]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
Use gdb::function_view in iterate_over_symtabs & co
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64
65 /* Define whether or not the C operator '/' truncates towards zero for
66 differently signed operands (truncation direction is undefined in C).
67 Copied from valarith.c. */
68
69 #ifndef TRUNCATION_TOWARDS_ZERO
70 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
71 #endif
72
73 static struct type *desc_base_type (struct type *);
74
75 static struct type *desc_bounds_type (struct type *);
76
77 static struct value *desc_bounds (struct value *);
78
79 static int fat_pntr_bounds_bitpos (struct type *);
80
81 static int fat_pntr_bounds_bitsize (struct type *);
82
83 static struct type *desc_data_target_type (struct type *);
84
85 static struct value *desc_data (struct value *);
86
87 static int fat_pntr_data_bitpos (struct type *);
88
89 static int fat_pntr_data_bitsize (struct type *);
90
91 static struct value *desc_one_bound (struct value *, int, int);
92
93 static int desc_bound_bitpos (struct type *, int, int);
94
95 static int desc_bound_bitsize (struct type *, int, int);
96
97 static struct type *desc_index_type (struct type *, int);
98
99 static int desc_arity (struct type *);
100
101 static int ada_type_match (struct type *, struct type *, int);
102
103 static int ada_args_match (struct symbol *, struct value **, int);
104
105 static int full_match (const char *, const char *);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *, const char *,
111 domain_enum, struct objfile *, int);
112
113 static void ada_add_all_symbols (struct obstack *, const struct block *,
114 const char *, domain_enum, int, int *);
115
116 static int is_nonfunction (struct block_symbol *, int);
117
118 static void add_defn_to_vec (struct obstack *, struct symbol *,
119 const struct block *);
120
121 static int num_defns_collected (struct obstack *);
122
123 static struct block_symbol *defns_collected (struct obstack *, int);
124
125 static struct value *resolve_subexp (struct expression **, int *, int,
126 struct type *);
127
128 static void replace_operator_with_call (struct expression **, int, int, int,
129 struct symbol *, const struct block *);
130
131 static int possible_user_operator_p (enum exp_opcode, struct value **);
132
133 static char *ada_op_name (enum exp_opcode);
134
135 static const char *ada_decoded_op_name (enum exp_opcode);
136
137 static int numeric_type_p (struct type *);
138
139 static int integer_type_p (struct type *);
140
141 static int scalar_type_p (struct type *);
142
143 static int discrete_type_p (struct type *);
144
145 static enum ada_renaming_category parse_old_style_renaming (struct type *,
146 const char **,
147 int *,
148 const char **);
149
150 static struct symbol *find_old_style_renaming_symbol (const char *,
151 const struct block *);
152
153 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
154 int, int, int *);
155
156 static struct value *evaluate_subexp_type (struct expression *, int *);
157
158 static struct type *ada_find_parallel_type_with_name (struct type *,
159 const char *);
160
161 static int is_dynamic_field (struct type *, int);
162
163 static struct type *to_fixed_variant_branch_type (struct type *,
164 const gdb_byte *,
165 CORE_ADDR, struct value *);
166
167 static struct type *to_fixed_array_type (struct type *, struct value *, int);
168
169 static struct type *to_fixed_range_type (struct type *, struct value *);
170
171 static struct type *to_static_fixed_type (struct type *);
172 static struct type *static_unwrap_type (struct type *type);
173
174 static struct value *unwrap_value (struct value *);
175
176 static struct type *constrained_packed_array_type (struct type *, long *);
177
178 static struct type *decode_constrained_packed_array_type (struct type *);
179
180 static long decode_packed_array_bitsize (struct type *);
181
182 static struct value *decode_constrained_packed_array (struct value *);
183
184 static int ada_is_packed_array_type (struct type *);
185
186 static int ada_is_unconstrained_packed_array_type (struct type *);
187
188 static struct value *value_subscript_packed (struct value *, int,
189 struct value **);
190
191 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
192
193 static struct value *coerce_unspec_val_to_type (struct value *,
194 struct type *);
195
196 static struct value *get_var_value (char *, char *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static int wild_match (const char *, const char *);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272 static struct type *ada_find_any_type (const char *name);
273 \f
274
275 /* The result of a symbol lookup to be stored in our symbol cache. */
276
277 struct cache_entry
278 {
279 /* The name used to perform the lookup. */
280 const char *name;
281 /* The namespace used during the lookup. */
282 domain_enum domain;
283 /* The symbol returned by the lookup, or NULL if no matching symbol
284 was found. */
285 struct symbol *sym;
286 /* The block where the symbol was found, or NULL if no matching
287 symbol was found. */
288 const struct block *block;
289 /* A pointer to the next entry with the same hash. */
290 struct cache_entry *next;
291 };
292
293 /* The Ada symbol cache, used to store the result of Ada-mode symbol
294 lookups in the course of executing the user's commands.
295
296 The cache is implemented using a simple, fixed-sized hash.
297 The size is fixed on the grounds that there are not likely to be
298 all that many symbols looked up during any given session, regardless
299 of the size of the symbol table. If we decide to go to a resizable
300 table, let's just use the stuff from libiberty instead. */
301
302 #define HASH_SIZE 1009
303
304 struct ada_symbol_cache
305 {
306 /* An obstack used to store the entries in our cache. */
307 struct obstack cache_space;
308
309 /* The root of the hash table used to implement our symbol cache. */
310 struct cache_entry *root[HASH_SIZE];
311 };
312
313 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
314
315 /* Maximum-sized dynamic type. */
316 static unsigned int varsize_limit;
317
318 /* FIXME: brobecker/2003-09-17: No longer a const because it is
319 returned by a function that does not return a const char *. */
320 static char *ada_completer_word_break_characters =
321 #ifdef VMS
322 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
323 #else
324 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
325 #endif
326
327 /* The name of the symbol to use to get the name of the main subprogram. */
328 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
329 = "__gnat_ada_main_program_name";
330
331 /* Limit on the number of warnings to raise per expression evaluation. */
332 static int warning_limit = 2;
333
334 /* Number of warning messages issued; reset to 0 by cleanups after
335 expression evaluation. */
336 static int warnings_issued = 0;
337
338 static const char *known_runtime_file_name_patterns[] = {
339 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
340 };
341
342 static const char *known_auxiliary_function_name_patterns[] = {
343 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
344 };
345
346 /* Space for allocating results of ada_lookup_symbol_list. */
347 static struct obstack symbol_list_obstack;
348
349 /* Maintenance-related settings for this module. */
350
351 static struct cmd_list_element *maint_set_ada_cmdlist;
352 static struct cmd_list_element *maint_show_ada_cmdlist;
353
354 /* Implement the "maintenance set ada" (prefix) command. */
355
356 static void
357 maint_set_ada_cmd (char *args, int from_tty)
358 {
359 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
360 gdb_stdout);
361 }
362
363 /* Implement the "maintenance show ada" (prefix) command. */
364
365 static void
366 maint_show_ada_cmd (char *args, int from_tty)
367 {
368 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
369 }
370
371 /* The "maintenance ada set/show ignore-descriptive-type" value. */
372
373 static int ada_ignore_descriptive_types_p = 0;
374
375 /* Inferior-specific data. */
376
377 /* Per-inferior data for this module. */
378
379 struct ada_inferior_data
380 {
381 /* The ada__tags__type_specific_data type, which is used when decoding
382 tagged types. With older versions of GNAT, this type was directly
383 accessible through a component ("tsd") in the object tag. But this
384 is no longer the case, so we cache it for each inferior. */
385 struct type *tsd_type;
386
387 /* The exception_support_info data. This data is used to determine
388 how to implement support for Ada exception catchpoints in a given
389 inferior. */
390 const struct exception_support_info *exception_info;
391 };
392
393 /* Our key to this module's inferior data. */
394 static const struct inferior_data *ada_inferior_data;
395
396 /* A cleanup routine for our inferior data. */
397 static void
398 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
399 {
400 struct ada_inferior_data *data;
401
402 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
403 if (data != NULL)
404 xfree (data);
405 }
406
407 /* Return our inferior data for the given inferior (INF).
408
409 This function always returns a valid pointer to an allocated
410 ada_inferior_data structure. If INF's inferior data has not
411 been previously set, this functions creates a new one with all
412 fields set to zero, sets INF's inferior to it, and then returns
413 a pointer to that newly allocated ada_inferior_data. */
414
415 static struct ada_inferior_data *
416 get_ada_inferior_data (struct inferior *inf)
417 {
418 struct ada_inferior_data *data;
419
420 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
421 if (data == NULL)
422 {
423 data = XCNEW (struct ada_inferior_data);
424 set_inferior_data (inf, ada_inferior_data, data);
425 }
426
427 return data;
428 }
429
430 /* Perform all necessary cleanups regarding our module's inferior data
431 that is required after the inferior INF just exited. */
432
433 static void
434 ada_inferior_exit (struct inferior *inf)
435 {
436 ada_inferior_data_cleanup (inf, NULL);
437 set_inferior_data (inf, ada_inferior_data, NULL);
438 }
439
440
441 /* program-space-specific data. */
442
443 /* This module's per-program-space data. */
444 struct ada_pspace_data
445 {
446 /* The Ada symbol cache. */
447 struct ada_symbol_cache *sym_cache;
448 };
449
450 /* Key to our per-program-space data. */
451 static const struct program_space_data *ada_pspace_data_handle;
452
453 /* Return this module's data for the given program space (PSPACE).
454 If not is found, add a zero'ed one now.
455
456 This function always returns a valid object. */
457
458 static struct ada_pspace_data *
459 get_ada_pspace_data (struct program_space *pspace)
460 {
461 struct ada_pspace_data *data;
462
463 data = ((struct ada_pspace_data *)
464 program_space_data (pspace, ada_pspace_data_handle));
465 if (data == NULL)
466 {
467 data = XCNEW (struct ada_pspace_data);
468 set_program_space_data (pspace, ada_pspace_data_handle, data);
469 }
470
471 return data;
472 }
473
474 /* The cleanup callback for this module's per-program-space data. */
475
476 static void
477 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
478 {
479 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
480
481 if (pspace_data->sym_cache != NULL)
482 ada_free_symbol_cache (pspace_data->sym_cache);
483 xfree (pspace_data);
484 }
485
486 /* Utilities */
487
488 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
489 all typedef layers have been peeled. Otherwise, return TYPE.
490
491 Normally, we really expect a typedef type to only have 1 typedef layer.
492 In other words, we really expect the target type of a typedef type to be
493 a non-typedef type. This is particularly true for Ada units, because
494 the language does not have a typedef vs not-typedef distinction.
495 In that respect, the Ada compiler has been trying to eliminate as many
496 typedef definitions in the debugging information, since they generally
497 do not bring any extra information (we still use typedef under certain
498 circumstances related mostly to the GNAT encoding).
499
500 Unfortunately, we have seen situations where the debugging information
501 generated by the compiler leads to such multiple typedef layers. For
502 instance, consider the following example with stabs:
503
504 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
505 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
506
507 This is an error in the debugging information which causes type
508 pck__float_array___XUP to be defined twice, and the second time,
509 it is defined as a typedef of a typedef.
510
511 This is on the fringe of legality as far as debugging information is
512 concerned, and certainly unexpected. But it is easy to handle these
513 situations correctly, so we can afford to be lenient in this case. */
514
515 static struct type *
516 ada_typedef_target_type (struct type *type)
517 {
518 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
519 type = TYPE_TARGET_TYPE (type);
520 return type;
521 }
522
523 /* Given DECODED_NAME a string holding a symbol name in its
524 decoded form (ie using the Ada dotted notation), returns
525 its unqualified name. */
526
527 static const char *
528 ada_unqualified_name (const char *decoded_name)
529 {
530 const char *result;
531
532 /* If the decoded name starts with '<', it means that the encoded
533 name does not follow standard naming conventions, and thus that
534 it is not your typical Ada symbol name. Trying to unqualify it
535 is therefore pointless and possibly erroneous. */
536 if (decoded_name[0] == '<')
537 return decoded_name;
538
539 result = strrchr (decoded_name, '.');
540 if (result != NULL)
541 result++; /* Skip the dot... */
542 else
543 result = decoded_name;
544
545 return result;
546 }
547
548 /* Return a string starting with '<', followed by STR, and '>'.
549 The result is good until the next call. */
550
551 static char *
552 add_angle_brackets (const char *str)
553 {
554 static char *result = NULL;
555
556 xfree (result);
557 result = xstrprintf ("<%s>", str);
558 return result;
559 }
560
561 static char *
562 ada_get_gdb_completer_word_break_characters (void)
563 {
564 return ada_completer_word_break_characters;
565 }
566
567 /* Print an array element index using the Ada syntax. */
568
569 static void
570 ada_print_array_index (struct value *index_value, struct ui_file *stream,
571 const struct value_print_options *options)
572 {
573 LA_VALUE_PRINT (index_value, stream, options);
574 fprintf_filtered (stream, " => ");
575 }
576
577 /* Assuming VECT points to an array of *SIZE objects of size
578 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
579 updating *SIZE as necessary and returning the (new) array. */
580
581 void *
582 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
583 {
584 if (*size < min_size)
585 {
586 *size *= 2;
587 if (*size < min_size)
588 *size = min_size;
589 vect = xrealloc (vect, *size * element_size);
590 }
591 return vect;
592 }
593
594 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
595 suffix of FIELD_NAME beginning "___". */
596
597 static int
598 field_name_match (const char *field_name, const char *target)
599 {
600 int len = strlen (target);
601
602 return
603 (strncmp (field_name, target, len) == 0
604 && (field_name[len] == '\0'
605 || (startswith (field_name + len, "___")
606 && strcmp (field_name + strlen (field_name) - 6,
607 "___XVN") != 0)));
608 }
609
610
611 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
612 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
613 and return its index. This function also handles fields whose name
614 have ___ suffixes because the compiler sometimes alters their name
615 by adding such a suffix to represent fields with certain constraints.
616 If the field could not be found, return a negative number if
617 MAYBE_MISSING is set. Otherwise raise an error. */
618
619 int
620 ada_get_field_index (const struct type *type, const char *field_name,
621 int maybe_missing)
622 {
623 int fieldno;
624 struct type *struct_type = check_typedef ((struct type *) type);
625
626 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
627 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
628 return fieldno;
629
630 if (!maybe_missing)
631 error (_("Unable to find field %s in struct %s. Aborting"),
632 field_name, TYPE_NAME (struct_type));
633
634 return -1;
635 }
636
637 /* The length of the prefix of NAME prior to any "___" suffix. */
638
639 int
640 ada_name_prefix_len (const char *name)
641 {
642 if (name == NULL)
643 return 0;
644 else
645 {
646 const char *p = strstr (name, "___");
647
648 if (p == NULL)
649 return strlen (name);
650 else
651 return p - name;
652 }
653 }
654
655 /* Return non-zero if SUFFIX is a suffix of STR.
656 Return zero if STR is null. */
657
658 static int
659 is_suffix (const char *str, const char *suffix)
660 {
661 int len1, len2;
662
663 if (str == NULL)
664 return 0;
665 len1 = strlen (str);
666 len2 = strlen (suffix);
667 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
668 }
669
670 /* The contents of value VAL, treated as a value of type TYPE. The
671 result is an lval in memory if VAL is. */
672
673 static struct value *
674 coerce_unspec_val_to_type (struct value *val, struct type *type)
675 {
676 type = ada_check_typedef (type);
677 if (value_type (val) == type)
678 return val;
679 else
680 {
681 struct value *result;
682
683 /* Make sure that the object size is not unreasonable before
684 trying to allocate some memory for it. */
685 ada_ensure_varsize_limit (type);
686
687 if (value_lazy (val)
688 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
689 result = allocate_value_lazy (type);
690 else
691 {
692 result = allocate_value (type);
693 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
694 }
695 set_value_component_location (result, val);
696 set_value_bitsize (result, value_bitsize (val));
697 set_value_bitpos (result, value_bitpos (val));
698 set_value_address (result, value_address (val));
699 return result;
700 }
701 }
702
703 static const gdb_byte *
704 cond_offset_host (const gdb_byte *valaddr, long offset)
705 {
706 if (valaddr == NULL)
707 return NULL;
708 else
709 return valaddr + offset;
710 }
711
712 static CORE_ADDR
713 cond_offset_target (CORE_ADDR address, long offset)
714 {
715 if (address == 0)
716 return 0;
717 else
718 return address + offset;
719 }
720
721 /* Issue a warning (as for the definition of warning in utils.c, but
722 with exactly one argument rather than ...), unless the limit on the
723 number of warnings has passed during the evaluation of the current
724 expression. */
725
726 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
727 provided by "complaint". */
728 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
729
730 static void
731 lim_warning (const char *format, ...)
732 {
733 va_list args;
734
735 va_start (args, format);
736 warnings_issued += 1;
737 if (warnings_issued <= warning_limit)
738 vwarning (format, args);
739
740 va_end (args);
741 }
742
743 /* Issue an error if the size of an object of type T is unreasonable,
744 i.e. if it would be a bad idea to allocate a value of this type in
745 GDB. */
746
747 void
748 ada_ensure_varsize_limit (const struct type *type)
749 {
750 if (TYPE_LENGTH (type) > varsize_limit)
751 error (_("object size is larger than varsize-limit"));
752 }
753
754 /* Maximum value of a SIZE-byte signed integer type. */
755 static LONGEST
756 max_of_size (int size)
757 {
758 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
759
760 return top_bit | (top_bit - 1);
761 }
762
763 /* Minimum value of a SIZE-byte signed integer type. */
764 static LONGEST
765 min_of_size (int size)
766 {
767 return -max_of_size (size) - 1;
768 }
769
770 /* Maximum value of a SIZE-byte unsigned integer type. */
771 static ULONGEST
772 umax_of_size (int size)
773 {
774 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
775
776 return top_bit | (top_bit - 1);
777 }
778
779 /* Maximum value of integral type T, as a signed quantity. */
780 static LONGEST
781 max_of_type (struct type *t)
782 {
783 if (TYPE_UNSIGNED (t))
784 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
785 else
786 return max_of_size (TYPE_LENGTH (t));
787 }
788
789 /* Minimum value of integral type T, as a signed quantity. */
790 static LONGEST
791 min_of_type (struct type *t)
792 {
793 if (TYPE_UNSIGNED (t))
794 return 0;
795 else
796 return min_of_size (TYPE_LENGTH (t));
797 }
798
799 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
800 LONGEST
801 ada_discrete_type_high_bound (struct type *type)
802 {
803 type = resolve_dynamic_type (type, NULL, 0);
804 switch (TYPE_CODE (type))
805 {
806 case TYPE_CODE_RANGE:
807 return TYPE_HIGH_BOUND (type);
808 case TYPE_CODE_ENUM:
809 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
810 case TYPE_CODE_BOOL:
811 return 1;
812 case TYPE_CODE_CHAR:
813 case TYPE_CODE_INT:
814 return max_of_type (type);
815 default:
816 error (_("Unexpected type in ada_discrete_type_high_bound."));
817 }
818 }
819
820 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
821 LONGEST
822 ada_discrete_type_low_bound (struct type *type)
823 {
824 type = resolve_dynamic_type (type, NULL, 0);
825 switch (TYPE_CODE (type))
826 {
827 case TYPE_CODE_RANGE:
828 return TYPE_LOW_BOUND (type);
829 case TYPE_CODE_ENUM:
830 return TYPE_FIELD_ENUMVAL (type, 0);
831 case TYPE_CODE_BOOL:
832 return 0;
833 case TYPE_CODE_CHAR:
834 case TYPE_CODE_INT:
835 return min_of_type (type);
836 default:
837 error (_("Unexpected type in ada_discrete_type_low_bound."));
838 }
839 }
840
841 /* The identity on non-range types. For range types, the underlying
842 non-range scalar type. */
843
844 static struct type *
845 get_base_type (struct type *type)
846 {
847 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
848 {
849 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
850 return type;
851 type = TYPE_TARGET_TYPE (type);
852 }
853 return type;
854 }
855
856 /* Return a decoded version of the given VALUE. This means returning
857 a value whose type is obtained by applying all the GNAT-specific
858 encondings, making the resulting type a static but standard description
859 of the initial type. */
860
861 struct value *
862 ada_get_decoded_value (struct value *value)
863 {
864 struct type *type = ada_check_typedef (value_type (value));
865
866 if (ada_is_array_descriptor_type (type)
867 || (ada_is_constrained_packed_array_type (type)
868 && TYPE_CODE (type) != TYPE_CODE_PTR))
869 {
870 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
871 value = ada_coerce_to_simple_array_ptr (value);
872 else
873 value = ada_coerce_to_simple_array (value);
874 }
875 else
876 value = ada_to_fixed_value (value);
877
878 return value;
879 }
880
881 /* Same as ada_get_decoded_value, but with the given TYPE.
882 Because there is no associated actual value for this type,
883 the resulting type might be a best-effort approximation in
884 the case of dynamic types. */
885
886 struct type *
887 ada_get_decoded_type (struct type *type)
888 {
889 type = to_static_fixed_type (type);
890 if (ada_is_constrained_packed_array_type (type))
891 type = ada_coerce_to_simple_array_type (type);
892 return type;
893 }
894
895 \f
896
897 /* Language Selection */
898
899 /* If the main program is in Ada, return language_ada, otherwise return LANG
900 (the main program is in Ada iif the adainit symbol is found). */
901
902 enum language
903 ada_update_initial_language (enum language lang)
904 {
905 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
906 (struct objfile *) NULL).minsym != NULL)
907 return language_ada;
908
909 return lang;
910 }
911
912 /* If the main procedure is written in Ada, then return its name.
913 The result is good until the next call. Return NULL if the main
914 procedure doesn't appear to be in Ada. */
915
916 char *
917 ada_main_name (void)
918 {
919 struct bound_minimal_symbol msym;
920 static char *main_program_name = NULL;
921
922 /* For Ada, the name of the main procedure is stored in a specific
923 string constant, generated by the binder. Look for that symbol,
924 extract its address, and then read that string. If we didn't find
925 that string, then most probably the main procedure is not written
926 in Ada. */
927 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
928
929 if (msym.minsym != NULL)
930 {
931 CORE_ADDR main_program_name_addr;
932 int err_code;
933
934 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
935 if (main_program_name_addr == 0)
936 error (_("Invalid address for Ada main program name."));
937
938 xfree (main_program_name);
939 target_read_string (main_program_name_addr, &main_program_name,
940 1024, &err_code);
941
942 if (err_code != 0)
943 return NULL;
944 return main_program_name;
945 }
946
947 /* The main procedure doesn't seem to be in Ada. */
948 return NULL;
949 }
950 \f
951 /* Symbols */
952
953 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
954 of NULLs. */
955
956 const struct ada_opname_map ada_opname_table[] = {
957 {"Oadd", "\"+\"", BINOP_ADD},
958 {"Osubtract", "\"-\"", BINOP_SUB},
959 {"Omultiply", "\"*\"", BINOP_MUL},
960 {"Odivide", "\"/\"", BINOP_DIV},
961 {"Omod", "\"mod\"", BINOP_MOD},
962 {"Orem", "\"rem\"", BINOP_REM},
963 {"Oexpon", "\"**\"", BINOP_EXP},
964 {"Olt", "\"<\"", BINOP_LESS},
965 {"Ole", "\"<=\"", BINOP_LEQ},
966 {"Ogt", "\">\"", BINOP_GTR},
967 {"Oge", "\">=\"", BINOP_GEQ},
968 {"Oeq", "\"=\"", BINOP_EQUAL},
969 {"One", "\"/=\"", BINOP_NOTEQUAL},
970 {"Oand", "\"and\"", BINOP_BITWISE_AND},
971 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
972 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
973 {"Oconcat", "\"&\"", BINOP_CONCAT},
974 {"Oabs", "\"abs\"", UNOP_ABS},
975 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
976 {"Oadd", "\"+\"", UNOP_PLUS},
977 {"Osubtract", "\"-\"", UNOP_NEG},
978 {NULL, NULL}
979 };
980
981 /* The "encoded" form of DECODED, according to GNAT conventions.
982 The result is valid until the next call to ada_encode. */
983
984 char *
985 ada_encode (const char *decoded)
986 {
987 static char *encoding_buffer = NULL;
988 static size_t encoding_buffer_size = 0;
989 const char *p;
990 int k;
991
992 if (decoded == NULL)
993 return NULL;
994
995 GROW_VECT (encoding_buffer, encoding_buffer_size,
996 2 * strlen (decoded) + 10);
997
998 k = 0;
999 for (p = decoded; *p != '\0'; p += 1)
1000 {
1001 if (*p == '.')
1002 {
1003 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1004 k += 2;
1005 }
1006 else if (*p == '"')
1007 {
1008 const struct ada_opname_map *mapping;
1009
1010 for (mapping = ada_opname_table;
1011 mapping->encoded != NULL
1012 && !startswith (p, mapping->decoded); mapping += 1)
1013 ;
1014 if (mapping->encoded == NULL)
1015 error (_("invalid Ada operator name: %s"), p);
1016 strcpy (encoding_buffer + k, mapping->encoded);
1017 k += strlen (mapping->encoded);
1018 break;
1019 }
1020 else
1021 {
1022 encoding_buffer[k] = *p;
1023 k += 1;
1024 }
1025 }
1026
1027 encoding_buffer[k] = '\0';
1028 return encoding_buffer;
1029 }
1030
1031 /* Return NAME folded to lower case, or, if surrounded by single
1032 quotes, unfolded, but with the quotes stripped away. Result good
1033 to next call. */
1034
1035 char *
1036 ada_fold_name (const char *name)
1037 {
1038 static char *fold_buffer = NULL;
1039 static size_t fold_buffer_size = 0;
1040
1041 int len = strlen (name);
1042 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1043
1044 if (name[0] == '\'')
1045 {
1046 strncpy (fold_buffer, name + 1, len - 2);
1047 fold_buffer[len - 2] = '\000';
1048 }
1049 else
1050 {
1051 int i;
1052
1053 for (i = 0; i <= len; i += 1)
1054 fold_buffer[i] = tolower (name[i]);
1055 }
1056
1057 return fold_buffer;
1058 }
1059
1060 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1061
1062 static int
1063 is_lower_alphanum (const char c)
1064 {
1065 return (isdigit (c) || (isalpha (c) && islower (c)));
1066 }
1067
1068 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1069 This function saves in LEN the length of that same symbol name but
1070 without either of these suffixes:
1071 . .{DIGIT}+
1072 . ${DIGIT}+
1073 . ___{DIGIT}+
1074 . __{DIGIT}+.
1075
1076 These are suffixes introduced by the compiler for entities such as
1077 nested subprogram for instance, in order to avoid name clashes.
1078 They do not serve any purpose for the debugger. */
1079
1080 static void
1081 ada_remove_trailing_digits (const char *encoded, int *len)
1082 {
1083 if (*len > 1 && isdigit (encoded[*len - 1]))
1084 {
1085 int i = *len - 2;
1086
1087 while (i > 0 && isdigit (encoded[i]))
1088 i--;
1089 if (i >= 0 && encoded[i] == '.')
1090 *len = i;
1091 else if (i >= 0 && encoded[i] == '$')
1092 *len = i;
1093 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1094 *len = i - 2;
1095 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1096 *len = i - 1;
1097 }
1098 }
1099
1100 /* Remove the suffix introduced by the compiler for protected object
1101 subprograms. */
1102
1103 static void
1104 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1105 {
1106 /* Remove trailing N. */
1107
1108 /* Protected entry subprograms are broken into two
1109 separate subprograms: The first one is unprotected, and has
1110 a 'N' suffix; the second is the protected version, and has
1111 the 'P' suffix. The second calls the first one after handling
1112 the protection. Since the P subprograms are internally generated,
1113 we leave these names undecoded, giving the user a clue that this
1114 entity is internal. */
1115
1116 if (*len > 1
1117 && encoded[*len - 1] == 'N'
1118 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1119 *len = *len - 1;
1120 }
1121
1122 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1123
1124 static void
1125 ada_remove_Xbn_suffix (const char *encoded, int *len)
1126 {
1127 int i = *len - 1;
1128
1129 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1130 i--;
1131
1132 if (encoded[i] != 'X')
1133 return;
1134
1135 if (i == 0)
1136 return;
1137
1138 if (isalnum (encoded[i-1]))
1139 *len = i;
1140 }
1141
1142 /* If ENCODED follows the GNAT entity encoding conventions, then return
1143 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1144 replaced by ENCODED.
1145
1146 The resulting string is valid until the next call of ada_decode.
1147 If the string is unchanged by decoding, the original string pointer
1148 is returned. */
1149
1150 const char *
1151 ada_decode (const char *encoded)
1152 {
1153 int i, j;
1154 int len0;
1155 const char *p;
1156 char *decoded;
1157 int at_start_name;
1158 static char *decoding_buffer = NULL;
1159 static size_t decoding_buffer_size = 0;
1160
1161 /* The name of the Ada main procedure starts with "_ada_".
1162 This prefix is not part of the decoded name, so skip this part
1163 if we see this prefix. */
1164 if (startswith (encoded, "_ada_"))
1165 encoded += 5;
1166
1167 /* If the name starts with '_', then it is not a properly encoded
1168 name, so do not attempt to decode it. Similarly, if the name
1169 starts with '<', the name should not be decoded. */
1170 if (encoded[0] == '_' || encoded[0] == '<')
1171 goto Suppress;
1172
1173 len0 = strlen (encoded);
1174
1175 ada_remove_trailing_digits (encoded, &len0);
1176 ada_remove_po_subprogram_suffix (encoded, &len0);
1177
1178 /* Remove the ___X.* suffix if present. Do not forget to verify that
1179 the suffix is located before the current "end" of ENCODED. We want
1180 to avoid re-matching parts of ENCODED that have previously been
1181 marked as discarded (by decrementing LEN0). */
1182 p = strstr (encoded, "___");
1183 if (p != NULL && p - encoded < len0 - 3)
1184 {
1185 if (p[3] == 'X')
1186 len0 = p - encoded;
1187 else
1188 goto Suppress;
1189 }
1190
1191 /* Remove any trailing TKB suffix. It tells us that this symbol
1192 is for the body of a task, but that information does not actually
1193 appear in the decoded name. */
1194
1195 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1196 len0 -= 3;
1197
1198 /* Remove any trailing TB suffix. The TB suffix is slightly different
1199 from the TKB suffix because it is used for non-anonymous task
1200 bodies. */
1201
1202 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1203 len0 -= 2;
1204
1205 /* Remove trailing "B" suffixes. */
1206 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1207
1208 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1209 len0 -= 1;
1210
1211 /* Make decoded big enough for possible expansion by operator name. */
1212
1213 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1214 decoded = decoding_buffer;
1215
1216 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1217
1218 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1219 {
1220 i = len0 - 2;
1221 while ((i >= 0 && isdigit (encoded[i]))
1222 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1223 i -= 1;
1224 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1225 len0 = i - 1;
1226 else if (encoded[i] == '$')
1227 len0 = i;
1228 }
1229
1230 /* The first few characters that are not alphabetic are not part
1231 of any encoding we use, so we can copy them over verbatim. */
1232
1233 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1234 decoded[j] = encoded[i];
1235
1236 at_start_name = 1;
1237 while (i < len0)
1238 {
1239 /* Is this a symbol function? */
1240 if (at_start_name && encoded[i] == 'O')
1241 {
1242 int k;
1243
1244 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1245 {
1246 int op_len = strlen (ada_opname_table[k].encoded);
1247 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1248 op_len - 1) == 0)
1249 && !isalnum (encoded[i + op_len]))
1250 {
1251 strcpy (decoded + j, ada_opname_table[k].decoded);
1252 at_start_name = 0;
1253 i += op_len;
1254 j += strlen (ada_opname_table[k].decoded);
1255 break;
1256 }
1257 }
1258 if (ada_opname_table[k].encoded != NULL)
1259 continue;
1260 }
1261 at_start_name = 0;
1262
1263 /* Replace "TK__" with "__", which will eventually be translated
1264 into "." (just below). */
1265
1266 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1267 i += 2;
1268
1269 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1270 be translated into "." (just below). These are internal names
1271 generated for anonymous blocks inside which our symbol is nested. */
1272
1273 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1274 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1275 && isdigit (encoded [i+4]))
1276 {
1277 int k = i + 5;
1278
1279 while (k < len0 && isdigit (encoded[k]))
1280 k++; /* Skip any extra digit. */
1281
1282 /* Double-check that the "__B_{DIGITS}+" sequence we found
1283 is indeed followed by "__". */
1284 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1285 i = k;
1286 }
1287
1288 /* Remove _E{DIGITS}+[sb] */
1289
1290 /* Just as for protected object subprograms, there are 2 categories
1291 of subprograms created by the compiler for each entry. The first
1292 one implements the actual entry code, and has a suffix following
1293 the convention above; the second one implements the barrier and
1294 uses the same convention as above, except that the 'E' is replaced
1295 by a 'B'.
1296
1297 Just as above, we do not decode the name of barrier functions
1298 to give the user a clue that the code he is debugging has been
1299 internally generated. */
1300
1301 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1302 && isdigit (encoded[i+2]))
1303 {
1304 int k = i + 3;
1305
1306 while (k < len0 && isdigit (encoded[k]))
1307 k++;
1308
1309 if (k < len0
1310 && (encoded[k] == 'b' || encoded[k] == 's'))
1311 {
1312 k++;
1313 /* Just as an extra precaution, make sure that if this
1314 suffix is followed by anything else, it is a '_'.
1315 Otherwise, we matched this sequence by accident. */
1316 if (k == len0
1317 || (k < len0 && encoded[k] == '_'))
1318 i = k;
1319 }
1320 }
1321
1322 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1323 the GNAT front-end in protected object subprograms. */
1324
1325 if (i < len0 + 3
1326 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1327 {
1328 /* Backtrack a bit up until we reach either the begining of
1329 the encoded name, or "__". Make sure that we only find
1330 digits or lowercase characters. */
1331 const char *ptr = encoded + i - 1;
1332
1333 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1334 ptr--;
1335 if (ptr < encoded
1336 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1337 i++;
1338 }
1339
1340 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1341 {
1342 /* This is a X[bn]* sequence not separated from the previous
1343 part of the name with a non-alpha-numeric character (in other
1344 words, immediately following an alpha-numeric character), then
1345 verify that it is placed at the end of the encoded name. If
1346 not, then the encoding is not valid and we should abort the
1347 decoding. Otherwise, just skip it, it is used in body-nested
1348 package names. */
1349 do
1350 i += 1;
1351 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1352 if (i < len0)
1353 goto Suppress;
1354 }
1355 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1356 {
1357 /* Replace '__' by '.'. */
1358 decoded[j] = '.';
1359 at_start_name = 1;
1360 i += 2;
1361 j += 1;
1362 }
1363 else
1364 {
1365 /* It's a character part of the decoded name, so just copy it
1366 over. */
1367 decoded[j] = encoded[i];
1368 i += 1;
1369 j += 1;
1370 }
1371 }
1372 decoded[j] = '\000';
1373
1374 /* Decoded names should never contain any uppercase character.
1375 Double-check this, and abort the decoding if we find one. */
1376
1377 for (i = 0; decoded[i] != '\0'; i += 1)
1378 if (isupper (decoded[i]) || decoded[i] == ' ')
1379 goto Suppress;
1380
1381 if (strcmp (decoded, encoded) == 0)
1382 return encoded;
1383 else
1384 return decoded;
1385
1386 Suppress:
1387 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1388 decoded = decoding_buffer;
1389 if (encoded[0] == '<')
1390 strcpy (decoded, encoded);
1391 else
1392 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1393 return decoded;
1394
1395 }
1396
1397 /* Table for keeping permanent unique copies of decoded names. Once
1398 allocated, names in this table are never released. While this is a
1399 storage leak, it should not be significant unless there are massive
1400 changes in the set of decoded names in successive versions of a
1401 symbol table loaded during a single session. */
1402 static struct htab *decoded_names_store;
1403
1404 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1405 in the language-specific part of GSYMBOL, if it has not been
1406 previously computed. Tries to save the decoded name in the same
1407 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1408 in any case, the decoded symbol has a lifetime at least that of
1409 GSYMBOL).
1410 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1411 const, but nevertheless modified to a semantically equivalent form
1412 when a decoded name is cached in it. */
1413
1414 const char *
1415 ada_decode_symbol (const struct general_symbol_info *arg)
1416 {
1417 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1418 const char **resultp =
1419 &gsymbol->language_specific.demangled_name;
1420
1421 if (!gsymbol->ada_mangled)
1422 {
1423 const char *decoded = ada_decode (gsymbol->name);
1424 struct obstack *obstack = gsymbol->language_specific.obstack;
1425
1426 gsymbol->ada_mangled = 1;
1427
1428 if (obstack != NULL)
1429 *resultp
1430 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1431 else
1432 {
1433 /* Sometimes, we can't find a corresponding objfile, in
1434 which case, we put the result on the heap. Since we only
1435 decode when needed, we hope this usually does not cause a
1436 significant memory leak (FIXME). */
1437
1438 char **slot = (char **) htab_find_slot (decoded_names_store,
1439 decoded, INSERT);
1440
1441 if (*slot == NULL)
1442 *slot = xstrdup (decoded);
1443 *resultp = *slot;
1444 }
1445 }
1446
1447 return *resultp;
1448 }
1449
1450 static char *
1451 ada_la_decode (const char *encoded, int options)
1452 {
1453 return xstrdup (ada_decode (encoded));
1454 }
1455
1456 /* Implement la_sniff_from_mangled_name for Ada. */
1457
1458 static int
1459 ada_sniff_from_mangled_name (const char *mangled, char **out)
1460 {
1461 const char *demangled = ada_decode (mangled);
1462
1463 *out = NULL;
1464
1465 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1466 {
1467 /* Set the gsymbol language to Ada, but still return 0.
1468 Two reasons for that:
1469
1470 1. For Ada, we prefer computing the symbol's decoded name
1471 on the fly rather than pre-compute it, in order to save
1472 memory (Ada projects are typically very large).
1473
1474 2. There are some areas in the definition of the GNAT
1475 encoding where, with a bit of bad luck, we might be able
1476 to decode a non-Ada symbol, generating an incorrect
1477 demangled name (Eg: names ending with "TB" for instance
1478 are identified as task bodies and so stripped from
1479 the decoded name returned).
1480
1481 Returning 1, here, but not setting *DEMANGLED, helps us get a
1482 little bit of the best of both worlds. Because we're last,
1483 we should not affect any of the other languages that were
1484 able to demangle the symbol before us; we get to correctly
1485 tag Ada symbols as such; and even if we incorrectly tagged a
1486 non-Ada symbol, which should be rare, any routing through the
1487 Ada language should be transparent (Ada tries to behave much
1488 like C/C++ with non-Ada symbols). */
1489 return 1;
1490 }
1491
1492 return 0;
1493 }
1494
1495 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1496 suffixes that encode debugging information or leading _ada_ on
1497 SYM_NAME (see is_name_suffix commentary for the debugging
1498 information that is ignored). If WILD, then NAME need only match a
1499 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1500 either argument is NULL. */
1501
1502 static int
1503 match_name (const char *sym_name, const char *name, int wild)
1504 {
1505 if (sym_name == NULL || name == NULL)
1506 return 0;
1507 else if (wild)
1508 return wild_match (sym_name, name) == 0;
1509 else
1510 {
1511 int len_name = strlen (name);
1512
1513 return (strncmp (sym_name, name, len_name) == 0
1514 && is_name_suffix (sym_name + len_name))
1515 || (startswith (sym_name, "_ada_")
1516 && strncmp (sym_name + 5, name, len_name) == 0
1517 && is_name_suffix (sym_name + len_name + 5));
1518 }
1519 }
1520 \f
1521
1522 /* Arrays */
1523
1524 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1525 generated by the GNAT compiler to describe the index type used
1526 for each dimension of an array, check whether it follows the latest
1527 known encoding. If not, fix it up to conform to the latest encoding.
1528 Otherwise, do nothing. This function also does nothing if
1529 INDEX_DESC_TYPE is NULL.
1530
1531 The GNAT encoding used to describle the array index type evolved a bit.
1532 Initially, the information would be provided through the name of each
1533 field of the structure type only, while the type of these fields was
1534 described as unspecified and irrelevant. The debugger was then expected
1535 to perform a global type lookup using the name of that field in order
1536 to get access to the full index type description. Because these global
1537 lookups can be very expensive, the encoding was later enhanced to make
1538 the global lookup unnecessary by defining the field type as being
1539 the full index type description.
1540
1541 The purpose of this routine is to allow us to support older versions
1542 of the compiler by detecting the use of the older encoding, and by
1543 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1544 we essentially replace each field's meaningless type by the associated
1545 index subtype). */
1546
1547 void
1548 ada_fixup_array_indexes_type (struct type *index_desc_type)
1549 {
1550 int i;
1551
1552 if (index_desc_type == NULL)
1553 return;
1554 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1555
1556 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1557 to check one field only, no need to check them all). If not, return
1558 now.
1559
1560 If our INDEX_DESC_TYPE was generated using the older encoding,
1561 the field type should be a meaningless integer type whose name
1562 is not equal to the field name. */
1563 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1564 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1565 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1566 return;
1567
1568 /* Fixup each field of INDEX_DESC_TYPE. */
1569 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1570 {
1571 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1572 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1573
1574 if (raw_type)
1575 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1576 }
1577 }
1578
1579 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1580
1581 static char *bound_name[] = {
1582 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1583 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1584 };
1585
1586 /* Maximum number of array dimensions we are prepared to handle. */
1587
1588 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1589
1590
1591 /* The desc_* routines return primitive portions of array descriptors
1592 (fat pointers). */
1593
1594 /* The descriptor or array type, if any, indicated by TYPE; removes
1595 level of indirection, if needed. */
1596
1597 static struct type *
1598 desc_base_type (struct type *type)
1599 {
1600 if (type == NULL)
1601 return NULL;
1602 type = ada_check_typedef (type);
1603 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1604 type = ada_typedef_target_type (type);
1605
1606 if (type != NULL
1607 && (TYPE_CODE (type) == TYPE_CODE_PTR
1608 || TYPE_CODE (type) == TYPE_CODE_REF))
1609 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1610 else
1611 return type;
1612 }
1613
1614 /* True iff TYPE indicates a "thin" array pointer type. */
1615
1616 static int
1617 is_thin_pntr (struct type *type)
1618 {
1619 return
1620 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1621 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1622 }
1623
1624 /* The descriptor type for thin pointer type TYPE. */
1625
1626 static struct type *
1627 thin_descriptor_type (struct type *type)
1628 {
1629 struct type *base_type = desc_base_type (type);
1630
1631 if (base_type == NULL)
1632 return NULL;
1633 if (is_suffix (ada_type_name (base_type), "___XVE"))
1634 return base_type;
1635 else
1636 {
1637 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1638
1639 if (alt_type == NULL)
1640 return base_type;
1641 else
1642 return alt_type;
1643 }
1644 }
1645
1646 /* A pointer to the array data for thin-pointer value VAL. */
1647
1648 static struct value *
1649 thin_data_pntr (struct value *val)
1650 {
1651 struct type *type = ada_check_typedef (value_type (val));
1652 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1653
1654 data_type = lookup_pointer_type (data_type);
1655
1656 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1657 return value_cast (data_type, value_copy (val));
1658 else
1659 return value_from_longest (data_type, value_address (val));
1660 }
1661
1662 /* True iff TYPE indicates a "thick" array pointer type. */
1663
1664 static int
1665 is_thick_pntr (struct type *type)
1666 {
1667 type = desc_base_type (type);
1668 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1669 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1670 }
1671
1672 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1673 pointer to one, the type of its bounds data; otherwise, NULL. */
1674
1675 static struct type *
1676 desc_bounds_type (struct type *type)
1677 {
1678 struct type *r;
1679
1680 type = desc_base_type (type);
1681
1682 if (type == NULL)
1683 return NULL;
1684 else if (is_thin_pntr (type))
1685 {
1686 type = thin_descriptor_type (type);
1687 if (type == NULL)
1688 return NULL;
1689 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1690 if (r != NULL)
1691 return ada_check_typedef (r);
1692 }
1693 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1694 {
1695 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1696 if (r != NULL)
1697 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1698 }
1699 return NULL;
1700 }
1701
1702 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1703 one, a pointer to its bounds data. Otherwise NULL. */
1704
1705 static struct value *
1706 desc_bounds (struct value *arr)
1707 {
1708 struct type *type = ada_check_typedef (value_type (arr));
1709
1710 if (is_thin_pntr (type))
1711 {
1712 struct type *bounds_type =
1713 desc_bounds_type (thin_descriptor_type (type));
1714 LONGEST addr;
1715
1716 if (bounds_type == NULL)
1717 error (_("Bad GNAT array descriptor"));
1718
1719 /* NOTE: The following calculation is not really kosher, but
1720 since desc_type is an XVE-encoded type (and shouldn't be),
1721 the correct calculation is a real pain. FIXME (and fix GCC). */
1722 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1723 addr = value_as_long (arr);
1724 else
1725 addr = value_address (arr);
1726
1727 return
1728 value_from_longest (lookup_pointer_type (bounds_type),
1729 addr - TYPE_LENGTH (bounds_type));
1730 }
1731
1732 else if (is_thick_pntr (type))
1733 {
1734 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1735 _("Bad GNAT array descriptor"));
1736 struct type *p_bounds_type = value_type (p_bounds);
1737
1738 if (p_bounds_type
1739 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1740 {
1741 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1742
1743 if (TYPE_STUB (target_type))
1744 p_bounds = value_cast (lookup_pointer_type
1745 (ada_check_typedef (target_type)),
1746 p_bounds);
1747 }
1748 else
1749 error (_("Bad GNAT array descriptor"));
1750
1751 return p_bounds;
1752 }
1753 else
1754 return NULL;
1755 }
1756
1757 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1758 position of the field containing the address of the bounds data. */
1759
1760 static int
1761 fat_pntr_bounds_bitpos (struct type *type)
1762 {
1763 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1764 }
1765
1766 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1767 size of the field containing the address of the bounds data. */
1768
1769 static int
1770 fat_pntr_bounds_bitsize (struct type *type)
1771 {
1772 type = desc_base_type (type);
1773
1774 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1775 return TYPE_FIELD_BITSIZE (type, 1);
1776 else
1777 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1778 }
1779
1780 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1781 pointer to one, the type of its array data (a array-with-no-bounds type);
1782 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1783 data. */
1784
1785 static struct type *
1786 desc_data_target_type (struct type *type)
1787 {
1788 type = desc_base_type (type);
1789
1790 /* NOTE: The following is bogus; see comment in desc_bounds. */
1791 if (is_thin_pntr (type))
1792 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1793 else if (is_thick_pntr (type))
1794 {
1795 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1796
1797 if (data_type
1798 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1799 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1800 }
1801
1802 return NULL;
1803 }
1804
1805 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1806 its array data. */
1807
1808 static struct value *
1809 desc_data (struct value *arr)
1810 {
1811 struct type *type = value_type (arr);
1812
1813 if (is_thin_pntr (type))
1814 return thin_data_pntr (arr);
1815 else if (is_thick_pntr (type))
1816 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1817 _("Bad GNAT array descriptor"));
1818 else
1819 return NULL;
1820 }
1821
1822
1823 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1824 position of the field containing the address of the data. */
1825
1826 static int
1827 fat_pntr_data_bitpos (struct type *type)
1828 {
1829 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1830 }
1831
1832 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1833 size of the field containing the address of the data. */
1834
1835 static int
1836 fat_pntr_data_bitsize (struct type *type)
1837 {
1838 type = desc_base_type (type);
1839
1840 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1841 return TYPE_FIELD_BITSIZE (type, 0);
1842 else
1843 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1844 }
1845
1846 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1847 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1848 bound, if WHICH is 1. The first bound is I=1. */
1849
1850 static struct value *
1851 desc_one_bound (struct value *bounds, int i, int which)
1852 {
1853 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1854 _("Bad GNAT array descriptor bounds"));
1855 }
1856
1857 /* If BOUNDS is an array-bounds structure type, return the bit position
1858 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1859 bound, if WHICH is 1. The first bound is I=1. */
1860
1861 static int
1862 desc_bound_bitpos (struct type *type, int i, int which)
1863 {
1864 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1865 }
1866
1867 /* If BOUNDS is an array-bounds structure type, return the bit field size
1868 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1869 bound, if WHICH is 1. The first bound is I=1. */
1870
1871 static int
1872 desc_bound_bitsize (struct type *type, int i, int which)
1873 {
1874 type = desc_base_type (type);
1875
1876 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1877 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1878 else
1879 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1880 }
1881
1882 /* If TYPE is the type of an array-bounds structure, the type of its
1883 Ith bound (numbering from 1). Otherwise, NULL. */
1884
1885 static struct type *
1886 desc_index_type (struct type *type, int i)
1887 {
1888 type = desc_base_type (type);
1889
1890 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1891 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1892 else
1893 return NULL;
1894 }
1895
1896 /* The number of index positions in the array-bounds type TYPE.
1897 Return 0 if TYPE is NULL. */
1898
1899 static int
1900 desc_arity (struct type *type)
1901 {
1902 type = desc_base_type (type);
1903
1904 if (type != NULL)
1905 return TYPE_NFIELDS (type) / 2;
1906 return 0;
1907 }
1908
1909 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1910 an array descriptor type (representing an unconstrained array
1911 type). */
1912
1913 static int
1914 ada_is_direct_array_type (struct type *type)
1915 {
1916 if (type == NULL)
1917 return 0;
1918 type = ada_check_typedef (type);
1919 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1920 || ada_is_array_descriptor_type (type));
1921 }
1922
1923 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1924 * to one. */
1925
1926 static int
1927 ada_is_array_type (struct type *type)
1928 {
1929 while (type != NULL
1930 && (TYPE_CODE (type) == TYPE_CODE_PTR
1931 || TYPE_CODE (type) == TYPE_CODE_REF))
1932 type = TYPE_TARGET_TYPE (type);
1933 return ada_is_direct_array_type (type);
1934 }
1935
1936 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1937
1938 int
1939 ada_is_simple_array_type (struct type *type)
1940 {
1941 if (type == NULL)
1942 return 0;
1943 type = ada_check_typedef (type);
1944 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1945 || (TYPE_CODE (type) == TYPE_CODE_PTR
1946 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1947 == TYPE_CODE_ARRAY));
1948 }
1949
1950 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1951
1952 int
1953 ada_is_array_descriptor_type (struct type *type)
1954 {
1955 struct type *data_type = desc_data_target_type (type);
1956
1957 if (type == NULL)
1958 return 0;
1959 type = ada_check_typedef (type);
1960 return (data_type != NULL
1961 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1962 && desc_arity (desc_bounds_type (type)) > 0);
1963 }
1964
1965 /* Non-zero iff type is a partially mal-formed GNAT array
1966 descriptor. FIXME: This is to compensate for some problems with
1967 debugging output from GNAT. Re-examine periodically to see if it
1968 is still needed. */
1969
1970 int
1971 ada_is_bogus_array_descriptor (struct type *type)
1972 {
1973 return
1974 type != NULL
1975 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1976 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1977 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1978 && !ada_is_array_descriptor_type (type);
1979 }
1980
1981
1982 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1983 (fat pointer) returns the type of the array data described---specifically,
1984 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1985 in from the descriptor; otherwise, they are left unspecified. If
1986 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1987 returns NULL. The result is simply the type of ARR if ARR is not
1988 a descriptor. */
1989 struct type *
1990 ada_type_of_array (struct value *arr, int bounds)
1991 {
1992 if (ada_is_constrained_packed_array_type (value_type (arr)))
1993 return decode_constrained_packed_array_type (value_type (arr));
1994
1995 if (!ada_is_array_descriptor_type (value_type (arr)))
1996 return value_type (arr);
1997
1998 if (!bounds)
1999 {
2000 struct type *array_type =
2001 ada_check_typedef (desc_data_target_type (value_type (arr)));
2002
2003 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2004 TYPE_FIELD_BITSIZE (array_type, 0) =
2005 decode_packed_array_bitsize (value_type (arr));
2006
2007 return array_type;
2008 }
2009 else
2010 {
2011 struct type *elt_type;
2012 int arity;
2013 struct value *descriptor;
2014
2015 elt_type = ada_array_element_type (value_type (arr), -1);
2016 arity = ada_array_arity (value_type (arr));
2017
2018 if (elt_type == NULL || arity == 0)
2019 return ada_check_typedef (value_type (arr));
2020
2021 descriptor = desc_bounds (arr);
2022 if (value_as_long (descriptor) == 0)
2023 return NULL;
2024 while (arity > 0)
2025 {
2026 struct type *range_type = alloc_type_copy (value_type (arr));
2027 struct type *array_type = alloc_type_copy (value_type (arr));
2028 struct value *low = desc_one_bound (descriptor, arity, 0);
2029 struct value *high = desc_one_bound (descriptor, arity, 1);
2030
2031 arity -= 1;
2032 create_static_range_type (range_type, value_type (low),
2033 longest_to_int (value_as_long (low)),
2034 longest_to_int (value_as_long (high)));
2035 elt_type = create_array_type (array_type, elt_type, range_type);
2036
2037 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2038 {
2039 /* We need to store the element packed bitsize, as well as
2040 recompute the array size, because it was previously
2041 computed based on the unpacked element size. */
2042 LONGEST lo = value_as_long (low);
2043 LONGEST hi = value_as_long (high);
2044
2045 TYPE_FIELD_BITSIZE (elt_type, 0) =
2046 decode_packed_array_bitsize (value_type (arr));
2047 /* If the array has no element, then the size is already
2048 zero, and does not need to be recomputed. */
2049 if (lo < hi)
2050 {
2051 int array_bitsize =
2052 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2053
2054 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2055 }
2056 }
2057 }
2058
2059 return lookup_pointer_type (elt_type);
2060 }
2061 }
2062
2063 /* If ARR does not represent an array, returns ARR unchanged.
2064 Otherwise, returns either a standard GDB array with bounds set
2065 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2066 GDB array. Returns NULL if ARR is a null fat pointer. */
2067
2068 struct value *
2069 ada_coerce_to_simple_array_ptr (struct value *arr)
2070 {
2071 if (ada_is_array_descriptor_type (value_type (arr)))
2072 {
2073 struct type *arrType = ada_type_of_array (arr, 1);
2074
2075 if (arrType == NULL)
2076 return NULL;
2077 return value_cast (arrType, value_copy (desc_data (arr)));
2078 }
2079 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2080 return decode_constrained_packed_array (arr);
2081 else
2082 return arr;
2083 }
2084
2085 /* If ARR does not represent an array, returns ARR unchanged.
2086 Otherwise, returns a standard GDB array describing ARR (which may
2087 be ARR itself if it already is in the proper form). */
2088
2089 struct value *
2090 ada_coerce_to_simple_array (struct value *arr)
2091 {
2092 if (ada_is_array_descriptor_type (value_type (arr)))
2093 {
2094 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2095
2096 if (arrVal == NULL)
2097 error (_("Bounds unavailable for null array pointer."));
2098 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2099 return value_ind (arrVal);
2100 }
2101 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2102 return decode_constrained_packed_array (arr);
2103 else
2104 return arr;
2105 }
2106
2107 /* If TYPE represents a GNAT array type, return it translated to an
2108 ordinary GDB array type (possibly with BITSIZE fields indicating
2109 packing). For other types, is the identity. */
2110
2111 struct type *
2112 ada_coerce_to_simple_array_type (struct type *type)
2113 {
2114 if (ada_is_constrained_packed_array_type (type))
2115 return decode_constrained_packed_array_type (type);
2116
2117 if (ada_is_array_descriptor_type (type))
2118 return ada_check_typedef (desc_data_target_type (type));
2119
2120 return type;
2121 }
2122
2123 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2124
2125 static int
2126 ada_is_packed_array_type (struct type *type)
2127 {
2128 if (type == NULL)
2129 return 0;
2130 type = desc_base_type (type);
2131 type = ada_check_typedef (type);
2132 return
2133 ada_type_name (type) != NULL
2134 && strstr (ada_type_name (type), "___XP") != NULL;
2135 }
2136
2137 /* Non-zero iff TYPE represents a standard GNAT constrained
2138 packed-array type. */
2139
2140 int
2141 ada_is_constrained_packed_array_type (struct type *type)
2142 {
2143 return ada_is_packed_array_type (type)
2144 && !ada_is_array_descriptor_type (type);
2145 }
2146
2147 /* Non-zero iff TYPE represents an array descriptor for a
2148 unconstrained packed-array type. */
2149
2150 static int
2151 ada_is_unconstrained_packed_array_type (struct type *type)
2152 {
2153 return ada_is_packed_array_type (type)
2154 && ada_is_array_descriptor_type (type);
2155 }
2156
2157 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2158 return the size of its elements in bits. */
2159
2160 static long
2161 decode_packed_array_bitsize (struct type *type)
2162 {
2163 const char *raw_name;
2164 const char *tail;
2165 long bits;
2166
2167 /* Access to arrays implemented as fat pointers are encoded as a typedef
2168 of the fat pointer type. We need the name of the fat pointer type
2169 to do the decoding, so strip the typedef layer. */
2170 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2171 type = ada_typedef_target_type (type);
2172
2173 raw_name = ada_type_name (ada_check_typedef (type));
2174 if (!raw_name)
2175 raw_name = ada_type_name (desc_base_type (type));
2176
2177 if (!raw_name)
2178 return 0;
2179
2180 tail = strstr (raw_name, "___XP");
2181 gdb_assert (tail != NULL);
2182
2183 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2184 {
2185 lim_warning
2186 (_("could not understand bit size information on packed array"));
2187 return 0;
2188 }
2189
2190 return bits;
2191 }
2192
2193 /* Given that TYPE is a standard GDB array type with all bounds filled
2194 in, and that the element size of its ultimate scalar constituents
2195 (that is, either its elements, or, if it is an array of arrays, its
2196 elements' elements, etc.) is *ELT_BITS, return an identical type,
2197 but with the bit sizes of its elements (and those of any
2198 constituent arrays) recorded in the BITSIZE components of its
2199 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2200 in bits.
2201
2202 Note that, for arrays whose index type has an XA encoding where
2203 a bound references a record discriminant, getting that discriminant,
2204 and therefore the actual value of that bound, is not possible
2205 because none of the given parameters gives us access to the record.
2206 This function assumes that it is OK in the context where it is being
2207 used to return an array whose bounds are still dynamic and where
2208 the length is arbitrary. */
2209
2210 static struct type *
2211 constrained_packed_array_type (struct type *type, long *elt_bits)
2212 {
2213 struct type *new_elt_type;
2214 struct type *new_type;
2215 struct type *index_type_desc;
2216 struct type *index_type;
2217 LONGEST low_bound, high_bound;
2218
2219 type = ada_check_typedef (type);
2220 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2221 return type;
2222
2223 index_type_desc = ada_find_parallel_type (type, "___XA");
2224 if (index_type_desc)
2225 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2226 NULL);
2227 else
2228 index_type = TYPE_INDEX_TYPE (type);
2229
2230 new_type = alloc_type_copy (type);
2231 new_elt_type =
2232 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2233 elt_bits);
2234 create_array_type (new_type, new_elt_type, index_type);
2235 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2236 TYPE_NAME (new_type) = ada_type_name (type);
2237
2238 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2239 && is_dynamic_type (check_typedef (index_type)))
2240 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2241 low_bound = high_bound = 0;
2242 if (high_bound < low_bound)
2243 *elt_bits = TYPE_LENGTH (new_type) = 0;
2244 else
2245 {
2246 *elt_bits *= (high_bound - low_bound + 1);
2247 TYPE_LENGTH (new_type) =
2248 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2249 }
2250
2251 TYPE_FIXED_INSTANCE (new_type) = 1;
2252 return new_type;
2253 }
2254
2255 /* The array type encoded by TYPE, where
2256 ada_is_constrained_packed_array_type (TYPE). */
2257
2258 static struct type *
2259 decode_constrained_packed_array_type (struct type *type)
2260 {
2261 const char *raw_name = ada_type_name (ada_check_typedef (type));
2262 char *name;
2263 const char *tail;
2264 struct type *shadow_type;
2265 long bits;
2266
2267 if (!raw_name)
2268 raw_name = ada_type_name (desc_base_type (type));
2269
2270 if (!raw_name)
2271 return NULL;
2272
2273 name = (char *) alloca (strlen (raw_name) + 1);
2274 tail = strstr (raw_name, "___XP");
2275 type = desc_base_type (type);
2276
2277 memcpy (name, raw_name, tail - raw_name);
2278 name[tail - raw_name] = '\000';
2279
2280 shadow_type = ada_find_parallel_type_with_name (type, name);
2281
2282 if (shadow_type == NULL)
2283 {
2284 lim_warning (_("could not find bounds information on packed array"));
2285 return NULL;
2286 }
2287 shadow_type = check_typedef (shadow_type);
2288
2289 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2290 {
2291 lim_warning (_("could not understand bounds "
2292 "information on packed array"));
2293 return NULL;
2294 }
2295
2296 bits = decode_packed_array_bitsize (type);
2297 return constrained_packed_array_type (shadow_type, &bits);
2298 }
2299
2300 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2301 array, returns a simple array that denotes that array. Its type is a
2302 standard GDB array type except that the BITSIZEs of the array
2303 target types are set to the number of bits in each element, and the
2304 type length is set appropriately. */
2305
2306 static struct value *
2307 decode_constrained_packed_array (struct value *arr)
2308 {
2309 struct type *type;
2310
2311 /* If our value is a pointer, then dereference it. Likewise if
2312 the value is a reference. Make sure that this operation does not
2313 cause the target type to be fixed, as this would indirectly cause
2314 this array to be decoded. The rest of the routine assumes that
2315 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2316 and "value_ind" routines to perform the dereferencing, as opposed
2317 to using "ada_coerce_ref" or "ada_value_ind". */
2318 arr = coerce_ref (arr);
2319 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2320 arr = value_ind (arr);
2321
2322 type = decode_constrained_packed_array_type (value_type (arr));
2323 if (type == NULL)
2324 {
2325 error (_("can't unpack array"));
2326 return NULL;
2327 }
2328
2329 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2330 && ada_is_modular_type (value_type (arr)))
2331 {
2332 /* This is a (right-justified) modular type representing a packed
2333 array with no wrapper. In order to interpret the value through
2334 the (left-justified) packed array type we just built, we must
2335 first left-justify it. */
2336 int bit_size, bit_pos;
2337 ULONGEST mod;
2338
2339 mod = ada_modulus (value_type (arr)) - 1;
2340 bit_size = 0;
2341 while (mod > 0)
2342 {
2343 bit_size += 1;
2344 mod >>= 1;
2345 }
2346 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2347 arr = ada_value_primitive_packed_val (arr, NULL,
2348 bit_pos / HOST_CHAR_BIT,
2349 bit_pos % HOST_CHAR_BIT,
2350 bit_size,
2351 type);
2352 }
2353
2354 return coerce_unspec_val_to_type (arr, type);
2355 }
2356
2357
2358 /* The value of the element of packed array ARR at the ARITY indices
2359 given in IND. ARR must be a simple array. */
2360
2361 static struct value *
2362 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2363 {
2364 int i;
2365 int bits, elt_off, bit_off;
2366 long elt_total_bit_offset;
2367 struct type *elt_type;
2368 struct value *v;
2369
2370 bits = 0;
2371 elt_total_bit_offset = 0;
2372 elt_type = ada_check_typedef (value_type (arr));
2373 for (i = 0; i < arity; i += 1)
2374 {
2375 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2376 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2377 error
2378 (_("attempt to do packed indexing of "
2379 "something other than a packed array"));
2380 else
2381 {
2382 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2383 LONGEST lowerbound, upperbound;
2384 LONGEST idx;
2385
2386 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2387 {
2388 lim_warning (_("don't know bounds of array"));
2389 lowerbound = upperbound = 0;
2390 }
2391
2392 idx = pos_atr (ind[i]);
2393 if (idx < lowerbound || idx > upperbound)
2394 lim_warning (_("packed array index %ld out of bounds"),
2395 (long) idx);
2396 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2397 elt_total_bit_offset += (idx - lowerbound) * bits;
2398 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2399 }
2400 }
2401 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2402 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2403
2404 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2405 bits, elt_type);
2406 return v;
2407 }
2408
2409 /* Non-zero iff TYPE includes negative integer values. */
2410
2411 static int
2412 has_negatives (struct type *type)
2413 {
2414 switch (TYPE_CODE (type))
2415 {
2416 default:
2417 return 0;
2418 case TYPE_CODE_INT:
2419 return !TYPE_UNSIGNED (type);
2420 case TYPE_CODE_RANGE:
2421 return TYPE_LOW_BOUND (type) < 0;
2422 }
2423 }
2424
2425 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2426 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2427 the unpacked buffer.
2428
2429 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2430 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2431
2432 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2433 zero otherwise.
2434
2435 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2436
2437 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2438
2439 static void
2440 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2441 gdb_byte *unpacked, int unpacked_len,
2442 int is_big_endian, int is_signed_type,
2443 int is_scalar)
2444 {
2445 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2446 int src_idx; /* Index into the source area */
2447 int src_bytes_left; /* Number of source bytes left to process. */
2448 int srcBitsLeft; /* Number of source bits left to move */
2449 int unusedLS; /* Number of bits in next significant
2450 byte of source that are unused */
2451
2452 int unpacked_idx; /* Index into the unpacked buffer */
2453 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2454
2455 unsigned long accum; /* Staging area for bits being transferred */
2456 int accumSize; /* Number of meaningful bits in accum */
2457 unsigned char sign;
2458
2459 /* Transmit bytes from least to most significant; delta is the direction
2460 the indices move. */
2461 int delta = is_big_endian ? -1 : 1;
2462
2463 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2464 bits from SRC. .*/
2465 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2466 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2467 bit_size, unpacked_len);
2468
2469 srcBitsLeft = bit_size;
2470 src_bytes_left = src_len;
2471 unpacked_bytes_left = unpacked_len;
2472 sign = 0;
2473
2474 if (is_big_endian)
2475 {
2476 src_idx = src_len - 1;
2477 if (is_signed_type
2478 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2479 sign = ~0;
2480
2481 unusedLS =
2482 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2483 % HOST_CHAR_BIT;
2484
2485 if (is_scalar)
2486 {
2487 accumSize = 0;
2488 unpacked_idx = unpacked_len - 1;
2489 }
2490 else
2491 {
2492 /* Non-scalar values must be aligned at a byte boundary... */
2493 accumSize =
2494 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2495 /* ... And are placed at the beginning (most-significant) bytes
2496 of the target. */
2497 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2498 unpacked_bytes_left = unpacked_idx + 1;
2499 }
2500 }
2501 else
2502 {
2503 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2504
2505 src_idx = unpacked_idx = 0;
2506 unusedLS = bit_offset;
2507 accumSize = 0;
2508
2509 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2510 sign = ~0;
2511 }
2512
2513 accum = 0;
2514 while (src_bytes_left > 0)
2515 {
2516 /* Mask for removing bits of the next source byte that are not
2517 part of the value. */
2518 unsigned int unusedMSMask =
2519 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2520 1;
2521 /* Sign-extend bits for this byte. */
2522 unsigned int signMask = sign & ~unusedMSMask;
2523
2524 accum |=
2525 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2526 accumSize += HOST_CHAR_BIT - unusedLS;
2527 if (accumSize >= HOST_CHAR_BIT)
2528 {
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2531 accum >>= HOST_CHAR_BIT;
2532 unpacked_bytes_left -= 1;
2533 unpacked_idx += delta;
2534 }
2535 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2536 unusedLS = 0;
2537 src_bytes_left -= 1;
2538 src_idx += delta;
2539 }
2540 while (unpacked_bytes_left > 0)
2541 {
2542 accum |= sign << accumSize;
2543 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2544 accumSize -= HOST_CHAR_BIT;
2545 if (accumSize < 0)
2546 accumSize = 0;
2547 accum >>= HOST_CHAR_BIT;
2548 unpacked_bytes_left -= 1;
2549 unpacked_idx += delta;
2550 }
2551 }
2552
2553 /* Create a new value of type TYPE from the contents of OBJ starting
2554 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2555 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2556 assigning through the result will set the field fetched from.
2557 VALADDR is ignored unless OBJ is NULL, in which case,
2558 VALADDR+OFFSET must address the start of storage containing the
2559 packed value. The value returned in this case is never an lval.
2560 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2561
2562 struct value *
2563 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2564 long offset, int bit_offset, int bit_size,
2565 struct type *type)
2566 {
2567 struct value *v;
2568 const gdb_byte *src; /* First byte containing data to unpack */
2569 gdb_byte *unpacked;
2570 const int is_scalar = is_scalar_type (type);
2571 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2572 std::unique_ptr<gdb_byte[]> staging;
2573 int staging_len = 0;
2574
2575 type = ada_check_typedef (type);
2576
2577 if (obj == NULL)
2578 src = valaddr + offset;
2579 else
2580 src = value_contents (obj) + offset;
2581
2582 if (is_dynamic_type (type))
2583 {
2584 /* The length of TYPE might by dynamic, so we need to resolve
2585 TYPE in order to know its actual size, which we then use
2586 to create the contents buffer of the value we return.
2587 The difficulty is that the data containing our object is
2588 packed, and therefore maybe not at a byte boundary. So, what
2589 we do, is unpack the data into a byte-aligned buffer, and then
2590 use that buffer as our object's value for resolving the type. */
2591 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2592 staging.reset (new gdb_byte[staging_len]);
2593
2594 ada_unpack_from_contents (src, bit_offset, bit_size,
2595 staging.get (), staging_len,
2596 is_big_endian, has_negatives (type),
2597 is_scalar);
2598 type = resolve_dynamic_type (type, staging.get (), 0);
2599 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2600 {
2601 /* This happens when the length of the object is dynamic,
2602 and is actually smaller than the space reserved for it.
2603 For instance, in an array of variant records, the bit_size
2604 we're given is the array stride, which is constant and
2605 normally equal to the maximum size of its element.
2606 But, in reality, each element only actually spans a portion
2607 of that stride. */
2608 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2609 }
2610 }
2611
2612 if (obj == NULL)
2613 {
2614 v = allocate_value (type);
2615 src = valaddr + offset;
2616 }
2617 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2618 {
2619 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2620 gdb_byte *buf;
2621
2622 v = value_at (type, value_address (obj) + offset);
2623 buf = (gdb_byte *) alloca (src_len);
2624 read_memory (value_address (v), buf, src_len);
2625 src = buf;
2626 }
2627 else
2628 {
2629 v = allocate_value (type);
2630 src = value_contents (obj) + offset;
2631 }
2632
2633 if (obj != NULL)
2634 {
2635 long new_offset = offset;
2636
2637 set_value_component_location (v, obj);
2638 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2639 set_value_bitsize (v, bit_size);
2640 if (value_bitpos (v) >= HOST_CHAR_BIT)
2641 {
2642 ++new_offset;
2643 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2644 }
2645 set_value_offset (v, new_offset);
2646
2647 /* Also set the parent value. This is needed when trying to
2648 assign a new value (in inferior memory). */
2649 set_value_parent (v, obj);
2650 }
2651 else
2652 set_value_bitsize (v, bit_size);
2653 unpacked = value_contents_writeable (v);
2654
2655 if (bit_size == 0)
2656 {
2657 memset (unpacked, 0, TYPE_LENGTH (type));
2658 return v;
2659 }
2660
2661 if (staging != NULL && staging_len == TYPE_LENGTH (type))
2662 {
2663 /* Small short-cut: If we've unpacked the data into a buffer
2664 of the same size as TYPE's length, then we can reuse that,
2665 instead of doing the unpacking again. */
2666 memcpy (unpacked, staging.get (), staging_len);
2667 }
2668 else
2669 ada_unpack_from_contents (src, bit_offset, bit_size,
2670 unpacked, TYPE_LENGTH (type),
2671 is_big_endian, has_negatives (type), is_scalar);
2672
2673 return v;
2674 }
2675
2676 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2677 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2678 not overlap. */
2679 static void
2680 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2681 int src_offset, int n, int bits_big_endian_p)
2682 {
2683 unsigned int accum, mask;
2684 int accum_bits, chunk_size;
2685
2686 target += targ_offset / HOST_CHAR_BIT;
2687 targ_offset %= HOST_CHAR_BIT;
2688 source += src_offset / HOST_CHAR_BIT;
2689 src_offset %= HOST_CHAR_BIT;
2690 if (bits_big_endian_p)
2691 {
2692 accum = (unsigned char) *source;
2693 source += 1;
2694 accum_bits = HOST_CHAR_BIT - src_offset;
2695
2696 while (n > 0)
2697 {
2698 int unused_right;
2699
2700 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2701 accum_bits += HOST_CHAR_BIT;
2702 source += 1;
2703 chunk_size = HOST_CHAR_BIT - targ_offset;
2704 if (chunk_size > n)
2705 chunk_size = n;
2706 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2707 mask = ((1 << chunk_size) - 1) << unused_right;
2708 *target =
2709 (*target & ~mask)
2710 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2711 n -= chunk_size;
2712 accum_bits -= chunk_size;
2713 target += 1;
2714 targ_offset = 0;
2715 }
2716 }
2717 else
2718 {
2719 accum = (unsigned char) *source >> src_offset;
2720 source += 1;
2721 accum_bits = HOST_CHAR_BIT - src_offset;
2722
2723 while (n > 0)
2724 {
2725 accum = accum + ((unsigned char) *source << accum_bits);
2726 accum_bits += HOST_CHAR_BIT;
2727 source += 1;
2728 chunk_size = HOST_CHAR_BIT - targ_offset;
2729 if (chunk_size > n)
2730 chunk_size = n;
2731 mask = ((1 << chunk_size) - 1) << targ_offset;
2732 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2733 n -= chunk_size;
2734 accum_bits -= chunk_size;
2735 accum >>= chunk_size;
2736 target += 1;
2737 targ_offset = 0;
2738 }
2739 }
2740 }
2741
2742 /* Store the contents of FROMVAL into the location of TOVAL.
2743 Return a new value with the location of TOVAL and contents of
2744 FROMVAL. Handles assignment into packed fields that have
2745 floating-point or non-scalar types. */
2746
2747 static struct value *
2748 ada_value_assign (struct value *toval, struct value *fromval)
2749 {
2750 struct type *type = value_type (toval);
2751 int bits = value_bitsize (toval);
2752
2753 toval = ada_coerce_ref (toval);
2754 fromval = ada_coerce_ref (fromval);
2755
2756 if (ada_is_direct_array_type (value_type (toval)))
2757 toval = ada_coerce_to_simple_array (toval);
2758 if (ada_is_direct_array_type (value_type (fromval)))
2759 fromval = ada_coerce_to_simple_array (fromval);
2760
2761 if (!deprecated_value_modifiable (toval))
2762 error (_("Left operand of assignment is not a modifiable lvalue."));
2763
2764 if (VALUE_LVAL (toval) == lval_memory
2765 && bits > 0
2766 && (TYPE_CODE (type) == TYPE_CODE_FLT
2767 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2768 {
2769 int len = (value_bitpos (toval)
2770 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2771 int from_size;
2772 gdb_byte *buffer = (gdb_byte *) alloca (len);
2773 struct value *val;
2774 CORE_ADDR to_addr = value_address (toval);
2775
2776 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2777 fromval = value_cast (type, fromval);
2778
2779 read_memory (to_addr, buffer, len);
2780 from_size = value_bitsize (fromval);
2781 if (from_size == 0)
2782 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2783 if (gdbarch_bits_big_endian (get_type_arch (type)))
2784 move_bits (buffer, value_bitpos (toval),
2785 value_contents (fromval), from_size - bits, bits, 1);
2786 else
2787 move_bits (buffer, value_bitpos (toval),
2788 value_contents (fromval), 0, bits, 0);
2789 write_memory_with_notification (to_addr, buffer, len);
2790
2791 val = value_copy (toval);
2792 memcpy (value_contents_raw (val), value_contents (fromval),
2793 TYPE_LENGTH (type));
2794 deprecated_set_value_type (val, type);
2795
2796 return val;
2797 }
2798
2799 return value_assign (toval, fromval);
2800 }
2801
2802
2803 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2804 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2805 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2806 COMPONENT, and not the inferior's memory. The current contents
2807 of COMPONENT are ignored.
2808
2809 Although not part of the initial design, this function also works
2810 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2811 had a null address, and COMPONENT had an address which is equal to
2812 its offset inside CONTAINER. */
2813
2814 static void
2815 value_assign_to_component (struct value *container, struct value *component,
2816 struct value *val)
2817 {
2818 LONGEST offset_in_container =
2819 (LONGEST) (value_address (component) - value_address (container));
2820 int bit_offset_in_container =
2821 value_bitpos (component) - value_bitpos (container);
2822 int bits;
2823
2824 val = value_cast (value_type (component), val);
2825
2826 if (value_bitsize (component) == 0)
2827 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2828 else
2829 bits = value_bitsize (component);
2830
2831 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2832 move_bits (value_contents_writeable (container) + offset_in_container,
2833 value_bitpos (container) + bit_offset_in_container,
2834 value_contents (val),
2835 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2836 bits, 1);
2837 else
2838 move_bits (value_contents_writeable (container) + offset_in_container,
2839 value_bitpos (container) + bit_offset_in_container,
2840 value_contents (val), 0, bits, 0);
2841 }
2842
2843 /* The value of the element of array ARR at the ARITY indices given in IND.
2844 ARR may be either a simple array, GNAT array descriptor, or pointer
2845 thereto. */
2846
2847 struct value *
2848 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2849 {
2850 int k;
2851 struct value *elt;
2852 struct type *elt_type;
2853
2854 elt = ada_coerce_to_simple_array (arr);
2855
2856 elt_type = ada_check_typedef (value_type (elt));
2857 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2858 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2859 return value_subscript_packed (elt, arity, ind);
2860
2861 for (k = 0; k < arity; k += 1)
2862 {
2863 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2864 error (_("too many subscripts (%d expected)"), k);
2865 elt = value_subscript (elt, pos_atr (ind[k]));
2866 }
2867 return elt;
2868 }
2869
2870 /* Assuming ARR is a pointer to a GDB array, the value of the element
2871 of *ARR at the ARITY indices given in IND.
2872 Does not read the entire array into memory.
2873
2874 Note: Unlike what one would expect, this function is used instead of
2875 ada_value_subscript for basically all non-packed array types. The reason
2876 for this is that a side effect of doing our own pointer arithmetics instead
2877 of relying on value_subscript is that there is no implicit typedef peeling.
2878 This is important for arrays of array accesses, where it allows us to
2879 preserve the fact that the array's element is an array access, where the
2880 access part os encoded in a typedef layer. */
2881
2882 static struct value *
2883 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2884 {
2885 int k;
2886 struct value *array_ind = ada_value_ind (arr);
2887 struct type *type
2888 = check_typedef (value_enclosing_type (array_ind));
2889
2890 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2891 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2892 return value_subscript_packed (array_ind, arity, ind);
2893
2894 for (k = 0; k < arity; k += 1)
2895 {
2896 LONGEST lwb, upb;
2897 struct value *lwb_value;
2898
2899 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2900 error (_("too many subscripts (%d expected)"), k);
2901 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2902 value_copy (arr));
2903 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2904 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2905 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2906 type = TYPE_TARGET_TYPE (type);
2907 }
2908
2909 return value_ind (arr);
2910 }
2911
2912 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2913 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2914 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2915 this array is LOW, as per Ada rules. */
2916 static struct value *
2917 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2918 int low, int high)
2919 {
2920 struct type *type0 = ada_check_typedef (type);
2921 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2922 struct type *index_type
2923 = create_static_range_type (NULL, base_index_type, low, high);
2924 struct type *slice_type =
2925 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2926 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2927 LONGEST base_low_pos, low_pos;
2928 CORE_ADDR base;
2929
2930 if (!discrete_position (base_index_type, low, &low_pos)
2931 || !discrete_position (base_index_type, base_low, &base_low_pos))
2932 {
2933 warning (_("unable to get positions in slice, use bounds instead"));
2934 low_pos = low;
2935 base_low_pos = base_low;
2936 }
2937
2938 base = value_as_address (array_ptr)
2939 + ((low_pos - base_low_pos)
2940 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2941 return value_at_lazy (slice_type, base);
2942 }
2943
2944
2945 static struct value *
2946 ada_value_slice (struct value *array, int low, int high)
2947 {
2948 struct type *type = ada_check_typedef (value_type (array));
2949 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2950 struct type *index_type
2951 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2952 struct type *slice_type =
2953 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2954 LONGEST low_pos, high_pos;
2955
2956 if (!discrete_position (base_index_type, low, &low_pos)
2957 || !discrete_position (base_index_type, high, &high_pos))
2958 {
2959 warning (_("unable to get positions in slice, use bounds instead"));
2960 low_pos = low;
2961 high_pos = high;
2962 }
2963
2964 return value_cast (slice_type,
2965 value_slice (array, low, high_pos - low_pos + 1));
2966 }
2967
2968 /* If type is a record type in the form of a standard GNAT array
2969 descriptor, returns the number of dimensions for type. If arr is a
2970 simple array, returns the number of "array of"s that prefix its
2971 type designation. Otherwise, returns 0. */
2972
2973 int
2974 ada_array_arity (struct type *type)
2975 {
2976 int arity;
2977
2978 if (type == NULL)
2979 return 0;
2980
2981 type = desc_base_type (type);
2982
2983 arity = 0;
2984 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2985 return desc_arity (desc_bounds_type (type));
2986 else
2987 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2988 {
2989 arity += 1;
2990 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2991 }
2992
2993 return arity;
2994 }
2995
2996 /* If TYPE is a record type in the form of a standard GNAT array
2997 descriptor or a simple array type, returns the element type for
2998 TYPE after indexing by NINDICES indices, or by all indices if
2999 NINDICES is -1. Otherwise, returns NULL. */
3000
3001 struct type *
3002 ada_array_element_type (struct type *type, int nindices)
3003 {
3004 type = desc_base_type (type);
3005
3006 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3007 {
3008 int k;
3009 struct type *p_array_type;
3010
3011 p_array_type = desc_data_target_type (type);
3012
3013 k = ada_array_arity (type);
3014 if (k == 0)
3015 return NULL;
3016
3017 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3018 if (nindices >= 0 && k > nindices)
3019 k = nindices;
3020 while (k > 0 && p_array_type != NULL)
3021 {
3022 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3023 k -= 1;
3024 }
3025 return p_array_type;
3026 }
3027 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3028 {
3029 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3030 {
3031 type = TYPE_TARGET_TYPE (type);
3032 nindices -= 1;
3033 }
3034 return type;
3035 }
3036
3037 return NULL;
3038 }
3039
3040 /* The type of nth index in arrays of given type (n numbering from 1).
3041 Does not examine memory. Throws an error if N is invalid or TYPE
3042 is not an array type. NAME is the name of the Ada attribute being
3043 evaluated ('range, 'first, 'last, or 'length); it is used in building
3044 the error message. */
3045
3046 static struct type *
3047 ada_index_type (struct type *type, int n, const char *name)
3048 {
3049 struct type *result_type;
3050
3051 type = desc_base_type (type);
3052
3053 if (n < 0 || n > ada_array_arity (type))
3054 error (_("invalid dimension number to '%s"), name);
3055
3056 if (ada_is_simple_array_type (type))
3057 {
3058 int i;
3059
3060 for (i = 1; i < n; i += 1)
3061 type = TYPE_TARGET_TYPE (type);
3062 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3063 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3064 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3065 perhaps stabsread.c would make more sense. */
3066 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3067 result_type = NULL;
3068 }
3069 else
3070 {
3071 result_type = desc_index_type (desc_bounds_type (type), n);
3072 if (result_type == NULL)
3073 error (_("attempt to take bound of something that is not an array"));
3074 }
3075
3076 return result_type;
3077 }
3078
3079 /* Given that arr is an array type, returns the lower bound of the
3080 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3081 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3082 array-descriptor type. It works for other arrays with bounds supplied
3083 by run-time quantities other than discriminants. */
3084
3085 static LONGEST
3086 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3087 {
3088 struct type *type, *index_type_desc, *index_type;
3089 int i;
3090
3091 gdb_assert (which == 0 || which == 1);
3092
3093 if (ada_is_constrained_packed_array_type (arr_type))
3094 arr_type = decode_constrained_packed_array_type (arr_type);
3095
3096 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3097 return (LONGEST) - which;
3098
3099 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3100 type = TYPE_TARGET_TYPE (arr_type);
3101 else
3102 type = arr_type;
3103
3104 if (TYPE_FIXED_INSTANCE (type))
3105 {
3106 /* The array has already been fixed, so we do not need to
3107 check the parallel ___XA type again. That encoding has
3108 already been applied, so ignore it now. */
3109 index_type_desc = NULL;
3110 }
3111 else
3112 {
3113 index_type_desc = ada_find_parallel_type (type, "___XA");
3114 ada_fixup_array_indexes_type (index_type_desc);
3115 }
3116
3117 if (index_type_desc != NULL)
3118 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3119 NULL);
3120 else
3121 {
3122 struct type *elt_type = check_typedef (type);
3123
3124 for (i = 1; i < n; i++)
3125 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3126
3127 index_type = TYPE_INDEX_TYPE (elt_type);
3128 }
3129
3130 return
3131 (LONGEST) (which == 0
3132 ? ada_discrete_type_low_bound (index_type)
3133 : ada_discrete_type_high_bound (index_type));
3134 }
3135
3136 /* Given that arr is an array value, returns the lower bound of the
3137 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3138 WHICH is 1. This routine will also work for arrays with bounds
3139 supplied by run-time quantities other than discriminants. */
3140
3141 static LONGEST
3142 ada_array_bound (struct value *arr, int n, int which)
3143 {
3144 struct type *arr_type;
3145
3146 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3147 arr = value_ind (arr);
3148 arr_type = value_enclosing_type (arr);
3149
3150 if (ada_is_constrained_packed_array_type (arr_type))
3151 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3152 else if (ada_is_simple_array_type (arr_type))
3153 return ada_array_bound_from_type (arr_type, n, which);
3154 else
3155 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3156 }
3157
3158 /* Given that arr is an array value, returns the length of the
3159 nth index. This routine will also work for arrays with bounds
3160 supplied by run-time quantities other than discriminants.
3161 Does not work for arrays indexed by enumeration types with representation
3162 clauses at the moment. */
3163
3164 static LONGEST
3165 ada_array_length (struct value *arr, int n)
3166 {
3167 struct type *arr_type, *index_type;
3168 int low, high;
3169
3170 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3171 arr = value_ind (arr);
3172 arr_type = value_enclosing_type (arr);
3173
3174 if (ada_is_constrained_packed_array_type (arr_type))
3175 return ada_array_length (decode_constrained_packed_array (arr), n);
3176
3177 if (ada_is_simple_array_type (arr_type))
3178 {
3179 low = ada_array_bound_from_type (arr_type, n, 0);
3180 high = ada_array_bound_from_type (arr_type, n, 1);
3181 }
3182 else
3183 {
3184 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3185 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3186 }
3187
3188 arr_type = check_typedef (arr_type);
3189 index_type = TYPE_INDEX_TYPE (arr_type);
3190 if (index_type != NULL)
3191 {
3192 struct type *base_type;
3193 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3194 base_type = TYPE_TARGET_TYPE (index_type);
3195 else
3196 base_type = index_type;
3197
3198 low = pos_atr (value_from_longest (base_type, low));
3199 high = pos_atr (value_from_longest (base_type, high));
3200 }
3201 return high - low + 1;
3202 }
3203
3204 /* An empty array whose type is that of ARR_TYPE (an array type),
3205 with bounds LOW to LOW-1. */
3206
3207 static struct value *
3208 empty_array (struct type *arr_type, int low)
3209 {
3210 struct type *arr_type0 = ada_check_typedef (arr_type);
3211 struct type *index_type
3212 = create_static_range_type
3213 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3214 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3215
3216 return allocate_value (create_array_type (NULL, elt_type, index_type));
3217 }
3218 \f
3219
3220 /* Name resolution */
3221
3222 /* The "decoded" name for the user-definable Ada operator corresponding
3223 to OP. */
3224
3225 static const char *
3226 ada_decoded_op_name (enum exp_opcode op)
3227 {
3228 int i;
3229
3230 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3231 {
3232 if (ada_opname_table[i].op == op)
3233 return ada_opname_table[i].decoded;
3234 }
3235 error (_("Could not find operator name for opcode"));
3236 }
3237
3238
3239 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3240 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3241 undefined namespace) and converts operators that are
3242 user-defined into appropriate function calls. If CONTEXT_TYPE is
3243 non-null, it provides a preferred result type [at the moment, only
3244 type void has any effect---causing procedures to be preferred over
3245 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3246 return type is preferred. May change (expand) *EXP. */
3247
3248 static void
3249 resolve (struct expression **expp, int void_context_p)
3250 {
3251 struct type *context_type = NULL;
3252 int pc = 0;
3253
3254 if (void_context_p)
3255 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3256
3257 resolve_subexp (expp, &pc, 1, context_type);
3258 }
3259
3260 /* Resolve the operator of the subexpression beginning at
3261 position *POS of *EXPP. "Resolving" consists of replacing
3262 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3263 with their resolutions, replacing built-in operators with
3264 function calls to user-defined operators, where appropriate, and,
3265 when DEPROCEDURE_P is non-zero, converting function-valued variables
3266 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3267 are as in ada_resolve, above. */
3268
3269 static struct value *
3270 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3271 struct type *context_type)
3272 {
3273 int pc = *pos;
3274 int i;
3275 struct expression *exp; /* Convenience: == *expp. */
3276 enum exp_opcode op = (*expp)->elts[pc].opcode;
3277 struct value **argvec; /* Vector of operand types (alloca'ed). */
3278 int nargs; /* Number of operands. */
3279 int oplen;
3280
3281 argvec = NULL;
3282 nargs = 0;
3283 exp = *expp;
3284
3285 /* Pass one: resolve operands, saving their types and updating *pos,
3286 if needed. */
3287 switch (op)
3288 {
3289 case OP_FUNCALL:
3290 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3291 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3292 *pos += 7;
3293 else
3294 {
3295 *pos += 3;
3296 resolve_subexp (expp, pos, 0, NULL);
3297 }
3298 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3299 break;
3300
3301 case UNOP_ADDR:
3302 *pos += 1;
3303 resolve_subexp (expp, pos, 0, NULL);
3304 break;
3305
3306 case UNOP_QUAL:
3307 *pos += 3;
3308 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3309 break;
3310
3311 case OP_ATR_MODULUS:
3312 case OP_ATR_SIZE:
3313 case OP_ATR_TAG:
3314 case OP_ATR_FIRST:
3315 case OP_ATR_LAST:
3316 case OP_ATR_LENGTH:
3317 case OP_ATR_POS:
3318 case OP_ATR_VAL:
3319 case OP_ATR_MIN:
3320 case OP_ATR_MAX:
3321 case TERNOP_IN_RANGE:
3322 case BINOP_IN_BOUNDS:
3323 case UNOP_IN_RANGE:
3324 case OP_AGGREGATE:
3325 case OP_OTHERS:
3326 case OP_CHOICES:
3327 case OP_POSITIONAL:
3328 case OP_DISCRETE_RANGE:
3329 case OP_NAME:
3330 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3331 *pos += oplen;
3332 break;
3333
3334 case BINOP_ASSIGN:
3335 {
3336 struct value *arg1;
3337
3338 *pos += 1;
3339 arg1 = resolve_subexp (expp, pos, 0, NULL);
3340 if (arg1 == NULL)
3341 resolve_subexp (expp, pos, 1, NULL);
3342 else
3343 resolve_subexp (expp, pos, 1, value_type (arg1));
3344 break;
3345 }
3346
3347 case UNOP_CAST:
3348 *pos += 3;
3349 nargs = 1;
3350 break;
3351
3352 case BINOP_ADD:
3353 case BINOP_SUB:
3354 case BINOP_MUL:
3355 case BINOP_DIV:
3356 case BINOP_REM:
3357 case BINOP_MOD:
3358 case BINOP_EXP:
3359 case BINOP_CONCAT:
3360 case BINOP_LOGICAL_AND:
3361 case BINOP_LOGICAL_OR:
3362 case BINOP_BITWISE_AND:
3363 case BINOP_BITWISE_IOR:
3364 case BINOP_BITWISE_XOR:
3365
3366 case BINOP_EQUAL:
3367 case BINOP_NOTEQUAL:
3368 case BINOP_LESS:
3369 case BINOP_GTR:
3370 case BINOP_LEQ:
3371 case BINOP_GEQ:
3372
3373 case BINOP_REPEAT:
3374 case BINOP_SUBSCRIPT:
3375 case BINOP_COMMA:
3376 *pos += 1;
3377 nargs = 2;
3378 break;
3379
3380 case UNOP_NEG:
3381 case UNOP_PLUS:
3382 case UNOP_LOGICAL_NOT:
3383 case UNOP_ABS:
3384 case UNOP_IND:
3385 *pos += 1;
3386 nargs = 1;
3387 break;
3388
3389 case OP_LONG:
3390 case OP_DOUBLE:
3391 case OP_VAR_VALUE:
3392 *pos += 4;
3393 break;
3394
3395 case OP_TYPE:
3396 case OP_BOOL:
3397 case OP_LAST:
3398 case OP_INTERNALVAR:
3399 *pos += 3;
3400 break;
3401
3402 case UNOP_MEMVAL:
3403 *pos += 3;
3404 nargs = 1;
3405 break;
3406
3407 case OP_REGISTER:
3408 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3409 break;
3410
3411 case STRUCTOP_STRUCT:
3412 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3413 nargs = 1;
3414 break;
3415
3416 case TERNOP_SLICE:
3417 *pos += 1;
3418 nargs = 3;
3419 break;
3420
3421 case OP_STRING:
3422 break;
3423
3424 default:
3425 error (_("Unexpected operator during name resolution"));
3426 }
3427
3428 argvec = XALLOCAVEC (struct value *, nargs + 1);
3429 for (i = 0; i < nargs; i += 1)
3430 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3431 argvec[i] = NULL;
3432 exp = *expp;
3433
3434 /* Pass two: perform any resolution on principal operator. */
3435 switch (op)
3436 {
3437 default:
3438 break;
3439
3440 case OP_VAR_VALUE:
3441 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3442 {
3443 struct block_symbol *candidates;
3444 int n_candidates;
3445
3446 n_candidates =
3447 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3448 (exp->elts[pc + 2].symbol),
3449 exp->elts[pc + 1].block, VAR_DOMAIN,
3450 &candidates);
3451
3452 if (n_candidates > 1)
3453 {
3454 /* Types tend to get re-introduced locally, so if there
3455 are any local symbols that are not types, first filter
3456 out all types. */
3457 int j;
3458 for (j = 0; j < n_candidates; j += 1)
3459 switch (SYMBOL_CLASS (candidates[j].symbol))
3460 {
3461 case LOC_REGISTER:
3462 case LOC_ARG:
3463 case LOC_REF_ARG:
3464 case LOC_REGPARM_ADDR:
3465 case LOC_LOCAL:
3466 case LOC_COMPUTED:
3467 goto FoundNonType;
3468 default:
3469 break;
3470 }
3471 FoundNonType:
3472 if (j < n_candidates)
3473 {
3474 j = 0;
3475 while (j < n_candidates)
3476 {
3477 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3478 {
3479 candidates[j] = candidates[n_candidates - 1];
3480 n_candidates -= 1;
3481 }
3482 else
3483 j += 1;
3484 }
3485 }
3486 }
3487
3488 if (n_candidates == 0)
3489 error (_("No definition found for %s"),
3490 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3491 else if (n_candidates == 1)
3492 i = 0;
3493 else if (deprocedure_p
3494 && !is_nonfunction (candidates, n_candidates))
3495 {
3496 i = ada_resolve_function
3497 (candidates, n_candidates, NULL, 0,
3498 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3499 context_type);
3500 if (i < 0)
3501 error (_("Could not find a match for %s"),
3502 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3503 }
3504 else
3505 {
3506 printf_filtered (_("Multiple matches for %s\n"),
3507 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3508 user_select_syms (candidates, n_candidates, 1);
3509 i = 0;
3510 }
3511
3512 exp->elts[pc + 1].block = candidates[i].block;
3513 exp->elts[pc + 2].symbol = candidates[i].symbol;
3514 if (innermost_block == NULL
3515 || contained_in (candidates[i].block, innermost_block))
3516 innermost_block = candidates[i].block;
3517 }
3518
3519 if (deprocedure_p
3520 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3521 == TYPE_CODE_FUNC))
3522 {
3523 replace_operator_with_call (expp, pc, 0, 0,
3524 exp->elts[pc + 2].symbol,
3525 exp->elts[pc + 1].block);
3526 exp = *expp;
3527 }
3528 break;
3529
3530 case OP_FUNCALL:
3531 {
3532 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3533 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3534 {
3535 struct block_symbol *candidates;
3536 int n_candidates;
3537
3538 n_candidates =
3539 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3540 (exp->elts[pc + 5].symbol),
3541 exp->elts[pc + 4].block, VAR_DOMAIN,
3542 &candidates);
3543 if (n_candidates == 1)
3544 i = 0;
3545 else
3546 {
3547 i = ada_resolve_function
3548 (candidates, n_candidates,
3549 argvec, nargs,
3550 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3551 context_type);
3552 if (i < 0)
3553 error (_("Could not find a match for %s"),
3554 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3555 }
3556
3557 exp->elts[pc + 4].block = candidates[i].block;
3558 exp->elts[pc + 5].symbol = candidates[i].symbol;
3559 if (innermost_block == NULL
3560 || contained_in (candidates[i].block, innermost_block))
3561 innermost_block = candidates[i].block;
3562 }
3563 }
3564 break;
3565 case BINOP_ADD:
3566 case BINOP_SUB:
3567 case BINOP_MUL:
3568 case BINOP_DIV:
3569 case BINOP_REM:
3570 case BINOP_MOD:
3571 case BINOP_CONCAT:
3572 case BINOP_BITWISE_AND:
3573 case BINOP_BITWISE_IOR:
3574 case BINOP_BITWISE_XOR:
3575 case BINOP_EQUAL:
3576 case BINOP_NOTEQUAL:
3577 case BINOP_LESS:
3578 case BINOP_GTR:
3579 case BINOP_LEQ:
3580 case BINOP_GEQ:
3581 case BINOP_EXP:
3582 case UNOP_NEG:
3583 case UNOP_PLUS:
3584 case UNOP_LOGICAL_NOT:
3585 case UNOP_ABS:
3586 if (possible_user_operator_p (op, argvec))
3587 {
3588 struct block_symbol *candidates;
3589 int n_candidates;
3590
3591 n_candidates =
3592 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3593 (struct block *) NULL, VAR_DOMAIN,
3594 &candidates);
3595 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3596 ada_decoded_op_name (op), NULL);
3597 if (i < 0)
3598 break;
3599
3600 replace_operator_with_call (expp, pc, nargs, 1,
3601 candidates[i].symbol,
3602 candidates[i].block);
3603 exp = *expp;
3604 }
3605 break;
3606
3607 case OP_TYPE:
3608 case OP_REGISTER:
3609 return NULL;
3610 }
3611
3612 *pos = pc;
3613 return evaluate_subexp_type (exp, pos);
3614 }
3615
3616 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3617 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3618 a non-pointer. */
3619 /* The term "match" here is rather loose. The match is heuristic and
3620 liberal. */
3621
3622 static int
3623 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3624 {
3625 ftype = ada_check_typedef (ftype);
3626 atype = ada_check_typedef (atype);
3627
3628 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3629 ftype = TYPE_TARGET_TYPE (ftype);
3630 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3631 atype = TYPE_TARGET_TYPE (atype);
3632
3633 switch (TYPE_CODE (ftype))
3634 {
3635 default:
3636 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3637 case TYPE_CODE_PTR:
3638 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3639 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3640 TYPE_TARGET_TYPE (atype), 0);
3641 else
3642 return (may_deref
3643 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3644 case TYPE_CODE_INT:
3645 case TYPE_CODE_ENUM:
3646 case TYPE_CODE_RANGE:
3647 switch (TYPE_CODE (atype))
3648 {
3649 case TYPE_CODE_INT:
3650 case TYPE_CODE_ENUM:
3651 case TYPE_CODE_RANGE:
3652 return 1;
3653 default:
3654 return 0;
3655 }
3656
3657 case TYPE_CODE_ARRAY:
3658 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3659 || ada_is_array_descriptor_type (atype));
3660
3661 case TYPE_CODE_STRUCT:
3662 if (ada_is_array_descriptor_type (ftype))
3663 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3664 || ada_is_array_descriptor_type (atype));
3665 else
3666 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3667 && !ada_is_array_descriptor_type (atype));
3668
3669 case TYPE_CODE_UNION:
3670 case TYPE_CODE_FLT:
3671 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3672 }
3673 }
3674
3675 /* Return non-zero if the formals of FUNC "sufficiently match" the
3676 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3677 may also be an enumeral, in which case it is treated as a 0-
3678 argument function. */
3679
3680 static int
3681 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3682 {
3683 int i;
3684 struct type *func_type = SYMBOL_TYPE (func);
3685
3686 if (SYMBOL_CLASS (func) == LOC_CONST
3687 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3688 return (n_actuals == 0);
3689 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3690 return 0;
3691
3692 if (TYPE_NFIELDS (func_type) != n_actuals)
3693 return 0;
3694
3695 for (i = 0; i < n_actuals; i += 1)
3696 {
3697 if (actuals[i] == NULL)
3698 return 0;
3699 else
3700 {
3701 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3702 i));
3703 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3704
3705 if (!ada_type_match (ftype, atype, 1))
3706 return 0;
3707 }
3708 }
3709 return 1;
3710 }
3711
3712 /* False iff function type FUNC_TYPE definitely does not produce a value
3713 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3714 FUNC_TYPE is not a valid function type with a non-null return type
3715 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3716
3717 static int
3718 return_match (struct type *func_type, struct type *context_type)
3719 {
3720 struct type *return_type;
3721
3722 if (func_type == NULL)
3723 return 1;
3724
3725 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3726 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3727 else
3728 return_type = get_base_type (func_type);
3729 if (return_type == NULL)
3730 return 1;
3731
3732 context_type = get_base_type (context_type);
3733
3734 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3735 return context_type == NULL || return_type == context_type;
3736 else if (context_type == NULL)
3737 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3738 else
3739 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3740 }
3741
3742
3743 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3744 function (if any) that matches the types of the NARGS arguments in
3745 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3746 that returns that type, then eliminate matches that don't. If
3747 CONTEXT_TYPE is void and there is at least one match that does not
3748 return void, eliminate all matches that do.
3749
3750 Asks the user if there is more than one match remaining. Returns -1
3751 if there is no such symbol or none is selected. NAME is used
3752 solely for messages. May re-arrange and modify SYMS in
3753 the process; the index returned is for the modified vector. */
3754
3755 static int
3756 ada_resolve_function (struct block_symbol syms[],
3757 int nsyms, struct value **args, int nargs,
3758 const char *name, struct type *context_type)
3759 {
3760 int fallback;
3761 int k;
3762 int m; /* Number of hits */
3763
3764 m = 0;
3765 /* In the first pass of the loop, we only accept functions matching
3766 context_type. If none are found, we add a second pass of the loop
3767 where every function is accepted. */
3768 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3769 {
3770 for (k = 0; k < nsyms; k += 1)
3771 {
3772 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3773
3774 if (ada_args_match (syms[k].symbol, args, nargs)
3775 && (fallback || return_match (type, context_type)))
3776 {
3777 syms[m] = syms[k];
3778 m += 1;
3779 }
3780 }
3781 }
3782
3783 /* If we got multiple matches, ask the user which one to use. Don't do this
3784 interactive thing during completion, though, as the purpose of the
3785 completion is providing a list of all possible matches. Prompting the
3786 user to filter it down would be completely unexpected in this case. */
3787 if (m == 0)
3788 return -1;
3789 else if (m > 1 && !parse_completion)
3790 {
3791 printf_filtered (_("Multiple matches for %s\n"), name);
3792 user_select_syms (syms, m, 1);
3793 return 0;
3794 }
3795 return 0;
3796 }
3797
3798 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3799 in a listing of choices during disambiguation (see sort_choices, below).
3800 The idea is that overloadings of a subprogram name from the
3801 same package should sort in their source order. We settle for ordering
3802 such symbols by their trailing number (__N or $N). */
3803
3804 static int
3805 encoded_ordered_before (const char *N0, const char *N1)
3806 {
3807 if (N1 == NULL)
3808 return 0;
3809 else if (N0 == NULL)
3810 return 1;
3811 else
3812 {
3813 int k0, k1;
3814
3815 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3816 ;
3817 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3818 ;
3819 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3820 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3821 {
3822 int n0, n1;
3823
3824 n0 = k0;
3825 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3826 n0 -= 1;
3827 n1 = k1;
3828 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3829 n1 -= 1;
3830 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3831 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3832 }
3833 return (strcmp (N0, N1) < 0);
3834 }
3835 }
3836
3837 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3838 encoded names. */
3839
3840 static void
3841 sort_choices (struct block_symbol syms[], int nsyms)
3842 {
3843 int i;
3844
3845 for (i = 1; i < nsyms; i += 1)
3846 {
3847 struct block_symbol sym = syms[i];
3848 int j;
3849
3850 for (j = i - 1; j >= 0; j -= 1)
3851 {
3852 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3853 SYMBOL_LINKAGE_NAME (sym.symbol)))
3854 break;
3855 syms[j + 1] = syms[j];
3856 }
3857 syms[j + 1] = sym;
3858 }
3859 }
3860
3861 /* Whether GDB should display formals and return types for functions in the
3862 overloads selection menu. */
3863 static int print_signatures = 1;
3864
3865 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3866 all but functions, the signature is just the name of the symbol. For
3867 functions, this is the name of the function, the list of types for formals
3868 and the return type (if any). */
3869
3870 static void
3871 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3872 const struct type_print_options *flags)
3873 {
3874 struct type *type = SYMBOL_TYPE (sym);
3875
3876 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3877 if (!print_signatures
3878 || type == NULL
3879 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3880 return;
3881
3882 if (TYPE_NFIELDS (type) > 0)
3883 {
3884 int i;
3885
3886 fprintf_filtered (stream, " (");
3887 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3888 {
3889 if (i > 0)
3890 fprintf_filtered (stream, "; ");
3891 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3892 flags);
3893 }
3894 fprintf_filtered (stream, ")");
3895 }
3896 if (TYPE_TARGET_TYPE (type) != NULL
3897 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3898 {
3899 fprintf_filtered (stream, " return ");
3900 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3901 }
3902 }
3903
3904 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3905 by asking the user (if necessary), returning the number selected,
3906 and setting the first elements of SYMS items. Error if no symbols
3907 selected. */
3908
3909 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3910 to be re-integrated one of these days. */
3911
3912 int
3913 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3914 {
3915 int i;
3916 int *chosen = XALLOCAVEC (int , nsyms);
3917 int n_chosen;
3918 int first_choice = (max_results == 1) ? 1 : 2;
3919 const char *select_mode = multiple_symbols_select_mode ();
3920
3921 if (max_results < 1)
3922 error (_("Request to select 0 symbols!"));
3923 if (nsyms <= 1)
3924 return nsyms;
3925
3926 if (select_mode == multiple_symbols_cancel)
3927 error (_("\
3928 canceled because the command is ambiguous\n\
3929 See set/show multiple-symbol."));
3930
3931 /* If select_mode is "all", then return all possible symbols.
3932 Only do that if more than one symbol can be selected, of course.
3933 Otherwise, display the menu as usual. */
3934 if (select_mode == multiple_symbols_all && max_results > 1)
3935 return nsyms;
3936
3937 printf_unfiltered (_("[0] cancel\n"));
3938 if (max_results > 1)
3939 printf_unfiltered (_("[1] all\n"));
3940
3941 sort_choices (syms, nsyms);
3942
3943 for (i = 0; i < nsyms; i += 1)
3944 {
3945 if (syms[i].symbol == NULL)
3946 continue;
3947
3948 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3949 {
3950 struct symtab_and_line sal =
3951 find_function_start_sal (syms[i].symbol, 1);
3952
3953 printf_unfiltered ("[%d] ", i + first_choice);
3954 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3955 &type_print_raw_options);
3956 if (sal.symtab == NULL)
3957 printf_unfiltered (_(" at <no source file available>:%d\n"),
3958 sal.line);
3959 else
3960 printf_unfiltered (_(" at %s:%d\n"),
3961 symtab_to_filename_for_display (sal.symtab),
3962 sal.line);
3963 continue;
3964 }
3965 else
3966 {
3967 int is_enumeral =
3968 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3969 && SYMBOL_TYPE (syms[i].symbol) != NULL
3970 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3971 struct symtab *symtab = NULL;
3972
3973 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3974 symtab = symbol_symtab (syms[i].symbol);
3975
3976 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3977 {
3978 printf_unfiltered ("[%d] ", i + first_choice);
3979 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3980 &type_print_raw_options);
3981 printf_unfiltered (_(" at %s:%d\n"),
3982 symtab_to_filename_for_display (symtab),
3983 SYMBOL_LINE (syms[i].symbol));
3984 }
3985 else if (is_enumeral
3986 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3987 {
3988 printf_unfiltered (("[%d] "), i + first_choice);
3989 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3990 gdb_stdout, -1, 0, &type_print_raw_options);
3991 printf_unfiltered (_("'(%s) (enumeral)\n"),
3992 SYMBOL_PRINT_NAME (syms[i].symbol));
3993 }
3994 else
3995 {
3996 printf_unfiltered ("[%d] ", i + first_choice);
3997 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3998 &type_print_raw_options);
3999
4000 if (symtab != NULL)
4001 printf_unfiltered (is_enumeral
4002 ? _(" in %s (enumeral)\n")
4003 : _(" at %s:?\n"),
4004 symtab_to_filename_for_display (symtab));
4005 else
4006 printf_unfiltered (is_enumeral
4007 ? _(" (enumeral)\n")
4008 : _(" at ?\n"));
4009 }
4010 }
4011 }
4012
4013 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4014 "overload-choice");
4015
4016 for (i = 0; i < n_chosen; i += 1)
4017 syms[i] = syms[chosen[i]];
4018
4019 return n_chosen;
4020 }
4021
4022 /* Read and validate a set of numeric choices from the user in the
4023 range 0 .. N_CHOICES-1. Place the results in increasing
4024 order in CHOICES[0 .. N-1], and return N.
4025
4026 The user types choices as a sequence of numbers on one line
4027 separated by blanks, encoding them as follows:
4028
4029 + A choice of 0 means to cancel the selection, throwing an error.
4030 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4031 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4032
4033 The user is not allowed to choose more than MAX_RESULTS values.
4034
4035 ANNOTATION_SUFFIX, if present, is used to annotate the input
4036 prompts (for use with the -f switch). */
4037
4038 int
4039 get_selections (int *choices, int n_choices, int max_results,
4040 int is_all_choice, char *annotation_suffix)
4041 {
4042 char *args;
4043 char *prompt;
4044 int n_chosen;
4045 int first_choice = is_all_choice ? 2 : 1;
4046
4047 prompt = getenv ("PS2");
4048 if (prompt == NULL)
4049 prompt = "> ";
4050
4051 args = command_line_input (prompt, 0, annotation_suffix);
4052
4053 if (args == NULL)
4054 error_no_arg (_("one or more choice numbers"));
4055
4056 n_chosen = 0;
4057
4058 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4059 order, as given in args. Choices are validated. */
4060 while (1)
4061 {
4062 char *args2;
4063 int choice, j;
4064
4065 args = skip_spaces (args);
4066 if (*args == '\0' && n_chosen == 0)
4067 error_no_arg (_("one or more choice numbers"));
4068 else if (*args == '\0')
4069 break;
4070
4071 choice = strtol (args, &args2, 10);
4072 if (args == args2 || choice < 0
4073 || choice > n_choices + first_choice - 1)
4074 error (_("Argument must be choice number"));
4075 args = args2;
4076
4077 if (choice == 0)
4078 error (_("cancelled"));
4079
4080 if (choice < first_choice)
4081 {
4082 n_chosen = n_choices;
4083 for (j = 0; j < n_choices; j += 1)
4084 choices[j] = j;
4085 break;
4086 }
4087 choice -= first_choice;
4088
4089 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4090 {
4091 }
4092
4093 if (j < 0 || choice != choices[j])
4094 {
4095 int k;
4096
4097 for (k = n_chosen - 1; k > j; k -= 1)
4098 choices[k + 1] = choices[k];
4099 choices[j + 1] = choice;
4100 n_chosen += 1;
4101 }
4102 }
4103
4104 if (n_chosen > max_results)
4105 error (_("Select no more than %d of the above"), max_results);
4106
4107 return n_chosen;
4108 }
4109
4110 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4111 on the function identified by SYM and BLOCK, and taking NARGS
4112 arguments. Update *EXPP as needed to hold more space. */
4113
4114 static void
4115 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4116 int oplen, struct symbol *sym,
4117 const struct block *block)
4118 {
4119 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4120 symbol, -oplen for operator being replaced). */
4121 struct expression *newexp = (struct expression *)
4122 xzalloc (sizeof (struct expression)
4123 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4124 struct expression *exp = *expp;
4125
4126 newexp->nelts = exp->nelts + 7 - oplen;
4127 newexp->language_defn = exp->language_defn;
4128 newexp->gdbarch = exp->gdbarch;
4129 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4130 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4131 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4132
4133 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4134 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4135
4136 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4137 newexp->elts[pc + 4].block = block;
4138 newexp->elts[pc + 5].symbol = sym;
4139
4140 *expp = newexp;
4141 xfree (exp);
4142 }
4143
4144 /* Type-class predicates */
4145
4146 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4147 or FLOAT). */
4148
4149 static int
4150 numeric_type_p (struct type *type)
4151 {
4152 if (type == NULL)
4153 return 0;
4154 else
4155 {
4156 switch (TYPE_CODE (type))
4157 {
4158 case TYPE_CODE_INT:
4159 case TYPE_CODE_FLT:
4160 return 1;
4161 case TYPE_CODE_RANGE:
4162 return (type == TYPE_TARGET_TYPE (type)
4163 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4164 default:
4165 return 0;
4166 }
4167 }
4168 }
4169
4170 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4171
4172 static int
4173 integer_type_p (struct type *type)
4174 {
4175 if (type == NULL)
4176 return 0;
4177 else
4178 {
4179 switch (TYPE_CODE (type))
4180 {
4181 case TYPE_CODE_INT:
4182 return 1;
4183 case TYPE_CODE_RANGE:
4184 return (type == TYPE_TARGET_TYPE (type)
4185 || integer_type_p (TYPE_TARGET_TYPE (type)));
4186 default:
4187 return 0;
4188 }
4189 }
4190 }
4191
4192 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4193
4194 static int
4195 scalar_type_p (struct type *type)
4196 {
4197 if (type == NULL)
4198 return 0;
4199 else
4200 {
4201 switch (TYPE_CODE (type))
4202 {
4203 case TYPE_CODE_INT:
4204 case TYPE_CODE_RANGE:
4205 case TYPE_CODE_ENUM:
4206 case TYPE_CODE_FLT:
4207 return 1;
4208 default:
4209 return 0;
4210 }
4211 }
4212 }
4213
4214 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4215
4216 static int
4217 discrete_type_p (struct type *type)
4218 {
4219 if (type == NULL)
4220 return 0;
4221 else
4222 {
4223 switch (TYPE_CODE (type))
4224 {
4225 case TYPE_CODE_INT:
4226 case TYPE_CODE_RANGE:
4227 case TYPE_CODE_ENUM:
4228 case TYPE_CODE_BOOL:
4229 return 1;
4230 default:
4231 return 0;
4232 }
4233 }
4234 }
4235
4236 /* Returns non-zero if OP with operands in the vector ARGS could be
4237 a user-defined function. Errs on the side of pre-defined operators
4238 (i.e., result 0). */
4239
4240 static int
4241 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4242 {
4243 struct type *type0 =
4244 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4245 struct type *type1 =
4246 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4247
4248 if (type0 == NULL)
4249 return 0;
4250
4251 switch (op)
4252 {
4253 default:
4254 return 0;
4255
4256 case BINOP_ADD:
4257 case BINOP_SUB:
4258 case BINOP_MUL:
4259 case BINOP_DIV:
4260 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4261
4262 case BINOP_REM:
4263 case BINOP_MOD:
4264 case BINOP_BITWISE_AND:
4265 case BINOP_BITWISE_IOR:
4266 case BINOP_BITWISE_XOR:
4267 return (!(integer_type_p (type0) && integer_type_p (type1)));
4268
4269 case BINOP_EQUAL:
4270 case BINOP_NOTEQUAL:
4271 case BINOP_LESS:
4272 case BINOP_GTR:
4273 case BINOP_LEQ:
4274 case BINOP_GEQ:
4275 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4276
4277 case BINOP_CONCAT:
4278 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4279
4280 case BINOP_EXP:
4281 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4282
4283 case UNOP_NEG:
4284 case UNOP_PLUS:
4285 case UNOP_LOGICAL_NOT:
4286 case UNOP_ABS:
4287 return (!numeric_type_p (type0));
4288
4289 }
4290 }
4291 \f
4292 /* Renaming */
4293
4294 /* NOTES:
4295
4296 1. In the following, we assume that a renaming type's name may
4297 have an ___XD suffix. It would be nice if this went away at some
4298 point.
4299 2. We handle both the (old) purely type-based representation of
4300 renamings and the (new) variable-based encoding. At some point,
4301 it is devoutly to be hoped that the former goes away
4302 (FIXME: hilfinger-2007-07-09).
4303 3. Subprogram renamings are not implemented, although the XRS
4304 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4305
4306 /* If SYM encodes a renaming,
4307
4308 <renaming> renames <renamed entity>,
4309
4310 sets *LEN to the length of the renamed entity's name,
4311 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4312 the string describing the subcomponent selected from the renamed
4313 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4314 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4315 are undefined). Otherwise, returns a value indicating the category
4316 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4317 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4318 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4319 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4320 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4321 may be NULL, in which case they are not assigned.
4322
4323 [Currently, however, GCC does not generate subprogram renamings.] */
4324
4325 enum ada_renaming_category
4326 ada_parse_renaming (struct symbol *sym,
4327 const char **renamed_entity, int *len,
4328 const char **renaming_expr)
4329 {
4330 enum ada_renaming_category kind;
4331 const char *info;
4332 const char *suffix;
4333
4334 if (sym == NULL)
4335 return ADA_NOT_RENAMING;
4336 switch (SYMBOL_CLASS (sym))
4337 {
4338 default:
4339 return ADA_NOT_RENAMING;
4340 case LOC_TYPEDEF:
4341 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4342 renamed_entity, len, renaming_expr);
4343 case LOC_LOCAL:
4344 case LOC_STATIC:
4345 case LOC_COMPUTED:
4346 case LOC_OPTIMIZED_OUT:
4347 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4348 if (info == NULL)
4349 return ADA_NOT_RENAMING;
4350 switch (info[5])
4351 {
4352 case '_':
4353 kind = ADA_OBJECT_RENAMING;
4354 info += 6;
4355 break;
4356 case 'E':
4357 kind = ADA_EXCEPTION_RENAMING;
4358 info += 7;
4359 break;
4360 case 'P':
4361 kind = ADA_PACKAGE_RENAMING;
4362 info += 7;
4363 break;
4364 case 'S':
4365 kind = ADA_SUBPROGRAM_RENAMING;
4366 info += 7;
4367 break;
4368 default:
4369 return ADA_NOT_RENAMING;
4370 }
4371 }
4372
4373 if (renamed_entity != NULL)
4374 *renamed_entity = info;
4375 suffix = strstr (info, "___XE");
4376 if (suffix == NULL || suffix == info)
4377 return ADA_NOT_RENAMING;
4378 if (len != NULL)
4379 *len = strlen (info) - strlen (suffix);
4380 suffix += 5;
4381 if (renaming_expr != NULL)
4382 *renaming_expr = suffix;
4383 return kind;
4384 }
4385
4386 /* Assuming TYPE encodes a renaming according to the old encoding in
4387 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4388 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4389 ADA_NOT_RENAMING otherwise. */
4390 static enum ada_renaming_category
4391 parse_old_style_renaming (struct type *type,
4392 const char **renamed_entity, int *len,
4393 const char **renaming_expr)
4394 {
4395 enum ada_renaming_category kind;
4396 const char *name;
4397 const char *info;
4398 const char *suffix;
4399
4400 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4401 || TYPE_NFIELDS (type) != 1)
4402 return ADA_NOT_RENAMING;
4403
4404 name = type_name_no_tag (type);
4405 if (name == NULL)
4406 return ADA_NOT_RENAMING;
4407
4408 name = strstr (name, "___XR");
4409 if (name == NULL)
4410 return ADA_NOT_RENAMING;
4411 switch (name[5])
4412 {
4413 case '\0':
4414 case '_':
4415 kind = ADA_OBJECT_RENAMING;
4416 break;
4417 case 'E':
4418 kind = ADA_EXCEPTION_RENAMING;
4419 break;
4420 case 'P':
4421 kind = ADA_PACKAGE_RENAMING;
4422 break;
4423 case 'S':
4424 kind = ADA_SUBPROGRAM_RENAMING;
4425 break;
4426 default:
4427 return ADA_NOT_RENAMING;
4428 }
4429
4430 info = TYPE_FIELD_NAME (type, 0);
4431 if (info == NULL)
4432 return ADA_NOT_RENAMING;
4433 if (renamed_entity != NULL)
4434 *renamed_entity = info;
4435 suffix = strstr (info, "___XE");
4436 if (renaming_expr != NULL)
4437 *renaming_expr = suffix + 5;
4438 if (suffix == NULL || suffix == info)
4439 return ADA_NOT_RENAMING;
4440 if (len != NULL)
4441 *len = suffix - info;
4442 return kind;
4443 }
4444
4445 /* Compute the value of the given RENAMING_SYM, which is expected to
4446 be a symbol encoding a renaming expression. BLOCK is the block
4447 used to evaluate the renaming. */
4448
4449 static struct value *
4450 ada_read_renaming_var_value (struct symbol *renaming_sym,
4451 const struct block *block)
4452 {
4453 const char *sym_name;
4454
4455 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4456 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4457 return evaluate_expression (expr.get ());
4458 }
4459 \f
4460
4461 /* Evaluation: Function Calls */
4462
4463 /* Return an lvalue containing the value VAL. This is the identity on
4464 lvalues, and otherwise has the side-effect of allocating memory
4465 in the inferior where a copy of the value contents is copied. */
4466
4467 static struct value *
4468 ensure_lval (struct value *val)
4469 {
4470 if (VALUE_LVAL (val) == not_lval
4471 || VALUE_LVAL (val) == lval_internalvar)
4472 {
4473 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4474 const CORE_ADDR addr =
4475 value_as_long (value_allocate_space_in_inferior (len));
4476
4477 VALUE_LVAL (val) = lval_memory;
4478 set_value_address (val, addr);
4479 write_memory (addr, value_contents (val), len);
4480 }
4481
4482 return val;
4483 }
4484
4485 /* Return the value ACTUAL, converted to be an appropriate value for a
4486 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4487 allocating any necessary descriptors (fat pointers), or copies of
4488 values not residing in memory, updating it as needed. */
4489
4490 struct value *
4491 ada_convert_actual (struct value *actual, struct type *formal_type0)
4492 {
4493 struct type *actual_type = ada_check_typedef (value_type (actual));
4494 struct type *formal_type = ada_check_typedef (formal_type0);
4495 struct type *formal_target =
4496 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4497 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4498 struct type *actual_target =
4499 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4500 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4501
4502 if (ada_is_array_descriptor_type (formal_target)
4503 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4504 return make_array_descriptor (formal_type, actual);
4505 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4506 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4507 {
4508 struct value *result;
4509
4510 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4511 && ada_is_array_descriptor_type (actual_target))
4512 result = desc_data (actual);
4513 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4514 {
4515 if (VALUE_LVAL (actual) != lval_memory)
4516 {
4517 struct value *val;
4518
4519 actual_type = ada_check_typedef (value_type (actual));
4520 val = allocate_value (actual_type);
4521 memcpy ((char *) value_contents_raw (val),
4522 (char *) value_contents (actual),
4523 TYPE_LENGTH (actual_type));
4524 actual = ensure_lval (val);
4525 }
4526 result = value_addr (actual);
4527 }
4528 else
4529 return actual;
4530 return value_cast_pointers (formal_type, result, 0);
4531 }
4532 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4533 return ada_value_ind (actual);
4534 else if (ada_is_aligner_type (formal_type))
4535 {
4536 /* We need to turn this parameter into an aligner type
4537 as well. */
4538 struct value *aligner = allocate_value (formal_type);
4539 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4540
4541 value_assign_to_component (aligner, component, actual);
4542 return aligner;
4543 }
4544
4545 return actual;
4546 }
4547
4548 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4549 type TYPE. This is usually an inefficient no-op except on some targets
4550 (such as AVR) where the representation of a pointer and an address
4551 differs. */
4552
4553 static CORE_ADDR
4554 value_pointer (struct value *value, struct type *type)
4555 {
4556 struct gdbarch *gdbarch = get_type_arch (type);
4557 unsigned len = TYPE_LENGTH (type);
4558 gdb_byte *buf = (gdb_byte *) alloca (len);
4559 CORE_ADDR addr;
4560
4561 addr = value_address (value);
4562 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4563 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4564 return addr;
4565 }
4566
4567
4568 /* Push a descriptor of type TYPE for array value ARR on the stack at
4569 *SP, updating *SP to reflect the new descriptor. Return either
4570 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4571 to-descriptor type rather than a descriptor type), a struct value *
4572 representing a pointer to this descriptor. */
4573
4574 static struct value *
4575 make_array_descriptor (struct type *type, struct value *arr)
4576 {
4577 struct type *bounds_type = desc_bounds_type (type);
4578 struct type *desc_type = desc_base_type (type);
4579 struct value *descriptor = allocate_value (desc_type);
4580 struct value *bounds = allocate_value (bounds_type);
4581 int i;
4582
4583 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4584 i > 0; i -= 1)
4585 {
4586 modify_field (value_type (bounds), value_contents_writeable (bounds),
4587 ada_array_bound (arr, i, 0),
4588 desc_bound_bitpos (bounds_type, i, 0),
4589 desc_bound_bitsize (bounds_type, i, 0));
4590 modify_field (value_type (bounds), value_contents_writeable (bounds),
4591 ada_array_bound (arr, i, 1),
4592 desc_bound_bitpos (bounds_type, i, 1),
4593 desc_bound_bitsize (bounds_type, i, 1));
4594 }
4595
4596 bounds = ensure_lval (bounds);
4597
4598 modify_field (value_type (descriptor),
4599 value_contents_writeable (descriptor),
4600 value_pointer (ensure_lval (arr),
4601 TYPE_FIELD_TYPE (desc_type, 0)),
4602 fat_pntr_data_bitpos (desc_type),
4603 fat_pntr_data_bitsize (desc_type));
4604
4605 modify_field (value_type (descriptor),
4606 value_contents_writeable (descriptor),
4607 value_pointer (bounds,
4608 TYPE_FIELD_TYPE (desc_type, 1)),
4609 fat_pntr_bounds_bitpos (desc_type),
4610 fat_pntr_bounds_bitsize (desc_type));
4611
4612 descriptor = ensure_lval (descriptor);
4613
4614 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4615 return value_addr (descriptor);
4616 else
4617 return descriptor;
4618 }
4619 \f
4620 /* Symbol Cache Module */
4621
4622 /* Performance measurements made as of 2010-01-15 indicate that
4623 this cache does bring some noticeable improvements. Depending
4624 on the type of entity being printed, the cache can make it as much
4625 as an order of magnitude faster than without it.
4626
4627 The descriptive type DWARF extension has significantly reduced
4628 the need for this cache, at least when DWARF is being used. However,
4629 even in this case, some expensive name-based symbol searches are still
4630 sometimes necessary - to find an XVZ variable, mostly. */
4631
4632 /* Initialize the contents of SYM_CACHE. */
4633
4634 static void
4635 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4636 {
4637 obstack_init (&sym_cache->cache_space);
4638 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4639 }
4640
4641 /* Free the memory used by SYM_CACHE. */
4642
4643 static void
4644 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4645 {
4646 obstack_free (&sym_cache->cache_space, NULL);
4647 xfree (sym_cache);
4648 }
4649
4650 /* Return the symbol cache associated to the given program space PSPACE.
4651 If not allocated for this PSPACE yet, allocate and initialize one. */
4652
4653 static struct ada_symbol_cache *
4654 ada_get_symbol_cache (struct program_space *pspace)
4655 {
4656 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4657
4658 if (pspace_data->sym_cache == NULL)
4659 {
4660 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4661 ada_init_symbol_cache (pspace_data->sym_cache);
4662 }
4663
4664 return pspace_data->sym_cache;
4665 }
4666
4667 /* Clear all entries from the symbol cache. */
4668
4669 static void
4670 ada_clear_symbol_cache (void)
4671 {
4672 struct ada_symbol_cache *sym_cache
4673 = ada_get_symbol_cache (current_program_space);
4674
4675 obstack_free (&sym_cache->cache_space, NULL);
4676 ada_init_symbol_cache (sym_cache);
4677 }
4678
4679 /* Search our cache for an entry matching NAME and DOMAIN.
4680 Return it if found, or NULL otherwise. */
4681
4682 static struct cache_entry **
4683 find_entry (const char *name, domain_enum domain)
4684 {
4685 struct ada_symbol_cache *sym_cache
4686 = ada_get_symbol_cache (current_program_space);
4687 int h = msymbol_hash (name) % HASH_SIZE;
4688 struct cache_entry **e;
4689
4690 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4691 {
4692 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4693 return e;
4694 }
4695 return NULL;
4696 }
4697
4698 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4699 Return 1 if found, 0 otherwise.
4700
4701 If an entry was found and SYM is not NULL, set *SYM to the entry's
4702 SYM. Same principle for BLOCK if not NULL. */
4703
4704 static int
4705 lookup_cached_symbol (const char *name, domain_enum domain,
4706 struct symbol **sym, const struct block **block)
4707 {
4708 struct cache_entry **e = find_entry (name, domain);
4709
4710 if (e == NULL)
4711 return 0;
4712 if (sym != NULL)
4713 *sym = (*e)->sym;
4714 if (block != NULL)
4715 *block = (*e)->block;
4716 return 1;
4717 }
4718
4719 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4720 in domain DOMAIN, save this result in our symbol cache. */
4721
4722 static void
4723 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4724 const struct block *block)
4725 {
4726 struct ada_symbol_cache *sym_cache
4727 = ada_get_symbol_cache (current_program_space);
4728 int h;
4729 char *copy;
4730 struct cache_entry *e;
4731
4732 /* Symbols for builtin types don't have a block.
4733 For now don't cache such symbols. */
4734 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4735 return;
4736
4737 /* If the symbol is a local symbol, then do not cache it, as a search
4738 for that symbol depends on the context. To determine whether
4739 the symbol is local or not, we check the block where we found it
4740 against the global and static blocks of its associated symtab. */
4741 if (sym
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 GLOBAL_BLOCK) != block
4744 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4745 STATIC_BLOCK) != block)
4746 return;
4747
4748 h = msymbol_hash (name) % HASH_SIZE;
4749 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4750 sizeof (*e));
4751 e->next = sym_cache->root[h];
4752 sym_cache->root[h] = e;
4753 e->name = copy
4754 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4755 strcpy (copy, name);
4756 e->sym = sym;
4757 e->domain = domain;
4758 e->block = block;
4759 }
4760 \f
4761 /* Symbol Lookup */
4762
4763 /* Return nonzero if wild matching should be used when searching for
4764 all symbols matching LOOKUP_NAME.
4765
4766 LOOKUP_NAME is expected to be a symbol name after transformation
4767 for Ada lookups (see ada_name_for_lookup). */
4768
4769 static int
4770 should_use_wild_match (const char *lookup_name)
4771 {
4772 return (strstr (lookup_name, "__") == NULL);
4773 }
4774
4775 /* Return the result of a standard (literal, C-like) lookup of NAME in
4776 given DOMAIN, visible from lexical block BLOCK. */
4777
4778 static struct symbol *
4779 standard_lookup (const char *name, const struct block *block,
4780 domain_enum domain)
4781 {
4782 /* Initialize it just to avoid a GCC false warning. */
4783 struct block_symbol sym = {NULL, NULL};
4784
4785 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4786 return sym.symbol;
4787 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4788 cache_symbol (name, domain, sym.symbol, sym.block);
4789 return sym.symbol;
4790 }
4791
4792
4793 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4794 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4795 since they contend in overloading in the same way. */
4796 static int
4797 is_nonfunction (struct block_symbol syms[], int n)
4798 {
4799 int i;
4800
4801 for (i = 0; i < n; i += 1)
4802 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4803 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4804 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4805 return 1;
4806
4807 return 0;
4808 }
4809
4810 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4811 struct types. Otherwise, they may not. */
4812
4813 static int
4814 equiv_types (struct type *type0, struct type *type1)
4815 {
4816 if (type0 == type1)
4817 return 1;
4818 if (type0 == NULL || type1 == NULL
4819 || TYPE_CODE (type0) != TYPE_CODE (type1))
4820 return 0;
4821 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4822 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4823 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4824 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4825 return 1;
4826
4827 return 0;
4828 }
4829
4830 /* True iff SYM0 represents the same entity as SYM1, or one that is
4831 no more defined than that of SYM1. */
4832
4833 static int
4834 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4835 {
4836 if (sym0 == sym1)
4837 return 1;
4838 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4839 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4840 return 0;
4841
4842 switch (SYMBOL_CLASS (sym0))
4843 {
4844 case LOC_UNDEF:
4845 return 1;
4846 case LOC_TYPEDEF:
4847 {
4848 struct type *type0 = SYMBOL_TYPE (sym0);
4849 struct type *type1 = SYMBOL_TYPE (sym1);
4850 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4851 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4852 int len0 = strlen (name0);
4853
4854 return
4855 TYPE_CODE (type0) == TYPE_CODE (type1)
4856 && (equiv_types (type0, type1)
4857 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4858 && startswith (name1 + len0, "___XV")));
4859 }
4860 case LOC_CONST:
4861 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4862 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4863 default:
4864 return 0;
4865 }
4866 }
4867
4868 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4869 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4870
4871 static void
4872 add_defn_to_vec (struct obstack *obstackp,
4873 struct symbol *sym,
4874 const struct block *block)
4875 {
4876 int i;
4877 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4878
4879 /* Do not try to complete stub types, as the debugger is probably
4880 already scanning all symbols matching a certain name at the
4881 time when this function is called. Trying to replace the stub
4882 type by its associated full type will cause us to restart a scan
4883 which may lead to an infinite recursion. Instead, the client
4884 collecting the matching symbols will end up collecting several
4885 matches, with at least one of them complete. It can then filter
4886 out the stub ones if needed. */
4887
4888 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4889 {
4890 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4891 return;
4892 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4893 {
4894 prevDefns[i].symbol = sym;
4895 prevDefns[i].block = block;
4896 return;
4897 }
4898 }
4899
4900 {
4901 struct block_symbol info;
4902
4903 info.symbol = sym;
4904 info.block = block;
4905 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4906 }
4907 }
4908
4909 /* Number of block_symbol structures currently collected in current vector in
4910 OBSTACKP. */
4911
4912 static int
4913 num_defns_collected (struct obstack *obstackp)
4914 {
4915 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4916 }
4917
4918 /* Vector of block_symbol structures currently collected in current vector in
4919 OBSTACKP. If FINISH, close off the vector and return its final address. */
4920
4921 static struct block_symbol *
4922 defns_collected (struct obstack *obstackp, int finish)
4923 {
4924 if (finish)
4925 return (struct block_symbol *) obstack_finish (obstackp);
4926 else
4927 return (struct block_symbol *) obstack_base (obstackp);
4928 }
4929
4930 /* Return a bound minimal symbol matching NAME according to Ada
4931 decoding rules. Returns an invalid symbol if there is no such
4932 minimal symbol. Names prefixed with "standard__" are handled
4933 specially: "standard__" is first stripped off, and only static and
4934 global symbols are searched. */
4935
4936 struct bound_minimal_symbol
4937 ada_lookup_simple_minsym (const char *name)
4938 {
4939 struct bound_minimal_symbol result;
4940 struct objfile *objfile;
4941 struct minimal_symbol *msymbol;
4942 const int wild_match_p = should_use_wild_match (name);
4943
4944 memset (&result, 0, sizeof (result));
4945
4946 /* Special case: If the user specifies a symbol name inside package
4947 Standard, do a non-wild matching of the symbol name without
4948 the "standard__" prefix. This was primarily introduced in order
4949 to allow the user to specifically access the standard exceptions
4950 using, for instance, Standard.Constraint_Error when Constraint_Error
4951 is ambiguous (due to the user defining its own Constraint_Error
4952 entity inside its program). */
4953 if (startswith (name, "standard__"))
4954 name += sizeof ("standard__") - 1;
4955
4956 ALL_MSYMBOLS (objfile, msymbol)
4957 {
4958 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4959 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4960 {
4961 result.minsym = msymbol;
4962 result.objfile = objfile;
4963 break;
4964 }
4965 }
4966
4967 return result;
4968 }
4969
4970 /* For all subprograms that statically enclose the subprogram of the
4971 selected frame, add symbols matching identifier NAME in DOMAIN
4972 and their blocks to the list of data in OBSTACKP, as for
4973 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4974 with a wildcard prefix. */
4975
4976 static void
4977 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4978 const char *name, domain_enum domain,
4979 int wild_match_p)
4980 {
4981 }
4982
4983 /* True if TYPE is definitely an artificial type supplied to a symbol
4984 for which no debugging information was given in the symbol file. */
4985
4986 static int
4987 is_nondebugging_type (struct type *type)
4988 {
4989 const char *name = ada_type_name (type);
4990
4991 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4992 }
4993
4994 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4995 that are deemed "identical" for practical purposes.
4996
4997 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4998 types and that their number of enumerals is identical (in other
4999 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5000
5001 static int
5002 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5003 {
5004 int i;
5005
5006 /* The heuristic we use here is fairly conservative. We consider
5007 that 2 enumerate types are identical if they have the same
5008 number of enumerals and that all enumerals have the same
5009 underlying value and name. */
5010
5011 /* All enums in the type should have an identical underlying value. */
5012 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5013 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5014 return 0;
5015
5016 /* All enumerals should also have the same name (modulo any numerical
5017 suffix). */
5018 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5019 {
5020 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5021 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5022 int len_1 = strlen (name_1);
5023 int len_2 = strlen (name_2);
5024
5025 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5026 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5027 if (len_1 != len_2
5028 || strncmp (TYPE_FIELD_NAME (type1, i),
5029 TYPE_FIELD_NAME (type2, i),
5030 len_1) != 0)
5031 return 0;
5032 }
5033
5034 return 1;
5035 }
5036
5037 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5038 that are deemed "identical" for practical purposes. Sometimes,
5039 enumerals are not strictly identical, but their types are so similar
5040 that they can be considered identical.
5041
5042 For instance, consider the following code:
5043
5044 type Color is (Black, Red, Green, Blue, White);
5045 type RGB_Color is new Color range Red .. Blue;
5046
5047 Type RGB_Color is a subrange of an implicit type which is a copy
5048 of type Color. If we call that implicit type RGB_ColorB ("B" is
5049 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5050 As a result, when an expression references any of the enumeral
5051 by name (Eg. "print green"), the expression is technically
5052 ambiguous and the user should be asked to disambiguate. But
5053 doing so would only hinder the user, since it wouldn't matter
5054 what choice he makes, the outcome would always be the same.
5055 So, for practical purposes, we consider them as the same. */
5056
5057 static int
5058 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5059 {
5060 int i;
5061
5062 /* Before performing a thorough comparison check of each type,
5063 we perform a series of inexpensive checks. We expect that these
5064 checks will quickly fail in the vast majority of cases, and thus
5065 help prevent the unnecessary use of a more expensive comparison.
5066 Said comparison also expects us to make some of these checks
5067 (see ada_identical_enum_types_p). */
5068
5069 /* Quick check: All symbols should have an enum type. */
5070 for (i = 0; i < nsyms; i++)
5071 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5072 return 0;
5073
5074 /* Quick check: They should all have the same value. */
5075 for (i = 1; i < nsyms; i++)
5076 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5077 return 0;
5078
5079 /* Quick check: They should all have the same number of enumerals. */
5080 for (i = 1; i < nsyms; i++)
5081 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5082 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5083 return 0;
5084
5085 /* All the sanity checks passed, so we might have a set of
5086 identical enumeration types. Perform a more complete
5087 comparison of the type of each symbol. */
5088 for (i = 1; i < nsyms; i++)
5089 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5090 SYMBOL_TYPE (syms[0].symbol)))
5091 return 0;
5092
5093 return 1;
5094 }
5095
5096 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5097 duplicate other symbols in the list (The only case I know of where
5098 this happens is when object files containing stabs-in-ecoff are
5099 linked with files containing ordinary ecoff debugging symbols (or no
5100 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5101 Returns the number of items in the modified list. */
5102
5103 static int
5104 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5105 {
5106 int i, j;
5107
5108 /* We should never be called with less than 2 symbols, as there
5109 cannot be any extra symbol in that case. But it's easy to
5110 handle, since we have nothing to do in that case. */
5111 if (nsyms < 2)
5112 return nsyms;
5113
5114 i = 0;
5115 while (i < nsyms)
5116 {
5117 int remove_p = 0;
5118
5119 /* If two symbols have the same name and one of them is a stub type,
5120 the get rid of the stub. */
5121
5122 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5123 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5124 {
5125 for (j = 0; j < nsyms; j++)
5126 {
5127 if (j != i
5128 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5129 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5130 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5131 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5132 remove_p = 1;
5133 }
5134 }
5135
5136 /* Two symbols with the same name, same class and same address
5137 should be identical. */
5138
5139 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5140 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5141 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5142 {
5143 for (j = 0; j < nsyms; j += 1)
5144 {
5145 if (i != j
5146 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5147 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5148 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5149 && SYMBOL_CLASS (syms[i].symbol)
5150 == SYMBOL_CLASS (syms[j].symbol)
5151 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5152 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5153 remove_p = 1;
5154 }
5155 }
5156
5157 if (remove_p)
5158 {
5159 for (j = i + 1; j < nsyms; j += 1)
5160 syms[j - 1] = syms[j];
5161 nsyms -= 1;
5162 }
5163
5164 i += 1;
5165 }
5166
5167 /* If all the remaining symbols are identical enumerals, then
5168 just keep the first one and discard the rest.
5169
5170 Unlike what we did previously, we do not discard any entry
5171 unless they are ALL identical. This is because the symbol
5172 comparison is not a strict comparison, but rather a practical
5173 comparison. If all symbols are considered identical, then
5174 we can just go ahead and use the first one and discard the rest.
5175 But if we cannot reduce the list to a single element, we have
5176 to ask the user to disambiguate anyways. And if we have to
5177 present a multiple-choice menu, it's less confusing if the list
5178 isn't missing some choices that were identical and yet distinct. */
5179 if (symbols_are_identical_enums (syms, nsyms))
5180 nsyms = 1;
5181
5182 return nsyms;
5183 }
5184
5185 /* Given a type that corresponds to a renaming entity, use the type name
5186 to extract the scope (package name or function name, fully qualified,
5187 and following the GNAT encoding convention) where this renaming has been
5188 defined. The string returned needs to be deallocated after use. */
5189
5190 static char *
5191 xget_renaming_scope (struct type *renaming_type)
5192 {
5193 /* The renaming types adhere to the following convention:
5194 <scope>__<rename>___<XR extension>.
5195 So, to extract the scope, we search for the "___XR" extension,
5196 and then backtrack until we find the first "__". */
5197
5198 const char *name = type_name_no_tag (renaming_type);
5199 const char *suffix = strstr (name, "___XR");
5200 const char *last;
5201 int scope_len;
5202 char *scope;
5203
5204 /* Now, backtrack a bit until we find the first "__". Start looking
5205 at suffix - 3, as the <rename> part is at least one character long. */
5206
5207 for (last = suffix - 3; last > name; last--)
5208 if (last[0] == '_' && last[1] == '_')
5209 break;
5210
5211 /* Make a copy of scope and return it. */
5212
5213 scope_len = last - name;
5214 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5215
5216 strncpy (scope, name, scope_len);
5217 scope[scope_len] = '\0';
5218
5219 return scope;
5220 }
5221
5222 /* Return nonzero if NAME corresponds to a package name. */
5223
5224 static int
5225 is_package_name (const char *name)
5226 {
5227 /* Here, We take advantage of the fact that no symbols are generated
5228 for packages, while symbols are generated for each function.
5229 So the condition for NAME represent a package becomes equivalent
5230 to NAME not existing in our list of symbols. There is only one
5231 small complication with library-level functions (see below). */
5232
5233 char *fun_name;
5234
5235 /* If it is a function that has not been defined at library level,
5236 then we should be able to look it up in the symbols. */
5237 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5238 return 0;
5239
5240 /* Library-level function names start with "_ada_". See if function
5241 "_ada_" followed by NAME can be found. */
5242
5243 /* Do a quick check that NAME does not contain "__", since library-level
5244 functions names cannot contain "__" in them. */
5245 if (strstr (name, "__") != NULL)
5246 return 0;
5247
5248 fun_name = xstrprintf ("_ada_%s", name);
5249
5250 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5251 }
5252
5253 /* Return nonzero if SYM corresponds to a renaming entity that is
5254 not visible from FUNCTION_NAME. */
5255
5256 static int
5257 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5258 {
5259 char *scope;
5260 struct cleanup *old_chain;
5261
5262 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5263 return 0;
5264
5265 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5266 old_chain = make_cleanup (xfree, scope);
5267
5268 /* If the rename has been defined in a package, then it is visible. */
5269 if (is_package_name (scope))
5270 {
5271 do_cleanups (old_chain);
5272 return 0;
5273 }
5274
5275 /* Check that the rename is in the current function scope by checking
5276 that its name starts with SCOPE. */
5277
5278 /* If the function name starts with "_ada_", it means that it is
5279 a library-level function. Strip this prefix before doing the
5280 comparison, as the encoding for the renaming does not contain
5281 this prefix. */
5282 if (startswith (function_name, "_ada_"))
5283 function_name += 5;
5284
5285 {
5286 int is_invisible = !startswith (function_name, scope);
5287
5288 do_cleanups (old_chain);
5289 return is_invisible;
5290 }
5291 }
5292
5293 /* Remove entries from SYMS that corresponds to a renaming entity that
5294 is not visible from the function associated with CURRENT_BLOCK or
5295 that is superfluous due to the presence of more specific renaming
5296 information. Places surviving symbols in the initial entries of
5297 SYMS and returns the number of surviving symbols.
5298
5299 Rationale:
5300 First, in cases where an object renaming is implemented as a
5301 reference variable, GNAT may produce both the actual reference
5302 variable and the renaming encoding. In this case, we discard the
5303 latter.
5304
5305 Second, GNAT emits a type following a specified encoding for each renaming
5306 entity. Unfortunately, STABS currently does not support the definition
5307 of types that are local to a given lexical block, so all renamings types
5308 are emitted at library level. As a consequence, if an application
5309 contains two renaming entities using the same name, and a user tries to
5310 print the value of one of these entities, the result of the ada symbol
5311 lookup will also contain the wrong renaming type.
5312
5313 This function partially covers for this limitation by attempting to
5314 remove from the SYMS list renaming symbols that should be visible
5315 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5316 method with the current information available. The implementation
5317 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5318
5319 - When the user tries to print a rename in a function while there
5320 is another rename entity defined in a package: Normally, the
5321 rename in the function has precedence over the rename in the
5322 package, so the latter should be removed from the list. This is
5323 currently not the case.
5324
5325 - This function will incorrectly remove valid renames if
5326 the CURRENT_BLOCK corresponds to a function which symbol name
5327 has been changed by an "Export" pragma. As a consequence,
5328 the user will be unable to print such rename entities. */
5329
5330 static int
5331 remove_irrelevant_renamings (struct block_symbol *syms,
5332 int nsyms, const struct block *current_block)
5333 {
5334 struct symbol *current_function;
5335 const char *current_function_name;
5336 int i;
5337 int is_new_style_renaming;
5338
5339 /* If there is both a renaming foo___XR... encoded as a variable and
5340 a simple variable foo in the same block, discard the latter.
5341 First, zero out such symbols, then compress. */
5342 is_new_style_renaming = 0;
5343 for (i = 0; i < nsyms; i += 1)
5344 {
5345 struct symbol *sym = syms[i].symbol;
5346 const struct block *block = syms[i].block;
5347 const char *name;
5348 const char *suffix;
5349
5350 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5351 continue;
5352 name = SYMBOL_LINKAGE_NAME (sym);
5353 suffix = strstr (name, "___XR");
5354
5355 if (suffix != NULL)
5356 {
5357 int name_len = suffix - name;
5358 int j;
5359
5360 is_new_style_renaming = 1;
5361 for (j = 0; j < nsyms; j += 1)
5362 if (i != j && syms[j].symbol != NULL
5363 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5364 name_len) == 0
5365 && block == syms[j].block)
5366 syms[j].symbol = NULL;
5367 }
5368 }
5369 if (is_new_style_renaming)
5370 {
5371 int j, k;
5372
5373 for (j = k = 0; j < nsyms; j += 1)
5374 if (syms[j].symbol != NULL)
5375 {
5376 syms[k] = syms[j];
5377 k += 1;
5378 }
5379 return k;
5380 }
5381
5382 /* Extract the function name associated to CURRENT_BLOCK.
5383 Abort if unable to do so. */
5384
5385 if (current_block == NULL)
5386 return nsyms;
5387
5388 current_function = block_linkage_function (current_block);
5389 if (current_function == NULL)
5390 return nsyms;
5391
5392 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5393 if (current_function_name == NULL)
5394 return nsyms;
5395
5396 /* Check each of the symbols, and remove it from the list if it is
5397 a type corresponding to a renaming that is out of the scope of
5398 the current block. */
5399
5400 i = 0;
5401 while (i < nsyms)
5402 {
5403 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5404 == ADA_OBJECT_RENAMING
5405 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5406 {
5407 int j;
5408
5409 for (j = i + 1; j < nsyms; j += 1)
5410 syms[j - 1] = syms[j];
5411 nsyms -= 1;
5412 }
5413 else
5414 i += 1;
5415 }
5416
5417 return nsyms;
5418 }
5419
5420 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5421 whose name and domain match NAME and DOMAIN respectively.
5422 If no match was found, then extend the search to "enclosing"
5423 routines (in other words, if we're inside a nested function,
5424 search the symbols defined inside the enclosing functions).
5425 If WILD_MATCH_P is nonzero, perform the naming matching in
5426 "wild" mode (see function "wild_match" for more info).
5427
5428 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5429
5430 static void
5431 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5432 const struct block *block, domain_enum domain,
5433 int wild_match_p)
5434 {
5435 int block_depth = 0;
5436
5437 while (block != NULL)
5438 {
5439 block_depth += 1;
5440 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5441 wild_match_p);
5442
5443 /* If we found a non-function match, assume that's the one. */
5444 if (is_nonfunction (defns_collected (obstackp, 0),
5445 num_defns_collected (obstackp)))
5446 return;
5447
5448 block = BLOCK_SUPERBLOCK (block);
5449 }
5450
5451 /* If no luck so far, try to find NAME as a local symbol in some lexically
5452 enclosing subprogram. */
5453 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5454 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5455 }
5456
5457 /* An object of this type is used as the user_data argument when
5458 calling the map_matching_symbols method. */
5459
5460 struct match_data
5461 {
5462 struct objfile *objfile;
5463 struct obstack *obstackp;
5464 struct symbol *arg_sym;
5465 int found_sym;
5466 };
5467
5468 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5469 to a list of symbols. DATA0 is a pointer to a struct match_data *
5470 containing the obstack that collects the symbol list, the file that SYM
5471 must come from, a flag indicating whether a non-argument symbol has
5472 been found in the current block, and the last argument symbol
5473 passed in SYM within the current block (if any). When SYM is null,
5474 marking the end of a block, the argument symbol is added if no
5475 other has been found. */
5476
5477 static int
5478 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5479 {
5480 struct match_data *data = (struct match_data *) data0;
5481
5482 if (sym == NULL)
5483 {
5484 if (!data->found_sym && data->arg_sym != NULL)
5485 add_defn_to_vec (data->obstackp,
5486 fixup_symbol_section (data->arg_sym, data->objfile),
5487 block);
5488 data->found_sym = 0;
5489 data->arg_sym = NULL;
5490 }
5491 else
5492 {
5493 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5494 return 0;
5495 else if (SYMBOL_IS_ARGUMENT (sym))
5496 data->arg_sym = sym;
5497 else
5498 {
5499 data->found_sym = 1;
5500 add_defn_to_vec (data->obstackp,
5501 fixup_symbol_section (sym, data->objfile),
5502 block);
5503 }
5504 }
5505 return 0;
5506 }
5507
5508 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5509 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5510 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5511 function "wild_match" for more information). Return whether we found such
5512 symbols. */
5513
5514 static int
5515 ada_add_block_renamings (struct obstack *obstackp,
5516 const struct block *block,
5517 const char *name,
5518 domain_enum domain,
5519 int wild_match_p)
5520 {
5521 struct using_direct *renaming;
5522 int defns_mark = num_defns_collected (obstackp);
5523
5524 for (renaming = block_using (block);
5525 renaming != NULL;
5526 renaming = renaming->next)
5527 {
5528 const char *r_name;
5529 int name_match;
5530
5531 /* Avoid infinite recursions: skip this renaming if we are actually
5532 already traversing it.
5533
5534 Currently, symbol lookup in Ada don't use the namespace machinery from
5535 C++/Fortran support: skip namespace imports that use them. */
5536 if (renaming->searched
5537 || (renaming->import_src != NULL
5538 && renaming->import_src[0] != '\0')
5539 || (renaming->import_dest != NULL
5540 && renaming->import_dest[0] != '\0'))
5541 continue;
5542 renaming->searched = 1;
5543
5544 /* TODO: here, we perform another name-based symbol lookup, which can
5545 pull its own multiple overloads. In theory, we should be able to do
5546 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5547 not a simple name. But in order to do this, we would need to enhance
5548 the DWARF reader to associate a symbol to this renaming, instead of a
5549 name. So, for now, we do something simpler: re-use the C++/Fortran
5550 namespace machinery. */
5551 r_name = (renaming->alias != NULL
5552 ? renaming->alias
5553 : renaming->declaration);
5554 name_match
5555 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5556 if (name_match == 0)
5557 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5558 1, NULL);
5559 renaming->searched = 0;
5560 }
5561 return num_defns_collected (obstackp) != defns_mark;
5562 }
5563
5564 /* Implements compare_names, but only applying the comparision using
5565 the given CASING. */
5566
5567 static int
5568 compare_names_with_case (const char *string1, const char *string2,
5569 enum case_sensitivity casing)
5570 {
5571 while (*string1 != '\0' && *string2 != '\0')
5572 {
5573 char c1, c2;
5574
5575 if (isspace (*string1) || isspace (*string2))
5576 return strcmp_iw_ordered (string1, string2);
5577
5578 if (casing == case_sensitive_off)
5579 {
5580 c1 = tolower (*string1);
5581 c2 = tolower (*string2);
5582 }
5583 else
5584 {
5585 c1 = *string1;
5586 c2 = *string2;
5587 }
5588 if (c1 != c2)
5589 break;
5590
5591 string1 += 1;
5592 string2 += 1;
5593 }
5594
5595 switch (*string1)
5596 {
5597 case '(':
5598 return strcmp_iw_ordered (string1, string2);
5599 case '_':
5600 if (*string2 == '\0')
5601 {
5602 if (is_name_suffix (string1))
5603 return 0;
5604 else
5605 return 1;
5606 }
5607 /* FALLTHROUGH */
5608 default:
5609 if (*string2 == '(')
5610 return strcmp_iw_ordered (string1, string2);
5611 else
5612 {
5613 if (casing == case_sensitive_off)
5614 return tolower (*string1) - tolower (*string2);
5615 else
5616 return *string1 - *string2;
5617 }
5618 }
5619 }
5620
5621 /* Compare STRING1 to STRING2, with results as for strcmp.
5622 Compatible with strcmp_iw_ordered in that...
5623
5624 strcmp_iw_ordered (STRING1, STRING2) <= 0
5625
5626 ... implies...
5627
5628 compare_names (STRING1, STRING2) <= 0
5629
5630 (they may differ as to what symbols compare equal). */
5631
5632 static int
5633 compare_names (const char *string1, const char *string2)
5634 {
5635 int result;
5636
5637 /* Similar to what strcmp_iw_ordered does, we need to perform
5638 a case-insensitive comparison first, and only resort to
5639 a second, case-sensitive, comparison if the first one was
5640 not sufficient to differentiate the two strings. */
5641
5642 result = compare_names_with_case (string1, string2, case_sensitive_off);
5643 if (result == 0)
5644 result = compare_names_with_case (string1, string2, case_sensitive_on);
5645
5646 return result;
5647 }
5648
5649 /* Add to OBSTACKP all non-local symbols whose name and domain match
5650 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5651 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5652
5653 static void
5654 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5655 domain_enum domain, int global,
5656 int is_wild_match)
5657 {
5658 struct objfile *objfile;
5659 struct compunit_symtab *cu;
5660 struct match_data data;
5661
5662 memset (&data, 0, sizeof data);
5663 data.obstackp = obstackp;
5664
5665 ALL_OBJFILES (objfile)
5666 {
5667 data.objfile = objfile;
5668
5669 if (is_wild_match)
5670 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5671 aux_add_nonlocal_symbols, &data,
5672 wild_match, NULL);
5673 else
5674 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5675 aux_add_nonlocal_symbols, &data,
5676 full_match, compare_names);
5677
5678 ALL_OBJFILE_COMPUNITS (objfile, cu)
5679 {
5680 const struct block *global_block
5681 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5682
5683 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5684 is_wild_match))
5685 data.found_sym = 1;
5686 }
5687 }
5688
5689 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5690 {
5691 ALL_OBJFILES (objfile)
5692 {
5693 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5694 strcpy (name1, "_ada_");
5695 strcpy (name1 + sizeof ("_ada_") - 1, name);
5696 data.objfile = objfile;
5697 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5698 global,
5699 aux_add_nonlocal_symbols,
5700 &data,
5701 full_match, compare_names);
5702 }
5703 }
5704 }
5705
5706 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5707 non-zero, enclosing scope and in global scopes, returning the number of
5708 matches. Add these to OBSTACKP.
5709
5710 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5711 symbol match within the nest of blocks whose innermost member is BLOCK,
5712 is the one match returned (no other matches in that or
5713 enclosing blocks is returned). If there are any matches in or
5714 surrounding BLOCK, then these alone are returned.
5715
5716 Names prefixed with "standard__" are handled specially: "standard__"
5717 is first stripped off, and only static and global symbols are searched.
5718
5719 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5720 to lookup global symbols. */
5721
5722 static void
5723 ada_add_all_symbols (struct obstack *obstackp,
5724 const struct block *block,
5725 const char *name,
5726 domain_enum domain,
5727 int full_search,
5728 int *made_global_lookup_p)
5729 {
5730 struct symbol *sym;
5731 const int wild_match_p = should_use_wild_match (name);
5732
5733 if (made_global_lookup_p)
5734 *made_global_lookup_p = 0;
5735
5736 /* Special case: If the user specifies a symbol name inside package
5737 Standard, do a non-wild matching of the symbol name without
5738 the "standard__" prefix. This was primarily introduced in order
5739 to allow the user to specifically access the standard exceptions
5740 using, for instance, Standard.Constraint_Error when Constraint_Error
5741 is ambiguous (due to the user defining its own Constraint_Error
5742 entity inside its program). */
5743 if (startswith (name, "standard__"))
5744 {
5745 block = NULL;
5746 name = name + sizeof ("standard__") - 1;
5747 }
5748
5749 /* Check the non-global symbols. If we have ANY match, then we're done. */
5750
5751 if (block != NULL)
5752 {
5753 if (full_search)
5754 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5755 else
5756 {
5757 /* In the !full_search case we're are being called by
5758 ada_iterate_over_symbols, and we don't want to search
5759 superblocks. */
5760 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5761 wild_match_p);
5762 }
5763 if (num_defns_collected (obstackp) > 0 || !full_search)
5764 return;
5765 }
5766
5767 /* No non-global symbols found. Check our cache to see if we have
5768 already performed this search before. If we have, then return
5769 the same result. */
5770
5771 if (lookup_cached_symbol (name, domain, &sym, &block))
5772 {
5773 if (sym != NULL)
5774 add_defn_to_vec (obstackp, sym, block);
5775 return;
5776 }
5777
5778 if (made_global_lookup_p)
5779 *made_global_lookup_p = 1;
5780
5781 /* Search symbols from all global blocks. */
5782
5783 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5784
5785 /* Now add symbols from all per-file blocks if we've gotten no hits
5786 (not strictly correct, but perhaps better than an error). */
5787
5788 if (num_defns_collected (obstackp) == 0)
5789 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5790 }
5791
5792 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5793 non-zero, enclosing scope and in global scopes, returning the number of
5794 matches.
5795 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5796 indicating the symbols found and the blocks and symbol tables (if
5797 any) in which they were found. This vector is transient---good only to
5798 the next call of ada_lookup_symbol_list.
5799
5800 When full_search is non-zero, any non-function/non-enumeral
5801 symbol match within the nest of blocks whose innermost member is BLOCK,
5802 is the one match returned (no other matches in that or
5803 enclosing blocks is returned). If there are any matches in or
5804 surrounding BLOCK, then these alone are returned.
5805
5806 Names prefixed with "standard__" are handled specially: "standard__"
5807 is first stripped off, and only static and global symbols are searched. */
5808
5809 static int
5810 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5811 domain_enum domain,
5812 struct block_symbol **results,
5813 int full_search)
5814 {
5815 const int wild_match_p = should_use_wild_match (name);
5816 int syms_from_global_search;
5817 int ndefns;
5818
5819 obstack_free (&symbol_list_obstack, NULL);
5820 obstack_init (&symbol_list_obstack);
5821 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5822 full_search, &syms_from_global_search);
5823
5824 ndefns = num_defns_collected (&symbol_list_obstack);
5825 *results = defns_collected (&symbol_list_obstack, 1);
5826
5827 ndefns = remove_extra_symbols (*results, ndefns);
5828
5829 if (ndefns == 0 && full_search && syms_from_global_search)
5830 cache_symbol (name, domain, NULL, NULL);
5831
5832 if (ndefns == 1 && full_search && syms_from_global_search)
5833 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5834
5835 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5836 return ndefns;
5837 }
5838
5839 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5840 in global scopes, returning the number of matches, and setting *RESULTS
5841 to a vector of (SYM,BLOCK) tuples.
5842 See ada_lookup_symbol_list_worker for further details. */
5843
5844 int
5845 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5846 domain_enum domain, struct block_symbol **results)
5847 {
5848 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5849 }
5850
5851 /* Implementation of the la_iterate_over_symbols method. */
5852
5853 static void
5854 ada_iterate_over_symbols
5855 (const struct block *block, const char *name, domain_enum domain,
5856 gdb::function_view<symbol_found_callback_ftype> callback)
5857 {
5858 int ndefs, i;
5859 struct block_symbol *results;
5860
5861 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5862 for (i = 0; i < ndefs; ++i)
5863 {
5864 if (!callback (results[i].symbol))
5865 break;
5866 }
5867 }
5868
5869 /* If NAME is the name of an entity, return a string that should
5870 be used to look that entity up in Ada units.
5871
5872 NAME can have any form that the "break" or "print" commands might
5873 recognize. In other words, it does not have to be the "natural"
5874 name, or the "encoded" name. */
5875
5876 std::string
5877 ada_name_for_lookup (const char *name)
5878 {
5879 int nlen = strlen (name);
5880
5881 if (name[0] == '<' && name[nlen - 1] == '>')
5882 return std::string (name + 1, nlen - 2);
5883 else
5884 return ada_encode (ada_fold_name (name));
5885 }
5886
5887 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5888 to 1, but choosing the first symbol found if there are multiple
5889 choices.
5890
5891 The result is stored in *INFO, which must be non-NULL.
5892 If no match is found, INFO->SYM is set to NULL. */
5893
5894 void
5895 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5896 domain_enum domain,
5897 struct block_symbol *info)
5898 {
5899 struct block_symbol *candidates;
5900 int n_candidates;
5901
5902 gdb_assert (info != NULL);
5903 memset (info, 0, sizeof (struct block_symbol));
5904
5905 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5906 if (n_candidates == 0)
5907 return;
5908
5909 *info = candidates[0];
5910 info->symbol = fixup_symbol_section (info->symbol, NULL);
5911 }
5912
5913 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5916 choosing the first symbol if there are multiple choices.
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
5919 struct block_symbol
5920 ada_lookup_symbol (const char *name, const struct block *block0,
5921 domain_enum domain, int *is_a_field_of_this)
5922 {
5923 struct block_symbol info;
5924
5925 if (is_a_field_of_this != NULL)
5926 *is_a_field_of_this = 0;
5927
5928 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5929 block0, domain, &info);
5930 return info;
5931 }
5932
5933 static struct block_symbol
5934 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5935 const char *name,
5936 const struct block *block,
5937 const domain_enum domain)
5938 {
5939 struct block_symbol sym;
5940
5941 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5942 if (sym.symbol != NULL)
5943 return sym;
5944
5945 /* If we haven't found a match at this point, try the primitive
5946 types. In other languages, this search is performed before
5947 searching for global symbols in order to short-circuit that
5948 global-symbol search if it happens that the name corresponds
5949 to a primitive type. But we cannot do the same in Ada, because
5950 it is perfectly legitimate for a program to declare a type which
5951 has the same name as a standard type. If looking up a type in
5952 that situation, we have traditionally ignored the primitive type
5953 in favor of user-defined types. This is why, unlike most other
5954 languages, we search the primitive types this late and only after
5955 having searched the global symbols without success. */
5956
5957 if (domain == VAR_DOMAIN)
5958 {
5959 struct gdbarch *gdbarch;
5960
5961 if (block == NULL)
5962 gdbarch = target_gdbarch ();
5963 else
5964 gdbarch = block_gdbarch (block);
5965 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5966 if (sym.symbol != NULL)
5967 return sym;
5968 }
5969
5970 return (struct block_symbol) {NULL, NULL};
5971 }
5972
5973
5974 /* True iff STR is a possible encoded suffix of a normal Ada name
5975 that is to be ignored for matching purposes. Suffixes of parallel
5976 names (e.g., XVE) are not included here. Currently, the possible suffixes
5977 are given by any of the regular expressions:
5978
5979 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5980 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5981 TKB [subprogram suffix for task bodies]
5982 _E[0-9]+[bs]$ [protected object entry suffixes]
5983 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5984
5985 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5986 match is performed. This sequence is used to differentiate homonyms,
5987 is an optional part of a valid name suffix. */
5988
5989 static int
5990 is_name_suffix (const char *str)
5991 {
5992 int k;
5993 const char *matching;
5994 const int len = strlen (str);
5995
5996 /* Skip optional leading __[0-9]+. */
5997
5998 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5999 {
6000 str += 3;
6001 while (isdigit (str[0]))
6002 str += 1;
6003 }
6004
6005 /* [.$][0-9]+ */
6006
6007 if (str[0] == '.' || str[0] == '$')
6008 {
6009 matching = str + 1;
6010 while (isdigit (matching[0]))
6011 matching += 1;
6012 if (matching[0] == '\0')
6013 return 1;
6014 }
6015
6016 /* ___[0-9]+ */
6017
6018 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6019 {
6020 matching = str + 3;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if (matching[0] == '\0')
6024 return 1;
6025 }
6026
6027 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6028
6029 if (strcmp (str, "TKB") == 0)
6030 return 1;
6031
6032 #if 0
6033 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6034 with a N at the end. Unfortunately, the compiler uses the same
6035 convention for other internal types it creates. So treating
6036 all entity names that end with an "N" as a name suffix causes
6037 some regressions. For instance, consider the case of an enumerated
6038 type. To support the 'Image attribute, it creates an array whose
6039 name ends with N.
6040 Having a single character like this as a suffix carrying some
6041 information is a bit risky. Perhaps we should change the encoding
6042 to be something like "_N" instead. In the meantime, do not do
6043 the following check. */
6044 /* Protected Object Subprograms */
6045 if (len == 1 && str [0] == 'N')
6046 return 1;
6047 #endif
6048
6049 /* _E[0-9]+[bs]$ */
6050 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6051 {
6052 matching = str + 3;
6053 while (isdigit (matching[0]))
6054 matching += 1;
6055 if ((matching[0] == 'b' || matching[0] == 's')
6056 && matching [1] == '\0')
6057 return 1;
6058 }
6059
6060 /* ??? We should not modify STR directly, as we are doing below. This
6061 is fine in this case, but may become problematic later if we find
6062 that this alternative did not work, and want to try matching
6063 another one from the begining of STR. Since we modified it, we
6064 won't be able to find the begining of the string anymore! */
6065 if (str[0] == 'X')
6066 {
6067 str += 1;
6068 while (str[0] != '_' && str[0] != '\0')
6069 {
6070 if (str[0] != 'n' && str[0] != 'b')
6071 return 0;
6072 str += 1;
6073 }
6074 }
6075
6076 if (str[0] == '\000')
6077 return 1;
6078
6079 if (str[0] == '_')
6080 {
6081 if (str[1] != '_' || str[2] == '\000')
6082 return 0;
6083 if (str[2] == '_')
6084 {
6085 if (strcmp (str + 3, "JM") == 0)
6086 return 1;
6087 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6088 the LJM suffix in favor of the JM one. But we will
6089 still accept LJM as a valid suffix for a reasonable
6090 amount of time, just to allow ourselves to debug programs
6091 compiled using an older version of GNAT. */
6092 if (strcmp (str + 3, "LJM") == 0)
6093 return 1;
6094 if (str[3] != 'X')
6095 return 0;
6096 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6097 || str[4] == 'U' || str[4] == 'P')
6098 return 1;
6099 if (str[4] == 'R' && str[5] != 'T')
6100 return 1;
6101 return 0;
6102 }
6103 if (!isdigit (str[2]))
6104 return 0;
6105 for (k = 3; str[k] != '\0'; k += 1)
6106 if (!isdigit (str[k]) && str[k] != '_')
6107 return 0;
6108 return 1;
6109 }
6110 if (str[0] == '$' && isdigit (str[1]))
6111 {
6112 for (k = 2; str[k] != '\0'; k += 1)
6113 if (!isdigit (str[k]) && str[k] != '_')
6114 return 0;
6115 return 1;
6116 }
6117 return 0;
6118 }
6119
6120 /* Return non-zero if the string starting at NAME and ending before
6121 NAME_END contains no capital letters. */
6122
6123 static int
6124 is_valid_name_for_wild_match (const char *name0)
6125 {
6126 const char *decoded_name = ada_decode (name0);
6127 int i;
6128
6129 /* If the decoded name starts with an angle bracket, it means that
6130 NAME0 does not follow the GNAT encoding format. It should then
6131 not be allowed as a possible wild match. */
6132 if (decoded_name[0] == '<')
6133 return 0;
6134
6135 for (i=0; decoded_name[i] != '\0'; i++)
6136 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6137 return 0;
6138
6139 return 1;
6140 }
6141
6142 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6143 that could start a simple name. Assumes that *NAMEP points into
6144 the string beginning at NAME0. */
6145
6146 static int
6147 advance_wild_match (const char **namep, const char *name0, int target0)
6148 {
6149 const char *name = *namep;
6150
6151 while (1)
6152 {
6153 int t0, t1;
6154
6155 t0 = *name;
6156 if (t0 == '_')
6157 {
6158 t1 = name[1];
6159 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6160 {
6161 name += 1;
6162 if (name == name0 + 5 && startswith (name0, "_ada"))
6163 break;
6164 else
6165 name += 1;
6166 }
6167 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6168 || name[2] == target0))
6169 {
6170 name += 2;
6171 break;
6172 }
6173 else
6174 return 0;
6175 }
6176 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6177 name += 1;
6178 else
6179 return 0;
6180 }
6181
6182 *namep = name;
6183 return 1;
6184 }
6185
6186 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6187 informational suffixes of NAME (i.e., for which is_name_suffix is
6188 true). Assumes that PATN is a lower-cased Ada simple name. */
6189
6190 static int
6191 wild_match (const char *name, const char *patn)
6192 {
6193 const char *p;
6194 const char *name0 = name;
6195
6196 while (1)
6197 {
6198 const char *match = name;
6199
6200 if (*name == *patn)
6201 {
6202 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6203 if (*p != *name)
6204 break;
6205 if (*p == '\0' && is_name_suffix (name))
6206 return match != name0 && !is_valid_name_for_wild_match (name0);
6207
6208 if (name[-1] == '_')
6209 name -= 1;
6210 }
6211 if (!advance_wild_match (&name, name0, *patn))
6212 return 1;
6213 }
6214 }
6215
6216 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6217 informational suffix. */
6218
6219 static int
6220 full_match (const char *sym_name, const char *search_name)
6221 {
6222 return !match_name (sym_name, search_name, 0);
6223 }
6224
6225
6226 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6227 vector *defn_symbols, updating the list of symbols in OBSTACKP
6228 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6229 OBJFILE is the section containing BLOCK. */
6230
6231 static void
6232 ada_add_block_symbols (struct obstack *obstackp,
6233 const struct block *block, const char *name,
6234 domain_enum domain, struct objfile *objfile,
6235 int wild)
6236 {
6237 struct block_iterator iter;
6238 int name_len = strlen (name);
6239 /* A matching argument symbol, if any. */
6240 struct symbol *arg_sym;
6241 /* Set true when we find a matching non-argument symbol. */
6242 int found_sym;
6243 struct symbol *sym;
6244
6245 arg_sym = NULL;
6246 found_sym = 0;
6247 if (wild)
6248 {
6249 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6250 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6251 {
6252 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6253 SYMBOL_DOMAIN (sym), domain)
6254 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6255 {
6256 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6257 continue;
6258 else if (SYMBOL_IS_ARGUMENT (sym))
6259 arg_sym = sym;
6260 else
6261 {
6262 found_sym = 1;
6263 add_defn_to_vec (obstackp,
6264 fixup_symbol_section (sym, objfile),
6265 block);
6266 }
6267 }
6268 }
6269 }
6270 else
6271 {
6272 for (sym = block_iter_match_first (block, name, full_match, &iter);
6273 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6274 {
6275 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6276 SYMBOL_DOMAIN (sym), domain))
6277 {
6278 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6279 {
6280 if (SYMBOL_IS_ARGUMENT (sym))
6281 arg_sym = sym;
6282 else
6283 {
6284 found_sym = 1;
6285 add_defn_to_vec (obstackp,
6286 fixup_symbol_section (sym, objfile),
6287 block);
6288 }
6289 }
6290 }
6291 }
6292 }
6293
6294 /* Handle renamings. */
6295
6296 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6297 found_sym = 1;
6298
6299 if (!found_sym && arg_sym != NULL)
6300 {
6301 add_defn_to_vec (obstackp,
6302 fixup_symbol_section (arg_sym, objfile),
6303 block);
6304 }
6305
6306 if (!wild)
6307 {
6308 arg_sym = NULL;
6309 found_sym = 0;
6310
6311 ALL_BLOCK_SYMBOLS (block, iter, sym)
6312 {
6313 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6314 SYMBOL_DOMAIN (sym), domain))
6315 {
6316 int cmp;
6317
6318 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6319 if (cmp == 0)
6320 {
6321 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6322 if (cmp == 0)
6323 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6324 name_len);
6325 }
6326
6327 if (cmp == 0
6328 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6329 {
6330 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6331 {
6332 if (SYMBOL_IS_ARGUMENT (sym))
6333 arg_sym = sym;
6334 else
6335 {
6336 found_sym = 1;
6337 add_defn_to_vec (obstackp,
6338 fixup_symbol_section (sym, objfile),
6339 block);
6340 }
6341 }
6342 }
6343 }
6344 }
6345
6346 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6347 They aren't parameters, right? */
6348 if (!found_sym && arg_sym != NULL)
6349 {
6350 add_defn_to_vec (obstackp,
6351 fixup_symbol_section (arg_sym, objfile),
6352 block);
6353 }
6354 }
6355 }
6356 \f
6357
6358 /* Symbol Completion */
6359
6360 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6361 name in a form that's appropriate for the completion. The result
6362 does not need to be deallocated, but is only good until the next call.
6363
6364 TEXT_LEN is equal to the length of TEXT.
6365 Perform a wild match if WILD_MATCH_P is set.
6366 ENCODED_P should be set if TEXT represents the start of a symbol name
6367 in its encoded form. */
6368
6369 static const char *
6370 symbol_completion_match (const char *sym_name,
6371 const char *text, int text_len,
6372 int wild_match_p, int encoded_p)
6373 {
6374 const int verbatim_match = (text[0] == '<');
6375 int match = 0;
6376
6377 if (verbatim_match)
6378 {
6379 /* Strip the leading angle bracket. */
6380 text = text + 1;
6381 text_len--;
6382 }
6383
6384 /* First, test against the fully qualified name of the symbol. */
6385
6386 if (strncmp (sym_name, text, text_len) == 0)
6387 match = 1;
6388
6389 if (match && !encoded_p)
6390 {
6391 /* One needed check before declaring a positive match is to verify
6392 that iff we are doing a verbatim match, the decoded version
6393 of the symbol name starts with '<'. Otherwise, this symbol name
6394 is not a suitable completion. */
6395 const char *sym_name_copy = sym_name;
6396 int has_angle_bracket;
6397
6398 sym_name = ada_decode (sym_name);
6399 has_angle_bracket = (sym_name[0] == '<');
6400 match = (has_angle_bracket == verbatim_match);
6401 sym_name = sym_name_copy;
6402 }
6403
6404 if (match && !verbatim_match)
6405 {
6406 /* When doing non-verbatim match, another check that needs to
6407 be done is to verify that the potentially matching symbol name
6408 does not include capital letters, because the ada-mode would
6409 not be able to understand these symbol names without the
6410 angle bracket notation. */
6411 const char *tmp;
6412
6413 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6414 if (*tmp != '\0')
6415 match = 0;
6416 }
6417
6418 /* Second: Try wild matching... */
6419
6420 if (!match && wild_match_p)
6421 {
6422 /* Since we are doing wild matching, this means that TEXT
6423 may represent an unqualified symbol name. We therefore must
6424 also compare TEXT against the unqualified name of the symbol. */
6425 sym_name = ada_unqualified_name (ada_decode (sym_name));
6426
6427 if (strncmp (sym_name, text, text_len) == 0)
6428 match = 1;
6429 }
6430
6431 /* Finally: If we found a mach, prepare the result to return. */
6432
6433 if (!match)
6434 return NULL;
6435
6436 if (verbatim_match)
6437 sym_name = add_angle_brackets (sym_name);
6438
6439 if (!encoded_p)
6440 sym_name = ada_decode (sym_name);
6441
6442 return sym_name;
6443 }
6444
6445 /* A companion function to ada_make_symbol_completion_list().
6446 Check if SYM_NAME represents a symbol which name would be suitable
6447 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6448 it is appended at the end of the given string vector SV.
6449
6450 ORIG_TEXT is the string original string from the user command
6451 that needs to be completed. WORD is the entire command on which
6452 completion should be performed. These two parameters are used to
6453 determine which part of the symbol name should be added to the
6454 completion vector.
6455 if WILD_MATCH_P is set, then wild matching is performed.
6456 ENCODED_P should be set if TEXT represents a symbol name in its
6457 encoded formed (in which case the completion should also be
6458 encoded). */
6459
6460 static void
6461 symbol_completion_add (VEC(char_ptr) **sv,
6462 const char *sym_name,
6463 const char *text, int text_len,
6464 const char *orig_text, const char *word,
6465 int wild_match_p, int encoded_p)
6466 {
6467 const char *match = symbol_completion_match (sym_name, text, text_len,
6468 wild_match_p, encoded_p);
6469 char *completion;
6470
6471 if (match == NULL)
6472 return;
6473
6474 /* We found a match, so add the appropriate completion to the given
6475 string vector. */
6476
6477 if (word == orig_text)
6478 {
6479 completion = (char *) xmalloc (strlen (match) + 5);
6480 strcpy (completion, match);
6481 }
6482 else if (word > orig_text)
6483 {
6484 /* Return some portion of sym_name. */
6485 completion = (char *) xmalloc (strlen (match) + 5);
6486 strcpy (completion, match + (word - orig_text));
6487 }
6488 else
6489 {
6490 /* Return some of ORIG_TEXT plus sym_name. */
6491 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6492 strncpy (completion, word, orig_text - word);
6493 completion[orig_text - word] = '\0';
6494 strcat (completion, match);
6495 }
6496
6497 VEC_safe_push (char_ptr, *sv, completion);
6498 }
6499
6500 /* Return a list of possible symbol names completing TEXT0. WORD is
6501 the entire command on which completion is made. */
6502
6503 static VEC (char_ptr) *
6504 ada_make_symbol_completion_list (const char *text0, const char *word,
6505 enum type_code code)
6506 {
6507 char *text;
6508 int text_len;
6509 int wild_match_p;
6510 int encoded_p;
6511 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6512 struct symbol *sym;
6513 struct compunit_symtab *s;
6514 struct minimal_symbol *msymbol;
6515 struct objfile *objfile;
6516 const struct block *b, *surrounding_static_block = 0;
6517 int i;
6518 struct block_iterator iter;
6519 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6520
6521 gdb_assert (code == TYPE_CODE_UNDEF);
6522
6523 if (text0[0] == '<')
6524 {
6525 text = xstrdup (text0);
6526 make_cleanup (xfree, text);
6527 text_len = strlen (text);
6528 wild_match_p = 0;
6529 encoded_p = 1;
6530 }
6531 else
6532 {
6533 text = xstrdup (ada_encode (text0));
6534 make_cleanup (xfree, text);
6535 text_len = strlen (text);
6536 for (i = 0; i < text_len; i++)
6537 text[i] = tolower (text[i]);
6538
6539 encoded_p = (strstr (text0, "__") != NULL);
6540 /* If the name contains a ".", then the user is entering a fully
6541 qualified entity name, and the match must not be done in wild
6542 mode. Similarly, if the user wants to complete what looks like
6543 an encoded name, the match must not be done in wild mode. */
6544 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6545 }
6546
6547 /* First, look at the partial symtab symbols. */
6548 expand_symtabs_matching (NULL,
6549 [&] (const char *symname)
6550 {
6551 return symbol_completion_match (symname,
6552 text, text_len,
6553 wild_match_p,
6554 encoded_p);
6555 },
6556 NULL,
6557 ALL_DOMAIN);
6558
6559 /* At this point scan through the misc symbol vectors and add each
6560 symbol you find to the list. Eventually we want to ignore
6561 anything that isn't a text symbol (everything else will be
6562 handled by the psymtab code above). */
6563
6564 ALL_MSYMBOLS (objfile, msymbol)
6565 {
6566 QUIT;
6567 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6568 text, text_len, text0, word, wild_match_p,
6569 encoded_p);
6570 }
6571
6572 /* Search upwards from currently selected frame (so that we can
6573 complete on local vars. */
6574
6575 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6576 {
6577 if (!BLOCK_SUPERBLOCK (b))
6578 surrounding_static_block = b; /* For elmin of dups */
6579
6580 ALL_BLOCK_SYMBOLS (b, iter, sym)
6581 {
6582 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6583 text, text_len, text0, word,
6584 wild_match_p, encoded_p);
6585 }
6586 }
6587
6588 /* Go through the symtabs and check the externs and statics for
6589 symbols which match. */
6590
6591 ALL_COMPUNITS (objfile, s)
6592 {
6593 QUIT;
6594 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6595 ALL_BLOCK_SYMBOLS (b, iter, sym)
6596 {
6597 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6598 text, text_len, text0, word,
6599 wild_match_p, encoded_p);
6600 }
6601 }
6602
6603 ALL_COMPUNITS (objfile, s)
6604 {
6605 QUIT;
6606 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6607 /* Don't do this block twice. */
6608 if (b == surrounding_static_block)
6609 continue;
6610 ALL_BLOCK_SYMBOLS (b, iter, sym)
6611 {
6612 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6613 text, text_len, text0, word,
6614 wild_match_p, encoded_p);
6615 }
6616 }
6617
6618 do_cleanups (old_chain);
6619 return completions;
6620 }
6621
6622 /* Field Access */
6623
6624 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6625 for tagged types. */
6626
6627 static int
6628 ada_is_dispatch_table_ptr_type (struct type *type)
6629 {
6630 const char *name;
6631
6632 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6633 return 0;
6634
6635 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6636 if (name == NULL)
6637 return 0;
6638
6639 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6640 }
6641
6642 /* Return non-zero if TYPE is an interface tag. */
6643
6644 static int
6645 ada_is_interface_tag (struct type *type)
6646 {
6647 const char *name = TYPE_NAME (type);
6648
6649 if (name == NULL)
6650 return 0;
6651
6652 return (strcmp (name, "ada__tags__interface_tag") == 0);
6653 }
6654
6655 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6656 to be invisible to users. */
6657
6658 int
6659 ada_is_ignored_field (struct type *type, int field_num)
6660 {
6661 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6662 return 1;
6663
6664 /* Check the name of that field. */
6665 {
6666 const char *name = TYPE_FIELD_NAME (type, field_num);
6667
6668 /* Anonymous field names should not be printed.
6669 brobecker/2007-02-20: I don't think this can actually happen
6670 but we don't want to print the value of annonymous fields anyway. */
6671 if (name == NULL)
6672 return 1;
6673
6674 /* Normally, fields whose name start with an underscore ("_")
6675 are fields that have been internally generated by the compiler,
6676 and thus should not be printed. The "_parent" field is special,
6677 however: This is a field internally generated by the compiler
6678 for tagged types, and it contains the components inherited from
6679 the parent type. This field should not be printed as is, but
6680 should not be ignored either. */
6681 if (name[0] == '_' && !startswith (name, "_parent"))
6682 return 1;
6683 }
6684
6685 /* If this is the dispatch table of a tagged type or an interface tag,
6686 then ignore. */
6687 if (ada_is_tagged_type (type, 1)
6688 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6689 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6690 return 1;
6691
6692 /* Not a special field, so it should not be ignored. */
6693 return 0;
6694 }
6695
6696 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6697 pointer or reference type whose ultimate target has a tag field. */
6698
6699 int
6700 ada_is_tagged_type (struct type *type, int refok)
6701 {
6702 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6703 }
6704
6705 /* True iff TYPE represents the type of X'Tag */
6706
6707 int
6708 ada_is_tag_type (struct type *type)
6709 {
6710 type = ada_check_typedef (type);
6711
6712 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6713 return 0;
6714 else
6715 {
6716 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6717
6718 return (name != NULL
6719 && strcmp (name, "ada__tags__dispatch_table") == 0);
6720 }
6721 }
6722
6723 /* The type of the tag on VAL. */
6724
6725 struct type *
6726 ada_tag_type (struct value *val)
6727 {
6728 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6729 }
6730
6731 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6732 retired at Ada 05). */
6733
6734 static int
6735 is_ada95_tag (struct value *tag)
6736 {
6737 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6738 }
6739
6740 /* The value of the tag on VAL. */
6741
6742 struct value *
6743 ada_value_tag (struct value *val)
6744 {
6745 return ada_value_struct_elt (val, "_tag", 0);
6746 }
6747
6748 /* The value of the tag on the object of type TYPE whose contents are
6749 saved at VALADDR, if it is non-null, or is at memory address
6750 ADDRESS. */
6751
6752 static struct value *
6753 value_tag_from_contents_and_address (struct type *type,
6754 const gdb_byte *valaddr,
6755 CORE_ADDR address)
6756 {
6757 int tag_byte_offset;
6758 struct type *tag_type;
6759
6760 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6761 NULL, NULL, NULL))
6762 {
6763 const gdb_byte *valaddr1 = ((valaddr == NULL)
6764 ? NULL
6765 : valaddr + tag_byte_offset);
6766 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6767
6768 return value_from_contents_and_address (tag_type, valaddr1, address1);
6769 }
6770 return NULL;
6771 }
6772
6773 static struct type *
6774 type_from_tag (struct value *tag)
6775 {
6776 const char *type_name = ada_tag_name (tag);
6777
6778 if (type_name != NULL)
6779 return ada_find_any_type (ada_encode (type_name));
6780 return NULL;
6781 }
6782
6783 /* Given a value OBJ of a tagged type, return a value of this
6784 type at the base address of the object. The base address, as
6785 defined in Ada.Tags, it is the address of the primary tag of
6786 the object, and therefore where the field values of its full
6787 view can be fetched. */
6788
6789 struct value *
6790 ada_tag_value_at_base_address (struct value *obj)
6791 {
6792 struct value *val;
6793 LONGEST offset_to_top = 0;
6794 struct type *ptr_type, *obj_type;
6795 struct value *tag;
6796 CORE_ADDR base_address;
6797
6798 obj_type = value_type (obj);
6799
6800 /* It is the responsability of the caller to deref pointers. */
6801
6802 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6803 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6804 return obj;
6805
6806 tag = ada_value_tag (obj);
6807 if (!tag)
6808 return obj;
6809
6810 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6811
6812 if (is_ada95_tag (tag))
6813 return obj;
6814
6815 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6816 ptr_type = lookup_pointer_type (ptr_type);
6817 val = value_cast (ptr_type, tag);
6818 if (!val)
6819 return obj;
6820
6821 /* It is perfectly possible that an exception be raised while
6822 trying to determine the base address, just like for the tag;
6823 see ada_tag_name for more details. We do not print the error
6824 message for the same reason. */
6825
6826 TRY
6827 {
6828 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6829 }
6830
6831 CATCH (e, RETURN_MASK_ERROR)
6832 {
6833 return obj;
6834 }
6835 END_CATCH
6836
6837 /* If offset is null, nothing to do. */
6838
6839 if (offset_to_top == 0)
6840 return obj;
6841
6842 /* -1 is a special case in Ada.Tags; however, what should be done
6843 is not quite clear from the documentation. So do nothing for
6844 now. */
6845
6846 if (offset_to_top == -1)
6847 return obj;
6848
6849 base_address = value_address (obj) - offset_to_top;
6850 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6851
6852 /* Make sure that we have a proper tag at the new address.
6853 Otherwise, offset_to_top is bogus (which can happen when
6854 the object is not initialized yet). */
6855
6856 if (!tag)
6857 return obj;
6858
6859 obj_type = type_from_tag (tag);
6860
6861 if (!obj_type)
6862 return obj;
6863
6864 return value_from_contents_and_address (obj_type, NULL, base_address);
6865 }
6866
6867 /* Return the "ada__tags__type_specific_data" type. */
6868
6869 static struct type *
6870 ada_get_tsd_type (struct inferior *inf)
6871 {
6872 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6873
6874 if (data->tsd_type == 0)
6875 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6876 return data->tsd_type;
6877 }
6878
6879 /* Return the TSD (type-specific data) associated to the given TAG.
6880 TAG is assumed to be the tag of a tagged-type entity.
6881
6882 May return NULL if we are unable to get the TSD. */
6883
6884 static struct value *
6885 ada_get_tsd_from_tag (struct value *tag)
6886 {
6887 struct value *val;
6888 struct type *type;
6889
6890 /* First option: The TSD is simply stored as a field of our TAG.
6891 Only older versions of GNAT would use this format, but we have
6892 to test it first, because there are no visible markers for
6893 the current approach except the absence of that field. */
6894
6895 val = ada_value_struct_elt (tag, "tsd", 1);
6896 if (val)
6897 return val;
6898
6899 /* Try the second representation for the dispatch table (in which
6900 there is no explicit 'tsd' field in the referent of the tag pointer,
6901 and instead the tsd pointer is stored just before the dispatch
6902 table. */
6903
6904 type = ada_get_tsd_type (current_inferior());
6905 if (type == NULL)
6906 return NULL;
6907 type = lookup_pointer_type (lookup_pointer_type (type));
6908 val = value_cast (type, tag);
6909 if (val == NULL)
6910 return NULL;
6911 return value_ind (value_ptradd (val, -1));
6912 }
6913
6914 /* Given the TSD of a tag (type-specific data), return a string
6915 containing the name of the associated type.
6916
6917 The returned value is good until the next call. May return NULL
6918 if we are unable to determine the tag name. */
6919
6920 static char *
6921 ada_tag_name_from_tsd (struct value *tsd)
6922 {
6923 static char name[1024];
6924 char *p;
6925 struct value *val;
6926
6927 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6928 if (val == NULL)
6929 return NULL;
6930 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6931 for (p = name; *p != '\0'; p += 1)
6932 if (isalpha (*p))
6933 *p = tolower (*p);
6934 return name;
6935 }
6936
6937 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6938 a C string.
6939
6940 Return NULL if the TAG is not an Ada tag, or if we were unable to
6941 determine the name of that tag. The result is good until the next
6942 call. */
6943
6944 const char *
6945 ada_tag_name (struct value *tag)
6946 {
6947 char *name = NULL;
6948
6949 if (!ada_is_tag_type (value_type (tag)))
6950 return NULL;
6951
6952 /* It is perfectly possible that an exception be raised while trying
6953 to determine the TAG's name, even under normal circumstances:
6954 The associated variable may be uninitialized or corrupted, for
6955 instance. We do not let any exception propagate past this point.
6956 instead we return NULL.
6957
6958 We also do not print the error message either (which often is very
6959 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6960 the caller print a more meaningful message if necessary. */
6961 TRY
6962 {
6963 struct value *tsd = ada_get_tsd_from_tag (tag);
6964
6965 if (tsd != NULL)
6966 name = ada_tag_name_from_tsd (tsd);
6967 }
6968 CATCH (e, RETURN_MASK_ERROR)
6969 {
6970 }
6971 END_CATCH
6972
6973 return name;
6974 }
6975
6976 /* The parent type of TYPE, or NULL if none. */
6977
6978 struct type *
6979 ada_parent_type (struct type *type)
6980 {
6981 int i;
6982
6983 type = ada_check_typedef (type);
6984
6985 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6986 return NULL;
6987
6988 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6989 if (ada_is_parent_field (type, i))
6990 {
6991 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6992
6993 /* If the _parent field is a pointer, then dereference it. */
6994 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6995 parent_type = TYPE_TARGET_TYPE (parent_type);
6996 /* If there is a parallel XVS type, get the actual base type. */
6997 parent_type = ada_get_base_type (parent_type);
6998
6999 return ada_check_typedef (parent_type);
7000 }
7001
7002 return NULL;
7003 }
7004
7005 /* True iff field number FIELD_NUM of structure type TYPE contains the
7006 parent-type (inherited) fields of a derived type. Assumes TYPE is
7007 a structure type with at least FIELD_NUM+1 fields. */
7008
7009 int
7010 ada_is_parent_field (struct type *type, int field_num)
7011 {
7012 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7013
7014 return (name != NULL
7015 && (startswith (name, "PARENT")
7016 || startswith (name, "_parent")));
7017 }
7018
7019 /* True iff field number FIELD_NUM of structure type TYPE is a
7020 transparent wrapper field (which should be silently traversed when doing
7021 field selection and flattened when printing). Assumes TYPE is a
7022 structure type with at least FIELD_NUM+1 fields. Such fields are always
7023 structures. */
7024
7025 int
7026 ada_is_wrapper_field (struct type *type, int field_num)
7027 {
7028 const char *name = TYPE_FIELD_NAME (type, field_num);
7029
7030 if (name != NULL && strcmp (name, "RETVAL") == 0)
7031 {
7032 /* This happens in functions with "out" or "in out" parameters
7033 which are passed by copy. For such functions, GNAT describes
7034 the function's return type as being a struct where the return
7035 value is in a field called RETVAL, and where the other "out"
7036 or "in out" parameters are fields of that struct. This is not
7037 a wrapper. */
7038 return 0;
7039 }
7040
7041 return (name != NULL
7042 && (startswith (name, "PARENT")
7043 || strcmp (name, "REP") == 0
7044 || startswith (name, "_parent")
7045 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7046 }
7047
7048 /* True iff field number FIELD_NUM of structure or union type TYPE
7049 is a variant wrapper. Assumes TYPE is a structure type with at least
7050 FIELD_NUM+1 fields. */
7051
7052 int
7053 ada_is_variant_part (struct type *type, int field_num)
7054 {
7055 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7056
7057 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7058 || (is_dynamic_field (type, field_num)
7059 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7060 == TYPE_CODE_UNION)));
7061 }
7062
7063 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7064 whose discriminants are contained in the record type OUTER_TYPE,
7065 returns the type of the controlling discriminant for the variant.
7066 May return NULL if the type could not be found. */
7067
7068 struct type *
7069 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7070 {
7071 char *name = ada_variant_discrim_name (var_type);
7072
7073 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7074 }
7075
7076 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7077 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7078 represents a 'when others' clause; otherwise 0. */
7079
7080 int
7081 ada_is_others_clause (struct type *type, int field_num)
7082 {
7083 const char *name = TYPE_FIELD_NAME (type, field_num);
7084
7085 return (name != NULL && name[0] == 'O');
7086 }
7087
7088 /* Assuming that TYPE0 is the type of the variant part of a record,
7089 returns the name of the discriminant controlling the variant.
7090 The value is valid until the next call to ada_variant_discrim_name. */
7091
7092 char *
7093 ada_variant_discrim_name (struct type *type0)
7094 {
7095 static char *result = NULL;
7096 static size_t result_len = 0;
7097 struct type *type;
7098 const char *name;
7099 const char *discrim_end;
7100 const char *discrim_start;
7101
7102 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7103 type = TYPE_TARGET_TYPE (type0);
7104 else
7105 type = type0;
7106
7107 name = ada_type_name (type);
7108
7109 if (name == NULL || name[0] == '\000')
7110 return "";
7111
7112 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7113 discrim_end -= 1)
7114 {
7115 if (startswith (discrim_end, "___XVN"))
7116 break;
7117 }
7118 if (discrim_end == name)
7119 return "";
7120
7121 for (discrim_start = discrim_end; discrim_start != name + 3;
7122 discrim_start -= 1)
7123 {
7124 if (discrim_start == name + 1)
7125 return "";
7126 if ((discrim_start > name + 3
7127 && startswith (discrim_start - 3, "___"))
7128 || discrim_start[-1] == '.')
7129 break;
7130 }
7131
7132 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7133 strncpy (result, discrim_start, discrim_end - discrim_start);
7134 result[discrim_end - discrim_start] = '\0';
7135 return result;
7136 }
7137
7138 /* Scan STR for a subtype-encoded number, beginning at position K.
7139 Put the position of the character just past the number scanned in
7140 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7141 Return 1 if there was a valid number at the given position, and 0
7142 otherwise. A "subtype-encoded" number consists of the absolute value
7143 in decimal, followed by the letter 'm' to indicate a negative number.
7144 Assumes 0m does not occur. */
7145
7146 int
7147 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7148 {
7149 ULONGEST RU;
7150
7151 if (!isdigit (str[k]))
7152 return 0;
7153
7154 /* Do it the hard way so as not to make any assumption about
7155 the relationship of unsigned long (%lu scan format code) and
7156 LONGEST. */
7157 RU = 0;
7158 while (isdigit (str[k]))
7159 {
7160 RU = RU * 10 + (str[k] - '0');
7161 k += 1;
7162 }
7163
7164 if (str[k] == 'm')
7165 {
7166 if (R != NULL)
7167 *R = (-(LONGEST) (RU - 1)) - 1;
7168 k += 1;
7169 }
7170 else if (R != NULL)
7171 *R = (LONGEST) RU;
7172
7173 /* NOTE on the above: Technically, C does not say what the results of
7174 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7175 number representable as a LONGEST (although either would probably work
7176 in most implementations). When RU>0, the locution in the then branch
7177 above is always equivalent to the negative of RU. */
7178
7179 if (new_k != NULL)
7180 *new_k = k;
7181 return 1;
7182 }
7183
7184 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7185 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7186 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7187
7188 int
7189 ada_in_variant (LONGEST val, struct type *type, int field_num)
7190 {
7191 const char *name = TYPE_FIELD_NAME (type, field_num);
7192 int p;
7193
7194 p = 0;
7195 while (1)
7196 {
7197 switch (name[p])
7198 {
7199 case '\0':
7200 return 0;
7201 case 'S':
7202 {
7203 LONGEST W;
7204
7205 if (!ada_scan_number (name, p + 1, &W, &p))
7206 return 0;
7207 if (val == W)
7208 return 1;
7209 break;
7210 }
7211 case 'R':
7212 {
7213 LONGEST L, U;
7214
7215 if (!ada_scan_number (name, p + 1, &L, &p)
7216 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7217 return 0;
7218 if (val >= L && val <= U)
7219 return 1;
7220 break;
7221 }
7222 case 'O':
7223 return 1;
7224 default:
7225 return 0;
7226 }
7227 }
7228 }
7229
7230 /* FIXME: Lots of redundancy below. Try to consolidate. */
7231
7232 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7233 ARG_TYPE, extract and return the value of one of its (non-static)
7234 fields. FIELDNO says which field. Differs from value_primitive_field
7235 only in that it can handle packed values of arbitrary type. */
7236
7237 static struct value *
7238 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7239 struct type *arg_type)
7240 {
7241 struct type *type;
7242
7243 arg_type = ada_check_typedef (arg_type);
7244 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7245
7246 /* Handle packed fields. */
7247
7248 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7249 {
7250 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7251 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7252
7253 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7254 offset + bit_pos / 8,
7255 bit_pos % 8, bit_size, type);
7256 }
7257 else
7258 return value_primitive_field (arg1, offset, fieldno, arg_type);
7259 }
7260
7261 /* Find field with name NAME in object of type TYPE. If found,
7262 set the following for each argument that is non-null:
7263 - *FIELD_TYPE_P to the field's type;
7264 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7265 an object of that type;
7266 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7267 - *BIT_SIZE_P to its size in bits if the field is packed, and
7268 0 otherwise;
7269 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7270 fields up to but not including the desired field, or by the total
7271 number of fields if not found. A NULL value of NAME never
7272 matches; the function just counts visible fields in this case.
7273
7274 Returns 1 if found, 0 otherwise. */
7275
7276 static int
7277 find_struct_field (const char *name, struct type *type, int offset,
7278 struct type **field_type_p,
7279 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7280 int *index_p)
7281 {
7282 int i;
7283
7284 type = ada_check_typedef (type);
7285
7286 if (field_type_p != NULL)
7287 *field_type_p = NULL;
7288 if (byte_offset_p != NULL)
7289 *byte_offset_p = 0;
7290 if (bit_offset_p != NULL)
7291 *bit_offset_p = 0;
7292 if (bit_size_p != NULL)
7293 *bit_size_p = 0;
7294
7295 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7296 {
7297 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7298 int fld_offset = offset + bit_pos / 8;
7299 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7300
7301 if (t_field_name == NULL)
7302 continue;
7303
7304 else if (name != NULL && field_name_match (t_field_name, name))
7305 {
7306 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7307
7308 if (field_type_p != NULL)
7309 *field_type_p = TYPE_FIELD_TYPE (type, i);
7310 if (byte_offset_p != NULL)
7311 *byte_offset_p = fld_offset;
7312 if (bit_offset_p != NULL)
7313 *bit_offset_p = bit_pos % 8;
7314 if (bit_size_p != NULL)
7315 *bit_size_p = bit_size;
7316 return 1;
7317 }
7318 else if (ada_is_wrapper_field (type, i))
7319 {
7320 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7321 field_type_p, byte_offset_p, bit_offset_p,
7322 bit_size_p, index_p))
7323 return 1;
7324 }
7325 else if (ada_is_variant_part (type, i))
7326 {
7327 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7328 fixed type?? */
7329 int j;
7330 struct type *field_type
7331 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7332
7333 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7334 {
7335 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7336 fld_offset
7337 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7338 field_type_p, byte_offset_p,
7339 bit_offset_p, bit_size_p, index_p))
7340 return 1;
7341 }
7342 }
7343 else if (index_p != NULL)
7344 *index_p += 1;
7345 }
7346 return 0;
7347 }
7348
7349 /* Number of user-visible fields in record type TYPE. */
7350
7351 static int
7352 num_visible_fields (struct type *type)
7353 {
7354 int n;
7355
7356 n = 0;
7357 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7358 return n;
7359 }
7360
7361 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7362 and search in it assuming it has (class) type TYPE.
7363 If found, return value, else return NULL.
7364
7365 Searches recursively through wrapper fields (e.g., '_parent'). */
7366
7367 static struct value *
7368 ada_search_struct_field (const char *name, struct value *arg, int offset,
7369 struct type *type)
7370 {
7371 int i;
7372
7373 type = ada_check_typedef (type);
7374 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7375 {
7376 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7377
7378 if (t_field_name == NULL)
7379 continue;
7380
7381 else if (field_name_match (t_field_name, name))
7382 return ada_value_primitive_field (arg, offset, i, type);
7383
7384 else if (ada_is_wrapper_field (type, i))
7385 {
7386 struct value *v = /* Do not let indent join lines here. */
7387 ada_search_struct_field (name, arg,
7388 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7389 TYPE_FIELD_TYPE (type, i));
7390
7391 if (v != NULL)
7392 return v;
7393 }
7394
7395 else if (ada_is_variant_part (type, i))
7396 {
7397 /* PNH: Do we ever get here? See find_struct_field. */
7398 int j;
7399 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7400 i));
7401 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7402
7403 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7404 {
7405 struct value *v = ada_search_struct_field /* Force line
7406 break. */
7407 (name, arg,
7408 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7409 TYPE_FIELD_TYPE (field_type, j));
7410
7411 if (v != NULL)
7412 return v;
7413 }
7414 }
7415 }
7416 return NULL;
7417 }
7418
7419 static struct value *ada_index_struct_field_1 (int *, struct value *,
7420 int, struct type *);
7421
7422
7423 /* Return field #INDEX in ARG, where the index is that returned by
7424 * find_struct_field through its INDEX_P argument. Adjust the address
7425 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7426 * If found, return value, else return NULL. */
7427
7428 static struct value *
7429 ada_index_struct_field (int index, struct value *arg, int offset,
7430 struct type *type)
7431 {
7432 return ada_index_struct_field_1 (&index, arg, offset, type);
7433 }
7434
7435
7436 /* Auxiliary function for ada_index_struct_field. Like
7437 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7438 * *INDEX_P. */
7439
7440 static struct value *
7441 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7442 struct type *type)
7443 {
7444 int i;
7445 type = ada_check_typedef (type);
7446
7447 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7448 {
7449 if (TYPE_FIELD_NAME (type, i) == NULL)
7450 continue;
7451 else if (ada_is_wrapper_field (type, i))
7452 {
7453 struct value *v = /* Do not let indent join lines here. */
7454 ada_index_struct_field_1 (index_p, arg,
7455 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7456 TYPE_FIELD_TYPE (type, i));
7457
7458 if (v != NULL)
7459 return v;
7460 }
7461
7462 else if (ada_is_variant_part (type, i))
7463 {
7464 /* PNH: Do we ever get here? See ada_search_struct_field,
7465 find_struct_field. */
7466 error (_("Cannot assign this kind of variant record"));
7467 }
7468 else if (*index_p == 0)
7469 return ada_value_primitive_field (arg, offset, i, type);
7470 else
7471 *index_p -= 1;
7472 }
7473 return NULL;
7474 }
7475
7476 /* Given ARG, a value of type (pointer or reference to a)*
7477 structure/union, extract the component named NAME from the ultimate
7478 target structure/union and return it as a value with its
7479 appropriate type.
7480
7481 The routine searches for NAME among all members of the structure itself
7482 and (recursively) among all members of any wrapper members
7483 (e.g., '_parent').
7484
7485 If NO_ERR, then simply return NULL in case of error, rather than
7486 calling error. */
7487
7488 struct value *
7489 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7490 {
7491 struct type *t, *t1;
7492 struct value *v;
7493
7494 v = NULL;
7495 t1 = t = ada_check_typedef (value_type (arg));
7496 if (TYPE_CODE (t) == TYPE_CODE_REF)
7497 {
7498 t1 = TYPE_TARGET_TYPE (t);
7499 if (t1 == NULL)
7500 goto BadValue;
7501 t1 = ada_check_typedef (t1);
7502 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7503 {
7504 arg = coerce_ref (arg);
7505 t = t1;
7506 }
7507 }
7508
7509 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7510 {
7511 t1 = TYPE_TARGET_TYPE (t);
7512 if (t1 == NULL)
7513 goto BadValue;
7514 t1 = ada_check_typedef (t1);
7515 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7516 {
7517 arg = value_ind (arg);
7518 t = t1;
7519 }
7520 else
7521 break;
7522 }
7523
7524 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7525 goto BadValue;
7526
7527 if (t1 == t)
7528 v = ada_search_struct_field (name, arg, 0, t);
7529 else
7530 {
7531 int bit_offset, bit_size, byte_offset;
7532 struct type *field_type;
7533 CORE_ADDR address;
7534
7535 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7536 address = value_address (ada_value_ind (arg));
7537 else
7538 address = value_address (ada_coerce_ref (arg));
7539
7540 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7541 if (find_struct_field (name, t1, 0,
7542 &field_type, &byte_offset, &bit_offset,
7543 &bit_size, NULL))
7544 {
7545 if (bit_size != 0)
7546 {
7547 if (TYPE_CODE (t) == TYPE_CODE_REF)
7548 arg = ada_coerce_ref (arg);
7549 else
7550 arg = ada_value_ind (arg);
7551 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7552 bit_offset, bit_size,
7553 field_type);
7554 }
7555 else
7556 v = value_at_lazy (field_type, address + byte_offset);
7557 }
7558 }
7559
7560 if (v != NULL || no_err)
7561 return v;
7562 else
7563 error (_("There is no member named %s."), name);
7564
7565 BadValue:
7566 if (no_err)
7567 return NULL;
7568 else
7569 error (_("Attempt to extract a component of "
7570 "a value that is not a record."));
7571 }
7572
7573 /* Return a string representation of type TYPE. */
7574
7575 static std::string
7576 type_as_string (struct type *type)
7577 {
7578 string_file tmp_stream;
7579
7580 type_print (type, "", &tmp_stream, -1);
7581
7582 return std::move (tmp_stream.string ());
7583 }
7584
7585 /* Given a type TYPE, look up the type of the component of type named NAME.
7586 If DISPP is non-null, add its byte displacement from the beginning of a
7587 structure (pointed to by a value) of type TYPE to *DISPP (does not
7588 work for packed fields).
7589
7590 Matches any field whose name has NAME as a prefix, possibly
7591 followed by "___".
7592
7593 TYPE can be either a struct or union. If REFOK, TYPE may also
7594 be a (pointer or reference)+ to a struct or union, and the
7595 ultimate target type will be searched.
7596
7597 Looks recursively into variant clauses and parent types.
7598
7599 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7600 TYPE is not a type of the right kind. */
7601
7602 static struct type *
7603 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7604 int noerr, int *dispp)
7605 {
7606 int i;
7607
7608 if (name == NULL)
7609 goto BadName;
7610
7611 if (refok && type != NULL)
7612 while (1)
7613 {
7614 type = ada_check_typedef (type);
7615 if (TYPE_CODE (type) != TYPE_CODE_PTR
7616 && TYPE_CODE (type) != TYPE_CODE_REF)
7617 break;
7618 type = TYPE_TARGET_TYPE (type);
7619 }
7620
7621 if (type == NULL
7622 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7623 && TYPE_CODE (type) != TYPE_CODE_UNION))
7624 {
7625 if (noerr)
7626 return NULL;
7627
7628 error (_("Type %s is not a structure or union type"),
7629 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7630 }
7631
7632 type = to_static_fixed_type (type);
7633
7634 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7635 {
7636 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7637 struct type *t;
7638 int disp;
7639
7640 if (t_field_name == NULL)
7641 continue;
7642
7643 else if (field_name_match (t_field_name, name))
7644 {
7645 if (dispp != NULL)
7646 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7647 return TYPE_FIELD_TYPE (type, i);
7648 }
7649
7650 else if (ada_is_wrapper_field (type, i))
7651 {
7652 disp = 0;
7653 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7654 0, 1, &disp);
7655 if (t != NULL)
7656 {
7657 if (dispp != NULL)
7658 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7659 return t;
7660 }
7661 }
7662
7663 else if (ada_is_variant_part (type, i))
7664 {
7665 int j;
7666 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7667 i));
7668
7669 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7670 {
7671 /* FIXME pnh 2008/01/26: We check for a field that is
7672 NOT wrapped in a struct, since the compiler sometimes
7673 generates these for unchecked variant types. Revisit
7674 if the compiler changes this practice. */
7675 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7676 disp = 0;
7677 if (v_field_name != NULL
7678 && field_name_match (v_field_name, name))
7679 t = TYPE_FIELD_TYPE (field_type, j);
7680 else
7681 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7682 j),
7683 name, 0, 1, &disp);
7684
7685 if (t != NULL)
7686 {
7687 if (dispp != NULL)
7688 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7689 return t;
7690 }
7691 }
7692 }
7693
7694 }
7695
7696 BadName:
7697 if (!noerr)
7698 {
7699 const char *name_str = name != NULL ? name : _("<null>");
7700
7701 error (_("Type %s has no component named %s"),
7702 type_as_string (type).c_str (), name_str);
7703 }
7704
7705 return NULL;
7706 }
7707
7708 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7709 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7710 represents an unchecked union (that is, the variant part of a
7711 record that is named in an Unchecked_Union pragma). */
7712
7713 static int
7714 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7715 {
7716 char *discrim_name = ada_variant_discrim_name (var_type);
7717
7718 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7719 == NULL);
7720 }
7721
7722
7723 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7724 within a value of type OUTER_TYPE that is stored in GDB at
7725 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7726 numbering from 0) is applicable. Returns -1 if none are. */
7727
7728 int
7729 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7730 const gdb_byte *outer_valaddr)
7731 {
7732 int others_clause;
7733 int i;
7734 char *discrim_name = ada_variant_discrim_name (var_type);
7735 struct value *outer;
7736 struct value *discrim;
7737 LONGEST discrim_val;
7738
7739 /* Using plain value_from_contents_and_address here causes problems
7740 because we will end up trying to resolve a type that is currently
7741 being constructed. */
7742 outer = value_from_contents_and_address_unresolved (outer_type,
7743 outer_valaddr, 0);
7744 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7745 if (discrim == NULL)
7746 return -1;
7747 discrim_val = value_as_long (discrim);
7748
7749 others_clause = -1;
7750 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7751 {
7752 if (ada_is_others_clause (var_type, i))
7753 others_clause = i;
7754 else if (ada_in_variant (discrim_val, var_type, i))
7755 return i;
7756 }
7757
7758 return others_clause;
7759 }
7760 \f
7761
7762
7763 /* Dynamic-Sized Records */
7764
7765 /* Strategy: The type ostensibly attached to a value with dynamic size
7766 (i.e., a size that is not statically recorded in the debugging
7767 data) does not accurately reflect the size or layout of the value.
7768 Our strategy is to convert these values to values with accurate,
7769 conventional types that are constructed on the fly. */
7770
7771 /* There is a subtle and tricky problem here. In general, we cannot
7772 determine the size of dynamic records without its data. However,
7773 the 'struct value' data structure, which GDB uses to represent
7774 quantities in the inferior process (the target), requires the size
7775 of the type at the time of its allocation in order to reserve space
7776 for GDB's internal copy of the data. That's why the
7777 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7778 rather than struct value*s.
7779
7780 However, GDB's internal history variables ($1, $2, etc.) are
7781 struct value*s containing internal copies of the data that are not, in
7782 general, the same as the data at their corresponding addresses in
7783 the target. Fortunately, the types we give to these values are all
7784 conventional, fixed-size types (as per the strategy described
7785 above), so that we don't usually have to perform the
7786 'to_fixed_xxx_type' conversions to look at their values.
7787 Unfortunately, there is one exception: if one of the internal
7788 history variables is an array whose elements are unconstrained
7789 records, then we will need to create distinct fixed types for each
7790 element selected. */
7791
7792 /* The upshot of all of this is that many routines take a (type, host
7793 address, target address) triple as arguments to represent a value.
7794 The host address, if non-null, is supposed to contain an internal
7795 copy of the relevant data; otherwise, the program is to consult the
7796 target at the target address. */
7797
7798 /* Assuming that VAL0 represents a pointer value, the result of
7799 dereferencing it. Differs from value_ind in its treatment of
7800 dynamic-sized types. */
7801
7802 struct value *
7803 ada_value_ind (struct value *val0)
7804 {
7805 struct value *val = value_ind (val0);
7806
7807 if (ada_is_tagged_type (value_type (val), 0))
7808 val = ada_tag_value_at_base_address (val);
7809
7810 return ada_to_fixed_value (val);
7811 }
7812
7813 /* The value resulting from dereferencing any "reference to"
7814 qualifiers on VAL0. */
7815
7816 static struct value *
7817 ada_coerce_ref (struct value *val0)
7818 {
7819 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7820 {
7821 struct value *val = val0;
7822
7823 val = coerce_ref (val);
7824
7825 if (ada_is_tagged_type (value_type (val), 0))
7826 val = ada_tag_value_at_base_address (val);
7827
7828 return ada_to_fixed_value (val);
7829 }
7830 else
7831 return val0;
7832 }
7833
7834 /* Return OFF rounded upward if necessary to a multiple of
7835 ALIGNMENT (a power of 2). */
7836
7837 static unsigned int
7838 align_value (unsigned int off, unsigned int alignment)
7839 {
7840 return (off + alignment - 1) & ~(alignment - 1);
7841 }
7842
7843 /* Return the bit alignment required for field #F of template type TYPE. */
7844
7845 static unsigned int
7846 field_alignment (struct type *type, int f)
7847 {
7848 const char *name = TYPE_FIELD_NAME (type, f);
7849 int len;
7850 int align_offset;
7851
7852 /* The field name should never be null, unless the debugging information
7853 is somehow malformed. In this case, we assume the field does not
7854 require any alignment. */
7855 if (name == NULL)
7856 return 1;
7857
7858 len = strlen (name);
7859
7860 if (!isdigit (name[len - 1]))
7861 return 1;
7862
7863 if (isdigit (name[len - 2]))
7864 align_offset = len - 2;
7865 else
7866 align_offset = len - 1;
7867
7868 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7869 return TARGET_CHAR_BIT;
7870
7871 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7872 }
7873
7874 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7875
7876 static struct symbol *
7877 ada_find_any_type_symbol (const char *name)
7878 {
7879 struct symbol *sym;
7880
7881 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7882 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7883 return sym;
7884
7885 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7886 return sym;
7887 }
7888
7889 /* Find a type named NAME. Ignores ambiguity. This routine will look
7890 solely for types defined by debug info, it will not search the GDB
7891 primitive types. */
7892
7893 static struct type *
7894 ada_find_any_type (const char *name)
7895 {
7896 struct symbol *sym = ada_find_any_type_symbol (name);
7897
7898 if (sym != NULL)
7899 return SYMBOL_TYPE (sym);
7900
7901 return NULL;
7902 }
7903
7904 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7905 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7906 symbol, in which case it is returned. Otherwise, this looks for
7907 symbols whose name is that of NAME_SYM suffixed with "___XR".
7908 Return symbol if found, and NULL otherwise. */
7909
7910 struct symbol *
7911 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7912 {
7913 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7914 struct symbol *sym;
7915
7916 if (strstr (name, "___XR") != NULL)
7917 return name_sym;
7918
7919 sym = find_old_style_renaming_symbol (name, block);
7920
7921 if (sym != NULL)
7922 return sym;
7923
7924 /* Not right yet. FIXME pnh 7/20/2007. */
7925 sym = ada_find_any_type_symbol (name);
7926 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7927 return sym;
7928 else
7929 return NULL;
7930 }
7931
7932 static struct symbol *
7933 find_old_style_renaming_symbol (const char *name, const struct block *block)
7934 {
7935 const struct symbol *function_sym = block_linkage_function (block);
7936 char *rename;
7937
7938 if (function_sym != NULL)
7939 {
7940 /* If the symbol is defined inside a function, NAME is not fully
7941 qualified. This means we need to prepend the function name
7942 as well as adding the ``___XR'' suffix to build the name of
7943 the associated renaming symbol. */
7944 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7945 /* Function names sometimes contain suffixes used
7946 for instance to qualify nested subprograms. When building
7947 the XR type name, we need to make sure that this suffix is
7948 not included. So do not include any suffix in the function
7949 name length below. */
7950 int function_name_len = ada_name_prefix_len (function_name);
7951 const int rename_len = function_name_len + 2 /* "__" */
7952 + strlen (name) + 6 /* "___XR\0" */ ;
7953
7954 /* Strip the suffix if necessary. */
7955 ada_remove_trailing_digits (function_name, &function_name_len);
7956 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7957 ada_remove_Xbn_suffix (function_name, &function_name_len);
7958
7959 /* Library-level functions are a special case, as GNAT adds
7960 a ``_ada_'' prefix to the function name to avoid namespace
7961 pollution. However, the renaming symbols themselves do not
7962 have this prefix, so we need to skip this prefix if present. */
7963 if (function_name_len > 5 /* "_ada_" */
7964 && strstr (function_name, "_ada_") == function_name)
7965 {
7966 function_name += 5;
7967 function_name_len -= 5;
7968 }
7969
7970 rename = (char *) alloca (rename_len * sizeof (char));
7971 strncpy (rename, function_name, function_name_len);
7972 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7973 "__%s___XR", name);
7974 }
7975 else
7976 {
7977 const int rename_len = strlen (name) + 6;
7978
7979 rename = (char *) alloca (rename_len * sizeof (char));
7980 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7981 }
7982
7983 return ada_find_any_type_symbol (rename);
7984 }
7985
7986 /* Because of GNAT encoding conventions, several GDB symbols may match a
7987 given type name. If the type denoted by TYPE0 is to be preferred to
7988 that of TYPE1 for purposes of type printing, return non-zero;
7989 otherwise return 0. */
7990
7991 int
7992 ada_prefer_type (struct type *type0, struct type *type1)
7993 {
7994 if (type1 == NULL)
7995 return 1;
7996 else if (type0 == NULL)
7997 return 0;
7998 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7999 return 1;
8000 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8001 return 0;
8002 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8003 return 1;
8004 else if (ada_is_constrained_packed_array_type (type0))
8005 return 1;
8006 else if (ada_is_array_descriptor_type (type0)
8007 && !ada_is_array_descriptor_type (type1))
8008 return 1;
8009 else
8010 {
8011 const char *type0_name = type_name_no_tag (type0);
8012 const char *type1_name = type_name_no_tag (type1);
8013
8014 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8015 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8016 return 1;
8017 }
8018 return 0;
8019 }
8020
8021 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8022 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8023
8024 const char *
8025 ada_type_name (struct type *type)
8026 {
8027 if (type == NULL)
8028 return NULL;
8029 else if (TYPE_NAME (type) != NULL)
8030 return TYPE_NAME (type);
8031 else
8032 return TYPE_TAG_NAME (type);
8033 }
8034
8035 /* Search the list of "descriptive" types associated to TYPE for a type
8036 whose name is NAME. */
8037
8038 static struct type *
8039 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8040 {
8041 struct type *result, *tmp;
8042
8043 if (ada_ignore_descriptive_types_p)
8044 return NULL;
8045
8046 /* If there no descriptive-type info, then there is no parallel type
8047 to be found. */
8048 if (!HAVE_GNAT_AUX_INFO (type))
8049 return NULL;
8050
8051 result = TYPE_DESCRIPTIVE_TYPE (type);
8052 while (result != NULL)
8053 {
8054 const char *result_name = ada_type_name (result);
8055
8056 if (result_name == NULL)
8057 {
8058 warning (_("unexpected null name on descriptive type"));
8059 return NULL;
8060 }
8061
8062 /* If the names match, stop. */
8063 if (strcmp (result_name, name) == 0)
8064 break;
8065
8066 /* Otherwise, look at the next item on the list, if any. */
8067 if (HAVE_GNAT_AUX_INFO (result))
8068 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8069 else
8070 tmp = NULL;
8071
8072 /* If not found either, try after having resolved the typedef. */
8073 if (tmp != NULL)
8074 result = tmp;
8075 else
8076 {
8077 result = check_typedef (result);
8078 if (HAVE_GNAT_AUX_INFO (result))
8079 result = TYPE_DESCRIPTIVE_TYPE (result);
8080 else
8081 result = NULL;
8082 }
8083 }
8084
8085 /* If we didn't find a match, see whether this is a packed array. With
8086 older compilers, the descriptive type information is either absent or
8087 irrelevant when it comes to packed arrays so the above lookup fails.
8088 Fall back to using a parallel lookup by name in this case. */
8089 if (result == NULL && ada_is_constrained_packed_array_type (type))
8090 return ada_find_any_type (name);
8091
8092 return result;
8093 }
8094
8095 /* Find a parallel type to TYPE with the specified NAME, using the
8096 descriptive type taken from the debugging information, if available,
8097 and otherwise using the (slower) name-based method. */
8098
8099 static struct type *
8100 ada_find_parallel_type_with_name (struct type *type, const char *name)
8101 {
8102 struct type *result = NULL;
8103
8104 if (HAVE_GNAT_AUX_INFO (type))
8105 result = find_parallel_type_by_descriptive_type (type, name);
8106 else
8107 result = ada_find_any_type (name);
8108
8109 return result;
8110 }
8111
8112 /* Same as above, but specify the name of the parallel type by appending
8113 SUFFIX to the name of TYPE. */
8114
8115 struct type *
8116 ada_find_parallel_type (struct type *type, const char *suffix)
8117 {
8118 char *name;
8119 const char *type_name = ada_type_name (type);
8120 int len;
8121
8122 if (type_name == NULL)
8123 return NULL;
8124
8125 len = strlen (type_name);
8126
8127 name = (char *) alloca (len + strlen (suffix) + 1);
8128
8129 strcpy (name, type_name);
8130 strcpy (name + len, suffix);
8131
8132 return ada_find_parallel_type_with_name (type, name);
8133 }
8134
8135 /* If TYPE is a variable-size record type, return the corresponding template
8136 type describing its fields. Otherwise, return NULL. */
8137
8138 static struct type *
8139 dynamic_template_type (struct type *type)
8140 {
8141 type = ada_check_typedef (type);
8142
8143 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8144 || ada_type_name (type) == NULL)
8145 return NULL;
8146 else
8147 {
8148 int len = strlen (ada_type_name (type));
8149
8150 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8151 return type;
8152 else
8153 return ada_find_parallel_type (type, "___XVE");
8154 }
8155 }
8156
8157 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8158 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8159
8160 static int
8161 is_dynamic_field (struct type *templ_type, int field_num)
8162 {
8163 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8164
8165 return name != NULL
8166 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8167 && strstr (name, "___XVL") != NULL;
8168 }
8169
8170 /* The index of the variant field of TYPE, or -1 if TYPE does not
8171 represent a variant record type. */
8172
8173 static int
8174 variant_field_index (struct type *type)
8175 {
8176 int f;
8177
8178 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8179 return -1;
8180
8181 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8182 {
8183 if (ada_is_variant_part (type, f))
8184 return f;
8185 }
8186 return -1;
8187 }
8188
8189 /* A record type with no fields. */
8190
8191 static struct type *
8192 empty_record (struct type *templ)
8193 {
8194 struct type *type = alloc_type_copy (templ);
8195
8196 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8197 TYPE_NFIELDS (type) = 0;
8198 TYPE_FIELDS (type) = NULL;
8199 INIT_CPLUS_SPECIFIC (type);
8200 TYPE_NAME (type) = "<empty>";
8201 TYPE_TAG_NAME (type) = NULL;
8202 TYPE_LENGTH (type) = 0;
8203 return type;
8204 }
8205
8206 /* An ordinary record type (with fixed-length fields) that describes
8207 the value of type TYPE at VALADDR or ADDRESS (see comments at
8208 the beginning of this section) VAL according to GNAT conventions.
8209 DVAL0 should describe the (portion of a) record that contains any
8210 necessary discriminants. It should be NULL if value_type (VAL) is
8211 an outer-level type (i.e., as opposed to a branch of a variant.) A
8212 variant field (unless unchecked) is replaced by a particular branch
8213 of the variant.
8214
8215 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8216 length are not statically known are discarded. As a consequence,
8217 VALADDR, ADDRESS and DVAL0 are ignored.
8218
8219 NOTE: Limitations: For now, we assume that dynamic fields and
8220 variants occupy whole numbers of bytes. However, they need not be
8221 byte-aligned. */
8222
8223 struct type *
8224 ada_template_to_fixed_record_type_1 (struct type *type,
8225 const gdb_byte *valaddr,
8226 CORE_ADDR address, struct value *dval0,
8227 int keep_dynamic_fields)
8228 {
8229 struct value *mark = value_mark ();
8230 struct value *dval;
8231 struct type *rtype;
8232 int nfields, bit_len;
8233 int variant_field;
8234 long off;
8235 int fld_bit_len;
8236 int f;
8237
8238 /* Compute the number of fields in this record type that are going
8239 to be processed: unless keep_dynamic_fields, this includes only
8240 fields whose position and length are static will be processed. */
8241 if (keep_dynamic_fields)
8242 nfields = TYPE_NFIELDS (type);
8243 else
8244 {
8245 nfields = 0;
8246 while (nfields < TYPE_NFIELDS (type)
8247 && !ada_is_variant_part (type, nfields)
8248 && !is_dynamic_field (type, nfields))
8249 nfields++;
8250 }
8251
8252 rtype = alloc_type_copy (type);
8253 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8254 INIT_CPLUS_SPECIFIC (rtype);
8255 TYPE_NFIELDS (rtype) = nfields;
8256 TYPE_FIELDS (rtype) = (struct field *)
8257 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8258 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8259 TYPE_NAME (rtype) = ada_type_name (type);
8260 TYPE_TAG_NAME (rtype) = NULL;
8261 TYPE_FIXED_INSTANCE (rtype) = 1;
8262
8263 off = 0;
8264 bit_len = 0;
8265 variant_field = -1;
8266
8267 for (f = 0; f < nfields; f += 1)
8268 {
8269 off = align_value (off, field_alignment (type, f))
8270 + TYPE_FIELD_BITPOS (type, f);
8271 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8272 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8273
8274 if (ada_is_variant_part (type, f))
8275 {
8276 variant_field = f;
8277 fld_bit_len = 0;
8278 }
8279 else if (is_dynamic_field (type, f))
8280 {
8281 const gdb_byte *field_valaddr = valaddr;
8282 CORE_ADDR field_address = address;
8283 struct type *field_type =
8284 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8285
8286 if (dval0 == NULL)
8287 {
8288 /* rtype's length is computed based on the run-time
8289 value of discriminants. If the discriminants are not
8290 initialized, the type size may be completely bogus and
8291 GDB may fail to allocate a value for it. So check the
8292 size first before creating the value. */
8293 ada_ensure_varsize_limit (rtype);
8294 /* Using plain value_from_contents_and_address here
8295 causes problems because we will end up trying to
8296 resolve a type that is currently being
8297 constructed. */
8298 dval = value_from_contents_and_address_unresolved (rtype,
8299 valaddr,
8300 address);
8301 rtype = value_type (dval);
8302 }
8303 else
8304 dval = dval0;
8305
8306 /* If the type referenced by this field is an aligner type, we need
8307 to unwrap that aligner type, because its size might not be set.
8308 Keeping the aligner type would cause us to compute the wrong
8309 size for this field, impacting the offset of the all the fields
8310 that follow this one. */
8311 if (ada_is_aligner_type (field_type))
8312 {
8313 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8314
8315 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8316 field_address = cond_offset_target (field_address, field_offset);
8317 field_type = ada_aligned_type (field_type);
8318 }
8319
8320 field_valaddr = cond_offset_host (field_valaddr,
8321 off / TARGET_CHAR_BIT);
8322 field_address = cond_offset_target (field_address,
8323 off / TARGET_CHAR_BIT);
8324
8325 /* Get the fixed type of the field. Note that, in this case,
8326 we do not want to get the real type out of the tag: if
8327 the current field is the parent part of a tagged record,
8328 we will get the tag of the object. Clearly wrong: the real
8329 type of the parent is not the real type of the child. We
8330 would end up in an infinite loop. */
8331 field_type = ada_get_base_type (field_type);
8332 field_type = ada_to_fixed_type (field_type, field_valaddr,
8333 field_address, dval, 0);
8334 /* If the field size is already larger than the maximum
8335 object size, then the record itself will necessarily
8336 be larger than the maximum object size. We need to make
8337 this check now, because the size might be so ridiculously
8338 large (due to an uninitialized variable in the inferior)
8339 that it would cause an overflow when adding it to the
8340 record size. */
8341 ada_ensure_varsize_limit (field_type);
8342
8343 TYPE_FIELD_TYPE (rtype, f) = field_type;
8344 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8345 /* The multiplication can potentially overflow. But because
8346 the field length has been size-checked just above, and
8347 assuming that the maximum size is a reasonable value,
8348 an overflow should not happen in practice. So rather than
8349 adding overflow recovery code to this already complex code,
8350 we just assume that it's not going to happen. */
8351 fld_bit_len =
8352 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8353 }
8354 else
8355 {
8356 /* Note: If this field's type is a typedef, it is important
8357 to preserve the typedef layer.
8358
8359 Otherwise, we might be transforming a typedef to a fat
8360 pointer (encoding a pointer to an unconstrained array),
8361 into a basic fat pointer (encoding an unconstrained
8362 array). As both types are implemented using the same
8363 structure, the typedef is the only clue which allows us
8364 to distinguish between the two options. Stripping it
8365 would prevent us from printing this field appropriately. */
8366 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8367 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8368 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8369 fld_bit_len =
8370 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8371 else
8372 {
8373 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8374
8375 /* We need to be careful of typedefs when computing
8376 the length of our field. If this is a typedef,
8377 get the length of the target type, not the length
8378 of the typedef. */
8379 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8380 field_type = ada_typedef_target_type (field_type);
8381
8382 fld_bit_len =
8383 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8384 }
8385 }
8386 if (off + fld_bit_len > bit_len)
8387 bit_len = off + fld_bit_len;
8388 off += fld_bit_len;
8389 TYPE_LENGTH (rtype) =
8390 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8391 }
8392
8393 /* We handle the variant part, if any, at the end because of certain
8394 odd cases in which it is re-ordered so as NOT to be the last field of
8395 the record. This can happen in the presence of representation
8396 clauses. */
8397 if (variant_field >= 0)
8398 {
8399 struct type *branch_type;
8400
8401 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8402
8403 if (dval0 == NULL)
8404 {
8405 /* Using plain value_from_contents_and_address here causes
8406 problems because we will end up trying to resolve a type
8407 that is currently being constructed. */
8408 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8409 address);
8410 rtype = value_type (dval);
8411 }
8412 else
8413 dval = dval0;
8414
8415 branch_type =
8416 to_fixed_variant_branch_type
8417 (TYPE_FIELD_TYPE (type, variant_field),
8418 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8419 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8420 if (branch_type == NULL)
8421 {
8422 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8423 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8424 TYPE_NFIELDS (rtype) -= 1;
8425 }
8426 else
8427 {
8428 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8429 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8430 fld_bit_len =
8431 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8432 TARGET_CHAR_BIT;
8433 if (off + fld_bit_len > bit_len)
8434 bit_len = off + fld_bit_len;
8435 TYPE_LENGTH (rtype) =
8436 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8437 }
8438 }
8439
8440 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8441 should contain the alignment of that record, which should be a strictly
8442 positive value. If null or negative, then something is wrong, most
8443 probably in the debug info. In that case, we don't round up the size
8444 of the resulting type. If this record is not part of another structure,
8445 the current RTYPE length might be good enough for our purposes. */
8446 if (TYPE_LENGTH (type) <= 0)
8447 {
8448 if (TYPE_NAME (rtype))
8449 warning (_("Invalid type size for `%s' detected: %d."),
8450 TYPE_NAME (rtype), TYPE_LENGTH (type));
8451 else
8452 warning (_("Invalid type size for <unnamed> detected: %d."),
8453 TYPE_LENGTH (type));
8454 }
8455 else
8456 {
8457 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8458 TYPE_LENGTH (type));
8459 }
8460
8461 value_free_to_mark (mark);
8462 if (TYPE_LENGTH (rtype) > varsize_limit)
8463 error (_("record type with dynamic size is larger than varsize-limit"));
8464 return rtype;
8465 }
8466
8467 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8468 of 1. */
8469
8470 static struct type *
8471 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8472 CORE_ADDR address, struct value *dval0)
8473 {
8474 return ada_template_to_fixed_record_type_1 (type, valaddr,
8475 address, dval0, 1);
8476 }
8477
8478 /* An ordinary record type in which ___XVL-convention fields and
8479 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8480 static approximations, containing all possible fields. Uses
8481 no runtime values. Useless for use in values, but that's OK,
8482 since the results are used only for type determinations. Works on both
8483 structs and unions. Representation note: to save space, we memorize
8484 the result of this function in the TYPE_TARGET_TYPE of the
8485 template type. */
8486
8487 static struct type *
8488 template_to_static_fixed_type (struct type *type0)
8489 {
8490 struct type *type;
8491 int nfields;
8492 int f;
8493
8494 /* No need no do anything if the input type is already fixed. */
8495 if (TYPE_FIXED_INSTANCE (type0))
8496 return type0;
8497
8498 /* Likewise if we already have computed the static approximation. */
8499 if (TYPE_TARGET_TYPE (type0) != NULL)
8500 return TYPE_TARGET_TYPE (type0);
8501
8502 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8503 type = type0;
8504 nfields = TYPE_NFIELDS (type0);
8505
8506 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8507 recompute all over next time. */
8508 TYPE_TARGET_TYPE (type0) = type;
8509
8510 for (f = 0; f < nfields; f += 1)
8511 {
8512 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8513 struct type *new_type;
8514
8515 if (is_dynamic_field (type0, f))
8516 {
8517 field_type = ada_check_typedef (field_type);
8518 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8519 }
8520 else
8521 new_type = static_unwrap_type (field_type);
8522
8523 if (new_type != field_type)
8524 {
8525 /* Clone TYPE0 only the first time we get a new field type. */
8526 if (type == type0)
8527 {
8528 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8529 TYPE_CODE (type) = TYPE_CODE (type0);
8530 INIT_CPLUS_SPECIFIC (type);
8531 TYPE_NFIELDS (type) = nfields;
8532 TYPE_FIELDS (type) = (struct field *)
8533 TYPE_ALLOC (type, nfields * sizeof (struct field));
8534 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8535 sizeof (struct field) * nfields);
8536 TYPE_NAME (type) = ada_type_name (type0);
8537 TYPE_TAG_NAME (type) = NULL;
8538 TYPE_FIXED_INSTANCE (type) = 1;
8539 TYPE_LENGTH (type) = 0;
8540 }
8541 TYPE_FIELD_TYPE (type, f) = new_type;
8542 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8543 }
8544 }
8545
8546 return type;
8547 }
8548
8549 /* Given an object of type TYPE whose contents are at VALADDR and
8550 whose address in memory is ADDRESS, returns a revision of TYPE,
8551 which should be a non-dynamic-sized record, in which the variant
8552 part, if any, is replaced with the appropriate branch. Looks
8553 for discriminant values in DVAL0, which can be NULL if the record
8554 contains the necessary discriminant values. */
8555
8556 static struct type *
8557 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8558 CORE_ADDR address, struct value *dval0)
8559 {
8560 struct value *mark = value_mark ();
8561 struct value *dval;
8562 struct type *rtype;
8563 struct type *branch_type;
8564 int nfields = TYPE_NFIELDS (type);
8565 int variant_field = variant_field_index (type);
8566
8567 if (variant_field == -1)
8568 return type;
8569
8570 if (dval0 == NULL)
8571 {
8572 dval = value_from_contents_and_address (type, valaddr, address);
8573 type = value_type (dval);
8574 }
8575 else
8576 dval = dval0;
8577
8578 rtype = alloc_type_copy (type);
8579 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8580 INIT_CPLUS_SPECIFIC (rtype);
8581 TYPE_NFIELDS (rtype) = nfields;
8582 TYPE_FIELDS (rtype) =
8583 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8584 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8585 sizeof (struct field) * nfields);
8586 TYPE_NAME (rtype) = ada_type_name (type);
8587 TYPE_TAG_NAME (rtype) = NULL;
8588 TYPE_FIXED_INSTANCE (rtype) = 1;
8589 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8590
8591 branch_type = to_fixed_variant_branch_type
8592 (TYPE_FIELD_TYPE (type, variant_field),
8593 cond_offset_host (valaddr,
8594 TYPE_FIELD_BITPOS (type, variant_field)
8595 / TARGET_CHAR_BIT),
8596 cond_offset_target (address,
8597 TYPE_FIELD_BITPOS (type, variant_field)
8598 / TARGET_CHAR_BIT), dval);
8599 if (branch_type == NULL)
8600 {
8601 int f;
8602
8603 for (f = variant_field + 1; f < nfields; f += 1)
8604 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8605 TYPE_NFIELDS (rtype) -= 1;
8606 }
8607 else
8608 {
8609 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8610 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8611 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8612 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8613 }
8614 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8615
8616 value_free_to_mark (mark);
8617 return rtype;
8618 }
8619
8620 /* An ordinary record type (with fixed-length fields) that describes
8621 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8622 beginning of this section]. Any necessary discriminants' values
8623 should be in DVAL, a record value; it may be NULL if the object
8624 at ADDR itself contains any necessary discriminant values.
8625 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8626 values from the record are needed. Except in the case that DVAL,
8627 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8628 unchecked) is replaced by a particular branch of the variant.
8629
8630 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8631 is questionable and may be removed. It can arise during the
8632 processing of an unconstrained-array-of-record type where all the
8633 variant branches have exactly the same size. This is because in
8634 such cases, the compiler does not bother to use the XVS convention
8635 when encoding the record. I am currently dubious of this
8636 shortcut and suspect the compiler should be altered. FIXME. */
8637
8638 static struct type *
8639 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8640 CORE_ADDR address, struct value *dval)
8641 {
8642 struct type *templ_type;
8643
8644 if (TYPE_FIXED_INSTANCE (type0))
8645 return type0;
8646
8647 templ_type = dynamic_template_type (type0);
8648
8649 if (templ_type != NULL)
8650 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8651 else if (variant_field_index (type0) >= 0)
8652 {
8653 if (dval == NULL && valaddr == NULL && address == 0)
8654 return type0;
8655 return to_record_with_fixed_variant_part (type0, valaddr, address,
8656 dval);
8657 }
8658 else
8659 {
8660 TYPE_FIXED_INSTANCE (type0) = 1;
8661 return type0;
8662 }
8663
8664 }
8665
8666 /* An ordinary record type (with fixed-length fields) that describes
8667 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8668 union type. Any necessary discriminants' values should be in DVAL,
8669 a record value. That is, this routine selects the appropriate
8670 branch of the union at ADDR according to the discriminant value
8671 indicated in the union's type name. Returns VAR_TYPE0 itself if
8672 it represents a variant subject to a pragma Unchecked_Union. */
8673
8674 static struct type *
8675 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8676 CORE_ADDR address, struct value *dval)
8677 {
8678 int which;
8679 struct type *templ_type;
8680 struct type *var_type;
8681
8682 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8683 var_type = TYPE_TARGET_TYPE (var_type0);
8684 else
8685 var_type = var_type0;
8686
8687 templ_type = ada_find_parallel_type (var_type, "___XVU");
8688
8689 if (templ_type != NULL)
8690 var_type = templ_type;
8691
8692 if (is_unchecked_variant (var_type, value_type (dval)))
8693 return var_type0;
8694 which =
8695 ada_which_variant_applies (var_type,
8696 value_type (dval), value_contents (dval));
8697
8698 if (which < 0)
8699 return empty_record (var_type);
8700 else if (is_dynamic_field (var_type, which))
8701 return to_fixed_record_type
8702 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8703 valaddr, address, dval);
8704 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8705 return
8706 to_fixed_record_type
8707 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8708 else
8709 return TYPE_FIELD_TYPE (var_type, which);
8710 }
8711
8712 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8713 ENCODING_TYPE, a type following the GNAT conventions for discrete
8714 type encodings, only carries redundant information. */
8715
8716 static int
8717 ada_is_redundant_range_encoding (struct type *range_type,
8718 struct type *encoding_type)
8719 {
8720 struct type *fixed_range_type;
8721 const char *bounds_str;
8722 int n;
8723 LONGEST lo, hi;
8724
8725 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8726
8727 if (TYPE_CODE (get_base_type (range_type))
8728 != TYPE_CODE (get_base_type (encoding_type)))
8729 {
8730 /* The compiler probably used a simple base type to describe
8731 the range type instead of the range's actual base type,
8732 expecting us to get the real base type from the encoding
8733 anyway. In this situation, the encoding cannot be ignored
8734 as redundant. */
8735 return 0;
8736 }
8737
8738 if (is_dynamic_type (range_type))
8739 return 0;
8740
8741 if (TYPE_NAME (encoding_type) == NULL)
8742 return 0;
8743
8744 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8745 if (bounds_str == NULL)
8746 return 0;
8747
8748 n = 8; /* Skip "___XDLU_". */
8749 if (!ada_scan_number (bounds_str, n, &lo, &n))
8750 return 0;
8751 if (TYPE_LOW_BOUND (range_type) != lo)
8752 return 0;
8753
8754 n += 2; /* Skip the "__" separator between the two bounds. */
8755 if (!ada_scan_number (bounds_str, n, &hi, &n))
8756 return 0;
8757 if (TYPE_HIGH_BOUND (range_type) != hi)
8758 return 0;
8759
8760 return 1;
8761 }
8762
8763 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8764 a type following the GNAT encoding for describing array type
8765 indices, only carries redundant information. */
8766
8767 static int
8768 ada_is_redundant_index_type_desc (struct type *array_type,
8769 struct type *desc_type)
8770 {
8771 struct type *this_layer = check_typedef (array_type);
8772 int i;
8773
8774 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8775 {
8776 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8777 TYPE_FIELD_TYPE (desc_type, i)))
8778 return 0;
8779 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8780 }
8781
8782 return 1;
8783 }
8784
8785 /* Assuming that TYPE0 is an array type describing the type of a value
8786 at ADDR, and that DVAL describes a record containing any
8787 discriminants used in TYPE0, returns a type for the value that
8788 contains no dynamic components (that is, no components whose sizes
8789 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8790 true, gives an error message if the resulting type's size is over
8791 varsize_limit. */
8792
8793 static struct type *
8794 to_fixed_array_type (struct type *type0, struct value *dval,
8795 int ignore_too_big)
8796 {
8797 struct type *index_type_desc;
8798 struct type *result;
8799 int constrained_packed_array_p;
8800 static const char *xa_suffix = "___XA";
8801
8802 type0 = ada_check_typedef (type0);
8803 if (TYPE_FIXED_INSTANCE (type0))
8804 return type0;
8805
8806 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8807 if (constrained_packed_array_p)
8808 type0 = decode_constrained_packed_array_type (type0);
8809
8810 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8811
8812 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8813 encoding suffixed with 'P' may still be generated. If so,
8814 it should be used to find the XA type. */
8815
8816 if (index_type_desc == NULL)
8817 {
8818 const char *type_name = ada_type_name (type0);
8819
8820 if (type_name != NULL)
8821 {
8822 const int len = strlen (type_name);
8823 char *name = (char *) alloca (len + strlen (xa_suffix));
8824
8825 if (type_name[len - 1] == 'P')
8826 {
8827 strcpy (name, type_name);
8828 strcpy (name + len - 1, xa_suffix);
8829 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8830 }
8831 }
8832 }
8833
8834 ada_fixup_array_indexes_type (index_type_desc);
8835 if (index_type_desc != NULL
8836 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8837 {
8838 /* Ignore this ___XA parallel type, as it does not bring any
8839 useful information. This allows us to avoid creating fixed
8840 versions of the array's index types, which would be identical
8841 to the original ones. This, in turn, can also help avoid
8842 the creation of fixed versions of the array itself. */
8843 index_type_desc = NULL;
8844 }
8845
8846 if (index_type_desc == NULL)
8847 {
8848 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8849
8850 /* NOTE: elt_type---the fixed version of elt_type0---should never
8851 depend on the contents of the array in properly constructed
8852 debugging data. */
8853 /* Create a fixed version of the array element type.
8854 We're not providing the address of an element here,
8855 and thus the actual object value cannot be inspected to do
8856 the conversion. This should not be a problem, since arrays of
8857 unconstrained objects are not allowed. In particular, all
8858 the elements of an array of a tagged type should all be of
8859 the same type specified in the debugging info. No need to
8860 consult the object tag. */
8861 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8862
8863 /* Make sure we always create a new array type when dealing with
8864 packed array types, since we're going to fix-up the array
8865 type length and element bitsize a little further down. */
8866 if (elt_type0 == elt_type && !constrained_packed_array_p)
8867 result = type0;
8868 else
8869 result = create_array_type (alloc_type_copy (type0),
8870 elt_type, TYPE_INDEX_TYPE (type0));
8871 }
8872 else
8873 {
8874 int i;
8875 struct type *elt_type0;
8876
8877 elt_type0 = type0;
8878 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8879 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8880
8881 /* NOTE: result---the fixed version of elt_type0---should never
8882 depend on the contents of the array in properly constructed
8883 debugging data. */
8884 /* Create a fixed version of the array element type.
8885 We're not providing the address of an element here,
8886 and thus the actual object value cannot be inspected to do
8887 the conversion. This should not be a problem, since arrays of
8888 unconstrained objects are not allowed. In particular, all
8889 the elements of an array of a tagged type should all be of
8890 the same type specified in the debugging info. No need to
8891 consult the object tag. */
8892 result =
8893 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8894
8895 elt_type0 = type0;
8896 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8897 {
8898 struct type *range_type =
8899 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8900
8901 result = create_array_type (alloc_type_copy (elt_type0),
8902 result, range_type);
8903 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8904 }
8905 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8906 error (_("array type with dynamic size is larger than varsize-limit"));
8907 }
8908
8909 /* We want to preserve the type name. This can be useful when
8910 trying to get the type name of a value that has already been
8911 printed (for instance, if the user did "print VAR; whatis $". */
8912 TYPE_NAME (result) = TYPE_NAME (type0);
8913
8914 if (constrained_packed_array_p)
8915 {
8916 /* So far, the resulting type has been created as if the original
8917 type was a regular (non-packed) array type. As a result, the
8918 bitsize of the array elements needs to be set again, and the array
8919 length needs to be recomputed based on that bitsize. */
8920 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8921 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8922
8923 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8924 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8925 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8926 TYPE_LENGTH (result)++;
8927 }
8928
8929 TYPE_FIXED_INSTANCE (result) = 1;
8930 return result;
8931 }
8932
8933
8934 /* A standard type (containing no dynamically sized components)
8935 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8936 DVAL describes a record containing any discriminants used in TYPE0,
8937 and may be NULL if there are none, or if the object of type TYPE at
8938 ADDRESS or in VALADDR contains these discriminants.
8939
8940 If CHECK_TAG is not null, in the case of tagged types, this function
8941 attempts to locate the object's tag and use it to compute the actual
8942 type. However, when ADDRESS is null, we cannot use it to determine the
8943 location of the tag, and therefore compute the tagged type's actual type.
8944 So we return the tagged type without consulting the tag. */
8945
8946 static struct type *
8947 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8948 CORE_ADDR address, struct value *dval, int check_tag)
8949 {
8950 type = ada_check_typedef (type);
8951 switch (TYPE_CODE (type))
8952 {
8953 default:
8954 return type;
8955 case TYPE_CODE_STRUCT:
8956 {
8957 struct type *static_type = to_static_fixed_type (type);
8958 struct type *fixed_record_type =
8959 to_fixed_record_type (type, valaddr, address, NULL);
8960
8961 /* If STATIC_TYPE is a tagged type and we know the object's address,
8962 then we can determine its tag, and compute the object's actual
8963 type from there. Note that we have to use the fixed record
8964 type (the parent part of the record may have dynamic fields
8965 and the way the location of _tag is expressed may depend on
8966 them). */
8967
8968 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8969 {
8970 struct value *tag =
8971 value_tag_from_contents_and_address
8972 (fixed_record_type,
8973 valaddr,
8974 address);
8975 struct type *real_type = type_from_tag (tag);
8976 struct value *obj =
8977 value_from_contents_and_address (fixed_record_type,
8978 valaddr,
8979 address);
8980 fixed_record_type = value_type (obj);
8981 if (real_type != NULL)
8982 return to_fixed_record_type
8983 (real_type, NULL,
8984 value_address (ada_tag_value_at_base_address (obj)), NULL);
8985 }
8986
8987 /* Check to see if there is a parallel ___XVZ variable.
8988 If there is, then it provides the actual size of our type. */
8989 else if (ada_type_name (fixed_record_type) != NULL)
8990 {
8991 const char *name = ada_type_name (fixed_record_type);
8992 char *xvz_name
8993 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8994 int xvz_found = 0;
8995 LONGEST size;
8996
8997 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8998 size = get_int_var_value (xvz_name, &xvz_found);
8999 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9000 {
9001 fixed_record_type = copy_type (fixed_record_type);
9002 TYPE_LENGTH (fixed_record_type) = size;
9003
9004 /* The FIXED_RECORD_TYPE may have be a stub. We have
9005 observed this when the debugging info is STABS, and
9006 apparently it is something that is hard to fix.
9007
9008 In practice, we don't need the actual type definition
9009 at all, because the presence of the XVZ variable allows us
9010 to assume that there must be a XVS type as well, which we
9011 should be able to use later, when we need the actual type
9012 definition.
9013
9014 In the meantime, pretend that the "fixed" type we are
9015 returning is NOT a stub, because this can cause trouble
9016 when using this type to create new types targeting it.
9017 Indeed, the associated creation routines often check
9018 whether the target type is a stub and will try to replace
9019 it, thus using a type with the wrong size. This, in turn,
9020 might cause the new type to have the wrong size too.
9021 Consider the case of an array, for instance, where the size
9022 of the array is computed from the number of elements in
9023 our array multiplied by the size of its element. */
9024 TYPE_STUB (fixed_record_type) = 0;
9025 }
9026 }
9027 return fixed_record_type;
9028 }
9029 case TYPE_CODE_ARRAY:
9030 return to_fixed_array_type (type, dval, 1);
9031 case TYPE_CODE_UNION:
9032 if (dval == NULL)
9033 return type;
9034 else
9035 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9036 }
9037 }
9038
9039 /* The same as ada_to_fixed_type_1, except that it preserves the type
9040 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9041
9042 The typedef layer needs be preserved in order to differentiate between
9043 arrays and array pointers when both types are implemented using the same
9044 fat pointer. In the array pointer case, the pointer is encoded as
9045 a typedef of the pointer type. For instance, considering:
9046
9047 type String_Access is access String;
9048 S1 : String_Access := null;
9049
9050 To the debugger, S1 is defined as a typedef of type String. But
9051 to the user, it is a pointer. So if the user tries to print S1,
9052 we should not dereference the array, but print the array address
9053 instead.
9054
9055 If we didn't preserve the typedef layer, we would lose the fact that
9056 the type is to be presented as a pointer (needs de-reference before
9057 being printed). And we would also use the source-level type name. */
9058
9059 struct type *
9060 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9061 CORE_ADDR address, struct value *dval, int check_tag)
9062
9063 {
9064 struct type *fixed_type =
9065 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9066
9067 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9068 then preserve the typedef layer.
9069
9070 Implementation note: We can only check the main-type portion of
9071 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9072 from TYPE now returns a type that has the same instance flags
9073 as TYPE. For instance, if TYPE is a "typedef const", and its
9074 target type is a "struct", then the typedef elimination will return
9075 a "const" version of the target type. See check_typedef for more
9076 details about how the typedef layer elimination is done.
9077
9078 brobecker/2010-11-19: It seems to me that the only case where it is
9079 useful to preserve the typedef layer is when dealing with fat pointers.
9080 Perhaps, we could add a check for that and preserve the typedef layer
9081 only in that situation. But this seems unecessary so far, probably
9082 because we call check_typedef/ada_check_typedef pretty much everywhere.
9083 */
9084 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9085 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9086 == TYPE_MAIN_TYPE (fixed_type)))
9087 return type;
9088
9089 return fixed_type;
9090 }
9091
9092 /* A standard (static-sized) type corresponding as well as possible to
9093 TYPE0, but based on no runtime data. */
9094
9095 static struct type *
9096 to_static_fixed_type (struct type *type0)
9097 {
9098 struct type *type;
9099
9100 if (type0 == NULL)
9101 return NULL;
9102
9103 if (TYPE_FIXED_INSTANCE (type0))
9104 return type0;
9105
9106 type0 = ada_check_typedef (type0);
9107
9108 switch (TYPE_CODE (type0))
9109 {
9110 default:
9111 return type0;
9112 case TYPE_CODE_STRUCT:
9113 type = dynamic_template_type (type0);
9114 if (type != NULL)
9115 return template_to_static_fixed_type (type);
9116 else
9117 return template_to_static_fixed_type (type0);
9118 case TYPE_CODE_UNION:
9119 type = ada_find_parallel_type (type0, "___XVU");
9120 if (type != NULL)
9121 return template_to_static_fixed_type (type);
9122 else
9123 return template_to_static_fixed_type (type0);
9124 }
9125 }
9126
9127 /* A static approximation of TYPE with all type wrappers removed. */
9128
9129 static struct type *
9130 static_unwrap_type (struct type *type)
9131 {
9132 if (ada_is_aligner_type (type))
9133 {
9134 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9135 if (ada_type_name (type1) == NULL)
9136 TYPE_NAME (type1) = ada_type_name (type);
9137
9138 return static_unwrap_type (type1);
9139 }
9140 else
9141 {
9142 struct type *raw_real_type = ada_get_base_type (type);
9143
9144 if (raw_real_type == type)
9145 return type;
9146 else
9147 return to_static_fixed_type (raw_real_type);
9148 }
9149 }
9150
9151 /* In some cases, incomplete and private types require
9152 cross-references that are not resolved as records (for example,
9153 type Foo;
9154 type FooP is access Foo;
9155 V: FooP;
9156 type Foo is array ...;
9157 ). In these cases, since there is no mechanism for producing
9158 cross-references to such types, we instead substitute for FooP a
9159 stub enumeration type that is nowhere resolved, and whose tag is
9160 the name of the actual type. Call these types "non-record stubs". */
9161
9162 /* A type equivalent to TYPE that is not a non-record stub, if one
9163 exists, otherwise TYPE. */
9164
9165 struct type *
9166 ada_check_typedef (struct type *type)
9167 {
9168 if (type == NULL)
9169 return NULL;
9170
9171 /* If our type is a typedef type of a fat pointer, then we're done.
9172 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9173 what allows us to distinguish between fat pointers that represent
9174 array types, and fat pointers that represent array access types
9175 (in both cases, the compiler implements them as fat pointers). */
9176 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9177 && is_thick_pntr (ada_typedef_target_type (type)))
9178 return type;
9179
9180 type = check_typedef (type);
9181 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9182 || !TYPE_STUB (type)
9183 || TYPE_TAG_NAME (type) == NULL)
9184 return type;
9185 else
9186 {
9187 const char *name = TYPE_TAG_NAME (type);
9188 struct type *type1 = ada_find_any_type (name);
9189
9190 if (type1 == NULL)
9191 return type;
9192
9193 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9194 stubs pointing to arrays, as we don't create symbols for array
9195 types, only for the typedef-to-array types). If that's the case,
9196 strip the typedef layer. */
9197 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9198 type1 = ada_check_typedef (type1);
9199
9200 return type1;
9201 }
9202 }
9203
9204 /* A value representing the data at VALADDR/ADDRESS as described by
9205 type TYPE0, but with a standard (static-sized) type that correctly
9206 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9207 type, then return VAL0 [this feature is simply to avoid redundant
9208 creation of struct values]. */
9209
9210 static struct value *
9211 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9212 struct value *val0)
9213 {
9214 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9215
9216 if (type == type0 && val0 != NULL)
9217 return val0;
9218 else
9219 return value_from_contents_and_address (type, 0, address);
9220 }
9221
9222 /* A value representing VAL, but with a standard (static-sized) type
9223 that correctly describes it. Does not necessarily create a new
9224 value. */
9225
9226 struct value *
9227 ada_to_fixed_value (struct value *val)
9228 {
9229 val = unwrap_value (val);
9230 val = ada_to_fixed_value_create (value_type (val),
9231 value_address (val),
9232 val);
9233 return val;
9234 }
9235 \f
9236
9237 /* Attributes */
9238
9239 /* Table mapping attribute numbers to names.
9240 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9241
9242 static const char *attribute_names[] = {
9243 "<?>",
9244
9245 "first",
9246 "last",
9247 "length",
9248 "image",
9249 "max",
9250 "min",
9251 "modulus",
9252 "pos",
9253 "size",
9254 "tag",
9255 "val",
9256 0
9257 };
9258
9259 const char *
9260 ada_attribute_name (enum exp_opcode n)
9261 {
9262 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9263 return attribute_names[n - OP_ATR_FIRST + 1];
9264 else
9265 return attribute_names[0];
9266 }
9267
9268 /* Evaluate the 'POS attribute applied to ARG. */
9269
9270 static LONGEST
9271 pos_atr (struct value *arg)
9272 {
9273 struct value *val = coerce_ref (arg);
9274 struct type *type = value_type (val);
9275 LONGEST result;
9276
9277 if (!discrete_type_p (type))
9278 error (_("'POS only defined on discrete types"));
9279
9280 if (!discrete_position (type, value_as_long (val), &result))
9281 error (_("enumeration value is invalid: can't find 'POS"));
9282
9283 return result;
9284 }
9285
9286 static struct value *
9287 value_pos_atr (struct type *type, struct value *arg)
9288 {
9289 return value_from_longest (type, pos_atr (arg));
9290 }
9291
9292 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9293
9294 static struct value *
9295 value_val_atr (struct type *type, struct value *arg)
9296 {
9297 if (!discrete_type_p (type))
9298 error (_("'VAL only defined on discrete types"));
9299 if (!integer_type_p (value_type (arg)))
9300 error (_("'VAL requires integral argument"));
9301
9302 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9303 {
9304 long pos = value_as_long (arg);
9305
9306 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9307 error (_("argument to 'VAL out of range"));
9308 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9309 }
9310 else
9311 return value_from_longest (type, value_as_long (arg));
9312 }
9313 \f
9314
9315 /* Evaluation */
9316
9317 /* True if TYPE appears to be an Ada character type.
9318 [At the moment, this is true only for Character and Wide_Character;
9319 It is a heuristic test that could stand improvement]. */
9320
9321 int
9322 ada_is_character_type (struct type *type)
9323 {
9324 const char *name;
9325
9326 /* If the type code says it's a character, then assume it really is,
9327 and don't check any further. */
9328 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9329 return 1;
9330
9331 /* Otherwise, assume it's a character type iff it is a discrete type
9332 with a known character type name. */
9333 name = ada_type_name (type);
9334 return (name != NULL
9335 && (TYPE_CODE (type) == TYPE_CODE_INT
9336 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9337 && (strcmp (name, "character") == 0
9338 || strcmp (name, "wide_character") == 0
9339 || strcmp (name, "wide_wide_character") == 0
9340 || strcmp (name, "unsigned char") == 0));
9341 }
9342
9343 /* True if TYPE appears to be an Ada string type. */
9344
9345 int
9346 ada_is_string_type (struct type *type)
9347 {
9348 type = ada_check_typedef (type);
9349 if (type != NULL
9350 && TYPE_CODE (type) != TYPE_CODE_PTR
9351 && (ada_is_simple_array_type (type)
9352 || ada_is_array_descriptor_type (type))
9353 && ada_array_arity (type) == 1)
9354 {
9355 struct type *elttype = ada_array_element_type (type, 1);
9356
9357 return ada_is_character_type (elttype);
9358 }
9359 else
9360 return 0;
9361 }
9362
9363 /* The compiler sometimes provides a parallel XVS type for a given
9364 PAD type. Normally, it is safe to follow the PAD type directly,
9365 but older versions of the compiler have a bug that causes the offset
9366 of its "F" field to be wrong. Following that field in that case
9367 would lead to incorrect results, but this can be worked around
9368 by ignoring the PAD type and using the associated XVS type instead.
9369
9370 Set to True if the debugger should trust the contents of PAD types.
9371 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9372 static int trust_pad_over_xvs = 1;
9373
9374 /* True if TYPE is a struct type introduced by the compiler to force the
9375 alignment of a value. Such types have a single field with a
9376 distinctive name. */
9377
9378 int
9379 ada_is_aligner_type (struct type *type)
9380 {
9381 type = ada_check_typedef (type);
9382
9383 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9384 return 0;
9385
9386 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9387 && TYPE_NFIELDS (type) == 1
9388 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9389 }
9390
9391 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9392 the parallel type. */
9393
9394 struct type *
9395 ada_get_base_type (struct type *raw_type)
9396 {
9397 struct type *real_type_namer;
9398 struct type *raw_real_type;
9399
9400 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9401 return raw_type;
9402
9403 if (ada_is_aligner_type (raw_type))
9404 /* The encoding specifies that we should always use the aligner type.
9405 So, even if this aligner type has an associated XVS type, we should
9406 simply ignore it.
9407
9408 According to the compiler gurus, an XVS type parallel to an aligner
9409 type may exist because of a stabs limitation. In stabs, aligner
9410 types are empty because the field has a variable-sized type, and
9411 thus cannot actually be used as an aligner type. As a result,
9412 we need the associated parallel XVS type to decode the type.
9413 Since the policy in the compiler is to not change the internal
9414 representation based on the debugging info format, we sometimes
9415 end up having a redundant XVS type parallel to the aligner type. */
9416 return raw_type;
9417
9418 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9419 if (real_type_namer == NULL
9420 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9421 || TYPE_NFIELDS (real_type_namer) != 1)
9422 return raw_type;
9423
9424 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9425 {
9426 /* This is an older encoding form where the base type needs to be
9427 looked up by name. We prefer the newer enconding because it is
9428 more efficient. */
9429 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9430 if (raw_real_type == NULL)
9431 return raw_type;
9432 else
9433 return raw_real_type;
9434 }
9435
9436 /* The field in our XVS type is a reference to the base type. */
9437 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9438 }
9439
9440 /* The type of value designated by TYPE, with all aligners removed. */
9441
9442 struct type *
9443 ada_aligned_type (struct type *type)
9444 {
9445 if (ada_is_aligner_type (type))
9446 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9447 else
9448 return ada_get_base_type (type);
9449 }
9450
9451
9452 /* The address of the aligned value in an object at address VALADDR
9453 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9454
9455 const gdb_byte *
9456 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9457 {
9458 if (ada_is_aligner_type (type))
9459 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9460 valaddr +
9461 TYPE_FIELD_BITPOS (type,
9462 0) / TARGET_CHAR_BIT);
9463 else
9464 return valaddr;
9465 }
9466
9467
9468
9469 /* The printed representation of an enumeration literal with encoded
9470 name NAME. The value is good to the next call of ada_enum_name. */
9471 const char *
9472 ada_enum_name (const char *name)
9473 {
9474 static char *result;
9475 static size_t result_len = 0;
9476 const char *tmp;
9477
9478 /* First, unqualify the enumeration name:
9479 1. Search for the last '.' character. If we find one, then skip
9480 all the preceding characters, the unqualified name starts
9481 right after that dot.
9482 2. Otherwise, we may be debugging on a target where the compiler
9483 translates dots into "__". Search forward for double underscores,
9484 but stop searching when we hit an overloading suffix, which is
9485 of the form "__" followed by digits. */
9486
9487 tmp = strrchr (name, '.');
9488 if (tmp != NULL)
9489 name = tmp + 1;
9490 else
9491 {
9492 while ((tmp = strstr (name, "__")) != NULL)
9493 {
9494 if (isdigit (tmp[2]))
9495 break;
9496 else
9497 name = tmp + 2;
9498 }
9499 }
9500
9501 if (name[0] == 'Q')
9502 {
9503 int v;
9504
9505 if (name[1] == 'U' || name[1] == 'W')
9506 {
9507 if (sscanf (name + 2, "%x", &v) != 1)
9508 return name;
9509 }
9510 else
9511 return name;
9512
9513 GROW_VECT (result, result_len, 16);
9514 if (isascii (v) && isprint (v))
9515 xsnprintf (result, result_len, "'%c'", v);
9516 else if (name[1] == 'U')
9517 xsnprintf (result, result_len, "[\"%02x\"]", v);
9518 else
9519 xsnprintf (result, result_len, "[\"%04x\"]", v);
9520
9521 return result;
9522 }
9523 else
9524 {
9525 tmp = strstr (name, "__");
9526 if (tmp == NULL)
9527 tmp = strstr (name, "$");
9528 if (tmp != NULL)
9529 {
9530 GROW_VECT (result, result_len, tmp - name + 1);
9531 strncpy (result, name, tmp - name);
9532 result[tmp - name] = '\0';
9533 return result;
9534 }
9535
9536 return name;
9537 }
9538 }
9539
9540 /* Evaluate the subexpression of EXP starting at *POS as for
9541 evaluate_type, updating *POS to point just past the evaluated
9542 expression. */
9543
9544 static struct value *
9545 evaluate_subexp_type (struct expression *exp, int *pos)
9546 {
9547 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9548 }
9549
9550 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9551 value it wraps. */
9552
9553 static struct value *
9554 unwrap_value (struct value *val)
9555 {
9556 struct type *type = ada_check_typedef (value_type (val));
9557
9558 if (ada_is_aligner_type (type))
9559 {
9560 struct value *v = ada_value_struct_elt (val, "F", 0);
9561 struct type *val_type = ada_check_typedef (value_type (v));
9562
9563 if (ada_type_name (val_type) == NULL)
9564 TYPE_NAME (val_type) = ada_type_name (type);
9565
9566 return unwrap_value (v);
9567 }
9568 else
9569 {
9570 struct type *raw_real_type =
9571 ada_check_typedef (ada_get_base_type (type));
9572
9573 /* If there is no parallel XVS or XVE type, then the value is
9574 already unwrapped. Return it without further modification. */
9575 if ((type == raw_real_type)
9576 && ada_find_parallel_type (type, "___XVE") == NULL)
9577 return val;
9578
9579 return
9580 coerce_unspec_val_to_type
9581 (val, ada_to_fixed_type (raw_real_type, 0,
9582 value_address (val),
9583 NULL, 1));
9584 }
9585 }
9586
9587 static struct value *
9588 cast_to_fixed (struct type *type, struct value *arg)
9589 {
9590 LONGEST val;
9591
9592 if (type == value_type (arg))
9593 return arg;
9594 else if (ada_is_fixed_point_type (value_type (arg)))
9595 val = ada_float_to_fixed (type,
9596 ada_fixed_to_float (value_type (arg),
9597 value_as_long (arg)));
9598 else
9599 {
9600 DOUBLEST argd = value_as_double (arg);
9601
9602 val = ada_float_to_fixed (type, argd);
9603 }
9604
9605 return value_from_longest (type, val);
9606 }
9607
9608 static struct value *
9609 cast_from_fixed (struct type *type, struct value *arg)
9610 {
9611 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9612 value_as_long (arg));
9613
9614 return value_from_double (type, val);
9615 }
9616
9617 /* Given two array types T1 and T2, return nonzero iff both arrays
9618 contain the same number of elements. */
9619
9620 static int
9621 ada_same_array_size_p (struct type *t1, struct type *t2)
9622 {
9623 LONGEST lo1, hi1, lo2, hi2;
9624
9625 /* Get the array bounds in order to verify that the size of
9626 the two arrays match. */
9627 if (!get_array_bounds (t1, &lo1, &hi1)
9628 || !get_array_bounds (t2, &lo2, &hi2))
9629 error (_("unable to determine array bounds"));
9630
9631 /* To make things easier for size comparison, normalize a bit
9632 the case of empty arrays by making sure that the difference
9633 between upper bound and lower bound is always -1. */
9634 if (lo1 > hi1)
9635 hi1 = lo1 - 1;
9636 if (lo2 > hi2)
9637 hi2 = lo2 - 1;
9638
9639 return (hi1 - lo1 == hi2 - lo2);
9640 }
9641
9642 /* Assuming that VAL is an array of integrals, and TYPE represents
9643 an array with the same number of elements, but with wider integral
9644 elements, return an array "casted" to TYPE. In practice, this
9645 means that the returned array is built by casting each element
9646 of the original array into TYPE's (wider) element type. */
9647
9648 static struct value *
9649 ada_promote_array_of_integrals (struct type *type, struct value *val)
9650 {
9651 struct type *elt_type = TYPE_TARGET_TYPE (type);
9652 LONGEST lo, hi;
9653 struct value *res;
9654 LONGEST i;
9655
9656 /* Verify that both val and type are arrays of scalars, and
9657 that the size of val's elements is smaller than the size
9658 of type's element. */
9659 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9660 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9661 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9662 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9663 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9664 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9665
9666 if (!get_array_bounds (type, &lo, &hi))
9667 error (_("unable to determine array bounds"));
9668
9669 res = allocate_value (type);
9670
9671 /* Promote each array element. */
9672 for (i = 0; i < hi - lo + 1; i++)
9673 {
9674 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9675
9676 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9677 value_contents_all (elt), TYPE_LENGTH (elt_type));
9678 }
9679
9680 return res;
9681 }
9682
9683 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9684 return the converted value. */
9685
9686 static struct value *
9687 coerce_for_assign (struct type *type, struct value *val)
9688 {
9689 struct type *type2 = value_type (val);
9690
9691 if (type == type2)
9692 return val;
9693
9694 type2 = ada_check_typedef (type2);
9695 type = ada_check_typedef (type);
9696
9697 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9698 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9699 {
9700 val = ada_value_ind (val);
9701 type2 = value_type (val);
9702 }
9703
9704 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9705 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9706 {
9707 if (!ada_same_array_size_p (type, type2))
9708 error (_("cannot assign arrays of different length"));
9709
9710 if (is_integral_type (TYPE_TARGET_TYPE (type))
9711 && is_integral_type (TYPE_TARGET_TYPE (type2))
9712 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9713 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9714 {
9715 /* Allow implicit promotion of the array elements to
9716 a wider type. */
9717 return ada_promote_array_of_integrals (type, val);
9718 }
9719
9720 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9721 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9722 error (_("Incompatible types in assignment"));
9723 deprecated_set_value_type (val, type);
9724 }
9725 return val;
9726 }
9727
9728 static struct value *
9729 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9730 {
9731 struct value *val;
9732 struct type *type1, *type2;
9733 LONGEST v, v1, v2;
9734
9735 arg1 = coerce_ref (arg1);
9736 arg2 = coerce_ref (arg2);
9737 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9738 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9739
9740 if (TYPE_CODE (type1) != TYPE_CODE_INT
9741 || TYPE_CODE (type2) != TYPE_CODE_INT)
9742 return value_binop (arg1, arg2, op);
9743
9744 switch (op)
9745 {
9746 case BINOP_MOD:
9747 case BINOP_DIV:
9748 case BINOP_REM:
9749 break;
9750 default:
9751 return value_binop (arg1, arg2, op);
9752 }
9753
9754 v2 = value_as_long (arg2);
9755 if (v2 == 0)
9756 error (_("second operand of %s must not be zero."), op_string (op));
9757
9758 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9759 return value_binop (arg1, arg2, op);
9760
9761 v1 = value_as_long (arg1);
9762 switch (op)
9763 {
9764 case BINOP_DIV:
9765 v = v1 / v2;
9766 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9767 v += v > 0 ? -1 : 1;
9768 break;
9769 case BINOP_REM:
9770 v = v1 % v2;
9771 if (v * v1 < 0)
9772 v -= v2;
9773 break;
9774 default:
9775 /* Should not reach this point. */
9776 v = 0;
9777 }
9778
9779 val = allocate_value (type1);
9780 store_unsigned_integer (value_contents_raw (val),
9781 TYPE_LENGTH (value_type (val)),
9782 gdbarch_byte_order (get_type_arch (type1)), v);
9783 return val;
9784 }
9785
9786 static int
9787 ada_value_equal (struct value *arg1, struct value *arg2)
9788 {
9789 if (ada_is_direct_array_type (value_type (arg1))
9790 || ada_is_direct_array_type (value_type (arg2)))
9791 {
9792 /* Automatically dereference any array reference before
9793 we attempt to perform the comparison. */
9794 arg1 = ada_coerce_ref (arg1);
9795 arg2 = ada_coerce_ref (arg2);
9796
9797 arg1 = ada_coerce_to_simple_array (arg1);
9798 arg2 = ada_coerce_to_simple_array (arg2);
9799 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9800 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9801 error (_("Attempt to compare array with non-array"));
9802 /* FIXME: The following works only for types whose
9803 representations use all bits (no padding or undefined bits)
9804 and do not have user-defined equality. */
9805 return
9806 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9807 && memcmp (value_contents (arg1), value_contents (arg2),
9808 TYPE_LENGTH (value_type (arg1))) == 0;
9809 }
9810 return value_equal (arg1, arg2);
9811 }
9812
9813 /* Total number of component associations in the aggregate starting at
9814 index PC in EXP. Assumes that index PC is the start of an
9815 OP_AGGREGATE. */
9816
9817 static int
9818 num_component_specs (struct expression *exp, int pc)
9819 {
9820 int n, m, i;
9821
9822 m = exp->elts[pc + 1].longconst;
9823 pc += 3;
9824 n = 0;
9825 for (i = 0; i < m; i += 1)
9826 {
9827 switch (exp->elts[pc].opcode)
9828 {
9829 default:
9830 n += 1;
9831 break;
9832 case OP_CHOICES:
9833 n += exp->elts[pc + 1].longconst;
9834 break;
9835 }
9836 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9837 }
9838 return n;
9839 }
9840
9841 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9842 component of LHS (a simple array or a record), updating *POS past
9843 the expression, assuming that LHS is contained in CONTAINER. Does
9844 not modify the inferior's memory, nor does it modify LHS (unless
9845 LHS == CONTAINER). */
9846
9847 static void
9848 assign_component (struct value *container, struct value *lhs, LONGEST index,
9849 struct expression *exp, int *pos)
9850 {
9851 struct value *mark = value_mark ();
9852 struct value *elt;
9853
9854 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9855 {
9856 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9857 struct value *index_val = value_from_longest (index_type, index);
9858
9859 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9860 }
9861 else
9862 {
9863 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9864 elt = ada_to_fixed_value (elt);
9865 }
9866
9867 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9868 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9869 else
9870 value_assign_to_component (container, elt,
9871 ada_evaluate_subexp (NULL, exp, pos,
9872 EVAL_NORMAL));
9873
9874 value_free_to_mark (mark);
9875 }
9876
9877 /* Assuming that LHS represents an lvalue having a record or array
9878 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9879 of that aggregate's value to LHS, advancing *POS past the
9880 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9881 lvalue containing LHS (possibly LHS itself). Does not modify
9882 the inferior's memory, nor does it modify the contents of
9883 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9884
9885 static struct value *
9886 assign_aggregate (struct value *container,
9887 struct value *lhs, struct expression *exp,
9888 int *pos, enum noside noside)
9889 {
9890 struct type *lhs_type;
9891 int n = exp->elts[*pos+1].longconst;
9892 LONGEST low_index, high_index;
9893 int num_specs;
9894 LONGEST *indices;
9895 int max_indices, num_indices;
9896 int i;
9897
9898 *pos += 3;
9899 if (noside != EVAL_NORMAL)
9900 {
9901 for (i = 0; i < n; i += 1)
9902 ada_evaluate_subexp (NULL, exp, pos, noside);
9903 return container;
9904 }
9905
9906 container = ada_coerce_ref (container);
9907 if (ada_is_direct_array_type (value_type (container)))
9908 container = ada_coerce_to_simple_array (container);
9909 lhs = ada_coerce_ref (lhs);
9910 if (!deprecated_value_modifiable (lhs))
9911 error (_("Left operand of assignment is not a modifiable lvalue."));
9912
9913 lhs_type = value_type (lhs);
9914 if (ada_is_direct_array_type (lhs_type))
9915 {
9916 lhs = ada_coerce_to_simple_array (lhs);
9917 lhs_type = value_type (lhs);
9918 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9919 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9920 }
9921 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9922 {
9923 low_index = 0;
9924 high_index = num_visible_fields (lhs_type) - 1;
9925 }
9926 else
9927 error (_("Left-hand side must be array or record."));
9928
9929 num_specs = num_component_specs (exp, *pos - 3);
9930 max_indices = 4 * num_specs + 4;
9931 indices = XALLOCAVEC (LONGEST, max_indices);
9932 indices[0] = indices[1] = low_index - 1;
9933 indices[2] = indices[3] = high_index + 1;
9934 num_indices = 4;
9935
9936 for (i = 0; i < n; i += 1)
9937 {
9938 switch (exp->elts[*pos].opcode)
9939 {
9940 case OP_CHOICES:
9941 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9942 &num_indices, max_indices,
9943 low_index, high_index);
9944 break;
9945 case OP_POSITIONAL:
9946 aggregate_assign_positional (container, lhs, exp, pos, indices,
9947 &num_indices, max_indices,
9948 low_index, high_index);
9949 break;
9950 case OP_OTHERS:
9951 if (i != n-1)
9952 error (_("Misplaced 'others' clause"));
9953 aggregate_assign_others (container, lhs, exp, pos, indices,
9954 num_indices, low_index, high_index);
9955 break;
9956 default:
9957 error (_("Internal error: bad aggregate clause"));
9958 }
9959 }
9960
9961 return container;
9962 }
9963
9964 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9965 construct at *POS, updating *POS past the construct, given that
9966 the positions are relative to lower bound LOW, where HIGH is the
9967 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9968 updating *NUM_INDICES as needed. CONTAINER is as for
9969 assign_aggregate. */
9970 static void
9971 aggregate_assign_positional (struct value *container,
9972 struct value *lhs, struct expression *exp,
9973 int *pos, LONGEST *indices, int *num_indices,
9974 int max_indices, LONGEST low, LONGEST high)
9975 {
9976 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9977
9978 if (ind - 1 == high)
9979 warning (_("Extra components in aggregate ignored."));
9980 if (ind <= high)
9981 {
9982 add_component_interval (ind, ind, indices, num_indices, max_indices);
9983 *pos += 3;
9984 assign_component (container, lhs, ind, exp, pos);
9985 }
9986 else
9987 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9988 }
9989
9990 /* Assign into the components of LHS indexed by the OP_CHOICES
9991 construct at *POS, updating *POS past the construct, given that
9992 the allowable indices are LOW..HIGH. Record the indices assigned
9993 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9994 needed. CONTAINER is as for assign_aggregate. */
9995 static void
9996 aggregate_assign_from_choices (struct value *container,
9997 struct value *lhs, struct expression *exp,
9998 int *pos, LONGEST *indices, int *num_indices,
9999 int max_indices, LONGEST low, LONGEST high)
10000 {
10001 int j;
10002 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10003 int choice_pos, expr_pc;
10004 int is_array = ada_is_direct_array_type (value_type (lhs));
10005
10006 choice_pos = *pos += 3;
10007
10008 for (j = 0; j < n_choices; j += 1)
10009 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10010 expr_pc = *pos;
10011 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10012
10013 for (j = 0; j < n_choices; j += 1)
10014 {
10015 LONGEST lower, upper;
10016 enum exp_opcode op = exp->elts[choice_pos].opcode;
10017
10018 if (op == OP_DISCRETE_RANGE)
10019 {
10020 choice_pos += 1;
10021 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10022 EVAL_NORMAL));
10023 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10024 EVAL_NORMAL));
10025 }
10026 else if (is_array)
10027 {
10028 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10029 EVAL_NORMAL));
10030 upper = lower;
10031 }
10032 else
10033 {
10034 int ind;
10035 const char *name;
10036
10037 switch (op)
10038 {
10039 case OP_NAME:
10040 name = &exp->elts[choice_pos + 2].string;
10041 break;
10042 case OP_VAR_VALUE:
10043 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10044 break;
10045 default:
10046 error (_("Invalid record component association."));
10047 }
10048 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10049 ind = 0;
10050 if (! find_struct_field (name, value_type (lhs), 0,
10051 NULL, NULL, NULL, NULL, &ind))
10052 error (_("Unknown component name: %s."), name);
10053 lower = upper = ind;
10054 }
10055
10056 if (lower <= upper && (lower < low || upper > high))
10057 error (_("Index in component association out of bounds."));
10058
10059 add_component_interval (lower, upper, indices, num_indices,
10060 max_indices);
10061 while (lower <= upper)
10062 {
10063 int pos1;
10064
10065 pos1 = expr_pc;
10066 assign_component (container, lhs, lower, exp, &pos1);
10067 lower += 1;
10068 }
10069 }
10070 }
10071
10072 /* Assign the value of the expression in the OP_OTHERS construct in
10073 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10074 have not been previously assigned. The index intervals already assigned
10075 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10076 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10077 static void
10078 aggregate_assign_others (struct value *container,
10079 struct value *lhs, struct expression *exp,
10080 int *pos, LONGEST *indices, int num_indices,
10081 LONGEST low, LONGEST high)
10082 {
10083 int i;
10084 int expr_pc = *pos + 1;
10085
10086 for (i = 0; i < num_indices - 2; i += 2)
10087 {
10088 LONGEST ind;
10089
10090 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10091 {
10092 int localpos;
10093
10094 localpos = expr_pc;
10095 assign_component (container, lhs, ind, exp, &localpos);
10096 }
10097 }
10098 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10099 }
10100
10101 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10102 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10103 modifying *SIZE as needed. It is an error if *SIZE exceeds
10104 MAX_SIZE. The resulting intervals do not overlap. */
10105 static void
10106 add_component_interval (LONGEST low, LONGEST high,
10107 LONGEST* indices, int *size, int max_size)
10108 {
10109 int i, j;
10110
10111 for (i = 0; i < *size; i += 2) {
10112 if (high >= indices[i] && low <= indices[i + 1])
10113 {
10114 int kh;
10115
10116 for (kh = i + 2; kh < *size; kh += 2)
10117 if (high < indices[kh])
10118 break;
10119 if (low < indices[i])
10120 indices[i] = low;
10121 indices[i + 1] = indices[kh - 1];
10122 if (high > indices[i + 1])
10123 indices[i + 1] = high;
10124 memcpy (indices + i + 2, indices + kh, *size - kh);
10125 *size -= kh - i - 2;
10126 return;
10127 }
10128 else if (high < indices[i])
10129 break;
10130 }
10131
10132 if (*size == max_size)
10133 error (_("Internal error: miscounted aggregate components."));
10134 *size += 2;
10135 for (j = *size-1; j >= i+2; j -= 1)
10136 indices[j] = indices[j - 2];
10137 indices[i] = low;
10138 indices[i + 1] = high;
10139 }
10140
10141 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10142 is different. */
10143
10144 static struct value *
10145 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10146 {
10147 if (type == ada_check_typedef (value_type (arg2)))
10148 return arg2;
10149
10150 if (ada_is_fixed_point_type (type))
10151 return (cast_to_fixed (type, arg2));
10152
10153 if (ada_is_fixed_point_type (value_type (arg2)))
10154 return cast_from_fixed (type, arg2);
10155
10156 return value_cast (type, arg2);
10157 }
10158
10159 /* Evaluating Ada expressions, and printing their result.
10160 ------------------------------------------------------
10161
10162 1. Introduction:
10163 ----------------
10164
10165 We usually evaluate an Ada expression in order to print its value.
10166 We also evaluate an expression in order to print its type, which
10167 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10168 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10169 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10170 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10171 similar.
10172
10173 Evaluating expressions is a little more complicated for Ada entities
10174 than it is for entities in languages such as C. The main reason for
10175 this is that Ada provides types whose definition might be dynamic.
10176 One example of such types is variant records. Or another example
10177 would be an array whose bounds can only be known at run time.
10178
10179 The following description is a general guide as to what should be
10180 done (and what should NOT be done) in order to evaluate an expression
10181 involving such types, and when. This does not cover how the semantic
10182 information is encoded by GNAT as this is covered separatly. For the
10183 document used as the reference for the GNAT encoding, see exp_dbug.ads
10184 in the GNAT sources.
10185
10186 Ideally, we should embed each part of this description next to its
10187 associated code. Unfortunately, the amount of code is so vast right
10188 now that it's hard to see whether the code handling a particular
10189 situation might be duplicated or not. One day, when the code is
10190 cleaned up, this guide might become redundant with the comments
10191 inserted in the code, and we might want to remove it.
10192
10193 2. ``Fixing'' an Entity, the Simple Case:
10194 -----------------------------------------
10195
10196 When evaluating Ada expressions, the tricky issue is that they may
10197 reference entities whose type contents and size are not statically
10198 known. Consider for instance a variant record:
10199
10200 type Rec (Empty : Boolean := True) is record
10201 case Empty is
10202 when True => null;
10203 when False => Value : Integer;
10204 end case;
10205 end record;
10206 Yes : Rec := (Empty => False, Value => 1);
10207 No : Rec := (empty => True);
10208
10209 The size and contents of that record depends on the value of the
10210 descriminant (Rec.Empty). At this point, neither the debugging
10211 information nor the associated type structure in GDB are able to
10212 express such dynamic types. So what the debugger does is to create
10213 "fixed" versions of the type that applies to the specific object.
10214 We also informally refer to this opperation as "fixing" an object,
10215 which means creating its associated fixed type.
10216
10217 Example: when printing the value of variable "Yes" above, its fixed
10218 type would look like this:
10219
10220 type Rec is record
10221 Empty : Boolean;
10222 Value : Integer;
10223 end record;
10224
10225 On the other hand, if we printed the value of "No", its fixed type
10226 would become:
10227
10228 type Rec is record
10229 Empty : Boolean;
10230 end record;
10231
10232 Things become a little more complicated when trying to fix an entity
10233 with a dynamic type that directly contains another dynamic type,
10234 such as an array of variant records, for instance. There are
10235 two possible cases: Arrays, and records.
10236
10237 3. ``Fixing'' Arrays:
10238 ---------------------
10239
10240 The type structure in GDB describes an array in terms of its bounds,
10241 and the type of its elements. By design, all elements in the array
10242 have the same type and we cannot represent an array of variant elements
10243 using the current type structure in GDB. When fixing an array,
10244 we cannot fix the array element, as we would potentially need one
10245 fixed type per element of the array. As a result, the best we can do
10246 when fixing an array is to produce an array whose bounds and size
10247 are correct (allowing us to read it from memory), but without having
10248 touched its element type. Fixing each element will be done later,
10249 when (if) necessary.
10250
10251 Arrays are a little simpler to handle than records, because the same
10252 amount of memory is allocated for each element of the array, even if
10253 the amount of space actually used by each element differs from element
10254 to element. Consider for instance the following array of type Rec:
10255
10256 type Rec_Array is array (1 .. 2) of Rec;
10257
10258 The actual amount of memory occupied by each element might be different
10259 from element to element, depending on the value of their discriminant.
10260 But the amount of space reserved for each element in the array remains
10261 fixed regardless. So we simply need to compute that size using
10262 the debugging information available, from which we can then determine
10263 the array size (we multiply the number of elements of the array by
10264 the size of each element).
10265
10266 The simplest case is when we have an array of a constrained element
10267 type. For instance, consider the following type declarations:
10268
10269 type Bounded_String (Max_Size : Integer) is
10270 Length : Integer;
10271 Buffer : String (1 .. Max_Size);
10272 end record;
10273 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10274
10275 In this case, the compiler describes the array as an array of
10276 variable-size elements (identified by its XVS suffix) for which
10277 the size can be read in the parallel XVZ variable.
10278
10279 In the case of an array of an unconstrained element type, the compiler
10280 wraps the array element inside a private PAD type. This type should not
10281 be shown to the user, and must be "unwrap"'ed before printing. Note
10282 that we also use the adjective "aligner" in our code to designate
10283 these wrapper types.
10284
10285 In some cases, the size allocated for each element is statically
10286 known. In that case, the PAD type already has the correct size,
10287 and the array element should remain unfixed.
10288
10289 But there are cases when this size is not statically known.
10290 For instance, assuming that "Five" is an integer variable:
10291
10292 type Dynamic is array (1 .. Five) of Integer;
10293 type Wrapper (Has_Length : Boolean := False) is record
10294 Data : Dynamic;
10295 case Has_Length is
10296 when True => Length : Integer;
10297 when False => null;
10298 end case;
10299 end record;
10300 type Wrapper_Array is array (1 .. 2) of Wrapper;
10301
10302 Hello : Wrapper_Array := (others => (Has_Length => True,
10303 Data => (others => 17),
10304 Length => 1));
10305
10306
10307 The debugging info would describe variable Hello as being an
10308 array of a PAD type. The size of that PAD type is not statically
10309 known, but can be determined using a parallel XVZ variable.
10310 In that case, a copy of the PAD type with the correct size should
10311 be used for the fixed array.
10312
10313 3. ``Fixing'' record type objects:
10314 ----------------------------------
10315
10316 Things are slightly different from arrays in the case of dynamic
10317 record types. In this case, in order to compute the associated
10318 fixed type, we need to determine the size and offset of each of
10319 its components. This, in turn, requires us to compute the fixed
10320 type of each of these components.
10321
10322 Consider for instance the example:
10323
10324 type Bounded_String (Max_Size : Natural) is record
10325 Str : String (1 .. Max_Size);
10326 Length : Natural;
10327 end record;
10328 My_String : Bounded_String (Max_Size => 10);
10329
10330 In that case, the position of field "Length" depends on the size
10331 of field Str, which itself depends on the value of the Max_Size
10332 discriminant. In order to fix the type of variable My_String,
10333 we need to fix the type of field Str. Therefore, fixing a variant
10334 record requires us to fix each of its components.
10335
10336 However, if a component does not have a dynamic size, the component
10337 should not be fixed. In particular, fields that use a PAD type
10338 should not fixed. Here is an example where this might happen
10339 (assuming type Rec above):
10340
10341 type Container (Big : Boolean) is record
10342 First : Rec;
10343 After : Integer;
10344 case Big is
10345 when True => Another : Integer;
10346 when False => null;
10347 end case;
10348 end record;
10349 My_Container : Container := (Big => False,
10350 First => (Empty => True),
10351 After => 42);
10352
10353 In that example, the compiler creates a PAD type for component First,
10354 whose size is constant, and then positions the component After just
10355 right after it. The offset of component After is therefore constant
10356 in this case.
10357
10358 The debugger computes the position of each field based on an algorithm
10359 that uses, among other things, the actual position and size of the field
10360 preceding it. Let's now imagine that the user is trying to print
10361 the value of My_Container. If the type fixing was recursive, we would
10362 end up computing the offset of field After based on the size of the
10363 fixed version of field First. And since in our example First has
10364 only one actual field, the size of the fixed type is actually smaller
10365 than the amount of space allocated to that field, and thus we would
10366 compute the wrong offset of field After.
10367
10368 To make things more complicated, we need to watch out for dynamic
10369 components of variant records (identified by the ___XVL suffix in
10370 the component name). Even if the target type is a PAD type, the size
10371 of that type might not be statically known. So the PAD type needs
10372 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10373 we might end up with the wrong size for our component. This can be
10374 observed with the following type declarations:
10375
10376 type Octal is new Integer range 0 .. 7;
10377 type Octal_Array is array (Positive range <>) of Octal;
10378 pragma Pack (Octal_Array);
10379
10380 type Octal_Buffer (Size : Positive) is record
10381 Buffer : Octal_Array (1 .. Size);
10382 Length : Integer;
10383 end record;
10384
10385 In that case, Buffer is a PAD type whose size is unset and needs
10386 to be computed by fixing the unwrapped type.
10387
10388 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10389 ----------------------------------------------------------
10390
10391 Lastly, when should the sub-elements of an entity that remained unfixed
10392 thus far, be actually fixed?
10393
10394 The answer is: Only when referencing that element. For instance
10395 when selecting one component of a record, this specific component
10396 should be fixed at that point in time. Or when printing the value
10397 of a record, each component should be fixed before its value gets
10398 printed. Similarly for arrays, the element of the array should be
10399 fixed when printing each element of the array, or when extracting
10400 one element out of that array. On the other hand, fixing should
10401 not be performed on the elements when taking a slice of an array!
10402
10403 Note that one of the side-effects of miscomputing the offset and
10404 size of each field is that we end up also miscomputing the size
10405 of the containing type. This can have adverse results when computing
10406 the value of an entity. GDB fetches the value of an entity based
10407 on the size of its type, and thus a wrong size causes GDB to fetch
10408 the wrong amount of memory. In the case where the computed size is
10409 too small, GDB fetches too little data to print the value of our
10410 entiry. Results in this case as unpredicatble, as we usually read
10411 past the buffer containing the data =:-o. */
10412
10413 /* Implement the evaluate_exp routine in the exp_descriptor structure
10414 for the Ada language. */
10415
10416 static struct value *
10417 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10418 int *pos, enum noside noside)
10419 {
10420 enum exp_opcode op;
10421 int tem;
10422 int pc;
10423 int preeval_pos;
10424 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10425 struct type *type;
10426 int nargs, oplen;
10427 struct value **argvec;
10428
10429 pc = *pos;
10430 *pos += 1;
10431 op = exp->elts[pc].opcode;
10432
10433 switch (op)
10434 {
10435 default:
10436 *pos -= 1;
10437 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10438
10439 if (noside == EVAL_NORMAL)
10440 arg1 = unwrap_value (arg1);
10441
10442 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10443 then we need to perform the conversion manually, because
10444 evaluate_subexp_standard doesn't do it. This conversion is
10445 necessary in Ada because the different kinds of float/fixed
10446 types in Ada have different representations.
10447
10448 Similarly, we need to perform the conversion from OP_LONG
10449 ourselves. */
10450 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10451 arg1 = ada_value_cast (expect_type, arg1, noside);
10452
10453 return arg1;
10454
10455 case OP_STRING:
10456 {
10457 struct value *result;
10458
10459 *pos -= 1;
10460 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10461 /* The result type will have code OP_STRING, bashed there from
10462 OP_ARRAY. Bash it back. */
10463 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10464 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10465 return result;
10466 }
10467
10468 case UNOP_CAST:
10469 (*pos) += 2;
10470 type = exp->elts[pc + 1].type;
10471 arg1 = evaluate_subexp (type, exp, pos, noside);
10472 if (noside == EVAL_SKIP)
10473 goto nosideret;
10474 arg1 = ada_value_cast (type, arg1, noside);
10475 return arg1;
10476
10477 case UNOP_QUAL:
10478 (*pos) += 2;
10479 type = exp->elts[pc + 1].type;
10480 return ada_evaluate_subexp (type, exp, pos, noside);
10481
10482 case BINOP_ASSIGN:
10483 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10484 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10485 {
10486 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10487 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10488 return arg1;
10489 return ada_value_assign (arg1, arg1);
10490 }
10491 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10492 except if the lhs of our assignment is a convenience variable.
10493 In the case of assigning to a convenience variable, the lhs
10494 should be exactly the result of the evaluation of the rhs. */
10495 type = value_type (arg1);
10496 if (VALUE_LVAL (arg1) == lval_internalvar)
10497 type = NULL;
10498 arg2 = evaluate_subexp (type, exp, pos, noside);
10499 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10500 return arg1;
10501 if (ada_is_fixed_point_type (value_type (arg1)))
10502 arg2 = cast_to_fixed (value_type (arg1), arg2);
10503 else if (ada_is_fixed_point_type (value_type (arg2)))
10504 error
10505 (_("Fixed-point values must be assigned to fixed-point variables"));
10506 else
10507 arg2 = coerce_for_assign (value_type (arg1), arg2);
10508 return ada_value_assign (arg1, arg2);
10509
10510 case BINOP_ADD:
10511 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10512 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10513 if (noside == EVAL_SKIP)
10514 goto nosideret;
10515 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10516 return (value_from_longest
10517 (value_type (arg1),
10518 value_as_long (arg1) + value_as_long (arg2)));
10519 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10520 return (value_from_longest
10521 (value_type (arg2),
10522 value_as_long (arg1) + value_as_long (arg2)));
10523 if ((ada_is_fixed_point_type (value_type (arg1))
10524 || ada_is_fixed_point_type (value_type (arg2)))
10525 && value_type (arg1) != value_type (arg2))
10526 error (_("Operands of fixed-point addition must have the same type"));
10527 /* Do the addition, and cast the result to the type of the first
10528 argument. We cannot cast the result to a reference type, so if
10529 ARG1 is a reference type, find its underlying type. */
10530 type = value_type (arg1);
10531 while (TYPE_CODE (type) == TYPE_CODE_REF)
10532 type = TYPE_TARGET_TYPE (type);
10533 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10534 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10535
10536 case BINOP_SUB:
10537 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10538 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10539 if (noside == EVAL_SKIP)
10540 goto nosideret;
10541 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10542 return (value_from_longest
10543 (value_type (arg1),
10544 value_as_long (arg1) - value_as_long (arg2)));
10545 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10546 return (value_from_longest
10547 (value_type (arg2),
10548 value_as_long (arg1) - value_as_long (arg2)));
10549 if ((ada_is_fixed_point_type (value_type (arg1))
10550 || ada_is_fixed_point_type (value_type (arg2)))
10551 && value_type (arg1) != value_type (arg2))
10552 error (_("Operands of fixed-point subtraction "
10553 "must have the same type"));
10554 /* Do the substraction, and cast the result to the type of the first
10555 argument. We cannot cast the result to a reference type, so if
10556 ARG1 is a reference type, find its underlying type. */
10557 type = value_type (arg1);
10558 while (TYPE_CODE (type) == TYPE_CODE_REF)
10559 type = TYPE_TARGET_TYPE (type);
10560 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10561 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10562
10563 case BINOP_MUL:
10564 case BINOP_DIV:
10565 case BINOP_REM:
10566 case BINOP_MOD:
10567 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10568 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10569 if (noside == EVAL_SKIP)
10570 goto nosideret;
10571 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10572 {
10573 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10574 return value_zero (value_type (arg1), not_lval);
10575 }
10576 else
10577 {
10578 type = builtin_type (exp->gdbarch)->builtin_double;
10579 if (ada_is_fixed_point_type (value_type (arg1)))
10580 arg1 = cast_from_fixed (type, arg1);
10581 if (ada_is_fixed_point_type (value_type (arg2)))
10582 arg2 = cast_from_fixed (type, arg2);
10583 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10584 return ada_value_binop (arg1, arg2, op);
10585 }
10586
10587 case BINOP_EQUAL:
10588 case BINOP_NOTEQUAL:
10589 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10590 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10591 if (noside == EVAL_SKIP)
10592 goto nosideret;
10593 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10594 tem = 0;
10595 else
10596 {
10597 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10598 tem = ada_value_equal (arg1, arg2);
10599 }
10600 if (op == BINOP_NOTEQUAL)
10601 tem = !tem;
10602 type = language_bool_type (exp->language_defn, exp->gdbarch);
10603 return value_from_longest (type, (LONGEST) tem);
10604
10605 case UNOP_NEG:
10606 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10607 if (noside == EVAL_SKIP)
10608 goto nosideret;
10609 else if (ada_is_fixed_point_type (value_type (arg1)))
10610 return value_cast (value_type (arg1), value_neg (arg1));
10611 else
10612 {
10613 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10614 return value_neg (arg1);
10615 }
10616
10617 case BINOP_LOGICAL_AND:
10618 case BINOP_LOGICAL_OR:
10619 case UNOP_LOGICAL_NOT:
10620 {
10621 struct value *val;
10622
10623 *pos -= 1;
10624 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10625 type = language_bool_type (exp->language_defn, exp->gdbarch);
10626 return value_cast (type, val);
10627 }
10628
10629 case BINOP_BITWISE_AND:
10630 case BINOP_BITWISE_IOR:
10631 case BINOP_BITWISE_XOR:
10632 {
10633 struct value *val;
10634
10635 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10636 *pos = pc;
10637 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10638
10639 return value_cast (value_type (arg1), val);
10640 }
10641
10642 case OP_VAR_VALUE:
10643 *pos -= 1;
10644
10645 if (noside == EVAL_SKIP)
10646 {
10647 *pos += 4;
10648 goto nosideret;
10649 }
10650
10651 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10652 /* Only encountered when an unresolved symbol occurs in a
10653 context other than a function call, in which case, it is
10654 invalid. */
10655 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10656 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10657
10658 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10659 {
10660 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10661 /* Check to see if this is a tagged type. We also need to handle
10662 the case where the type is a reference to a tagged type, but
10663 we have to be careful to exclude pointers to tagged types.
10664 The latter should be shown as usual (as a pointer), whereas
10665 a reference should mostly be transparent to the user. */
10666 if (ada_is_tagged_type (type, 0)
10667 || (TYPE_CODE (type) == TYPE_CODE_REF
10668 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10669 {
10670 /* Tagged types are a little special in the fact that the real
10671 type is dynamic and can only be determined by inspecting the
10672 object's tag. This means that we need to get the object's
10673 value first (EVAL_NORMAL) and then extract the actual object
10674 type from its tag.
10675
10676 Note that we cannot skip the final step where we extract
10677 the object type from its tag, because the EVAL_NORMAL phase
10678 results in dynamic components being resolved into fixed ones.
10679 This can cause problems when trying to print the type
10680 description of tagged types whose parent has a dynamic size:
10681 We use the type name of the "_parent" component in order
10682 to print the name of the ancestor type in the type description.
10683 If that component had a dynamic size, the resolution into
10684 a fixed type would result in the loss of that type name,
10685 thus preventing us from printing the name of the ancestor
10686 type in the type description. */
10687 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10688
10689 if (TYPE_CODE (type) != TYPE_CODE_REF)
10690 {
10691 struct type *actual_type;
10692
10693 actual_type = type_from_tag (ada_value_tag (arg1));
10694 if (actual_type == NULL)
10695 /* If, for some reason, we were unable to determine
10696 the actual type from the tag, then use the static
10697 approximation that we just computed as a fallback.
10698 This can happen if the debugging information is
10699 incomplete, for instance. */
10700 actual_type = type;
10701 return value_zero (actual_type, not_lval);
10702 }
10703 else
10704 {
10705 /* In the case of a ref, ada_coerce_ref takes care
10706 of determining the actual type. But the evaluation
10707 should return a ref as it should be valid to ask
10708 for its address; so rebuild a ref after coerce. */
10709 arg1 = ada_coerce_ref (arg1);
10710 return value_ref (arg1);
10711 }
10712 }
10713
10714 /* Records and unions for which GNAT encodings have been
10715 generated need to be statically fixed as well.
10716 Otherwise, non-static fixing produces a type where
10717 all dynamic properties are removed, which prevents "ptype"
10718 from being able to completely describe the type.
10719 For instance, a case statement in a variant record would be
10720 replaced by the relevant components based on the actual
10721 value of the discriminants. */
10722 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10723 && dynamic_template_type (type) != NULL)
10724 || (TYPE_CODE (type) == TYPE_CODE_UNION
10725 && ada_find_parallel_type (type, "___XVU") != NULL))
10726 {
10727 *pos += 4;
10728 return value_zero (to_static_fixed_type (type), not_lval);
10729 }
10730 }
10731
10732 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10733 return ada_to_fixed_value (arg1);
10734
10735 case OP_FUNCALL:
10736 (*pos) += 2;
10737
10738 /* Allocate arg vector, including space for the function to be
10739 called in argvec[0] and a terminating NULL. */
10740 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10741 argvec = XALLOCAVEC (struct value *, nargs + 2);
10742
10743 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10744 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10745 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10746 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10747 else
10748 {
10749 for (tem = 0; tem <= nargs; tem += 1)
10750 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10751 argvec[tem] = 0;
10752
10753 if (noside == EVAL_SKIP)
10754 goto nosideret;
10755 }
10756
10757 if (ada_is_constrained_packed_array_type
10758 (desc_base_type (value_type (argvec[0]))))
10759 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10760 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10761 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10762 /* This is a packed array that has already been fixed, and
10763 therefore already coerced to a simple array. Nothing further
10764 to do. */
10765 ;
10766 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10767 {
10768 /* Make sure we dereference references so that all the code below
10769 feels like it's really handling the referenced value. Wrapping
10770 types (for alignment) may be there, so make sure we strip them as
10771 well. */
10772 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10773 }
10774 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10775 && VALUE_LVAL (argvec[0]) == lval_memory)
10776 argvec[0] = value_addr (argvec[0]);
10777
10778 type = ada_check_typedef (value_type (argvec[0]));
10779
10780 /* Ada allows us to implicitly dereference arrays when subscripting
10781 them. So, if this is an array typedef (encoding use for array
10782 access types encoded as fat pointers), strip it now. */
10783 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10784 type = ada_typedef_target_type (type);
10785
10786 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10787 {
10788 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10789 {
10790 case TYPE_CODE_FUNC:
10791 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10792 break;
10793 case TYPE_CODE_ARRAY:
10794 break;
10795 case TYPE_CODE_STRUCT:
10796 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10797 argvec[0] = ada_value_ind (argvec[0]);
10798 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10799 break;
10800 default:
10801 error (_("cannot subscript or call something of type `%s'"),
10802 ada_type_name (value_type (argvec[0])));
10803 break;
10804 }
10805 }
10806
10807 switch (TYPE_CODE (type))
10808 {
10809 case TYPE_CODE_FUNC:
10810 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10811 {
10812 struct type *rtype = TYPE_TARGET_TYPE (type);
10813
10814 if (TYPE_GNU_IFUNC (type))
10815 return allocate_value (TYPE_TARGET_TYPE (rtype));
10816 return allocate_value (rtype);
10817 }
10818 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10819 case TYPE_CODE_INTERNAL_FUNCTION:
10820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10821 /* We don't know anything about what the internal
10822 function might return, but we have to return
10823 something. */
10824 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10825 not_lval);
10826 else
10827 return call_internal_function (exp->gdbarch, exp->language_defn,
10828 argvec[0], nargs, argvec + 1);
10829
10830 case TYPE_CODE_STRUCT:
10831 {
10832 int arity;
10833
10834 arity = ada_array_arity (type);
10835 type = ada_array_element_type (type, nargs);
10836 if (type == NULL)
10837 error (_("cannot subscript or call a record"));
10838 if (arity != nargs)
10839 error (_("wrong number of subscripts; expecting %d"), arity);
10840 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10841 return value_zero (ada_aligned_type (type), lval_memory);
10842 return
10843 unwrap_value (ada_value_subscript
10844 (argvec[0], nargs, argvec + 1));
10845 }
10846 case TYPE_CODE_ARRAY:
10847 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10848 {
10849 type = ada_array_element_type (type, nargs);
10850 if (type == NULL)
10851 error (_("element type of array unknown"));
10852 else
10853 return value_zero (ada_aligned_type (type), lval_memory);
10854 }
10855 return
10856 unwrap_value (ada_value_subscript
10857 (ada_coerce_to_simple_array (argvec[0]),
10858 nargs, argvec + 1));
10859 case TYPE_CODE_PTR: /* Pointer to array */
10860 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10861 {
10862 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10863 type = ada_array_element_type (type, nargs);
10864 if (type == NULL)
10865 error (_("element type of array unknown"));
10866 else
10867 return value_zero (ada_aligned_type (type), lval_memory);
10868 }
10869 return
10870 unwrap_value (ada_value_ptr_subscript (argvec[0],
10871 nargs, argvec + 1));
10872
10873 default:
10874 error (_("Attempt to index or call something other than an "
10875 "array or function"));
10876 }
10877
10878 case TERNOP_SLICE:
10879 {
10880 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10881 struct value *low_bound_val =
10882 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10883 struct value *high_bound_val =
10884 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10885 LONGEST low_bound;
10886 LONGEST high_bound;
10887
10888 low_bound_val = coerce_ref (low_bound_val);
10889 high_bound_val = coerce_ref (high_bound_val);
10890 low_bound = value_as_long (low_bound_val);
10891 high_bound = value_as_long (high_bound_val);
10892
10893 if (noside == EVAL_SKIP)
10894 goto nosideret;
10895
10896 /* If this is a reference to an aligner type, then remove all
10897 the aligners. */
10898 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10899 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10900 TYPE_TARGET_TYPE (value_type (array)) =
10901 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10902
10903 if (ada_is_constrained_packed_array_type (value_type (array)))
10904 error (_("cannot slice a packed array"));
10905
10906 /* If this is a reference to an array or an array lvalue,
10907 convert to a pointer. */
10908 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10909 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10910 && VALUE_LVAL (array) == lval_memory))
10911 array = value_addr (array);
10912
10913 if (noside == EVAL_AVOID_SIDE_EFFECTS
10914 && ada_is_array_descriptor_type (ada_check_typedef
10915 (value_type (array))))
10916 return empty_array (ada_type_of_array (array, 0), low_bound);
10917
10918 array = ada_coerce_to_simple_array_ptr (array);
10919
10920 /* If we have more than one level of pointer indirection,
10921 dereference the value until we get only one level. */
10922 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10923 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10924 == TYPE_CODE_PTR))
10925 array = value_ind (array);
10926
10927 /* Make sure we really do have an array type before going further,
10928 to avoid a SEGV when trying to get the index type or the target
10929 type later down the road if the debug info generated by
10930 the compiler is incorrect or incomplete. */
10931 if (!ada_is_simple_array_type (value_type (array)))
10932 error (_("cannot take slice of non-array"));
10933
10934 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10935 == TYPE_CODE_PTR)
10936 {
10937 struct type *type0 = ada_check_typedef (value_type (array));
10938
10939 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10940 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10941 else
10942 {
10943 struct type *arr_type0 =
10944 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10945
10946 return ada_value_slice_from_ptr (array, arr_type0,
10947 longest_to_int (low_bound),
10948 longest_to_int (high_bound));
10949 }
10950 }
10951 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10952 return array;
10953 else if (high_bound < low_bound)
10954 return empty_array (value_type (array), low_bound);
10955 else
10956 return ada_value_slice (array, longest_to_int (low_bound),
10957 longest_to_int (high_bound));
10958 }
10959
10960 case UNOP_IN_RANGE:
10961 (*pos) += 2;
10962 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10963 type = check_typedef (exp->elts[pc + 1].type);
10964
10965 if (noside == EVAL_SKIP)
10966 goto nosideret;
10967
10968 switch (TYPE_CODE (type))
10969 {
10970 default:
10971 lim_warning (_("Membership test incompletely implemented; "
10972 "always returns true"));
10973 type = language_bool_type (exp->language_defn, exp->gdbarch);
10974 return value_from_longest (type, (LONGEST) 1);
10975
10976 case TYPE_CODE_RANGE:
10977 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10978 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10979 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10980 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10981 type = language_bool_type (exp->language_defn, exp->gdbarch);
10982 return
10983 value_from_longest (type,
10984 (value_less (arg1, arg3)
10985 || value_equal (arg1, arg3))
10986 && (value_less (arg2, arg1)
10987 || value_equal (arg2, arg1)));
10988 }
10989
10990 case BINOP_IN_BOUNDS:
10991 (*pos) += 2;
10992 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10993 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10994
10995 if (noside == EVAL_SKIP)
10996 goto nosideret;
10997
10998 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10999 {
11000 type = language_bool_type (exp->language_defn, exp->gdbarch);
11001 return value_zero (type, not_lval);
11002 }
11003
11004 tem = longest_to_int (exp->elts[pc + 1].longconst);
11005
11006 type = ada_index_type (value_type (arg2), tem, "range");
11007 if (!type)
11008 type = value_type (arg1);
11009
11010 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11011 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11012
11013 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11014 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11015 type = language_bool_type (exp->language_defn, exp->gdbarch);
11016 return
11017 value_from_longest (type,
11018 (value_less (arg1, arg3)
11019 || value_equal (arg1, arg3))
11020 && (value_less (arg2, arg1)
11021 || value_equal (arg2, arg1)));
11022
11023 case TERNOP_IN_RANGE:
11024 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11025 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11026 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11027
11028 if (noside == EVAL_SKIP)
11029 goto nosideret;
11030
11031 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11032 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11033 type = language_bool_type (exp->language_defn, exp->gdbarch);
11034 return
11035 value_from_longest (type,
11036 (value_less (arg1, arg3)
11037 || value_equal (arg1, arg3))
11038 && (value_less (arg2, arg1)
11039 || value_equal (arg2, arg1)));
11040
11041 case OP_ATR_FIRST:
11042 case OP_ATR_LAST:
11043 case OP_ATR_LENGTH:
11044 {
11045 struct type *type_arg;
11046
11047 if (exp->elts[*pos].opcode == OP_TYPE)
11048 {
11049 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11050 arg1 = NULL;
11051 type_arg = check_typedef (exp->elts[pc + 2].type);
11052 }
11053 else
11054 {
11055 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11056 type_arg = NULL;
11057 }
11058
11059 if (exp->elts[*pos].opcode != OP_LONG)
11060 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11061 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11062 *pos += 4;
11063
11064 if (noside == EVAL_SKIP)
11065 goto nosideret;
11066
11067 if (type_arg == NULL)
11068 {
11069 arg1 = ada_coerce_ref (arg1);
11070
11071 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11072 arg1 = ada_coerce_to_simple_array (arg1);
11073
11074 if (op == OP_ATR_LENGTH)
11075 type = builtin_type (exp->gdbarch)->builtin_int;
11076 else
11077 {
11078 type = ada_index_type (value_type (arg1), tem,
11079 ada_attribute_name (op));
11080 if (type == NULL)
11081 type = builtin_type (exp->gdbarch)->builtin_int;
11082 }
11083
11084 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11085 return allocate_value (type);
11086
11087 switch (op)
11088 {
11089 default: /* Should never happen. */
11090 error (_("unexpected attribute encountered"));
11091 case OP_ATR_FIRST:
11092 return value_from_longest
11093 (type, ada_array_bound (arg1, tem, 0));
11094 case OP_ATR_LAST:
11095 return value_from_longest
11096 (type, ada_array_bound (arg1, tem, 1));
11097 case OP_ATR_LENGTH:
11098 return value_from_longest
11099 (type, ada_array_length (arg1, tem));
11100 }
11101 }
11102 else if (discrete_type_p (type_arg))
11103 {
11104 struct type *range_type;
11105 const char *name = ada_type_name (type_arg);
11106
11107 range_type = NULL;
11108 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11109 range_type = to_fixed_range_type (type_arg, NULL);
11110 if (range_type == NULL)
11111 range_type = type_arg;
11112 switch (op)
11113 {
11114 default:
11115 error (_("unexpected attribute encountered"));
11116 case OP_ATR_FIRST:
11117 return value_from_longest
11118 (range_type, ada_discrete_type_low_bound (range_type));
11119 case OP_ATR_LAST:
11120 return value_from_longest
11121 (range_type, ada_discrete_type_high_bound (range_type));
11122 case OP_ATR_LENGTH:
11123 error (_("the 'length attribute applies only to array types"));
11124 }
11125 }
11126 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11127 error (_("unimplemented type attribute"));
11128 else
11129 {
11130 LONGEST low, high;
11131
11132 if (ada_is_constrained_packed_array_type (type_arg))
11133 type_arg = decode_constrained_packed_array_type (type_arg);
11134
11135 if (op == OP_ATR_LENGTH)
11136 type = builtin_type (exp->gdbarch)->builtin_int;
11137 else
11138 {
11139 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11140 if (type == NULL)
11141 type = builtin_type (exp->gdbarch)->builtin_int;
11142 }
11143
11144 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11145 return allocate_value (type);
11146
11147 switch (op)
11148 {
11149 default:
11150 error (_("unexpected attribute encountered"));
11151 case OP_ATR_FIRST:
11152 low = ada_array_bound_from_type (type_arg, tem, 0);
11153 return value_from_longest (type, low);
11154 case OP_ATR_LAST:
11155 high = ada_array_bound_from_type (type_arg, tem, 1);
11156 return value_from_longest (type, high);
11157 case OP_ATR_LENGTH:
11158 low = ada_array_bound_from_type (type_arg, tem, 0);
11159 high = ada_array_bound_from_type (type_arg, tem, 1);
11160 return value_from_longest (type, high - low + 1);
11161 }
11162 }
11163 }
11164
11165 case OP_ATR_TAG:
11166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11167 if (noside == EVAL_SKIP)
11168 goto nosideret;
11169
11170 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11171 return value_zero (ada_tag_type (arg1), not_lval);
11172
11173 return ada_value_tag (arg1);
11174
11175 case OP_ATR_MIN:
11176 case OP_ATR_MAX:
11177 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11178 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11179 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11180 if (noside == EVAL_SKIP)
11181 goto nosideret;
11182 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11183 return value_zero (value_type (arg1), not_lval);
11184 else
11185 {
11186 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11187 return value_binop (arg1, arg2,
11188 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11189 }
11190
11191 case OP_ATR_MODULUS:
11192 {
11193 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11194
11195 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11196 if (noside == EVAL_SKIP)
11197 goto nosideret;
11198
11199 if (!ada_is_modular_type (type_arg))
11200 error (_("'modulus must be applied to modular type"));
11201
11202 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11203 ada_modulus (type_arg));
11204 }
11205
11206
11207 case OP_ATR_POS:
11208 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11209 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11210 if (noside == EVAL_SKIP)
11211 goto nosideret;
11212 type = builtin_type (exp->gdbarch)->builtin_int;
11213 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11214 return value_zero (type, not_lval);
11215 else
11216 return value_pos_atr (type, arg1);
11217
11218 case OP_ATR_SIZE:
11219 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11220 type = value_type (arg1);
11221
11222 /* If the argument is a reference, then dereference its type, since
11223 the user is really asking for the size of the actual object,
11224 not the size of the pointer. */
11225 if (TYPE_CODE (type) == TYPE_CODE_REF)
11226 type = TYPE_TARGET_TYPE (type);
11227
11228 if (noside == EVAL_SKIP)
11229 goto nosideret;
11230 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11231 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11232 else
11233 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11234 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11235
11236 case OP_ATR_VAL:
11237 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11238 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11239 type = exp->elts[pc + 2].type;
11240 if (noside == EVAL_SKIP)
11241 goto nosideret;
11242 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11243 return value_zero (type, not_lval);
11244 else
11245 return value_val_atr (type, arg1);
11246
11247 case BINOP_EXP:
11248 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11249 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11250 if (noside == EVAL_SKIP)
11251 goto nosideret;
11252 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11253 return value_zero (value_type (arg1), not_lval);
11254 else
11255 {
11256 /* For integer exponentiation operations,
11257 only promote the first argument. */
11258 if (is_integral_type (value_type (arg2)))
11259 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11260 else
11261 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11262
11263 return value_binop (arg1, arg2, op);
11264 }
11265
11266 case UNOP_PLUS:
11267 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11268 if (noside == EVAL_SKIP)
11269 goto nosideret;
11270 else
11271 return arg1;
11272
11273 case UNOP_ABS:
11274 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11275 if (noside == EVAL_SKIP)
11276 goto nosideret;
11277 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11278 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11279 return value_neg (arg1);
11280 else
11281 return arg1;
11282
11283 case UNOP_IND:
11284 preeval_pos = *pos;
11285 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11286 if (noside == EVAL_SKIP)
11287 goto nosideret;
11288 type = ada_check_typedef (value_type (arg1));
11289 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11290 {
11291 if (ada_is_array_descriptor_type (type))
11292 /* GDB allows dereferencing GNAT array descriptors. */
11293 {
11294 struct type *arrType = ada_type_of_array (arg1, 0);
11295
11296 if (arrType == NULL)
11297 error (_("Attempt to dereference null array pointer."));
11298 return value_at_lazy (arrType, 0);
11299 }
11300 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11301 || TYPE_CODE (type) == TYPE_CODE_REF
11302 /* In C you can dereference an array to get the 1st elt. */
11303 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11304 {
11305 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11306 only be determined by inspecting the object's tag.
11307 This means that we need to evaluate completely the
11308 expression in order to get its type. */
11309
11310 if ((TYPE_CODE (type) == TYPE_CODE_REF
11311 || TYPE_CODE (type) == TYPE_CODE_PTR)
11312 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11313 {
11314 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11315 EVAL_NORMAL);
11316 type = value_type (ada_value_ind (arg1));
11317 }
11318 else
11319 {
11320 type = to_static_fixed_type
11321 (ada_aligned_type
11322 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11323 }
11324 ada_ensure_varsize_limit (type);
11325 return value_zero (type, lval_memory);
11326 }
11327 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11328 {
11329 /* GDB allows dereferencing an int. */
11330 if (expect_type == NULL)
11331 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11332 lval_memory);
11333 else
11334 {
11335 expect_type =
11336 to_static_fixed_type (ada_aligned_type (expect_type));
11337 return value_zero (expect_type, lval_memory);
11338 }
11339 }
11340 else
11341 error (_("Attempt to take contents of a non-pointer value."));
11342 }
11343 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11344 type = ada_check_typedef (value_type (arg1));
11345
11346 if (TYPE_CODE (type) == TYPE_CODE_INT)
11347 /* GDB allows dereferencing an int. If we were given
11348 the expect_type, then use that as the target type.
11349 Otherwise, assume that the target type is an int. */
11350 {
11351 if (expect_type != NULL)
11352 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11353 arg1));
11354 else
11355 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11356 (CORE_ADDR) value_as_address (arg1));
11357 }
11358
11359 if (ada_is_array_descriptor_type (type))
11360 /* GDB allows dereferencing GNAT array descriptors. */
11361 return ada_coerce_to_simple_array (arg1);
11362 else
11363 return ada_value_ind (arg1);
11364
11365 case STRUCTOP_STRUCT:
11366 tem = longest_to_int (exp->elts[pc + 1].longconst);
11367 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11368 preeval_pos = *pos;
11369 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11370 if (noside == EVAL_SKIP)
11371 goto nosideret;
11372 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11373 {
11374 struct type *type1 = value_type (arg1);
11375
11376 if (ada_is_tagged_type (type1, 1))
11377 {
11378 type = ada_lookup_struct_elt_type (type1,
11379 &exp->elts[pc + 2].string,
11380 1, 1, NULL);
11381
11382 /* If the field is not found, check if it exists in the
11383 extension of this object's type. This means that we
11384 need to evaluate completely the expression. */
11385
11386 if (type == NULL)
11387 {
11388 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11389 EVAL_NORMAL);
11390 arg1 = ada_value_struct_elt (arg1,
11391 &exp->elts[pc + 2].string,
11392 0);
11393 arg1 = unwrap_value (arg1);
11394 type = value_type (ada_to_fixed_value (arg1));
11395 }
11396 }
11397 else
11398 type =
11399 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11400 0, NULL);
11401
11402 return value_zero (ada_aligned_type (type), lval_memory);
11403 }
11404 else
11405 {
11406 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11407 arg1 = unwrap_value (arg1);
11408 return ada_to_fixed_value (arg1);
11409 }
11410
11411 case OP_TYPE:
11412 /* The value is not supposed to be used. This is here to make it
11413 easier to accommodate expressions that contain types. */
11414 (*pos) += 2;
11415 if (noside == EVAL_SKIP)
11416 goto nosideret;
11417 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11418 return allocate_value (exp->elts[pc + 1].type);
11419 else
11420 error (_("Attempt to use a type name as an expression"));
11421
11422 case OP_AGGREGATE:
11423 case OP_CHOICES:
11424 case OP_OTHERS:
11425 case OP_DISCRETE_RANGE:
11426 case OP_POSITIONAL:
11427 case OP_NAME:
11428 if (noside == EVAL_NORMAL)
11429 switch (op)
11430 {
11431 case OP_NAME:
11432 error (_("Undefined name, ambiguous name, or renaming used in "
11433 "component association: %s."), &exp->elts[pc+2].string);
11434 case OP_AGGREGATE:
11435 error (_("Aggregates only allowed on the right of an assignment"));
11436 default:
11437 internal_error (__FILE__, __LINE__,
11438 _("aggregate apparently mangled"));
11439 }
11440
11441 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11442 *pos += oplen - 1;
11443 for (tem = 0; tem < nargs; tem += 1)
11444 ada_evaluate_subexp (NULL, exp, pos, noside);
11445 goto nosideret;
11446 }
11447
11448 nosideret:
11449 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11450 }
11451 \f
11452
11453 /* Fixed point */
11454
11455 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11456 type name that encodes the 'small and 'delta information.
11457 Otherwise, return NULL. */
11458
11459 static const char *
11460 fixed_type_info (struct type *type)
11461 {
11462 const char *name = ada_type_name (type);
11463 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11464
11465 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11466 {
11467 const char *tail = strstr (name, "___XF_");
11468
11469 if (tail == NULL)
11470 return NULL;
11471 else
11472 return tail + 5;
11473 }
11474 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11475 return fixed_type_info (TYPE_TARGET_TYPE (type));
11476 else
11477 return NULL;
11478 }
11479
11480 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11481
11482 int
11483 ada_is_fixed_point_type (struct type *type)
11484 {
11485 return fixed_type_info (type) != NULL;
11486 }
11487
11488 /* Return non-zero iff TYPE represents a System.Address type. */
11489
11490 int
11491 ada_is_system_address_type (struct type *type)
11492 {
11493 return (TYPE_NAME (type)
11494 && strcmp (TYPE_NAME (type), "system__address") == 0);
11495 }
11496
11497 /* Assuming that TYPE is the representation of an Ada fixed-point
11498 type, return its delta, or -1 if the type is malformed and the
11499 delta cannot be determined. */
11500
11501 DOUBLEST
11502 ada_delta (struct type *type)
11503 {
11504 const char *encoding = fixed_type_info (type);
11505 DOUBLEST num, den;
11506
11507 /* Strictly speaking, num and den are encoded as integer. However,
11508 they may not fit into a long, and they will have to be converted
11509 to DOUBLEST anyway. So scan them as DOUBLEST. */
11510 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11511 &num, &den) < 2)
11512 return -1.0;
11513 else
11514 return num / den;
11515 }
11516
11517 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11518 factor ('SMALL value) associated with the type. */
11519
11520 static DOUBLEST
11521 scaling_factor (struct type *type)
11522 {
11523 const char *encoding = fixed_type_info (type);
11524 DOUBLEST num0, den0, num1, den1;
11525 int n;
11526
11527 /* Strictly speaking, num's and den's are encoded as integer. However,
11528 they may not fit into a long, and they will have to be converted
11529 to DOUBLEST anyway. So scan them as DOUBLEST. */
11530 n = sscanf (encoding,
11531 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11532 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11533 &num0, &den0, &num1, &den1);
11534
11535 if (n < 2)
11536 return 1.0;
11537 else if (n == 4)
11538 return num1 / den1;
11539 else
11540 return num0 / den0;
11541 }
11542
11543
11544 /* Assuming that X is the representation of a value of fixed-point
11545 type TYPE, return its floating-point equivalent. */
11546
11547 DOUBLEST
11548 ada_fixed_to_float (struct type *type, LONGEST x)
11549 {
11550 return (DOUBLEST) x *scaling_factor (type);
11551 }
11552
11553 /* The representation of a fixed-point value of type TYPE
11554 corresponding to the value X. */
11555
11556 LONGEST
11557 ada_float_to_fixed (struct type *type, DOUBLEST x)
11558 {
11559 return (LONGEST) (x / scaling_factor (type) + 0.5);
11560 }
11561
11562 \f
11563
11564 /* Range types */
11565
11566 /* Scan STR beginning at position K for a discriminant name, and
11567 return the value of that discriminant field of DVAL in *PX. If
11568 PNEW_K is not null, put the position of the character beyond the
11569 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11570 not alter *PX and *PNEW_K if unsuccessful. */
11571
11572 static int
11573 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11574 int *pnew_k)
11575 {
11576 static char *bound_buffer = NULL;
11577 static size_t bound_buffer_len = 0;
11578 const char *pstart, *pend, *bound;
11579 struct value *bound_val;
11580
11581 if (dval == NULL || str == NULL || str[k] == '\0')
11582 return 0;
11583
11584 pstart = str + k;
11585 pend = strstr (pstart, "__");
11586 if (pend == NULL)
11587 {
11588 bound = pstart;
11589 k += strlen (bound);
11590 }
11591 else
11592 {
11593 int len = pend - pstart;
11594
11595 /* Strip __ and beyond. */
11596 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11597 strncpy (bound_buffer, pstart, len);
11598 bound_buffer[len] = '\0';
11599
11600 bound = bound_buffer;
11601 k = pend - str;
11602 }
11603
11604 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11605 if (bound_val == NULL)
11606 return 0;
11607
11608 *px = value_as_long (bound_val);
11609 if (pnew_k != NULL)
11610 *pnew_k = k;
11611 return 1;
11612 }
11613
11614 /* Value of variable named NAME in the current environment. If
11615 no such variable found, then if ERR_MSG is null, returns 0, and
11616 otherwise causes an error with message ERR_MSG. */
11617
11618 static struct value *
11619 get_var_value (char *name, char *err_msg)
11620 {
11621 struct block_symbol *syms;
11622 int nsyms;
11623
11624 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11625 &syms);
11626
11627 if (nsyms != 1)
11628 {
11629 if (err_msg == NULL)
11630 return 0;
11631 else
11632 error (("%s"), err_msg);
11633 }
11634
11635 return value_of_variable (syms[0].symbol, syms[0].block);
11636 }
11637
11638 /* Value of integer variable named NAME in the current environment. If
11639 no such variable found, returns 0, and sets *FLAG to 0. If
11640 successful, sets *FLAG to 1. */
11641
11642 LONGEST
11643 get_int_var_value (char *name, int *flag)
11644 {
11645 struct value *var_val = get_var_value (name, 0);
11646
11647 if (var_val == 0)
11648 {
11649 if (flag != NULL)
11650 *flag = 0;
11651 return 0;
11652 }
11653 else
11654 {
11655 if (flag != NULL)
11656 *flag = 1;
11657 return value_as_long (var_val);
11658 }
11659 }
11660
11661
11662 /* Return a range type whose base type is that of the range type named
11663 NAME in the current environment, and whose bounds are calculated
11664 from NAME according to the GNAT range encoding conventions.
11665 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11666 corresponding range type from debug information; fall back to using it
11667 if symbol lookup fails. If a new type must be created, allocate it
11668 like ORIG_TYPE was. The bounds information, in general, is encoded
11669 in NAME, the base type given in the named range type. */
11670
11671 static struct type *
11672 to_fixed_range_type (struct type *raw_type, struct value *dval)
11673 {
11674 const char *name;
11675 struct type *base_type;
11676 const char *subtype_info;
11677
11678 gdb_assert (raw_type != NULL);
11679 gdb_assert (TYPE_NAME (raw_type) != NULL);
11680
11681 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11682 base_type = TYPE_TARGET_TYPE (raw_type);
11683 else
11684 base_type = raw_type;
11685
11686 name = TYPE_NAME (raw_type);
11687 subtype_info = strstr (name, "___XD");
11688 if (subtype_info == NULL)
11689 {
11690 LONGEST L = ada_discrete_type_low_bound (raw_type);
11691 LONGEST U = ada_discrete_type_high_bound (raw_type);
11692
11693 if (L < INT_MIN || U > INT_MAX)
11694 return raw_type;
11695 else
11696 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11697 L, U);
11698 }
11699 else
11700 {
11701 static char *name_buf = NULL;
11702 static size_t name_len = 0;
11703 int prefix_len = subtype_info - name;
11704 LONGEST L, U;
11705 struct type *type;
11706 const char *bounds_str;
11707 int n;
11708
11709 GROW_VECT (name_buf, name_len, prefix_len + 5);
11710 strncpy (name_buf, name, prefix_len);
11711 name_buf[prefix_len] = '\0';
11712
11713 subtype_info += 5;
11714 bounds_str = strchr (subtype_info, '_');
11715 n = 1;
11716
11717 if (*subtype_info == 'L')
11718 {
11719 if (!ada_scan_number (bounds_str, n, &L, &n)
11720 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11721 return raw_type;
11722 if (bounds_str[n] == '_')
11723 n += 2;
11724 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11725 n += 1;
11726 subtype_info += 1;
11727 }
11728 else
11729 {
11730 int ok;
11731
11732 strcpy (name_buf + prefix_len, "___L");
11733 L = get_int_var_value (name_buf, &ok);
11734 if (!ok)
11735 {
11736 lim_warning (_("Unknown lower bound, using 1."));
11737 L = 1;
11738 }
11739 }
11740
11741 if (*subtype_info == 'U')
11742 {
11743 if (!ada_scan_number (bounds_str, n, &U, &n)
11744 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11745 return raw_type;
11746 }
11747 else
11748 {
11749 int ok;
11750
11751 strcpy (name_buf + prefix_len, "___U");
11752 U = get_int_var_value (name_buf, &ok);
11753 if (!ok)
11754 {
11755 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11756 U = L;
11757 }
11758 }
11759
11760 type = create_static_range_type (alloc_type_copy (raw_type),
11761 base_type, L, U);
11762 TYPE_NAME (type) = name;
11763 return type;
11764 }
11765 }
11766
11767 /* True iff NAME is the name of a range type. */
11768
11769 int
11770 ada_is_range_type_name (const char *name)
11771 {
11772 return (name != NULL && strstr (name, "___XD"));
11773 }
11774 \f
11775
11776 /* Modular types */
11777
11778 /* True iff TYPE is an Ada modular type. */
11779
11780 int
11781 ada_is_modular_type (struct type *type)
11782 {
11783 struct type *subranged_type = get_base_type (type);
11784
11785 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11786 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11787 && TYPE_UNSIGNED (subranged_type));
11788 }
11789
11790 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11791
11792 ULONGEST
11793 ada_modulus (struct type *type)
11794 {
11795 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11796 }
11797 \f
11798
11799 /* Ada exception catchpoint support:
11800 ---------------------------------
11801
11802 We support 3 kinds of exception catchpoints:
11803 . catchpoints on Ada exceptions
11804 . catchpoints on unhandled Ada exceptions
11805 . catchpoints on failed assertions
11806
11807 Exceptions raised during failed assertions, or unhandled exceptions
11808 could perfectly be caught with the general catchpoint on Ada exceptions.
11809 However, we can easily differentiate these two special cases, and having
11810 the option to distinguish these two cases from the rest can be useful
11811 to zero-in on certain situations.
11812
11813 Exception catchpoints are a specialized form of breakpoint,
11814 since they rely on inserting breakpoints inside known routines
11815 of the GNAT runtime. The implementation therefore uses a standard
11816 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11817 of breakpoint_ops.
11818
11819 Support in the runtime for exception catchpoints have been changed
11820 a few times already, and these changes affect the implementation
11821 of these catchpoints. In order to be able to support several
11822 variants of the runtime, we use a sniffer that will determine
11823 the runtime variant used by the program being debugged. */
11824
11825 /* Ada's standard exceptions.
11826
11827 The Ada 83 standard also defined Numeric_Error. But there so many
11828 situations where it was unclear from the Ada 83 Reference Manual
11829 (RM) whether Constraint_Error or Numeric_Error should be raised,
11830 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11831 Interpretation saying that anytime the RM says that Numeric_Error
11832 should be raised, the implementation may raise Constraint_Error.
11833 Ada 95 went one step further and pretty much removed Numeric_Error
11834 from the list of standard exceptions (it made it a renaming of
11835 Constraint_Error, to help preserve compatibility when compiling
11836 an Ada83 compiler). As such, we do not include Numeric_Error from
11837 this list of standard exceptions. */
11838
11839 static char *standard_exc[] = {
11840 "constraint_error",
11841 "program_error",
11842 "storage_error",
11843 "tasking_error"
11844 };
11845
11846 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11847
11848 /* A structure that describes how to support exception catchpoints
11849 for a given executable. */
11850
11851 struct exception_support_info
11852 {
11853 /* The name of the symbol to break on in order to insert
11854 a catchpoint on exceptions. */
11855 const char *catch_exception_sym;
11856
11857 /* The name of the symbol to break on in order to insert
11858 a catchpoint on unhandled exceptions. */
11859 const char *catch_exception_unhandled_sym;
11860
11861 /* The name of the symbol to break on in order to insert
11862 a catchpoint on failed assertions. */
11863 const char *catch_assert_sym;
11864
11865 /* Assuming that the inferior just triggered an unhandled exception
11866 catchpoint, this function is responsible for returning the address
11867 in inferior memory where the name of that exception is stored.
11868 Return zero if the address could not be computed. */
11869 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11870 };
11871
11872 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11873 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11874
11875 /* The following exception support info structure describes how to
11876 implement exception catchpoints with the latest version of the
11877 Ada runtime (as of 2007-03-06). */
11878
11879 static const struct exception_support_info default_exception_support_info =
11880 {
11881 "__gnat_debug_raise_exception", /* catch_exception_sym */
11882 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11883 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11884 ada_unhandled_exception_name_addr
11885 };
11886
11887 /* The following exception support info structure describes how to
11888 implement exception catchpoints with a slightly older version
11889 of the Ada runtime. */
11890
11891 static const struct exception_support_info exception_support_info_fallback =
11892 {
11893 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11894 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11895 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11896 ada_unhandled_exception_name_addr_from_raise
11897 };
11898
11899 /* Return nonzero if we can detect the exception support routines
11900 described in EINFO.
11901
11902 This function errors out if an abnormal situation is detected
11903 (for instance, if we find the exception support routines, but
11904 that support is found to be incomplete). */
11905
11906 static int
11907 ada_has_this_exception_support (const struct exception_support_info *einfo)
11908 {
11909 struct symbol *sym;
11910
11911 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11912 that should be compiled with debugging information. As a result, we
11913 expect to find that symbol in the symtabs. */
11914
11915 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11916 if (sym == NULL)
11917 {
11918 /* Perhaps we did not find our symbol because the Ada runtime was
11919 compiled without debugging info, or simply stripped of it.
11920 It happens on some GNU/Linux distributions for instance, where
11921 users have to install a separate debug package in order to get
11922 the runtime's debugging info. In that situation, let the user
11923 know why we cannot insert an Ada exception catchpoint.
11924
11925 Note: Just for the purpose of inserting our Ada exception
11926 catchpoint, we could rely purely on the associated minimal symbol.
11927 But we would be operating in degraded mode anyway, since we are
11928 still lacking the debugging info needed later on to extract
11929 the name of the exception being raised (this name is printed in
11930 the catchpoint message, and is also used when trying to catch
11931 a specific exception). We do not handle this case for now. */
11932 struct bound_minimal_symbol msym
11933 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11934
11935 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11936 error (_("Your Ada runtime appears to be missing some debugging "
11937 "information.\nCannot insert Ada exception catchpoint "
11938 "in this configuration."));
11939
11940 return 0;
11941 }
11942
11943 /* Make sure that the symbol we found corresponds to a function. */
11944
11945 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11946 error (_("Symbol \"%s\" is not a function (class = %d)"),
11947 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11948
11949 return 1;
11950 }
11951
11952 /* Inspect the Ada runtime and determine which exception info structure
11953 should be used to provide support for exception catchpoints.
11954
11955 This function will always set the per-inferior exception_info,
11956 or raise an error. */
11957
11958 static void
11959 ada_exception_support_info_sniffer (void)
11960 {
11961 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11962
11963 /* If the exception info is already known, then no need to recompute it. */
11964 if (data->exception_info != NULL)
11965 return;
11966
11967 /* Check the latest (default) exception support info. */
11968 if (ada_has_this_exception_support (&default_exception_support_info))
11969 {
11970 data->exception_info = &default_exception_support_info;
11971 return;
11972 }
11973
11974 /* Try our fallback exception suport info. */
11975 if (ada_has_this_exception_support (&exception_support_info_fallback))
11976 {
11977 data->exception_info = &exception_support_info_fallback;
11978 return;
11979 }
11980
11981 /* Sometimes, it is normal for us to not be able to find the routine
11982 we are looking for. This happens when the program is linked with
11983 the shared version of the GNAT runtime, and the program has not been
11984 started yet. Inform the user of these two possible causes if
11985 applicable. */
11986
11987 if (ada_update_initial_language (language_unknown) != language_ada)
11988 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11989
11990 /* If the symbol does not exist, then check that the program is
11991 already started, to make sure that shared libraries have been
11992 loaded. If it is not started, this may mean that the symbol is
11993 in a shared library. */
11994
11995 if (ptid_get_pid (inferior_ptid) == 0)
11996 error (_("Unable to insert catchpoint. Try to start the program first."));
11997
11998 /* At this point, we know that we are debugging an Ada program and
11999 that the inferior has been started, but we still are not able to
12000 find the run-time symbols. That can mean that we are in
12001 configurable run time mode, or that a-except as been optimized
12002 out by the linker... In any case, at this point it is not worth
12003 supporting this feature. */
12004
12005 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12006 }
12007
12008 /* True iff FRAME is very likely to be that of a function that is
12009 part of the runtime system. This is all very heuristic, but is
12010 intended to be used as advice as to what frames are uninteresting
12011 to most users. */
12012
12013 static int
12014 is_known_support_routine (struct frame_info *frame)
12015 {
12016 struct symtab_and_line sal;
12017 char *func_name;
12018 enum language func_lang;
12019 int i;
12020 const char *fullname;
12021
12022 /* If this code does not have any debugging information (no symtab),
12023 This cannot be any user code. */
12024
12025 find_frame_sal (frame, &sal);
12026 if (sal.symtab == NULL)
12027 return 1;
12028
12029 /* If there is a symtab, but the associated source file cannot be
12030 located, then assume this is not user code: Selecting a frame
12031 for which we cannot display the code would not be very helpful
12032 for the user. This should also take care of case such as VxWorks
12033 where the kernel has some debugging info provided for a few units. */
12034
12035 fullname = symtab_to_fullname (sal.symtab);
12036 if (access (fullname, R_OK) != 0)
12037 return 1;
12038
12039 /* Check the unit filename againt the Ada runtime file naming.
12040 We also check the name of the objfile against the name of some
12041 known system libraries that sometimes come with debugging info
12042 too. */
12043
12044 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12045 {
12046 re_comp (known_runtime_file_name_patterns[i]);
12047 if (re_exec (lbasename (sal.symtab->filename)))
12048 return 1;
12049 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12050 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12051 return 1;
12052 }
12053
12054 /* Check whether the function is a GNAT-generated entity. */
12055
12056 find_frame_funname (frame, &func_name, &func_lang, NULL);
12057 if (func_name == NULL)
12058 return 1;
12059
12060 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12061 {
12062 re_comp (known_auxiliary_function_name_patterns[i]);
12063 if (re_exec (func_name))
12064 {
12065 xfree (func_name);
12066 return 1;
12067 }
12068 }
12069
12070 xfree (func_name);
12071 return 0;
12072 }
12073
12074 /* Find the first frame that contains debugging information and that is not
12075 part of the Ada run-time, starting from FI and moving upward. */
12076
12077 void
12078 ada_find_printable_frame (struct frame_info *fi)
12079 {
12080 for (; fi != NULL; fi = get_prev_frame (fi))
12081 {
12082 if (!is_known_support_routine (fi))
12083 {
12084 select_frame (fi);
12085 break;
12086 }
12087 }
12088
12089 }
12090
12091 /* Assuming that the inferior just triggered an unhandled exception
12092 catchpoint, return the address in inferior memory where the name
12093 of the exception is stored.
12094
12095 Return zero if the address could not be computed. */
12096
12097 static CORE_ADDR
12098 ada_unhandled_exception_name_addr (void)
12099 {
12100 return parse_and_eval_address ("e.full_name");
12101 }
12102
12103 /* Same as ada_unhandled_exception_name_addr, except that this function
12104 should be used when the inferior uses an older version of the runtime,
12105 where the exception name needs to be extracted from a specific frame
12106 several frames up in the callstack. */
12107
12108 static CORE_ADDR
12109 ada_unhandled_exception_name_addr_from_raise (void)
12110 {
12111 int frame_level;
12112 struct frame_info *fi;
12113 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12114 struct cleanup *old_chain;
12115
12116 /* To determine the name of this exception, we need to select
12117 the frame corresponding to RAISE_SYM_NAME. This frame is
12118 at least 3 levels up, so we simply skip the first 3 frames
12119 without checking the name of their associated function. */
12120 fi = get_current_frame ();
12121 for (frame_level = 0; frame_level < 3; frame_level += 1)
12122 if (fi != NULL)
12123 fi = get_prev_frame (fi);
12124
12125 old_chain = make_cleanup (null_cleanup, NULL);
12126 while (fi != NULL)
12127 {
12128 char *func_name;
12129 enum language func_lang;
12130
12131 find_frame_funname (fi, &func_name, &func_lang, NULL);
12132 if (func_name != NULL)
12133 {
12134 make_cleanup (xfree, func_name);
12135
12136 if (strcmp (func_name,
12137 data->exception_info->catch_exception_sym) == 0)
12138 break; /* We found the frame we were looking for... */
12139 fi = get_prev_frame (fi);
12140 }
12141 }
12142 do_cleanups (old_chain);
12143
12144 if (fi == NULL)
12145 return 0;
12146
12147 select_frame (fi);
12148 return parse_and_eval_address ("id.full_name");
12149 }
12150
12151 /* Assuming the inferior just triggered an Ada exception catchpoint
12152 (of any type), return the address in inferior memory where the name
12153 of the exception is stored, if applicable.
12154
12155 Assumes the selected frame is the current frame.
12156
12157 Return zero if the address could not be computed, or if not relevant. */
12158
12159 static CORE_ADDR
12160 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12161 struct breakpoint *b)
12162 {
12163 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12164
12165 switch (ex)
12166 {
12167 case ada_catch_exception:
12168 return (parse_and_eval_address ("e.full_name"));
12169 break;
12170
12171 case ada_catch_exception_unhandled:
12172 return data->exception_info->unhandled_exception_name_addr ();
12173 break;
12174
12175 case ada_catch_assert:
12176 return 0; /* Exception name is not relevant in this case. */
12177 break;
12178
12179 default:
12180 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12181 break;
12182 }
12183
12184 return 0; /* Should never be reached. */
12185 }
12186
12187 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12188 any error that ada_exception_name_addr_1 might cause to be thrown.
12189 When an error is intercepted, a warning with the error message is printed,
12190 and zero is returned. */
12191
12192 static CORE_ADDR
12193 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12194 struct breakpoint *b)
12195 {
12196 CORE_ADDR result = 0;
12197
12198 TRY
12199 {
12200 result = ada_exception_name_addr_1 (ex, b);
12201 }
12202
12203 CATCH (e, RETURN_MASK_ERROR)
12204 {
12205 warning (_("failed to get exception name: %s"), e.message);
12206 return 0;
12207 }
12208 END_CATCH
12209
12210 return result;
12211 }
12212
12213 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12214
12215 /* Ada catchpoints.
12216
12217 In the case of catchpoints on Ada exceptions, the catchpoint will
12218 stop the target on every exception the program throws. When a user
12219 specifies the name of a specific exception, we translate this
12220 request into a condition expression (in text form), and then parse
12221 it into an expression stored in each of the catchpoint's locations.
12222 We then use this condition to check whether the exception that was
12223 raised is the one the user is interested in. If not, then the
12224 target is resumed again. We store the name of the requested
12225 exception, in order to be able to re-set the condition expression
12226 when symbols change. */
12227
12228 /* An instance of this type is used to represent an Ada catchpoint
12229 breakpoint location. It includes a "struct bp_location" as a kind
12230 of base class; users downcast to "struct bp_location *" when
12231 needed. */
12232
12233 struct ada_catchpoint_location
12234 {
12235 /* The base class. */
12236 struct bp_location base;
12237
12238 /* The condition that checks whether the exception that was raised
12239 is the specific exception the user specified on catchpoint
12240 creation. */
12241 expression_up excep_cond_expr;
12242 };
12243
12244 /* Implement the DTOR method in the bp_location_ops structure for all
12245 Ada exception catchpoint kinds. */
12246
12247 static void
12248 ada_catchpoint_location_dtor (struct bp_location *bl)
12249 {
12250 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12251
12252 al->excep_cond_expr.reset ();
12253 }
12254
12255 /* The vtable to be used in Ada catchpoint locations. */
12256
12257 static const struct bp_location_ops ada_catchpoint_location_ops =
12258 {
12259 ada_catchpoint_location_dtor
12260 };
12261
12262 /* An instance of this type is used to represent an Ada catchpoint.
12263 It includes a "struct breakpoint" as a kind of base class; users
12264 downcast to "struct breakpoint *" when needed. */
12265
12266 struct ada_catchpoint
12267 {
12268 /* The base class. */
12269 struct breakpoint base;
12270
12271 /* The name of the specific exception the user specified. */
12272 char *excep_string;
12273 };
12274
12275 /* Parse the exception condition string in the context of each of the
12276 catchpoint's locations, and store them for later evaluation. */
12277
12278 static void
12279 create_excep_cond_exprs (struct ada_catchpoint *c)
12280 {
12281 struct cleanup *old_chain;
12282 struct bp_location *bl;
12283 char *cond_string;
12284
12285 /* Nothing to do if there's no specific exception to catch. */
12286 if (c->excep_string == NULL)
12287 return;
12288
12289 /* Same if there are no locations... */
12290 if (c->base.loc == NULL)
12291 return;
12292
12293 /* Compute the condition expression in text form, from the specific
12294 expection we want to catch. */
12295 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12296 old_chain = make_cleanup (xfree, cond_string);
12297
12298 /* Iterate over all the catchpoint's locations, and parse an
12299 expression for each. */
12300 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12301 {
12302 struct ada_catchpoint_location *ada_loc
12303 = (struct ada_catchpoint_location *) bl;
12304 expression_up exp;
12305
12306 if (!bl->shlib_disabled)
12307 {
12308 const char *s;
12309
12310 s = cond_string;
12311 TRY
12312 {
12313 exp = parse_exp_1 (&s, bl->address,
12314 block_for_pc (bl->address),
12315 0);
12316 }
12317 CATCH (e, RETURN_MASK_ERROR)
12318 {
12319 warning (_("failed to reevaluate internal exception condition "
12320 "for catchpoint %d: %s"),
12321 c->base.number, e.message);
12322 }
12323 END_CATCH
12324 }
12325
12326 ada_loc->excep_cond_expr = std::move (exp);
12327 }
12328
12329 do_cleanups (old_chain);
12330 }
12331
12332 /* Implement the DTOR method in the breakpoint_ops structure for all
12333 exception catchpoint kinds. */
12334
12335 static void
12336 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12337 {
12338 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12339
12340 xfree (c->excep_string);
12341
12342 bkpt_breakpoint_ops.dtor (b);
12343 }
12344
12345 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12346 structure for all exception catchpoint kinds. */
12347
12348 static struct bp_location *
12349 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12350 struct breakpoint *self)
12351 {
12352 struct ada_catchpoint_location *loc;
12353
12354 loc = new ada_catchpoint_location ();
12355 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12356 loc->excep_cond_expr = NULL;
12357 return &loc->base;
12358 }
12359
12360 /* Implement the RE_SET method in the breakpoint_ops structure for all
12361 exception catchpoint kinds. */
12362
12363 static void
12364 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12365 {
12366 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12367
12368 /* Call the base class's method. This updates the catchpoint's
12369 locations. */
12370 bkpt_breakpoint_ops.re_set (b);
12371
12372 /* Reparse the exception conditional expressions. One for each
12373 location. */
12374 create_excep_cond_exprs (c);
12375 }
12376
12377 /* Returns true if we should stop for this breakpoint hit. If the
12378 user specified a specific exception, we only want to cause a stop
12379 if the program thrown that exception. */
12380
12381 static int
12382 should_stop_exception (const struct bp_location *bl)
12383 {
12384 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12385 const struct ada_catchpoint_location *ada_loc
12386 = (const struct ada_catchpoint_location *) bl;
12387 int stop;
12388
12389 /* With no specific exception, should always stop. */
12390 if (c->excep_string == NULL)
12391 return 1;
12392
12393 if (ada_loc->excep_cond_expr == NULL)
12394 {
12395 /* We will have a NULL expression if back when we were creating
12396 the expressions, this location's had failed to parse. */
12397 return 1;
12398 }
12399
12400 stop = 1;
12401 TRY
12402 {
12403 struct value *mark;
12404
12405 mark = value_mark ();
12406 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12407 value_free_to_mark (mark);
12408 }
12409 CATCH (ex, RETURN_MASK_ALL)
12410 {
12411 exception_fprintf (gdb_stderr, ex,
12412 _("Error in testing exception condition:\n"));
12413 }
12414 END_CATCH
12415
12416 return stop;
12417 }
12418
12419 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12420 for all exception catchpoint kinds. */
12421
12422 static void
12423 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12424 {
12425 bs->stop = should_stop_exception (bs->bp_location_at);
12426 }
12427
12428 /* Implement the PRINT_IT method in the breakpoint_ops structure
12429 for all exception catchpoint kinds. */
12430
12431 static enum print_stop_action
12432 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12433 {
12434 struct ui_out *uiout = current_uiout;
12435 struct breakpoint *b = bs->breakpoint_at;
12436
12437 annotate_catchpoint (b->number);
12438
12439 if (uiout->is_mi_like_p ())
12440 {
12441 uiout->field_string ("reason",
12442 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12443 uiout->field_string ("disp", bpdisp_text (b->disposition));
12444 }
12445
12446 uiout->text (b->disposition == disp_del
12447 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12448 uiout->field_int ("bkptno", b->number);
12449 uiout->text (", ");
12450
12451 /* ada_exception_name_addr relies on the selected frame being the
12452 current frame. Need to do this here because this function may be
12453 called more than once when printing a stop, and below, we'll
12454 select the first frame past the Ada run-time (see
12455 ada_find_printable_frame). */
12456 select_frame (get_current_frame ());
12457
12458 switch (ex)
12459 {
12460 case ada_catch_exception:
12461 case ada_catch_exception_unhandled:
12462 {
12463 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12464 char exception_name[256];
12465
12466 if (addr != 0)
12467 {
12468 read_memory (addr, (gdb_byte *) exception_name,
12469 sizeof (exception_name) - 1);
12470 exception_name [sizeof (exception_name) - 1] = '\0';
12471 }
12472 else
12473 {
12474 /* For some reason, we were unable to read the exception
12475 name. This could happen if the Runtime was compiled
12476 without debugging info, for instance. In that case,
12477 just replace the exception name by the generic string
12478 "exception" - it will read as "an exception" in the
12479 notification we are about to print. */
12480 memcpy (exception_name, "exception", sizeof ("exception"));
12481 }
12482 /* In the case of unhandled exception breakpoints, we print
12483 the exception name as "unhandled EXCEPTION_NAME", to make
12484 it clearer to the user which kind of catchpoint just got
12485 hit. We used ui_out_text to make sure that this extra
12486 info does not pollute the exception name in the MI case. */
12487 if (ex == ada_catch_exception_unhandled)
12488 uiout->text ("unhandled ");
12489 uiout->field_string ("exception-name", exception_name);
12490 }
12491 break;
12492 case ada_catch_assert:
12493 /* In this case, the name of the exception is not really
12494 important. Just print "failed assertion" to make it clearer
12495 that his program just hit an assertion-failure catchpoint.
12496 We used ui_out_text because this info does not belong in
12497 the MI output. */
12498 uiout->text ("failed assertion");
12499 break;
12500 }
12501 uiout->text (" at ");
12502 ada_find_printable_frame (get_current_frame ());
12503
12504 return PRINT_SRC_AND_LOC;
12505 }
12506
12507 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12508 for all exception catchpoint kinds. */
12509
12510 static void
12511 print_one_exception (enum ada_exception_catchpoint_kind ex,
12512 struct breakpoint *b, struct bp_location **last_loc)
12513 {
12514 struct ui_out *uiout = current_uiout;
12515 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12516 struct value_print_options opts;
12517
12518 get_user_print_options (&opts);
12519 if (opts.addressprint)
12520 {
12521 annotate_field (4);
12522 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12523 }
12524
12525 annotate_field (5);
12526 *last_loc = b->loc;
12527 switch (ex)
12528 {
12529 case ada_catch_exception:
12530 if (c->excep_string != NULL)
12531 {
12532 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12533
12534 uiout->field_string ("what", msg);
12535 xfree (msg);
12536 }
12537 else
12538 uiout->field_string ("what", "all Ada exceptions");
12539
12540 break;
12541
12542 case ada_catch_exception_unhandled:
12543 uiout->field_string ("what", "unhandled Ada exceptions");
12544 break;
12545
12546 case ada_catch_assert:
12547 uiout->field_string ("what", "failed Ada assertions");
12548 break;
12549
12550 default:
12551 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12552 break;
12553 }
12554 }
12555
12556 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12557 for all exception catchpoint kinds. */
12558
12559 static void
12560 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12561 struct breakpoint *b)
12562 {
12563 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12564 struct ui_out *uiout = current_uiout;
12565
12566 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12567 : _("Catchpoint "));
12568 uiout->field_int ("bkptno", b->number);
12569 uiout->text (": ");
12570
12571 switch (ex)
12572 {
12573 case ada_catch_exception:
12574 if (c->excep_string != NULL)
12575 {
12576 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12577 struct cleanup *old_chain = make_cleanup (xfree, info);
12578
12579 uiout->text (info);
12580 do_cleanups (old_chain);
12581 }
12582 else
12583 uiout->text (_("all Ada exceptions"));
12584 break;
12585
12586 case ada_catch_exception_unhandled:
12587 uiout->text (_("unhandled Ada exceptions"));
12588 break;
12589
12590 case ada_catch_assert:
12591 uiout->text (_("failed Ada assertions"));
12592 break;
12593
12594 default:
12595 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12596 break;
12597 }
12598 }
12599
12600 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12601 for all exception catchpoint kinds. */
12602
12603 static void
12604 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12605 struct breakpoint *b, struct ui_file *fp)
12606 {
12607 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12608
12609 switch (ex)
12610 {
12611 case ada_catch_exception:
12612 fprintf_filtered (fp, "catch exception");
12613 if (c->excep_string != NULL)
12614 fprintf_filtered (fp, " %s", c->excep_string);
12615 break;
12616
12617 case ada_catch_exception_unhandled:
12618 fprintf_filtered (fp, "catch exception unhandled");
12619 break;
12620
12621 case ada_catch_assert:
12622 fprintf_filtered (fp, "catch assert");
12623 break;
12624
12625 default:
12626 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12627 }
12628 print_recreate_thread (b, fp);
12629 }
12630
12631 /* Virtual table for "catch exception" breakpoints. */
12632
12633 static void
12634 dtor_catch_exception (struct breakpoint *b)
12635 {
12636 dtor_exception (ada_catch_exception, b);
12637 }
12638
12639 static struct bp_location *
12640 allocate_location_catch_exception (struct breakpoint *self)
12641 {
12642 return allocate_location_exception (ada_catch_exception, self);
12643 }
12644
12645 static void
12646 re_set_catch_exception (struct breakpoint *b)
12647 {
12648 re_set_exception (ada_catch_exception, b);
12649 }
12650
12651 static void
12652 check_status_catch_exception (bpstat bs)
12653 {
12654 check_status_exception (ada_catch_exception, bs);
12655 }
12656
12657 static enum print_stop_action
12658 print_it_catch_exception (bpstat bs)
12659 {
12660 return print_it_exception (ada_catch_exception, bs);
12661 }
12662
12663 static void
12664 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12665 {
12666 print_one_exception (ada_catch_exception, b, last_loc);
12667 }
12668
12669 static void
12670 print_mention_catch_exception (struct breakpoint *b)
12671 {
12672 print_mention_exception (ada_catch_exception, b);
12673 }
12674
12675 static void
12676 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12677 {
12678 print_recreate_exception (ada_catch_exception, b, fp);
12679 }
12680
12681 static struct breakpoint_ops catch_exception_breakpoint_ops;
12682
12683 /* Virtual table for "catch exception unhandled" breakpoints. */
12684
12685 static void
12686 dtor_catch_exception_unhandled (struct breakpoint *b)
12687 {
12688 dtor_exception (ada_catch_exception_unhandled, b);
12689 }
12690
12691 static struct bp_location *
12692 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12693 {
12694 return allocate_location_exception (ada_catch_exception_unhandled, self);
12695 }
12696
12697 static void
12698 re_set_catch_exception_unhandled (struct breakpoint *b)
12699 {
12700 re_set_exception (ada_catch_exception_unhandled, b);
12701 }
12702
12703 static void
12704 check_status_catch_exception_unhandled (bpstat bs)
12705 {
12706 check_status_exception (ada_catch_exception_unhandled, bs);
12707 }
12708
12709 static enum print_stop_action
12710 print_it_catch_exception_unhandled (bpstat bs)
12711 {
12712 return print_it_exception (ada_catch_exception_unhandled, bs);
12713 }
12714
12715 static void
12716 print_one_catch_exception_unhandled (struct breakpoint *b,
12717 struct bp_location **last_loc)
12718 {
12719 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12720 }
12721
12722 static void
12723 print_mention_catch_exception_unhandled (struct breakpoint *b)
12724 {
12725 print_mention_exception (ada_catch_exception_unhandled, b);
12726 }
12727
12728 static void
12729 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12730 struct ui_file *fp)
12731 {
12732 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12733 }
12734
12735 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12736
12737 /* Virtual table for "catch assert" breakpoints. */
12738
12739 static void
12740 dtor_catch_assert (struct breakpoint *b)
12741 {
12742 dtor_exception (ada_catch_assert, b);
12743 }
12744
12745 static struct bp_location *
12746 allocate_location_catch_assert (struct breakpoint *self)
12747 {
12748 return allocate_location_exception (ada_catch_assert, self);
12749 }
12750
12751 static void
12752 re_set_catch_assert (struct breakpoint *b)
12753 {
12754 re_set_exception (ada_catch_assert, b);
12755 }
12756
12757 static void
12758 check_status_catch_assert (bpstat bs)
12759 {
12760 check_status_exception (ada_catch_assert, bs);
12761 }
12762
12763 static enum print_stop_action
12764 print_it_catch_assert (bpstat bs)
12765 {
12766 return print_it_exception (ada_catch_assert, bs);
12767 }
12768
12769 static void
12770 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12771 {
12772 print_one_exception (ada_catch_assert, b, last_loc);
12773 }
12774
12775 static void
12776 print_mention_catch_assert (struct breakpoint *b)
12777 {
12778 print_mention_exception (ada_catch_assert, b);
12779 }
12780
12781 static void
12782 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12783 {
12784 print_recreate_exception (ada_catch_assert, b, fp);
12785 }
12786
12787 static struct breakpoint_ops catch_assert_breakpoint_ops;
12788
12789 /* Return a newly allocated copy of the first space-separated token
12790 in ARGSP, and then adjust ARGSP to point immediately after that
12791 token.
12792
12793 Return NULL if ARGPS does not contain any more tokens. */
12794
12795 static char *
12796 ada_get_next_arg (char **argsp)
12797 {
12798 char *args = *argsp;
12799 char *end;
12800 char *result;
12801
12802 args = skip_spaces (args);
12803 if (args[0] == '\0')
12804 return NULL; /* No more arguments. */
12805
12806 /* Find the end of the current argument. */
12807
12808 end = skip_to_space (args);
12809
12810 /* Adjust ARGSP to point to the start of the next argument. */
12811
12812 *argsp = end;
12813
12814 /* Make a copy of the current argument and return it. */
12815
12816 result = (char *) xmalloc (end - args + 1);
12817 strncpy (result, args, end - args);
12818 result[end - args] = '\0';
12819
12820 return result;
12821 }
12822
12823 /* Split the arguments specified in a "catch exception" command.
12824 Set EX to the appropriate catchpoint type.
12825 Set EXCEP_STRING to the name of the specific exception if
12826 specified by the user.
12827 If a condition is found at the end of the arguments, the condition
12828 expression is stored in COND_STRING (memory must be deallocated
12829 after use). Otherwise COND_STRING is set to NULL. */
12830
12831 static void
12832 catch_ada_exception_command_split (char *args,
12833 enum ada_exception_catchpoint_kind *ex,
12834 char **excep_string,
12835 char **cond_string)
12836 {
12837 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12838 char *exception_name;
12839 char *cond = NULL;
12840
12841 exception_name = ada_get_next_arg (&args);
12842 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12843 {
12844 /* This is not an exception name; this is the start of a condition
12845 expression for a catchpoint on all exceptions. So, "un-get"
12846 this token, and set exception_name to NULL. */
12847 xfree (exception_name);
12848 exception_name = NULL;
12849 args -= 2;
12850 }
12851 make_cleanup (xfree, exception_name);
12852
12853 /* Check to see if we have a condition. */
12854
12855 args = skip_spaces (args);
12856 if (startswith (args, "if")
12857 && (isspace (args[2]) || args[2] == '\0'))
12858 {
12859 args += 2;
12860 args = skip_spaces (args);
12861
12862 if (args[0] == '\0')
12863 error (_("Condition missing after `if' keyword"));
12864 cond = xstrdup (args);
12865 make_cleanup (xfree, cond);
12866
12867 args += strlen (args);
12868 }
12869
12870 /* Check that we do not have any more arguments. Anything else
12871 is unexpected. */
12872
12873 if (args[0] != '\0')
12874 error (_("Junk at end of expression"));
12875
12876 discard_cleanups (old_chain);
12877
12878 if (exception_name == NULL)
12879 {
12880 /* Catch all exceptions. */
12881 *ex = ada_catch_exception;
12882 *excep_string = NULL;
12883 }
12884 else if (strcmp (exception_name, "unhandled") == 0)
12885 {
12886 /* Catch unhandled exceptions. */
12887 *ex = ada_catch_exception_unhandled;
12888 *excep_string = NULL;
12889 }
12890 else
12891 {
12892 /* Catch a specific exception. */
12893 *ex = ada_catch_exception;
12894 *excep_string = exception_name;
12895 }
12896 *cond_string = cond;
12897 }
12898
12899 /* Return the name of the symbol on which we should break in order to
12900 implement a catchpoint of the EX kind. */
12901
12902 static const char *
12903 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12904 {
12905 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12906
12907 gdb_assert (data->exception_info != NULL);
12908
12909 switch (ex)
12910 {
12911 case ada_catch_exception:
12912 return (data->exception_info->catch_exception_sym);
12913 break;
12914 case ada_catch_exception_unhandled:
12915 return (data->exception_info->catch_exception_unhandled_sym);
12916 break;
12917 case ada_catch_assert:
12918 return (data->exception_info->catch_assert_sym);
12919 break;
12920 default:
12921 internal_error (__FILE__, __LINE__,
12922 _("unexpected catchpoint kind (%d)"), ex);
12923 }
12924 }
12925
12926 /* Return the breakpoint ops "virtual table" used for catchpoints
12927 of the EX kind. */
12928
12929 static const struct breakpoint_ops *
12930 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12931 {
12932 switch (ex)
12933 {
12934 case ada_catch_exception:
12935 return (&catch_exception_breakpoint_ops);
12936 break;
12937 case ada_catch_exception_unhandled:
12938 return (&catch_exception_unhandled_breakpoint_ops);
12939 break;
12940 case ada_catch_assert:
12941 return (&catch_assert_breakpoint_ops);
12942 break;
12943 default:
12944 internal_error (__FILE__, __LINE__,
12945 _("unexpected catchpoint kind (%d)"), ex);
12946 }
12947 }
12948
12949 /* Return the condition that will be used to match the current exception
12950 being raised with the exception that the user wants to catch. This
12951 assumes that this condition is used when the inferior just triggered
12952 an exception catchpoint.
12953
12954 The string returned is a newly allocated string that needs to be
12955 deallocated later. */
12956
12957 static char *
12958 ada_exception_catchpoint_cond_string (const char *excep_string)
12959 {
12960 int i;
12961
12962 /* The standard exceptions are a special case. They are defined in
12963 runtime units that have been compiled without debugging info; if
12964 EXCEP_STRING is the not-fully-qualified name of a standard
12965 exception (e.g. "constraint_error") then, during the evaluation
12966 of the condition expression, the symbol lookup on this name would
12967 *not* return this standard exception. The catchpoint condition
12968 may then be set only on user-defined exceptions which have the
12969 same not-fully-qualified name (e.g. my_package.constraint_error).
12970
12971 To avoid this unexcepted behavior, these standard exceptions are
12972 systematically prefixed by "standard". This means that "catch
12973 exception constraint_error" is rewritten into "catch exception
12974 standard.constraint_error".
12975
12976 If an exception named contraint_error is defined in another package of
12977 the inferior program, then the only way to specify this exception as a
12978 breakpoint condition is to use its fully-qualified named:
12979 e.g. my_package.constraint_error. */
12980
12981 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12982 {
12983 if (strcmp (standard_exc [i], excep_string) == 0)
12984 {
12985 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12986 excep_string);
12987 }
12988 }
12989 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12990 }
12991
12992 /* Return the symtab_and_line that should be used to insert an exception
12993 catchpoint of the TYPE kind.
12994
12995 EXCEP_STRING should contain the name of a specific exception that
12996 the catchpoint should catch, or NULL otherwise.
12997
12998 ADDR_STRING returns the name of the function where the real
12999 breakpoint that implements the catchpoints is set, depending on the
13000 type of catchpoint we need to create. */
13001
13002 static struct symtab_and_line
13003 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13004 char **addr_string, const struct breakpoint_ops **ops)
13005 {
13006 const char *sym_name;
13007 struct symbol *sym;
13008
13009 /* First, find out which exception support info to use. */
13010 ada_exception_support_info_sniffer ();
13011
13012 /* Then lookup the function on which we will break in order to catch
13013 the Ada exceptions requested by the user. */
13014 sym_name = ada_exception_sym_name (ex);
13015 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13016
13017 /* We can assume that SYM is not NULL at this stage. If the symbol
13018 did not exist, ada_exception_support_info_sniffer would have
13019 raised an exception.
13020
13021 Also, ada_exception_support_info_sniffer should have already
13022 verified that SYM is a function symbol. */
13023 gdb_assert (sym != NULL);
13024 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13025
13026 /* Set ADDR_STRING. */
13027 *addr_string = xstrdup (sym_name);
13028
13029 /* Set OPS. */
13030 *ops = ada_exception_breakpoint_ops (ex);
13031
13032 return find_function_start_sal (sym, 1);
13033 }
13034
13035 /* Create an Ada exception catchpoint.
13036
13037 EX_KIND is the kind of exception catchpoint to be created.
13038
13039 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13040 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13041 of the exception to which this catchpoint applies. When not NULL,
13042 the string must be allocated on the heap, and its deallocation
13043 is no longer the responsibility of the caller.
13044
13045 COND_STRING, if not NULL, is the catchpoint condition. This string
13046 must be allocated on the heap, and its deallocation is no longer
13047 the responsibility of the caller.
13048
13049 TEMPFLAG, if nonzero, means that the underlying breakpoint
13050 should be temporary.
13051
13052 FROM_TTY is the usual argument passed to all commands implementations. */
13053
13054 void
13055 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13056 enum ada_exception_catchpoint_kind ex_kind,
13057 char *excep_string,
13058 char *cond_string,
13059 int tempflag,
13060 int disabled,
13061 int from_tty)
13062 {
13063 struct ada_catchpoint *c;
13064 char *addr_string = NULL;
13065 const struct breakpoint_ops *ops = NULL;
13066 struct symtab_and_line sal
13067 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13068
13069 c = new ada_catchpoint ();
13070 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13071 ops, tempflag, disabled, from_tty);
13072 c->excep_string = excep_string;
13073 create_excep_cond_exprs (c);
13074 if (cond_string != NULL)
13075 set_breakpoint_condition (&c->base, cond_string, from_tty);
13076 install_breakpoint (0, &c->base, 1);
13077 }
13078
13079 /* Implement the "catch exception" command. */
13080
13081 static void
13082 catch_ada_exception_command (char *arg, int from_tty,
13083 struct cmd_list_element *command)
13084 {
13085 struct gdbarch *gdbarch = get_current_arch ();
13086 int tempflag;
13087 enum ada_exception_catchpoint_kind ex_kind;
13088 char *excep_string = NULL;
13089 char *cond_string = NULL;
13090
13091 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13092
13093 if (!arg)
13094 arg = "";
13095 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13096 &cond_string);
13097 create_ada_exception_catchpoint (gdbarch, ex_kind,
13098 excep_string, cond_string,
13099 tempflag, 1 /* enabled */,
13100 from_tty);
13101 }
13102
13103 /* Split the arguments specified in a "catch assert" command.
13104
13105 ARGS contains the command's arguments (or the empty string if
13106 no arguments were passed).
13107
13108 If ARGS contains a condition, set COND_STRING to that condition
13109 (the memory needs to be deallocated after use). */
13110
13111 static void
13112 catch_ada_assert_command_split (char *args, char **cond_string)
13113 {
13114 args = skip_spaces (args);
13115
13116 /* Check whether a condition was provided. */
13117 if (startswith (args, "if")
13118 && (isspace (args[2]) || args[2] == '\0'))
13119 {
13120 args += 2;
13121 args = skip_spaces (args);
13122 if (args[0] == '\0')
13123 error (_("condition missing after `if' keyword"));
13124 *cond_string = xstrdup (args);
13125 }
13126
13127 /* Otherwise, there should be no other argument at the end of
13128 the command. */
13129 else if (args[0] != '\0')
13130 error (_("Junk at end of arguments."));
13131 }
13132
13133 /* Implement the "catch assert" command. */
13134
13135 static void
13136 catch_assert_command (char *arg, int from_tty,
13137 struct cmd_list_element *command)
13138 {
13139 struct gdbarch *gdbarch = get_current_arch ();
13140 int tempflag;
13141 char *cond_string = NULL;
13142
13143 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13144
13145 if (!arg)
13146 arg = "";
13147 catch_ada_assert_command_split (arg, &cond_string);
13148 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13149 NULL, cond_string,
13150 tempflag, 1 /* enabled */,
13151 from_tty);
13152 }
13153
13154 /* Return non-zero if the symbol SYM is an Ada exception object. */
13155
13156 static int
13157 ada_is_exception_sym (struct symbol *sym)
13158 {
13159 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13160
13161 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13162 && SYMBOL_CLASS (sym) != LOC_BLOCK
13163 && SYMBOL_CLASS (sym) != LOC_CONST
13164 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13165 && type_name != NULL && strcmp (type_name, "exception") == 0);
13166 }
13167
13168 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13169 Ada exception object. This matches all exceptions except the ones
13170 defined by the Ada language. */
13171
13172 static int
13173 ada_is_non_standard_exception_sym (struct symbol *sym)
13174 {
13175 int i;
13176
13177 if (!ada_is_exception_sym (sym))
13178 return 0;
13179
13180 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13181 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13182 return 0; /* A standard exception. */
13183
13184 /* Numeric_Error is also a standard exception, so exclude it.
13185 See the STANDARD_EXC description for more details as to why
13186 this exception is not listed in that array. */
13187 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13188 return 0;
13189
13190 return 1;
13191 }
13192
13193 /* A helper function for qsort, comparing two struct ada_exc_info
13194 objects.
13195
13196 The comparison is determined first by exception name, and then
13197 by exception address. */
13198
13199 static int
13200 compare_ada_exception_info (const void *a, const void *b)
13201 {
13202 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13203 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13204 int result;
13205
13206 result = strcmp (exc_a->name, exc_b->name);
13207 if (result != 0)
13208 return result;
13209
13210 if (exc_a->addr < exc_b->addr)
13211 return -1;
13212 if (exc_a->addr > exc_b->addr)
13213 return 1;
13214
13215 return 0;
13216 }
13217
13218 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13219 routine, but keeping the first SKIP elements untouched.
13220
13221 All duplicates are also removed. */
13222
13223 static void
13224 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13225 int skip)
13226 {
13227 struct ada_exc_info *to_sort
13228 = VEC_address (ada_exc_info, *exceptions) + skip;
13229 int to_sort_len
13230 = VEC_length (ada_exc_info, *exceptions) - skip;
13231 int i, j;
13232
13233 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13234 compare_ada_exception_info);
13235
13236 for (i = 1, j = 1; i < to_sort_len; i++)
13237 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13238 to_sort[j++] = to_sort[i];
13239 to_sort_len = j;
13240 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13241 }
13242
13243 /* Add all exceptions defined by the Ada standard whose name match
13244 a regular expression.
13245
13246 If PREG is not NULL, then this regexp_t object is used to
13247 perform the symbol name matching. Otherwise, no name-based
13248 filtering is performed.
13249
13250 EXCEPTIONS is a vector of exceptions to which matching exceptions
13251 gets pushed. */
13252
13253 static void
13254 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13255 {
13256 int i;
13257
13258 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13259 {
13260 if (preg == NULL
13261 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13262 {
13263 struct bound_minimal_symbol msymbol
13264 = ada_lookup_simple_minsym (standard_exc[i]);
13265
13266 if (msymbol.minsym != NULL)
13267 {
13268 struct ada_exc_info info
13269 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13270
13271 VEC_safe_push (ada_exc_info, *exceptions, &info);
13272 }
13273 }
13274 }
13275 }
13276
13277 /* Add all Ada exceptions defined locally and accessible from the given
13278 FRAME.
13279
13280 If PREG is not NULL, then this regexp_t object is used to
13281 perform the symbol name matching. Otherwise, no name-based
13282 filtering is performed.
13283
13284 EXCEPTIONS is a vector of exceptions to which matching exceptions
13285 gets pushed. */
13286
13287 static void
13288 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13289 VEC(ada_exc_info) **exceptions)
13290 {
13291 const struct block *block = get_frame_block (frame, 0);
13292
13293 while (block != 0)
13294 {
13295 struct block_iterator iter;
13296 struct symbol *sym;
13297
13298 ALL_BLOCK_SYMBOLS (block, iter, sym)
13299 {
13300 switch (SYMBOL_CLASS (sym))
13301 {
13302 case LOC_TYPEDEF:
13303 case LOC_BLOCK:
13304 case LOC_CONST:
13305 break;
13306 default:
13307 if (ada_is_exception_sym (sym))
13308 {
13309 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13310 SYMBOL_VALUE_ADDRESS (sym)};
13311
13312 VEC_safe_push (ada_exc_info, *exceptions, &info);
13313 }
13314 }
13315 }
13316 if (BLOCK_FUNCTION (block) != NULL)
13317 break;
13318 block = BLOCK_SUPERBLOCK (block);
13319 }
13320 }
13321
13322 /* Return true if NAME matches PREG or if PREG is NULL. */
13323
13324 static bool
13325 name_matches_regex (const char *name, regex_t *preg)
13326 {
13327 return (preg == NULL
13328 || regexec (preg, ada_decode (name), 0, NULL, 0) == 0);
13329 }
13330
13331 /* Add all exceptions defined globally whose name name match
13332 a regular expression, excluding standard exceptions.
13333
13334 The reason we exclude standard exceptions is that they need
13335 to be handled separately: Standard exceptions are defined inside
13336 a runtime unit which is normally not compiled with debugging info,
13337 and thus usually do not show up in our symbol search. However,
13338 if the unit was in fact built with debugging info, we need to
13339 exclude them because they would duplicate the entry we found
13340 during the special loop that specifically searches for those
13341 standard exceptions.
13342
13343 If PREG is not NULL, then this regexp_t object is used to
13344 perform the symbol name matching. Otherwise, no name-based
13345 filtering is performed.
13346
13347 EXCEPTIONS is a vector of exceptions to which matching exceptions
13348 gets pushed. */
13349
13350 static void
13351 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13352 {
13353 struct objfile *objfile;
13354 struct compunit_symtab *s;
13355
13356 /* In Ada, the symbol "search name" is a linkage name, whereas the
13357 regular expression used to do the matching refers to the natural
13358 name. So match against the decoded name. */
13359 expand_symtabs_matching (NULL,
13360 [&] (const char *search_name)
13361 {
13362 const char *decoded = ada_decode (search_name);
13363 return name_matches_regex (decoded, preg);
13364 },
13365 NULL,
13366 VARIABLES_DOMAIN);
13367
13368 ALL_COMPUNITS (objfile, s)
13369 {
13370 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13371 int i;
13372
13373 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13374 {
13375 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13376 struct block_iterator iter;
13377 struct symbol *sym;
13378
13379 ALL_BLOCK_SYMBOLS (b, iter, sym)
13380 if (ada_is_non_standard_exception_sym (sym)
13381 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13382 {
13383 struct ada_exc_info info
13384 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13385
13386 VEC_safe_push (ada_exc_info, *exceptions, &info);
13387 }
13388 }
13389 }
13390 }
13391
13392 /* Implements ada_exceptions_list with the regular expression passed
13393 as a regex_t, rather than a string.
13394
13395 If not NULL, PREG is used to filter out exceptions whose names
13396 do not match. Otherwise, all exceptions are listed. */
13397
13398 static VEC(ada_exc_info) *
13399 ada_exceptions_list_1 (regex_t *preg)
13400 {
13401 VEC(ada_exc_info) *result = NULL;
13402 struct cleanup *old_chain
13403 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13404 int prev_len;
13405
13406 /* First, list the known standard exceptions. These exceptions
13407 need to be handled separately, as they are usually defined in
13408 runtime units that have been compiled without debugging info. */
13409
13410 ada_add_standard_exceptions (preg, &result);
13411
13412 /* Next, find all exceptions whose scope is local and accessible
13413 from the currently selected frame. */
13414
13415 if (has_stack_frames ())
13416 {
13417 prev_len = VEC_length (ada_exc_info, result);
13418 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13419 &result);
13420 if (VEC_length (ada_exc_info, result) > prev_len)
13421 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13422 }
13423
13424 /* Add all exceptions whose scope is global. */
13425
13426 prev_len = VEC_length (ada_exc_info, result);
13427 ada_add_global_exceptions (preg, &result);
13428 if (VEC_length (ada_exc_info, result) > prev_len)
13429 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13430
13431 discard_cleanups (old_chain);
13432 return result;
13433 }
13434
13435 /* Return a vector of ada_exc_info.
13436
13437 If REGEXP is NULL, all exceptions are included in the result.
13438 Otherwise, it should contain a valid regular expression,
13439 and only the exceptions whose names match that regular expression
13440 are included in the result.
13441
13442 The exceptions are sorted in the following order:
13443 - Standard exceptions (defined by the Ada language), in
13444 alphabetical order;
13445 - Exceptions only visible from the current frame, in
13446 alphabetical order;
13447 - Exceptions whose scope is global, in alphabetical order. */
13448
13449 VEC(ada_exc_info) *
13450 ada_exceptions_list (const char *regexp)
13451 {
13452 VEC(ada_exc_info) *result = NULL;
13453 struct cleanup *old_chain = NULL;
13454 regex_t reg;
13455
13456 if (regexp != NULL)
13457 old_chain = compile_rx_or_error (&reg, regexp,
13458 _("invalid regular expression"));
13459
13460 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13461
13462 if (old_chain != NULL)
13463 do_cleanups (old_chain);
13464 return result;
13465 }
13466
13467 /* Implement the "info exceptions" command. */
13468
13469 static void
13470 info_exceptions_command (char *regexp, int from_tty)
13471 {
13472 VEC(ada_exc_info) *exceptions;
13473 struct cleanup *cleanup;
13474 struct gdbarch *gdbarch = get_current_arch ();
13475 int ix;
13476 struct ada_exc_info *info;
13477
13478 exceptions = ada_exceptions_list (regexp);
13479 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13480
13481 if (regexp != NULL)
13482 printf_filtered
13483 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13484 else
13485 printf_filtered (_("All defined Ada exceptions:\n"));
13486
13487 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13488 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13489
13490 do_cleanups (cleanup);
13491 }
13492
13493 /* Operators */
13494 /* Information about operators given special treatment in functions
13495 below. */
13496 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13497
13498 #define ADA_OPERATORS \
13499 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13500 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13501 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13502 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13503 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13504 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13505 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13506 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13507 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13508 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13509 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13510 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13511 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13512 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13513 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13514 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13515 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13516 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13517 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13518
13519 static void
13520 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13521 int *argsp)
13522 {
13523 switch (exp->elts[pc - 1].opcode)
13524 {
13525 default:
13526 operator_length_standard (exp, pc, oplenp, argsp);
13527 break;
13528
13529 #define OP_DEFN(op, len, args, binop) \
13530 case op: *oplenp = len; *argsp = args; break;
13531 ADA_OPERATORS;
13532 #undef OP_DEFN
13533
13534 case OP_AGGREGATE:
13535 *oplenp = 3;
13536 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13537 break;
13538
13539 case OP_CHOICES:
13540 *oplenp = 3;
13541 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13542 break;
13543 }
13544 }
13545
13546 /* Implementation of the exp_descriptor method operator_check. */
13547
13548 static int
13549 ada_operator_check (struct expression *exp, int pos,
13550 int (*objfile_func) (struct objfile *objfile, void *data),
13551 void *data)
13552 {
13553 const union exp_element *const elts = exp->elts;
13554 struct type *type = NULL;
13555
13556 switch (elts[pos].opcode)
13557 {
13558 case UNOP_IN_RANGE:
13559 case UNOP_QUAL:
13560 type = elts[pos + 1].type;
13561 break;
13562
13563 default:
13564 return operator_check_standard (exp, pos, objfile_func, data);
13565 }
13566
13567 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13568
13569 if (type && TYPE_OBJFILE (type)
13570 && (*objfile_func) (TYPE_OBJFILE (type), data))
13571 return 1;
13572
13573 return 0;
13574 }
13575
13576 static char *
13577 ada_op_name (enum exp_opcode opcode)
13578 {
13579 switch (opcode)
13580 {
13581 default:
13582 return op_name_standard (opcode);
13583
13584 #define OP_DEFN(op, len, args, binop) case op: return #op;
13585 ADA_OPERATORS;
13586 #undef OP_DEFN
13587
13588 case OP_AGGREGATE:
13589 return "OP_AGGREGATE";
13590 case OP_CHOICES:
13591 return "OP_CHOICES";
13592 case OP_NAME:
13593 return "OP_NAME";
13594 }
13595 }
13596
13597 /* As for operator_length, but assumes PC is pointing at the first
13598 element of the operator, and gives meaningful results only for the
13599 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13600
13601 static void
13602 ada_forward_operator_length (struct expression *exp, int pc,
13603 int *oplenp, int *argsp)
13604 {
13605 switch (exp->elts[pc].opcode)
13606 {
13607 default:
13608 *oplenp = *argsp = 0;
13609 break;
13610
13611 #define OP_DEFN(op, len, args, binop) \
13612 case op: *oplenp = len; *argsp = args; break;
13613 ADA_OPERATORS;
13614 #undef OP_DEFN
13615
13616 case OP_AGGREGATE:
13617 *oplenp = 3;
13618 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13619 break;
13620
13621 case OP_CHOICES:
13622 *oplenp = 3;
13623 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13624 break;
13625
13626 case OP_STRING:
13627 case OP_NAME:
13628 {
13629 int len = longest_to_int (exp->elts[pc + 1].longconst);
13630
13631 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13632 *argsp = 0;
13633 break;
13634 }
13635 }
13636 }
13637
13638 static int
13639 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13640 {
13641 enum exp_opcode op = exp->elts[elt].opcode;
13642 int oplen, nargs;
13643 int pc = elt;
13644 int i;
13645
13646 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13647
13648 switch (op)
13649 {
13650 /* Ada attributes ('Foo). */
13651 case OP_ATR_FIRST:
13652 case OP_ATR_LAST:
13653 case OP_ATR_LENGTH:
13654 case OP_ATR_IMAGE:
13655 case OP_ATR_MAX:
13656 case OP_ATR_MIN:
13657 case OP_ATR_MODULUS:
13658 case OP_ATR_POS:
13659 case OP_ATR_SIZE:
13660 case OP_ATR_TAG:
13661 case OP_ATR_VAL:
13662 break;
13663
13664 case UNOP_IN_RANGE:
13665 case UNOP_QUAL:
13666 /* XXX: gdb_sprint_host_address, type_sprint */
13667 fprintf_filtered (stream, _("Type @"));
13668 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13669 fprintf_filtered (stream, " (");
13670 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13671 fprintf_filtered (stream, ")");
13672 break;
13673 case BINOP_IN_BOUNDS:
13674 fprintf_filtered (stream, " (%d)",
13675 longest_to_int (exp->elts[pc + 2].longconst));
13676 break;
13677 case TERNOP_IN_RANGE:
13678 break;
13679
13680 case OP_AGGREGATE:
13681 case OP_OTHERS:
13682 case OP_DISCRETE_RANGE:
13683 case OP_POSITIONAL:
13684 case OP_CHOICES:
13685 break;
13686
13687 case OP_NAME:
13688 case OP_STRING:
13689 {
13690 char *name = &exp->elts[elt + 2].string;
13691 int len = longest_to_int (exp->elts[elt + 1].longconst);
13692
13693 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13694 break;
13695 }
13696
13697 default:
13698 return dump_subexp_body_standard (exp, stream, elt);
13699 }
13700
13701 elt += oplen;
13702 for (i = 0; i < nargs; i += 1)
13703 elt = dump_subexp (exp, stream, elt);
13704
13705 return elt;
13706 }
13707
13708 /* The Ada extension of print_subexp (q.v.). */
13709
13710 static void
13711 ada_print_subexp (struct expression *exp, int *pos,
13712 struct ui_file *stream, enum precedence prec)
13713 {
13714 int oplen, nargs, i;
13715 int pc = *pos;
13716 enum exp_opcode op = exp->elts[pc].opcode;
13717
13718 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13719
13720 *pos += oplen;
13721 switch (op)
13722 {
13723 default:
13724 *pos -= oplen;
13725 print_subexp_standard (exp, pos, stream, prec);
13726 return;
13727
13728 case OP_VAR_VALUE:
13729 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13730 return;
13731
13732 case BINOP_IN_BOUNDS:
13733 /* XXX: sprint_subexp */
13734 print_subexp (exp, pos, stream, PREC_SUFFIX);
13735 fputs_filtered (" in ", stream);
13736 print_subexp (exp, pos, stream, PREC_SUFFIX);
13737 fputs_filtered ("'range", stream);
13738 if (exp->elts[pc + 1].longconst > 1)
13739 fprintf_filtered (stream, "(%ld)",
13740 (long) exp->elts[pc + 1].longconst);
13741 return;
13742
13743 case TERNOP_IN_RANGE:
13744 if (prec >= PREC_EQUAL)
13745 fputs_filtered ("(", stream);
13746 /* XXX: sprint_subexp */
13747 print_subexp (exp, pos, stream, PREC_SUFFIX);
13748 fputs_filtered (" in ", stream);
13749 print_subexp (exp, pos, stream, PREC_EQUAL);
13750 fputs_filtered (" .. ", stream);
13751 print_subexp (exp, pos, stream, PREC_EQUAL);
13752 if (prec >= PREC_EQUAL)
13753 fputs_filtered (")", stream);
13754 return;
13755
13756 case OP_ATR_FIRST:
13757 case OP_ATR_LAST:
13758 case OP_ATR_LENGTH:
13759 case OP_ATR_IMAGE:
13760 case OP_ATR_MAX:
13761 case OP_ATR_MIN:
13762 case OP_ATR_MODULUS:
13763 case OP_ATR_POS:
13764 case OP_ATR_SIZE:
13765 case OP_ATR_TAG:
13766 case OP_ATR_VAL:
13767 if (exp->elts[*pos].opcode == OP_TYPE)
13768 {
13769 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13770 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13771 &type_print_raw_options);
13772 *pos += 3;
13773 }
13774 else
13775 print_subexp (exp, pos, stream, PREC_SUFFIX);
13776 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13777 if (nargs > 1)
13778 {
13779 int tem;
13780
13781 for (tem = 1; tem < nargs; tem += 1)
13782 {
13783 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13784 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13785 }
13786 fputs_filtered (")", stream);
13787 }
13788 return;
13789
13790 case UNOP_QUAL:
13791 type_print (exp->elts[pc + 1].type, "", stream, 0);
13792 fputs_filtered ("'(", stream);
13793 print_subexp (exp, pos, stream, PREC_PREFIX);
13794 fputs_filtered (")", stream);
13795 return;
13796
13797 case UNOP_IN_RANGE:
13798 /* XXX: sprint_subexp */
13799 print_subexp (exp, pos, stream, PREC_SUFFIX);
13800 fputs_filtered (" in ", stream);
13801 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13802 &type_print_raw_options);
13803 return;
13804
13805 case OP_DISCRETE_RANGE:
13806 print_subexp (exp, pos, stream, PREC_SUFFIX);
13807 fputs_filtered ("..", stream);
13808 print_subexp (exp, pos, stream, PREC_SUFFIX);
13809 return;
13810
13811 case OP_OTHERS:
13812 fputs_filtered ("others => ", stream);
13813 print_subexp (exp, pos, stream, PREC_SUFFIX);
13814 return;
13815
13816 case OP_CHOICES:
13817 for (i = 0; i < nargs-1; i += 1)
13818 {
13819 if (i > 0)
13820 fputs_filtered ("|", stream);
13821 print_subexp (exp, pos, stream, PREC_SUFFIX);
13822 }
13823 fputs_filtered (" => ", stream);
13824 print_subexp (exp, pos, stream, PREC_SUFFIX);
13825 return;
13826
13827 case OP_POSITIONAL:
13828 print_subexp (exp, pos, stream, PREC_SUFFIX);
13829 return;
13830
13831 case OP_AGGREGATE:
13832 fputs_filtered ("(", stream);
13833 for (i = 0; i < nargs; i += 1)
13834 {
13835 if (i > 0)
13836 fputs_filtered (", ", stream);
13837 print_subexp (exp, pos, stream, PREC_SUFFIX);
13838 }
13839 fputs_filtered (")", stream);
13840 return;
13841 }
13842 }
13843
13844 /* Table mapping opcodes into strings for printing operators
13845 and precedences of the operators. */
13846
13847 static const struct op_print ada_op_print_tab[] = {
13848 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13849 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13850 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13851 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13852 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13853 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13854 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13855 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13856 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13857 {">=", BINOP_GEQ, PREC_ORDER, 0},
13858 {">", BINOP_GTR, PREC_ORDER, 0},
13859 {"<", BINOP_LESS, PREC_ORDER, 0},
13860 {">>", BINOP_RSH, PREC_SHIFT, 0},
13861 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13862 {"+", BINOP_ADD, PREC_ADD, 0},
13863 {"-", BINOP_SUB, PREC_ADD, 0},
13864 {"&", BINOP_CONCAT, PREC_ADD, 0},
13865 {"*", BINOP_MUL, PREC_MUL, 0},
13866 {"/", BINOP_DIV, PREC_MUL, 0},
13867 {"rem", BINOP_REM, PREC_MUL, 0},
13868 {"mod", BINOP_MOD, PREC_MUL, 0},
13869 {"**", BINOP_EXP, PREC_REPEAT, 0},
13870 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13871 {"-", UNOP_NEG, PREC_PREFIX, 0},
13872 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13873 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13874 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13875 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13876 {".all", UNOP_IND, PREC_SUFFIX, 1},
13877 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13878 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13879 {NULL, OP_NULL, PREC_SUFFIX, 0}
13880 };
13881 \f
13882 enum ada_primitive_types {
13883 ada_primitive_type_int,
13884 ada_primitive_type_long,
13885 ada_primitive_type_short,
13886 ada_primitive_type_char,
13887 ada_primitive_type_float,
13888 ada_primitive_type_double,
13889 ada_primitive_type_void,
13890 ada_primitive_type_long_long,
13891 ada_primitive_type_long_double,
13892 ada_primitive_type_natural,
13893 ada_primitive_type_positive,
13894 ada_primitive_type_system_address,
13895 nr_ada_primitive_types
13896 };
13897
13898 static void
13899 ada_language_arch_info (struct gdbarch *gdbarch,
13900 struct language_arch_info *lai)
13901 {
13902 const struct builtin_type *builtin = builtin_type (gdbarch);
13903
13904 lai->primitive_type_vector
13905 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13906 struct type *);
13907
13908 lai->primitive_type_vector [ada_primitive_type_int]
13909 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13910 0, "integer");
13911 lai->primitive_type_vector [ada_primitive_type_long]
13912 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13913 0, "long_integer");
13914 lai->primitive_type_vector [ada_primitive_type_short]
13915 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13916 0, "short_integer");
13917 lai->string_char_type
13918 = lai->primitive_type_vector [ada_primitive_type_char]
13919 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13920 lai->primitive_type_vector [ada_primitive_type_float]
13921 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13922 "float", gdbarch_float_format (gdbarch));
13923 lai->primitive_type_vector [ada_primitive_type_double]
13924 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13925 "long_float", gdbarch_double_format (gdbarch));
13926 lai->primitive_type_vector [ada_primitive_type_long_long]
13927 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13928 0, "long_long_integer");
13929 lai->primitive_type_vector [ada_primitive_type_long_double]
13930 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13931 "long_long_float", gdbarch_long_double_format (gdbarch));
13932 lai->primitive_type_vector [ada_primitive_type_natural]
13933 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13934 0, "natural");
13935 lai->primitive_type_vector [ada_primitive_type_positive]
13936 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13937 0, "positive");
13938 lai->primitive_type_vector [ada_primitive_type_void]
13939 = builtin->builtin_void;
13940
13941 lai->primitive_type_vector [ada_primitive_type_system_address]
13942 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13943 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13944 = "system__address";
13945
13946 lai->bool_type_symbol = NULL;
13947 lai->bool_type_default = builtin->builtin_bool;
13948 }
13949 \f
13950 /* Language vector */
13951
13952 /* Not really used, but needed in the ada_language_defn. */
13953
13954 static void
13955 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13956 {
13957 ada_emit_char (c, type, stream, quoter, 1);
13958 }
13959
13960 static int
13961 parse (struct parser_state *ps)
13962 {
13963 warnings_issued = 0;
13964 return ada_parse (ps);
13965 }
13966
13967 static const struct exp_descriptor ada_exp_descriptor = {
13968 ada_print_subexp,
13969 ada_operator_length,
13970 ada_operator_check,
13971 ada_op_name,
13972 ada_dump_subexp_body,
13973 ada_evaluate_subexp
13974 };
13975
13976 /* Implement the "la_get_symbol_name_cmp" language_defn method
13977 for Ada. */
13978
13979 static symbol_name_cmp_ftype
13980 ada_get_symbol_name_cmp (const char *lookup_name)
13981 {
13982 if (should_use_wild_match (lookup_name))
13983 return wild_match;
13984 else
13985 return compare_names;
13986 }
13987
13988 /* Implement the "la_read_var_value" language_defn method for Ada. */
13989
13990 static struct value *
13991 ada_read_var_value (struct symbol *var, const struct block *var_block,
13992 struct frame_info *frame)
13993 {
13994 const struct block *frame_block = NULL;
13995 struct symbol *renaming_sym = NULL;
13996
13997 /* The only case where default_read_var_value is not sufficient
13998 is when VAR is a renaming... */
13999 if (frame)
14000 frame_block = get_frame_block (frame, NULL);
14001 if (frame_block)
14002 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14003 if (renaming_sym != NULL)
14004 return ada_read_renaming_var_value (renaming_sym, frame_block);
14005
14006 /* This is a typical case where we expect the default_read_var_value
14007 function to work. */
14008 return default_read_var_value (var, var_block, frame);
14009 }
14010
14011 static const char *ada_extensions[] =
14012 {
14013 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14014 };
14015
14016 const struct language_defn ada_language_defn = {
14017 "ada", /* Language name */
14018 "Ada",
14019 language_ada,
14020 range_check_off,
14021 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14022 that's not quite what this means. */
14023 array_row_major,
14024 macro_expansion_no,
14025 ada_extensions,
14026 &ada_exp_descriptor,
14027 parse,
14028 ada_yyerror,
14029 resolve,
14030 ada_printchar, /* Print a character constant */
14031 ada_printstr, /* Function to print string constant */
14032 emit_char, /* Function to print single char (not used) */
14033 ada_print_type, /* Print a type using appropriate syntax */
14034 ada_print_typedef, /* Print a typedef using appropriate syntax */
14035 ada_val_print, /* Print a value using appropriate syntax */
14036 ada_value_print, /* Print a top-level value */
14037 ada_read_var_value, /* la_read_var_value */
14038 NULL, /* Language specific skip_trampoline */
14039 NULL, /* name_of_this */
14040 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14041 basic_lookup_transparent_type, /* lookup_transparent_type */
14042 ada_la_decode, /* Language specific symbol demangler */
14043 ada_sniff_from_mangled_name,
14044 NULL, /* Language specific
14045 class_name_from_physname */
14046 ada_op_print_tab, /* expression operators for printing */
14047 0, /* c-style arrays */
14048 1, /* String lower bound */
14049 ada_get_gdb_completer_word_break_characters,
14050 ada_make_symbol_completion_list,
14051 ada_language_arch_info,
14052 ada_print_array_index,
14053 default_pass_by_reference,
14054 c_get_string,
14055 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14056 ada_iterate_over_symbols,
14057 &ada_varobj_ops,
14058 NULL,
14059 NULL,
14060 LANG_MAGIC
14061 };
14062
14063 /* Provide a prototype to silence -Wmissing-prototypes. */
14064 extern initialize_file_ftype _initialize_ada_language;
14065
14066 /* Command-list for the "set/show ada" prefix command. */
14067 static struct cmd_list_element *set_ada_list;
14068 static struct cmd_list_element *show_ada_list;
14069
14070 /* Implement the "set ada" prefix command. */
14071
14072 static void
14073 set_ada_command (char *arg, int from_tty)
14074 {
14075 printf_unfiltered (_(\
14076 "\"set ada\" must be followed by the name of a setting.\n"));
14077 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14078 }
14079
14080 /* Implement the "show ada" prefix command. */
14081
14082 static void
14083 show_ada_command (char *args, int from_tty)
14084 {
14085 cmd_show_list (show_ada_list, from_tty, "");
14086 }
14087
14088 static void
14089 initialize_ada_catchpoint_ops (void)
14090 {
14091 struct breakpoint_ops *ops;
14092
14093 initialize_breakpoint_ops ();
14094
14095 ops = &catch_exception_breakpoint_ops;
14096 *ops = bkpt_breakpoint_ops;
14097 ops->dtor = dtor_catch_exception;
14098 ops->allocate_location = allocate_location_catch_exception;
14099 ops->re_set = re_set_catch_exception;
14100 ops->check_status = check_status_catch_exception;
14101 ops->print_it = print_it_catch_exception;
14102 ops->print_one = print_one_catch_exception;
14103 ops->print_mention = print_mention_catch_exception;
14104 ops->print_recreate = print_recreate_catch_exception;
14105
14106 ops = &catch_exception_unhandled_breakpoint_ops;
14107 *ops = bkpt_breakpoint_ops;
14108 ops->dtor = dtor_catch_exception_unhandled;
14109 ops->allocate_location = allocate_location_catch_exception_unhandled;
14110 ops->re_set = re_set_catch_exception_unhandled;
14111 ops->check_status = check_status_catch_exception_unhandled;
14112 ops->print_it = print_it_catch_exception_unhandled;
14113 ops->print_one = print_one_catch_exception_unhandled;
14114 ops->print_mention = print_mention_catch_exception_unhandled;
14115 ops->print_recreate = print_recreate_catch_exception_unhandled;
14116
14117 ops = &catch_assert_breakpoint_ops;
14118 *ops = bkpt_breakpoint_ops;
14119 ops->dtor = dtor_catch_assert;
14120 ops->allocate_location = allocate_location_catch_assert;
14121 ops->re_set = re_set_catch_assert;
14122 ops->check_status = check_status_catch_assert;
14123 ops->print_it = print_it_catch_assert;
14124 ops->print_one = print_one_catch_assert;
14125 ops->print_mention = print_mention_catch_assert;
14126 ops->print_recreate = print_recreate_catch_assert;
14127 }
14128
14129 /* This module's 'new_objfile' observer. */
14130
14131 static void
14132 ada_new_objfile_observer (struct objfile *objfile)
14133 {
14134 ada_clear_symbol_cache ();
14135 }
14136
14137 /* This module's 'free_objfile' observer. */
14138
14139 static void
14140 ada_free_objfile_observer (struct objfile *objfile)
14141 {
14142 ada_clear_symbol_cache ();
14143 }
14144
14145 void
14146 _initialize_ada_language (void)
14147 {
14148 add_language (&ada_language_defn);
14149
14150 initialize_ada_catchpoint_ops ();
14151
14152 add_prefix_cmd ("ada", no_class, set_ada_command,
14153 _("Prefix command for changing Ada-specfic settings"),
14154 &set_ada_list, "set ada ", 0, &setlist);
14155
14156 add_prefix_cmd ("ada", no_class, show_ada_command,
14157 _("Generic command for showing Ada-specific settings."),
14158 &show_ada_list, "show ada ", 0, &showlist);
14159
14160 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14161 &trust_pad_over_xvs, _("\
14162 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14163 Show whether an optimization trusting PAD types over XVS types is activated"),
14164 _("\
14165 This is related to the encoding used by the GNAT compiler. The debugger\n\
14166 should normally trust the contents of PAD types, but certain older versions\n\
14167 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14168 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14169 work around this bug. It is always safe to turn this option \"off\", but\n\
14170 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14171 this option to \"off\" unless necessary."),
14172 NULL, NULL, &set_ada_list, &show_ada_list);
14173
14174 add_setshow_boolean_cmd ("print-signatures", class_vars,
14175 &print_signatures, _("\
14176 Enable or disable the output of formal and return types for functions in the \
14177 overloads selection menu"), _("\
14178 Show whether the output of formal and return types for functions in the \
14179 overloads selection menu is activated"),
14180 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14181
14182 add_catch_command ("exception", _("\
14183 Catch Ada exceptions, when raised.\n\
14184 With an argument, catch only exceptions with the given name."),
14185 catch_ada_exception_command,
14186 NULL,
14187 CATCH_PERMANENT,
14188 CATCH_TEMPORARY);
14189 add_catch_command ("assert", _("\
14190 Catch failed Ada assertions, when raised.\n\
14191 With an argument, catch only exceptions with the given name."),
14192 catch_assert_command,
14193 NULL,
14194 CATCH_PERMANENT,
14195 CATCH_TEMPORARY);
14196
14197 varsize_limit = 65536;
14198
14199 add_info ("exceptions", info_exceptions_command,
14200 _("\
14201 List all Ada exception names.\n\
14202 If a regular expression is passed as an argument, only those matching\n\
14203 the regular expression are listed."));
14204
14205 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14206 _("Set Ada maintenance-related variables."),
14207 &maint_set_ada_cmdlist, "maintenance set ada ",
14208 0/*allow-unknown*/, &maintenance_set_cmdlist);
14209
14210 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14211 _("Show Ada maintenance-related variables"),
14212 &maint_show_ada_cmdlist, "maintenance show ada ",
14213 0/*allow-unknown*/, &maintenance_show_cmdlist);
14214
14215 add_setshow_boolean_cmd
14216 ("ignore-descriptive-types", class_maintenance,
14217 &ada_ignore_descriptive_types_p,
14218 _("Set whether descriptive types generated by GNAT should be ignored."),
14219 _("Show whether descriptive types generated by GNAT should be ignored."),
14220 _("\
14221 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14222 DWARF attribute."),
14223 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14224
14225 obstack_init (&symbol_list_obstack);
14226
14227 decoded_names_store = htab_create_alloc
14228 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14229 NULL, xcalloc, xfree);
14230
14231 /* The ada-lang observers. */
14232 observer_attach_new_objfile (ada_new_objfile_observer);
14233 observer_attach_free_objfile (ada_free_objfile_observer);
14234 observer_attach_inferior_exit (ada_inferior_exit);
14235
14236 /* Setup various context-specific data. */
14237 ada_inferior_data
14238 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14239 ada_pspace_data_handle
14240 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14241 }