704
4705 for (i = 0; i < n; i += 1)
4706 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_FUNC
4707 && (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM
4708 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4709 return 1;
4710
4711 return 0;
4712 }
4713
4714 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4715 struct types. Otherwise, they may not. */
4716
4717 static int
4718 equiv_types (struct type *type0, struct type *type1)
4719 {
4720 if (type0 == type1)
4721 return 1;
4722 if (type0 == NULL || type1 == NULL
4723 || type0->code () != type1->code ())
4724 return 0;
4725 if ((type0->code () == TYPE_CODE_STRUCT
4726 || type0->code () == TYPE_CODE_ENUM)
4727 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4728 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4729 return 1;
4730
4731 return 0;
4732 }
4733
4734 /* True iff SYM0 represents the same entity as SYM1, or one that is
4735 no more defined than that of SYM1. */
4736
4737 static int
4738 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4739 {
4740 if (sym0 == sym1)
4741 return 1;
4742 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4743 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4744 return 0;
4745
4746 switch (SYMBOL_CLASS (sym0))
4747 {
4748 case LOC_UNDEF:
4749 return 1;
4750 case LOC_TYPEDEF:
4751 {
4752 struct type *type0 = SYMBOL_TYPE (sym0);
4753 struct type *type1 = SYMBOL_TYPE (sym1);
4754 const char *name0 = sym0->linkage_name ();
4755 const char *name1 = sym1->linkage_name ();
4756 int len0 = strlen (name0);
4757
4758 return
4759 type0->code () == type1->code ()
4760 && (equiv_types (type0, type1)
4761 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4762 && startswith (name1 + len0, "___XV")));
4763 }
4764 case LOC_CONST:
4765 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4766 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4767
4768 case LOC_STATIC:
4769 {
4770 const char *name0 = sym0->linkage_name ();
4771 const char *name1 = sym1->linkage_name ();
4772 return (strcmp (name0, name1) == 0
4773 && SYMBOL_VALUE_ADDRESS (sym0) == SYMBOL_VALUE_ADDRESS (sym1));
4774 }
4775
4776 default:
4777 return 0;
4778 }
4779 }
4780
4781 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4782 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4783
4784 static void
4785 add_defn_to_vec (struct obstack *obstackp,
4786 struct symbol *sym,
4787 const struct block *block)
4788 {
4789 int i;
4790 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4791
4792 /* Do not try to complete stub types, as the debugger is probably
4793 already scanning all symbols matching a certain name at the
4794 time when this function is called. Trying to replace the stub
4795 type by its associated full type will cause us to restart a scan
4796 which may lead to an infinite recursion. Instead, the client
4797 collecting the matching symbols will end up collecting several
4798 matches, with at least one of them complete. It can then filter
4799 out the stub ones if needed. */
4800
4801 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4802 {
4803 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4804 return;
4805 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4806 {
4807 prevDefns[i].symbol = sym;
4808 prevDefns[i].block = block;
4809 return;
4810 }
4811 }
4812
4813 {
4814 struct block_symbol info;
4815
4816 info.symbol = sym;
4817 info.block = block;
4818 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4819 }
4820 }
4821
4822 /* Number of block_symbol structures currently collected in current vector in
4823 OBSTACKP. */
4824
4825 static int
4826 num_defns_collected (struct obstack *obstackp)
4827 {
4828 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4829 }
4830
4831 /* Vector of block_symbol structures currently collected in current vector in
4832 OBSTACKP. If FINISH, close off the vector and return its final address. */
4833
4834 static struct block_symbol *
4835 defns_collected (struct obstack *obstackp, int finish)
4836 {
4837 if (finish)
4838 return (struct block_symbol *) obstack_finish (obstackp);
4839 else
4840 return (struct block_symbol *) obstack_base (obstackp);
4841 }
4842
4843 /* Return a bound minimal symbol matching NAME according to Ada
4844 decoding rules. Returns an invalid symbol if there is no such
4845 minimal symbol. Names prefixed with "standard__" are handled
4846 specially: "standard__" is first stripped off, and only static and
4847 global symbols are searched. */
4848
4849 struct bound_minimal_symbol
4850 ada_lookup_simple_minsym (const char *name)
4851 {
4852 struct bound_minimal_symbol result;
4853
4854 memset (&result, 0, sizeof (result));
4855
4856 symbol_name_match_type match_type = name_match_type_from_name (name);
4857 lookup_name_info lookup_name (name, match_type);
4858
4859 symbol_name_matcher_ftype *match_name
4860 = ada_get_symbol_name_matcher (lookup_name);
4861
4862 for (objfile *objfile : current_program_space->objfiles ())
4863 {
4864 for (minimal_symbol *msymbol : objfile->msymbols ())
4865 {
4866 if (match_name (msymbol->linkage_name (), lookup_name, NULL)
4867 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4868 {
4869 result.minsym = msymbol;
4870 result.objfile = objfile;
4871 break;
4872 }
4873 }
4874 }
4875
4876 return result;
4877 }
4878
4879 /* For all subprograms that statically enclose the subprogram of the
4880 selected frame, add symbols matching identifier NAME in DOMAIN
4881 and their blocks to the list of data in OBSTACKP, as for
4882 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4883 with a wildcard prefix. */
4884
4885 static void
4886 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4887 const lookup_name_info &lookup_name,
4888 domain_enum domain)
4889 {
4890 }
4891
4892 /* True if TYPE is definitely an artificial type supplied to a symbol
4893 for which no debugging information was given in the symbol file. */
4894
4895 static int
4896 is_nondebugging_type (struct type *type)
4897 {
4898 const char *name = ada_type_name (type);
4899
4900 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4901 }
4902
4903 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4904 that are deemed "identical" for practical purposes.
4905
4906 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4907 types and that their number of enumerals is identical (in other
4908 words, type1->num_fields () == type2->num_fields ()). */
4909
4910 static int
4911 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4912 {
4913 int i;
4914
4915 /* The heuristic we use here is fairly conservative. We consider
4916 that 2 enumerate types are identical if they have the same
4917 number of enumerals and that all enumerals have the same
4918 underlying value and name. */
4919
4920 /* All enums in the type should have an identical underlying value. */
4921 for (i = 0; i < type1->num_fields (); i++)
4922 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4923 return 0;
4924
4925 /* All enumerals should also have the same name (modulo any numerical
4926 suffix). */
4927 for (i = 0; i < type1->num_fields (); i++)
4928 {
4929 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4930 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4931 int len_1 = strlen (name_1);
4932 int len_2 = strlen (name_2);
4933
4934 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4935 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4936 if (len_1 != len_2
4937 || strncmp (TYPE_FIELD_NAME (type1, i),
4938 TYPE_FIELD_NAME (type2, i),
4939 len_1) != 0)
4940 return 0;
4941 }
4942
4943 return 1;
4944 }
4945
4946 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4947 that are deemed "identical" for practical purposes. Sometimes,
4948 enumerals are not strictly identical, but their types are so similar
4949 that they can be considered identical.
4950
4951 For instance, consider the following code:
4952
4953 type Color is (Black, Red, Green, Blue, White);
4954 type RGB_Color is new Color range Red .. Blue;
4955
4956 Type RGB_Color is a subrange of an implicit type which is a copy
4957 of type Color. If we call that implicit type RGB_ColorB ("B" is
4958 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4959 As a result, when an expression references any of the enumeral
4960 by name (Eg. "print green"), the expression is technically
4961 ambiguous and the user should be asked to disambiguate. But
4962 doing so would only hinder the user, since it wouldn't matter
4963 what choice he makes, the outcome would always be the same.
4964 So, for practical purposes, we consider them as the same. */
4965
4966 static int
4967 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
4968 {
4969 int i;
4970
4971 /* Before performing a thorough comparison check of each type,
4972 we perform a series of inexpensive checks. We expect that these
4973 checks will quickly fail in the vast majority of cases, and thus
4974 help prevent the unnecessary use of a more expensive comparison.
4975 Said comparison also expects us to make some of these checks
4976 (see ada_identical_enum_types_p). */
4977
4978 /* Quick check: All symbols should have an enum type. */
4979 for (i = 0; i < syms.size (); i++)
4980 if (SYMBOL_TYPE (syms[i].symbol)->code () != TYPE_CODE_ENUM)
4981 return 0;
4982
4983 /* Quick check: They should all have the same value. */
4984 for (i = 1; i < syms.size (); i++)
4985 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
4986 return 0;
4987
4988 /* Quick check: They should all have the same number of enumerals. */
4989 for (i = 1; i < syms.size (); i++)
4990 if (SYMBOL_TYPE (syms[i].symbol)->num_fields ()
4991 != SYMBOL_TYPE (syms[0].symbol)->num_fields ())
4992 return 0;
4993
4994 /* All the sanity checks passed, so we might have a set of
4995 identical enumeration types. Perform a more complete
4996 comparison of the type of each symbol. */
4997 for (i = 1; i < syms.size (); i++)
4998 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
4999 SYMBOL_TYPE (syms[0].symbol)))
5000 return 0;
5001
5002 return 1;
5003 }
5004
5005 /* Remove any non-debugging symbols in SYMS that definitely
5006 duplicate other symbols in the list (The only case I know of where
5007 this happens is when object files containing stabs-in-ecoff are
5008 linked with files containing ordinary ecoff debugging symbols (or no
5009 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5010 Returns the number of items in the modified list. */
5011
5012 static int
5013 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5014 {
5015 int i, j;
5016
5017 /* We should never be called with less than 2 symbols, as there
5018 cannot be any extra symbol in that case. But it's easy to
5019 handle, since we have nothing to do in that case. */
5020 if (syms->size () < 2)
5021 return syms->size ();
5022
5023 i = 0;
5024 while (i < syms->size ())
5025 {
5026 int remove_p = 0;
5027
5028 /* If two symbols have the same name and one of them is a stub type,
5029 the get rid of the stub. */
5030
5031 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5032 && (*syms)[i].symbol->linkage_name () != NULL)
5033 {
5034 for (j = 0; j < syms->size (); j++)
5035 {
5036 if (j != i
5037 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5038 && (*syms)[j].symbol->linkage_name () != NULL
5039 && strcmp ((*syms)[i].symbol->linkage_name (),
5040 (*syms)[j].symbol->linkage_name ()) == 0)
5041 remove_p = 1;
5042 }
5043 }
5044
5045 /* Two symbols with the same name, same class and same address
5046 should be identical. */
5047
5048 else if ((*syms)[i].symbol->linkage_name () != NULL
5049 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5050 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5051 {
5052 for (j = 0; j < syms->size (); j += 1)
5053 {
5054 if (i != j
5055 && (*syms)[j].symbol->linkage_name () != NULL
5056 && strcmp ((*syms)[i].symbol->linkage_name (),
5057 (*syms)[j].symbol->linkage_name ()) == 0
5058 && SYMBOL_CLASS ((*syms)[i].symbol)
5059 == SYMBOL_CLASS ((*syms)[j].symbol)
5060 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5061 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5062 remove_p = 1;
5063 }
5064 }
5065
5066 if (remove_p)
5067 syms->erase (syms->begin () + i);
5068
5069 i += 1;
5070 }
5071
5072 /* If all the remaining symbols are identical enumerals, then
5073 just keep the first one and discard the rest.
5074
5075 Unlike what we did previously, we do not discard any entry
5076 unless they are ALL identical. This is because the symbol
5077 comparison is not a strict comparison, but rather a practical
5078 comparison. If all symbols are considered identical, then
5079 we can just go ahead and use the first one and discard the rest.
5080 But if we cannot reduce the list to a single element, we have
5081 to ask the user to disambiguate anyways. And if we have to
5082 present a multiple-choice menu, it's less confusing if the list
5083 isn't missing some choices that were identical and yet distinct. */
5084 if (symbols_are_identical_enums (*syms))
5085 syms->resize (1);
5086
5087 return syms->size ();
5088 }
5089
5090 /* Given a type that corresponds to a renaming entity, use the type name
5091 to extract the scope (package name or function name, fully qualified,
5092 and following the GNAT encoding convention) where this renaming has been
5093 defined. */
5094
5095 static std::string
5096 xget_renaming_scope (struct type *renaming_type)
5097 {
5098 /* The renaming types adhere to the following convention:
5099 <scope>__<rename>___<XR extension>.
5100 So, to extract the scope, we search for the "___XR" extension,
5101 and then backtrack until we find the first "__". */
5102
5103 const char *name = renaming_type->name ();
5104 const char *suffix = strstr (name, "___XR");
5105 const char *last;
5106
5107 /* Now, backtrack a bit until we find the first "__". Start looking
5108 at suffix - 3, as the <rename> part is at least one character long. */
5109
5110 for (last = suffix - 3; last > name; last--)
5111 if (last[0] == '_' && last[1] == '_')
5112 break;
5113
5114 /* Make a copy of scope and return it. */
5115 return std::string (name, last);
5116 }
5117
5118 /* Return nonzero if NAME corresponds to a package name. */
5119
5120 static int
5121 is_package_name (const char *name)
5122 {
5123 /* Here, We take advantage of the fact that no symbols are generated
5124 for packages, while symbols are generated for each function.
5125 So the condition for NAME represent a package becomes equivalent
5126 to NAME not existing in our list of symbols. There is only one
5127 small complication with library-level functions (see below). */
5128
5129 /* If it is a function that has not been defined at library level,
5130 then we should be able to look it up in the symbols. */
5131 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5132 return 0;
5133
5134 /* Library-level function names start with "_ada_". See if function
5135 "_ada_" followed by NAME can be found. */
5136
5137 /* Do a quick check that NAME does not contain "__", since library-level
5138 functions names cannot contain "__" in them. */
5139 if (strstr (name, "__") != NULL)
5140 return 0;
5141
5142 std::string fun_name = string_printf ("_ada_%s", name);
5143
5144 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5145 }
5146
5147 /* Return nonzero if SYM corresponds to a renaming entity that is
5148 not visible from FUNCTION_NAME. */
5149
5150 static int
5151 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5152 {
5153 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5154 return 0;
5155
5156 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5157
5158 /* If the rename has been defined in a package, then it is visible. */
5159 if (is_package_name (scope.c_str ()))
5160 return 0;
5161
5162 /* Check that the rename is in the current function scope by checking
5163 that its name starts with SCOPE. */
5164
5165 /* If the function name starts with "_ada_", it means that it is
5166 a library-level function. Strip this prefix before doing the
5167 comparison, as the encoding for the renaming does not contain
5168 this prefix. */
5169 if (startswith (function_name, "_ada_"))
5170 function_name += 5;
5171
5172 return !startswith (function_name, scope.c_str ());
5173 }
5174
5175 /* Remove entries from SYMS that corresponds to a renaming entity that
5176 is not visible from the function associated with CURRENT_BLOCK or
5177 that is superfluous due to the presence of more specific renaming
5178 information. Places surviving symbols in the initial entries of
5179 SYMS and returns the number of surviving symbols.
5180
5181 Rationale:
5182 First, in cases where an object renaming is implemented as a
5183 reference variable, GNAT may produce both the actual reference
5184 variable and the renaming encoding. In this case, we discard the
5185 latter.
5186
5187 Second, GNAT emits a type following a specified encoding for each renaming
5188 entity. Unfortunately, STABS currently does not support the definition
5189 of types that are local to a given lexical block, so all renamings types
5190 are emitted at library level. As a consequence, if an application
5191 contains two renaming entities using the same name, and a user tries to
5192 print the value of one of these entities, the result of the ada symbol
5193 lookup will also contain the wrong renaming type.
5194
5195 This function partially covers for this limitation by attempting to
5196 remove from the SYMS list renaming symbols that should be visible
5197 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5198 method with the current information available. The implementation
5199 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5200
5201 - When the user tries to print a rename in a function while there
5202 is another rename entity defined in a package: Normally, the
5203 rename in the function has precedence over the rename in the
5204 package, so the latter should be removed from the list. This is
5205 currently not the case.
5206
5207 - This function will incorrectly remove valid renames if
5208 the CURRENT_BLOCK corresponds to a function which symbol name
5209 has been changed by an "Export" pragma. As a consequence,
5210 the user will be unable to print such rename entities. */
5211
5212 static int
5213 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5214 const struct block *current_block)
5215 {
5216 struct symbol *current_function;
5217 const char *current_function_name;
5218 int i;
5219 int is_new_style_renaming;
5220
5221 /* If there is both a renaming foo___XR... encoded as a variable and
5222 a simple variable foo in the same block, discard the latter.
5223 First, zero out such symbols, then compress. */
5224 is_new_style_renaming = 0;
5225 for (i = 0; i < syms->size (); i += 1)
5226 {
5227 struct symbol *sym = (*syms)[i].symbol;
5228 const struct block *block = (*syms)[i].block;
5229 const char *name;
5230 const char *suffix;
5231
5232 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5233 continue;
5234 name = sym->linkage_name ();
5235 suffix = strstr (name, "___XR");
5236
5237 if (suffix != NULL)
5238 {
5239 int name_len = suffix - name;
5240 int j;
5241
5242 is_new_style_renaming = 1;
5243 for (j = 0; j < syms->size (); j += 1)
5244 if (i != j && (*syms)[j].symbol != NULL
5245 && strncmp (name, (*syms)[j].symbol->linkage_name (),
5246 name_len) == 0
5247 && block == (*syms)[j].block)
5248 (*syms)[j].symbol = NULL;
5249 }
5250 }
5251 if (is_new_style_renaming)
5252 {
5253 int j, k;
5254
5255 for (j = k = 0; j < syms->size (); j += 1)
5256 if ((*syms)[j].symbol != NULL)
5257 {
5258 (*syms)[k] = (*syms)[j];
5259 k += 1;
5260 }
5261 return k;
5262 }
5263
5264 /* Extract the function name associated to CURRENT_BLOCK.
5265 Abort if unable to do so. */
5266
5267 if (current_block == NULL)
5268 return syms->size ();
5269
5270 current_function = block_linkage_function (current_block);
5271 if (current_function == NULL)
5272 return syms->size ();
5273
5274 current_function_name = current_function->linkage_name ();
5275 if (current_function_name == NULL)
5276 return syms->size ();
5277
5278 /* Check each of the symbols, and remove it from the list if it is
5279 a type corresponding to a renaming that is out of the scope of
5280 the current block. */
5281
5282 i = 0;
5283 while (i < syms->size ())
5284 {
5285 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5286 == ADA_OBJECT_RENAMING
5287 && old_renaming_is_invisible ((*syms)[i].symbol,
5288 current_function_name))
5289 syms->erase (syms->begin () + i);
5290 else
5291 i += 1;
5292 }
5293
5294 return syms->size ();
5295 }
5296
5297 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5298 whose name and domain match NAME and DOMAIN respectively.
5299 If no match was found, then extend the search to "enclosing"
5300 routines (in other words, if we're inside a nested function,
5301 search the symbols defined inside the enclosing functions).
5302 If WILD_MATCH_P is nonzero, perform the naming matching in
5303 "wild" mode (see function "wild_match" for more info).
5304
5305 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5306
5307 static void
5308 ada_add_local_symbols (struct obstack *obstackp,
5309 const lookup_name_info &lookup_name,
5310 const struct block *block, domain_enum domain)
5311 {
5312 int block_depth = 0;
5313
5314 while (block != NULL)
5315 {
5316 block_depth += 1;
5317 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5318
5319 /* If we found a non-function match, assume that's the one. */
5320 if (is_nonfunction (defns_collected (obstackp, 0),
5321 num_defns_collected (obstackp)))
5322 return;
5323
5324 block = BLOCK_SUPERBLOCK (block);
5325 }
5326
5327 /* If no luck so far, try to find NAME as a local symbol in some lexically
5328 enclosing subprogram. */
5329 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5330 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5331 }
5332
5333 /* An object of this type is used as the user_data argument when
5334 calling the map_matching_symbols method. */
5335
5336 struct match_data
5337 {
5338 struct objfile *objfile;
5339 struct obstack *obstackp;
5340 struct symbol *arg_sym;
5341 int found_sym;
5342 };
5343
5344 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5345 to a list of symbols. DATA is a pointer to a struct match_data *
5346 containing the obstack that collects the symbol list, the file that SYM
5347 must come from, a flag indicating whether a non-argument symbol has
5348 been found in the current block, and the last argument symbol
5349 passed in SYM within the current block (if any). When SYM is null,
5350 marking the end of a block, the argument symbol is added if no
5351 other has been found. */
5352
5353 static bool
5354 aux_add_nonlocal_symbols (struct block_symbol *bsym,
5355 struct match_data *data)
5356 {
5357 const struct block *block = bsym->block;
5358 struct symbol *sym = bsym->symbol;
5359
5360 if (sym == NULL)
5361 {
5362 if (!data->found_sym && data->arg_sym != NULL)
5363 add_defn_to_vec (data->obstackp,
5364 fixup_symbol_section (data->arg_sym, data->objfile),
5365 block);
5366 data->found_sym = 0;
5367 data->arg_sym = NULL;
5368 }
5369 else
5370 {
5371 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5372 return true;
5373 else if (SYMBOL_IS_ARGUMENT (sym))
5374 data->arg_sym = sym;
5375 else
5376 {
5377 data->found_sym = 1;
5378 add_defn_to_vec (data->obstackp,
5379 fixup_symbol_section (sym, data->objfile),
5380 block);
5381 }
5382 }
5383 return true;
5384 }
5385
5386 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5387 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5388 symbols to OBSTACKP. Return whether we found such symbols. */
5389
5390 static int
5391 ada_add_block_renamings (struct obstack *obstackp,
5392 const struct block *block,
5393 const lookup_name_info &lookup_name,
5394 domain_enum domain)
5395 {
5396 struct using_direct *renaming;
5397 int defns_mark = num_defns_collected (obstackp);
5398
5399 symbol_name_matcher_ftype *name_match
5400 = ada_get_symbol_name_matcher (lookup_name);
5401
5402 for (renaming = block_using (block);
5403 renaming != NULL;
5404 renaming = renaming->next)
5405 {
5406 const char *r_name;
5407
5408 /* Avoid infinite recursions: skip this renaming if we are actually
5409 already traversing it.
5410
5411 Currently, symbol lookup in Ada don't use the namespace machinery from
5412 C++/Fortran support: skip namespace imports that use them. */
5413 if (renaming->searched
5414 || (renaming->import_src != NULL
5415 && renaming->import_src[0] != '\0')
5416 || (renaming->import_dest != NULL
5417 && renaming->import_dest[0] != '\0'))
5418 continue;
5419 renaming->searched = 1;
5420
5421 /* TODO: here, we perform another name-based symbol lookup, which can
5422 pull its own multiple overloads. In theory, we should be able to do
5423 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5424 not a simple name. But in order to do this, we would need to enhance
5425 the DWARF reader to associate a symbol to this renaming, instead of a
5426 name. So, for now, we do something simpler: re-use the C++/Fortran
5427 namespace machinery. */
5428 r_name = (renaming->alias != NULL
5429 ? renaming->alias
5430 : renaming->declaration);
5431 if (name_match (r_name, lookup_name, NULL))
5432 {
5433 lookup_name_info decl_lookup_name (renaming->declaration,
5434 lookup_name.match_type ());
5435 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5436 1, NULL);
5437 }
5438 renaming->searched = 0;
5439 }
5440 return num_defns_collected (obstackp) != defns_mark;
5441 }
5442
5443 /* Implements compare_names, but only applying the comparision using
5444 the given CASING. */
5445
5446 static int
5447 compare_names_with_case (const char *string1, const char *string2,
5448 enum case_sensitivity casing)
5449 {
5450 while (*string1 != '\0' && *string2 != '\0')
5451 {
5452 char c1, c2;
5453
5454 if (isspace (*string1) || isspace (*string2))
5455 return strcmp_iw_ordered (string1, string2);
5456
5457 if (casing == case_sensitive_off)
5458 {
5459 c1 = tolower (*string1);
5460 c2 = tolower (*string2);
5461 }
5462 else
5463 {
5464 c1 = *string1;
5465 c2 = *string2;
5466 }
5467 if (c1 != c2)
5468 break;
5469
5470 string1 += 1;
5471 string2 += 1;
5472 }
5473
5474 switch (*string1)
5475 {
5476 case '(':
5477 return strcmp_iw_ordered (string1, string2);
5478 case '_':
5479 if (*string2 == '\0')
5480 {
5481 if (is_name_suffix (string1))
5482 return 0;
5483 else
5484 return 1;
5485 }
5486 /* FALLTHROUGH */
5487 default:
5488 if (*string2 == '(')
5489 return strcmp_iw_ordered (string1, string2);
5490 else
5491 {
5492 if (casing == case_sensitive_off)
5493 return tolower (*string1) - tolower (*string2);
5494 else
5495 return *string1 - *string2;
5496 }
5497 }
5498 }
5499
5500 /* Compare STRING1 to STRING2, with results as for strcmp.
5501 Compatible with strcmp_iw_ordered in that...
5502
5503 strcmp_iw_ordered (STRING1, STRING2) <= 0
5504
5505 ... implies...
5506
5507 compare_names (STRING1, STRING2) <= 0
5508
5509 (they may differ as to what symbols compare equal). */
5510
5511 static int
5512 compare_names (const char *string1, const char *string2)
5513 {
5514 int result;
5515
5516 /* Similar to what strcmp_iw_ordered does, we need to perform
5517 a case-insensitive comparison first, and only resort to
5518 a second, case-sensitive, comparison if the first one was
5519 not sufficient to differentiate the two strings. */
5520
5521 result = compare_names_with_case (string1, string2, case_sensitive_off);
5522 if (result == 0)
5523 result = compare_names_with_case (string1, string2, case_sensitive_on);
5524
5525 return result;
5526 }
5527
5528 /* Convenience function to get at the Ada encoded lookup name for
5529 LOOKUP_NAME, as a C string. */
5530
5531 static const char *
5532 ada_lookup_name (const lookup_name_info &lookup_name)
5533 {
5534 return lookup_name.ada ().lookup_name ().c_str ();
5535 }
5536
5537 /* Add to OBSTACKP all non-local symbols whose name and domain match
5538 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5539 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5540 symbols otherwise. */
5541
5542 static void
5543 add_nonlocal_symbols (struct obstack *obstackp,
5544 const lookup_name_info &lookup_name,
5545 domain_enum domain, int global)
5546 {
5547 struct match_data data;
5548
5549 memset (&data, 0, sizeof data);
5550 data.obstackp = obstackp;
5551
5552 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5553
5554 auto callback = [&] (struct block_symbol *bsym)
5555 {
5556 return aux_add_nonlocal_symbols (bsym, &data);
5557 };
5558
5559 for (objfile *objfile : current_program_space->objfiles ())
5560 {
5561 data.objfile = objfile;
5562
5563 objfile->sf->qf->map_matching_symbols (objfile, lookup_name,
5564 domain, global, callback,
5565 (is_wild_match
5566 ? NULL : compare_names));
5567
5568 for (compunit_symtab *cu : objfile->compunits ())
5569 {
5570 const struct block *global_block
5571 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5572
5573 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5574 domain))
5575 data.found_sym = 1;
5576 }
5577 }
5578
5579 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5580 {
5581 const char *name = ada_lookup_name (lookup_name);
5582 std::string bracket_name = std::string ("<_ada_") + name + '>';
5583 lookup_name_info name1 (bracket_name, symbol_name_match_type::FULL);
5584
5585 for (objfile *objfile : current_program_space->objfiles ())
5586 {
5587 data.objfile = objfile;
5588 objfile->sf->qf->map_matching_symbols (objfile, name1,
5589 domain, global, callback,
5590 compare_names);
5591 }
5592 }
5593 }
5594
5595 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5596 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5597 returning the number of matches. Add these to OBSTACKP.
5598
5599 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5600 symbol match within the nest of blocks whose innermost member is BLOCK,
5601 is the one match returned (no other matches in that or
5602 enclosing blocks is returned). If there are any matches in or
5603 surrounding BLOCK, then these alone are returned.
5604
5605 Names prefixed with "standard__" are handled specially:
5606 "standard__" is first stripped off (by the lookup_name
5607 constructor), and only static and global symbols are searched.
5608
5609 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5610 to lookup global symbols. */
5611
5612 static void
5613 ada_add_all_symbols (struct obstack *obstackp,
5614 const struct block *block,
5615 const lookup_name_info &lookup_name,
5616 domain_enum domain,
5617 int full_search,
5618 int *made_global_lookup_p)
5619 {
5620 struct symbol *sym;
5621
5622 if (made_global_lookup_p)
5623 *made_global_lookup_p = 0;
5624
5625 /* Special case: If the user specifies a symbol name inside package
5626 Standard, do a non-wild matching of the symbol name without
5627 the "standard__" prefix. This was primarily introduced in order
5628 to allow the user to specifically access the standard exceptions
5629 using, for instance, Standard.Constraint_Error when Constraint_Error
5630 is ambiguous (due to the user defining its own Constraint_Error
5631 entity inside its program). */
5632 if (lookup_name.ada ().standard_p ())
5633 block = NULL;
5634
5635 /* Check the non-global symbols. If we have ANY match, then we're done. */
5636
5637 if (block != NULL)
5638 {
5639 if (full_search)
5640 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5641 else
5642 {
5643 /* In the !full_search case we're are being called by
5644 iterate_over_symbols, and we don't want to search
5645 superblocks. */
5646 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5647 }
5648 if (num_defns_collected (obstackp) > 0 || !full_search)
5649 return;
5650 }
5651
5652 /* No non-global symbols found. Check our cache to see if we have
5653 already performed this search before. If we have, then return
5654 the same result. */
5655
5656 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5657 domain, &sym, &block))
5658 {
5659 if (sym != NULL)
5660 add_defn_to_vec (obstackp, sym, block);
5661 return;
5662 }
5663
5664 if (made_global_lookup_p)
5665 *made_global_lookup_p = 1;
5666
5667 /* Search symbols from all global blocks. */
5668
5669 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5670
5671 /* Now add symbols from all per-file blocks if we've gotten no hits
5672 (not strictly correct, but perhaps better than an error). */
5673
5674 if (num_defns_collected (obstackp) == 0)
5675 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5676 }
5677
5678 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5679 is non-zero, enclosing scope and in global scopes, returning the number of
5680 matches.
5681 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5682 found and the blocks and symbol tables (if any) in which they were
5683 found.
5684
5685 When full_search is non-zero, any non-function/non-enumeral
5686 symbol match within the nest of blocks whose innermost member is BLOCK,
5687 is the one match returned (no other matches in that or
5688 enclosing blocks is returned). If there are any matches in or
5689 surrounding BLOCK, then these alone are returned.
5690
5691 Names prefixed with "standard__" are handled specially: "standard__"
5692 is first stripped off, and only static and global symbols are searched. */
5693
5694 static int
5695 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5696 const struct block *block,
5697 domain_enum domain,
5698 std::vector<struct block_symbol> *results,
5699 int full_search)
5700 {
5701 int syms_from_global_search;
5702 int ndefns;
5703 auto_obstack obstack;
5704
5705 ada_add_all_symbols (&obstack, block, lookup_name,
5706 domain, full_search, &syms_from_global_search);
5707
5708 ndefns = num_defns_collected (&obstack);
5709
5710 struct block_symbol *base = defns_collected (&obstack, 1);
5711 for (int i = 0; i < ndefns; ++i)
5712 results->push_back (base[i]);
5713
5714 ndefns = remove_extra_symbols (results);
5715
5716 if (ndefns == 0 && full_search && syms_from_global_search)
5717 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5718
5719 if (ndefns == 1 && full_search && syms_from_global_search)
5720 cache_symbol (ada_lookup_name (lookup_name), domain,
5721 (*results)[0].symbol, (*results)[0].block);
5722
5723 ndefns = remove_irrelevant_renamings (results, block);
5724
5725 return ndefns;
5726 }
5727
5728 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5729 in global scopes, returning the number of matches, and filling *RESULTS
5730 with (SYM,BLOCK) tuples.
5731
5732 See ada_lookup_symbol_list_worker for further details. */
5733
5734 int
5735 ada_lookup_symbol_list (const char *name, const struct block *block,
5736 domain_enum domain,
5737 std::vector<struct block_symbol> *results)
5738 {
5739 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5740 lookup_name_info lookup_name (name, name_match_type);
5741
5742 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5743 }
5744
5745 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5746 to 1, but choosing the first symbol found if there are multiple
5747 choices.
5748
5749 The result is stored in *INFO, which must be non-NULL.
5750 If no match is found, INFO->SYM is set to NULL. */
5751
5752 void
5753 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5754 domain_enum domain,
5755 struct block_symbol *info)
5756 {
5757 /* Since we already have an encoded name, wrap it in '<>' to force a
5758 verbatim match. Otherwise, if the name happens to not look like
5759 an encoded name (because it doesn't include a "__"),
5760 ada_lookup_name_info would re-encode/fold it again, and that
5761 would e.g., incorrectly lowercase object renaming names like
5762 "R28b" -> "r28b". */
5763 std::string verbatim = std::string ("<") + name + '>';
5764
5765 gdb_assert (info != NULL);
5766 *info = ada_lookup_symbol (verbatim.c_str (), block, domain);
5767 }
5768
5769 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5770 scope and in global scopes, or NULL if none. NAME is folded and
5771 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5772 choosing the first symbol if there are multiple choices. */
5773
5774 struct block_symbol
5775 ada_lookup_symbol (const char *name, const struct block *block0,
5776 domain_enum domain)
5777 {
5778 std::vector<struct block_symbol> candidates;
5779 int n_candidates;
5780
5781 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5782
5783 if (n_candidates == 0)
5784 return {};
5785
5786 block_symbol info = candidates[0];
5787 info.symbol = fixup_symbol_section (info.symbol, NULL);
5788 return info;
5789 }
5790
5791 static struct block_symbol
5792 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5793 const char *name,
5794 const struct block *block,
5795 const domain_enum domain)
5796 {
5797 struct block_symbol sym;
5798
5799 sym = ada_lookup_symbol (name, block_static_block (block), domain);
5800 if (sym.symbol != NULL)
5801 return sym;
5802
5803 /* If we haven't found a match at this point, try the primitive
5804 types. In other languages, this search is performed before
5805 searching for global symbols in order to short-circuit that
5806 global-symbol search if it happens that the name corresponds
5807 to a primitive type. But we cannot do the same in Ada, because
5808 it is perfectly legitimate for a program to declare a type which
5809 has the same name as a standard type. If looking up a type in
5810 that situation, we have traditionally ignored the primitive type
5811 in favor of user-defined types. This is why, unlike most other
5812 languages, we search the primitive types this late and only after
5813 having searched the global symbols without success. */
5814
5815 if (domain == VAR_DOMAIN)
5816 {
5817 struct gdbarch *gdbarch;
5818
5819 if (block == NULL)
5820 gdbarch = target_gdbarch ();
5821 else
5822 gdbarch = block_gdbarch (block);
5823 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5824 if (sym.symbol != NULL)
5825 return sym;
5826 }
5827
5828 return {};
5829 }
5830
5831
5832 /* True iff STR is a possible encoded suffix of a normal Ada name
5833 that is to be ignored for matching purposes. Suffixes of parallel
5834 names (e.g., XVE) are not included here. Currently, the possible suffixes
5835 are given by any of the regular expressions:
5836
5837 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5838 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5839 TKB [subprogram suffix for task bodies]
5840 _E[0-9]+[bs]$ [protected object entry suffixes]
5841 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5842
5843 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5844 match is performed. This sequence is used to differentiate homonyms,
5845 is an optional part of a valid name suffix. */
5846
5847 static int
5848 is_name_suffix (const char *str)
5849 {
5850 int k;
5851 const char *matching;
5852 const int len = strlen (str);
5853
5854 /* Skip optional leading __[0-9]+. */
5855
5856 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5857 {
5858 str += 3;
5859 while (isdigit (str[0]))
5860 str += 1;
5861 }
5862
5863 /* [.$][0-9]+ */
5864
5865 if (str[0] == '.' || str[0] == '$')
5866 {
5867 matching = str + 1;
5868 while (isdigit (matching[0]))
5869 matching += 1;
5870 if (matching[0] == '\0')
5871 return 1;
5872 }
5873
5874 /* ___[0-9]+ */
5875
5876 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5877 {
5878 matching = str + 3;
5879 while (isdigit (matching[0]))
5880 matching += 1;
5881 if (matching[0] == '\0')
5882 return 1;
5883 }
5884
5885 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5886
5887 if (strcmp (str, "TKB") == 0)
5888 return 1;
5889
5890 #if 0
5891 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5892 with a N at the end. Unfortunately, the compiler uses the same
5893 convention for other internal types it creates. So treating
5894 all entity names that end with an "N" as a name suffix causes
5895 some regressions. For instance, consider the case of an enumerated
5896 type. To support the 'Image attribute, it creates an array whose
5897 name ends with N.
5898 Having a single character like this as a suffix carrying some
5899 information is a bit risky. Perhaps we should change the encoding
5900 to be something like "_N" instead. In the meantime, do not do
5901 the following check. */
5902 /* Protected Object Subprograms */
5903 if (len == 1 && str [0] == 'N')
5904 return 1;
5905 #endif
5906
5907 /* _E[0-9]+[bs]$ */
5908 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5909 {
5910 matching = str + 3;
5911 while (isdigit (matching[0]))
5912 matching += 1;
5913 if ((matching[0] == 'b' || matching[0] == 's')
5914 && matching [1] == '\0')
5915 return 1;
5916 }
5917
5918 /* ??? We should not modify STR directly, as we are doing below. This
5919 is fine in this case, but may become problematic later if we find
5920 that this alternative did not work, and want to try matching
5921 another one from the begining of STR. Since we modified it, we
5922 won't be able to find the begining of the string anymore! */
5923 if (str[0] == 'X')
5924 {
5925 str += 1;
5926 while (str[0] != '_' && str[0] != '\0')
5927 {
5928 if (str[0] != 'n' && str[0] != 'b')
5929 return 0;
5930 str += 1;
5931 }
5932 }
5933
5934 if (str[0] == '\000')
5935 return 1;
5936
5937 if (str[0] == '_')
5938 {
5939 if (str[1] != '_' || str[2] == '\000')
5940 return 0;
5941 if (str[2] == '_')
5942 {
5943 if (strcmp (str + 3, "JM") == 0)
5944 return 1;
5945 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5946 the LJM suffix in favor of the JM one. But we will
5947 still accept LJM as a valid suffix for a reasonable
5948 amount of time, just to allow ourselves to debug programs
5949 compiled using an older version of GNAT. */
5950 if (strcmp (str + 3, "LJM") == 0)
5951 return 1;
5952 if (str[3] != 'X')
5953 return 0;
5954 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5955 || str[4] == 'U' || str[4] == 'P')
5956 return 1;
5957 if (str[4] == 'R' && str[5] != 'T')
5958 return 1;
5959 return 0;
5960 }
5961 if (!isdigit (str[2]))
5962 return 0;
5963 for (k = 3; str[k] != '\0'; k += 1)
5964 if (!isdigit (str[k]) && str[k] != '_')
5965 return 0;
5966 return 1;
5967 }
5968 if (str[0] == '$' && isdigit (str[1]))
5969 {
5970 for (k = 2; str[k] != '\0'; k += 1)
5971 if (!isdigit (str[k]) && str[k] != '_')
5972 return 0;
5973 return 1;
5974 }
5975 return 0;
5976 }
5977
5978 /* Return non-zero if the string starting at NAME and ending before
5979 NAME_END contains no capital letters. */
5980
5981 static int
5982 is_valid_name_for_wild_match (const char *name0)
5983 {
5984 std::string decoded_name = ada_decode (name0);
5985 int i;
5986
5987 /* If the decoded name starts with an angle bracket, it means that
5988 NAME0 does not follow the GNAT encoding format. It should then
5989 not be allowed as a possible wild match. */
5990 if (decoded_name[0] == '<')
5991 return 0;
5992
5993 for (i=0; decoded_name[i] != '\0'; i++)
5994 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5995 return 0;
5996
5997 return 1;
5998 }
5999
6000 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6001 that could start a simple name. Assumes that *NAMEP points into
6002 the string beginning at NAME0. */
6003
6004 static int
6005 advance_wild_match (const char **namep, const char *name0, int target0)
6006 {
6007 const char *name = *namep;
6008
6009 while (1)
6010 {
6011 int t0, t1;
6012
6013 t0 = *name;
6014 if (t0 == '_')
6015 {
6016 t1 = name[1];
6017 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6018 {
6019 name += 1;
6020 if (name == name0 + 5 && startswith (name0, "_ada"))
6021 break;
6022 else
6023 name += 1;
6024 }
6025 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6026 || name[2] == target0))
6027 {
6028 name += 2;
6029 break;
6030 }
6031 else
6032 return 0;
6033 }
6034 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6035 name += 1;
6036 else
6037 return 0;
6038 }
6039
6040 *namep = name;
6041 return 1;
6042 }
6043
6044 /* Return true iff NAME encodes a name of the form prefix.PATN.
6045 Ignores any informational suffixes of NAME (i.e., for which
6046 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6047 simple name. */
6048
6049 static bool
6050 wild_match (const char *name, const char *patn)
6051 {
6052 const char *p;
6053 const char *name0 = name;
6054
6055 while (1)
6056 {
6057 const char *match = name;
6058
6059 if (*name == *patn)
6060 {
6061 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6062 if (*p != *name)
6063 break;
6064 if (*p == '\0' && is_name_suffix (name))
6065 return match == name0 || is_valid_name_for_wild_match (name0);
6066
6067 if (name[-1] == '_')
6068 name -= 1;
6069 }
6070 if (!advance_wild_match (&name, name0, *patn))
6071 return false;
6072 }
6073 }
6074
6075 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6076 any trailing suffixes that encode debugging information or leading
6077 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6078 information that is ignored). */
6079
6080 static bool
6081 full_match (const char *sym_name, const char *search_name)
6082 {
6083 size_t search_name_len = strlen (search_name);
6084
6085 if (strncmp (sym_name, search_name, search_name_len) == 0
6086 && is_name_suffix (sym_name + search_name_len))
6087 return true;
6088
6089 if (startswith (sym_name, "_ada_")
6090 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6091 && is_name_suffix (sym_name + search_name_len + 5))
6092 return true;
6093
6094 return false;
6095 }
6096
6097 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6098 *defn_symbols, updating the list of symbols in OBSTACKP (if
6099 necessary). OBJFILE is the section containing BLOCK. */
6100
6101 static void
6102 ada_add_block_symbols (struct obstack *obstackp,
6103 const struct block *block,
6104 const lookup_name_info &lookup_name,
6105 domain_enum domain, struct objfile *objfile)
6106 {
6107 struct block_iterator iter;
6108 /* A matching argument symbol, if any. */
6109 struct symbol *arg_sym;
6110 /* Set true when we find a matching non-argument symbol. */
6111 int found_sym;
6112 struct symbol *sym;
6113
6114 arg_sym = NULL;
6115 found_sym = 0;
6116 for (sym = block_iter_match_first (block, lookup_name, &iter);
6117 sym != NULL;
6118 sym = block_iter_match_next (lookup_name, &iter))
6119 {
6120 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
6121 {
6122 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6123 {
6124 if (SYMBOL_IS_ARGUMENT (sym))
6125 arg_sym = sym;
6126 else
6127 {
6128 found_sym = 1;
6129 add_defn_to_vec (obstackp,
6130 fixup_symbol_section (sym, objfile),
6131 block);
6132 }
6133 }
6134 }
6135 }
6136
6137 /* Handle renamings. */
6138
6139 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6140 found_sym = 1;
6141
6142 if (!found_sym && arg_sym != NULL)
6143 {
6144 add_defn_to_vec (obstackp,
6145 fixup_symbol_section (arg_sym, objfile),
6146 block);
6147 }
6148
6149 if (!lookup_name.ada ().wild_match_p ())
6150 {
6151 arg_sym = NULL;
6152 found_sym = 0;
6153 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6154 const char *name = ada_lookup_name.c_str ();
6155 size_t name_len = ada_lookup_name.size ();
6156
6157 ALL_BLOCK_SYMBOLS (block, iter, sym)
6158 {
6159 if (symbol_matches_domain (sym->language (),
6160 SYMBOL_DOMAIN (sym), domain))
6161 {
6162 int cmp;
6163
6164 cmp = (int) '_' - (int) sym->linkage_name ()[0];
6165 if (cmp == 0)
6166 {
6167 cmp = !startswith (sym->linkage_name (), "_ada_");
6168 if (cmp == 0)
6169 cmp = strncmp (name, sym->linkage_name () + 5,
6170 name_len);
6171 }
6172
6173 if (cmp == 0
6174 && is_name_suffix (sym->linkage_name () + name_len + 5))
6175 {
6176 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6177 {
6178 if (SYMBOL_IS_ARGUMENT (sym))
6179 arg_sym = sym;
6180 else
6181 {
6182 found_sym = 1;
6183 add_defn_to_vec (obstackp,
6184 fixup_symbol_section (sym, objfile),
6185 block);
6186 }
6187 }
6188 }
6189 }
6190 }
6191
6192 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6193 They aren't parameters, right? */
6194 if (!found_sym && arg_sym != NULL)
6195 {
6196 add_defn_to_vec (obstackp,
6197 fixup_symbol_section (arg_sym, objfile),
6198 block);
6199 }
6200 }
6201 }
6202 \f
6203
6204 /* Symbol Completion */
6205
6206 /* See symtab.h. */
6207
6208 bool
6209 ada_lookup_name_info::matches
6210 (const char *sym_name,
6211 symbol_name_match_type match_type,
6212 completion_match_result *comp_match_res) const
6213 {
6214 bool match = false;
6215 const char *text = m_encoded_name.c_str ();
6216 size_t text_len = m_encoded_name.size ();
6217
6218 /* First, test against the fully qualified name of the symbol. */
6219
6220 if (strncmp (sym_name, text, text_len) == 0)
6221 match = true;
6222
6223 std::string decoded_name = ada_decode (sym_name);
6224 if (match && !m_encoded_p)
6225 {
6226 /* One needed check before declaring a positive match is to verify
6227 that iff we are doing a verbatim match, the decoded version
6228 of the symbol name starts with '<'. Otherwise, this symbol name
6229 is not a suitable completion. */
6230
6231 bool has_angle_bracket = (decoded_name[0] == '<');
6232 match = (has_angle_bracket == m_verbatim_p);
6233 }
6234
6235 if (match && !m_verbatim_p)
6236 {
6237 /* When doing non-verbatim match, another check that needs to
6238 be done is to verify that the potentially matching symbol name
6239 does not include capital letters, because the ada-mode would
6240 not be able to understand these symbol names without the
6241 angle bracket notation. */
6242 const char *tmp;
6243
6244 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6245 if (*tmp != '\0')
6246 match = false;
6247 }
6248
6249 /* Second: Try wild matching... */
6250
6251 if (!match && m_wild_match_p)
6252 {
6253 /* Since we are doing wild matching, this means that TEXT
6254 may represent an unqualified symbol name. We therefore must
6255 also compare TEXT against the unqualified name of the symbol. */
6256 sym_name = ada_unqualified_name (decoded_name.c_str ());
6257
6258 if (strncmp (sym_name, text, text_len) == 0)
6259 match = true;
6260 }
6261
6262 /* Finally: If we found a match, prepare the result to return. */
6263
6264 if (!match)
6265 return false;
6266
6267 if (comp_match_res != NULL)
6268 {
6269 std::string &match_str = comp_match_res->match.storage ();
6270
6271 if (!m_encoded_p)
6272 match_str = ada_decode (sym_name);
6273 else
6274 {
6275 if (m_verbatim_p)
6276 match_str = add_angle_brackets (sym_name);
6277 else
6278 match_str = sym_name;
6279
6280 }
6281
6282 comp_match_res->set_match (match_str.c_str ());
6283 }
6284
6285 return true;
6286 }
6287
6288 /* Add the list of possible symbol names completing TEXT to TRACKER.
6289 WORD is the entire command on which completion is made. */
6290
6291 static void
6292 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6293 complete_symbol_mode mode,
6294 symbol_name_match_type name_match_type,
6295 const char *text, const char *word,
6296 enum type_code code)
6297 {
6298 struct symbol *sym;
6299 const struct block *b, *surrounding_static_block = 0;
6300 struct block_iterator iter;
6301
6302 gdb_assert (code == TYPE_CODE_UNDEF);
6303
6304 lookup_name_info lookup_name (text, name_match_type, true);
6305
6306 /* First, look at the partial symtab symbols. */
6307 expand_symtabs_matching (NULL,
6308 lookup_name,
6309 NULL,
6310 NULL,
6311 ALL_DOMAIN);
6312
6313 /* At this point scan through the misc symbol vectors and add each
6314 symbol you find to the list. Eventually we want to ignore
6315 anything that isn't a text symbol (everything else will be
6316 handled by the psymtab code above). */
6317
6318 for (objfile *objfile : current_program_space->objfiles ())
6319 {
6320 for (minimal_symbol *msymbol : objfile->msymbols ())
6321 {
6322 QUIT;
6323
6324 if (completion_skip_symbol (mode, msymbol))
6325 continue;
6326
6327 language symbol_language = msymbol->language ();
6328
6329 /* Ada minimal symbols won't have their language set to Ada. If
6330 we let completion_list_add_name compare using the
6331 default/C-like matcher, then when completing e.g., symbols in a
6332 package named "pck", we'd match internal Ada symbols like
6333 "pckS", which are invalid in an Ada expression, unless you wrap
6334 them in '<' '>' to request a verbatim match.
6335
6336 Unfortunately, some Ada encoded names successfully demangle as
6337 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6338 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6339 with the wrong language set. Paper over that issue here. */
6340 if (symbol_language == language_auto
6341 || symbol_language == language_cplus)
6342 symbol_language = language_ada;
6343
6344 completion_list_add_name (tracker,
6345 symbol_language,
6346 msymbol->linkage_name (),
6347 lookup_name, text, word);
6348 }
6349 }
6350
6351 /* Search upwards from currently selected frame (so that we can
6352 complete on local vars. */
6353
6354 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6355 {
6356 if (!BLOCK_SUPERBLOCK (b))
6357 surrounding_static_block = b; /* For elmin of dups */
6358
6359 ALL_BLOCK_SYMBOLS (b, iter, sym)
6360 {
6361 if (completion_skip_symbol (mode, sym))
6362 continue;
6363
6364 completion_list_add_name (tracker,
6365 sym->language (),
6366 sym->linkage_name (),
6367 lookup_name, text, word);
6368 }
6369 }
6370
6371 /* Go through the symtabs and check the externs and statics for
6372 symbols which match. */
6373
6374 for (objfile *objfile : current_program_space->objfiles ())
6375 {
6376 for (compunit_symtab *s : objfile->compunits ())
6377 {
6378 QUIT;
6379 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6380 ALL_BLOCK_SYMBOLS (b, iter, sym)
6381 {
6382 if (completion_skip_symbol (mode, sym))
6383 continue;
6384
6385 completion_list_add_name (tracker,
6386 sym->language (),
6387 sym->linkage_name (),
6388 lookup_name, text, word);
6389 }
6390 }
6391 }
6392
6393 for (objfile *objfile : current_program_space->objfiles ())
6394 {
6395 for (compunit_symtab *s : objfile->compunits ())
6396 {
6397 QUIT;
6398 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6399 /* Don't do this block twice. */
6400 if (b == surrounding_static_block)
6401 continue;
6402 ALL_BLOCK_SYMBOLS (b, iter, sym)
6403 {
6404 if (completion_skip_symbol (mode, sym))
6405 continue;
6406
6407 completion_list_add_name (tracker,
6408 sym->language (),
6409 sym->linkage_name (),
6410 lookup_name, text, word);
6411 }
6412 }
6413 }
6414 }
6415
6416 /* Field Access */
6417
6418 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6419 for tagged types. */
6420
6421 static int
6422 ada_is_dispatch_table_ptr_type (struct type *type)
6423 {
6424 const char *name;
6425
6426 if (type->code () != TYPE_CODE_PTR)
6427 return 0;
6428
6429 name = TYPE_TARGET_TYPE (type)->name ();
6430 if (name == NULL)
6431 return 0;
6432
6433 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6434 }
6435
6436 /* Return non-zero if TYPE is an interface tag. */
6437
6438 static int
6439 ada_is_interface_tag (struct type *type)
6440 {
6441 const char *name = type->name ();
6442
6443 if (name == NULL)
6444 return 0;
6445
6446 return (strcmp (name, "ada__tags__interface_tag") == 0);
6447 }
6448
6449 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6450 to be invisible to users. */
6451
6452 int
6453 ada_is_ignored_field (struct type *type, int field_num)
6454 {
6455 if (field_num < 0 || field_num > type->num_fields ())
6456 return 1;
6457
6458 /* Check the name of that field. */
6459 {
6460 const char *name = TYPE_FIELD_NAME (type, field_num);
6461
6462 /* Anonymous field names should not be printed.
6463 brobecker/2007-02-20: I don't think this can actually happen
6464 but we don't want to print the value of anonymous fields anyway. */
6465 if (name == NULL)
6466 return 1;
6467
6468 /* Normally, fields whose name start with an underscore ("_")
6469 are fields that have been internally generated by the compiler,
6470 and thus should not be printed. The "_parent" field is special,
6471 however: This is a field internally generated by the compiler
6472 for tagged types, and it contains the components inherited from
6473 the parent type. This field should not be printed as is, but
6474 should not be ignored either. */
6475 if (name[0] == '_' && !startswith (name, "_parent"))
6476 return 1;
6477 }
6478
6479 /* If this is the dispatch table of a tagged type or an interface tag,
6480 then ignore. */
6481 if (ada_is_tagged_type (type, 1)
6482 && (ada_is_dispatch_table_ptr_type (type->field (field_num).type ())
6483 || ada_is_interface_tag (type->field (field_num).type ())))
6484 return 1;
6485
6486 /* Not a special field, so it should not be ignored. */
6487 return 0;
6488 }
6489
6490 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6491 pointer or reference type whose ultimate target has a tag field. */
6492
6493 int
6494 ada_is_tagged_type (struct type *type, int refok)
6495 {
6496 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6497 }
6498
6499 /* True iff TYPE represents the type of X'Tag */
6500
6501 int
6502 ada_is_tag_type (struct type *type)
6503 {
6504 type = ada_check_typedef (type);
6505
6506 if (type == NULL || type->code () != TYPE_CODE_PTR)
6507 return 0;
6508 else
6509 {
6510 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6511
6512 return (name != NULL
6513 && strcmp (name, "ada__tags__dispatch_table") == 0);
6514 }
6515 }
6516
6517 /* The type of the tag on VAL. */
6518
6519 static struct type *
6520 ada_tag_type (struct value *val)
6521 {
6522 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6523 }
6524
6525 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6526 retired at Ada 05). */
6527
6528 static int
6529 is_ada95_tag (struct value *tag)
6530 {
6531 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6532 }
6533
6534 /* The value of the tag on VAL. */
6535
6536 static struct value *
6537 ada_value_tag (struct value *val)
6538 {
6539 return ada_value_struct_elt (val, "_tag", 0);
6540 }
6541
6542 /* The value of the tag on the object of type TYPE whose contents are
6543 saved at VALADDR, if it is non-null, or is at memory address
6544 ADDRESS. */
6545
6546 static struct value *
6547 value_tag_from_contents_and_address (struct type *type,
6548 const gdb_byte *valaddr,
6549 CORE_ADDR address)
6550 {
6551 int tag_byte_offset;
6552 struct type *tag_type;
6553
6554 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6555 NULL, NULL, NULL))
6556 {
6557 const gdb_byte *valaddr1 = ((valaddr == NULL)
6558 ? NULL
6559 : valaddr + tag_byte_offset);
6560 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6561
6562 return value_from_contents_and_address (tag_type, valaddr1, address1);
6563 }
6564 return NULL;
6565 }
6566
6567 static struct type *
6568 type_from_tag (struct value *tag)
6569 {
6570 const char *type_name = ada_tag_name (tag);
6571
6572 if (type_name != NULL)
6573 return ada_find_any_type (ada_encode (type_name));
6574 return NULL;
6575 }
6576
6577 /* Given a value OBJ of a tagged type, return a value of this
6578 type at the base address of the object. The base address, as
6579 defined in Ada.Tags, it is the address of the primary tag of
6580 the object, and therefore where the field values of its full
6581 view can be fetched. */
6582
6583 struct value *
6584 ada_tag_value_at_base_address (struct value *obj)
6585 {
6586 struct value *val;
6587 LONGEST offset_to_top = 0;
6588 struct type *ptr_type, *obj_type;
6589 struct value *tag;
6590 CORE_ADDR base_address;
6591
6592 obj_type = value_type (obj);
6593
6594 /* It is the responsability of the caller to deref pointers. */
6595
6596 if (obj_type->code () == TYPE_CODE_PTR || obj_type->code () == TYPE_CODE_REF)
6597 return obj;
6598
6599 tag = ada_value_tag (obj);
6600 if (!tag)
6601 return obj;
6602
6603 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6604
6605 if (is_ada95_tag (tag))
6606 return obj;
6607
6608 ptr_type = language_lookup_primitive_type
6609 (language_def (language_ada), target_gdbarch(), "storage_offset");
6610 ptr_type = lookup_pointer_type (ptr_type);
6611 val = value_cast (ptr_type, tag);
6612 if (!val)
6613 return obj;
6614
6615 /* It is perfectly possible that an exception be raised while
6616 trying to determine the base address, just like for the tag;
6617 see ada_tag_name for more details. We do not print the error
6618 message for the same reason. */
6619
6620 try
6621 {
6622 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6623 }
6624
6625 catch (const gdb_exception_error &e)
6626 {
6627 return obj;
6628 }
6629
6630 /* If offset is null, nothing to do. */
6631
6632 if (offset_to_top == 0)
6633 return obj;
6634
6635 /* -1 is a special case in Ada.Tags; however, what should be done
6636 is not quite clear from the documentation. So do nothing for
6637 now. */
6638
6639 if (offset_to_top == -1)
6640 return obj;
6641
6642 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6643 from the base address. This was however incompatible with
6644 C++ dispatch table: C++ uses a *negative* value to *add*
6645 to the base address. Ada's convention has therefore been
6646 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6647 use the same convention. Here, we support both cases by
6648 checking the sign of OFFSET_TO_TOP. */
6649
6650 if (offset_to_top > 0)
6651 offset_to_top = -offset_to_top;
6652
6653 base_address = value_address (obj) + offset_to_top;
6654 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6655
6656 /* Make sure that we have a proper tag at the new address.
6657 Otherwise, offset_to_top is bogus (which can happen when
6658 the object is not initialized yet). */
6659
6660 if (!tag)
6661 return obj;
6662
6663 obj_type = type_from_tag (tag);
6664
6665 if (!obj_type)
6666 return obj;
6667
6668 return value_from_contents_and_address (obj_type, NULL, base_address);
6669 }
6670
6671 /* Return the "ada__tags__type_specific_data" type. */
6672
6673 static struct type *
6674 ada_get_tsd_type (struct inferior *inf)
6675 {
6676 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6677
6678 if (data->tsd_type == 0)
6679 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6680 return data->tsd_type;
6681 }
6682
6683 /* Return the TSD (type-specific data) associated to the given TAG.
6684 TAG is assumed to be the tag of a tagged-type entity.
6685
6686 May return NULL if we are unable to get the TSD. */
6687
6688 static struct value *
6689 ada_get_tsd_from_tag (struct value *tag)
6690 {
6691 struct value *val;
6692 struct type *type;
6693
6694 /* First option: The TSD is simply stored as a field of our TAG.
6695 Only older versions of GNAT would use this format, but we have
6696 to test it first, because there are no visible markers for
6697 the current approach except the absence of that field. */
6698
6699 val = ada_value_struct_elt (tag, "tsd", 1);
6700 if (val)
6701 return val;
6702
6703 /* Try the second representation for the dispatch table (in which
6704 there is no explicit 'tsd' field in the referent of the tag pointer,
6705 and instead the tsd pointer is stored just before the dispatch
6706 table. */
6707
6708 type = ada_get_tsd_type (current_inferior());
6709 if (type == NULL)
6710 return NULL;
6711 type = lookup_pointer_type (lookup_pointer_type (type));
6712 val = value_cast (type, tag);
6713 if (val == NULL)
6714 return NULL;
6715 return value_ind (value_ptradd (val, -1));
6716 }
6717
6718 /* Given the TSD of a tag (type-specific data), return a string
6719 containing the name of the associated type.
6720
6721 The returned value is good until the next call. May return NULL
6722 if we are unable to determine the tag name. */
6723
6724 static char *
6725 ada_tag_name_from_tsd (struct value *tsd)
6726 {
6727 static char name[1024];
6728 char *p;
6729 struct value *val;
6730
6731 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6732 if (val == NULL)
6733 return NULL;
6734 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6735 for (p = name; *p != '\0'; p += 1)
6736 if (isalpha (*p))
6737 *p = tolower (*p);
6738 return name;
6739 }
6740
6741 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6742 a C string.
6743
6744 Return NULL if the TAG is not an Ada tag, or if we were unable to
6745 determine the name of that tag. The result is good until the next
6746 call. */
6747
6748 const char *
6749 ada_tag_name (struct value *tag)
6750 {
6751 char *name = NULL;
6752
6753 if (!ada_is_tag_type (value_type (tag)))
6754 return NULL;
6755
6756 /* It is perfectly possible that an exception be raised while trying
6757 to determine the TAG's name, even under normal circumstances:
6758 The associated variable may be uninitialized or corrupted, for
6759 instance. We do not let any exception propagate past this point.
6760 instead we return NULL.
6761
6762 We also do not print the error message either (which often is very
6763 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6764 the caller print a more meaningful message if necessary. */
6765 try
6766 {
6767 struct value *tsd = ada_get_tsd_from_tag (tag);
6768
6769 if (tsd != NULL)
6770 name = ada_tag_name_from_tsd (tsd);
6771 }
6772 catch (const gdb_exception_error &e)
6773 {
6774 }
6775
6776 return name;
6777 }
6778
6779 /* The parent type of TYPE, or NULL if none. */
6780
6781 struct type *
6782 ada_parent_type (struct type *type)
6783 {
6784 int i;
6785
6786 type = ada_check_typedef (type);
6787
6788 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
6789 return NULL;
6790
6791 for (i = 0; i < type->num_fields (); i += 1)
6792 if (ada_is_parent_field (type, i))
6793 {
6794 struct type *parent_type = type->field (i).type ();
6795
6796 /* If the _parent field is a pointer, then dereference it. */
6797 if (parent_type->code () == TYPE_CODE_PTR)
6798 parent_type = TYPE_TARGET_TYPE (parent_type);
6799 /* If there is a parallel XVS type, get the actual base type. */
6800 parent_type = ada_get_base_type (parent_type);
6801
6802 return ada_check_typedef (parent_type);
6803 }
6804
6805 return NULL;
6806 }
6807
6808 /* True iff field number FIELD_NUM of structure type TYPE contains the
6809 parent-type (inherited) fields of a derived type. Assumes TYPE is
6810 a structure type with at least FIELD_NUM+1 fields. */
6811
6812 int
6813 ada_is_parent_field (struct type *type, int field_num)
6814 {
6815 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6816
6817 return (name != NULL
6818 && (startswith (name, "PARENT")
6819 || startswith (name, "_parent")));
6820 }
6821
6822 /* True iff field number FIELD_NUM of structure type TYPE is a
6823 transparent wrapper field (which should be silently traversed when doing
6824 field selection and flattened when printing). Assumes TYPE is a
6825 structure type with at least FIELD_NUM+1 fields. Such fields are always
6826 structures. */
6827
6828 int
6829 ada_is_wrapper_field (struct type *type, int field_num)
6830 {
6831 const char *name = TYPE_FIELD_NAME (type, field_num);
6832
6833 if (name != NULL && strcmp (name, "RETVAL") == 0)
6834 {
6835 /* This happens in functions with "out" or "in out" parameters
6836 which are passed by copy. For such functions, GNAT describes
6837 the function's return type as being a struct where the return
6838 value is in a field called RETVAL, and where the other "out"
6839 or "in out" parameters are fields of that struct. This is not
6840 a wrapper. */
6841 return 0;
6842 }
6843
6844 return (name != NULL
6845 && (startswith (name, "PARENT")
6846 || strcmp (name, "REP") == 0
6847 || startswith (name, "_parent")
6848 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6849 }
6850
6851 /* True iff field number FIELD_NUM of structure or union type TYPE
6852 is a variant wrapper. Assumes TYPE is a structure type with at least
6853 FIELD_NUM+1 fields. */
6854
6855 int
6856 ada_is_variant_part (struct type *type, int field_num)
6857 {
6858 /* Only Ada types are eligible. */
6859 if (!ADA_TYPE_P (type))
6860 return 0;
6861
6862 struct type *field_type = type->field (field_num).type ();
6863
6864 return (field_type->code () == TYPE_CODE_UNION
6865 || (is_dynamic_field (type, field_num)
6866 && (TYPE_TARGET_TYPE (field_type)->code ()
6867 == TYPE_CODE_UNION)));
6868 }
6869
6870 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6871 whose discriminants are contained in the record type OUTER_TYPE,
6872 returns the type of the controlling discriminant for the variant.
6873 May return NULL if the type could not be found. */
6874
6875 struct type *
6876 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6877 {
6878 const char *name = ada_variant_discrim_name (var_type);
6879
6880 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6881 }
6882
6883 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6884 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6885 represents a 'when others' clause; otherwise 0. */
6886
6887 static int
6888 ada_is_others_clause (struct type *type, int field_num)
6889 {
6890 const char *name = TYPE_FIELD_NAME (type, field_num);
6891
6892 return (name != NULL && name[0] == 'O');
6893 }
6894
6895 /* Assuming that TYPE0 is the type of the variant part of a record,
6896 returns the name of the discriminant controlling the variant.
6897 The value is valid until the next call to ada_variant_discrim_name. */
6898
6899 const char *
6900 ada_variant_discrim_name (struct type *type0)
6901 {
6902 static char *result = NULL;
6903 static size_t result_len = 0;
6904 struct type *type;
6905 const char *name;
6906 const char *discrim_end;
6907 const char *discrim_start;
6908
6909 if (type0->code () == TYPE_CODE_PTR)
6910 type = TYPE_TARGET_TYPE (type0);
6911 else
6912 type = type0;
6913
6914 name = ada_type_name (type);
6915
6916 if (name == NULL || name[0] == '\000')
6917 return "";
6918
6919 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6920 discrim_end -= 1)
6921 {
6922 if (startswith (discrim_end, "___XVN"))
6923 break;
6924 }
6925 if (discrim_end == name)
6926 return "";
6927
6928 for (discrim_start = discrim_end; discrim_start != name + 3;
6929 discrim_start -= 1)
6930 {
6931 if (discrim_start == name + 1)
6932 return "";
6933 if ((discrim_start > name + 3
6934 && startswith (discrim_start - 3, "___"))
6935 || discrim_start[-1] == '.')
6936 break;
6937 }
6938
6939 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6940 strncpy (result, discrim_start, discrim_end - discrim_start);
6941 result[discrim_end - discrim_start] = '\0';
6942 return result;
6943 }
6944
6945 /* Scan STR for a subtype-encoded number, beginning at position K.
6946 Put the position of the character just past the number scanned in
6947 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6948 Return 1 if there was a valid number at the given position, and 0
6949 otherwise. A "subtype-encoded" number consists of the absolute value
6950 in decimal, followed by the letter 'm' to indicate a negative number.
6951 Assumes 0m does not occur. */
6952
6953 int
6954 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6955 {
6956 ULONGEST RU;
6957
6958 if (!isdigit (str[k]))
6959 return 0;
6960
6961 /* Do it the hard way so as not to make any assumption about
6962 the relationship of unsigned long (%lu scan format code) and
6963 LONGEST. */
6964 RU = 0;
6965 while (isdigit (str[k]))
6966 {
6967 RU = RU * 10 + (str[k] - '0');
6968 k += 1;
6969 }
6970
6971 if (str[k] == 'm')
6972 {
6973 if (R != NULL)
6974 *R = (-(LONGEST) (RU - 1)) - 1;
6975 k += 1;
6976 }
6977 else if (R != NULL)
6978 *R = (LONGEST) RU;
6979
6980 /* NOTE on the above: Technically, C does not say what the results of
6981 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6982 number representable as a LONGEST (although either would probably work
6983 in most implementations). When RU>0, the locution in the then branch
6984 above is always equivalent to the negative of RU. */
6985
6986 if (new_k != NULL)
6987 *new_k = k;
6988 return 1;
6989 }
6990
6991 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6992 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6993 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6994
6995 static int
6996 ada_in_variant (LONGEST val, struct type *type, int field_num)
6997 {
6998 const char *name = TYPE_FIELD_NAME (type, field_num);
6999 int p;
7000
7001 p = 0;
7002 while (1)
7003 {
7004 switch (name[p])
7005 {
7006 case '\0':
7007 return 0;
7008 case 'S':
7009 {
7010 LONGEST W;
7011
7012 if (!ada_scan_number (name, p + 1, &W, &p))
7013 return 0;
7014 if (val == W)
7015 return 1;
7016 break;
7017 }
7018 case 'R':
7019 {
7020 LONGEST L, U;
7021
7022 if (!ada_scan_number (name, p + 1, &L, &p)
7023 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7024 return 0;
7025 if (val >= L && val <= U)
7026 return 1;
7027 break;
7028 }
7029 case 'O':
7030 return 1;
7031 default:
7032 return 0;
7033 }
7034 }
7035 }
7036
7037 /* FIXME: Lots of redundancy below. Try to consolidate. */
7038
7039 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7040 ARG_TYPE, extract and return the value of one of its (non-static)
7041 fields. FIELDNO says which field. Differs from value_primitive_field
7042 only in that it can handle packed values of arbitrary type. */
7043
7044 struct value *
7045 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7046 struct type *arg_type)
7047 {
7048 struct type *type;
7049
7050 arg_type = ada_check_typedef (arg_type);
7051 type = arg_type->field (fieldno).type ();
7052
7053 /* Handle packed fields. It might be that the field is not packed
7054 relative to its containing structure, but the structure itself is
7055 packed; in this case we must take the bit-field path. */
7056 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0 || value_bitpos (arg1) != 0)
7057 {
7058 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7059 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7060
7061 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7062 offset + bit_pos / 8,
7063 bit_pos % 8, bit_size, type);
7064 }
7065 else
7066 return value_primitive_field (arg1, offset, fieldno, arg_type);
7067 }
7068
7069 /* Find field with name NAME in object of type TYPE. If found,
7070 set the following for each argument that is non-null:
7071 - *FIELD_TYPE_P to the field's type;
7072 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7073 an object of that type;
7074 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7075 - *BIT_SIZE_P to its size in bits if the field is packed, and
7076 0 otherwise;
7077 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7078 fields up to but not including the desired field, or by the total
7079 number of fields if not found. A NULL value of NAME never
7080 matches; the function just counts visible fields in this case.
7081
7082 Notice that we need to handle when a tagged record hierarchy
7083 has some components with the same name, like in this scenario:
7084
7085 type Top_T is tagged record
7086 N : Integer := 1;
7087 U : Integer := 974;
7088 A : Integer := 48;
7089 end record;
7090
7091 type Middle_T is new Top.Top_T with record
7092 N : Character := 'a';
7093 C : Integer := 3;
7094 end record;
7095
7096 type Bottom_T is new Middle.Middle_T with record
7097 N : Float := 4.0;
7098 C : Character := '5';
7099 X : Integer := 6;
7100 A : Character := 'J';
7101 end record;
7102
7103 Let's say we now have a variable declared and initialized as follow:
7104
7105 TC : Top_A := new Bottom_T;
7106
7107 And then we use this variable to call this function
7108
7109 procedure Assign (Obj: in out Top_T; TV : Integer);
7110
7111 as follow:
7112
7113 Assign (Top_T (B), 12);
7114
7115 Now, we're in the debugger, and we're inside that procedure
7116 then and we want to print the value of obj.c:
7117
7118 Usually, the tagged record or one of the parent type owns the
7119 component to print and there's no issue but in this particular
7120 case, what does it mean to ask for Obj.C? Since the actual
7121 type for object is type Bottom_T, it could mean two things: type
7122 component C from the Middle_T view, but also component C from
7123 Bottom_T. So in that "undefined" case, when the component is
7124 not found in the non-resolved type (which includes all the
7125 components of the parent type), then resolve it and see if we
7126 get better luck once expanded.
7127
7128 In the case of homonyms in the derived tagged type, we don't
7129 guaranty anything, and pick the one that's easiest for us
7130 to program.
7131
7132 Returns 1 if found, 0 otherwise. */
7133
7134 static int
7135 find_struct_field (const char *name, struct type *type, int offset,
7136 struct type **field_type_p,
7137 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7138 int *index_p)
7139 {
7140 int i;
7141 int parent_offset = -1;
7142
7143 type = ada_check_typedef (type);
7144
7145 if (field_type_p != NULL)
7146 *field_type_p = NULL;
7147 if (byte_offset_p != NULL)
7148 *byte_offset_p = 0;
7149 if (bit_offset_p != NULL)
7150 *bit_offset_p = 0;
7151 if (bit_size_p != NULL)
7152 *bit_size_p = 0;
7153
7154 for (i = 0; i < type->num_fields (); i += 1)
7155 {
7156 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7157 int fld_offset = offset + bit_pos / 8;
7158 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7159
7160 if (t_field_name == NULL)
7161 continue;
7162
7163 else if (ada_is_parent_field (type, i))
7164 {
7165 /* This is a field pointing us to the parent type of a tagged
7166 type. As hinted in this function's documentation, we give
7167 preference to fields in the current record first, so what
7168 we do here is just record the index of this field before
7169 we skip it. If it turns out we couldn't find our field
7170 in the current record, then we'll get back to it and search
7171 inside it whether the field might exist in the parent. */
7172
7173 parent_offset = i;
7174 continue;
7175 }
7176
7177 else if (name != NULL && field_name_match (t_field_name, name))
7178 {
7179 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7180
7181 if (field_type_p != NULL)
7182 *field_type_p = type->field (i).type ();
7183 if (byte_offset_p != NULL)
7184 *byte_offset_p = fld_offset;
7185 if (bit_offset_p != NULL)
7186 *bit_offset_p = bit_pos % 8;
7187 if (bit_size_p != NULL)
7188 *bit_size_p = bit_size;
7189 return 1;
7190 }
7191 else if (ada_is_wrapper_field (type, i))
7192 {
7193 if (find_struct_field (name, type->field (i).type (), fld_offset,
7194 field_type_p, byte_offset_p, bit_offset_p,
7195 bit_size_p, index_p))
7196 return 1;
7197 }
7198 else if (ada_is_variant_part (type, i))
7199 {
7200 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7201 fixed type?? */
7202 int j;
7203 struct type *field_type
7204 = ada_check_typedef (type->field (i).type ());
7205
7206 for (j = 0; j < field_type->num_fields (); j += 1)
7207 {
7208 if (find_struct_field (name, field_type->field (j).type (),
7209 fld_offset
7210 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7211 field_type_p, byte_offset_p,
7212 bit_offset_p, bit_size_p, index_p))
7213 return 1;
7214 }
7215 }
7216 else if (index_p != NULL)
7217 *index_p += 1;
7218 }
7219
7220 /* Field not found so far. If this is a tagged type which
7221 has a parent, try finding that field in the parent now. */
7222
7223 if (parent_offset != -1)
7224 {
7225 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7226 int fld_offset = offset + bit_pos / 8;
7227
7228 if (find_struct_field (name, type->field (parent_offset).type (),
7229 fld_offset, field_type_p, byte_offset_p,
7230 bit_offset_p, bit_size_p, index_p))
7231 return 1;
7232 }
7233
7234 return 0;
7235 }
7236
7237 /* Number of user-visible fields in record type TYPE. */
7238
7239 static int
7240 num_visible_fields (struct type *type)
7241 {
7242 int n;
7243
7244 n = 0;
7245 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7246 return n;
7247 }
7248
7249 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7250 and search in it assuming it has (class) type TYPE.
7251 If found, return value, else return NULL.
7252
7253 Searches recursively through wrapper fields (e.g., '_parent').
7254
7255 In the case of homonyms in the tagged types, please refer to the
7256 long explanation in find_struct_field's function documentation. */
7257
7258 static struct value *
7259 ada_search_struct_field (const char *name, struct value *arg, int offset,
7260 struct type *type)
7261 {
7262 int i;
7263 int parent_offset = -1;
7264
7265 type = ada_check_typedef (type);
7266 for (i = 0; i < type->num_fields (); i += 1)
7267 {
7268 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7269
7270 if (t_field_name == NULL)
7271 continue;
7272
7273 else if (ada_is_parent_field (type, i))
7274 {
7275 /* This is a field pointing us to the parent type of a tagged
7276 type. As hinted in this function's documentation, we give
7277 preference to fields in the current record first, so what
7278 we do here is just record the index of this field before
7279 we skip it. If it turns out we couldn't find our field
7280 in the current record, then we'll get back to it and search
7281 inside it whether the field might exist in the parent. */
7282
7283 parent_offset = i;
7284 continue;
7285 }
7286
7287 else if (field_name_match (t_field_name, name))
7288 return ada_value_primitive_field (arg, offset, i, type);
7289
7290 else if (ada_is_wrapper_field (type, i))
7291 {
7292 struct value *v = /* Do not let indent join lines here. */
7293 ada_search_struct_field (name, arg,
7294 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7295 type->field (i).type ());
7296
7297 if (v != NULL)
7298 return v;
7299 }
7300
7301 else if (ada_is_variant_part (type, i))
7302 {
7303 /* PNH: Do we ever get here? See find_struct_field. */
7304 int j;
7305 struct type *field_type = ada_check_typedef (type->field (i).type ());
7306 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7307
7308 for (j = 0; j < field_type->num_fields (); j += 1)
7309 {
7310 struct value *v = ada_search_struct_field /* Force line
7311 break. */
7312 (name, arg,
7313 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7314 field_type->field (j).type ());
7315
7316 if (v != NULL)
7317 return v;
7318 }
7319 }
7320 }
7321
7322 /* Field not found so far. If this is a tagged type which
7323 has a parent, try finding that field in the parent now. */
7324
7325 if (parent_offset != -1)
7326 {
7327 struct value *v = ada_search_struct_field (
7328 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7329 type->field (parent_offset).type ());
7330
7331 if (v != NULL)
7332 return v;
7333 }
7334
7335 return NULL;
7336 }
7337
7338 static struct value *ada_index_struct_field_1 (int *, struct value *,
7339 int, struct type *);
7340
7341
7342 /* Return field #INDEX in ARG, where the index is that returned by
7343 * find_struct_field through its INDEX_P argument. Adjust the address
7344 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7345 * If found, return value, else return NULL. */
7346
7347 static struct value *
7348 ada_index_struct_field (int index, struct value *arg, int offset,
7349 struct type *type)
7350 {
7351 return ada_index_struct_field_1 (&index, arg, offset, type);
7352 }
7353
7354
7355 /* Auxiliary function for ada_index_struct_field. Like
7356 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7357 * *INDEX_P. */
7358
7359 static struct value *
7360 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7361 struct type *type)
7362 {
7363 int i;
7364 type = ada_check_typedef (type);
7365
7366 for (i = 0; i < type->num_fields (); i += 1)
7367 {
7368 if (TYPE_FIELD_NAME (type, i) == NULL)
7369 continue;
7370 else if (ada_is_wrapper_field (type, i))
7371 {
7372 struct value *v = /* Do not let indent join lines here. */
7373 ada_index_struct_field_1 (index_p, arg,
7374 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7375 type->field (i).type ());
7376
7377 if (v != NULL)
7378 return v;
7379 }
7380
7381 else if (ada_is_variant_part (type, i))
7382 {
7383 /* PNH: Do we ever get here? See ada_search_struct_field,
7384 find_struct_field. */
7385 error (_("Cannot assign this kind of variant record"));
7386 }
7387 else if (*index_p == 0)
7388 return ada_value_primitive_field (arg, offset, i, type);
7389 else
7390 *index_p -= 1;
7391 }
7392 return NULL;
7393 }
7394
7395 /* Return a string representation of type TYPE. */
7396
7397 static std::string
7398 type_as_string (struct type *type)
7399 {
7400 string_file tmp_stream;
7401
7402 type_print (type, "", &tmp_stream, -1);
7403
7404 return std::move (tmp_stream.string ());
7405 }
7406
7407 /* Given a type TYPE, look up the type of the component of type named NAME.
7408 If DISPP is non-null, add its byte displacement from the beginning of a
7409 structure (pointed to by a value) of type TYPE to *DISPP (does not
7410 work for packed fields).
7411
7412 Matches any field whose name has NAME as a prefix, possibly
7413 followed by "___".
7414
7415 TYPE can be either a struct or union. If REFOK, TYPE may also
7416 be a (pointer or reference)+ to a struct or union, and the
7417 ultimate target type will be searched.
7418
7419 Looks recursively into variant clauses and parent types.
7420
7421 In the case of homonyms in the tagged types, please refer to the
7422 long explanation in find_struct_field's function documentation.
7423
7424 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7425 TYPE is not a type of the right kind. */
7426
7427 static struct type *
7428 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7429 int noerr)
7430 {
7431 int i;
7432 int parent_offset = -1;
7433
7434 if (name == NULL)
7435 goto BadName;
7436
7437 if (refok && type != NULL)
7438 while (1)
7439 {
7440 type = ada_check_typedef (type);
7441 if (type->code () != TYPE_CODE_PTR && type->code () != TYPE_CODE_REF)
7442 break;
7443 type = TYPE_TARGET_TYPE (type);
7444 }
7445
7446 if (type == NULL
7447 || (type->code () != TYPE_CODE_STRUCT
7448 && type->code () != TYPE_CODE_UNION))
7449 {
7450 if (noerr)
7451 return NULL;
7452
7453 error (_("Type %s is not a structure or union type"),
7454 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7455 }
7456
7457 type = to_static_fixed_type (type);
7458
7459 for (i = 0; i < type->num_fields (); i += 1)
7460 {
7461 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7462 struct type *t;
7463
7464 if (t_field_name == NULL)
7465 continue;
7466
7467 else if (ada_is_parent_field (type, i))
7468 {
7469 /* This is a field pointing us to the parent type of a tagged
7470 type. As hinted in this function's documentation, we give
7471 preference to fields in the current record first, so what
7472 we do here is just record the index of this field before
7473 we skip it. If it turns out we couldn't find our field
7474 in the current record, then we'll get back to it and search
7475 inside it whether the field might exist in the parent. */
7476
7477 parent_offset = i;
7478 continue;
7479 }
7480
7481 else if (field_name_match (t_field_name, name))
7482 return type->field (i).type ();
7483
7484 else if (ada_is_wrapper_field (type, i))
7485 {
7486 t = ada_lookup_struct_elt_type (type->field (i).type (), name,
7487 0, 1);
7488 if (t != NULL)
7489 return t;
7490 }
7491
7492 else if (ada_is_variant_part (type, i))
7493 {
7494 int j;
7495 struct type *field_type = ada_check_typedef (type->field (i).type ());
7496
7497 for (j = field_type->num_fields () - 1; j >= 0; j -= 1)
7498 {
7499 /* FIXME pnh 2008/01/26: We check for a field that is
7500 NOT wrapped in a struct, since the compiler sometimes
7501 generates these for unchecked variant types. Revisit
7502 if the compiler changes this practice. */
7503 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7504
7505 if (v_field_name != NULL
7506 && field_name_match (v_field_name, name))
7507 t = field_type->field (j).type ();
7508 else
7509 t = ada_lookup_struct_elt_type (field_type->field (j).type (),
7510 name, 0, 1);
7511
7512 if (t != NULL)
7513 return t;
7514 }
7515 }
7516
7517 }
7518
7519 /* Field not found so far. If this is a tagged type which
7520 has a parent, try finding that field in the parent now. */
7521
7522 if (parent_offset != -1)
7523 {
7524 struct type *t;
7525
7526 t = ada_lookup_struct_elt_type (type->field (parent_offset).type (),
7527 name, 0, 1);
7528 if (t != NULL)
7529 return t;
7530 }
7531
7532 BadName:
7533 if (!noerr)
7534 {
7535 const char *name_str = name != NULL ? name : _("<null>");
7536
7537 error (_("Type %s has no component named %s"),
7538 type_as_string (type).c_str (), name_str);
7539 }
7540
7541 return NULL;
7542 }
7543
7544 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7545 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7546 represents an unchecked union (that is, the variant part of a
7547 record that is named in an Unchecked_Union pragma). */
7548
7549 static int
7550 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7551 {
7552 const char *discrim_name = ada_variant_discrim_name (var_type);
7553
7554 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7555 }
7556
7557
7558 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7559 within OUTER, determine which variant clause (field number in VAR_TYPE,
7560 numbering from 0) is applicable. Returns -1 if none are. */
7561
7562 int
7563 ada_which_variant_applies (struct type *var_type, struct value *outer)
7564 {
7565 int others_clause;
7566 int i;
7567 const char *discrim_name = ada_variant_discrim_name (var_type);
7568 struct value *discrim;
7569 LONGEST discrim_val;
7570
7571 /* Using plain value_from_contents_and_address here causes problems
7572 because we will end up trying to resolve a type that is currently
7573 being constructed. */
7574 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7575 if (discrim == NULL)
7576 return -1;
7577 discrim_val = value_as_long (discrim);
7578
7579 others_clause = -1;
7580 for (i = 0; i < var_type->num_fields (); i += 1)
7581 {
7582 if (ada_is_others_clause (var_type, i))
7583 others_clause = i;
7584 else if (ada_in_variant (discrim_val, var_type, i))
7585 return i;
7586 }
7587
7588 return others_clause;
7589 }
7590 \f
7591
7592
7593 /* Dynamic-Sized Records */
7594
7595 /* Strategy: The type ostensibly attached to a value with dynamic size
7596 (i.e., a size that is not statically recorded in the debugging
7597 data) does not accurately reflect the size or layout of the value.
7598 Our strategy is to convert these values to values with accurate,
7599 conventional types that are constructed on the fly. */
7600
7601 /* There is a subtle and tricky problem here. In general, we cannot
7602 determine the size of dynamic records without its data. However,
7603 the 'struct value' data structure, which GDB uses to represent
7604 quantities in the inferior process (the target), requires the size
7605 of the type at the time of its allocation in order to reserve space
7606 for GDB's internal copy of the data. That's why the
7607 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7608 rather than struct value*s.
7609
7610 However, GDB's internal history variables ($1, $2, etc.) are
7611 struct value*s containing internal copies of the data that are not, in
7612 general, the same as the data at their corresponding addresses in
7613 the target. Fortunately, the types we give to these values are all
7614 conventional, fixed-size types (as per the strategy described
7615 above), so that we don't usually have to perform the
7616 'to_fixed_xxx_type' conversions to look at their values.
7617 Unfortunately, there is one exception: if one of the internal
7618 history variables is an array whose elements are unconstrained
7619 records, then we will need to create distinct fixed types for each
7620 element selected. */
7621
7622 /* The upshot of all of this is that many routines take a (type, host
7623 address, target address) triple as arguments to represent a value.
7624 The host address, if non-null, is supposed to contain an internal
7625 copy of the relevant data; otherwise, the program is to consult the
7626 target at the target address. */
7627
7628 /* Assuming that VAL0 represents a pointer value, the result of
7629 dereferencing it. Differs from value_ind in its treatment of
7630 dynamic-sized types. */
7631
7632 struct value *
7633 ada_value_ind (struct value *val0)
7634 {
7635 struct value *val = value_ind (val0);
7636
7637 if (ada_is_tagged_type (value_type (val), 0))
7638 val = ada_tag_value_at_base_address (val);
7639
7640 return ada_to_fixed_value (val);
7641 }
7642
7643 /* The value resulting from dereferencing any "reference to"
7644 qualifiers on VAL0. */
7645
7646 static struct value *
7647 ada_coerce_ref (struct value *val0)
7648 {
7649 if (value_type (val0)->code () == TYPE_CODE_REF)
7650 {
7651 struct value *val = val0;
7652
7653 val = coerce_ref (val);
7654
7655 if (ada_is_tagged_type (value_type (val), 0))
7656 val = ada_tag_value_at_base_address (val);
7657
7658 return ada_to_fixed_value (val);
7659 }
7660 else
7661 return val0;
7662 }
7663
7664 /* Return the bit alignment required for field #F of template type TYPE. */
7665
7666 static unsigned int
7667 field_alignment (struct type *type, int f)
7668 {
7669 const char *name = TYPE_FIELD_NAME (type, f);
7670 int len;
7671 int align_offset;
7672
7673 /* The field name should never be null, unless the debugging information
7674 is somehow malformed. In this case, we assume the field does not
7675 require any alignment. */
7676 if (name == NULL)
7677 return 1;
7678
7679 len = strlen (name);
7680
7681 if (!isdigit (name[len - 1]))
7682 return 1;
7683
7684 if (isdigit (name[len - 2]))
7685 align_offset = len - 2;
7686 else
7687 align_offset = len - 1;
7688
7689 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7690 return TARGET_CHAR_BIT;
7691
7692 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7693 }
7694
7695 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7696
7697 static struct symbol *
7698 ada_find_any_type_symbol (const char *name)
7699 {
7700 struct symbol *sym;
7701
7702 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7703 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7704 return sym;
7705
7706 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7707 return sym;
7708 }
7709
7710 /* Find a type named NAME. Ignores ambiguity. This routine will look
7711 solely for types defined by debug info, it will not search the GDB
7712 primitive types. */
7713
7714 static struct type *
7715 ada_find_any_type (const char *name)
7716 {
7717 struct symbol *sym = ada_find_any_type_symbol (name);
7718
7719 if (sym != NULL)
7720 return SYMBOL_TYPE (sym);
7721
7722 return NULL;
7723 }
7724
7725 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7726 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7727 symbol, in which case it is returned. Otherwise, this looks for
7728 symbols whose name is that of NAME_SYM suffixed with "___XR".
7729 Return symbol if found, and NULL otherwise. */
7730
7731 static bool
7732 ada_is_renaming_symbol (struct symbol *name_sym)
7733 {
7734 const char *name = name_sym->linkage_name ();
7735 return strstr (name, "___XR") != NULL;
7736 }
7737
7738 /* Because of GNAT encoding conventions, several GDB symbols may match a
7739 given type name. If the type denoted by TYPE0 is to be preferred to
7740 that of TYPE1 for purposes of type printing, return non-zero;
7741 otherwise return 0. */
7742
7743 int
7744 ada_prefer_type (struct type *type0, struct type *type1)
7745 {
7746 if (type1 == NULL)
7747 return 1;
7748 else if (type0 == NULL)
7749 return 0;
7750 else if (type1->code () == TYPE_CODE_VOID)
7751 return 1;
7752 else if (type0->code () == TYPE_CODE_VOID)
7753 return 0;
7754 else if (type1->name () == NULL && type0->name () != NULL)
7755 return 1;
7756 else if (ada_is_constrained_packed_array_type (type0))
7757 return 1;
7758 else if (ada_is_array_descriptor_type (type0)
7759 && !ada_is_array_descriptor_type (type1))
7760 return 1;
7761 else
7762 {
7763 const char *type0_name = type0->name ();
7764 const char *type1_name = type1->name ();
7765
7766 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7767 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7768 return 1;
7769 }
7770 return 0;
7771 }
7772
7773 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7774 null. */
7775
7776 const char *
7777 ada_type_name (struct type *type)
7778 {
7779 if (type == NULL)
7780 return NULL;
7781 return type->name ();
7782 }
7783
7784 /* Search the list of "descriptive" types associated to TYPE for a type
7785 whose name is NAME. */
7786
7787 static struct type *
7788 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7789 {
7790 struct type *result, *tmp;
7791
7792 if (ada_ignore_descriptive_types_p)
7793 return NULL;
7794
7795 /* If there no descriptive-type info, then there is no parallel type
7796 to be found. */
7797 if (!HAVE_GNAT_AUX_INFO (type))
7798 return NULL;
7799
7800 result = TYPE_DESCRIPTIVE_TYPE (type);
7801 while (result != NULL)
7802 {
7803 const char *result_name = ada_type_name (result);
7804
7805 if (result_name == NULL)
7806 {
7807 warning (_("unexpected null name on descriptive type"));
7808 return NULL;
7809 }
7810
7811 /* If the names match, stop. */
7812 if (strcmp (result_name, name) == 0)
7813 break;
7814
7815 /* Otherwise, look at the next item on the list, if any. */
7816 if (HAVE_GNAT_AUX_INFO (result))
7817 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7818 else
7819 tmp = NULL;
7820
7821 /* If not found either, try after having resolved the typedef. */
7822 if (tmp != NULL)
7823 result = tmp;
7824 else
7825 {
7826 result = check_typedef (result);
7827 if (HAVE_GNAT_AUX_INFO (result))
7828 result = TYPE_DESCRIPTIVE_TYPE (result);
7829 else
7830 result = NULL;
7831 }
7832 }
7833
7834 /* If we didn't find a match, see whether this is a packed array. With
7835 older compilers, the descriptive type information is either absent or
7836 irrelevant when it comes to packed arrays so the above lookup fails.
7837 Fall back to using a parallel lookup by name in this case. */
7838 if (result == NULL && ada_is_constrained_packed_array_type (type))
7839 return ada_find_any_type (name);
7840
7841 return result;
7842 }
7843
7844 /* Find a parallel type to TYPE with the specified NAME, using the
7845 descriptive type taken from the debugging information, if available,
7846 and otherwise using the (slower) name-based method. */
7847
7848 static struct type *
7849 ada_find_parallel_type_with_name (struct type *type, const char *name)
7850 {
7851 struct type *result = NULL;
7852
7853 if (HAVE_GNAT_AUX_INFO (type))
7854 result = find_parallel_type_by_descriptive_type (type, name);
7855 else
7856 result = ada_find_any_type (name);
7857
7858 return result;
7859 }
7860
7861 /* Same as above, but specify the name of the parallel type by appending
7862 SUFFIX to the name of TYPE. */
7863
7864 struct type *
7865 ada_find_parallel_type (struct type *type, const char *suffix)
7866 {
7867 char *name;
7868 const char *type_name = ada_type_name (type);
7869 int len;
7870
7871 if (type_name == NULL)
7872 return NULL;
7873
7874 len = strlen (type_name);
7875
7876 name = (char *) alloca (len + strlen (suffix) + 1);
7877
7878 strcpy (name, type_name);
7879 strcpy (name + len, suffix);
7880
7881 return ada_find_parallel_type_with_name (type, name);
7882 }
7883
7884 /* If TYPE is a variable-size record type, return the corresponding template
7885 type describing its fields. Otherwise, return NULL. */
7886
7887 static struct type *
7888 dynamic_template_type (struct type *type)
7889 {
7890 type = ada_check_typedef (type);
7891
7892 if (type == NULL || type->code () != TYPE_CODE_STRUCT
7893 || ada_type_name (type) == NULL)
7894 return NULL;
7895 else
7896 {
7897 int len = strlen (ada_type_name (type));
7898
7899 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7900 return type;
7901 else
7902 return ada_find_parallel_type (type, "___XVE");
7903 }
7904 }
7905
7906 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7907 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7908
7909 static int
7910 is_dynamic_field (struct type *templ_type, int field_num)
7911 {
7912 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7913
7914 return name != NULL
7915 && templ_type->field (field_num).type ()->code () == TYPE_CODE_PTR
7916 && strstr (name, "___XVL") != NULL;
7917 }
7918
7919 /* The index of the variant field of TYPE, or -1 if TYPE does not
7920 represent a variant record type. */
7921
7922 static int
7923 variant_field_index (struct type *type)
7924 {
7925 int f;
7926
7927 if (type == NULL || type->code () != TYPE_CODE_STRUCT)
7928 return -1;
7929
7930 for (f = 0; f < type->num_fields (); f += 1)
7931 {
7932 if (ada_is_variant_part (type, f))
7933 return f;
7934 }
7935 return -1;
7936 }
7937
7938 /* A record type with no fields. */
7939
7940 static struct type *
7941 empty_record (struct type *templ)
7942 {
7943 struct type *type = alloc_type_copy (templ);
7944
7945 type->set_code (TYPE_CODE_STRUCT);
7946 INIT_NONE_SPECIFIC (type);
7947 type->set_name ("<empty>");
7948 TYPE_LENGTH (type) = 0;
7949 return type;
7950 }
7951
7952 /* An ordinary record type (with fixed-length fields) that describes
7953 the value of type TYPE at VALADDR or ADDRESS (see comments at
7954 the beginning of this section) VAL according to GNAT conventions.
7955 DVAL0 should describe the (portion of a) record that contains any
7956 necessary discriminants. It should be NULL if value_type (VAL) is
7957 an outer-level type (i.e., as opposed to a branch of a variant.) A
7958 variant field (unless unchecked) is replaced by a particular branch
7959 of the variant.
7960
7961 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7962 length are not statically known are discarded. As a consequence,
7963 VALADDR, ADDRESS and DVAL0 are ignored.
7964
7965 NOTE: Limitations: For now, we assume that dynamic fields and
7966 variants occupy whole numbers of bytes. However, they need not be
7967 byte-aligned. */
7968
7969 struct type *
7970 ada_template_to_fixed_record_type_1 (struct type *type,
7971 const gdb_byte *valaddr,
7972 CORE_ADDR address, struct value *dval0,
7973 int keep_dynamic_fields)
7974 {
7975 struct value *mark = value_mark ();
7976 struct value *dval;
7977 struct type *rtype;
7978 int nfields, bit_len;
7979 int variant_field;
7980 long off;
7981 int fld_bit_len;
7982 int f;
7983
7984 /* Compute the number of fields in this record type that are going
7985 to be processed: unless keep_dynamic_fields, this includes only
7986 fields whose position and length are static will be processed. */
7987 if (keep_dynamic_fields)
7988 nfields = type->num_fields ();
7989 else
7990 {
7991 nfields = 0;
7992 while (nfields < type->num_fields ()
7993 && !ada_is_variant_part (type, nfields)
7994 && !is_dynamic_field (type, nfields))
7995 nfields++;
7996 }
7997
7998 rtype = alloc_type_copy (type);
7999 rtype->set_code (TYPE_CODE_STRUCT);
8000 INIT_NONE_SPECIFIC (rtype);
8001 rtype->set_num_fields (nfields);
8002 rtype->set_fields
8003 ((struct field *) TYPE_ZALLOC (rtype, nfields * sizeof (struct field)));
8004 rtype->set_name (ada_type_name (type));
8005 TYPE_FIXED_INSTANCE (rtype) = 1;
8006
8007 off = 0;
8008 bit_len = 0;
8009 variant_field = -1;
8010
8011 for (f = 0; f < nfields; f += 1)
8012 {
8013 off = align_up (off, field_alignment (type, f))
8014 + TYPE_FIELD_BITPOS (type, f);
8015 SET_FIELD_BITPOS (rtype->field (f), off);
8016 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8017
8018 if (ada_is_variant_part (type, f))
8019 {
8020 variant_field = f;
8021 fld_bit_len = 0;
8022 }
8023 else if (is_dynamic_field (type, f))
8024 {
8025 const gdb_byte *field_valaddr = valaddr;
8026 CORE_ADDR field_address = address;
8027 struct type *field_type =
8028 TYPE_TARGET_TYPE (type->field (f).type ());
8029
8030 if (dval0 == NULL)
8031 {
8032 /* rtype's length is computed based on the run-time
8033 value of discriminants. If the discriminants are not
8034 initialized, the type size may be completely bogus and
8035 GDB may fail to allocate a value for it. So check the
8036 size first before creating the value. */
8037 ada_ensure_varsize_limit (rtype);
8038 /* Using plain value_from_contents_and_address here
8039 causes problems because we will end up trying to
8040 resolve a type that is currently being
8041 constructed. */
8042 dval = value_from_contents_and_address_unresolved (rtype,
8043 valaddr,
8044 address);
8045 rtype = value_type (dval);
8046 }
8047 else
8048 dval = dval0;
8049
8050 /* If the type referenced by this field is an aligner type, we need
8051 to unwrap that aligner type, because its size might not be set.
8052 Keeping the aligner type would cause us to compute the wrong
8053 size for this field, impacting the offset of the all the fields
8054 that follow this one. */
8055 if (ada_is_aligner_type (field_type))
8056 {
8057 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8058
8059 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8060 field_address = cond_offset_target (field_address, field_offset);
8061 field_type = ada_aligned_type (field_type);
8062 }
8063
8064 field_valaddr = cond_offset_host (field_valaddr,
8065 off / TARGET_CHAR_BIT);
8066 field_address = cond_offset_target (field_address,
8067 off / TARGET_CHAR_BIT);
8068
8069 /* Get the fixed type of the field. Note that, in this case,
8070 we do not want to get the real type out of the tag: if
8071 the current field is the parent part of a tagged record,
8072 we will get the tag of the object. Clearly wrong: the real
8073 type of the parent is not the real type of the child. We
8074 would end up in an infinite loop. */
8075 field_type = ada_get_base_type (field_type);
8076 field_type = ada_to_fixed_type (field_type, field_valaddr,
8077 field_address, dval, 0);
8078 /* If the field size is already larger than the maximum
8079 object size, then the record itself will necessarily
8080 be larger than the maximum object size. We need to make
8081 this check now, because the size might be so ridiculously
8082 large (due to an uninitialized variable in the inferior)
8083 that it would cause an overflow when adding it to the
8084 record size. */
8085 ada_ensure_varsize_limit (field_type);
8086
8087 rtype->field (f).set_type (field_type);
8088 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8089 /* The multiplication can potentially overflow. But because
8090 the field length has been size-checked just above, and
8091 assuming that the maximum size is a reasonable value,
8092 an overflow should not happen in practice. So rather than
8093 adding overflow recovery code to this already complex code,
8094 we just assume that it's not going to happen. */
8095 fld_bit_len =
8096 TYPE_LENGTH (rtype->field (f).type ()) * TARGET_CHAR_BIT;
8097 }
8098 else
8099 {
8100 /* Note: If this field's type is a typedef, it is important
8101 to preserve the typedef layer.
8102
8103 Otherwise, we might be transforming a typedef to a fat
8104 pointer (encoding a pointer to an unconstrained array),
8105 into a basic fat pointer (encoding an unconstrained
8106 array). As both types are implemented using the same
8107 structure, the typedef is the only clue which allows us
8108 to distinguish between the two options. Stripping it
8109 would prevent us from printing this field appropriately. */
8110 rtype->field (f).set_type (type->field (f).type ());
8111 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8112 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8113 fld_bit_len =
8114 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8115 else
8116 {
8117 struct type *field_type = type->field (f).type ();
8118
8119 /* We need to be careful of typedefs when computing
8120 the length of our field. If this is a typedef,
8121 get the length of the target type, not the length
8122 of the typedef. */
8123 if (field_type->code () == TYPE_CODE_TYPEDEF)
8124 field_type = ada_typedef_target_type (field_type);
8125
8126 fld_bit_len =
8127 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8128 }
8129 }
8130 if (off + fld_bit_len > bit_len)
8131 bit_len = off + fld_bit_len;
8132 off += fld_bit_len;
8133 TYPE_LENGTH (rtype) =
8134 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8135 }
8136
8137 /* We handle the variant part, if any, at the end because of certain
8138 odd cases in which it is re-ordered so as NOT to be the last field of
8139 the record. This can happen in the presence of representation
8140 clauses. */
8141 if (variant_field >= 0)
8142 {
8143 struct type *branch_type;
8144
8145 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8146
8147 if (dval0 == NULL)
8148 {
8149 /* Using plain value_from_contents_and_address here causes
8150 problems because we will end up trying to resolve a type
8151 that is currently being constructed. */
8152 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8153 address);
8154 rtype = value_type (dval);
8155 }
8156 else
8157 dval = dval0;
8158
8159 branch_type =
8160 to_fixed_variant_branch_type
8161 (type->field (variant_field).type (),
8162 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8163 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8164 if (branch_type == NULL)
8165 {
8166 for (f = variant_field + 1; f < rtype->num_fields (); f += 1)
8167 rtype->field (f - 1) = rtype->field (f);
8168 rtype->set_num_fields (rtype->num_fields () - 1);
8169 }
8170 else
8171 {
8172 rtype->field (variant_field).set_type (branch_type);
8173 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8174 fld_bit_len =
8175 TYPE_LENGTH (rtype->field (variant_field).type ()) *
8176 TARGET_CHAR_BIT;
8177 if (off + fld_bit_len > bit_len)
8178 bit_len = off + fld_bit_len;
8179 TYPE_LENGTH (rtype) =
8180 align_up (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8181 }
8182 }
8183
8184 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8185 should contain the alignment of that record, which should be a strictly
8186 positive value. If null or negative, then something is wrong, most
8187 probably in the debug info. In that case, we don't round up the size
8188 of the resulting type. If this record is not part of another structure,
8189 the current RTYPE length might be good enough for our purposes. */
8190 if (TYPE_LENGTH (type) <= 0)
8191 {
8192 if (rtype->name ())
8193 warning (_("Invalid type size for `%s' detected: %s."),
8194 rtype->name (), pulongest (TYPE_LENGTH (type)));
8195 else
8196 warning (_("Invalid type size for <unnamed> detected: %s."),
8197 pulongest (TYPE_LENGTH (type)));
8198 }
8199 else
8200 {
8201 TYPE_LENGTH (rtype) = align_up (TYPE_LENGTH (rtype),
8202 TYPE_LENGTH (type));
8203 }
8204
8205 value_free_to_mark (mark);
8206 if (TYPE_LENGTH (rtype) > varsize_limit)
8207 error (_("record type with dynamic size is larger than varsize-limit"));
8208 return rtype;
8209 }
8210
8211 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8212 of 1. */
8213
8214 static struct type *
8215 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8216 CORE_ADDR address, struct value *dval0)
8217 {
8218 return ada_template_to_fixed_record_type_1 (type, valaddr,
8219 address, dval0, 1);
8220 }
8221
8222 /* An ordinary record type in which ___XVL-convention fields and
8223 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8224 static approximations, containing all possible fields. Uses
8225 no runtime values. Useless for use in values, but that's OK,
8226 since the results are used only for type determinations. Works on both
8227 structs and unions. Representation note: to save space, we memorize
8228 the result of this function in the TYPE_TARGET_TYPE of the
8229 template type. */
8230
8231 static struct type *
8232 template_to_static_fixed_type (struct type *type0)
8233 {
8234 struct type *type;
8235 int nfields;
8236 int f;
8237
8238 /* No need no do anything if the input type is already fixed. */
8239 if (TYPE_FIXED_INSTANCE (type0))
8240 return type0;
8241
8242 /* Likewise if we already have computed the static approximation. */
8243 if (TYPE_TARGET_TYPE (type0) != NULL)
8244 return TYPE_TARGET_TYPE (type0);
8245
8246 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8247 type = type0;
8248 nfields = type0->num_fields ();
8249
8250 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8251 recompute all over next time. */
8252 TYPE_TARGET_TYPE (type0) = type;
8253
8254 for (f = 0; f < nfields; f += 1)
8255 {
8256 struct type *field_type = type0->field (f).type ();
8257 struct type *new_type;
8258
8259 if (is_dynamic_field (type0, f))
8260 {
8261 field_type = ada_check_typedef (field_type);
8262 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8263 }
8264 else
8265 new_type = static_unwrap_type (field_type);
8266
8267 if (new_type != field_type)
8268 {
8269 /* Clone TYPE0 only the first time we get a new field type. */
8270 if (type == type0)
8271 {
8272 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8273 type->set_code (type0->code ());
8274 INIT_NONE_SPECIFIC (type);
8275 type->set_num_fields (nfields);
8276
8277 field *fields =
8278 ((struct field *)
8279 TYPE_ALLOC (type, nfields * sizeof (struct field)));
8280 memcpy (fields, type0->fields (),
8281 sizeof (struct field) * nfields);
8282 type->set_fields (fields);
8283
8284 type->set_name (ada_type_name (type0));
8285 TYPE_FIXED_INSTANCE (type) = 1;
8286 TYPE_LENGTH (type) = 0;
8287 }
8288 type->field (f).set_type (new_type);
8289 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8290 }
8291 }
8292
8293 return type;
8294 }
8295
8296 /* Given an object of type TYPE whose contents are at VALADDR and
8297 whose address in memory is ADDRESS, returns a revision of TYPE,
8298 which should be a non-dynamic-sized record, in which the variant
8299 part, if any, is replaced with the appropriate branch. Looks
8300 for discriminant values in DVAL0, which can be NULL if the record
8301 contains the necessary discriminant values. */
8302
8303 static struct type *
8304 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8305 CORE_ADDR address, struct value *dval0)
8306 {
8307 struct value *mark = value_mark ();
8308 struct value *dval;
8309 struct type *rtype;
8310 struct type *branch_type;
8311 int nfields = type->num_fields ();
8312 int variant_field = variant_field_index (type);
8313
8314 if (variant_field == -1)
8315 return type;
8316
8317 if (dval0 == NULL)
8318 {
8319 dval = value_from_contents_and_address (type, valaddr, address);
8320 type = value_type (dval);
8321 }
8322 else
8323 dval = dval0;
8324
8325 rtype = alloc_type_copy (type);
8326 rtype->set_code (TYPE_CODE_STRUCT);
8327 INIT_NONE_SPECIFIC (rtype);
8328 rtype->set_num_fields (nfields);
8329
8330 field *fields =
8331 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8332 memcpy (fields, type->fields (), sizeof (struct field) * nfields);
8333 rtype->set_fields (fields);
8334
8335 rtype->set_name (ada_type_name (type));
8336 TYPE_FIXED_INSTANCE (rtype) = 1;
8337 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8338
8339 branch_type = to_fixed_variant_branch_type
8340 (type->field (variant_field).type (),
8341 cond_offset_host (valaddr,
8342 TYPE_FIELD_BITPOS (type, variant_field)
8343 / TARGET_CHAR_BIT),
8344 cond_offset_target (address,
8345 TYPE_FIELD_BITPOS (type, variant_field)
8346 / TARGET_CHAR_BIT), dval);
8347 if (branch_type == NULL)
8348 {
8349 int f;
8350
8351 for (f = variant_field + 1; f < nfields; f += 1)
8352 rtype->field (f - 1) = rtype->field (f);
8353 rtype->set_num_fields (rtype->num_fields () - 1);
8354 }
8355 else
8356 {
8357 rtype->field (variant_field).set_type (branch_type);
8358 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8359 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8360 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8361 }
8362 TYPE_LENGTH (rtype) -= TYPE_LENGTH (type->field (variant_field).type ());
8363
8364 value_free_to_mark (mark);
8365 return rtype;
8366 }
8367
8368 /* An ordinary record type (with fixed-length fields) that describes
8369 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8370 beginning of this section]. Any necessary discriminants' values
8371 should be in DVAL, a record value; it may be NULL if the object
8372 at ADDR itself contains any necessary discriminant values.
8373 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8374 values from the record are needed. Except in the case that DVAL,
8375 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8376 unchecked) is replaced by a particular branch of the variant.
8377
8378 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8379 is questionable and may be removed. It can arise during the
8380 processing of an unconstrained-array-of-record type where all the
8381 variant branches have exactly the same size. This is because in
8382 such cases, the compiler does not bother to use the XVS convention
8383 when encoding the record. I am currently dubious of this
8384 shortcut and suspect the compiler should be altered. FIXME. */
8385
8386 static struct type *
8387 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8388 CORE_ADDR address, struct value *dval)
8389 {
8390 struct type *templ_type;
8391
8392 if (TYPE_FIXED_INSTANCE (type0))
8393 return type0;
8394
8395 templ_type = dynamic_template_type (type0);
8396
8397 if (templ_type != NULL)
8398 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8399 else if (variant_field_index (type0) >= 0)
8400 {
8401 if (dval == NULL && valaddr == NULL && address == 0)
8402 return type0;
8403 return to_record_with_fixed_variant_part (type0, valaddr, address,
8404 dval);
8405 }
8406 else
8407 {
8408 TYPE_FIXED_INSTANCE (type0) = 1;
8409 return type0;
8410 }
8411
8412 }
8413
8414 /* An ordinary record type (with fixed-length fields) that describes
8415 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8416 union type. Any necessary discriminants' values should be in DVAL,
8417 a record value. That is, this routine selects the appropriate
8418 branch of the union at ADDR according to the discriminant value
8419 indicated in the union's type name. Returns VAR_TYPE0 itself if
8420 it represents a variant subject to a pragma Unchecked_Union. */
8421
8422 static struct type *
8423 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8424 CORE_ADDR address, struct value *dval)
8425 {
8426 int which;
8427 struct type *templ_type;
8428 struct type *var_type;
8429
8430 if (var_type0->code () == TYPE_CODE_PTR)
8431 var_type = TYPE_TARGET_TYPE (var_type0);
8432 else
8433 var_type = var_type0;
8434
8435 templ_type = ada_find_parallel_type (var_type, "___XVU");
8436
8437 if (templ_type != NULL)
8438 var_type = templ_type;
8439
8440 if (is_unchecked_variant (var_type, value_type (dval)))
8441 return var_type0;
8442 which = ada_which_variant_applies (var_type, dval);
8443
8444 if (which < 0)
8445 return empty_record (var_type);
8446 else if (is_dynamic_field (var_type, which))
8447 return to_fixed_record_type
8448 (TYPE_TARGET_TYPE (var_type->field (which).type ()),
8449 valaddr, address, dval);
8450 else if (variant_field_index (var_type->field (which).type ()) >= 0)
8451 return
8452 to_fixed_record_type
8453 (var_type->field (which).type (), valaddr, address, dval);
8454 else
8455 return var_type->field (which).type ();
8456 }
8457
8458 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8459 ENCODING_TYPE, a type following the GNAT conventions for discrete
8460 type encodings, only carries redundant information. */
8461
8462 static int
8463 ada_is_redundant_range_encoding (struct type *range_type,
8464 struct type *encoding_type)
8465 {
8466 const char *bounds_str;
8467 int n;
8468 LONGEST lo, hi;
8469
8470 gdb_assert (range_type->code () == TYPE_CODE_RANGE);
8471
8472 if (get_base_type (range_type)->code ()
8473 != get_base_type (encoding_type)->code ())
8474 {
8475 /* The compiler probably used a simple base type to describe
8476 the range type instead of the range's actual base type,
8477 expecting us to get the real base type from the encoding
8478 anyway. In this situation, the encoding cannot be ignored
8479 as redundant. */
8480 return 0;
8481 }
8482
8483 if (is_dynamic_type (range_type))
8484 return 0;
8485
8486 if (encoding_type->name () == NULL)
8487 return 0;
8488
8489 bounds_str = strstr (encoding_type->name (), "___XDLU_");
8490 if (bounds_str == NULL)
8491 return 0;
8492
8493 n = 8; /* Skip "___XDLU_". */
8494 if (!ada_scan_number (bounds_str, n, &lo, &n))
8495 return 0;
8496 if (TYPE_LOW_BOUND (range_type) != lo)
8497 return 0;
8498
8499 n += 2; /* Skip the "__" separator between the two bounds. */
8500 if (!ada_scan_number (bounds_str, n, &hi, &n))
8501 return 0;
8502 if (TYPE_HIGH_BOUND (range_type) != hi)
8503 return 0;
8504
8505 return 1;
8506 }
8507
8508 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8509 a type following the GNAT encoding for describing array type
8510 indices, only carries redundant information. */
8511
8512 static int
8513 ada_is_redundant_index_type_desc (struct type *array_type,
8514 struct type *desc_type)
8515 {
8516 struct type *this_layer = check_typedef (array_type);
8517 int i;
8518
8519 for (i = 0; i < desc_type->num_fields (); i++)
8520 {
8521 if (!ada_is_redundant_range_encoding (this_layer->index_type (),
8522 desc_type->field (i).type ()))
8523 return 0;
8524 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8525 }
8526
8527 return 1;
8528 }
8529
8530 /* Assuming that TYPE0 is an array type describing the type of a value
8531 at ADDR, and that DVAL describes a record containing any
8532 discriminants used in TYPE0, returns a type for the value that
8533 contains no dynamic components (that is, no components whose sizes
8534 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8535 true, gives an error message if the resulting type's size is over
8536 varsize_limit. */
8537
8538 static struct type *
8539 to_fixed_array_type (struct type *type0, struct value *dval,
8540 int ignore_too_big)
8541 {
8542 struct type *index_type_desc;
8543 struct type *result;
8544 int constrained_packed_array_p;
8545 static const char *xa_suffix = "___XA";
8546
8547 type0 = ada_check_typedef (type0);
8548 if (TYPE_FIXED_INSTANCE (type0))
8549 return type0;
8550
8551 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8552 if (constrained_packed_array_p)
8553 type0 = decode_constrained_packed_array_type (type0);
8554
8555 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8556
8557 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8558 encoding suffixed with 'P' may still be generated. If so,
8559 it should be used to find the XA type. */
8560
8561 if (index_type_desc == NULL)
8562 {
8563 const char *type_name = ada_type_name (type0);
8564
8565 if (type_name != NULL)
8566 {
8567 const int len = strlen (type_name);
8568 char *name = (char *) alloca (len + strlen (xa_suffix));
8569
8570 if (type_name[len - 1] == 'P')
8571 {
8572 strcpy (name, type_name);
8573 strcpy (name + len - 1, xa_suffix);
8574 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8575 }
8576 }
8577 }
8578
8579 ada_fixup_array_indexes_type (index_type_desc);
8580 if (index_type_desc != NULL
8581 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8582 {
8583 /* Ignore this ___XA parallel type, as it does not bring any
8584 useful information. This allows us to avoid creating fixed
8585 versions of the array's index types, which would be identical
8586 to the original ones. This, in turn, can also help avoid
8587 the creation of fixed versions of the array itself. */
8588 index_type_desc = NULL;
8589 }
8590
8591 if (index_type_desc == NULL)
8592 {
8593 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8594
8595 /* NOTE: elt_type---the fixed version of elt_type0---should never
8596 depend on the contents of the array in properly constructed
8597 debugging data. */
8598 /* Create a fixed version of the array element type.
8599 We're not providing the address of an element here,
8600 and thus the actual object value cannot be inspected to do
8601 the conversion. This should not be a problem, since arrays of
8602 unconstrained objects are not allowed. In particular, all
8603 the elements of an array of a tagged type should all be of
8604 the same type specified in the debugging info. No need to
8605 consult the object tag. */
8606 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8607
8608 /* Make sure we always create a new array type when dealing with
8609 packed array types, since we're going to fix-up the array
8610 type length and element bitsize a little further down. */
8611 if (elt_type0 == elt_type && !constrained_packed_array_p)
8612 result = type0;
8613 else
8614 result = create_array_type (alloc_type_copy (type0),
8615 elt_type, type0->index_type ());
8616 }
8617 else
8618 {
8619 int i;
8620 struct type *elt_type0;
8621
8622 elt_type0 = type0;
8623 for (i = index_type_desc->num_fields (); i > 0; i -= 1)
8624 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8625
8626 /* NOTE: result---the fixed version of elt_type0---should never
8627 depend on the contents of the array in properly constructed
8628 debugging data. */
8629 /* Create a fixed version of the array element type.
8630 We're not providing the address of an element here,
8631 and thus the actual object value cannot be inspected to do
8632 the conversion. This should not be a problem, since arrays of
8633 unconstrained objects are not allowed. In particular, all
8634 the elements of an array of a tagged type should all be of
8635 the same type specified in the debugging info. No need to
8636 consult the object tag. */
8637 result =
8638 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8639
8640 elt_type0 = type0;
8641 for (i = index_type_desc->num_fields () - 1; i >= 0; i -= 1)
8642 {
8643 struct type *range_type =
8644 to_fixed_range_type (index_type_desc->field (i).type (), dval);
8645
8646 result = create_array_type (alloc_type_copy (elt_type0),
8647 result, range_type);
8648 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8649 }
8650 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8651 error (_("array type with dynamic size is larger than varsize-limit"));
8652 }
8653
8654 /* We want to preserve the type name. This can be useful when
8655 trying to get the type name of a value that has already been
8656 printed (for instance, if the user did "print VAR; whatis $". */
8657 result->set_name (type0->name ());
8658
8659 if (constrained_packed_array_p)
8660 {
8661 /* So far, the resulting type has been created as if the original
8662 type was a regular (non-packed) array type. As a result, the
8663 bitsize of the array elements needs to be set again, and the array
8664 length needs to be recomputed based on that bitsize. */
8665 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8666 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8667
8668 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8669 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8670 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8671 TYPE_LENGTH (result)++;
8672 }
8673
8674 TYPE_FIXED_INSTANCE (result) = 1;
8675 return result;
8676 }
8677
8678
8679 /* A standard type (containing no dynamically sized components)
8680 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8681 DVAL describes a record containing any discriminants used in TYPE0,
8682 and may be NULL if there are none, or if the object of type TYPE at
8683 ADDRESS or in VALADDR contains these discriminants.
8684
8685 If CHECK_TAG is not null, in the case of tagged types, this function
8686 attempts to locate the object's tag and use it to compute the actual
8687 type. However, when ADDRESS is null, we cannot use it to determine the
8688 location of the tag, and therefore compute the tagged type's actual type.
8689 So we return the tagged type without consulting the tag. */
8690
8691 static struct type *
8692 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8693 CORE_ADDR address, struct value *dval, int check_tag)
8694 {
8695 type = ada_check_typedef (type);
8696
8697 /* Only un-fixed types need to be handled here. */
8698 if (!HAVE_GNAT_AUX_INFO (type))
8699 return type;
8700
8701 switch (type->code ())
8702 {
8703 default:
8704 return type;
8705 case TYPE_CODE_STRUCT:
8706 {
8707 struct type *static_type = to_static_fixed_type (type);
8708 struct type *fixed_record_type =
8709 to_fixed_record_type (type, valaddr, address, NULL);
8710
8711 /* If STATIC_TYPE is a tagged type and we know the object's address,
8712 then we can determine its tag, and compute the object's actual
8713 type from there. Note that we have to use the fixed record
8714 type (the parent part of the record may have dynamic fields
8715 and the way the location of _tag is expressed may depend on
8716 them). */
8717
8718 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8719 {
8720 struct value *tag =
8721 value_tag_from_contents_and_address
8722 (fixed_record_type,
8723 valaddr,
8724 address);
8725 struct type *real_type = type_from_tag (tag);
8726 struct value *obj =
8727 value_from_contents_and_address (fixed_record_type,
8728 valaddr,
8729 address);
8730 fixed_record_type = value_type (obj);
8731 if (real_type != NULL)
8732 return to_fixed_record_type
8733 (real_type, NULL,
8734 value_address (ada_tag_value_at_base_address (obj)), NULL);
8735 }
8736
8737 /* Check to see if there is a parallel ___XVZ variable.
8738 If there is, then it provides the actual size of our type. */
8739 else if (ada_type_name (fixed_record_type) != NULL)
8740 {
8741 const char *name = ada_type_name (fixed_record_type);
8742 char *xvz_name
8743 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8744 bool xvz_found = false;
8745 LONGEST size;
8746
8747 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8748 try
8749 {
8750 xvz_found = get_int_var_value (xvz_name, size);
8751 }
8752 catch (const gdb_exception_error &except)
8753 {
8754 /* We found the variable, but somehow failed to read
8755 its value. Rethrow the same error, but with a little
8756 bit more information, to help the user understand
8757 what went wrong (Eg: the variable might have been
8758 optimized out). */
8759 throw_error (except.error,
8760 _("unable to read value of %s (%s)"),
8761 xvz_name, except.what ());
8762 }
8763
8764 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8765 {
8766 fixed_record_type = copy_type (fixed_record_type);
8767 TYPE_LENGTH (fixed_record_type) = size;
8768
8769 /* The FIXED_RECORD_TYPE may have be a stub. We have
8770 observed this when the debugging info is STABS, and
8771 apparently it is something that is hard to fix.
8772
8773 In practice, we don't need the actual type definition
8774 at all, because the presence of the XVZ variable allows us
8775 to assume that there must be a XVS type as well, which we
8776 should be able to use later, when we need the actual type
8777 definition.
8778
8779 In the meantime, pretend that the "fixed" type we are
8780 returning is NOT a stub, because this can cause trouble
8781 when using this type to create new types targeting it.
8782 Indeed, the associated creation routines often check
8783 whether the target type is a stub and will try to replace
8784 it, thus using a type with the wrong size. This, in turn,
8785 might cause the new type to have the wrong size too.
8786 Consider the case of an array, for instance, where the size
8787 of the array is computed from the number of elements in
8788 our array multiplied by the size of its element. */
8789 TYPE_STUB (fixed_record_type) = 0;
8790 }
8791 }
8792 return fixed_record_type;
8793 }
8794 case TYPE_CODE_ARRAY:
8795 return to_fixed_array_type (type, dval, 1);
8796 case TYPE_CODE_UNION:
8797 if (dval == NULL)
8798 return type;
8799 else
8800 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8801 }
8802 }
8803
8804 /* The same as ada_to_fixed_type_1, except that it preserves the type
8805 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8806
8807 The typedef layer needs be preserved in order to differentiate between
8808 arrays and array pointers when both types are implemented using the same
8809 fat pointer. In the array pointer case, the pointer is encoded as
8810 a typedef of the pointer type. For instance, considering:
8811
8812 type String_Access is access String;
8813 S1 : String_Access := null;
8814
8815 To the debugger, S1 is defined as a typedef of type String. But
8816 to the user, it is a pointer. So if the user tries to print S1,
8817 we should not dereference the array, but print the array address
8818 instead.
8819
8820 If we didn't preserve the typedef layer, we would lose the fact that
8821 the type is to be presented as a pointer (needs de-reference before
8822 being printed). And we would also use the source-level type name. */
8823
8824 struct type *
8825 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8826 CORE_ADDR address, struct value *dval, int check_tag)
8827
8828 {
8829 struct type *fixed_type =
8830 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8831
8832 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8833 then preserve the typedef layer.
8834
8835 Implementation note: We can only check the main-type portion of
8836 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8837 from TYPE now returns a type that has the same instance flags
8838 as TYPE. For instance, if TYPE is a "typedef const", and its
8839 target type is a "struct", then the typedef elimination will return
8840 a "const" version of the target type. See check_typedef for more
8841 details about how the typedef layer elimination is done.
8842
8843 brobecker/2010-11-19: It seems to me that the only case where it is
8844 useful to preserve the typedef layer is when dealing with fat pointers.
8845 Perhaps, we could add a check for that and preserve the typedef layer
8846 only in that situation. But this seems unnecessary so far, probably
8847 because we call check_typedef/ada_check_typedef pretty much everywhere.
8848 */
8849 if (type->code () == TYPE_CODE_TYPEDEF
8850 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8851 == TYPE_MAIN_TYPE (fixed_type)))
8852 return type;
8853
8854 return fixed_type;
8855 }
8856
8857 /* A standard (static-sized) type corresponding as well as possible to
8858 TYPE0, but based on no runtime data. */
8859
8860 static struct type *
8861 to_static_fixed_type (struct type *type0)
8862 {
8863 struct type *type;
8864
8865 if (type0 == NULL)
8866 return NULL;
8867
8868 if (TYPE_FIXED_INSTANCE (type0))
8869 return type0;
8870
8871 type0 = ada_check_typedef (type0);
8872
8873 switch (type0->code ())
8874 {
8875 default:
8876 return type0;
8877 case TYPE_CODE_STRUCT:
8878 type = dynamic_template_type (type0);
8879 if (type != NULL)
8880 return template_to_static_fixed_type (type);
8881 else
8882 return template_to_static_fixed_type (type0);
8883 case TYPE_CODE_UNION:
8884 type = ada_find_parallel_type (type0, "___XVU");
8885 if (type != NULL)
8886 return template_to_static_fixed_type (type);
8887 else
8888 return template_to_static_fixed_type (type0);
8889 }
8890 }
8891
8892 /* A static approximation of TYPE with all type wrappers removed. */
8893
8894 static struct type *
8895 static_unwrap_type (struct type *type)
8896 {
8897 if (ada_is_aligner_type (type))
8898 {
8899 struct type *type1 = ada_check_typedef (type)->field (0).type ();
8900 if (ada_type_name (type1) == NULL)
8901 type1->set_name (ada_type_name (type));
8902
8903 return static_unwrap_type (type1);
8904 }
8905 else
8906 {
8907 struct type *raw_real_type = ada_get_base_type (type);
8908
8909 if (raw_real_type == type)
8910 return type;
8911 else
8912 return to_static_fixed_type (raw_real_type);
8913 }
8914 }
8915
8916 /* In some cases, incomplete and private types require
8917 cross-references that are not resolved as records (for example,
8918 type Foo;
8919 type FooP is access Foo;
8920 V: FooP;
8921 type Foo is array ...;
8922 ). In these cases, since there is no mechanism for producing
8923 cross-references to such types, we instead substitute for FooP a
8924 stub enumeration type that is nowhere resolved, and whose tag is
8925 the name of the actual type. Call these types "non-record stubs". */
8926
8927 /* A type equivalent to TYPE that is not a non-record stub, if one
8928 exists, otherwise TYPE. */
8929
8930 struct type *
8931 ada_check_typedef (struct type *type)
8932 {
8933 if (type == NULL)
8934 return NULL;
8935
8936 /* If our type is an access to an unconstrained array, which is encoded
8937 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8938 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8939 what allows us to distinguish between fat pointers that represent
8940 array types, and fat pointers that represent array access types
8941 (in both cases, the compiler implements them as fat pointers). */
8942 if (ada_is_access_to_unconstrained_array (type))
8943 return type;
8944
8945 type = check_typedef (type);
8946 if (type == NULL || type->code () != TYPE_CODE_ENUM
8947 || !TYPE_STUB (type)
8948 || type->name () == NULL)
8949 return type;
8950 else
8951 {
8952 const char *name = type->name ();
8953 struct type *type1 = ada_find_any_type (name);
8954
8955 if (type1 == NULL)
8956 return type;
8957
8958 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8959 stubs pointing to arrays, as we don't create symbols for array
8960 types, only for the typedef-to-array types). If that's the case,
8961 strip the typedef layer. */
8962 if (type1->code () == TYPE_CODE_TYPEDEF)
8963 type1 = ada_check_typedef (type1);
8964
8965 return type1;
8966 }
8967 }
8968
8969 /* A value representing the data at VALADDR/ADDRESS as described by
8970 type TYPE0, but with a standard (static-sized) type that correctly
8971 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8972 type, then return VAL0 [this feature is simply to avoid redundant
8973 creation of struct values]. */
8974
8975 static struct value *
8976 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8977 struct value *val0)
8978 {
8979 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8980
8981 if (type == type0 && val0 != NULL)
8982 return val0;
8983
8984 if (VALUE_LVAL (val0) != lval_memory)
8985 {
8986 /* Our value does not live in memory; it could be a convenience
8987 variable, for instance. Create a not_lval value using val0's
8988 contents. */
8989 return value_from_contents (type, value_contents (val0));
8990 }
8991
8992 return value_from_contents_and_address (type, 0, address);
8993 }
8994
8995 /* A value representing VAL, but with a standard (static-sized) type
8996 that correctly describes it. Does not necessarily create a new
8997 value. */
8998
8999 struct value *
9000 ada_to_fixed_value (struct value *val)
9001 {
9002 val = unwrap_value (val);
9003 val = ada_to_fixed_value_create (value_type (val), value_address (val), val);
9004 return val;
9005 }
9006 \f
9007
9008 /* Attributes */
9009
9010 /* Table mapping attribute numbers to names.
9011 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9012
9013 static const char *attribute_names[] = {
9014 "<?>",
9015
9016 "first",
9017 "last",
9018 "length",
9019 "image",
9020 "max",
9021 "min",
9022 "modulus",
9023 "pos",
9024 "size",
9025 "tag",
9026 "val",
9027 0
9028 };
9029
9030 static const char *
9031 ada_attribute_name (enum exp_opcode n)
9032 {
9033 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9034 return attribute_names[n - OP_ATR_FIRST + 1];
9035 else
9036 return attribute_names[0];
9037 }
9038
9039 /* Evaluate the 'POS attribute applied to ARG. */
9040
9041 static LONGEST
9042 pos_atr (struct value *arg)
9043 {
9044 struct value *val = coerce_ref (arg);
9045 struct type *type = value_type (val);
9046 LONGEST result;
9047
9048 if (!discrete_type_p (type))
9049 error (_("'POS only defined on discrete types"));
9050
9051 if (!discrete_position (type, value_as_long (val), &result))
9052 error (_("enumeration value is invalid: can't find 'POS"));
9053
9054 return result;
9055 }
9056
9057 static struct value *
9058 value_pos_atr (struct type *type, struct value *arg)
9059 {
9060 return value_from_longest (type, pos_atr (arg));
9061 }
9062
9063 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9064
9065 static struct value *
9066 val_atr (struct type *type, LONGEST val)
9067 {
9068 gdb_assert (discrete_type_p (type));
9069 if (type->code () == TYPE_CODE_RANGE)
9070 type = TYPE_TARGET_TYPE (type);
9071 if (type->code () == TYPE_CODE_ENUM)
9072 {
9073 if (val < 0 || val >= type->num_fields ())
9074 error (_("argument to 'VAL out of range"));
9075 val = TYPE_FIELD_ENUMVAL (type, val);
9076 }
9077 return value_from_longest (type, val);
9078 }
9079
9080 static struct value *
9081 value_val_atr (struct type *type, struct value *arg)
9082 {
9083 if (!discrete_type_p (type))
9084 error (_("'VAL only defined on discrete types"));
9085 if (!integer_type_p (value_type (arg)))
9086 error (_("'VAL requires integral argument"));
9087
9088 return val_atr (type, value_as_long (arg));
9089 }
9090 \f
9091
9092 /* Evaluation */
9093
9094 /* True if TYPE appears to be an Ada character type.
9095 [At the moment, this is true only for Character and Wide_Character;
9096 It is a heuristic test that could stand improvement]. */
9097
9098 bool
9099 ada_is_character_type (struct type *type)
9100 {
9101 const char *name;
9102
9103 /* If the type code says it's a character, then assume it really is,
9104 and don't check any further. */
9105 if (type->code () == TYPE_CODE_CHAR)
9106 return true;
9107
9108 /* Otherwise, assume it's a character type iff it is a discrete type
9109 with a known character type name. */
9110 name = ada_type_name (type);
9111 return (name != NULL
9112 && (type->code () == TYPE_CODE_INT
9113 || type->code () == TYPE_CODE_RANGE)
9114 && (strcmp (name, "character") == 0
9115 || strcmp (name, "wide_character") == 0
9116 || strcmp (name, "wide_wide_character") == 0
9117 || strcmp (name, "unsigned char") == 0));
9118 }
9119
9120 /* True if TYPE appears to be an Ada string type. */
9121
9122 bool
9123 ada_is_string_type (struct type *type)
9124 {
9125 type = ada_check_typedef (type);
9126 if (type != NULL
9127 && type->code () != TYPE_CODE_PTR
9128 && (ada_is_simple_array_type (type)
9129 || ada_is_array_descriptor_type (type))
9130 && ada_array_arity (type) == 1)
9131 {
9132 struct type *elttype = ada_array_element_type (type, 1);
9133
9134 return ada_is_character_type (elttype);
9135 }
9136 else
9137 return false;
9138 }
9139
9140 /* The compiler sometimes provides a parallel XVS type for a given
9141 PAD type. Normally, it is safe to follow the PAD type directly,
9142 but older versions of the compiler have a bug that causes the offset
9143 of its "F" field to be wrong. Following that field in that case
9144 would lead to incorrect results, but this can be worked around
9145 by ignoring the PAD type and using the associated XVS type instead.
9146
9147 Set to True if the debugger should trust the contents of PAD types.
9148 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9149 static bool trust_pad_over_xvs = true;
9150
9151 /* True if TYPE is a struct type introduced by the compiler to force the
9152 alignment of a value. Such types have a single field with a
9153 distinctive name. */
9154
9155 int
9156 ada_is_aligner_type (struct type *type)
9157 {
9158 type = ada_check_typedef (type);
9159
9160 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9161 return 0;
9162
9163 return (type->code () == TYPE_CODE_STRUCT
9164 && type->num_fields () == 1
9165 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9166 }
9167
9168 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9169 the parallel type. */
9170
9171 struct type *
9172 ada_get_base_type (struct type *raw_type)
9173 {
9174 struct type *real_type_namer;
9175 struct type *raw_real_type;
9176
9177 if (raw_type == NULL || raw_type->code () != TYPE_CODE_STRUCT)
9178 return raw_type;
9179
9180 if (ada_is_aligner_type (raw_type))
9181 /* The encoding specifies that we should always use the aligner type.
9182 So, even if this aligner type has an associated XVS type, we should
9183 simply ignore it.
9184
9185 According to the compiler gurus, an XVS type parallel to an aligner
9186 type may exist because of a stabs limitation. In stabs, aligner
9187 types are empty because the field has a variable-sized type, and
9188 thus cannot actually be used as an aligner type. As a result,
9189 we need the associated parallel XVS type to decode the type.
9190 Since the policy in the compiler is to not change the internal
9191 representation based on the debugging info format, we sometimes
9192 end up having a redundant XVS type parallel to the aligner type. */
9193 return raw_type;
9194
9195 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9196 if (real_type_namer == NULL
9197 || real_type_namer->code () != TYPE_CODE_STRUCT
9198 || real_type_namer->num_fields () != 1)
9199 return raw_type;
9200
9201 if (real_type_namer->field (0).type ()->code () != TYPE_CODE_REF)
9202 {
9203 /* This is an older encoding form where the base type needs to be
9204 looked up by name. We prefer the newer encoding because it is
9205 more efficient. */
9206 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9207 if (raw_real_type == NULL)
9208 return raw_type;
9209 else
9210 return raw_real_type;
9211 }
9212
9213 /* The field in our XVS type is a reference to the base type. */
9214 return TYPE_TARGET_TYPE (real_type_namer->field (0).type ());
9215 }
9216
9217 /* The type of value designated by TYPE, with all aligners removed. */
9218
9219 struct type *
9220 ada_aligned_type (struct type *type)
9221 {
9222 if (ada_is_aligner_type (type))
9223 return ada_aligned_type (type->field (0).type ());
9224 else
9225 return ada_get_base_type (type);
9226 }
9227
9228
9229 /* The address of the aligned value in an object at address VALADDR
9230 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9231
9232 const gdb_byte *
9233 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9234 {
9235 if (ada_is_aligner_type (type))
9236 return ada_aligned_value_addr (type->field (0).type (),
9237 valaddr +
9238 TYPE_FIELD_BITPOS (type,
9239 0) / TARGET_CHAR_BIT);
9240 else
9241 return valaddr;
9242 }
9243
9244
9245
9246 /* The printed representation of an enumeration literal with encoded
9247 name NAME. The value is good to the next call of ada_enum_name. */
9248 const char *
9249 ada_enum_name (const char *name)
9250 {
9251 static char *result;
9252 static size_t result_len = 0;
9253 const char *tmp;
9254
9255 /* First, unqualify the enumeration name:
9256 1. Search for the last '.' character. If we find one, then skip
9257 all the preceding characters, the unqualified name starts
9258 right after that dot.
9259 2. Otherwise, we may be debugging on a target where the compiler
9260 translates dots into "__". Search forward for double underscores,
9261 but stop searching when we hit an overloading suffix, which is
9262 of the form "__" followed by digits. */
9263
9264 tmp = strrchr (name, '.');
9265 if (tmp != NULL)
9266 name = tmp + 1;
9267 else
9268 {
9269 while ((tmp = strstr (name, "__")) != NULL)
9270 {
9271 if (isdigit (tmp[2]))
9272 break;
9273 else
9274 name = tmp + 2;
9275 }
9276 }
9277
9278 if (name[0] == 'Q')
9279 {
9280 int v;
9281
9282 if (name[1] == 'U' || name[1] == 'W')
9283 {
9284 if (sscanf (name + 2, "%x", &v) != 1)
9285 return name;
9286 }
9287 else if (((name[1] >= '0' && name[1] <= '9')
9288 || (name[1] >= 'a' && name[1] <= 'z'))
9289 && name[2] == '\0')
9290 {
9291 GROW_VECT (result, result_len, 4);
9292 xsnprintf (result, result_len, "'%c'", name[1]);
9293 return result;
9294 }
9295 else
9296 return name;
9297
9298 GROW_VECT (result, result_len, 16);
9299 if (isascii (v) && isprint (v))
9300 xsnprintf (result, result_len, "'%c'", v);
9301 else if (name[1] == 'U')
9302 xsnprintf (result, result_len, "[\"%02x\"]", v);
9303 else
9304 xsnprintf (result, result_len, "[\"%04x\"]", v);
9305
9306 return result;
9307 }
9308 else
9309 {
9310 tmp = strstr (name, "__");
9311 if (tmp == NULL)
9312 tmp = strstr (name, "$");
9313 if (tmp != NULL)
9314 {
9315 GROW_VECT (result, result_len, tmp - name + 1);
9316 strncpy (result, name, tmp - name);
9317 result[tmp - name] = '\0';
9318 return result;
9319 }
9320
9321 return name;
9322 }
9323 }
9324
9325 /* Evaluate the subexpression of EXP starting at *POS as for
9326 evaluate_type, updating *POS to point just past the evaluated
9327 expression. */
9328
9329 static struct value *
9330 evaluate_subexp_type (struct expression *exp, int *pos)
9331 {
9332 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9333 }
9334
9335 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9336 value it wraps. */
9337
9338 static struct value *
9339 unwrap_value (struct value *val)
9340 {
9341 struct type *type = ada_check_typedef (value_type (val));
9342
9343 if (ada_is_aligner_type (type))
9344 {
9345 struct value *v = ada_value_struct_elt (val, "F", 0);
9346 struct type *val_type = ada_check_typedef (value_type (v));
9347
9348 if (ada_type_name (val_type) == NULL)
9349 val_type->set_name (ada_type_name (type));
9350
9351 return unwrap_value (v);
9352 }
9353 else
9354 {
9355 struct type *raw_real_type =
9356 ada_check_typedef (ada_get_base_type (type));
9357
9358 /* If there is no parallel XVS or XVE type, then the value is
9359 already unwrapped. Return it without further modification. */
9360 if ((type == raw_real_type)
9361 && ada_find_parallel_type (type, "___XVE") == NULL)
9362 return val;
9363
9364 return
9365 coerce_unspec_val_to_type
9366 (val, ada_to_fixed_type (raw_real_type, 0,
9367 value_address (val),
9368 NULL, 1));
9369 }
9370 }
9371
9372 static struct value *
9373 cast_from_fixed (struct type *type, struct value *arg)
9374 {
9375 struct value *scale = ada_scaling_factor (value_type (arg));
9376 arg = value_cast (value_type (scale), arg);
9377
9378 arg = value_binop (arg, scale, BINOP_MUL);
9379 return value_cast (type, arg);
9380 }
9381
9382 static struct value *
9383 cast_to_fixed (struct type *type, struct value *arg)
9384 {
9385 if (type == value_type (arg))
9386 return arg;
9387
9388 struct value *scale = ada_scaling_factor (type);
9389 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg)))
9390 arg = cast_from_fixed (value_type (scale), arg);
9391 else
9392 arg = value_cast (value_type (scale), arg);
9393
9394 arg = value_binop (arg, scale, BINOP_DIV);
9395 return value_cast (type, arg);
9396 }
9397
9398 /* Given two array types T1 and T2, return nonzero iff both arrays
9399 contain the same number of elements. */
9400
9401 static int
9402 ada_same_array_size_p (struct type *t1, struct type *t2)
9403 {
9404 LONGEST lo1, hi1, lo2, hi2;
9405
9406 /* Get the array bounds in order to verify that the size of
9407 the two arrays match. */
9408 if (!get_array_bounds (t1, &lo1, &hi1)
9409 || !get_array_bounds (t2, &lo2, &hi2))
9410 error (_("unable to determine array bounds"));
9411
9412 /* To make things easier for size comparison, normalize a bit
9413 the case of empty arrays by making sure that the difference
9414 between upper bound and lower bound is always -1. */
9415 if (lo1 > hi1)
9416 hi1 = lo1 - 1;
9417 if (lo2 > hi2)
9418 hi2 = lo2 - 1;
9419
9420 return (hi1 - lo1 == hi2 - lo2);
9421 }
9422
9423 /* Assuming that VAL is an array of integrals, and TYPE represents
9424 an array with the same number of elements, but with wider integral
9425 elements, return an array "casted" to TYPE. In practice, this
9426 means that the returned array is built by casting each element
9427 of the original array into TYPE's (wider) element type. */
9428
9429 static struct value *
9430 ada_promote_array_of_integrals (struct type *type, struct value *val)
9431 {
9432 struct type *elt_type = TYPE_TARGET_TYPE (type);
9433 LONGEST lo, hi;
9434 struct value *res;
9435 LONGEST i;
9436
9437 /* Verify that both val and type are arrays of scalars, and
9438 that the size of val's elements is smaller than the size
9439 of type's element. */
9440 gdb_assert (type->code () == TYPE_CODE_ARRAY);
9441 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9442 gdb_assert (value_type (val)->code () == TYPE_CODE_ARRAY);
9443 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9444 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9445 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9446
9447 if (!get_array_bounds (type, &lo, &hi))
9448 error (_("unable to determine array bounds"));
9449
9450 res = allocate_value (type);
9451
9452 /* Promote each array element. */
9453 for (i = 0; i < hi - lo + 1; i++)
9454 {
9455 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9456
9457 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9458 value_contents_all (elt), TYPE_LENGTH (elt_type));
9459 }
9460
9461 return res;
9462 }
9463
9464 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9465 return the converted value. */
9466
9467 static struct value *
9468 coerce_for_assign (struct type *type, struct value *val)
9469 {
9470 struct type *type2 = value_type (val);
9471
9472 if (type == type2)
9473 return val;
9474
9475 type2 = ada_check_typedef (type2);
9476 type = ada_check_typedef (type);
9477
9478 if (type2->code () == TYPE_CODE_PTR
9479 && type->code () == TYPE_CODE_ARRAY)
9480 {
9481 val = ada_value_ind (val);
9482 type2 = value_type (val);
9483 }
9484
9485 if (type2->code () == TYPE_CODE_ARRAY
9486 && type->code () == TYPE_CODE_ARRAY)
9487 {
9488 if (!ada_same_array_size_p (type, type2))
9489 error (_("cannot assign arrays of different length"));
9490
9491 if (is_integral_type (TYPE_TARGET_TYPE (type))
9492 && is_integral_type (TYPE_TARGET_TYPE (type2))
9493 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9494 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9495 {
9496 /* Allow implicit promotion of the array elements to
9497 a wider type. */
9498 return ada_promote_array_of_integrals (type, val);
9499 }
9500
9501 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9502 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9503 error (_("Incompatible types in assignment"));
9504 deprecated_set_value_type (val, type);
9505 }
9506 return val;
9507 }
9508
9509 static struct value *
9510 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9511 {
9512 struct value *val;
9513 struct type *type1, *type2;
9514 LONGEST v, v1, v2;
9515
9516 arg1 = coerce_ref (arg1);
9517 arg2 = coerce_ref (arg2);
9518 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9519 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9520
9521 if (type1->code () != TYPE_CODE_INT
9522 || type2->code () != TYPE_CODE_INT)
9523 return value_binop (arg1, arg2, op);
9524
9525 switch (op)
9526 {
9527 case BINOP_MOD:
9528 case BINOP_DIV:
9529 case BINOP_REM:
9530 break;
9531 default:
9532 return value_binop (arg1, arg2, op);
9533 }
9534
9535 v2 = value_as_long (arg2);
9536 if (v2 == 0)
9537 error (_("second operand of %s must not be zero."), op_string (op));
9538
9539 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9540 return value_binop (arg1, arg2, op);
9541
9542 v1 = value_as_long (arg1);
9543 switch (op)
9544 {
9545 case BINOP_DIV:
9546 v = v1 / v2;
9547 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9548 v += v > 0 ? -1 : 1;
9549 break;
9550 case BINOP_REM:
9551 v = v1 % v2;
9552 if (v * v1 < 0)
9553 v -= v2;
9554 break;
9555 default:
9556 /* Should not reach this point. */
9557 v = 0;
9558 }
9559
9560 val = allocate_value (type1);
9561 store_unsigned_integer (value_contents_raw (val),
9562 TYPE_LENGTH (value_type (val)),
9563 type_byte_order (type1), v);
9564 return val;
9565 }
9566
9567 static int
9568 ada_value_equal (struct value *arg1, struct value *arg2)
9569 {
9570 if (ada_is_direct_array_type (value_type (arg1))
9571 || ada_is_direct_array_type (value_type (arg2)))
9572 {
9573 struct type *arg1_type, *arg2_type;
9574
9575 /* Automatically dereference any array reference before
9576 we attempt to perform the comparison. */
9577 arg1 = ada_coerce_ref (arg1);
9578 arg2 = ada_coerce_ref (arg2);
9579
9580 arg1 = ada_coerce_to_simple_array (arg1);
9581 arg2 = ada_coerce_to_simple_array (arg2);
9582
9583 arg1_type = ada_check_typedef (value_type (arg1));
9584 arg2_type = ada_check_typedef (value_type (arg2));
9585
9586 if (arg1_type->code () != TYPE_CODE_ARRAY
9587 || arg2_type->code () != TYPE_CODE_ARRAY)
9588 error (_("Attempt to compare array with non-array"));
9589 /* FIXME: The following works only for types whose
9590 representations use all bits (no padding or undefined bits)
9591 and do not have user-defined equality. */
9592 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9593 && memcmp (value_contents (arg1), value_contents (arg2),
9594 TYPE_LENGTH (arg1_type)) == 0);
9595 }
9596 return value_equal (arg1, arg2);
9597 }
9598
9599 /* Total number of component associations in the aggregate starting at
9600 index PC in EXP. Assumes that index PC is the start of an
9601 OP_AGGREGATE. */
9602
9603 static int
9604 num_component_specs (struct expression *exp, int pc)
9605 {
9606 int n, m, i;
9607
9608 m = exp->elts[pc + 1].longconst;
9609 pc += 3;
9610 n = 0;
9611 for (i = 0; i < m; i += 1)
9612 {
9613 switch (exp->elts[pc].opcode)
9614 {
9615 default:
9616 n += 1;
9617 break;
9618 case OP_CHOICES:
9619 n += exp->elts[pc + 1].longconst;
9620 break;
9621 }
9622 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9623 }
9624 return n;
9625 }
9626
9627 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9628 component of LHS (a simple array or a record), updating *POS past
9629 the expression, assuming that LHS is contained in CONTAINER. Does
9630 not modify the inferior's memory, nor does it modify LHS (unless
9631 LHS == CONTAINER). */
9632
9633 static void
9634 assign_component (struct value *container, struct value *lhs, LONGEST index,
9635 struct expression *exp, int *pos)
9636 {
9637 struct value *mark = value_mark ();
9638 struct value *elt;
9639 struct type *lhs_type = check_typedef (value_type (lhs));
9640
9641 if (lhs_type->code () == TYPE_CODE_ARRAY)
9642 {
9643 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9644 struct value *index_val = value_from_longest (index_type, index);
9645
9646 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9647 }
9648 else
9649 {
9650 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9651 elt = ada_to_fixed_value (elt);
9652 }
9653
9654 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9655 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9656 else
9657 value_assign_to_component (container, elt,
9658 ada_evaluate_subexp (NULL, exp, pos,
9659 EVAL_NORMAL));
9660
9661 value_free_to_mark (mark);
9662 }
9663
9664 /* Assuming that LHS represents an lvalue having a record or array
9665 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9666 of that aggregate's value to LHS, advancing *POS past the
9667 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9668 lvalue containing LHS (possibly LHS itself). Does not modify
9669 the inferior's memory, nor does it modify the contents of
9670 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9671
9672 static struct value *
9673 assign_aggregate (struct value *container,
9674 struct value *lhs, struct expression *exp,
9675 int *pos, enum noside noside)
9676 {
9677 struct type *lhs_type;
9678 int n = exp->elts[*pos+1].longconst;
9679 LONGEST low_index, high_index;
9680 int num_specs;
9681 LONGEST *indices;
9682 int max_indices, num_indices;
9683 int i;
9684
9685 *pos += 3;
9686 if (noside != EVAL_NORMAL)
9687 {
9688 for (i = 0; i < n; i += 1)
9689 ada_evaluate_subexp (NULL, exp, pos, noside);
9690 return container;
9691 }
9692
9693 container = ada_coerce_ref (container);
9694 if (ada_is_direct_array_type (value_type (container)))
9695 container = ada_coerce_to_simple_array (container);
9696 lhs = ada_coerce_ref (lhs);
9697 if (!deprecated_value_modifiable (lhs))
9698 error (_("Left operand of assignment is not a modifiable lvalue."));
9699
9700 lhs_type = check_typedef (value_type (lhs));
9701 if (ada_is_direct_array_type (lhs_type))
9702 {
9703 lhs = ada_coerce_to_simple_array (lhs);
9704 lhs_type = check_typedef (value_type (lhs));
9705 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9706 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9707 }
9708 else if (lhs_type->code () == TYPE_CODE_STRUCT)
9709 {
9710 low_index = 0;
9711 high_index = num_visible_fields (lhs_type) - 1;
9712 }
9713 else
9714 error (_("Left-hand side must be array or record."));
9715
9716 num_specs = num_component_specs (exp, *pos - 3);
9717 max_indices = 4 * num_specs + 4;
9718 indices = XALLOCAVEC (LONGEST, max_indices);
9719 indices[0] = indices[1] = low_index - 1;
9720 indices[2] = indices[3] = high_index + 1;
9721 num_indices = 4;
9722
9723 for (i = 0; i < n; i += 1)
9724 {
9725 switch (exp->elts[*pos].opcode)
9726 {
9727 case OP_CHOICES:
9728 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9729 &num_indices, max_indices,
9730 low_index, high_index);
9731 break;
9732 case OP_POSITIONAL:
9733 aggregate_assign_positional (container, lhs, exp, pos, indices,
9734 &num_indices, max_indices,
9735 low_index, high_index);
9736 break;
9737 case OP_OTHERS:
9738 if (i != n-1)
9739 error (_("Misplaced 'others' clause"));
9740 aggregate_assign_others (container, lhs, exp, pos, indices,
9741 num_indices, low_index, high_index);
9742 break;
9743 default:
9744 error (_("Internal error: bad aggregate clause"));
9745 }
9746 }
9747
9748 return container;
9749 }
9750
9751 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9752 construct at *POS, updating *POS past the construct, given that
9753 the positions are relative to lower bound LOW, where HIGH is the
9754 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9755 updating *NUM_INDICES as needed. CONTAINER is as for
9756 assign_aggregate. */
9757 static void
9758 aggregate_assign_positional (struct value *container,
9759 struct value *lhs, struct expression *exp,
9760 int *pos, LONGEST *indices, int *num_indices,
9761 int max_indices, LONGEST low, LONGEST high)
9762 {
9763 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9764
9765 if (ind - 1 == high)
9766 warning (_("Extra components in aggregate ignored."));
9767 if (ind <= high)
9768 {
9769 add_component_interval (ind, ind, indices, num_indices, max_indices);
9770 *pos += 3;
9771 assign_component (container, lhs, ind, exp, pos);
9772 }
9773 else
9774 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9775 }
9776
9777 /* Assign into the components of LHS indexed by the OP_CHOICES
9778 construct at *POS, updating *POS past the construct, given that
9779 the allowable indices are LOW..HIGH. Record the indices assigned
9780 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9781 needed. CONTAINER is as for assign_aggregate. */
9782 static void
9783 aggregate_assign_from_choices (struct value *container,
9784 struct value *lhs, struct expression *exp,
9785 int *pos, LONGEST *indices, int *num_indices,
9786 int max_indices, LONGEST low, LONGEST high)
9787 {
9788 int j;
9789 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9790 int choice_pos, expr_pc;
9791 int is_array = ada_is_direct_array_type (value_type (lhs));
9792
9793 choice_pos = *pos += 3;
9794
9795 for (j = 0; j < n_choices; j += 1)
9796 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9797 expr_pc = *pos;
9798 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9799
9800 for (j = 0; j < n_choices; j += 1)
9801 {
9802 LONGEST lower, upper;
9803 enum exp_opcode op = exp->elts[choice_pos].opcode;
9804
9805 if (op == OP_DISCRETE_RANGE)
9806 {
9807 choice_pos += 1;
9808 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9809 EVAL_NORMAL));
9810 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9811 EVAL_NORMAL));
9812 }
9813 else if (is_array)
9814 {
9815 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9816 EVAL_NORMAL));
9817 upper = lower;
9818 }
9819 else
9820 {
9821 int ind;
9822 const char *name;
9823
9824 switch (op)
9825 {
9826 case OP_NAME:
9827 name = &exp->elts[choice_pos + 2].string;
9828 break;
9829 case OP_VAR_VALUE:
9830 name = exp->elts[choice_pos + 2].symbol->natural_name ();
9831 break;
9832 default:
9833 error (_("Invalid record component association."));
9834 }
9835 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9836 ind = 0;
9837 if (! find_struct_field (name, value_type (lhs), 0,
9838 NULL, NULL, NULL, NULL, &ind))
9839 error (_("Unknown component name: %s."), name);
9840 lower = upper = ind;
9841 }
9842
9843 if (lower <= upper && (lower < low || upper > high))
9844 error (_("Index in component association out of bounds."));
9845
9846 add_component_interval (lower, upper, indices, num_indices,
9847 max_indices);
9848 while (lower <= upper)
9849 {
9850 int pos1;
9851
9852 pos1 = expr_pc;
9853 assign_component (container, lhs, lower, exp, &pos1);
9854 lower += 1;
9855 }
9856 }
9857 }
9858
9859 /* Assign the value of the expression in the OP_OTHERS construct in
9860 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9861 have not been previously assigned. The index intervals already assigned
9862 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9863 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9864 static void
9865 aggregate_assign_others (struct value *container,
9866 struct value *lhs, struct expression *exp,
9867 int *pos, LONGEST *indices, int num_indices,
9868 LONGEST low, LONGEST high)
9869 {
9870 int i;
9871 int expr_pc = *pos + 1;
9872
9873 for (i = 0; i < num_indices - 2; i += 2)
9874 {
9875 LONGEST ind;
9876
9877 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9878 {
9879 int localpos;
9880
9881 localpos = expr_pc;
9882 assign_component (container, lhs, ind, exp, &localpos);
9883 }
9884 }
9885 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9886 }
9887
9888 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9889 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9890 modifying *SIZE as needed. It is an error if *SIZE exceeds
9891 MAX_SIZE. The resulting intervals do not overlap. */
9892 static void
9893 add_component_interval (LONGEST low, LONGEST high,
9894 LONGEST* indices, int *size, int max_size)
9895 {
9896 int i, j;
9897
9898 for (i = 0; i < *size; i += 2) {
9899 if (high >= indices[i] && low <= indices[i + 1])
9900 {
9901 int kh;
9902
9903 for (kh = i + 2; kh < *size; kh += 2)
9904 if (high < indices[kh])
9905 break;
9906 if (low < indices[i])
9907 indices[i] = low;
9908 indices[i + 1] = indices[kh - 1];
9909 if (high > indices[i + 1])
9910 indices[i + 1] = high;
9911 memcpy (indices + i + 2, indices + kh, *size - kh);
9912 *size -= kh - i - 2;
9913 return;
9914 }
9915 else if (high < indices[i])
9916 break;
9917 }
9918
9919 if (*size == max_size)
9920 error (_("Internal error: miscounted aggregate components."));
9921 *size += 2;
9922 for (j = *size-1; j >= i+2; j -= 1)
9923 indices[j] = indices[j - 2];
9924 indices[i] = low;
9925 indices[i + 1] = high;
9926 }
9927
9928 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9929 is different. */
9930
9931 static struct value *
9932 ada_value_cast (struct type *type, struct value *arg2)
9933 {
9934 if (type == ada_check_typedef (value_type (arg2)))
9935 return arg2;
9936
9937 if (ada_is_gnat_encoded_fixed_point_type (type))
9938 return cast_to_fixed (type, arg2);
9939
9940 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
9941 return cast_from_fixed (type, arg2);
9942
9943 return value_cast (type, arg2);
9944 }
9945
9946 /* Evaluating Ada expressions, and printing their result.
9947 ------------------------------------------------------
9948
9949 1. Introduction:
9950 ----------------
9951
9952 We usually evaluate an Ada expression in order to print its value.
9953 We also evaluate an expression in order to print its type, which
9954 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9955 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9956 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9957 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9958 similar.
9959
9960 Evaluating expressions is a little more complicated for Ada entities
9961 than it is for entities in languages such as C. The main reason for
9962 this is that Ada provides types whose definition might be dynamic.
9963 One example of such types is variant records. Or another example
9964 would be an array whose bounds can only be known at run time.
9965
9966 The following description is a general guide as to what should be
9967 done (and what should NOT be done) in order to evaluate an expression
9968 involving such types, and when. This does not cover how the semantic
9969 information is encoded by GNAT as this is covered separatly. For the
9970 document used as the reference for the GNAT encoding, see exp_dbug.ads
9971 in the GNAT sources.
9972
9973 Ideally, we should embed each part of this description next to its
9974 associated code. Unfortunately, the amount of code is so vast right
9975 now that it's hard to see whether the code handling a particular
9976 situation might be duplicated or not. One day, when the code is
9977 cleaned up, this guide might become redundant with the comments
9978 inserted in the code, and we might want to remove it.
9979
9980 2. ``Fixing'' an Entity, the Simple Case:
9981 -----------------------------------------
9982
9983 When evaluating Ada expressions, the tricky issue is that they may
9984 reference entities whose type contents and size are not statically
9985 known. Consider for instance a variant record:
9986
9987 type Rec (Empty : Boolean := True) is record
9988 case Empty is
9989 when True => null;
9990 when False => Value : Integer;
9991 end case;
9992 end record;
9993 Yes : Rec := (Empty => False, Value => 1);
9994 No : Rec := (empty => True);
9995
9996 The size and contents of that record depends on the value of the
9997 descriminant (Rec.Empty). At this point, neither the debugging
9998 information nor the associated type structure in GDB are able to
9999 express such dynamic types. So what the debugger does is to create
10000 "fixed" versions of the type that applies to the specific object.
10001 We also informally refer to this operation as "fixing" an object,
10002 which means creating its associated fixed type.
10003
10004 Example: when printing the value of variable "Yes" above, its fixed
10005 type would look like this:
10006
10007 type Rec is record
10008 Empty : Boolean;
10009 Value : Integer;
10010 end record;
10011
10012 On the other hand, if we printed the value of "No", its fixed type
10013 would become:
10014
10015 type Rec is record
10016 Empty : Boolean;
10017 end record;
10018
10019 Things become a little more complicated when trying to fix an entity
10020 with a dynamic type that directly contains another dynamic type,
10021 such as an array of variant records, for instance. There are
10022 two possible cases: Arrays, and records.
10023
10024 3. ``Fixing'' Arrays:
10025 ---------------------
10026
10027 The type structure in GDB describes an array in terms of its bounds,
10028 and the type of its elements. By design, all elements in the array
10029 have the same type and we cannot represent an array of variant elements
10030 using the current type structure in GDB. When fixing an array,
10031 we cannot fix the array element, as we would potentially need one
10032 fixed type per element of the array. As a result, the best we can do
10033 when fixing an array is to produce an array whose bounds and size
10034 are correct (allowing us to read it from memory), but without having
10035 touched its element type. Fixing each element will be done later,
10036 when (if) necessary.
10037
10038 Arrays are a little simpler to handle than records, because the same
10039 amount of memory is allocated for each element of the array, even if
10040 the amount of space actually used by each element differs from element
10041 to element. Consider for instance the following array of type Rec:
10042
10043 type Rec_Array is array (1 .. 2) of Rec;
10044
10045 The actual amount of memory occupied by each element might be different
10046 from element to element, depending on the value of their discriminant.
10047 But the amount of space reserved for each element in the array remains
10048 fixed regardless. So we simply need to compute that size using
10049 the debugging information available, from which we can then determine
10050 the array size (we multiply the number of elements of the array by
10051 the size of each element).
10052
10053 The simplest case is when we have an array of a constrained element
10054 type. For instance, consider the following type declarations:
10055
10056 type Bounded_String (Max_Size : Integer) is
10057 Length : Integer;
10058 Buffer : String (1 .. Max_Size);
10059 end record;
10060 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10061
10062 In this case, the compiler describes the array as an array of
10063 variable-size elements (identified by its XVS suffix) for which
10064 the size can be read in the parallel XVZ variable.
10065
10066 In the case of an array of an unconstrained element type, the compiler
10067 wraps the array element inside a private PAD type. This type should not
10068 be shown to the user, and must be "unwrap"'ed before printing. Note
10069 that we also use the adjective "aligner" in our code to designate
10070 these wrapper types.
10071
10072 In some cases, the size allocated for each element is statically
10073 known. In that case, the PAD type already has the correct size,
10074 and the array element should remain unfixed.
10075
10076 But there are cases when this size is not statically known.
10077 For instance, assuming that "Five" is an integer variable:
10078
10079 type Dynamic is array (1 .. Five) of Integer;
10080 type Wrapper (Has_Length : Boolean := False) is record
10081 Data : Dynamic;
10082 case Has_Length is
10083 when True => Length : Integer;
10084 when False => null;
10085 end case;
10086 end record;
10087 type Wrapper_Array is array (1 .. 2) of Wrapper;
10088
10089 Hello : Wrapper_Array := (others => (Has_Length => True,
10090 Data => (others => 17),
10091 Length => 1));
10092
10093
10094 The debugging info would describe variable Hello as being an
10095 array of a PAD type. The size of that PAD type is not statically
10096 known, but can be determined using a parallel XVZ variable.
10097 In that case, a copy of the PAD type with the correct size should
10098 be used for the fixed array.
10099
10100 3. ``Fixing'' record type objects:
10101 ----------------------------------
10102
10103 Things are slightly different from arrays in the case of dynamic
10104 record types. In this case, in order to compute the associated
10105 fixed type, we need to determine the size and offset of each of
10106 its components. This, in turn, requires us to compute the fixed
10107 type of each of these components.
10108
10109 Consider for instance the example:
10110
10111 type Bounded_String (Max_Size : Natural) is record
10112 Str : String (1 .. Max_Size);
10113 Length : Natural;
10114 end record;
10115 My_String : Bounded_String (Max_Size => 10);
10116
10117 In that case, the position of field "Length" depends on the size
10118 of field Str, which itself depends on the value of the Max_Size
10119 discriminant. In order to fix the type of variable My_String,
10120 we need to fix the type of field Str. Therefore, fixing a variant
10121 record requires us to fix each of its components.
10122
10123 However, if a component does not have a dynamic size, the component
10124 should not be fixed. In particular, fields that use a PAD type
10125 should not fixed. Here is an example where this might happen
10126 (assuming type Rec above):
10127
10128 type Container (Big : Boolean) is record
10129 First : Rec;
10130 After : Integer;
10131 case Big is
10132 when True => Another : Integer;
10133 when False => null;
10134 end case;
10135 end record;
10136 My_Container : Container := (Big => False,
10137 First => (Empty => True),
10138 After => 42);
10139
10140 In that example, the compiler creates a PAD type for component First,
10141 whose size is constant, and then positions the component After just
10142 right after it. The offset of component After is therefore constant
10143 in this case.
10144
10145 The debugger computes the position of each field based on an algorithm
10146 that uses, among other things, the actual position and size of the field
10147 preceding it. Let's now imagine that the user is trying to print
10148 the value of My_Container. If the type fixing was recursive, we would
10149 end up computing the offset of field After based on the size of the
10150 fixed version of field First. And since in our example First has
10151 only one actual field, the size of the fixed type is actually smaller
10152 than the amount of space allocated to that field, and thus we would
10153 compute the wrong offset of field After.
10154
10155 To make things more complicated, we need to watch out for dynamic
10156 components of variant records (identified by the ___XVL suffix in
10157 the component name). Even if the target type is a PAD type, the size
10158 of that type might not be statically known. So the PAD type needs
10159 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10160 we might end up with the wrong size for our component. This can be
10161 observed with the following type declarations:
10162
10163 type Octal is new Integer range 0 .. 7;
10164 type Octal_Array is array (Positive range <>) of Octal;
10165 pragma Pack (Octal_Array);
10166
10167 type Octal_Buffer (Size : Positive) is record
10168 Buffer : Octal_Array (1 .. Size);
10169 Length : Integer;
10170 end record;
10171
10172 In that case, Buffer is a PAD type whose size is unset and needs
10173 to be computed by fixing the unwrapped type.
10174
10175 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10176 ----------------------------------------------------------
10177
10178 Lastly, when should the sub-elements of an entity that remained unfixed
10179 thus far, be actually fixed?
10180
10181 The answer is: Only when referencing that element. For instance
10182 when selecting one component of a record, this specific component
10183 should be fixed at that point in time. Or when printing the value
10184 of a record, each component should be fixed before its value gets
10185 printed. Similarly for arrays, the element of the array should be
10186 fixed when printing each element of the array, or when extracting
10187 one element out of that array. On the other hand, fixing should
10188 not be performed on the elements when taking a slice of an array!
10189
10190 Note that one of the side effects of miscomputing the offset and
10191 size of each field is that we end up also miscomputing the size
10192 of the containing type. This can have adverse results when computing
10193 the value of an entity. GDB fetches the value of an entity based
10194 on the size of its type, and thus a wrong size causes GDB to fetch
10195 the wrong amount of memory. In the case where the computed size is
10196 too small, GDB fetches too little data to print the value of our
10197 entity. Results in this case are unpredictable, as we usually read
10198 past the buffer containing the data =:-o. */
10199
10200 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10201 for that subexpression cast to TO_TYPE. Advance *POS over the
10202 subexpression. */
10203
10204 static value *
10205 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10206 enum noside noside, struct type *to_type)
10207 {
10208 int pc = *pos;
10209
10210 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10211 || exp->elts[pc].opcode == OP_VAR_VALUE)
10212 {
10213 (*pos) += 4;
10214
10215 value *val;
10216 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10217 {
10218 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10219 return value_zero (to_type, not_lval);
10220
10221 val = evaluate_var_msym_value (noside,
10222 exp->elts[pc + 1].objfile,
10223 exp->elts[pc + 2].msymbol);
10224 }
10225 else
10226 val = evaluate_var_value (noside,
10227 exp->elts[pc + 1].block,
10228 exp->elts[pc + 2].symbol);
10229
10230 if (noside == EVAL_SKIP)
10231 return eval_skip_value (exp);
10232
10233 val = ada_value_cast (to_type, val);
10234
10235 /* Follow the Ada language semantics that do not allow taking
10236 an address of the result of a cast (view conversion in Ada). */
10237 if (VALUE_LVAL (val) == lval_memory)
10238 {
10239 if (value_lazy (val))
10240 value_fetch_lazy (val);
10241 VALUE_LVAL (val) = not_lval;
10242 }
10243 return val;
10244 }
10245
10246 value *val = evaluate_subexp (to_type, exp, pos, noside);
10247 if (noside == EVAL_SKIP)
10248 return eval_skip_value (exp);
10249 return ada_value_cast (to_type, val);
10250 }
10251
10252 /* Implement the evaluate_exp routine in the exp_descriptor structure
10253 for the Ada language. */
10254
10255 static struct value *
10256 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10257 int *pos, enum noside noside)
10258 {
10259 enum exp_opcode op;
10260 int tem;
10261 int pc;
10262 int preeval_pos;
10263 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10264 struct type *type;
10265 int nargs, oplen;
10266 struct value **argvec;
10267
10268 pc = *pos;
10269 *pos += 1;
10270 op = exp->elts[pc].opcode;
10271
10272 switch (op)
10273 {
10274 default:
10275 *pos -= 1;
10276 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10277
10278 if (noside == EVAL_NORMAL)
10279 arg1 = unwrap_value (arg1);
10280
10281 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10282 then we need to perform the conversion manually, because
10283 evaluate_subexp_standard doesn't do it. This conversion is
10284 necessary in Ada because the different kinds of float/fixed
10285 types in Ada have different representations.
10286
10287 Similarly, we need to perform the conversion from OP_LONG
10288 ourselves. */
10289 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10290 arg1 = ada_value_cast (expect_type, arg1);
10291
10292 return arg1;
10293
10294 case OP_STRING:
10295 {
10296 struct value *result;
10297
10298 *pos -= 1;
10299 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10300 /* The result type will have code OP_STRING, bashed there from
10301 OP_ARRAY. Bash it back. */
10302 if (value_type (result)->code () == TYPE_CODE_STRING)
10303 value_type (result)->set_code (TYPE_CODE_ARRAY);
10304 return result;
10305 }
10306
10307 case UNOP_CAST:
10308 (*pos) += 2;
10309 type = exp->elts[pc + 1].type;
10310 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10311
10312 case UNOP_QUAL:
10313 (*pos) += 2;
10314 type = exp->elts[pc + 1].type;
10315 return ada_evaluate_subexp (type, exp, pos, noside);
10316
10317 case BINOP_ASSIGN:
10318 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10319 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10320 {
10321 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10322 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10323 return arg1;
10324 return ada_value_assign (arg1, arg1);
10325 }
10326 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10327 except if the lhs of our assignment is a convenience variable.
10328 In the case of assigning to a convenience variable, the lhs
10329 should be exactly the result of the evaluation of the rhs. */
10330 type = value_type (arg1);
10331 if (VALUE_LVAL (arg1) == lval_internalvar)
10332 type = NULL;
10333 arg2 = evaluate_subexp (type, exp, pos, noside);
10334 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10335 return arg1;
10336 if (VALUE_LVAL (arg1) == lval_internalvar)
10337 {
10338 /* Nothing. */
10339 }
10340 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10341 arg2 = cast_to_fixed (value_type (arg1), arg2);
10342 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10343 error
10344 (_("Fixed-point values must be assigned to fixed-point variables"));
10345 else
10346 arg2 = coerce_for_assign (value_type (arg1), arg2);
10347 return ada_value_assign (arg1, arg2);
10348
10349 case BINOP_ADD:
10350 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10351 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10352 if (noside == EVAL_SKIP)
10353 goto nosideret;
10354 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10355 return (value_from_longest
10356 (value_type (arg1),
10357 value_as_long (arg1) + value_as_long (arg2)));
10358 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10359 return (value_from_longest
10360 (value_type (arg2),
10361 value_as_long (arg1) + value_as_long (arg2)));
10362 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10363 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10364 && value_type (arg1) != value_type (arg2))
10365 error (_("Operands of fixed-point addition must have the same type"));
10366 /* Do the addition, and cast the result to the type of the first
10367 argument. We cannot cast the result to a reference type, so if
10368 ARG1 is a reference type, find its underlying type. */
10369 type = value_type (arg1);
10370 while (type->code () == TYPE_CODE_REF)
10371 type = TYPE_TARGET_TYPE (type);
10372 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10373 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10374
10375 case BINOP_SUB:
10376 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10377 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10378 if (noside == EVAL_SKIP)
10379 goto nosideret;
10380 if (value_type (arg1)->code () == TYPE_CODE_PTR)
10381 return (value_from_longest
10382 (value_type (arg1),
10383 value_as_long (arg1) - value_as_long (arg2)));
10384 if (value_type (arg2)->code () == TYPE_CODE_PTR)
10385 return (value_from_longest
10386 (value_type (arg2),
10387 value_as_long (arg1) - value_as_long (arg2)));
10388 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1))
10389 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10390 && value_type (arg1) != value_type (arg2))
10391 error (_("Operands of fixed-point subtraction "
10392 "must have the same type"));
10393 /* Do the substraction, and cast the result to the type of the first
10394 argument. We cannot cast the result to a reference type, so if
10395 ARG1 is a reference type, find its underlying type. */
10396 type = value_type (arg1);
10397 while (type->code () == TYPE_CODE_REF)
10398 type = TYPE_TARGET_TYPE (type);
10399 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10400 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10401
10402 case BINOP_MUL:
10403 case BINOP_DIV:
10404 case BINOP_REM:
10405 case BINOP_MOD:
10406 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10407 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10408 if (noside == EVAL_SKIP)
10409 goto nosideret;
10410 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10411 {
10412 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10413 return value_zero (value_type (arg1), not_lval);
10414 }
10415 else
10416 {
10417 type = builtin_type (exp->gdbarch)->builtin_double;
10418 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10419 arg1 = cast_from_fixed (type, arg1);
10420 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2)))
10421 arg2 = cast_from_fixed (type, arg2);
10422 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10423 return ada_value_binop (arg1, arg2, op);
10424 }
10425
10426 case BINOP_EQUAL:
10427 case BINOP_NOTEQUAL:
10428 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10429 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10430 if (noside == EVAL_SKIP)
10431 goto nosideret;
10432 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10433 tem = 0;
10434 else
10435 {
10436 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10437 tem = ada_value_equal (arg1, arg2);
10438 }
10439 if (op == BINOP_NOTEQUAL)
10440 tem = !tem;
10441 type = language_bool_type (exp->language_defn, exp->gdbarch);
10442 return value_from_longest (type, (LONGEST) tem);
10443
10444 case UNOP_NEG:
10445 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10446 if (noside == EVAL_SKIP)
10447 goto nosideret;
10448 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1)))
10449 return value_cast (value_type (arg1), value_neg (arg1));
10450 else
10451 {
10452 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10453 return value_neg (arg1);
10454 }
10455
10456 case BINOP_LOGICAL_AND:
10457 case BINOP_LOGICAL_OR:
10458 case UNOP_LOGICAL_NOT:
10459 {
10460 struct value *val;
10461
10462 *pos -= 1;
10463 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10464 type = language_bool_type (exp->language_defn, exp->gdbarch);
10465 return value_cast (type, val);
10466 }
10467
10468 case BINOP_BITWISE_AND:
10469 case BINOP_BITWISE_IOR:
10470 case BINOP_BITWISE_XOR:
10471 {
10472 struct value *val;
10473
10474 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10475 *pos = pc;
10476 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10477
10478 return value_cast (value_type (arg1), val);
10479 }
10480
10481 case OP_VAR_VALUE:
10482 *pos -= 1;
10483
10484 if (noside == EVAL_SKIP)
10485 {
10486 *pos += 4;
10487 goto nosideret;
10488 }
10489
10490 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10491 /* Only encountered when an unresolved symbol occurs in a
10492 context other than a function call, in which case, it is
10493 invalid. */
10494 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10495 exp->elts[pc + 2].symbol->print_name ());
10496
10497 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10498 {
10499 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10500 /* Check to see if this is a tagged type. We also need to handle
10501 the case where the type is a reference to a tagged type, but
10502 we have to be careful to exclude pointers to tagged types.
10503 The latter should be shown as usual (as a pointer), whereas
10504 a reference should mostly be transparent to the user. */
10505 if (ada_is_tagged_type (type, 0)
10506 || (type->code () == TYPE_CODE_REF
10507 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10508 {
10509 /* Tagged types are a little special in the fact that the real
10510 type is dynamic and can only be determined by inspecting the
10511 object's tag. This means that we need to get the object's
10512 value first (EVAL_NORMAL) and then extract the actual object
10513 type from its tag.
10514
10515 Note that we cannot skip the final step where we extract
10516 the object type from its tag, because the EVAL_NORMAL phase
10517 results in dynamic components being resolved into fixed ones.
10518 This can cause problems when trying to print the type
10519 description of tagged types whose parent has a dynamic size:
10520 We use the type name of the "_parent" component in order
10521 to print the name of the ancestor type in the type description.
10522 If that component had a dynamic size, the resolution into
10523 a fixed type would result in the loss of that type name,
10524 thus preventing us from printing the name of the ancestor
10525 type in the type description. */
10526 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10527
10528 if (type->code () != TYPE_CODE_REF)
10529 {
10530 struct type *actual_type;
10531
10532 actual_type = type_from_tag (ada_value_tag (arg1));
10533 if (actual_type == NULL)
10534 /* If, for some reason, we were unable to determine
10535 the actual type from the tag, then use the static
10536 approximation that we just computed as a fallback.
10537 This can happen if the debugging information is
10538 incomplete, for instance. */
10539 actual_type = type;
10540 return value_zero (actual_type, not_lval);
10541 }
10542 else
10543 {
10544 /* In the case of a ref, ada_coerce_ref takes care
10545 of determining the actual type. But the evaluation
10546 should return a ref as it should be valid to ask
10547 for its address; so rebuild a ref after coerce. */
10548 arg1 = ada_coerce_ref (arg1);
10549 return value_ref (arg1, TYPE_CODE_REF);
10550 }
10551 }
10552
10553 /* Records and unions for which GNAT encodings have been
10554 generated need to be statically fixed as well.
10555 Otherwise, non-static fixing produces a type where
10556 all dynamic properties are removed, which prevents "ptype"
10557 from being able to completely describe the type.
10558 For instance, a case statement in a variant record would be
10559 replaced by the relevant components based on the actual
10560 value of the discriminants. */
10561 if ((type->code () == TYPE_CODE_STRUCT
10562 && dynamic_template_type (type) != NULL)
10563 || (type->code () == TYPE_CODE_UNION
10564 && ada_find_parallel_type (type, "___XVU") != NULL))
10565 {
10566 *pos += 4;
10567 return value_zero (to_static_fixed_type (type), not_lval);
10568 }
10569 }
10570
10571 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10572 return ada_to_fixed_value (arg1);
10573
10574 case OP_FUNCALL:
10575 (*pos) += 2;
10576
10577 /* Allocate arg vector, including space for the function to be
10578 called in argvec[0] and a terminating NULL. */
10579 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10580 argvec = XALLOCAVEC (struct value *, nargs + 2);
10581
10582 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10583 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10584 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10585 exp->elts[pc + 5].symbol->print_name ());
10586 else
10587 {
10588 for (tem = 0; tem <= nargs; tem += 1)
10589 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10590 argvec[tem] = 0;
10591
10592 if (noside == EVAL_SKIP)
10593 goto nosideret;
10594 }
10595
10596 if (ada_is_constrained_packed_array_type
10597 (desc_base_type (value_type (argvec[0]))))
10598 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10599 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10600 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10601 /* This is a packed array that has already been fixed, and
10602 therefore already coerced to a simple array. Nothing further
10603 to do. */
10604 ;
10605 else if (value_type (argvec[0])->code () == TYPE_CODE_REF)
10606 {
10607 /* Make sure we dereference references so that all the code below
10608 feels like it's really handling the referenced value. Wrapping
10609 types (for alignment) may be there, so make sure we strip them as
10610 well. */
10611 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10612 }
10613 else if (value_type (argvec[0])->code () == TYPE_CODE_ARRAY
10614 && VALUE_LVAL (argvec[0]) == lval_memory)
10615 argvec[0] = value_addr (argvec[0]);
10616
10617 type = ada_check_typedef (value_type (argvec[0]));
10618
10619 /* Ada allows us to implicitly dereference arrays when subscripting
10620 them. So, if this is an array typedef (encoding use for array
10621 access types encoded as fat pointers), strip it now. */
10622 if (type->code () == TYPE_CODE_TYPEDEF)
10623 type = ada_typedef_target_type (type);
10624
10625 if (type->code () == TYPE_CODE_PTR)
10626 {
10627 switch (ada_check_typedef (TYPE_TARGET_TYPE (type))->code ())
10628 {
10629 case TYPE_CODE_FUNC:
10630 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10631 break;
10632 case TYPE_CODE_ARRAY:
10633 break;
10634 case TYPE_CODE_STRUCT:
10635 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10636 argvec[0] = ada_value_ind (argvec[0]);
10637 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10638 break;
10639 default:
10640 error (_("cannot subscript or call something of type `%s'"),
10641 ada_type_name (value_type (argvec[0])));
10642 break;
10643 }
10644 }
10645
10646 switch (type->code ())
10647 {
10648 case TYPE_CODE_FUNC:
10649 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10650 {
10651 if (TYPE_TARGET_TYPE (type) == NULL)
10652 error_call_unknown_return_type (NULL);
10653 return allocate_value (TYPE_TARGET_TYPE (type));
10654 }
10655 return call_function_by_hand (argvec[0], NULL,
10656 gdb::make_array_view (argvec + 1,
10657 nargs));
10658 case TYPE_CODE_INTERNAL_FUNCTION:
10659 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10660 /* We don't know anything about what the internal
10661 function might return, but we have to return
10662 something. */
10663 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10664 not_lval);
10665 else
10666 return call_internal_function (exp->gdbarch, exp->language_defn,
10667 argvec[0], nargs, argvec + 1);
10668
10669 case TYPE_CODE_STRUCT:
10670 {
10671 int arity;
10672
10673 arity = ada_array_arity (type);
10674 type = ada_array_element_type (type, nargs);
10675 if (type == NULL)
10676 error (_("cannot subscript or call a record"));
10677 if (arity != nargs)
10678 error (_("wrong number of subscripts; expecting %d"), arity);
10679 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10680 return value_zero (ada_aligned_type (type), lval_memory);
10681 return
10682 unwrap_value (ada_value_subscript
10683 (argvec[0], nargs, argvec + 1));
10684 }
10685 case TYPE_CODE_ARRAY:
10686 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10687 {
10688 type = ada_array_element_type (type, nargs);
10689 if (type == NULL)
10690 error (_("element type of array unknown"));
10691 else
10692 return value_zero (ada_aligned_type (type), lval_memory);
10693 }
10694 return
10695 unwrap_value (ada_value_subscript
10696 (ada_coerce_to_simple_array (argvec[0]),
10697 nargs, argvec + 1));
10698 case TYPE_CODE_PTR: /* Pointer to array */
10699 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10700 {
10701 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10702 type = ada_array_element_type (type, nargs);
10703 if (type == NULL)
10704 error (_("element type of array unknown"));
10705 else
10706 return value_zero (ada_aligned_type (type), lval_memory);
10707 }
10708 return
10709 unwrap_value (ada_value_ptr_subscript (argvec[0],
10710 nargs, argvec + 1));
10711
10712 default:
10713 error (_("Attempt to index or call something other than an "
10714 "array or function"));
10715 }
10716
10717 case TERNOP_SLICE:
10718 {
10719 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10720 struct value *low_bound_val =
10721 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10722 struct value *high_bound_val =
10723 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10724 LONGEST low_bound;
10725 LONGEST high_bound;
10726
10727 low_bound_val = coerce_ref (low_bound_val);
10728 high_bound_val = coerce_ref (high_bound_val);
10729 low_bound = value_as_long (low_bound_val);
10730 high_bound = value_as_long (high_bound_val);
10731
10732 if (noside == EVAL_SKIP)
10733 goto nosideret;
10734
10735 /* If this is a reference to an aligner type, then remove all
10736 the aligners. */
10737 if (value_type (array)->code () == TYPE_CODE_REF
10738 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10739 TYPE_TARGET_TYPE (value_type (array)) =
10740 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10741
10742 if (ada_is_constrained_packed_array_type (value_type (array)))
10743 error (_("cannot slice a packed array"));
10744
10745 /* If this is a reference to an array or an array lvalue,
10746 convert to a pointer. */
10747 if (value_type (array)->code () == TYPE_CODE_REF
10748 || (value_type (array)->code () == TYPE_CODE_ARRAY
10749 && VALUE_LVAL (array) == lval_memory))
10750 array = value_addr (array);
10751
10752 if (noside == EVAL_AVOID_SIDE_EFFECTS
10753 && ada_is_array_descriptor_type (ada_check_typedef
10754 (value_type (array))))
10755 return empty_array (ada_type_of_array (array, 0), low_bound,
10756 high_bound);
10757
10758 array = ada_coerce_to_simple_array_ptr (array);
10759
10760 /* If we have more than one level of pointer indirection,
10761 dereference the value until we get only one level. */
10762 while (value_type (array)->code () == TYPE_CODE_PTR
10763 && (TYPE_TARGET_TYPE (value_type (array))->code ()
10764 == TYPE_CODE_PTR))
10765 array = value_ind (array);
10766
10767 /* Make sure we really do have an array type before going further,
10768 to avoid a SEGV when trying to get the index type or the target
10769 type later down the road if the debug info generated by
10770 the compiler is incorrect or incomplete. */
10771 if (!ada_is_simple_array_type (value_type (array)))
10772 error (_("cannot take slice of non-array"));
10773
10774 if (ada_check_typedef (value_type (array))->code ()
10775 == TYPE_CODE_PTR)
10776 {
10777 struct type *type0 = ada_check_typedef (value_type (array));
10778
10779 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10780 return empty_array (TYPE_TARGET_TYPE (type0), low_bound, high_bound);
10781 else
10782 {
10783 struct type *arr_type0 =
10784 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10785
10786 return ada_value_slice_from_ptr (array, arr_type0,
10787 longest_to_int (low_bound),
10788 longest_to_int (high_bound));
10789 }
10790 }
10791 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10792 return array;
10793 else if (high_bound < low_bound)
10794 return empty_array (value_type (array), low_bound, high_bound);
10795 else
10796 return ada_value_slice (array, longest_to_int (low_bound),
10797 longest_to_int (high_bound));
10798 }
10799
10800 case UNOP_IN_RANGE:
10801 (*pos) += 2;
10802 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10803 type = check_typedef (exp->elts[pc + 1].type);
10804
10805 if (noside == EVAL_SKIP)
10806 goto nosideret;
10807
10808 switch (type->code ())
10809 {
10810 default:
10811 lim_warning (_("Membership test incompletely implemented; "
10812 "always returns true"));
10813 type = language_bool_type (exp->language_defn, exp->gdbarch);
10814 return value_from_longest (type, (LONGEST) 1);
10815
10816 case TYPE_CODE_RANGE:
10817 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10818 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10819 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10820 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10821 type = language_bool_type (exp->language_defn, exp->gdbarch);
10822 return
10823 value_from_longest (type,
10824 (value_less (arg1, arg3)
10825 || value_equal (arg1, arg3))
10826 && (value_less (arg2, arg1)
10827 || value_equal (arg2, arg1)));
10828 }
10829
10830 case BINOP_IN_BOUNDS:
10831 (*pos) += 2;
10832 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10833 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10834
10835 if (noside == EVAL_SKIP)
10836 goto nosideret;
10837
10838 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10839 {
10840 type = language_bool_type (exp->language_defn, exp->gdbarch);
10841 return value_zero (type, not_lval);
10842 }
10843
10844 tem = longest_to_int (exp->elts[pc + 1].longconst);
10845
10846 type = ada_index_type (value_type (arg2), tem, "range");
10847 if (!type)
10848 type = value_type (arg1);
10849
10850 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10851 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10852
10853 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10854 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10855 type = language_bool_type (exp->language_defn, exp->gdbarch);
10856 return
10857 value_from_longest (type,
10858 (value_less (arg1, arg3)
10859 || value_equal (arg1, arg3))
10860 && (value_less (arg2, arg1)
10861 || value_equal (arg2, arg1)));
10862
10863 case TERNOP_IN_RANGE:
10864 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10865 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10866 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10867
10868 if (noside == EVAL_SKIP)
10869 goto nosideret;
10870
10871 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10872 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10873 type = language_bool_type (exp->language_defn, exp->gdbarch);
10874 return
10875 value_from_longest (type,
10876 (value_less (arg1, arg3)
10877 || value_equal (arg1, arg3))
10878 && (value_less (arg2, arg1)
10879 || value_equal (arg2, arg1)));
10880
10881 case OP_ATR_FIRST:
10882 case OP_ATR_LAST:
10883 case OP_ATR_LENGTH:
10884 {
10885 struct type *type_arg;
10886
10887 if (exp->elts[*pos].opcode == OP_TYPE)
10888 {
10889 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10890 arg1 = NULL;
10891 type_arg = check_typedef (exp->elts[pc + 2].type);
10892 }
10893 else
10894 {
10895 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10896 type_arg = NULL;
10897 }
10898
10899 if (exp->elts[*pos].opcode != OP_LONG)
10900 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10901 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10902 *pos += 4;
10903
10904 if (noside == EVAL_SKIP)
10905 goto nosideret;
10906 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10907 {
10908 if (type_arg == NULL)
10909 type_arg = value_type (arg1);
10910
10911 if (ada_is_constrained_packed_array_type (type_arg))
10912 type_arg = decode_constrained_packed_array_type (type_arg);
10913
10914 if (!discrete_type_p (type_arg))
10915 {
10916 switch (op)
10917 {
10918 default: /* Should never happen. */
10919 error (_("unexpected attribute encountered"));
10920 case OP_ATR_FIRST:
10921 case OP_ATR_LAST:
10922 type_arg = ada_index_type (type_arg, tem,
10923 ada_attribute_name (op));
10924 break;
10925 case OP_ATR_LENGTH:
10926 type_arg = builtin_type (exp->gdbarch)->builtin_int;
10927 break;
10928 }
10929 }
10930
10931 return value_zero (type_arg, not_lval);
10932 }
10933 else if (type_arg == NULL)
10934 {
10935 arg1 = ada_coerce_ref (arg1);
10936
10937 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10938 arg1 = ada_coerce_to_simple_array (arg1);
10939
10940 if (op == OP_ATR_LENGTH)
10941 type = builtin_type (exp->gdbarch)->builtin_int;
10942 else
10943 {
10944 type = ada_index_type (value_type (arg1), tem,
10945 ada_attribute_name (op));
10946 if (type == NULL)
10947 type = builtin_type (exp->gdbarch)->builtin_int;
10948 }
10949
10950 switch (op)
10951 {
10952 default: /* Should never happen. */
10953 error (_("unexpected attribute encountered"));
10954 case OP_ATR_FIRST:
10955 return value_from_longest
10956 (type, ada_array_bound (arg1, tem, 0));
10957 case OP_ATR_LAST:
10958 return value_from_longest
10959 (type, ada_array_bound (arg1, tem, 1));
10960 case OP_ATR_LENGTH:
10961 return value_from_longest
10962 (type, ada_array_length (arg1, tem));
10963 }
10964 }
10965 else if (discrete_type_p (type_arg))
10966 {
10967 struct type *range_type;
10968 const char *name = ada_type_name (type_arg);
10969
10970 range_type = NULL;
10971 if (name != NULL && type_arg->code () != TYPE_CODE_ENUM)
10972 range_type = to_fixed_range_type (type_arg, NULL);
10973 if (range_type == NULL)
10974 range_type = type_arg;
10975 switch (op)
10976 {
10977 default:
10978 error (_("unexpected attribute encountered"));
10979 case OP_ATR_FIRST:
10980 return value_from_longest
10981 (range_type, ada_discrete_type_low_bound (range_type));
10982 case OP_ATR_LAST:
10983 return value_from_longest
10984 (range_type, ada_discrete_type_high_bound (range_type));
10985 case OP_ATR_LENGTH:
10986 error (_("the 'length attribute applies only to array types"));
10987 }
10988 }
10989 else if (type_arg->code () == TYPE_CODE_FLT)
10990 error (_("unimplemented type attribute"));
10991 else
10992 {
10993 LONGEST low, high;
10994
10995 if (ada_is_constrained_packed_array_type (type_arg))
10996 type_arg = decode_constrained_packed_array_type (type_arg);
10997
10998 if (op == OP_ATR_LENGTH)
10999 type = builtin_type (exp->gdbarch)->builtin_int;
11000 else
11001 {
11002 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11003 if (type == NULL)
11004 type = builtin_type (exp->gdbarch)->builtin_int;
11005 }
11006
11007 switch (op)
11008 {
11009 default:
11010 error (_("unexpected attribute encountered"));
11011 case OP_ATR_FIRST:
11012 low = ada_array_bound_from_type (type_arg, tem, 0);
11013 return value_from_longest (type, low);
11014 case OP_ATR_LAST:
11015 high = ada_array_bound_from_type (type_arg, tem, 1);
11016 return value_from_longest (type, high);
11017 case OP_ATR_LENGTH:
11018 low = ada_array_bound_from_type (type_arg, tem, 0);
11019 high = ada_array_bound_from_type (type_arg, tem, 1);
11020 return value_from_longest (type, high - low + 1);
11021 }
11022 }
11023 }
11024
11025 case OP_ATR_TAG:
11026 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11027 if (noside == EVAL_SKIP)
11028 goto nosideret;
11029
11030 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11031 return value_zero (ada_tag_type (arg1), not_lval);
11032
11033 return ada_value_tag (arg1);
11034
11035 case OP_ATR_MIN:
11036 case OP_ATR_MAX:
11037 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11038 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11039 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11040 if (noside == EVAL_SKIP)
11041 goto nosideret;
11042 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11043 return value_zero (value_type (arg1), not_lval);
11044 else
11045 {
11046 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11047 return value_binop (arg1, arg2,
11048 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11049 }
11050
11051 case OP_ATR_MODULUS:
11052 {
11053 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11054
11055 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11056 if (noside == EVAL_SKIP)
11057 goto nosideret;
11058
11059 if (!ada_is_modular_type (type_arg))
11060 error (_("'modulus must be applied to modular type"));
11061
11062 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11063 ada_modulus (type_arg));
11064 }
11065
11066
11067 case OP_ATR_POS:
11068 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11069 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11070 if (noside == EVAL_SKIP)
11071 goto nosideret;
11072 type = builtin_type (exp->gdbarch)->builtin_int;
11073 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11074 return value_zero (type, not_lval);
11075 else
11076 return value_pos_atr (type, arg1);
11077
11078 case OP_ATR_SIZE:
11079 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11080 type = value_type (arg1);
11081
11082 /* If the argument is a reference, then dereference its type, since
11083 the user is really asking for the size of the actual object,
11084 not the size of the pointer. */
11085 if (type->code () == TYPE_CODE_REF)
11086 type = TYPE_TARGET_TYPE (type);
11087
11088 if (noside == EVAL_SKIP)
11089 goto nosideret;
11090 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11091 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11092 else
11093 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11094 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11095
11096 case OP_ATR_VAL:
11097 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11098 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11099 type = exp->elts[pc + 2].type;
11100 if (noside == EVAL_SKIP)
11101 goto nosideret;
11102 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11103 return value_zero (type, not_lval);
11104 else
11105 return value_val_atr (type, arg1);
11106
11107 case BINOP_EXP:
11108 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11109 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11110 if (noside == EVAL_SKIP)
11111 goto nosideret;
11112 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11113 return value_zero (value_type (arg1), not_lval);
11114 else
11115 {
11116 /* For integer exponentiation operations,
11117 only promote the first argument. */
11118 if (is_integral_type (value_type (arg2)))
11119 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11120 else
11121 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11122
11123 return value_binop (arg1, arg2, op);
11124 }
11125
11126 case UNOP_PLUS:
11127 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11128 if (noside == EVAL_SKIP)
11129 goto nosideret;
11130 else
11131 return arg1;
11132
11133 case UNOP_ABS:
11134 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11135 if (noside == EVAL_SKIP)
11136 goto nosideret;
11137 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11138 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11139 return value_neg (arg1);
11140 else
11141 return arg1;
11142
11143 case UNOP_IND:
11144 preeval_pos = *pos;
11145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11146 if (noside == EVAL_SKIP)
11147 goto nosideret;
11148 type = ada_check_typedef (value_type (arg1));
11149 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11150 {
11151 if (ada_is_array_descriptor_type (type))
11152 /* GDB allows dereferencing GNAT array descriptors. */
11153 {
11154 struct type *arrType = ada_type_of_array (arg1, 0);
11155
11156 if (arrType == NULL)
11157 error (_("Attempt to dereference null array pointer."));
11158 return value_at_lazy (arrType, 0);
11159 }
11160 else if (type->code () == TYPE_CODE_PTR
11161 || type->code () == TYPE_CODE_REF
11162 /* In C you can dereference an array to get the 1st elt. */
11163 || type->code () == TYPE_CODE_ARRAY)
11164 {
11165 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11166 only be determined by inspecting the object's tag.
11167 This means that we need to evaluate completely the
11168 expression in order to get its type. */
11169
11170 if ((type->code () == TYPE_CODE_REF
11171 || type->code () == TYPE_CODE_PTR)
11172 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11173 {
11174 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11175 EVAL_NORMAL);
11176 type = value_type (ada_value_ind (arg1));
11177 }
11178 else
11179 {
11180 type = to_static_fixed_type
11181 (ada_aligned_type
11182 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11183 }
11184 ada_ensure_varsize_limit (type);
11185 return value_zero (type, lval_memory);
11186 }
11187 else if (type->code () == TYPE_CODE_INT)
11188 {
11189 /* GDB allows dereferencing an int. */
11190 if (expect_type == NULL)
11191 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11192 lval_memory);
11193 else
11194 {
11195 expect_type =
11196 to_static_fixed_type (ada_aligned_type (expect_type));
11197 return value_zero (expect_type, lval_memory);
11198 }
11199 }
11200 else
11201 error (_("Attempt to take contents of a non-pointer value."));
11202 }
11203 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11204 type = ada_check_typedef (value_type (arg1));
11205
11206 if (type->code () == TYPE_CODE_INT)
11207 /* GDB allows dereferencing an int. If we were given
11208 the expect_type, then use that as the target type.
11209 Otherwise, assume that the target type is an int. */
11210 {
11211 if (expect_type != NULL)
11212 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11213 arg1));
11214 else
11215 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11216 (CORE_ADDR) value_as_address (arg1));
11217 }
11218
11219 if (ada_is_array_descriptor_type (type))
11220 /* GDB allows dereferencing GNAT array descriptors. */
11221 return ada_coerce_to_simple_array (arg1);
11222 else
11223 return ada_value_ind (arg1);
11224
11225 case STRUCTOP_STRUCT:
11226 tem = longest_to_int (exp->elts[pc + 1].longconst);
11227 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11228 preeval_pos = *pos;
11229 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11230 if (noside == EVAL_SKIP)
11231 goto nosideret;
11232 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11233 {
11234 struct type *type1 = value_type (arg1);
11235
11236 if (ada_is_tagged_type (type1, 1))
11237 {
11238 type = ada_lookup_struct_elt_type (type1,
11239 &exp->elts[pc + 2].string,
11240 1, 1);
11241
11242 /* If the field is not found, check if it exists in the
11243 extension of this object's type. This means that we
11244 need to evaluate completely the expression. */
11245
11246 if (type == NULL)
11247 {
11248 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11249 EVAL_NORMAL);
11250 arg1 = ada_value_struct_elt (arg1,
11251 &exp->elts[pc + 2].string,
11252 0);
11253 arg1 = unwrap_value (arg1);
11254 type = value_type (ada_to_fixed_value (arg1));
11255 }
11256 }
11257 else
11258 type =
11259 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11260 0);
11261
11262 return value_zero (ada_aligned_type (type), lval_memory);
11263 }
11264 else
11265 {
11266 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11267 arg1 = unwrap_value (arg1);
11268 return ada_to_fixed_value (arg1);
11269 }
11270
11271 case OP_TYPE:
11272 /* The value is not supposed to be used. This is here to make it
11273 easier to accommodate expressions that contain types. */
11274 (*pos) += 2;
11275 if (noside == EVAL_SKIP)
11276 goto nosideret;
11277 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11278 return allocate_value (exp->elts[pc + 1].type);
11279 else
11280 error (_("Attempt to use a type name as an expression"));
11281
11282 case OP_AGGREGATE:
11283 case OP_CHOICES:
11284 case OP_OTHERS:
11285 case OP_DISCRETE_RANGE:
11286 case OP_POSITIONAL:
11287 case OP_NAME:
11288 if (noside == EVAL_NORMAL)
11289 switch (op)
11290 {
11291 case OP_NAME:
11292 error (_("Undefined name, ambiguous name, or renaming used in "
11293 "component association: %s."), &exp->elts[pc+2].string);
11294 case OP_AGGREGATE:
11295 error (_("Aggregates only allowed on the right of an assignment"));
11296 default:
11297 internal_error (__FILE__, __LINE__,
11298 _("aggregate apparently mangled"));
11299 }
11300
11301 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11302 *pos += oplen - 1;
11303 for (tem = 0; tem < nargs; tem += 1)
11304 ada_evaluate_subexp (NULL, exp, pos, noside);
11305 goto nosideret;
11306 }
11307
11308 nosideret:
11309 return eval_skip_value (exp);
11310 }
11311 \f
11312
11313 /* Fixed point */
11314
11315 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11316 type name that encodes the 'small and 'delta information.
11317 Otherwise, return NULL. */
11318
11319 static const char *
11320 gnat_encoded_fixed_type_info (struct type *type)
11321 {
11322 const char *name = ada_type_name (type);
11323 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : type->code ();
11324
11325 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11326 {
11327 const char *tail = strstr (name, "___XF_");
11328
11329 if (tail == NULL)
11330 return NULL;
11331 else
11332 return tail + 5;
11333 }
11334 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11335 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type));
11336 else
11337 return NULL;
11338 }
11339
11340 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11341
11342 int
11343 ada_is_gnat_encoded_fixed_point_type (struct type *type)
11344 {
11345 return gnat_encoded_fixed_type_info (type) != NULL;
11346 }
11347
11348 /* Return non-zero iff TYPE represents a System.Address type. */
11349
11350 int
11351 ada_is_system_address_type (struct type *type)
11352 {
11353 return (type->name () && strcmp (type->name (), "system__address") == 0);
11354 }
11355
11356 /* Assuming that TYPE is the representation of an Ada fixed-point
11357 type, return the target floating-point type to be used to represent
11358 of this type during internal computation. */
11359
11360 static struct type *
11361 ada_scaling_type (struct type *type)
11362 {
11363 return builtin_type (get_type_arch (type))->builtin_long_double;
11364 }
11365
11366 /* Assuming that TYPE is the representation of an Ada fixed-point
11367 type, return its delta, or NULL if the type is malformed and the
11368 delta cannot be determined. */
11369
11370 struct value *
11371 gnat_encoded_fixed_point_delta (struct type *type)
11372 {
11373 const char *encoding = gnat_encoded_fixed_type_info (type);
11374 struct type *scale_type = ada_scaling_type (type);
11375
11376 long long num, den;
11377
11378 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11379 return nullptr;
11380 else
11381 return value_binop (value_from_longest (scale_type, num),
11382 value_from_longest (scale_type, den), BINOP_DIV);
11383 }
11384
11385 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11386 the scaling factor ('SMALL value) associated with the type. */
11387
11388 struct value *
11389 ada_scaling_factor (struct type *type)
11390 {
11391 const char *encoding = gnat_encoded_fixed_type_info (type);
11392 struct type *scale_type = ada_scaling_type (type);
11393
11394 long long num0, den0, num1, den1;
11395 int n;
11396
11397 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11398 &num0, &den0, &num1, &den1);
11399
11400 if (n < 2)
11401 return value_from_longest (scale_type, 1);
11402 else if (n == 4)
11403 return value_binop (value_from_longest (scale_type, num1),
11404 value_from_longest (scale_type, den1), BINOP_DIV);
11405 else
11406 return value_binop (value_from_longest (scale_type, num0),
11407 value_from_longest (scale_type, den0), BINOP_DIV);
11408 }
11409
11410 \f
11411
11412 /* Range types */
11413
11414 /* Scan STR beginning at position K for a discriminant name, and
11415 return the value of that discriminant field of DVAL in *PX. If
11416 PNEW_K is not null, put the position of the character beyond the
11417 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11418 not alter *PX and *PNEW_K if unsuccessful. */
11419
11420 static int
11421 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11422 int *pnew_k)
11423 {
11424 static char *bound_buffer = NULL;
11425 static size_t bound_buffer_len = 0;
11426 const char *pstart, *pend, *bound;
11427 struct value *bound_val;
11428
11429 if (dval == NULL || str == NULL || str[k] == '\0')
11430 return 0;
11431
11432 pstart = str + k;
11433 pend = strstr (pstart, "__");
11434 if (pend == NULL)
11435 {
11436 bound = pstart;
11437 k += strlen (bound);
11438 }
11439 else
11440 {
11441 int len = pend - pstart;
11442
11443 /* Strip __ and beyond. */
11444 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11445 strncpy (bound_buffer, pstart, len);
11446 bound_buffer[len] = '\0';
11447
11448 bound = bound_buffer;
11449 k = pend - str;
11450 }
11451
11452 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11453 if (bound_val == NULL)
11454 return 0;
11455
11456 *px = value_as_long (bound_val);
11457 if (pnew_k != NULL)
11458 *pnew_k = k;
11459 return 1;
11460 }
11461
11462 /* Value of variable named NAME in the current environment. If
11463 no such variable found, then if ERR_MSG is null, returns 0, and
11464 otherwise causes an error with message ERR_MSG. */
11465
11466 static struct value *
11467 get_var_value (const char *name, const char *err_msg)
11468 {
11469 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11470
11471 std::vector<struct block_symbol> syms;
11472 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11473 get_selected_block (0),
11474 VAR_DOMAIN, &syms, 1);
11475
11476 if (nsyms != 1)
11477 {
11478 if (err_msg == NULL)
11479 return 0;
11480 else
11481 error (("%s"), err_msg);
11482 }
11483
11484 return value_of_variable (syms[0].symbol, syms[0].block);
11485 }
11486
11487 /* Value of integer variable named NAME in the current environment.
11488 If no such variable is found, returns false. Otherwise, sets VALUE
11489 to the variable's value and returns true. */
11490
11491 bool
11492 get_int_var_value (const char *name, LONGEST &value)
11493 {
11494 struct value *var_val = get_var_value (name, 0);
11495
11496 if (var_val == 0)
11497 return false;
11498
11499 value = value_as_long (var_val);
11500 return true;
11501 }
11502
11503
11504 /* Return a range type whose base type is that of the range type named
11505 NAME in the current environment, and whose bounds are calculated
11506 from NAME according to the GNAT range encoding conventions.
11507 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11508 corresponding range type from debug information; fall back to using it
11509 if symbol lookup fails. If a new type must be created, allocate it
11510 like ORIG_TYPE was. The bounds information, in general, is encoded
11511 in NAME, the base type given in the named range type. */
11512
11513 static struct type *
11514 to_fixed_range_type (struct type *raw_type, struct value *dval)
11515 {
11516 const char *name;
11517 struct type *base_type;
11518 const char *subtype_info;
11519
11520 gdb_assert (raw_type != NULL);
11521 gdb_assert (raw_type->name () != NULL);
11522
11523 if (raw_type->code () == TYPE_CODE_RANGE)
11524 base_type = TYPE_TARGET_TYPE (raw_type);
11525 else
11526 base_type = raw_type;
11527
11528 name = raw_type->name ();
11529 subtype_info = strstr (name, "___XD");
11530 if (subtype_info == NULL)
11531 {
11532 LONGEST L = ada_discrete_type_low_bound (raw_type);
11533 LONGEST U = ada_discrete_type_high_bound (raw_type);
11534
11535 if (L < INT_MIN || U > INT_MAX)
11536 return raw_type;
11537 else
11538 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11539 L, U);
11540 }
11541 else
11542 {
11543 static char *name_buf = NULL;
11544 static size_t name_len = 0;
11545 int prefix_len = subtype_info - name;
11546 LONGEST L, U;
11547 struct type *type;
11548 const char *bounds_str;
11549 int n;
11550
11551 GROW_VECT (name_buf, name_len, prefix_len + 5);
11552 strncpy (name_buf, name, prefix_len);
11553 name_buf[prefix_len] = '\0';
11554
11555 subtype_info += 5;
11556 bounds_str = strchr (subtype_info, '_');
11557 n = 1;
11558
11559 if (*subtype_info == 'L')
11560 {
11561 if (!ada_scan_number (bounds_str, n, &L, &n)
11562 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11563 return raw_type;
11564 if (bounds_str[n] == '_')
11565 n += 2;
11566 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11567 n += 1;
11568 subtype_info += 1;
11569 }
11570 else
11571 {
11572 strcpy (name_buf + prefix_len, "___L");
11573 if (!get_int_var_value (name_buf, L))
11574 {
11575 lim_warning (_("Unknown lower bound, using 1."));
11576 L = 1;
11577 }
11578 }
11579
11580 if (*subtype_info == 'U')
11581 {
11582 if (!ada_scan_number (bounds_str, n, &U, &n)
11583 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11584 return raw_type;
11585 }
11586 else
11587 {
11588 strcpy (name_buf + prefix_len, "___U");
11589 if (!get_int_var_value (name_buf, U))
11590 {
11591 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11592 U = L;
11593 }
11594 }
11595
11596 type = create_static_range_type (alloc_type_copy (raw_type),
11597 base_type, L, U);
11598 /* create_static_range_type alters the resulting type's length
11599 to match the size of the base_type, which is not what we want.
11600 Set it back to the original range type's length. */
11601 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11602 type->set_name (name);
11603 return type;
11604 }
11605 }
11606
11607 /* True iff NAME is the name of a range type. */
11608
11609 int
11610 ada_is_range_type_name (const char *name)
11611 {
11612 return (name != NULL && strstr (name, "___XD"));
11613 }
11614 \f
11615
11616 /* Modular types */
11617
11618 /* True iff TYPE is an Ada modular type. */
11619
11620 int
11621 ada_is_modular_type (struct type *type)
11622 {
11623 struct type *subranged_type = get_base_type (type);
11624
11625 return (subranged_type != NULL && type->code () == TYPE_CODE_RANGE
11626 && subranged_type->code () == TYPE_CODE_INT
11627 && TYPE_UNSIGNED (subranged_type));
11628 }
11629
11630 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11631
11632 ULONGEST
11633 ada_modulus (struct type *type)
11634 {
11635 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11636 }
11637 \f
11638
11639 /* Ada exception catchpoint support:
11640 ---------------------------------
11641
11642 We support 3 kinds of exception catchpoints:
11643 . catchpoints on Ada exceptions
11644 . catchpoints on unhandled Ada exceptions
11645 . catchpoints on failed assertions
11646
11647 Exceptions raised during failed assertions, or unhandled exceptions
11648 could perfectly be caught with the general catchpoint on Ada exceptions.
11649 However, we can easily differentiate these two special cases, and having
11650 the option to distinguish these two cases from the rest can be useful
11651 to zero-in on certain situations.
11652
11653 Exception catchpoints are a specialized form of breakpoint,
11654 since they rely on inserting breakpoints inside known routines
11655 of the GNAT runtime. The implementation therefore uses a standard
11656 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11657 of breakpoint_ops.
11658
11659 Support in the runtime for exception catchpoints have been changed
11660 a few times already, and these changes affect the implementation
11661 of these catchpoints. In order to be able to support several
11662 variants of the runtime, we use a sniffer that will determine
11663 the runtime variant used by the program being debugged. */
11664
11665 /* Ada's standard exceptions.
11666
11667 The Ada 83 standard also defined Numeric_Error. But there so many
11668 situations where it was unclear from the Ada 83 Reference Manual
11669 (RM) whether Constraint_Error or Numeric_Error should be raised,
11670 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11671 Interpretation saying that anytime the RM says that Numeric_Error
11672 should be raised, the implementation may raise Constraint_Error.
11673 Ada 95 went one step further and pretty much removed Numeric_Error
11674 from the list of standard exceptions (it made it a renaming of
11675 Constraint_Error, to help preserve compatibility when compiling
11676 an Ada83 compiler). As such, we do not include Numeric_Error from
11677 this list of standard exceptions. */
11678
11679 static const char *standard_exc[] = {
11680 "constraint_error",
11681 "program_error",
11682 "storage_error",
11683 "tasking_error"
11684 };
11685
11686 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11687
11688 /* A structure that describes how to support exception catchpoints
11689 for a given executable. */
11690
11691 struct exception_support_info
11692 {
11693 /* The name of the symbol to break on in order to insert
11694 a catchpoint on exceptions. */
11695 const char *catch_exception_sym;
11696
11697 /* The name of the symbol to break on in order to insert
11698 a catchpoint on unhandled exceptions. */
11699 const char *catch_exception_unhandled_sym;
11700
11701 /* The name of the symbol to break on in order to insert
11702 a catchpoint on failed assertions. */
11703 const char *catch_assert_sym;
11704
11705 /* The name of the symbol to break on in order to insert
11706 a catchpoint on exception handling. */
11707 const char *catch_handlers_sym;
11708
11709 /* Assuming that the inferior just triggered an unhandled exception
11710 catchpoint, this function is responsible for returning the address
11711 in inferior memory where the name of that exception is stored.
11712 Return zero if the address could not be computed. */
11713 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11714 };
11715
11716 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11717 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11718
11719 /* The following exception support info structure describes how to
11720 implement exception catchpoints with the latest version of the
11721 Ada runtime (as of 2019-08-??). */
11722
11723 static const struct exception_support_info default_exception_support_info =
11724 {
11725 "__gnat_debug_raise_exception", /* catch_exception_sym */
11726 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11727 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11728 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11729 ada_unhandled_exception_name_addr
11730 };
11731
11732 /* The following exception support info structure describes how to
11733 implement exception catchpoints with an earlier version of the
11734 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11735
11736 static const struct exception_support_info exception_support_info_v0 =
11737 {
11738 "__gnat_debug_raise_exception", /* catch_exception_sym */
11739 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11740 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11741 "__gnat_begin_handler", /* catch_handlers_sym */
11742 ada_unhandled_exception_name_addr
11743 };
11744
11745 /* The following exception support info structure describes how to
11746 implement exception catchpoints with a slightly older version
11747 of the Ada runtime. */
11748
11749 static const struct exception_support_info exception_support_info_fallback =
11750 {
11751 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11752 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11753 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11754 "__gnat_begin_handler", /* catch_handlers_sym */
11755 ada_unhandled_exception_name_addr_from_raise
11756 };
11757
11758 /* Return nonzero if we can detect the exception support routines
11759 described in EINFO.
11760
11761 This function errors out if an abnormal situation is detected
11762 (for instance, if we find the exception support routines, but
11763 that support is found to be incomplete). */
11764
11765 static int
11766 ada_has_this_exception_support (const struct exception_support_info *einfo)
11767 {
11768 struct symbol *sym;
11769
11770 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11771 that should be compiled with debugging information. As a result, we
11772 expect to find that symbol in the symtabs. */
11773
11774 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11775 if (sym == NULL)
11776 {
11777 /* Perhaps we did not find our symbol because the Ada runtime was
11778 compiled without debugging info, or simply stripped of it.
11779 It happens on some GNU/Linux distributions for instance, where
11780 users have to install a separate debug package in order to get
11781 the runtime's debugging info. In that situation, let the user
11782 know why we cannot insert an Ada exception catchpoint.
11783
11784 Note: Just for the purpose of inserting our Ada exception
11785 catchpoint, we could rely purely on the associated minimal symbol.
11786 But we would be operating in degraded mode anyway, since we are
11787 still lacking the debugging info needed later on to extract
11788 the name of the exception being raised (this name is printed in
11789 the catchpoint message, and is also used when trying to catch
11790 a specific exception). We do not handle this case for now. */
11791 struct bound_minimal_symbol msym
11792 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11793
11794 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11795 error (_("Your Ada runtime appears to be missing some debugging "
11796 "information.\nCannot insert Ada exception catchpoint "
11797 "in this configuration."));
11798
11799 return 0;
11800 }
11801
11802 /* Make sure that the symbol we found corresponds to a function. */
11803
11804 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11805 {
11806 error (_("Symbol \"%s\" is not a function (class = %d)"),
11807 sym->linkage_name (), SYMBOL_CLASS (sym));
11808 return 0;
11809 }
11810
11811 sym = standard_lookup (einfo->catch_handlers_sym, NULL, VAR_DOMAIN);
11812 if (sym == NULL)
11813 {
11814 struct bound_minimal_symbol msym
11815 = lookup_minimal_symbol (einfo->catch_handlers_sym, NULL, NULL);
11816
11817 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11818 error (_("Your Ada runtime appears to be missing some debugging "
11819 "information.\nCannot insert Ada exception catchpoint "
11820 "in this configuration."));
11821
11822 return 0;
11823 }
11824
11825 /* Make sure that the symbol we found corresponds to a function. */
11826
11827 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11828 {
11829 error (_("Symbol \"%s\" is not a function (class = %d)"),
11830 sym->linkage_name (), SYMBOL_CLASS (sym));
11831 return 0;
11832 }
11833
11834 return 1;
11835 }
11836
11837 /* Inspect the Ada runtime and determine which exception info structure
11838 should be used to provide support for exception catchpoints.
11839
11840 This function will always set the per-inferior exception_info,
11841 or raise an error. */
11842
11843 static void
11844 ada_exception_support_info_sniffer (void)
11845 {
11846 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11847
11848 /* If the exception info is already known, then no need to recompute it. */
11849 if (data->exception_info != NULL)
11850 return;
11851
11852 /* Check the latest (default) exception support info. */
11853 if (ada_has_this_exception_support (&default_exception_support_info))
11854 {
11855 data->exception_info = &default_exception_support_info;
11856 return;
11857 }
11858
11859 /* Try the v0 exception suport info. */
11860 if (ada_has_this_exception_support (&exception_support_info_v0))
11861 {
11862 data->exception_info = &exception_support_info_v0;
11863 return;
11864 }
11865
11866 /* Try our fallback exception suport info. */
11867 if (ada_has_this_exception_support (&exception_support_info_fallback))
11868 {
11869 data->exception_info = &exception_support_info_fallback;
11870 return;
11871 }
11872
11873 /* Sometimes, it is normal for us to not be able to find the routine
11874 we are looking for. This happens when the program is linked with
11875 the shared version of the GNAT runtime, and the program has not been
11876 started yet. Inform the user of these two possible causes if
11877 applicable. */
11878
11879 if (ada_update_initial_language (language_unknown) != language_ada)
11880 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11881
11882 /* If the symbol does not exist, then check that the program is
11883 already started, to make sure that shared libraries have been
11884 loaded. If it is not started, this may mean that the symbol is
11885 in a shared library. */
11886
11887 if (inferior_ptid.pid () == 0)
11888 error (_("Unable to insert catchpoint. Try to start the program first."));
11889
11890 /* At this point, we know that we are debugging an Ada program and
11891 that the inferior has been started, but we still are not able to
11892 find the run-time symbols. That can mean that we are in
11893 configurable run time mode, or that a-except as been optimized
11894 out by the linker... In any case, at this point it is not worth
11895 supporting this feature. */
11896
11897 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11898 }
11899
11900 /* True iff FRAME is very likely to be that of a function that is
11901 part of the runtime system. This is all very heuristic, but is
11902 intended to be used as advice as to what frames are uninteresting
11903 to most users. */
11904
11905 static int
11906 is_known_support_routine (struct frame_info *frame)
11907 {
11908 enum language func_lang;
11909 int i;
11910 const char *fullname;
11911
11912 /* If this code does not have any debugging information (no symtab),
11913 This cannot be any user code. */
11914
11915 symtab_and_line sal = find_frame_sal (frame);
11916 if (sal.symtab == NULL)
11917 return 1;
11918
11919 /* If there is a symtab, but the associated source file cannot be
11920 located, then assume this is not user code: Selecting a frame
11921 for which we cannot display the code would not be very helpful
11922 for the user. This should also take care of case such as VxWorks
11923 where the kernel has some debugging info provided for a few units. */
11924
11925 fullname = symtab_to_fullname (sal.symtab);
11926 if (access (fullname, R_OK) != 0)
11927 return 1;
11928
11929 /* Check the unit filename against the Ada runtime file naming.
11930 We also check the name of the objfile against the name of some
11931 known system libraries that sometimes come with debugging info
11932 too. */
11933
11934 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11935 {
11936 re_comp (known_runtime_file_name_patterns[i]);
11937 if (re_exec (lbasename (sal.symtab->filename)))
11938 return 1;
11939 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11940 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11941 return 1;
11942 }
11943
11944 /* Check whether the function is a GNAT-generated entity. */
11945
11946 gdb::unique_xmalloc_ptr<char> func_name
11947 = find_frame_funname (frame, &func_lang, NULL);
11948 if (func_name == NULL)
11949 return 1;
11950
11951 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11952 {
11953 re_comp (known_auxiliary_function_name_patterns[i]);
11954 if (re_exec (func_name.get ()))
11955 return 1;
11956 }
11957
11958 return 0;
11959 }
11960
11961 /* Find the first frame that contains debugging information and that is not
11962 part of the Ada run-time, starting from FI and moving upward. */
11963
11964 void
11965 ada_find_printable_frame (struct frame_info *fi)
11966 {
11967 for (; fi != NULL; fi = get_prev_frame (fi))
11968 {
11969 if (!is_known_support_routine (fi))
11970 {
11971 select_frame (fi);
11972 break;
11973 }
11974 }
11975
11976 }
11977
11978 /* Assuming that the inferior just triggered an unhandled exception
11979 catchpoint, return the address in inferior memory where the name
11980 of the exception is stored.
11981
11982 Return zero if the address could not be computed. */
11983
11984 static CORE_ADDR
11985 ada_unhandled_exception_name_addr (void)
11986 {
11987 return parse_and_eval_address ("e.full_name");
11988 }
11989
11990 /* Same as ada_unhandled_exception_name_addr, except that this function
11991 should be used when the inferior uses an older version of the runtime,
11992 where the exception name needs to be extracted from a specific frame
11993 several frames up in the callstack. */
11994
11995 static CORE_ADDR
11996 ada_unhandled_exception_name_addr_from_raise (void)
11997 {
11998 int frame_level;
11999 struct frame_info *fi;
12000 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12001
12002 /* To determine the name of this exception, we need to select
12003 the frame corresponding to RAISE_SYM_NAME. This frame is
12004 at least 3 levels up, so we simply skip the first 3 frames
12005 without checking the name of their associated function. */
12006 fi = get_current_frame ();
12007 for (frame_level = 0; frame_level < 3; frame_level += 1)
12008 if (fi != NULL)
12009 fi = get_prev_frame (fi);
12010
12011 while (fi != NULL)
12012 {
12013 enum language func_lang;
12014
12015 gdb::unique_xmalloc_ptr<char> func_name
12016 = find_frame_funname (fi, &func_lang, NULL);
12017 if (func_name != NULL)
12018 {
12019 if (strcmp (func_name.get (),
12020 data->exception_info->catch_exception_sym) == 0)
12021 break; /* We found the frame we were looking for... */
12022 }
12023 fi = get_prev_frame (fi);
12024 }
12025
12026 if (fi == NULL)
12027 return 0;
12028
12029 select_frame (fi);
12030 return parse_and_eval_address ("id.full_name");
12031 }
12032
12033 /* Assuming the inferior just triggered an Ada exception catchpoint
12034 (of any type), return the address in inferior memory where the name
12035 of the exception is stored, if applicable.
12036
12037 Assumes the selected frame is the current frame.
12038
12039 Return zero if the address could not be computed, or if not relevant. */
12040
12041 static CORE_ADDR
12042 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12043 struct breakpoint *b)
12044 {
12045 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12046
12047 switch (ex)
12048 {
12049 case ada_catch_exception:
12050 return (parse_and_eval_address ("e.full_name"));
12051 break;
12052
12053 case ada_catch_exception_unhandled:
12054 return data->exception_info->unhandled_exception_name_addr ();
12055 break;
12056
12057 case ada_catch_handlers:
12058 return 0; /* The runtimes does not provide access to the exception
12059 name. */
12060 break;
12061
12062 case ada_catch_assert:
12063 return 0; /* Exception name is not relevant in this case. */
12064 break;
12065
12066 default:
12067 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12068 break;
12069 }
12070
12071 return 0; /* Should never be reached. */
12072 }
12073
12074 /* Assuming the inferior is stopped at an exception catchpoint,
12075 return the message which was associated to the exception, if
12076 available. Return NULL if the message could not be retrieved.
12077
12078 Note: The exception message can be associated to an exception
12079 either through the use of the Raise_Exception function, or
12080 more simply (Ada 2005 and later), via:
12081
12082 raise Exception_Name with "exception message";
12083
12084 */
12085
12086 static gdb::unique_xmalloc_ptr<char>
12087 ada_exception_message_1 (void)
12088 {
12089 struct value *e_msg_val;
12090 int e_msg_len;
12091
12092 /* For runtimes that support this feature, the exception message
12093 is passed as an unbounded string argument called "message". */
12094 e_msg_val = parse_and_eval ("message");
12095 if (e_msg_val == NULL)
12096 return NULL; /* Exception message not supported. */
12097
12098 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12099 gdb_assert (e_msg_val != NULL);
12100 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12101
12102 /* If the message string is empty, then treat it as if there was
12103 no exception message. */
12104 if (e_msg_len <= 0)
12105 return NULL;
12106
12107 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12108 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12109 e_msg.get ()[e_msg_len] = '\0';
12110
12111 return e_msg;
12112 }
12113
12114 /* Same as ada_exception_message_1, except that all exceptions are
12115 contained here (returning NULL instead). */
12116
12117 static gdb::unique_xmalloc_ptr<char>
12118 ada_exception_message (void)
12119 {
12120 gdb::unique_xmalloc_ptr<char> e_msg;
12121
12122 try
12123 {
12124 e_msg = ada_exception_message_1 ();
12125 }
12126 catch (const gdb_exception_error &e)
12127 {
12128 e_msg.reset (nullptr);
12129 }
12130
12131 return e_msg;
12132 }
12133
12134 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12135 any error that ada_exception_name_addr_1 might cause to be thrown.
12136 When an error is intercepted, a warning with the error message is printed,
12137 and zero is returned. */
12138
12139 static CORE_ADDR
12140 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12141 struct breakpoint *b)
12142 {
12143 CORE_ADDR result = 0;
12144
12145 try
12146 {
12147 result = ada_exception_name_addr_1 (ex, b);
12148 }
12149
12150 catch (const gdb_exception_error &e)
12151 {
12152 warning (_("failed to get exception name: %s"), e.what ());
12153 return 0;
12154 }
12155
12156 return result;
12157 }
12158
12159 static std::string ada_exception_catchpoint_cond_string
12160 (const char *excep_string,
12161 enum ada_exception_catchpoint_kind ex);
12162
12163 /* Ada catchpoints.
12164
12165 In the case of catchpoints on Ada exceptions, the catchpoint will
12166 stop the target on every exception the program throws. When a user
12167 specifies the name of a specific exception, we translate this
12168 request into a condition expression (in text form), and then parse
12169 it into an expression stored in each of the catchpoint's locations.
12170 We then use this condition to check whether the exception that was
12171 raised is the one the user is interested in. If not, then the
12172 target is resumed again. We store the name of the requested
12173 exception, in order to be able to re-set the condition expression
12174 when symbols change. */
12175
12176 /* An instance of this type is used to represent an Ada catchpoint
12177 breakpoint location. */
12178
12179 class ada_catchpoint_location : public bp_location
12180 {
12181 public:
12182 ada_catchpoint_location (breakpoint *owner)
12183 : bp_location (owner, bp_loc_software_breakpoint)
12184 {}
12185
12186 /* The condition that checks whether the exception that was raised
12187 is the specific exception the user specified on catchpoint
12188 creation. */
12189 expression_up excep_cond_expr;
12190 };
12191
12192 /* An instance of this type is used to represent an Ada catchpoint. */
12193
12194 struct ada_catchpoint : public breakpoint
12195 {
12196 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind)
12197 : m_kind (kind)
12198 {
12199 }
12200
12201 /* The name of the specific exception the user specified. */
12202 std::string excep_string;
12203
12204 /* What kind of catchpoint this is. */
12205 enum ada_exception_catchpoint_kind m_kind;
12206 };
12207
12208 /* Parse the exception condition string in the context of each of the
12209 catchpoint's locations, and store them for later evaluation. */
12210
12211 static void
12212 create_excep_cond_exprs (struct ada_catchpoint *c,
12213 enum ada_exception_catchpoint_kind ex)
12214 {
12215 struct bp_location *bl;
12216
12217 /* Nothing to do if there's no specific exception to catch. */
12218 if (c->excep_string.empty ())
12219 return;
12220
12221 /* Same if there are no locations... */
12222 if (c->loc == NULL)
12223 return;
12224
12225 /* Compute the condition expression in text form, from the specific
12226 expection we want to catch. */
12227 std::string cond_string
12228 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12229
12230 /* Iterate over all the catchpoint's locations, and parse an
12231 expression for each. */
12232 for (bl = c->loc; bl != NULL; bl = bl->next)
12233 {
12234 struct ada_catchpoint_location *ada_loc
12235 = (struct ada_catchpoint_location *) bl;
12236 expression_up exp;
12237
12238 if (!bl->shlib_disabled)
12239 {
12240 const char *s;
12241
12242 s = cond_string.c_str ();
12243 try
12244 {
12245 exp = parse_exp_1 (&s, bl->address,
12246 block_for_pc (bl->address),
12247 0);
12248 }
12249 catch (const gdb_exception_error &e)
12250 {
12251 warning (_("failed to reevaluate internal exception condition "
12252 "for catchpoint %d: %s"),
12253 c->number, e.what ());
12254 }
12255 }
12256
12257 ada_loc->excep_cond_expr = std::move (exp);
12258 }
12259 }
12260
12261 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12262 structure for all exception catchpoint kinds. */
12263
12264 static struct bp_location *
12265 allocate_location_exception (struct breakpoint *self)
12266 {
12267 return new ada_catchpoint_location (self);
12268 }
12269
12270 /* Implement the RE_SET method in the breakpoint_ops structure for all
12271 exception catchpoint kinds. */
12272
12273 static void
12274 re_set_exception (struct breakpoint *b)
12275 {
12276 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12277
12278 /* Call the base class's method. This updates the catchpoint's
12279 locations. */
12280 bkpt_breakpoint_ops.re_set (b);
12281
12282 /* Reparse the exception conditional expressions. One for each
12283 location. */
12284 create_excep_cond_exprs (c, c->m_kind);
12285 }
12286
12287 /* Returns true if we should stop for this breakpoint hit. If the
12288 user specified a specific exception, we only want to cause a stop
12289 if the program thrown that exception. */
12290
12291 static int
12292 should_stop_exception (const struct bp_location *bl)
12293 {
12294 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12295 const struct ada_catchpoint_location *ada_loc
12296 = (const struct ada_catchpoint_location *) bl;
12297 int stop;
12298
12299 struct internalvar *var = lookup_internalvar ("_ada_exception");
12300 if (c->m_kind == ada_catch_assert)
12301 clear_internalvar (var);
12302 else
12303 {
12304 try
12305 {
12306 const char *expr;
12307
12308 if (c->m_kind == ada_catch_handlers)
12309 expr = ("GNAT_GCC_exception_Access(gcc_exception)"
12310 ".all.occurrence.id");
12311 else
12312 expr = "e";
12313
12314 struct value *exc = parse_and_eval (expr);
12315 set_internalvar (var, exc);
12316 }
12317 catch (const gdb_exception_error &ex)
12318 {
12319 clear_internalvar (var);
12320 }
12321 }
12322
12323 /* With no specific exception, should always stop. */
12324 if (c->excep_string.empty ())
12325 return 1;
12326
12327 if (ada_loc->excep_cond_expr == NULL)
12328 {
12329 /* We will have a NULL expression if back when we were creating
12330 the expressions, this location's had failed to parse. */
12331 return 1;
12332 }
12333
12334 stop = 1;
12335 try
12336 {
12337 struct value *mark;
12338
12339 mark = value_mark ();
12340 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12341 value_free_to_mark (mark);
12342 }
12343 catch (const gdb_exception &ex)
12344 {
12345 exception_fprintf (gdb_stderr, ex,
12346 _("Error in testing exception condition:\n"));
12347 }
12348
12349 return stop;
12350 }
12351
12352 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12353 for all exception catchpoint kinds. */
12354
12355 static void
12356 check_status_exception (bpstat bs)
12357 {
12358 bs->stop = should_stop_exception (bs->bp_location_at);
12359 }
12360
12361 /* Implement the PRINT_IT method in the breakpoint_ops structure
12362 for all exception catchpoint kinds. */
12363
12364 static enum print_stop_action
12365 print_it_exception (bpstat bs)
12366 {
12367 struct ui_out *uiout = current_uiout;
12368 struct breakpoint *b = bs->breakpoint_at;
12369
12370 annotate_catchpoint (b->number);
12371
12372 if (uiout->is_mi_like_p ())
12373 {
12374 uiout->field_string ("reason",
12375 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12376 uiout->field_string ("disp", bpdisp_text (b->disposition));
12377 }
12378
12379 uiout->text (b->disposition == disp_del
12380 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12381 uiout->field_signed ("bkptno", b->number);
12382 uiout->text (", ");
12383
12384 /* ada_exception_name_addr relies on the selected frame being the
12385 current frame. Need to do this here because this function may be
12386 called more than once when printing a stop, and below, we'll
12387 select the first frame past the Ada run-time (see
12388 ada_find_printable_frame). */
12389 select_frame (get_current_frame ());
12390
12391 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12392 switch (c->m_kind)
12393 {
12394 case ada_catch_exception:
12395 case ada_catch_exception_unhandled:
12396 case ada_catch_handlers:
12397 {
12398 const CORE_ADDR addr = ada_exception_name_addr (c->m_kind, b);
12399 char exception_name[256];
12400
12401 if (addr != 0)
12402 {
12403 read_memory (addr, (gdb_byte *) exception_name,
12404 sizeof (exception_name) - 1);
12405 exception_name [sizeof (exception_name) - 1] = '\0';
12406 }
12407 else
12408 {
12409 /* For some reason, we were unable to read the exception
12410 name. This could happen if the Runtime was compiled
12411 without debugging info, for instance. In that case,
12412 just replace the exception name by the generic string
12413 "exception" - it will read as "an exception" in the
12414 notification we are about to print. */
12415 memcpy (exception_name, "exception", sizeof ("exception"));
12416 }
12417 /* In the case of unhandled exception breakpoints, we print
12418 the exception name as "unhandled EXCEPTION_NAME", to make
12419 it clearer to the user which kind of catchpoint just got
12420 hit. We used ui_out_text to make sure that this extra
12421 info does not pollute the exception name in the MI case. */
12422 if (c->m_kind == ada_catch_exception_unhandled)
12423 uiout->text ("unhandled ");
12424 uiout->field_string ("exception-name", exception_name);
12425 }
12426 break;
12427 case ada_catch_assert:
12428 /* In this case, the name of the exception is not really
12429 important. Just print "failed assertion" to make it clearer
12430 that his program just hit an assertion-failure catchpoint.
12431 We used ui_out_text because this info does not belong in
12432 the MI output. */
12433 uiout->text ("failed assertion");
12434 break;
12435 }
12436
12437 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12438 if (exception_message != NULL)
12439 {
12440 uiout->text (" (");
12441 uiout->field_string ("exception-message", exception_message.get ());
12442 uiout->text (")");
12443 }
12444
12445 uiout->text (" at ");
12446 ada_find_printable_frame (get_current_frame ());
12447
12448 return PRINT_SRC_AND_LOC;
12449 }
12450
12451 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12452 for all exception catchpoint kinds. */
12453
12454 static void
12455 print_one_exception (struct breakpoint *b, struct bp_location **last_loc)
12456 {
12457 struct ui_out *uiout = current_uiout;
12458 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12459 struct value_print_options opts;
12460
12461 get_user_print_options (&opts);
12462
12463 if (opts.addressprint)
12464 uiout->field_skip ("addr");
12465
12466 annotate_field (5);
12467 switch (c->m_kind)
12468 {
12469 case ada_catch_exception:
12470 if (!c->excep_string.empty ())
12471 {
12472 std::string msg = string_printf (_("`%s' Ada exception"),
12473 c->excep_string.c_str ());
12474
12475 uiout->field_string ("what", msg);
12476 }
12477 else
12478 uiout->field_string ("what", "all Ada exceptions");
12479
12480 break;
12481
12482 case ada_catch_exception_unhandled:
12483 uiout->field_string ("what", "unhandled Ada exceptions");
12484 break;
12485
12486 case ada_catch_handlers:
12487 if (!c->excep_string.empty ())
12488 {
12489 uiout->field_fmt ("what",
12490 _("`%s' Ada exception handlers"),
12491 c->excep_string.c_str ());
12492 }
12493 else
12494 uiout->field_string ("what", "all Ada exceptions handlers");
12495 break;
12496
12497 case ada_catch_assert:
12498 uiout->field_string ("what", "failed Ada assertions");
12499 break;
12500
12501 default:
12502 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12503 break;
12504 }
12505 }
12506
12507 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12508 for all exception catchpoint kinds. */
12509
12510 static void
12511 print_mention_exception (struct breakpoint *b)
12512 {
12513 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12514 struct ui_out *uiout = current_uiout;
12515
12516 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12517 : _("Catchpoint "));
12518 uiout->field_signed ("bkptno", b->number);
12519 uiout->text (": ");
12520
12521 switch (c->m_kind)
12522 {
12523 case ada_catch_exception:
12524 if (!c->excep_string.empty ())
12525 {
12526 std::string info = string_printf (_("`%s' Ada exception"),
12527 c->excep_string.c_str ());
12528 uiout->text (info.c_str ());
12529 }
12530 else
12531 uiout->text (_("all Ada exceptions"));
12532 break;
12533
12534 case ada_catch_exception_unhandled:
12535 uiout->text (_("unhandled Ada exceptions"));
12536 break;
12537
12538 case ada_catch_handlers:
12539 if (!c->excep_string.empty ())
12540 {
12541 std::string info
12542 = string_printf (_("`%s' Ada exception handlers"),
12543 c->excep_string.c_str ());
12544 uiout->text (info.c_str ());
12545 }
12546 else
12547 uiout->text (_("all Ada exceptions handlers"));
12548 break;
12549
12550 case ada_catch_assert:
12551 uiout->text (_("failed Ada assertions"));
12552 break;
12553
12554 default:
12555 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12556 break;
12557 }
12558 }
12559
12560 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12561 for all exception catchpoint kinds. */
12562
12563 static void
12564 print_recreate_exception (struct breakpoint *b, struct ui_file *fp)
12565 {
12566 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12567
12568 switch (c->m_kind)
12569 {
12570 case ada_catch_exception:
12571 fprintf_filtered (fp, "catch exception");
12572 if (!c->excep_string.empty ())
12573 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12574 break;
12575
12576 case ada_catch_exception_unhandled:
12577 fprintf_filtered (fp, "catch exception unhandled");
12578 break;
12579
12580 case ada_catch_handlers:
12581 fprintf_filtered (fp, "catch handlers");
12582 break;
12583
12584 case ada_catch_assert:
12585 fprintf_filtered (fp, "catch assert");
12586 break;
12587
12588 default:
12589 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12590 }
12591 print_recreate_thread (b, fp);
12592 }
12593
12594 /* Virtual tables for various breakpoint types. */
12595 static struct breakpoint_ops catch_exception_breakpoint_ops;
12596 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12597 static struct breakpoint_ops catch_assert_breakpoint_ops;
12598 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12599
12600 /* See ada-lang.h. */
12601
12602 bool
12603 is_ada_exception_catchpoint (breakpoint *bp)
12604 {
12605 return (bp->ops == &catch_exception_breakpoint_ops
12606 || bp->ops == &catch_exception_unhandled_breakpoint_ops
12607 || bp->ops == &catch_assert_breakpoint_ops
12608 || bp->ops == &catch_handlers_breakpoint_ops);
12609 }
12610
12611 /* Split the arguments specified in a "catch exception" command.
12612 Set EX to the appropriate catchpoint type.
12613 Set EXCEP_STRING to the name of the specific exception if
12614 specified by the user.
12615 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12616 "catch handlers" command. False otherwise.
12617 If a condition is found at the end of the arguments, the condition
12618 expression is stored in COND_STRING (memory must be deallocated
12619 after use). Otherwise COND_STRING is set to NULL. */
12620
12621 static void
12622 catch_ada_exception_command_split (const char *args,
12623 bool is_catch_handlers_cmd,
12624 enum ada_exception_catchpoint_kind *ex,
12625 std::string *excep_string,
12626 std::string *cond_string)
12627 {
12628 std::string exception_name;
12629
12630 exception_name = extract_arg (&args);
12631 if (exception_name == "if")
12632 {
12633 /* This is not an exception name; this is the start of a condition
12634 expression for a catchpoint on all exceptions. So, "un-get"
12635 this token, and set exception_name to NULL. */
12636 exception_name.clear ();
12637 args -= 2;
12638 }
12639
12640 /* Check to see if we have a condition. */
12641
12642 args = skip_spaces (args);
12643 if (startswith (args, "if")
12644 && (isspace (args[2]) || args[2] == '\0'))
12645 {
12646 args += 2;
12647 args = skip_spaces (args);
12648
12649 if (args[0] == '\0')
12650 error (_("Condition missing after `if' keyword"));
12651 *cond_string = args;
12652
12653 args += strlen (args);
12654 }
12655
12656 /* Check that we do not have any more arguments. Anything else
12657 is unexpected. */
12658
12659 if (args[0] != '\0')
12660 error (_("Junk at end of expression"));
12661
12662 if (is_catch_handlers_cmd)
12663 {
12664 /* Catch handling of exceptions. */
12665 *ex = ada_catch_handlers;
12666 *excep_string = exception_name;
12667 }
12668 else if (exception_name.empty ())
12669 {
12670 /* Catch all exceptions. */
12671 *ex = ada_catch_exception;
12672 excep_string->clear ();
12673 }
12674 else if (exception_name == "unhandled")
12675 {
12676 /* Catch unhandled exceptions. */
12677 *ex = ada_catch_exception_unhandled;
12678 excep_string->clear ();
12679 }
12680 else
12681 {
12682 /* Catch a specific exception. */
12683 *ex = ada_catch_exception;
12684 *excep_string = exception_name;
12685 }
12686 }
12687
12688 /* Return the name of the symbol on which we should break in order to
12689 implement a catchpoint of the EX kind. */
12690
12691 static const char *
12692 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12693 {
12694 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12695
12696 gdb_assert (data->exception_info != NULL);
12697
12698 switch (ex)
12699 {
12700 case ada_catch_exception:
12701 return (data->exception_info->catch_exception_sym);
12702 break;
12703 case ada_catch_exception_unhandled:
12704 return (data->exception_info->catch_exception_unhandled_sym);
12705 break;
12706 case ada_catch_assert:
12707 return (data->exception_info->catch_assert_sym);
12708 break;
12709 case ada_catch_handlers:
12710 return (data->exception_info->catch_handlers_sym);
12711 break;
12712 default:
12713 internal_error (__FILE__, __LINE__,
12714 _("unexpected catchpoint kind (%d)"), ex);
12715 }
12716 }
12717
12718 /* Return the breakpoint ops "virtual table" used for catchpoints
12719 of the EX kind. */
12720
12721 static const struct breakpoint_ops *
12722 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12723 {
12724 switch (ex)
12725 {
12726 case ada_catch_exception:
12727 return (&catch_exception_breakpoint_ops);
12728 break;
12729 case ada_catch_exception_unhandled:
12730 return (&catch_exception_unhandled_breakpoint_ops);
12731 break;
12732 case ada_catch_assert:
12733 return (&catch_assert_breakpoint_ops);
12734 break;
12735 case ada_catch_handlers:
12736 return (&catch_handlers_breakpoint_ops);
12737 break;
12738 default:
12739 internal_error (__FILE__, __LINE__,
12740 _("unexpected catchpoint kind (%d)"), ex);
12741 }
12742 }
12743
12744 /* Return the condition that will be used to match the current exception
12745 being raised with the exception that the user wants to catch. This
12746 assumes that this condition is used when the inferior just triggered
12747 an exception catchpoint.
12748 EX: the type of catchpoints used for catching Ada exceptions. */
12749
12750 static std::string
12751 ada_exception_catchpoint_cond_string (const char *excep_string,
12752 enum ada_exception_catchpoint_kind ex)
12753 {
12754 int i;
12755 bool is_standard_exc = false;
12756 std::string result;
12757
12758 if (ex == ada_catch_handlers)
12759 {
12760 /* For exception handlers catchpoints, the condition string does
12761 not use the same parameter as for the other exceptions. */
12762 result = ("long_integer (GNAT_GCC_exception_Access"
12763 "(gcc_exception).all.occurrence.id)");
12764 }
12765 else
12766 result = "long_integer (e)";
12767
12768 /* The standard exceptions are a special case. They are defined in
12769 runtime units that have been compiled without debugging info; if
12770 EXCEP_STRING is the not-fully-qualified name of a standard
12771 exception (e.g. "constraint_error") then, during the evaluation
12772 of the condition expression, the symbol lookup on this name would
12773 *not* return this standard exception. The catchpoint condition
12774 may then be set only on user-defined exceptions which have the
12775 same not-fully-qualified name (e.g. my_package.constraint_error).
12776
12777 To avoid this unexcepted behavior, these standard exceptions are
12778 systematically prefixed by "standard". This means that "catch
12779 exception constraint_error" is rewritten into "catch exception
12780 standard.constraint_error".
12781
12782 If an exception named constraint_error is defined in another package of
12783 the inferior program, then the only way to specify this exception as a
12784 breakpoint condition is to use its fully-qualified named:
12785 e.g. my_package.constraint_error. */
12786
12787 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12788 {
12789 if (strcmp (standard_exc [i], excep_string) == 0)
12790 {
12791 is_standard_exc = true;
12792 break;
12793 }
12794 }
12795
12796 result += " = ";
12797
12798 if (is_standard_exc)
12799 string_appendf (result, "long_integer (&standard.%s)", excep_string);
12800 else
12801 string_appendf (result, "long_integer (&%s)", excep_string);
12802
12803 return result;
12804 }
12805
12806 /* Return the symtab_and_line that should be used to insert an exception
12807 catchpoint of the TYPE kind.
12808
12809 ADDR_STRING returns the name of the function where the real
12810 breakpoint that implements the catchpoints is set, depending on the
12811 type of catchpoint we need to create. */
12812
12813 static struct symtab_and_line
12814 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
12815 std::string *addr_string, const struct breakpoint_ops **ops)
12816 {
12817 const char *sym_name;
12818 struct symbol *sym;
12819
12820 /* First, find out which exception support info to use. */
12821 ada_exception_support_info_sniffer ();
12822
12823 /* Then lookup the function on which we will break in order to catch
12824 the Ada exceptions requested by the user. */
12825 sym_name = ada_exception_sym_name (ex);
12826 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12827
12828 if (sym == NULL)
12829 error (_("Catchpoint symbol not found: %s"), sym_name);
12830
12831 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12832 error (_("Unable to insert catchpoint. %s is not a function."), sym_name);
12833
12834 /* Set ADDR_STRING. */
12835 *addr_string = sym_name;
12836
12837 /* Set OPS. */
12838 *ops = ada_exception_breakpoint_ops (ex);
12839
12840 return find_function_start_sal (sym, 1);
12841 }
12842
12843 /* Create an Ada exception catchpoint.
12844
12845 EX_KIND is the kind of exception catchpoint to be created.
12846
12847 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12848 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12849 of the exception to which this catchpoint applies.
12850
12851 COND_STRING, if not empty, is the catchpoint condition.
12852
12853 TEMPFLAG, if nonzero, means that the underlying breakpoint
12854 should be temporary.
12855
12856 FROM_TTY is the usual argument passed to all commands implementations. */
12857
12858 void
12859 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12860 enum ada_exception_catchpoint_kind ex_kind,
12861 const std::string &excep_string,
12862 const std::string &cond_string,
12863 int tempflag,
12864 int disabled,
12865 int from_tty)
12866 {
12867 std::string addr_string;
12868 const struct breakpoint_ops *ops = NULL;
12869 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
12870
12871 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint (ex_kind));
12872 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string.c_str (),
12873 ops, tempflag, disabled, from_tty);
12874 c->excep_string = excep_string;
12875 create_excep_cond_exprs (c.get (), ex_kind);
12876 if (!cond_string.empty ())
12877 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
12878 install_breakpoint (0, std::move (c), 1);
12879 }
12880
12881 /* Implement the "catch exception" command. */
12882
12883 static void
12884 catch_ada_exception_command (const char *arg_entry, int from_tty,
12885 struct cmd_list_element *command)
12886 {
12887 const char *arg = arg_entry;
12888 struct gdbarch *gdbarch = get_current_arch ();
12889 int tempflag;
12890 enum ada_exception_catchpoint_kind ex_kind;
12891 std::string excep_string;
12892 std::string cond_string;
12893
12894 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12895
12896 if (!arg)
12897 arg = "";
12898 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
12899 &cond_string);
12900 create_ada_exception_catchpoint (gdbarch, ex_kind,
12901 excep_string, cond_string,
12902 tempflag, 1 /* enabled */,
12903 from_tty);
12904 }
12905
12906 /* Implement the "catch handlers" command. */
12907
12908 static void
12909 catch_ada_handlers_command (const char *arg_entry, int from_tty,
12910 struct cmd_list_element *command)
12911 {
12912 const char *arg = arg_entry;
12913 struct gdbarch *gdbarch = get_current_arch ();
12914 int tempflag;
12915 enum ada_exception_catchpoint_kind ex_kind;
12916 std::string excep_string;
12917 std::string cond_string;
12918
12919 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12920
12921 if (!arg)
12922 arg = "";
12923 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
12924 &cond_string);
12925 create_ada_exception_catchpoint (gdbarch, ex_kind,
12926 excep_string, cond_string,
12927 tempflag, 1 /* enabled */,
12928 from_tty);
12929 }
12930
12931 /* Completion function for the Ada "catch" commands. */
12932
12933 static void
12934 catch_ada_completer (struct cmd_list_element *cmd, completion_tracker &tracker,
12935 const char *text, const char *word)
12936 {
12937 std::vector<ada_exc_info> exceptions = ada_exceptions_list (NULL);
12938
12939 for (const ada_exc_info &info : exceptions)
12940 {
12941 if (startswith (info.name, word))
12942 tracker.add_completion (make_unique_xstrdup (info.name));
12943 }
12944 }
12945
12946 /* Split the arguments specified in a "catch assert" command.
12947
12948 ARGS contains the command's arguments (or the empty string if
12949 no arguments were passed).
12950
12951 If ARGS contains a condition, set COND_STRING to that condition
12952 (the memory needs to be deallocated after use). */
12953
12954 static void
12955 catch_ada_assert_command_split (const char *args, std::string &cond_string)
12956 {
12957 args = skip_spaces (args);
12958
12959 /* Check whether a condition was provided. */
12960 if (startswith (args, "if")
12961 && (isspace (args[2]) || args[2] == '\0'))
12962 {
12963 args += 2;
12964 args = skip_spaces (args);
12965 if (args[0] == '\0')
12966 error (_("condition missing after `if' keyword"));
12967 cond_string.assign (args);
12968 }
12969
12970 /* Otherwise, there should be no other argument at the end of
12971 the command. */
12972 else if (args[0] != '\0')
12973 error (_("Junk at end of arguments."));
12974 }
12975
12976 /* Implement the "catch assert" command. */
12977
12978 static void
12979 catch_assert_command (const char *arg_entry, int from_tty,
12980 struct cmd_list_element *command)
12981 {
12982 const char *arg = arg_entry;
12983 struct gdbarch *gdbarch = get_current_arch ();
12984 int tempflag;
12985 std::string cond_string;
12986
12987 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12988
12989 if (!arg)
12990 arg = "";
12991 catch_ada_assert_command_split (arg, cond_string);
12992 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12993 "", cond_string,
12994 tempflag, 1 /* enabled */,
12995 from_tty);
12996 }
12997
12998 /* Return non-zero if the symbol SYM is an Ada exception object. */
12999
13000 static int
13001 ada_is_exception_sym (struct symbol *sym)
13002 {
13003 const char *type_name = SYMBOL_TYPE (sym)->name ();
13004
13005 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13006 && SYMBOL_CLASS (sym) != LOC_BLOCK
13007 && SYMBOL_CLASS (sym) != LOC_CONST
13008 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13009 && type_name != NULL && strcmp (type_name, "exception") == 0);
13010 }
13011
13012 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13013 Ada exception object. This matches all exceptions except the ones
13014 defined by the Ada language. */
13015
13016 static int
13017 ada_is_non_standard_exception_sym (struct symbol *sym)
13018 {
13019 int i;
13020
13021 if (!ada_is_exception_sym (sym))
13022 return 0;
13023
13024 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13025 if (strcmp (sym->linkage_name (), standard_exc[i]) == 0)
13026 return 0; /* A standard exception. */
13027
13028 /* Numeric_Error is also a standard exception, so exclude it.
13029 See the STANDARD_EXC description for more details as to why
13030 this exception is not listed in that array. */
13031 if (strcmp (sym->linkage_name (), "numeric_error") == 0)
13032 return 0;
13033
13034 return 1;
13035 }
13036
13037 /* A helper function for std::sort, comparing two struct ada_exc_info
13038 objects.
13039
13040 The comparison is determined first by exception name, and then
13041 by exception address. */
13042
13043 bool
13044 ada_exc_info::operator< (const ada_exc_info &other) const
13045 {
13046 int result;
13047
13048 result = strcmp (name, other.name);
13049 if (result < 0)
13050 return true;
13051 if (result == 0 && addr < other.addr)
13052 return true;
13053 return false;
13054 }
13055
13056 bool
13057 ada_exc_info::operator== (const ada_exc_info &other) const
13058 {
13059 return addr == other.addr && strcmp (name, other.name) == 0;
13060 }
13061
13062 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13063 routine, but keeping the first SKIP elements untouched.
13064
13065 All duplicates are also removed. */
13066
13067 static void
13068 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13069 int skip)
13070 {
13071 std::sort (exceptions->begin () + skip, exceptions->end ());
13072 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13073 exceptions->end ());
13074 }
13075
13076 /* Add all exceptions defined by the Ada standard whose name match
13077 a regular expression.
13078
13079 If PREG is not NULL, then this regexp_t object is used to
13080 perform the symbol name matching. Otherwise, no name-based
13081 filtering is performed.
13082
13083 EXCEPTIONS is a vector of exceptions to which matching exceptions
13084 gets pushed. */
13085
13086 static void
13087 ada_add_standard_exceptions (compiled_regex *preg,
13088 std::vector<ada_exc_info> *exceptions)
13089 {
13090 int i;
13091
13092 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13093 {
13094 if (preg == NULL
13095 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13096 {
13097 struct bound_minimal_symbol msymbol
13098 = ada_lookup_simple_minsym (standard_exc[i]);
13099
13100 if (msymbol.minsym != NULL)
13101 {
13102 struct ada_exc_info info
13103 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13104
13105 exceptions->push_back (info);
13106 }
13107 }
13108 }
13109 }
13110
13111 /* Add all Ada exceptions defined locally and accessible from the given
13112 FRAME.
13113
13114 If PREG is not NULL, then this regexp_t object is used to
13115 perform the symbol name matching. Otherwise, no name-based
13116 filtering is performed.
13117
13118 EXCEPTIONS is a vector of exceptions to which matching exceptions
13119 gets pushed. */
13120
13121 static void
13122 ada_add_exceptions_from_frame (compiled_regex *preg,
13123 struct frame_info *frame,
13124 std::vector<ada_exc_info> *exceptions)
13125 {
13126 const struct block *block = get_frame_block (frame, 0);
13127
13128 while (block != 0)
13129 {
13130 struct block_iterator iter;
13131 struct symbol *sym;
13132
13133 ALL_BLOCK_SYMBOLS (block, iter, sym)
13134 {
13135 switch (SYMBOL_CLASS (sym))
13136 {
13137 case LOC_TYPEDEF:
13138 case LOC_BLOCK:
13139 case LOC_CONST:
13140 break;
13141 default:
13142 if (ada_is_exception_sym (sym))
13143 {
13144 struct ada_exc_info info = {sym->print_name (),
13145 SYMBOL_VALUE_ADDRESS (sym)};
13146
13147 exceptions->push_back (info);
13148 }
13149 }
13150 }
13151 if (BLOCK_FUNCTION (block) != NULL)
13152 break;
13153 block = BLOCK_SUPERBLOCK (block);
13154 }
13155 }
13156
13157 /* Return true if NAME matches PREG or if PREG is NULL. */
13158
13159 static bool
13160 name_matches_regex (const char *name, compiled_regex *preg)
13161 {
13162 return (preg == NULL
13163 || preg->exec (ada_decode (name).c_str (), 0, NULL, 0) == 0);
13164 }
13165
13166 /* Add all exceptions defined globally whose name name match
13167 a regular expression, excluding standard exceptions.
13168
13169 The reason we exclude standard exceptions is that they need
13170 to be handled separately: Standard exceptions are defined inside
13171 a runtime unit which is normally not compiled with debugging info,
13172 and thus usually do not show up in our symbol search. However,
13173 if the unit was in fact built with debugging info, we need to
13174 exclude them because they would duplicate the entry we found
13175 during the special loop that specifically searches for those
13176 standard exceptions.
13177
13178 If PREG is not NULL, then this regexp_t object is used to
13179 perform the symbol name matching. Otherwise, no name-based
13180 filtering is performed.
13181
13182 EXCEPTIONS is a vector of exceptions to which matching exceptions
13183 gets pushed. */
13184
13185 static void
13186 ada_add_global_exceptions (compiled_regex *preg,
13187 std::vector<ada_exc_info> *exceptions)
13188 {
13189 /* In Ada, the symbol "search name" is a linkage name, whereas the
13190 regular expression used to do the matching refers to the natural
13191 name. So match against the decoded name. */
13192 expand_symtabs_matching (NULL,
13193 lookup_name_info::match_any (),
13194 [&] (const char *search_name)
13195 {
13196 std::string decoded = ada_decode (search_name);
13197 return name_matches_regex (decoded.c_str (), preg);
13198 },
13199 NULL,
13200 VARIABLES_DOMAIN);
13201
13202 for (objfile *objfile : current_program_space->objfiles ())
13203 {
13204 for (compunit_symtab *s : objfile->compunits ())
13205 {
13206 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13207 int i;
13208
13209 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13210 {
13211 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13212 struct block_iterator iter;
13213 struct symbol *sym;
13214
13215 ALL_BLOCK_SYMBOLS (b, iter, sym)
13216 if (ada_is_non_standard_exception_sym (sym)
13217 && name_matches_regex (sym->natural_name (), preg))
13218 {
13219 struct ada_exc_info info
13220 = {sym->print_name (), SYMBOL_VALUE_ADDRESS (sym)};
13221
13222 exceptions->push_back (info);
13223 }
13224 }
13225 }
13226 }
13227 }
13228
13229 /* Implements ada_exceptions_list with the regular expression passed
13230 as a regex_t, rather than a string.
13231
13232 If not NULL, PREG is used to filter out exceptions whose names
13233 do not match. Otherwise, all exceptions are listed. */
13234
13235 static std::vector<ada_exc_info>
13236 ada_exceptions_list_1 (compiled_regex *preg)
13237 {
13238 std::vector<ada_exc_info> result;
13239 int prev_len;
13240
13241 /* First, list the known standard exceptions. These exceptions
13242 need to be handled separately, as they are usually defined in
13243 runtime units that have been compiled without debugging info. */
13244
13245 ada_add_standard_exceptions (preg, &result);
13246
13247 /* Next, find all exceptions whose scope is local and accessible
13248 from the currently selected frame. */
13249
13250 if (has_stack_frames ())
13251 {
13252 prev_len = result.size ();
13253 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13254 &result);
13255 if (result.size () > prev_len)
13256 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13257 }
13258
13259 /* Add all exceptions whose scope is global. */
13260
13261 prev_len = result.size ();
13262 ada_add_global_exceptions (preg, &result);
13263 if (result.size () > prev_len)
13264 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13265
13266 return result;
13267 }
13268
13269 /* Return a vector of ada_exc_info.
13270
13271 If REGEXP is NULL, all exceptions are included in the result.
13272 Otherwise, it should contain a valid regular expression,
13273 and only the exceptions whose names match that regular expression
13274 are included in the result.
13275
13276 The exceptions are sorted in the following order:
13277 - Standard exceptions (defined by the Ada language), in
13278 alphabetical order;
13279 - Exceptions only visible from the current frame, in
13280 alphabetical order;
13281 - Exceptions whose scope is global, in alphabetical order. */
13282
13283 std::vector<ada_exc_info>
13284 ada_exceptions_list (const char *regexp)
13285 {
13286 if (regexp == NULL)
13287 return ada_exceptions_list_1 (NULL);
13288
13289 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13290 return ada_exceptions_list_1 (&reg);
13291 }
13292
13293 /* Implement the "info exceptions" command. */
13294
13295 static void
13296 info_exceptions_command (const char *regexp, int from_tty)
13297 {
13298 struct gdbarch *gdbarch = get_current_arch ();
13299
13300 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13301
13302 if (regexp != NULL)
13303 printf_filtered
13304 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13305 else
13306 printf_filtered (_("All defined Ada exceptions:\n"));
13307
13308 for (const ada_exc_info &info : exceptions)
13309 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13310 }
13311
13312 /* Operators */
13313 /* Information about operators given special treatment in functions
13314 below. */
13315 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13316
13317 #define ADA_OPERATORS \
13318 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13319 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13320 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13321 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13322 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13323 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13324 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13325 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13326 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13327 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13328 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13329 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13330 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13331 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13332 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13333 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13334 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13335 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13336 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13337
13338 static void
13339 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13340 int *argsp)
13341 {
13342 switch (exp->elts[pc - 1].opcode)
13343 {
13344 default:
13345 operator_length_standard (exp, pc, oplenp, argsp);
13346 break;
13347
13348 #define OP_DEFN(op, len, args, binop) \
13349 case op: *oplenp = len; *argsp = args; break;
13350 ADA_OPERATORS;
13351 #undef OP_DEFN
13352
13353 case OP_AGGREGATE:
13354 *oplenp = 3;
13355 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13356 break;
13357
13358 case OP_CHOICES:
13359 *oplenp = 3;
13360 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13361 break;
13362 }
13363 }
13364
13365 /* Implementation of the exp_descriptor method operator_check. */
13366
13367 static int
13368 ada_operator_check (struct expression *exp, int pos,
13369 int (*objfile_func) (struct objfile *objfile, void *data),
13370 void *data)
13371 {
13372 const union exp_element *const elts = exp->elts;
13373 struct type *type = NULL;
13374
13375 switch (elts[pos].opcode)
13376 {
13377 case UNOP_IN_RANGE:
13378 case UNOP_QUAL:
13379 type = elts[pos + 1].type;
13380 break;
13381
13382 default:
13383 return operator_check_standard (exp, pos, objfile_func, data);
13384 }
13385
13386 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13387
13388 if (type && TYPE_OBJFILE (type)
13389 && (*objfile_func) (TYPE_OBJFILE (type), data))
13390 return 1;
13391
13392 return 0;
13393 }
13394
13395 static const char *
13396 ada_op_name (enum exp_opcode opcode)
13397 {
13398 switch (opcode)
13399 {
13400 default:
13401 return op_name_standard (opcode);
13402
13403 #define OP_DEFN(op, len, args, binop) case op: return #op;
13404 ADA_OPERATORS;
13405 #undef OP_DEFN
13406
13407 case OP_AGGREGATE:
13408 return "OP_AGGREGATE";
13409 case OP_CHOICES:
13410 return "OP_CHOICES";
13411 case OP_NAME:
13412 return "OP_NAME";
13413 }
13414 }
13415
13416 /* As for operator_length, but assumes PC is pointing at the first
13417 element of the operator, and gives meaningful results only for the
13418 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13419
13420 static void
13421 ada_forward_operator_length (struct expression *exp, int pc,
13422 int *oplenp, int *argsp)
13423 {
13424 switch (exp->elts[pc].opcode)
13425 {
13426 default:
13427 *oplenp = *argsp = 0;
13428 break;
13429
13430 #define OP_DEFN(op, len, args, binop) \
13431 case op: *oplenp = len; *argsp = args; break;
13432 ADA_OPERATORS;
13433 #undef OP_DEFN
13434
13435 case OP_AGGREGATE:
13436 *oplenp = 3;
13437 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13438 break;
13439
13440 case OP_CHOICES:
13441 *oplenp = 3;
13442 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13443 break;
13444
13445 case OP_STRING:
13446 case OP_NAME:
13447 {
13448 int len = longest_to_int (exp->elts[pc + 1].longconst);
13449
13450 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13451 *argsp = 0;
13452 break;
13453 }
13454 }
13455 }
13456
13457 static int
13458 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13459 {
13460 enum exp_opcode op = exp->elts[elt].opcode;
13461 int oplen, nargs;
13462 int pc = elt;
13463 int i;
13464
13465 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13466
13467 switch (op)
13468 {
13469 /* Ada attributes ('Foo). */
13470 case OP_ATR_FIRST:
13471 case OP_ATR_LAST:
13472 case OP_ATR_LENGTH:
13473 case OP_ATR_IMAGE:
13474 case OP_ATR_MAX:
13475 case OP_ATR_MIN:
13476 case OP_ATR_MODULUS:
13477 case OP_ATR_POS:
13478 case OP_ATR_SIZE:
13479 case OP_ATR_TAG:
13480 case OP_ATR_VAL:
13481 break;
13482
13483 case UNOP_IN_RANGE:
13484 case UNOP_QUAL:
13485 /* XXX: gdb_sprint_host_address, type_sprint */
13486 fprintf_filtered (stream, _("Type @"));
13487 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13488 fprintf_filtered (stream, " (");
13489 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13490 fprintf_filtered (stream, ")");
13491 break;
13492 case BINOP_IN_BOUNDS:
13493 fprintf_filtered (stream, " (%d)",
13494 longest_to_int (exp->elts[pc + 2].longconst));
13495 break;
13496 case TERNOP_IN_RANGE:
13497 break;
13498
13499 case OP_AGGREGATE:
13500 case OP_OTHERS:
13501 case OP_DISCRETE_RANGE:
13502 case OP_POSITIONAL:
13503 case OP_CHOICES:
13504 break;
13505
13506 case OP_NAME:
13507 case OP_STRING:
13508 {
13509 char *name = &exp->elts[elt + 2].string;
13510 int len = longest_to_int (exp->elts[elt + 1].longconst);
13511
13512 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13513 break;
13514 }
13515
13516 default:
13517 return dump_subexp_body_standard (exp, stream, elt);
13518 }
13519
13520 elt += oplen;
13521 for (i = 0; i < nargs; i += 1)
13522 elt = dump_subexp (exp, stream, elt);
13523
13524 return elt;
13525 }
13526
13527 /* The Ada extension of print_subexp (q.v.). */
13528
13529 static void
13530 ada_print_subexp (struct expression *exp, int *pos,
13531 struct ui_file *stream, enum precedence prec)
13532 {
13533 int oplen, nargs, i;
13534 int pc = *pos;
13535 enum exp_opcode op = exp->elts[pc].opcode;
13536
13537 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13538
13539 *pos += oplen;
13540 switch (op)
13541 {
13542 default:
13543 *pos -= oplen;
13544 print_subexp_standard (exp, pos, stream, prec);
13545 return;
13546
13547 case OP_VAR_VALUE:
13548 fputs_filtered (exp->elts[pc + 2].symbol->natural_name (), stream);
13549 return;
13550
13551 case BINOP_IN_BOUNDS:
13552 /* XXX: sprint_subexp */
13553 print_subexp (exp, pos, stream, PREC_SUFFIX);
13554 fputs_filtered (" in ", stream);
13555 print_subexp (exp, pos, stream, PREC_SUFFIX);
13556 fputs_filtered ("'range", stream);
13557 if (exp->elts[pc + 1].longconst > 1)
13558 fprintf_filtered (stream, "(%ld)",
13559 (long) exp->elts[pc + 1].longconst);
13560 return;
13561
13562 case TERNOP_IN_RANGE:
13563 if (prec >= PREC_EQUAL)
13564 fputs_filtered ("(", stream);
13565 /* XXX: sprint_subexp */
13566 print_subexp (exp, pos, stream, PREC_SUFFIX);
13567 fputs_filtered (" in ", stream);
13568 print_subexp (exp, pos, stream, PREC_EQUAL);
13569 fputs_filtered (" .. ", stream);
13570 print_subexp (exp, pos, stream, PREC_EQUAL);
13571 if (prec >= PREC_EQUAL)
13572 fputs_filtered (")", stream);
13573 return;
13574
13575 case OP_ATR_FIRST:
13576 case OP_ATR_LAST:
13577 case OP_ATR_LENGTH:
13578 case OP_ATR_IMAGE:
13579 case OP_ATR_MAX:
13580 case OP_ATR_MIN:
13581 case OP_ATR_MODULUS:
13582 case OP_ATR_POS:
13583 case OP_ATR_SIZE:
13584 case OP_ATR_TAG:
13585 case OP_ATR_VAL:
13586 if (exp->elts[*pos].opcode == OP_TYPE)
13587 {
13588 if (exp->elts[*pos + 1].type->code () != TYPE_CODE_VOID)
13589 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13590 &type_print_raw_options);
13591 *pos += 3;
13592 }
13593 else
13594 print_subexp (exp, pos, stream, PREC_SUFFIX);
13595 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13596 if (nargs > 1)
13597 {
13598 int tem;
13599
13600 for (tem = 1; tem < nargs; tem += 1)
13601 {
13602 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13603 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13604 }
13605 fputs_filtered (")", stream);
13606 }
13607 return;
13608
13609 case UNOP_QUAL:
13610 type_print (exp->elts[pc + 1].type, "", stream, 0);
13611 fputs_filtered ("'(", stream);
13612 print_subexp (exp, pos, stream, PREC_PREFIX);
13613 fputs_filtered (")", stream);
13614 return;
13615
13616 case UNOP_IN_RANGE:
13617 /* XXX: sprint_subexp */
13618 print_subexp (exp, pos, stream, PREC_SUFFIX);
13619 fputs_filtered (" in ", stream);
13620 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13621 &type_print_raw_options);
13622 return;
13623
13624 case OP_DISCRETE_RANGE:
13625 print_subexp (exp, pos, stream, PREC_SUFFIX);
13626 fputs_filtered ("..", stream);
13627 print_subexp (exp, pos, stream, PREC_SUFFIX);
13628 return;
13629
13630 case OP_OTHERS:
13631 fputs_filtered ("others => ", stream);
13632 print_subexp (exp, pos, stream, PREC_SUFFIX);
13633 return;
13634
13635 case OP_CHOICES:
13636 for (i = 0; i < nargs-1; i += 1)
13637 {
13638 if (i > 0)
13639 fputs_filtered ("|", stream);
13640 print_subexp (exp, pos, stream, PREC_SUFFIX);
13641 }
13642 fputs_filtered (" => ", stream);
13643 print_subexp (exp, pos, stream, PREC_SUFFIX);
13644 return;
13645
13646 case OP_POSITIONAL:
13647 print_subexp (exp, pos, stream, PREC_SUFFIX);
13648 return;
13649
13650 case OP_AGGREGATE:
13651 fputs_filtered ("(", stream);
13652 for (i = 0; i < nargs; i += 1)
13653 {
13654 if (i > 0)
13655 fputs_filtered (", ", stream);
13656 print_subexp (exp, pos, stream, PREC_SUFFIX);
13657 }
13658 fputs_filtered (")", stream);
13659 return;
13660 }
13661 }
13662
13663 /* Table mapping opcodes into strings for printing operators
13664 and precedences of the operators. */
13665
13666 static const struct op_print ada_op_print_tab[] = {
13667 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13668 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13669 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13670 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13671 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13672 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13673 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13674 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13675 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13676 {">=", BINOP_GEQ, PREC_ORDER, 0},
13677 {">", BINOP_GTR, PREC_ORDER, 0},
13678 {"<", BINOP_LESS, PREC_ORDER, 0},
13679 {">>", BINOP_RSH, PREC_SHIFT, 0},
13680 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13681 {"+", BINOP_ADD, PREC_ADD, 0},
13682 {"-", BINOP_SUB, PREC_ADD, 0},
13683 {"&", BINOP_CONCAT, PREC_ADD, 0},
13684 {"*", BINOP_MUL, PREC_MUL, 0},
13685 {"/", BINOP_DIV, PREC_MUL, 0},
13686 {"rem", BINOP_REM, PREC_MUL, 0},
13687 {"mod", BINOP_MOD, PREC_MUL, 0},
13688 {"**", BINOP_EXP, PREC_REPEAT, 0},
13689 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13690 {"-", UNOP_NEG, PREC_PREFIX, 0},
13691 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13692 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13693 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13694 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13695 {".all", UNOP_IND, PREC_SUFFIX, 1},
13696 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13697 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13698 {NULL, OP_NULL, PREC_SUFFIX, 0}
13699 };
13700 \f
13701 enum ada_primitive_types {
13702 ada_primitive_type_int,
13703 ada_primitive_type_long,
13704 ada_primitive_type_short,
13705 ada_primitive_type_char,
13706 ada_primitive_type_float,
13707 ada_primitive_type_double,
13708 ada_primitive_type_void,
13709 ada_primitive_type_long_long,
13710 ada_primitive_type_long_double,
13711 ada_primitive_type_natural,
13712 ada_primitive_type_positive,
13713 ada_primitive_type_system_address,
13714 ada_primitive_type_storage_offset,
13715 nr_ada_primitive_types
13716 };
13717
13718 \f
13719 /* Language vector */
13720
13721 /* Not really used, but needed in the ada_language_defn. */
13722
13723 static void
13724 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13725 {
13726 ada_emit_char (c, type, stream, quoter, 1);
13727 }
13728
13729 static int
13730 parse (struct parser_state *ps)
13731 {
13732 warnings_issued = 0;
13733 return ada_parse (ps);
13734 }
13735
13736 static const struct exp_descriptor ada_exp_descriptor = {
13737 ada_print_subexp,
13738 ada_operator_length,
13739 ada_operator_check,
13740 ada_op_name,
13741 ada_dump_subexp_body,
13742 ada_evaluate_subexp
13743 };
13744
13745 /* symbol_name_matcher_ftype adapter for wild_match. */
13746
13747 static bool
13748 do_wild_match (const char *symbol_search_name,
13749 const lookup_name_info &lookup_name,
13750 completion_match_result *comp_match_res)
13751 {
13752 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13753 }
13754
13755 /* symbol_name_matcher_ftype adapter for full_match. */
13756
13757 static bool
13758 do_full_match (const char *symbol_search_name,
13759 const lookup_name_info &lookup_name,
13760 completion_match_result *comp_match_res)
13761 {
13762 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13763 }
13764
13765 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13766
13767 static bool
13768 do_exact_match (const char *symbol_search_name,
13769 const lookup_name_info &lookup_name,
13770 completion_match_result *comp_match_res)
13771 {
13772 return strcmp (symbol_search_name, ada_lookup_name (lookup_name)) == 0;
13773 }
13774
13775 /* Build the Ada lookup name for LOOKUP_NAME. */
13776
13777 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13778 {
13779 gdb::string_view user_name = lookup_name.name ();
13780
13781 if (user_name[0] == '<')
13782 {
13783 if (user_name.back () == '>')
13784 m_encoded_name
13785 = user_name.substr (1, user_name.size () - 2).to_string ();
13786 else
13787 m_encoded_name
13788 = user_name.substr (1, user_name.size () - 1).to_string ();
13789 m_encoded_p = true;
13790 m_verbatim_p = true;
13791 m_wild_match_p = false;
13792 m_standard_p = false;
13793 }
13794 else
13795 {
13796 m_verbatim_p = false;
13797
13798 m_encoded_p = user_name.find ("__") != gdb::string_view::npos;
13799
13800 if (!m_encoded_p)
13801 {
13802 const char *folded = ada_fold_name (user_name);
13803 const char *encoded = ada_encode_1 (folded, false);
13804 if (encoded != NULL)
13805 m_encoded_name = encoded;
13806 else
13807 m_encoded_name = user_name.to_string ();
13808 }
13809 else
13810 m_encoded_name = user_name.to_string ();
13811
13812 /* Handle the 'package Standard' special case. See description
13813 of m_standard_p. */
13814 if (startswith (m_encoded_name.c_str (), "standard__"))
13815 {
13816 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13817 m_standard_p = true;
13818 }
13819 else
13820 m_standard_p = false;
13821
13822 /* If the name contains a ".", then the user is entering a fully
13823 qualified entity name, and the match must not be done in wild
13824 mode. Similarly, if the user wants to complete what looks
13825 like an encoded name, the match must not be done in wild
13826 mode. Also, in the standard__ special case always do
13827 non-wild matching. */
13828 m_wild_match_p
13829 = (lookup_name.match_type () != symbol_name_match_type::FULL
13830 && !m_encoded_p
13831 && !m_standard_p
13832 && user_name.find ('.') == std::string::npos);
13833 }
13834 }
13835
13836 /* symbol_name_matcher_ftype method for Ada. This only handles
13837 completion mode. */
13838
13839 static bool
13840 ada_symbol_name_matches (const char *symbol_search_name,
13841 const lookup_name_info &lookup_name,
13842 completion_match_result *comp_match_res)
13843 {
13844 return lookup_name.ada ().matches (symbol_search_name,
13845 lookup_name.match_type (),
13846 comp_match_res);
13847 }
13848
13849 /* A name matcher that matches the symbol name exactly, with
13850 strcmp. */
13851
13852 static bool
13853 literal_symbol_name_matcher (const char *symbol_search_name,
13854 const lookup_name_info &lookup_name,
13855 completion_match_result *comp_match_res)
13856 {
13857 gdb::string_view name_view = lookup_name.name ();
13858
13859 if (lookup_name.completion_mode ()
13860 ? (strncmp (symbol_search_name, name_view.data (),
13861 name_view.size ()) == 0)
13862 : symbol_search_name == name_view)
13863 {
13864 if (comp_match_res != NULL)
13865 comp_match_res->set_match (symbol_search_name);
13866 return true;
13867 }
13868 else
13869 return false;
13870 }
13871
13872 /* Implement the "la_get_symbol_name_matcher" language_defn method for
13873 Ada. */
13874
13875 static symbol_name_matcher_ftype *
13876 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13877 {
13878 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
13879 return literal_symbol_name_matcher;
13880
13881 if (lookup_name.completion_mode ())
13882 return ada_symbol_name_matches;
13883 else
13884 {
13885 if (lookup_name.ada ().wild_match_p ())
13886 return do_wild_match;
13887 else if (lookup_name.ada ().verbatim_p ())
13888 return do_exact_match;
13889 else
13890 return do_full_match;
13891 }
13892 }
13893
13894 static const char *ada_extensions[] =
13895 {
13896 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13897 };
13898
13899 /* Constant data that describes the Ada language. */
13900
13901 extern const struct language_data ada_language_data =
13902 {
13903 "ada", /* Language name */
13904 "Ada",
13905 language_ada,
13906 range_check_off,
13907 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13908 that's not quite what this means. */
13909 array_row_major,
13910 macro_expansion_no,
13911 ada_extensions,
13912 &ada_exp_descriptor,
13913 parse,
13914 resolve,
13915 ada_printchar, /* Print a character constant */
13916 ada_printstr, /* Function to print string constant */
13917 emit_char, /* Function to print single char (not used) */
13918 ada_print_typedef, /* Print a typedef using appropriate syntax */
13919 ada_value_print_inner, /* la_value_print_inner */
13920 ada_value_print, /* Print a top-level value */
13921 NULL, /* name_of_this */
13922 true, /* la_store_sym_names_in_linkage_form_p */
13923 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13924 NULL, /* Language specific
13925 class_name_from_physname */
13926 ada_op_print_tab, /* expression operators for printing */
13927 0, /* c-style arrays */
13928 1, /* String lower bound */
13929 ada_get_gdb_completer_word_break_characters,
13930 ada_collect_symbol_completion_matches,
13931 ada_watch_location_expression,
13932 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
13933 &ada_varobj_ops,
13934 NULL,
13935 ada_is_string_type,
13936 "(...)" /* la_struct_too_deep_ellipsis */
13937 };
13938
13939 /* Class representing the Ada language. */
13940
13941 class ada_language : public language_defn
13942 {
13943 public:
13944 ada_language ()
13945 : language_defn (language_ada, ada_language_data)
13946 { /* Nothing. */ }
13947
13948 /* Print an array element index using the Ada syntax. */
13949
13950 void print_array_index (struct type *index_type,
13951 LONGEST index,
13952 struct ui_file *stream,
13953 const value_print_options *options) const override
13954 {
13955 struct value *index_value = val_atr (index_type, index);
13956
13957 LA_VALUE_PRINT (index_value, stream, options);
13958 fprintf_filtered (stream, " => ");
13959 }
13960
13961 /* Implement the "read_var_value" language_defn method for Ada. */
13962
13963 struct value *read_var_value (struct symbol *var,
13964 const struct block *var_block,
13965 struct frame_info *frame) const override
13966 {
13967 /* The only case where default_read_var_value is not sufficient
13968 is when VAR is a renaming... */
13969 if (frame != nullptr)
13970 {
13971 const struct block *frame_block = get_frame_block (frame, NULL);
13972 if (frame_block != nullptr && ada_is_renaming_symbol (var))
13973 return ada_read_renaming_var_value (var, frame_block);
13974 }
13975
13976 /* This is a typical case where we expect the default_read_var_value
13977 function to work. */
13978 return language_defn::read_var_value (var, var_block, frame);
13979 }
13980
13981 /* See language.h. */
13982 void language_arch_info (struct gdbarch *gdbarch,
13983 struct language_arch_info *lai) const override
13984 {
13985 const struct builtin_type *builtin = builtin_type (gdbarch);
13986
13987 lai->primitive_type_vector
13988 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13989 struct type *);
13990
13991 lai->primitive_type_vector [ada_primitive_type_int]
13992 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13993 0, "integer");
13994 lai->primitive_type_vector [ada_primitive_type_long]
13995 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13996 0, "long_integer");
13997 lai->primitive_type_vector [ada_primitive_type_short]
13998 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13999 0, "short_integer");
14000 lai->string_char_type
14001 = lai->primitive_type_vector [ada_primitive_type_char]
14002 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14003 lai->primitive_type_vector [ada_primitive_type_float]
14004 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14005 "float", gdbarch_float_format (gdbarch));
14006 lai->primitive_type_vector [ada_primitive_type_double]
14007 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14008 "long_float", gdbarch_double_format (gdbarch));
14009 lai->primitive_type_vector [ada_primitive_type_long_long]
14010 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14011 0, "long_long_integer");
14012 lai->primitive_type_vector [ada_primitive_type_long_double]
14013 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14014 "long_long_float", gdbarch_long_double_format (gdbarch));
14015 lai->primitive_type_vector [ada_primitive_type_natural]
14016 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14017 0, "natural");
14018 lai->primitive_type_vector [ada_primitive_type_positive]
14019 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14020 0, "positive");
14021 lai->primitive_type_vector [ada_primitive_type_void]
14022 = builtin->builtin_void;
14023
14024 lai->primitive_type_vector [ada_primitive_type_system_address]
14025 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14026 "void"));
14027 lai->primitive_type_vector [ada_primitive_type_system_address]
14028 ->set_name ("system__address");
14029
14030 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14031 type. This is a signed integral type whose size is the same as
14032 the size of addresses. */
14033 {
14034 unsigned int addr_length = TYPE_LENGTH
14035 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14036
14037 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14038 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14039 "storage_offset");
14040 }
14041
14042 lai->bool_type_symbol = NULL;
14043 lai->bool_type_default = builtin->builtin_bool;
14044 }
14045
14046 /* See language.h. */
14047
14048 bool iterate_over_symbols
14049 (const struct block *block, const lookup_name_info &name,
14050 domain_enum domain,
14051 gdb::function_view<symbol_found_callback_ftype> callback) const override
14052 {
14053 std::vector<struct block_symbol> results;
14054
14055 ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
14056 for (block_symbol &sym : results)
14057 {
14058 if (!callback (&sym))
14059 return false;
14060 }
14061
14062 return true;
14063 }
14064
14065 /* See language.h. */
14066 bool sniff_from_mangled_name (const char *mangled,
14067 char **out) const override
14068 {
14069 std::string demangled = ada_decode (mangled);
14070
14071 *out = NULL;
14072
14073 if (demangled != mangled && demangled[0] != '<')
14074 {
14075 /* Set the gsymbol language to Ada, but still return 0.
14076 Two reasons for that:
14077
14078 1. For Ada, we prefer computing the symbol's decoded name
14079 on the fly rather than pre-compute it, in order to save
14080 memory (Ada projects are typically very large).
14081
14082 2. There are some areas in the definition of the GNAT
14083 encoding where, with a bit of bad luck, we might be able
14084 to decode a non-Ada symbol, generating an incorrect
14085 demangled name (Eg: names ending with "TB" for instance
14086 are identified as task bodies and so stripped from
14087 the decoded name returned).
14088
14089 Returning true, here, but not setting *DEMANGLED, helps us get
14090 a little bit of the best of both worlds. Because we're last,
14091 we should not affect any of the other languages that were
14092 able to demangle the symbol before us; we get to correctly
14093 tag Ada symbols as such; and even if we incorrectly tagged a
14094 non-Ada symbol, which should be rare, any routing through the
14095 Ada language should be transparent (Ada tries to behave much
14096 like C/C++ with non-Ada symbols). */
14097 return true;
14098 }
14099
14100 return false;
14101 }
14102
14103 /* See language.h. */
14104
14105 char *demangle (const char *mangled, int options) const override
14106 {
14107 return ada_la_decode (mangled, options);
14108 }
14109
14110 /* See language.h. */
14111
14112 void print_type (struct type *type, const char *varstring,
14113 struct ui_file *stream, int show, int level,
14114 const struct type_print_options *flags) const override
14115 {
14116 ada_print_type (type, varstring, stream, show, level, flags);
14117 }
14118 };
14119
14120 /* Single instance of the Ada language class. */
14121
14122 static ada_language ada_language_defn;
14123
14124 /* Command-list for the "set/show ada" prefix command. */
14125 static struct cmd_list_element *set_ada_list;
14126 static struct cmd_list_element *show_ada_list;
14127
14128 static void
14129 initialize_ada_catchpoint_ops (void)
14130 {
14131 struct breakpoint_ops *ops;
14132
14133 initialize_breakpoint_ops ();
14134
14135 ops = &catch_exception_breakpoint_ops;
14136 *ops = bkpt_breakpoint_ops;
14137 ops->allocate_location = allocate_location_exception;
14138 ops->re_set = re_set_exception;
14139 ops->check_status = check_status_exception;
14140 ops->print_it = print_it_exception;
14141 ops->print_one = print_one_exception;
14142 ops->print_mention = print_mention_exception;
14143 ops->print_recreate = print_recreate_exception;
14144
14145 ops = &catch_exception_unhandled_breakpoint_ops;
14146 *ops = bkpt_breakpoint_ops;
14147 ops->allocate_location = allocate_location_exception;
14148 ops->re_set = re_set_exception;
14149 ops->check_status = check_status_exception;
14150 ops->print_it = print_it_exception;
14151 ops->print_one = print_one_exception;
14152 ops->print_mention = print_mention_exception;
14153 ops->print_recreate = print_recreate_exception;
14154
14155 ops = &catch_assert_breakpoint_ops;
14156 *ops = bkpt_breakpoint_ops;
14157 ops->allocate_location = allocate_location_exception;
14158 ops->re_set = re_set_exception;
14159 ops->check_status = check_status_exception;
14160 ops->print_it = print_it_exception;
14161 ops->print_one = print_one_exception;
14162 ops->print_mention = print_mention_exception;
14163 ops->print_recreate = print_recreate_exception;
14164
14165 ops = &catch_handlers_breakpoint_ops;
14166 *ops = bkpt_breakpoint_ops;
14167 ops->allocate_location = allocate_location_exception;
14168 ops->re_set = re_set_exception;
14169 ops->check_status = check_status_exception;
14170 ops->print_it = print_it_exception;
14171 ops->print_one = print_one_exception;
14172 ops->print_mention = print_mention_exception;
14173 ops->print_recreate = print_recreate_exception;
14174 }
14175
14176 /* This module's 'new_objfile' observer. */
14177
14178 static void
14179 ada_new_objfile_observer (struct objfile *objfile)
14180 {
14181 ada_clear_symbol_cache ();
14182 }
14183
14184 /* This module's 'free_objfile' observer. */
14185
14186 static void
14187 ada_free_objfile_observer (struct objfile *objfile)
14188 {
14189 ada_clear_symbol_cache ();
14190 }
14191
14192 void _initialize_ada_language ();
14193 void
14194 _initialize_ada_language ()
14195 {
14196 initialize_ada_catchpoint_ops ();
14197
14198 add_basic_prefix_cmd ("ada", no_class,
14199 _("Prefix command for changing Ada-specific settings."),
14200 &set_ada_list, "set ada ", 0, &setlist);
14201
14202 add_show_prefix_cmd ("ada", no_class,
14203 _("Generic command for showing Ada-specific settings."),
14204 &show_ada_list, "show ada ", 0, &showlist);
14205
14206 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14207 &trust_pad_over_xvs, _("\
14208 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14209 Show whether an optimization trusting PAD types over XVS types is activated."),
14210 _("\
14211 This is related to the encoding used by the GNAT compiler. The debugger\n\
14212 should normally trust the contents of PAD types, but certain older versions\n\
14213 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14214 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14215 work around this bug. It is always safe to turn this option \"off\", but\n\
14216 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14217 this option to \"off\" unless necessary."),
14218 NULL, NULL, &set_ada_list, &show_ada_list);
14219
14220 add_setshow_boolean_cmd ("print-signatures", class_vars,
14221 &print_signatures, _("\
14222 Enable or disable the output of formal and return types for functions in the \
14223 overloads selection menu."), _("\
14224 Show whether the output of formal and return types for functions in the \
14225 overloads selection menu is activated."),
14226 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14227
14228 add_catch_command ("exception", _("\
14229 Catch Ada exceptions, when raised.\n\
14230 Usage: catch exception [ARG] [if CONDITION]\n\
14231 Without any argument, stop when any Ada exception is raised.\n\
14232 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14233 being raised does not have a handler (and will therefore lead to the task's\n\
14234 termination).\n\
14235 Otherwise, the catchpoint only stops when the name of the exception being\n\
14236 raised is the same as ARG.\n\
14237 CONDITION is a boolean expression that is evaluated to see whether the\n\
14238 exception should cause a stop."),
14239 catch_ada_exception_command,
14240 catch_ada_completer,
14241 CATCH_PERMANENT,
14242 CATCH_TEMPORARY);
14243
14244 add_catch_command ("handlers", _("\
14245 Catch Ada exceptions, when handled.\n\
14246 Usage: catch handlers [ARG] [if CONDITION]\n\
14247 Without any argument, stop when any Ada exception is handled.\n\
14248 With an argument, catch only exceptions with the given name.\n\
14249 CONDITION is a boolean expression that is evaluated to see whether the\n\
14250 exception should cause a stop."),
14251 catch_ada_handlers_command,
14252 catch_ada_completer,
14253 CATCH_PERMANENT,
14254 CATCH_TEMPORARY);
14255 add_catch_command ("assert", _("\
14256 Catch failed Ada assertions, when raised.\n\
14257 Usage: catch assert [if CONDITION]\n\
14258 CONDITION is a boolean expression that is evaluated to see whether the\n\
14259 exception should cause a stop."),
14260 catch_assert_command,
14261 NULL,
14262 CATCH_PERMANENT,
14263 CATCH_TEMPORARY);
14264
14265 varsize_limit = 65536;
14266 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14267 &varsize_limit, _("\
14268 Set the maximum number of bytes allowed in a variable-size object."), _("\
14269 Show the maximum number of bytes allowed in a variable-size object."), _("\
14270 Attempts to access an object whose size is not a compile-time constant\n\
14271 and exceeds this limit will cause an error."),
14272 NULL, NULL, &setlist, &showlist);
14273
14274 add_info ("exceptions", info_exceptions_command,
14275 _("\
14276 List all Ada exception names.\n\
14277 Usage: info exceptions [REGEXP]\n\
14278 If a regular expression is passed as an argument, only those matching\n\
14279 the regular expression are listed."));
14280
14281 add_basic_prefix_cmd ("ada", class_maintenance,
14282 _("Set Ada maintenance-related variables."),
14283 &maint_set_ada_cmdlist, "maintenance set ada ",
14284 0/*allow-unknown*/, &maintenance_set_cmdlist);
14285
14286 add_show_prefix_cmd ("ada", class_maintenance,
14287 _("Show Ada maintenance-related variables."),
14288 &maint_show_ada_cmdlist, "maintenance show ada ",
14289 0/*allow-unknown*/, &maintenance_show_cmdlist);
14290
14291 add_setshow_boolean_cmd
14292 ("ignore-descriptive-types", class_maintenance,
14293 &ada_ignore_descriptive_types_p,
14294 _("Set whether descriptive types generated by GNAT should be ignored."),
14295 _("Show whether descriptive types generated by GNAT should be ignored."),
14296 _("\
14297 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14298 DWARF attribute."),
14299 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14300
14301 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14302 NULL, xcalloc, xfree);
14303
14304 /* The ada-lang observers. */
14305 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14306 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14307 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14308 }