]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
Use ui_file_as_string throughout more
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63
64 /* Define whether or not the C operator '/' truncates towards zero for
65 differently signed operands (truncation direction is undefined in C).
66 Copied from valarith.c. */
67
68 #ifndef TRUNCATION_TOWARDS_ZERO
69 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
70 #endif
71
72 static struct type *desc_base_type (struct type *);
73
74 static struct type *desc_bounds_type (struct type *);
75
76 static struct value *desc_bounds (struct value *);
77
78 static int fat_pntr_bounds_bitpos (struct type *);
79
80 static int fat_pntr_bounds_bitsize (struct type *);
81
82 static struct type *desc_data_target_type (struct type *);
83
84 static struct value *desc_data (struct value *);
85
86 static int fat_pntr_data_bitpos (struct type *);
87
88 static int fat_pntr_data_bitsize (struct type *);
89
90 static struct value *desc_one_bound (struct value *, int, int);
91
92 static int desc_bound_bitpos (struct type *, int, int);
93
94 static int desc_bound_bitsize (struct type *, int, int);
95
96 static struct type *desc_index_type (struct type *, int);
97
98 static int desc_arity (struct type *);
99
100 static int ada_type_match (struct type *, struct type *, int);
101
102 static int ada_args_match (struct symbol *, struct value **, int);
103
104 static int full_match (const char *, const char *);
105
106 static struct value *make_array_descriptor (struct type *, struct value *);
107
108 static void ada_add_block_symbols (struct obstack *,
109 const struct block *, const char *,
110 domain_enum, struct objfile *, int);
111
112 static void ada_add_all_symbols (struct obstack *, const struct block *,
113 const char *, domain_enum, int, int *);
114
115 static int is_nonfunction (struct block_symbol *, int);
116
117 static void add_defn_to_vec (struct obstack *, struct symbol *,
118 const struct block *);
119
120 static int num_defns_collected (struct obstack *);
121
122 static struct block_symbol *defns_collected (struct obstack *, int);
123
124 static struct value *resolve_subexp (struct expression **, int *, int,
125 struct type *);
126
127 static void replace_operator_with_call (struct expression **, int, int, int,
128 struct symbol *, const struct block *);
129
130 static int possible_user_operator_p (enum exp_opcode, struct value **);
131
132 static char *ada_op_name (enum exp_opcode);
133
134 static const char *ada_decoded_op_name (enum exp_opcode);
135
136 static int numeric_type_p (struct type *);
137
138 static int integer_type_p (struct type *);
139
140 static int scalar_type_p (struct type *);
141
142 static int discrete_type_p (struct type *);
143
144 static enum ada_renaming_category parse_old_style_renaming (struct type *,
145 const char **,
146 int *,
147 const char **);
148
149 static struct symbol *find_old_style_renaming_symbol (const char *,
150 const struct block *);
151
152 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
153 int, int, int *);
154
155 static struct value *evaluate_subexp_type (struct expression *, int *);
156
157 static struct type *ada_find_parallel_type_with_name (struct type *,
158 const char *);
159
160 static int is_dynamic_field (struct type *, int);
161
162 static struct type *to_fixed_variant_branch_type (struct type *,
163 const gdb_byte *,
164 CORE_ADDR, struct value *);
165
166 static struct type *to_fixed_array_type (struct type *, struct value *, int);
167
168 static struct type *to_fixed_range_type (struct type *, struct value *);
169
170 static struct type *to_static_fixed_type (struct type *);
171 static struct type *static_unwrap_type (struct type *type);
172
173 static struct value *unwrap_value (struct value *);
174
175 static struct type *constrained_packed_array_type (struct type *, long *);
176
177 static struct type *decode_constrained_packed_array_type (struct type *);
178
179 static long decode_packed_array_bitsize (struct type *);
180
181 static struct value *decode_constrained_packed_array (struct value *);
182
183 static int ada_is_packed_array_type (struct type *);
184
185 static int ada_is_unconstrained_packed_array_type (struct type *);
186
187 static struct value *value_subscript_packed (struct value *, int,
188 struct value **);
189
190 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
191
192 static struct value *coerce_unspec_val_to_type (struct value *,
193 struct type *);
194
195 static struct value *get_var_value (char *, char *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 /* FIXME: brobecker/2003-09-17: No longer a const because it is
318 returned by a function that does not return a const char *. */
319 static char *ada_completer_word_break_characters =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Implement la_sniff_from_mangled_name for Ada. */
1456
1457 static int
1458 ada_sniff_from_mangled_name (const char *mangled, char **out)
1459 {
1460 const char *demangled = ada_decode (mangled);
1461
1462 *out = NULL;
1463
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 {
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1468
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1472
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1479
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1488 return 1;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
1500
1501 static int
1502 match_name (const char *sym_name, const char *name, int wild)
1503 {
1504 if (sym_name == NULL || name == NULL)
1505 return 0;
1506 else if (wild)
1507 return wild_match (sym_name, name) == 0;
1508 else
1509 {
1510 int len_name = strlen (name);
1511
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
1514 || (startswith (sym_name, "_ada_")
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
1517 }
1518 }
1519 \f
1520
1521 /* Arrays */
1522
1523 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1529
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1539
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1544 index subtype). */
1545
1546 void
1547 ada_fixup_array_indexes_type (struct type *index_desc_type)
1548 {
1549 int i;
1550
1551 if (index_desc_type == NULL)
1552 return;
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1557 now.
1558
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 return;
1566
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 {
1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572
1573 if (raw_type)
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575 }
1576 }
1577
1578 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1579
1580 static char *bound_name[] = {
1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583 };
1584
1585 /* Maximum number of array dimensions we are prepared to handle. */
1586
1587 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1588
1589
1590 /* The desc_* routines return primitive portions of array descriptors
1591 (fat pointers). */
1592
1593 /* The descriptor or array type, if any, indicated by TYPE; removes
1594 level of indirection, if needed. */
1595
1596 static struct type *
1597 desc_base_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return NULL;
1601 type = ada_check_typedef (type);
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1604
1605 if (type != NULL
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1609 else
1610 return type;
1611 }
1612
1613 /* True iff TYPE indicates a "thin" array pointer type. */
1614
1615 static int
1616 is_thin_pntr (struct type *type)
1617 {
1618 return
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621 }
1622
1623 /* The descriptor type for thin pointer type TYPE. */
1624
1625 static struct type *
1626 thin_descriptor_type (struct type *type)
1627 {
1628 struct type *base_type = desc_base_type (type);
1629
1630 if (base_type == NULL)
1631 return NULL;
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1633 return base_type;
1634 else
1635 {
1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1637
1638 if (alt_type == NULL)
1639 return base_type;
1640 else
1641 return alt_type;
1642 }
1643 }
1644
1645 /* A pointer to the array data for thin-pointer value VAL. */
1646
1647 static struct value *
1648 thin_data_pntr (struct value *val)
1649 {
1650 struct type *type = ada_check_typedef (value_type (val));
1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1652
1653 data_type = lookup_pointer_type (data_type);
1654
1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1656 return value_cast (data_type, value_copy (val));
1657 else
1658 return value_from_longest (data_type, value_address (val));
1659 }
1660
1661 /* True iff TYPE indicates a "thick" array pointer type. */
1662
1663 static int
1664 is_thick_pntr (struct type *type)
1665 {
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1669 }
1670
1671 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
1673
1674 static struct type *
1675 desc_bounds_type (struct type *type)
1676 {
1677 struct type *r;
1678
1679 type = desc_base_type (type);
1680
1681 if (type == NULL)
1682 return NULL;
1683 else if (is_thin_pntr (type))
1684 {
1685 type = thin_descriptor_type (type);
1686 if (type == NULL)
1687 return NULL;
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 if (r != NULL)
1690 return ada_check_typedef (r);
1691 }
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 {
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 if (r != NULL)
1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1697 }
1698 return NULL;
1699 }
1700
1701 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1702 one, a pointer to its bounds data. Otherwise NULL. */
1703
1704 static struct value *
1705 desc_bounds (struct value *arr)
1706 {
1707 struct type *type = ada_check_typedef (value_type (arr));
1708
1709 if (is_thin_pntr (type))
1710 {
1711 struct type *bounds_type =
1712 desc_bounds_type (thin_descriptor_type (type));
1713 LONGEST addr;
1714
1715 if (bounds_type == NULL)
1716 error (_("Bad GNAT array descriptor"));
1717
1718 /* NOTE: The following calculation is not really kosher, but
1719 since desc_type is an XVE-encoded type (and shouldn't be),
1720 the correct calculation is a real pain. FIXME (and fix GCC). */
1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1722 addr = value_as_long (arr);
1723 else
1724 addr = value_address (arr);
1725
1726 return
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
1729 }
1730
1731 else if (is_thick_pntr (type))
1732 {
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1736
1737 if (p_bounds_type
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 {
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1745 p_bounds);
1746 }
1747 else
1748 error (_("Bad GNAT array descriptor"));
1749
1750 return p_bounds;
1751 }
1752 else
1753 return NULL;
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1758
1759 static int
1760 fat_pntr_bounds_bitpos (struct type *type)
1761 {
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763 }
1764
1765 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1766 size of the field containing the address of the bounds data. */
1767
1768 static int
1769 fat_pntr_bounds_bitsize (struct type *type)
1770 {
1771 type = desc_base_type (type);
1772
1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1774 return TYPE_FIELD_BITSIZE (type, 1);
1775 else
1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1777 }
1778
1779 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 data. */
1783
1784 static struct type *
1785 desc_data_target_type (struct type *type)
1786 {
1787 type = desc_base_type (type);
1788
1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
1790 if (is_thin_pntr (type))
1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1792 else if (is_thick_pntr (type))
1793 {
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795
1796 if (data_type
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1799 }
1800
1801 return NULL;
1802 }
1803
1804 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 its array data. */
1806
1807 static struct value *
1808 desc_data (struct value *arr)
1809 {
1810 struct type *type = value_type (arr);
1811
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1816 _("Bad GNAT array descriptor"));
1817 else
1818 return NULL;
1819 }
1820
1821
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 position of the field containing the address of the data. */
1824
1825 static int
1826 fat_pntr_data_bitpos (struct type *type)
1827 {
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829 }
1830
1831 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1832 size of the field containing the address of the data. */
1833
1834 static int
1835 fat_pntr_data_bitsize (struct type *type)
1836 {
1837 type = desc_base_type (type);
1838
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
1841 else
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843 }
1844
1845 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1847 bound, if WHICH is 1. The first bound is I=1. */
1848
1849 static struct value *
1850 desc_one_bound (struct value *bounds, int i, int which)
1851 {
1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1853 _("Bad GNAT array descriptor bounds"));
1854 }
1855
1856 /* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1858 bound, if WHICH is 1. The first bound is I=1. */
1859
1860 static int
1861 desc_bound_bitpos (struct type *type, int i, int which)
1862 {
1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1864 }
1865
1866 /* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1868 bound, if WHICH is 1. The first bound is I=1. */
1869
1870 static int
1871 desc_bound_bitsize (struct type *type, int i, int which)
1872 {
1873 type = desc_base_type (type);
1874
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 else
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1879 }
1880
1881 /* If TYPE is the type of an array-bounds structure, the type of its
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1883
1884 static struct type *
1885 desc_index_type (struct type *type, int i)
1886 {
1887 type = desc_base_type (type);
1888
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 else
1892 return NULL;
1893 }
1894
1895 /* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1897
1898 static int
1899 desc_arity (struct type *type)
1900 {
1901 type = desc_base_type (type);
1902
1903 if (type != NULL)
1904 return TYPE_NFIELDS (type) / 2;
1905 return 0;
1906 }
1907
1908 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1910 type). */
1911
1912 static int
1913 ada_is_direct_array_type (struct type *type)
1914 {
1915 if (type == NULL)
1916 return 0;
1917 type = ada_check_typedef (type);
1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1919 || ada_is_array_descriptor_type (type));
1920 }
1921
1922 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1923 * to one. */
1924
1925 static int
1926 ada_is_array_type (struct type *type)
1927 {
1928 while (type != NULL
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1933 }
1934
1935 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1936
1937 int
1938 ada_is_simple_array_type (struct type *type)
1939 {
1940 if (type == NULL)
1941 return 0;
1942 type = ada_check_typedef (type);
1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
1947 }
1948
1949 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950
1951 int
1952 ada_is_array_descriptor_type (struct type *type)
1953 {
1954 struct type *data_type = desc_data_target_type (type);
1955
1956 if (type == NULL)
1957 return 0;
1958 type = ada_check_typedef (type);
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
1962 }
1963
1964 /* Non-zero iff type is a partially mal-formed GNAT array
1965 descriptor. FIXME: This is to compensate for some problems with
1966 debugging output from GNAT. Re-examine periodically to see if it
1967 is still needed. */
1968
1969 int
1970 ada_is_bogus_array_descriptor (struct type *type)
1971 {
1972 return
1973 type != NULL
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
1978 }
1979
1980
1981 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1982 (fat pointer) returns the type of the array data described---specifically,
1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1984 in from the descriptor; otherwise, they are left unspecified. If
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
1987 a descriptor. */
1988 struct type *
1989 ada_type_of_array (struct value *arr, int bounds)
1990 {
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
1993
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
1996
1997 if (!bounds)
1998 {
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005
2006 return array_type;
2007 }
2008 else
2009 {
2010 struct type *elt_type;
2011 int arity;
2012 struct value *descriptor;
2013
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
2016
2017 if (elt_type == NULL || arity == 0)
2018 return ada_check_typedef (value_type (arr));
2019
2020 descriptor = desc_bounds (arr);
2021 if (value_as_long (descriptor) == 0)
2022 return NULL;
2023 while (arity > 0)
2024 {
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
2029
2030 arity -= 1;
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
2034 elt_type = create_array_type (array_type, elt_type, range_type);
2035
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2037 {
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2043
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2048 if (lo < hi)
2049 {
2050 int array_bitsize =
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 }
2055 }
2056 }
2057
2058 return lookup_pointer_type (elt_type);
2059 }
2060 }
2061
2062 /* If ARR does not represent an array, returns ARR unchanged.
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2066
2067 struct value *
2068 ada_coerce_to_simple_array_ptr (struct value *arr)
2069 {
2070 if (ada_is_array_descriptor_type (value_type (arr)))
2071 {
2072 struct type *arrType = ada_type_of_array (arr, 1);
2073
2074 if (arrType == NULL)
2075 return NULL;
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2077 }
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
2080 else
2081 return arr;
2082 }
2083
2084 /* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
2086 be ARR itself if it already is in the proper form). */
2087
2088 struct value *
2089 ada_coerce_to_simple_array (struct value *arr)
2090 {
2091 if (ada_is_array_descriptor_type (value_type (arr)))
2092 {
2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2094
2095 if (arrVal == NULL)
2096 error (_("Bounds unavailable for null array pointer."));
2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2098 return value_ind (arrVal);
2099 }
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
2102 else
2103 return arr;
2104 }
2105
2106 /* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
2108 packing). For other types, is the identity. */
2109
2110 struct type *
2111 ada_coerce_to_simple_array_type (struct type *type)
2112 {
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
2115
2116 if (ada_is_array_descriptor_type (type))
2117 return ada_check_typedef (desc_data_target_type (type));
2118
2119 return type;
2120 }
2121
2122 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123
2124 static int
2125 ada_is_packed_array_type (struct type *type)
2126 {
2127 if (type == NULL)
2128 return 0;
2129 type = desc_base_type (type);
2130 type = ada_check_typedef (type);
2131 return
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2134 }
2135
2136 /* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2138
2139 int
2140 ada_is_constrained_packed_array_type (struct type *type)
2141 {
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2144 }
2145
2146 /* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2148
2149 static int
2150 ada_is_unconstrained_packed_array_type (struct type *type)
2151 {
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2154 }
2155
2156 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2158
2159 static long
2160 decode_packed_array_bitsize (struct type *type)
2161 {
2162 const char *raw_name;
2163 const char *tail;
2164 long bits;
2165
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2171
2172 raw_name = ada_type_name (ada_check_typedef (type));
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return 0;
2178
2179 tail = strstr (raw_name, "___XP");
2180 gdb_assert (tail != NULL);
2181
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 {
2184 lim_warning
2185 (_("could not understand bit size information on packed array"));
2186 return 0;
2187 }
2188
2189 return bits;
2190 }
2191
2192 /* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2199 in bits.
2200
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
2208
2209 static struct type *
2210 constrained_packed_array_type (struct type *type, long *elt_bits)
2211 {
2212 struct type *new_elt_type;
2213 struct type *new_type;
2214 struct type *index_type_desc;
2215 struct type *index_type;
2216 LONGEST low_bound, high_bound;
2217
2218 type = ada_check_typedef (type);
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 return type;
2221
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 NULL);
2226 else
2227 index_type = TYPE_INDEX_TYPE (type);
2228
2229 new_type = alloc_type_copy (type);
2230 new_elt_type =
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 elt_bits);
2233 create_array_type (new_type, new_elt_type, index_type);
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2236
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
2243 else
2244 {
2245 *elt_bits *= (high_bound - low_bound + 1);
2246 TYPE_LENGTH (new_type) =
2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2248 }
2249
2250 TYPE_FIXED_INSTANCE (new_type) = 1;
2251 return new_type;
2252 }
2253
2254 /* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
2256
2257 static struct type *
2258 decode_constrained_packed_array_type (struct type *type)
2259 {
2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
2261 char *name;
2262 const char *tail;
2263 struct type *shadow_type;
2264 long bits;
2265
2266 if (!raw_name)
2267 raw_name = ada_type_name (desc_base_type (type));
2268
2269 if (!raw_name)
2270 return NULL;
2271
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
2274 type = desc_base_type (type);
2275
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2278
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2280
2281 if (shadow_type == NULL)
2282 {
2283 lim_warning (_("could not find bounds information on packed array"));
2284 return NULL;
2285 }
2286 shadow_type = check_typedef (shadow_type);
2287
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 {
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
2292 return NULL;
2293 }
2294
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
2297 }
2298
2299 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
2303 type length is set appropriately. */
2304
2305 static struct value *
2306 decode_constrained_packed_array (struct value *arr)
2307 {
2308 struct type *type;
2309
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2319 arr = value_ind (arr);
2320
2321 type = decode_constrained_packed_array_type (value_type (arr));
2322 if (type == NULL)
2323 {
2324 error (_("can't unpack array"));
2325 return NULL;
2326 }
2327
2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2329 && ada_is_modular_type (value_type (arr)))
2330 {
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2336 ULONGEST mod;
2337
2338 mod = ada_modulus (value_type (arr)) - 1;
2339 bit_size = 0;
2340 while (mod > 0)
2341 {
2342 bit_size += 1;
2343 mod >>= 1;
2344 }
2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2349 bit_size,
2350 type);
2351 }
2352
2353 return coerce_unspec_val_to_type (arr, type);
2354 }
2355
2356
2357 /* The value of the element of packed array ARR at the ARITY indices
2358 given in IND. ARR must be a simple array. */
2359
2360 static struct value *
2361 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2362 {
2363 int i;
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
2366 struct type *elt_type;
2367 struct value *v;
2368
2369 bits = 0;
2370 elt_total_bit_offset = 0;
2371 elt_type = ada_check_typedef (value_type (arr));
2372 for (i = 0; i < arity; i += 1)
2373 {
2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 error
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
2379 else
2380 {
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2383 LONGEST idx;
2384
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 {
2387 lim_warning (_("don't know bounds of array"));
2388 lowerbound = upperbound = 0;
2389 }
2390
2391 idx = pos_atr (ind[i]);
2392 if (idx < lowerbound || idx > upperbound)
2393 lim_warning (_("packed array index %ld out of bounds"),
2394 (long) idx);
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2398 }
2399 }
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2402
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2404 bits, elt_type);
2405 return v;
2406 }
2407
2408 /* Non-zero iff TYPE includes negative integer values. */
2409
2410 static int
2411 has_negatives (struct type *type)
2412 {
2413 switch (TYPE_CODE (type))
2414 {
2415 default:
2416 return 0;
2417 case TYPE_CODE_INT:
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2421 }
2422 }
2423
2424 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2426 the unpacked buffer.
2427
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 zero otherwise.
2433
2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2435
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437
2438 static void
2439 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2442 int is_scalar)
2443 {
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2450
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453
2454 unsigned long accum; /* Staging area for bits being transferred */
2455 int accumSize; /* Number of meaningful bits in accum */
2456 unsigned char sign;
2457
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
2460 int delta = is_big_endian ? -1 : 1;
2461
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 bits from SRC. .*/
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2467
2468 srcBitsLeft = bit_size;
2469 src_bytes_left = src_len;
2470 unpacked_bytes_left = unpacked_len;
2471 sign = 0;
2472
2473 if (is_big_endian)
2474 {
2475 src_idx = src_len - 1;
2476 if (is_signed_type
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2478 sign = ~0;
2479
2480 unusedLS =
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
2483
2484 if (is_scalar)
2485 {
2486 accumSize = 0;
2487 unpacked_idx = unpacked_len - 1;
2488 }
2489 else
2490 {
2491 /* Non-scalar values must be aligned at a byte boundary... */
2492 accumSize =
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2495 of the target. */
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
2498 }
2499 }
2500 else
2501 {
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503
2504 src_idx = unpacked_idx = 0;
2505 unusedLS = bit_offset;
2506 accumSize = 0;
2507
2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2509 sign = ~0;
2510 }
2511
2512 accum = 0;
2513 while (src_bytes_left > 0)
2514 {
2515 /* Mask for removing bits of the next source byte that are not
2516 part of the value. */
2517 unsigned int unusedMSMask =
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 1;
2520 /* Sign-extend bits for this byte. */
2521 unsigned int signMask = sign & ~unusedMSMask;
2522
2523 accum |=
2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2525 accumSize += HOST_CHAR_BIT - unusedLS;
2526 if (accumSize >= HOST_CHAR_BIT)
2527 {
2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
2533 }
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 unusedLS = 0;
2536 src_bytes_left -= 1;
2537 src_idx += delta;
2538 }
2539 while (unpacked_bytes_left > 0)
2540 {
2541 accum |= sign << accumSize;
2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2543 accumSize -= HOST_CHAR_BIT;
2544 if (accumSize < 0)
2545 accumSize = 0;
2546 accum >>= HOST_CHAR_BIT;
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
2549 }
2550 }
2551
2552 /* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560
2561 struct value *
2562 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2564 struct type *type)
2565 {
2566 struct value *v;
2567 const gdb_byte *src; /* First byte containing data to unpack */
2568 gdb_byte *unpacked;
2569 const int is_scalar = is_scalar_type (type);
2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2571 gdb_byte *staging = NULL;
2572 int staging_len = 0;
2573 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2574
2575 type = ada_check_typedef (type);
2576
2577 if (obj == NULL)
2578 src = valaddr + offset;
2579 else
2580 src = value_contents (obj) + offset;
2581
2582 if (is_dynamic_type (type))
2583 {
2584 /* The length of TYPE might by dynamic, so we need to resolve
2585 TYPE in order to know its actual size, which we then use
2586 to create the contents buffer of the value we return.
2587 The difficulty is that the data containing our object is
2588 packed, and therefore maybe not at a byte boundary. So, what
2589 we do, is unpack the data into a byte-aligned buffer, and then
2590 use that buffer as our object's value for resolving the type. */
2591 staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2592 staging = (gdb_byte *) malloc (staging_len);
2593 make_cleanup (xfree, staging);
2594
2595 ada_unpack_from_contents (src, bit_offset, bit_size,
2596 staging, staging_len,
2597 is_big_endian, has_negatives (type),
2598 is_scalar);
2599 type = resolve_dynamic_type (type, staging, 0);
2600 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2601 {
2602 /* This happens when the length of the object is dynamic,
2603 and is actually smaller than the space reserved for it.
2604 For instance, in an array of variant records, the bit_size
2605 we're given is the array stride, which is constant and
2606 normally equal to the maximum size of its element.
2607 But, in reality, each element only actually spans a portion
2608 of that stride. */
2609 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2610 }
2611 }
2612
2613 if (obj == NULL)
2614 {
2615 v = allocate_value (type);
2616 src = valaddr + offset;
2617 }
2618 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2619 {
2620 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2621 gdb_byte *buf;
2622
2623 v = value_at (type, value_address (obj) + offset);
2624 buf = (gdb_byte *) alloca (src_len);
2625 read_memory (value_address (v), buf, src_len);
2626 src = buf;
2627 }
2628 else
2629 {
2630 v = allocate_value (type);
2631 src = value_contents (obj) + offset;
2632 }
2633
2634 if (obj != NULL)
2635 {
2636 long new_offset = offset;
2637
2638 set_value_component_location (v, obj);
2639 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2640 set_value_bitsize (v, bit_size);
2641 if (value_bitpos (v) >= HOST_CHAR_BIT)
2642 {
2643 ++new_offset;
2644 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2645 }
2646 set_value_offset (v, new_offset);
2647
2648 /* Also set the parent value. This is needed when trying to
2649 assign a new value (in inferior memory). */
2650 set_value_parent (v, obj);
2651 }
2652 else
2653 set_value_bitsize (v, bit_size);
2654 unpacked = value_contents_writeable (v);
2655
2656 if (bit_size == 0)
2657 {
2658 memset (unpacked, 0, TYPE_LENGTH (type));
2659 do_cleanups (old_chain);
2660 return v;
2661 }
2662
2663 if (staging != NULL && staging_len == TYPE_LENGTH (type))
2664 {
2665 /* Small short-cut: If we've unpacked the data into a buffer
2666 of the same size as TYPE's length, then we can reuse that,
2667 instead of doing the unpacking again. */
2668 memcpy (unpacked, staging, staging_len);
2669 }
2670 else
2671 ada_unpack_from_contents (src, bit_offset, bit_size,
2672 unpacked, TYPE_LENGTH (type),
2673 is_big_endian, has_negatives (type), is_scalar);
2674
2675 do_cleanups (old_chain);
2676 return v;
2677 }
2678
2679 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2680 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2681 not overlap. */
2682 static void
2683 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2684 int src_offset, int n, int bits_big_endian_p)
2685 {
2686 unsigned int accum, mask;
2687 int accum_bits, chunk_size;
2688
2689 target += targ_offset / HOST_CHAR_BIT;
2690 targ_offset %= HOST_CHAR_BIT;
2691 source += src_offset / HOST_CHAR_BIT;
2692 src_offset %= HOST_CHAR_BIT;
2693 if (bits_big_endian_p)
2694 {
2695 accum = (unsigned char) *source;
2696 source += 1;
2697 accum_bits = HOST_CHAR_BIT - src_offset;
2698
2699 while (n > 0)
2700 {
2701 int unused_right;
2702
2703 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2704 accum_bits += HOST_CHAR_BIT;
2705 source += 1;
2706 chunk_size = HOST_CHAR_BIT - targ_offset;
2707 if (chunk_size > n)
2708 chunk_size = n;
2709 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2710 mask = ((1 << chunk_size) - 1) << unused_right;
2711 *target =
2712 (*target & ~mask)
2713 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2714 n -= chunk_size;
2715 accum_bits -= chunk_size;
2716 target += 1;
2717 targ_offset = 0;
2718 }
2719 }
2720 else
2721 {
2722 accum = (unsigned char) *source >> src_offset;
2723 source += 1;
2724 accum_bits = HOST_CHAR_BIT - src_offset;
2725
2726 while (n > 0)
2727 {
2728 accum = accum + ((unsigned char) *source << accum_bits);
2729 accum_bits += HOST_CHAR_BIT;
2730 source += 1;
2731 chunk_size = HOST_CHAR_BIT - targ_offset;
2732 if (chunk_size > n)
2733 chunk_size = n;
2734 mask = ((1 << chunk_size) - 1) << targ_offset;
2735 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2736 n -= chunk_size;
2737 accum_bits -= chunk_size;
2738 accum >>= chunk_size;
2739 target += 1;
2740 targ_offset = 0;
2741 }
2742 }
2743 }
2744
2745 /* Store the contents of FROMVAL into the location of TOVAL.
2746 Return a new value with the location of TOVAL and contents of
2747 FROMVAL. Handles assignment into packed fields that have
2748 floating-point or non-scalar types. */
2749
2750 static struct value *
2751 ada_value_assign (struct value *toval, struct value *fromval)
2752 {
2753 struct type *type = value_type (toval);
2754 int bits = value_bitsize (toval);
2755
2756 toval = ada_coerce_ref (toval);
2757 fromval = ada_coerce_ref (fromval);
2758
2759 if (ada_is_direct_array_type (value_type (toval)))
2760 toval = ada_coerce_to_simple_array (toval);
2761 if (ada_is_direct_array_type (value_type (fromval)))
2762 fromval = ada_coerce_to_simple_array (fromval);
2763
2764 if (!deprecated_value_modifiable (toval))
2765 error (_("Left operand of assignment is not a modifiable lvalue."));
2766
2767 if (VALUE_LVAL (toval) == lval_memory
2768 && bits > 0
2769 && (TYPE_CODE (type) == TYPE_CODE_FLT
2770 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2771 {
2772 int len = (value_bitpos (toval)
2773 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2774 int from_size;
2775 gdb_byte *buffer = (gdb_byte *) alloca (len);
2776 struct value *val;
2777 CORE_ADDR to_addr = value_address (toval);
2778
2779 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2780 fromval = value_cast (type, fromval);
2781
2782 read_memory (to_addr, buffer, len);
2783 from_size = value_bitsize (fromval);
2784 if (from_size == 0)
2785 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2786 if (gdbarch_bits_big_endian (get_type_arch (type)))
2787 move_bits (buffer, value_bitpos (toval),
2788 value_contents (fromval), from_size - bits, bits, 1);
2789 else
2790 move_bits (buffer, value_bitpos (toval),
2791 value_contents (fromval), 0, bits, 0);
2792 write_memory_with_notification (to_addr, buffer, len);
2793
2794 val = value_copy (toval);
2795 memcpy (value_contents_raw (val), value_contents (fromval),
2796 TYPE_LENGTH (type));
2797 deprecated_set_value_type (val, type);
2798
2799 return val;
2800 }
2801
2802 return value_assign (toval, fromval);
2803 }
2804
2805
2806 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2807 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2808 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2809 COMPONENT, and not the inferior's memory. The current contents
2810 of COMPONENT are ignored.
2811
2812 Although not part of the initial design, this function also works
2813 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2814 had a null address, and COMPONENT had an address which is equal to
2815 its offset inside CONTAINER. */
2816
2817 static void
2818 value_assign_to_component (struct value *container, struct value *component,
2819 struct value *val)
2820 {
2821 LONGEST offset_in_container =
2822 (LONGEST) (value_address (component) - value_address (container));
2823 int bit_offset_in_container =
2824 value_bitpos (component) - value_bitpos (container);
2825 int bits;
2826
2827 val = value_cast (value_type (component), val);
2828
2829 if (value_bitsize (component) == 0)
2830 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2831 else
2832 bits = value_bitsize (component);
2833
2834 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2835 move_bits (value_contents_writeable (container) + offset_in_container,
2836 value_bitpos (container) + bit_offset_in_container,
2837 value_contents (val),
2838 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2839 bits, 1);
2840 else
2841 move_bits (value_contents_writeable (container) + offset_in_container,
2842 value_bitpos (container) + bit_offset_in_container,
2843 value_contents (val), 0, bits, 0);
2844 }
2845
2846 /* The value of the element of array ARR at the ARITY indices given in IND.
2847 ARR may be either a simple array, GNAT array descriptor, or pointer
2848 thereto. */
2849
2850 struct value *
2851 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2852 {
2853 int k;
2854 struct value *elt;
2855 struct type *elt_type;
2856
2857 elt = ada_coerce_to_simple_array (arr);
2858
2859 elt_type = ada_check_typedef (value_type (elt));
2860 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2861 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2862 return value_subscript_packed (elt, arity, ind);
2863
2864 for (k = 0; k < arity; k += 1)
2865 {
2866 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2867 error (_("too many subscripts (%d expected)"), k);
2868 elt = value_subscript (elt, pos_atr (ind[k]));
2869 }
2870 return elt;
2871 }
2872
2873 /* Assuming ARR is a pointer to a GDB array, the value of the element
2874 of *ARR at the ARITY indices given in IND.
2875 Does not read the entire array into memory.
2876
2877 Note: Unlike what one would expect, this function is used instead of
2878 ada_value_subscript for basically all non-packed array types. The reason
2879 for this is that a side effect of doing our own pointer arithmetics instead
2880 of relying on value_subscript is that there is no implicit typedef peeling.
2881 This is important for arrays of array accesses, where it allows us to
2882 preserve the fact that the array's element is an array access, where the
2883 access part os encoded in a typedef layer. */
2884
2885 static struct value *
2886 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2887 {
2888 int k;
2889 struct value *array_ind = ada_value_ind (arr);
2890 struct type *type
2891 = check_typedef (value_enclosing_type (array_ind));
2892
2893 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2894 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2895 return value_subscript_packed (array_ind, arity, ind);
2896
2897 for (k = 0; k < arity; k += 1)
2898 {
2899 LONGEST lwb, upb;
2900 struct value *lwb_value;
2901
2902 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2903 error (_("too many subscripts (%d expected)"), k);
2904 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2905 value_copy (arr));
2906 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2907 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2908 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2909 type = TYPE_TARGET_TYPE (type);
2910 }
2911
2912 return value_ind (arr);
2913 }
2914
2915 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2916 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2917 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2918 this array is LOW, as per Ada rules. */
2919 static struct value *
2920 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2921 int low, int high)
2922 {
2923 struct type *type0 = ada_check_typedef (type);
2924 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2925 struct type *index_type
2926 = create_static_range_type (NULL, base_index_type, low, high);
2927 struct type *slice_type =
2928 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2929 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2930 LONGEST base_low_pos, low_pos;
2931 CORE_ADDR base;
2932
2933 if (!discrete_position (base_index_type, low, &low_pos)
2934 || !discrete_position (base_index_type, base_low, &base_low_pos))
2935 {
2936 warning (_("unable to get positions in slice, use bounds instead"));
2937 low_pos = low;
2938 base_low_pos = base_low;
2939 }
2940
2941 base = value_as_address (array_ptr)
2942 + ((low_pos - base_low_pos)
2943 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2944 return value_at_lazy (slice_type, base);
2945 }
2946
2947
2948 static struct value *
2949 ada_value_slice (struct value *array, int low, int high)
2950 {
2951 struct type *type = ada_check_typedef (value_type (array));
2952 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2953 struct type *index_type
2954 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2955 struct type *slice_type =
2956 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2957 LONGEST low_pos, high_pos;
2958
2959 if (!discrete_position (base_index_type, low, &low_pos)
2960 || !discrete_position (base_index_type, high, &high_pos))
2961 {
2962 warning (_("unable to get positions in slice, use bounds instead"));
2963 low_pos = low;
2964 high_pos = high;
2965 }
2966
2967 return value_cast (slice_type,
2968 value_slice (array, low, high_pos - low_pos + 1));
2969 }
2970
2971 /* If type is a record type in the form of a standard GNAT array
2972 descriptor, returns the number of dimensions for type. If arr is a
2973 simple array, returns the number of "array of"s that prefix its
2974 type designation. Otherwise, returns 0. */
2975
2976 int
2977 ada_array_arity (struct type *type)
2978 {
2979 int arity;
2980
2981 if (type == NULL)
2982 return 0;
2983
2984 type = desc_base_type (type);
2985
2986 arity = 0;
2987 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2988 return desc_arity (desc_bounds_type (type));
2989 else
2990 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2991 {
2992 arity += 1;
2993 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2994 }
2995
2996 return arity;
2997 }
2998
2999 /* If TYPE is a record type in the form of a standard GNAT array
3000 descriptor or a simple array type, returns the element type for
3001 TYPE after indexing by NINDICES indices, or by all indices if
3002 NINDICES is -1. Otherwise, returns NULL. */
3003
3004 struct type *
3005 ada_array_element_type (struct type *type, int nindices)
3006 {
3007 type = desc_base_type (type);
3008
3009 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3010 {
3011 int k;
3012 struct type *p_array_type;
3013
3014 p_array_type = desc_data_target_type (type);
3015
3016 k = ada_array_arity (type);
3017 if (k == 0)
3018 return NULL;
3019
3020 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3021 if (nindices >= 0 && k > nindices)
3022 k = nindices;
3023 while (k > 0 && p_array_type != NULL)
3024 {
3025 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3026 k -= 1;
3027 }
3028 return p_array_type;
3029 }
3030 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3031 {
3032 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3033 {
3034 type = TYPE_TARGET_TYPE (type);
3035 nindices -= 1;
3036 }
3037 return type;
3038 }
3039
3040 return NULL;
3041 }
3042
3043 /* The type of nth index in arrays of given type (n numbering from 1).
3044 Does not examine memory. Throws an error if N is invalid or TYPE
3045 is not an array type. NAME is the name of the Ada attribute being
3046 evaluated ('range, 'first, 'last, or 'length); it is used in building
3047 the error message. */
3048
3049 static struct type *
3050 ada_index_type (struct type *type, int n, const char *name)
3051 {
3052 struct type *result_type;
3053
3054 type = desc_base_type (type);
3055
3056 if (n < 0 || n > ada_array_arity (type))
3057 error (_("invalid dimension number to '%s"), name);
3058
3059 if (ada_is_simple_array_type (type))
3060 {
3061 int i;
3062
3063 for (i = 1; i < n; i += 1)
3064 type = TYPE_TARGET_TYPE (type);
3065 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3066 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3067 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3068 perhaps stabsread.c would make more sense. */
3069 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3070 result_type = NULL;
3071 }
3072 else
3073 {
3074 result_type = desc_index_type (desc_bounds_type (type), n);
3075 if (result_type == NULL)
3076 error (_("attempt to take bound of something that is not an array"));
3077 }
3078
3079 return result_type;
3080 }
3081
3082 /* Given that arr is an array type, returns the lower bound of the
3083 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3084 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3085 array-descriptor type. It works for other arrays with bounds supplied
3086 by run-time quantities other than discriminants. */
3087
3088 static LONGEST
3089 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3090 {
3091 struct type *type, *index_type_desc, *index_type;
3092 int i;
3093
3094 gdb_assert (which == 0 || which == 1);
3095
3096 if (ada_is_constrained_packed_array_type (arr_type))
3097 arr_type = decode_constrained_packed_array_type (arr_type);
3098
3099 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3100 return (LONGEST) - which;
3101
3102 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3103 type = TYPE_TARGET_TYPE (arr_type);
3104 else
3105 type = arr_type;
3106
3107 if (TYPE_FIXED_INSTANCE (type))
3108 {
3109 /* The array has already been fixed, so we do not need to
3110 check the parallel ___XA type again. That encoding has
3111 already been applied, so ignore it now. */
3112 index_type_desc = NULL;
3113 }
3114 else
3115 {
3116 index_type_desc = ada_find_parallel_type (type, "___XA");
3117 ada_fixup_array_indexes_type (index_type_desc);
3118 }
3119
3120 if (index_type_desc != NULL)
3121 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3122 NULL);
3123 else
3124 {
3125 struct type *elt_type = check_typedef (type);
3126
3127 for (i = 1; i < n; i++)
3128 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3129
3130 index_type = TYPE_INDEX_TYPE (elt_type);
3131 }
3132
3133 return
3134 (LONGEST) (which == 0
3135 ? ada_discrete_type_low_bound (index_type)
3136 : ada_discrete_type_high_bound (index_type));
3137 }
3138
3139 /* Given that arr is an array value, returns the lower bound of the
3140 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3141 WHICH is 1. This routine will also work for arrays with bounds
3142 supplied by run-time quantities other than discriminants. */
3143
3144 static LONGEST
3145 ada_array_bound (struct value *arr, int n, int which)
3146 {
3147 struct type *arr_type;
3148
3149 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3150 arr = value_ind (arr);
3151 arr_type = value_enclosing_type (arr);
3152
3153 if (ada_is_constrained_packed_array_type (arr_type))
3154 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3155 else if (ada_is_simple_array_type (arr_type))
3156 return ada_array_bound_from_type (arr_type, n, which);
3157 else
3158 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3159 }
3160
3161 /* Given that arr is an array value, returns the length of the
3162 nth index. This routine will also work for arrays with bounds
3163 supplied by run-time quantities other than discriminants.
3164 Does not work for arrays indexed by enumeration types with representation
3165 clauses at the moment. */
3166
3167 static LONGEST
3168 ada_array_length (struct value *arr, int n)
3169 {
3170 struct type *arr_type, *index_type;
3171 int low, high;
3172
3173 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3174 arr = value_ind (arr);
3175 arr_type = value_enclosing_type (arr);
3176
3177 if (ada_is_constrained_packed_array_type (arr_type))
3178 return ada_array_length (decode_constrained_packed_array (arr), n);
3179
3180 if (ada_is_simple_array_type (arr_type))
3181 {
3182 low = ada_array_bound_from_type (arr_type, n, 0);
3183 high = ada_array_bound_from_type (arr_type, n, 1);
3184 }
3185 else
3186 {
3187 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3188 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3189 }
3190
3191 arr_type = check_typedef (arr_type);
3192 index_type = TYPE_INDEX_TYPE (arr_type);
3193 if (index_type != NULL)
3194 {
3195 struct type *base_type;
3196 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3197 base_type = TYPE_TARGET_TYPE (index_type);
3198 else
3199 base_type = index_type;
3200
3201 low = pos_atr (value_from_longest (base_type, low));
3202 high = pos_atr (value_from_longest (base_type, high));
3203 }
3204 return high - low + 1;
3205 }
3206
3207 /* An empty array whose type is that of ARR_TYPE (an array type),
3208 with bounds LOW to LOW-1. */
3209
3210 static struct value *
3211 empty_array (struct type *arr_type, int low)
3212 {
3213 struct type *arr_type0 = ada_check_typedef (arr_type);
3214 struct type *index_type
3215 = create_static_range_type
3216 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3217 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3218
3219 return allocate_value (create_array_type (NULL, elt_type, index_type));
3220 }
3221 \f
3222
3223 /* Name resolution */
3224
3225 /* The "decoded" name for the user-definable Ada operator corresponding
3226 to OP. */
3227
3228 static const char *
3229 ada_decoded_op_name (enum exp_opcode op)
3230 {
3231 int i;
3232
3233 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3234 {
3235 if (ada_opname_table[i].op == op)
3236 return ada_opname_table[i].decoded;
3237 }
3238 error (_("Could not find operator name for opcode"));
3239 }
3240
3241
3242 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3243 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3244 undefined namespace) and converts operators that are
3245 user-defined into appropriate function calls. If CONTEXT_TYPE is
3246 non-null, it provides a preferred result type [at the moment, only
3247 type void has any effect---causing procedures to be preferred over
3248 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3249 return type is preferred. May change (expand) *EXP. */
3250
3251 static void
3252 resolve (struct expression **expp, int void_context_p)
3253 {
3254 struct type *context_type = NULL;
3255 int pc = 0;
3256
3257 if (void_context_p)
3258 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3259
3260 resolve_subexp (expp, &pc, 1, context_type);
3261 }
3262
3263 /* Resolve the operator of the subexpression beginning at
3264 position *POS of *EXPP. "Resolving" consists of replacing
3265 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3266 with their resolutions, replacing built-in operators with
3267 function calls to user-defined operators, where appropriate, and,
3268 when DEPROCEDURE_P is non-zero, converting function-valued variables
3269 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3270 are as in ada_resolve, above. */
3271
3272 static struct value *
3273 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3274 struct type *context_type)
3275 {
3276 int pc = *pos;
3277 int i;
3278 struct expression *exp; /* Convenience: == *expp. */
3279 enum exp_opcode op = (*expp)->elts[pc].opcode;
3280 struct value **argvec; /* Vector of operand types (alloca'ed). */
3281 int nargs; /* Number of operands. */
3282 int oplen;
3283
3284 argvec = NULL;
3285 nargs = 0;
3286 exp = *expp;
3287
3288 /* Pass one: resolve operands, saving their types and updating *pos,
3289 if needed. */
3290 switch (op)
3291 {
3292 case OP_FUNCALL:
3293 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3294 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3295 *pos += 7;
3296 else
3297 {
3298 *pos += 3;
3299 resolve_subexp (expp, pos, 0, NULL);
3300 }
3301 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3302 break;
3303
3304 case UNOP_ADDR:
3305 *pos += 1;
3306 resolve_subexp (expp, pos, 0, NULL);
3307 break;
3308
3309 case UNOP_QUAL:
3310 *pos += 3;
3311 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3312 break;
3313
3314 case OP_ATR_MODULUS:
3315 case OP_ATR_SIZE:
3316 case OP_ATR_TAG:
3317 case OP_ATR_FIRST:
3318 case OP_ATR_LAST:
3319 case OP_ATR_LENGTH:
3320 case OP_ATR_POS:
3321 case OP_ATR_VAL:
3322 case OP_ATR_MIN:
3323 case OP_ATR_MAX:
3324 case TERNOP_IN_RANGE:
3325 case BINOP_IN_BOUNDS:
3326 case UNOP_IN_RANGE:
3327 case OP_AGGREGATE:
3328 case OP_OTHERS:
3329 case OP_CHOICES:
3330 case OP_POSITIONAL:
3331 case OP_DISCRETE_RANGE:
3332 case OP_NAME:
3333 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3334 *pos += oplen;
3335 break;
3336
3337 case BINOP_ASSIGN:
3338 {
3339 struct value *arg1;
3340
3341 *pos += 1;
3342 arg1 = resolve_subexp (expp, pos, 0, NULL);
3343 if (arg1 == NULL)
3344 resolve_subexp (expp, pos, 1, NULL);
3345 else
3346 resolve_subexp (expp, pos, 1, value_type (arg1));
3347 break;
3348 }
3349
3350 case UNOP_CAST:
3351 *pos += 3;
3352 nargs = 1;
3353 break;
3354
3355 case BINOP_ADD:
3356 case BINOP_SUB:
3357 case BINOP_MUL:
3358 case BINOP_DIV:
3359 case BINOP_REM:
3360 case BINOP_MOD:
3361 case BINOP_EXP:
3362 case BINOP_CONCAT:
3363 case BINOP_LOGICAL_AND:
3364 case BINOP_LOGICAL_OR:
3365 case BINOP_BITWISE_AND:
3366 case BINOP_BITWISE_IOR:
3367 case BINOP_BITWISE_XOR:
3368
3369 case BINOP_EQUAL:
3370 case BINOP_NOTEQUAL:
3371 case BINOP_LESS:
3372 case BINOP_GTR:
3373 case BINOP_LEQ:
3374 case BINOP_GEQ:
3375
3376 case BINOP_REPEAT:
3377 case BINOP_SUBSCRIPT:
3378 case BINOP_COMMA:
3379 *pos += 1;
3380 nargs = 2;
3381 break;
3382
3383 case UNOP_NEG:
3384 case UNOP_PLUS:
3385 case UNOP_LOGICAL_NOT:
3386 case UNOP_ABS:
3387 case UNOP_IND:
3388 *pos += 1;
3389 nargs = 1;
3390 break;
3391
3392 case OP_LONG:
3393 case OP_DOUBLE:
3394 case OP_VAR_VALUE:
3395 *pos += 4;
3396 break;
3397
3398 case OP_TYPE:
3399 case OP_BOOL:
3400 case OP_LAST:
3401 case OP_INTERNALVAR:
3402 *pos += 3;
3403 break;
3404
3405 case UNOP_MEMVAL:
3406 *pos += 3;
3407 nargs = 1;
3408 break;
3409
3410 case OP_REGISTER:
3411 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3412 break;
3413
3414 case STRUCTOP_STRUCT:
3415 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3416 nargs = 1;
3417 break;
3418
3419 case TERNOP_SLICE:
3420 *pos += 1;
3421 nargs = 3;
3422 break;
3423
3424 case OP_STRING:
3425 break;
3426
3427 default:
3428 error (_("Unexpected operator during name resolution"));
3429 }
3430
3431 argvec = XALLOCAVEC (struct value *, nargs + 1);
3432 for (i = 0; i < nargs; i += 1)
3433 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3434 argvec[i] = NULL;
3435 exp = *expp;
3436
3437 /* Pass two: perform any resolution on principal operator. */
3438 switch (op)
3439 {
3440 default:
3441 break;
3442
3443 case OP_VAR_VALUE:
3444 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3445 {
3446 struct block_symbol *candidates;
3447 int n_candidates;
3448
3449 n_candidates =
3450 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3451 (exp->elts[pc + 2].symbol),
3452 exp->elts[pc + 1].block, VAR_DOMAIN,
3453 &candidates);
3454
3455 if (n_candidates > 1)
3456 {
3457 /* Types tend to get re-introduced locally, so if there
3458 are any local symbols that are not types, first filter
3459 out all types. */
3460 int j;
3461 for (j = 0; j < n_candidates; j += 1)
3462 switch (SYMBOL_CLASS (candidates[j].symbol))
3463 {
3464 case LOC_REGISTER:
3465 case LOC_ARG:
3466 case LOC_REF_ARG:
3467 case LOC_REGPARM_ADDR:
3468 case LOC_LOCAL:
3469 case LOC_COMPUTED:
3470 goto FoundNonType;
3471 default:
3472 break;
3473 }
3474 FoundNonType:
3475 if (j < n_candidates)
3476 {
3477 j = 0;
3478 while (j < n_candidates)
3479 {
3480 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3481 {
3482 candidates[j] = candidates[n_candidates - 1];
3483 n_candidates -= 1;
3484 }
3485 else
3486 j += 1;
3487 }
3488 }
3489 }
3490
3491 if (n_candidates == 0)
3492 error (_("No definition found for %s"),
3493 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3494 else if (n_candidates == 1)
3495 i = 0;
3496 else if (deprocedure_p
3497 && !is_nonfunction (candidates, n_candidates))
3498 {
3499 i = ada_resolve_function
3500 (candidates, n_candidates, NULL, 0,
3501 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3502 context_type);
3503 if (i < 0)
3504 error (_("Could not find a match for %s"),
3505 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506 }
3507 else
3508 {
3509 printf_filtered (_("Multiple matches for %s\n"),
3510 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3511 user_select_syms (candidates, n_candidates, 1);
3512 i = 0;
3513 }
3514
3515 exp->elts[pc + 1].block = candidates[i].block;
3516 exp->elts[pc + 2].symbol = candidates[i].symbol;
3517 if (innermost_block == NULL
3518 || contained_in (candidates[i].block, innermost_block))
3519 innermost_block = candidates[i].block;
3520 }
3521
3522 if (deprocedure_p
3523 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3524 == TYPE_CODE_FUNC))
3525 {
3526 replace_operator_with_call (expp, pc, 0, 0,
3527 exp->elts[pc + 2].symbol,
3528 exp->elts[pc + 1].block);
3529 exp = *expp;
3530 }
3531 break;
3532
3533 case OP_FUNCALL:
3534 {
3535 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3536 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3537 {
3538 struct block_symbol *candidates;
3539 int n_candidates;
3540
3541 n_candidates =
3542 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3543 (exp->elts[pc + 5].symbol),
3544 exp->elts[pc + 4].block, VAR_DOMAIN,
3545 &candidates);
3546 if (n_candidates == 1)
3547 i = 0;
3548 else
3549 {
3550 i = ada_resolve_function
3551 (candidates, n_candidates,
3552 argvec, nargs,
3553 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3554 context_type);
3555 if (i < 0)
3556 error (_("Could not find a match for %s"),
3557 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3558 }
3559
3560 exp->elts[pc + 4].block = candidates[i].block;
3561 exp->elts[pc + 5].symbol = candidates[i].symbol;
3562 if (innermost_block == NULL
3563 || contained_in (candidates[i].block, innermost_block))
3564 innermost_block = candidates[i].block;
3565 }
3566 }
3567 break;
3568 case BINOP_ADD:
3569 case BINOP_SUB:
3570 case BINOP_MUL:
3571 case BINOP_DIV:
3572 case BINOP_REM:
3573 case BINOP_MOD:
3574 case BINOP_CONCAT:
3575 case BINOP_BITWISE_AND:
3576 case BINOP_BITWISE_IOR:
3577 case BINOP_BITWISE_XOR:
3578 case BINOP_EQUAL:
3579 case BINOP_NOTEQUAL:
3580 case BINOP_LESS:
3581 case BINOP_GTR:
3582 case BINOP_LEQ:
3583 case BINOP_GEQ:
3584 case BINOP_EXP:
3585 case UNOP_NEG:
3586 case UNOP_PLUS:
3587 case UNOP_LOGICAL_NOT:
3588 case UNOP_ABS:
3589 if (possible_user_operator_p (op, argvec))
3590 {
3591 struct block_symbol *candidates;
3592 int n_candidates;
3593
3594 n_candidates =
3595 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3596 (struct block *) NULL, VAR_DOMAIN,
3597 &candidates);
3598 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3599 ada_decoded_op_name (op), NULL);
3600 if (i < 0)
3601 break;
3602
3603 replace_operator_with_call (expp, pc, nargs, 1,
3604 candidates[i].symbol,
3605 candidates[i].block);
3606 exp = *expp;
3607 }
3608 break;
3609
3610 case OP_TYPE:
3611 case OP_REGISTER:
3612 return NULL;
3613 }
3614
3615 *pos = pc;
3616 return evaluate_subexp_type (exp, pos);
3617 }
3618
3619 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3620 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3621 a non-pointer. */
3622 /* The term "match" here is rather loose. The match is heuristic and
3623 liberal. */
3624
3625 static int
3626 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3627 {
3628 ftype = ada_check_typedef (ftype);
3629 atype = ada_check_typedef (atype);
3630
3631 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3632 ftype = TYPE_TARGET_TYPE (ftype);
3633 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3634 atype = TYPE_TARGET_TYPE (atype);
3635
3636 switch (TYPE_CODE (ftype))
3637 {
3638 default:
3639 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3640 case TYPE_CODE_PTR:
3641 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3642 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3643 TYPE_TARGET_TYPE (atype), 0);
3644 else
3645 return (may_deref
3646 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 switch (TYPE_CODE (atype))
3651 {
3652 case TYPE_CODE_INT:
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_RANGE:
3655 return 1;
3656 default:
3657 return 0;
3658 }
3659
3660 case TYPE_CODE_ARRAY:
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663
3664 case TYPE_CODE_STRUCT:
3665 if (ada_is_array_descriptor_type (ftype))
3666 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3667 || ada_is_array_descriptor_type (atype));
3668 else
3669 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3670 && !ada_is_array_descriptor_type (atype));
3671
3672 case TYPE_CODE_UNION:
3673 case TYPE_CODE_FLT:
3674 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3675 }
3676 }
3677
3678 /* Return non-zero if the formals of FUNC "sufficiently match" the
3679 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3680 may also be an enumeral, in which case it is treated as a 0-
3681 argument function. */
3682
3683 static int
3684 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3685 {
3686 int i;
3687 struct type *func_type = SYMBOL_TYPE (func);
3688
3689 if (SYMBOL_CLASS (func) == LOC_CONST
3690 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3691 return (n_actuals == 0);
3692 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3693 return 0;
3694
3695 if (TYPE_NFIELDS (func_type) != n_actuals)
3696 return 0;
3697
3698 for (i = 0; i < n_actuals; i += 1)
3699 {
3700 if (actuals[i] == NULL)
3701 return 0;
3702 else
3703 {
3704 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3705 i));
3706 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3707
3708 if (!ada_type_match (ftype, atype, 1))
3709 return 0;
3710 }
3711 }
3712 return 1;
3713 }
3714
3715 /* False iff function type FUNC_TYPE definitely does not produce a value
3716 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3717 FUNC_TYPE is not a valid function type with a non-null return type
3718 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3719
3720 static int
3721 return_match (struct type *func_type, struct type *context_type)
3722 {
3723 struct type *return_type;
3724
3725 if (func_type == NULL)
3726 return 1;
3727
3728 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3729 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3730 else
3731 return_type = get_base_type (func_type);
3732 if (return_type == NULL)
3733 return 1;
3734
3735 context_type = get_base_type (context_type);
3736
3737 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3738 return context_type == NULL || return_type == context_type;
3739 else if (context_type == NULL)
3740 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3741 else
3742 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3743 }
3744
3745
3746 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3747 function (if any) that matches the types of the NARGS arguments in
3748 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3749 that returns that type, then eliminate matches that don't. If
3750 CONTEXT_TYPE is void and there is at least one match that does not
3751 return void, eliminate all matches that do.
3752
3753 Asks the user if there is more than one match remaining. Returns -1
3754 if there is no such symbol or none is selected. NAME is used
3755 solely for messages. May re-arrange and modify SYMS in
3756 the process; the index returned is for the modified vector. */
3757
3758 static int
3759 ada_resolve_function (struct block_symbol syms[],
3760 int nsyms, struct value **args, int nargs,
3761 const char *name, struct type *context_type)
3762 {
3763 int fallback;
3764 int k;
3765 int m; /* Number of hits */
3766
3767 m = 0;
3768 /* In the first pass of the loop, we only accept functions matching
3769 context_type. If none are found, we add a second pass of the loop
3770 where every function is accepted. */
3771 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3772 {
3773 for (k = 0; k < nsyms; k += 1)
3774 {
3775 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3776
3777 if (ada_args_match (syms[k].symbol, args, nargs)
3778 && (fallback || return_match (type, context_type)))
3779 {
3780 syms[m] = syms[k];
3781 m += 1;
3782 }
3783 }
3784 }
3785
3786 /* If we got multiple matches, ask the user which one to use. Don't do this
3787 interactive thing during completion, though, as the purpose of the
3788 completion is providing a list of all possible matches. Prompting the
3789 user to filter it down would be completely unexpected in this case. */
3790 if (m == 0)
3791 return -1;
3792 else if (m > 1 && !parse_completion)
3793 {
3794 printf_filtered (_("Multiple matches for %s\n"), name);
3795 user_select_syms (syms, m, 1);
3796 return 0;
3797 }
3798 return 0;
3799 }
3800
3801 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3802 in a listing of choices during disambiguation (see sort_choices, below).
3803 The idea is that overloadings of a subprogram name from the
3804 same package should sort in their source order. We settle for ordering
3805 such symbols by their trailing number (__N or $N). */
3806
3807 static int
3808 encoded_ordered_before (const char *N0, const char *N1)
3809 {
3810 if (N1 == NULL)
3811 return 0;
3812 else if (N0 == NULL)
3813 return 1;
3814 else
3815 {
3816 int k0, k1;
3817
3818 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3819 ;
3820 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3821 ;
3822 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3823 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3824 {
3825 int n0, n1;
3826
3827 n0 = k0;
3828 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3829 n0 -= 1;
3830 n1 = k1;
3831 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3832 n1 -= 1;
3833 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3834 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3835 }
3836 return (strcmp (N0, N1) < 0);
3837 }
3838 }
3839
3840 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3841 encoded names. */
3842
3843 static void
3844 sort_choices (struct block_symbol syms[], int nsyms)
3845 {
3846 int i;
3847
3848 for (i = 1; i < nsyms; i += 1)
3849 {
3850 struct block_symbol sym = syms[i];
3851 int j;
3852
3853 for (j = i - 1; j >= 0; j -= 1)
3854 {
3855 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3856 SYMBOL_LINKAGE_NAME (sym.symbol)))
3857 break;
3858 syms[j + 1] = syms[j];
3859 }
3860 syms[j + 1] = sym;
3861 }
3862 }
3863
3864 /* Whether GDB should display formals and return types for functions in the
3865 overloads selection menu. */
3866 static int print_signatures = 1;
3867
3868 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3869 all but functions, the signature is just the name of the symbol. For
3870 functions, this is the name of the function, the list of types for formals
3871 and the return type (if any). */
3872
3873 static void
3874 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3875 const struct type_print_options *flags)
3876 {
3877 struct type *type = SYMBOL_TYPE (sym);
3878
3879 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3880 if (!print_signatures
3881 || type == NULL
3882 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3883 return;
3884
3885 if (TYPE_NFIELDS (type) > 0)
3886 {
3887 int i;
3888
3889 fprintf_filtered (stream, " (");
3890 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3891 {
3892 if (i > 0)
3893 fprintf_filtered (stream, "; ");
3894 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3895 flags);
3896 }
3897 fprintf_filtered (stream, ")");
3898 }
3899 if (TYPE_TARGET_TYPE (type) != NULL
3900 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3901 {
3902 fprintf_filtered (stream, " return ");
3903 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3904 }
3905 }
3906
3907 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3908 by asking the user (if necessary), returning the number selected,
3909 and setting the first elements of SYMS items. Error if no symbols
3910 selected. */
3911
3912 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3913 to be re-integrated one of these days. */
3914
3915 int
3916 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3917 {
3918 int i;
3919 int *chosen = XALLOCAVEC (int , nsyms);
3920 int n_chosen;
3921 int first_choice = (max_results == 1) ? 1 : 2;
3922 const char *select_mode = multiple_symbols_select_mode ();
3923
3924 if (max_results < 1)
3925 error (_("Request to select 0 symbols!"));
3926 if (nsyms <= 1)
3927 return nsyms;
3928
3929 if (select_mode == multiple_symbols_cancel)
3930 error (_("\
3931 canceled because the command is ambiguous\n\
3932 See set/show multiple-symbol."));
3933
3934 /* If select_mode is "all", then return all possible symbols.
3935 Only do that if more than one symbol can be selected, of course.
3936 Otherwise, display the menu as usual. */
3937 if (select_mode == multiple_symbols_all && max_results > 1)
3938 return nsyms;
3939
3940 printf_unfiltered (_("[0] cancel\n"));
3941 if (max_results > 1)
3942 printf_unfiltered (_("[1] all\n"));
3943
3944 sort_choices (syms, nsyms);
3945
3946 for (i = 0; i < nsyms; i += 1)
3947 {
3948 if (syms[i].symbol == NULL)
3949 continue;
3950
3951 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3952 {
3953 struct symtab_and_line sal =
3954 find_function_start_sal (syms[i].symbol, 1);
3955
3956 printf_unfiltered ("[%d] ", i + first_choice);
3957 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3958 &type_print_raw_options);
3959 if (sal.symtab == NULL)
3960 printf_unfiltered (_(" at <no source file available>:%d\n"),
3961 sal.line);
3962 else
3963 printf_unfiltered (_(" at %s:%d\n"),
3964 symtab_to_filename_for_display (sal.symtab),
3965 sal.line);
3966 continue;
3967 }
3968 else
3969 {
3970 int is_enumeral =
3971 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3972 && SYMBOL_TYPE (syms[i].symbol) != NULL
3973 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3974 struct symtab *symtab = NULL;
3975
3976 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3977 symtab = symbol_symtab (syms[i].symbol);
3978
3979 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3980 {
3981 printf_unfiltered ("[%d] ", i + first_choice);
3982 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3983 &type_print_raw_options);
3984 printf_unfiltered (_(" at %s:%d\n"),
3985 symtab_to_filename_for_display (symtab),
3986 SYMBOL_LINE (syms[i].symbol));
3987 }
3988 else if (is_enumeral
3989 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3990 {
3991 printf_unfiltered (("[%d] "), i + first_choice);
3992 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3993 gdb_stdout, -1, 0, &type_print_raw_options);
3994 printf_unfiltered (_("'(%s) (enumeral)\n"),
3995 SYMBOL_PRINT_NAME (syms[i].symbol));
3996 }
3997 else
3998 {
3999 printf_unfiltered ("[%d] ", i + first_choice);
4000 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
4001 &type_print_raw_options);
4002
4003 if (symtab != NULL)
4004 printf_unfiltered (is_enumeral
4005 ? _(" in %s (enumeral)\n")
4006 : _(" at %s:?\n"),
4007 symtab_to_filename_for_display (symtab));
4008 else
4009 printf_unfiltered (is_enumeral
4010 ? _(" (enumeral)\n")
4011 : _(" at ?\n"));
4012 }
4013 }
4014 }
4015
4016 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4017 "overload-choice");
4018
4019 for (i = 0; i < n_chosen; i += 1)
4020 syms[i] = syms[chosen[i]];
4021
4022 return n_chosen;
4023 }
4024
4025 /* Read and validate a set of numeric choices from the user in the
4026 range 0 .. N_CHOICES-1. Place the results in increasing
4027 order in CHOICES[0 .. N-1], and return N.
4028
4029 The user types choices as a sequence of numbers on one line
4030 separated by blanks, encoding them as follows:
4031
4032 + A choice of 0 means to cancel the selection, throwing an error.
4033 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4034 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4035
4036 The user is not allowed to choose more than MAX_RESULTS values.
4037
4038 ANNOTATION_SUFFIX, if present, is used to annotate the input
4039 prompts (for use with the -f switch). */
4040
4041 int
4042 get_selections (int *choices, int n_choices, int max_results,
4043 int is_all_choice, char *annotation_suffix)
4044 {
4045 char *args;
4046 char *prompt;
4047 int n_chosen;
4048 int first_choice = is_all_choice ? 2 : 1;
4049
4050 prompt = getenv ("PS2");
4051 if (prompt == NULL)
4052 prompt = "> ";
4053
4054 args = command_line_input (prompt, 0, annotation_suffix);
4055
4056 if (args == NULL)
4057 error_no_arg (_("one or more choice numbers"));
4058
4059 n_chosen = 0;
4060
4061 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4062 order, as given in args. Choices are validated. */
4063 while (1)
4064 {
4065 char *args2;
4066 int choice, j;
4067
4068 args = skip_spaces (args);
4069 if (*args == '\0' && n_chosen == 0)
4070 error_no_arg (_("one or more choice numbers"));
4071 else if (*args == '\0')
4072 break;
4073
4074 choice = strtol (args, &args2, 10);
4075 if (args == args2 || choice < 0
4076 || choice > n_choices + first_choice - 1)
4077 error (_("Argument must be choice number"));
4078 args = args2;
4079
4080 if (choice == 0)
4081 error (_("cancelled"));
4082
4083 if (choice < first_choice)
4084 {
4085 n_chosen = n_choices;
4086 for (j = 0; j < n_choices; j += 1)
4087 choices[j] = j;
4088 break;
4089 }
4090 choice -= first_choice;
4091
4092 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4093 {
4094 }
4095
4096 if (j < 0 || choice != choices[j])
4097 {
4098 int k;
4099
4100 for (k = n_chosen - 1; k > j; k -= 1)
4101 choices[k + 1] = choices[k];
4102 choices[j + 1] = choice;
4103 n_chosen += 1;
4104 }
4105 }
4106
4107 if (n_chosen > max_results)
4108 error (_("Select no more than %d of the above"), max_results);
4109
4110 return n_chosen;
4111 }
4112
4113 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4114 on the function identified by SYM and BLOCK, and taking NARGS
4115 arguments. Update *EXPP as needed to hold more space. */
4116
4117 static void
4118 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4119 int oplen, struct symbol *sym,
4120 const struct block *block)
4121 {
4122 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4123 symbol, -oplen for operator being replaced). */
4124 struct expression *newexp = (struct expression *)
4125 xzalloc (sizeof (struct expression)
4126 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4127 struct expression *exp = *expp;
4128
4129 newexp->nelts = exp->nelts + 7 - oplen;
4130 newexp->language_defn = exp->language_defn;
4131 newexp->gdbarch = exp->gdbarch;
4132 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4133 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4134 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4135
4136 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4137 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4138
4139 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4140 newexp->elts[pc + 4].block = block;
4141 newexp->elts[pc + 5].symbol = sym;
4142
4143 *expp = newexp;
4144 xfree (exp);
4145 }
4146
4147 /* Type-class predicates */
4148
4149 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4150 or FLOAT). */
4151
4152 static int
4153 numeric_type_p (struct type *type)
4154 {
4155 if (type == NULL)
4156 return 0;
4157 else
4158 {
4159 switch (TYPE_CODE (type))
4160 {
4161 case TYPE_CODE_INT:
4162 case TYPE_CODE_FLT:
4163 return 1;
4164 case TYPE_CODE_RANGE:
4165 return (type == TYPE_TARGET_TYPE (type)
4166 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4167 default:
4168 return 0;
4169 }
4170 }
4171 }
4172
4173 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4174
4175 static int
4176 integer_type_p (struct type *type)
4177 {
4178 if (type == NULL)
4179 return 0;
4180 else
4181 {
4182 switch (TYPE_CODE (type))
4183 {
4184 case TYPE_CODE_INT:
4185 return 1;
4186 case TYPE_CODE_RANGE:
4187 return (type == TYPE_TARGET_TYPE (type)
4188 || integer_type_p (TYPE_TARGET_TYPE (type)));
4189 default:
4190 return 0;
4191 }
4192 }
4193 }
4194
4195 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4196
4197 static int
4198 scalar_type_p (struct type *type)
4199 {
4200 if (type == NULL)
4201 return 0;
4202 else
4203 {
4204 switch (TYPE_CODE (type))
4205 {
4206 case TYPE_CODE_INT:
4207 case TYPE_CODE_RANGE:
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLT:
4210 return 1;
4211 default:
4212 return 0;
4213 }
4214 }
4215 }
4216
4217 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4218
4219 static int
4220 discrete_type_p (struct type *type)
4221 {
4222 if (type == NULL)
4223 return 0;
4224 else
4225 {
4226 switch (TYPE_CODE (type))
4227 {
4228 case TYPE_CODE_INT:
4229 case TYPE_CODE_RANGE:
4230 case TYPE_CODE_ENUM:
4231 case TYPE_CODE_BOOL:
4232 return 1;
4233 default:
4234 return 0;
4235 }
4236 }
4237 }
4238
4239 /* Returns non-zero if OP with operands in the vector ARGS could be
4240 a user-defined function. Errs on the side of pre-defined operators
4241 (i.e., result 0). */
4242
4243 static int
4244 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4245 {
4246 struct type *type0 =
4247 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4248 struct type *type1 =
4249 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4250
4251 if (type0 == NULL)
4252 return 0;
4253
4254 switch (op)
4255 {
4256 default:
4257 return 0;
4258
4259 case BINOP_ADD:
4260 case BINOP_SUB:
4261 case BINOP_MUL:
4262 case BINOP_DIV:
4263 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4264
4265 case BINOP_REM:
4266 case BINOP_MOD:
4267 case BINOP_BITWISE_AND:
4268 case BINOP_BITWISE_IOR:
4269 case BINOP_BITWISE_XOR:
4270 return (!(integer_type_p (type0) && integer_type_p (type1)));
4271
4272 case BINOP_EQUAL:
4273 case BINOP_NOTEQUAL:
4274 case BINOP_LESS:
4275 case BINOP_GTR:
4276 case BINOP_LEQ:
4277 case BINOP_GEQ:
4278 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4279
4280 case BINOP_CONCAT:
4281 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4282
4283 case BINOP_EXP:
4284 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4285
4286 case UNOP_NEG:
4287 case UNOP_PLUS:
4288 case UNOP_LOGICAL_NOT:
4289 case UNOP_ABS:
4290 return (!numeric_type_p (type0));
4291
4292 }
4293 }
4294 \f
4295 /* Renaming */
4296
4297 /* NOTES:
4298
4299 1. In the following, we assume that a renaming type's name may
4300 have an ___XD suffix. It would be nice if this went away at some
4301 point.
4302 2. We handle both the (old) purely type-based representation of
4303 renamings and the (new) variable-based encoding. At some point,
4304 it is devoutly to be hoped that the former goes away
4305 (FIXME: hilfinger-2007-07-09).
4306 3. Subprogram renamings are not implemented, although the XRS
4307 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4308
4309 /* If SYM encodes a renaming,
4310
4311 <renaming> renames <renamed entity>,
4312
4313 sets *LEN to the length of the renamed entity's name,
4314 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4315 the string describing the subcomponent selected from the renamed
4316 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4317 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4318 are undefined). Otherwise, returns a value indicating the category
4319 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4320 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4321 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4322 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4323 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4324 may be NULL, in which case they are not assigned.
4325
4326 [Currently, however, GCC does not generate subprogram renamings.] */
4327
4328 enum ada_renaming_category
4329 ada_parse_renaming (struct symbol *sym,
4330 const char **renamed_entity, int *len,
4331 const char **renaming_expr)
4332 {
4333 enum ada_renaming_category kind;
4334 const char *info;
4335 const char *suffix;
4336
4337 if (sym == NULL)
4338 return ADA_NOT_RENAMING;
4339 switch (SYMBOL_CLASS (sym))
4340 {
4341 default:
4342 return ADA_NOT_RENAMING;
4343 case LOC_TYPEDEF:
4344 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4345 renamed_entity, len, renaming_expr);
4346 case LOC_LOCAL:
4347 case LOC_STATIC:
4348 case LOC_COMPUTED:
4349 case LOC_OPTIMIZED_OUT:
4350 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4351 if (info == NULL)
4352 return ADA_NOT_RENAMING;
4353 switch (info[5])
4354 {
4355 case '_':
4356 kind = ADA_OBJECT_RENAMING;
4357 info += 6;
4358 break;
4359 case 'E':
4360 kind = ADA_EXCEPTION_RENAMING;
4361 info += 7;
4362 break;
4363 case 'P':
4364 kind = ADA_PACKAGE_RENAMING;
4365 info += 7;
4366 break;
4367 case 'S':
4368 kind = ADA_SUBPROGRAM_RENAMING;
4369 info += 7;
4370 break;
4371 default:
4372 return ADA_NOT_RENAMING;
4373 }
4374 }
4375
4376 if (renamed_entity != NULL)
4377 *renamed_entity = info;
4378 suffix = strstr (info, "___XE");
4379 if (suffix == NULL || suffix == info)
4380 return ADA_NOT_RENAMING;
4381 if (len != NULL)
4382 *len = strlen (info) - strlen (suffix);
4383 suffix += 5;
4384 if (renaming_expr != NULL)
4385 *renaming_expr = suffix;
4386 return kind;
4387 }
4388
4389 /* Assuming TYPE encodes a renaming according to the old encoding in
4390 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4391 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4392 ADA_NOT_RENAMING otherwise. */
4393 static enum ada_renaming_category
4394 parse_old_style_renaming (struct type *type,
4395 const char **renamed_entity, int *len,
4396 const char **renaming_expr)
4397 {
4398 enum ada_renaming_category kind;
4399 const char *name;
4400 const char *info;
4401 const char *suffix;
4402
4403 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4404 || TYPE_NFIELDS (type) != 1)
4405 return ADA_NOT_RENAMING;
4406
4407 name = type_name_no_tag (type);
4408 if (name == NULL)
4409 return ADA_NOT_RENAMING;
4410
4411 name = strstr (name, "___XR");
4412 if (name == NULL)
4413 return ADA_NOT_RENAMING;
4414 switch (name[5])
4415 {
4416 case '\0':
4417 case '_':
4418 kind = ADA_OBJECT_RENAMING;
4419 break;
4420 case 'E':
4421 kind = ADA_EXCEPTION_RENAMING;
4422 break;
4423 case 'P':
4424 kind = ADA_PACKAGE_RENAMING;
4425 break;
4426 case 'S':
4427 kind = ADA_SUBPROGRAM_RENAMING;
4428 break;
4429 default:
4430 return ADA_NOT_RENAMING;
4431 }
4432
4433 info = TYPE_FIELD_NAME (type, 0);
4434 if (info == NULL)
4435 return ADA_NOT_RENAMING;
4436 if (renamed_entity != NULL)
4437 *renamed_entity = info;
4438 suffix = strstr (info, "___XE");
4439 if (renaming_expr != NULL)
4440 *renaming_expr = suffix + 5;
4441 if (suffix == NULL || suffix == info)
4442 return ADA_NOT_RENAMING;
4443 if (len != NULL)
4444 *len = suffix - info;
4445 return kind;
4446 }
4447
4448 /* Compute the value of the given RENAMING_SYM, which is expected to
4449 be a symbol encoding a renaming expression. BLOCK is the block
4450 used to evaluate the renaming. */
4451
4452 static struct value *
4453 ada_read_renaming_var_value (struct symbol *renaming_sym,
4454 const struct block *block)
4455 {
4456 const char *sym_name;
4457
4458 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4459 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4460 return evaluate_expression (expr.get ());
4461 }
4462 \f
4463
4464 /* Evaluation: Function Calls */
4465
4466 /* Return an lvalue containing the value VAL. This is the identity on
4467 lvalues, and otherwise has the side-effect of allocating memory
4468 in the inferior where a copy of the value contents is copied. */
4469
4470 static struct value *
4471 ensure_lval (struct value *val)
4472 {
4473 if (VALUE_LVAL (val) == not_lval
4474 || VALUE_LVAL (val) == lval_internalvar)
4475 {
4476 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4477 const CORE_ADDR addr =
4478 value_as_long (value_allocate_space_in_inferior (len));
4479
4480 set_value_address (val, addr);
4481 VALUE_LVAL (val) = lval_memory;
4482 write_memory (addr, value_contents (val), len);
4483 }
4484
4485 return val;
4486 }
4487
4488 /* Return the value ACTUAL, converted to be an appropriate value for a
4489 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4490 allocating any necessary descriptors (fat pointers), or copies of
4491 values not residing in memory, updating it as needed. */
4492
4493 struct value *
4494 ada_convert_actual (struct value *actual, struct type *formal_type0)
4495 {
4496 struct type *actual_type = ada_check_typedef (value_type (actual));
4497 struct type *formal_type = ada_check_typedef (formal_type0);
4498 struct type *formal_target =
4499 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4500 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4501 struct type *actual_target =
4502 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4503 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4504
4505 if (ada_is_array_descriptor_type (formal_target)
4506 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4507 return make_array_descriptor (formal_type, actual);
4508 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4509 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4510 {
4511 struct value *result;
4512
4513 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4514 && ada_is_array_descriptor_type (actual_target))
4515 result = desc_data (actual);
4516 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4517 {
4518 if (VALUE_LVAL (actual) != lval_memory)
4519 {
4520 struct value *val;
4521
4522 actual_type = ada_check_typedef (value_type (actual));
4523 val = allocate_value (actual_type);
4524 memcpy ((char *) value_contents_raw (val),
4525 (char *) value_contents (actual),
4526 TYPE_LENGTH (actual_type));
4527 actual = ensure_lval (val);
4528 }
4529 result = value_addr (actual);
4530 }
4531 else
4532 return actual;
4533 return value_cast_pointers (formal_type, result, 0);
4534 }
4535 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4536 return ada_value_ind (actual);
4537 else if (ada_is_aligner_type (formal_type))
4538 {
4539 /* We need to turn this parameter into an aligner type
4540 as well. */
4541 struct value *aligner = allocate_value (formal_type);
4542 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4543
4544 value_assign_to_component (aligner, component, actual);
4545 return aligner;
4546 }
4547
4548 return actual;
4549 }
4550
4551 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4552 type TYPE. This is usually an inefficient no-op except on some targets
4553 (such as AVR) where the representation of a pointer and an address
4554 differs. */
4555
4556 static CORE_ADDR
4557 value_pointer (struct value *value, struct type *type)
4558 {
4559 struct gdbarch *gdbarch = get_type_arch (type);
4560 unsigned len = TYPE_LENGTH (type);
4561 gdb_byte *buf = (gdb_byte *) alloca (len);
4562 CORE_ADDR addr;
4563
4564 addr = value_address (value);
4565 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4566 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4567 return addr;
4568 }
4569
4570
4571 /* Push a descriptor of type TYPE for array value ARR on the stack at
4572 *SP, updating *SP to reflect the new descriptor. Return either
4573 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4574 to-descriptor type rather than a descriptor type), a struct value *
4575 representing a pointer to this descriptor. */
4576
4577 static struct value *
4578 make_array_descriptor (struct type *type, struct value *arr)
4579 {
4580 struct type *bounds_type = desc_bounds_type (type);
4581 struct type *desc_type = desc_base_type (type);
4582 struct value *descriptor = allocate_value (desc_type);
4583 struct value *bounds = allocate_value (bounds_type);
4584 int i;
4585
4586 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4587 i > 0; i -= 1)
4588 {
4589 modify_field (value_type (bounds), value_contents_writeable (bounds),
4590 ada_array_bound (arr, i, 0),
4591 desc_bound_bitpos (bounds_type, i, 0),
4592 desc_bound_bitsize (bounds_type, i, 0));
4593 modify_field (value_type (bounds), value_contents_writeable (bounds),
4594 ada_array_bound (arr, i, 1),
4595 desc_bound_bitpos (bounds_type, i, 1),
4596 desc_bound_bitsize (bounds_type, i, 1));
4597 }
4598
4599 bounds = ensure_lval (bounds);
4600
4601 modify_field (value_type (descriptor),
4602 value_contents_writeable (descriptor),
4603 value_pointer (ensure_lval (arr),
4604 TYPE_FIELD_TYPE (desc_type, 0)),
4605 fat_pntr_data_bitpos (desc_type),
4606 fat_pntr_data_bitsize (desc_type));
4607
4608 modify_field (value_type (descriptor),
4609 value_contents_writeable (descriptor),
4610 value_pointer (bounds,
4611 TYPE_FIELD_TYPE (desc_type, 1)),
4612 fat_pntr_bounds_bitpos (desc_type),
4613 fat_pntr_bounds_bitsize (desc_type));
4614
4615 descriptor = ensure_lval (descriptor);
4616
4617 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4618 return value_addr (descriptor);
4619 else
4620 return descriptor;
4621 }
4622 \f
4623 /* Symbol Cache Module */
4624
4625 /* Performance measurements made as of 2010-01-15 indicate that
4626 this cache does bring some noticeable improvements. Depending
4627 on the type of entity being printed, the cache can make it as much
4628 as an order of magnitude faster than without it.
4629
4630 The descriptive type DWARF extension has significantly reduced
4631 the need for this cache, at least when DWARF is being used. However,
4632 even in this case, some expensive name-based symbol searches are still
4633 sometimes necessary - to find an XVZ variable, mostly. */
4634
4635 /* Initialize the contents of SYM_CACHE. */
4636
4637 static void
4638 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4639 {
4640 obstack_init (&sym_cache->cache_space);
4641 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4642 }
4643
4644 /* Free the memory used by SYM_CACHE. */
4645
4646 static void
4647 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4648 {
4649 obstack_free (&sym_cache->cache_space, NULL);
4650 xfree (sym_cache);
4651 }
4652
4653 /* Return the symbol cache associated to the given program space PSPACE.
4654 If not allocated for this PSPACE yet, allocate and initialize one. */
4655
4656 static struct ada_symbol_cache *
4657 ada_get_symbol_cache (struct program_space *pspace)
4658 {
4659 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4660
4661 if (pspace_data->sym_cache == NULL)
4662 {
4663 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4664 ada_init_symbol_cache (pspace_data->sym_cache);
4665 }
4666
4667 return pspace_data->sym_cache;
4668 }
4669
4670 /* Clear all entries from the symbol cache. */
4671
4672 static void
4673 ada_clear_symbol_cache (void)
4674 {
4675 struct ada_symbol_cache *sym_cache
4676 = ada_get_symbol_cache (current_program_space);
4677
4678 obstack_free (&sym_cache->cache_space, NULL);
4679 ada_init_symbol_cache (sym_cache);
4680 }
4681
4682 /* Search our cache for an entry matching NAME and DOMAIN.
4683 Return it if found, or NULL otherwise. */
4684
4685 static struct cache_entry **
4686 find_entry (const char *name, domain_enum domain)
4687 {
4688 struct ada_symbol_cache *sym_cache
4689 = ada_get_symbol_cache (current_program_space);
4690 int h = msymbol_hash (name) % HASH_SIZE;
4691 struct cache_entry **e;
4692
4693 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4694 {
4695 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4696 return e;
4697 }
4698 return NULL;
4699 }
4700
4701 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4702 Return 1 if found, 0 otherwise.
4703
4704 If an entry was found and SYM is not NULL, set *SYM to the entry's
4705 SYM. Same principle for BLOCK if not NULL. */
4706
4707 static int
4708 lookup_cached_symbol (const char *name, domain_enum domain,
4709 struct symbol **sym, const struct block **block)
4710 {
4711 struct cache_entry **e = find_entry (name, domain);
4712
4713 if (e == NULL)
4714 return 0;
4715 if (sym != NULL)
4716 *sym = (*e)->sym;
4717 if (block != NULL)
4718 *block = (*e)->block;
4719 return 1;
4720 }
4721
4722 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4723 in domain DOMAIN, save this result in our symbol cache. */
4724
4725 static void
4726 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4727 const struct block *block)
4728 {
4729 struct ada_symbol_cache *sym_cache
4730 = ada_get_symbol_cache (current_program_space);
4731 int h;
4732 char *copy;
4733 struct cache_entry *e;
4734
4735 /* Symbols for builtin types don't have a block.
4736 For now don't cache such symbols. */
4737 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4738 return;
4739
4740 /* If the symbol is a local symbol, then do not cache it, as a search
4741 for that symbol depends on the context. To determine whether
4742 the symbol is local or not, we check the block where we found it
4743 against the global and static blocks of its associated symtab. */
4744 if (sym
4745 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4746 GLOBAL_BLOCK) != block
4747 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4748 STATIC_BLOCK) != block)
4749 return;
4750
4751 h = msymbol_hash (name) % HASH_SIZE;
4752 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4753 sizeof (*e));
4754 e->next = sym_cache->root[h];
4755 sym_cache->root[h] = e;
4756 e->name = copy
4757 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4758 strcpy (copy, name);
4759 e->sym = sym;
4760 e->domain = domain;
4761 e->block = block;
4762 }
4763 \f
4764 /* Symbol Lookup */
4765
4766 /* Return nonzero if wild matching should be used when searching for
4767 all symbols matching LOOKUP_NAME.
4768
4769 LOOKUP_NAME is expected to be a symbol name after transformation
4770 for Ada lookups (see ada_name_for_lookup). */
4771
4772 static int
4773 should_use_wild_match (const char *lookup_name)
4774 {
4775 return (strstr (lookup_name, "__") == NULL);
4776 }
4777
4778 /* Return the result of a standard (literal, C-like) lookup of NAME in
4779 given DOMAIN, visible from lexical block BLOCK. */
4780
4781 static struct symbol *
4782 standard_lookup (const char *name, const struct block *block,
4783 domain_enum domain)
4784 {
4785 /* Initialize it just to avoid a GCC false warning. */
4786 struct block_symbol sym = {NULL, NULL};
4787
4788 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4789 return sym.symbol;
4790 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4791 cache_symbol (name, domain, sym.symbol, sym.block);
4792 return sym.symbol;
4793 }
4794
4795
4796 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4797 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4798 since they contend in overloading in the same way. */
4799 static int
4800 is_nonfunction (struct block_symbol syms[], int n)
4801 {
4802 int i;
4803
4804 for (i = 0; i < n; i += 1)
4805 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4806 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4807 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4808 return 1;
4809
4810 return 0;
4811 }
4812
4813 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4814 struct types. Otherwise, they may not. */
4815
4816 static int
4817 equiv_types (struct type *type0, struct type *type1)
4818 {
4819 if (type0 == type1)
4820 return 1;
4821 if (type0 == NULL || type1 == NULL
4822 || TYPE_CODE (type0) != TYPE_CODE (type1))
4823 return 0;
4824 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4825 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4826 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4827 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4828 return 1;
4829
4830 return 0;
4831 }
4832
4833 /* True iff SYM0 represents the same entity as SYM1, or one that is
4834 no more defined than that of SYM1. */
4835
4836 static int
4837 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4838 {
4839 if (sym0 == sym1)
4840 return 1;
4841 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4842 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4843 return 0;
4844
4845 switch (SYMBOL_CLASS (sym0))
4846 {
4847 case LOC_UNDEF:
4848 return 1;
4849 case LOC_TYPEDEF:
4850 {
4851 struct type *type0 = SYMBOL_TYPE (sym0);
4852 struct type *type1 = SYMBOL_TYPE (sym1);
4853 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4854 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4855 int len0 = strlen (name0);
4856
4857 return
4858 TYPE_CODE (type0) == TYPE_CODE (type1)
4859 && (equiv_types (type0, type1)
4860 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4861 && startswith (name1 + len0, "___XV")));
4862 }
4863 case LOC_CONST:
4864 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4865 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4866 default:
4867 return 0;
4868 }
4869 }
4870
4871 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4872 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4873
4874 static void
4875 add_defn_to_vec (struct obstack *obstackp,
4876 struct symbol *sym,
4877 const struct block *block)
4878 {
4879 int i;
4880 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4881
4882 /* Do not try to complete stub types, as the debugger is probably
4883 already scanning all symbols matching a certain name at the
4884 time when this function is called. Trying to replace the stub
4885 type by its associated full type will cause us to restart a scan
4886 which may lead to an infinite recursion. Instead, the client
4887 collecting the matching symbols will end up collecting several
4888 matches, with at least one of them complete. It can then filter
4889 out the stub ones if needed. */
4890
4891 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4892 {
4893 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4894 return;
4895 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4896 {
4897 prevDefns[i].symbol = sym;
4898 prevDefns[i].block = block;
4899 return;
4900 }
4901 }
4902
4903 {
4904 struct block_symbol info;
4905
4906 info.symbol = sym;
4907 info.block = block;
4908 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4909 }
4910 }
4911
4912 /* Number of block_symbol structures currently collected in current vector in
4913 OBSTACKP. */
4914
4915 static int
4916 num_defns_collected (struct obstack *obstackp)
4917 {
4918 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4919 }
4920
4921 /* Vector of block_symbol structures currently collected in current vector in
4922 OBSTACKP. If FINISH, close off the vector and return its final address. */
4923
4924 static struct block_symbol *
4925 defns_collected (struct obstack *obstackp, int finish)
4926 {
4927 if (finish)
4928 return (struct block_symbol *) obstack_finish (obstackp);
4929 else
4930 return (struct block_symbol *) obstack_base (obstackp);
4931 }
4932
4933 /* Return a bound minimal symbol matching NAME according to Ada
4934 decoding rules. Returns an invalid symbol if there is no such
4935 minimal symbol. Names prefixed with "standard__" are handled
4936 specially: "standard__" is first stripped off, and only static and
4937 global symbols are searched. */
4938
4939 struct bound_minimal_symbol
4940 ada_lookup_simple_minsym (const char *name)
4941 {
4942 struct bound_minimal_symbol result;
4943 struct objfile *objfile;
4944 struct minimal_symbol *msymbol;
4945 const int wild_match_p = should_use_wild_match (name);
4946
4947 memset (&result, 0, sizeof (result));
4948
4949 /* Special case: If the user specifies a symbol name inside package
4950 Standard, do a non-wild matching of the symbol name without
4951 the "standard__" prefix. This was primarily introduced in order
4952 to allow the user to specifically access the standard exceptions
4953 using, for instance, Standard.Constraint_Error when Constraint_Error
4954 is ambiguous (due to the user defining its own Constraint_Error
4955 entity inside its program). */
4956 if (startswith (name, "standard__"))
4957 name += sizeof ("standard__") - 1;
4958
4959 ALL_MSYMBOLS (objfile, msymbol)
4960 {
4961 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4962 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4963 {
4964 result.minsym = msymbol;
4965 result.objfile = objfile;
4966 break;
4967 }
4968 }
4969
4970 return result;
4971 }
4972
4973 /* For all subprograms that statically enclose the subprogram of the
4974 selected frame, add symbols matching identifier NAME in DOMAIN
4975 and their blocks to the list of data in OBSTACKP, as for
4976 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4977 with a wildcard prefix. */
4978
4979 static void
4980 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4981 const char *name, domain_enum domain,
4982 int wild_match_p)
4983 {
4984 }
4985
4986 /* True if TYPE is definitely an artificial type supplied to a symbol
4987 for which no debugging information was given in the symbol file. */
4988
4989 static int
4990 is_nondebugging_type (struct type *type)
4991 {
4992 const char *name = ada_type_name (type);
4993
4994 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4995 }
4996
4997 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4998 that are deemed "identical" for practical purposes.
4999
5000 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
5001 types and that their number of enumerals is identical (in other
5002 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
5003
5004 static int
5005 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5006 {
5007 int i;
5008
5009 /* The heuristic we use here is fairly conservative. We consider
5010 that 2 enumerate types are identical if they have the same
5011 number of enumerals and that all enumerals have the same
5012 underlying value and name. */
5013
5014 /* All enums in the type should have an identical underlying value. */
5015 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5016 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5017 return 0;
5018
5019 /* All enumerals should also have the same name (modulo any numerical
5020 suffix). */
5021 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5022 {
5023 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5024 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5025 int len_1 = strlen (name_1);
5026 int len_2 = strlen (name_2);
5027
5028 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5029 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5030 if (len_1 != len_2
5031 || strncmp (TYPE_FIELD_NAME (type1, i),
5032 TYPE_FIELD_NAME (type2, i),
5033 len_1) != 0)
5034 return 0;
5035 }
5036
5037 return 1;
5038 }
5039
5040 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5041 that are deemed "identical" for practical purposes. Sometimes,
5042 enumerals are not strictly identical, but their types are so similar
5043 that they can be considered identical.
5044
5045 For instance, consider the following code:
5046
5047 type Color is (Black, Red, Green, Blue, White);
5048 type RGB_Color is new Color range Red .. Blue;
5049
5050 Type RGB_Color is a subrange of an implicit type which is a copy
5051 of type Color. If we call that implicit type RGB_ColorB ("B" is
5052 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5053 As a result, when an expression references any of the enumeral
5054 by name (Eg. "print green"), the expression is technically
5055 ambiguous and the user should be asked to disambiguate. But
5056 doing so would only hinder the user, since it wouldn't matter
5057 what choice he makes, the outcome would always be the same.
5058 So, for practical purposes, we consider them as the same. */
5059
5060 static int
5061 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5062 {
5063 int i;
5064
5065 /* Before performing a thorough comparison check of each type,
5066 we perform a series of inexpensive checks. We expect that these
5067 checks will quickly fail in the vast majority of cases, and thus
5068 help prevent the unnecessary use of a more expensive comparison.
5069 Said comparison also expects us to make some of these checks
5070 (see ada_identical_enum_types_p). */
5071
5072 /* Quick check: All symbols should have an enum type. */
5073 for (i = 0; i < nsyms; i++)
5074 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5075 return 0;
5076
5077 /* Quick check: They should all have the same value. */
5078 for (i = 1; i < nsyms; i++)
5079 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5080 return 0;
5081
5082 /* Quick check: They should all have the same number of enumerals. */
5083 for (i = 1; i < nsyms; i++)
5084 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5085 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5086 return 0;
5087
5088 /* All the sanity checks passed, so we might have a set of
5089 identical enumeration types. Perform a more complete
5090 comparison of the type of each symbol. */
5091 for (i = 1; i < nsyms; i++)
5092 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5093 SYMBOL_TYPE (syms[0].symbol)))
5094 return 0;
5095
5096 return 1;
5097 }
5098
5099 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5100 duplicate other symbols in the list (The only case I know of where
5101 this happens is when object files containing stabs-in-ecoff are
5102 linked with files containing ordinary ecoff debugging symbols (or no
5103 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5104 Returns the number of items in the modified list. */
5105
5106 static int
5107 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5108 {
5109 int i, j;
5110
5111 /* We should never be called with less than 2 symbols, as there
5112 cannot be any extra symbol in that case. But it's easy to
5113 handle, since we have nothing to do in that case. */
5114 if (nsyms < 2)
5115 return nsyms;
5116
5117 i = 0;
5118 while (i < nsyms)
5119 {
5120 int remove_p = 0;
5121
5122 /* If two symbols have the same name and one of them is a stub type,
5123 the get rid of the stub. */
5124
5125 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5126 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5127 {
5128 for (j = 0; j < nsyms; j++)
5129 {
5130 if (j != i
5131 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5132 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5133 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5134 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5135 remove_p = 1;
5136 }
5137 }
5138
5139 /* Two symbols with the same name, same class and same address
5140 should be identical. */
5141
5142 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5143 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5144 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5145 {
5146 for (j = 0; j < nsyms; j += 1)
5147 {
5148 if (i != j
5149 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5150 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5151 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5152 && SYMBOL_CLASS (syms[i].symbol)
5153 == SYMBOL_CLASS (syms[j].symbol)
5154 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5155 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5156 remove_p = 1;
5157 }
5158 }
5159
5160 if (remove_p)
5161 {
5162 for (j = i + 1; j < nsyms; j += 1)
5163 syms[j - 1] = syms[j];
5164 nsyms -= 1;
5165 }
5166
5167 i += 1;
5168 }
5169
5170 /* If all the remaining symbols are identical enumerals, then
5171 just keep the first one and discard the rest.
5172
5173 Unlike what we did previously, we do not discard any entry
5174 unless they are ALL identical. This is because the symbol
5175 comparison is not a strict comparison, but rather a practical
5176 comparison. If all symbols are considered identical, then
5177 we can just go ahead and use the first one and discard the rest.
5178 But if we cannot reduce the list to a single element, we have
5179 to ask the user to disambiguate anyways. And if we have to
5180 present a multiple-choice menu, it's less confusing if the list
5181 isn't missing some choices that were identical and yet distinct. */
5182 if (symbols_are_identical_enums (syms, nsyms))
5183 nsyms = 1;
5184
5185 return nsyms;
5186 }
5187
5188 /* Given a type that corresponds to a renaming entity, use the type name
5189 to extract the scope (package name or function name, fully qualified,
5190 and following the GNAT encoding convention) where this renaming has been
5191 defined. The string returned needs to be deallocated after use. */
5192
5193 static char *
5194 xget_renaming_scope (struct type *renaming_type)
5195 {
5196 /* The renaming types adhere to the following convention:
5197 <scope>__<rename>___<XR extension>.
5198 So, to extract the scope, we search for the "___XR" extension,
5199 and then backtrack until we find the first "__". */
5200
5201 const char *name = type_name_no_tag (renaming_type);
5202 const char *suffix = strstr (name, "___XR");
5203 const char *last;
5204 int scope_len;
5205 char *scope;
5206
5207 /* Now, backtrack a bit until we find the first "__". Start looking
5208 at suffix - 3, as the <rename> part is at least one character long. */
5209
5210 for (last = suffix - 3; last > name; last--)
5211 if (last[0] == '_' && last[1] == '_')
5212 break;
5213
5214 /* Make a copy of scope and return it. */
5215
5216 scope_len = last - name;
5217 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5218
5219 strncpy (scope, name, scope_len);
5220 scope[scope_len] = '\0';
5221
5222 return scope;
5223 }
5224
5225 /* Return nonzero if NAME corresponds to a package name. */
5226
5227 static int
5228 is_package_name (const char *name)
5229 {
5230 /* Here, We take advantage of the fact that no symbols are generated
5231 for packages, while symbols are generated for each function.
5232 So the condition for NAME represent a package becomes equivalent
5233 to NAME not existing in our list of symbols. There is only one
5234 small complication with library-level functions (see below). */
5235
5236 char *fun_name;
5237
5238 /* If it is a function that has not been defined at library level,
5239 then we should be able to look it up in the symbols. */
5240 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5241 return 0;
5242
5243 /* Library-level function names start with "_ada_". See if function
5244 "_ada_" followed by NAME can be found. */
5245
5246 /* Do a quick check that NAME does not contain "__", since library-level
5247 functions names cannot contain "__" in them. */
5248 if (strstr (name, "__") != NULL)
5249 return 0;
5250
5251 fun_name = xstrprintf ("_ada_%s", name);
5252
5253 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5254 }
5255
5256 /* Return nonzero if SYM corresponds to a renaming entity that is
5257 not visible from FUNCTION_NAME. */
5258
5259 static int
5260 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5261 {
5262 char *scope;
5263 struct cleanup *old_chain;
5264
5265 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5266 return 0;
5267
5268 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5269 old_chain = make_cleanup (xfree, scope);
5270
5271 /* If the rename has been defined in a package, then it is visible. */
5272 if (is_package_name (scope))
5273 {
5274 do_cleanups (old_chain);
5275 return 0;
5276 }
5277
5278 /* Check that the rename is in the current function scope by checking
5279 that its name starts with SCOPE. */
5280
5281 /* If the function name starts with "_ada_", it means that it is
5282 a library-level function. Strip this prefix before doing the
5283 comparison, as the encoding for the renaming does not contain
5284 this prefix. */
5285 if (startswith (function_name, "_ada_"))
5286 function_name += 5;
5287
5288 {
5289 int is_invisible = !startswith (function_name, scope);
5290
5291 do_cleanups (old_chain);
5292 return is_invisible;
5293 }
5294 }
5295
5296 /* Remove entries from SYMS that corresponds to a renaming entity that
5297 is not visible from the function associated with CURRENT_BLOCK or
5298 that is superfluous due to the presence of more specific renaming
5299 information. Places surviving symbols in the initial entries of
5300 SYMS and returns the number of surviving symbols.
5301
5302 Rationale:
5303 First, in cases where an object renaming is implemented as a
5304 reference variable, GNAT may produce both the actual reference
5305 variable and the renaming encoding. In this case, we discard the
5306 latter.
5307
5308 Second, GNAT emits a type following a specified encoding for each renaming
5309 entity. Unfortunately, STABS currently does not support the definition
5310 of types that are local to a given lexical block, so all renamings types
5311 are emitted at library level. As a consequence, if an application
5312 contains two renaming entities using the same name, and a user tries to
5313 print the value of one of these entities, the result of the ada symbol
5314 lookup will also contain the wrong renaming type.
5315
5316 This function partially covers for this limitation by attempting to
5317 remove from the SYMS list renaming symbols that should be visible
5318 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5319 method with the current information available. The implementation
5320 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5321
5322 - When the user tries to print a rename in a function while there
5323 is another rename entity defined in a package: Normally, the
5324 rename in the function has precedence over the rename in the
5325 package, so the latter should be removed from the list. This is
5326 currently not the case.
5327
5328 - This function will incorrectly remove valid renames if
5329 the CURRENT_BLOCK corresponds to a function which symbol name
5330 has been changed by an "Export" pragma. As a consequence,
5331 the user will be unable to print such rename entities. */
5332
5333 static int
5334 remove_irrelevant_renamings (struct block_symbol *syms,
5335 int nsyms, const struct block *current_block)
5336 {
5337 struct symbol *current_function;
5338 const char *current_function_name;
5339 int i;
5340 int is_new_style_renaming;
5341
5342 /* If there is both a renaming foo___XR... encoded as a variable and
5343 a simple variable foo in the same block, discard the latter.
5344 First, zero out such symbols, then compress. */
5345 is_new_style_renaming = 0;
5346 for (i = 0; i < nsyms; i += 1)
5347 {
5348 struct symbol *sym = syms[i].symbol;
5349 const struct block *block = syms[i].block;
5350 const char *name;
5351 const char *suffix;
5352
5353 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5354 continue;
5355 name = SYMBOL_LINKAGE_NAME (sym);
5356 suffix = strstr (name, "___XR");
5357
5358 if (suffix != NULL)
5359 {
5360 int name_len = suffix - name;
5361 int j;
5362
5363 is_new_style_renaming = 1;
5364 for (j = 0; j < nsyms; j += 1)
5365 if (i != j && syms[j].symbol != NULL
5366 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5367 name_len) == 0
5368 && block == syms[j].block)
5369 syms[j].symbol = NULL;
5370 }
5371 }
5372 if (is_new_style_renaming)
5373 {
5374 int j, k;
5375
5376 for (j = k = 0; j < nsyms; j += 1)
5377 if (syms[j].symbol != NULL)
5378 {
5379 syms[k] = syms[j];
5380 k += 1;
5381 }
5382 return k;
5383 }
5384
5385 /* Extract the function name associated to CURRENT_BLOCK.
5386 Abort if unable to do so. */
5387
5388 if (current_block == NULL)
5389 return nsyms;
5390
5391 current_function = block_linkage_function (current_block);
5392 if (current_function == NULL)
5393 return nsyms;
5394
5395 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5396 if (current_function_name == NULL)
5397 return nsyms;
5398
5399 /* Check each of the symbols, and remove it from the list if it is
5400 a type corresponding to a renaming that is out of the scope of
5401 the current block. */
5402
5403 i = 0;
5404 while (i < nsyms)
5405 {
5406 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5407 == ADA_OBJECT_RENAMING
5408 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5409 {
5410 int j;
5411
5412 for (j = i + 1; j < nsyms; j += 1)
5413 syms[j - 1] = syms[j];
5414 nsyms -= 1;
5415 }
5416 else
5417 i += 1;
5418 }
5419
5420 return nsyms;
5421 }
5422
5423 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5424 whose name and domain match NAME and DOMAIN respectively.
5425 If no match was found, then extend the search to "enclosing"
5426 routines (in other words, if we're inside a nested function,
5427 search the symbols defined inside the enclosing functions).
5428 If WILD_MATCH_P is nonzero, perform the naming matching in
5429 "wild" mode (see function "wild_match" for more info).
5430
5431 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5432
5433 static void
5434 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5435 const struct block *block, domain_enum domain,
5436 int wild_match_p)
5437 {
5438 int block_depth = 0;
5439
5440 while (block != NULL)
5441 {
5442 block_depth += 1;
5443 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5444 wild_match_p);
5445
5446 /* If we found a non-function match, assume that's the one. */
5447 if (is_nonfunction (defns_collected (obstackp, 0),
5448 num_defns_collected (obstackp)))
5449 return;
5450
5451 block = BLOCK_SUPERBLOCK (block);
5452 }
5453
5454 /* If no luck so far, try to find NAME as a local symbol in some lexically
5455 enclosing subprogram. */
5456 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5457 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5458 }
5459
5460 /* An object of this type is used as the user_data argument when
5461 calling the map_matching_symbols method. */
5462
5463 struct match_data
5464 {
5465 struct objfile *objfile;
5466 struct obstack *obstackp;
5467 struct symbol *arg_sym;
5468 int found_sym;
5469 };
5470
5471 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5472 to a list of symbols. DATA0 is a pointer to a struct match_data *
5473 containing the obstack that collects the symbol list, the file that SYM
5474 must come from, a flag indicating whether a non-argument symbol has
5475 been found in the current block, and the last argument symbol
5476 passed in SYM within the current block (if any). When SYM is null,
5477 marking the end of a block, the argument symbol is added if no
5478 other has been found. */
5479
5480 static int
5481 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5482 {
5483 struct match_data *data = (struct match_data *) data0;
5484
5485 if (sym == NULL)
5486 {
5487 if (!data->found_sym && data->arg_sym != NULL)
5488 add_defn_to_vec (data->obstackp,
5489 fixup_symbol_section (data->arg_sym, data->objfile),
5490 block);
5491 data->found_sym = 0;
5492 data->arg_sym = NULL;
5493 }
5494 else
5495 {
5496 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5497 return 0;
5498 else if (SYMBOL_IS_ARGUMENT (sym))
5499 data->arg_sym = sym;
5500 else
5501 {
5502 data->found_sym = 1;
5503 add_defn_to_vec (data->obstackp,
5504 fixup_symbol_section (sym, data->objfile),
5505 block);
5506 }
5507 }
5508 return 0;
5509 }
5510
5511 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5512 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5513 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5514 function "wild_match" for more information). Return whether we found such
5515 symbols. */
5516
5517 static int
5518 ada_add_block_renamings (struct obstack *obstackp,
5519 const struct block *block,
5520 const char *name,
5521 domain_enum domain,
5522 int wild_match_p)
5523 {
5524 struct using_direct *renaming;
5525 int defns_mark = num_defns_collected (obstackp);
5526
5527 for (renaming = block_using (block);
5528 renaming != NULL;
5529 renaming = renaming->next)
5530 {
5531 const char *r_name;
5532 int name_match;
5533
5534 /* Avoid infinite recursions: skip this renaming if we are actually
5535 already traversing it.
5536
5537 Currently, symbol lookup in Ada don't use the namespace machinery from
5538 C++/Fortran support: skip namespace imports that use them. */
5539 if (renaming->searched
5540 || (renaming->import_src != NULL
5541 && renaming->import_src[0] != '\0')
5542 || (renaming->import_dest != NULL
5543 && renaming->import_dest[0] != '\0'))
5544 continue;
5545 renaming->searched = 1;
5546
5547 /* TODO: here, we perform another name-based symbol lookup, which can
5548 pull its own multiple overloads. In theory, we should be able to do
5549 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5550 not a simple name. But in order to do this, we would need to enhance
5551 the DWARF reader to associate a symbol to this renaming, instead of a
5552 name. So, for now, we do something simpler: re-use the C++/Fortran
5553 namespace machinery. */
5554 r_name = (renaming->alias != NULL
5555 ? renaming->alias
5556 : renaming->declaration);
5557 name_match
5558 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5559 if (name_match == 0)
5560 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5561 1, NULL);
5562 renaming->searched = 0;
5563 }
5564 return num_defns_collected (obstackp) != defns_mark;
5565 }
5566
5567 /* Implements compare_names, but only applying the comparision using
5568 the given CASING. */
5569
5570 static int
5571 compare_names_with_case (const char *string1, const char *string2,
5572 enum case_sensitivity casing)
5573 {
5574 while (*string1 != '\0' && *string2 != '\0')
5575 {
5576 char c1, c2;
5577
5578 if (isspace (*string1) || isspace (*string2))
5579 return strcmp_iw_ordered (string1, string2);
5580
5581 if (casing == case_sensitive_off)
5582 {
5583 c1 = tolower (*string1);
5584 c2 = tolower (*string2);
5585 }
5586 else
5587 {
5588 c1 = *string1;
5589 c2 = *string2;
5590 }
5591 if (c1 != c2)
5592 break;
5593
5594 string1 += 1;
5595 string2 += 1;
5596 }
5597
5598 switch (*string1)
5599 {
5600 case '(':
5601 return strcmp_iw_ordered (string1, string2);
5602 case '_':
5603 if (*string2 == '\0')
5604 {
5605 if (is_name_suffix (string1))
5606 return 0;
5607 else
5608 return 1;
5609 }
5610 /* FALLTHROUGH */
5611 default:
5612 if (*string2 == '(')
5613 return strcmp_iw_ordered (string1, string2);
5614 else
5615 {
5616 if (casing == case_sensitive_off)
5617 return tolower (*string1) - tolower (*string2);
5618 else
5619 return *string1 - *string2;
5620 }
5621 }
5622 }
5623
5624 /* Compare STRING1 to STRING2, with results as for strcmp.
5625 Compatible with strcmp_iw_ordered in that...
5626
5627 strcmp_iw_ordered (STRING1, STRING2) <= 0
5628
5629 ... implies...
5630
5631 compare_names (STRING1, STRING2) <= 0
5632
5633 (they may differ as to what symbols compare equal). */
5634
5635 static int
5636 compare_names (const char *string1, const char *string2)
5637 {
5638 int result;
5639
5640 /* Similar to what strcmp_iw_ordered does, we need to perform
5641 a case-insensitive comparison first, and only resort to
5642 a second, case-sensitive, comparison if the first one was
5643 not sufficient to differentiate the two strings. */
5644
5645 result = compare_names_with_case (string1, string2, case_sensitive_off);
5646 if (result == 0)
5647 result = compare_names_with_case (string1, string2, case_sensitive_on);
5648
5649 return result;
5650 }
5651
5652 /* Add to OBSTACKP all non-local symbols whose name and domain match
5653 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5654 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5655
5656 static void
5657 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5658 domain_enum domain, int global,
5659 int is_wild_match)
5660 {
5661 struct objfile *objfile;
5662 struct compunit_symtab *cu;
5663 struct match_data data;
5664
5665 memset (&data, 0, sizeof data);
5666 data.obstackp = obstackp;
5667
5668 ALL_OBJFILES (objfile)
5669 {
5670 data.objfile = objfile;
5671
5672 if (is_wild_match)
5673 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5674 aux_add_nonlocal_symbols, &data,
5675 wild_match, NULL);
5676 else
5677 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5678 aux_add_nonlocal_symbols, &data,
5679 full_match, compare_names);
5680
5681 ALL_OBJFILE_COMPUNITS (objfile, cu)
5682 {
5683 const struct block *global_block
5684 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5685
5686 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5687 is_wild_match))
5688 data.found_sym = 1;
5689 }
5690 }
5691
5692 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5693 {
5694 ALL_OBJFILES (objfile)
5695 {
5696 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5697 strcpy (name1, "_ada_");
5698 strcpy (name1 + sizeof ("_ada_") - 1, name);
5699 data.objfile = objfile;
5700 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5701 global,
5702 aux_add_nonlocal_symbols,
5703 &data,
5704 full_match, compare_names);
5705 }
5706 }
5707 }
5708
5709 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5710 non-zero, enclosing scope and in global scopes, returning the number of
5711 matches. Add these to OBSTACKP.
5712
5713 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5714 symbol match within the nest of blocks whose innermost member is BLOCK,
5715 is the one match returned (no other matches in that or
5716 enclosing blocks is returned). If there are any matches in or
5717 surrounding BLOCK, then these alone are returned.
5718
5719 Names prefixed with "standard__" are handled specially: "standard__"
5720 is first stripped off, and only static and global symbols are searched.
5721
5722 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5723 to lookup global symbols. */
5724
5725 static void
5726 ada_add_all_symbols (struct obstack *obstackp,
5727 const struct block *block,
5728 const char *name,
5729 domain_enum domain,
5730 int full_search,
5731 int *made_global_lookup_p)
5732 {
5733 struct symbol *sym;
5734 const int wild_match_p = should_use_wild_match (name);
5735
5736 if (made_global_lookup_p)
5737 *made_global_lookup_p = 0;
5738
5739 /* Special case: If the user specifies a symbol name inside package
5740 Standard, do a non-wild matching of the symbol name without
5741 the "standard__" prefix. This was primarily introduced in order
5742 to allow the user to specifically access the standard exceptions
5743 using, for instance, Standard.Constraint_Error when Constraint_Error
5744 is ambiguous (due to the user defining its own Constraint_Error
5745 entity inside its program). */
5746 if (startswith (name, "standard__"))
5747 {
5748 block = NULL;
5749 name = name + sizeof ("standard__") - 1;
5750 }
5751
5752 /* Check the non-global symbols. If we have ANY match, then we're done. */
5753
5754 if (block != NULL)
5755 {
5756 if (full_search)
5757 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5758 else
5759 {
5760 /* In the !full_search case we're are being called by
5761 ada_iterate_over_symbols, and we don't want to search
5762 superblocks. */
5763 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5764 wild_match_p);
5765 }
5766 if (num_defns_collected (obstackp) > 0 || !full_search)
5767 return;
5768 }
5769
5770 /* No non-global symbols found. Check our cache to see if we have
5771 already performed this search before. If we have, then return
5772 the same result. */
5773
5774 if (lookup_cached_symbol (name, domain, &sym, &block))
5775 {
5776 if (sym != NULL)
5777 add_defn_to_vec (obstackp, sym, block);
5778 return;
5779 }
5780
5781 if (made_global_lookup_p)
5782 *made_global_lookup_p = 1;
5783
5784 /* Search symbols from all global blocks. */
5785
5786 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5787
5788 /* Now add symbols from all per-file blocks if we've gotten no hits
5789 (not strictly correct, but perhaps better than an error). */
5790
5791 if (num_defns_collected (obstackp) == 0)
5792 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5793 }
5794
5795 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5796 non-zero, enclosing scope and in global scopes, returning the number of
5797 matches.
5798 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5799 indicating the symbols found and the blocks and symbol tables (if
5800 any) in which they were found. This vector is transient---good only to
5801 the next call of ada_lookup_symbol_list.
5802
5803 When full_search is non-zero, any non-function/non-enumeral
5804 symbol match within the nest of blocks whose innermost member is BLOCK,
5805 is the one match returned (no other matches in that or
5806 enclosing blocks is returned). If there are any matches in or
5807 surrounding BLOCK, then these alone are returned.
5808
5809 Names prefixed with "standard__" are handled specially: "standard__"
5810 is first stripped off, and only static and global symbols are searched. */
5811
5812 static int
5813 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5814 domain_enum domain,
5815 struct block_symbol **results,
5816 int full_search)
5817 {
5818 const int wild_match_p = should_use_wild_match (name);
5819 int syms_from_global_search;
5820 int ndefns;
5821
5822 obstack_free (&symbol_list_obstack, NULL);
5823 obstack_init (&symbol_list_obstack);
5824 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5825 full_search, &syms_from_global_search);
5826
5827 ndefns = num_defns_collected (&symbol_list_obstack);
5828 *results = defns_collected (&symbol_list_obstack, 1);
5829
5830 ndefns = remove_extra_symbols (*results, ndefns);
5831
5832 if (ndefns == 0 && full_search && syms_from_global_search)
5833 cache_symbol (name, domain, NULL, NULL);
5834
5835 if (ndefns == 1 && full_search && syms_from_global_search)
5836 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5837
5838 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5839 return ndefns;
5840 }
5841
5842 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5843 in global scopes, returning the number of matches, and setting *RESULTS
5844 to a vector of (SYM,BLOCK) tuples.
5845 See ada_lookup_symbol_list_worker for further details. */
5846
5847 int
5848 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5849 domain_enum domain, struct block_symbol **results)
5850 {
5851 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5852 }
5853
5854 /* Implementation of the la_iterate_over_symbols method. */
5855
5856 static void
5857 ada_iterate_over_symbols (const struct block *block,
5858 const char *name, domain_enum domain,
5859 symbol_found_callback_ftype *callback,
5860 void *data)
5861 {
5862 int ndefs, i;
5863 struct block_symbol *results;
5864
5865 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5866 for (i = 0; i < ndefs; ++i)
5867 {
5868 if (! (*callback) (results[i].symbol, data))
5869 break;
5870 }
5871 }
5872
5873 /* If NAME is the name of an entity, return a string that should
5874 be used to look that entity up in Ada units.
5875
5876 NAME can have any form that the "break" or "print" commands might
5877 recognize. In other words, it does not have to be the "natural"
5878 name, or the "encoded" name. */
5879
5880 std::string
5881 ada_name_for_lookup (const char *name)
5882 {
5883 int nlen = strlen (name);
5884
5885 if (name[0] == '<' && name[nlen - 1] == '>')
5886 return std::string (name + 1, nlen - 2);
5887 else
5888 return ada_encode (ada_fold_name (name));
5889 }
5890
5891 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5892 to 1, but choosing the first symbol found if there are multiple
5893 choices.
5894
5895 The result is stored in *INFO, which must be non-NULL.
5896 If no match is found, INFO->SYM is set to NULL. */
5897
5898 void
5899 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5900 domain_enum domain,
5901 struct block_symbol *info)
5902 {
5903 struct block_symbol *candidates;
5904 int n_candidates;
5905
5906 gdb_assert (info != NULL);
5907 memset (info, 0, sizeof (struct block_symbol));
5908
5909 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5910 if (n_candidates == 0)
5911 return;
5912
5913 *info = candidates[0];
5914 info->symbol = fixup_symbol_section (info->symbol, NULL);
5915 }
5916
5917 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5918 scope and in global scopes, or NULL if none. NAME is folded and
5919 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5920 choosing the first symbol if there are multiple choices.
5921 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5922
5923 struct block_symbol
5924 ada_lookup_symbol (const char *name, const struct block *block0,
5925 domain_enum domain, int *is_a_field_of_this)
5926 {
5927 struct block_symbol info;
5928
5929 if (is_a_field_of_this != NULL)
5930 *is_a_field_of_this = 0;
5931
5932 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5933 block0, domain, &info);
5934 return info;
5935 }
5936
5937 static struct block_symbol
5938 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5939 const char *name,
5940 const struct block *block,
5941 const domain_enum domain)
5942 {
5943 struct block_symbol sym;
5944
5945 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5946 if (sym.symbol != NULL)
5947 return sym;
5948
5949 /* If we haven't found a match at this point, try the primitive
5950 types. In other languages, this search is performed before
5951 searching for global symbols in order to short-circuit that
5952 global-symbol search if it happens that the name corresponds
5953 to a primitive type. But we cannot do the same in Ada, because
5954 it is perfectly legitimate for a program to declare a type which
5955 has the same name as a standard type. If looking up a type in
5956 that situation, we have traditionally ignored the primitive type
5957 in favor of user-defined types. This is why, unlike most other
5958 languages, we search the primitive types this late and only after
5959 having searched the global symbols without success. */
5960
5961 if (domain == VAR_DOMAIN)
5962 {
5963 struct gdbarch *gdbarch;
5964
5965 if (block == NULL)
5966 gdbarch = target_gdbarch ();
5967 else
5968 gdbarch = block_gdbarch (block);
5969 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5970 if (sym.symbol != NULL)
5971 return sym;
5972 }
5973
5974 return (struct block_symbol) {NULL, NULL};
5975 }
5976
5977
5978 /* True iff STR is a possible encoded suffix of a normal Ada name
5979 that is to be ignored for matching purposes. Suffixes of parallel
5980 names (e.g., XVE) are not included here. Currently, the possible suffixes
5981 are given by any of the regular expressions:
5982
5983 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5984 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5985 TKB [subprogram suffix for task bodies]
5986 _E[0-9]+[bs]$ [protected object entry suffixes]
5987 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5988
5989 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5990 match is performed. This sequence is used to differentiate homonyms,
5991 is an optional part of a valid name suffix. */
5992
5993 static int
5994 is_name_suffix (const char *str)
5995 {
5996 int k;
5997 const char *matching;
5998 const int len = strlen (str);
5999
6000 /* Skip optional leading __[0-9]+. */
6001
6002 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6003 {
6004 str += 3;
6005 while (isdigit (str[0]))
6006 str += 1;
6007 }
6008
6009 /* [.$][0-9]+ */
6010
6011 if (str[0] == '.' || str[0] == '$')
6012 {
6013 matching = str + 1;
6014 while (isdigit (matching[0]))
6015 matching += 1;
6016 if (matching[0] == '\0')
6017 return 1;
6018 }
6019
6020 /* ___[0-9]+ */
6021
6022 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6023 {
6024 matching = str + 3;
6025 while (isdigit (matching[0]))
6026 matching += 1;
6027 if (matching[0] == '\0')
6028 return 1;
6029 }
6030
6031 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6032
6033 if (strcmp (str, "TKB") == 0)
6034 return 1;
6035
6036 #if 0
6037 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6038 with a N at the end. Unfortunately, the compiler uses the same
6039 convention for other internal types it creates. So treating
6040 all entity names that end with an "N" as a name suffix causes
6041 some regressions. For instance, consider the case of an enumerated
6042 type. To support the 'Image attribute, it creates an array whose
6043 name ends with N.
6044 Having a single character like this as a suffix carrying some
6045 information is a bit risky. Perhaps we should change the encoding
6046 to be something like "_N" instead. In the meantime, do not do
6047 the following check. */
6048 /* Protected Object Subprograms */
6049 if (len == 1 && str [0] == 'N')
6050 return 1;
6051 #endif
6052
6053 /* _E[0-9]+[bs]$ */
6054 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6055 {
6056 matching = str + 3;
6057 while (isdigit (matching[0]))
6058 matching += 1;
6059 if ((matching[0] == 'b' || matching[0] == 's')
6060 && matching [1] == '\0')
6061 return 1;
6062 }
6063
6064 /* ??? We should not modify STR directly, as we are doing below. This
6065 is fine in this case, but may become problematic later if we find
6066 that this alternative did not work, and want to try matching
6067 another one from the begining of STR. Since we modified it, we
6068 won't be able to find the begining of the string anymore! */
6069 if (str[0] == 'X')
6070 {
6071 str += 1;
6072 while (str[0] != '_' && str[0] != '\0')
6073 {
6074 if (str[0] != 'n' && str[0] != 'b')
6075 return 0;
6076 str += 1;
6077 }
6078 }
6079
6080 if (str[0] == '\000')
6081 return 1;
6082
6083 if (str[0] == '_')
6084 {
6085 if (str[1] != '_' || str[2] == '\000')
6086 return 0;
6087 if (str[2] == '_')
6088 {
6089 if (strcmp (str + 3, "JM") == 0)
6090 return 1;
6091 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6092 the LJM suffix in favor of the JM one. But we will
6093 still accept LJM as a valid suffix for a reasonable
6094 amount of time, just to allow ourselves to debug programs
6095 compiled using an older version of GNAT. */
6096 if (strcmp (str + 3, "LJM") == 0)
6097 return 1;
6098 if (str[3] != 'X')
6099 return 0;
6100 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6101 || str[4] == 'U' || str[4] == 'P')
6102 return 1;
6103 if (str[4] == 'R' && str[5] != 'T')
6104 return 1;
6105 return 0;
6106 }
6107 if (!isdigit (str[2]))
6108 return 0;
6109 for (k = 3; str[k] != '\0'; k += 1)
6110 if (!isdigit (str[k]) && str[k] != '_')
6111 return 0;
6112 return 1;
6113 }
6114 if (str[0] == '$' && isdigit (str[1]))
6115 {
6116 for (k = 2; str[k] != '\0'; k += 1)
6117 if (!isdigit (str[k]) && str[k] != '_')
6118 return 0;
6119 return 1;
6120 }
6121 return 0;
6122 }
6123
6124 /* Return non-zero if the string starting at NAME and ending before
6125 NAME_END contains no capital letters. */
6126
6127 static int
6128 is_valid_name_for_wild_match (const char *name0)
6129 {
6130 const char *decoded_name = ada_decode (name0);
6131 int i;
6132
6133 /* If the decoded name starts with an angle bracket, it means that
6134 NAME0 does not follow the GNAT encoding format. It should then
6135 not be allowed as a possible wild match. */
6136 if (decoded_name[0] == '<')
6137 return 0;
6138
6139 for (i=0; decoded_name[i] != '\0'; i++)
6140 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6141 return 0;
6142
6143 return 1;
6144 }
6145
6146 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6147 that could start a simple name. Assumes that *NAMEP points into
6148 the string beginning at NAME0. */
6149
6150 static int
6151 advance_wild_match (const char **namep, const char *name0, int target0)
6152 {
6153 const char *name = *namep;
6154
6155 while (1)
6156 {
6157 int t0, t1;
6158
6159 t0 = *name;
6160 if (t0 == '_')
6161 {
6162 t1 = name[1];
6163 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6164 {
6165 name += 1;
6166 if (name == name0 + 5 && startswith (name0, "_ada"))
6167 break;
6168 else
6169 name += 1;
6170 }
6171 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6172 || name[2] == target0))
6173 {
6174 name += 2;
6175 break;
6176 }
6177 else
6178 return 0;
6179 }
6180 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6181 name += 1;
6182 else
6183 return 0;
6184 }
6185
6186 *namep = name;
6187 return 1;
6188 }
6189
6190 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6191 informational suffixes of NAME (i.e., for which is_name_suffix is
6192 true). Assumes that PATN is a lower-cased Ada simple name. */
6193
6194 static int
6195 wild_match (const char *name, const char *patn)
6196 {
6197 const char *p;
6198 const char *name0 = name;
6199
6200 while (1)
6201 {
6202 const char *match = name;
6203
6204 if (*name == *patn)
6205 {
6206 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6207 if (*p != *name)
6208 break;
6209 if (*p == '\0' && is_name_suffix (name))
6210 return match != name0 && !is_valid_name_for_wild_match (name0);
6211
6212 if (name[-1] == '_')
6213 name -= 1;
6214 }
6215 if (!advance_wild_match (&name, name0, *patn))
6216 return 1;
6217 }
6218 }
6219
6220 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6221 informational suffix. */
6222
6223 static int
6224 full_match (const char *sym_name, const char *search_name)
6225 {
6226 return !match_name (sym_name, search_name, 0);
6227 }
6228
6229
6230 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6231 vector *defn_symbols, updating the list of symbols in OBSTACKP
6232 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6233 OBJFILE is the section containing BLOCK. */
6234
6235 static void
6236 ada_add_block_symbols (struct obstack *obstackp,
6237 const struct block *block, const char *name,
6238 domain_enum domain, struct objfile *objfile,
6239 int wild)
6240 {
6241 struct block_iterator iter;
6242 int name_len = strlen (name);
6243 /* A matching argument symbol, if any. */
6244 struct symbol *arg_sym;
6245 /* Set true when we find a matching non-argument symbol. */
6246 int found_sym;
6247 struct symbol *sym;
6248
6249 arg_sym = NULL;
6250 found_sym = 0;
6251 if (wild)
6252 {
6253 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6254 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6255 {
6256 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6257 SYMBOL_DOMAIN (sym), domain)
6258 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6259 {
6260 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6261 continue;
6262 else if (SYMBOL_IS_ARGUMENT (sym))
6263 arg_sym = sym;
6264 else
6265 {
6266 found_sym = 1;
6267 add_defn_to_vec (obstackp,
6268 fixup_symbol_section (sym, objfile),
6269 block);
6270 }
6271 }
6272 }
6273 }
6274 else
6275 {
6276 for (sym = block_iter_match_first (block, name, full_match, &iter);
6277 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6278 {
6279 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6280 SYMBOL_DOMAIN (sym), domain))
6281 {
6282 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6283 {
6284 if (SYMBOL_IS_ARGUMENT (sym))
6285 arg_sym = sym;
6286 else
6287 {
6288 found_sym = 1;
6289 add_defn_to_vec (obstackp,
6290 fixup_symbol_section (sym, objfile),
6291 block);
6292 }
6293 }
6294 }
6295 }
6296 }
6297
6298 /* Handle renamings. */
6299
6300 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6301 found_sym = 1;
6302
6303 if (!found_sym && arg_sym != NULL)
6304 {
6305 add_defn_to_vec (obstackp,
6306 fixup_symbol_section (arg_sym, objfile),
6307 block);
6308 }
6309
6310 if (!wild)
6311 {
6312 arg_sym = NULL;
6313 found_sym = 0;
6314
6315 ALL_BLOCK_SYMBOLS (block, iter, sym)
6316 {
6317 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6318 SYMBOL_DOMAIN (sym), domain))
6319 {
6320 int cmp;
6321
6322 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6323 if (cmp == 0)
6324 {
6325 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6326 if (cmp == 0)
6327 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6328 name_len);
6329 }
6330
6331 if (cmp == 0
6332 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6333 {
6334 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6335 {
6336 if (SYMBOL_IS_ARGUMENT (sym))
6337 arg_sym = sym;
6338 else
6339 {
6340 found_sym = 1;
6341 add_defn_to_vec (obstackp,
6342 fixup_symbol_section (sym, objfile),
6343 block);
6344 }
6345 }
6346 }
6347 }
6348 }
6349
6350 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6351 They aren't parameters, right? */
6352 if (!found_sym && arg_sym != NULL)
6353 {
6354 add_defn_to_vec (obstackp,
6355 fixup_symbol_section (arg_sym, objfile),
6356 block);
6357 }
6358 }
6359 }
6360 \f
6361
6362 /* Symbol Completion */
6363
6364 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6365 name in a form that's appropriate for the completion. The result
6366 does not need to be deallocated, but is only good until the next call.
6367
6368 TEXT_LEN is equal to the length of TEXT.
6369 Perform a wild match if WILD_MATCH_P is set.
6370 ENCODED_P should be set if TEXT represents the start of a symbol name
6371 in its encoded form. */
6372
6373 static const char *
6374 symbol_completion_match (const char *sym_name,
6375 const char *text, int text_len,
6376 int wild_match_p, int encoded_p)
6377 {
6378 const int verbatim_match = (text[0] == '<');
6379 int match = 0;
6380
6381 if (verbatim_match)
6382 {
6383 /* Strip the leading angle bracket. */
6384 text = text + 1;
6385 text_len--;
6386 }
6387
6388 /* First, test against the fully qualified name of the symbol. */
6389
6390 if (strncmp (sym_name, text, text_len) == 0)
6391 match = 1;
6392
6393 if (match && !encoded_p)
6394 {
6395 /* One needed check before declaring a positive match is to verify
6396 that iff we are doing a verbatim match, the decoded version
6397 of the symbol name starts with '<'. Otherwise, this symbol name
6398 is not a suitable completion. */
6399 const char *sym_name_copy = sym_name;
6400 int has_angle_bracket;
6401
6402 sym_name = ada_decode (sym_name);
6403 has_angle_bracket = (sym_name[0] == '<');
6404 match = (has_angle_bracket == verbatim_match);
6405 sym_name = sym_name_copy;
6406 }
6407
6408 if (match && !verbatim_match)
6409 {
6410 /* When doing non-verbatim match, another check that needs to
6411 be done is to verify that the potentially matching symbol name
6412 does not include capital letters, because the ada-mode would
6413 not be able to understand these symbol names without the
6414 angle bracket notation. */
6415 const char *tmp;
6416
6417 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6418 if (*tmp != '\0')
6419 match = 0;
6420 }
6421
6422 /* Second: Try wild matching... */
6423
6424 if (!match && wild_match_p)
6425 {
6426 /* Since we are doing wild matching, this means that TEXT
6427 may represent an unqualified symbol name. We therefore must
6428 also compare TEXT against the unqualified name of the symbol. */
6429 sym_name = ada_unqualified_name (ada_decode (sym_name));
6430
6431 if (strncmp (sym_name, text, text_len) == 0)
6432 match = 1;
6433 }
6434
6435 /* Finally: If we found a mach, prepare the result to return. */
6436
6437 if (!match)
6438 return NULL;
6439
6440 if (verbatim_match)
6441 sym_name = add_angle_brackets (sym_name);
6442
6443 if (!encoded_p)
6444 sym_name = ada_decode (sym_name);
6445
6446 return sym_name;
6447 }
6448
6449 /* A companion function to ada_make_symbol_completion_list().
6450 Check if SYM_NAME represents a symbol which name would be suitable
6451 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
6452 it is appended at the end of the given string vector SV.
6453
6454 ORIG_TEXT is the string original string from the user command
6455 that needs to be completed. WORD is the entire command on which
6456 completion should be performed. These two parameters are used to
6457 determine which part of the symbol name should be added to the
6458 completion vector.
6459 if WILD_MATCH_P is set, then wild matching is performed.
6460 ENCODED_P should be set if TEXT represents a symbol name in its
6461 encoded formed (in which case the completion should also be
6462 encoded). */
6463
6464 static void
6465 symbol_completion_add (VEC(char_ptr) **sv,
6466 const char *sym_name,
6467 const char *text, int text_len,
6468 const char *orig_text, const char *word,
6469 int wild_match_p, int encoded_p)
6470 {
6471 const char *match = symbol_completion_match (sym_name, text, text_len,
6472 wild_match_p, encoded_p);
6473 char *completion;
6474
6475 if (match == NULL)
6476 return;
6477
6478 /* We found a match, so add the appropriate completion to the given
6479 string vector. */
6480
6481 if (word == orig_text)
6482 {
6483 completion = (char *) xmalloc (strlen (match) + 5);
6484 strcpy (completion, match);
6485 }
6486 else if (word > orig_text)
6487 {
6488 /* Return some portion of sym_name. */
6489 completion = (char *) xmalloc (strlen (match) + 5);
6490 strcpy (completion, match + (word - orig_text));
6491 }
6492 else
6493 {
6494 /* Return some of ORIG_TEXT plus sym_name. */
6495 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6496 strncpy (completion, word, orig_text - word);
6497 completion[orig_text - word] = '\0';
6498 strcat (completion, match);
6499 }
6500
6501 VEC_safe_push (char_ptr, *sv, completion);
6502 }
6503
6504 /* An object of this type is passed as the user_data argument to the
6505 expand_symtabs_matching method. */
6506 struct add_partial_datum
6507 {
6508 VEC(char_ptr) **completions;
6509 const char *text;
6510 int text_len;
6511 const char *text0;
6512 const char *word;
6513 int wild_match;
6514 int encoded;
6515 };
6516
6517 /* A callback for expand_symtabs_matching. */
6518
6519 static int
6520 ada_complete_symbol_matcher (const char *name, void *user_data)
6521 {
6522 struct add_partial_datum *data = (struct add_partial_datum *) user_data;
6523
6524 return symbol_completion_match (name, data->text, data->text_len,
6525 data->wild_match, data->encoded) != NULL;
6526 }
6527
6528 /* Return a list of possible symbol names completing TEXT0. WORD is
6529 the entire command on which completion is made. */
6530
6531 static VEC (char_ptr) *
6532 ada_make_symbol_completion_list (const char *text0, const char *word,
6533 enum type_code code)
6534 {
6535 char *text;
6536 int text_len;
6537 int wild_match_p;
6538 int encoded_p;
6539 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
6540 struct symbol *sym;
6541 struct compunit_symtab *s;
6542 struct minimal_symbol *msymbol;
6543 struct objfile *objfile;
6544 const struct block *b, *surrounding_static_block = 0;
6545 int i;
6546 struct block_iterator iter;
6547 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6548
6549 gdb_assert (code == TYPE_CODE_UNDEF);
6550
6551 if (text0[0] == '<')
6552 {
6553 text = xstrdup (text0);
6554 make_cleanup (xfree, text);
6555 text_len = strlen (text);
6556 wild_match_p = 0;
6557 encoded_p = 1;
6558 }
6559 else
6560 {
6561 text = xstrdup (ada_encode (text0));
6562 make_cleanup (xfree, text);
6563 text_len = strlen (text);
6564 for (i = 0; i < text_len; i++)
6565 text[i] = tolower (text[i]);
6566
6567 encoded_p = (strstr (text0, "__") != NULL);
6568 /* If the name contains a ".", then the user is entering a fully
6569 qualified entity name, and the match must not be done in wild
6570 mode. Similarly, if the user wants to complete what looks like
6571 an encoded name, the match must not be done in wild mode. */
6572 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6573 }
6574
6575 /* First, look at the partial symtab symbols. */
6576 {
6577 struct add_partial_datum data;
6578
6579 data.completions = &completions;
6580 data.text = text;
6581 data.text_len = text_len;
6582 data.text0 = text0;
6583 data.word = word;
6584 data.wild_match = wild_match_p;
6585 data.encoded = encoded_p;
6586 expand_symtabs_matching (NULL, ada_complete_symbol_matcher, NULL,
6587 ALL_DOMAIN, &data);
6588 }
6589
6590 /* At this point scan through the misc symbol vectors and add each
6591 symbol you find to the list. Eventually we want to ignore
6592 anything that isn't a text symbol (everything else will be
6593 handled by the psymtab code above). */
6594
6595 ALL_MSYMBOLS (objfile, msymbol)
6596 {
6597 QUIT;
6598 symbol_completion_add (&completions, MSYMBOL_LINKAGE_NAME (msymbol),
6599 text, text_len, text0, word, wild_match_p,
6600 encoded_p);
6601 }
6602
6603 /* Search upwards from currently selected frame (so that we can
6604 complete on local vars. */
6605
6606 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6607 {
6608 if (!BLOCK_SUPERBLOCK (b))
6609 surrounding_static_block = b; /* For elmin of dups */
6610
6611 ALL_BLOCK_SYMBOLS (b, iter, sym)
6612 {
6613 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6614 text, text_len, text0, word,
6615 wild_match_p, encoded_p);
6616 }
6617 }
6618
6619 /* Go through the symtabs and check the externs and statics for
6620 symbols which match. */
6621
6622 ALL_COMPUNITS (objfile, s)
6623 {
6624 QUIT;
6625 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6626 ALL_BLOCK_SYMBOLS (b, iter, sym)
6627 {
6628 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6629 text, text_len, text0, word,
6630 wild_match_p, encoded_p);
6631 }
6632 }
6633
6634 ALL_COMPUNITS (objfile, s)
6635 {
6636 QUIT;
6637 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6638 /* Don't do this block twice. */
6639 if (b == surrounding_static_block)
6640 continue;
6641 ALL_BLOCK_SYMBOLS (b, iter, sym)
6642 {
6643 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
6644 text, text_len, text0, word,
6645 wild_match_p, encoded_p);
6646 }
6647 }
6648
6649 do_cleanups (old_chain);
6650 return completions;
6651 }
6652
6653 /* Field Access */
6654
6655 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6656 for tagged types. */
6657
6658 static int
6659 ada_is_dispatch_table_ptr_type (struct type *type)
6660 {
6661 const char *name;
6662
6663 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6664 return 0;
6665
6666 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6667 if (name == NULL)
6668 return 0;
6669
6670 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6671 }
6672
6673 /* Return non-zero if TYPE is an interface tag. */
6674
6675 static int
6676 ada_is_interface_tag (struct type *type)
6677 {
6678 const char *name = TYPE_NAME (type);
6679
6680 if (name == NULL)
6681 return 0;
6682
6683 return (strcmp (name, "ada__tags__interface_tag") == 0);
6684 }
6685
6686 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6687 to be invisible to users. */
6688
6689 int
6690 ada_is_ignored_field (struct type *type, int field_num)
6691 {
6692 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6693 return 1;
6694
6695 /* Check the name of that field. */
6696 {
6697 const char *name = TYPE_FIELD_NAME (type, field_num);
6698
6699 /* Anonymous field names should not be printed.
6700 brobecker/2007-02-20: I don't think this can actually happen
6701 but we don't want to print the value of annonymous fields anyway. */
6702 if (name == NULL)
6703 return 1;
6704
6705 /* Normally, fields whose name start with an underscore ("_")
6706 are fields that have been internally generated by the compiler,
6707 and thus should not be printed. The "_parent" field is special,
6708 however: This is a field internally generated by the compiler
6709 for tagged types, and it contains the components inherited from
6710 the parent type. This field should not be printed as is, but
6711 should not be ignored either. */
6712 if (name[0] == '_' && !startswith (name, "_parent"))
6713 return 1;
6714 }
6715
6716 /* If this is the dispatch table of a tagged type or an interface tag,
6717 then ignore. */
6718 if (ada_is_tagged_type (type, 1)
6719 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6720 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6721 return 1;
6722
6723 /* Not a special field, so it should not be ignored. */
6724 return 0;
6725 }
6726
6727 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6728 pointer or reference type whose ultimate target has a tag field. */
6729
6730 int
6731 ada_is_tagged_type (struct type *type, int refok)
6732 {
6733 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6734 }
6735
6736 /* True iff TYPE represents the type of X'Tag */
6737
6738 int
6739 ada_is_tag_type (struct type *type)
6740 {
6741 type = ada_check_typedef (type);
6742
6743 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6744 return 0;
6745 else
6746 {
6747 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6748
6749 return (name != NULL
6750 && strcmp (name, "ada__tags__dispatch_table") == 0);
6751 }
6752 }
6753
6754 /* The type of the tag on VAL. */
6755
6756 struct type *
6757 ada_tag_type (struct value *val)
6758 {
6759 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6760 }
6761
6762 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6763 retired at Ada 05). */
6764
6765 static int
6766 is_ada95_tag (struct value *tag)
6767 {
6768 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6769 }
6770
6771 /* The value of the tag on VAL. */
6772
6773 struct value *
6774 ada_value_tag (struct value *val)
6775 {
6776 return ada_value_struct_elt (val, "_tag", 0);
6777 }
6778
6779 /* The value of the tag on the object of type TYPE whose contents are
6780 saved at VALADDR, if it is non-null, or is at memory address
6781 ADDRESS. */
6782
6783 static struct value *
6784 value_tag_from_contents_and_address (struct type *type,
6785 const gdb_byte *valaddr,
6786 CORE_ADDR address)
6787 {
6788 int tag_byte_offset;
6789 struct type *tag_type;
6790
6791 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6792 NULL, NULL, NULL))
6793 {
6794 const gdb_byte *valaddr1 = ((valaddr == NULL)
6795 ? NULL
6796 : valaddr + tag_byte_offset);
6797 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6798
6799 return value_from_contents_and_address (tag_type, valaddr1, address1);
6800 }
6801 return NULL;
6802 }
6803
6804 static struct type *
6805 type_from_tag (struct value *tag)
6806 {
6807 const char *type_name = ada_tag_name (tag);
6808
6809 if (type_name != NULL)
6810 return ada_find_any_type (ada_encode (type_name));
6811 return NULL;
6812 }
6813
6814 /* Given a value OBJ of a tagged type, return a value of this
6815 type at the base address of the object. The base address, as
6816 defined in Ada.Tags, it is the address of the primary tag of
6817 the object, and therefore where the field values of its full
6818 view can be fetched. */
6819
6820 struct value *
6821 ada_tag_value_at_base_address (struct value *obj)
6822 {
6823 struct value *val;
6824 LONGEST offset_to_top = 0;
6825 struct type *ptr_type, *obj_type;
6826 struct value *tag;
6827 CORE_ADDR base_address;
6828
6829 obj_type = value_type (obj);
6830
6831 /* It is the responsability of the caller to deref pointers. */
6832
6833 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6834 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6835 return obj;
6836
6837 tag = ada_value_tag (obj);
6838 if (!tag)
6839 return obj;
6840
6841 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6842
6843 if (is_ada95_tag (tag))
6844 return obj;
6845
6846 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6847 ptr_type = lookup_pointer_type (ptr_type);
6848 val = value_cast (ptr_type, tag);
6849 if (!val)
6850 return obj;
6851
6852 /* It is perfectly possible that an exception be raised while
6853 trying to determine the base address, just like for the tag;
6854 see ada_tag_name for more details. We do not print the error
6855 message for the same reason. */
6856
6857 TRY
6858 {
6859 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6860 }
6861
6862 CATCH (e, RETURN_MASK_ERROR)
6863 {
6864 return obj;
6865 }
6866 END_CATCH
6867
6868 /* If offset is null, nothing to do. */
6869
6870 if (offset_to_top == 0)
6871 return obj;
6872
6873 /* -1 is a special case in Ada.Tags; however, what should be done
6874 is not quite clear from the documentation. So do nothing for
6875 now. */
6876
6877 if (offset_to_top == -1)
6878 return obj;
6879
6880 base_address = value_address (obj) - offset_to_top;
6881 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6882
6883 /* Make sure that we have a proper tag at the new address.
6884 Otherwise, offset_to_top is bogus (which can happen when
6885 the object is not initialized yet). */
6886
6887 if (!tag)
6888 return obj;
6889
6890 obj_type = type_from_tag (tag);
6891
6892 if (!obj_type)
6893 return obj;
6894
6895 return value_from_contents_and_address (obj_type, NULL, base_address);
6896 }
6897
6898 /* Return the "ada__tags__type_specific_data" type. */
6899
6900 static struct type *
6901 ada_get_tsd_type (struct inferior *inf)
6902 {
6903 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6904
6905 if (data->tsd_type == 0)
6906 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6907 return data->tsd_type;
6908 }
6909
6910 /* Return the TSD (type-specific data) associated to the given TAG.
6911 TAG is assumed to be the tag of a tagged-type entity.
6912
6913 May return NULL if we are unable to get the TSD. */
6914
6915 static struct value *
6916 ada_get_tsd_from_tag (struct value *tag)
6917 {
6918 struct value *val;
6919 struct type *type;
6920
6921 /* First option: The TSD is simply stored as a field of our TAG.
6922 Only older versions of GNAT would use this format, but we have
6923 to test it first, because there are no visible markers for
6924 the current approach except the absence of that field. */
6925
6926 val = ada_value_struct_elt (tag, "tsd", 1);
6927 if (val)
6928 return val;
6929
6930 /* Try the second representation for the dispatch table (in which
6931 there is no explicit 'tsd' field in the referent of the tag pointer,
6932 and instead the tsd pointer is stored just before the dispatch
6933 table. */
6934
6935 type = ada_get_tsd_type (current_inferior());
6936 if (type == NULL)
6937 return NULL;
6938 type = lookup_pointer_type (lookup_pointer_type (type));
6939 val = value_cast (type, tag);
6940 if (val == NULL)
6941 return NULL;
6942 return value_ind (value_ptradd (val, -1));
6943 }
6944
6945 /* Given the TSD of a tag (type-specific data), return a string
6946 containing the name of the associated type.
6947
6948 The returned value is good until the next call. May return NULL
6949 if we are unable to determine the tag name. */
6950
6951 static char *
6952 ada_tag_name_from_tsd (struct value *tsd)
6953 {
6954 static char name[1024];
6955 char *p;
6956 struct value *val;
6957
6958 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6959 if (val == NULL)
6960 return NULL;
6961 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6962 for (p = name; *p != '\0'; p += 1)
6963 if (isalpha (*p))
6964 *p = tolower (*p);
6965 return name;
6966 }
6967
6968 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6969 a C string.
6970
6971 Return NULL if the TAG is not an Ada tag, or if we were unable to
6972 determine the name of that tag. The result is good until the next
6973 call. */
6974
6975 const char *
6976 ada_tag_name (struct value *tag)
6977 {
6978 char *name = NULL;
6979
6980 if (!ada_is_tag_type (value_type (tag)))
6981 return NULL;
6982
6983 /* It is perfectly possible that an exception be raised while trying
6984 to determine the TAG's name, even under normal circumstances:
6985 The associated variable may be uninitialized or corrupted, for
6986 instance. We do not let any exception propagate past this point.
6987 instead we return NULL.
6988
6989 We also do not print the error message either (which often is very
6990 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6991 the caller print a more meaningful message if necessary. */
6992 TRY
6993 {
6994 struct value *tsd = ada_get_tsd_from_tag (tag);
6995
6996 if (tsd != NULL)
6997 name = ada_tag_name_from_tsd (tsd);
6998 }
6999 CATCH (e, RETURN_MASK_ERROR)
7000 {
7001 }
7002 END_CATCH
7003
7004 return name;
7005 }
7006
7007 /* The parent type of TYPE, or NULL if none. */
7008
7009 struct type *
7010 ada_parent_type (struct type *type)
7011 {
7012 int i;
7013
7014 type = ada_check_typedef (type);
7015
7016 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7017 return NULL;
7018
7019 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7020 if (ada_is_parent_field (type, i))
7021 {
7022 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
7023
7024 /* If the _parent field is a pointer, then dereference it. */
7025 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
7026 parent_type = TYPE_TARGET_TYPE (parent_type);
7027 /* If there is a parallel XVS type, get the actual base type. */
7028 parent_type = ada_get_base_type (parent_type);
7029
7030 return ada_check_typedef (parent_type);
7031 }
7032
7033 return NULL;
7034 }
7035
7036 /* True iff field number FIELD_NUM of structure type TYPE contains the
7037 parent-type (inherited) fields of a derived type. Assumes TYPE is
7038 a structure type with at least FIELD_NUM+1 fields. */
7039
7040 int
7041 ada_is_parent_field (struct type *type, int field_num)
7042 {
7043 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7044
7045 return (name != NULL
7046 && (startswith (name, "PARENT")
7047 || startswith (name, "_parent")));
7048 }
7049
7050 /* True iff field number FIELD_NUM of structure type TYPE is a
7051 transparent wrapper field (which should be silently traversed when doing
7052 field selection and flattened when printing). Assumes TYPE is a
7053 structure type with at least FIELD_NUM+1 fields. Such fields are always
7054 structures. */
7055
7056 int
7057 ada_is_wrapper_field (struct type *type, int field_num)
7058 {
7059 const char *name = TYPE_FIELD_NAME (type, field_num);
7060
7061 if (name != NULL && strcmp (name, "RETVAL") == 0)
7062 {
7063 /* This happens in functions with "out" or "in out" parameters
7064 which are passed by copy. For such functions, GNAT describes
7065 the function's return type as being a struct where the return
7066 value is in a field called RETVAL, and where the other "out"
7067 or "in out" parameters are fields of that struct. This is not
7068 a wrapper. */
7069 return 0;
7070 }
7071
7072 return (name != NULL
7073 && (startswith (name, "PARENT")
7074 || strcmp (name, "REP") == 0
7075 || startswith (name, "_parent")
7076 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7077 }
7078
7079 /* True iff field number FIELD_NUM of structure or union type TYPE
7080 is a variant wrapper. Assumes TYPE is a structure type with at least
7081 FIELD_NUM+1 fields. */
7082
7083 int
7084 ada_is_variant_part (struct type *type, int field_num)
7085 {
7086 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7087
7088 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7089 || (is_dynamic_field (type, field_num)
7090 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7091 == TYPE_CODE_UNION)));
7092 }
7093
7094 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7095 whose discriminants are contained in the record type OUTER_TYPE,
7096 returns the type of the controlling discriminant for the variant.
7097 May return NULL if the type could not be found. */
7098
7099 struct type *
7100 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7101 {
7102 char *name = ada_variant_discrim_name (var_type);
7103
7104 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7105 }
7106
7107 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7108 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7109 represents a 'when others' clause; otherwise 0. */
7110
7111 int
7112 ada_is_others_clause (struct type *type, int field_num)
7113 {
7114 const char *name = TYPE_FIELD_NAME (type, field_num);
7115
7116 return (name != NULL && name[0] == 'O');
7117 }
7118
7119 /* Assuming that TYPE0 is the type of the variant part of a record,
7120 returns the name of the discriminant controlling the variant.
7121 The value is valid until the next call to ada_variant_discrim_name. */
7122
7123 char *
7124 ada_variant_discrim_name (struct type *type0)
7125 {
7126 static char *result = NULL;
7127 static size_t result_len = 0;
7128 struct type *type;
7129 const char *name;
7130 const char *discrim_end;
7131 const char *discrim_start;
7132
7133 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7134 type = TYPE_TARGET_TYPE (type0);
7135 else
7136 type = type0;
7137
7138 name = ada_type_name (type);
7139
7140 if (name == NULL || name[0] == '\000')
7141 return "";
7142
7143 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7144 discrim_end -= 1)
7145 {
7146 if (startswith (discrim_end, "___XVN"))
7147 break;
7148 }
7149 if (discrim_end == name)
7150 return "";
7151
7152 for (discrim_start = discrim_end; discrim_start != name + 3;
7153 discrim_start -= 1)
7154 {
7155 if (discrim_start == name + 1)
7156 return "";
7157 if ((discrim_start > name + 3
7158 && startswith (discrim_start - 3, "___"))
7159 || discrim_start[-1] == '.')
7160 break;
7161 }
7162
7163 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7164 strncpy (result, discrim_start, discrim_end - discrim_start);
7165 result[discrim_end - discrim_start] = '\0';
7166 return result;
7167 }
7168
7169 /* Scan STR for a subtype-encoded number, beginning at position K.
7170 Put the position of the character just past the number scanned in
7171 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7172 Return 1 if there was a valid number at the given position, and 0
7173 otherwise. A "subtype-encoded" number consists of the absolute value
7174 in decimal, followed by the letter 'm' to indicate a negative number.
7175 Assumes 0m does not occur. */
7176
7177 int
7178 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7179 {
7180 ULONGEST RU;
7181
7182 if (!isdigit (str[k]))
7183 return 0;
7184
7185 /* Do it the hard way so as not to make any assumption about
7186 the relationship of unsigned long (%lu scan format code) and
7187 LONGEST. */
7188 RU = 0;
7189 while (isdigit (str[k]))
7190 {
7191 RU = RU * 10 + (str[k] - '0');
7192 k += 1;
7193 }
7194
7195 if (str[k] == 'm')
7196 {
7197 if (R != NULL)
7198 *R = (-(LONGEST) (RU - 1)) - 1;
7199 k += 1;
7200 }
7201 else if (R != NULL)
7202 *R = (LONGEST) RU;
7203
7204 /* NOTE on the above: Technically, C does not say what the results of
7205 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7206 number representable as a LONGEST (although either would probably work
7207 in most implementations). When RU>0, the locution in the then branch
7208 above is always equivalent to the negative of RU. */
7209
7210 if (new_k != NULL)
7211 *new_k = k;
7212 return 1;
7213 }
7214
7215 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7216 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7217 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7218
7219 int
7220 ada_in_variant (LONGEST val, struct type *type, int field_num)
7221 {
7222 const char *name = TYPE_FIELD_NAME (type, field_num);
7223 int p;
7224
7225 p = 0;
7226 while (1)
7227 {
7228 switch (name[p])
7229 {
7230 case '\0':
7231 return 0;
7232 case 'S':
7233 {
7234 LONGEST W;
7235
7236 if (!ada_scan_number (name, p + 1, &W, &p))
7237 return 0;
7238 if (val == W)
7239 return 1;
7240 break;
7241 }
7242 case 'R':
7243 {
7244 LONGEST L, U;
7245
7246 if (!ada_scan_number (name, p + 1, &L, &p)
7247 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7248 return 0;
7249 if (val >= L && val <= U)
7250 return 1;
7251 break;
7252 }
7253 case 'O':
7254 return 1;
7255 default:
7256 return 0;
7257 }
7258 }
7259 }
7260
7261 /* FIXME: Lots of redundancy below. Try to consolidate. */
7262
7263 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7264 ARG_TYPE, extract and return the value of one of its (non-static)
7265 fields. FIELDNO says which field. Differs from value_primitive_field
7266 only in that it can handle packed values of arbitrary type. */
7267
7268 static struct value *
7269 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7270 struct type *arg_type)
7271 {
7272 struct type *type;
7273
7274 arg_type = ada_check_typedef (arg_type);
7275 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7276
7277 /* Handle packed fields. */
7278
7279 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7280 {
7281 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7282 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7283
7284 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7285 offset + bit_pos / 8,
7286 bit_pos % 8, bit_size, type);
7287 }
7288 else
7289 return value_primitive_field (arg1, offset, fieldno, arg_type);
7290 }
7291
7292 /* Find field with name NAME in object of type TYPE. If found,
7293 set the following for each argument that is non-null:
7294 - *FIELD_TYPE_P to the field's type;
7295 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7296 an object of that type;
7297 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7298 - *BIT_SIZE_P to its size in bits if the field is packed, and
7299 0 otherwise;
7300 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7301 fields up to but not including the desired field, or by the total
7302 number of fields if not found. A NULL value of NAME never
7303 matches; the function just counts visible fields in this case.
7304
7305 Returns 1 if found, 0 otherwise. */
7306
7307 static int
7308 find_struct_field (const char *name, struct type *type, int offset,
7309 struct type **field_type_p,
7310 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7311 int *index_p)
7312 {
7313 int i;
7314
7315 type = ada_check_typedef (type);
7316
7317 if (field_type_p != NULL)
7318 *field_type_p = NULL;
7319 if (byte_offset_p != NULL)
7320 *byte_offset_p = 0;
7321 if (bit_offset_p != NULL)
7322 *bit_offset_p = 0;
7323 if (bit_size_p != NULL)
7324 *bit_size_p = 0;
7325
7326 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7327 {
7328 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7329 int fld_offset = offset + bit_pos / 8;
7330 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7331
7332 if (t_field_name == NULL)
7333 continue;
7334
7335 else if (name != NULL && field_name_match (t_field_name, name))
7336 {
7337 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7338
7339 if (field_type_p != NULL)
7340 *field_type_p = TYPE_FIELD_TYPE (type, i);
7341 if (byte_offset_p != NULL)
7342 *byte_offset_p = fld_offset;
7343 if (bit_offset_p != NULL)
7344 *bit_offset_p = bit_pos % 8;
7345 if (bit_size_p != NULL)
7346 *bit_size_p = bit_size;
7347 return 1;
7348 }
7349 else if (ada_is_wrapper_field (type, i))
7350 {
7351 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7352 field_type_p, byte_offset_p, bit_offset_p,
7353 bit_size_p, index_p))
7354 return 1;
7355 }
7356 else if (ada_is_variant_part (type, i))
7357 {
7358 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7359 fixed type?? */
7360 int j;
7361 struct type *field_type
7362 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7363
7364 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7365 {
7366 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7367 fld_offset
7368 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7369 field_type_p, byte_offset_p,
7370 bit_offset_p, bit_size_p, index_p))
7371 return 1;
7372 }
7373 }
7374 else if (index_p != NULL)
7375 *index_p += 1;
7376 }
7377 return 0;
7378 }
7379
7380 /* Number of user-visible fields in record type TYPE. */
7381
7382 static int
7383 num_visible_fields (struct type *type)
7384 {
7385 int n;
7386
7387 n = 0;
7388 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7389 return n;
7390 }
7391
7392 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7393 and search in it assuming it has (class) type TYPE.
7394 If found, return value, else return NULL.
7395
7396 Searches recursively through wrapper fields (e.g., '_parent'). */
7397
7398 static struct value *
7399 ada_search_struct_field (const char *name, struct value *arg, int offset,
7400 struct type *type)
7401 {
7402 int i;
7403
7404 type = ada_check_typedef (type);
7405 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7406 {
7407 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7408
7409 if (t_field_name == NULL)
7410 continue;
7411
7412 else if (field_name_match (t_field_name, name))
7413 return ada_value_primitive_field (arg, offset, i, type);
7414
7415 else if (ada_is_wrapper_field (type, i))
7416 {
7417 struct value *v = /* Do not let indent join lines here. */
7418 ada_search_struct_field (name, arg,
7419 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7420 TYPE_FIELD_TYPE (type, i));
7421
7422 if (v != NULL)
7423 return v;
7424 }
7425
7426 else if (ada_is_variant_part (type, i))
7427 {
7428 /* PNH: Do we ever get here? See find_struct_field. */
7429 int j;
7430 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7431 i));
7432 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7433
7434 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7435 {
7436 struct value *v = ada_search_struct_field /* Force line
7437 break. */
7438 (name, arg,
7439 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7440 TYPE_FIELD_TYPE (field_type, j));
7441
7442 if (v != NULL)
7443 return v;
7444 }
7445 }
7446 }
7447 return NULL;
7448 }
7449
7450 static struct value *ada_index_struct_field_1 (int *, struct value *,
7451 int, struct type *);
7452
7453
7454 /* Return field #INDEX in ARG, where the index is that returned by
7455 * find_struct_field through its INDEX_P argument. Adjust the address
7456 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7457 * If found, return value, else return NULL. */
7458
7459 static struct value *
7460 ada_index_struct_field (int index, struct value *arg, int offset,
7461 struct type *type)
7462 {
7463 return ada_index_struct_field_1 (&index, arg, offset, type);
7464 }
7465
7466
7467 /* Auxiliary function for ada_index_struct_field. Like
7468 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7469 * *INDEX_P. */
7470
7471 static struct value *
7472 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7473 struct type *type)
7474 {
7475 int i;
7476 type = ada_check_typedef (type);
7477
7478 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7479 {
7480 if (TYPE_FIELD_NAME (type, i) == NULL)
7481 continue;
7482 else if (ada_is_wrapper_field (type, i))
7483 {
7484 struct value *v = /* Do not let indent join lines here. */
7485 ada_index_struct_field_1 (index_p, arg,
7486 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7487 TYPE_FIELD_TYPE (type, i));
7488
7489 if (v != NULL)
7490 return v;
7491 }
7492
7493 else if (ada_is_variant_part (type, i))
7494 {
7495 /* PNH: Do we ever get here? See ada_search_struct_field,
7496 find_struct_field. */
7497 error (_("Cannot assign this kind of variant record"));
7498 }
7499 else if (*index_p == 0)
7500 return ada_value_primitive_field (arg, offset, i, type);
7501 else
7502 *index_p -= 1;
7503 }
7504 return NULL;
7505 }
7506
7507 /* Given ARG, a value of type (pointer or reference to a)*
7508 structure/union, extract the component named NAME from the ultimate
7509 target structure/union and return it as a value with its
7510 appropriate type.
7511
7512 The routine searches for NAME among all members of the structure itself
7513 and (recursively) among all members of any wrapper members
7514 (e.g., '_parent').
7515
7516 If NO_ERR, then simply return NULL in case of error, rather than
7517 calling error. */
7518
7519 struct value *
7520 ada_value_struct_elt (struct value *arg, char *name, int no_err)
7521 {
7522 struct type *t, *t1;
7523 struct value *v;
7524
7525 v = NULL;
7526 t1 = t = ada_check_typedef (value_type (arg));
7527 if (TYPE_CODE (t) == TYPE_CODE_REF)
7528 {
7529 t1 = TYPE_TARGET_TYPE (t);
7530 if (t1 == NULL)
7531 goto BadValue;
7532 t1 = ada_check_typedef (t1);
7533 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7534 {
7535 arg = coerce_ref (arg);
7536 t = t1;
7537 }
7538 }
7539
7540 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7541 {
7542 t1 = TYPE_TARGET_TYPE (t);
7543 if (t1 == NULL)
7544 goto BadValue;
7545 t1 = ada_check_typedef (t1);
7546 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7547 {
7548 arg = value_ind (arg);
7549 t = t1;
7550 }
7551 else
7552 break;
7553 }
7554
7555 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7556 goto BadValue;
7557
7558 if (t1 == t)
7559 v = ada_search_struct_field (name, arg, 0, t);
7560 else
7561 {
7562 int bit_offset, bit_size, byte_offset;
7563 struct type *field_type;
7564 CORE_ADDR address;
7565
7566 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7567 address = value_address (ada_value_ind (arg));
7568 else
7569 address = value_address (ada_coerce_ref (arg));
7570
7571 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7572 if (find_struct_field (name, t1, 0,
7573 &field_type, &byte_offset, &bit_offset,
7574 &bit_size, NULL))
7575 {
7576 if (bit_size != 0)
7577 {
7578 if (TYPE_CODE (t) == TYPE_CODE_REF)
7579 arg = ada_coerce_ref (arg);
7580 else
7581 arg = ada_value_ind (arg);
7582 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7583 bit_offset, bit_size,
7584 field_type);
7585 }
7586 else
7587 v = value_at_lazy (field_type, address + byte_offset);
7588 }
7589 }
7590
7591 if (v != NULL || no_err)
7592 return v;
7593 else
7594 error (_("There is no member named %s."), name);
7595
7596 BadValue:
7597 if (no_err)
7598 return NULL;
7599 else
7600 error (_("Attempt to extract a component of "
7601 "a value that is not a record."));
7602 }
7603
7604 /* Return a string representation of type TYPE. */
7605
7606 static std::string
7607 type_as_string (struct type *type)
7608 {
7609 struct ui_file *tmp_stream = mem_fileopen ();
7610 struct cleanup *old_chain;
7611
7612 tmp_stream = mem_fileopen ();
7613 old_chain = make_cleanup_ui_file_delete (tmp_stream);
7614
7615 type_print (type, "", tmp_stream, -1);
7616 std::string str = ui_file_as_string (tmp_stream);
7617
7618 do_cleanups (old_chain);
7619 return str;
7620 }
7621
7622 /* Given a type TYPE, look up the type of the component of type named NAME.
7623 If DISPP is non-null, add its byte displacement from the beginning of a
7624 structure (pointed to by a value) of type TYPE to *DISPP (does not
7625 work for packed fields).
7626
7627 Matches any field whose name has NAME as a prefix, possibly
7628 followed by "___".
7629
7630 TYPE can be either a struct or union. If REFOK, TYPE may also
7631 be a (pointer or reference)+ to a struct or union, and the
7632 ultimate target type will be searched.
7633
7634 Looks recursively into variant clauses and parent types.
7635
7636 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7637 TYPE is not a type of the right kind. */
7638
7639 static struct type *
7640 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
7641 int noerr, int *dispp)
7642 {
7643 int i;
7644
7645 if (name == NULL)
7646 goto BadName;
7647
7648 if (refok && type != NULL)
7649 while (1)
7650 {
7651 type = ada_check_typedef (type);
7652 if (TYPE_CODE (type) != TYPE_CODE_PTR
7653 && TYPE_CODE (type) != TYPE_CODE_REF)
7654 break;
7655 type = TYPE_TARGET_TYPE (type);
7656 }
7657
7658 if (type == NULL
7659 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7660 && TYPE_CODE (type) != TYPE_CODE_UNION))
7661 {
7662 if (noerr)
7663 return NULL;
7664
7665 error (_("Type %s is not a structure or union type"),
7666 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7667 }
7668
7669 type = to_static_fixed_type (type);
7670
7671 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7672 {
7673 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7674 struct type *t;
7675 int disp;
7676
7677 if (t_field_name == NULL)
7678 continue;
7679
7680 else if (field_name_match (t_field_name, name))
7681 {
7682 if (dispp != NULL)
7683 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7684 return TYPE_FIELD_TYPE (type, i);
7685 }
7686
7687 else if (ada_is_wrapper_field (type, i))
7688 {
7689 disp = 0;
7690 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7691 0, 1, &disp);
7692 if (t != NULL)
7693 {
7694 if (dispp != NULL)
7695 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7696 return t;
7697 }
7698 }
7699
7700 else if (ada_is_variant_part (type, i))
7701 {
7702 int j;
7703 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7704 i));
7705
7706 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7707 {
7708 /* FIXME pnh 2008/01/26: We check for a field that is
7709 NOT wrapped in a struct, since the compiler sometimes
7710 generates these for unchecked variant types. Revisit
7711 if the compiler changes this practice. */
7712 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7713 disp = 0;
7714 if (v_field_name != NULL
7715 && field_name_match (v_field_name, name))
7716 t = TYPE_FIELD_TYPE (field_type, j);
7717 else
7718 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7719 j),
7720 name, 0, 1, &disp);
7721
7722 if (t != NULL)
7723 {
7724 if (dispp != NULL)
7725 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7726 return t;
7727 }
7728 }
7729 }
7730
7731 }
7732
7733 BadName:
7734 if (!noerr)
7735 {
7736 const char *name_str = name != NULL ? name : _("<null>");
7737
7738 error (_("Type %s has no component named %s"),
7739 type_as_string (type).c_str (), name_str);
7740 }
7741
7742 return NULL;
7743 }
7744
7745 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7746 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7747 represents an unchecked union (that is, the variant part of a
7748 record that is named in an Unchecked_Union pragma). */
7749
7750 static int
7751 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7752 {
7753 char *discrim_name = ada_variant_discrim_name (var_type);
7754
7755 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7756 == NULL);
7757 }
7758
7759
7760 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7761 within a value of type OUTER_TYPE that is stored in GDB at
7762 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7763 numbering from 0) is applicable. Returns -1 if none are. */
7764
7765 int
7766 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7767 const gdb_byte *outer_valaddr)
7768 {
7769 int others_clause;
7770 int i;
7771 char *discrim_name = ada_variant_discrim_name (var_type);
7772 struct value *outer;
7773 struct value *discrim;
7774 LONGEST discrim_val;
7775
7776 /* Using plain value_from_contents_and_address here causes problems
7777 because we will end up trying to resolve a type that is currently
7778 being constructed. */
7779 outer = value_from_contents_and_address_unresolved (outer_type,
7780 outer_valaddr, 0);
7781 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7782 if (discrim == NULL)
7783 return -1;
7784 discrim_val = value_as_long (discrim);
7785
7786 others_clause = -1;
7787 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7788 {
7789 if (ada_is_others_clause (var_type, i))
7790 others_clause = i;
7791 else if (ada_in_variant (discrim_val, var_type, i))
7792 return i;
7793 }
7794
7795 return others_clause;
7796 }
7797 \f
7798
7799
7800 /* Dynamic-Sized Records */
7801
7802 /* Strategy: The type ostensibly attached to a value with dynamic size
7803 (i.e., a size that is not statically recorded in the debugging
7804 data) does not accurately reflect the size or layout of the value.
7805 Our strategy is to convert these values to values with accurate,
7806 conventional types that are constructed on the fly. */
7807
7808 /* There is a subtle and tricky problem here. In general, we cannot
7809 determine the size of dynamic records without its data. However,
7810 the 'struct value' data structure, which GDB uses to represent
7811 quantities in the inferior process (the target), requires the size
7812 of the type at the time of its allocation in order to reserve space
7813 for GDB's internal copy of the data. That's why the
7814 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7815 rather than struct value*s.
7816
7817 However, GDB's internal history variables ($1, $2, etc.) are
7818 struct value*s containing internal copies of the data that are not, in
7819 general, the same as the data at their corresponding addresses in
7820 the target. Fortunately, the types we give to these values are all
7821 conventional, fixed-size types (as per the strategy described
7822 above), so that we don't usually have to perform the
7823 'to_fixed_xxx_type' conversions to look at their values.
7824 Unfortunately, there is one exception: if one of the internal
7825 history variables is an array whose elements are unconstrained
7826 records, then we will need to create distinct fixed types for each
7827 element selected. */
7828
7829 /* The upshot of all of this is that many routines take a (type, host
7830 address, target address) triple as arguments to represent a value.
7831 The host address, if non-null, is supposed to contain an internal
7832 copy of the relevant data; otherwise, the program is to consult the
7833 target at the target address. */
7834
7835 /* Assuming that VAL0 represents a pointer value, the result of
7836 dereferencing it. Differs from value_ind in its treatment of
7837 dynamic-sized types. */
7838
7839 struct value *
7840 ada_value_ind (struct value *val0)
7841 {
7842 struct value *val = value_ind (val0);
7843
7844 if (ada_is_tagged_type (value_type (val), 0))
7845 val = ada_tag_value_at_base_address (val);
7846
7847 return ada_to_fixed_value (val);
7848 }
7849
7850 /* The value resulting from dereferencing any "reference to"
7851 qualifiers on VAL0. */
7852
7853 static struct value *
7854 ada_coerce_ref (struct value *val0)
7855 {
7856 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7857 {
7858 struct value *val = val0;
7859
7860 val = coerce_ref (val);
7861
7862 if (ada_is_tagged_type (value_type (val), 0))
7863 val = ada_tag_value_at_base_address (val);
7864
7865 return ada_to_fixed_value (val);
7866 }
7867 else
7868 return val0;
7869 }
7870
7871 /* Return OFF rounded upward if necessary to a multiple of
7872 ALIGNMENT (a power of 2). */
7873
7874 static unsigned int
7875 align_value (unsigned int off, unsigned int alignment)
7876 {
7877 return (off + alignment - 1) & ~(alignment - 1);
7878 }
7879
7880 /* Return the bit alignment required for field #F of template type TYPE. */
7881
7882 static unsigned int
7883 field_alignment (struct type *type, int f)
7884 {
7885 const char *name = TYPE_FIELD_NAME (type, f);
7886 int len;
7887 int align_offset;
7888
7889 /* The field name should never be null, unless the debugging information
7890 is somehow malformed. In this case, we assume the field does not
7891 require any alignment. */
7892 if (name == NULL)
7893 return 1;
7894
7895 len = strlen (name);
7896
7897 if (!isdigit (name[len - 1]))
7898 return 1;
7899
7900 if (isdigit (name[len - 2]))
7901 align_offset = len - 2;
7902 else
7903 align_offset = len - 1;
7904
7905 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7906 return TARGET_CHAR_BIT;
7907
7908 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7909 }
7910
7911 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7912
7913 static struct symbol *
7914 ada_find_any_type_symbol (const char *name)
7915 {
7916 struct symbol *sym;
7917
7918 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7919 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7920 return sym;
7921
7922 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7923 return sym;
7924 }
7925
7926 /* Find a type named NAME. Ignores ambiguity. This routine will look
7927 solely for types defined by debug info, it will not search the GDB
7928 primitive types. */
7929
7930 static struct type *
7931 ada_find_any_type (const char *name)
7932 {
7933 struct symbol *sym = ada_find_any_type_symbol (name);
7934
7935 if (sym != NULL)
7936 return SYMBOL_TYPE (sym);
7937
7938 return NULL;
7939 }
7940
7941 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7942 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7943 symbol, in which case it is returned. Otherwise, this looks for
7944 symbols whose name is that of NAME_SYM suffixed with "___XR".
7945 Return symbol if found, and NULL otherwise. */
7946
7947 struct symbol *
7948 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7949 {
7950 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7951 struct symbol *sym;
7952
7953 if (strstr (name, "___XR") != NULL)
7954 return name_sym;
7955
7956 sym = find_old_style_renaming_symbol (name, block);
7957
7958 if (sym != NULL)
7959 return sym;
7960
7961 /* Not right yet. FIXME pnh 7/20/2007. */
7962 sym = ada_find_any_type_symbol (name);
7963 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7964 return sym;
7965 else
7966 return NULL;
7967 }
7968
7969 static struct symbol *
7970 find_old_style_renaming_symbol (const char *name, const struct block *block)
7971 {
7972 const struct symbol *function_sym = block_linkage_function (block);
7973 char *rename;
7974
7975 if (function_sym != NULL)
7976 {
7977 /* If the symbol is defined inside a function, NAME is not fully
7978 qualified. This means we need to prepend the function name
7979 as well as adding the ``___XR'' suffix to build the name of
7980 the associated renaming symbol. */
7981 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7982 /* Function names sometimes contain suffixes used
7983 for instance to qualify nested subprograms. When building
7984 the XR type name, we need to make sure that this suffix is
7985 not included. So do not include any suffix in the function
7986 name length below. */
7987 int function_name_len = ada_name_prefix_len (function_name);
7988 const int rename_len = function_name_len + 2 /* "__" */
7989 + strlen (name) + 6 /* "___XR\0" */ ;
7990
7991 /* Strip the suffix if necessary. */
7992 ada_remove_trailing_digits (function_name, &function_name_len);
7993 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7994 ada_remove_Xbn_suffix (function_name, &function_name_len);
7995
7996 /* Library-level functions are a special case, as GNAT adds
7997 a ``_ada_'' prefix to the function name to avoid namespace
7998 pollution. However, the renaming symbols themselves do not
7999 have this prefix, so we need to skip this prefix if present. */
8000 if (function_name_len > 5 /* "_ada_" */
8001 && strstr (function_name, "_ada_") == function_name)
8002 {
8003 function_name += 5;
8004 function_name_len -= 5;
8005 }
8006
8007 rename = (char *) alloca (rename_len * sizeof (char));
8008 strncpy (rename, function_name, function_name_len);
8009 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8010 "__%s___XR", name);
8011 }
8012 else
8013 {
8014 const int rename_len = strlen (name) + 6;
8015
8016 rename = (char *) alloca (rename_len * sizeof (char));
8017 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8018 }
8019
8020 return ada_find_any_type_symbol (rename);
8021 }
8022
8023 /* Because of GNAT encoding conventions, several GDB symbols may match a
8024 given type name. If the type denoted by TYPE0 is to be preferred to
8025 that of TYPE1 for purposes of type printing, return non-zero;
8026 otherwise return 0. */
8027
8028 int
8029 ada_prefer_type (struct type *type0, struct type *type1)
8030 {
8031 if (type1 == NULL)
8032 return 1;
8033 else if (type0 == NULL)
8034 return 0;
8035 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8036 return 1;
8037 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8038 return 0;
8039 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8040 return 1;
8041 else if (ada_is_constrained_packed_array_type (type0))
8042 return 1;
8043 else if (ada_is_array_descriptor_type (type0)
8044 && !ada_is_array_descriptor_type (type1))
8045 return 1;
8046 else
8047 {
8048 const char *type0_name = type_name_no_tag (type0);
8049 const char *type1_name = type_name_no_tag (type1);
8050
8051 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8052 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8053 return 1;
8054 }
8055 return 0;
8056 }
8057
8058 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8059 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8060
8061 const char *
8062 ada_type_name (struct type *type)
8063 {
8064 if (type == NULL)
8065 return NULL;
8066 else if (TYPE_NAME (type) != NULL)
8067 return TYPE_NAME (type);
8068 else
8069 return TYPE_TAG_NAME (type);
8070 }
8071
8072 /* Search the list of "descriptive" types associated to TYPE for a type
8073 whose name is NAME. */
8074
8075 static struct type *
8076 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8077 {
8078 struct type *result, *tmp;
8079
8080 if (ada_ignore_descriptive_types_p)
8081 return NULL;
8082
8083 /* If there no descriptive-type info, then there is no parallel type
8084 to be found. */
8085 if (!HAVE_GNAT_AUX_INFO (type))
8086 return NULL;
8087
8088 result = TYPE_DESCRIPTIVE_TYPE (type);
8089 while (result != NULL)
8090 {
8091 const char *result_name = ada_type_name (result);
8092
8093 if (result_name == NULL)
8094 {
8095 warning (_("unexpected null name on descriptive type"));
8096 return NULL;
8097 }
8098
8099 /* If the names match, stop. */
8100 if (strcmp (result_name, name) == 0)
8101 break;
8102
8103 /* Otherwise, look at the next item on the list, if any. */
8104 if (HAVE_GNAT_AUX_INFO (result))
8105 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8106 else
8107 tmp = NULL;
8108
8109 /* If not found either, try after having resolved the typedef. */
8110 if (tmp != NULL)
8111 result = tmp;
8112 else
8113 {
8114 result = check_typedef (result);
8115 if (HAVE_GNAT_AUX_INFO (result))
8116 result = TYPE_DESCRIPTIVE_TYPE (result);
8117 else
8118 result = NULL;
8119 }
8120 }
8121
8122 /* If we didn't find a match, see whether this is a packed array. With
8123 older compilers, the descriptive type information is either absent or
8124 irrelevant when it comes to packed arrays so the above lookup fails.
8125 Fall back to using a parallel lookup by name in this case. */
8126 if (result == NULL && ada_is_constrained_packed_array_type (type))
8127 return ada_find_any_type (name);
8128
8129 return result;
8130 }
8131
8132 /* Find a parallel type to TYPE with the specified NAME, using the
8133 descriptive type taken from the debugging information, if available,
8134 and otherwise using the (slower) name-based method. */
8135
8136 static struct type *
8137 ada_find_parallel_type_with_name (struct type *type, const char *name)
8138 {
8139 struct type *result = NULL;
8140
8141 if (HAVE_GNAT_AUX_INFO (type))
8142 result = find_parallel_type_by_descriptive_type (type, name);
8143 else
8144 result = ada_find_any_type (name);
8145
8146 return result;
8147 }
8148
8149 /* Same as above, but specify the name of the parallel type by appending
8150 SUFFIX to the name of TYPE. */
8151
8152 struct type *
8153 ada_find_parallel_type (struct type *type, const char *suffix)
8154 {
8155 char *name;
8156 const char *type_name = ada_type_name (type);
8157 int len;
8158
8159 if (type_name == NULL)
8160 return NULL;
8161
8162 len = strlen (type_name);
8163
8164 name = (char *) alloca (len + strlen (suffix) + 1);
8165
8166 strcpy (name, type_name);
8167 strcpy (name + len, suffix);
8168
8169 return ada_find_parallel_type_with_name (type, name);
8170 }
8171
8172 /* If TYPE is a variable-size record type, return the corresponding template
8173 type describing its fields. Otherwise, return NULL. */
8174
8175 static struct type *
8176 dynamic_template_type (struct type *type)
8177 {
8178 type = ada_check_typedef (type);
8179
8180 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8181 || ada_type_name (type) == NULL)
8182 return NULL;
8183 else
8184 {
8185 int len = strlen (ada_type_name (type));
8186
8187 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8188 return type;
8189 else
8190 return ada_find_parallel_type (type, "___XVE");
8191 }
8192 }
8193
8194 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8195 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8196
8197 static int
8198 is_dynamic_field (struct type *templ_type, int field_num)
8199 {
8200 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8201
8202 return name != NULL
8203 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8204 && strstr (name, "___XVL") != NULL;
8205 }
8206
8207 /* The index of the variant field of TYPE, or -1 if TYPE does not
8208 represent a variant record type. */
8209
8210 static int
8211 variant_field_index (struct type *type)
8212 {
8213 int f;
8214
8215 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8216 return -1;
8217
8218 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8219 {
8220 if (ada_is_variant_part (type, f))
8221 return f;
8222 }
8223 return -1;
8224 }
8225
8226 /* A record type with no fields. */
8227
8228 static struct type *
8229 empty_record (struct type *templ)
8230 {
8231 struct type *type = alloc_type_copy (templ);
8232
8233 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8234 TYPE_NFIELDS (type) = 0;
8235 TYPE_FIELDS (type) = NULL;
8236 INIT_CPLUS_SPECIFIC (type);
8237 TYPE_NAME (type) = "<empty>";
8238 TYPE_TAG_NAME (type) = NULL;
8239 TYPE_LENGTH (type) = 0;
8240 return type;
8241 }
8242
8243 /* An ordinary record type (with fixed-length fields) that describes
8244 the value of type TYPE at VALADDR or ADDRESS (see comments at
8245 the beginning of this section) VAL according to GNAT conventions.
8246 DVAL0 should describe the (portion of a) record that contains any
8247 necessary discriminants. It should be NULL if value_type (VAL) is
8248 an outer-level type (i.e., as opposed to a branch of a variant.) A
8249 variant field (unless unchecked) is replaced by a particular branch
8250 of the variant.
8251
8252 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8253 length are not statically known are discarded. As a consequence,
8254 VALADDR, ADDRESS and DVAL0 are ignored.
8255
8256 NOTE: Limitations: For now, we assume that dynamic fields and
8257 variants occupy whole numbers of bytes. However, they need not be
8258 byte-aligned. */
8259
8260 struct type *
8261 ada_template_to_fixed_record_type_1 (struct type *type,
8262 const gdb_byte *valaddr,
8263 CORE_ADDR address, struct value *dval0,
8264 int keep_dynamic_fields)
8265 {
8266 struct value *mark = value_mark ();
8267 struct value *dval;
8268 struct type *rtype;
8269 int nfields, bit_len;
8270 int variant_field;
8271 long off;
8272 int fld_bit_len;
8273 int f;
8274
8275 /* Compute the number of fields in this record type that are going
8276 to be processed: unless keep_dynamic_fields, this includes only
8277 fields whose position and length are static will be processed. */
8278 if (keep_dynamic_fields)
8279 nfields = TYPE_NFIELDS (type);
8280 else
8281 {
8282 nfields = 0;
8283 while (nfields < TYPE_NFIELDS (type)
8284 && !ada_is_variant_part (type, nfields)
8285 && !is_dynamic_field (type, nfields))
8286 nfields++;
8287 }
8288
8289 rtype = alloc_type_copy (type);
8290 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8291 INIT_CPLUS_SPECIFIC (rtype);
8292 TYPE_NFIELDS (rtype) = nfields;
8293 TYPE_FIELDS (rtype) = (struct field *)
8294 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8295 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8296 TYPE_NAME (rtype) = ada_type_name (type);
8297 TYPE_TAG_NAME (rtype) = NULL;
8298 TYPE_FIXED_INSTANCE (rtype) = 1;
8299
8300 off = 0;
8301 bit_len = 0;
8302 variant_field = -1;
8303
8304 for (f = 0; f < nfields; f += 1)
8305 {
8306 off = align_value (off, field_alignment (type, f))
8307 + TYPE_FIELD_BITPOS (type, f);
8308 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8309 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8310
8311 if (ada_is_variant_part (type, f))
8312 {
8313 variant_field = f;
8314 fld_bit_len = 0;
8315 }
8316 else if (is_dynamic_field (type, f))
8317 {
8318 const gdb_byte *field_valaddr = valaddr;
8319 CORE_ADDR field_address = address;
8320 struct type *field_type =
8321 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8322
8323 if (dval0 == NULL)
8324 {
8325 /* rtype's length is computed based on the run-time
8326 value of discriminants. If the discriminants are not
8327 initialized, the type size may be completely bogus and
8328 GDB may fail to allocate a value for it. So check the
8329 size first before creating the value. */
8330 ada_ensure_varsize_limit (rtype);
8331 /* Using plain value_from_contents_and_address here
8332 causes problems because we will end up trying to
8333 resolve a type that is currently being
8334 constructed. */
8335 dval = value_from_contents_and_address_unresolved (rtype,
8336 valaddr,
8337 address);
8338 rtype = value_type (dval);
8339 }
8340 else
8341 dval = dval0;
8342
8343 /* If the type referenced by this field is an aligner type, we need
8344 to unwrap that aligner type, because its size might not be set.
8345 Keeping the aligner type would cause us to compute the wrong
8346 size for this field, impacting the offset of the all the fields
8347 that follow this one. */
8348 if (ada_is_aligner_type (field_type))
8349 {
8350 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8351
8352 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8353 field_address = cond_offset_target (field_address, field_offset);
8354 field_type = ada_aligned_type (field_type);
8355 }
8356
8357 field_valaddr = cond_offset_host (field_valaddr,
8358 off / TARGET_CHAR_BIT);
8359 field_address = cond_offset_target (field_address,
8360 off / TARGET_CHAR_BIT);
8361
8362 /* Get the fixed type of the field. Note that, in this case,
8363 we do not want to get the real type out of the tag: if
8364 the current field is the parent part of a tagged record,
8365 we will get the tag of the object. Clearly wrong: the real
8366 type of the parent is not the real type of the child. We
8367 would end up in an infinite loop. */
8368 field_type = ada_get_base_type (field_type);
8369 field_type = ada_to_fixed_type (field_type, field_valaddr,
8370 field_address, dval, 0);
8371 /* If the field size is already larger than the maximum
8372 object size, then the record itself will necessarily
8373 be larger than the maximum object size. We need to make
8374 this check now, because the size might be so ridiculously
8375 large (due to an uninitialized variable in the inferior)
8376 that it would cause an overflow when adding it to the
8377 record size. */
8378 ada_ensure_varsize_limit (field_type);
8379
8380 TYPE_FIELD_TYPE (rtype, f) = field_type;
8381 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8382 /* The multiplication can potentially overflow. But because
8383 the field length has been size-checked just above, and
8384 assuming that the maximum size is a reasonable value,
8385 an overflow should not happen in practice. So rather than
8386 adding overflow recovery code to this already complex code,
8387 we just assume that it's not going to happen. */
8388 fld_bit_len =
8389 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8390 }
8391 else
8392 {
8393 /* Note: If this field's type is a typedef, it is important
8394 to preserve the typedef layer.
8395
8396 Otherwise, we might be transforming a typedef to a fat
8397 pointer (encoding a pointer to an unconstrained array),
8398 into a basic fat pointer (encoding an unconstrained
8399 array). As both types are implemented using the same
8400 structure, the typedef is the only clue which allows us
8401 to distinguish between the two options. Stripping it
8402 would prevent us from printing this field appropriately. */
8403 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8404 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8405 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8406 fld_bit_len =
8407 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8408 else
8409 {
8410 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8411
8412 /* We need to be careful of typedefs when computing
8413 the length of our field. If this is a typedef,
8414 get the length of the target type, not the length
8415 of the typedef. */
8416 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8417 field_type = ada_typedef_target_type (field_type);
8418
8419 fld_bit_len =
8420 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8421 }
8422 }
8423 if (off + fld_bit_len > bit_len)
8424 bit_len = off + fld_bit_len;
8425 off += fld_bit_len;
8426 TYPE_LENGTH (rtype) =
8427 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8428 }
8429
8430 /* We handle the variant part, if any, at the end because of certain
8431 odd cases in which it is re-ordered so as NOT to be the last field of
8432 the record. This can happen in the presence of representation
8433 clauses. */
8434 if (variant_field >= 0)
8435 {
8436 struct type *branch_type;
8437
8438 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8439
8440 if (dval0 == NULL)
8441 {
8442 /* Using plain value_from_contents_and_address here causes
8443 problems because we will end up trying to resolve a type
8444 that is currently being constructed. */
8445 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8446 address);
8447 rtype = value_type (dval);
8448 }
8449 else
8450 dval = dval0;
8451
8452 branch_type =
8453 to_fixed_variant_branch_type
8454 (TYPE_FIELD_TYPE (type, variant_field),
8455 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8456 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8457 if (branch_type == NULL)
8458 {
8459 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8460 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8461 TYPE_NFIELDS (rtype) -= 1;
8462 }
8463 else
8464 {
8465 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8466 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8467 fld_bit_len =
8468 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8469 TARGET_CHAR_BIT;
8470 if (off + fld_bit_len > bit_len)
8471 bit_len = off + fld_bit_len;
8472 TYPE_LENGTH (rtype) =
8473 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8474 }
8475 }
8476
8477 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8478 should contain the alignment of that record, which should be a strictly
8479 positive value. If null or negative, then something is wrong, most
8480 probably in the debug info. In that case, we don't round up the size
8481 of the resulting type. If this record is not part of another structure,
8482 the current RTYPE length might be good enough for our purposes. */
8483 if (TYPE_LENGTH (type) <= 0)
8484 {
8485 if (TYPE_NAME (rtype))
8486 warning (_("Invalid type size for `%s' detected: %d."),
8487 TYPE_NAME (rtype), TYPE_LENGTH (type));
8488 else
8489 warning (_("Invalid type size for <unnamed> detected: %d."),
8490 TYPE_LENGTH (type));
8491 }
8492 else
8493 {
8494 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8495 TYPE_LENGTH (type));
8496 }
8497
8498 value_free_to_mark (mark);
8499 if (TYPE_LENGTH (rtype) > varsize_limit)
8500 error (_("record type with dynamic size is larger than varsize-limit"));
8501 return rtype;
8502 }
8503
8504 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8505 of 1. */
8506
8507 static struct type *
8508 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8509 CORE_ADDR address, struct value *dval0)
8510 {
8511 return ada_template_to_fixed_record_type_1 (type, valaddr,
8512 address, dval0, 1);
8513 }
8514
8515 /* An ordinary record type in which ___XVL-convention fields and
8516 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8517 static approximations, containing all possible fields. Uses
8518 no runtime values. Useless for use in values, but that's OK,
8519 since the results are used only for type determinations. Works on both
8520 structs and unions. Representation note: to save space, we memorize
8521 the result of this function in the TYPE_TARGET_TYPE of the
8522 template type. */
8523
8524 static struct type *
8525 template_to_static_fixed_type (struct type *type0)
8526 {
8527 struct type *type;
8528 int nfields;
8529 int f;
8530
8531 /* No need no do anything if the input type is already fixed. */
8532 if (TYPE_FIXED_INSTANCE (type0))
8533 return type0;
8534
8535 /* Likewise if we already have computed the static approximation. */
8536 if (TYPE_TARGET_TYPE (type0) != NULL)
8537 return TYPE_TARGET_TYPE (type0);
8538
8539 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8540 type = type0;
8541 nfields = TYPE_NFIELDS (type0);
8542
8543 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8544 recompute all over next time. */
8545 TYPE_TARGET_TYPE (type0) = type;
8546
8547 for (f = 0; f < nfields; f += 1)
8548 {
8549 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8550 struct type *new_type;
8551
8552 if (is_dynamic_field (type0, f))
8553 {
8554 field_type = ada_check_typedef (field_type);
8555 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8556 }
8557 else
8558 new_type = static_unwrap_type (field_type);
8559
8560 if (new_type != field_type)
8561 {
8562 /* Clone TYPE0 only the first time we get a new field type. */
8563 if (type == type0)
8564 {
8565 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8566 TYPE_CODE (type) = TYPE_CODE (type0);
8567 INIT_CPLUS_SPECIFIC (type);
8568 TYPE_NFIELDS (type) = nfields;
8569 TYPE_FIELDS (type) = (struct field *)
8570 TYPE_ALLOC (type, nfields * sizeof (struct field));
8571 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8572 sizeof (struct field) * nfields);
8573 TYPE_NAME (type) = ada_type_name (type0);
8574 TYPE_TAG_NAME (type) = NULL;
8575 TYPE_FIXED_INSTANCE (type) = 1;
8576 TYPE_LENGTH (type) = 0;
8577 }
8578 TYPE_FIELD_TYPE (type, f) = new_type;
8579 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8580 }
8581 }
8582
8583 return type;
8584 }
8585
8586 /* Given an object of type TYPE whose contents are at VALADDR and
8587 whose address in memory is ADDRESS, returns a revision of TYPE,
8588 which should be a non-dynamic-sized record, in which the variant
8589 part, if any, is replaced with the appropriate branch. Looks
8590 for discriminant values in DVAL0, which can be NULL if the record
8591 contains the necessary discriminant values. */
8592
8593 static struct type *
8594 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8595 CORE_ADDR address, struct value *dval0)
8596 {
8597 struct value *mark = value_mark ();
8598 struct value *dval;
8599 struct type *rtype;
8600 struct type *branch_type;
8601 int nfields = TYPE_NFIELDS (type);
8602 int variant_field = variant_field_index (type);
8603
8604 if (variant_field == -1)
8605 return type;
8606
8607 if (dval0 == NULL)
8608 {
8609 dval = value_from_contents_and_address (type, valaddr, address);
8610 type = value_type (dval);
8611 }
8612 else
8613 dval = dval0;
8614
8615 rtype = alloc_type_copy (type);
8616 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8617 INIT_CPLUS_SPECIFIC (rtype);
8618 TYPE_NFIELDS (rtype) = nfields;
8619 TYPE_FIELDS (rtype) =
8620 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8621 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8622 sizeof (struct field) * nfields);
8623 TYPE_NAME (rtype) = ada_type_name (type);
8624 TYPE_TAG_NAME (rtype) = NULL;
8625 TYPE_FIXED_INSTANCE (rtype) = 1;
8626 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8627
8628 branch_type = to_fixed_variant_branch_type
8629 (TYPE_FIELD_TYPE (type, variant_field),
8630 cond_offset_host (valaddr,
8631 TYPE_FIELD_BITPOS (type, variant_field)
8632 / TARGET_CHAR_BIT),
8633 cond_offset_target (address,
8634 TYPE_FIELD_BITPOS (type, variant_field)
8635 / TARGET_CHAR_BIT), dval);
8636 if (branch_type == NULL)
8637 {
8638 int f;
8639
8640 for (f = variant_field + 1; f < nfields; f += 1)
8641 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8642 TYPE_NFIELDS (rtype) -= 1;
8643 }
8644 else
8645 {
8646 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8647 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8648 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8649 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8650 }
8651 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8652
8653 value_free_to_mark (mark);
8654 return rtype;
8655 }
8656
8657 /* An ordinary record type (with fixed-length fields) that describes
8658 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8659 beginning of this section]. Any necessary discriminants' values
8660 should be in DVAL, a record value; it may be NULL if the object
8661 at ADDR itself contains any necessary discriminant values.
8662 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8663 values from the record are needed. Except in the case that DVAL,
8664 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8665 unchecked) is replaced by a particular branch of the variant.
8666
8667 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8668 is questionable and may be removed. It can arise during the
8669 processing of an unconstrained-array-of-record type where all the
8670 variant branches have exactly the same size. This is because in
8671 such cases, the compiler does not bother to use the XVS convention
8672 when encoding the record. I am currently dubious of this
8673 shortcut and suspect the compiler should be altered. FIXME. */
8674
8675 static struct type *
8676 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8677 CORE_ADDR address, struct value *dval)
8678 {
8679 struct type *templ_type;
8680
8681 if (TYPE_FIXED_INSTANCE (type0))
8682 return type0;
8683
8684 templ_type = dynamic_template_type (type0);
8685
8686 if (templ_type != NULL)
8687 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8688 else if (variant_field_index (type0) >= 0)
8689 {
8690 if (dval == NULL && valaddr == NULL && address == 0)
8691 return type0;
8692 return to_record_with_fixed_variant_part (type0, valaddr, address,
8693 dval);
8694 }
8695 else
8696 {
8697 TYPE_FIXED_INSTANCE (type0) = 1;
8698 return type0;
8699 }
8700
8701 }
8702
8703 /* An ordinary record type (with fixed-length fields) that describes
8704 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8705 union type. Any necessary discriminants' values should be in DVAL,
8706 a record value. That is, this routine selects the appropriate
8707 branch of the union at ADDR according to the discriminant value
8708 indicated in the union's type name. Returns VAR_TYPE0 itself if
8709 it represents a variant subject to a pragma Unchecked_Union. */
8710
8711 static struct type *
8712 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8713 CORE_ADDR address, struct value *dval)
8714 {
8715 int which;
8716 struct type *templ_type;
8717 struct type *var_type;
8718
8719 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8720 var_type = TYPE_TARGET_TYPE (var_type0);
8721 else
8722 var_type = var_type0;
8723
8724 templ_type = ada_find_parallel_type (var_type, "___XVU");
8725
8726 if (templ_type != NULL)
8727 var_type = templ_type;
8728
8729 if (is_unchecked_variant (var_type, value_type (dval)))
8730 return var_type0;
8731 which =
8732 ada_which_variant_applies (var_type,
8733 value_type (dval), value_contents (dval));
8734
8735 if (which < 0)
8736 return empty_record (var_type);
8737 else if (is_dynamic_field (var_type, which))
8738 return to_fixed_record_type
8739 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8740 valaddr, address, dval);
8741 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8742 return
8743 to_fixed_record_type
8744 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8745 else
8746 return TYPE_FIELD_TYPE (var_type, which);
8747 }
8748
8749 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8750 ENCODING_TYPE, a type following the GNAT conventions for discrete
8751 type encodings, only carries redundant information. */
8752
8753 static int
8754 ada_is_redundant_range_encoding (struct type *range_type,
8755 struct type *encoding_type)
8756 {
8757 struct type *fixed_range_type;
8758 const char *bounds_str;
8759 int n;
8760 LONGEST lo, hi;
8761
8762 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8763
8764 if (TYPE_CODE (get_base_type (range_type))
8765 != TYPE_CODE (get_base_type (encoding_type)))
8766 {
8767 /* The compiler probably used a simple base type to describe
8768 the range type instead of the range's actual base type,
8769 expecting us to get the real base type from the encoding
8770 anyway. In this situation, the encoding cannot be ignored
8771 as redundant. */
8772 return 0;
8773 }
8774
8775 if (is_dynamic_type (range_type))
8776 return 0;
8777
8778 if (TYPE_NAME (encoding_type) == NULL)
8779 return 0;
8780
8781 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8782 if (bounds_str == NULL)
8783 return 0;
8784
8785 n = 8; /* Skip "___XDLU_". */
8786 if (!ada_scan_number (bounds_str, n, &lo, &n))
8787 return 0;
8788 if (TYPE_LOW_BOUND (range_type) != lo)
8789 return 0;
8790
8791 n += 2; /* Skip the "__" separator between the two bounds. */
8792 if (!ada_scan_number (bounds_str, n, &hi, &n))
8793 return 0;
8794 if (TYPE_HIGH_BOUND (range_type) != hi)
8795 return 0;
8796
8797 return 1;
8798 }
8799
8800 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8801 a type following the GNAT encoding for describing array type
8802 indices, only carries redundant information. */
8803
8804 static int
8805 ada_is_redundant_index_type_desc (struct type *array_type,
8806 struct type *desc_type)
8807 {
8808 struct type *this_layer = check_typedef (array_type);
8809 int i;
8810
8811 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8812 {
8813 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8814 TYPE_FIELD_TYPE (desc_type, i)))
8815 return 0;
8816 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8817 }
8818
8819 return 1;
8820 }
8821
8822 /* Assuming that TYPE0 is an array type describing the type of a value
8823 at ADDR, and that DVAL describes a record containing any
8824 discriminants used in TYPE0, returns a type for the value that
8825 contains no dynamic components (that is, no components whose sizes
8826 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8827 true, gives an error message if the resulting type's size is over
8828 varsize_limit. */
8829
8830 static struct type *
8831 to_fixed_array_type (struct type *type0, struct value *dval,
8832 int ignore_too_big)
8833 {
8834 struct type *index_type_desc;
8835 struct type *result;
8836 int constrained_packed_array_p;
8837 static const char *xa_suffix = "___XA";
8838
8839 type0 = ada_check_typedef (type0);
8840 if (TYPE_FIXED_INSTANCE (type0))
8841 return type0;
8842
8843 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8844 if (constrained_packed_array_p)
8845 type0 = decode_constrained_packed_array_type (type0);
8846
8847 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8848
8849 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8850 encoding suffixed with 'P' may still be generated. If so,
8851 it should be used to find the XA type. */
8852
8853 if (index_type_desc == NULL)
8854 {
8855 const char *type_name = ada_type_name (type0);
8856
8857 if (type_name != NULL)
8858 {
8859 const int len = strlen (type_name);
8860 char *name = (char *) alloca (len + strlen (xa_suffix));
8861
8862 if (type_name[len - 1] == 'P')
8863 {
8864 strcpy (name, type_name);
8865 strcpy (name + len - 1, xa_suffix);
8866 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8867 }
8868 }
8869 }
8870
8871 ada_fixup_array_indexes_type (index_type_desc);
8872 if (index_type_desc != NULL
8873 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8874 {
8875 /* Ignore this ___XA parallel type, as it does not bring any
8876 useful information. This allows us to avoid creating fixed
8877 versions of the array's index types, which would be identical
8878 to the original ones. This, in turn, can also help avoid
8879 the creation of fixed versions of the array itself. */
8880 index_type_desc = NULL;
8881 }
8882
8883 if (index_type_desc == NULL)
8884 {
8885 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8886
8887 /* NOTE: elt_type---the fixed version of elt_type0---should never
8888 depend on the contents of the array in properly constructed
8889 debugging data. */
8890 /* Create a fixed version of the array element type.
8891 We're not providing the address of an element here,
8892 and thus the actual object value cannot be inspected to do
8893 the conversion. This should not be a problem, since arrays of
8894 unconstrained objects are not allowed. In particular, all
8895 the elements of an array of a tagged type should all be of
8896 the same type specified in the debugging info. No need to
8897 consult the object tag. */
8898 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8899
8900 /* Make sure we always create a new array type when dealing with
8901 packed array types, since we're going to fix-up the array
8902 type length and element bitsize a little further down. */
8903 if (elt_type0 == elt_type && !constrained_packed_array_p)
8904 result = type0;
8905 else
8906 result = create_array_type (alloc_type_copy (type0),
8907 elt_type, TYPE_INDEX_TYPE (type0));
8908 }
8909 else
8910 {
8911 int i;
8912 struct type *elt_type0;
8913
8914 elt_type0 = type0;
8915 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8916 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8917
8918 /* NOTE: result---the fixed version of elt_type0---should never
8919 depend on the contents of the array in properly constructed
8920 debugging data. */
8921 /* Create a fixed version of the array element type.
8922 We're not providing the address of an element here,
8923 and thus the actual object value cannot be inspected to do
8924 the conversion. This should not be a problem, since arrays of
8925 unconstrained objects are not allowed. In particular, all
8926 the elements of an array of a tagged type should all be of
8927 the same type specified in the debugging info. No need to
8928 consult the object tag. */
8929 result =
8930 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8931
8932 elt_type0 = type0;
8933 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8934 {
8935 struct type *range_type =
8936 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8937
8938 result = create_array_type (alloc_type_copy (elt_type0),
8939 result, range_type);
8940 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8941 }
8942 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8943 error (_("array type with dynamic size is larger than varsize-limit"));
8944 }
8945
8946 /* We want to preserve the type name. This can be useful when
8947 trying to get the type name of a value that has already been
8948 printed (for instance, if the user did "print VAR; whatis $". */
8949 TYPE_NAME (result) = TYPE_NAME (type0);
8950
8951 if (constrained_packed_array_p)
8952 {
8953 /* So far, the resulting type has been created as if the original
8954 type was a regular (non-packed) array type. As a result, the
8955 bitsize of the array elements needs to be set again, and the array
8956 length needs to be recomputed based on that bitsize. */
8957 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8958 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8959
8960 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8961 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8962 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8963 TYPE_LENGTH (result)++;
8964 }
8965
8966 TYPE_FIXED_INSTANCE (result) = 1;
8967 return result;
8968 }
8969
8970
8971 /* A standard type (containing no dynamically sized components)
8972 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8973 DVAL describes a record containing any discriminants used in TYPE0,
8974 and may be NULL if there are none, or if the object of type TYPE at
8975 ADDRESS or in VALADDR contains these discriminants.
8976
8977 If CHECK_TAG is not null, in the case of tagged types, this function
8978 attempts to locate the object's tag and use it to compute the actual
8979 type. However, when ADDRESS is null, we cannot use it to determine the
8980 location of the tag, and therefore compute the tagged type's actual type.
8981 So we return the tagged type without consulting the tag. */
8982
8983 static struct type *
8984 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8985 CORE_ADDR address, struct value *dval, int check_tag)
8986 {
8987 type = ada_check_typedef (type);
8988 switch (TYPE_CODE (type))
8989 {
8990 default:
8991 return type;
8992 case TYPE_CODE_STRUCT:
8993 {
8994 struct type *static_type = to_static_fixed_type (type);
8995 struct type *fixed_record_type =
8996 to_fixed_record_type (type, valaddr, address, NULL);
8997
8998 /* If STATIC_TYPE is a tagged type and we know the object's address,
8999 then we can determine its tag, and compute the object's actual
9000 type from there. Note that we have to use the fixed record
9001 type (the parent part of the record may have dynamic fields
9002 and the way the location of _tag is expressed may depend on
9003 them). */
9004
9005 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9006 {
9007 struct value *tag =
9008 value_tag_from_contents_and_address
9009 (fixed_record_type,
9010 valaddr,
9011 address);
9012 struct type *real_type = type_from_tag (tag);
9013 struct value *obj =
9014 value_from_contents_and_address (fixed_record_type,
9015 valaddr,
9016 address);
9017 fixed_record_type = value_type (obj);
9018 if (real_type != NULL)
9019 return to_fixed_record_type
9020 (real_type, NULL,
9021 value_address (ada_tag_value_at_base_address (obj)), NULL);
9022 }
9023
9024 /* Check to see if there is a parallel ___XVZ variable.
9025 If there is, then it provides the actual size of our type. */
9026 else if (ada_type_name (fixed_record_type) != NULL)
9027 {
9028 const char *name = ada_type_name (fixed_record_type);
9029 char *xvz_name
9030 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9031 int xvz_found = 0;
9032 LONGEST size;
9033
9034 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9035 size = get_int_var_value (xvz_name, &xvz_found);
9036 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9037 {
9038 fixed_record_type = copy_type (fixed_record_type);
9039 TYPE_LENGTH (fixed_record_type) = size;
9040
9041 /* The FIXED_RECORD_TYPE may have be a stub. We have
9042 observed this when the debugging info is STABS, and
9043 apparently it is something that is hard to fix.
9044
9045 In practice, we don't need the actual type definition
9046 at all, because the presence of the XVZ variable allows us
9047 to assume that there must be a XVS type as well, which we
9048 should be able to use later, when we need the actual type
9049 definition.
9050
9051 In the meantime, pretend that the "fixed" type we are
9052 returning is NOT a stub, because this can cause trouble
9053 when using this type to create new types targeting it.
9054 Indeed, the associated creation routines often check
9055 whether the target type is a stub and will try to replace
9056 it, thus using a type with the wrong size. This, in turn,
9057 might cause the new type to have the wrong size too.
9058 Consider the case of an array, for instance, where the size
9059 of the array is computed from the number of elements in
9060 our array multiplied by the size of its element. */
9061 TYPE_STUB (fixed_record_type) = 0;
9062 }
9063 }
9064 return fixed_record_type;
9065 }
9066 case TYPE_CODE_ARRAY:
9067 return to_fixed_array_type (type, dval, 1);
9068 case TYPE_CODE_UNION:
9069 if (dval == NULL)
9070 return type;
9071 else
9072 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9073 }
9074 }
9075
9076 /* The same as ada_to_fixed_type_1, except that it preserves the type
9077 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9078
9079 The typedef layer needs be preserved in order to differentiate between
9080 arrays and array pointers when both types are implemented using the same
9081 fat pointer. In the array pointer case, the pointer is encoded as
9082 a typedef of the pointer type. For instance, considering:
9083
9084 type String_Access is access String;
9085 S1 : String_Access := null;
9086
9087 To the debugger, S1 is defined as a typedef of type String. But
9088 to the user, it is a pointer. So if the user tries to print S1,
9089 we should not dereference the array, but print the array address
9090 instead.
9091
9092 If we didn't preserve the typedef layer, we would lose the fact that
9093 the type is to be presented as a pointer (needs de-reference before
9094 being printed). And we would also use the source-level type name. */
9095
9096 struct type *
9097 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9098 CORE_ADDR address, struct value *dval, int check_tag)
9099
9100 {
9101 struct type *fixed_type =
9102 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9103
9104 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9105 then preserve the typedef layer.
9106
9107 Implementation note: We can only check the main-type portion of
9108 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9109 from TYPE now returns a type that has the same instance flags
9110 as TYPE. For instance, if TYPE is a "typedef const", and its
9111 target type is a "struct", then the typedef elimination will return
9112 a "const" version of the target type. See check_typedef for more
9113 details about how the typedef layer elimination is done.
9114
9115 brobecker/2010-11-19: It seems to me that the only case where it is
9116 useful to preserve the typedef layer is when dealing with fat pointers.
9117 Perhaps, we could add a check for that and preserve the typedef layer
9118 only in that situation. But this seems unecessary so far, probably
9119 because we call check_typedef/ada_check_typedef pretty much everywhere.
9120 */
9121 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9122 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9123 == TYPE_MAIN_TYPE (fixed_type)))
9124 return type;
9125
9126 return fixed_type;
9127 }
9128
9129 /* A standard (static-sized) type corresponding as well as possible to
9130 TYPE0, but based on no runtime data. */
9131
9132 static struct type *
9133 to_static_fixed_type (struct type *type0)
9134 {
9135 struct type *type;
9136
9137 if (type0 == NULL)
9138 return NULL;
9139
9140 if (TYPE_FIXED_INSTANCE (type0))
9141 return type0;
9142
9143 type0 = ada_check_typedef (type0);
9144
9145 switch (TYPE_CODE (type0))
9146 {
9147 default:
9148 return type0;
9149 case TYPE_CODE_STRUCT:
9150 type = dynamic_template_type (type0);
9151 if (type != NULL)
9152 return template_to_static_fixed_type (type);
9153 else
9154 return template_to_static_fixed_type (type0);
9155 case TYPE_CODE_UNION:
9156 type = ada_find_parallel_type (type0, "___XVU");
9157 if (type != NULL)
9158 return template_to_static_fixed_type (type);
9159 else
9160 return template_to_static_fixed_type (type0);
9161 }
9162 }
9163
9164 /* A static approximation of TYPE with all type wrappers removed. */
9165
9166 static struct type *
9167 static_unwrap_type (struct type *type)
9168 {
9169 if (ada_is_aligner_type (type))
9170 {
9171 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9172 if (ada_type_name (type1) == NULL)
9173 TYPE_NAME (type1) = ada_type_name (type);
9174
9175 return static_unwrap_type (type1);
9176 }
9177 else
9178 {
9179 struct type *raw_real_type = ada_get_base_type (type);
9180
9181 if (raw_real_type == type)
9182 return type;
9183 else
9184 return to_static_fixed_type (raw_real_type);
9185 }
9186 }
9187
9188 /* In some cases, incomplete and private types require
9189 cross-references that are not resolved as records (for example,
9190 type Foo;
9191 type FooP is access Foo;
9192 V: FooP;
9193 type Foo is array ...;
9194 ). In these cases, since there is no mechanism for producing
9195 cross-references to such types, we instead substitute for FooP a
9196 stub enumeration type that is nowhere resolved, and whose tag is
9197 the name of the actual type. Call these types "non-record stubs". */
9198
9199 /* A type equivalent to TYPE that is not a non-record stub, if one
9200 exists, otherwise TYPE. */
9201
9202 struct type *
9203 ada_check_typedef (struct type *type)
9204 {
9205 if (type == NULL)
9206 return NULL;
9207
9208 /* If our type is a typedef type of a fat pointer, then we're done.
9209 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9210 what allows us to distinguish between fat pointers that represent
9211 array types, and fat pointers that represent array access types
9212 (in both cases, the compiler implements them as fat pointers). */
9213 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9214 && is_thick_pntr (ada_typedef_target_type (type)))
9215 return type;
9216
9217 type = check_typedef (type);
9218 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9219 || !TYPE_STUB (type)
9220 || TYPE_TAG_NAME (type) == NULL)
9221 return type;
9222 else
9223 {
9224 const char *name = TYPE_TAG_NAME (type);
9225 struct type *type1 = ada_find_any_type (name);
9226
9227 if (type1 == NULL)
9228 return type;
9229
9230 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9231 stubs pointing to arrays, as we don't create symbols for array
9232 types, only for the typedef-to-array types). If that's the case,
9233 strip the typedef layer. */
9234 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9235 type1 = ada_check_typedef (type1);
9236
9237 return type1;
9238 }
9239 }
9240
9241 /* A value representing the data at VALADDR/ADDRESS as described by
9242 type TYPE0, but with a standard (static-sized) type that correctly
9243 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9244 type, then return VAL0 [this feature is simply to avoid redundant
9245 creation of struct values]. */
9246
9247 static struct value *
9248 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9249 struct value *val0)
9250 {
9251 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9252
9253 if (type == type0 && val0 != NULL)
9254 return val0;
9255 else
9256 return value_from_contents_and_address (type, 0, address);
9257 }
9258
9259 /* A value representing VAL, but with a standard (static-sized) type
9260 that correctly describes it. Does not necessarily create a new
9261 value. */
9262
9263 struct value *
9264 ada_to_fixed_value (struct value *val)
9265 {
9266 val = unwrap_value (val);
9267 val = ada_to_fixed_value_create (value_type (val),
9268 value_address (val),
9269 val);
9270 return val;
9271 }
9272 \f
9273
9274 /* Attributes */
9275
9276 /* Table mapping attribute numbers to names.
9277 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9278
9279 static const char *attribute_names[] = {
9280 "<?>",
9281
9282 "first",
9283 "last",
9284 "length",
9285 "image",
9286 "max",
9287 "min",
9288 "modulus",
9289 "pos",
9290 "size",
9291 "tag",
9292 "val",
9293 0
9294 };
9295
9296 const char *
9297 ada_attribute_name (enum exp_opcode n)
9298 {
9299 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9300 return attribute_names[n - OP_ATR_FIRST + 1];
9301 else
9302 return attribute_names[0];
9303 }
9304
9305 /* Evaluate the 'POS attribute applied to ARG. */
9306
9307 static LONGEST
9308 pos_atr (struct value *arg)
9309 {
9310 struct value *val = coerce_ref (arg);
9311 struct type *type = value_type (val);
9312 LONGEST result;
9313
9314 if (!discrete_type_p (type))
9315 error (_("'POS only defined on discrete types"));
9316
9317 if (!discrete_position (type, value_as_long (val), &result))
9318 error (_("enumeration value is invalid: can't find 'POS"));
9319
9320 return result;
9321 }
9322
9323 static struct value *
9324 value_pos_atr (struct type *type, struct value *arg)
9325 {
9326 return value_from_longest (type, pos_atr (arg));
9327 }
9328
9329 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9330
9331 static struct value *
9332 value_val_atr (struct type *type, struct value *arg)
9333 {
9334 if (!discrete_type_p (type))
9335 error (_("'VAL only defined on discrete types"));
9336 if (!integer_type_p (value_type (arg)))
9337 error (_("'VAL requires integral argument"));
9338
9339 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9340 {
9341 long pos = value_as_long (arg);
9342
9343 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9344 error (_("argument to 'VAL out of range"));
9345 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9346 }
9347 else
9348 return value_from_longest (type, value_as_long (arg));
9349 }
9350 \f
9351
9352 /* Evaluation */
9353
9354 /* True if TYPE appears to be an Ada character type.
9355 [At the moment, this is true only for Character and Wide_Character;
9356 It is a heuristic test that could stand improvement]. */
9357
9358 int
9359 ada_is_character_type (struct type *type)
9360 {
9361 const char *name;
9362
9363 /* If the type code says it's a character, then assume it really is,
9364 and don't check any further. */
9365 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9366 return 1;
9367
9368 /* Otherwise, assume it's a character type iff it is a discrete type
9369 with a known character type name. */
9370 name = ada_type_name (type);
9371 return (name != NULL
9372 && (TYPE_CODE (type) == TYPE_CODE_INT
9373 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9374 && (strcmp (name, "character") == 0
9375 || strcmp (name, "wide_character") == 0
9376 || strcmp (name, "wide_wide_character") == 0
9377 || strcmp (name, "unsigned char") == 0));
9378 }
9379
9380 /* True if TYPE appears to be an Ada string type. */
9381
9382 int
9383 ada_is_string_type (struct type *type)
9384 {
9385 type = ada_check_typedef (type);
9386 if (type != NULL
9387 && TYPE_CODE (type) != TYPE_CODE_PTR
9388 && (ada_is_simple_array_type (type)
9389 || ada_is_array_descriptor_type (type))
9390 && ada_array_arity (type) == 1)
9391 {
9392 struct type *elttype = ada_array_element_type (type, 1);
9393
9394 return ada_is_character_type (elttype);
9395 }
9396 else
9397 return 0;
9398 }
9399
9400 /* The compiler sometimes provides a parallel XVS type for a given
9401 PAD type. Normally, it is safe to follow the PAD type directly,
9402 but older versions of the compiler have a bug that causes the offset
9403 of its "F" field to be wrong. Following that field in that case
9404 would lead to incorrect results, but this can be worked around
9405 by ignoring the PAD type and using the associated XVS type instead.
9406
9407 Set to True if the debugger should trust the contents of PAD types.
9408 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9409 static int trust_pad_over_xvs = 1;
9410
9411 /* True if TYPE is a struct type introduced by the compiler to force the
9412 alignment of a value. Such types have a single field with a
9413 distinctive name. */
9414
9415 int
9416 ada_is_aligner_type (struct type *type)
9417 {
9418 type = ada_check_typedef (type);
9419
9420 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9421 return 0;
9422
9423 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9424 && TYPE_NFIELDS (type) == 1
9425 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9426 }
9427
9428 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9429 the parallel type. */
9430
9431 struct type *
9432 ada_get_base_type (struct type *raw_type)
9433 {
9434 struct type *real_type_namer;
9435 struct type *raw_real_type;
9436
9437 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9438 return raw_type;
9439
9440 if (ada_is_aligner_type (raw_type))
9441 /* The encoding specifies that we should always use the aligner type.
9442 So, even if this aligner type has an associated XVS type, we should
9443 simply ignore it.
9444
9445 According to the compiler gurus, an XVS type parallel to an aligner
9446 type may exist because of a stabs limitation. In stabs, aligner
9447 types are empty because the field has a variable-sized type, and
9448 thus cannot actually be used as an aligner type. As a result,
9449 we need the associated parallel XVS type to decode the type.
9450 Since the policy in the compiler is to not change the internal
9451 representation based on the debugging info format, we sometimes
9452 end up having a redundant XVS type parallel to the aligner type. */
9453 return raw_type;
9454
9455 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9456 if (real_type_namer == NULL
9457 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9458 || TYPE_NFIELDS (real_type_namer) != 1)
9459 return raw_type;
9460
9461 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9462 {
9463 /* This is an older encoding form where the base type needs to be
9464 looked up by name. We prefer the newer enconding because it is
9465 more efficient. */
9466 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9467 if (raw_real_type == NULL)
9468 return raw_type;
9469 else
9470 return raw_real_type;
9471 }
9472
9473 /* The field in our XVS type is a reference to the base type. */
9474 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9475 }
9476
9477 /* The type of value designated by TYPE, with all aligners removed. */
9478
9479 struct type *
9480 ada_aligned_type (struct type *type)
9481 {
9482 if (ada_is_aligner_type (type))
9483 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9484 else
9485 return ada_get_base_type (type);
9486 }
9487
9488
9489 /* The address of the aligned value in an object at address VALADDR
9490 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9491
9492 const gdb_byte *
9493 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9494 {
9495 if (ada_is_aligner_type (type))
9496 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9497 valaddr +
9498 TYPE_FIELD_BITPOS (type,
9499 0) / TARGET_CHAR_BIT);
9500 else
9501 return valaddr;
9502 }
9503
9504
9505
9506 /* The printed representation of an enumeration literal with encoded
9507 name NAME. The value is good to the next call of ada_enum_name. */
9508 const char *
9509 ada_enum_name (const char *name)
9510 {
9511 static char *result;
9512 static size_t result_len = 0;
9513 const char *tmp;
9514
9515 /* First, unqualify the enumeration name:
9516 1. Search for the last '.' character. If we find one, then skip
9517 all the preceding characters, the unqualified name starts
9518 right after that dot.
9519 2. Otherwise, we may be debugging on a target where the compiler
9520 translates dots into "__". Search forward for double underscores,
9521 but stop searching when we hit an overloading suffix, which is
9522 of the form "__" followed by digits. */
9523
9524 tmp = strrchr (name, '.');
9525 if (tmp != NULL)
9526 name = tmp + 1;
9527 else
9528 {
9529 while ((tmp = strstr (name, "__")) != NULL)
9530 {
9531 if (isdigit (tmp[2]))
9532 break;
9533 else
9534 name = tmp + 2;
9535 }
9536 }
9537
9538 if (name[0] == 'Q')
9539 {
9540 int v;
9541
9542 if (name[1] == 'U' || name[1] == 'W')
9543 {
9544 if (sscanf (name + 2, "%x", &v) != 1)
9545 return name;
9546 }
9547 else
9548 return name;
9549
9550 GROW_VECT (result, result_len, 16);
9551 if (isascii (v) && isprint (v))
9552 xsnprintf (result, result_len, "'%c'", v);
9553 else if (name[1] == 'U')
9554 xsnprintf (result, result_len, "[\"%02x\"]", v);
9555 else
9556 xsnprintf (result, result_len, "[\"%04x\"]", v);
9557
9558 return result;
9559 }
9560 else
9561 {
9562 tmp = strstr (name, "__");
9563 if (tmp == NULL)
9564 tmp = strstr (name, "$");
9565 if (tmp != NULL)
9566 {
9567 GROW_VECT (result, result_len, tmp - name + 1);
9568 strncpy (result, name, tmp - name);
9569 result[tmp - name] = '\0';
9570 return result;
9571 }
9572
9573 return name;
9574 }
9575 }
9576
9577 /* Evaluate the subexpression of EXP starting at *POS as for
9578 evaluate_type, updating *POS to point just past the evaluated
9579 expression. */
9580
9581 static struct value *
9582 evaluate_subexp_type (struct expression *exp, int *pos)
9583 {
9584 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9585 }
9586
9587 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9588 value it wraps. */
9589
9590 static struct value *
9591 unwrap_value (struct value *val)
9592 {
9593 struct type *type = ada_check_typedef (value_type (val));
9594
9595 if (ada_is_aligner_type (type))
9596 {
9597 struct value *v = ada_value_struct_elt (val, "F", 0);
9598 struct type *val_type = ada_check_typedef (value_type (v));
9599
9600 if (ada_type_name (val_type) == NULL)
9601 TYPE_NAME (val_type) = ada_type_name (type);
9602
9603 return unwrap_value (v);
9604 }
9605 else
9606 {
9607 struct type *raw_real_type =
9608 ada_check_typedef (ada_get_base_type (type));
9609
9610 /* If there is no parallel XVS or XVE type, then the value is
9611 already unwrapped. Return it without further modification. */
9612 if ((type == raw_real_type)
9613 && ada_find_parallel_type (type, "___XVE") == NULL)
9614 return val;
9615
9616 return
9617 coerce_unspec_val_to_type
9618 (val, ada_to_fixed_type (raw_real_type, 0,
9619 value_address (val),
9620 NULL, 1));
9621 }
9622 }
9623
9624 static struct value *
9625 cast_to_fixed (struct type *type, struct value *arg)
9626 {
9627 LONGEST val;
9628
9629 if (type == value_type (arg))
9630 return arg;
9631 else if (ada_is_fixed_point_type (value_type (arg)))
9632 val = ada_float_to_fixed (type,
9633 ada_fixed_to_float (value_type (arg),
9634 value_as_long (arg)));
9635 else
9636 {
9637 DOUBLEST argd = value_as_double (arg);
9638
9639 val = ada_float_to_fixed (type, argd);
9640 }
9641
9642 return value_from_longest (type, val);
9643 }
9644
9645 static struct value *
9646 cast_from_fixed (struct type *type, struct value *arg)
9647 {
9648 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9649 value_as_long (arg));
9650
9651 return value_from_double (type, val);
9652 }
9653
9654 /* Given two array types T1 and T2, return nonzero iff both arrays
9655 contain the same number of elements. */
9656
9657 static int
9658 ada_same_array_size_p (struct type *t1, struct type *t2)
9659 {
9660 LONGEST lo1, hi1, lo2, hi2;
9661
9662 /* Get the array bounds in order to verify that the size of
9663 the two arrays match. */
9664 if (!get_array_bounds (t1, &lo1, &hi1)
9665 || !get_array_bounds (t2, &lo2, &hi2))
9666 error (_("unable to determine array bounds"));
9667
9668 /* To make things easier for size comparison, normalize a bit
9669 the case of empty arrays by making sure that the difference
9670 between upper bound and lower bound is always -1. */
9671 if (lo1 > hi1)
9672 hi1 = lo1 - 1;
9673 if (lo2 > hi2)
9674 hi2 = lo2 - 1;
9675
9676 return (hi1 - lo1 == hi2 - lo2);
9677 }
9678
9679 /* Assuming that VAL is an array of integrals, and TYPE represents
9680 an array with the same number of elements, but with wider integral
9681 elements, return an array "casted" to TYPE. In practice, this
9682 means that the returned array is built by casting each element
9683 of the original array into TYPE's (wider) element type. */
9684
9685 static struct value *
9686 ada_promote_array_of_integrals (struct type *type, struct value *val)
9687 {
9688 struct type *elt_type = TYPE_TARGET_TYPE (type);
9689 LONGEST lo, hi;
9690 struct value *res;
9691 LONGEST i;
9692
9693 /* Verify that both val and type are arrays of scalars, and
9694 that the size of val's elements is smaller than the size
9695 of type's element. */
9696 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9697 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9698 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9699 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9700 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9701 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9702
9703 if (!get_array_bounds (type, &lo, &hi))
9704 error (_("unable to determine array bounds"));
9705
9706 res = allocate_value (type);
9707
9708 /* Promote each array element. */
9709 for (i = 0; i < hi - lo + 1; i++)
9710 {
9711 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9712
9713 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9714 value_contents_all (elt), TYPE_LENGTH (elt_type));
9715 }
9716
9717 return res;
9718 }
9719
9720 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9721 return the converted value. */
9722
9723 static struct value *
9724 coerce_for_assign (struct type *type, struct value *val)
9725 {
9726 struct type *type2 = value_type (val);
9727
9728 if (type == type2)
9729 return val;
9730
9731 type2 = ada_check_typedef (type2);
9732 type = ada_check_typedef (type);
9733
9734 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9735 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9736 {
9737 val = ada_value_ind (val);
9738 type2 = value_type (val);
9739 }
9740
9741 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9742 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9743 {
9744 if (!ada_same_array_size_p (type, type2))
9745 error (_("cannot assign arrays of different length"));
9746
9747 if (is_integral_type (TYPE_TARGET_TYPE (type))
9748 && is_integral_type (TYPE_TARGET_TYPE (type2))
9749 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9750 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9751 {
9752 /* Allow implicit promotion of the array elements to
9753 a wider type. */
9754 return ada_promote_array_of_integrals (type, val);
9755 }
9756
9757 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9758 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9759 error (_("Incompatible types in assignment"));
9760 deprecated_set_value_type (val, type);
9761 }
9762 return val;
9763 }
9764
9765 static struct value *
9766 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9767 {
9768 struct value *val;
9769 struct type *type1, *type2;
9770 LONGEST v, v1, v2;
9771
9772 arg1 = coerce_ref (arg1);
9773 arg2 = coerce_ref (arg2);
9774 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9775 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9776
9777 if (TYPE_CODE (type1) != TYPE_CODE_INT
9778 || TYPE_CODE (type2) != TYPE_CODE_INT)
9779 return value_binop (arg1, arg2, op);
9780
9781 switch (op)
9782 {
9783 case BINOP_MOD:
9784 case BINOP_DIV:
9785 case BINOP_REM:
9786 break;
9787 default:
9788 return value_binop (arg1, arg2, op);
9789 }
9790
9791 v2 = value_as_long (arg2);
9792 if (v2 == 0)
9793 error (_("second operand of %s must not be zero."), op_string (op));
9794
9795 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9796 return value_binop (arg1, arg2, op);
9797
9798 v1 = value_as_long (arg1);
9799 switch (op)
9800 {
9801 case BINOP_DIV:
9802 v = v1 / v2;
9803 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9804 v += v > 0 ? -1 : 1;
9805 break;
9806 case BINOP_REM:
9807 v = v1 % v2;
9808 if (v * v1 < 0)
9809 v -= v2;
9810 break;
9811 default:
9812 /* Should not reach this point. */
9813 v = 0;
9814 }
9815
9816 val = allocate_value (type1);
9817 store_unsigned_integer (value_contents_raw (val),
9818 TYPE_LENGTH (value_type (val)),
9819 gdbarch_byte_order (get_type_arch (type1)), v);
9820 return val;
9821 }
9822
9823 static int
9824 ada_value_equal (struct value *arg1, struct value *arg2)
9825 {
9826 if (ada_is_direct_array_type (value_type (arg1))
9827 || ada_is_direct_array_type (value_type (arg2)))
9828 {
9829 /* Automatically dereference any array reference before
9830 we attempt to perform the comparison. */
9831 arg1 = ada_coerce_ref (arg1);
9832 arg2 = ada_coerce_ref (arg2);
9833
9834 arg1 = ada_coerce_to_simple_array (arg1);
9835 arg2 = ada_coerce_to_simple_array (arg2);
9836 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9837 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9838 error (_("Attempt to compare array with non-array"));
9839 /* FIXME: The following works only for types whose
9840 representations use all bits (no padding or undefined bits)
9841 and do not have user-defined equality. */
9842 return
9843 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9844 && memcmp (value_contents (arg1), value_contents (arg2),
9845 TYPE_LENGTH (value_type (arg1))) == 0;
9846 }
9847 return value_equal (arg1, arg2);
9848 }
9849
9850 /* Total number of component associations in the aggregate starting at
9851 index PC in EXP. Assumes that index PC is the start of an
9852 OP_AGGREGATE. */
9853
9854 static int
9855 num_component_specs (struct expression *exp, int pc)
9856 {
9857 int n, m, i;
9858
9859 m = exp->elts[pc + 1].longconst;
9860 pc += 3;
9861 n = 0;
9862 for (i = 0; i < m; i += 1)
9863 {
9864 switch (exp->elts[pc].opcode)
9865 {
9866 default:
9867 n += 1;
9868 break;
9869 case OP_CHOICES:
9870 n += exp->elts[pc + 1].longconst;
9871 break;
9872 }
9873 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9874 }
9875 return n;
9876 }
9877
9878 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9879 component of LHS (a simple array or a record), updating *POS past
9880 the expression, assuming that LHS is contained in CONTAINER. Does
9881 not modify the inferior's memory, nor does it modify LHS (unless
9882 LHS == CONTAINER). */
9883
9884 static void
9885 assign_component (struct value *container, struct value *lhs, LONGEST index,
9886 struct expression *exp, int *pos)
9887 {
9888 struct value *mark = value_mark ();
9889 struct value *elt;
9890
9891 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9892 {
9893 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9894 struct value *index_val = value_from_longest (index_type, index);
9895
9896 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9897 }
9898 else
9899 {
9900 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9901 elt = ada_to_fixed_value (elt);
9902 }
9903
9904 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9905 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9906 else
9907 value_assign_to_component (container, elt,
9908 ada_evaluate_subexp (NULL, exp, pos,
9909 EVAL_NORMAL));
9910
9911 value_free_to_mark (mark);
9912 }
9913
9914 /* Assuming that LHS represents an lvalue having a record or array
9915 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9916 of that aggregate's value to LHS, advancing *POS past the
9917 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9918 lvalue containing LHS (possibly LHS itself). Does not modify
9919 the inferior's memory, nor does it modify the contents of
9920 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9921
9922 static struct value *
9923 assign_aggregate (struct value *container,
9924 struct value *lhs, struct expression *exp,
9925 int *pos, enum noside noside)
9926 {
9927 struct type *lhs_type;
9928 int n = exp->elts[*pos+1].longconst;
9929 LONGEST low_index, high_index;
9930 int num_specs;
9931 LONGEST *indices;
9932 int max_indices, num_indices;
9933 int i;
9934
9935 *pos += 3;
9936 if (noside != EVAL_NORMAL)
9937 {
9938 for (i = 0; i < n; i += 1)
9939 ada_evaluate_subexp (NULL, exp, pos, noside);
9940 return container;
9941 }
9942
9943 container = ada_coerce_ref (container);
9944 if (ada_is_direct_array_type (value_type (container)))
9945 container = ada_coerce_to_simple_array (container);
9946 lhs = ada_coerce_ref (lhs);
9947 if (!deprecated_value_modifiable (lhs))
9948 error (_("Left operand of assignment is not a modifiable lvalue."));
9949
9950 lhs_type = value_type (lhs);
9951 if (ada_is_direct_array_type (lhs_type))
9952 {
9953 lhs = ada_coerce_to_simple_array (lhs);
9954 lhs_type = value_type (lhs);
9955 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9956 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9957 }
9958 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9959 {
9960 low_index = 0;
9961 high_index = num_visible_fields (lhs_type) - 1;
9962 }
9963 else
9964 error (_("Left-hand side must be array or record."));
9965
9966 num_specs = num_component_specs (exp, *pos - 3);
9967 max_indices = 4 * num_specs + 4;
9968 indices = XALLOCAVEC (LONGEST, max_indices);
9969 indices[0] = indices[1] = low_index - 1;
9970 indices[2] = indices[3] = high_index + 1;
9971 num_indices = 4;
9972
9973 for (i = 0; i < n; i += 1)
9974 {
9975 switch (exp->elts[*pos].opcode)
9976 {
9977 case OP_CHOICES:
9978 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9979 &num_indices, max_indices,
9980 low_index, high_index);
9981 break;
9982 case OP_POSITIONAL:
9983 aggregate_assign_positional (container, lhs, exp, pos, indices,
9984 &num_indices, max_indices,
9985 low_index, high_index);
9986 break;
9987 case OP_OTHERS:
9988 if (i != n-1)
9989 error (_("Misplaced 'others' clause"));
9990 aggregate_assign_others (container, lhs, exp, pos, indices,
9991 num_indices, low_index, high_index);
9992 break;
9993 default:
9994 error (_("Internal error: bad aggregate clause"));
9995 }
9996 }
9997
9998 return container;
9999 }
10000
10001 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10002 construct at *POS, updating *POS past the construct, given that
10003 the positions are relative to lower bound LOW, where HIGH is the
10004 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10005 updating *NUM_INDICES as needed. CONTAINER is as for
10006 assign_aggregate. */
10007 static void
10008 aggregate_assign_positional (struct value *container,
10009 struct value *lhs, struct expression *exp,
10010 int *pos, LONGEST *indices, int *num_indices,
10011 int max_indices, LONGEST low, LONGEST high)
10012 {
10013 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10014
10015 if (ind - 1 == high)
10016 warning (_("Extra components in aggregate ignored."));
10017 if (ind <= high)
10018 {
10019 add_component_interval (ind, ind, indices, num_indices, max_indices);
10020 *pos += 3;
10021 assign_component (container, lhs, ind, exp, pos);
10022 }
10023 else
10024 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10025 }
10026
10027 /* Assign into the components of LHS indexed by the OP_CHOICES
10028 construct at *POS, updating *POS past the construct, given that
10029 the allowable indices are LOW..HIGH. Record the indices assigned
10030 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10031 needed. CONTAINER is as for assign_aggregate. */
10032 static void
10033 aggregate_assign_from_choices (struct value *container,
10034 struct value *lhs, struct expression *exp,
10035 int *pos, LONGEST *indices, int *num_indices,
10036 int max_indices, LONGEST low, LONGEST high)
10037 {
10038 int j;
10039 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10040 int choice_pos, expr_pc;
10041 int is_array = ada_is_direct_array_type (value_type (lhs));
10042
10043 choice_pos = *pos += 3;
10044
10045 for (j = 0; j < n_choices; j += 1)
10046 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10047 expr_pc = *pos;
10048 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10049
10050 for (j = 0; j < n_choices; j += 1)
10051 {
10052 LONGEST lower, upper;
10053 enum exp_opcode op = exp->elts[choice_pos].opcode;
10054
10055 if (op == OP_DISCRETE_RANGE)
10056 {
10057 choice_pos += 1;
10058 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10059 EVAL_NORMAL));
10060 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10061 EVAL_NORMAL));
10062 }
10063 else if (is_array)
10064 {
10065 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10066 EVAL_NORMAL));
10067 upper = lower;
10068 }
10069 else
10070 {
10071 int ind;
10072 const char *name;
10073
10074 switch (op)
10075 {
10076 case OP_NAME:
10077 name = &exp->elts[choice_pos + 2].string;
10078 break;
10079 case OP_VAR_VALUE:
10080 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10081 break;
10082 default:
10083 error (_("Invalid record component association."));
10084 }
10085 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10086 ind = 0;
10087 if (! find_struct_field (name, value_type (lhs), 0,
10088 NULL, NULL, NULL, NULL, &ind))
10089 error (_("Unknown component name: %s."), name);
10090 lower = upper = ind;
10091 }
10092
10093 if (lower <= upper && (lower < low || upper > high))
10094 error (_("Index in component association out of bounds."));
10095
10096 add_component_interval (lower, upper, indices, num_indices,
10097 max_indices);
10098 while (lower <= upper)
10099 {
10100 int pos1;
10101
10102 pos1 = expr_pc;
10103 assign_component (container, lhs, lower, exp, &pos1);
10104 lower += 1;
10105 }
10106 }
10107 }
10108
10109 /* Assign the value of the expression in the OP_OTHERS construct in
10110 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10111 have not been previously assigned. The index intervals already assigned
10112 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10113 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10114 static void
10115 aggregate_assign_others (struct value *container,
10116 struct value *lhs, struct expression *exp,
10117 int *pos, LONGEST *indices, int num_indices,
10118 LONGEST low, LONGEST high)
10119 {
10120 int i;
10121 int expr_pc = *pos + 1;
10122
10123 for (i = 0; i < num_indices - 2; i += 2)
10124 {
10125 LONGEST ind;
10126
10127 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10128 {
10129 int localpos;
10130
10131 localpos = expr_pc;
10132 assign_component (container, lhs, ind, exp, &localpos);
10133 }
10134 }
10135 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10136 }
10137
10138 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10139 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10140 modifying *SIZE as needed. It is an error if *SIZE exceeds
10141 MAX_SIZE. The resulting intervals do not overlap. */
10142 static void
10143 add_component_interval (LONGEST low, LONGEST high,
10144 LONGEST* indices, int *size, int max_size)
10145 {
10146 int i, j;
10147
10148 for (i = 0; i < *size; i += 2) {
10149 if (high >= indices[i] && low <= indices[i + 1])
10150 {
10151 int kh;
10152
10153 for (kh = i + 2; kh < *size; kh += 2)
10154 if (high < indices[kh])
10155 break;
10156 if (low < indices[i])
10157 indices[i] = low;
10158 indices[i + 1] = indices[kh - 1];
10159 if (high > indices[i + 1])
10160 indices[i + 1] = high;
10161 memcpy (indices + i + 2, indices + kh, *size - kh);
10162 *size -= kh - i - 2;
10163 return;
10164 }
10165 else if (high < indices[i])
10166 break;
10167 }
10168
10169 if (*size == max_size)
10170 error (_("Internal error: miscounted aggregate components."));
10171 *size += 2;
10172 for (j = *size-1; j >= i+2; j -= 1)
10173 indices[j] = indices[j - 2];
10174 indices[i] = low;
10175 indices[i + 1] = high;
10176 }
10177
10178 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10179 is different. */
10180
10181 static struct value *
10182 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10183 {
10184 if (type == ada_check_typedef (value_type (arg2)))
10185 return arg2;
10186
10187 if (ada_is_fixed_point_type (type))
10188 return (cast_to_fixed (type, arg2));
10189
10190 if (ada_is_fixed_point_type (value_type (arg2)))
10191 return cast_from_fixed (type, arg2);
10192
10193 return value_cast (type, arg2);
10194 }
10195
10196 /* Evaluating Ada expressions, and printing their result.
10197 ------------------------------------------------------
10198
10199 1. Introduction:
10200 ----------------
10201
10202 We usually evaluate an Ada expression in order to print its value.
10203 We also evaluate an expression in order to print its type, which
10204 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10205 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10206 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10207 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10208 similar.
10209
10210 Evaluating expressions is a little more complicated for Ada entities
10211 than it is for entities in languages such as C. The main reason for
10212 this is that Ada provides types whose definition might be dynamic.
10213 One example of such types is variant records. Or another example
10214 would be an array whose bounds can only be known at run time.
10215
10216 The following description is a general guide as to what should be
10217 done (and what should NOT be done) in order to evaluate an expression
10218 involving such types, and when. This does not cover how the semantic
10219 information is encoded by GNAT as this is covered separatly. For the
10220 document used as the reference for the GNAT encoding, see exp_dbug.ads
10221 in the GNAT sources.
10222
10223 Ideally, we should embed each part of this description next to its
10224 associated code. Unfortunately, the amount of code is so vast right
10225 now that it's hard to see whether the code handling a particular
10226 situation might be duplicated or not. One day, when the code is
10227 cleaned up, this guide might become redundant with the comments
10228 inserted in the code, and we might want to remove it.
10229
10230 2. ``Fixing'' an Entity, the Simple Case:
10231 -----------------------------------------
10232
10233 When evaluating Ada expressions, the tricky issue is that they may
10234 reference entities whose type contents and size are not statically
10235 known. Consider for instance a variant record:
10236
10237 type Rec (Empty : Boolean := True) is record
10238 case Empty is
10239 when True => null;
10240 when False => Value : Integer;
10241 end case;
10242 end record;
10243 Yes : Rec := (Empty => False, Value => 1);
10244 No : Rec := (empty => True);
10245
10246 The size and contents of that record depends on the value of the
10247 descriminant (Rec.Empty). At this point, neither the debugging
10248 information nor the associated type structure in GDB are able to
10249 express such dynamic types. So what the debugger does is to create
10250 "fixed" versions of the type that applies to the specific object.
10251 We also informally refer to this opperation as "fixing" an object,
10252 which means creating its associated fixed type.
10253
10254 Example: when printing the value of variable "Yes" above, its fixed
10255 type would look like this:
10256
10257 type Rec is record
10258 Empty : Boolean;
10259 Value : Integer;
10260 end record;
10261
10262 On the other hand, if we printed the value of "No", its fixed type
10263 would become:
10264
10265 type Rec is record
10266 Empty : Boolean;
10267 end record;
10268
10269 Things become a little more complicated when trying to fix an entity
10270 with a dynamic type that directly contains another dynamic type,
10271 such as an array of variant records, for instance. There are
10272 two possible cases: Arrays, and records.
10273
10274 3. ``Fixing'' Arrays:
10275 ---------------------
10276
10277 The type structure in GDB describes an array in terms of its bounds,
10278 and the type of its elements. By design, all elements in the array
10279 have the same type and we cannot represent an array of variant elements
10280 using the current type structure in GDB. When fixing an array,
10281 we cannot fix the array element, as we would potentially need one
10282 fixed type per element of the array. As a result, the best we can do
10283 when fixing an array is to produce an array whose bounds and size
10284 are correct (allowing us to read it from memory), but without having
10285 touched its element type. Fixing each element will be done later,
10286 when (if) necessary.
10287
10288 Arrays are a little simpler to handle than records, because the same
10289 amount of memory is allocated for each element of the array, even if
10290 the amount of space actually used by each element differs from element
10291 to element. Consider for instance the following array of type Rec:
10292
10293 type Rec_Array is array (1 .. 2) of Rec;
10294
10295 The actual amount of memory occupied by each element might be different
10296 from element to element, depending on the value of their discriminant.
10297 But the amount of space reserved for each element in the array remains
10298 fixed regardless. So we simply need to compute that size using
10299 the debugging information available, from which we can then determine
10300 the array size (we multiply the number of elements of the array by
10301 the size of each element).
10302
10303 The simplest case is when we have an array of a constrained element
10304 type. For instance, consider the following type declarations:
10305
10306 type Bounded_String (Max_Size : Integer) is
10307 Length : Integer;
10308 Buffer : String (1 .. Max_Size);
10309 end record;
10310 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10311
10312 In this case, the compiler describes the array as an array of
10313 variable-size elements (identified by its XVS suffix) for which
10314 the size can be read in the parallel XVZ variable.
10315
10316 In the case of an array of an unconstrained element type, the compiler
10317 wraps the array element inside a private PAD type. This type should not
10318 be shown to the user, and must be "unwrap"'ed before printing. Note
10319 that we also use the adjective "aligner" in our code to designate
10320 these wrapper types.
10321
10322 In some cases, the size allocated for each element is statically
10323 known. In that case, the PAD type already has the correct size,
10324 and the array element should remain unfixed.
10325
10326 But there are cases when this size is not statically known.
10327 For instance, assuming that "Five" is an integer variable:
10328
10329 type Dynamic is array (1 .. Five) of Integer;
10330 type Wrapper (Has_Length : Boolean := False) is record
10331 Data : Dynamic;
10332 case Has_Length is
10333 when True => Length : Integer;
10334 when False => null;
10335 end case;
10336 end record;
10337 type Wrapper_Array is array (1 .. 2) of Wrapper;
10338
10339 Hello : Wrapper_Array := (others => (Has_Length => True,
10340 Data => (others => 17),
10341 Length => 1));
10342
10343
10344 The debugging info would describe variable Hello as being an
10345 array of a PAD type. The size of that PAD type is not statically
10346 known, but can be determined using a parallel XVZ variable.
10347 In that case, a copy of the PAD type with the correct size should
10348 be used for the fixed array.
10349
10350 3. ``Fixing'' record type objects:
10351 ----------------------------------
10352
10353 Things are slightly different from arrays in the case of dynamic
10354 record types. In this case, in order to compute the associated
10355 fixed type, we need to determine the size and offset of each of
10356 its components. This, in turn, requires us to compute the fixed
10357 type of each of these components.
10358
10359 Consider for instance the example:
10360
10361 type Bounded_String (Max_Size : Natural) is record
10362 Str : String (1 .. Max_Size);
10363 Length : Natural;
10364 end record;
10365 My_String : Bounded_String (Max_Size => 10);
10366
10367 In that case, the position of field "Length" depends on the size
10368 of field Str, which itself depends on the value of the Max_Size
10369 discriminant. In order to fix the type of variable My_String,
10370 we need to fix the type of field Str. Therefore, fixing a variant
10371 record requires us to fix each of its components.
10372
10373 However, if a component does not have a dynamic size, the component
10374 should not be fixed. In particular, fields that use a PAD type
10375 should not fixed. Here is an example where this might happen
10376 (assuming type Rec above):
10377
10378 type Container (Big : Boolean) is record
10379 First : Rec;
10380 After : Integer;
10381 case Big is
10382 when True => Another : Integer;
10383 when False => null;
10384 end case;
10385 end record;
10386 My_Container : Container := (Big => False,
10387 First => (Empty => True),
10388 After => 42);
10389
10390 In that example, the compiler creates a PAD type for component First,
10391 whose size is constant, and then positions the component After just
10392 right after it. The offset of component After is therefore constant
10393 in this case.
10394
10395 The debugger computes the position of each field based on an algorithm
10396 that uses, among other things, the actual position and size of the field
10397 preceding it. Let's now imagine that the user is trying to print
10398 the value of My_Container. If the type fixing was recursive, we would
10399 end up computing the offset of field After based on the size of the
10400 fixed version of field First. And since in our example First has
10401 only one actual field, the size of the fixed type is actually smaller
10402 than the amount of space allocated to that field, and thus we would
10403 compute the wrong offset of field After.
10404
10405 To make things more complicated, we need to watch out for dynamic
10406 components of variant records (identified by the ___XVL suffix in
10407 the component name). Even if the target type is a PAD type, the size
10408 of that type might not be statically known. So the PAD type needs
10409 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10410 we might end up with the wrong size for our component. This can be
10411 observed with the following type declarations:
10412
10413 type Octal is new Integer range 0 .. 7;
10414 type Octal_Array is array (Positive range <>) of Octal;
10415 pragma Pack (Octal_Array);
10416
10417 type Octal_Buffer (Size : Positive) is record
10418 Buffer : Octal_Array (1 .. Size);
10419 Length : Integer;
10420 end record;
10421
10422 In that case, Buffer is a PAD type whose size is unset and needs
10423 to be computed by fixing the unwrapped type.
10424
10425 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10426 ----------------------------------------------------------
10427
10428 Lastly, when should the sub-elements of an entity that remained unfixed
10429 thus far, be actually fixed?
10430
10431 The answer is: Only when referencing that element. For instance
10432 when selecting one component of a record, this specific component
10433 should be fixed at that point in time. Or when printing the value
10434 of a record, each component should be fixed before its value gets
10435 printed. Similarly for arrays, the element of the array should be
10436 fixed when printing each element of the array, or when extracting
10437 one element out of that array. On the other hand, fixing should
10438 not be performed on the elements when taking a slice of an array!
10439
10440 Note that one of the side-effects of miscomputing the offset and
10441 size of each field is that we end up also miscomputing the size
10442 of the containing type. This can have adverse results when computing
10443 the value of an entity. GDB fetches the value of an entity based
10444 on the size of its type, and thus a wrong size causes GDB to fetch
10445 the wrong amount of memory. In the case where the computed size is
10446 too small, GDB fetches too little data to print the value of our
10447 entiry. Results in this case as unpredicatble, as we usually read
10448 past the buffer containing the data =:-o. */
10449
10450 /* Implement the evaluate_exp routine in the exp_descriptor structure
10451 for the Ada language. */
10452
10453 static struct value *
10454 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10455 int *pos, enum noside noside)
10456 {
10457 enum exp_opcode op;
10458 int tem;
10459 int pc;
10460 int preeval_pos;
10461 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10462 struct type *type;
10463 int nargs, oplen;
10464 struct value **argvec;
10465
10466 pc = *pos;
10467 *pos += 1;
10468 op = exp->elts[pc].opcode;
10469
10470 switch (op)
10471 {
10472 default:
10473 *pos -= 1;
10474 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10475
10476 if (noside == EVAL_NORMAL)
10477 arg1 = unwrap_value (arg1);
10478
10479 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10480 then we need to perform the conversion manually, because
10481 evaluate_subexp_standard doesn't do it. This conversion is
10482 necessary in Ada because the different kinds of float/fixed
10483 types in Ada have different representations.
10484
10485 Similarly, we need to perform the conversion from OP_LONG
10486 ourselves. */
10487 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10488 arg1 = ada_value_cast (expect_type, arg1, noside);
10489
10490 return arg1;
10491
10492 case OP_STRING:
10493 {
10494 struct value *result;
10495
10496 *pos -= 1;
10497 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10498 /* The result type will have code OP_STRING, bashed there from
10499 OP_ARRAY. Bash it back. */
10500 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10501 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10502 return result;
10503 }
10504
10505 case UNOP_CAST:
10506 (*pos) += 2;
10507 type = exp->elts[pc + 1].type;
10508 arg1 = evaluate_subexp (type, exp, pos, noside);
10509 if (noside == EVAL_SKIP)
10510 goto nosideret;
10511 arg1 = ada_value_cast (type, arg1, noside);
10512 return arg1;
10513
10514 case UNOP_QUAL:
10515 (*pos) += 2;
10516 type = exp->elts[pc + 1].type;
10517 return ada_evaluate_subexp (type, exp, pos, noside);
10518
10519 case BINOP_ASSIGN:
10520 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10521 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10522 {
10523 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10524 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10525 return arg1;
10526 return ada_value_assign (arg1, arg1);
10527 }
10528 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10529 except if the lhs of our assignment is a convenience variable.
10530 In the case of assigning to a convenience variable, the lhs
10531 should be exactly the result of the evaluation of the rhs. */
10532 type = value_type (arg1);
10533 if (VALUE_LVAL (arg1) == lval_internalvar)
10534 type = NULL;
10535 arg2 = evaluate_subexp (type, exp, pos, noside);
10536 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10537 return arg1;
10538 if (ada_is_fixed_point_type (value_type (arg1)))
10539 arg2 = cast_to_fixed (value_type (arg1), arg2);
10540 else if (ada_is_fixed_point_type (value_type (arg2)))
10541 error
10542 (_("Fixed-point values must be assigned to fixed-point variables"));
10543 else
10544 arg2 = coerce_for_assign (value_type (arg1), arg2);
10545 return ada_value_assign (arg1, arg2);
10546
10547 case BINOP_ADD:
10548 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10549 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10550 if (noside == EVAL_SKIP)
10551 goto nosideret;
10552 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10553 return (value_from_longest
10554 (value_type (arg1),
10555 value_as_long (arg1) + value_as_long (arg2)));
10556 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10557 return (value_from_longest
10558 (value_type (arg2),
10559 value_as_long (arg1) + value_as_long (arg2)));
10560 if ((ada_is_fixed_point_type (value_type (arg1))
10561 || ada_is_fixed_point_type (value_type (arg2)))
10562 && value_type (arg1) != value_type (arg2))
10563 error (_("Operands of fixed-point addition must have the same type"));
10564 /* Do the addition, and cast the result to the type of the first
10565 argument. We cannot cast the result to a reference type, so if
10566 ARG1 is a reference type, find its underlying type. */
10567 type = value_type (arg1);
10568 while (TYPE_CODE (type) == TYPE_CODE_REF)
10569 type = TYPE_TARGET_TYPE (type);
10570 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10571 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10572
10573 case BINOP_SUB:
10574 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10575 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10576 if (noside == EVAL_SKIP)
10577 goto nosideret;
10578 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10579 return (value_from_longest
10580 (value_type (arg1),
10581 value_as_long (arg1) - value_as_long (arg2)));
10582 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10583 return (value_from_longest
10584 (value_type (arg2),
10585 value_as_long (arg1) - value_as_long (arg2)));
10586 if ((ada_is_fixed_point_type (value_type (arg1))
10587 || ada_is_fixed_point_type (value_type (arg2)))
10588 && value_type (arg1) != value_type (arg2))
10589 error (_("Operands of fixed-point subtraction "
10590 "must have the same type"));
10591 /* Do the substraction, and cast the result to the type of the first
10592 argument. We cannot cast the result to a reference type, so if
10593 ARG1 is a reference type, find its underlying type. */
10594 type = value_type (arg1);
10595 while (TYPE_CODE (type) == TYPE_CODE_REF)
10596 type = TYPE_TARGET_TYPE (type);
10597 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10598 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10599
10600 case BINOP_MUL:
10601 case BINOP_DIV:
10602 case BINOP_REM:
10603 case BINOP_MOD:
10604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10605 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10606 if (noside == EVAL_SKIP)
10607 goto nosideret;
10608 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10609 {
10610 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10611 return value_zero (value_type (arg1), not_lval);
10612 }
10613 else
10614 {
10615 type = builtin_type (exp->gdbarch)->builtin_double;
10616 if (ada_is_fixed_point_type (value_type (arg1)))
10617 arg1 = cast_from_fixed (type, arg1);
10618 if (ada_is_fixed_point_type (value_type (arg2)))
10619 arg2 = cast_from_fixed (type, arg2);
10620 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10621 return ada_value_binop (arg1, arg2, op);
10622 }
10623
10624 case BINOP_EQUAL:
10625 case BINOP_NOTEQUAL:
10626 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10627 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10628 if (noside == EVAL_SKIP)
10629 goto nosideret;
10630 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10631 tem = 0;
10632 else
10633 {
10634 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10635 tem = ada_value_equal (arg1, arg2);
10636 }
10637 if (op == BINOP_NOTEQUAL)
10638 tem = !tem;
10639 type = language_bool_type (exp->language_defn, exp->gdbarch);
10640 return value_from_longest (type, (LONGEST) tem);
10641
10642 case UNOP_NEG:
10643 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10644 if (noside == EVAL_SKIP)
10645 goto nosideret;
10646 else if (ada_is_fixed_point_type (value_type (arg1)))
10647 return value_cast (value_type (arg1), value_neg (arg1));
10648 else
10649 {
10650 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10651 return value_neg (arg1);
10652 }
10653
10654 case BINOP_LOGICAL_AND:
10655 case BINOP_LOGICAL_OR:
10656 case UNOP_LOGICAL_NOT:
10657 {
10658 struct value *val;
10659
10660 *pos -= 1;
10661 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10662 type = language_bool_type (exp->language_defn, exp->gdbarch);
10663 return value_cast (type, val);
10664 }
10665
10666 case BINOP_BITWISE_AND:
10667 case BINOP_BITWISE_IOR:
10668 case BINOP_BITWISE_XOR:
10669 {
10670 struct value *val;
10671
10672 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10673 *pos = pc;
10674 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10675
10676 return value_cast (value_type (arg1), val);
10677 }
10678
10679 case OP_VAR_VALUE:
10680 *pos -= 1;
10681
10682 if (noside == EVAL_SKIP)
10683 {
10684 *pos += 4;
10685 goto nosideret;
10686 }
10687
10688 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10689 /* Only encountered when an unresolved symbol occurs in a
10690 context other than a function call, in which case, it is
10691 invalid. */
10692 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10693 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10694
10695 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10696 {
10697 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10698 /* Check to see if this is a tagged type. We also need to handle
10699 the case where the type is a reference to a tagged type, but
10700 we have to be careful to exclude pointers to tagged types.
10701 The latter should be shown as usual (as a pointer), whereas
10702 a reference should mostly be transparent to the user. */
10703 if (ada_is_tagged_type (type, 0)
10704 || (TYPE_CODE (type) == TYPE_CODE_REF
10705 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10706 {
10707 /* Tagged types are a little special in the fact that the real
10708 type is dynamic and can only be determined by inspecting the
10709 object's tag. This means that we need to get the object's
10710 value first (EVAL_NORMAL) and then extract the actual object
10711 type from its tag.
10712
10713 Note that we cannot skip the final step where we extract
10714 the object type from its tag, because the EVAL_NORMAL phase
10715 results in dynamic components being resolved into fixed ones.
10716 This can cause problems when trying to print the type
10717 description of tagged types whose parent has a dynamic size:
10718 We use the type name of the "_parent" component in order
10719 to print the name of the ancestor type in the type description.
10720 If that component had a dynamic size, the resolution into
10721 a fixed type would result in the loss of that type name,
10722 thus preventing us from printing the name of the ancestor
10723 type in the type description. */
10724 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10725
10726 if (TYPE_CODE (type) != TYPE_CODE_REF)
10727 {
10728 struct type *actual_type;
10729
10730 actual_type = type_from_tag (ada_value_tag (arg1));
10731 if (actual_type == NULL)
10732 /* If, for some reason, we were unable to determine
10733 the actual type from the tag, then use the static
10734 approximation that we just computed as a fallback.
10735 This can happen if the debugging information is
10736 incomplete, for instance. */
10737 actual_type = type;
10738 return value_zero (actual_type, not_lval);
10739 }
10740 else
10741 {
10742 /* In the case of a ref, ada_coerce_ref takes care
10743 of determining the actual type. But the evaluation
10744 should return a ref as it should be valid to ask
10745 for its address; so rebuild a ref after coerce. */
10746 arg1 = ada_coerce_ref (arg1);
10747 return value_ref (arg1);
10748 }
10749 }
10750
10751 /* Records and unions for which GNAT encodings have been
10752 generated need to be statically fixed as well.
10753 Otherwise, non-static fixing produces a type where
10754 all dynamic properties are removed, which prevents "ptype"
10755 from being able to completely describe the type.
10756 For instance, a case statement in a variant record would be
10757 replaced by the relevant components based on the actual
10758 value of the discriminants. */
10759 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10760 && dynamic_template_type (type) != NULL)
10761 || (TYPE_CODE (type) == TYPE_CODE_UNION
10762 && ada_find_parallel_type (type, "___XVU") != NULL))
10763 {
10764 *pos += 4;
10765 return value_zero (to_static_fixed_type (type), not_lval);
10766 }
10767 }
10768
10769 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10770 return ada_to_fixed_value (arg1);
10771
10772 case OP_FUNCALL:
10773 (*pos) += 2;
10774
10775 /* Allocate arg vector, including space for the function to be
10776 called in argvec[0] and a terminating NULL. */
10777 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10778 argvec = XALLOCAVEC (struct value *, nargs + 2);
10779
10780 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10781 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10782 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10783 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10784 else
10785 {
10786 for (tem = 0; tem <= nargs; tem += 1)
10787 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10788 argvec[tem] = 0;
10789
10790 if (noside == EVAL_SKIP)
10791 goto nosideret;
10792 }
10793
10794 if (ada_is_constrained_packed_array_type
10795 (desc_base_type (value_type (argvec[0]))))
10796 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10797 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10798 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10799 /* This is a packed array that has already been fixed, and
10800 therefore already coerced to a simple array. Nothing further
10801 to do. */
10802 ;
10803 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10804 {
10805 /* Make sure we dereference references so that all the code below
10806 feels like it's really handling the referenced value. Wrapping
10807 types (for alignment) may be there, so make sure we strip them as
10808 well. */
10809 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10810 }
10811 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10812 && VALUE_LVAL (argvec[0]) == lval_memory)
10813 argvec[0] = value_addr (argvec[0]);
10814
10815 type = ada_check_typedef (value_type (argvec[0]));
10816
10817 /* Ada allows us to implicitly dereference arrays when subscripting
10818 them. So, if this is an array typedef (encoding use for array
10819 access types encoded as fat pointers), strip it now. */
10820 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10821 type = ada_typedef_target_type (type);
10822
10823 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10824 {
10825 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10826 {
10827 case TYPE_CODE_FUNC:
10828 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10829 break;
10830 case TYPE_CODE_ARRAY:
10831 break;
10832 case TYPE_CODE_STRUCT:
10833 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10834 argvec[0] = ada_value_ind (argvec[0]);
10835 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10836 break;
10837 default:
10838 error (_("cannot subscript or call something of type `%s'"),
10839 ada_type_name (value_type (argvec[0])));
10840 break;
10841 }
10842 }
10843
10844 switch (TYPE_CODE (type))
10845 {
10846 case TYPE_CODE_FUNC:
10847 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10848 {
10849 struct type *rtype = TYPE_TARGET_TYPE (type);
10850
10851 if (TYPE_GNU_IFUNC (type))
10852 return allocate_value (TYPE_TARGET_TYPE (rtype));
10853 return allocate_value (rtype);
10854 }
10855 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10856 case TYPE_CODE_INTERNAL_FUNCTION:
10857 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10858 /* We don't know anything about what the internal
10859 function might return, but we have to return
10860 something. */
10861 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10862 not_lval);
10863 else
10864 return call_internal_function (exp->gdbarch, exp->language_defn,
10865 argvec[0], nargs, argvec + 1);
10866
10867 case TYPE_CODE_STRUCT:
10868 {
10869 int arity;
10870
10871 arity = ada_array_arity (type);
10872 type = ada_array_element_type (type, nargs);
10873 if (type == NULL)
10874 error (_("cannot subscript or call a record"));
10875 if (arity != nargs)
10876 error (_("wrong number of subscripts; expecting %d"), arity);
10877 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10878 return value_zero (ada_aligned_type (type), lval_memory);
10879 return
10880 unwrap_value (ada_value_subscript
10881 (argvec[0], nargs, argvec + 1));
10882 }
10883 case TYPE_CODE_ARRAY:
10884 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10885 {
10886 type = ada_array_element_type (type, nargs);
10887 if (type == NULL)
10888 error (_("element type of array unknown"));
10889 else
10890 return value_zero (ada_aligned_type (type), lval_memory);
10891 }
10892 return
10893 unwrap_value (ada_value_subscript
10894 (ada_coerce_to_simple_array (argvec[0]),
10895 nargs, argvec + 1));
10896 case TYPE_CODE_PTR: /* Pointer to array */
10897 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10898 {
10899 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10900 type = ada_array_element_type (type, nargs);
10901 if (type == NULL)
10902 error (_("element type of array unknown"));
10903 else
10904 return value_zero (ada_aligned_type (type), lval_memory);
10905 }
10906 return
10907 unwrap_value (ada_value_ptr_subscript (argvec[0],
10908 nargs, argvec + 1));
10909
10910 default:
10911 error (_("Attempt to index or call something other than an "
10912 "array or function"));
10913 }
10914
10915 case TERNOP_SLICE:
10916 {
10917 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10918 struct value *low_bound_val =
10919 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10920 struct value *high_bound_val =
10921 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10922 LONGEST low_bound;
10923 LONGEST high_bound;
10924
10925 low_bound_val = coerce_ref (low_bound_val);
10926 high_bound_val = coerce_ref (high_bound_val);
10927 low_bound = value_as_long (low_bound_val);
10928 high_bound = value_as_long (high_bound_val);
10929
10930 if (noside == EVAL_SKIP)
10931 goto nosideret;
10932
10933 /* If this is a reference to an aligner type, then remove all
10934 the aligners. */
10935 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10936 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10937 TYPE_TARGET_TYPE (value_type (array)) =
10938 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10939
10940 if (ada_is_constrained_packed_array_type (value_type (array)))
10941 error (_("cannot slice a packed array"));
10942
10943 /* If this is a reference to an array or an array lvalue,
10944 convert to a pointer. */
10945 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10946 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10947 && VALUE_LVAL (array) == lval_memory))
10948 array = value_addr (array);
10949
10950 if (noside == EVAL_AVOID_SIDE_EFFECTS
10951 && ada_is_array_descriptor_type (ada_check_typedef
10952 (value_type (array))))
10953 return empty_array (ada_type_of_array (array, 0), low_bound);
10954
10955 array = ada_coerce_to_simple_array_ptr (array);
10956
10957 /* If we have more than one level of pointer indirection,
10958 dereference the value until we get only one level. */
10959 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10960 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10961 == TYPE_CODE_PTR))
10962 array = value_ind (array);
10963
10964 /* Make sure we really do have an array type before going further,
10965 to avoid a SEGV when trying to get the index type or the target
10966 type later down the road if the debug info generated by
10967 the compiler is incorrect or incomplete. */
10968 if (!ada_is_simple_array_type (value_type (array)))
10969 error (_("cannot take slice of non-array"));
10970
10971 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10972 == TYPE_CODE_PTR)
10973 {
10974 struct type *type0 = ada_check_typedef (value_type (array));
10975
10976 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10977 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10978 else
10979 {
10980 struct type *arr_type0 =
10981 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10982
10983 return ada_value_slice_from_ptr (array, arr_type0,
10984 longest_to_int (low_bound),
10985 longest_to_int (high_bound));
10986 }
10987 }
10988 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10989 return array;
10990 else if (high_bound < low_bound)
10991 return empty_array (value_type (array), low_bound);
10992 else
10993 return ada_value_slice (array, longest_to_int (low_bound),
10994 longest_to_int (high_bound));
10995 }
10996
10997 case UNOP_IN_RANGE:
10998 (*pos) += 2;
10999 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11000 type = check_typedef (exp->elts[pc + 1].type);
11001
11002 if (noside == EVAL_SKIP)
11003 goto nosideret;
11004
11005 switch (TYPE_CODE (type))
11006 {
11007 default:
11008 lim_warning (_("Membership test incompletely implemented; "
11009 "always returns true"));
11010 type = language_bool_type (exp->language_defn, exp->gdbarch);
11011 return value_from_longest (type, (LONGEST) 1);
11012
11013 case TYPE_CODE_RANGE:
11014 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11015 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11016 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11017 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11018 type = language_bool_type (exp->language_defn, exp->gdbarch);
11019 return
11020 value_from_longest (type,
11021 (value_less (arg1, arg3)
11022 || value_equal (arg1, arg3))
11023 && (value_less (arg2, arg1)
11024 || value_equal (arg2, arg1)));
11025 }
11026
11027 case BINOP_IN_BOUNDS:
11028 (*pos) += 2;
11029 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11030 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11031
11032 if (noside == EVAL_SKIP)
11033 goto nosideret;
11034
11035 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11036 {
11037 type = language_bool_type (exp->language_defn, exp->gdbarch);
11038 return value_zero (type, not_lval);
11039 }
11040
11041 tem = longest_to_int (exp->elts[pc + 1].longconst);
11042
11043 type = ada_index_type (value_type (arg2), tem, "range");
11044 if (!type)
11045 type = value_type (arg1);
11046
11047 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11048 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11049
11050 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11051 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11052 type = language_bool_type (exp->language_defn, exp->gdbarch);
11053 return
11054 value_from_longest (type,
11055 (value_less (arg1, arg3)
11056 || value_equal (arg1, arg3))
11057 && (value_less (arg2, arg1)
11058 || value_equal (arg2, arg1)));
11059
11060 case TERNOP_IN_RANGE:
11061 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11062 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11063 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11064
11065 if (noside == EVAL_SKIP)
11066 goto nosideret;
11067
11068 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11069 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11070 type = language_bool_type (exp->language_defn, exp->gdbarch);
11071 return
11072 value_from_longest (type,
11073 (value_less (arg1, arg3)
11074 || value_equal (arg1, arg3))
11075 && (value_less (arg2, arg1)
11076 || value_equal (arg2, arg1)));
11077
11078 case OP_ATR_FIRST:
11079 case OP_ATR_LAST:
11080 case OP_ATR_LENGTH:
11081 {
11082 struct type *type_arg;
11083
11084 if (exp->elts[*pos].opcode == OP_TYPE)
11085 {
11086 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11087 arg1 = NULL;
11088 type_arg = check_typedef (exp->elts[pc + 2].type);
11089 }
11090 else
11091 {
11092 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11093 type_arg = NULL;
11094 }
11095
11096 if (exp->elts[*pos].opcode != OP_LONG)
11097 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11098 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11099 *pos += 4;
11100
11101 if (noside == EVAL_SKIP)
11102 goto nosideret;
11103
11104 if (type_arg == NULL)
11105 {
11106 arg1 = ada_coerce_ref (arg1);
11107
11108 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11109 arg1 = ada_coerce_to_simple_array (arg1);
11110
11111 if (op == OP_ATR_LENGTH)
11112 type = builtin_type (exp->gdbarch)->builtin_int;
11113 else
11114 {
11115 type = ada_index_type (value_type (arg1), tem,
11116 ada_attribute_name (op));
11117 if (type == NULL)
11118 type = builtin_type (exp->gdbarch)->builtin_int;
11119 }
11120
11121 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11122 return allocate_value (type);
11123
11124 switch (op)
11125 {
11126 default: /* Should never happen. */
11127 error (_("unexpected attribute encountered"));
11128 case OP_ATR_FIRST:
11129 return value_from_longest
11130 (type, ada_array_bound (arg1, tem, 0));
11131 case OP_ATR_LAST:
11132 return value_from_longest
11133 (type, ada_array_bound (arg1, tem, 1));
11134 case OP_ATR_LENGTH:
11135 return value_from_longest
11136 (type, ada_array_length (arg1, tem));
11137 }
11138 }
11139 else if (discrete_type_p (type_arg))
11140 {
11141 struct type *range_type;
11142 const char *name = ada_type_name (type_arg);
11143
11144 range_type = NULL;
11145 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11146 range_type = to_fixed_range_type (type_arg, NULL);
11147 if (range_type == NULL)
11148 range_type = type_arg;
11149 switch (op)
11150 {
11151 default:
11152 error (_("unexpected attribute encountered"));
11153 case OP_ATR_FIRST:
11154 return value_from_longest
11155 (range_type, ada_discrete_type_low_bound (range_type));
11156 case OP_ATR_LAST:
11157 return value_from_longest
11158 (range_type, ada_discrete_type_high_bound (range_type));
11159 case OP_ATR_LENGTH:
11160 error (_("the 'length attribute applies only to array types"));
11161 }
11162 }
11163 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11164 error (_("unimplemented type attribute"));
11165 else
11166 {
11167 LONGEST low, high;
11168
11169 if (ada_is_constrained_packed_array_type (type_arg))
11170 type_arg = decode_constrained_packed_array_type (type_arg);
11171
11172 if (op == OP_ATR_LENGTH)
11173 type = builtin_type (exp->gdbarch)->builtin_int;
11174 else
11175 {
11176 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11177 if (type == NULL)
11178 type = builtin_type (exp->gdbarch)->builtin_int;
11179 }
11180
11181 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11182 return allocate_value (type);
11183
11184 switch (op)
11185 {
11186 default:
11187 error (_("unexpected attribute encountered"));
11188 case OP_ATR_FIRST:
11189 low = ada_array_bound_from_type (type_arg, tem, 0);
11190 return value_from_longest (type, low);
11191 case OP_ATR_LAST:
11192 high = ada_array_bound_from_type (type_arg, tem, 1);
11193 return value_from_longest (type, high);
11194 case OP_ATR_LENGTH:
11195 low = ada_array_bound_from_type (type_arg, tem, 0);
11196 high = ada_array_bound_from_type (type_arg, tem, 1);
11197 return value_from_longest (type, high - low + 1);
11198 }
11199 }
11200 }
11201
11202 case OP_ATR_TAG:
11203 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11204 if (noside == EVAL_SKIP)
11205 goto nosideret;
11206
11207 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11208 return value_zero (ada_tag_type (arg1), not_lval);
11209
11210 return ada_value_tag (arg1);
11211
11212 case OP_ATR_MIN:
11213 case OP_ATR_MAX:
11214 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11215 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11216 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11217 if (noside == EVAL_SKIP)
11218 goto nosideret;
11219 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11220 return value_zero (value_type (arg1), not_lval);
11221 else
11222 {
11223 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11224 return value_binop (arg1, arg2,
11225 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11226 }
11227
11228 case OP_ATR_MODULUS:
11229 {
11230 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11231
11232 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11233 if (noside == EVAL_SKIP)
11234 goto nosideret;
11235
11236 if (!ada_is_modular_type (type_arg))
11237 error (_("'modulus must be applied to modular type"));
11238
11239 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11240 ada_modulus (type_arg));
11241 }
11242
11243
11244 case OP_ATR_POS:
11245 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 if (noside == EVAL_SKIP)
11248 goto nosideret;
11249 type = builtin_type (exp->gdbarch)->builtin_int;
11250 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11251 return value_zero (type, not_lval);
11252 else
11253 return value_pos_atr (type, arg1);
11254
11255 case OP_ATR_SIZE:
11256 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11257 type = value_type (arg1);
11258
11259 /* If the argument is a reference, then dereference its type, since
11260 the user is really asking for the size of the actual object,
11261 not the size of the pointer. */
11262 if (TYPE_CODE (type) == TYPE_CODE_REF)
11263 type = TYPE_TARGET_TYPE (type);
11264
11265 if (noside == EVAL_SKIP)
11266 goto nosideret;
11267 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11268 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11269 else
11270 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11271 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11272
11273 case OP_ATR_VAL:
11274 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11275 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11276 type = exp->elts[pc + 2].type;
11277 if (noside == EVAL_SKIP)
11278 goto nosideret;
11279 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11280 return value_zero (type, not_lval);
11281 else
11282 return value_val_atr (type, arg1);
11283
11284 case BINOP_EXP:
11285 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11286 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11287 if (noside == EVAL_SKIP)
11288 goto nosideret;
11289 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11290 return value_zero (value_type (arg1), not_lval);
11291 else
11292 {
11293 /* For integer exponentiation operations,
11294 only promote the first argument. */
11295 if (is_integral_type (value_type (arg2)))
11296 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11297 else
11298 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11299
11300 return value_binop (arg1, arg2, op);
11301 }
11302
11303 case UNOP_PLUS:
11304 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11305 if (noside == EVAL_SKIP)
11306 goto nosideret;
11307 else
11308 return arg1;
11309
11310 case UNOP_ABS:
11311 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11312 if (noside == EVAL_SKIP)
11313 goto nosideret;
11314 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11315 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11316 return value_neg (arg1);
11317 else
11318 return arg1;
11319
11320 case UNOP_IND:
11321 preeval_pos = *pos;
11322 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11323 if (noside == EVAL_SKIP)
11324 goto nosideret;
11325 type = ada_check_typedef (value_type (arg1));
11326 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11327 {
11328 if (ada_is_array_descriptor_type (type))
11329 /* GDB allows dereferencing GNAT array descriptors. */
11330 {
11331 struct type *arrType = ada_type_of_array (arg1, 0);
11332
11333 if (arrType == NULL)
11334 error (_("Attempt to dereference null array pointer."));
11335 return value_at_lazy (arrType, 0);
11336 }
11337 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11338 || TYPE_CODE (type) == TYPE_CODE_REF
11339 /* In C you can dereference an array to get the 1st elt. */
11340 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11341 {
11342 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11343 only be determined by inspecting the object's tag.
11344 This means that we need to evaluate completely the
11345 expression in order to get its type. */
11346
11347 if ((TYPE_CODE (type) == TYPE_CODE_REF
11348 || TYPE_CODE (type) == TYPE_CODE_PTR)
11349 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11350 {
11351 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11352 EVAL_NORMAL);
11353 type = value_type (ada_value_ind (arg1));
11354 }
11355 else
11356 {
11357 type = to_static_fixed_type
11358 (ada_aligned_type
11359 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11360 }
11361 ada_ensure_varsize_limit (type);
11362 return value_zero (type, lval_memory);
11363 }
11364 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11365 {
11366 /* GDB allows dereferencing an int. */
11367 if (expect_type == NULL)
11368 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11369 lval_memory);
11370 else
11371 {
11372 expect_type =
11373 to_static_fixed_type (ada_aligned_type (expect_type));
11374 return value_zero (expect_type, lval_memory);
11375 }
11376 }
11377 else
11378 error (_("Attempt to take contents of a non-pointer value."));
11379 }
11380 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11381 type = ada_check_typedef (value_type (arg1));
11382
11383 if (TYPE_CODE (type) == TYPE_CODE_INT)
11384 /* GDB allows dereferencing an int. If we were given
11385 the expect_type, then use that as the target type.
11386 Otherwise, assume that the target type is an int. */
11387 {
11388 if (expect_type != NULL)
11389 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11390 arg1));
11391 else
11392 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11393 (CORE_ADDR) value_as_address (arg1));
11394 }
11395
11396 if (ada_is_array_descriptor_type (type))
11397 /* GDB allows dereferencing GNAT array descriptors. */
11398 return ada_coerce_to_simple_array (arg1);
11399 else
11400 return ada_value_ind (arg1);
11401
11402 case STRUCTOP_STRUCT:
11403 tem = longest_to_int (exp->elts[pc + 1].longconst);
11404 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11405 preeval_pos = *pos;
11406 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11407 if (noside == EVAL_SKIP)
11408 goto nosideret;
11409 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11410 {
11411 struct type *type1 = value_type (arg1);
11412
11413 if (ada_is_tagged_type (type1, 1))
11414 {
11415 type = ada_lookup_struct_elt_type (type1,
11416 &exp->elts[pc + 2].string,
11417 1, 1, NULL);
11418
11419 /* If the field is not found, check if it exists in the
11420 extension of this object's type. This means that we
11421 need to evaluate completely the expression. */
11422
11423 if (type == NULL)
11424 {
11425 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11426 EVAL_NORMAL);
11427 arg1 = ada_value_struct_elt (arg1,
11428 &exp->elts[pc + 2].string,
11429 0);
11430 arg1 = unwrap_value (arg1);
11431 type = value_type (ada_to_fixed_value (arg1));
11432 }
11433 }
11434 else
11435 type =
11436 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11437 0, NULL);
11438
11439 return value_zero (ada_aligned_type (type), lval_memory);
11440 }
11441 else
11442 {
11443 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11444 arg1 = unwrap_value (arg1);
11445 return ada_to_fixed_value (arg1);
11446 }
11447
11448 case OP_TYPE:
11449 /* The value is not supposed to be used. This is here to make it
11450 easier to accommodate expressions that contain types. */
11451 (*pos) += 2;
11452 if (noside == EVAL_SKIP)
11453 goto nosideret;
11454 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11455 return allocate_value (exp->elts[pc + 1].type);
11456 else
11457 error (_("Attempt to use a type name as an expression"));
11458
11459 case OP_AGGREGATE:
11460 case OP_CHOICES:
11461 case OP_OTHERS:
11462 case OP_DISCRETE_RANGE:
11463 case OP_POSITIONAL:
11464 case OP_NAME:
11465 if (noside == EVAL_NORMAL)
11466 switch (op)
11467 {
11468 case OP_NAME:
11469 error (_("Undefined name, ambiguous name, or renaming used in "
11470 "component association: %s."), &exp->elts[pc+2].string);
11471 case OP_AGGREGATE:
11472 error (_("Aggregates only allowed on the right of an assignment"));
11473 default:
11474 internal_error (__FILE__, __LINE__,
11475 _("aggregate apparently mangled"));
11476 }
11477
11478 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11479 *pos += oplen - 1;
11480 for (tem = 0; tem < nargs; tem += 1)
11481 ada_evaluate_subexp (NULL, exp, pos, noside);
11482 goto nosideret;
11483 }
11484
11485 nosideret:
11486 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11487 }
11488 \f
11489
11490 /* Fixed point */
11491
11492 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11493 type name that encodes the 'small and 'delta information.
11494 Otherwise, return NULL. */
11495
11496 static const char *
11497 fixed_type_info (struct type *type)
11498 {
11499 const char *name = ada_type_name (type);
11500 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11501
11502 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11503 {
11504 const char *tail = strstr (name, "___XF_");
11505
11506 if (tail == NULL)
11507 return NULL;
11508 else
11509 return tail + 5;
11510 }
11511 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11512 return fixed_type_info (TYPE_TARGET_TYPE (type));
11513 else
11514 return NULL;
11515 }
11516
11517 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11518
11519 int
11520 ada_is_fixed_point_type (struct type *type)
11521 {
11522 return fixed_type_info (type) != NULL;
11523 }
11524
11525 /* Return non-zero iff TYPE represents a System.Address type. */
11526
11527 int
11528 ada_is_system_address_type (struct type *type)
11529 {
11530 return (TYPE_NAME (type)
11531 && strcmp (TYPE_NAME (type), "system__address") == 0);
11532 }
11533
11534 /* Assuming that TYPE is the representation of an Ada fixed-point
11535 type, return its delta, or -1 if the type is malformed and the
11536 delta cannot be determined. */
11537
11538 DOUBLEST
11539 ada_delta (struct type *type)
11540 {
11541 const char *encoding = fixed_type_info (type);
11542 DOUBLEST num, den;
11543
11544 /* Strictly speaking, num and den are encoded as integer. However,
11545 they may not fit into a long, and they will have to be converted
11546 to DOUBLEST anyway. So scan them as DOUBLEST. */
11547 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11548 &num, &den) < 2)
11549 return -1.0;
11550 else
11551 return num / den;
11552 }
11553
11554 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11555 factor ('SMALL value) associated with the type. */
11556
11557 static DOUBLEST
11558 scaling_factor (struct type *type)
11559 {
11560 const char *encoding = fixed_type_info (type);
11561 DOUBLEST num0, den0, num1, den1;
11562 int n;
11563
11564 /* Strictly speaking, num's and den's are encoded as integer. However,
11565 they may not fit into a long, and they will have to be converted
11566 to DOUBLEST anyway. So scan them as DOUBLEST. */
11567 n = sscanf (encoding,
11568 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11569 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11570 &num0, &den0, &num1, &den1);
11571
11572 if (n < 2)
11573 return 1.0;
11574 else if (n == 4)
11575 return num1 / den1;
11576 else
11577 return num0 / den0;
11578 }
11579
11580
11581 /* Assuming that X is the representation of a value of fixed-point
11582 type TYPE, return its floating-point equivalent. */
11583
11584 DOUBLEST
11585 ada_fixed_to_float (struct type *type, LONGEST x)
11586 {
11587 return (DOUBLEST) x *scaling_factor (type);
11588 }
11589
11590 /* The representation of a fixed-point value of type TYPE
11591 corresponding to the value X. */
11592
11593 LONGEST
11594 ada_float_to_fixed (struct type *type, DOUBLEST x)
11595 {
11596 return (LONGEST) (x / scaling_factor (type) + 0.5);
11597 }
11598
11599 \f
11600
11601 /* Range types */
11602
11603 /* Scan STR beginning at position K for a discriminant name, and
11604 return the value of that discriminant field of DVAL in *PX. If
11605 PNEW_K is not null, put the position of the character beyond the
11606 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11607 not alter *PX and *PNEW_K if unsuccessful. */
11608
11609 static int
11610 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11611 int *pnew_k)
11612 {
11613 static char *bound_buffer = NULL;
11614 static size_t bound_buffer_len = 0;
11615 const char *pstart, *pend, *bound;
11616 struct value *bound_val;
11617
11618 if (dval == NULL || str == NULL || str[k] == '\0')
11619 return 0;
11620
11621 pstart = str + k;
11622 pend = strstr (pstart, "__");
11623 if (pend == NULL)
11624 {
11625 bound = pstart;
11626 k += strlen (bound);
11627 }
11628 else
11629 {
11630 int len = pend - pstart;
11631
11632 /* Strip __ and beyond. */
11633 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11634 strncpy (bound_buffer, pstart, len);
11635 bound_buffer[len] = '\0';
11636
11637 bound = bound_buffer;
11638 k = pend - str;
11639 }
11640
11641 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11642 if (bound_val == NULL)
11643 return 0;
11644
11645 *px = value_as_long (bound_val);
11646 if (pnew_k != NULL)
11647 *pnew_k = k;
11648 return 1;
11649 }
11650
11651 /* Value of variable named NAME in the current environment. If
11652 no such variable found, then if ERR_MSG is null, returns 0, and
11653 otherwise causes an error with message ERR_MSG. */
11654
11655 static struct value *
11656 get_var_value (char *name, char *err_msg)
11657 {
11658 struct block_symbol *syms;
11659 int nsyms;
11660
11661 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11662 &syms);
11663
11664 if (nsyms != 1)
11665 {
11666 if (err_msg == NULL)
11667 return 0;
11668 else
11669 error (("%s"), err_msg);
11670 }
11671
11672 return value_of_variable (syms[0].symbol, syms[0].block);
11673 }
11674
11675 /* Value of integer variable named NAME in the current environment. If
11676 no such variable found, returns 0, and sets *FLAG to 0. If
11677 successful, sets *FLAG to 1. */
11678
11679 LONGEST
11680 get_int_var_value (char *name, int *flag)
11681 {
11682 struct value *var_val = get_var_value (name, 0);
11683
11684 if (var_val == 0)
11685 {
11686 if (flag != NULL)
11687 *flag = 0;
11688 return 0;
11689 }
11690 else
11691 {
11692 if (flag != NULL)
11693 *flag = 1;
11694 return value_as_long (var_val);
11695 }
11696 }
11697
11698
11699 /* Return a range type whose base type is that of the range type named
11700 NAME in the current environment, and whose bounds are calculated
11701 from NAME according to the GNAT range encoding conventions.
11702 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11703 corresponding range type from debug information; fall back to using it
11704 if symbol lookup fails. If a new type must be created, allocate it
11705 like ORIG_TYPE was. The bounds information, in general, is encoded
11706 in NAME, the base type given in the named range type. */
11707
11708 static struct type *
11709 to_fixed_range_type (struct type *raw_type, struct value *dval)
11710 {
11711 const char *name;
11712 struct type *base_type;
11713 const char *subtype_info;
11714
11715 gdb_assert (raw_type != NULL);
11716 gdb_assert (TYPE_NAME (raw_type) != NULL);
11717
11718 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11719 base_type = TYPE_TARGET_TYPE (raw_type);
11720 else
11721 base_type = raw_type;
11722
11723 name = TYPE_NAME (raw_type);
11724 subtype_info = strstr (name, "___XD");
11725 if (subtype_info == NULL)
11726 {
11727 LONGEST L = ada_discrete_type_low_bound (raw_type);
11728 LONGEST U = ada_discrete_type_high_bound (raw_type);
11729
11730 if (L < INT_MIN || U > INT_MAX)
11731 return raw_type;
11732 else
11733 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11734 L, U);
11735 }
11736 else
11737 {
11738 static char *name_buf = NULL;
11739 static size_t name_len = 0;
11740 int prefix_len = subtype_info - name;
11741 LONGEST L, U;
11742 struct type *type;
11743 const char *bounds_str;
11744 int n;
11745
11746 GROW_VECT (name_buf, name_len, prefix_len + 5);
11747 strncpy (name_buf, name, prefix_len);
11748 name_buf[prefix_len] = '\0';
11749
11750 subtype_info += 5;
11751 bounds_str = strchr (subtype_info, '_');
11752 n = 1;
11753
11754 if (*subtype_info == 'L')
11755 {
11756 if (!ada_scan_number (bounds_str, n, &L, &n)
11757 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11758 return raw_type;
11759 if (bounds_str[n] == '_')
11760 n += 2;
11761 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11762 n += 1;
11763 subtype_info += 1;
11764 }
11765 else
11766 {
11767 int ok;
11768
11769 strcpy (name_buf + prefix_len, "___L");
11770 L = get_int_var_value (name_buf, &ok);
11771 if (!ok)
11772 {
11773 lim_warning (_("Unknown lower bound, using 1."));
11774 L = 1;
11775 }
11776 }
11777
11778 if (*subtype_info == 'U')
11779 {
11780 if (!ada_scan_number (bounds_str, n, &U, &n)
11781 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11782 return raw_type;
11783 }
11784 else
11785 {
11786 int ok;
11787
11788 strcpy (name_buf + prefix_len, "___U");
11789 U = get_int_var_value (name_buf, &ok);
11790 if (!ok)
11791 {
11792 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11793 U = L;
11794 }
11795 }
11796
11797 type = create_static_range_type (alloc_type_copy (raw_type),
11798 base_type, L, U);
11799 TYPE_NAME (type) = name;
11800 return type;
11801 }
11802 }
11803
11804 /* True iff NAME is the name of a range type. */
11805
11806 int
11807 ada_is_range_type_name (const char *name)
11808 {
11809 return (name != NULL && strstr (name, "___XD"));
11810 }
11811 \f
11812
11813 /* Modular types */
11814
11815 /* True iff TYPE is an Ada modular type. */
11816
11817 int
11818 ada_is_modular_type (struct type *type)
11819 {
11820 struct type *subranged_type = get_base_type (type);
11821
11822 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11823 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11824 && TYPE_UNSIGNED (subranged_type));
11825 }
11826
11827 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11828
11829 ULONGEST
11830 ada_modulus (struct type *type)
11831 {
11832 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11833 }
11834 \f
11835
11836 /* Ada exception catchpoint support:
11837 ---------------------------------
11838
11839 We support 3 kinds of exception catchpoints:
11840 . catchpoints on Ada exceptions
11841 . catchpoints on unhandled Ada exceptions
11842 . catchpoints on failed assertions
11843
11844 Exceptions raised during failed assertions, or unhandled exceptions
11845 could perfectly be caught with the general catchpoint on Ada exceptions.
11846 However, we can easily differentiate these two special cases, and having
11847 the option to distinguish these two cases from the rest can be useful
11848 to zero-in on certain situations.
11849
11850 Exception catchpoints are a specialized form of breakpoint,
11851 since they rely on inserting breakpoints inside known routines
11852 of the GNAT runtime. The implementation therefore uses a standard
11853 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11854 of breakpoint_ops.
11855
11856 Support in the runtime for exception catchpoints have been changed
11857 a few times already, and these changes affect the implementation
11858 of these catchpoints. In order to be able to support several
11859 variants of the runtime, we use a sniffer that will determine
11860 the runtime variant used by the program being debugged. */
11861
11862 /* Ada's standard exceptions.
11863
11864 The Ada 83 standard also defined Numeric_Error. But there so many
11865 situations where it was unclear from the Ada 83 Reference Manual
11866 (RM) whether Constraint_Error or Numeric_Error should be raised,
11867 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11868 Interpretation saying that anytime the RM says that Numeric_Error
11869 should be raised, the implementation may raise Constraint_Error.
11870 Ada 95 went one step further and pretty much removed Numeric_Error
11871 from the list of standard exceptions (it made it a renaming of
11872 Constraint_Error, to help preserve compatibility when compiling
11873 an Ada83 compiler). As such, we do not include Numeric_Error from
11874 this list of standard exceptions. */
11875
11876 static char *standard_exc[] = {
11877 "constraint_error",
11878 "program_error",
11879 "storage_error",
11880 "tasking_error"
11881 };
11882
11883 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11884
11885 /* A structure that describes how to support exception catchpoints
11886 for a given executable. */
11887
11888 struct exception_support_info
11889 {
11890 /* The name of the symbol to break on in order to insert
11891 a catchpoint on exceptions. */
11892 const char *catch_exception_sym;
11893
11894 /* The name of the symbol to break on in order to insert
11895 a catchpoint on unhandled exceptions. */
11896 const char *catch_exception_unhandled_sym;
11897
11898 /* The name of the symbol to break on in order to insert
11899 a catchpoint on failed assertions. */
11900 const char *catch_assert_sym;
11901
11902 /* Assuming that the inferior just triggered an unhandled exception
11903 catchpoint, this function is responsible for returning the address
11904 in inferior memory where the name of that exception is stored.
11905 Return zero if the address could not be computed. */
11906 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11907 };
11908
11909 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11910 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11911
11912 /* The following exception support info structure describes how to
11913 implement exception catchpoints with the latest version of the
11914 Ada runtime (as of 2007-03-06). */
11915
11916 static const struct exception_support_info default_exception_support_info =
11917 {
11918 "__gnat_debug_raise_exception", /* catch_exception_sym */
11919 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11920 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11921 ada_unhandled_exception_name_addr
11922 };
11923
11924 /* The following exception support info structure describes how to
11925 implement exception catchpoints with a slightly older version
11926 of the Ada runtime. */
11927
11928 static const struct exception_support_info exception_support_info_fallback =
11929 {
11930 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11931 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11932 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11933 ada_unhandled_exception_name_addr_from_raise
11934 };
11935
11936 /* Return nonzero if we can detect the exception support routines
11937 described in EINFO.
11938
11939 This function errors out if an abnormal situation is detected
11940 (for instance, if we find the exception support routines, but
11941 that support is found to be incomplete). */
11942
11943 static int
11944 ada_has_this_exception_support (const struct exception_support_info *einfo)
11945 {
11946 struct symbol *sym;
11947
11948 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11949 that should be compiled with debugging information. As a result, we
11950 expect to find that symbol in the symtabs. */
11951
11952 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11953 if (sym == NULL)
11954 {
11955 /* Perhaps we did not find our symbol because the Ada runtime was
11956 compiled without debugging info, or simply stripped of it.
11957 It happens on some GNU/Linux distributions for instance, where
11958 users have to install a separate debug package in order to get
11959 the runtime's debugging info. In that situation, let the user
11960 know why we cannot insert an Ada exception catchpoint.
11961
11962 Note: Just for the purpose of inserting our Ada exception
11963 catchpoint, we could rely purely on the associated minimal symbol.
11964 But we would be operating in degraded mode anyway, since we are
11965 still lacking the debugging info needed later on to extract
11966 the name of the exception being raised (this name is printed in
11967 the catchpoint message, and is also used when trying to catch
11968 a specific exception). We do not handle this case for now. */
11969 struct bound_minimal_symbol msym
11970 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11971
11972 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11973 error (_("Your Ada runtime appears to be missing some debugging "
11974 "information.\nCannot insert Ada exception catchpoint "
11975 "in this configuration."));
11976
11977 return 0;
11978 }
11979
11980 /* Make sure that the symbol we found corresponds to a function. */
11981
11982 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11983 error (_("Symbol \"%s\" is not a function (class = %d)"),
11984 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11985
11986 return 1;
11987 }
11988
11989 /* Inspect the Ada runtime and determine which exception info structure
11990 should be used to provide support for exception catchpoints.
11991
11992 This function will always set the per-inferior exception_info,
11993 or raise an error. */
11994
11995 static void
11996 ada_exception_support_info_sniffer (void)
11997 {
11998 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11999
12000 /* If the exception info is already known, then no need to recompute it. */
12001 if (data->exception_info != NULL)
12002 return;
12003
12004 /* Check the latest (default) exception support info. */
12005 if (ada_has_this_exception_support (&default_exception_support_info))
12006 {
12007 data->exception_info = &default_exception_support_info;
12008 return;
12009 }
12010
12011 /* Try our fallback exception suport info. */
12012 if (ada_has_this_exception_support (&exception_support_info_fallback))
12013 {
12014 data->exception_info = &exception_support_info_fallback;
12015 return;
12016 }
12017
12018 /* Sometimes, it is normal for us to not be able to find the routine
12019 we are looking for. This happens when the program is linked with
12020 the shared version of the GNAT runtime, and the program has not been
12021 started yet. Inform the user of these two possible causes if
12022 applicable. */
12023
12024 if (ada_update_initial_language (language_unknown) != language_ada)
12025 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12026
12027 /* If the symbol does not exist, then check that the program is
12028 already started, to make sure that shared libraries have been
12029 loaded. If it is not started, this may mean that the symbol is
12030 in a shared library. */
12031
12032 if (ptid_get_pid (inferior_ptid) == 0)
12033 error (_("Unable to insert catchpoint. Try to start the program first."));
12034
12035 /* At this point, we know that we are debugging an Ada program and
12036 that the inferior has been started, but we still are not able to
12037 find the run-time symbols. That can mean that we are in
12038 configurable run time mode, or that a-except as been optimized
12039 out by the linker... In any case, at this point it is not worth
12040 supporting this feature. */
12041
12042 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12043 }
12044
12045 /* True iff FRAME is very likely to be that of a function that is
12046 part of the runtime system. This is all very heuristic, but is
12047 intended to be used as advice as to what frames are uninteresting
12048 to most users. */
12049
12050 static int
12051 is_known_support_routine (struct frame_info *frame)
12052 {
12053 struct symtab_and_line sal;
12054 char *func_name;
12055 enum language func_lang;
12056 int i;
12057 const char *fullname;
12058
12059 /* If this code does not have any debugging information (no symtab),
12060 This cannot be any user code. */
12061
12062 find_frame_sal (frame, &sal);
12063 if (sal.symtab == NULL)
12064 return 1;
12065
12066 /* If there is a symtab, but the associated source file cannot be
12067 located, then assume this is not user code: Selecting a frame
12068 for which we cannot display the code would not be very helpful
12069 for the user. This should also take care of case such as VxWorks
12070 where the kernel has some debugging info provided for a few units. */
12071
12072 fullname = symtab_to_fullname (sal.symtab);
12073 if (access (fullname, R_OK) != 0)
12074 return 1;
12075
12076 /* Check the unit filename againt the Ada runtime file naming.
12077 We also check the name of the objfile against the name of some
12078 known system libraries that sometimes come with debugging info
12079 too. */
12080
12081 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12082 {
12083 re_comp (known_runtime_file_name_patterns[i]);
12084 if (re_exec (lbasename (sal.symtab->filename)))
12085 return 1;
12086 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12087 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12088 return 1;
12089 }
12090
12091 /* Check whether the function is a GNAT-generated entity. */
12092
12093 find_frame_funname (frame, &func_name, &func_lang, NULL);
12094 if (func_name == NULL)
12095 return 1;
12096
12097 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12098 {
12099 re_comp (known_auxiliary_function_name_patterns[i]);
12100 if (re_exec (func_name))
12101 {
12102 xfree (func_name);
12103 return 1;
12104 }
12105 }
12106
12107 xfree (func_name);
12108 return 0;
12109 }
12110
12111 /* Find the first frame that contains debugging information and that is not
12112 part of the Ada run-time, starting from FI and moving upward. */
12113
12114 void
12115 ada_find_printable_frame (struct frame_info *fi)
12116 {
12117 for (; fi != NULL; fi = get_prev_frame (fi))
12118 {
12119 if (!is_known_support_routine (fi))
12120 {
12121 select_frame (fi);
12122 break;
12123 }
12124 }
12125
12126 }
12127
12128 /* Assuming that the inferior just triggered an unhandled exception
12129 catchpoint, return the address in inferior memory where the name
12130 of the exception is stored.
12131
12132 Return zero if the address could not be computed. */
12133
12134 static CORE_ADDR
12135 ada_unhandled_exception_name_addr (void)
12136 {
12137 return parse_and_eval_address ("e.full_name");
12138 }
12139
12140 /* Same as ada_unhandled_exception_name_addr, except that this function
12141 should be used when the inferior uses an older version of the runtime,
12142 where the exception name needs to be extracted from a specific frame
12143 several frames up in the callstack. */
12144
12145 static CORE_ADDR
12146 ada_unhandled_exception_name_addr_from_raise (void)
12147 {
12148 int frame_level;
12149 struct frame_info *fi;
12150 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12151 struct cleanup *old_chain;
12152
12153 /* To determine the name of this exception, we need to select
12154 the frame corresponding to RAISE_SYM_NAME. This frame is
12155 at least 3 levels up, so we simply skip the first 3 frames
12156 without checking the name of their associated function. */
12157 fi = get_current_frame ();
12158 for (frame_level = 0; frame_level < 3; frame_level += 1)
12159 if (fi != NULL)
12160 fi = get_prev_frame (fi);
12161
12162 old_chain = make_cleanup (null_cleanup, NULL);
12163 while (fi != NULL)
12164 {
12165 char *func_name;
12166 enum language func_lang;
12167
12168 find_frame_funname (fi, &func_name, &func_lang, NULL);
12169 if (func_name != NULL)
12170 {
12171 make_cleanup (xfree, func_name);
12172
12173 if (strcmp (func_name,
12174 data->exception_info->catch_exception_sym) == 0)
12175 break; /* We found the frame we were looking for... */
12176 fi = get_prev_frame (fi);
12177 }
12178 }
12179 do_cleanups (old_chain);
12180
12181 if (fi == NULL)
12182 return 0;
12183
12184 select_frame (fi);
12185 return parse_and_eval_address ("id.full_name");
12186 }
12187
12188 /* Assuming the inferior just triggered an Ada exception catchpoint
12189 (of any type), return the address in inferior memory where the name
12190 of the exception is stored, if applicable.
12191
12192 Assumes the selected frame is the current frame.
12193
12194 Return zero if the address could not be computed, or if not relevant. */
12195
12196 static CORE_ADDR
12197 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12198 struct breakpoint *b)
12199 {
12200 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12201
12202 switch (ex)
12203 {
12204 case ada_catch_exception:
12205 return (parse_and_eval_address ("e.full_name"));
12206 break;
12207
12208 case ada_catch_exception_unhandled:
12209 return data->exception_info->unhandled_exception_name_addr ();
12210 break;
12211
12212 case ada_catch_assert:
12213 return 0; /* Exception name is not relevant in this case. */
12214 break;
12215
12216 default:
12217 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12218 break;
12219 }
12220
12221 return 0; /* Should never be reached. */
12222 }
12223
12224 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12225 any error that ada_exception_name_addr_1 might cause to be thrown.
12226 When an error is intercepted, a warning with the error message is printed,
12227 and zero is returned. */
12228
12229 static CORE_ADDR
12230 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12231 struct breakpoint *b)
12232 {
12233 CORE_ADDR result = 0;
12234
12235 TRY
12236 {
12237 result = ada_exception_name_addr_1 (ex, b);
12238 }
12239
12240 CATCH (e, RETURN_MASK_ERROR)
12241 {
12242 warning (_("failed to get exception name: %s"), e.message);
12243 return 0;
12244 }
12245 END_CATCH
12246
12247 return result;
12248 }
12249
12250 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12251
12252 /* Ada catchpoints.
12253
12254 In the case of catchpoints on Ada exceptions, the catchpoint will
12255 stop the target on every exception the program throws. When a user
12256 specifies the name of a specific exception, we translate this
12257 request into a condition expression (in text form), and then parse
12258 it into an expression stored in each of the catchpoint's locations.
12259 We then use this condition to check whether the exception that was
12260 raised is the one the user is interested in. If not, then the
12261 target is resumed again. We store the name of the requested
12262 exception, in order to be able to re-set the condition expression
12263 when symbols change. */
12264
12265 /* An instance of this type is used to represent an Ada catchpoint
12266 breakpoint location. It includes a "struct bp_location" as a kind
12267 of base class; users downcast to "struct bp_location *" when
12268 needed. */
12269
12270 struct ada_catchpoint_location
12271 {
12272 /* The base class. */
12273 struct bp_location base;
12274
12275 /* The condition that checks whether the exception that was raised
12276 is the specific exception the user specified on catchpoint
12277 creation. */
12278 expression_up excep_cond_expr;
12279 };
12280
12281 /* Implement the DTOR method in the bp_location_ops structure for all
12282 Ada exception catchpoint kinds. */
12283
12284 static void
12285 ada_catchpoint_location_dtor (struct bp_location *bl)
12286 {
12287 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12288
12289 al->excep_cond_expr.reset ();
12290 }
12291
12292 /* The vtable to be used in Ada catchpoint locations. */
12293
12294 static const struct bp_location_ops ada_catchpoint_location_ops =
12295 {
12296 ada_catchpoint_location_dtor
12297 };
12298
12299 /* An instance of this type is used to represent an Ada catchpoint.
12300 It includes a "struct breakpoint" as a kind of base class; users
12301 downcast to "struct breakpoint *" when needed. */
12302
12303 struct ada_catchpoint
12304 {
12305 /* The base class. */
12306 struct breakpoint base;
12307
12308 /* The name of the specific exception the user specified. */
12309 char *excep_string;
12310 };
12311
12312 /* Parse the exception condition string in the context of each of the
12313 catchpoint's locations, and store them for later evaluation. */
12314
12315 static void
12316 create_excep_cond_exprs (struct ada_catchpoint *c)
12317 {
12318 struct cleanup *old_chain;
12319 struct bp_location *bl;
12320 char *cond_string;
12321
12322 /* Nothing to do if there's no specific exception to catch. */
12323 if (c->excep_string == NULL)
12324 return;
12325
12326 /* Same if there are no locations... */
12327 if (c->base.loc == NULL)
12328 return;
12329
12330 /* Compute the condition expression in text form, from the specific
12331 expection we want to catch. */
12332 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12333 old_chain = make_cleanup (xfree, cond_string);
12334
12335 /* Iterate over all the catchpoint's locations, and parse an
12336 expression for each. */
12337 for (bl = c->base.loc; bl != NULL; bl = bl->next)
12338 {
12339 struct ada_catchpoint_location *ada_loc
12340 = (struct ada_catchpoint_location *) bl;
12341 expression_up exp;
12342
12343 if (!bl->shlib_disabled)
12344 {
12345 const char *s;
12346
12347 s = cond_string;
12348 TRY
12349 {
12350 exp = gdb::move (parse_exp_1 (&s, bl->address,
12351 block_for_pc (bl->address),
12352 0));
12353 }
12354 CATCH (e, RETURN_MASK_ERROR)
12355 {
12356 warning (_("failed to reevaluate internal exception condition "
12357 "for catchpoint %d: %s"),
12358 c->base.number, e.message);
12359 }
12360 END_CATCH
12361 }
12362
12363 ada_loc->excep_cond_expr = gdb::move (exp);
12364 }
12365
12366 do_cleanups (old_chain);
12367 }
12368
12369 /* Implement the DTOR method in the breakpoint_ops structure for all
12370 exception catchpoint kinds. */
12371
12372 static void
12373 dtor_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12374 {
12375 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12376
12377 xfree (c->excep_string);
12378
12379 bkpt_breakpoint_ops.dtor (b);
12380 }
12381
12382 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12383 structure for all exception catchpoint kinds. */
12384
12385 static struct bp_location *
12386 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12387 struct breakpoint *self)
12388 {
12389 struct ada_catchpoint_location *loc;
12390
12391 loc = new ada_catchpoint_location ();
12392 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
12393 loc->excep_cond_expr = NULL;
12394 return &loc->base;
12395 }
12396
12397 /* Implement the RE_SET method in the breakpoint_ops structure for all
12398 exception catchpoint kinds. */
12399
12400 static void
12401 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12402 {
12403 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12404
12405 /* Call the base class's method. This updates the catchpoint's
12406 locations. */
12407 bkpt_breakpoint_ops.re_set (b);
12408
12409 /* Reparse the exception conditional expressions. One for each
12410 location. */
12411 create_excep_cond_exprs (c);
12412 }
12413
12414 /* Returns true if we should stop for this breakpoint hit. If the
12415 user specified a specific exception, we only want to cause a stop
12416 if the program thrown that exception. */
12417
12418 static int
12419 should_stop_exception (const struct bp_location *bl)
12420 {
12421 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12422 const struct ada_catchpoint_location *ada_loc
12423 = (const struct ada_catchpoint_location *) bl;
12424 int stop;
12425
12426 /* With no specific exception, should always stop. */
12427 if (c->excep_string == NULL)
12428 return 1;
12429
12430 if (ada_loc->excep_cond_expr == NULL)
12431 {
12432 /* We will have a NULL expression if back when we were creating
12433 the expressions, this location's had failed to parse. */
12434 return 1;
12435 }
12436
12437 stop = 1;
12438 TRY
12439 {
12440 struct value *mark;
12441
12442 mark = value_mark ();
12443 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12444 value_free_to_mark (mark);
12445 }
12446 CATCH (ex, RETURN_MASK_ALL)
12447 {
12448 exception_fprintf (gdb_stderr, ex,
12449 _("Error in testing exception condition:\n"));
12450 }
12451 END_CATCH
12452
12453 return stop;
12454 }
12455
12456 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12457 for all exception catchpoint kinds. */
12458
12459 static void
12460 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12461 {
12462 bs->stop = should_stop_exception (bs->bp_location_at);
12463 }
12464
12465 /* Implement the PRINT_IT method in the breakpoint_ops structure
12466 for all exception catchpoint kinds. */
12467
12468 static enum print_stop_action
12469 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12470 {
12471 struct ui_out *uiout = current_uiout;
12472 struct breakpoint *b = bs->breakpoint_at;
12473
12474 annotate_catchpoint (b->number);
12475
12476 if (ui_out_is_mi_like_p (uiout))
12477 {
12478 ui_out_field_string (uiout, "reason",
12479 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12480 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12481 }
12482
12483 ui_out_text (uiout,
12484 b->disposition == disp_del ? "\nTemporary catchpoint "
12485 : "\nCatchpoint ");
12486 ui_out_field_int (uiout, "bkptno", b->number);
12487 ui_out_text (uiout, ", ");
12488
12489 /* ada_exception_name_addr relies on the selected frame being the
12490 current frame. Need to do this here because this function may be
12491 called more than once when printing a stop, and below, we'll
12492 select the first frame past the Ada run-time (see
12493 ada_find_printable_frame). */
12494 select_frame (get_current_frame ());
12495
12496 switch (ex)
12497 {
12498 case ada_catch_exception:
12499 case ada_catch_exception_unhandled:
12500 {
12501 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12502 char exception_name[256];
12503
12504 if (addr != 0)
12505 {
12506 read_memory (addr, (gdb_byte *) exception_name,
12507 sizeof (exception_name) - 1);
12508 exception_name [sizeof (exception_name) - 1] = '\0';
12509 }
12510 else
12511 {
12512 /* For some reason, we were unable to read the exception
12513 name. This could happen if the Runtime was compiled
12514 without debugging info, for instance. In that case,
12515 just replace the exception name by the generic string
12516 "exception" - it will read as "an exception" in the
12517 notification we are about to print. */
12518 memcpy (exception_name, "exception", sizeof ("exception"));
12519 }
12520 /* In the case of unhandled exception breakpoints, we print
12521 the exception name as "unhandled EXCEPTION_NAME", to make
12522 it clearer to the user which kind of catchpoint just got
12523 hit. We used ui_out_text to make sure that this extra
12524 info does not pollute the exception name in the MI case. */
12525 if (ex == ada_catch_exception_unhandled)
12526 ui_out_text (uiout, "unhandled ");
12527 ui_out_field_string (uiout, "exception-name", exception_name);
12528 }
12529 break;
12530 case ada_catch_assert:
12531 /* In this case, the name of the exception is not really
12532 important. Just print "failed assertion" to make it clearer
12533 that his program just hit an assertion-failure catchpoint.
12534 We used ui_out_text because this info does not belong in
12535 the MI output. */
12536 ui_out_text (uiout, "failed assertion");
12537 break;
12538 }
12539 ui_out_text (uiout, " at ");
12540 ada_find_printable_frame (get_current_frame ());
12541
12542 return PRINT_SRC_AND_LOC;
12543 }
12544
12545 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12546 for all exception catchpoint kinds. */
12547
12548 static void
12549 print_one_exception (enum ada_exception_catchpoint_kind ex,
12550 struct breakpoint *b, struct bp_location **last_loc)
12551 {
12552 struct ui_out *uiout = current_uiout;
12553 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12554 struct value_print_options opts;
12555
12556 get_user_print_options (&opts);
12557 if (opts.addressprint)
12558 {
12559 annotate_field (4);
12560 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
12561 }
12562
12563 annotate_field (5);
12564 *last_loc = b->loc;
12565 switch (ex)
12566 {
12567 case ada_catch_exception:
12568 if (c->excep_string != NULL)
12569 {
12570 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12571
12572 ui_out_field_string (uiout, "what", msg);
12573 xfree (msg);
12574 }
12575 else
12576 ui_out_field_string (uiout, "what", "all Ada exceptions");
12577
12578 break;
12579
12580 case ada_catch_exception_unhandled:
12581 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
12582 break;
12583
12584 case ada_catch_assert:
12585 ui_out_field_string (uiout, "what", "failed Ada assertions");
12586 break;
12587
12588 default:
12589 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12590 break;
12591 }
12592 }
12593
12594 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12595 for all exception catchpoint kinds. */
12596
12597 static void
12598 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12599 struct breakpoint *b)
12600 {
12601 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12602 struct ui_out *uiout = current_uiout;
12603
12604 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
12605 : _("Catchpoint "));
12606 ui_out_field_int (uiout, "bkptno", b->number);
12607 ui_out_text (uiout, ": ");
12608
12609 switch (ex)
12610 {
12611 case ada_catch_exception:
12612 if (c->excep_string != NULL)
12613 {
12614 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12615 struct cleanup *old_chain = make_cleanup (xfree, info);
12616
12617 ui_out_text (uiout, info);
12618 do_cleanups (old_chain);
12619 }
12620 else
12621 ui_out_text (uiout, _("all Ada exceptions"));
12622 break;
12623
12624 case ada_catch_exception_unhandled:
12625 ui_out_text (uiout, _("unhandled Ada exceptions"));
12626 break;
12627
12628 case ada_catch_assert:
12629 ui_out_text (uiout, _("failed Ada assertions"));
12630 break;
12631
12632 default:
12633 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12634 break;
12635 }
12636 }
12637
12638 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12639 for all exception catchpoint kinds. */
12640
12641 static void
12642 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12643 struct breakpoint *b, struct ui_file *fp)
12644 {
12645 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12646
12647 switch (ex)
12648 {
12649 case ada_catch_exception:
12650 fprintf_filtered (fp, "catch exception");
12651 if (c->excep_string != NULL)
12652 fprintf_filtered (fp, " %s", c->excep_string);
12653 break;
12654
12655 case ada_catch_exception_unhandled:
12656 fprintf_filtered (fp, "catch exception unhandled");
12657 break;
12658
12659 case ada_catch_assert:
12660 fprintf_filtered (fp, "catch assert");
12661 break;
12662
12663 default:
12664 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12665 }
12666 print_recreate_thread (b, fp);
12667 }
12668
12669 /* Virtual table for "catch exception" breakpoints. */
12670
12671 static void
12672 dtor_catch_exception (struct breakpoint *b)
12673 {
12674 dtor_exception (ada_catch_exception, b);
12675 }
12676
12677 static struct bp_location *
12678 allocate_location_catch_exception (struct breakpoint *self)
12679 {
12680 return allocate_location_exception (ada_catch_exception, self);
12681 }
12682
12683 static void
12684 re_set_catch_exception (struct breakpoint *b)
12685 {
12686 re_set_exception (ada_catch_exception, b);
12687 }
12688
12689 static void
12690 check_status_catch_exception (bpstat bs)
12691 {
12692 check_status_exception (ada_catch_exception, bs);
12693 }
12694
12695 static enum print_stop_action
12696 print_it_catch_exception (bpstat bs)
12697 {
12698 return print_it_exception (ada_catch_exception, bs);
12699 }
12700
12701 static void
12702 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12703 {
12704 print_one_exception (ada_catch_exception, b, last_loc);
12705 }
12706
12707 static void
12708 print_mention_catch_exception (struct breakpoint *b)
12709 {
12710 print_mention_exception (ada_catch_exception, b);
12711 }
12712
12713 static void
12714 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12715 {
12716 print_recreate_exception (ada_catch_exception, b, fp);
12717 }
12718
12719 static struct breakpoint_ops catch_exception_breakpoint_ops;
12720
12721 /* Virtual table for "catch exception unhandled" breakpoints. */
12722
12723 static void
12724 dtor_catch_exception_unhandled (struct breakpoint *b)
12725 {
12726 dtor_exception (ada_catch_exception_unhandled, b);
12727 }
12728
12729 static struct bp_location *
12730 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12731 {
12732 return allocate_location_exception (ada_catch_exception_unhandled, self);
12733 }
12734
12735 static void
12736 re_set_catch_exception_unhandled (struct breakpoint *b)
12737 {
12738 re_set_exception (ada_catch_exception_unhandled, b);
12739 }
12740
12741 static void
12742 check_status_catch_exception_unhandled (bpstat bs)
12743 {
12744 check_status_exception (ada_catch_exception_unhandled, bs);
12745 }
12746
12747 static enum print_stop_action
12748 print_it_catch_exception_unhandled (bpstat bs)
12749 {
12750 return print_it_exception (ada_catch_exception_unhandled, bs);
12751 }
12752
12753 static void
12754 print_one_catch_exception_unhandled (struct breakpoint *b,
12755 struct bp_location **last_loc)
12756 {
12757 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12758 }
12759
12760 static void
12761 print_mention_catch_exception_unhandled (struct breakpoint *b)
12762 {
12763 print_mention_exception (ada_catch_exception_unhandled, b);
12764 }
12765
12766 static void
12767 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12768 struct ui_file *fp)
12769 {
12770 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12771 }
12772
12773 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12774
12775 /* Virtual table for "catch assert" breakpoints. */
12776
12777 static void
12778 dtor_catch_assert (struct breakpoint *b)
12779 {
12780 dtor_exception (ada_catch_assert, b);
12781 }
12782
12783 static struct bp_location *
12784 allocate_location_catch_assert (struct breakpoint *self)
12785 {
12786 return allocate_location_exception (ada_catch_assert, self);
12787 }
12788
12789 static void
12790 re_set_catch_assert (struct breakpoint *b)
12791 {
12792 re_set_exception (ada_catch_assert, b);
12793 }
12794
12795 static void
12796 check_status_catch_assert (bpstat bs)
12797 {
12798 check_status_exception (ada_catch_assert, bs);
12799 }
12800
12801 static enum print_stop_action
12802 print_it_catch_assert (bpstat bs)
12803 {
12804 return print_it_exception (ada_catch_assert, bs);
12805 }
12806
12807 static void
12808 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12809 {
12810 print_one_exception (ada_catch_assert, b, last_loc);
12811 }
12812
12813 static void
12814 print_mention_catch_assert (struct breakpoint *b)
12815 {
12816 print_mention_exception (ada_catch_assert, b);
12817 }
12818
12819 static void
12820 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12821 {
12822 print_recreate_exception (ada_catch_assert, b, fp);
12823 }
12824
12825 static struct breakpoint_ops catch_assert_breakpoint_ops;
12826
12827 /* Return a newly allocated copy of the first space-separated token
12828 in ARGSP, and then adjust ARGSP to point immediately after that
12829 token.
12830
12831 Return NULL if ARGPS does not contain any more tokens. */
12832
12833 static char *
12834 ada_get_next_arg (char **argsp)
12835 {
12836 char *args = *argsp;
12837 char *end;
12838 char *result;
12839
12840 args = skip_spaces (args);
12841 if (args[0] == '\0')
12842 return NULL; /* No more arguments. */
12843
12844 /* Find the end of the current argument. */
12845
12846 end = skip_to_space (args);
12847
12848 /* Adjust ARGSP to point to the start of the next argument. */
12849
12850 *argsp = end;
12851
12852 /* Make a copy of the current argument and return it. */
12853
12854 result = (char *) xmalloc (end - args + 1);
12855 strncpy (result, args, end - args);
12856 result[end - args] = '\0';
12857
12858 return result;
12859 }
12860
12861 /* Split the arguments specified in a "catch exception" command.
12862 Set EX to the appropriate catchpoint type.
12863 Set EXCEP_STRING to the name of the specific exception if
12864 specified by the user.
12865 If a condition is found at the end of the arguments, the condition
12866 expression is stored in COND_STRING (memory must be deallocated
12867 after use). Otherwise COND_STRING is set to NULL. */
12868
12869 static void
12870 catch_ada_exception_command_split (char *args,
12871 enum ada_exception_catchpoint_kind *ex,
12872 char **excep_string,
12873 char **cond_string)
12874 {
12875 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12876 char *exception_name;
12877 char *cond = NULL;
12878
12879 exception_name = ada_get_next_arg (&args);
12880 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12881 {
12882 /* This is not an exception name; this is the start of a condition
12883 expression for a catchpoint on all exceptions. So, "un-get"
12884 this token, and set exception_name to NULL. */
12885 xfree (exception_name);
12886 exception_name = NULL;
12887 args -= 2;
12888 }
12889 make_cleanup (xfree, exception_name);
12890
12891 /* Check to see if we have a condition. */
12892
12893 args = skip_spaces (args);
12894 if (startswith (args, "if")
12895 && (isspace (args[2]) || args[2] == '\0'))
12896 {
12897 args += 2;
12898 args = skip_spaces (args);
12899
12900 if (args[0] == '\0')
12901 error (_("Condition missing after `if' keyword"));
12902 cond = xstrdup (args);
12903 make_cleanup (xfree, cond);
12904
12905 args += strlen (args);
12906 }
12907
12908 /* Check that we do not have any more arguments. Anything else
12909 is unexpected. */
12910
12911 if (args[0] != '\0')
12912 error (_("Junk at end of expression"));
12913
12914 discard_cleanups (old_chain);
12915
12916 if (exception_name == NULL)
12917 {
12918 /* Catch all exceptions. */
12919 *ex = ada_catch_exception;
12920 *excep_string = NULL;
12921 }
12922 else if (strcmp (exception_name, "unhandled") == 0)
12923 {
12924 /* Catch unhandled exceptions. */
12925 *ex = ada_catch_exception_unhandled;
12926 *excep_string = NULL;
12927 }
12928 else
12929 {
12930 /* Catch a specific exception. */
12931 *ex = ada_catch_exception;
12932 *excep_string = exception_name;
12933 }
12934 *cond_string = cond;
12935 }
12936
12937 /* Return the name of the symbol on which we should break in order to
12938 implement a catchpoint of the EX kind. */
12939
12940 static const char *
12941 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12942 {
12943 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12944
12945 gdb_assert (data->exception_info != NULL);
12946
12947 switch (ex)
12948 {
12949 case ada_catch_exception:
12950 return (data->exception_info->catch_exception_sym);
12951 break;
12952 case ada_catch_exception_unhandled:
12953 return (data->exception_info->catch_exception_unhandled_sym);
12954 break;
12955 case ada_catch_assert:
12956 return (data->exception_info->catch_assert_sym);
12957 break;
12958 default:
12959 internal_error (__FILE__, __LINE__,
12960 _("unexpected catchpoint kind (%d)"), ex);
12961 }
12962 }
12963
12964 /* Return the breakpoint ops "virtual table" used for catchpoints
12965 of the EX kind. */
12966
12967 static const struct breakpoint_ops *
12968 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12969 {
12970 switch (ex)
12971 {
12972 case ada_catch_exception:
12973 return (&catch_exception_breakpoint_ops);
12974 break;
12975 case ada_catch_exception_unhandled:
12976 return (&catch_exception_unhandled_breakpoint_ops);
12977 break;
12978 case ada_catch_assert:
12979 return (&catch_assert_breakpoint_ops);
12980 break;
12981 default:
12982 internal_error (__FILE__, __LINE__,
12983 _("unexpected catchpoint kind (%d)"), ex);
12984 }
12985 }
12986
12987 /* Return the condition that will be used to match the current exception
12988 being raised with the exception that the user wants to catch. This
12989 assumes that this condition is used when the inferior just triggered
12990 an exception catchpoint.
12991
12992 The string returned is a newly allocated string that needs to be
12993 deallocated later. */
12994
12995 static char *
12996 ada_exception_catchpoint_cond_string (const char *excep_string)
12997 {
12998 int i;
12999
13000 /* The standard exceptions are a special case. They are defined in
13001 runtime units that have been compiled without debugging info; if
13002 EXCEP_STRING is the not-fully-qualified name of a standard
13003 exception (e.g. "constraint_error") then, during the evaluation
13004 of the condition expression, the symbol lookup on this name would
13005 *not* return this standard exception. The catchpoint condition
13006 may then be set only on user-defined exceptions which have the
13007 same not-fully-qualified name (e.g. my_package.constraint_error).
13008
13009 To avoid this unexcepted behavior, these standard exceptions are
13010 systematically prefixed by "standard". This means that "catch
13011 exception constraint_error" is rewritten into "catch exception
13012 standard.constraint_error".
13013
13014 If an exception named contraint_error is defined in another package of
13015 the inferior program, then the only way to specify this exception as a
13016 breakpoint condition is to use its fully-qualified named:
13017 e.g. my_package.constraint_error. */
13018
13019 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13020 {
13021 if (strcmp (standard_exc [i], excep_string) == 0)
13022 {
13023 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
13024 excep_string);
13025 }
13026 }
13027 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
13028 }
13029
13030 /* Return the symtab_and_line that should be used to insert an exception
13031 catchpoint of the TYPE kind.
13032
13033 EXCEP_STRING should contain the name of a specific exception that
13034 the catchpoint should catch, or NULL otherwise.
13035
13036 ADDR_STRING returns the name of the function where the real
13037 breakpoint that implements the catchpoints is set, depending on the
13038 type of catchpoint we need to create. */
13039
13040 static struct symtab_and_line
13041 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13042 char **addr_string, const struct breakpoint_ops **ops)
13043 {
13044 const char *sym_name;
13045 struct symbol *sym;
13046
13047 /* First, find out which exception support info to use. */
13048 ada_exception_support_info_sniffer ();
13049
13050 /* Then lookup the function on which we will break in order to catch
13051 the Ada exceptions requested by the user. */
13052 sym_name = ada_exception_sym_name (ex);
13053 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13054
13055 /* We can assume that SYM is not NULL at this stage. If the symbol
13056 did not exist, ada_exception_support_info_sniffer would have
13057 raised an exception.
13058
13059 Also, ada_exception_support_info_sniffer should have already
13060 verified that SYM is a function symbol. */
13061 gdb_assert (sym != NULL);
13062 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13063
13064 /* Set ADDR_STRING. */
13065 *addr_string = xstrdup (sym_name);
13066
13067 /* Set OPS. */
13068 *ops = ada_exception_breakpoint_ops (ex);
13069
13070 return find_function_start_sal (sym, 1);
13071 }
13072
13073 /* Create an Ada exception catchpoint.
13074
13075 EX_KIND is the kind of exception catchpoint to be created.
13076
13077 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13078 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13079 of the exception to which this catchpoint applies. When not NULL,
13080 the string must be allocated on the heap, and its deallocation
13081 is no longer the responsibility of the caller.
13082
13083 COND_STRING, if not NULL, is the catchpoint condition. This string
13084 must be allocated on the heap, and its deallocation is no longer
13085 the responsibility of the caller.
13086
13087 TEMPFLAG, if nonzero, means that the underlying breakpoint
13088 should be temporary.
13089
13090 FROM_TTY is the usual argument passed to all commands implementations. */
13091
13092 void
13093 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13094 enum ada_exception_catchpoint_kind ex_kind,
13095 char *excep_string,
13096 char *cond_string,
13097 int tempflag,
13098 int disabled,
13099 int from_tty)
13100 {
13101 struct ada_catchpoint *c;
13102 char *addr_string = NULL;
13103 const struct breakpoint_ops *ops = NULL;
13104 struct symtab_and_line sal
13105 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13106
13107 c = new ada_catchpoint ();
13108 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
13109 ops, tempflag, disabled, from_tty);
13110 c->excep_string = excep_string;
13111 create_excep_cond_exprs (c);
13112 if (cond_string != NULL)
13113 set_breakpoint_condition (&c->base, cond_string, from_tty);
13114 install_breakpoint (0, &c->base, 1);
13115 }
13116
13117 /* Implement the "catch exception" command. */
13118
13119 static void
13120 catch_ada_exception_command (char *arg, int from_tty,
13121 struct cmd_list_element *command)
13122 {
13123 struct gdbarch *gdbarch = get_current_arch ();
13124 int tempflag;
13125 enum ada_exception_catchpoint_kind ex_kind;
13126 char *excep_string = NULL;
13127 char *cond_string = NULL;
13128
13129 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13130
13131 if (!arg)
13132 arg = "";
13133 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13134 &cond_string);
13135 create_ada_exception_catchpoint (gdbarch, ex_kind,
13136 excep_string, cond_string,
13137 tempflag, 1 /* enabled */,
13138 from_tty);
13139 }
13140
13141 /* Split the arguments specified in a "catch assert" command.
13142
13143 ARGS contains the command's arguments (or the empty string if
13144 no arguments were passed).
13145
13146 If ARGS contains a condition, set COND_STRING to that condition
13147 (the memory needs to be deallocated after use). */
13148
13149 static void
13150 catch_ada_assert_command_split (char *args, char **cond_string)
13151 {
13152 args = skip_spaces (args);
13153
13154 /* Check whether a condition was provided. */
13155 if (startswith (args, "if")
13156 && (isspace (args[2]) || args[2] == '\0'))
13157 {
13158 args += 2;
13159 args = skip_spaces (args);
13160 if (args[0] == '\0')
13161 error (_("condition missing after `if' keyword"));
13162 *cond_string = xstrdup (args);
13163 }
13164
13165 /* Otherwise, there should be no other argument at the end of
13166 the command. */
13167 else if (args[0] != '\0')
13168 error (_("Junk at end of arguments."));
13169 }
13170
13171 /* Implement the "catch assert" command. */
13172
13173 static void
13174 catch_assert_command (char *arg, int from_tty,
13175 struct cmd_list_element *command)
13176 {
13177 struct gdbarch *gdbarch = get_current_arch ();
13178 int tempflag;
13179 char *cond_string = NULL;
13180
13181 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13182
13183 if (!arg)
13184 arg = "";
13185 catch_ada_assert_command_split (arg, &cond_string);
13186 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13187 NULL, cond_string,
13188 tempflag, 1 /* enabled */,
13189 from_tty);
13190 }
13191
13192 /* Return non-zero if the symbol SYM is an Ada exception object. */
13193
13194 static int
13195 ada_is_exception_sym (struct symbol *sym)
13196 {
13197 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13198
13199 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13200 && SYMBOL_CLASS (sym) != LOC_BLOCK
13201 && SYMBOL_CLASS (sym) != LOC_CONST
13202 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13203 && type_name != NULL && strcmp (type_name, "exception") == 0);
13204 }
13205
13206 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13207 Ada exception object. This matches all exceptions except the ones
13208 defined by the Ada language. */
13209
13210 static int
13211 ada_is_non_standard_exception_sym (struct symbol *sym)
13212 {
13213 int i;
13214
13215 if (!ada_is_exception_sym (sym))
13216 return 0;
13217
13218 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13219 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13220 return 0; /* A standard exception. */
13221
13222 /* Numeric_Error is also a standard exception, so exclude it.
13223 See the STANDARD_EXC description for more details as to why
13224 this exception is not listed in that array. */
13225 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13226 return 0;
13227
13228 return 1;
13229 }
13230
13231 /* A helper function for qsort, comparing two struct ada_exc_info
13232 objects.
13233
13234 The comparison is determined first by exception name, and then
13235 by exception address. */
13236
13237 static int
13238 compare_ada_exception_info (const void *a, const void *b)
13239 {
13240 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13241 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13242 int result;
13243
13244 result = strcmp (exc_a->name, exc_b->name);
13245 if (result != 0)
13246 return result;
13247
13248 if (exc_a->addr < exc_b->addr)
13249 return -1;
13250 if (exc_a->addr > exc_b->addr)
13251 return 1;
13252
13253 return 0;
13254 }
13255
13256 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13257 routine, but keeping the first SKIP elements untouched.
13258
13259 All duplicates are also removed. */
13260
13261 static void
13262 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13263 int skip)
13264 {
13265 struct ada_exc_info *to_sort
13266 = VEC_address (ada_exc_info, *exceptions) + skip;
13267 int to_sort_len
13268 = VEC_length (ada_exc_info, *exceptions) - skip;
13269 int i, j;
13270
13271 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13272 compare_ada_exception_info);
13273
13274 for (i = 1, j = 1; i < to_sort_len; i++)
13275 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13276 to_sort[j++] = to_sort[i];
13277 to_sort_len = j;
13278 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13279 }
13280
13281 /* A function intended as the "name_matcher" callback in the struct
13282 quick_symbol_functions' expand_symtabs_matching method.
13283
13284 SEARCH_NAME is the symbol's search name.
13285
13286 If USER_DATA is not NULL, it is a pointer to a regext_t object
13287 used to match the symbol (by natural name). Otherwise, when USER_DATA
13288 is null, no filtering is performed, and all symbols are a positive
13289 match. */
13290
13291 static int
13292 ada_exc_search_name_matches (const char *search_name, void *user_data)
13293 {
13294 regex_t *preg = (regex_t *) user_data;
13295
13296 if (preg == NULL)
13297 return 1;
13298
13299 /* In Ada, the symbol "search name" is a linkage name, whereas
13300 the regular expression used to do the matching refers to
13301 the natural name. So match against the decoded name. */
13302 return (regexec (preg, ada_decode (search_name), 0, NULL, 0) == 0);
13303 }
13304
13305 /* Add all exceptions defined by the Ada standard whose name match
13306 a regular expression.
13307
13308 If PREG is not NULL, then this regexp_t object is used to
13309 perform the symbol name matching. Otherwise, no name-based
13310 filtering is performed.
13311
13312 EXCEPTIONS is a vector of exceptions to which matching exceptions
13313 gets pushed. */
13314
13315 static void
13316 ada_add_standard_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13317 {
13318 int i;
13319
13320 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13321 {
13322 if (preg == NULL
13323 || regexec (preg, standard_exc[i], 0, NULL, 0) == 0)
13324 {
13325 struct bound_minimal_symbol msymbol
13326 = ada_lookup_simple_minsym (standard_exc[i]);
13327
13328 if (msymbol.minsym != NULL)
13329 {
13330 struct ada_exc_info info
13331 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13332
13333 VEC_safe_push (ada_exc_info, *exceptions, &info);
13334 }
13335 }
13336 }
13337 }
13338
13339 /* Add all Ada exceptions defined locally and accessible from the given
13340 FRAME.
13341
13342 If PREG is not NULL, then this regexp_t object is used to
13343 perform the symbol name matching. Otherwise, no name-based
13344 filtering is performed.
13345
13346 EXCEPTIONS is a vector of exceptions to which matching exceptions
13347 gets pushed. */
13348
13349 static void
13350 ada_add_exceptions_from_frame (regex_t *preg, struct frame_info *frame,
13351 VEC(ada_exc_info) **exceptions)
13352 {
13353 const struct block *block = get_frame_block (frame, 0);
13354
13355 while (block != 0)
13356 {
13357 struct block_iterator iter;
13358 struct symbol *sym;
13359
13360 ALL_BLOCK_SYMBOLS (block, iter, sym)
13361 {
13362 switch (SYMBOL_CLASS (sym))
13363 {
13364 case LOC_TYPEDEF:
13365 case LOC_BLOCK:
13366 case LOC_CONST:
13367 break;
13368 default:
13369 if (ada_is_exception_sym (sym))
13370 {
13371 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13372 SYMBOL_VALUE_ADDRESS (sym)};
13373
13374 VEC_safe_push (ada_exc_info, *exceptions, &info);
13375 }
13376 }
13377 }
13378 if (BLOCK_FUNCTION (block) != NULL)
13379 break;
13380 block = BLOCK_SUPERBLOCK (block);
13381 }
13382 }
13383
13384 /* Add all exceptions defined globally whose name name match
13385 a regular expression, excluding standard exceptions.
13386
13387 The reason we exclude standard exceptions is that they need
13388 to be handled separately: Standard exceptions are defined inside
13389 a runtime unit which is normally not compiled with debugging info,
13390 and thus usually do not show up in our symbol search. However,
13391 if the unit was in fact built with debugging info, we need to
13392 exclude them because they would duplicate the entry we found
13393 during the special loop that specifically searches for those
13394 standard exceptions.
13395
13396 If PREG is not NULL, then this regexp_t object is used to
13397 perform the symbol name matching. Otherwise, no name-based
13398 filtering is performed.
13399
13400 EXCEPTIONS is a vector of exceptions to which matching exceptions
13401 gets pushed. */
13402
13403 static void
13404 ada_add_global_exceptions (regex_t *preg, VEC(ada_exc_info) **exceptions)
13405 {
13406 struct objfile *objfile;
13407 struct compunit_symtab *s;
13408
13409 expand_symtabs_matching (NULL, ada_exc_search_name_matches, NULL,
13410 VARIABLES_DOMAIN, preg);
13411
13412 ALL_COMPUNITS (objfile, s)
13413 {
13414 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13415 int i;
13416
13417 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13418 {
13419 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13420 struct block_iterator iter;
13421 struct symbol *sym;
13422
13423 ALL_BLOCK_SYMBOLS (b, iter, sym)
13424 if (ada_is_non_standard_exception_sym (sym)
13425 && (preg == NULL
13426 || regexec (preg, SYMBOL_NATURAL_NAME (sym),
13427 0, NULL, 0) == 0))
13428 {
13429 struct ada_exc_info info
13430 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13431
13432 VEC_safe_push (ada_exc_info, *exceptions, &info);
13433 }
13434 }
13435 }
13436 }
13437
13438 /* Implements ada_exceptions_list with the regular expression passed
13439 as a regex_t, rather than a string.
13440
13441 If not NULL, PREG is used to filter out exceptions whose names
13442 do not match. Otherwise, all exceptions are listed. */
13443
13444 static VEC(ada_exc_info) *
13445 ada_exceptions_list_1 (regex_t *preg)
13446 {
13447 VEC(ada_exc_info) *result = NULL;
13448 struct cleanup *old_chain
13449 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13450 int prev_len;
13451
13452 /* First, list the known standard exceptions. These exceptions
13453 need to be handled separately, as they are usually defined in
13454 runtime units that have been compiled without debugging info. */
13455
13456 ada_add_standard_exceptions (preg, &result);
13457
13458 /* Next, find all exceptions whose scope is local and accessible
13459 from the currently selected frame. */
13460
13461 if (has_stack_frames ())
13462 {
13463 prev_len = VEC_length (ada_exc_info, result);
13464 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13465 &result);
13466 if (VEC_length (ada_exc_info, result) > prev_len)
13467 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13468 }
13469
13470 /* Add all exceptions whose scope is global. */
13471
13472 prev_len = VEC_length (ada_exc_info, result);
13473 ada_add_global_exceptions (preg, &result);
13474 if (VEC_length (ada_exc_info, result) > prev_len)
13475 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13476
13477 discard_cleanups (old_chain);
13478 return result;
13479 }
13480
13481 /* Return a vector of ada_exc_info.
13482
13483 If REGEXP is NULL, all exceptions are included in the result.
13484 Otherwise, it should contain a valid regular expression,
13485 and only the exceptions whose names match that regular expression
13486 are included in the result.
13487
13488 The exceptions are sorted in the following order:
13489 - Standard exceptions (defined by the Ada language), in
13490 alphabetical order;
13491 - Exceptions only visible from the current frame, in
13492 alphabetical order;
13493 - Exceptions whose scope is global, in alphabetical order. */
13494
13495 VEC(ada_exc_info) *
13496 ada_exceptions_list (const char *regexp)
13497 {
13498 VEC(ada_exc_info) *result = NULL;
13499 struct cleanup *old_chain = NULL;
13500 regex_t reg;
13501
13502 if (regexp != NULL)
13503 old_chain = compile_rx_or_error (&reg, regexp,
13504 _("invalid regular expression"));
13505
13506 result = ada_exceptions_list_1 (regexp != NULL ? &reg : NULL);
13507
13508 if (old_chain != NULL)
13509 do_cleanups (old_chain);
13510 return result;
13511 }
13512
13513 /* Implement the "info exceptions" command. */
13514
13515 static void
13516 info_exceptions_command (char *regexp, int from_tty)
13517 {
13518 VEC(ada_exc_info) *exceptions;
13519 struct cleanup *cleanup;
13520 struct gdbarch *gdbarch = get_current_arch ();
13521 int ix;
13522 struct ada_exc_info *info;
13523
13524 exceptions = ada_exceptions_list (regexp);
13525 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13526
13527 if (regexp != NULL)
13528 printf_filtered
13529 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13530 else
13531 printf_filtered (_("All defined Ada exceptions:\n"));
13532
13533 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13534 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13535
13536 do_cleanups (cleanup);
13537 }
13538
13539 /* Operators */
13540 /* Information about operators given special treatment in functions
13541 below. */
13542 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13543
13544 #define ADA_OPERATORS \
13545 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13546 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13547 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13548 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13549 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13550 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13551 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13552 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13553 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13554 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13555 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13556 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13557 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13558 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13559 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13560 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13561 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13562 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13563 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13564
13565 static void
13566 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13567 int *argsp)
13568 {
13569 switch (exp->elts[pc - 1].opcode)
13570 {
13571 default:
13572 operator_length_standard (exp, pc, oplenp, argsp);
13573 break;
13574
13575 #define OP_DEFN(op, len, args, binop) \
13576 case op: *oplenp = len; *argsp = args; break;
13577 ADA_OPERATORS;
13578 #undef OP_DEFN
13579
13580 case OP_AGGREGATE:
13581 *oplenp = 3;
13582 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13583 break;
13584
13585 case OP_CHOICES:
13586 *oplenp = 3;
13587 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13588 break;
13589 }
13590 }
13591
13592 /* Implementation of the exp_descriptor method operator_check. */
13593
13594 static int
13595 ada_operator_check (struct expression *exp, int pos,
13596 int (*objfile_func) (struct objfile *objfile, void *data),
13597 void *data)
13598 {
13599 const union exp_element *const elts = exp->elts;
13600 struct type *type = NULL;
13601
13602 switch (elts[pos].opcode)
13603 {
13604 case UNOP_IN_RANGE:
13605 case UNOP_QUAL:
13606 type = elts[pos + 1].type;
13607 break;
13608
13609 default:
13610 return operator_check_standard (exp, pos, objfile_func, data);
13611 }
13612
13613 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13614
13615 if (type && TYPE_OBJFILE (type)
13616 && (*objfile_func) (TYPE_OBJFILE (type), data))
13617 return 1;
13618
13619 return 0;
13620 }
13621
13622 static char *
13623 ada_op_name (enum exp_opcode opcode)
13624 {
13625 switch (opcode)
13626 {
13627 default:
13628 return op_name_standard (opcode);
13629
13630 #define OP_DEFN(op, len, args, binop) case op: return #op;
13631 ADA_OPERATORS;
13632 #undef OP_DEFN
13633
13634 case OP_AGGREGATE:
13635 return "OP_AGGREGATE";
13636 case OP_CHOICES:
13637 return "OP_CHOICES";
13638 case OP_NAME:
13639 return "OP_NAME";
13640 }
13641 }
13642
13643 /* As for operator_length, but assumes PC is pointing at the first
13644 element of the operator, and gives meaningful results only for the
13645 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13646
13647 static void
13648 ada_forward_operator_length (struct expression *exp, int pc,
13649 int *oplenp, int *argsp)
13650 {
13651 switch (exp->elts[pc].opcode)
13652 {
13653 default:
13654 *oplenp = *argsp = 0;
13655 break;
13656
13657 #define OP_DEFN(op, len, args, binop) \
13658 case op: *oplenp = len; *argsp = args; break;
13659 ADA_OPERATORS;
13660 #undef OP_DEFN
13661
13662 case OP_AGGREGATE:
13663 *oplenp = 3;
13664 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13665 break;
13666
13667 case OP_CHOICES:
13668 *oplenp = 3;
13669 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13670 break;
13671
13672 case OP_STRING:
13673 case OP_NAME:
13674 {
13675 int len = longest_to_int (exp->elts[pc + 1].longconst);
13676
13677 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13678 *argsp = 0;
13679 break;
13680 }
13681 }
13682 }
13683
13684 static int
13685 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13686 {
13687 enum exp_opcode op = exp->elts[elt].opcode;
13688 int oplen, nargs;
13689 int pc = elt;
13690 int i;
13691
13692 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13693
13694 switch (op)
13695 {
13696 /* Ada attributes ('Foo). */
13697 case OP_ATR_FIRST:
13698 case OP_ATR_LAST:
13699 case OP_ATR_LENGTH:
13700 case OP_ATR_IMAGE:
13701 case OP_ATR_MAX:
13702 case OP_ATR_MIN:
13703 case OP_ATR_MODULUS:
13704 case OP_ATR_POS:
13705 case OP_ATR_SIZE:
13706 case OP_ATR_TAG:
13707 case OP_ATR_VAL:
13708 break;
13709
13710 case UNOP_IN_RANGE:
13711 case UNOP_QUAL:
13712 /* XXX: gdb_sprint_host_address, type_sprint */
13713 fprintf_filtered (stream, _("Type @"));
13714 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13715 fprintf_filtered (stream, " (");
13716 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13717 fprintf_filtered (stream, ")");
13718 break;
13719 case BINOP_IN_BOUNDS:
13720 fprintf_filtered (stream, " (%d)",
13721 longest_to_int (exp->elts[pc + 2].longconst));
13722 break;
13723 case TERNOP_IN_RANGE:
13724 break;
13725
13726 case OP_AGGREGATE:
13727 case OP_OTHERS:
13728 case OP_DISCRETE_RANGE:
13729 case OP_POSITIONAL:
13730 case OP_CHOICES:
13731 break;
13732
13733 case OP_NAME:
13734 case OP_STRING:
13735 {
13736 char *name = &exp->elts[elt + 2].string;
13737 int len = longest_to_int (exp->elts[elt + 1].longconst);
13738
13739 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13740 break;
13741 }
13742
13743 default:
13744 return dump_subexp_body_standard (exp, stream, elt);
13745 }
13746
13747 elt += oplen;
13748 for (i = 0; i < nargs; i += 1)
13749 elt = dump_subexp (exp, stream, elt);
13750
13751 return elt;
13752 }
13753
13754 /* The Ada extension of print_subexp (q.v.). */
13755
13756 static void
13757 ada_print_subexp (struct expression *exp, int *pos,
13758 struct ui_file *stream, enum precedence prec)
13759 {
13760 int oplen, nargs, i;
13761 int pc = *pos;
13762 enum exp_opcode op = exp->elts[pc].opcode;
13763
13764 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13765
13766 *pos += oplen;
13767 switch (op)
13768 {
13769 default:
13770 *pos -= oplen;
13771 print_subexp_standard (exp, pos, stream, prec);
13772 return;
13773
13774 case OP_VAR_VALUE:
13775 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13776 return;
13777
13778 case BINOP_IN_BOUNDS:
13779 /* XXX: sprint_subexp */
13780 print_subexp (exp, pos, stream, PREC_SUFFIX);
13781 fputs_filtered (" in ", stream);
13782 print_subexp (exp, pos, stream, PREC_SUFFIX);
13783 fputs_filtered ("'range", stream);
13784 if (exp->elts[pc + 1].longconst > 1)
13785 fprintf_filtered (stream, "(%ld)",
13786 (long) exp->elts[pc + 1].longconst);
13787 return;
13788
13789 case TERNOP_IN_RANGE:
13790 if (prec >= PREC_EQUAL)
13791 fputs_filtered ("(", stream);
13792 /* XXX: sprint_subexp */
13793 print_subexp (exp, pos, stream, PREC_SUFFIX);
13794 fputs_filtered (" in ", stream);
13795 print_subexp (exp, pos, stream, PREC_EQUAL);
13796 fputs_filtered (" .. ", stream);
13797 print_subexp (exp, pos, stream, PREC_EQUAL);
13798 if (prec >= PREC_EQUAL)
13799 fputs_filtered (")", stream);
13800 return;
13801
13802 case OP_ATR_FIRST:
13803 case OP_ATR_LAST:
13804 case OP_ATR_LENGTH:
13805 case OP_ATR_IMAGE:
13806 case OP_ATR_MAX:
13807 case OP_ATR_MIN:
13808 case OP_ATR_MODULUS:
13809 case OP_ATR_POS:
13810 case OP_ATR_SIZE:
13811 case OP_ATR_TAG:
13812 case OP_ATR_VAL:
13813 if (exp->elts[*pos].opcode == OP_TYPE)
13814 {
13815 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13816 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13817 &type_print_raw_options);
13818 *pos += 3;
13819 }
13820 else
13821 print_subexp (exp, pos, stream, PREC_SUFFIX);
13822 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13823 if (nargs > 1)
13824 {
13825 int tem;
13826
13827 for (tem = 1; tem < nargs; tem += 1)
13828 {
13829 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13830 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13831 }
13832 fputs_filtered (")", stream);
13833 }
13834 return;
13835
13836 case UNOP_QUAL:
13837 type_print (exp->elts[pc + 1].type, "", stream, 0);
13838 fputs_filtered ("'(", stream);
13839 print_subexp (exp, pos, stream, PREC_PREFIX);
13840 fputs_filtered (")", stream);
13841 return;
13842
13843 case UNOP_IN_RANGE:
13844 /* XXX: sprint_subexp */
13845 print_subexp (exp, pos, stream, PREC_SUFFIX);
13846 fputs_filtered (" in ", stream);
13847 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13848 &type_print_raw_options);
13849 return;
13850
13851 case OP_DISCRETE_RANGE:
13852 print_subexp (exp, pos, stream, PREC_SUFFIX);
13853 fputs_filtered ("..", stream);
13854 print_subexp (exp, pos, stream, PREC_SUFFIX);
13855 return;
13856
13857 case OP_OTHERS:
13858 fputs_filtered ("others => ", stream);
13859 print_subexp (exp, pos, stream, PREC_SUFFIX);
13860 return;
13861
13862 case OP_CHOICES:
13863 for (i = 0; i < nargs-1; i += 1)
13864 {
13865 if (i > 0)
13866 fputs_filtered ("|", stream);
13867 print_subexp (exp, pos, stream, PREC_SUFFIX);
13868 }
13869 fputs_filtered (" => ", stream);
13870 print_subexp (exp, pos, stream, PREC_SUFFIX);
13871 return;
13872
13873 case OP_POSITIONAL:
13874 print_subexp (exp, pos, stream, PREC_SUFFIX);
13875 return;
13876
13877 case OP_AGGREGATE:
13878 fputs_filtered ("(", stream);
13879 for (i = 0; i < nargs; i += 1)
13880 {
13881 if (i > 0)
13882 fputs_filtered (", ", stream);
13883 print_subexp (exp, pos, stream, PREC_SUFFIX);
13884 }
13885 fputs_filtered (")", stream);
13886 return;
13887 }
13888 }
13889
13890 /* Table mapping opcodes into strings for printing operators
13891 and precedences of the operators. */
13892
13893 static const struct op_print ada_op_print_tab[] = {
13894 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13895 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13896 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13897 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13898 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13899 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13900 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13901 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13902 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13903 {">=", BINOP_GEQ, PREC_ORDER, 0},
13904 {">", BINOP_GTR, PREC_ORDER, 0},
13905 {"<", BINOP_LESS, PREC_ORDER, 0},
13906 {">>", BINOP_RSH, PREC_SHIFT, 0},
13907 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13908 {"+", BINOP_ADD, PREC_ADD, 0},
13909 {"-", BINOP_SUB, PREC_ADD, 0},
13910 {"&", BINOP_CONCAT, PREC_ADD, 0},
13911 {"*", BINOP_MUL, PREC_MUL, 0},
13912 {"/", BINOP_DIV, PREC_MUL, 0},
13913 {"rem", BINOP_REM, PREC_MUL, 0},
13914 {"mod", BINOP_MOD, PREC_MUL, 0},
13915 {"**", BINOP_EXP, PREC_REPEAT, 0},
13916 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13917 {"-", UNOP_NEG, PREC_PREFIX, 0},
13918 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13919 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13920 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13921 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13922 {".all", UNOP_IND, PREC_SUFFIX, 1},
13923 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13924 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13925 {NULL, OP_NULL, PREC_SUFFIX, 0}
13926 };
13927 \f
13928 enum ada_primitive_types {
13929 ada_primitive_type_int,
13930 ada_primitive_type_long,
13931 ada_primitive_type_short,
13932 ada_primitive_type_char,
13933 ada_primitive_type_float,
13934 ada_primitive_type_double,
13935 ada_primitive_type_void,
13936 ada_primitive_type_long_long,
13937 ada_primitive_type_long_double,
13938 ada_primitive_type_natural,
13939 ada_primitive_type_positive,
13940 ada_primitive_type_system_address,
13941 nr_ada_primitive_types
13942 };
13943
13944 static void
13945 ada_language_arch_info (struct gdbarch *gdbarch,
13946 struct language_arch_info *lai)
13947 {
13948 const struct builtin_type *builtin = builtin_type (gdbarch);
13949
13950 lai->primitive_type_vector
13951 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13952 struct type *);
13953
13954 lai->primitive_type_vector [ada_primitive_type_int]
13955 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13956 0, "integer");
13957 lai->primitive_type_vector [ada_primitive_type_long]
13958 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13959 0, "long_integer");
13960 lai->primitive_type_vector [ada_primitive_type_short]
13961 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13962 0, "short_integer");
13963 lai->string_char_type
13964 = lai->primitive_type_vector [ada_primitive_type_char]
13965 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13966 lai->primitive_type_vector [ada_primitive_type_float]
13967 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13968 "float", gdbarch_float_format (gdbarch));
13969 lai->primitive_type_vector [ada_primitive_type_double]
13970 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13971 "long_float", gdbarch_double_format (gdbarch));
13972 lai->primitive_type_vector [ada_primitive_type_long_long]
13973 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13974 0, "long_long_integer");
13975 lai->primitive_type_vector [ada_primitive_type_long_double]
13976 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13977 "long_long_float", gdbarch_long_double_format (gdbarch));
13978 lai->primitive_type_vector [ada_primitive_type_natural]
13979 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13980 0, "natural");
13981 lai->primitive_type_vector [ada_primitive_type_positive]
13982 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13983 0, "positive");
13984 lai->primitive_type_vector [ada_primitive_type_void]
13985 = builtin->builtin_void;
13986
13987 lai->primitive_type_vector [ada_primitive_type_system_address]
13988 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13989 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13990 = "system__address";
13991
13992 lai->bool_type_symbol = NULL;
13993 lai->bool_type_default = builtin->builtin_bool;
13994 }
13995 \f
13996 /* Language vector */
13997
13998 /* Not really used, but needed in the ada_language_defn. */
13999
14000 static void
14001 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14002 {
14003 ada_emit_char (c, type, stream, quoter, 1);
14004 }
14005
14006 static int
14007 parse (struct parser_state *ps)
14008 {
14009 warnings_issued = 0;
14010 return ada_parse (ps);
14011 }
14012
14013 static const struct exp_descriptor ada_exp_descriptor = {
14014 ada_print_subexp,
14015 ada_operator_length,
14016 ada_operator_check,
14017 ada_op_name,
14018 ada_dump_subexp_body,
14019 ada_evaluate_subexp
14020 };
14021
14022 /* Implement the "la_get_symbol_name_cmp" language_defn method
14023 for Ada. */
14024
14025 static symbol_name_cmp_ftype
14026 ada_get_symbol_name_cmp (const char *lookup_name)
14027 {
14028 if (should_use_wild_match (lookup_name))
14029 return wild_match;
14030 else
14031 return compare_names;
14032 }
14033
14034 /* Implement the "la_read_var_value" language_defn method for Ada. */
14035
14036 static struct value *
14037 ada_read_var_value (struct symbol *var, const struct block *var_block,
14038 struct frame_info *frame)
14039 {
14040 const struct block *frame_block = NULL;
14041 struct symbol *renaming_sym = NULL;
14042
14043 /* The only case where default_read_var_value is not sufficient
14044 is when VAR is a renaming... */
14045 if (frame)
14046 frame_block = get_frame_block (frame, NULL);
14047 if (frame_block)
14048 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14049 if (renaming_sym != NULL)
14050 return ada_read_renaming_var_value (renaming_sym, frame_block);
14051
14052 /* This is a typical case where we expect the default_read_var_value
14053 function to work. */
14054 return default_read_var_value (var, var_block, frame);
14055 }
14056
14057 static const char *ada_extensions[] =
14058 {
14059 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14060 };
14061
14062 const struct language_defn ada_language_defn = {
14063 "ada", /* Language name */
14064 "Ada",
14065 language_ada,
14066 range_check_off,
14067 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14068 that's not quite what this means. */
14069 array_row_major,
14070 macro_expansion_no,
14071 ada_extensions,
14072 &ada_exp_descriptor,
14073 parse,
14074 ada_yyerror,
14075 resolve,
14076 ada_printchar, /* Print a character constant */
14077 ada_printstr, /* Function to print string constant */
14078 emit_char, /* Function to print single char (not used) */
14079 ada_print_type, /* Print a type using appropriate syntax */
14080 ada_print_typedef, /* Print a typedef using appropriate syntax */
14081 ada_val_print, /* Print a value using appropriate syntax */
14082 ada_value_print, /* Print a top-level value */
14083 ada_read_var_value, /* la_read_var_value */
14084 NULL, /* Language specific skip_trampoline */
14085 NULL, /* name_of_this */
14086 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14087 basic_lookup_transparent_type, /* lookup_transparent_type */
14088 ada_la_decode, /* Language specific symbol demangler */
14089 ada_sniff_from_mangled_name,
14090 NULL, /* Language specific
14091 class_name_from_physname */
14092 ada_op_print_tab, /* expression operators for printing */
14093 0, /* c-style arrays */
14094 1, /* String lower bound */
14095 ada_get_gdb_completer_word_break_characters,
14096 ada_make_symbol_completion_list,
14097 ada_language_arch_info,
14098 ada_print_array_index,
14099 default_pass_by_reference,
14100 c_get_string,
14101 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14102 ada_iterate_over_symbols,
14103 &ada_varobj_ops,
14104 NULL,
14105 NULL,
14106 LANG_MAGIC
14107 };
14108
14109 /* Provide a prototype to silence -Wmissing-prototypes. */
14110 extern initialize_file_ftype _initialize_ada_language;
14111
14112 /* Command-list for the "set/show ada" prefix command. */
14113 static struct cmd_list_element *set_ada_list;
14114 static struct cmd_list_element *show_ada_list;
14115
14116 /* Implement the "set ada" prefix command. */
14117
14118 static void
14119 set_ada_command (char *arg, int from_tty)
14120 {
14121 printf_unfiltered (_(\
14122 "\"set ada\" must be followed by the name of a setting.\n"));
14123 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14124 }
14125
14126 /* Implement the "show ada" prefix command. */
14127
14128 static void
14129 show_ada_command (char *args, int from_tty)
14130 {
14131 cmd_show_list (show_ada_list, from_tty, "");
14132 }
14133
14134 static void
14135 initialize_ada_catchpoint_ops (void)
14136 {
14137 struct breakpoint_ops *ops;
14138
14139 initialize_breakpoint_ops ();
14140
14141 ops = &catch_exception_breakpoint_ops;
14142 *ops = bkpt_breakpoint_ops;
14143 ops->dtor = dtor_catch_exception;
14144 ops->allocate_location = allocate_location_catch_exception;
14145 ops->re_set = re_set_catch_exception;
14146 ops->check_status = check_status_catch_exception;
14147 ops->print_it = print_it_catch_exception;
14148 ops->print_one = print_one_catch_exception;
14149 ops->print_mention = print_mention_catch_exception;
14150 ops->print_recreate = print_recreate_catch_exception;
14151
14152 ops = &catch_exception_unhandled_breakpoint_ops;
14153 *ops = bkpt_breakpoint_ops;
14154 ops->dtor = dtor_catch_exception_unhandled;
14155 ops->allocate_location = allocate_location_catch_exception_unhandled;
14156 ops->re_set = re_set_catch_exception_unhandled;
14157 ops->check_status = check_status_catch_exception_unhandled;
14158 ops->print_it = print_it_catch_exception_unhandled;
14159 ops->print_one = print_one_catch_exception_unhandled;
14160 ops->print_mention = print_mention_catch_exception_unhandled;
14161 ops->print_recreate = print_recreate_catch_exception_unhandled;
14162
14163 ops = &catch_assert_breakpoint_ops;
14164 *ops = bkpt_breakpoint_ops;
14165 ops->dtor = dtor_catch_assert;
14166 ops->allocate_location = allocate_location_catch_assert;
14167 ops->re_set = re_set_catch_assert;
14168 ops->check_status = check_status_catch_assert;
14169 ops->print_it = print_it_catch_assert;
14170 ops->print_one = print_one_catch_assert;
14171 ops->print_mention = print_mention_catch_assert;
14172 ops->print_recreate = print_recreate_catch_assert;
14173 }
14174
14175 /* This module's 'new_objfile' observer. */
14176
14177 static void
14178 ada_new_objfile_observer (struct objfile *objfile)
14179 {
14180 ada_clear_symbol_cache ();
14181 }
14182
14183 /* This module's 'free_objfile' observer. */
14184
14185 static void
14186 ada_free_objfile_observer (struct objfile *objfile)
14187 {
14188 ada_clear_symbol_cache ();
14189 }
14190
14191 void
14192 _initialize_ada_language (void)
14193 {
14194 add_language (&ada_language_defn);
14195
14196 initialize_ada_catchpoint_ops ();
14197
14198 add_prefix_cmd ("ada", no_class, set_ada_command,
14199 _("Prefix command for changing Ada-specfic settings"),
14200 &set_ada_list, "set ada ", 0, &setlist);
14201
14202 add_prefix_cmd ("ada", no_class, show_ada_command,
14203 _("Generic command for showing Ada-specific settings."),
14204 &show_ada_list, "show ada ", 0, &showlist);
14205
14206 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14207 &trust_pad_over_xvs, _("\
14208 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14209 Show whether an optimization trusting PAD types over XVS types is activated"),
14210 _("\
14211 This is related to the encoding used by the GNAT compiler. The debugger\n\
14212 should normally trust the contents of PAD types, but certain older versions\n\
14213 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14214 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14215 work around this bug. It is always safe to turn this option \"off\", but\n\
14216 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14217 this option to \"off\" unless necessary."),
14218 NULL, NULL, &set_ada_list, &show_ada_list);
14219
14220 add_setshow_boolean_cmd ("print-signatures", class_vars,
14221 &print_signatures, _("\
14222 Enable or disable the output of formal and return types for functions in the \
14223 overloads selection menu"), _("\
14224 Show whether the output of formal and return types for functions in the \
14225 overloads selection menu is activated"),
14226 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14227
14228 add_catch_command ("exception", _("\
14229 Catch Ada exceptions, when raised.\n\
14230 With an argument, catch only exceptions with the given name."),
14231 catch_ada_exception_command,
14232 NULL,
14233 CATCH_PERMANENT,
14234 CATCH_TEMPORARY);
14235 add_catch_command ("assert", _("\
14236 Catch failed Ada assertions, when raised.\n\
14237 With an argument, catch only exceptions with the given name."),
14238 catch_assert_command,
14239 NULL,
14240 CATCH_PERMANENT,
14241 CATCH_TEMPORARY);
14242
14243 varsize_limit = 65536;
14244
14245 add_info ("exceptions", info_exceptions_command,
14246 _("\
14247 List all Ada exception names.\n\
14248 If a regular expression is passed as an argument, only those matching\n\
14249 the regular expression are listed."));
14250
14251 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14252 _("Set Ada maintenance-related variables."),
14253 &maint_set_ada_cmdlist, "maintenance set ada ",
14254 0/*allow-unknown*/, &maintenance_set_cmdlist);
14255
14256 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14257 _("Show Ada maintenance-related variables"),
14258 &maint_show_ada_cmdlist, "maintenance show ada ",
14259 0/*allow-unknown*/, &maintenance_show_cmdlist);
14260
14261 add_setshow_boolean_cmd
14262 ("ignore-descriptive-types", class_maintenance,
14263 &ada_ignore_descriptive_types_p,
14264 _("Set whether descriptive types generated by GNAT should be ignored."),
14265 _("Show whether descriptive types generated by GNAT should be ignored."),
14266 _("\
14267 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14268 DWARF attribute."),
14269 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14270
14271 obstack_init (&symbol_list_obstack);
14272
14273 decoded_names_store = htab_create_alloc
14274 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14275 NULL, xcalloc, xfree);
14276
14277 /* The ada-lang observers. */
14278 observer_attach_new_objfile (ada_new_objfile_observer);
14279 observer_attach_free_objfile (ada_free_objfile_observer);
14280 observer_attach_inferior_exit (ada_inferior_exit);
14281
14282 /* Setup various context-specific data. */
14283 ada_inferior_data
14284 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14285 ada_pspace_data_handle
14286 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14287 }