]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
* ada-lang.c (ada_make_symbol_completion_list): Return a VEC.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 return result;
585 }
586 }
587
588 static const gdb_byte *
589 cond_offset_host (const gdb_byte *valaddr, long offset)
590 {
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595 }
596
597 static CORE_ADDR
598 cond_offset_target (CORE_ADDR address, long offset)
599 {
600 if (address == 0)
601 return 0;
602 else
603 return address + offset;
604 }
605
606 /* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
610
611 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
613 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
614
615 static void
616 lim_warning (const char *format, ...)
617 {
618 va_list args;
619
620 va_start (args, format);
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
623 vwarning (format, args);
624
625 va_end (args);
626 }
627
628 /* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632 static void
633 check_size (const struct type *type)
634 {
635 if (TYPE_LENGTH (type) > varsize_limit)
636 error (_("object size is larger than varsize-limit"));
637 }
638
639 /* Maximum value of a SIZE-byte signed integer type. */
640 static LONGEST
641 max_of_size (int size)
642 {
643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
644
645 return top_bit | (top_bit - 1);
646 }
647
648 /* Minimum value of a SIZE-byte signed integer type. */
649 static LONGEST
650 min_of_size (int size)
651 {
652 return -max_of_size (size) - 1;
653 }
654
655 /* Maximum value of a SIZE-byte unsigned integer type. */
656 static ULONGEST
657 umax_of_size (int size)
658 {
659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
660
661 return top_bit | (top_bit - 1);
662 }
663
664 /* Maximum value of integral type T, as a signed quantity. */
665 static LONGEST
666 max_of_type (struct type *t)
667 {
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672 }
673
674 /* Minimum value of integral type T, as a signed quantity. */
675 static LONGEST
676 min_of_type (struct type *t)
677 {
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
682 }
683
684 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_high_bound (struct type *type)
687 {
688 switch (TYPE_CODE (type))
689 {
690 case TYPE_CODE_RANGE:
691 return TYPE_HIGH_BOUND (type);
692 case TYPE_CODE_ENUM:
693 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
697 case TYPE_CODE_INT:
698 return max_of_type (type);
699 default:
700 error (_("Unexpected type in ada_discrete_type_high_bound."));
701 }
702 }
703
704 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
705 LONGEST
706 ada_discrete_type_low_bound (struct type *type)
707 {
708 switch (TYPE_CODE (type))
709 {
710 case TYPE_CODE_RANGE:
711 return TYPE_LOW_BOUND (type);
712 case TYPE_CODE_ENUM:
713 return TYPE_FIELD_ENUMVAL (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
717 case TYPE_CODE_INT:
718 return min_of_type (type);
719 default:
720 error (_("Unexpected type in ada_discrete_type_low_bound."));
721 }
722 }
723
724 /* The identity on non-range types. For range types, the underlying
725 non-range scalar type. */
726
727 static struct type *
728 get_base_type (struct type *type)
729 {
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
737 }
738
739 /* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744 struct value *
745 ada_get_decoded_value (struct value *value)
746 {
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762 }
763
764 /* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769 struct type *
770 ada_get_decoded_type (struct type *type)
771 {
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776 }
777
778 \f
779
780 /* Language Selection */
781
782 /* If the main program is in Ada, return language_ada, otherwise return LANG
783 (the main program is in Ada iif the adainit symbol is found). */
784
785 enum language
786 ada_update_initial_language (enum language lang)
787 {
788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
791
792 return lang;
793 }
794
795 /* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799 char *
800 ada_main_name (void)
801 {
802 struct minimal_symbol *msym;
803 static char *main_program_name = NULL;
804
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
819 error (_("Invalid address for Ada main program name."));
820
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832 }
833 \f
834 /* Symbols */
835
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
838
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
862 };
863
864 /* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
867 char *
868 ada_encode (const char *decoded)
869 {
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
872 const char *p;
873 int k;
874
875 if (decoded == NULL)
876 return NULL;
877
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
880
881 k = 0;
882 for (p = decoded; *p != '\0'; p += 1)
883 {
884 if (*p == '.')
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
889 else if (*p == '"')
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
897 ;
898 if (mapping->encoded == NULL)
899 error (_("invalid Ada operator name: %s"), p);
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
904 else
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
909 }
910
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
913 }
914
915 /* Return NAME folded to lower case, or, if surrounded by single
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
919 char *
920 ada_fold_name (const char *name)
921 {
922 static char *fold_buffer = NULL;
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
927
928 if (name[0] == '\'')
929 {
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
932 }
933 else
934 {
935 int i;
936
937 for (i = 0; i <= len; i += 1)
938 fold_buffer[i] = tolower (name[i]);
939 }
940
941 return fold_buffer;
942 }
943
944 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946 static int
947 is_lower_alphanum (const char c)
948 {
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950 }
951
952 /* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
959
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964 static void
965 ada_remove_trailing_digits (const char *encoded, int *len)
966 {
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
970
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982 }
983
984 /* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987 static void
988 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989 {
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
995 the 'P' suffix. The second calls the first one after handling
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004 }
1005
1006 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008 static void
1009 ada_remove_Xbn_suffix (const char *encoded, int *len)
1010 {
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024 }
1025
1026 /* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
1029
1030 The resulting string is valid until the next call of ada_decode.
1031 If the string is unchanged by decoding, the original string pointer
1032 is returned. */
1033
1034 const char *
1035 ada_decode (const char *encoded)
1036 {
1037 int i, j;
1038 int len0;
1039 const char *p;
1040 char *decoded;
1041 int at_start_name;
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
1044
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
1050
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
1054 if (encoded[0] == '_' || encoded[0] == '<')
1055 goto Suppress;
1056
1057 len0 = strlen (encoded);
1058
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
1061
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
1068 {
1069 if (p[3] == 'X')
1070 len0 = p - encoded;
1071 else
1072 goto Suppress;
1073 }
1074
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1080 len0 -= 3;
1081
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1093 len0 -= 1;
1094
1095 /* Make decoded big enough for possible expansion by operator name. */
1096
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
1099
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1103 {
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
1112 }
1113
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
1123 /* Is this a symbol function? */
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
1127
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
1145 at_start_name = 0;
1146
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
1152
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
1175 of subprograms created by the compiler for each entry. The first
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1240 {
1241 /* Replace '__' by '.'. */
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
1247 else
1248 {
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
1255 }
1256 decoded[j] = '\000';
1257
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
1263 goto Suppress;
1264
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
1269
1270 Suppress:
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
1275 else
1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1277 return decoded;
1278
1279 }
1280
1281 /* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286 static struct htab *decoded_names_store;
1287
1288 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
1293 GSYMBOL).
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
1296 when a decoded name is cached in it. */
1297
1298 char *
1299 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1300 {
1301 char **resultp =
1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1303
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
1307
1308 if (gsymbol->obj_section != NULL)
1309 {
1310 struct objfile *objf = gsymbol->obj_section->objfile;
1311
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
1314 }
1315 /* Sometimes, we can't find a corresponding objfile, in which
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
1319 if (*resultp == NULL)
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
1323
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
1328 }
1329
1330 return *resultp;
1331 }
1332
1333 static char *
1334 ada_la_decode (const char *encoded, int options)
1335 {
1336 return xstrdup (ada_decode (encoded));
1337 }
1338
1339 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
1345
1346 static int
1347 match_name (const char *sym_name, const char *name, int wild)
1348 {
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
1352 return wild_match (sym_name, name) == 0;
1353 else
1354 {
1355 int len_name = strlen (name);
1356
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
1362 }
1363 }
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421 }
1422
1423 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1424
1425 static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428 };
1429
1430 /* Maximum number of array dimensions we are prepared to handle. */
1431
1432 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1433
1434
1435 /* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
1437
1438 /* The descriptor or array type, if any, indicated by TYPE; removes
1439 level of indirection, if needed. */
1440
1441 static struct type *
1442 desc_base_type (struct type *type)
1443 {
1444 if (type == NULL)
1445 return NULL;
1446 type = ada_check_typedef (type);
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1454 else
1455 return type;
1456 }
1457
1458 /* True iff TYPE indicates a "thin" array pointer type. */
1459
1460 static int
1461 is_thin_pntr (struct type *type)
1462 {
1463 return
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466 }
1467
1468 /* The descriptor type for thin pointer type TYPE. */
1469
1470 static struct type *
1471 thin_descriptor_type (struct type *type)
1472 {
1473 struct type *base_type = desc_base_type (type);
1474
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
1479 else
1480 {
1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1482
1483 if (alt_type == NULL)
1484 return base_type;
1485 else
1486 return alt_type;
1487 }
1488 }
1489
1490 /* A pointer to the array data for thin-pointer value VAL. */
1491
1492 static struct value *
1493 thin_data_pntr (struct value *val)
1494 {
1495 struct type *type = ada_check_typedef (value_type (val));
1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1497
1498 data_type = lookup_pointer_type (data_type);
1499
1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1501 return value_cast (data_type, value_copy (val));
1502 else
1503 return value_from_longest (data_type, value_address (val));
1504 }
1505
1506 /* True iff TYPE indicates a "thick" array pointer type. */
1507
1508 static int
1509 is_thick_pntr (struct type *type)
1510 {
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1514 }
1515
1516 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
1518
1519 static struct type *
1520 desc_bounds_type (struct type *type)
1521 {
1522 struct type *r;
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
1532 return NULL;
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
1535 return ada_check_typedef (r);
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1542 }
1543 return NULL;
1544 }
1545
1546 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
1549 static struct value *
1550 desc_bounds (struct value *arr)
1551 {
1552 struct type *type = ada_check_typedef (value_type (arr));
1553
1554 if (is_thin_pntr (type))
1555 {
1556 struct type *bounds_type =
1557 desc_bounds_type (thin_descriptor_type (type));
1558 LONGEST addr;
1559
1560 if (bounds_type == NULL)
1561 error (_("Bad GNAT array descriptor"));
1562
1563 /* NOTE: The following calculation is not really kosher, but
1564 since desc_type is an XVE-encoded type (and shouldn't be),
1565 the correct calculation is a real pain. FIXME (and fix GCC). */
1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1567 addr = value_as_long (arr);
1568 else
1569 addr = value_address (arr);
1570
1571 return
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
1574 }
1575
1576 else if (is_thick_pntr (type))
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
1597 else
1598 return NULL;
1599 }
1600
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
1604 static int
1605 fat_pntr_bounds_bitpos (struct type *type)
1606 {
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608 }
1609
1610 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1611 size of the field containing the address of the bounds data. */
1612
1613 static int
1614 fat_pntr_bounds_bitsize (struct type *type)
1615 {
1616 type = desc_base_type (type);
1617
1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
1628
1629 static struct type *
1630 desc_data_target_type (struct type *type)
1631 {
1632 type = desc_base_type (type);
1633
1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
1635 if (is_thin_pntr (type))
1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1637 else if (is_thick_pntr (type))
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1644 }
1645
1646 return NULL;
1647 }
1648
1649 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
1651
1652 static struct value *
1653 desc_data (struct value *arr)
1654 {
1655 struct type *type = value_type (arr);
1656
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1661 _("Bad GNAT array descriptor"));
1662 else
1663 return NULL;
1664 }
1665
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the data. */
1669
1670 static int
1671 fat_pntr_data_bitpos (struct type *type)
1672 {
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674 }
1675
1676 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1677 size of the field containing the address of the data. */
1678
1679 static int
1680 fat_pntr_data_bitsize (struct type *type)
1681 {
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
1686 else
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688 }
1689
1690 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
1694 static struct value *
1695 desc_one_bound (struct value *bounds, int i, int which)
1696 {
1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1698 _("Bad GNAT array descriptor bounds"));
1699 }
1700
1701 /* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
1705 static int
1706 desc_bound_bitpos (struct type *type, int i, int which)
1707 {
1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1709 }
1710
1711 /* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
1715 static int
1716 desc_bound_bitsize (struct type *type, int i, int which)
1717 {
1718 type = desc_base_type (type);
1719
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1724 }
1725
1726 /* If TYPE is the type of an array-bounds structure, the type of its
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
1729 static struct type *
1730 desc_index_type (struct type *type, int i)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
1737 return NULL;
1738 }
1739
1740 /* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
1743 static int
1744 desc_arity (struct type *type)
1745 {
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751 }
1752
1753 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
1757 static int
1758 ada_is_direct_array_type (struct type *type)
1759 {
1760 if (type == NULL)
1761 return 0;
1762 type = ada_check_typedef (type);
1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1764 || ada_is_array_descriptor_type (type));
1765 }
1766
1767 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1768 * to one. */
1769
1770 static int
1771 ada_is_array_type (struct type *type)
1772 {
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778 }
1779
1780 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1781
1782 int
1783 ada_is_simple_array_type (struct type *type)
1784 {
1785 if (type == NULL)
1786 return 0;
1787 type = ada_check_typedef (type);
1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
1792 }
1793
1794 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
1796 int
1797 ada_is_array_descriptor_type (struct type *type)
1798 {
1799 struct type *data_type = desc_data_target_type (type);
1800
1801 if (type == NULL)
1802 return 0;
1803 type = ada_check_typedef (type);
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
1807 }
1808
1809 /* Non-zero iff type is a partially mal-formed GNAT array
1810 descriptor. FIXME: This is to compensate for some problems with
1811 debugging output from GNAT. Re-examine periodically to see if it
1812 is still needed. */
1813
1814 int
1815 ada_is_bogus_array_descriptor (struct type *type)
1816 {
1817 return
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
1823 }
1824
1825
1826 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1827 (fat pointer) returns the type of the array data described---specifically,
1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1829 in from the descriptor; otherwise, they are left unspecified. If
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
1832 a descriptor. */
1833 struct type *
1834 ada_type_of_array (struct value *arr, int bounds)
1835 {
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
1838
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
1841
1842 if (!bounds)
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
1853 else
1854 {
1855 struct type *elt_type;
1856 int arity;
1857 struct value *descriptor;
1858
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
1861
1862 if (elt_type == NULL || arity == 0)
1863 return ada_check_typedef (value_type (arr));
1864
1865 descriptor = desc_bounds (arr);
1866 if (value_as_long (descriptor) == 0)
1867 return NULL;
1868 while (arity > 0)
1869 {
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
1874
1875 arity -= 1;
1876 create_range_type (range_type, value_type (low),
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
1879 elt_type = create_array_type (array_type, elt_type, range_type);
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
1901 }
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905 }
1906
1907 /* If ARR does not represent an array, returns ARR unchanged.
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
1912 struct value *
1913 ada_coerce_to_simple_array_ptr (struct value *arr)
1914 {
1915 if (ada_is_array_descriptor_type (value_type (arr)))
1916 {
1917 struct type *arrType = ada_type_of_array (arr, 1);
1918
1919 if (arrType == NULL)
1920 return NULL;
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
1925 else
1926 return arr;
1927 }
1928
1929 /* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
1931 be ARR itself if it already is in the proper form). */
1932
1933 struct value *
1934 ada_coerce_to_simple_array (struct value *arr)
1935 {
1936 if (ada_is_array_descriptor_type (value_type (arr)))
1937 {
1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1939
1940 if (arrVal == NULL)
1941 error (_("Bounds unavailable for null array pointer."));
1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1943 return value_ind (arrVal);
1944 }
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
1947 else
1948 return arr;
1949 }
1950
1951 /* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
1953 packing). For other types, is the identity. */
1954
1955 struct type *
1956 ada_coerce_to_simple_array_type (struct type *type)
1957 {
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
1960
1961 if (ada_is_array_descriptor_type (type))
1962 return ada_check_typedef (desc_data_target_type (type));
1963
1964 return type;
1965 }
1966
1967 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
1969 static int
1970 ada_is_packed_array_type (struct type *type)
1971 {
1972 if (type == NULL)
1973 return 0;
1974 type = desc_base_type (type);
1975 type = ada_check_typedef (type);
1976 return
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979 }
1980
1981 /* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984 int
1985 ada_is_constrained_packed_array_type (struct type *type)
1986 {
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989 }
1990
1991 /* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994 static int
1995 ada_is_unconstrained_packed_array_type (struct type *type)
1996 {
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999 }
2000
2001 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004 static long
2005 decode_packed_array_bitsize (struct type *type)
2006 {
2007 const char *raw_name;
2008 const char *tail;
2009 long bits;
2010
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
2025 gdb_assert (tail != NULL);
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035 }
2036
2037 /* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
2046 static struct type *
2047 constrained_packed_array_type (struct type *type, long *elt_bits)
2048 {
2049 struct type *new_elt_type;
2050 struct type *new_type;
2051 struct type *index_type_desc;
2052 struct type *index_type;
2053 LONGEST low_bound, high_bound;
2054
2055 type = ada_check_typedef (type);
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
2066 new_type = alloc_type_copy (type);
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
2070 create_array_type (new_type, new_elt_type, index_type);
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
2078 else
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
2081 TYPE_LENGTH (new_type) =
2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2083 }
2084
2085 TYPE_FIXED_INSTANCE (new_type) = 1;
2086 return new_type;
2087 }
2088
2089 /* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
2091
2092 static struct type *
2093 decode_constrained_packed_array_type (struct type *type)
2094 {
2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
2096 char *name;
2097 const char *tail;
2098 struct type *shadow_type;
2099 long bits;
2100
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
2109 type = desc_base_type (type);
2110
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
2117 {
2118 lim_warning (_("could not find bounds information on packed array"));
2119 return NULL;
2120 }
2121 CHECK_TYPEDEF (shadow_type);
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
2127 return NULL;
2128 }
2129
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
2132 }
2133
2134 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
2138 type length is set appropriately. */
2139
2140 static struct value *
2141 decode_constrained_packed_array (struct value *arr)
2142 {
2143 struct type *type;
2144
2145 arr = ada_coerce_ref (arr);
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2154 arr = value_ind (arr);
2155
2156 type = decode_constrained_packed_array_type (value_type (arr));
2157 if (type == NULL)
2158 {
2159 error (_("can't unpack array"));
2160 return NULL;
2161 }
2162
2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2164 && ada_is_modular_type (value_type (arr)))
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
2173 mod = ada_modulus (value_type (arr)) - 1;
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
2188 return coerce_unspec_val_to_type (arr, type);
2189 }
2190
2191
2192 /* The value of the element of packed array ARR at the ARITY indices
2193 given in IND. ARR must be a simple array. */
2194
2195 static struct value *
2196 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2197 {
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
2201 struct type *elt_type;
2202 struct value *v;
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
2206 elt_type = ada_check_typedef (value_type (arr));
2207 for (i = 0; i < arity; i += 1)
2208 {
2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
2214 else
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
2222 lim_warning (_("don't know bounds of array"));
2223 lowerbound = upperbound = 0;
2224 }
2225
2226 idx = pos_atr (ind[i]);
2227 if (idx < lowerbound || idx > upperbound)
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2233 }
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2239 bits, elt_type);
2240 return v;
2241 }
2242
2243 /* Non-zero iff TYPE includes negative integer values. */
2244
2245 static int
2246 has_negatives (struct type *type)
2247 {
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
2257 }
2258
2259
2260 /* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2263 assigning through the result will set the field fetched from.
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2268
2269 struct value *
2270 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2271 long offset, int bit_offset, int bit_size,
2272 struct type *type)
2273 {
2274 struct value *v;
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
2283 unsigned char *unpacked;
2284 unsigned long accum; /* Staging area for bits being transferred */
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2290
2291 type = ada_check_typedef (type);
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
2296 bytes = (unsigned char *) (valaddr + offset);
2297 }
2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2299 {
2300 v = value_at (type, value_address (obj));
2301 bytes = (unsigned char *) alloca (len);
2302 read_memory (value_address (v) + offset, bytes, len);
2303 }
2304 else
2305 {
2306 v = allocate_value (type);
2307 bytes = (unsigned char *) value_contents (obj) + offset;
2308 }
2309
2310 if (obj != NULL)
2311 {
2312 long new_offset = offset;
2313
2314 set_value_component_location (v, obj);
2315 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2316 set_value_bitsize (v, bit_size);
2317 if (value_bitpos (v) >= HOST_CHAR_BIT)
2318 {
2319 ++new_offset;
2320 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2321 }
2322 set_value_offset (v, new_offset);
2323
2324 /* Also set the parent value. This is needed when trying to
2325 assign a new value (in inferior memory). */
2326 set_value_parent (v, obj);
2327 value_incref (obj);
2328 }
2329 else
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343 {
2344 src = len - 1;
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347 sign = ~0;
2348
2349 unusedLS =
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
2352
2353 switch (TYPE_CODE (type))
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364 ntarg = targ + 1;
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
2371 }
2372 else
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381 sign = ~0;
2382 }
2383
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2394
2395 accum |=
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422 }
2423
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2426 not overlap. */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2430 {
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
2444 while (n > 0)
2445 {
2446 int unused_right;
2447
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
2471 while (n > 0)
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 }
2489
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2494
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2500
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2511
2512 if (VALUE_LVAL (toval) == lval_memory
2513 && bits > 0
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516 {
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519 int from_size;
2520 char *buffer = (char *) alloca (len);
2521 struct value *val;
2522 CORE_ADDR to_addr = value_address (toval);
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2526
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2534 else
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory (to_addr, buffer, len);
2538 observer_notify_memory_changed (to_addr, len, buffer);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 {
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
2818 else
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2820
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2825 }
2826
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2831
2832 static LONGEST
2833 ada_array_bound (struct value *arr, int n, int which)
2834 {
2835 struct type *arr_type = value_type (arr);
2836
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2841 else
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2843 }
2844
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2850
2851 static LONGEST
2852 ada_array_length (struct value *arr, int n)
2853 {
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2855
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2858
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 else
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2865 }
2866
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2872 {
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 low, low - 1);
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2880 }
2881 \f
2882
2883 /* Name resolution */
2884
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
2887
2888 static const char *
2889 ada_decoded_op_name (enum exp_opcode op)
2890 {
2891 int i;
2892
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 {
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2897 }
2898 error (_("Could not find operator name for opcode"));
2899 }
2900
2901
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2910
2911 static void
2912 resolve (struct expression **expp, int void_context_p)
2913 {
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
2921 }
2922
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2931
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2935 {
2936 int pc = *pos;
2937 int i;
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2942 int oplen;
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
2950 switch (op)
2951 {
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2962 break;
2963
2964 case UNOP_ADDR:
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
2969 case UNOP_QUAL:
2970 *pos += 3;
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2972 break;
2973
2974 case OP_ATR_MODULUS:
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3007 break;
3008 }
3009
3010 case UNOP_CAST:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3028
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
3035
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
3039 *pos += 1;
3040 nargs = 2;
3041 break;
3042
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
3051
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
3057
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
3064
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
3079 case TERNOP_SLICE:
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
3084 case OP_STRING:
3085 break;
3086
3087 default:
3088 error (_("Unexpected operator during name resolution"));
3089 }
3090
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
3103 case OP_VAR_VALUE:
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3113 &candidates, 1);
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
3129 case LOC_COMPUTED:
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
3163 if (i < 0)
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 &candidates, 1);
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
3215 if (i < 0)
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3225 }
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 &candidates, 1);
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3260 if (i < 0)
3261 break;
3262
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3265 exp = *expp;
3266 }
3267 break;
3268
3269 case OP_TYPE:
3270 case OP_REGISTER:
3271 return NULL;
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276 }
3277
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 a non-pointer. */
3281 /* The term "match" here is rather loose. The match is heuristic and
3282 liberal. */
3283
3284 static int
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 {
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
3295 switch (TYPE_CODE (ftype))
3296 {
3297 default:
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3303 else
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
3318
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3327 else
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335 }
3336
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3341
3342 static int
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3344 {
3345 int i;
3346 struct type *func_type = SYMBOL_TYPE (func);
3347
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
3359 if (actuals[i] == NULL)
3360 return 0;
3361 else
3362 {
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
3370 }
3371 return 1;
3372 }
3373
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379 static int
3380 return_match (struct type *func_type, struct type *context_type)
3381 {
3382 struct type *return_type;
3383
3384 if (func_type == NULL)
3385 return 1;
3386
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 else
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3392 return 1;
3393
3394 context_type = get_base_type (context_type);
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402 }
3403
3404
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3416
3417 static int
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3421 {
3422 int fallback;
3423 int k;
3424 int m; /* Number of hits */
3425
3426 m = 0;
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 {
3432 for (k = 0; k < nsyms; k += 1)
3433 {
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
3462 static int
3463 encoded_ordered_before (const char *N0, const char *N1)
3464 {
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
3472
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 ;
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 ;
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
3481
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
3491 return (strcmp (N0, N1) < 0);
3492 }
3493 }
3494
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
3498 static void
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3500 {
3501 int i;
3502
3503 for (i = 1; i < nsyms; i += 1)
3504 {
3505 struct ada_symbol_info sym = syms[i];
3506 int j;
3507
3508 for (j = i - 1; j >= 0; j -= 1)
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
3515 syms[j + 1] = sym;
3516 }
3517 }
3518
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
3523
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3526
3527 int
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3529 {
3530 int i;
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3535
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3538 if (nsyms <= 1)
3539 return nsyms;
3540
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3555
3556 sort_choices (syms, nsyms);
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3567
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 sal.symtab->filename, sal.line);
3577 continue;
3578 }
3579 else
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = syms[i].sym->symtab;
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab->filename, SYMBOL_LINE (syms[i].sym));
3592 else if (is_enumeral
3593 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3594 {
3595 printf_unfiltered (("[%d] "), i + first_choice);
3596 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3597 gdb_stdout, -1, 0);
3598 printf_unfiltered (_("'(%s) (enumeral)\n"),
3599 SYMBOL_PRINT_NAME (syms[i].sym));
3600 }
3601 else if (symtab != NULL)
3602 printf_unfiltered (is_enumeral
3603 ? _("[%d] %s in %s (enumeral)\n")
3604 : _("[%d] %s at %s:?\n"),
3605 i + first_choice,
3606 SYMBOL_PRINT_NAME (syms[i].sym),
3607 symtab->filename);
3608 else
3609 printf_unfiltered (is_enumeral
3610 ? _("[%d] %s (enumeral)\n")
3611 : _("[%d] %s at ?\n"),
3612 i + first_choice,
3613 SYMBOL_PRINT_NAME (syms[i].sym));
3614 }
3615 }
3616
3617 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3618 "overload-choice");
3619
3620 for (i = 0; i < n_chosen; i += 1)
3621 syms[i] = syms[chosen[i]];
3622
3623 return n_chosen;
3624 }
3625
3626 /* Read and validate a set of numeric choices from the user in the
3627 range 0 .. N_CHOICES-1. Place the results in increasing
3628 order in CHOICES[0 .. N-1], and return N.
3629
3630 The user types choices as a sequence of numbers on one line
3631 separated by blanks, encoding them as follows:
3632
3633 + A choice of 0 means to cancel the selection, throwing an error.
3634 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3635 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3636
3637 The user is not allowed to choose more than MAX_RESULTS values.
3638
3639 ANNOTATION_SUFFIX, if present, is used to annotate the input
3640 prompts (for use with the -f switch). */
3641
3642 int
3643 get_selections (int *choices, int n_choices, int max_results,
3644 int is_all_choice, char *annotation_suffix)
3645 {
3646 char *args;
3647 char *prompt;
3648 int n_chosen;
3649 int first_choice = is_all_choice ? 2 : 1;
3650
3651 prompt = getenv ("PS2");
3652 if (prompt == NULL)
3653 prompt = "> ";
3654
3655 args = command_line_input (prompt, 0, annotation_suffix);
3656
3657 if (args == NULL)
3658 error_no_arg (_("one or more choice numbers"));
3659
3660 n_chosen = 0;
3661
3662 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3663 order, as given in args. Choices are validated. */
3664 while (1)
3665 {
3666 char *args2;
3667 int choice, j;
3668
3669 args = skip_spaces (args);
3670 if (*args == '\0' && n_chosen == 0)
3671 error_no_arg (_("one or more choice numbers"));
3672 else if (*args == '\0')
3673 break;
3674
3675 choice = strtol (args, &args2, 10);
3676 if (args == args2 || choice < 0
3677 || choice > n_choices + first_choice - 1)
3678 error (_("Argument must be choice number"));
3679 args = args2;
3680
3681 if (choice == 0)
3682 error (_("cancelled"));
3683
3684 if (choice < first_choice)
3685 {
3686 n_chosen = n_choices;
3687 for (j = 0; j < n_choices; j += 1)
3688 choices[j] = j;
3689 break;
3690 }
3691 choice -= first_choice;
3692
3693 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3694 {
3695 }
3696
3697 if (j < 0 || choice != choices[j])
3698 {
3699 int k;
3700
3701 for (k = n_chosen - 1; k > j; k -= 1)
3702 choices[k + 1] = choices[k];
3703 choices[j + 1] = choice;
3704 n_chosen += 1;
3705 }
3706 }
3707
3708 if (n_chosen > max_results)
3709 error (_("Select no more than %d of the above"), max_results);
3710
3711 return n_chosen;
3712 }
3713
3714 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3715 on the function identified by SYM and BLOCK, and taking NARGS
3716 arguments. Update *EXPP as needed to hold more space. */
3717
3718 static void
3719 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3720 int oplen, struct symbol *sym,
3721 struct block *block)
3722 {
3723 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3724 symbol, -oplen for operator being replaced). */
3725 struct expression *newexp = (struct expression *)
3726 xzalloc (sizeof (struct expression)
3727 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3728 struct expression *exp = *expp;
3729
3730 newexp->nelts = exp->nelts + 7 - oplen;
3731 newexp->language_defn = exp->language_defn;
3732 newexp->gdbarch = exp->gdbarch;
3733 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3734 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3735 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3736
3737 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3738 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3739
3740 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3741 newexp->elts[pc + 4].block = block;
3742 newexp->elts[pc + 5].symbol = sym;
3743
3744 *expp = newexp;
3745 xfree (exp);
3746 }
3747
3748 /* Type-class predicates */
3749
3750 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3751 or FLOAT). */
3752
3753 static int
3754 numeric_type_p (struct type *type)
3755 {
3756 if (type == NULL)
3757 return 0;
3758 else
3759 {
3760 switch (TYPE_CODE (type))
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_FLT:
3764 return 1;
3765 case TYPE_CODE_RANGE:
3766 return (type == TYPE_TARGET_TYPE (type)
3767 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3768 default:
3769 return 0;
3770 }
3771 }
3772 }
3773
3774 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3775
3776 static int
3777 integer_type_p (struct type *type)
3778 {
3779 if (type == NULL)
3780 return 0;
3781 else
3782 {
3783 switch (TYPE_CODE (type))
3784 {
3785 case TYPE_CODE_INT:
3786 return 1;
3787 case TYPE_CODE_RANGE:
3788 return (type == TYPE_TARGET_TYPE (type)
3789 || integer_type_p (TYPE_TARGET_TYPE (type)));
3790 default:
3791 return 0;
3792 }
3793 }
3794 }
3795
3796 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3797
3798 static int
3799 scalar_type_p (struct type *type)
3800 {
3801 if (type == NULL)
3802 return 0;
3803 else
3804 {
3805 switch (TYPE_CODE (type))
3806 {
3807 case TYPE_CODE_INT:
3808 case TYPE_CODE_RANGE:
3809 case TYPE_CODE_ENUM:
3810 case TYPE_CODE_FLT:
3811 return 1;
3812 default:
3813 return 0;
3814 }
3815 }
3816 }
3817
3818 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3819
3820 static int
3821 discrete_type_p (struct type *type)
3822 {
3823 if (type == NULL)
3824 return 0;
3825 else
3826 {
3827 switch (TYPE_CODE (type))
3828 {
3829 case TYPE_CODE_INT:
3830 case TYPE_CODE_RANGE:
3831 case TYPE_CODE_ENUM:
3832 case TYPE_CODE_BOOL:
3833 return 1;
3834 default:
3835 return 0;
3836 }
3837 }
3838 }
3839
3840 /* Returns non-zero if OP with operands in the vector ARGS could be
3841 a user-defined function. Errs on the side of pre-defined operators
3842 (i.e., result 0). */
3843
3844 static int
3845 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3846 {
3847 struct type *type0 =
3848 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3849 struct type *type1 =
3850 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3851
3852 if (type0 == NULL)
3853 return 0;
3854
3855 switch (op)
3856 {
3857 default:
3858 return 0;
3859
3860 case BINOP_ADD:
3861 case BINOP_SUB:
3862 case BINOP_MUL:
3863 case BINOP_DIV:
3864 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3865
3866 case BINOP_REM:
3867 case BINOP_MOD:
3868 case BINOP_BITWISE_AND:
3869 case BINOP_BITWISE_IOR:
3870 case BINOP_BITWISE_XOR:
3871 return (!(integer_type_p (type0) && integer_type_p (type1)));
3872
3873 case BINOP_EQUAL:
3874 case BINOP_NOTEQUAL:
3875 case BINOP_LESS:
3876 case BINOP_GTR:
3877 case BINOP_LEQ:
3878 case BINOP_GEQ:
3879 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3880
3881 case BINOP_CONCAT:
3882 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3883
3884 case BINOP_EXP:
3885 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3886
3887 case UNOP_NEG:
3888 case UNOP_PLUS:
3889 case UNOP_LOGICAL_NOT:
3890 case UNOP_ABS:
3891 return (!numeric_type_p (type0));
3892
3893 }
3894 }
3895 \f
3896 /* Renaming */
3897
3898 /* NOTES:
3899
3900 1. In the following, we assume that a renaming type's name may
3901 have an ___XD suffix. It would be nice if this went away at some
3902 point.
3903 2. We handle both the (old) purely type-based representation of
3904 renamings and the (new) variable-based encoding. At some point,
3905 it is devoutly to be hoped that the former goes away
3906 (FIXME: hilfinger-2007-07-09).
3907 3. Subprogram renamings are not implemented, although the XRS
3908 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3909
3910 /* If SYM encodes a renaming,
3911
3912 <renaming> renames <renamed entity>,
3913
3914 sets *LEN to the length of the renamed entity's name,
3915 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3916 the string describing the subcomponent selected from the renamed
3917 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3918 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3919 are undefined). Otherwise, returns a value indicating the category
3920 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3921 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3922 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3923 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3924 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3925 may be NULL, in which case they are not assigned.
3926
3927 [Currently, however, GCC does not generate subprogram renamings.] */
3928
3929 enum ada_renaming_category
3930 ada_parse_renaming (struct symbol *sym,
3931 const char **renamed_entity, int *len,
3932 const char **renaming_expr)
3933 {
3934 enum ada_renaming_category kind;
3935 const char *info;
3936 const char *suffix;
3937
3938 if (sym == NULL)
3939 return ADA_NOT_RENAMING;
3940 switch (SYMBOL_CLASS (sym))
3941 {
3942 default:
3943 return ADA_NOT_RENAMING;
3944 case LOC_TYPEDEF:
3945 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3946 renamed_entity, len, renaming_expr);
3947 case LOC_LOCAL:
3948 case LOC_STATIC:
3949 case LOC_COMPUTED:
3950 case LOC_OPTIMIZED_OUT:
3951 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3952 if (info == NULL)
3953 return ADA_NOT_RENAMING;
3954 switch (info[5])
3955 {
3956 case '_':
3957 kind = ADA_OBJECT_RENAMING;
3958 info += 6;
3959 break;
3960 case 'E':
3961 kind = ADA_EXCEPTION_RENAMING;
3962 info += 7;
3963 break;
3964 case 'P':
3965 kind = ADA_PACKAGE_RENAMING;
3966 info += 7;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 info += 7;
3971 break;
3972 default:
3973 return ADA_NOT_RENAMING;
3974 }
3975 }
3976
3977 if (renamed_entity != NULL)
3978 *renamed_entity = info;
3979 suffix = strstr (info, "___XE");
3980 if (suffix == NULL || suffix == info)
3981 return ADA_NOT_RENAMING;
3982 if (len != NULL)
3983 *len = strlen (info) - strlen (suffix);
3984 suffix += 5;
3985 if (renaming_expr != NULL)
3986 *renaming_expr = suffix;
3987 return kind;
3988 }
3989
3990 /* Assuming TYPE encodes a renaming according to the old encoding in
3991 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3992 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3993 ADA_NOT_RENAMING otherwise. */
3994 static enum ada_renaming_category
3995 parse_old_style_renaming (struct type *type,
3996 const char **renamed_entity, int *len,
3997 const char **renaming_expr)
3998 {
3999 enum ada_renaming_category kind;
4000 const char *name;
4001 const char *info;
4002 const char *suffix;
4003
4004 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4005 || TYPE_NFIELDS (type) != 1)
4006 return ADA_NOT_RENAMING;
4007
4008 name = type_name_no_tag (type);
4009 if (name == NULL)
4010 return ADA_NOT_RENAMING;
4011
4012 name = strstr (name, "___XR");
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015 switch (name[5])
4016 {
4017 case '\0':
4018 case '_':
4019 kind = ADA_OBJECT_RENAMING;
4020 break;
4021 case 'E':
4022 kind = ADA_EXCEPTION_RENAMING;
4023 break;
4024 case 'P':
4025 kind = ADA_PACKAGE_RENAMING;
4026 break;
4027 case 'S':
4028 kind = ADA_SUBPROGRAM_RENAMING;
4029 break;
4030 default:
4031 return ADA_NOT_RENAMING;
4032 }
4033
4034 info = TYPE_FIELD_NAME (type, 0);
4035 if (info == NULL)
4036 return ADA_NOT_RENAMING;
4037 if (renamed_entity != NULL)
4038 *renamed_entity = info;
4039 suffix = strstr (info, "___XE");
4040 if (renaming_expr != NULL)
4041 *renaming_expr = suffix + 5;
4042 if (suffix == NULL || suffix == info)
4043 return ADA_NOT_RENAMING;
4044 if (len != NULL)
4045 *len = suffix - info;
4046 return kind;
4047 }
4048
4049 /* Compute the value of the given RENAMING_SYM, which is expected to
4050 be a symbol encoding a renaming expression. BLOCK is the block
4051 used to evaluate the renaming. */
4052
4053 static struct value *
4054 ada_read_renaming_var_value (struct symbol *renaming_sym,
4055 struct block *block)
4056 {
4057 char *sym_name;
4058 struct expression *expr;
4059 struct value *value;
4060 struct cleanup *old_chain = NULL;
4061
4062 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4063 old_chain = make_cleanup (xfree, sym_name);
4064 expr = parse_exp_1 (&sym_name, block, 0);
4065 make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070 }
4071 \f
4072
4073 /* Evaluation: Function Calls */
4074
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4078
4079 static struct value *
4080 ensure_lval (struct value *val)
4081 {
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4084 {
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4088
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4092 }
4093
4094 return val;
4095 }
4096
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4101
4102 struct value *
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4104 {
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4113
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4119 {
4120 struct value *result;
4121
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
4130
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4137 }
4138 result = value_addr (actual);
4139 }
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result, 0);
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4224
4225 static int
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4228 {
4229 return 0;
4230 }
4231
4232 static void
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 struct block *block)
4235 {
4236 }
4237 \f
4238 /* Symbol Lookup */
4239
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246 static int
4247 should_use_wild_match (const char *lookup_name)
4248 {
4249 return (strstr (lookup_name, "__") == NULL);
4250 }
4251
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258 {
4259 /* Initialize it just to avoid a GCC false warning. */
4260 struct symbol *sym = NULL;
4261
4262 if (lookup_cached_symbol (name, domain, &sym, NULL))
4263 return sym;
4264 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4265 cache_symbol (name, domain, sym, block_found);
4266 return sym;
4267 }
4268
4269
4270 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4271 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4272 since they contend in overloading in the same way. */
4273 static int
4274 is_nonfunction (struct ada_symbol_info syms[], int n)
4275 {
4276 int i;
4277
4278 for (i = 0; i < n; i += 1)
4279 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4280 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4281 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4282 return 1;
4283
4284 return 0;
4285 }
4286
4287 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4288 struct types. Otherwise, they may not. */
4289
4290 static int
4291 equiv_types (struct type *type0, struct type *type1)
4292 {
4293 if (type0 == type1)
4294 return 1;
4295 if (type0 == NULL || type1 == NULL
4296 || TYPE_CODE (type0) != TYPE_CODE (type1))
4297 return 0;
4298 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4299 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4300 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4301 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4302 return 1;
4303
4304 return 0;
4305 }
4306
4307 /* True iff SYM0 represents the same entity as SYM1, or one that is
4308 no more defined than that of SYM1. */
4309
4310 static int
4311 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4312 {
4313 if (sym0 == sym1)
4314 return 1;
4315 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4316 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4317 return 0;
4318
4319 switch (SYMBOL_CLASS (sym0))
4320 {
4321 case LOC_UNDEF:
4322 return 1;
4323 case LOC_TYPEDEF:
4324 {
4325 struct type *type0 = SYMBOL_TYPE (sym0);
4326 struct type *type1 = SYMBOL_TYPE (sym1);
4327 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4328 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4329 int len0 = strlen (name0);
4330
4331 return
4332 TYPE_CODE (type0) == TYPE_CODE (type1)
4333 && (equiv_types (type0, type1)
4334 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4335 && strncmp (name1 + len0, "___XV", 5) == 0));
4336 }
4337 case LOC_CONST:
4338 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4339 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4340 default:
4341 return 0;
4342 }
4343 }
4344
4345 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4346 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4347
4348 static void
4349 add_defn_to_vec (struct obstack *obstackp,
4350 struct symbol *sym,
4351 struct block *block)
4352 {
4353 int i;
4354 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4355
4356 /* Do not try to complete stub types, as the debugger is probably
4357 already scanning all symbols matching a certain name at the
4358 time when this function is called. Trying to replace the stub
4359 type by its associated full type will cause us to restart a scan
4360 which may lead to an infinite recursion. Instead, the client
4361 collecting the matching symbols will end up collecting several
4362 matches, with at least one of them complete. It can then filter
4363 out the stub ones if needed. */
4364
4365 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4366 {
4367 if (lesseq_defined_than (sym, prevDefns[i].sym))
4368 return;
4369 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4370 {
4371 prevDefns[i].sym = sym;
4372 prevDefns[i].block = block;
4373 return;
4374 }
4375 }
4376
4377 {
4378 struct ada_symbol_info info;
4379
4380 info.sym = sym;
4381 info.block = block;
4382 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4383 }
4384 }
4385
4386 /* Number of ada_symbol_info structures currently collected in
4387 current vector in *OBSTACKP. */
4388
4389 static int
4390 num_defns_collected (struct obstack *obstackp)
4391 {
4392 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4393 }
4394
4395 /* Vector of ada_symbol_info structures currently collected in current
4396 vector in *OBSTACKP. If FINISH, close off the vector and return
4397 its final address. */
4398
4399 static struct ada_symbol_info *
4400 defns_collected (struct obstack *obstackp, int finish)
4401 {
4402 if (finish)
4403 return obstack_finish (obstackp);
4404 else
4405 return (struct ada_symbol_info *) obstack_base (obstackp);
4406 }
4407
4408 /* Return a minimal symbol matching NAME according to Ada decoding
4409 rules. Returns NULL if there is no such minimal symbol. Names
4410 prefixed with "standard__" are handled specially: "standard__" is
4411 first stripped off, and only static and global symbols are searched. */
4412
4413 struct minimal_symbol *
4414 ada_lookup_simple_minsym (const char *name)
4415 {
4416 struct objfile *objfile;
4417 struct minimal_symbol *msymbol;
4418 const int wild_match_p = should_use_wild_match (name);
4419
4420 /* Special case: If the user specifies a symbol name inside package
4421 Standard, do a non-wild matching of the symbol name without
4422 the "standard__" prefix. This was primarily introduced in order
4423 to allow the user to specifically access the standard exceptions
4424 using, for instance, Standard.Constraint_Error when Constraint_Error
4425 is ambiguous (due to the user defining its own Constraint_Error
4426 entity inside its program). */
4427 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4428 name += sizeof ("standard__") - 1;
4429
4430 ALL_MSYMBOLS (objfile, msymbol)
4431 {
4432 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4433 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4434 return msymbol;
4435 }
4436
4437 return NULL;
4438 }
4439
4440 /* For all subprograms that statically enclose the subprogram of the
4441 selected frame, add symbols matching identifier NAME in DOMAIN
4442 and their blocks to the list of data in OBSTACKP, as for
4443 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4444 with a wildcard prefix. */
4445
4446 static void
4447 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4448 const char *name, domain_enum namespace,
4449 int wild_match_p)
4450 {
4451 }
4452
4453 /* True if TYPE is definitely an artificial type supplied to a symbol
4454 for which no debugging information was given in the symbol file. */
4455
4456 static int
4457 is_nondebugging_type (struct type *type)
4458 {
4459 const char *name = ada_type_name (type);
4460
4461 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4462 }
4463
4464 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4465 that are deemed "identical" for practical purposes.
4466
4467 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4468 types and that their number of enumerals is identical (in other
4469 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4470
4471 static int
4472 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4473 {
4474 int i;
4475
4476 /* The heuristic we use here is fairly conservative. We consider
4477 that 2 enumerate types are identical if they have the same
4478 number of enumerals and that all enumerals have the same
4479 underlying value and name. */
4480
4481 /* All enums in the type should have an identical underlying value. */
4482 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4483 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4484 return 0;
4485
4486 /* All enumerals should also have the same name (modulo any numerical
4487 suffix). */
4488 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4489 {
4490 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4491 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4492 int len_1 = strlen (name_1);
4493 int len_2 = strlen (name_2);
4494
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4497 if (len_1 != len_2
4498 || strncmp (TYPE_FIELD_NAME (type1, i),
4499 TYPE_FIELD_NAME (type2, i),
4500 len_1) != 0)
4501 return 0;
4502 }
4503
4504 return 1;
4505 }
4506
4507 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4508 that are deemed "identical" for practical purposes. Sometimes,
4509 enumerals are not strictly identical, but their types are so similar
4510 that they can be considered identical.
4511
4512 For instance, consider the following code:
4513
4514 type Color is (Black, Red, Green, Blue, White);
4515 type RGB_Color is new Color range Red .. Blue;
4516
4517 Type RGB_Color is a subrange of an implicit type which is a copy
4518 of type Color. If we call that implicit type RGB_ColorB ("B" is
4519 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4520 As a result, when an expression references any of the enumeral
4521 by name (Eg. "print green"), the expression is technically
4522 ambiguous and the user should be asked to disambiguate. But
4523 doing so would only hinder the user, since it wouldn't matter
4524 what choice he makes, the outcome would always be the same.
4525 So, for practical purposes, we consider them as the same. */
4526
4527 static int
4528 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4529 {
4530 int i;
4531
4532 /* Before performing a thorough comparison check of each type,
4533 we perform a series of inexpensive checks. We expect that these
4534 checks will quickly fail in the vast majority of cases, and thus
4535 help prevent the unnecessary use of a more expensive comparison.
4536 Said comparison also expects us to make some of these checks
4537 (see ada_identical_enum_types_p). */
4538
4539 /* Quick check: All symbols should have an enum type. */
4540 for (i = 0; i < nsyms; i++)
4541 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4542 return 0;
4543
4544 /* Quick check: They should all have the same value. */
4545 for (i = 1; i < nsyms; i++)
4546 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4547 return 0;
4548
4549 /* Quick check: They should all have the same number of enumerals. */
4550 for (i = 1; i < nsyms; i++)
4551 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4552 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4553 return 0;
4554
4555 /* All the sanity checks passed, so we might have a set of
4556 identical enumeration types. Perform a more complete
4557 comparison of the type of each symbol. */
4558 for (i = 1; i < nsyms; i++)
4559 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4560 SYMBOL_TYPE (syms[0].sym)))
4561 return 0;
4562
4563 return 1;
4564 }
4565
4566 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4567 duplicate other symbols in the list (The only case I know of where
4568 this happens is when object files containing stabs-in-ecoff are
4569 linked with files containing ordinary ecoff debugging symbols (or no
4570 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4571 Returns the number of items in the modified list. */
4572
4573 static int
4574 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4575 {
4576 int i, j;
4577
4578 /* We should never be called with less than 2 symbols, as there
4579 cannot be any extra symbol in that case. But it's easy to
4580 handle, since we have nothing to do in that case. */
4581 if (nsyms < 2)
4582 return nsyms;
4583
4584 i = 0;
4585 while (i < nsyms)
4586 {
4587 int remove_p = 0;
4588
4589 /* If two symbols have the same name and one of them is a stub type,
4590 the get rid of the stub. */
4591
4592 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4593 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4594 {
4595 for (j = 0; j < nsyms; j++)
4596 {
4597 if (j != i
4598 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4599 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4600 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4601 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4602 remove_p = 1;
4603 }
4604 }
4605
4606 /* Two symbols with the same name, same class and same address
4607 should be identical. */
4608
4609 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4610 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4611 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4612 {
4613 for (j = 0; j < nsyms; j += 1)
4614 {
4615 if (i != j
4616 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4617 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4618 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4619 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4620 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4621 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4622 remove_p = 1;
4623 }
4624 }
4625
4626 if (remove_p)
4627 {
4628 for (j = i + 1; j < nsyms; j += 1)
4629 syms[j - 1] = syms[j];
4630 nsyms -= 1;
4631 }
4632
4633 i += 1;
4634 }
4635
4636 /* If all the remaining symbols are identical enumerals, then
4637 just keep the first one and discard the rest.
4638
4639 Unlike what we did previously, we do not discard any entry
4640 unless they are ALL identical. This is because the symbol
4641 comparison is not a strict comparison, but rather a practical
4642 comparison. If all symbols are considered identical, then
4643 we can just go ahead and use the first one and discard the rest.
4644 But if we cannot reduce the list to a single element, we have
4645 to ask the user to disambiguate anyways. And if we have to
4646 present a multiple-choice menu, it's less confusing if the list
4647 isn't missing some choices that were identical and yet distinct. */
4648 if (symbols_are_identical_enums (syms, nsyms))
4649 nsyms = 1;
4650
4651 return nsyms;
4652 }
4653
4654 /* Given a type that corresponds to a renaming entity, use the type name
4655 to extract the scope (package name or function name, fully qualified,
4656 and following the GNAT encoding convention) where this renaming has been
4657 defined. The string returned needs to be deallocated after use. */
4658
4659 static char *
4660 xget_renaming_scope (struct type *renaming_type)
4661 {
4662 /* The renaming types adhere to the following convention:
4663 <scope>__<rename>___<XR extension>.
4664 So, to extract the scope, we search for the "___XR" extension,
4665 and then backtrack until we find the first "__". */
4666
4667 const char *name = type_name_no_tag (renaming_type);
4668 char *suffix = strstr (name, "___XR");
4669 char *last;
4670 int scope_len;
4671 char *scope;
4672
4673 /* Now, backtrack a bit until we find the first "__". Start looking
4674 at suffix - 3, as the <rename> part is at least one character long. */
4675
4676 for (last = suffix - 3; last > name; last--)
4677 if (last[0] == '_' && last[1] == '_')
4678 break;
4679
4680 /* Make a copy of scope and return it. */
4681
4682 scope_len = last - name;
4683 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4684
4685 strncpy (scope, name, scope_len);
4686 scope[scope_len] = '\0';
4687
4688 return scope;
4689 }
4690
4691 /* Return nonzero if NAME corresponds to a package name. */
4692
4693 static int
4694 is_package_name (const char *name)
4695 {
4696 /* Here, We take advantage of the fact that no symbols are generated
4697 for packages, while symbols are generated for each function.
4698 So the condition for NAME represent a package becomes equivalent
4699 to NAME not existing in our list of symbols. There is only one
4700 small complication with library-level functions (see below). */
4701
4702 char *fun_name;
4703
4704 /* If it is a function that has not been defined at library level,
4705 then we should be able to look it up in the symbols. */
4706 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4707 return 0;
4708
4709 /* Library-level function names start with "_ada_". See if function
4710 "_ada_" followed by NAME can be found. */
4711
4712 /* Do a quick check that NAME does not contain "__", since library-level
4713 functions names cannot contain "__" in them. */
4714 if (strstr (name, "__") != NULL)
4715 return 0;
4716
4717 fun_name = xstrprintf ("_ada_%s", name);
4718
4719 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4720 }
4721
4722 /* Return nonzero if SYM corresponds to a renaming entity that is
4723 not visible from FUNCTION_NAME. */
4724
4725 static int
4726 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4727 {
4728 char *scope;
4729
4730 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4731 return 0;
4732
4733 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4734
4735 make_cleanup (xfree, scope);
4736
4737 /* If the rename has been defined in a package, then it is visible. */
4738 if (is_package_name (scope))
4739 return 0;
4740
4741 /* Check that the rename is in the current function scope by checking
4742 that its name starts with SCOPE. */
4743
4744 /* If the function name starts with "_ada_", it means that it is
4745 a library-level function. Strip this prefix before doing the
4746 comparison, as the encoding for the renaming does not contain
4747 this prefix. */
4748 if (strncmp (function_name, "_ada_", 5) == 0)
4749 function_name += 5;
4750
4751 return (strncmp (function_name, scope, strlen (scope)) != 0);
4752 }
4753
4754 /* Remove entries from SYMS that corresponds to a renaming entity that
4755 is not visible from the function associated with CURRENT_BLOCK or
4756 that is superfluous due to the presence of more specific renaming
4757 information. Places surviving symbols in the initial entries of
4758 SYMS and returns the number of surviving symbols.
4759
4760 Rationale:
4761 First, in cases where an object renaming is implemented as a
4762 reference variable, GNAT may produce both the actual reference
4763 variable and the renaming encoding. In this case, we discard the
4764 latter.
4765
4766 Second, GNAT emits a type following a specified encoding for each renaming
4767 entity. Unfortunately, STABS currently does not support the definition
4768 of types that are local to a given lexical block, so all renamings types
4769 are emitted at library level. As a consequence, if an application
4770 contains two renaming entities using the same name, and a user tries to
4771 print the value of one of these entities, the result of the ada symbol
4772 lookup will also contain the wrong renaming type.
4773
4774 This function partially covers for this limitation by attempting to
4775 remove from the SYMS list renaming symbols that should be visible
4776 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4777 method with the current information available. The implementation
4778 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4779
4780 - When the user tries to print a rename in a function while there
4781 is another rename entity defined in a package: Normally, the
4782 rename in the function has precedence over the rename in the
4783 package, so the latter should be removed from the list. This is
4784 currently not the case.
4785
4786 - This function will incorrectly remove valid renames if
4787 the CURRENT_BLOCK corresponds to a function which symbol name
4788 has been changed by an "Export" pragma. As a consequence,
4789 the user will be unable to print such rename entities. */
4790
4791 static int
4792 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4793 int nsyms, const struct block *current_block)
4794 {
4795 struct symbol *current_function;
4796 const char *current_function_name;
4797 int i;
4798 int is_new_style_renaming;
4799
4800 /* If there is both a renaming foo___XR... encoded as a variable and
4801 a simple variable foo in the same block, discard the latter.
4802 First, zero out such symbols, then compress. */
4803 is_new_style_renaming = 0;
4804 for (i = 0; i < nsyms; i += 1)
4805 {
4806 struct symbol *sym = syms[i].sym;
4807 struct block *block = syms[i].block;
4808 const char *name;
4809 const char *suffix;
4810
4811 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4812 continue;
4813 name = SYMBOL_LINKAGE_NAME (sym);
4814 suffix = strstr (name, "___XR");
4815
4816 if (suffix != NULL)
4817 {
4818 int name_len = suffix - name;
4819 int j;
4820
4821 is_new_style_renaming = 1;
4822 for (j = 0; j < nsyms; j += 1)
4823 if (i != j && syms[j].sym != NULL
4824 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4825 name_len) == 0
4826 && block == syms[j].block)
4827 syms[j].sym = NULL;
4828 }
4829 }
4830 if (is_new_style_renaming)
4831 {
4832 int j, k;
4833
4834 for (j = k = 0; j < nsyms; j += 1)
4835 if (syms[j].sym != NULL)
4836 {
4837 syms[k] = syms[j];
4838 k += 1;
4839 }
4840 return k;
4841 }
4842
4843 /* Extract the function name associated to CURRENT_BLOCK.
4844 Abort if unable to do so. */
4845
4846 if (current_block == NULL)
4847 return nsyms;
4848
4849 current_function = block_linkage_function (current_block);
4850 if (current_function == NULL)
4851 return nsyms;
4852
4853 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4854 if (current_function_name == NULL)
4855 return nsyms;
4856
4857 /* Check each of the symbols, and remove it from the list if it is
4858 a type corresponding to a renaming that is out of the scope of
4859 the current block. */
4860
4861 i = 0;
4862 while (i < nsyms)
4863 {
4864 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4865 == ADA_OBJECT_RENAMING
4866 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4867 {
4868 int j;
4869
4870 for (j = i + 1; j < nsyms; j += 1)
4871 syms[j - 1] = syms[j];
4872 nsyms -= 1;
4873 }
4874 else
4875 i += 1;
4876 }
4877
4878 return nsyms;
4879 }
4880
4881 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4882 whose name and domain match NAME and DOMAIN respectively.
4883 If no match was found, then extend the search to "enclosing"
4884 routines (in other words, if we're inside a nested function,
4885 search the symbols defined inside the enclosing functions).
4886 If WILD_MATCH_P is nonzero, perform the naming matching in
4887 "wild" mode (see function "wild_match" for more info).
4888
4889 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4890
4891 static void
4892 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4893 struct block *block, domain_enum domain,
4894 int wild_match_p)
4895 {
4896 int block_depth = 0;
4897
4898 while (block != NULL)
4899 {
4900 block_depth += 1;
4901 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4902 wild_match_p);
4903
4904 /* If we found a non-function match, assume that's the one. */
4905 if (is_nonfunction (defns_collected (obstackp, 0),
4906 num_defns_collected (obstackp)))
4907 return;
4908
4909 block = BLOCK_SUPERBLOCK (block);
4910 }
4911
4912 /* If no luck so far, try to find NAME as a local symbol in some lexically
4913 enclosing subprogram. */
4914 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4915 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4916 }
4917
4918 /* An object of this type is used as the user_data argument when
4919 calling the map_matching_symbols method. */
4920
4921 struct match_data
4922 {
4923 struct objfile *objfile;
4924 struct obstack *obstackp;
4925 struct symbol *arg_sym;
4926 int found_sym;
4927 };
4928
4929 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4930 to a list of symbols. DATA0 is a pointer to a struct match_data *
4931 containing the obstack that collects the symbol list, the file that SYM
4932 must come from, a flag indicating whether a non-argument symbol has
4933 been found in the current block, and the last argument symbol
4934 passed in SYM within the current block (if any). When SYM is null,
4935 marking the end of a block, the argument symbol is added if no
4936 other has been found. */
4937
4938 static int
4939 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4940 {
4941 struct match_data *data = (struct match_data *) data0;
4942
4943 if (sym == NULL)
4944 {
4945 if (!data->found_sym && data->arg_sym != NULL)
4946 add_defn_to_vec (data->obstackp,
4947 fixup_symbol_section (data->arg_sym, data->objfile),
4948 block);
4949 data->found_sym = 0;
4950 data->arg_sym = NULL;
4951 }
4952 else
4953 {
4954 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4955 return 0;
4956 else if (SYMBOL_IS_ARGUMENT (sym))
4957 data->arg_sym = sym;
4958 else
4959 {
4960 data->found_sym = 1;
4961 add_defn_to_vec (data->obstackp,
4962 fixup_symbol_section (sym, data->objfile),
4963 block);
4964 }
4965 }
4966 return 0;
4967 }
4968
4969 /* Compare STRING1 to STRING2, with results as for strcmp.
4970 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4971 implies compare_names (STRING1, STRING2) (they may differ as to
4972 what symbols compare equal). */
4973
4974 static int
4975 compare_names (const char *string1, const char *string2)
4976 {
4977 while (*string1 != '\0' && *string2 != '\0')
4978 {
4979 if (isspace (*string1) || isspace (*string2))
4980 return strcmp_iw_ordered (string1, string2);
4981 if (*string1 != *string2)
4982 break;
4983 string1 += 1;
4984 string2 += 1;
4985 }
4986 switch (*string1)
4987 {
4988 case '(':
4989 return strcmp_iw_ordered (string1, string2);
4990 case '_':
4991 if (*string2 == '\0')
4992 {
4993 if (is_name_suffix (string1))
4994 return 0;
4995 else
4996 return 1;
4997 }
4998 /* FALLTHROUGH */
4999 default:
5000 if (*string2 == '(')
5001 return strcmp_iw_ordered (string1, string2);
5002 else
5003 return *string1 - *string2;
5004 }
5005 }
5006
5007 /* Add to OBSTACKP all non-local symbols whose name and domain match
5008 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5009 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5010
5011 static void
5012 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5013 domain_enum domain, int global,
5014 int is_wild_match)
5015 {
5016 struct objfile *objfile;
5017 struct match_data data;
5018
5019 memset (&data, 0, sizeof data);
5020 data.obstackp = obstackp;
5021
5022 ALL_OBJFILES (objfile)
5023 {
5024 data.objfile = objfile;
5025
5026 if (is_wild_match)
5027 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5028 aux_add_nonlocal_symbols, &data,
5029 wild_match, NULL);
5030 else
5031 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5032 aux_add_nonlocal_symbols, &data,
5033 full_match, compare_names);
5034 }
5035
5036 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5037 {
5038 ALL_OBJFILES (objfile)
5039 {
5040 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5041 strcpy (name1, "_ada_");
5042 strcpy (name1 + sizeof ("_ada_") - 1, name);
5043 data.objfile = objfile;
5044 objfile->sf->qf->map_matching_symbols (name1, domain,
5045 objfile, global,
5046 aux_add_nonlocal_symbols,
5047 &data,
5048 full_match, compare_names);
5049 }
5050 }
5051 }
5052
5053 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5054 scope and in global scopes, returning the number of matches.
5055 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5056 indicating the symbols found and the blocks and symbol tables (if
5057 any) in which they were found. This vector are transient---good only to
5058 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5059 symbol match within the nest of blocks whose innermost member is BLOCK0,
5060 is the one match returned (no other matches in that or
5061 enclosing blocks is returned). If there are any matches in or
5062 surrounding BLOCK0, then these alone are returned. Otherwise, if
5063 FULL_SEARCH is non-zero, then the search extends to global and
5064 file-scope (static) symbol tables.
5065 Names prefixed with "standard__" are handled specially: "standard__"
5066 is first stripped off, and only static and global symbols are searched. */
5067
5068 int
5069 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5070 domain_enum namespace,
5071 struct ada_symbol_info **results,
5072 int full_search)
5073 {
5074 struct symbol *sym;
5075 struct block *block;
5076 const char *name;
5077 const int wild_match_p = should_use_wild_match (name0);
5078 int cacheIfUnique;
5079 int ndefns;
5080
5081 obstack_free (&symbol_list_obstack, NULL);
5082 obstack_init (&symbol_list_obstack);
5083
5084 cacheIfUnique = 0;
5085
5086 /* Search specified block and its superiors. */
5087
5088 name = name0;
5089 block = (struct block *) block0; /* FIXME: No cast ought to be
5090 needed, but adding const will
5091 have a cascade effect. */
5092
5093 /* Special case: If the user specifies a symbol name inside package
5094 Standard, do a non-wild matching of the symbol name without
5095 the "standard__" prefix. This was primarily introduced in order
5096 to allow the user to specifically access the standard exceptions
5097 using, for instance, Standard.Constraint_Error when Constraint_Error
5098 is ambiguous (due to the user defining its own Constraint_Error
5099 entity inside its program). */
5100 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5101 {
5102 block = NULL;
5103 name = name0 + sizeof ("standard__") - 1;
5104 }
5105
5106 /* Check the non-global symbols. If we have ANY match, then we're done. */
5107
5108 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5109 wild_match_p);
5110 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5111 goto done;
5112
5113 /* No non-global symbols found. Check our cache to see if we have
5114 already performed this search before. If we have, then return
5115 the same result. */
5116
5117 cacheIfUnique = 1;
5118 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5119 {
5120 if (sym != NULL)
5121 add_defn_to_vec (&symbol_list_obstack, sym, block);
5122 goto done;
5123 }
5124
5125 /* Search symbols from all global blocks. */
5126
5127 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5128 wild_match_p);
5129
5130 /* Now add symbols from all per-file blocks if we've gotten no hits
5131 (not strictly correct, but perhaps better than an error). */
5132
5133 if (num_defns_collected (&symbol_list_obstack) == 0)
5134 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5135 wild_match_p);
5136
5137 done:
5138 ndefns = num_defns_collected (&symbol_list_obstack);
5139 *results = defns_collected (&symbol_list_obstack, 1);
5140
5141 ndefns = remove_extra_symbols (*results, ndefns);
5142
5143 if (ndefns == 0 && full_search)
5144 cache_symbol (name0, namespace, NULL, NULL);
5145
5146 if (ndefns == 1 && full_search && cacheIfUnique)
5147 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5148
5149 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5150
5151 return ndefns;
5152 }
5153
5154 /* If NAME is the name of an entity, return a string that should
5155 be used to look that entity up in Ada units. This string should
5156 be deallocated after use using xfree.
5157
5158 NAME can have any form that the "break" or "print" commands might
5159 recognize. In other words, it does not have to be the "natural"
5160 name, or the "encoded" name. */
5161
5162 char *
5163 ada_name_for_lookup (const char *name)
5164 {
5165 char *canon;
5166 int nlen = strlen (name);
5167
5168 if (name[0] == '<' && name[nlen - 1] == '>')
5169 {
5170 canon = xmalloc (nlen - 1);
5171 memcpy (canon, name + 1, nlen - 2);
5172 canon[nlen - 2] = '\0';
5173 }
5174 else
5175 canon = xstrdup (ada_encode (ada_fold_name (name)));
5176 return canon;
5177 }
5178
5179 /* Implementation of the la_iterate_over_symbols method. */
5180
5181 static void
5182 ada_iterate_over_symbols (const struct block *block,
5183 const char *name, domain_enum domain,
5184 symbol_found_callback_ftype *callback,
5185 void *data)
5186 {
5187 int ndefs, i;
5188 struct ada_symbol_info *results;
5189
5190 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5191 for (i = 0; i < ndefs; ++i)
5192 {
5193 if (! (*callback) (results[i].sym, data))
5194 break;
5195 }
5196 }
5197
5198 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5199 to 1, but choosing the first symbol found if there are multiple
5200 choices.
5201
5202 The result is stored in *INFO, which must be non-NULL.
5203 If no match is found, INFO->SYM is set to NULL. */
5204
5205 void
5206 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5207 domain_enum namespace,
5208 struct ada_symbol_info *info)
5209 {
5210 struct ada_symbol_info *candidates;
5211 int n_candidates;
5212
5213 gdb_assert (info != NULL);
5214 memset (info, 0, sizeof (struct ada_symbol_info));
5215
5216 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5217 1);
5218
5219 if (n_candidates == 0)
5220 return;
5221
5222 *info = candidates[0];
5223 info->sym = fixup_symbol_section (info->sym, NULL);
5224 }
5225
5226 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5227 scope and in global scopes, or NULL if none. NAME is folded and
5228 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5229 choosing the first symbol if there are multiple choices.
5230 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5231
5232 struct symbol *
5233 ada_lookup_symbol (const char *name, const struct block *block0,
5234 domain_enum namespace, int *is_a_field_of_this)
5235 {
5236 struct ada_symbol_info info;
5237
5238 if (is_a_field_of_this != NULL)
5239 *is_a_field_of_this = 0;
5240
5241 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5242 block0, namespace, &info);
5243 return info.sym;
5244 }
5245
5246 static struct symbol *
5247 ada_lookup_symbol_nonlocal (const char *name,
5248 const struct block *block,
5249 const domain_enum domain)
5250 {
5251 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5252 }
5253
5254
5255 /* True iff STR is a possible encoded suffix of a normal Ada name
5256 that is to be ignored for matching purposes. Suffixes of parallel
5257 names (e.g., XVE) are not included here. Currently, the possible suffixes
5258 are given by any of the regular expressions:
5259
5260 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5261 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5262 TKB [subprogram suffix for task bodies]
5263 _E[0-9]+[bs]$ [protected object entry suffixes]
5264 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5265
5266 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5267 match is performed. This sequence is used to differentiate homonyms,
5268 is an optional part of a valid name suffix. */
5269
5270 static int
5271 is_name_suffix (const char *str)
5272 {
5273 int k;
5274 const char *matching;
5275 const int len = strlen (str);
5276
5277 /* Skip optional leading __[0-9]+. */
5278
5279 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5280 {
5281 str += 3;
5282 while (isdigit (str[0]))
5283 str += 1;
5284 }
5285
5286 /* [.$][0-9]+ */
5287
5288 if (str[0] == '.' || str[0] == '$')
5289 {
5290 matching = str + 1;
5291 while (isdigit (matching[0]))
5292 matching += 1;
5293 if (matching[0] == '\0')
5294 return 1;
5295 }
5296
5297 /* ___[0-9]+ */
5298
5299 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5300 {
5301 matching = str + 3;
5302 while (isdigit (matching[0]))
5303 matching += 1;
5304 if (matching[0] == '\0')
5305 return 1;
5306 }
5307
5308 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5309
5310 if (strcmp (str, "TKB") == 0)
5311 return 1;
5312
5313 #if 0
5314 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5315 with a N at the end. Unfortunately, the compiler uses the same
5316 convention for other internal types it creates. So treating
5317 all entity names that end with an "N" as a name suffix causes
5318 some regressions. For instance, consider the case of an enumerated
5319 type. To support the 'Image attribute, it creates an array whose
5320 name ends with N.
5321 Having a single character like this as a suffix carrying some
5322 information is a bit risky. Perhaps we should change the encoding
5323 to be something like "_N" instead. In the meantime, do not do
5324 the following check. */
5325 /* Protected Object Subprograms */
5326 if (len == 1 && str [0] == 'N')
5327 return 1;
5328 #endif
5329
5330 /* _E[0-9]+[bs]$ */
5331 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5332 {
5333 matching = str + 3;
5334 while (isdigit (matching[0]))
5335 matching += 1;
5336 if ((matching[0] == 'b' || matching[0] == 's')
5337 && matching [1] == '\0')
5338 return 1;
5339 }
5340
5341 /* ??? We should not modify STR directly, as we are doing below. This
5342 is fine in this case, but may become problematic later if we find
5343 that this alternative did not work, and want to try matching
5344 another one from the begining of STR. Since we modified it, we
5345 won't be able to find the begining of the string anymore! */
5346 if (str[0] == 'X')
5347 {
5348 str += 1;
5349 while (str[0] != '_' && str[0] != '\0')
5350 {
5351 if (str[0] != 'n' && str[0] != 'b')
5352 return 0;
5353 str += 1;
5354 }
5355 }
5356
5357 if (str[0] == '\000')
5358 return 1;
5359
5360 if (str[0] == '_')
5361 {
5362 if (str[1] != '_' || str[2] == '\000')
5363 return 0;
5364 if (str[2] == '_')
5365 {
5366 if (strcmp (str + 3, "JM") == 0)
5367 return 1;
5368 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5369 the LJM suffix in favor of the JM one. But we will
5370 still accept LJM as a valid suffix for a reasonable
5371 amount of time, just to allow ourselves to debug programs
5372 compiled using an older version of GNAT. */
5373 if (strcmp (str + 3, "LJM") == 0)
5374 return 1;
5375 if (str[3] != 'X')
5376 return 0;
5377 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5378 || str[4] == 'U' || str[4] == 'P')
5379 return 1;
5380 if (str[4] == 'R' && str[5] != 'T')
5381 return 1;
5382 return 0;
5383 }
5384 if (!isdigit (str[2]))
5385 return 0;
5386 for (k = 3; str[k] != '\0'; k += 1)
5387 if (!isdigit (str[k]) && str[k] != '_')
5388 return 0;
5389 return 1;
5390 }
5391 if (str[0] == '$' && isdigit (str[1]))
5392 {
5393 for (k = 2; str[k] != '\0'; k += 1)
5394 if (!isdigit (str[k]) && str[k] != '_')
5395 return 0;
5396 return 1;
5397 }
5398 return 0;
5399 }
5400
5401 /* Return non-zero if the string starting at NAME and ending before
5402 NAME_END contains no capital letters. */
5403
5404 static int
5405 is_valid_name_for_wild_match (const char *name0)
5406 {
5407 const char *decoded_name = ada_decode (name0);
5408 int i;
5409
5410 /* If the decoded name starts with an angle bracket, it means that
5411 NAME0 does not follow the GNAT encoding format. It should then
5412 not be allowed as a possible wild match. */
5413 if (decoded_name[0] == '<')
5414 return 0;
5415
5416 for (i=0; decoded_name[i] != '\0'; i++)
5417 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5418 return 0;
5419
5420 return 1;
5421 }
5422
5423 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5424 that could start a simple name. Assumes that *NAMEP points into
5425 the string beginning at NAME0. */
5426
5427 static int
5428 advance_wild_match (const char **namep, const char *name0, int target0)
5429 {
5430 const char *name = *namep;
5431
5432 while (1)
5433 {
5434 int t0, t1;
5435
5436 t0 = *name;
5437 if (t0 == '_')
5438 {
5439 t1 = name[1];
5440 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5441 {
5442 name += 1;
5443 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5444 break;
5445 else
5446 name += 1;
5447 }
5448 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5449 || name[2] == target0))
5450 {
5451 name += 2;
5452 break;
5453 }
5454 else
5455 return 0;
5456 }
5457 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5458 name += 1;
5459 else
5460 return 0;
5461 }
5462
5463 *namep = name;
5464 return 1;
5465 }
5466
5467 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5468 informational suffixes of NAME (i.e., for which is_name_suffix is
5469 true). Assumes that PATN is a lower-cased Ada simple name. */
5470
5471 static int
5472 wild_match (const char *name, const char *patn)
5473 {
5474 const char *p;
5475 const char *name0 = name;
5476
5477 while (1)
5478 {
5479 const char *match = name;
5480
5481 if (*name == *patn)
5482 {
5483 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5484 if (*p != *name)
5485 break;
5486 if (*p == '\0' && is_name_suffix (name))
5487 return match != name0 && !is_valid_name_for_wild_match (name0);
5488
5489 if (name[-1] == '_')
5490 name -= 1;
5491 }
5492 if (!advance_wild_match (&name, name0, *patn))
5493 return 1;
5494 }
5495 }
5496
5497 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5498 informational suffix. */
5499
5500 static int
5501 full_match (const char *sym_name, const char *search_name)
5502 {
5503 return !match_name (sym_name, search_name, 0);
5504 }
5505
5506
5507 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5508 vector *defn_symbols, updating the list of symbols in OBSTACKP
5509 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5510 OBJFILE is the section containing BLOCK.
5511 SYMTAB is recorded with each symbol added. */
5512
5513 static void
5514 ada_add_block_symbols (struct obstack *obstackp,
5515 struct block *block, const char *name,
5516 domain_enum domain, struct objfile *objfile,
5517 int wild)
5518 {
5519 struct block_iterator iter;
5520 int name_len = strlen (name);
5521 /* A matching argument symbol, if any. */
5522 struct symbol *arg_sym;
5523 /* Set true when we find a matching non-argument symbol. */
5524 int found_sym;
5525 struct symbol *sym;
5526
5527 arg_sym = NULL;
5528 found_sym = 0;
5529 if (wild)
5530 {
5531 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5532 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5533 {
5534 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5535 SYMBOL_DOMAIN (sym), domain)
5536 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5537 {
5538 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5539 continue;
5540 else if (SYMBOL_IS_ARGUMENT (sym))
5541 arg_sym = sym;
5542 else
5543 {
5544 found_sym = 1;
5545 add_defn_to_vec (obstackp,
5546 fixup_symbol_section (sym, objfile),
5547 block);
5548 }
5549 }
5550 }
5551 }
5552 else
5553 {
5554 for (sym = block_iter_match_first (block, name, full_match, &iter);
5555 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5556 {
5557 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5558 SYMBOL_DOMAIN (sym), domain))
5559 {
5560 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5561 {
5562 if (SYMBOL_IS_ARGUMENT (sym))
5563 arg_sym = sym;
5564 else
5565 {
5566 found_sym = 1;
5567 add_defn_to_vec (obstackp,
5568 fixup_symbol_section (sym, objfile),
5569 block);
5570 }
5571 }
5572 }
5573 }
5574 }
5575
5576 if (!found_sym && arg_sym != NULL)
5577 {
5578 add_defn_to_vec (obstackp,
5579 fixup_symbol_section (arg_sym, objfile),
5580 block);
5581 }
5582
5583 if (!wild)
5584 {
5585 arg_sym = NULL;
5586 found_sym = 0;
5587
5588 ALL_BLOCK_SYMBOLS (block, iter, sym)
5589 {
5590 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5591 SYMBOL_DOMAIN (sym), domain))
5592 {
5593 int cmp;
5594
5595 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5596 if (cmp == 0)
5597 {
5598 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5599 if (cmp == 0)
5600 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5601 name_len);
5602 }
5603
5604 if (cmp == 0
5605 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5606 {
5607 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5608 {
5609 if (SYMBOL_IS_ARGUMENT (sym))
5610 arg_sym = sym;
5611 else
5612 {
5613 found_sym = 1;
5614 add_defn_to_vec (obstackp,
5615 fixup_symbol_section (sym, objfile),
5616 block);
5617 }
5618 }
5619 }
5620 }
5621 }
5622
5623 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5624 They aren't parameters, right? */
5625 if (!found_sym && arg_sym != NULL)
5626 {
5627 add_defn_to_vec (obstackp,
5628 fixup_symbol_section (arg_sym, objfile),
5629 block);
5630 }
5631 }
5632 }
5633 \f
5634
5635 /* Symbol Completion */
5636
5637 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5638 name in a form that's appropriate for the completion. The result
5639 does not need to be deallocated, but is only good until the next call.
5640
5641 TEXT_LEN is equal to the length of TEXT.
5642 Perform a wild match if WILD_MATCH_P is set.
5643 ENCODED_P should be set if TEXT represents the start of a symbol name
5644 in its encoded form. */
5645
5646 static const char *
5647 symbol_completion_match (const char *sym_name,
5648 const char *text, int text_len,
5649 int wild_match_p, int encoded_p)
5650 {
5651 const int verbatim_match = (text[0] == '<');
5652 int match = 0;
5653
5654 if (verbatim_match)
5655 {
5656 /* Strip the leading angle bracket. */
5657 text = text + 1;
5658 text_len--;
5659 }
5660
5661 /* First, test against the fully qualified name of the symbol. */
5662
5663 if (strncmp (sym_name, text, text_len) == 0)
5664 match = 1;
5665
5666 if (match && !encoded_p)
5667 {
5668 /* One needed check before declaring a positive match is to verify
5669 that iff we are doing a verbatim match, the decoded version
5670 of the symbol name starts with '<'. Otherwise, this symbol name
5671 is not a suitable completion. */
5672 const char *sym_name_copy = sym_name;
5673 int has_angle_bracket;
5674
5675 sym_name = ada_decode (sym_name);
5676 has_angle_bracket = (sym_name[0] == '<');
5677 match = (has_angle_bracket == verbatim_match);
5678 sym_name = sym_name_copy;
5679 }
5680
5681 if (match && !verbatim_match)
5682 {
5683 /* When doing non-verbatim match, another check that needs to
5684 be done is to verify that the potentially matching symbol name
5685 does not include capital letters, because the ada-mode would
5686 not be able to understand these symbol names without the
5687 angle bracket notation. */
5688 const char *tmp;
5689
5690 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5691 if (*tmp != '\0')
5692 match = 0;
5693 }
5694
5695 /* Second: Try wild matching... */
5696
5697 if (!match && wild_match_p)
5698 {
5699 /* Since we are doing wild matching, this means that TEXT
5700 may represent an unqualified symbol name. We therefore must
5701 also compare TEXT against the unqualified name of the symbol. */
5702 sym_name = ada_unqualified_name (ada_decode (sym_name));
5703
5704 if (strncmp (sym_name, text, text_len) == 0)
5705 match = 1;
5706 }
5707
5708 /* Finally: If we found a mach, prepare the result to return. */
5709
5710 if (!match)
5711 return NULL;
5712
5713 if (verbatim_match)
5714 sym_name = add_angle_brackets (sym_name);
5715
5716 if (!encoded_p)
5717 sym_name = ada_decode (sym_name);
5718
5719 return sym_name;
5720 }
5721
5722 /* A companion function to ada_make_symbol_completion_list().
5723 Check if SYM_NAME represents a symbol which name would be suitable
5724 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5725 it is appended at the end of the given string vector SV.
5726
5727 ORIG_TEXT is the string original string from the user command
5728 that needs to be completed. WORD is the entire command on which
5729 completion should be performed. These two parameters are used to
5730 determine which part of the symbol name should be added to the
5731 completion vector.
5732 if WILD_MATCH_P is set, then wild matching is performed.
5733 ENCODED_P should be set if TEXT represents a symbol name in its
5734 encoded formed (in which case the completion should also be
5735 encoded). */
5736
5737 static void
5738 symbol_completion_add (VEC(char_ptr) **sv,
5739 const char *sym_name,
5740 const char *text, int text_len,
5741 const char *orig_text, const char *word,
5742 int wild_match_p, int encoded_p)
5743 {
5744 const char *match = symbol_completion_match (sym_name, text, text_len,
5745 wild_match_p, encoded_p);
5746 char *completion;
5747
5748 if (match == NULL)
5749 return;
5750
5751 /* We found a match, so add the appropriate completion to the given
5752 string vector. */
5753
5754 if (word == orig_text)
5755 {
5756 completion = xmalloc (strlen (match) + 5);
5757 strcpy (completion, match);
5758 }
5759 else if (word > orig_text)
5760 {
5761 /* Return some portion of sym_name. */
5762 completion = xmalloc (strlen (match) + 5);
5763 strcpy (completion, match + (word - orig_text));
5764 }
5765 else
5766 {
5767 /* Return some of ORIG_TEXT plus sym_name. */
5768 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5769 strncpy (completion, word, orig_text - word);
5770 completion[orig_text - word] = '\0';
5771 strcat (completion, match);
5772 }
5773
5774 VEC_safe_push (char_ptr, *sv, completion);
5775 }
5776
5777 /* An object of this type is passed as the user_data argument to the
5778 expand_partial_symbol_names method. */
5779 struct add_partial_datum
5780 {
5781 VEC(char_ptr) **completions;
5782 char *text;
5783 int text_len;
5784 char *text0;
5785 char *word;
5786 int wild_match;
5787 int encoded;
5788 };
5789
5790 /* A callback for expand_partial_symbol_names. */
5791 static int
5792 ada_expand_partial_symbol_name (const char *name, void *user_data)
5793 {
5794 struct add_partial_datum *data = user_data;
5795
5796 return symbol_completion_match (name, data->text, data->text_len,
5797 data->wild_match, data->encoded) != NULL;
5798 }
5799
5800 /* Return a list of possible symbol names completing TEXT0. WORD is
5801 the entire command on which completion is made. */
5802
5803 static VEC (char_ptr) *
5804 ada_make_symbol_completion_list (char *text0, char *word)
5805 {
5806 char *text;
5807 int text_len;
5808 int wild_match_p;
5809 int encoded_p;
5810 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5811 struct symbol *sym;
5812 struct symtab *s;
5813 struct minimal_symbol *msymbol;
5814 struct objfile *objfile;
5815 struct block *b, *surrounding_static_block = 0;
5816 int i;
5817 struct block_iterator iter;
5818
5819 if (text0[0] == '<')
5820 {
5821 text = xstrdup (text0);
5822 make_cleanup (xfree, text);
5823 text_len = strlen (text);
5824 wild_match_p = 0;
5825 encoded_p = 1;
5826 }
5827 else
5828 {
5829 text = xstrdup (ada_encode (text0));
5830 make_cleanup (xfree, text);
5831 text_len = strlen (text);
5832 for (i = 0; i < text_len; i++)
5833 text[i] = tolower (text[i]);
5834
5835 encoded_p = (strstr (text0, "__") != NULL);
5836 /* If the name contains a ".", then the user is entering a fully
5837 qualified entity name, and the match must not be done in wild
5838 mode. Similarly, if the user wants to complete what looks like
5839 an encoded name, the match must not be done in wild mode. */
5840 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5841 }
5842
5843 /* First, look at the partial symtab symbols. */
5844 {
5845 struct add_partial_datum data;
5846
5847 data.completions = &completions;
5848 data.text = text;
5849 data.text_len = text_len;
5850 data.text0 = text0;
5851 data.word = word;
5852 data.wild_match = wild_match_p;
5853 data.encoded = encoded_p;
5854 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5855 }
5856
5857 /* At this point scan through the misc symbol vectors and add each
5858 symbol you find to the list. Eventually we want to ignore
5859 anything that isn't a text symbol (everything else will be
5860 handled by the psymtab code above). */
5861
5862 ALL_MSYMBOLS (objfile, msymbol)
5863 {
5864 QUIT;
5865 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5866 text, text_len, text0, word, wild_match_p,
5867 encoded_p);
5868 }
5869
5870 /* Search upwards from currently selected frame (so that we can
5871 complete on local vars. */
5872
5873 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5874 {
5875 if (!BLOCK_SUPERBLOCK (b))
5876 surrounding_static_block = b; /* For elmin of dups */
5877
5878 ALL_BLOCK_SYMBOLS (b, iter, sym)
5879 {
5880 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5881 text, text_len, text0, word,
5882 wild_match_p, encoded_p);
5883 }
5884 }
5885
5886 /* Go through the symtabs and check the externs and statics for
5887 symbols which match. */
5888
5889 ALL_SYMTABS (objfile, s)
5890 {
5891 QUIT;
5892 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5893 ALL_BLOCK_SYMBOLS (b, iter, sym)
5894 {
5895 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5896 text, text_len, text0, word,
5897 wild_match_p, encoded_p);
5898 }
5899 }
5900
5901 ALL_SYMTABS (objfile, s)
5902 {
5903 QUIT;
5904 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5905 /* Don't do this block twice. */
5906 if (b == surrounding_static_block)
5907 continue;
5908 ALL_BLOCK_SYMBOLS (b, iter, sym)
5909 {
5910 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5911 text, text_len, text0, word,
5912 wild_match_p, encoded_p);
5913 }
5914 }
5915
5916 return completions;
5917 }
5918
5919 /* Field Access */
5920
5921 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5922 for tagged types. */
5923
5924 static int
5925 ada_is_dispatch_table_ptr_type (struct type *type)
5926 {
5927 const char *name;
5928
5929 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5930 return 0;
5931
5932 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5933 if (name == NULL)
5934 return 0;
5935
5936 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5937 }
5938
5939 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5940 to be invisible to users. */
5941
5942 int
5943 ada_is_ignored_field (struct type *type, int field_num)
5944 {
5945 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5946 return 1;
5947
5948 /* Check the name of that field. */
5949 {
5950 const char *name = TYPE_FIELD_NAME (type, field_num);
5951
5952 /* Anonymous field names should not be printed.
5953 brobecker/2007-02-20: I don't think this can actually happen
5954 but we don't want to print the value of annonymous fields anyway. */
5955 if (name == NULL)
5956 return 1;
5957
5958 /* Normally, fields whose name start with an underscore ("_")
5959 are fields that have been internally generated by the compiler,
5960 and thus should not be printed. The "_parent" field is special,
5961 however: This is a field internally generated by the compiler
5962 for tagged types, and it contains the components inherited from
5963 the parent type. This field should not be printed as is, but
5964 should not be ignored either. */
5965 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5966 return 1;
5967 }
5968
5969 /* If this is the dispatch table of a tagged type, then ignore. */
5970 if (ada_is_tagged_type (type, 1)
5971 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5972 return 1;
5973
5974 /* Not a special field, so it should not be ignored. */
5975 return 0;
5976 }
5977
5978 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5979 pointer or reference type whose ultimate target has a tag field. */
5980
5981 int
5982 ada_is_tagged_type (struct type *type, int refok)
5983 {
5984 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5985 }
5986
5987 /* True iff TYPE represents the type of X'Tag */
5988
5989 int
5990 ada_is_tag_type (struct type *type)
5991 {
5992 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5993 return 0;
5994 else
5995 {
5996 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5997
5998 return (name != NULL
5999 && strcmp (name, "ada__tags__dispatch_table") == 0);
6000 }
6001 }
6002
6003 /* The type of the tag on VAL. */
6004
6005 struct type *
6006 ada_tag_type (struct value *val)
6007 {
6008 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6009 }
6010
6011 /* The value of the tag on VAL. */
6012
6013 struct value *
6014 ada_value_tag (struct value *val)
6015 {
6016 return ada_value_struct_elt (val, "_tag", 0);
6017 }
6018
6019 /* The value of the tag on the object of type TYPE whose contents are
6020 saved at VALADDR, if it is non-null, or is at memory address
6021 ADDRESS. */
6022
6023 static struct value *
6024 value_tag_from_contents_and_address (struct type *type,
6025 const gdb_byte *valaddr,
6026 CORE_ADDR address)
6027 {
6028 int tag_byte_offset;
6029 struct type *tag_type;
6030
6031 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6032 NULL, NULL, NULL))
6033 {
6034 const gdb_byte *valaddr1 = ((valaddr == NULL)
6035 ? NULL
6036 : valaddr + tag_byte_offset);
6037 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6038
6039 return value_from_contents_and_address (tag_type, valaddr1, address1);
6040 }
6041 return NULL;
6042 }
6043
6044 static struct type *
6045 type_from_tag (struct value *tag)
6046 {
6047 const char *type_name = ada_tag_name (tag);
6048
6049 if (type_name != NULL)
6050 return ada_find_any_type (ada_encode (type_name));
6051 return NULL;
6052 }
6053
6054 /* Return the "ada__tags__type_specific_data" type. */
6055
6056 static struct type *
6057 ada_get_tsd_type (struct inferior *inf)
6058 {
6059 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6060
6061 if (data->tsd_type == 0)
6062 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6063 return data->tsd_type;
6064 }
6065
6066 /* Return the TSD (type-specific data) associated to the given TAG.
6067 TAG is assumed to be the tag of a tagged-type entity.
6068
6069 May return NULL if we are unable to get the TSD. */
6070
6071 static struct value *
6072 ada_get_tsd_from_tag (struct value *tag)
6073 {
6074 struct value *val;
6075 struct type *type;
6076
6077 /* First option: The TSD is simply stored as a field of our TAG.
6078 Only older versions of GNAT would use this format, but we have
6079 to test it first, because there are no visible markers for
6080 the current approach except the absence of that field. */
6081
6082 val = ada_value_struct_elt (tag, "tsd", 1);
6083 if (val)
6084 return val;
6085
6086 /* Try the second representation for the dispatch table (in which
6087 there is no explicit 'tsd' field in the referent of the tag pointer,
6088 and instead the tsd pointer is stored just before the dispatch
6089 table. */
6090
6091 type = ada_get_tsd_type (current_inferior());
6092 if (type == NULL)
6093 return NULL;
6094 type = lookup_pointer_type (lookup_pointer_type (type));
6095 val = value_cast (type, tag);
6096 if (val == NULL)
6097 return NULL;
6098 return value_ind (value_ptradd (val, -1));
6099 }
6100
6101 /* Given the TSD of a tag (type-specific data), return a string
6102 containing the name of the associated type.
6103
6104 The returned value is good until the next call. May return NULL
6105 if we are unable to determine the tag name. */
6106
6107 static char *
6108 ada_tag_name_from_tsd (struct value *tsd)
6109 {
6110 static char name[1024];
6111 char *p;
6112 struct value *val;
6113
6114 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6115 if (val == NULL)
6116 return NULL;
6117 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6118 for (p = name; *p != '\0'; p += 1)
6119 if (isalpha (*p))
6120 *p = tolower (*p);
6121 return name;
6122 }
6123
6124 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6125 a C string.
6126
6127 Return NULL if the TAG is not an Ada tag, or if we were unable to
6128 determine the name of that tag. The result is good until the next
6129 call. */
6130
6131 const char *
6132 ada_tag_name (struct value *tag)
6133 {
6134 volatile struct gdb_exception e;
6135 char *name = NULL;
6136
6137 if (!ada_is_tag_type (value_type (tag)))
6138 return NULL;
6139
6140 /* It is perfectly possible that an exception be raised while trying
6141 to determine the TAG's name, even under normal circumstances:
6142 The associated variable may be uninitialized or corrupted, for
6143 instance. We do not let any exception propagate past this point.
6144 instead we return NULL.
6145
6146 We also do not print the error message either (which often is very
6147 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6148 the caller print a more meaningful message if necessary. */
6149 TRY_CATCH (e, RETURN_MASK_ERROR)
6150 {
6151 struct value *tsd = ada_get_tsd_from_tag (tag);
6152
6153 if (tsd != NULL)
6154 name = ada_tag_name_from_tsd (tsd);
6155 }
6156
6157 return name;
6158 }
6159
6160 /* The parent type of TYPE, or NULL if none. */
6161
6162 struct type *
6163 ada_parent_type (struct type *type)
6164 {
6165 int i;
6166
6167 type = ada_check_typedef (type);
6168
6169 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6170 return NULL;
6171
6172 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6173 if (ada_is_parent_field (type, i))
6174 {
6175 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6176
6177 /* If the _parent field is a pointer, then dereference it. */
6178 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6179 parent_type = TYPE_TARGET_TYPE (parent_type);
6180 /* If there is a parallel XVS type, get the actual base type. */
6181 parent_type = ada_get_base_type (parent_type);
6182
6183 return ada_check_typedef (parent_type);
6184 }
6185
6186 return NULL;
6187 }
6188
6189 /* True iff field number FIELD_NUM of structure type TYPE contains the
6190 parent-type (inherited) fields of a derived type. Assumes TYPE is
6191 a structure type with at least FIELD_NUM+1 fields. */
6192
6193 int
6194 ada_is_parent_field (struct type *type, int field_num)
6195 {
6196 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6197
6198 return (name != NULL
6199 && (strncmp (name, "PARENT", 6) == 0
6200 || strncmp (name, "_parent", 7) == 0));
6201 }
6202
6203 /* True iff field number FIELD_NUM of structure type TYPE is a
6204 transparent wrapper field (which should be silently traversed when doing
6205 field selection and flattened when printing). Assumes TYPE is a
6206 structure type with at least FIELD_NUM+1 fields. Such fields are always
6207 structures. */
6208
6209 int
6210 ada_is_wrapper_field (struct type *type, int field_num)
6211 {
6212 const char *name = TYPE_FIELD_NAME (type, field_num);
6213
6214 return (name != NULL
6215 && (strncmp (name, "PARENT", 6) == 0
6216 || strcmp (name, "REP") == 0
6217 || strncmp (name, "_parent", 7) == 0
6218 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6219 }
6220
6221 /* True iff field number FIELD_NUM of structure or union type TYPE
6222 is a variant wrapper. Assumes TYPE is a structure type with at least
6223 FIELD_NUM+1 fields. */
6224
6225 int
6226 ada_is_variant_part (struct type *type, int field_num)
6227 {
6228 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6229
6230 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6231 || (is_dynamic_field (type, field_num)
6232 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6233 == TYPE_CODE_UNION)));
6234 }
6235
6236 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6237 whose discriminants are contained in the record type OUTER_TYPE,
6238 returns the type of the controlling discriminant for the variant.
6239 May return NULL if the type could not be found. */
6240
6241 struct type *
6242 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6243 {
6244 char *name = ada_variant_discrim_name (var_type);
6245
6246 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6247 }
6248
6249 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6250 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6251 represents a 'when others' clause; otherwise 0. */
6252
6253 int
6254 ada_is_others_clause (struct type *type, int field_num)
6255 {
6256 const char *name = TYPE_FIELD_NAME (type, field_num);
6257
6258 return (name != NULL && name[0] == 'O');
6259 }
6260
6261 /* Assuming that TYPE0 is the type of the variant part of a record,
6262 returns the name of the discriminant controlling the variant.
6263 The value is valid until the next call to ada_variant_discrim_name. */
6264
6265 char *
6266 ada_variant_discrim_name (struct type *type0)
6267 {
6268 static char *result = NULL;
6269 static size_t result_len = 0;
6270 struct type *type;
6271 const char *name;
6272 const char *discrim_end;
6273 const char *discrim_start;
6274
6275 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6276 type = TYPE_TARGET_TYPE (type0);
6277 else
6278 type = type0;
6279
6280 name = ada_type_name (type);
6281
6282 if (name == NULL || name[0] == '\000')
6283 return "";
6284
6285 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6286 discrim_end -= 1)
6287 {
6288 if (strncmp (discrim_end, "___XVN", 6) == 0)
6289 break;
6290 }
6291 if (discrim_end == name)
6292 return "";
6293
6294 for (discrim_start = discrim_end; discrim_start != name + 3;
6295 discrim_start -= 1)
6296 {
6297 if (discrim_start == name + 1)
6298 return "";
6299 if ((discrim_start > name + 3
6300 && strncmp (discrim_start - 3, "___", 3) == 0)
6301 || discrim_start[-1] == '.')
6302 break;
6303 }
6304
6305 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6306 strncpy (result, discrim_start, discrim_end - discrim_start);
6307 result[discrim_end - discrim_start] = '\0';
6308 return result;
6309 }
6310
6311 /* Scan STR for a subtype-encoded number, beginning at position K.
6312 Put the position of the character just past the number scanned in
6313 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6314 Return 1 if there was a valid number at the given position, and 0
6315 otherwise. A "subtype-encoded" number consists of the absolute value
6316 in decimal, followed by the letter 'm' to indicate a negative number.
6317 Assumes 0m does not occur. */
6318
6319 int
6320 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6321 {
6322 ULONGEST RU;
6323
6324 if (!isdigit (str[k]))
6325 return 0;
6326
6327 /* Do it the hard way so as not to make any assumption about
6328 the relationship of unsigned long (%lu scan format code) and
6329 LONGEST. */
6330 RU = 0;
6331 while (isdigit (str[k]))
6332 {
6333 RU = RU * 10 + (str[k] - '0');
6334 k += 1;
6335 }
6336
6337 if (str[k] == 'm')
6338 {
6339 if (R != NULL)
6340 *R = (-(LONGEST) (RU - 1)) - 1;
6341 k += 1;
6342 }
6343 else if (R != NULL)
6344 *R = (LONGEST) RU;
6345
6346 /* NOTE on the above: Technically, C does not say what the results of
6347 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6348 number representable as a LONGEST (although either would probably work
6349 in most implementations). When RU>0, the locution in the then branch
6350 above is always equivalent to the negative of RU. */
6351
6352 if (new_k != NULL)
6353 *new_k = k;
6354 return 1;
6355 }
6356
6357 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6358 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6359 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6360
6361 int
6362 ada_in_variant (LONGEST val, struct type *type, int field_num)
6363 {
6364 const char *name = TYPE_FIELD_NAME (type, field_num);
6365 int p;
6366
6367 p = 0;
6368 while (1)
6369 {
6370 switch (name[p])
6371 {
6372 case '\0':
6373 return 0;
6374 case 'S':
6375 {
6376 LONGEST W;
6377
6378 if (!ada_scan_number (name, p + 1, &W, &p))
6379 return 0;
6380 if (val == W)
6381 return 1;
6382 break;
6383 }
6384 case 'R':
6385 {
6386 LONGEST L, U;
6387
6388 if (!ada_scan_number (name, p + 1, &L, &p)
6389 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6390 return 0;
6391 if (val >= L && val <= U)
6392 return 1;
6393 break;
6394 }
6395 case 'O':
6396 return 1;
6397 default:
6398 return 0;
6399 }
6400 }
6401 }
6402
6403 /* FIXME: Lots of redundancy below. Try to consolidate. */
6404
6405 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6406 ARG_TYPE, extract and return the value of one of its (non-static)
6407 fields. FIELDNO says which field. Differs from value_primitive_field
6408 only in that it can handle packed values of arbitrary type. */
6409
6410 static struct value *
6411 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6412 struct type *arg_type)
6413 {
6414 struct type *type;
6415
6416 arg_type = ada_check_typedef (arg_type);
6417 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6418
6419 /* Handle packed fields. */
6420
6421 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6422 {
6423 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6424 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6425
6426 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6427 offset + bit_pos / 8,
6428 bit_pos % 8, bit_size, type);
6429 }
6430 else
6431 return value_primitive_field (arg1, offset, fieldno, arg_type);
6432 }
6433
6434 /* Find field with name NAME in object of type TYPE. If found,
6435 set the following for each argument that is non-null:
6436 - *FIELD_TYPE_P to the field's type;
6437 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6438 an object of that type;
6439 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6440 - *BIT_SIZE_P to its size in bits if the field is packed, and
6441 0 otherwise;
6442 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6443 fields up to but not including the desired field, or by the total
6444 number of fields if not found. A NULL value of NAME never
6445 matches; the function just counts visible fields in this case.
6446
6447 Returns 1 if found, 0 otherwise. */
6448
6449 static int
6450 find_struct_field (const char *name, struct type *type, int offset,
6451 struct type **field_type_p,
6452 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6453 int *index_p)
6454 {
6455 int i;
6456
6457 type = ada_check_typedef (type);
6458
6459 if (field_type_p != NULL)
6460 *field_type_p = NULL;
6461 if (byte_offset_p != NULL)
6462 *byte_offset_p = 0;
6463 if (bit_offset_p != NULL)
6464 *bit_offset_p = 0;
6465 if (bit_size_p != NULL)
6466 *bit_size_p = 0;
6467
6468 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6469 {
6470 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6471 int fld_offset = offset + bit_pos / 8;
6472 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6473
6474 if (t_field_name == NULL)
6475 continue;
6476
6477 else if (name != NULL && field_name_match (t_field_name, name))
6478 {
6479 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6480
6481 if (field_type_p != NULL)
6482 *field_type_p = TYPE_FIELD_TYPE (type, i);
6483 if (byte_offset_p != NULL)
6484 *byte_offset_p = fld_offset;
6485 if (bit_offset_p != NULL)
6486 *bit_offset_p = bit_pos % 8;
6487 if (bit_size_p != NULL)
6488 *bit_size_p = bit_size;
6489 return 1;
6490 }
6491 else if (ada_is_wrapper_field (type, i))
6492 {
6493 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6494 field_type_p, byte_offset_p, bit_offset_p,
6495 bit_size_p, index_p))
6496 return 1;
6497 }
6498 else if (ada_is_variant_part (type, i))
6499 {
6500 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6501 fixed type?? */
6502 int j;
6503 struct type *field_type
6504 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6505
6506 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6507 {
6508 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6509 fld_offset
6510 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6511 field_type_p, byte_offset_p,
6512 bit_offset_p, bit_size_p, index_p))
6513 return 1;
6514 }
6515 }
6516 else if (index_p != NULL)
6517 *index_p += 1;
6518 }
6519 return 0;
6520 }
6521
6522 /* Number of user-visible fields in record type TYPE. */
6523
6524 static int
6525 num_visible_fields (struct type *type)
6526 {
6527 int n;
6528
6529 n = 0;
6530 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6531 return n;
6532 }
6533
6534 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6535 and search in it assuming it has (class) type TYPE.
6536 If found, return value, else return NULL.
6537
6538 Searches recursively through wrapper fields (e.g., '_parent'). */
6539
6540 static struct value *
6541 ada_search_struct_field (char *name, struct value *arg, int offset,
6542 struct type *type)
6543 {
6544 int i;
6545
6546 type = ada_check_typedef (type);
6547 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6548 {
6549 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6550
6551 if (t_field_name == NULL)
6552 continue;
6553
6554 else if (field_name_match (t_field_name, name))
6555 return ada_value_primitive_field (arg, offset, i, type);
6556
6557 else if (ada_is_wrapper_field (type, i))
6558 {
6559 struct value *v = /* Do not let indent join lines here. */
6560 ada_search_struct_field (name, arg,
6561 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6562 TYPE_FIELD_TYPE (type, i));
6563
6564 if (v != NULL)
6565 return v;
6566 }
6567
6568 else if (ada_is_variant_part (type, i))
6569 {
6570 /* PNH: Do we ever get here? See find_struct_field. */
6571 int j;
6572 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6573 i));
6574 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6575
6576 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6577 {
6578 struct value *v = ada_search_struct_field /* Force line
6579 break. */
6580 (name, arg,
6581 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6582 TYPE_FIELD_TYPE (field_type, j));
6583
6584 if (v != NULL)
6585 return v;
6586 }
6587 }
6588 }
6589 return NULL;
6590 }
6591
6592 static struct value *ada_index_struct_field_1 (int *, struct value *,
6593 int, struct type *);
6594
6595
6596 /* Return field #INDEX in ARG, where the index is that returned by
6597 * find_struct_field through its INDEX_P argument. Adjust the address
6598 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6599 * If found, return value, else return NULL. */
6600
6601 static struct value *
6602 ada_index_struct_field (int index, struct value *arg, int offset,
6603 struct type *type)
6604 {
6605 return ada_index_struct_field_1 (&index, arg, offset, type);
6606 }
6607
6608
6609 /* Auxiliary function for ada_index_struct_field. Like
6610 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6611 * *INDEX_P. */
6612
6613 static struct value *
6614 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6615 struct type *type)
6616 {
6617 int i;
6618 type = ada_check_typedef (type);
6619
6620 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6621 {
6622 if (TYPE_FIELD_NAME (type, i) == NULL)
6623 continue;
6624 else if (ada_is_wrapper_field (type, i))
6625 {
6626 struct value *v = /* Do not let indent join lines here. */
6627 ada_index_struct_field_1 (index_p, arg,
6628 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6629 TYPE_FIELD_TYPE (type, i));
6630
6631 if (v != NULL)
6632 return v;
6633 }
6634
6635 else if (ada_is_variant_part (type, i))
6636 {
6637 /* PNH: Do we ever get here? See ada_search_struct_field,
6638 find_struct_field. */
6639 error (_("Cannot assign this kind of variant record"));
6640 }
6641 else if (*index_p == 0)
6642 return ada_value_primitive_field (arg, offset, i, type);
6643 else
6644 *index_p -= 1;
6645 }
6646 return NULL;
6647 }
6648
6649 /* Given ARG, a value of type (pointer or reference to a)*
6650 structure/union, extract the component named NAME from the ultimate
6651 target structure/union and return it as a value with its
6652 appropriate type.
6653
6654 The routine searches for NAME among all members of the structure itself
6655 and (recursively) among all members of any wrapper members
6656 (e.g., '_parent').
6657
6658 If NO_ERR, then simply return NULL in case of error, rather than
6659 calling error. */
6660
6661 struct value *
6662 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6663 {
6664 struct type *t, *t1;
6665 struct value *v;
6666
6667 v = NULL;
6668 t1 = t = ada_check_typedef (value_type (arg));
6669 if (TYPE_CODE (t) == TYPE_CODE_REF)
6670 {
6671 t1 = TYPE_TARGET_TYPE (t);
6672 if (t1 == NULL)
6673 goto BadValue;
6674 t1 = ada_check_typedef (t1);
6675 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6676 {
6677 arg = coerce_ref (arg);
6678 t = t1;
6679 }
6680 }
6681
6682 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6683 {
6684 t1 = TYPE_TARGET_TYPE (t);
6685 if (t1 == NULL)
6686 goto BadValue;
6687 t1 = ada_check_typedef (t1);
6688 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6689 {
6690 arg = value_ind (arg);
6691 t = t1;
6692 }
6693 else
6694 break;
6695 }
6696
6697 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6698 goto BadValue;
6699
6700 if (t1 == t)
6701 v = ada_search_struct_field (name, arg, 0, t);
6702 else
6703 {
6704 int bit_offset, bit_size, byte_offset;
6705 struct type *field_type;
6706 CORE_ADDR address;
6707
6708 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6709 address = value_as_address (arg);
6710 else
6711 address = unpack_pointer (t, value_contents (arg));
6712
6713 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6714 if (find_struct_field (name, t1, 0,
6715 &field_type, &byte_offset, &bit_offset,
6716 &bit_size, NULL))
6717 {
6718 if (bit_size != 0)
6719 {
6720 if (TYPE_CODE (t) == TYPE_CODE_REF)
6721 arg = ada_coerce_ref (arg);
6722 else
6723 arg = ada_value_ind (arg);
6724 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6725 bit_offset, bit_size,
6726 field_type);
6727 }
6728 else
6729 v = value_at_lazy (field_type, address + byte_offset);
6730 }
6731 }
6732
6733 if (v != NULL || no_err)
6734 return v;
6735 else
6736 error (_("There is no member named %s."), name);
6737
6738 BadValue:
6739 if (no_err)
6740 return NULL;
6741 else
6742 error (_("Attempt to extract a component of "
6743 "a value that is not a record."));
6744 }
6745
6746 /* Given a type TYPE, look up the type of the component of type named NAME.
6747 If DISPP is non-null, add its byte displacement from the beginning of a
6748 structure (pointed to by a value) of type TYPE to *DISPP (does not
6749 work for packed fields).
6750
6751 Matches any field whose name has NAME as a prefix, possibly
6752 followed by "___".
6753
6754 TYPE can be either a struct or union. If REFOK, TYPE may also
6755 be a (pointer or reference)+ to a struct or union, and the
6756 ultimate target type will be searched.
6757
6758 Looks recursively into variant clauses and parent types.
6759
6760 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6761 TYPE is not a type of the right kind. */
6762
6763 static struct type *
6764 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6765 int noerr, int *dispp)
6766 {
6767 int i;
6768
6769 if (name == NULL)
6770 goto BadName;
6771
6772 if (refok && type != NULL)
6773 while (1)
6774 {
6775 type = ada_check_typedef (type);
6776 if (TYPE_CODE (type) != TYPE_CODE_PTR
6777 && TYPE_CODE (type) != TYPE_CODE_REF)
6778 break;
6779 type = TYPE_TARGET_TYPE (type);
6780 }
6781
6782 if (type == NULL
6783 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6784 && TYPE_CODE (type) != TYPE_CODE_UNION))
6785 {
6786 if (noerr)
6787 return NULL;
6788 else
6789 {
6790 target_terminal_ours ();
6791 gdb_flush (gdb_stdout);
6792 if (type == NULL)
6793 error (_("Type (null) is not a structure or union type"));
6794 else
6795 {
6796 /* XXX: type_sprint */
6797 fprintf_unfiltered (gdb_stderr, _("Type "));
6798 type_print (type, "", gdb_stderr, -1);
6799 error (_(" is not a structure or union type"));
6800 }
6801 }
6802 }
6803
6804 type = to_static_fixed_type (type);
6805
6806 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6807 {
6808 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6809 struct type *t;
6810 int disp;
6811
6812 if (t_field_name == NULL)
6813 continue;
6814
6815 else if (field_name_match (t_field_name, name))
6816 {
6817 if (dispp != NULL)
6818 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6819 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6820 }
6821
6822 else if (ada_is_wrapper_field (type, i))
6823 {
6824 disp = 0;
6825 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6826 0, 1, &disp);
6827 if (t != NULL)
6828 {
6829 if (dispp != NULL)
6830 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6831 return t;
6832 }
6833 }
6834
6835 else if (ada_is_variant_part (type, i))
6836 {
6837 int j;
6838 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6839 i));
6840
6841 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6842 {
6843 /* FIXME pnh 2008/01/26: We check for a field that is
6844 NOT wrapped in a struct, since the compiler sometimes
6845 generates these for unchecked variant types. Revisit
6846 if the compiler changes this practice. */
6847 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6848 disp = 0;
6849 if (v_field_name != NULL
6850 && field_name_match (v_field_name, name))
6851 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6852 else
6853 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6854 j),
6855 name, 0, 1, &disp);
6856
6857 if (t != NULL)
6858 {
6859 if (dispp != NULL)
6860 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6861 return t;
6862 }
6863 }
6864 }
6865
6866 }
6867
6868 BadName:
6869 if (!noerr)
6870 {
6871 target_terminal_ours ();
6872 gdb_flush (gdb_stdout);
6873 if (name == NULL)
6874 {
6875 /* XXX: type_sprint */
6876 fprintf_unfiltered (gdb_stderr, _("Type "));
6877 type_print (type, "", gdb_stderr, -1);
6878 error (_(" has no component named <null>"));
6879 }
6880 else
6881 {
6882 /* XXX: type_sprint */
6883 fprintf_unfiltered (gdb_stderr, _("Type "));
6884 type_print (type, "", gdb_stderr, -1);
6885 error (_(" has no component named %s"), name);
6886 }
6887 }
6888
6889 return NULL;
6890 }
6891
6892 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6893 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6894 represents an unchecked union (that is, the variant part of a
6895 record that is named in an Unchecked_Union pragma). */
6896
6897 static int
6898 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6899 {
6900 char *discrim_name = ada_variant_discrim_name (var_type);
6901
6902 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6903 == NULL);
6904 }
6905
6906
6907 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6908 within a value of type OUTER_TYPE that is stored in GDB at
6909 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6910 numbering from 0) is applicable. Returns -1 if none are. */
6911
6912 int
6913 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6914 const gdb_byte *outer_valaddr)
6915 {
6916 int others_clause;
6917 int i;
6918 char *discrim_name = ada_variant_discrim_name (var_type);
6919 struct value *outer;
6920 struct value *discrim;
6921 LONGEST discrim_val;
6922
6923 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6924 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6925 if (discrim == NULL)
6926 return -1;
6927 discrim_val = value_as_long (discrim);
6928
6929 others_clause = -1;
6930 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6931 {
6932 if (ada_is_others_clause (var_type, i))
6933 others_clause = i;
6934 else if (ada_in_variant (discrim_val, var_type, i))
6935 return i;
6936 }
6937
6938 return others_clause;
6939 }
6940 \f
6941
6942
6943 /* Dynamic-Sized Records */
6944
6945 /* Strategy: The type ostensibly attached to a value with dynamic size
6946 (i.e., a size that is not statically recorded in the debugging
6947 data) does not accurately reflect the size or layout of the value.
6948 Our strategy is to convert these values to values with accurate,
6949 conventional types that are constructed on the fly. */
6950
6951 /* There is a subtle and tricky problem here. In general, we cannot
6952 determine the size of dynamic records without its data. However,
6953 the 'struct value' data structure, which GDB uses to represent
6954 quantities in the inferior process (the target), requires the size
6955 of the type at the time of its allocation in order to reserve space
6956 for GDB's internal copy of the data. That's why the
6957 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6958 rather than struct value*s.
6959
6960 However, GDB's internal history variables ($1, $2, etc.) are
6961 struct value*s containing internal copies of the data that are not, in
6962 general, the same as the data at their corresponding addresses in
6963 the target. Fortunately, the types we give to these values are all
6964 conventional, fixed-size types (as per the strategy described
6965 above), so that we don't usually have to perform the
6966 'to_fixed_xxx_type' conversions to look at their values.
6967 Unfortunately, there is one exception: if one of the internal
6968 history variables is an array whose elements are unconstrained
6969 records, then we will need to create distinct fixed types for each
6970 element selected. */
6971
6972 /* The upshot of all of this is that many routines take a (type, host
6973 address, target address) triple as arguments to represent a value.
6974 The host address, if non-null, is supposed to contain an internal
6975 copy of the relevant data; otherwise, the program is to consult the
6976 target at the target address. */
6977
6978 /* Assuming that VAL0 represents a pointer value, the result of
6979 dereferencing it. Differs from value_ind in its treatment of
6980 dynamic-sized types. */
6981
6982 struct value *
6983 ada_value_ind (struct value *val0)
6984 {
6985 struct value *val = value_ind (val0);
6986
6987 return ada_to_fixed_value (val);
6988 }
6989
6990 /* The value resulting from dereferencing any "reference to"
6991 qualifiers on VAL0. */
6992
6993 static struct value *
6994 ada_coerce_ref (struct value *val0)
6995 {
6996 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6997 {
6998 struct value *val = val0;
6999
7000 val = coerce_ref (val);
7001 return ada_to_fixed_value (val);
7002 }
7003 else
7004 return val0;
7005 }
7006
7007 /* Return OFF rounded upward if necessary to a multiple of
7008 ALIGNMENT (a power of 2). */
7009
7010 static unsigned int
7011 align_value (unsigned int off, unsigned int alignment)
7012 {
7013 return (off + alignment - 1) & ~(alignment - 1);
7014 }
7015
7016 /* Return the bit alignment required for field #F of template type TYPE. */
7017
7018 static unsigned int
7019 field_alignment (struct type *type, int f)
7020 {
7021 const char *name = TYPE_FIELD_NAME (type, f);
7022 int len;
7023 int align_offset;
7024
7025 /* The field name should never be null, unless the debugging information
7026 is somehow malformed. In this case, we assume the field does not
7027 require any alignment. */
7028 if (name == NULL)
7029 return 1;
7030
7031 len = strlen (name);
7032
7033 if (!isdigit (name[len - 1]))
7034 return 1;
7035
7036 if (isdigit (name[len - 2]))
7037 align_offset = len - 2;
7038 else
7039 align_offset = len - 1;
7040
7041 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7042 return TARGET_CHAR_BIT;
7043
7044 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7045 }
7046
7047 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7048
7049 static struct symbol *
7050 ada_find_any_type_symbol (const char *name)
7051 {
7052 struct symbol *sym;
7053
7054 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7055 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7056 return sym;
7057
7058 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7059 return sym;
7060 }
7061
7062 /* Find a type named NAME. Ignores ambiguity. This routine will look
7063 solely for types defined by debug info, it will not search the GDB
7064 primitive types. */
7065
7066 static struct type *
7067 ada_find_any_type (const char *name)
7068 {
7069 struct symbol *sym = ada_find_any_type_symbol (name);
7070
7071 if (sym != NULL)
7072 return SYMBOL_TYPE (sym);
7073
7074 return NULL;
7075 }
7076
7077 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7078 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7079 symbol, in which case it is returned. Otherwise, this looks for
7080 symbols whose name is that of NAME_SYM suffixed with "___XR".
7081 Return symbol if found, and NULL otherwise. */
7082
7083 struct symbol *
7084 ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
7085 {
7086 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7087 struct symbol *sym;
7088
7089 if (strstr (name, "___XR") != NULL)
7090 return name_sym;
7091
7092 sym = find_old_style_renaming_symbol (name, block);
7093
7094 if (sym != NULL)
7095 return sym;
7096
7097 /* Not right yet. FIXME pnh 7/20/2007. */
7098 sym = ada_find_any_type_symbol (name);
7099 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7100 return sym;
7101 else
7102 return NULL;
7103 }
7104
7105 static struct symbol *
7106 find_old_style_renaming_symbol (const char *name, struct block *block)
7107 {
7108 const struct symbol *function_sym = block_linkage_function (block);
7109 char *rename;
7110
7111 if (function_sym != NULL)
7112 {
7113 /* If the symbol is defined inside a function, NAME is not fully
7114 qualified. This means we need to prepend the function name
7115 as well as adding the ``___XR'' suffix to build the name of
7116 the associated renaming symbol. */
7117 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7118 /* Function names sometimes contain suffixes used
7119 for instance to qualify nested subprograms. When building
7120 the XR type name, we need to make sure that this suffix is
7121 not included. So do not include any suffix in the function
7122 name length below. */
7123 int function_name_len = ada_name_prefix_len (function_name);
7124 const int rename_len = function_name_len + 2 /* "__" */
7125 + strlen (name) + 6 /* "___XR\0" */ ;
7126
7127 /* Strip the suffix if necessary. */
7128 ada_remove_trailing_digits (function_name, &function_name_len);
7129 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7130 ada_remove_Xbn_suffix (function_name, &function_name_len);
7131
7132 /* Library-level functions are a special case, as GNAT adds
7133 a ``_ada_'' prefix to the function name to avoid namespace
7134 pollution. However, the renaming symbols themselves do not
7135 have this prefix, so we need to skip this prefix if present. */
7136 if (function_name_len > 5 /* "_ada_" */
7137 && strstr (function_name, "_ada_") == function_name)
7138 {
7139 function_name += 5;
7140 function_name_len -= 5;
7141 }
7142
7143 rename = (char *) alloca (rename_len * sizeof (char));
7144 strncpy (rename, function_name, function_name_len);
7145 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7146 "__%s___XR", name);
7147 }
7148 else
7149 {
7150 const int rename_len = strlen (name) + 6;
7151
7152 rename = (char *) alloca (rename_len * sizeof (char));
7153 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7154 }
7155
7156 return ada_find_any_type_symbol (rename);
7157 }
7158
7159 /* Because of GNAT encoding conventions, several GDB symbols may match a
7160 given type name. If the type denoted by TYPE0 is to be preferred to
7161 that of TYPE1 for purposes of type printing, return non-zero;
7162 otherwise return 0. */
7163
7164 int
7165 ada_prefer_type (struct type *type0, struct type *type1)
7166 {
7167 if (type1 == NULL)
7168 return 1;
7169 else if (type0 == NULL)
7170 return 0;
7171 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7172 return 1;
7173 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7174 return 0;
7175 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7176 return 1;
7177 else if (ada_is_constrained_packed_array_type (type0))
7178 return 1;
7179 else if (ada_is_array_descriptor_type (type0)
7180 && !ada_is_array_descriptor_type (type1))
7181 return 1;
7182 else
7183 {
7184 const char *type0_name = type_name_no_tag (type0);
7185 const char *type1_name = type_name_no_tag (type1);
7186
7187 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7188 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7189 return 1;
7190 }
7191 return 0;
7192 }
7193
7194 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7195 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7196
7197 const char *
7198 ada_type_name (struct type *type)
7199 {
7200 if (type == NULL)
7201 return NULL;
7202 else if (TYPE_NAME (type) != NULL)
7203 return TYPE_NAME (type);
7204 else
7205 return TYPE_TAG_NAME (type);
7206 }
7207
7208 /* Search the list of "descriptive" types associated to TYPE for a type
7209 whose name is NAME. */
7210
7211 static struct type *
7212 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7213 {
7214 struct type *result;
7215
7216 /* If there no descriptive-type info, then there is no parallel type
7217 to be found. */
7218 if (!HAVE_GNAT_AUX_INFO (type))
7219 return NULL;
7220
7221 result = TYPE_DESCRIPTIVE_TYPE (type);
7222 while (result != NULL)
7223 {
7224 const char *result_name = ada_type_name (result);
7225
7226 if (result_name == NULL)
7227 {
7228 warning (_("unexpected null name on descriptive type"));
7229 return NULL;
7230 }
7231
7232 /* If the names match, stop. */
7233 if (strcmp (result_name, name) == 0)
7234 break;
7235
7236 /* Otherwise, look at the next item on the list, if any. */
7237 if (HAVE_GNAT_AUX_INFO (result))
7238 result = TYPE_DESCRIPTIVE_TYPE (result);
7239 else
7240 result = NULL;
7241 }
7242
7243 /* If we didn't find a match, see whether this is a packed array. With
7244 older compilers, the descriptive type information is either absent or
7245 irrelevant when it comes to packed arrays so the above lookup fails.
7246 Fall back to using a parallel lookup by name in this case. */
7247 if (result == NULL && ada_is_constrained_packed_array_type (type))
7248 return ada_find_any_type (name);
7249
7250 return result;
7251 }
7252
7253 /* Find a parallel type to TYPE with the specified NAME, using the
7254 descriptive type taken from the debugging information, if available,
7255 and otherwise using the (slower) name-based method. */
7256
7257 static struct type *
7258 ada_find_parallel_type_with_name (struct type *type, const char *name)
7259 {
7260 struct type *result = NULL;
7261
7262 if (HAVE_GNAT_AUX_INFO (type))
7263 result = find_parallel_type_by_descriptive_type (type, name);
7264 else
7265 result = ada_find_any_type (name);
7266
7267 return result;
7268 }
7269
7270 /* Same as above, but specify the name of the parallel type by appending
7271 SUFFIX to the name of TYPE. */
7272
7273 struct type *
7274 ada_find_parallel_type (struct type *type, const char *suffix)
7275 {
7276 char *name;
7277 const char *typename = ada_type_name (type);
7278 int len;
7279
7280 if (typename == NULL)
7281 return NULL;
7282
7283 len = strlen (typename);
7284
7285 name = (char *) alloca (len + strlen (suffix) + 1);
7286
7287 strcpy (name, typename);
7288 strcpy (name + len, suffix);
7289
7290 return ada_find_parallel_type_with_name (type, name);
7291 }
7292
7293 /* If TYPE is a variable-size record type, return the corresponding template
7294 type describing its fields. Otherwise, return NULL. */
7295
7296 static struct type *
7297 dynamic_template_type (struct type *type)
7298 {
7299 type = ada_check_typedef (type);
7300
7301 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7302 || ada_type_name (type) == NULL)
7303 return NULL;
7304 else
7305 {
7306 int len = strlen (ada_type_name (type));
7307
7308 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7309 return type;
7310 else
7311 return ada_find_parallel_type (type, "___XVE");
7312 }
7313 }
7314
7315 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7316 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7317
7318 static int
7319 is_dynamic_field (struct type *templ_type, int field_num)
7320 {
7321 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7322
7323 return name != NULL
7324 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7325 && strstr (name, "___XVL") != NULL;
7326 }
7327
7328 /* The index of the variant field of TYPE, or -1 if TYPE does not
7329 represent a variant record type. */
7330
7331 static int
7332 variant_field_index (struct type *type)
7333 {
7334 int f;
7335
7336 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7337 return -1;
7338
7339 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7340 {
7341 if (ada_is_variant_part (type, f))
7342 return f;
7343 }
7344 return -1;
7345 }
7346
7347 /* A record type with no fields. */
7348
7349 static struct type *
7350 empty_record (struct type *template)
7351 {
7352 struct type *type = alloc_type_copy (template);
7353
7354 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7355 TYPE_NFIELDS (type) = 0;
7356 TYPE_FIELDS (type) = NULL;
7357 INIT_CPLUS_SPECIFIC (type);
7358 TYPE_NAME (type) = "<empty>";
7359 TYPE_TAG_NAME (type) = NULL;
7360 TYPE_LENGTH (type) = 0;
7361 return type;
7362 }
7363
7364 /* An ordinary record type (with fixed-length fields) that describes
7365 the value of type TYPE at VALADDR or ADDRESS (see comments at
7366 the beginning of this section) VAL according to GNAT conventions.
7367 DVAL0 should describe the (portion of a) record that contains any
7368 necessary discriminants. It should be NULL if value_type (VAL) is
7369 an outer-level type (i.e., as opposed to a branch of a variant.) A
7370 variant field (unless unchecked) is replaced by a particular branch
7371 of the variant.
7372
7373 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7374 length are not statically known are discarded. As a consequence,
7375 VALADDR, ADDRESS and DVAL0 are ignored.
7376
7377 NOTE: Limitations: For now, we assume that dynamic fields and
7378 variants occupy whole numbers of bytes. However, they need not be
7379 byte-aligned. */
7380
7381 struct type *
7382 ada_template_to_fixed_record_type_1 (struct type *type,
7383 const gdb_byte *valaddr,
7384 CORE_ADDR address, struct value *dval0,
7385 int keep_dynamic_fields)
7386 {
7387 struct value *mark = value_mark ();
7388 struct value *dval;
7389 struct type *rtype;
7390 int nfields, bit_len;
7391 int variant_field;
7392 long off;
7393 int fld_bit_len;
7394 int f;
7395
7396 /* Compute the number of fields in this record type that are going
7397 to be processed: unless keep_dynamic_fields, this includes only
7398 fields whose position and length are static will be processed. */
7399 if (keep_dynamic_fields)
7400 nfields = TYPE_NFIELDS (type);
7401 else
7402 {
7403 nfields = 0;
7404 while (nfields < TYPE_NFIELDS (type)
7405 && !ada_is_variant_part (type, nfields)
7406 && !is_dynamic_field (type, nfields))
7407 nfields++;
7408 }
7409
7410 rtype = alloc_type_copy (type);
7411 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7412 INIT_CPLUS_SPECIFIC (rtype);
7413 TYPE_NFIELDS (rtype) = nfields;
7414 TYPE_FIELDS (rtype) = (struct field *)
7415 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7416 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7417 TYPE_NAME (rtype) = ada_type_name (type);
7418 TYPE_TAG_NAME (rtype) = NULL;
7419 TYPE_FIXED_INSTANCE (rtype) = 1;
7420
7421 off = 0;
7422 bit_len = 0;
7423 variant_field = -1;
7424
7425 for (f = 0; f < nfields; f += 1)
7426 {
7427 off = align_value (off, field_alignment (type, f))
7428 + TYPE_FIELD_BITPOS (type, f);
7429 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7430 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7431
7432 if (ada_is_variant_part (type, f))
7433 {
7434 variant_field = f;
7435 fld_bit_len = 0;
7436 }
7437 else if (is_dynamic_field (type, f))
7438 {
7439 const gdb_byte *field_valaddr = valaddr;
7440 CORE_ADDR field_address = address;
7441 struct type *field_type =
7442 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7443
7444 if (dval0 == NULL)
7445 {
7446 /* rtype's length is computed based on the run-time
7447 value of discriminants. If the discriminants are not
7448 initialized, the type size may be completely bogus and
7449 GDB may fail to allocate a value for it. So check the
7450 size first before creating the value. */
7451 check_size (rtype);
7452 dval = value_from_contents_and_address (rtype, valaddr, address);
7453 }
7454 else
7455 dval = dval0;
7456
7457 /* If the type referenced by this field is an aligner type, we need
7458 to unwrap that aligner type, because its size might not be set.
7459 Keeping the aligner type would cause us to compute the wrong
7460 size for this field, impacting the offset of the all the fields
7461 that follow this one. */
7462 if (ada_is_aligner_type (field_type))
7463 {
7464 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7465
7466 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7467 field_address = cond_offset_target (field_address, field_offset);
7468 field_type = ada_aligned_type (field_type);
7469 }
7470
7471 field_valaddr = cond_offset_host (field_valaddr,
7472 off / TARGET_CHAR_BIT);
7473 field_address = cond_offset_target (field_address,
7474 off / TARGET_CHAR_BIT);
7475
7476 /* Get the fixed type of the field. Note that, in this case,
7477 we do not want to get the real type out of the tag: if
7478 the current field is the parent part of a tagged record,
7479 we will get the tag of the object. Clearly wrong: the real
7480 type of the parent is not the real type of the child. We
7481 would end up in an infinite loop. */
7482 field_type = ada_get_base_type (field_type);
7483 field_type = ada_to_fixed_type (field_type, field_valaddr,
7484 field_address, dval, 0);
7485 /* If the field size is already larger than the maximum
7486 object size, then the record itself will necessarily
7487 be larger than the maximum object size. We need to make
7488 this check now, because the size might be so ridiculously
7489 large (due to an uninitialized variable in the inferior)
7490 that it would cause an overflow when adding it to the
7491 record size. */
7492 check_size (field_type);
7493
7494 TYPE_FIELD_TYPE (rtype, f) = field_type;
7495 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7496 /* The multiplication can potentially overflow. But because
7497 the field length has been size-checked just above, and
7498 assuming that the maximum size is a reasonable value,
7499 an overflow should not happen in practice. So rather than
7500 adding overflow recovery code to this already complex code,
7501 we just assume that it's not going to happen. */
7502 fld_bit_len =
7503 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7504 }
7505 else
7506 {
7507 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7508
7509 /* If our field is a typedef type (most likely a typedef of
7510 a fat pointer, encoding an array access), then we need to
7511 look at its target type to determine its characteristics.
7512 In particular, we would miscompute the field size if we took
7513 the size of the typedef (zero), instead of the size of
7514 the target type. */
7515 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7516 field_type = ada_typedef_target_type (field_type);
7517
7518 TYPE_FIELD_TYPE (rtype, f) = field_type;
7519 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7520 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7521 fld_bit_len =
7522 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7523 else
7524 fld_bit_len =
7525 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7526 }
7527 if (off + fld_bit_len > bit_len)
7528 bit_len = off + fld_bit_len;
7529 off += fld_bit_len;
7530 TYPE_LENGTH (rtype) =
7531 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7532 }
7533
7534 /* We handle the variant part, if any, at the end because of certain
7535 odd cases in which it is re-ordered so as NOT to be the last field of
7536 the record. This can happen in the presence of representation
7537 clauses. */
7538 if (variant_field >= 0)
7539 {
7540 struct type *branch_type;
7541
7542 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7543
7544 if (dval0 == NULL)
7545 dval = value_from_contents_and_address (rtype, valaddr, address);
7546 else
7547 dval = dval0;
7548
7549 branch_type =
7550 to_fixed_variant_branch_type
7551 (TYPE_FIELD_TYPE (type, variant_field),
7552 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7553 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7554 if (branch_type == NULL)
7555 {
7556 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7557 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7558 TYPE_NFIELDS (rtype) -= 1;
7559 }
7560 else
7561 {
7562 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7563 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7564 fld_bit_len =
7565 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7566 TARGET_CHAR_BIT;
7567 if (off + fld_bit_len > bit_len)
7568 bit_len = off + fld_bit_len;
7569 TYPE_LENGTH (rtype) =
7570 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7571 }
7572 }
7573
7574 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7575 should contain the alignment of that record, which should be a strictly
7576 positive value. If null or negative, then something is wrong, most
7577 probably in the debug info. In that case, we don't round up the size
7578 of the resulting type. If this record is not part of another structure,
7579 the current RTYPE length might be good enough for our purposes. */
7580 if (TYPE_LENGTH (type) <= 0)
7581 {
7582 if (TYPE_NAME (rtype))
7583 warning (_("Invalid type size for `%s' detected: %d."),
7584 TYPE_NAME (rtype), TYPE_LENGTH (type));
7585 else
7586 warning (_("Invalid type size for <unnamed> detected: %d."),
7587 TYPE_LENGTH (type));
7588 }
7589 else
7590 {
7591 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7592 TYPE_LENGTH (type));
7593 }
7594
7595 value_free_to_mark (mark);
7596 if (TYPE_LENGTH (rtype) > varsize_limit)
7597 error (_("record type with dynamic size is larger than varsize-limit"));
7598 return rtype;
7599 }
7600
7601 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7602 of 1. */
7603
7604 static struct type *
7605 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7606 CORE_ADDR address, struct value *dval0)
7607 {
7608 return ada_template_to_fixed_record_type_1 (type, valaddr,
7609 address, dval0, 1);
7610 }
7611
7612 /* An ordinary record type in which ___XVL-convention fields and
7613 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7614 static approximations, containing all possible fields. Uses
7615 no runtime values. Useless for use in values, but that's OK,
7616 since the results are used only for type determinations. Works on both
7617 structs and unions. Representation note: to save space, we memorize
7618 the result of this function in the TYPE_TARGET_TYPE of the
7619 template type. */
7620
7621 static struct type *
7622 template_to_static_fixed_type (struct type *type0)
7623 {
7624 struct type *type;
7625 int nfields;
7626 int f;
7627
7628 if (TYPE_TARGET_TYPE (type0) != NULL)
7629 return TYPE_TARGET_TYPE (type0);
7630
7631 nfields = TYPE_NFIELDS (type0);
7632 type = type0;
7633
7634 for (f = 0; f < nfields; f += 1)
7635 {
7636 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7637 struct type *new_type;
7638
7639 if (is_dynamic_field (type0, f))
7640 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7641 else
7642 new_type = static_unwrap_type (field_type);
7643 if (type == type0 && new_type != field_type)
7644 {
7645 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7646 TYPE_CODE (type) = TYPE_CODE (type0);
7647 INIT_CPLUS_SPECIFIC (type);
7648 TYPE_NFIELDS (type) = nfields;
7649 TYPE_FIELDS (type) = (struct field *)
7650 TYPE_ALLOC (type, nfields * sizeof (struct field));
7651 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7652 sizeof (struct field) * nfields);
7653 TYPE_NAME (type) = ada_type_name (type0);
7654 TYPE_TAG_NAME (type) = NULL;
7655 TYPE_FIXED_INSTANCE (type) = 1;
7656 TYPE_LENGTH (type) = 0;
7657 }
7658 TYPE_FIELD_TYPE (type, f) = new_type;
7659 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7660 }
7661 return type;
7662 }
7663
7664 /* Given an object of type TYPE whose contents are at VALADDR and
7665 whose address in memory is ADDRESS, returns a revision of TYPE,
7666 which should be a non-dynamic-sized record, in which the variant
7667 part, if any, is replaced with the appropriate branch. Looks
7668 for discriminant values in DVAL0, which can be NULL if the record
7669 contains the necessary discriminant values. */
7670
7671 static struct type *
7672 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7673 CORE_ADDR address, struct value *dval0)
7674 {
7675 struct value *mark = value_mark ();
7676 struct value *dval;
7677 struct type *rtype;
7678 struct type *branch_type;
7679 int nfields = TYPE_NFIELDS (type);
7680 int variant_field = variant_field_index (type);
7681
7682 if (variant_field == -1)
7683 return type;
7684
7685 if (dval0 == NULL)
7686 dval = value_from_contents_and_address (type, valaddr, address);
7687 else
7688 dval = dval0;
7689
7690 rtype = alloc_type_copy (type);
7691 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7692 INIT_CPLUS_SPECIFIC (rtype);
7693 TYPE_NFIELDS (rtype) = nfields;
7694 TYPE_FIELDS (rtype) =
7695 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7696 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7697 sizeof (struct field) * nfields);
7698 TYPE_NAME (rtype) = ada_type_name (type);
7699 TYPE_TAG_NAME (rtype) = NULL;
7700 TYPE_FIXED_INSTANCE (rtype) = 1;
7701 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7702
7703 branch_type = to_fixed_variant_branch_type
7704 (TYPE_FIELD_TYPE (type, variant_field),
7705 cond_offset_host (valaddr,
7706 TYPE_FIELD_BITPOS (type, variant_field)
7707 / TARGET_CHAR_BIT),
7708 cond_offset_target (address,
7709 TYPE_FIELD_BITPOS (type, variant_field)
7710 / TARGET_CHAR_BIT), dval);
7711 if (branch_type == NULL)
7712 {
7713 int f;
7714
7715 for (f = variant_field + 1; f < nfields; f += 1)
7716 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7717 TYPE_NFIELDS (rtype) -= 1;
7718 }
7719 else
7720 {
7721 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7722 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7723 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7724 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7725 }
7726 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7727
7728 value_free_to_mark (mark);
7729 return rtype;
7730 }
7731
7732 /* An ordinary record type (with fixed-length fields) that describes
7733 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7734 beginning of this section]. Any necessary discriminants' values
7735 should be in DVAL, a record value; it may be NULL if the object
7736 at ADDR itself contains any necessary discriminant values.
7737 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7738 values from the record are needed. Except in the case that DVAL,
7739 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7740 unchecked) is replaced by a particular branch of the variant.
7741
7742 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7743 is questionable and may be removed. It can arise during the
7744 processing of an unconstrained-array-of-record type where all the
7745 variant branches have exactly the same size. This is because in
7746 such cases, the compiler does not bother to use the XVS convention
7747 when encoding the record. I am currently dubious of this
7748 shortcut and suspect the compiler should be altered. FIXME. */
7749
7750 static struct type *
7751 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7752 CORE_ADDR address, struct value *dval)
7753 {
7754 struct type *templ_type;
7755
7756 if (TYPE_FIXED_INSTANCE (type0))
7757 return type0;
7758
7759 templ_type = dynamic_template_type (type0);
7760
7761 if (templ_type != NULL)
7762 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7763 else if (variant_field_index (type0) >= 0)
7764 {
7765 if (dval == NULL && valaddr == NULL && address == 0)
7766 return type0;
7767 return to_record_with_fixed_variant_part (type0, valaddr, address,
7768 dval);
7769 }
7770 else
7771 {
7772 TYPE_FIXED_INSTANCE (type0) = 1;
7773 return type0;
7774 }
7775
7776 }
7777
7778 /* An ordinary record type (with fixed-length fields) that describes
7779 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7780 union type. Any necessary discriminants' values should be in DVAL,
7781 a record value. That is, this routine selects the appropriate
7782 branch of the union at ADDR according to the discriminant value
7783 indicated in the union's type name. Returns VAR_TYPE0 itself if
7784 it represents a variant subject to a pragma Unchecked_Union. */
7785
7786 static struct type *
7787 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7788 CORE_ADDR address, struct value *dval)
7789 {
7790 int which;
7791 struct type *templ_type;
7792 struct type *var_type;
7793
7794 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7795 var_type = TYPE_TARGET_TYPE (var_type0);
7796 else
7797 var_type = var_type0;
7798
7799 templ_type = ada_find_parallel_type (var_type, "___XVU");
7800
7801 if (templ_type != NULL)
7802 var_type = templ_type;
7803
7804 if (is_unchecked_variant (var_type, value_type (dval)))
7805 return var_type0;
7806 which =
7807 ada_which_variant_applies (var_type,
7808 value_type (dval), value_contents (dval));
7809
7810 if (which < 0)
7811 return empty_record (var_type);
7812 else if (is_dynamic_field (var_type, which))
7813 return to_fixed_record_type
7814 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7815 valaddr, address, dval);
7816 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7817 return
7818 to_fixed_record_type
7819 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7820 else
7821 return TYPE_FIELD_TYPE (var_type, which);
7822 }
7823
7824 /* Assuming that TYPE0 is an array type describing the type of a value
7825 at ADDR, and that DVAL describes a record containing any
7826 discriminants used in TYPE0, returns a type for the value that
7827 contains no dynamic components (that is, no components whose sizes
7828 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7829 true, gives an error message if the resulting type's size is over
7830 varsize_limit. */
7831
7832 static struct type *
7833 to_fixed_array_type (struct type *type0, struct value *dval,
7834 int ignore_too_big)
7835 {
7836 struct type *index_type_desc;
7837 struct type *result;
7838 int constrained_packed_array_p;
7839
7840 type0 = ada_check_typedef (type0);
7841 if (TYPE_FIXED_INSTANCE (type0))
7842 return type0;
7843
7844 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7845 if (constrained_packed_array_p)
7846 type0 = decode_constrained_packed_array_type (type0);
7847
7848 index_type_desc = ada_find_parallel_type (type0, "___XA");
7849 ada_fixup_array_indexes_type (index_type_desc);
7850 if (index_type_desc == NULL)
7851 {
7852 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7853
7854 /* NOTE: elt_type---the fixed version of elt_type0---should never
7855 depend on the contents of the array in properly constructed
7856 debugging data. */
7857 /* Create a fixed version of the array element type.
7858 We're not providing the address of an element here,
7859 and thus the actual object value cannot be inspected to do
7860 the conversion. This should not be a problem, since arrays of
7861 unconstrained objects are not allowed. In particular, all
7862 the elements of an array of a tagged type should all be of
7863 the same type specified in the debugging info. No need to
7864 consult the object tag. */
7865 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7866
7867 /* Make sure we always create a new array type when dealing with
7868 packed array types, since we're going to fix-up the array
7869 type length and element bitsize a little further down. */
7870 if (elt_type0 == elt_type && !constrained_packed_array_p)
7871 result = type0;
7872 else
7873 result = create_array_type (alloc_type_copy (type0),
7874 elt_type, TYPE_INDEX_TYPE (type0));
7875 }
7876 else
7877 {
7878 int i;
7879 struct type *elt_type0;
7880
7881 elt_type0 = type0;
7882 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7883 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7884
7885 /* NOTE: result---the fixed version of elt_type0---should never
7886 depend on the contents of the array in properly constructed
7887 debugging data. */
7888 /* Create a fixed version of the array element type.
7889 We're not providing the address of an element here,
7890 and thus the actual object value cannot be inspected to do
7891 the conversion. This should not be a problem, since arrays of
7892 unconstrained objects are not allowed. In particular, all
7893 the elements of an array of a tagged type should all be of
7894 the same type specified in the debugging info. No need to
7895 consult the object tag. */
7896 result =
7897 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7898
7899 elt_type0 = type0;
7900 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7901 {
7902 struct type *range_type =
7903 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7904
7905 result = create_array_type (alloc_type_copy (elt_type0),
7906 result, range_type);
7907 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7908 }
7909 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7910 error (_("array type with dynamic size is larger than varsize-limit"));
7911 }
7912
7913 /* We want to preserve the type name. This can be useful when
7914 trying to get the type name of a value that has already been
7915 printed (for instance, if the user did "print VAR; whatis $". */
7916 TYPE_NAME (result) = TYPE_NAME (type0);
7917
7918 if (constrained_packed_array_p)
7919 {
7920 /* So far, the resulting type has been created as if the original
7921 type was a regular (non-packed) array type. As a result, the
7922 bitsize of the array elements needs to be set again, and the array
7923 length needs to be recomputed based on that bitsize. */
7924 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7925 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7926
7927 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7928 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7929 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7930 TYPE_LENGTH (result)++;
7931 }
7932
7933 TYPE_FIXED_INSTANCE (result) = 1;
7934 return result;
7935 }
7936
7937
7938 /* A standard type (containing no dynamically sized components)
7939 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7940 DVAL describes a record containing any discriminants used in TYPE0,
7941 and may be NULL if there are none, or if the object of type TYPE at
7942 ADDRESS or in VALADDR contains these discriminants.
7943
7944 If CHECK_TAG is not null, in the case of tagged types, this function
7945 attempts to locate the object's tag and use it to compute the actual
7946 type. However, when ADDRESS is null, we cannot use it to determine the
7947 location of the tag, and therefore compute the tagged type's actual type.
7948 So we return the tagged type without consulting the tag. */
7949
7950 static struct type *
7951 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7952 CORE_ADDR address, struct value *dval, int check_tag)
7953 {
7954 type = ada_check_typedef (type);
7955 switch (TYPE_CODE (type))
7956 {
7957 default:
7958 return type;
7959 case TYPE_CODE_STRUCT:
7960 {
7961 struct type *static_type = to_static_fixed_type (type);
7962 struct type *fixed_record_type =
7963 to_fixed_record_type (type, valaddr, address, NULL);
7964
7965 /* If STATIC_TYPE is a tagged type and we know the object's address,
7966 then we can determine its tag, and compute the object's actual
7967 type from there. Note that we have to use the fixed record
7968 type (the parent part of the record may have dynamic fields
7969 and the way the location of _tag is expressed may depend on
7970 them). */
7971
7972 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7973 {
7974 struct type *real_type =
7975 type_from_tag (value_tag_from_contents_and_address
7976 (fixed_record_type,
7977 valaddr,
7978 address));
7979
7980 if (real_type != NULL)
7981 return to_fixed_record_type (real_type, valaddr, address, NULL);
7982 }
7983
7984 /* Check to see if there is a parallel ___XVZ variable.
7985 If there is, then it provides the actual size of our type. */
7986 else if (ada_type_name (fixed_record_type) != NULL)
7987 {
7988 const char *name = ada_type_name (fixed_record_type);
7989 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7990 int xvz_found = 0;
7991 LONGEST size;
7992
7993 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7994 size = get_int_var_value (xvz_name, &xvz_found);
7995 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7996 {
7997 fixed_record_type = copy_type (fixed_record_type);
7998 TYPE_LENGTH (fixed_record_type) = size;
7999
8000 /* The FIXED_RECORD_TYPE may have be a stub. We have
8001 observed this when the debugging info is STABS, and
8002 apparently it is something that is hard to fix.
8003
8004 In practice, we don't need the actual type definition
8005 at all, because the presence of the XVZ variable allows us
8006 to assume that there must be a XVS type as well, which we
8007 should be able to use later, when we need the actual type
8008 definition.
8009
8010 In the meantime, pretend that the "fixed" type we are
8011 returning is NOT a stub, because this can cause trouble
8012 when using this type to create new types targeting it.
8013 Indeed, the associated creation routines often check
8014 whether the target type is a stub and will try to replace
8015 it, thus using a type with the wrong size. This, in turn,
8016 might cause the new type to have the wrong size too.
8017 Consider the case of an array, for instance, where the size
8018 of the array is computed from the number of elements in
8019 our array multiplied by the size of its element. */
8020 TYPE_STUB (fixed_record_type) = 0;
8021 }
8022 }
8023 return fixed_record_type;
8024 }
8025 case TYPE_CODE_ARRAY:
8026 return to_fixed_array_type (type, dval, 1);
8027 case TYPE_CODE_UNION:
8028 if (dval == NULL)
8029 return type;
8030 else
8031 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8032 }
8033 }
8034
8035 /* The same as ada_to_fixed_type_1, except that it preserves the type
8036 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8037
8038 The typedef layer needs be preserved in order to differentiate between
8039 arrays and array pointers when both types are implemented using the same
8040 fat pointer. In the array pointer case, the pointer is encoded as
8041 a typedef of the pointer type. For instance, considering:
8042
8043 type String_Access is access String;
8044 S1 : String_Access := null;
8045
8046 To the debugger, S1 is defined as a typedef of type String. But
8047 to the user, it is a pointer. So if the user tries to print S1,
8048 we should not dereference the array, but print the array address
8049 instead.
8050
8051 If we didn't preserve the typedef layer, we would lose the fact that
8052 the type is to be presented as a pointer (needs de-reference before
8053 being printed). And we would also use the source-level type name. */
8054
8055 struct type *
8056 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8057 CORE_ADDR address, struct value *dval, int check_tag)
8058
8059 {
8060 struct type *fixed_type =
8061 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8062
8063 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8064 then preserve the typedef layer.
8065
8066 Implementation note: We can only check the main-type portion of
8067 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8068 from TYPE now returns a type that has the same instance flags
8069 as TYPE. For instance, if TYPE is a "typedef const", and its
8070 target type is a "struct", then the typedef elimination will return
8071 a "const" version of the target type. See check_typedef for more
8072 details about how the typedef layer elimination is done.
8073
8074 brobecker/2010-11-19: It seems to me that the only case where it is
8075 useful to preserve the typedef layer is when dealing with fat pointers.
8076 Perhaps, we could add a check for that and preserve the typedef layer
8077 only in that situation. But this seems unecessary so far, probably
8078 because we call check_typedef/ada_check_typedef pretty much everywhere.
8079 */
8080 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8081 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8082 == TYPE_MAIN_TYPE (fixed_type)))
8083 return type;
8084
8085 return fixed_type;
8086 }
8087
8088 /* A standard (static-sized) type corresponding as well as possible to
8089 TYPE0, but based on no runtime data. */
8090
8091 static struct type *
8092 to_static_fixed_type (struct type *type0)
8093 {
8094 struct type *type;
8095
8096 if (type0 == NULL)
8097 return NULL;
8098
8099 if (TYPE_FIXED_INSTANCE (type0))
8100 return type0;
8101
8102 type0 = ada_check_typedef (type0);
8103
8104 switch (TYPE_CODE (type0))
8105 {
8106 default:
8107 return type0;
8108 case TYPE_CODE_STRUCT:
8109 type = dynamic_template_type (type0);
8110 if (type != NULL)
8111 return template_to_static_fixed_type (type);
8112 else
8113 return template_to_static_fixed_type (type0);
8114 case TYPE_CODE_UNION:
8115 type = ada_find_parallel_type (type0, "___XVU");
8116 if (type != NULL)
8117 return template_to_static_fixed_type (type);
8118 else
8119 return template_to_static_fixed_type (type0);
8120 }
8121 }
8122
8123 /* A static approximation of TYPE with all type wrappers removed. */
8124
8125 static struct type *
8126 static_unwrap_type (struct type *type)
8127 {
8128 if (ada_is_aligner_type (type))
8129 {
8130 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8131 if (ada_type_name (type1) == NULL)
8132 TYPE_NAME (type1) = ada_type_name (type);
8133
8134 return static_unwrap_type (type1);
8135 }
8136 else
8137 {
8138 struct type *raw_real_type = ada_get_base_type (type);
8139
8140 if (raw_real_type == type)
8141 return type;
8142 else
8143 return to_static_fixed_type (raw_real_type);
8144 }
8145 }
8146
8147 /* In some cases, incomplete and private types require
8148 cross-references that are not resolved as records (for example,
8149 type Foo;
8150 type FooP is access Foo;
8151 V: FooP;
8152 type Foo is array ...;
8153 ). In these cases, since there is no mechanism for producing
8154 cross-references to such types, we instead substitute for FooP a
8155 stub enumeration type that is nowhere resolved, and whose tag is
8156 the name of the actual type. Call these types "non-record stubs". */
8157
8158 /* A type equivalent to TYPE that is not a non-record stub, if one
8159 exists, otherwise TYPE. */
8160
8161 struct type *
8162 ada_check_typedef (struct type *type)
8163 {
8164 if (type == NULL)
8165 return NULL;
8166
8167 /* If our type is a typedef type of a fat pointer, then we're done.
8168 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8169 what allows us to distinguish between fat pointers that represent
8170 array types, and fat pointers that represent array access types
8171 (in both cases, the compiler implements them as fat pointers). */
8172 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8173 && is_thick_pntr (ada_typedef_target_type (type)))
8174 return type;
8175
8176 CHECK_TYPEDEF (type);
8177 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8178 || !TYPE_STUB (type)
8179 || TYPE_TAG_NAME (type) == NULL)
8180 return type;
8181 else
8182 {
8183 const char *name = TYPE_TAG_NAME (type);
8184 struct type *type1 = ada_find_any_type (name);
8185
8186 if (type1 == NULL)
8187 return type;
8188
8189 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8190 stubs pointing to arrays, as we don't create symbols for array
8191 types, only for the typedef-to-array types). If that's the case,
8192 strip the typedef layer. */
8193 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8194 type1 = ada_check_typedef (type1);
8195
8196 return type1;
8197 }
8198 }
8199
8200 /* A value representing the data at VALADDR/ADDRESS as described by
8201 type TYPE0, but with a standard (static-sized) type that correctly
8202 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8203 type, then return VAL0 [this feature is simply to avoid redundant
8204 creation of struct values]. */
8205
8206 static struct value *
8207 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8208 struct value *val0)
8209 {
8210 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8211
8212 if (type == type0 && val0 != NULL)
8213 return val0;
8214 else
8215 return value_from_contents_and_address (type, 0, address);
8216 }
8217
8218 /* A value representing VAL, but with a standard (static-sized) type
8219 that correctly describes it. Does not necessarily create a new
8220 value. */
8221
8222 struct value *
8223 ada_to_fixed_value (struct value *val)
8224 {
8225 val = unwrap_value (val);
8226 val = ada_to_fixed_value_create (value_type (val),
8227 value_address (val),
8228 val);
8229 return val;
8230 }
8231 \f
8232
8233 /* Attributes */
8234
8235 /* Table mapping attribute numbers to names.
8236 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8237
8238 static const char *attribute_names[] = {
8239 "<?>",
8240
8241 "first",
8242 "last",
8243 "length",
8244 "image",
8245 "max",
8246 "min",
8247 "modulus",
8248 "pos",
8249 "size",
8250 "tag",
8251 "val",
8252 0
8253 };
8254
8255 const char *
8256 ada_attribute_name (enum exp_opcode n)
8257 {
8258 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8259 return attribute_names[n - OP_ATR_FIRST + 1];
8260 else
8261 return attribute_names[0];
8262 }
8263
8264 /* Evaluate the 'POS attribute applied to ARG. */
8265
8266 static LONGEST
8267 pos_atr (struct value *arg)
8268 {
8269 struct value *val = coerce_ref (arg);
8270 struct type *type = value_type (val);
8271
8272 if (!discrete_type_p (type))
8273 error (_("'POS only defined on discrete types"));
8274
8275 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8276 {
8277 int i;
8278 LONGEST v = value_as_long (val);
8279
8280 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8281 {
8282 if (v == TYPE_FIELD_ENUMVAL (type, i))
8283 return i;
8284 }
8285 error (_("enumeration value is invalid: can't find 'POS"));
8286 }
8287 else
8288 return value_as_long (val);
8289 }
8290
8291 static struct value *
8292 value_pos_atr (struct type *type, struct value *arg)
8293 {
8294 return value_from_longest (type, pos_atr (arg));
8295 }
8296
8297 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8298
8299 static struct value *
8300 value_val_atr (struct type *type, struct value *arg)
8301 {
8302 if (!discrete_type_p (type))
8303 error (_("'VAL only defined on discrete types"));
8304 if (!integer_type_p (value_type (arg)))
8305 error (_("'VAL requires integral argument"));
8306
8307 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8308 {
8309 long pos = value_as_long (arg);
8310
8311 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8312 error (_("argument to 'VAL out of range"));
8313 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8314 }
8315 else
8316 return value_from_longest (type, value_as_long (arg));
8317 }
8318 \f
8319
8320 /* Evaluation */
8321
8322 /* True if TYPE appears to be an Ada character type.
8323 [At the moment, this is true only for Character and Wide_Character;
8324 It is a heuristic test that could stand improvement]. */
8325
8326 int
8327 ada_is_character_type (struct type *type)
8328 {
8329 const char *name;
8330
8331 /* If the type code says it's a character, then assume it really is,
8332 and don't check any further. */
8333 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8334 return 1;
8335
8336 /* Otherwise, assume it's a character type iff it is a discrete type
8337 with a known character type name. */
8338 name = ada_type_name (type);
8339 return (name != NULL
8340 && (TYPE_CODE (type) == TYPE_CODE_INT
8341 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8342 && (strcmp (name, "character") == 0
8343 || strcmp (name, "wide_character") == 0
8344 || strcmp (name, "wide_wide_character") == 0
8345 || strcmp (name, "unsigned char") == 0));
8346 }
8347
8348 /* True if TYPE appears to be an Ada string type. */
8349
8350 int
8351 ada_is_string_type (struct type *type)
8352 {
8353 type = ada_check_typedef (type);
8354 if (type != NULL
8355 && TYPE_CODE (type) != TYPE_CODE_PTR
8356 && (ada_is_simple_array_type (type)
8357 || ada_is_array_descriptor_type (type))
8358 && ada_array_arity (type) == 1)
8359 {
8360 struct type *elttype = ada_array_element_type (type, 1);
8361
8362 return ada_is_character_type (elttype);
8363 }
8364 else
8365 return 0;
8366 }
8367
8368 /* The compiler sometimes provides a parallel XVS type for a given
8369 PAD type. Normally, it is safe to follow the PAD type directly,
8370 but older versions of the compiler have a bug that causes the offset
8371 of its "F" field to be wrong. Following that field in that case
8372 would lead to incorrect results, but this can be worked around
8373 by ignoring the PAD type and using the associated XVS type instead.
8374
8375 Set to True if the debugger should trust the contents of PAD types.
8376 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8377 static int trust_pad_over_xvs = 1;
8378
8379 /* True if TYPE is a struct type introduced by the compiler to force the
8380 alignment of a value. Such types have a single field with a
8381 distinctive name. */
8382
8383 int
8384 ada_is_aligner_type (struct type *type)
8385 {
8386 type = ada_check_typedef (type);
8387
8388 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8389 return 0;
8390
8391 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8392 && TYPE_NFIELDS (type) == 1
8393 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8394 }
8395
8396 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8397 the parallel type. */
8398
8399 struct type *
8400 ada_get_base_type (struct type *raw_type)
8401 {
8402 struct type *real_type_namer;
8403 struct type *raw_real_type;
8404
8405 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8406 return raw_type;
8407
8408 if (ada_is_aligner_type (raw_type))
8409 /* The encoding specifies that we should always use the aligner type.
8410 So, even if this aligner type has an associated XVS type, we should
8411 simply ignore it.
8412
8413 According to the compiler gurus, an XVS type parallel to an aligner
8414 type may exist because of a stabs limitation. In stabs, aligner
8415 types are empty because the field has a variable-sized type, and
8416 thus cannot actually be used as an aligner type. As a result,
8417 we need the associated parallel XVS type to decode the type.
8418 Since the policy in the compiler is to not change the internal
8419 representation based on the debugging info format, we sometimes
8420 end up having a redundant XVS type parallel to the aligner type. */
8421 return raw_type;
8422
8423 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8424 if (real_type_namer == NULL
8425 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8426 || TYPE_NFIELDS (real_type_namer) != 1)
8427 return raw_type;
8428
8429 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8430 {
8431 /* This is an older encoding form where the base type needs to be
8432 looked up by name. We prefer the newer enconding because it is
8433 more efficient. */
8434 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8435 if (raw_real_type == NULL)
8436 return raw_type;
8437 else
8438 return raw_real_type;
8439 }
8440
8441 /* The field in our XVS type is a reference to the base type. */
8442 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8443 }
8444
8445 /* The type of value designated by TYPE, with all aligners removed. */
8446
8447 struct type *
8448 ada_aligned_type (struct type *type)
8449 {
8450 if (ada_is_aligner_type (type))
8451 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8452 else
8453 return ada_get_base_type (type);
8454 }
8455
8456
8457 /* The address of the aligned value in an object at address VALADDR
8458 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8459
8460 const gdb_byte *
8461 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8462 {
8463 if (ada_is_aligner_type (type))
8464 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8465 valaddr +
8466 TYPE_FIELD_BITPOS (type,
8467 0) / TARGET_CHAR_BIT);
8468 else
8469 return valaddr;
8470 }
8471
8472
8473
8474 /* The printed representation of an enumeration literal with encoded
8475 name NAME. The value is good to the next call of ada_enum_name. */
8476 const char *
8477 ada_enum_name (const char *name)
8478 {
8479 static char *result;
8480 static size_t result_len = 0;
8481 char *tmp;
8482
8483 /* First, unqualify the enumeration name:
8484 1. Search for the last '.' character. If we find one, then skip
8485 all the preceding characters, the unqualified name starts
8486 right after that dot.
8487 2. Otherwise, we may be debugging on a target where the compiler
8488 translates dots into "__". Search forward for double underscores,
8489 but stop searching when we hit an overloading suffix, which is
8490 of the form "__" followed by digits. */
8491
8492 tmp = strrchr (name, '.');
8493 if (tmp != NULL)
8494 name = tmp + 1;
8495 else
8496 {
8497 while ((tmp = strstr (name, "__")) != NULL)
8498 {
8499 if (isdigit (tmp[2]))
8500 break;
8501 else
8502 name = tmp + 2;
8503 }
8504 }
8505
8506 if (name[0] == 'Q')
8507 {
8508 int v;
8509
8510 if (name[1] == 'U' || name[1] == 'W')
8511 {
8512 if (sscanf (name + 2, "%x", &v) != 1)
8513 return name;
8514 }
8515 else
8516 return name;
8517
8518 GROW_VECT (result, result_len, 16);
8519 if (isascii (v) && isprint (v))
8520 xsnprintf (result, result_len, "'%c'", v);
8521 else if (name[1] == 'U')
8522 xsnprintf (result, result_len, "[\"%02x\"]", v);
8523 else
8524 xsnprintf (result, result_len, "[\"%04x\"]", v);
8525
8526 return result;
8527 }
8528 else
8529 {
8530 tmp = strstr (name, "__");
8531 if (tmp == NULL)
8532 tmp = strstr (name, "$");
8533 if (tmp != NULL)
8534 {
8535 GROW_VECT (result, result_len, tmp - name + 1);
8536 strncpy (result, name, tmp - name);
8537 result[tmp - name] = '\0';
8538 return result;
8539 }
8540
8541 return name;
8542 }
8543 }
8544
8545 /* Evaluate the subexpression of EXP starting at *POS as for
8546 evaluate_type, updating *POS to point just past the evaluated
8547 expression. */
8548
8549 static struct value *
8550 evaluate_subexp_type (struct expression *exp, int *pos)
8551 {
8552 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8553 }
8554
8555 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8556 value it wraps. */
8557
8558 static struct value *
8559 unwrap_value (struct value *val)
8560 {
8561 struct type *type = ada_check_typedef (value_type (val));
8562
8563 if (ada_is_aligner_type (type))
8564 {
8565 struct value *v = ada_value_struct_elt (val, "F", 0);
8566 struct type *val_type = ada_check_typedef (value_type (v));
8567
8568 if (ada_type_name (val_type) == NULL)
8569 TYPE_NAME (val_type) = ada_type_name (type);
8570
8571 return unwrap_value (v);
8572 }
8573 else
8574 {
8575 struct type *raw_real_type =
8576 ada_check_typedef (ada_get_base_type (type));
8577
8578 /* If there is no parallel XVS or XVE type, then the value is
8579 already unwrapped. Return it without further modification. */
8580 if ((type == raw_real_type)
8581 && ada_find_parallel_type (type, "___XVE") == NULL)
8582 return val;
8583
8584 return
8585 coerce_unspec_val_to_type
8586 (val, ada_to_fixed_type (raw_real_type, 0,
8587 value_address (val),
8588 NULL, 1));
8589 }
8590 }
8591
8592 static struct value *
8593 cast_to_fixed (struct type *type, struct value *arg)
8594 {
8595 LONGEST val;
8596
8597 if (type == value_type (arg))
8598 return arg;
8599 else if (ada_is_fixed_point_type (value_type (arg)))
8600 val = ada_float_to_fixed (type,
8601 ada_fixed_to_float (value_type (arg),
8602 value_as_long (arg)));
8603 else
8604 {
8605 DOUBLEST argd = value_as_double (arg);
8606
8607 val = ada_float_to_fixed (type, argd);
8608 }
8609
8610 return value_from_longest (type, val);
8611 }
8612
8613 static struct value *
8614 cast_from_fixed (struct type *type, struct value *arg)
8615 {
8616 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8617 value_as_long (arg));
8618
8619 return value_from_double (type, val);
8620 }
8621
8622 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8623 return the converted value. */
8624
8625 static struct value *
8626 coerce_for_assign (struct type *type, struct value *val)
8627 {
8628 struct type *type2 = value_type (val);
8629
8630 if (type == type2)
8631 return val;
8632
8633 type2 = ada_check_typedef (type2);
8634 type = ada_check_typedef (type);
8635
8636 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8637 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8638 {
8639 val = ada_value_ind (val);
8640 type2 = value_type (val);
8641 }
8642
8643 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8644 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8645 {
8646 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8647 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8648 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8649 error (_("Incompatible types in assignment"));
8650 deprecated_set_value_type (val, type);
8651 }
8652 return val;
8653 }
8654
8655 static struct value *
8656 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8657 {
8658 struct value *val;
8659 struct type *type1, *type2;
8660 LONGEST v, v1, v2;
8661
8662 arg1 = coerce_ref (arg1);
8663 arg2 = coerce_ref (arg2);
8664 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8665 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8666
8667 if (TYPE_CODE (type1) != TYPE_CODE_INT
8668 || TYPE_CODE (type2) != TYPE_CODE_INT)
8669 return value_binop (arg1, arg2, op);
8670
8671 switch (op)
8672 {
8673 case BINOP_MOD:
8674 case BINOP_DIV:
8675 case BINOP_REM:
8676 break;
8677 default:
8678 return value_binop (arg1, arg2, op);
8679 }
8680
8681 v2 = value_as_long (arg2);
8682 if (v2 == 0)
8683 error (_("second operand of %s must not be zero."), op_string (op));
8684
8685 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8686 return value_binop (arg1, arg2, op);
8687
8688 v1 = value_as_long (arg1);
8689 switch (op)
8690 {
8691 case BINOP_DIV:
8692 v = v1 / v2;
8693 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8694 v += v > 0 ? -1 : 1;
8695 break;
8696 case BINOP_REM:
8697 v = v1 % v2;
8698 if (v * v1 < 0)
8699 v -= v2;
8700 break;
8701 default:
8702 /* Should not reach this point. */
8703 v = 0;
8704 }
8705
8706 val = allocate_value (type1);
8707 store_unsigned_integer (value_contents_raw (val),
8708 TYPE_LENGTH (value_type (val)),
8709 gdbarch_byte_order (get_type_arch (type1)), v);
8710 return val;
8711 }
8712
8713 static int
8714 ada_value_equal (struct value *arg1, struct value *arg2)
8715 {
8716 if (ada_is_direct_array_type (value_type (arg1))
8717 || ada_is_direct_array_type (value_type (arg2)))
8718 {
8719 /* Automatically dereference any array reference before
8720 we attempt to perform the comparison. */
8721 arg1 = ada_coerce_ref (arg1);
8722 arg2 = ada_coerce_ref (arg2);
8723
8724 arg1 = ada_coerce_to_simple_array (arg1);
8725 arg2 = ada_coerce_to_simple_array (arg2);
8726 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8727 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8728 error (_("Attempt to compare array with non-array"));
8729 /* FIXME: The following works only for types whose
8730 representations use all bits (no padding or undefined bits)
8731 and do not have user-defined equality. */
8732 return
8733 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8734 && memcmp (value_contents (arg1), value_contents (arg2),
8735 TYPE_LENGTH (value_type (arg1))) == 0;
8736 }
8737 return value_equal (arg1, arg2);
8738 }
8739
8740 /* Total number of component associations in the aggregate starting at
8741 index PC in EXP. Assumes that index PC is the start of an
8742 OP_AGGREGATE. */
8743
8744 static int
8745 num_component_specs (struct expression *exp, int pc)
8746 {
8747 int n, m, i;
8748
8749 m = exp->elts[pc + 1].longconst;
8750 pc += 3;
8751 n = 0;
8752 for (i = 0; i < m; i += 1)
8753 {
8754 switch (exp->elts[pc].opcode)
8755 {
8756 default:
8757 n += 1;
8758 break;
8759 case OP_CHOICES:
8760 n += exp->elts[pc + 1].longconst;
8761 break;
8762 }
8763 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8764 }
8765 return n;
8766 }
8767
8768 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8769 component of LHS (a simple array or a record), updating *POS past
8770 the expression, assuming that LHS is contained in CONTAINER. Does
8771 not modify the inferior's memory, nor does it modify LHS (unless
8772 LHS == CONTAINER). */
8773
8774 static void
8775 assign_component (struct value *container, struct value *lhs, LONGEST index,
8776 struct expression *exp, int *pos)
8777 {
8778 struct value *mark = value_mark ();
8779 struct value *elt;
8780
8781 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8782 {
8783 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8784 struct value *index_val = value_from_longest (index_type, index);
8785
8786 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8787 }
8788 else
8789 {
8790 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8791 elt = ada_to_fixed_value (elt);
8792 }
8793
8794 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8795 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8796 else
8797 value_assign_to_component (container, elt,
8798 ada_evaluate_subexp (NULL, exp, pos,
8799 EVAL_NORMAL));
8800
8801 value_free_to_mark (mark);
8802 }
8803
8804 /* Assuming that LHS represents an lvalue having a record or array
8805 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8806 of that aggregate's value to LHS, advancing *POS past the
8807 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8808 lvalue containing LHS (possibly LHS itself). Does not modify
8809 the inferior's memory, nor does it modify the contents of
8810 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8811
8812 static struct value *
8813 assign_aggregate (struct value *container,
8814 struct value *lhs, struct expression *exp,
8815 int *pos, enum noside noside)
8816 {
8817 struct type *lhs_type;
8818 int n = exp->elts[*pos+1].longconst;
8819 LONGEST low_index, high_index;
8820 int num_specs;
8821 LONGEST *indices;
8822 int max_indices, num_indices;
8823 int is_array_aggregate;
8824 int i;
8825
8826 *pos += 3;
8827 if (noside != EVAL_NORMAL)
8828 {
8829 for (i = 0; i < n; i += 1)
8830 ada_evaluate_subexp (NULL, exp, pos, noside);
8831 return container;
8832 }
8833
8834 container = ada_coerce_ref (container);
8835 if (ada_is_direct_array_type (value_type (container)))
8836 container = ada_coerce_to_simple_array (container);
8837 lhs = ada_coerce_ref (lhs);
8838 if (!deprecated_value_modifiable (lhs))
8839 error (_("Left operand of assignment is not a modifiable lvalue."));
8840
8841 lhs_type = value_type (lhs);
8842 if (ada_is_direct_array_type (lhs_type))
8843 {
8844 lhs = ada_coerce_to_simple_array (lhs);
8845 lhs_type = value_type (lhs);
8846 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8847 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8848 is_array_aggregate = 1;
8849 }
8850 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8851 {
8852 low_index = 0;
8853 high_index = num_visible_fields (lhs_type) - 1;
8854 is_array_aggregate = 0;
8855 }
8856 else
8857 error (_("Left-hand side must be array or record."));
8858
8859 num_specs = num_component_specs (exp, *pos - 3);
8860 max_indices = 4 * num_specs + 4;
8861 indices = alloca (max_indices * sizeof (indices[0]));
8862 indices[0] = indices[1] = low_index - 1;
8863 indices[2] = indices[3] = high_index + 1;
8864 num_indices = 4;
8865
8866 for (i = 0; i < n; i += 1)
8867 {
8868 switch (exp->elts[*pos].opcode)
8869 {
8870 case OP_CHOICES:
8871 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8872 &num_indices, max_indices,
8873 low_index, high_index);
8874 break;
8875 case OP_POSITIONAL:
8876 aggregate_assign_positional (container, lhs, exp, pos, indices,
8877 &num_indices, max_indices,
8878 low_index, high_index);
8879 break;
8880 case OP_OTHERS:
8881 if (i != n-1)
8882 error (_("Misplaced 'others' clause"));
8883 aggregate_assign_others (container, lhs, exp, pos, indices,
8884 num_indices, low_index, high_index);
8885 break;
8886 default:
8887 error (_("Internal error: bad aggregate clause"));
8888 }
8889 }
8890
8891 return container;
8892 }
8893
8894 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8895 construct at *POS, updating *POS past the construct, given that
8896 the positions are relative to lower bound LOW, where HIGH is the
8897 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8898 updating *NUM_INDICES as needed. CONTAINER is as for
8899 assign_aggregate. */
8900 static void
8901 aggregate_assign_positional (struct value *container,
8902 struct value *lhs, struct expression *exp,
8903 int *pos, LONGEST *indices, int *num_indices,
8904 int max_indices, LONGEST low, LONGEST high)
8905 {
8906 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8907
8908 if (ind - 1 == high)
8909 warning (_("Extra components in aggregate ignored."));
8910 if (ind <= high)
8911 {
8912 add_component_interval (ind, ind, indices, num_indices, max_indices);
8913 *pos += 3;
8914 assign_component (container, lhs, ind, exp, pos);
8915 }
8916 else
8917 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8918 }
8919
8920 /* Assign into the components of LHS indexed by the OP_CHOICES
8921 construct at *POS, updating *POS past the construct, given that
8922 the allowable indices are LOW..HIGH. Record the indices assigned
8923 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8924 needed. CONTAINER is as for assign_aggregate. */
8925 static void
8926 aggregate_assign_from_choices (struct value *container,
8927 struct value *lhs, struct expression *exp,
8928 int *pos, LONGEST *indices, int *num_indices,
8929 int max_indices, LONGEST low, LONGEST high)
8930 {
8931 int j;
8932 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8933 int choice_pos, expr_pc;
8934 int is_array = ada_is_direct_array_type (value_type (lhs));
8935
8936 choice_pos = *pos += 3;
8937
8938 for (j = 0; j < n_choices; j += 1)
8939 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8940 expr_pc = *pos;
8941 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8942
8943 for (j = 0; j < n_choices; j += 1)
8944 {
8945 LONGEST lower, upper;
8946 enum exp_opcode op = exp->elts[choice_pos].opcode;
8947
8948 if (op == OP_DISCRETE_RANGE)
8949 {
8950 choice_pos += 1;
8951 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8952 EVAL_NORMAL));
8953 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8954 EVAL_NORMAL));
8955 }
8956 else if (is_array)
8957 {
8958 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8959 EVAL_NORMAL));
8960 upper = lower;
8961 }
8962 else
8963 {
8964 int ind;
8965 const char *name;
8966
8967 switch (op)
8968 {
8969 case OP_NAME:
8970 name = &exp->elts[choice_pos + 2].string;
8971 break;
8972 case OP_VAR_VALUE:
8973 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8974 break;
8975 default:
8976 error (_("Invalid record component association."));
8977 }
8978 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8979 ind = 0;
8980 if (! find_struct_field (name, value_type (lhs), 0,
8981 NULL, NULL, NULL, NULL, &ind))
8982 error (_("Unknown component name: %s."), name);
8983 lower = upper = ind;
8984 }
8985
8986 if (lower <= upper && (lower < low || upper > high))
8987 error (_("Index in component association out of bounds."));
8988
8989 add_component_interval (lower, upper, indices, num_indices,
8990 max_indices);
8991 while (lower <= upper)
8992 {
8993 int pos1;
8994
8995 pos1 = expr_pc;
8996 assign_component (container, lhs, lower, exp, &pos1);
8997 lower += 1;
8998 }
8999 }
9000 }
9001
9002 /* Assign the value of the expression in the OP_OTHERS construct in
9003 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9004 have not been previously assigned. The index intervals already assigned
9005 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9006 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9007 static void
9008 aggregate_assign_others (struct value *container,
9009 struct value *lhs, struct expression *exp,
9010 int *pos, LONGEST *indices, int num_indices,
9011 LONGEST low, LONGEST high)
9012 {
9013 int i;
9014 int expr_pc = *pos + 1;
9015
9016 for (i = 0; i < num_indices - 2; i += 2)
9017 {
9018 LONGEST ind;
9019
9020 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9021 {
9022 int localpos;
9023
9024 localpos = expr_pc;
9025 assign_component (container, lhs, ind, exp, &localpos);
9026 }
9027 }
9028 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9029 }
9030
9031 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9032 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9033 modifying *SIZE as needed. It is an error if *SIZE exceeds
9034 MAX_SIZE. The resulting intervals do not overlap. */
9035 static void
9036 add_component_interval (LONGEST low, LONGEST high,
9037 LONGEST* indices, int *size, int max_size)
9038 {
9039 int i, j;
9040
9041 for (i = 0; i < *size; i += 2) {
9042 if (high >= indices[i] && low <= indices[i + 1])
9043 {
9044 int kh;
9045
9046 for (kh = i + 2; kh < *size; kh += 2)
9047 if (high < indices[kh])
9048 break;
9049 if (low < indices[i])
9050 indices[i] = low;
9051 indices[i + 1] = indices[kh - 1];
9052 if (high > indices[i + 1])
9053 indices[i + 1] = high;
9054 memcpy (indices + i + 2, indices + kh, *size - kh);
9055 *size -= kh - i - 2;
9056 return;
9057 }
9058 else if (high < indices[i])
9059 break;
9060 }
9061
9062 if (*size == max_size)
9063 error (_("Internal error: miscounted aggregate components."));
9064 *size += 2;
9065 for (j = *size-1; j >= i+2; j -= 1)
9066 indices[j] = indices[j - 2];
9067 indices[i] = low;
9068 indices[i + 1] = high;
9069 }
9070
9071 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9072 is different. */
9073
9074 static struct value *
9075 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9076 {
9077 if (type == ada_check_typedef (value_type (arg2)))
9078 return arg2;
9079
9080 if (ada_is_fixed_point_type (type))
9081 return (cast_to_fixed (type, arg2));
9082
9083 if (ada_is_fixed_point_type (value_type (arg2)))
9084 return cast_from_fixed (type, arg2);
9085
9086 return value_cast (type, arg2);
9087 }
9088
9089 /* Evaluating Ada expressions, and printing their result.
9090 ------------------------------------------------------
9091
9092 1. Introduction:
9093 ----------------
9094
9095 We usually evaluate an Ada expression in order to print its value.
9096 We also evaluate an expression in order to print its type, which
9097 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9098 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9099 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9100 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9101 similar.
9102
9103 Evaluating expressions is a little more complicated for Ada entities
9104 than it is for entities in languages such as C. The main reason for
9105 this is that Ada provides types whose definition might be dynamic.
9106 One example of such types is variant records. Or another example
9107 would be an array whose bounds can only be known at run time.
9108
9109 The following description is a general guide as to what should be
9110 done (and what should NOT be done) in order to evaluate an expression
9111 involving such types, and when. This does not cover how the semantic
9112 information is encoded by GNAT as this is covered separatly. For the
9113 document used as the reference for the GNAT encoding, see exp_dbug.ads
9114 in the GNAT sources.
9115
9116 Ideally, we should embed each part of this description next to its
9117 associated code. Unfortunately, the amount of code is so vast right
9118 now that it's hard to see whether the code handling a particular
9119 situation might be duplicated or not. One day, when the code is
9120 cleaned up, this guide might become redundant with the comments
9121 inserted in the code, and we might want to remove it.
9122
9123 2. ``Fixing'' an Entity, the Simple Case:
9124 -----------------------------------------
9125
9126 When evaluating Ada expressions, the tricky issue is that they may
9127 reference entities whose type contents and size are not statically
9128 known. Consider for instance a variant record:
9129
9130 type Rec (Empty : Boolean := True) is record
9131 case Empty is
9132 when True => null;
9133 when False => Value : Integer;
9134 end case;
9135 end record;
9136 Yes : Rec := (Empty => False, Value => 1);
9137 No : Rec := (empty => True);
9138
9139 The size and contents of that record depends on the value of the
9140 descriminant (Rec.Empty). At this point, neither the debugging
9141 information nor the associated type structure in GDB are able to
9142 express such dynamic types. So what the debugger does is to create
9143 "fixed" versions of the type that applies to the specific object.
9144 We also informally refer to this opperation as "fixing" an object,
9145 which means creating its associated fixed type.
9146
9147 Example: when printing the value of variable "Yes" above, its fixed
9148 type would look like this:
9149
9150 type Rec is record
9151 Empty : Boolean;
9152 Value : Integer;
9153 end record;
9154
9155 On the other hand, if we printed the value of "No", its fixed type
9156 would become:
9157
9158 type Rec is record
9159 Empty : Boolean;
9160 end record;
9161
9162 Things become a little more complicated when trying to fix an entity
9163 with a dynamic type that directly contains another dynamic type,
9164 such as an array of variant records, for instance. There are
9165 two possible cases: Arrays, and records.
9166
9167 3. ``Fixing'' Arrays:
9168 ---------------------
9169
9170 The type structure in GDB describes an array in terms of its bounds,
9171 and the type of its elements. By design, all elements in the array
9172 have the same type and we cannot represent an array of variant elements
9173 using the current type structure in GDB. When fixing an array,
9174 we cannot fix the array element, as we would potentially need one
9175 fixed type per element of the array. As a result, the best we can do
9176 when fixing an array is to produce an array whose bounds and size
9177 are correct (allowing us to read it from memory), but without having
9178 touched its element type. Fixing each element will be done later,
9179 when (if) necessary.
9180
9181 Arrays are a little simpler to handle than records, because the same
9182 amount of memory is allocated for each element of the array, even if
9183 the amount of space actually used by each element differs from element
9184 to element. Consider for instance the following array of type Rec:
9185
9186 type Rec_Array is array (1 .. 2) of Rec;
9187
9188 The actual amount of memory occupied by each element might be different
9189 from element to element, depending on the value of their discriminant.
9190 But the amount of space reserved for each element in the array remains
9191 fixed regardless. So we simply need to compute that size using
9192 the debugging information available, from which we can then determine
9193 the array size (we multiply the number of elements of the array by
9194 the size of each element).
9195
9196 The simplest case is when we have an array of a constrained element
9197 type. For instance, consider the following type declarations:
9198
9199 type Bounded_String (Max_Size : Integer) is
9200 Length : Integer;
9201 Buffer : String (1 .. Max_Size);
9202 end record;
9203 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9204
9205 In this case, the compiler describes the array as an array of
9206 variable-size elements (identified by its XVS suffix) for which
9207 the size can be read in the parallel XVZ variable.
9208
9209 In the case of an array of an unconstrained element type, the compiler
9210 wraps the array element inside a private PAD type. This type should not
9211 be shown to the user, and must be "unwrap"'ed before printing. Note
9212 that we also use the adjective "aligner" in our code to designate
9213 these wrapper types.
9214
9215 In some cases, the size allocated for each element is statically
9216 known. In that case, the PAD type already has the correct size,
9217 and the array element should remain unfixed.
9218
9219 But there are cases when this size is not statically known.
9220 For instance, assuming that "Five" is an integer variable:
9221
9222 type Dynamic is array (1 .. Five) of Integer;
9223 type Wrapper (Has_Length : Boolean := False) is record
9224 Data : Dynamic;
9225 case Has_Length is
9226 when True => Length : Integer;
9227 when False => null;
9228 end case;
9229 end record;
9230 type Wrapper_Array is array (1 .. 2) of Wrapper;
9231
9232 Hello : Wrapper_Array := (others => (Has_Length => True,
9233 Data => (others => 17),
9234 Length => 1));
9235
9236
9237 The debugging info would describe variable Hello as being an
9238 array of a PAD type. The size of that PAD type is not statically
9239 known, but can be determined using a parallel XVZ variable.
9240 In that case, a copy of the PAD type with the correct size should
9241 be used for the fixed array.
9242
9243 3. ``Fixing'' record type objects:
9244 ----------------------------------
9245
9246 Things are slightly different from arrays in the case of dynamic
9247 record types. In this case, in order to compute the associated
9248 fixed type, we need to determine the size and offset of each of
9249 its components. This, in turn, requires us to compute the fixed
9250 type of each of these components.
9251
9252 Consider for instance the example:
9253
9254 type Bounded_String (Max_Size : Natural) is record
9255 Str : String (1 .. Max_Size);
9256 Length : Natural;
9257 end record;
9258 My_String : Bounded_String (Max_Size => 10);
9259
9260 In that case, the position of field "Length" depends on the size
9261 of field Str, which itself depends on the value of the Max_Size
9262 discriminant. In order to fix the type of variable My_String,
9263 we need to fix the type of field Str. Therefore, fixing a variant
9264 record requires us to fix each of its components.
9265
9266 However, if a component does not have a dynamic size, the component
9267 should not be fixed. In particular, fields that use a PAD type
9268 should not fixed. Here is an example where this might happen
9269 (assuming type Rec above):
9270
9271 type Container (Big : Boolean) is record
9272 First : Rec;
9273 After : Integer;
9274 case Big is
9275 when True => Another : Integer;
9276 when False => null;
9277 end case;
9278 end record;
9279 My_Container : Container := (Big => False,
9280 First => (Empty => True),
9281 After => 42);
9282
9283 In that example, the compiler creates a PAD type for component First,
9284 whose size is constant, and then positions the component After just
9285 right after it. The offset of component After is therefore constant
9286 in this case.
9287
9288 The debugger computes the position of each field based on an algorithm
9289 that uses, among other things, the actual position and size of the field
9290 preceding it. Let's now imagine that the user is trying to print
9291 the value of My_Container. If the type fixing was recursive, we would
9292 end up computing the offset of field After based on the size of the
9293 fixed version of field First. And since in our example First has
9294 only one actual field, the size of the fixed type is actually smaller
9295 than the amount of space allocated to that field, and thus we would
9296 compute the wrong offset of field After.
9297
9298 To make things more complicated, we need to watch out for dynamic
9299 components of variant records (identified by the ___XVL suffix in
9300 the component name). Even if the target type is a PAD type, the size
9301 of that type might not be statically known. So the PAD type needs
9302 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9303 we might end up with the wrong size for our component. This can be
9304 observed with the following type declarations:
9305
9306 type Octal is new Integer range 0 .. 7;
9307 type Octal_Array is array (Positive range <>) of Octal;
9308 pragma Pack (Octal_Array);
9309
9310 type Octal_Buffer (Size : Positive) is record
9311 Buffer : Octal_Array (1 .. Size);
9312 Length : Integer;
9313 end record;
9314
9315 In that case, Buffer is a PAD type whose size is unset and needs
9316 to be computed by fixing the unwrapped type.
9317
9318 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9319 ----------------------------------------------------------
9320
9321 Lastly, when should the sub-elements of an entity that remained unfixed
9322 thus far, be actually fixed?
9323
9324 The answer is: Only when referencing that element. For instance
9325 when selecting one component of a record, this specific component
9326 should be fixed at that point in time. Or when printing the value
9327 of a record, each component should be fixed before its value gets
9328 printed. Similarly for arrays, the element of the array should be
9329 fixed when printing each element of the array, or when extracting
9330 one element out of that array. On the other hand, fixing should
9331 not be performed on the elements when taking a slice of an array!
9332
9333 Note that one of the side-effects of miscomputing the offset and
9334 size of each field is that we end up also miscomputing the size
9335 of the containing type. This can have adverse results when computing
9336 the value of an entity. GDB fetches the value of an entity based
9337 on the size of its type, and thus a wrong size causes GDB to fetch
9338 the wrong amount of memory. In the case where the computed size is
9339 too small, GDB fetches too little data to print the value of our
9340 entiry. Results in this case as unpredicatble, as we usually read
9341 past the buffer containing the data =:-o. */
9342
9343 /* Implement the evaluate_exp routine in the exp_descriptor structure
9344 for the Ada language. */
9345
9346 static struct value *
9347 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9348 int *pos, enum noside noside)
9349 {
9350 enum exp_opcode op;
9351 int tem;
9352 int pc;
9353 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9354 struct type *type;
9355 int nargs, oplen;
9356 struct value **argvec;
9357
9358 pc = *pos;
9359 *pos += 1;
9360 op = exp->elts[pc].opcode;
9361
9362 switch (op)
9363 {
9364 default:
9365 *pos -= 1;
9366 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9367 arg1 = unwrap_value (arg1);
9368
9369 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9370 then we need to perform the conversion manually, because
9371 evaluate_subexp_standard doesn't do it. This conversion is
9372 necessary in Ada because the different kinds of float/fixed
9373 types in Ada have different representations.
9374
9375 Similarly, we need to perform the conversion from OP_LONG
9376 ourselves. */
9377 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9378 arg1 = ada_value_cast (expect_type, arg1, noside);
9379
9380 return arg1;
9381
9382 case OP_STRING:
9383 {
9384 struct value *result;
9385
9386 *pos -= 1;
9387 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9388 /* The result type will have code OP_STRING, bashed there from
9389 OP_ARRAY. Bash it back. */
9390 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9391 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9392 return result;
9393 }
9394
9395 case UNOP_CAST:
9396 (*pos) += 2;
9397 type = exp->elts[pc + 1].type;
9398 arg1 = evaluate_subexp (type, exp, pos, noside);
9399 if (noside == EVAL_SKIP)
9400 goto nosideret;
9401 arg1 = ada_value_cast (type, arg1, noside);
9402 return arg1;
9403
9404 case UNOP_QUAL:
9405 (*pos) += 2;
9406 type = exp->elts[pc + 1].type;
9407 return ada_evaluate_subexp (type, exp, pos, noside);
9408
9409 case BINOP_ASSIGN:
9410 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9411 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9412 {
9413 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9414 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9415 return arg1;
9416 return ada_value_assign (arg1, arg1);
9417 }
9418 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9419 except if the lhs of our assignment is a convenience variable.
9420 In the case of assigning to a convenience variable, the lhs
9421 should be exactly the result of the evaluation of the rhs. */
9422 type = value_type (arg1);
9423 if (VALUE_LVAL (arg1) == lval_internalvar)
9424 type = NULL;
9425 arg2 = evaluate_subexp (type, exp, pos, noside);
9426 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9427 return arg1;
9428 if (ada_is_fixed_point_type (value_type (arg1)))
9429 arg2 = cast_to_fixed (value_type (arg1), arg2);
9430 else if (ada_is_fixed_point_type (value_type (arg2)))
9431 error
9432 (_("Fixed-point values must be assigned to fixed-point variables"));
9433 else
9434 arg2 = coerce_for_assign (value_type (arg1), arg2);
9435 return ada_value_assign (arg1, arg2);
9436
9437 case BINOP_ADD:
9438 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9439 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9440 if (noside == EVAL_SKIP)
9441 goto nosideret;
9442 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9443 return (value_from_longest
9444 (value_type (arg1),
9445 value_as_long (arg1) + value_as_long (arg2)));
9446 if ((ada_is_fixed_point_type (value_type (arg1))
9447 || ada_is_fixed_point_type (value_type (arg2)))
9448 && value_type (arg1) != value_type (arg2))
9449 error (_("Operands of fixed-point addition must have the same type"));
9450 /* Do the addition, and cast the result to the type of the first
9451 argument. We cannot cast the result to a reference type, so if
9452 ARG1 is a reference type, find its underlying type. */
9453 type = value_type (arg1);
9454 while (TYPE_CODE (type) == TYPE_CODE_REF)
9455 type = TYPE_TARGET_TYPE (type);
9456 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9457 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9458
9459 case BINOP_SUB:
9460 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9461 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9462 if (noside == EVAL_SKIP)
9463 goto nosideret;
9464 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9465 return (value_from_longest
9466 (value_type (arg1),
9467 value_as_long (arg1) - value_as_long (arg2)));
9468 if ((ada_is_fixed_point_type (value_type (arg1))
9469 || ada_is_fixed_point_type (value_type (arg2)))
9470 && value_type (arg1) != value_type (arg2))
9471 error (_("Operands of fixed-point subtraction "
9472 "must have the same type"));
9473 /* Do the substraction, and cast the result to the type of the first
9474 argument. We cannot cast the result to a reference type, so if
9475 ARG1 is a reference type, find its underlying type. */
9476 type = value_type (arg1);
9477 while (TYPE_CODE (type) == TYPE_CODE_REF)
9478 type = TYPE_TARGET_TYPE (type);
9479 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9480 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9481
9482 case BINOP_MUL:
9483 case BINOP_DIV:
9484 case BINOP_REM:
9485 case BINOP_MOD:
9486 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9487 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9488 if (noside == EVAL_SKIP)
9489 goto nosideret;
9490 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9491 {
9492 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9493 return value_zero (value_type (arg1), not_lval);
9494 }
9495 else
9496 {
9497 type = builtin_type (exp->gdbarch)->builtin_double;
9498 if (ada_is_fixed_point_type (value_type (arg1)))
9499 arg1 = cast_from_fixed (type, arg1);
9500 if (ada_is_fixed_point_type (value_type (arg2)))
9501 arg2 = cast_from_fixed (type, arg2);
9502 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9503 return ada_value_binop (arg1, arg2, op);
9504 }
9505
9506 case BINOP_EQUAL:
9507 case BINOP_NOTEQUAL:
9508 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9509 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9510 if (noside == EVAL_SKIP)
9511 goto nosideret;
9512 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9513 tem = 0;
9514 else
9515 {
9516 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9517 tem = ada_value_equal (arg1, arg2);
9518 }
9519 if (op == BINOP_NOTEQUAL)
9520 tem = !tem;
9521 type = language_bool_type (exp->language_defn, exp->gdbarch);
9522 return value_from_longest (type, (LONGEST) tem);
9523
9524 case UNOP_NEG:
9525 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9526 if (noside == EVAL_SKIP)
9527 goto nosideret;
9528 else if (ada_is_fixed_point_type (value_type (arg1)))
9529 return value_cast (value_type (arg1), value_neg (arg1));
9530 else
9531 {
9532 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9533 return value_neg (arg1);
9534 }
9535
9536 case BINOP_LOGICAL_AND:
9537 case BINOP_LOGICAL_OR:
9538 case UNOP_LOGICAL_NOT:
9539 {
9540 struct value *val;
9541
9542 *pos -= 1;
9543 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9544 type = language_bool_type (exp->language_defn, exp->gdbarch);
9545 return value_cast (type, val);
9546 }
9547
9548 case BINOP_BITWISE_AND:
9549 case BINOP_BITWISE_IOR:
9550 case BINOP_BITWISE_XOR:
9551 {
9552 struct value *val;
9553
9554 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9555 *pos = pc;
9556 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9557
9558 return value_cast (value_type (arg1), val);
9559 }
9560
9561 case OP_VAR_VALUE:
9562 *pos -= 1;
9563
9564 if (noside == EVAL_SKIP)
9565 {
9566 *pos += 4;
9567 goto nosideret;
9568 }
9569 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9570 /* Only encountered when an unresolved symbol occurs in a
9571 context other than a function call, in which case, it is
9572 invalid. */
9573 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9574 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9575 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9576 {
9577 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9578 /* Check to see if this is a tagged type. We also need to handle
9579 the case where the type is a reference to a tagged type, but
9580 we have to be careful to exclude pointers to tagged types.
9581 The latter should be shown as usual (as a pointer), whereas
9582 a reference should mostly be transparent to the user. */
9583 if (ada_is_tagged_type (type, 0)
9584 || (TYPE_CODE(type) == TYPE_CODE_REF
9585 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9586 {
9587 /* Tagged types are a little special in the fact that the real
9588 type is dynamic and can only be determined by inspecting the
9589 object's tag. This means that we need to get the object's
9590 value first (EVAL_NORMAL) and then extract the actual object
9591 type from its tag.
9592
9593 Note that we cannot skip the final step where we extract
9594 the object type from its tag, because the EVAL_NORMAL phase
9595 results in dynamic components being resolved into fixed ones.
9596 This can cause problems when trying to print the type
9597 description of tagged types whose parent has a dynamic size:
9598 We use the type name of the "_parent" component in order
9599 to print the name of the ancestor type in the type description.
9600 If that component had a dynamic size, the resolution into
9601 a fixed type would result in the loss of that type name,
9602 thus preventing us from printing the name of the ancestor
9603 type in the type description. */
9604 struct type *actual_type;
9605
9606 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9607 actual_type = type_from_tag (ada_value_tag (arg1));
9608 if (actual_type == NULL)
9609 /* If, for some reason, we were unable to determine
9610 the actual type from the tag, then use the static
9611 approximation that we just computed as a fallback.
9612 This can happen if the debugging information is
9613 incomplete, for instance. */
9614 actual_type = type;
9615
9616 return value_zero (actual_type, not_lval);
9617 }
9618
9619 *pos += 4;
9620 return value_zero
9621 (to_static_fixed_type
9622 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9623 not_lval);
9624 }
9625 else
9626 {
9627 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9628 return ada_to_fixed_value (arg1);
9629 }
9630
9631 case OP_FUNCALL:
9632 (*pos) += 2;
9633
9634 /* Allocate arg vector, including space for the function to be
9635 called in argvec[0] and a terminating NULL. */
9636 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9637 argvec =
9638 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9639
9640 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9641 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9642 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9643 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9644 else
9645 {
9646 for (tem = 0; tem <= nargs; tem += 1)
9647 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9648 argvec[tem] = 0;
9649
9650 if (noside == EVAL_SKIP)
9651 goto nosideret;
9652 }
9653
9654 if (ada_is_constrained_packed_array_type
9655 (desc_base_type (value_type (argvec[0]))))
9656 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9657 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9658 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9659 /* This is a packed array that has already been fixed, and
9660 therefore already coerced to a simple array. Nothing further
9661 to do. */
9662 ;
9663 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9664 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9665 && VALUE_LVAL (argvec[0]) == lval_memory))
9666 argvec[0] = value_addr (argvec[0]);
9667
9668 type = ada_check_typedef (value_type (argvec[0]));
9669
9670 /* Ada allows us to implicitly dereference arrays when subscripting
9671 them. So, if this is an array typedef (encoding use for array
9672 access types encoded as fat pointers), strip it now. */
9673 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9674 type = ada_typedef_target_type (type);
9675
9676 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9677 {
9678 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9679 {
9680 case TYPE_CODE_FUNC:
9681 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9682 break;
9683 case TYPE_CODE_ARRAY:
9684 break;
9685 case TYPE_CODE_STRUCT:
9686 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9687 argvec[0] = ada_value_ind (argvec[0]);
9688 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9689 break;
9690 default:
9691 error (_("cannot subscript or call something of type `%s'"),
9692 ada_type_name (value_type (argvec[0])));
9693 break;
9694 }
9695 }
9696
9697 switch (TYPE_CODE (type))
9698 {
9699 case TYPE_CODE_FUNC:
9700 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9701 {
9702 struct type *rtype = TYPE_TARGET_TYPE (type);
9703
9704 if (TYPE_GNU_IFUNC (type))
9705 return allocate_value (TYPE_TARGET_TYPE (rtype));
9706 return allocate_value (rtype);
9707 }
9708 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9709 case TYPE_CODE_INTERNAL_FUNCTION:
9710 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9711 /* We don't know anything about what the internal
9712 function might return, but we have to return
9713 something. */
9714 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9715 not_lval);
9716 else
9717 return call_internal_function (exp->gdbarch, exp->language_defn,
9718 argvec[0], nargs, argvec + 1);
9719
9720 case TYPE_CODE_STRUCT:
9721 {
9722 int arity;
9723
9724 arity = ada_array_arity (type);
9725 type = ada_array_element_type (type, nargs);
9726 if (type == NULL)
9727 error (_("cannot subscript or call a record"));
9728 if (arity != nargs)
9729 error (_("wrong number of subscripts; expecting %d"), arity);
9730 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9731 return value_zero (ada_aligned_type (type), lval_memory);
9732 return
9733 unwrap_value (ada_value_subscript
9734 (argvec[0], nargs, argvec + 1));
9735 }
9736 case TYPE_CODE_ARRAY:
9737 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9738 {
9739 type = ada_array_element_type (type, nargs);
9740 if (type == NULL)
9741 error (_("element type of array unknown"));
9742 else
9743 return value_zero (ada_aligned_type (type), lval_memory);
9744 }
9745 return
9746 unwrap_value (ada_value_subscript
9747 (ada_coerce_to_simple_array (argvec[0]),
9748 nargs, argvec + 1));
9749 case TYPE_CODE_PTR: /* Pointer to array */
9750 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9751 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9752 {
9753 type = ada_array_element_type (type, nargs);
9754 if (type == NULL)
9755 error (_("element type of array unknown"));
9756 else
9757 return value_zero (ada_aligned_type (type), lval_memory);
9758 }
9759 return
9760 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9761 nargs, argvec + 1));
9762
9763 default:
9764 error (_("Attempt to index or call something other than an "
9765 "array or function"));
9766 }
9767
9768 case TERNOP_SLICE:
9769 {
9770 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9771 struct value *low_bound_val =
9772 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9773 struct value *high_bound_val =
9774 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9775 LONGEST low_bound;
9776 LONGEST high_bound;
9777
9778 low_bound_val = coerce_ref (low_bound_val);
9779 high_bound_val = coerce_ref (high_bound_val);
9780 low_bound = pos_atr (low_bound_val);
9781 high_bound = pos_atr (high_bound_val);
9782
9783 if (noside == EVAL_SKIP)
9784 goto nosideret;
9785
9786 /* If this is a reference to an aligner type, then remove all
9787 the aligners. */
9788 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9789 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9790 TYPE_TARGET_TYPE (value_type (array)) =
9791 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9792
9793 if (ada_is_constrained_packed_array_type (value_type (array)))
9794 error (_("cannot slice a packed array"));
9795
9796 /* If this is a reference to an array or an array lvalue,
9797 convert to a pointer. */
9798 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9799 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9800 && VALUE_LVAL (array) == lval_memory))
9801 array = value_addr (array);
9802
9803 if (noside == EVAL_AVOID_SIDE_EFFECTS
9804 && ada_is_array_descriptor_type (ada_check_typedef
9805 (value_type (array))))
9806 return empty_array (ada_type_of_array (array, 0), low_bound);
9807
9808 array = ada_coerce_to_simple_array_ptr (array);
9809
9810 /* If we have more than one level of pointer indirection,
9811 dereference the value until we get only one level. */
9812 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9813 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9814 == TYPE_CODE_PTR))
9815 array = value_ind (array);
9816
9817 /* Make sure we really do have an array type before going further,
9818 to avoid a SEGV when trying to get the index type or the target
9819 type later down the road if the debug info generated by
9820 the compiler is incorrect or incomplete. */
9821 if (!ada_is_simple_array_type (value_type (array)))
9822 error (_("cannot take slice of non-array"));
9823
9824 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9825 == TYPE_CODE_PTR)
9826 {
9827 struct type *type0 = ada_check_typedef (value_type (array));
9828
9829 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9830 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9831 else
9832 {
9833 struct type *arr_type0 =
9834 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9835
9836 return ada_value_slice_from_ptr (array, arr_type0,
9837 longest_to_int (low_bound),
9838 longest_to_int (high_bound));
9839 }
9840 }
9841 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9842 return array;
9843 else if (high_bound < low_bound)
9844 return empty_array (value_type (array), low_bound);
9845 else
9846 return ada_value_slice (array, longest_to_int (low_bound),
9847 longest_to_int (high_bound));
9848 }
9849
9850 case UNOP_IN_RANGE:
9851 (*pos) += 2;
9852 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9853 type = check_typedef (exp->elts[pc + 1].type);
9854
9855 if (noside == EVAL_SKIP)
9856 goto nosideret;
9857
9858 switch (TYPE_CODE (type))
9859 {
9860 default:
9861 lim_warning (_("Membership test incompletely implemented; "
9862 "always returns true"));
9863 type = language_bool_type (exp->language_defn, exp->gdbarch);
9864 return value_from_longest (type, (LONGEST) 1);
9865
9866 case TYPE_CODE_RANGE:
9867 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9868 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9869 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9870 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9871 type = language_bool_type (exp->language_defn, exp->gdbarch);
9872 return
9873 value_from_longest (type,
9874 (value_less (arg1, arg3)
9875 || value_equal (arg1, arg3))
9876 && (value_less (arg2, arg1)
9877 || value_equal (arg2, arg1)));
9878 }
9879
9880 case BINOP_IN_BOUNDS:
9881 (*pos) += 2;
9882 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9883 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9884
9885 if (noside == EVAL_SKIP)
9886 goto nosideret;
9887
9888 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9889 {
9890 type = language_bool_type (exp->language_defn, exp->gdbarch);
9891 return value_zero (type, not_lval);
9892 }
9893
9894 tem = longest_to_int (exp->elts[pc + 1].longconst);
9895
9896 type = ada_index_type (value_type (arg2), tem, "range");
9897 if (!type)
9898 type = value_type (arg1);
9899
9900 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9901 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9902
9903 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9904 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9905 type = language_bool_type (exp->language_defn, exp->gdbarch);
9906 return
9907 value_from_longest (type,
9908 (value_less (arg1, arg3)
9909 || value_equal (arg1, arg3))
9910 && (value_less (arg2, arg1)
9911 || value_equal (arg2, arg1)));
9912
9913 case TERNOP_IN_RANGE:
9914 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9915 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9916 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9917
9918 if (noside == EVAL_SKIP)
9919 goto nosideret;
9920
9921 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9922 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9923 type = language_bool_type (exp->language_defn, exp->gdbarch);
9924 return
9925 value_from_longest (type,
9926 (value_less (arg1, arg3)
9927 || value_equal (arg1, arg3))
9928 && (value_less (arg2, arg1)
9929 || value_equal (arg2, arg1)));
9930
9931 case OP_ATR_FIRST:
9932 case OP_ATR_LAST:
9933 case OP_ATR_LENGTH:
9934 {
9935 struct type *type_arg;
9936
9937 if (exp->elts[*pos].opcode == OP_TYPE)
9938 {
9939 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9940 arg1 = NULL;
9941 type_arg = check_typedef (exp->elts[pc + 2].type);
9942 }
9943 else
9944 {
9945 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9946 type_arg = NULL;
9947 }
9948
9949 if (exp->elts[*pos].opcode != OP_LONG)
9950 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9951 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9952 *pos += 4;
9953
9954 if (noside == EVAL_SKIP)
9955 goto nosideret;
9956
9957 if (type_arg == NULL)
9958 {
9959 arg1 = ada_coerce_ref (arg1);
9960
9961 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9962 arg1 = ada_coerce_to_simple_array (arg1);
9963
9964 type = ada_index_type (value_type (arg1), tem,
9965 ada_attribute_name (op));
9966 if (type == NULL)
9967 type = builtin_type (exp->gdbarch)->builtin_int;
9968
9969 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9970 return allocate_value (type);
9971
9972 switch (op)
9973 {
9974 default: /* Should never happen. */
9975 error (_("unexpected attribute encountered"));
9976 case OP_ATR_FIRST:
9977 return value_from_longest
9978 (type, ada_array_bound (arg1, tem, 0));
9979 case OP_ATR_LAST:
9980 return value_from_longest
9981 (type, ada_array_bound (arg1, tem, 1));
9982 case OP_ATR_LENGTH:
9983 return value_from_longest
9984 (type, ada_array_length (arg1, tem));
9985 }
9986 }
9987 else if (discrete_type_p (type_arg))
9988 {
9989 struct type *range_type;
9990 const char *name = ada_type_name (type_arg);
9991
9992 range_type = NULL;
9993 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9994 range_type = to_fixed_range_type (type_arg, NULL);
9995 if (range_type == NULL)
9996 range_type = type_arg;
9997 switch (op)
9998 {
9999 default:
10000 error (_("unexpected attribute encountered"));
10001 case OP_ATR_FIRST:
10002 return value_from_longest
10003 (range_type, ada_discrete_type_low_bound (range_type));
10004 case OP_ATR_LAST:
10005 return value_from_longest
10006 (range_type, ada_discrete_type_high_bound (range_type));
10007 case OP_ATR_LENGTH:
10008 error (_("the 'length attribute applies only to array types"));
10009 }
10010 }
10011 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10012 error (_("unimplemented type attribute"));
10013 else
10014 {
10015 LONGEST low, high;
10016
10017 if (ada_is_constrained_packed_array_type (type_arg))
10018 type_arg = decode_constrained_packed_array_type (type_arg);
10019
10020 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10021 if (type == NULL)
10022 type = builtin_type (exp->gdbarch)->builtin_int;
10023
10024 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10025 return allocate_value (type);
10026
10027 switch (op)
10028 {
10029 default:
10030 error (_("unexpected attribute encountered"));
10031 case OP_ATR_FIRST:
10032 low = ada_array_bound_from_type (type_arg, tem, 0);
10033 return value_from_longest (type, low);
10034 case OP_ATR_LAST:
10035 high = ada_array_bound_from_type (type_arg, tem, 1);
10036 return value_from_longest (type, high);
10037 case OP_ATR_LENGTH:
10038 low = ada_array_bound_from_type (type_arg, tem, 0);
10039 high = ada_array_bound_from_type (type_arg, tem, 1);
10040 return value_from_longest (type, high - low + 1);
10041 }
10042 }
10043 }
10044
10045 case OP_ATR_TAG:
10046 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10047 if (noside == EVAL_SKIP)
10048 goto nosideret;
10049
10050 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10051 return value_zero (ada_tag_type (arg1), not_lval);
10052
10053 return ada_value_tag (arg1);
10054
10055 case OP_ATR_MIN:
10056 case OP_ATR_MAX:
10057 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10058 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10059 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10060 if (noside == EVAL_SKIP)
10061 goto nosideret;
10062 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10063 return value_zero (value_type (arg1), not_lval);
10064 else
10065 {
10066 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10067 return value_binop (arg1, arg2,
10068 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10069 }
10070
10071 case OP_ATR_MODULUS:
10072 {
10073 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10074
10075 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10076 if (noside == EVAL_SKIP)
10077 goto nosideret;
10078
10079 if (!ada_is_modular_type (type_arg))
10080 error (_("'modulus must be applied to modular type"));
10081
10082 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10083 ada_modulus (type_arg));
10084 }
10085
10086
10087 case OP_ATR_POS:
10088 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10089 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10090 if (noside == EVAL_SKIP)
10091 goto nosideret;
10092 type = builtin_type (exp->gdbarch)->builtin_int;
10093 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10094 return value_zero (type, not_lval);
10095 else
10096 return value_pos_atr (type, arg1);
10097
10098 case OP_ATR_SIZE:
10099 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10100 type = value_type (arg1);
10101
10102 /* If the argument is a reference, then dereference its type, since
10103 the user is really asking for the size of the actual object,
10104 not the size of the pointer. */
10105 if (TYPE_CODE (type) == TYPE_CODE_REF)
10106 type = TYPE_TARGET_TYPE (type);
10107
10108 if (noside == EVAL_SKIP)
10109 goto nosideret;
10110 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10111 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10112 else
10113 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10114 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10115
10116 case OP_ATR_VAL:
10117 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10118 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10119 type = exp->elts[pc + 2].type;
10120 if (noside == EVAL_SKIP)
10121 goto nosideret;
10122 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10123 return value_zero (type, not_lval);
10124 else
10125 return value_val_atr (type, arg1);
10126
10127 case BINOP_EXP:
10128 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10129 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10130 if (noside == EVAL_SKIP)
10131 goto nosideret;
10132 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10133 return value_zero (value_type (arg1), not_lval);
10134 else
10135 {
10136 /* For integer exponentiation operations,
10137 only promote the first argument. */
10138 if (is_integral_type (value_type (arg2)))
10139 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10140 else
10141 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10142
10143 return value_binop (arg1, arg2, op);
10144 }
10145
10146 case UNOP_PLUS:
10147 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10148 if (noside == EVAL_SKIP)
10149 goto nosideret;
10150 else
10151 return arg1;
10152
10153 case UNOP_ABS:
10154 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10155 if (noside == EVAL_SKIP)
10156 goto nosideret;
10157 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10158 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10159 return value_neg (arg1);
10160 else
10161 return arg1;
10162
10163 case UNOP_IND:
10164 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10165 if (noside == EVAL_SKIP)
10166 goto nosideret;
10167 type = ada_check_typedef (value_type (arg1));
10168 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10169 {
10170 if (ada_is_array_descriptor_type (type))
10171 /* GDB allows dereferencing GNAT array descriptors. */
10172 {
10173 struct type *arrType = ada_type_of_array (arg1, 0);
10174
10175 if (arrType == NULL)
10176 error (_("Attempt to dereference null array pointer."));
10177 return value_at_lazy (arrType, 0);
10178 }
10179 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10180 || TYPE_CODE (type) == TYPE_CODE_REF
10181 /* In C you can dereference an array to get the 1st elt. */
10182 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10183 {
10184 type = to_static_fixed_type
10185 (ada_aligned_type
10186 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10187 check_size (type);
10188 return value_zero (type, lval_memory);
10189 }
10190 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10191 {
10192 /* GDB allows dereferencing an int. */
10193 if (expect_type == NULL)
10194 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10195 lval_memory);
10196 else
10197 {
10198 expect_type =
10199 to_static_fixed_type (ada_aligned_type (expect_type));
10200 return value_zero (expect_type, lval_memory);
10201 }
10202 }
10203 else
10204 error (_("Attempt to take contents of a non-pointer value."));
10205 }
10206 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10207 type = ada_check_typedef (value_type (arg1));
10208
10209 if (TYPE_CODE (type) == TYPE_CODE_INT)
10210 /* GDB allows dereferencing an int. If we were given
10211 the expect_type, then use that as the target type.
10212 Otherwise, assume that the target type is an int. */
10213 {
10214 if (expect_type != NULL)
10215 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10216 arg1));
10217 else
10218 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10219 (CORE_ADDR) value_as_address (arg1));
10220 }
10221
10222 if (ada_is_array_descriptor_type (type))
10223 /* GDB allows dereferencing GNAT array descriptors. */
10224 return ada_coerce_to_simple_array (arg1);
10225 else
10226 return ada_value_ind (arg1);
10227
10228 case STRUCTOP_STRUCT:
10229 tem = longest_to_int (exp->elts[pc + 1].longconst);
10230 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10231 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10232 if (noside == EVAL_SKIP)
10233 goto nosideret;
10234 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10235 {
10236 struct type *type1 = value_type (arg1);
10237
10238 if (ada_is_tagged_type (type1, 1))
10239 {
10240 type = ada_lookup_struct_elt_type (type1,
10241 &exp->elts[pc + 2].string,
10242 1, 1, NULL);
10243 if (type == NULL)
10244 /* In this case, we assume that the field COULD exist
10245 in some extension of the type. Return an object of
10246 "type" void, which will match any formal
10247 (see ada_type_match). */
10248 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10249 lval_memory);
10250 }
10251 else
10252 type =
10253 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10254 0, NULL);
10255
10256 return value_zero (ada_aligned_type (type), lval_memory);
10257 }
10258 else
10259 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10260 arg1 = unwrap_value (arg1);
10261 return ada_to_fixed_value (arg1);
10262
10263 case OP_TYPE:
10264 /* The value is not supposed to be used. This is here to make it
10265 easier to accommodate expressions that contain types. */
10266 (*pos) += 2;
10267 if (noside == EVAL_SKIP)
10268 goto nosideret;
10269 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10270 return allocate_value (exp->elts[pc + 1].type);
10271 else
10272 error (_("Attempt to use a type name as an expression"));
10273
10274 case OP_AGGREGATE:
10275 case OP_CHOICES:
10276 case OP_OTHERS:
10277 case OP_DISCRETE_RANGE:
10278 case OP_POSITIONAL:
10279 case OP_NAME:
10280 if (noside == EVAL_NORMAL)
10281 switch (op)
10282 {
10283 case OP_NAME:
10284 error (_("Undefined name, ambiguous name, or renaming used in "
10285 "component association: %s."), &exp->elts[pc+2].string);
10286 case OP_AGGREGATE:
10287 error (_("Aggregates only allowed on the right of an assignment"));
10288 default:
10289 internal_error (__FILE__, __LINE__,
10290 _("aggregate apparently mangled"));
10291 }
10292
10293 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10294 *pos += oplen - 1;
10295 for (tem = 0; tem < nargs; tem += 1)
10296 ada_evaluate_subexp (NULL, exp, pos, noside);
10297 goto nosideret;
10298 }
10299
10300 nosideret:
10301 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10302 }
10303 \f
10304
10305 /* Fixed point */
10306
10307 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10308 type name that encodes the 'small and 'delta information.
10309 Otherwise, return NULL. */
10310
10311 static const char *
10312 fixed_type_info (struct type *type)
10313 {
10314 const char *name = ada_type_name (type);
10315 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10316
10317 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10318 {
10319 const char *tail = strstr (name, "___XF_");
10320
10321 if (tail == NULL)
10322 return NULL;
10323 else
10324 return tail + 5;
10325 }
10326 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10327 return fixed_type_info (TYPE_TARGET_TYPE (type));
10328 else
10329 return NULL;
10330 }
10331
10332 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10333
10334 int
10335 ada_is_fixed_point_type (struct type *type)
10336 {
10337 return fixed_type_info (type) != NULL;
10338 }
10339
10340 /* Return non-zero iff TYPE represents a System.Address type. */
10341
10342 int
10343 ada_is_system_address_type (struct type *type)
10344 {
10345 return (TYPE_NAME (type)
10346 && strcmp (TYPE_NAME (type), "system__address") == 0);
10347 }
10348
10349 /* Assuming that TYPE is the representation of an Ada fixed-point
10350 type, return its delta, or -1 if the type is malformed and the
10351 delta cannot be determined. */
10352
10353 DOUBLEST
10354 ada_delta (struct type *type)
10355 {
10356 const char *encoding = fixed_type_info (type);
10357 DOUBLEST num, den;
10358
10359 /* Strictly speaking, num and den are encoded as integer. However,
10360 they may not fit into a long, and they will have to be converted
10361 to DOUBLEST anyway. So scan them as DOUBLEST. */
10362 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10363 &num, &den) < 2)
10364 return -1.0;
10365 else
10366 return num / den;
10367 }
10368
10369 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10370 factor ('SMALL value) associated with the type. */
10371
10372 static DOUBLEST
10373 scaling_factor (struct type *type)
10374 {
10375 const char *encoding = fixed_type_info (type);
10376 DOUBLEST num0, den0, num1, den1;
10377 int n;
10378
10379 /* Strictly speaking, num's and den's are encoded as integer. However,
10380 they may not fit into a long, and they will have to be converted
10381 to DOUBLEST anyway. So scan them as DOUBLEST. */
10382 n = sscanf (encoding,
10383 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10384 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10385 &num0, &den0, &num1, &den1);
10386
10387 if (n < 2)
10388 return 1.0;
10389 else if (n == 4)
10390 return num1 / den1;
10391 else
10392 return num0 / den0;
10393 }
10394
10395
10396 /* Assuming that X is the representation of a value of fixed-point
10397 type TYPE, return its floating-point equivalent. */
10398
10399 DOUBLEST
10400 ada_fixed_to_float (struct type *type, LONGEST x)
10401 {
10402 return (DOUBLEST) x *scaling_factor (type);
10403 }
10404
10405 /* The representation of a fixed-point value of type TYPE
10406 corresponding to the value X. */
10407
10408 LONGEST
10409 ada_float_to_fixed (struct type *type, DOUBLEST x)
10410 {
10411 return (LONGEST) (x / scaling_factor (type) + 0.5);
10412 }
10413
10414 \f
10415
10416 /* Range types */
10417
10418 /* Scan STR beginning at position K for a discriminant name, and
10419 return the value of that discriminant field of DVAL in *PX. If
10420 PNEW_K is not null, put the position of the character beyond the
10421 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10422 not alter *PX and *PNEW_K if unsuccessful. */
10423
10424 static int
10425 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10426 int *pnew_k)
10427 {
10428 static char *bound_buffer = NULL;
10429 static size_t bound_buffer_len = 0;
10430 char *bound;
10431 char *pend;
10432 struct value *bound_val;
10433
10434 if (dval == NULL || str == NULL || str[k] == '\0')
10435 return 0;
10436
10437 pend = strstr (str + k, "__");
10438 if (pend == NULL)
10439 {
10440 bound = str + k;
10441 k += strlen (bound);
10442 }
10443 else
10444 {
10445 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10446 bound = bound_buffer;
10447 strncpy (bound_buffer, str + k, pend - (str + k));
10448 bound[pend - (str + k)] = '\0';
10449 k = pend - str;
10450 }
10451
10452 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10453 if (bound_val == NULL)
10454 return 0;
10455
10456 *px = value_as_long (bound_val);
10457 if (pnew_k != NULL)
10458 *pnew_k = k;
10459 return 1;
10460 }
10461
10462 /* Value of variable named NAME in the current environment. If
10463 no such variable found, then if ERR_MSG is null, returns 0, and
10464 otherwise causes an error with message ERR_MSG. */
10465
10466 static struct value *
10467 get_var_value (char *name, char *err_msg)
10468 {
10469 struct ada_symbol_info *syms;
10470 int nsyms;
10471
10472 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10473 &syms, 1);
10474
10475 if (nsyms != 1)
10476 {
10477 if (err_msg == NULL)
10478 return 0;
10479 else
10480 error (("%s"), err_msg);
10481 }
10482
10483 return value_of_variable (syms[0].sym, syms[0].block);
10484 }
10485
10486 /* Value of integer variable named NAME in the current environment. If
10487 no such variable found, returns 0, and sets *FLAG to 0. If
10488 successful, sets *FLAG to 1. */
10489
10490 LONGEST
10491 get_int_var_value (char *name, int *flag)
10492 {
10493 struct value *var_val = get_var_value (name, 0);
10494
10495 if (var_val == 0)
10496 {
10497 if (flag != NULL)
10498 *flag = 0;
10499 return 0;
10500 }
10501 else
10502 {
10503 if (flag != NULL)
10504 *flag = 1;
10505 return value_as_long (var_val);
10506 }
10507 }
10508
10509
10510 /* Return a range type whose base type is that of the range type named
10511 NAME in the current environment, and whose bounds are calculated
10512 from NAME according to the GNAT range encoding conventions.
10513 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10514 corresponding range type from debug information; fall back to using it
10515 if symbol lookup fails. If a new type must be created, allocate it
10516 like ORIG_TYPE was. The bounds information, in general, is encoded
10517 in NAME, the base type given in the named range type. */
10518
10519 static struct type *
10520 to_fixed_range_type (struct type *raw_type, struct value *dval)
10521 {
10522 const char *name;
10523 struct type *base_type;
10524 char *subtype_info;
10525
10526 gdb_assert (raw_type != NULL);
10527 gdb_assert (TYPE_NAME (raw_type) != NULL);
10528
10529 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10530 base_type = TYPE_TARGET_TYPE (raw_type);
10531 else
10532 base_type = raw_type;
10533
10534 name = TYPE_NAME (raw_type);
10535 subtype_info = strstr (name, "___XD");
10536 if (subtype_info == NULL)
10537 {
10538 LONGEST L = ada_discrete_type_low_bound (raw_type);
10539 LONGEST U = ada_discrete_type_high_bound (raw_type);
10540
10541 if (L < INT_MIN || U > INT_MAX)
10542 return raw_type;
10543 else
10544 return create_range_type (alloc_type_copy (raw_type), raw_type,
10545 ada_discrete_type_low_bound (raw_type),
10546 ada_discrete_type_high_bound (raw_type));
10547 }
10548 else
10549 {
10550 static char *name_buf = NULL;
10551 static size_t name_len = 0;
10552 int prefix_len = subtype_info - name;
10553 LONGEST L, U;
10554 struct type *type;
10555 char *bounds_str;
10556 int n;
10557
10558 GROW_VECT (name_buf, name_len, prefix_len + 5);
10559 strncpy (name_buf, name, prefix_len);
10560 name_buf[prefix_len] = '\0';
10561
10562 subtype_info += 5;
10563 bounds_str = strchr (subtype_info, '_');
10564 n = 1;
10565
10566 if (*subtype_info == 'L')
10567 {
10568 if (!ada_scan_number (bounds_str, n, &L, &n)
10569 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10570 return raw_type;
10571 if (bounds_str[n] == '_')
10572 n += 2;
10573 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10574 n += 1;
10575 subtype_info += 1;
10576 }
10577 else
10578 {
10579 int ok;
10580
10581 strcpy (name_buf + prefix_len, "___L");
10582 L = get_int_var_value (name_buf, &ok);
10583 if (!ok)
10584 {
10585 lim_warning (_("Unknown lower bound, using 1."));
10586 L = 1;
10587 }
10588 }
10589
10590 if (*subtype_info == 'U')
10591 {
10592 if (!ada_scan_number (bounds_str, n, &U, &n)
10593 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10594 return raw_type;
10595 }
10596 else
10597 {
10598 int ok;
10599
10600 strcpy (name_buf + prefix_len, "___U");
10601 U = get_int_var_value (name_buf, &ok);
10602 if (!ok)
10603 {
10604 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10605 U = L;
10606 }
10607 }
10608
10609 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10610 TYPE_NAME (type) = name;
10611 return type;
10612 }
10613 }
10614
10615 /* True iff NAME is the name of a range type. */
10616
10617 int
10618 ada_is_range_type_name (const char *name)
10619 {
10620 return (name != NULL && strstr (name, "___XD"));
10621 }
10622 \f
10623
10624 /* Modular types */
10625
10626 /* True iff TYPE is an Ada modular type. */
10627
10628 int
10629 ada_is_modular_type (struct type *type)
10630 {
10631 struct type *subranged_type = get_base_type (type);
10632
10633 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10634 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10635 && TYPE_UNSIGNED (subranged_type));
10636 }
10637
10638 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10639
10640 ULONGEST
10641 ada_modulus (struct type *type)
10642 {
10643 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10644 }
10645 \f
10646
10647 /* Ada exception catchpoint support:
10648 ---------------------------------
10649
10650 We support 3 kinds of exception catchpoints:
10651 . catchpoints on Ada exceptions
10652 . catchpoints on unhandled Ada exceptions
10653 . catchpoints on failed assertions
10654
10655 Exceptions raised during failed assertions, or unhandled exceptions
10656 could perfectly be caught with the general catchpoint on Ada exceptions.
10657 However, we can easily differentiate these two special cases, and having
10658 the option to distinguish these two cases from the rest can be useful
10659 to zero-in on certain situations.
10660
10661 Exception catchpoints are a specialized form of breakpoint,
10662 since they rely on inserting breakpoints inside known routines
10663 of the GNAT runtime. The implementation therefore uses a standard
10664 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10665 of breakpoint_ops.
10666
10667 Support in the runtime for exception catchpoints have been changed
10668 a few times already, and these changes affect the implementation
10669 of these catchpoints. In order to be able to support several
10670 variants of the runtime, we use a sniffer that will determine
10671 the runtime variant used by the program being debugged. */
10672
10673 /* The different types of catchpoints that we introduced for catching
10674 Ada exceptions. */
10675
10676 enum exception_catchpoint_kind
10677 {
10678 ex_catch_exception,
10679 ex_catch_exception_unhandled,
10680 ex_catch_assert
10681 };
10682
10683 /* Ada's standard exceptions. */
10684
10685 static char *standard_exc[] = {
10686 "constraint_error",
10687 "program_error",
10688 "storage_error",
10689 "tasking_error"
10690 };
10691
10692 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10693
10694 /* A structure that describes how to support exception catchpoints
10695 for a given executable. */
10696
10697 struct exception_support_info
10698 {
10699 /* The name of the symbol to break on in order to insert
10700 a catchpoint on exceptions. */
10701 const char *catch_exception_sym;
10702
10703 /* The name of the symbol to break on in order to insert
10704 a catchpoint on unhandled exceptions. */
10705 const char *catch_exception_unhandled_sym;
10706
10707 /* The name of the symbol to break on in order to insert
10708 a catchpoint on failed assertions. */
10709 const char *catch_assert_sym;
10710
10711 /* Assuming that the inferior just triggered an unhandled exception
10712 catchpoint, this function is responsible for returning the address
10713 in inferior memory where the name of that exception is stored.
10714 Return zero if the address could not be computed. */
10715 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10716 };
10717
10718 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10719 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10720
10721 /* The following exception support info structure describes how to
10722 implement exception catchpoints with the latest version of the
10723 Ada runtime (as of 2007-03-06). */
10724
10725 static const struct exception_support_info default_exception_support_info =
10726 {
10727 "__gnat_debug_raise_exception", /* catch_exception_sym */
10728 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10729 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10730 ada_unhandled_exception_name_addr
10731 };
10732
10733 /* The following exception support info structure describes how to
10734 implement exception catchpoints with a slightly older version
10735 of the Ada runtime. */
10736
10737 static const struct exception_support_info exception_support_info_fallback =
10738 {
10739 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10740 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10741 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10742 ada_unhandled_exception_name_addr_from_raise
10743 };
10744
10745 /* Return nonzero if we can detect the exception support routines
10746 described in EINFO.
10747
10748 This function errors out if an abnormal situation is detected
10749 (for instance, if we find the exception support routines, but
10750 that support is found to be incomplete). */
10751
10752 static int
10753 ada_has_this_exception_support (const struct exception_support_info *einfo)
10754 {
10755 struct symbol *sym;
10756
10757 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10758 that should be compiled with debugging information. As a result, we
10759 expect to find that symbol in the symtabs. */
10760
10761 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10762 if (sym == NULL)
10763 {
10764 /* Perhaps we did not find our symbol because the Ada runtime was
10765 compiled without debugging info, or simply stripped of it.
10766 It happens on some GNU/Linux distributions for instance, where
10767 users have to install a separate debug package in order to get
10768 the runtime's debugging info. In that situation, let the user
10769 know why we cannot insert an Ada exception catchpoint.
10770
10771 Note: Just for the purpose of inserting our Ada exception
10772 catchpoint, we could rely purely on the associated minimal symbol.
10773 But we would be operating in degraded mode anyway, since we are
10774 still lacking the debugging info needed later on to extract
10775 the name of the exception being raised (this name is printed in
10776 the catchpoint message, and is also used when trying to catch
10777 a specific exception). We do not handle this case for now. */
10778 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10779 error (_("Your Ada runtime appears to be missing some debugging "
10780 "information.\nCannot insert Ada exception catchpoint "
10781 "in this configuration."));
10782
10783 return 0;
10784 }
10785
10786 /* Make sure that the symbol we found corresponds to a function. */
10787
10788 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10789 error (_("Symbol \"%s\" is not a function (class = %d)"),
10790 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10791
10792 return 1;
10793 }
10794
10795 /* Inspect the Ada runtime and determine which exception info structure
10796 should be used to provide support for exception catchpoints.
10797
10798 This function will always set the per-inferior exception_info,
10799 or raise an error. */
10800
10801 static void
10802 ada_exception_support_info_sniffer (void)
10803 {
10804 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10805
10806 /* If the exception info is already known, then no need to recompute it. */
10807 if (data->exception_info != NULL)
10808 return;
10809
10810 /* Check the latest (default) exception support info. */
10811 if (ada_has_this_exception_support (&default_exception_support_info))
10812 {
10813 data->exception_info = &default_exception_support_info;
10814 return;
10815 }
10816
10817 /* Try our fallback exception suport info. */
10818 if (ada_has_this_exception_support (&exception_support_info_fallback))
10819 {
10820 data->exception_info = &exception_support_info_fallback;
10821 return;
10822 }
10823
10824 /* Sometimes, it is normal for us to not be able to find the routine
10825 we are looking for. This happens when the program is linked with
10826 the shared version of the GNAT runtime, and the program has not been
10827 started yet. Inform the user of these two possible causes if
10828 applicable. */
10829
10830 if (ada_update_initial_language (language_unknown) != language_ada)
10831 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10832
10833 /* If the symbol does not exist, then check that the program is
10834 already started, to make sure that shared libraries have been
10835 loaded. If it is not started, this may mean that the symbol is
10836 in a shared library. */
10837
10838 if (ptid_get_pid (inferior_ptid) == 0)
10839 error (_("Unable to insert catchpoint. Try to start the program first."));
10840
10841 /* At this point, we know that we are debugging an Ada program and
10842 that the inferior has been started, but we still are not able to
10843 find the run-time symbols. That can mean that we are in
10844 configurable run time mode, or that a-except as been optimized
10845 out by the linker... In any case, at this point it is not worth
10846 supporting this feature. */
10847
10848 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10849 }
10850
10851 /* True iff FRAME is very likely to be that of a function that is
10852 part of the runtime system. This is all very heuristic, but is
10853 intended to be used as advice as to what frames are uninteresting
10854 to most users. */
10855
10856 static int
10857 is_known_support_routine (struct frame_info *frame)
10858 {
10859 struct symtab_and_line sal;
10860 const char *func_name;
10861 enum language func_lang;
10862 int i;
10863
10864 /* If this code does not have any debugging information (no symtab),
10865 This cannot be any user code. */
10866
10867 find_frame_sal (frame, &sal);
10868 if (sal.symtab == NULL)
10869 return 1;
10870
10871 /* If there is a symtab, but the associated source file cannot be
10872 located, then assume this is not user code: Selecting a frame
10873 for which we cannot display the code would not be very helpful
10874 for the user. This should also take care of case such as VxWorks
10875 where the kernel has some debugging info provided for a few units. */
10876
10877 if (symtab_to_fullname (sal.symtab) == NULL)
10878 return 1;
10879
10880 /* Check the unit filename againt the Ada runtime file naming.
10881 We also check the name of the objfile against the name of some
10882 known system libraries that sometimes come with debugging info
10883 too. */
10884
10885 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10886 {
10887 re_comp (known_runtime_file_name_patterns[i]);
10888 if (re_exec (sal.symtab->filename))
10889 return 1;
10890 if (sal.symtab->objfile != NULL
10891 && re_exec (sal.symtab->objfile->name))
10892 return 1;
10893 }
10894
10895 /* Check whether the function is a GNAT-generated entity. */
10896
10897 find_frame_funname (frame, &func_name, &func_lang, NULL);
10898 if (func_name == NULL)
10899 return 1;
10900
10901 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10902 {
10903 re_comp (known_auxiliary_function_name_patterns[i]);
10904 if (re_exec (func_name))
10905 return 1;
10906 }
10907
10908 return 0;
10909 }
10910
10911 /* Find the first frame that contains debugging information and that is not
10912 part of the Ada run-time, starting from FI and moving upward. */
10913
10914 void
10915 ada_find_printable_frame (struct frame_info *fi)
10916 {
10917 for (; fi != NULL; fi = get_prev_frame (fi))
10918 {
10919 if (!is_known_support_routine (fi))
10920 {
10921 select_frame (fi);
10922 break;
10923 }
10924 }
10925
10926 }
10927
10928 /* Assuming that the inferior just triggered an unhandled exception
10929 catchpoint, return the address in inferior memory where the name
10930 of the exception is stored.
10931
10932 Return zero if the address could not be computed. */
10933
10934 static CORE_ADDR
10935 ada_unhandled_exception_name_addr (void)
10936 {
10937 return parse_and_eval_address ("e.full_name");
10938 }
10939
10940 /* Same as ada_unhandled_exception_name_addr, except that this function
10941 should be used when the inferior uses an older version of the runtime,
10942 where the exception name needs to be extracted from a specific frame
10943 several frames up in the callstack. */
10944
10945 static CORE_ADDR
10946 ada_unhandled_exception_name_addr_from_raise (void)
10947 {
10948 int frame_level;
10949 struct frame_info *fi;
10950 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10951
10952 /* To determine the name of this exception, we need to select
10953 the frame corresponding to RAISE_SYM_NAME. This frame is
10954 at least 3 levels up, so we simply skip the first 3 frames
10955 without checking the name of their associated function. */
10956 fi = get_current_frame ();
10957 for (frame_level = 0; frame_level < 3; frame_level += 1)
10958 if (fi != NULL)
10959 fi = get_prev_frame (fi);
10960
10961 while (fi != NULL)
10962 {
10963 const char *func_name;
10964 enum language func_lang;
10965
10966 find_frame_funname (fi, &func_name, &func_lang, NULL);
10967 if (func_name != NULL
10968 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10969 break; /* We found the frame we were looking for... */
10970 fi = get_prev_frame (fi);
10971 }
10972
10973 if (fi == NULL)
10974 return 0;
10975
10976 select_frame (fi);
10977 return parse_and_eval_address ("id.full_name");
10978 }
10979
10980 /* Assuming the inferior just triggered an Ada exception catchpoint
10981 (of any type), return the address in inferior memory where the name
10982 of the exception is stored, if applicable.
10983
10984 Return zero if the address could not be computed, or if not relevant. */
10985
10986 static CORE_ADDR
10987 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10988 struct breakpoint *b)
10989 {
10990 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10991
10992 switch (ex)
10993 {
10994 case ex_catch_exception:
10995 return (parse_and_eval_address ("e.full_name"));
10996 break;
10997
10998 case ex_catch_exception_unhandled:
10999 return data->exception_info->unhandled_exception_name_addr ();
11000 break;
11001
11002 case ex_catch_assert:
11003 return 0; /* Exception name is not relevant in this case. */
11004 break;
11005
11006 default:
11007 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11008 break;
11009 }
11010
11011 return 0; /* Should never be reached. */
11012 }
11013
11014 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11015 any error that ada_exception_name_addr_1 might cause to be thrown.
11016 When an error is intercepted, a warning with the error message is printed,
11017 and zero is returned. */
11018
11019 static CORE_ADDR
11020 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11021 struct breakpoint *b)
11022 {
11023 volatile struct gdb_exception e;
11024 CORE_ADDR result = 0;
11025
11026 TRY_CATCH (e, RETURN_MASK_ERROR)
11027 {
11028 result = ada_exception_name_addr_1 (ex, b);
11029 }
11030
11031 if (e.reason < 0)
11032 {
11033 warning (_("failed to get exception name: %s"), e.message);
11034 return 0;
11035 }
11036
11037 return result;
11038 }
11039
11040 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11041 char *, char **,
11042 const struct breakpoint_ops **);
11043 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11044
11045 /* Ada catchpoints.
11046
11047 In the case of catchpoints on Ada exceptions, the catchpoint will
11048 stop the target on every exception the program throws. When a user
11049 specifies the name of a specific exception, we translate this
11050 request into a condition expression (in text form), and then parse
11051 it into an expression stored in each of the catchpoint's locations.
11052 We then use this condition to check whether the exception that was
11053 raised is the one the user is interested in. If not, then the
11054 target is resumed again. We store the name of the requested
11055 exception, in order to be able to re-set the condition expression
11056 when symbols change. */
11057
11058 /* An instance of this type is used to represent an Ada catchpoint
11059 breakpoint location. It includes a "struct bp_location" as a kind
11060 of base class; users downcast to "struct bp_location *" when
11061 needed. */
11062
11063 struct ada_catchpoint_location
11064 {
11065 /* The base class. */
11066 struct bp_location base;
11067
11068 /* The condition that checks whether the exception that was raised
11069 is the specific exception the user specified on catchpoint
11070 creation. */
11071 struct expression *excep_cond_expr;
11072 };
11073
11074 /* Implement the DTOR method in the bp_location_ops structure for all
11075 Ada exception catchpoint kinds. */
11076
11077 static void
11078 ada_catchpoint_location_dtor (struct bp_location *bl)
11079 {
11080 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11081
11082 xfree (al->excep_cond_expr);
11083 }
11084
11085 /* The vtable to be used in Ada catchpoint locations. */
11086
11087 static const struct bp_location_ops ada_catchpoint_location_ops =
11088 {
11089 ada_catchpoint_location_dtor
11090 };
11091
11092 /* An instance of this type is used to represent an Ada catchpoint.
11093 It includes a "struct breakpoint" as a kind of base class; users
11094 downcast to "struct breakpoint *" when needed. */
11095
11096 struct ada_catchpoint
11097 {
11098 /* The base class. */
11099 struct breakpoint base;
11100
11101 /* The name of the specific exception the user specified. */
11102 char *excep_string;
11103 };
11104
11105 /* Parse the exception condition string in the context of each of the
11106 catchpoint's locations, and store them for later evaluation. */
11107
11108 static void
11109 create_excep_cond_exprs (struct ada_catchpoint *c)
11110 {
11111 struct cleanup *old_chain;
11112 struct bp_location *bl;
11113 char *cond_string;
11114
11115 /* Nothing to do if there's no specific exception to catch. */
11116 if (c->excep_string == NULL)
11117 return;
11118
11119 /* Same if there are no locations... */
11120 if (c->base.loc == NULL)
11121 return;
11122
11123 /* Compute the condition expression in text form, from the specific
11124 expection we want to catch. */
11125 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11126 old_chain = make_cleanup (xfree, cond_string);
11127
11128 /* Iterate over all the catchpoint's locations, and parse an
11129 expression for each. */
11130 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11131 {
11132 struct ada_catchpoint_location *ada_loc
11133 = (struct ada_catchpoint_location *) bl;
11134 struct expression *exp = NULL;
11135
11136 if (!bl->shlib_disabled)
11137 {
11138 volatile struct gdb_exception e;
11139 char *s;
11140
11141 s = cond_string;
11142 TRY_CATCH (e, RETURN_MASK_ERROR)
11143 {
11144 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11145 }
11146 if (e.reason < 0)
11147 warning (_("failed to reevaluate internal exception condition "
11148 "for catchpoint %d: %s"),
11149 c->base.number, e.message);
11150 }
11151
11152 ada_loc->excep_cond_expr = exp;
11153 }
11154
11155 do_cleanups (old_chain);
11156 }
11157
11158 /* Implement the DTOR method in the breakpoint_ops structure for all
11159 exception catchpoint kinds. */
11160
11161 static void
11162 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11163 {
11164 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11165
11166 xfree (c->excep_string);
11167
11168 bkpt_breakpoint_ops.dtor (b);
11169 }
11170
11171 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11172 structure for all exception catchpoint kinds. */
11173
11174 static struct bp_location *
11175 allocate_location_exception (enum exception_catchpoint_kind ex,
11176 struct breakpoint *self)
11177 {
11178 struct ada_catchpoint_location *loc;
11179
11180 loc = XNEW (struct ada_catchpoint_location);
11181 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11182 loc->excep_cond_expr = NULL;
11183 return &loc->base;
11184 }
11185
11186 /* Implement the RE_SET method in the breakpoint_ops structure for all
11187 exception catchpoint kinds. */
11188
11189 static void
11190 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11191 {
11192 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11193
11194 /* Call the base class's method. This updates the catchpoint's
11195 locations. */
11196 bkpt_breakpoint_ops.re_set (b);
11197
11198 /* Reparse the exception conditional expressions. One for each
11199 location. */
11200 create_excep_cond_exprs (c);
11201 }
11202
11203 /* Returns true if we should stop for this breakpoint hit. If the
11204 user specified a specific exception, we only want to cause a stop
11205 if the program thrown that exception. */
11206
11207 static int
11208 should_stop_exception (const struct bp_location *bl)
11209 {
11210 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11211 const struct ada_catchpoint_location *ada_loc
11212 = (const struct ada_catchpoint_location *) bl;
11213 volatile struct gdb_exception ex;
11214 int stop;
11215
11216 /* With no specific exception, should always stop. */
11217 if (c->excep_string == NULL)
11218 return 1;
11219
11220 if (ada_loc->excep_cond_expr == NULL)
11221 {
11222 /* We will have a NULL expression if back when we were creating
11223 the expressions, this location's had failed to parse. */
11224 return 1;
11225 }
11226
11227 stop = 1;
11228 TRY_CATCH (ex, RETURN_MASK_ALL)
11229 {
11230 struct value *mark;
11231
11232 mark = value_mark ();
11233 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11234 value_free_to_mark (mark);
11235 }
11236 if (ex.reason < 0)
11237 exception_fprintf (gdb_stderr, ex,
11238 _("Error in testing exception condition:\n"));
11239 return stop;
11240 }
11241
11242 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11243 for all exception catchpoint kinds. */
11244
11245 static void
11246 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11247 {
11248 bs->stop = should_stop_exception (bs->bp_location_at);
11249 }
11250
11251 /* Implement the PRINT_IT method in the breakpoint_ops structure
11252 for all exception catchpoint kinds. */
11253
11254 static enum print_stop_action
11255 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11256 {
11257 struct ui_out *uiout = current_uiout;
11258 struct breakpoint *b = bs->breakpoint_at;
11259
11260 annotate_catchpoint (b->number);
11261
11262 if (ui_out_is_mi_like_p (uiout))
11263 {
11264 ui_out_field_string (uiout, "reason",
11265 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11266 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11267 }
11268
11269 ui_out_text (uiout,
11270 b->disposition == disp_del ? "\nTemporary catchpoint "
11271 : "\nCatchpoint ");
11272 ui_out_field_int (uiout, "bkptno", b->number);
11273 ui_out_text (uiout, ", ");
11274
11275 switch (ex)
11276 {
11277 case ex_catch_exception:
11278 case ex_catch_exception_unhandled:
11279 {
11280 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11281 char exception_name[256];
11282
11283 if (addr != 0)
11284 {
11285 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11286 exception_name [sizeof (exception_name) - 1] = '\0';
11287 }
11288 else
11289 {
11290 /* For some reason, we were unable to read the exception
11291 name. This could happen if the Runtime was compiled
11292 without debugging info, for instance. In that case,
11293 just replace the exception name by the generic string
11294 "exception" - it will read as "an exception" in the
11295 notification we are about to print. */
11296 memcpy (exception_name, "exception", sizeof ("exception"));
11297 }
11298 /* In the case of unhandled exception breakpoints, we print
11299 the exception name as "unhandled EXCEPTION_NAME", to make
11300 it clearer to the user which kind of catchpoint just got
11301 hit. We used ui_out_text to make sure that this extra
11302 info does not pollute the exception name in the MI case. */
11303 if (ex == ex_catch_exception_unhandled)
11304 ui_out_text (uiout, "unhandled ");
11305 ui_out_field_string (uiout, "exception-name", exception_name);
11306 }
11307 break;
11308 case ex_catch_assert:
11309 /* In this case, the name of the exception is not really
11310 important. Just print "failed assertion" to make it clearer
11311 that his program just hit an assertion-failure catchpoint.
11312 We used ui_out_text because this info does not belong in
11313 the MI output. */
11314 ui_out_text (uiout, "failed assertion");
11315 break;
11316 }
11317 ui_out_text (uiout, " at ");
11318 ada_find_printable_frame (get_current_frame ());
11319
11320 return PRINT_SRC_AND_LOC;
11321 }
11322
11323 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11324 for all exception catchpoint kinds. */
11325
11326 static void
11327 print_one_exception (enum exception_catchpoint_kind ex,
11328 struct breakpoint *b, struct bp_location **last_loc)
11329 {
11330 struct ui_out *uiout = current_uiout;
11331 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11332 struct value_print_options opts;
11333
11334 get_user_print_options (&opts);
11335 if (opts.addressprint)
11336 {
11337 annotate_field (4);
11338 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11339 }
11340
11341 annotate_field (5);
11342 *last_loc = b->loc;
11343 switch (ex)
11344 {
11345 case ex_catch_exception:
11346 if (c->excep_string != NULL)
11347 {
11348 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11349
11350 ui_out_field_string (uiout, "what", msg);
11351 xfree (msg);
11352 }
11353 else
11354 ui_out_field_string (uiout, "what", "all Ada exceptions");
11355
11356 break;
11357
11358 case ex_catch_exception_unhandled:
11359 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11360 break;
11361
11362 case ex_catch_assert:
11363 ui_out_field_string (uiout, "what", "failed Ada assertions");
11364 break;
11365
11366 default:
11367 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11368 break;
11369 }
11370 }
11371
11372 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11373 for all exception catchpoint kinds. */
11374
11375 static void
11376 print_mention_exception (enum exception_catchpoint_kind ex,
11377 struct breakpoint *b)
11378 {
11379 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11380 struct ui_out *uiout = current_uiout;
11381
11382 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11383 : _("Catchpoint "));
11384 ui_out_field_int (uiout, "bkptno", b->number);
11385 ui_out_text (uiout, ": ");
11386
11387 switch (ex)
11388 {
11389 case ex_catch_exception:
11390 if (c->excep_string != NULL)
11391 {
11392 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11393 struct cleanup *old_chain = make_cleanup (xfree, info);
11394
11395 ui_out_text (uiout, info);
11396 do_cleanups (old_chain);
11397 }
11398 else
11399 ui_out_text (uiout, _("all Ada exceptions"));
11400 break;
11401
11402 case ex_catch_exception_unhandled:
11403 ui_out_text (uiout, _("unhandled Ada exceptions"));
11404 break;
11405
11406 case ex_catch_assert:
11407 ui_out_text (uiout, _("failed Ada assertions"));
11408 break;
11409
11410 default:
11411 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11412 break;
11413 }
11414 }
11415
11416 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11417 for all exception catchpoint kinds. */
11418
11419 static void
11420 print_recreate_exception (enum exception_catchpoint_kind ex,
11421 struct breakpoint *b, struct ui_file *fp)
11422 {
11423 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11424
11425 switch (ex)
11426 {
11427 case ex_catch_exception:
11428 fprintf_filtered (fp, "catch exception");
11429 if (c->excep_string != NULL)
11430 fprintf_filtered (fp, " %s", c->excep_string);
11431 break;
11432
11433 case ex_catch_exception_unhandled:
11434 fprintf_filtered (fp, "catch exception unhandled");
11435 break;
11436
11437 case ex_catch_assert:
11438 fprintf_filtered (fp, "catch assert");
11439 break;
11440
11441 default:
11442 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11443 }
11444 print_recreate_thread (b, fp);
11445 }
11446
11447 /* Virtual table for "catch exception" breakpoints. */
11448
11449 static void
11450 dtor_catch_exception (struct breakpoint *b)
11451 {
11452 dtor_exception (ex_catch_exception, b);
11453 }
11454
11455 static struct bp_location *
11456 allocate_location_catch_exception (struct breakpoint *self)
11457 {
11458 return allocate_location_exception (ex_catch_exception, self);
11459 }
11460
11461 static void
11462 re_set_catch_exception (struct breakpoint *b)
11463 {
11464 re_set_exception (ex_catch_exception, b);
11465 }
11466
11467 static void
11468 check_status_catch_exception (bpstat bs)
11469 {
11470 check_status_exception (ex_catch_exception, bs);
11471 }
11472
11473 static enum print_stop_action
11474 print_it_catch_exception (bpstat bs)
11475 {
11476 return print_it_exception (ex_catch_exception, bs);
11477 }
11478
11479 static void
11480 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11481 {
11482 print_one_exception (ex_catch_exception, b, last_loc);
11483 }
11484
11485 static void
11486 print_mention_catch_exception (struct breakpoint *b)
11487 {
11488 print_mention_exception (ex_catch_exception, b);
11489 }
11490
11491 static void
11492 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11493 {
11494 print_recreate_exception (ex_catch_exception, b, fp);
11495 }
11496
11497 static struct breakpoint_ops catch_exception_breakpoint_ops;
11498
11499 /* Virtual table for "catch exception unhandled" breakpoints. */
11500
11501 static void
11502 dtor_catch_exception_unhandled (struct breakpoint *b)
11503 {
11504 dtor_exception (ex_catch_exception_unhandled, b);
11505 }
11506
11507 static struct bp_location *
11508 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11509 {
11510 return allocate_location_exception (ex_catch_exception_unhandled, self);
11511 }
11512
11513 static void
11514 re_set_catch_exception_unhandled (struct breakpoint *b)
11515 {
11516 re_set_exception (ex_catch_exception_unhandled, b);
11517 }
11518
11519 static void
11520 check_status_catch_exception_unhandled (bpstat bs)
11521 {
11522 check_status_exception (ex_catch_exception_unhandled, bs);
11523 }
11524
11525 static enum print_stop_action
11526 print_it_catch_exception_unhandled (bpstat bs)
11527 {
11528 return print_it_exception (ex_catch_exception_unhandled, bs);
11529 }
11530
11531 static void
11532 print_one_catch_exception_unhandled (struct breakpoint *b,
11533 struct bp_location **last_loc)
11534 {
11535 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11536 }
11537
11538 static void
11539 print_mention_catch_exception_unhandled (struct breakpoint *b)
11540 {
11541 print_mention_exception (ex_catch_exception_unhandled, b);
11542 }
11543
11544 static void
11545 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11546 struct ui_file *fp)
11547 {
11548 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11549 }
11550
11551 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11552
11553 /* Virtual table for "catch assert" breakpoints. */
11554
11555 static void
11556 dtor_catch_assert (struct breakpoint *b)
11557 {
11558 dtor_exception (ex_catch_assert, b);
11559 }
11560
11561 static struct bp_location *
11562 allocate_location_catch_assert (struct breakpoint *self)
11563 {
11564 return allocate_location_exception (ex_catch_assert, self);
11565 }
11566
11567 static void
11568 re_set_catch_assert (struct breakpoint *b)
11569 {
11570 return re_set_exception (ex_catch_assert, b);
11571 }
11572
11573 static void
11574 check_status_catch_assert (bpstat bs)
11575 {
11576 check_status_exception (ex_catch_assert, bs);
11577 }
11578
11579 static enum print_stop_action
11580 print_it_catch_assert (bpstat bs)
11581 {
11582 return print_it_exception (ex_catch_assert, bs);
11583 }
11584
11585 static void
11586 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11587 {
11588 print_one_exception (ex_catch_assert, b, last_loc);
11589 }
11590
11591 static void
11592 print_mention_catch_assert (struct breakpoint *b)
11593 {
11594 print_mention_exception (ex_catch_assert, b);
11595 }
11596
11597 static void
11598 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11599 {
11600 print_recreate_exception (ex_catch_assert, b, fp);
11601 }
11602
11603 static struct breakpoint_ops catch_assert_breakpoint_ops;
11604
11605 /* Return a newly allocated copy of the first space-separated token
11606 in ARGSP, and then adjust ARGSP to point immediately after that
11607 token.
11608
11609 Return NULL if ARGPS does not contain any more tokens. */
11610
11611 static char *
11612 ada_get_next_arg (char **argsp)
11613 {
11614 char *args = *argsp;
11615 char *end;
11616 char *result;
11617
11618 args = skip_spaces (args);
11619 if (args[0] == '\0')
11620 return NULL; /* No more arguments. */
11621
11622 /* Find the end of the current argument. */
11623
11624 end = skip_to_space (args);
11625
11626 /* Adjust ARGSP to point to the start of the next argument. */
11627
11628 *argsp = end;
11629
11630 /* Make a copy of the current argument and return it. */
11631
11632 result = xmalloc (end - args + 1);
11633 strncpy (result, args, end - args);
11634 result[end - args] = '\0';
11635
11636 return result;
11637 }
11638
11639 /* Split the arguments specified in a "catch exception" command.
11640 Set EX to the appropriate catchpoint type.
11641 Set EXCEP_STRING to the name of the specific exception if
11642 specified by the user.
11643 If a condition is found at the end of the arguments, the condition
11644 expression is stored in COND_STRING (memory must be deallocated
11645 after use). Otherwise COND_STRING is set to NULL. */
11646
11647 static void
11648 catch_ada_exception_command_split (char *args,
11649 enum exception_catchpoint_kind *ex,
11650 char **excep_string,
11651 char **cond_string)
11652 {
11653 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11654 char *exception_name;
11655 char *cond = NULL;
11656
11657 exception_name = ada_get_next_arg (&args);
11658 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11659 {
11660 /* This is not an exception name; this is the start of a condition
11661 expression for a catchpoint on all exceptions. So, "un-get"
11662 this token, and set exception_name to NULL. */
11663 xfree (exception_name);
11664 exception_name = NULL;
11665 args -= 2;
11666 }
11667 make_cleanup (xfree, exception_name);
11668
11669 /* Check to see if we have a condition. */
11670
11671 args = skip_spaces (args);
11672 if (strncmp (args, "if", 2) == 0
11673 && (isspace (args[2]) || args[2] == '\0'))
11674 {
11675 args += 2;
11676 args = skip_spaces (args);
11677
11678 if (args[0] == '\0')
11679 error (_("Condition missing after `if' keyword"));
11680 cond = xstrdup (args);
11681 make_cleanup (xfree, cond);
11682
11683 args += strlen (args);
11684 }
11685
11686 /* Check that we do not have any more arguments. Anything else
11687 is unexpected. */
11688
11689 if (args[0] != '\0')
11690 error (_("Junk at end of expression"));
11691
11692 discard_cleanups (old_chain);
11693
11694 if (exception_name == NULL)
11695 {
11696 /* Catch all exceptions. */
11697 *ex = ex_catch_exception;
11698 *excep_string = NULL;
11699 }
11700 else if (strcmp (exception_name, "unhandled") == 0)
11701 {
11702 /* Catch unhandled exceptions. */
11703 *ex = ex_catch_exception_unhandled;
11704 *excep_string = NULL;
11705 }
11706 else
11707 {
11708 /* Catch a specific exception. */
11709 *ex = ex_catch_exception;
11710 *excep_string = exception_name;
11711 }
11712 *cond_string = cond;
11713 }
11714
11715 /* Return the name of the symbol on which we should break in order to
11716 implement a catchpoint of the EX kind. */
11717
11718 static const char *
11719 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11720 {
11721 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11722
11723 gdb_assert (data->exception_info != NULL);
11724
11725 switch (ex)
11726 {
11727 case ex_catch_exception:
11728 return (data->exception_info->catch_exception_sym);
11729 break;
11730 case ex_catch_exception_unhandled:
11731 return (data->exception_info->catch_exception_unhandled_sym);
11732 break;
11733 case ex_catch_assert:
11734 return (data->exception_info->catch_assert_sym);
11735 break;
11736 default:
11737 internal_error (__FILE__, __LINE__,
11738 _("unexpected catchpoint kind (%d)"), ex);
11739 }
11740 }
11741
11742 /* Return the breakpoint ops "virtual table" used for catchpoints
11743 of the EX kind. */
11744
11745 static const struct breakpoint_ops *
11746 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11747 {
11748 switch (ex)
11749 {
11750 case ex_catch_exception:
11751 return (&catch_exception_breakpoint_ops);
11752 break;
11753 case ex_catch_exception_unhandled:
11754 return (&catch_exception_unhandled_breakpoint_ops);
11755 break;
11756 case ex_catch_assert:
11757 return (&catch_assert_breakpoint_ops);
11758 break;
11759 default:
11760 internal_error (__FILE__, __LINE__,
11761 _("unexpected catchpoint kind (%d)"), ex);
11762 }
11763 }
11764
11765 /* Return the condition that will be used to match the current exception
11766 being raised with the exception that the user wants to catch. This
11767 assumes that this condition is used when the inferior just triggered
11768 an exception catchpoint.
11769
11770 The string returned is a newly allocated string that needs to be
11771 deallocated later. */
11772
11773 static char *
11774 ada_exception_catchpoint_cond_string (const char *excep_string)
11775 {
11776 int i;
11777
11778 /* The standard exceptions are a special case. They are defined in
11779 runtime units that have been compiled without debugging info; if
11780 EXCEP_STRING is the not-fully-qualified name of a standard
11781 exception (e.g. "constraint_error") then, during the evaluation
11782 of the condition expression, the symbol lookup on this name would
11783 *not* return this standard exception. The catchpoint condition
11784 may then be set only on user-defined exceptions which have the
11785 same not-fully-qualified name (e.g. my_package.constraint_error).
11786
11787 To avoid this unexcepted behavior, these standard exceptions are
11788 systematically prefixed by "standard". This means that "catch
11789 exception constraint_error" is rewritten into "catch exception
11790 standard.constraint_error".
11791
11792 If an exception named contraint_error is defined in another package of
11793 the inferior program, then the only way to specify this exception as a
11794 breakpoint condition is to use its fully-qualified named:
11795 e.g. my_package.constraint_error. */
11796
11797 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11798 {
11799 if (strcmp (standard_exc [i], excep_string) == 0)
11800 {
11801 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11802 excep_string);
11803 }
11804 }
11805 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11806 }
11807
11808 /* Return the symtab_and_line that should be used to insert an exception
11809 catchpoint of the TYPE kind.
11810
11811 EXCEP_STRING should contain the name of a specific exception that
11812 the catchpoint should catch, or NULL otherwise.
11813
11814 ADDR_STRING returns the name of the function where the real
11815 breakpoint that implements the catchpoints is set, depending on the
11816 type of catchpoint we need to create. */
11817
11818 static struct symtab_and_line
11819 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11820 char **addr_string, const struct breakpoint_ops **ops)
11821 {
11822 const char *sym_name;
11823 struct symbol *sym;
11824
11825 /* First, find out which exception support info to use. */
11826 ada_exception_support_info_sniffer ();
11827
11828 /* Then lookup the function on which we will break in order to catch
11829 the Ada exceptions requested by the user. */
11830 sym_name = ada_exception_sym_name (ex);
11831 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11832
11833 /* We can assume that SYM is not NULL at this stage. If the symbol
11834 did not exist, ada_exception_support_info_sniffer would have
11835 raised an exception.
11836
11837 Also, ada_exception_support_info_sniffer should have already
11838 verified that SYM is a function symbol. */
11839 gdb_assert (sym != NULL);
11840 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11841
11842 /* Set ADDR_STRING. */
11843 *addr_string = xstrdup (sym_name);
11844
11845 /* Set OPS. */
11846 *ops = ada_exception_breakpoint_ops (ex);
11847
11848 return find_function_start_sal (sym, 1);
11849 }
11850
11851 /* Parse the arguments (ARGS) of the "catch exception" command.
11852
11853 If the user asked the catchpoint to catch only a specific
11854 exception, then save the exception name in ADDR_STRING.
11855
11856 If the user provided a condition, then set COND_STRING to
11857 that condition expression (the memory must be deallocated
11858 after use). Otherwise, set COND_STRING to NULL.
11859
11860 See ada_exception_sal for a description of all the remaining
11861 function arguments of this function. */
11862
11863 static struct symtab_and_line
11864 ada_decode_exception_location (char *args, char **addr_string,
11865 char **excep_string,
11866 char **cond_string,
11867 const struct breakpoint_ops **ops)
11868 {
11869 enum exception_catchpoint_kind ex;
11870
11871 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11872 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11873 }
11874
11875 /* Create an Ada exception catchpoint. */
11876
11877 static void
11878 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11879 struct symtab_and_line sal,
11880 char *addr_string,
11881 char *excep_string,
11882 char *cond_string,
11883 const struct breakpoint_ops *ops,
11884 int tempflag,
11885 int from_tty)
11886 {
11887 struct ada_catchpoint *c;
11888
11889 c = XNEW (struct ada_catchpoint);
11890 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11891 ops, tempflag, from_tty);
11892 c->excep_string = excep_string;
11893 create_excep_cond_exprs (c);
11894 if (cond_string != NULL)
11895 set_breakpoint_condition (&c->base, cond_string, from_tty);
11896 install_breakpoint (0, &c->base, 1);
11897 }
11898
11899 /* Implement the "catch exception" command. */
11900
11901 static void
11902 catch_ada_exception_command (char *arg, int from_tty,
11903 struct cmd_list_element *command)
11904 {
11905 struct gdbarch *gdbarch = get_current_arch ();
11906 int tempflag;
11907 struct symtab_and_line sal;
11908 char *addr_string = NULL;
11909 char *excep_string = NULL;
11910 char *cond_string = NULL;
11911 const struct breakpoint_ops *ops = NULL;
11912
11913 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11914
11915 if (!arg)
11916 arg = "";
11917 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11918 &cond_string, &ops);
11919 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11920 excep_string, cond_string, ops,
11921 tempflag, from_tty);
11922 }
11923
11924 /* Assuming that ARGS contains the arguments of a "catch assert"
11925 command, parse those arguments and return a symtab_and_line object
11926 for a failed assertion catchpoint.
11927
11928 Set ADDR_STRING to the name of the function where the real
11929 breakpoint that implements the catchpoint is set.
11930
11931 If ARGS contains a condition, set COND_STRING to that condition
11932 (the memory needs to be deallocated after use). Otherwise, set
11933 COND_STRING to NULL. */
11934
11935 static struct symtab_and_line
11936 ada_decode_assert_location (char *args, char **addr_string,
11937 char **cond_string,
11938 const struct breakpoint_ops **ops)
11939 {
11940 args = skip_spaces (args);
11941
11942 /* Check whether a condition was provided. */
11943 if (strncmp (args, "if", 2) == 0
11944 && (isspace (args[2]) || args[2] == '\0'))
11945 {
11946 args += 2;
11947 args = skip_spaces (args);
11948 if (args[0] == '\0')
11949 error (_("condition missing after `if' keyword"));
11950 *cond_string = xstrdup (args);
11951 }
11952
11953 /* Otherwise, there should be no other argument at the end of
11954 the command. */
11955 else if (args[0] != '\0')
11956 error (_("Junk at end of arguments."));
11957
11958 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11959 }
11960
11961 /* Implement the "catch assert" command. */
11962
11963 static void
11964 catch_assert_command (char *arg, int from_tty,
11965 struct cmd_list_element *command)
11966 {
11967 struct gdbarch *gdbarch = get_current_arch ();
11968 int tempflag;
11969 struct symtab_and_line sal;
11970 char *addr_string = NULL;
11971 char *cond_string = NULL;
11972 const struct breakpoint_ops *ops = NULL;
11973
11974 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11975
11976 if (!arg)
11977 arg = "";
11978 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11979 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11980 NULL, cond_string, ops, tempflag,
11981 from_tty);
11982 }
11983 /* Operators */
11984 /* Information about operators given special treatment in functions
11985 below. */
11986 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11987
11988 #define ADA_OPERATORS \
11989 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11990 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11991 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11992 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11993 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11994 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11995 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11996 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11997 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11998 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11999 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12000 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12001 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12002 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12003 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12004 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12005 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12006 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12007 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12008
12009 static void
12010 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12011 int *argsp)
12012 {
12013 switch (exp->elts[pc - 1].opcode)
12014 {
12015 default:
12016 operator_length_standard (exp, pc, oplenp, argsp);
12017 break;
12018
12019 #define OP_DEFN(op, len, args, binop) \
12020 case op: *oplenp = len; *argsp = args; break;
12021 ADA_OPERATORS;
12022 #undef OP_DEFN
12023
12024 case OP_AGGREGATE:
12025 *oplenp = 3;
12026 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12027 break;
12028
12029 case OP_CHOICES:
12030 *oplenp = 3;
12031 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12032 break;
12033 }
12034 }
12035
12036 /* Implementation of the exp_descriptor method operator_check. */
12037
12038 static int
12039 ada_operator_check (struct expression *exp, int pos,
12040 int (*objfile_func) (struct objfile *objfile, void *data),
12041 void *data)
12042 {
12043 const union exp_element *const elts = exp->elts;
12044 struct type *type = NULL;
12045
12046 switch (elts[pos].opcode)
12047 {
12048 case UNOP_IN_RANGE:
12049 case UNOP_QUAL:
12050 type = elts[pos + 1].type;
12051 break;
12052
12053 default:
12054 return operator_check_standard (exp, pos, objfile_func, data);
12055 }
12056
12057 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12058
12059 if (type && TYPE_OBJFILE (type)
12060 && (*objfile_func) (TYPE_OBJFILE (type), data))
12061 return 1;
12062
12063 return 0;
12064 }
12065
12066 static char *
12067 ada_op_name (enum exp_opcode opcode)
12068 {
12069 switch (opcode)
12070 {
12071 default:
12072 return op_name_standard (opcode);
12073
12074 #define OP_DEFN(op, len, args, binop) case op: return #op;
12075 ADA_OPERATORS;
12076 #undef OP_DEFN
12077
12078 case OP_AGGREGATE:
12079 return "OP_AGGREGATE";
12080 case OP_CHOICES:
12081 return "OP_CHOICES";
12082 case OP_NAME:
12083 return "OP_NAME";
12084 }
12085 }
12086
12087 /* As for operator_length, but assumes PC is pointing at the first
12088 element of the operator, and gives meaningful results only for the
12089 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12090
12091 static void
12092 ada_forward_operator_length (struct expression *exp, int pc,
12093 int *oplenp, int *argsp)
12094 {
12095 switch (exp->elts[pc].opcode)
12096 {
12097 default:
12098 *oplenp = *argsp = 0;
12099 break;
12100
12101 #define OP_DEFN(op, len, args, binop) \
12102 case op: *oplenp = len; *argsp = args; break;
12103 ADA_OPERATORS;
12104 #undef OP_DEFN
12105
12106 case OP_AGGREGATE:
12107 *oplenp = 3;
12108 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12109 break;
12110
12111 case OP_CHOICES:
12112 *oplenp = 3;
12113 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12114 break;
12115
12116 case OP_STRING:
12117 case OP_NAME:
12118 {
12119 int len = longest_to_int (exp->elts[pc + 1].longconst);
12120
12121 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12122 *argsp = 0;
12123 break;
12124 }
12125 }
12126 }
12127
12128 static int
12129 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12130 {
12131 enum exp_opcode op = exp->elts[elt].opcode;
12132 int oplen, nargs;
12133 int pc = elt;
12134 int i;
12135
12136 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12137
12138 switch (op)
12139 {
12140 /* Ada attributes ('Foo). */
12141 case OP_ATR_FIRST:
12142 case OP_ATR_LAST:
12143 case OP_ATR_LENGTH:
12144 case OP_ATR_IMAGE:
12145 case OP_ATR_MAX:
12146 case OP_ATR_MIN:
12147 case OP_ATR_MODULUS:
12148 case OP_ATR_POS:
12149 case OP_ATR_SIZE:
12150 case OP_ATR_TAG:
12151 case OP_ATR_VAL:
12152 break;
12153
12154 case UNOP_IN_RANGE:
12155 case UNOP_QUAL:
12156 /* XXX: gdb_sprint_host_address, type_sprint */
12157 fprintf_filtered (stream, _("Type @"));
12158 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12159 fprintf_filtered (stream, " (");
12160 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12161 fprintf_filtered (stream, ")");
12162 break;
12163 case BINOP_IN_BOUNDS:
12164 fprintf_filtered (stream, " (%d)",
12165 longest_to_int (exp->elts[pc + 2].longconst));
12166 break;
12167 case TERNOP_IN_RANGE:
12168 break;
12169
12170 case OP_AGGREGATE:
12171 case OP_OTHERS:
12172 case OP_DISCRETE_RANGE:
12173 case OP_POSITIONAL:
12174 case OP_CHOICES:
12175 break;
12176
12177 case OP_NAME:
12178 case OP_STRING:
12179 {
12180 char *name = &exp->elts[elt + 2].string;
12181 int len = longest_to_int (exp->elts[elt + 1].longconst);
12182
12183 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12184 break;
12185 }
12186
12187 default:
12188 return dump_subexp_body_standard (exp, stream, elt);
12189 }
12190
12191 elt += oplen;
12192 for (i = 0; i < nargs; i += 1)
12193 elt = dump_subexp (exp, stream, elt);
12194
12195 return elt;
12196 }
12197
12198 /* The Ada extension of print_subexp (q.v.). */
12199
12200 static void
12201 ada_print_subexp (struct expression *exp, int *pos,
12202 struct ui_file *stream, enum precedence prec)
12203 {
12204 int oplen, nargs, i;
12205 int pc = *pos;
12206 enum exp_opcode op = exp->elts[pc].opcode;
12207
12208 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12209
12210 *pos += oplen;
12211 switch (op)
12212 {
12213 default:
12214 *pos -= oplen;
12215 print_subexp_standard (exp, pos, stream, prec);
12216 return;
12217
12218 case OP_VAR_VALUE:
12219 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12220 return;
12221
12222 case BINOP_IN_BOUNDS:
12223 /* XXX: sprint_subexp */
12224 print_subexp (exp, pos, stream, PREC_SUFFIX);
12225 fputs_filtered (" in ", stream);
12226 print_subexp (exp, pos, stream, PREC_SUFFIX);
12227 fputs_filtered ("'range", stream);
12228 if (exp->elts[pc + 1].longconst > 1)
12229 fprintf_filtered (stream, "(%ld)",
12230 (long) exp->elts[pc + 1].longconst);
12231 return;
12232
12233 case TERNOP_IN_RANGE:
12234 if (prec >= PREC_EQUAL)
12235 fputs_filtered ("(", stream);
12236 /* XXX: sprint_subexp */
12237 print_subexp (exp, pos, stream, PREC_SUFFIX);
12238 fputs_filtered (" in ", stream);
12239 print_subexp (exp, pos, stream, PREC_EQUAL);
12240 fputs_filtered (" .. ", stream);
12241 print_subexp (exp, pos, stream, PREC_EQUAL);
12242 if (prec >= PREC_EQUAL)
12243 fputs_filtered (")", stream);
12244 return;
12245
12246 case OP_ATR_FIRST:
12247 case OP_ATR_LAST:
12248 case OP_ATR_LENGTH:
12249 case OP_ATR_IMAGE:
12250 case OP_ATR_MAX:
12251 case OP_ATR_MIN:
12252 case OP_ATR_MODULUS:
12253 case OP_ATR_POS:
12254 case OP_ATR_SIZE:
12255 case OP_ATR_TAG:
12256 case OP_ATR_VAL:
12257 if (exp->elts[*pos].opcode == OP_TYPE)
12258 {
12259 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12260 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12261 *pos += 3;
12262 }
12263 else
12264 print_subexp (exp, pos, stream, PREC_SUFFIX);
12265 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12266 if (nargs > 1)
12267 {
12268 int tem;
12269
12270 for (tem = 1; tem < nargs; tem += 1)
12271 {
12272 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12273 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12274 }
12275 fputs_filtered (")", stream);
12276 }
12277 return;
12278
12279 case UNOP_QUAL:
12280 type_print (exp->elts[pc + 1].type, "", stream, 0);
12281 fputs_filtered ("'(", stream);
12282 print_subexp (exp, pos, stream, PREC_PREFIX);
12283 fputs_filtered (")", stream);
12284 return;
12285
12286 case UNOP_IN_RANGE:
12287 /* XXX: sprint_subexp */
12288 print_subexp (exp, pos, stream, PREC_SUFFIX);
12289 fputs_filtered (" in ", stream);
12290 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12291 return;
12292
12293 case OP_DISCRETE_RANGE:
12294 print_subexp (exp, pos, stream, PREC_SUFFIX);
12295 fputs_filtered ("..", stream);
12296 print_subexp (exp, pos, stream, PREC_SUFFIX);
12297 return;
12298
12299 case OP_OTHERS:
12300 fputs_filtered ("others => ", stream);
12301 print_subexp (exp, pos, stream, PREC_SUFFIX);
12302 return;
12303
12304 case OP_CHOICES:
12305 for (i = 0; i < nargs-1; i += 1)
12306 {
12307 if (i > 0)
12308 fputs_filtered ("|", stream);
12309 print_subexp (exp, pos, stream, PREC_SUFFIX);
12310 }
12311 fputs_filtered (" => ", stream);
12312 print_subexp (exp, pos, stream, PREC_SUFFIX);
12313 return;
12314
12315 case OP_POSITIONAL:
12316 print_subexp (exp, pos, stream, PREC_SUFFIX);
12317 return;
12318
12319 case OP_AGGREGATE:
12320 fputs_filtered ("(", stream);
12321 for (i = 0; i < nargs; i += 1)
12322 {
12323 if (i > 0)
12324 fputs_filtered (", ", stream);
12325 print_subexp (exp, pos, stream, PREC_SUFFIX);
12326 }
12327 fputs_filtered (")", stream);
12328 return;
12329 }
12330 }
12331
12332 /* Table mapping opcodes into strings for printing operators
12333 and precedences of the operators. */
12334
12335 static const struct op_print ada_op_print_tab[] = {
12336 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12337 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12338 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12339 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12340 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12341 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12342 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12343 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12344 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12345 {">=", BINOP_GEQ, PREC_ORDER, 0},
12346 {">", BINOP_GTR, PREC_ORDER, 0},
12347 {"<", BINOP_LESS, PREC_ORDER, 0},
12348 {">>", BINOP_RSH, PREC_SHIFT, 0},
12349 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12350 {"+", BINOP_ADD, PREC_ADD, 0},
12351 {"-", BINOP_SUB, PREC_ADD, 0},
12352 {"&", BINOP_CONCAT, PREC_ADD, 0},
12353 {"*", BINOP_MUL, PREC_MUL, 0},
12354 {"/", BINOP_DIV, PREC_MUL, 0},
12355 {"rem", BINOP_REM, PREC_MUL, 0},
12356 {"mod", BINOP_MOD, PREC_MUL, 0},
12357 {"**", BINOP_EXP, PREC_REPEAT, 0},
12358 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12359 {"-", UNOP_NEG, PREC_PREFIX, 0},
12360 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12361 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12362 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12363 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12364 {".all", UNOP_IND, PREC_SUFFIX, 1},
12365 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12366 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12367 {NULL, 0, 0, 0}
12368 };
12369 \f
12370 enum ada_primitive_types {
12371 ada_primitive_type_int,
12372 ada_primitive_type_long,
12373 ada_primitive_type_short,
12374 ada_primitive_type_char,
12375 ada_primitive_type_float,
12376 ada_primitive_type_double,
12377 ada_primitive_type_void,
12378 ada_primitive_type_long_long,
12379 ada_primitive_type_long_double,
12380 ada_primitive_type_natural,
12381 ada_primitive_type_positive,
12382 ada_primitive_type_system_address,
12383 nr_ada_primitive_types
12384 };
12385
12386 static void
12387 ada_language_arch_info (struct gdbarch *gdbarch,
12388 struct language_arch_info *lai)
12389 {
12390 const struct builtin_type *builtin = builtin_type (gdbarch);
12391
12392 lai->primitive_type_vector
12393 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12394 struct type *);
12395
12396 lai->primitive_type_vector [ada_primitive_type_int]
12397 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12398 0, "integer");
12399 lai->primitive_type_vector [ada_primitive_type_long]
12400 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12401 0, "long_integer");
12402 lai->primitive_type_vector [ada_primitive_type_short]
12403 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12404 0, "short_integer");
12405 lai->string_char_type
12406 = lai->primitive_type_vector [ada_primitive_type_char]
12407 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12408 lai->primitive_type_vector [ada_primitive_type_float]
12409 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12410 "float", NULL);
12411 lai->primitive_type_vector [ada_primitive_type_double]
12412 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12413 "long_float", NULL);
12414 lai->primitive_type_vector [ada_primitive_type_long_long]
12415 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12416 0, "long_long_integer");
12417 lai->primitive_type_vector [ada_primitive_type_long_double]
12418 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12419 "long_long_float", NULL);
12420 lai->primitive_type_vector [ada_primitive_type_natural]
12421 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12422 0, "natural");
12423 lai->primitive_type_vector [ada_primitive_type_positive]
12424 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12425 0, "positive");
12426 lai->primitive_type_vector [ada_primitive_type_void]
12427 = builtin->builtin_void;
12428
12429 lai->primitive_type_vector [ada_primitive_type_system_address]
12430 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12431 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12432 = "system__address";
12433
12434 lai->bool_type_symbol = NULL;
12435 lai->bool_type_default = builtin->builtin_bool;
12436 }
12437 \f
12438 /* Language vector */
12439
12440 /* Not really used, but needed in the ada_language_defn. */
12441
12442 static void
12443 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12444 {
12445 ada_emit_char (c, type, stream, quoter, 1);
12446 }
12447
12448 static int
12449 parse (void)
12450 {
12451 warnings_issued = 0;
12452 return ada_parse ();
12453 }
12454
12455 static const struct exp_descriptor ada_exp_descriptor = {
12456 ada_print_subexp,
12457 ada_operator_length,
12458 ada_operator_check,
12459 ada_op_name,
12460 ada_dump_subexp_body,
12461 ada_evaluate_subexp
12462 };
12463
12464 /* Implement the "la_get_symbol_name_cmp" language_defn method
12465 for Ada. */
12466
12467 static symbol_name_cmp_ftype
12468 ada_get_symbol_name_cmp (const char *lookup_name)
12469 {
12470 if (should_use_wild_match (lookup_name))
12471 return wild_match;
12472 else
12473 return compare_names;
12474 }
12475
12476 /* Implement the "la_read_var_value" language_defn method for Ada. */
12477
12478 static struct value *
12479 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12480 {
12481 struct block *frame_block = NULL;
12482 struct symbol *renaming_sym = NULL;
12483
12484 /* The only case where default_read_var_value is not sufficient
12485 is when VAR is a renaming... */
12486 if (frame)
12487 frame_block = get_frame_block (frame, NULL);
12488 if (frame_block)
12489 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12490 if (renaming_sym != NULL)
12491 return ada_read_renaming_var_value (renaming_sym, frame_block);
12492
12493 /* This is a typical case where we expect the default_read_var_value
12494 function to work. */
12495 return default_read_var_value (var, frame);
12496 }
12497
12498 const struct language_defn ada_language_defn = {
12499 "ada", /* Language name */
12500 language_ada,
12501 range_check_off,
12502 type_check_off,
12503 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12504 that's not quite what this means. */
12505 array_row_major,
12506 macro_expansion_no,
12507 &ada_exp_descriptor,
12508 parse,
12509 ada_error,
12510 resolve,
12511 ada_printchar, /* Print a character constant */
12512 ada_printstr, /* Function to print string constant */
12513 emit_char, /* Function to print single char (not used) */
12514 ada_print_type, /* Print a type using appropriate syntax */
12515 ada_print_typedef, /* Print a typedef using appropriate syntax */
12516 ada_val_print, /* Print a value using appropriate syntax */
12517 ada_value_print, /* Print a top-level value */
12518 ada_read_var_value, /* la_read_var_value */
12519 NULL, /* Language specific skip_trampoline */
12520 NULL, /* name_of_this */
12521 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12522 basic_lookup_transparent_type, /* lookup_transparent_type */
12523 ada_la_decode, /* Language specific symbol demangler */
12524 NULL, /* Language specific
12525 class_name_from_physname */
12526 ada_op_print_tab, /* expression operators for printing */
12527 0, /* c-style arrays */
12528 1, /* String lower bound */
12529 ada_get_gdb_completer_word_break_characters,
12530 ada_make_symbol_completion_list,
12531 ada_language_arch_info,
12532 ada_print_array_index,
12533 default_pass_by_reference,
12534 c_get_string,
12535 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12536 ada_iterate_over_symbols,
12537 LANG_MAGIC
12538 };
12539
12540 /* Provide a prototype to silence -Wmissing-prototypes. */
12541 extern initialize_file_ftype _initialize_ada_language;
12542
12543 /* Command-list for the "set/show ada" prefix command. */
12544 static struct cmd_list_element *set_ada_list;
12545 static struct cmd_list_element *show_ada_list;
12546
12547 /* Implement the "set ada" prefix command. */
12548
12549 static void
12550 set_ada_command (char *arg, int from_tty)
12551 {
12552 printf_unfiltered (_(\
12553 "\"set ada\" must be followed by the name of a setting.\n"));
12554 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12555 }
12556
12557 /* Implement the "show ada" prefix command. */
12558
12559 static void
12560 show_ada_command (char *args, int from_tty)
12561 {
12562 cmd_show_list (show_ada_list, from_tty, "");
12563 }
12564
12565 static void
12566 initialize_ada_catchpoint_ops (void)
12567 {
12568 struct breakpoint_ops *ops;
12569
12570 initialize_breakpoint_ops ();
12571
12572 ops = &catch_exception_breakpoint_ops;
12573 *ops = bkpt_breakpoint_ops;
12574 ops->dtor = dtor_catch_exception;
12575 ops->allocate_location = allocate_location_catch_exception;
12576 ops->re_set = re_set_catch_exception;
12577 ops->check_status = check_status_catch_exception;
12578 ops->print_it = print_it_catch_exception;
12579 ops->print_one = print_one_catch_exception;
12580 ops->print_mention = print_mention_catch_exception;
12581 ops->print_recreate = print_recreate_catch_exception;
12582
12583 ops = &catch_exception_unhandled_breakpoint_ops;
12584 *ops = bkpt_breakpoint_ops;
12585 ops->dtor = dtor_catch_exception_unhandled;
12586 ops->allocate_location = allocate_location_catch_exception_unhandled;
12587 ops->re_set = re_set_catch_exception_unhandled;
12588 ops->check_status = check_status_catch_exception_unhandled;
12589 ops->print_it = print_it_catch_exception_unhandled;
12590 ops->print_one = print_one_catch_exception_unhandled;
12591 ops->print_mention = print_mention_catch_exception_unhandled;
12592 ops->print_recreate = print_recreate_catch_exception_unhandled;
12593
12594 ops = &catch_assert_breakpoint_ops;
12595 *ops = bkpt_breakpoint_ops;
12596 ops->dtor = dtor_catch_assert;
12597 ops->allocate_location = allocate_location_catch_assert;
12598 ops->re_set = re_set_catch_assert;
12599 ops->check_status = check_status_catch_assert;
12600 ops->print_it = print_it_catch_assert;
12601 ops->print_one = print_one_catch_assert;
12602 ops->print_mention = print_mention_catch_assert;
12603 ops->print_recreate = print_recreate_catch_assert;
12604 }
12605
12606 void
12607 _initialize_ada_language (void)
12608 {
12609 add_language (&ada_language_defn);
12610
12611 initialize_ada_catchpoint_ops ();
12612
12613 add_prefix_cmd ("ada", no_class, set_ada_command,
12614 _("Prefix command for changing Ada-specfic settings"),
12615 &set_ada_list, "set ada ", 0, &setlist);
12616
12617 add_prefix_cmd ("ada", no_class, show_ada_command,
12618 _("Generic command for showing Ada-specific settings."),
12619 &show_ada_list, "show ada ", 0, &showlist);
12620
12621 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12622 &trust_pad_over_xvs, _("\
12623 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12624 Show whether an optimization trusting PAD types over XVS types is activated"),
12625 _("\
12626 This is related to the encoding used by the GNAT compiler. The debugger\n\
12627 should normally trust the contents of PAD types, but certain older versions\n\
12628 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12629 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12630 work around this bug. It is always safe to turn this option \"off\", but\n\
12631 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12632 this option to \"off\" unless necessary."),
12633 NULL, NULL, &set_ada_list, &show_ada_list);
12634
12635 add_catch_command ("exception", _("\
12636 Catch Ada exceptions, when raised.\n\
12637 With an argument, catch only exceptions with the given name."),
12638 catch_ada_exception_command,
12639 NULL,
12640 CATCH_PERMANENT,
12641 CATCH_TEMPORARY);
12642 add_catch_command ("assert", _("\
12643 Catch failed Ada assertions, when raised.\n\
12644 With an argument, catch only exceptions with the given name."),
12645 catch_assert_command,
12646 NULL,
12647 CATCH_PERMANENT,
12648 CATCH_TEMPORARY);
12649
12650 varsize_limit = 65536;
12651
12652 obstack_init (&symbol_list_obstack);
12653
12654 decoded_names_store = htab_create_alloc
12655 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12656 NULL, xcalloc, xfree);
12657
12658 /* Setup per-inferior data. */
12659 observer_attach_inferior_exit (ada_inferior_exit);
12660 ada_inferior_data
12661 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12662 }