]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 return result;
585 }
586 }
587
588 static const gdb_byte *
589 cond_offset_host (const gdb_byte *valaddr, long offset)
590 {
591 if (valaddr == NULL)
592 return NULL;
593 else
594 return valaddr + offset;
595 }
596
597 static CORE_ADDR
598 cond_offset_target (CORE_ADDR address, long offset)
599 {
600 if (address == 0)
601 return 0;
602 else
603 return address + offset;
604 }
605
606 /* Issue a warning (as for the definition of warning in utils.c, but
607 with exactly one argument rather than ...), unless the limit on the
608 number of warnings has passed during the evaluation of the current
609 expression. */
610
611 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
612 provided by "complaint". */
613 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
614
615 static void
616 lim_warning (const char *format, ...)
617 {
618 va_list args;
619
620 va_start (args, format);
621 warnings_issued += 1;
622 if (warnings_issued <= warning_limit)
623 vwarning (format, args);
624
625 va_end (args);
626 }
627
628 /* Issue an error if the size of an object of type T is unreasonable,
629 i.e. if it would be a bad idea to allocate a value of this type in
630 GDB. */
631
632 static void
633 check_size (const struct type *type)
634 {
635 if (TYPE_LENGTH (type) > varsize_limit)
636 error (_("object size is larger than varsize-limit"));
637 }
638
639 /* Maximum value of a SIZE-byte signed integer type. */
640 static LONGEST
641 max_of_size (int size)
642 {
643 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
644
645 return top_bit | (top_bit - 1);
646 }
647
648 /* Minimum value of a SIZE-byte signed integer type. */
649 static LONGEST
650 min_of_size (int size)
651 {
652 return -max_of_size (size) - 1;
653 }
654
655 /* Maximum value of a SIZE-byte unsigned integer type. */
656 static ULONGEST
657 umax_of_size (int size)
658 {
659 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
660
661 return top_bit | (top_bit - 1);
662 }
663
664 /* Maximum value of integral type T, as a signed quantity. */
665 static LONGEST
666 max_of_type (struct type *t)
667 {
668 if (TYPE_UNSIGNED (t))
669 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
670 else
671 return max_of_size (TYPE_LENGTH (t));
672 }
673
674 /* Minimum value of integral type T, as a signed quantity. */
675 static LONGEST
676 min_of_type (struct type *t)
677 {
678 if (TYPE_UNSIGNED (t))
679 return 0;
680 else
681 return min_of_size (TYPE_LENGTH (t));
682 }
683
684 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
685 LONGEST
686 ada_discrete_type_high_bound (struct type *type)
687 {
688 switch (TYPE_CODE (type))
689 {
690 case TYPE_CODE_RANGE:
691 return TYPE_HIGH_BOUND (type);
692 case TYPE_CODE_ENUM:
693 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
694 case TYPE_CODE_BOOL:
695 return 1;
696 case TYPE_CODE_CHAR:
697 case TYPE_CODE_INT:
698 return max_of_type (type);
699 default:
700 error (_("Unexpected type in ada_discrete_type_high_bound."));
701 }
702 }
703
704 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
705 LONGEST
706 ada_discrete_type_low_bound (struct type *type)
707 {
708 switch (TYPE_CODE (type))
709 {
710 case TYPE_CODE_RANGE:
711 return TYPE_LOW_BOUND (type);
712 case TYPE_CODE_ENUM:
713 return TYPE_FIELD_BITPOS (type, 0);
714 case TYPE_CODE_BOOL:
715 return 0;
716 case TYPE_CODE_CHAR:
717 case TYPE_CODE_INT:
718 return min_of_type (type);
719 default:
720 error (_("Unexpected type in ada_discrete_type_low_bound."));
721 }
722 }
723
724 /* The identity on non-range types. For range types, the underlying
725 non-range scalar type. */
726
727 static struct type *
728 get_base_type (struct type *type)
729 {
730 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
731 {
732 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
733 return type;
734 type = TYPE_TARGET_TYPE (type);
735 }
736 return type;
737 }
738
739 /* Return a decoded version of the given VALUE. This means returning
740 a value whose type is obtained by applying all the GNAT-specific
741 encondings, making the resulting type a static but standard description
742 of the initial type. */
743
744 struct value *
745 ada_get_decoded_value (struct value *value)
746 {
747 struct type *type = ada_check_typedef (value_type (value));
748
749 if (ada_is_array_descriptor_type (type)
750 || (ada_is_constrained_packed_array_type (type)
751 && TYPE_CODE (type) != TYPE_CODE_PTR))
752 {
753 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
754 value = ada_coerce_to_simple_array_ptr (value);
755 else
756 value = ada_coerce_to_simple_array (value);
757 }
758 else
759 value = ada_to_fixed_value (value);
760
761 return value;
762 }
763
764 /* Same as ada_get_decoded_value, but with the given TYPE.
765 Because there is no associated actual value for this type,
766 the resulting type might be a best-effort approximation in
767 the case of dynamic types. */
768
769 struct type *
770 ada_get_decoded_type (struct type *type)
771 {
772 type = to_static_fixed_type (type);
773 if (ada_is_constrained_packed_array_type (type))
774 type = ada_coerce_to_simple_array_type (type);
775 return type;
776 }
777
778 \f
779
780 /* Language Selection */
781
782 /* If the main program is in Ada, return language_ada, otherwise return LANG
783 (the main program is in Ada iif the adainit symbol is found). */
784
785 enum language
786 ada_update_initial_language (enum language lang)
787 {
788 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
789 (struct objfile *) NULL) != NULL)
790 return language_ada;
791
792 return lang;
793 }
794
795 /* If the main procedure is written in Ada, then return its name.
796 The result is good until the next call. Return NULL if the main
797 procedure doesn't appear to be in Ada. */
798
799 char *
800 ada_main_name (void)
801 {
802 struct minimal_symbol *msym;
803 static char *main_program_name = NULL;
804
805 /* For Ada, the name of the main procedure is stored in a specific
806 string constant, generated by the binder. Look for that symbol,
807 extract its address, and then read that string. If we didn't find
808 that string, then most probably the main procedure is not written
809 in Ada. */
810 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
811
812 if (msym != NULL)
813 {
814 CORE_ADDR main_program_name_addr;
815 int err_code;
816
817 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
818 if (main_program_name_addr == 0)
819 error (_("Invalid address for Ada main program name."));
820
821 xfree (main_program_name);
822 target_read_string (main_program_name_addr, &main_program_name,
823 1024, &err_code);
824
825 if (err_code != 0)
826 return NULL;
827 return main_program_name;
828 }
829
830 /* The main procedure doesn't seem to be in Ada. */
831 return NULL;
832 }
833 \f
834 /* Symbols */
835
836 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
837 of NULLs. */
838
839 const struct ada_opname_map ada_opname_table[] = {
840 {"Oadd", "\"+\"", BINOP_ADD},
841 {"Osubtract", "\"-\"", BINOP_SUB},
842 {"Omultiply", "\"*\"", BINOP_MUL},
843 {"Odivide", "\"/\"", BINOP_DIV},
844 {"Omod", "\"mod\"", BINOP_MOD},
845 {"Orem", "\"rem\"", BINOP_REM},
846 {"Oexpon", "\"**\"", BINOP_EXP},
847 {"Olt", "\"<\"", BINOP_LESS},
848 {"Ole", "\"<=\"", BINOP_LEQ},
849 {"Ogt", "\">\"", BINOP_GTR},
850 {"Oge", "\">=\"", BINOP_GEQ},
851 {"Oeq", "\"=\"", BINOP_EQUAL},
852 {"One", "\"/=\"", BINOP_NOTEQUAL},
853 {"Oand", "\"and\"", BINOP_BITWISE_AND},
854 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
855 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
856 {"Oconcat", "\"&\"", BINOP_CONCAT},
857 {"Oabs", "\"abs\"", UNOP_ABS},
858 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
859 {"Oadd", "\"+\"", UNOP_PLUS},
860 {"Osubtract", "\"-\"", UNOP_NEG},
861 {NULL, NULL}
862 };
863
864 /* The "encoded" form of DECODED, according to GNAT conventions.
865 The result is valid until the next call to ada_encode. */
866
867 char *
868 ada_encode (const char *decoded)
869 {
870 static char *encoding_buffer = NULL;
871 static size_t encoding_buffer_size = 0;
872 const char *p;
873 int k;
874
875 if (decoded == NULL)
876 return NULL;
877
878 GROW_VECT (encoding_buffer, encoding_buffer_size,
879 2 * strlen (decoded) + 10);
880
881 k = 0;
882 for (p = decoded; *p != '\0'; p += 1)
883 {
884 if (*p == '.')
885 {
886 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
887 k += 2;
888 }
889 else if (*p == '"')
890 {
891 const struct ada_opname_map *mapping;
892
893 for (mapping = ada_opname_table;
894 mapping->encoded != NULL
895 && strncmp (mapping->decoded, p,
896 strlen (mapping->decoded)) != 0; mapping += 1)
897 ;
898 if (mapping->encoded == NULL)
899 error (_("invalid Ada operator name: %s"), p);
900 strcpy (encoding_buffer + k, mapping->encoded);
901 k += strlen (mapping->encoded);
902 break;
903 }
904 else
905 {
906 encoding_buffer[k] = *p;
907 k += 1;
908 }
909 }
910
911 encoding_buffer[k] = '\0';
912 return encoding_buffer;
913 }
914
915 /* Return NAME folded to lower case, or, if surrounded by single
916 quotes, unfolded, but with the quotes stripped away. Result good
917 to next call. */
918
919 char *
920 ada_fold_name (const char *name)
921 {
922 static char *fold_buffer = NULL;
923 static size_t fold_buffer_size = 0;
924
925 int len = strlen (name);
926 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
927
928 if (name[0] == '\'')
929 {
930 strncpy (fold_buffer, name + 1, len - 2);
931 fold_buffer[len - 2] = '\000';
932 }
933 else
934 {
935 int i;
936
937 for (i = 0; i <= len; i += 1)
938 fold_buffer[i] = tolower (name[i]);
939 }
940
941 return fold_buffer;
942 }
943
944 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
945
946 static int
947 is_lower_alphanum (const char c)
948 {
949 return (isdigit (c) || (isalpha (c) && islower (c)));
950 }
951
952 /* ENCODED is the linkage name of a symbol and LEN contains its length.
953 This function saves in LEN the length of that same symbol name but
954 without either of these suffixes:
955 . .{DIGIT}+
956 . ${DIGIT}+
957 . ___{DIGIT}+
958 . __{DIGIT}+.
959
960 These are suffixes introduced by the compiler for entities such as
961 nested subprogram for instance, in order to avoid name clashes.
962 They do not serve any purpose for the debugger. */
963
964 static void
965 ada_remove_trailing_digits (const char *encoded, int *len)
966 {
967 if (*len > 1 && isdigit (encoded[*len - 1]))
968 {
969 int i = *len - 2;
970
971 while (i > 0 && isdigit (encoded[i]))
972 i--;
973 if (i >= 0 && encoded[i] == '.')
974 *len = i;
975 else if (i >= 0 && encoded[i] == '$')
976 *len = i;
977 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
978 *len = i - 2;
979 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
980 *len = i - 1;
981 }
982 }
983
984 /* Remove the suffix introduced by the compiler for protected object
985 subprograms. */
986
987 static void
988 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
989 {
990 /* Remove trailing N. */
991
992 /* Protected entry subprograms are broken into two
993 separate subprograms: The first one is unprotected, and has
994 a 'N' suffix; the second is the protected version, and has
995 the 'P' suffix. The second calls the first one after handling
996 the protection. Since the P subprograms are internally generated,
997 we leave these names undecoded, giving the user a clue that this
998 entity is internal. */
999
1000 if (*len > 1
1001 && encoded[*len - 1] == 'N'
1002 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1003 *len = *len - 1;
1004 }
1005
1006 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1007
1008 static void
1009 ada_remove_Xbn_suffix (const char *encoded, int *len)
1010 {
1011 int i = *len - 1;
1012
1013 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1014 i--;
1015
1016 if (encoded[i] != 'X')
1017 return;
1018
1019 if (i == 0)
1020 return;
1021
1022 if (isalnum (encoded[i-1]))
1023 *len = i;
1024 }
1025
1026 /* If ENCODED follows the GNAT entity encoding conventions, then return
1027 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1028 replaced by ENCODED.
1029
1030 The resulting string is valid until the next call of ada_decode.
1031 If the string is unchanged by decoding, the original string pointer
1032 is returned. */
1033
1034 const char *
1035 ada_decode (const char *encoded)
1036 {
1037 int i, j;
1038 int len0;
1039 const char *p;
1040 char *decoded;
1041 int at_start_name;
1042 static char *decoding_buffer = NULL;
1043 static size_t decoding_buffer_size = 0;
1044
1045 /* The name of the Ada main procedure starts with "_ada_".
1046 This prefix is not part of the decoded name, so skip this part
1047 if we see this prefix. */
1048 if (strncmp (encoded, "_ada_", 5) == 0)
1049 encoded += 5;
1050
1051 /* If the name starts with '_', then it is not a properly encoded
1052 name, so do not attempt to decode it. Similarly, if the name
1053 starts with '<', the name should not be decoded. */
1054 if (encoded[0] == '_' || encoded[0] == '<')
1055 goto Suppress;
1056
1057 len0 = strlen (encoded);
1058
1059 ada_remove_trailing_digits (encoded, &len0);
1060 ada_remove_po_subprogram_suffix (encoded, &len0);
1061
1062 /* Remove the ___X.* suffix if present. Do not forget to verify that
1063 the suffix is located before the current "end" of ENCODED. We want
1064 to avoid re-matching parts of ENCODED that have previously been
1065 marked as discarded (by decrementing LEN0). */
1066 p = strstr (encoded, "___");
1067 if (p != NULL && p - encoded < len0 - 3)
1068 {
1069 if (p[3] == 'X')
1070 len0 = p - encoded;
1071 else
1072 goto Suppress;
1073 }
1074
1075 /* Remove any trailing TKB suffix. It tells us that this symbol
1076 is for the body of a task, but that information does not actually
1077 appear in the decoded name. */
1078
1079 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1080 len0 -= 3;
1081
1082 /* Remove any trailing TB suffix. The TB suffix is slightly different
1083 from the TKB suffix because it is used for non-anonymous task
1084 bodies. */
1085
1086 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1087 len0 -= 2;
1088
1089 /* Remove trailing "B" suffixes. */
1090 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1091
1092 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1093 len0 -= 1;
1094
1095 /* Make decoded big enough for possible expansion by operator name. */
1096
1097 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1098 decoded = decoding_buffer;
1099
1100 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1101
1102 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1103 {
1104 i = len0 - 2;
1105 while ((i >= 0 && isdigit (encoded[i]))
1106 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1107 i -= 1;
1108 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1109 len0 = i - 1;
1110 else if (encoded[i] == '$')
1111 len0 = i;
1112 }
1113
1114 /* The first few characters that are not alphabetic are not part
1115 of any encoding we use, so we can copy them over verbatim. */
1116
1117 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1118 decoded[j] = encoded[i];
1119
1120 at_start_name = 1;
1121 while (i < len0)
1122 {
1123 /* Is this a symbol function? */
1124 if (at_start_name && encoded[i] == 'O')
1125 {
1126 int k;
1127
1128 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1129 {
1130 int op_len = strlen (ada_opname_table[k].encoded);
1131 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1132 op_len - 1) == 0)
1133 && !isalnum (encoded[i + op_len]))
1134 {
1135 strcpy (decoded + j, ada_opname_table[k].decoded);
1136 at_start_name = 0;
1137 i += op_len;
1138 j += strlen (ada_opname_table[k].decoded);
1139 break;
1140 }
1141 }
1142 if (ada_opname_table[k].encoded != NULL)
1143 continue;
1144 }
1145 at_start_name = 0;
1146
1147 /* Replace "TK__" with "__", which will eventually be translated
1148 into "." (just below). */
1149
1150 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1151 i += 2;
1152
1153 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1154 be translated into "." (just below). These are internal names
1155 generated for anonymous blocks inside which our symbol is nested. */
1156
1157 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1158 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1159 && isdigit (encoded [i+4]))
1160 {
1161 int k = i + 5;
1162
1163 while (k < len0 && isdigit (encoded[k]))
1164 k++; /* Skip any extra digit. */
1165
1166 /* Double-check that the "__B_{DIGITS}+" sequence we found
1167 is indeed followed by "__". */
1168 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1169 i = k;
1170 }
1171
1172 /* Remove _E{DIGITS}+[sb] */
1173
1174 /* Just as for protected object subprograms, there are 2 categories
1175 of subprograms created by the compiler for each entry. The first
1176 one implements the actual entry code, and has a suffix following
1177 the convention above; the second one implements the barrier and
1178 uses the same convention as above, except that the 'E' is replaced
1179 by a 'B'.
1180
1181 Just as above, we do not decode the name of barrier functions
1182 to give the user a clue that the code he is debugging has been
1183 internally generated. */
1184
1185 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1186 && isdigit (encoded[i+2]))
1187 {
1188 int k = i + 3;
1189
1190 while (k < len0 && isdigit (encoded[k]))
1191 k++;
1192
1193 if (k < len0
1194 && (encoded[k] == 'b' || encoded[k] == 's'))
1195 {
1196 k++;
1197 /* Just as an extra precaution, make sure that if this
1198 suffix is followed by anything else, it is a '_'.
1199 Otherwise, we matched this sequence by accident. */
1200 if (k == len0
1201 || (k < len0 && encoded[k] == '_'))
1202 i = k;
1203 }
1204 }
1205
1206 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1207 the GNAT front-end in protected object subprograms. */
1208
1209 if (i < len0 + 3
1210 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1211 {
1212 /* Backtrack a bit up until we reach either the begining of
1213 the encoded name, or "__". Make sure that we only find
1214 digits or lowercase characters. */
1215 const char *ptr = encoded + i - 1;
1216
1217 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1218 ptr--;
1219 if (ptr < encoded
1220 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1221 i++;
1222 }
1223
1224 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1225 {
1226 /* This is a X[bn]* sequence not separated from the previous
1227 part of the name with a non-alpha-numeric character (in other
1228 words, immediately following an alpha-numeric character), then
1229 verify that it is placed at the end of the encoded name. If
1230 not, then the encoding is not valid and we should abort the
1231 decoding. Otherwise, just skip it, it is used in body-nested
1232 package names. */
1233 do
1234 i += 1;
1235 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1236 if (i < len0)
1237 goto Suppress;
1238 }
1239 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1240 {
1241 /* Replace '__' by '.'. */
1242 decoded[j] = '.';
1243 at_start_name = 1;
1244 i += 2;
1245 j += 1;
1246 }
1247 else
1248 {
1249 /* It's a character part of the decoded name, so just copy it
1250 over. */
1251 decoded[j] = encoded[i];
1252 i += 1;
1253 j += 1;
1254 }
1255 }
1256 decoded[j] = '\000';
1257
1258 /* Decoded names should never contain any uppercase character.
1259 Double-check this, and abort the decoding if we find one. */
1260
1261 for (i = 0; decoded[i] != '\0'; i += 1)
1262 if (isupper (decoded[i]) || decoded[i] == ' ')
1263 goto Suppress;
1264
1265 if (strcmp (decoded, encoded) == 0)
1266 return encoded;
1267 else
1268 return decoded;
1269
1270 Suppress:
1271 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1272 decoded = decoding_buffer;
1273 if (encoded[0] == '<')
1274 strcpy (decoded, encoded);
1275 else
1276 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1277 return decoded;
1278
1279 }
1280
1281 /* Table for keeping permanent unique copies of decoded names. Once
1282 allocated, names in this table are never released. While this is a
1283 storage leak, it should not be significant unless there are massive
1284 changes in the set of decoded names in successive versions of a
1285 symbol table loaded during a single session. */
1286 static struct htab *decoded_names_store;
1287
1288 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1289 in the language-specific part of GSYMBOL, if it has not been
1290 previously computed. Tries to save the decoded name in the same
1291 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1292 in any case, the decoded symbol has a lifetime at least that of
1293 GSYMBOL).
1294 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1295 const, but nevertheless modified to a semantically equivalent form
1296 when a decoded name is cached in it. */
1297
1298 char *
1299 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1300 {
1301 char **resultp =
1302 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1303
1304 if (*resultp == NULL)
1305 {
1306 const char *decoded = ada_decode (gsymbol->name);
1307
1308 if (gsymbol->obj_section != NULL)
1309 {
1310 struct objfile *objf = gsymbol->obj_section->objfile;
1311
1312 *resultp = obsavestring (decoded, strlen (decoded),
1313 &objf->objfile_obstack);
1314 }
1315 /* Sometimes, we can't find a corresponding objfile, in which
1316 case, we put the result on the heap. Since we only decode
1317 when needed, we hope this usually does not cause a
1318 significant memory leak (FIXME). */
1319 if (*resultp == NULL)
1320 {
1321 char **slot = (char **) htab_find_slot (decoded_names_store,
1322 decoded, INSERT);
1323
1324 if (*slot == NULL)
1325 *slot = xstrdup (decoded);
1326 *resultp = *slot;
1327 }
1328 }
1329
1330 return *resultp;
1331 }
1332
1333 static char *
1334 ada_la_decode (const char *encoded, int options)
1335 {
1336 return xstrdup (ada_decode (encoded));
1337 }
1338
1339 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1340 suffixes that encode debugging information or leading _ada_ on
1341 SYM_NAME (see is_name_suffix commentary for the debugging
1342 information that is ignored). If WILD, then NAME need only match a
1343 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1344 either argument is NULL. */
1345
1346 static int
1347 match_name (const char *sym_name, const char *name, int wild)
1348 {
1349 if (sym_name == NULL || name == NULL)
1350 return 0;
1351 else if (wild)
1352 return wild_match (sym_name, name) == 0;
1353 else
1354 {
1355 int len_name = strlen (name);
1356
1357 return (strncmp (sym_name, name, len_name) == 0
1358 && is_name_suffix (sym_name + len_name))
1359 || (strncmp (sym_name, "_ada_", 5) == 0
1360 && strncmp (sym_name + 5, name, len_name) == 0
1361 && is_name_suffix (sym_name + len_name + 5));
1362 }
1363 }
1364 \f
1365
1366 /* Arrays */
1367
1368 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1369 generated by the GNAT compiler to describe the index type used
1370 for each dimension of an array, check whether it follows the latest
1371 known encoding. If not, fix it up to conform to the latest encoding.
1372 Otherwise, do nothing. This function also does nothing if
1373 INDEX_DESC_TYPE is NULL.
1374
1375 The GNAT encoding used to describle the array index type evolved a bit.
1376 Initially, the information would be provided through the name of each
1377 field of the structure type only, while the type of these fields was
1378 described as unspecified and irrelevant. The debugger was then expected
1379 to perform a global type lookup using the name of that field in order
1380 to get access to the full index type description. Because these global
1381 lookups can be very expensive, the encoding was later enhanced to make
1382 the global lookup unnecessary by defining the field type as being
1383 the full index type description.
1384
1385 The purpose of this routine is to allow us to support older versions
1386 of the compiler by detecting the use of the older encoding, and by
1387 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1388 we essentially replace each field's meaningless type by the associated
1389 index subtype). */
1390
1391 void
1392 ada_fixup_array_indexes_type (struct type *index_desc_type)
1393 {
1394 int i;
1395
1396 if (index_desc_type == NULL)
1397 return;
1398 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1399
1400 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1401 to check one field only, no need to check them all). If not, return
1402 now.
1403
1404 If our INDEX_DESC_TYPE was generated using the older encoding,
1405 the field type should be a meaningless integer type whose name
1406 is not equal to the field name. */
1407 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1408 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1409 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1410 return;
1411
1412 /* Fixup each field of INDEX_DESC_TYPE. */
1413 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1414 {
1415 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1416 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1417
1418 if (raw_type)
1419 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1420 }
1421 }
1422
1423 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1424
1425 static char *bound_name[] = {
1426 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1427 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1428 };
1429
1430 /* Maximum number of array dimensions we are prepared to handle. */
1431
1432 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1433
1434
1435 /* The desc_* routines return primitive portions of array descriptors
1436 (fat pointers). */
1437
1438 /* The descriptor or array type, if any, indicated by TYPE; removes
1439 level of indirection, if needed. */
1440
1441 static struct type *
1442 desc_base_type (struct type *type)
1443 {
1444 if (type == NULL)
1445 return NULL;
1446 type = ada_check_typedef (type);
1447 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1448 type = ada_typedef_target_type (type);
1449
1450 if (type != NULL
1451 && (TYPE_CODE (type) == TYPE_CODE_PTR
1452 || TYPE_CODE (type) == TYPE_CODE_REF))
1453 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1454 else
1455 return type;
1456 }
1457
1458 /* True iff TYPE indicates a "thin" array pointer type. */
1459
1460 static int
1461 is_thin_pntr (struct type *type)
1462 {
1463 return
1464 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1465 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1466 }
1467
1468 /* The descriptor type for thin pointer type TYPE. */
1469
1470 static struct type *
1471 thin_descriptor_type (struct type *type)
1472 {
1473 struct type *base_type = desc_base_type (type);
1474
1475 if (base_type == NULL)
1476 return NULL;
1477 if (is_suffix (ada_type_name (base_type), "___XVE"))
1478 return base_type;
1479 else
1480 {
1481 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1482
1483 if (alt_type == NULL)
1484 return base_type;
1485 else
1486 return alt_type;
1487 }
1488 }
1489
1490 /* A pointer to the array data for thin-pointer value VAL. */
1491
1492 static struct value *
1493 thin_data_pntr (struct value *val)
1494 {
1495 struct type *type = ada_check_typedef (value_type (val));
1496 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1497
1498 data_type = lookup_pointer_type (data_type);
1499
1500 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1501 return value_cast (data_type, value_copy (val));
1502 else
1503 return value_from_longest (data_type, value_address (val));
1504 }
1505
1506 /* True iff TYPE indicates a "thick" array pointer type. */
1507
1508 static int
1509 is_thick_pntr (struct type *type)
1510 {
1511 type = desc_base_type (type);
1512 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1513 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1514 }
1515
1516 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1517 pointer to one, the type of its bounds data; otherwise, NULL. */
1518
1519 static struct type *
1520 desc_bounds_type (struct type *type)
1521 {
1522 struct type *r;
1523
1524 type = desc_base_type (type);
1525
1526 if (type == NULL)
1527 return NULL;
1528 else if (is_thin_pntr (type))
1529 {
1530 type = thin_descriptor_type (type);
1531 if (type == NULL)
1532 return NULL;
1533 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1534 if (r != NULL)
1535 return ada_check_typedef (r);
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1538 {
1539 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1540 if (r != NULL)
1541 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1542 }
1543 return NULL;
1544 }
1545
1546 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1547 one, a pointer to its bounds data. Otherwise NULL. */
1548
1549 static struct value *
1550 desc_bounds (struct value *arr)
1551 {
1552 struct type *type = ada_check_typedef (value_type (arr));
1553
1554 if (is_thin_pntr (type))
1555 {
1556 struct type *bounds_type =
1557 desc_bounds_type (thin_descriptor_type (type));
1558 LONGEST addr;
1559
1560 if (bounds_type == NULL)
1561 error (_("Bad GNAT array descriptor"));
1562
1563 /* NOTE: The following calculation is not really kosher, but
1564 since desc_type is an XVE-encoded type (and shouldn't be),
1565 the correct calculation is a real pain. FIXME (and fix GCC). */
1566 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1567 addr = value_as_long (arr);
1568 else
1569 addr = value_address (arr);
1570
1571 return
1572 value_from_longest (lookup_pointer_type (bounds_type),
1573 addr - TYPE_LENGTH (bounds_type));
1574 }
1575
1576 else if (is_thick_pntr (type))
1577 {
1578 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1579 _("Bad GNAT array descriptor"));
1580 struct type *p_bounds_type = value_type (p_bounds);
1581
1582 if (p_bounds_type
1583 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1584 {
1585 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1586
1587 if (TYPE_STUB (target_type))
1588 p_bounds = value_cast (lookup_pointer_type
1589 (ada_check_typedef (target_type)),
1590 p_bounds);
1591 }
1592 else
1593 error (_("Bad GNAT array descriptor"));
1594
1595 return p_bounds;
1596 }
1597 else
1598 return NULL;
1599 }
1600
1601 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1602 position of the field containing the address of the bounds data. */
1603
1604 static int
1605 fat_pntr_bounds_bitpos (struct type *type)
1606 {
1607 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1608 }
1609
1610 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1611 size of the field containing the address of the bounds data. */
1612
1613 static int
1614 fat_pntr_bounds_bitsize (struct type *type)
1615 {
1616 type = desc_base_type (type);
1617
1618 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1619 return TYPE_FIELD_BITSIZE (type, 1);
1620 else
1621 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1622 }
1623
1624 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1625 pointer to one, the type of its array data (a array-with-no-bounds type);
1626 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1627 data. */
1628
1629 static struct type *
1630 desc_data_target_type (struct type *type)
1631 {
1632 type = desc_base_type (type);
1633
1634 /* NOTE: The following is bogus; see comment in desc_bounds. */
1635 if (is_thin_pntr (type))
1636 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1637 else if (is_thick_pntr (type))
1638 {
1639 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1640
1641 if (data_type
1642 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1643 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1644 }
1645
1646 return NULL;
1647 }
1648
1649 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1650 its array data. */
1651
1652 static struct value *
1653 desc_data (struct value *arr)
1654 {
1655 struct type *type = value_type (arr);
1656
1657 if (is_thin_pntr (type))
1658 return thin_data_pntr (arr);
1659 else if (is_thick_pntr (type))
1660 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1661 _("Bad GNAT array descriptor"));
1662 else
1663 return NULL;
1664 }
1665
1666
1667 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1668 position of the field containing the address of the data. */
1669
1670 static int
1671 fat_pntr_data_bitpos (struct type *type)
1672 {
1673 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1674 }
1675
1676 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1677 size of the field containing the address of the data. */
1678
1679 static int
1680 fat_pntr_data_bitsize (struct type *type)
1681 {
1682 type = desc_base_type (type);
1683
1684 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1685 return TYPE_FIELD_BITSIZE (type, 0);
1686 else
1687 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1688 }
1689
1690 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1691 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1692 bound, if WHICH is 1. The first bound is I=1. */
1693
1694 static struct value *
1695 desc_one_bound (struct value *bounds, int i, int which)
1696 {
1697 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1698 _("Bad GNAT array descriptor bounds"));
1699 }
1700
1701 /* If BOUNDS is an array-bounds structure type, return the bit position
1702 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1703 bound, if WHICH is 1. The first bound is I=1. */
1704
1705 static int
1706 desc_bound_bitpos (struct type *type, int i, int which)
1707 {
1708 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1709 }
1710
1711 /* If BOUNDS is an array-bounds structure type, return the bit field size
1712 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1713 bound, if WHICH is 1. The first bound is I=1. */
1714
1715 static int
1716 desc_bound_bitsize (struct type *type, int i, int which)
1717 {
1718 type = desc_base_type (type);
1719
1720 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1721 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1722 else
1723 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1724 }
1725
1726 /* If TYPE is the type of an array-bounds structure, the type of its
1727 Ith bound (numbering from 1). Otherwise, NULL. */
1728
1729 static struct type *
1730 desc_index_type (struct type *type, int i)
1731 {
1732 type = desc_base_type (type);
1733
1734 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1735 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1736 else
1737 return NULL;
1738 }
1739
1740 /* The number of index positions in the array-bounds type TYPE.
1741 Return 0 if TYPE is NULL. */
1742
1743 static int
1744 desc_arity (struct type *type)
1745 {
1746 type = desc_base_type (type);
1747
1748 if (type != NULL)
1749 return TYPE_NFIELDS (type) / 2;
1750 return 0;
1751 }
1752
1753 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1754 an array descriptor type (representing an unconstrained array
1755 type). */
1756
1757 static int
1758 ada_is_direct_array_type (struct type *type)
1759 {
1760 if (type == NULL)
1761 return 0;
1762 type = ada_check_typedef (type);
1763 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1764 || ada_is_array_descriptor_type (type));
1765 }
1766
1767 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1768 * to one. */
1769
1770 static int
1771 ada_is_array_type (struct type *type)
1772 {
1773 while (type != NULL
1774 && (TYPE_CODE (type) == TYPE_CODE_PTR
1775 || TYPE_CODE (type) == TYPE_CODE_REF))
1776 type = TYPE_TARGET_TYPE (type);
1777 return ada_is_direct_array_type (type);
1778 }
1779
1780 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1781
1782 int
1783 ada_is_simple_array_type (struct type *type)
1784 {
1785 if (type == NULL)
1786 return 0;
1787 type = ada_check_typedef (type);
1788 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1789 || (TYPE_CODE (type) == TYPE_CODE_PTR
1790 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1791 == TYPE_CODE_ARRAY));
1792 }
1793
1794 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1795
1796 int
1797 ada_is_array_descriptor_type (struct type *type)
1798 {
1799 struct type *data_type = desc_data_target_type (type);
1800
1801 if (type == NULL)
1802 return 0;
1803 type = ada_check_typedef (type);
1804 return (data_type != NULL
1805 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1806 && desc_arity (desc_bounds_type (type)) > 0);
1807 }
1808
1809 /* Non-zero iff type is a partially mal-formed GNAT array
1810 descriptor. FIXME: This is to compensate for some problems with
1811 debugging output from GNAT. Re-examine periodically to see if it
1812 is still needed. */
1813
1814 int
1815 ada_is_bogus_array_descriptor (struct type *type)
1816 {
1817 return
1818 type != NULL
1819 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1820 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1821 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1822 && !ada_is_array_descriptor_type (type);
1823 }
1824
1825
1826 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1827 (fat pointer) returns the type of the array data described---specifically,
1828 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1829 in from the descriptor; otherwise, they are left unspecified. If
1830 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1831 returns NULL. The result is simply the type of ARR if ARR is not
1832 a descriptor. */
1833 struct type *
1834 ada_type_of_array (struct value *arr, int bounds)
1835 {
1836 if (ada_is_constrained_packed_array_type (value_type (arr)))
1837 return decode_constrained_packed_array_type (value_type (arr));
1838
1839 if (!ada_is_array_descriptor_type (value_type (arr)))
1840 return value_type (arr);
1841
1842 if (!bounds)
1843 {
1844 struct type *array_type =
1845 ada_check_typedef (desc_data_target_type (value_type (arr)));
1846
1847 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1848 TYPE_FIELD_BITSIZE (array_type, 0) =
1849 decode_packed_array_bitsize (value_type (arr));
1850
1851 return array_type;
1852 }
1853 else
1854 {
1855 struct type *elt_type;
1856 int arity;
1857 struct value *descriptor;
1858
1859 elt_type = ada_array_element_type (value_type (arr), -1);
1860 arity = ada_array_arity (value_type (arr));
1861
1862 if (elt_type == NULL || arity == 0)
1863 return ada_check_typedef (value_type (arr));
1864
1865 descriptor = desc_bounds (arr);
1866 if (value_as_long (descriptor) == 0)
1867 return NULL;
1868 while (arity > 0)
1869 {
1870 struct type *range_type = alloc_type_copy (value_type (arr));
1871 struct type *array_type = alloc_type_copy (value_type (arr));
1872 struct value *low = desc_one_bound (descriptor, arity, 0);
1873 struct value *high = desc_one_bound (descriptor, arity, 1);
1874
1875 arity -= 1;
1876 create_range_type (range_type, value_type (low),
1877 longest_to_int (value_as_long (low)),
1878 longest_to_int (value_as_long (high)));
1879 elt_type = create_array_type (array_type, elt_type, range_type);
1880
1881 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1882 {
1883 /* We need to store the element packed bitsize, as well as
1884 recompute the array size, because it was previously
1885 computed based on the unpacked element size. */
1886 LONGEST lo = value_as_long (low);
1887 LONGEST hi = value_as_long (high);
1888
1889 TYPE_FIELD_BITSIZE (elt_type, 0) =
1890 decode_packed_array_bitsize (value_type (arr));
1891 /* If the array has no element, then the size is already
1892 zero, and does not need to be recomputed. */
1893 if (lo < hi)
1894 {
1895 int array_bitsize =
1896 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1897
1898 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1899 }
1900 }
1901 }
1902
1903 return lookup_pointer_type (elt_type);
1904 }
1905 }
1906
1907 /* If ARR does not represent an array, returns ARR unchanged.
1908 Otherwise, returns either a standard GDB array with bounds set
1909 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1910 GDB array. Returns NULL if ARR is a null fat pointer. */
1911
1912 struct value *
1913 ada_coerce_to_simple_array_ptr (struct value *arr)
1914 {
1915 if (ada_is_array_descriptor_type (value_type (arr)))
1916 {
1917 struct type *arrType = ada_type_of_array (arr, 1);
1918
1919 if (arrType == NULL)
1920 return NULL;
1921 return value_cast (arrType, value_copy (desc_data (arr)));
1922 }
1923 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1924 return decode_constrained_packed_array (arr);
1925 else
1926 return arr;
1927 }
1928
1929 /* If ARR does not represent an array, returns ARR unchanged.
1930 Otherwise, returns a standard GDB array describing ARR (which may
1931 be ARR itself if it already is in the proper form). */
1932
1933 struct value *
1934 ada_coerce_to_simple_array (struct value *arr)
1935 {
1936 if (ada_is_array_descriptor_type (value_type (arr)))
1937 {
1938 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1939
1940 if (arrVal == NULL)
1941 error (_("Bounds unavailable for null array pointer."));
1942 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1943 return value_ind (arrVal);
1944 }
1945 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1946 return decode_constrained_packed_array (arr);
1947 else
1948 return arr;
1949 }
1950
1951 /* If TYPE represents a GNAT array type, return it translated to an
1952 ordinary GDB array type (possibly with BITSIZE fields indicating
1953 packing). For other types, is the identity. */
1954
1955 struct type *
1956 ada_coerce_to_simple_array_type (struct type *type)
1957 {
1958 if (ada_is_constrained_packed_array_type (type))
1959 return decode_constrained_packed_array_type (type);
1960
1961 if (ada_is_array_descriptor_type (type))
1962 return ada_check_typedef (desc_data_target_type (type));
1963
1964 return type;
1965 }
1966
1967 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1968
1969 static int
1970 ada_is_packed_array_type (struct type *type)
1971 {
1972 if (type == NULL)
1973 return 0;
1974 type = desc_base_type (type);
1975 type = ada_check_typedef (type);
1976 return
1977 ada_type_name (type) != NULL
1978 && strstr (ada_type_name (type), "___XP") != NULL;
1979 }
1980
1981 /* Non-zero iff TYPE represents a standard GNAT constrained
1982 packed-array type. */
1983
1984 int
1985 ada_is_constrained_packed_array_type (struct type *type)
1986 {
1987 return ada_is_packed_array_type (type)
1988 && !ada_is_array_descriptor_type (type);
1989 }
1990
1991 /* Non-zero iff TYPE represents an array descriptor for a
1992 unconstrained packed-array type. */
1993
1994 static int
1995 ada_is_unconstrained_packed_array_type (struct type *type)
1996 {
1997 return ada_is_packed_array_type (type)
1998 && ada_is_array_descriptor_type (type);
1999 }
2000
2001 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2002 return the size of its elements in bits. */
2003
2004 static long
2005 decode_packed_array_bitsize (struct type *type)
2006 {
2007 const char *raw_name;
2008 const char *tail;
2009 long bits;
2010
2011 /* Access to arrays implemented as fat pointers are encoded as a typedef
2012 of the fat pointer type. We need the name of the fat pointer type
2013 to do the decoding, so strip the typedef layer. */
2014 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2015 type = ada_typedef_target_type (type);
2016
2017 raw_name = ada_type_name (ada_check_typedef (type));
2018 if (!raw_name)
2019 raw_name = ada_type_name (desc_base_type (type));
2020
2021 if (!raw_name)
2022 return 0;
2023
2024 tail = strstr (raw_name, "___XP");
2025 gdb_assert (tail != NULL);
2026
2027 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2028 {
2029 lim_warning
2030 (_("could not understand bit size information on packed array"));
2031 return 0;
2032 }
2033
2034 return bits;
2035 }
2036
2037 /* Given that TYPE is a standard GDB array type with all bounds filled
2038 in, and that the element size of its ultimate scalar constituents
2039 (that is, either its elements, or, if it is an array of arrays, its
2040 elements' elements, etc.) is *ELT_BITS, return an identical type,
2041 but with the bit sizes of its elements (and those of any
2042 constituent arrays) recorded in the BITSIZE components of its
2043 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2044 in bits. */
2045
2046 static struct type *
2047 constrained_packed_array_type (struct type *type, long *elt_bits)
2048 {
2049 struct type *new_elt_type;
2050 struct type *new_type;
2051 struct type *index_type_desc;
2052 struct type *index_type;
2053 LONGEST low_bound, high_bound;
2054
2055 type = ada_check_typedef (type);
2056 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2057 return type;
2058
2059 index_type_desc = ada_find_parallel_type (type, "___XA");
2060 if (index_type_desc)
2061 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2062 NULL);
2063 else
2064 index_type = TYPE_INDEX_TYPE (type);
2065
2066 new_type = alloc_type_copy (type);
2067 new_elt_type =
2068 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2069 elt_bits);
2070 create_array_type (new_type, new_elt_type, index_type);
2071 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2072 TYPE_NAME (new_type) = ada_type_name (type);
2073
2074 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2075 low_bound = high_bound = 0;
2076 if (high_bound < low_bound)
2077 *elt_bits = TYPE_LENGTH (new_type) = 0;
2078 else
2079 {
2080 *elt_bits *= (high_bound - low_bound + 1);
2081 TYPE_LENGTH (new_type) =
2082 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2083 }
2084
2085 TYPE_FIXED_INSTANCE (new_type) = 1;
2086 return new_type;
2087 }
2088
2089 /* The array type encoded by TYPE, where
2090 ada_is_constrained_packed_array_type (TYPE). */
2091
2092 static struct type *
2093 decode_constrained_packed_array_type (struct type *type)
2094 {
2095 const char *raw_name = ada_type_name (ada_check_typedef (type));
2096 char *name;
2097 const char *tail;
2098 struct type *shadow_type;
2099 long bits;
2100
2101 if (!raw_name)
2102 raw_name = ada_type_name (desc_base_type (type));
2103
2104 if (!raw_name)
2105 return NULL;
2106
2107 name = (char *) alloca (strlen (raw_name) + 1);
2108 tail = strstr (raw_name, "___XP");
2109 type = desc_base_type (type);
2110
2111 memcpy (name, raw_name, tail - raw_name);
2112 name[tail - raw_name] = '\000';
2113
2114 shadow_type = ada_find_parallel_type_with_name (type, name);
2115
2116 if (shadow_type == NULL)
2117 {
2118 lim_warning (_("could not find bounds information on packed array"));
2119 return NULL;
2120 }
2121 CHECK_TYPEDEF (shadow_type);
2122
2123 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2124 {
2125 lim_warning (_("could not understand bounds "
2126 "information on packed array"));
2127 return NULL;
2128 }
2129
2130 bits = decode_packed_array_bitsize (type);
2131 return constrained_packed_array_type (shadow_type, &bits);
2132 }
2133
2134 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2135 array, returns a simple array that denotes that array. Its type is a
2136 standard GDB array type except that the BITSIZEs of the array
2137 target types are set to the number of bits in each element, and the
2138 type length is set appropriately. */
2139
2140 static struct value *
2141 decode_constrained_packed_array (struct value *arr)
2142 {
2143 struct type *type;
2144
2145 arr = ada_coerce_ref (arr);
2146
2147 /* If our value is a pointer, then dererence it. Make sure that
2148 this operation does not cause the target type to be fixed, as
2149 this would indirectly cause this array to be decoded. The rest
2150 of the routine assumes that the array hasn't been decoded yet,
2151 so we use the basic "value_ind" routine to perform the dereferencing,
2152 as opposed to using "ada_value_ind". */
2153 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2154 arr = value_ind (arr);
2155
2156 type = decode_constrained_packed_array_type (value_type (arr));
2157 if (type == NULL)
2158 {
2159 error (_("can't unpack array"));
2160 return NULL;
2161 }
2162
2163 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2164 && ada_is_modular_type (value_type (arr)))
2165 {
2166 /* This is a (right-justified) modular type representing a packed
2167 array with no wrapper. In order to interpret the value through
2168 the (left-justified) packed array type we just built, we must
2169 first left-justify it. */
2170 int bit_size, bit_pos;
2171 ULONGEST mod;
2172
2173 mod = ada_modulus (value_type (arr)) - 1;
2174 bit_size = 0;
2175 while (mod > 0)
2176 {
2177 bit_size += 1;
2178 mod >>= 1;
2179 }
2180 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2181 arr = ada_value_primitive_packed_val (arr, NULL,
2182 bit_pos / HOST_CHAR_BIT,
2183 bit_pos % HOST_CHAR_BIT,
2184 bit_size,
2185 type);
2186 }
2187
2188 return coerce_unspec_val_to_type (arr, type);
2189 }
2190
2191
2192 /* The value of the element of packed array ARR at the ARITY indices
2193 given in IND. ARR must be a simple array. */
2194
2195 static struct value *
2196 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2197 {
2198 int i;
2199 int bits, elt_off, bit_off;
2200 long elt_total_bit_offset;
2201 struct type *elt_type;
2202 struct value *v;
2203
2204 bits = 0;
2205 elt_total_bit_offset = 0;
2206 elt_type = ada_check_typedef (value_type (arr));
2207 for (i = 0; i < arity; i += 1)
2208 {
2209 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2210 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2211 error
2212 (_("attempt to do packed indexing of "
2213 "something other than a packed array"));
2214 else
2215 {
2216 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2217 LONGEST lowerbound, upperbound;
2218 LONGEST idx;
2219
2220 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2221 {
2222 lim_warning (_("don't know bounds of array"));
2223 lowerbound = upperbound = 0;
2224 }
2225
2226 idx = pos_atr (ind[i]);
2227 if (idx < lowerbound || idx > upperbound)
2228 lim_warning (_("packed array index %ld out of bounds"),
2229 (long) idx);
2230 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2231 elt_total_bit_offset += (idx - lowerbound) * bits;
2232 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2233 }
2234 }
2235 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2236 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2237
2238 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2239 bits, elt_type);
2240 return v;
2241 }
2242
2243 /* Non-zero iff TYPE includes negative integer values. */
2244
2245 static int
2246 has_negatives (struct type *type)
2247 {
2248 switch (TYPE_CODE (type))
2249 {
2250 default:
2251 return 0;
2252 case TYPE_CODE_INT:
2253 return !TYPE_UNSIGNED (type);
2254 case TYPE_CODE_RANGE:
2255 return TYPE_LOW_BOUND (type) < 0;
2256 }
2257 }
2258
2259
2260 /* Create a new value of type TYPE from the contents of OBJ starting
2261 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2262 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2263 assigning through the result will set the field fetched from.
2264 VALADDR is ignored unless OBJ is NULL, in which case,
2265 VALADDR+OFFSET must address the start of storage containing the
2266 packed value. The value returned in this case is never an lval.
2267 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2268
2269 struct value *
2270 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2271 long offset, int bit_offset, int bit_size,
2272 struct type *type)
2273 {
2274 struct value *v;
2275 int src, /* Index into the source area */
2276 targ, /* Index into the target area */
2277 srcBitsLeft, /* Number of source bits left to move */
2278 nsrc, ntarg, /* Number of source and target bytes */
2279 unusedLS, /* Number of bits in next significant
2280 byte of source that are unused */
2281 accumSize; /* Number of meaningful bits in accum */
2282 unsigned char *bytes; /* First byte containing data to unpack */
2283 unsigned char *unpacked;
2284 unsigned long accum; /* Staging area for bits being transferred */
2285 unsigned char sign;
2286 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2287 /* Transmit bytes from least to most significant; delta is the direction
2288 the indices move. */
2289 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2290
2291 type = ada_check_typedef (type);
2292
2293 if (obj == NULL)
2294 {
2295 v = allocate_value (type);
2296 bytes = (unsigned char *) (valaddr + offset);
2297 }
2298 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2299 {
2300 v = value_at (type, value_address (obj));
2301 bytes = (unsigned char *) alloca (len);
2302 read_memory (value_address (v) + offset, bytes, len);
2303 }
2304 else
2305 {
2306 v = allocate_value (type);
2307 bytes = (unsigned char *) value_contents (obj) + offset;
2308 }
2309
2310 if (obj != NULL)
2311 {
2312 long new_offset = offset;
2313
2314 set_value_component_location (v, obj);
2315 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2316 set_value_bitsize (v, bit_size);
2317 if (value_bitpos (v) >= HOST_CHAR_BIT)
2318 {
2319 ++new_offset;
2320 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2321 }
2322 set_value_offset (v, new_offset);
2323
2324 /* Also set the parent value. This is needed when trying to
2325 assign a new value (in inferior memory). */
2326 set_value_parent (v, obj);
2327 value_incref (obj);
2328 }
2329 else
2330 set_value_bitsize (v, bit_size);
2331 unpacked = (unsigned char *) value_contents (v);
2332
2333 srcBitsLeft = bit_size;
2334 nsrc = len;
2335 ntarg = TYPE_LENGTH (type);
2336 sign = 0;
2337 if (bit_size == 0)
2338 {
2339 memset (unpacked, 0, TYPE_LENGTH (type));
2340 return v;
2341 }
2342 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2343 {
2344 src = len - 1;
2345 if (has_negatives (type)
2346 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2347 sign = ~0;
2348
2349 unusedLS =
2350 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2351 % HOST_CHAR_BIT;
2352
2353 switch (TYPE_CODE (type))
2354 {
2355 case TYPE_CODE_ARRAY:
2356 case TYPE_CODE_UNION:
2357 case TYPE_CODE_STRUCT:
2358 /* Non-scalar values must be aligned at a byte boundary... */
2359 accumSize =
2360 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2361 /* ... And are placed at the beginning (most-significant) bytes
2362 of the target. */
2363 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2364 ntarg = targ + 1;
2365 break;
2366 default:
2367 accumSize = 0;
2368 targ = TYPE_LENGTH (type) - 1;
2369 break;
2370 }
2371 }
2372 else
2373 {
2374 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2375
2376 src = targ = 0;
2377 unusedLS = bit_offset;
2378 accumSize = 0;
2379
2380 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2381 sign = ~0;
2382 }
2383
2384 accum = 0;
2385 while (nsrc > 0)
2386 {
2387 /* Mask for removing bits of the next source byte that are not
2388 part of the value. */
2389 unsigned int unusedMSMask =
2390 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2391 1;
2392 /* Sign-extend bits for this byte. */
2393 unsigned int signMask = sign & ~unusedMSMask;
2394
2395 accum |=
2396 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2397 accumSize += HOST_CHAR_BIT - unusedLS;
2398 if (accumSize >= HOST_CHAR_BIT)
2399 {
2400 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2401 accumSize -= HOST_CHAR_BIT;
2402 accum >>= HOST_CHAR_BIT;
2403 ntarg -= 1;
2404 targ += delta;
2405 }
2406 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2407 unusedLS = 0;
2408 nsrc -= 1;
2409 src += delta;
2410 }
2411 while (ntarg > 0)
2412 {
2413 accum |= sign << accumSize;
2414 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2415 accumSize -= HOST_CHAR_BIT;
2416 accum >>= HOST_CHAR_BIT;
2417 ntarg -= 1;
2418 targ += delta;
2419 }
2420
2421 return v;
2422 }
2423
2424 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2425 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2426 not overlap. */
2427 static void
2428 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2429 int src_offset, int n, int bits_big_endian_p)
2430 {
2431 unsigned int accum, mask;
2432 int accum_bits, chunk_size;
2433
2434 target += targ_offset / HOST_CHAR_BIT;
2435 targ_offset %= HOST_CHAR_BIT;
2436 source += src_offset / HOST_CHAR_BIT;
2437 src_offset %= HOST_CHAR_BIT;
2438 if (bits_big_endian_p)
2439 {
2440 accum = (unsigned char) *source;
2441 source += 1;
2442 accum_bits = HOST_CHAR_BIT - src_offset;
2443
2444 while (n > 0)
2445 {
2446 int unused_right;
2447
2448 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2449 accum_bits += HOST_CHAR_BIT;
2450 source += 1;
2451 chunk_size = HOST_CHAR_BIT - targ_offset;
2452 if (chunk_size > n)
2453 chunk_size = n;
2454 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2455 mask = ((1 << chunk_size) - 1) << unused_right;
2456 *target =
2457 (*target & ~mask)
2458 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2459 n -= chunk_size;
2460 accum_bits -= chunk_size;
2461 target += 1;
2462 targ_offset = 0;
2463 }
2464 }
2465 else
2466 {
2467 accum = (unsigned char) *source >> src_offset;
2468 source += 1;
2469 accum_bits = HOST_CHAR_BIT - src_offset;
2470
2471 while (n > 0)
2472 {
2473 accum = accum + ((unsigned char) *source << accum_bits);
2474 accum_bits += HOST_CHAR_BIT;
2475 source += 1;
2476 chunk_size = HOST_CHAR_BIT - targ_offset;
2477 if (chunk_size > n)
2478 chunk_size = n;
2479 mask = ((1 << chunk_size) - 1) << targ_offset;
2480 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2481 n -= chunk_size;
2482 accum_bits -= chunk_size;
2483 accum >>= chunk_size;
2484 target += 1;
2485 targ_offset = 0;
2486 }
2487 }
2488 }
2489
2490 /* Store the contents of FROMVAL into the location of TOVAL.
2491 Return a new value with the location of TOVAL and contents of
2492 FROMVAL. Handles assignment into packed fields that have
2493 floating-point or non-scalar types. */
2494
2495 static struct value *
2496 ada_value_assign (struct value *toval, struct value *fromval)
2497 {
2498 struct type *type = value_type (toval);
2499 int bits = value_bitsize (toval);
2500
2501 toval = ada_coerce_ref (toval);
2502 fromval = ada_coerce_ref (fromval);
2503
2504 if (ada_is_direct_array_type (value_type (toval)))
2505 toval = ada_coerce_to_simple_array (toval);
2506 if (ada_is_direct_array_type (value_type (fromval)))
2507 fromval = ada_coerce_to_simple_array (fromval);
2508
2509 if (!deprecated_value_modifiable (toval))
2510 error (_("Left operand of assignment is not a modifiable lvalue."));
2511
2512 if (VALUE_LVAL (toval) == lval_memory
2513 && bits > 0
2514 && (TYPE_CODE (type) == TYPE_CODE_FLT
2515 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2516 {
2517 int len = (value_bitpos (toval)
2518 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2519 int from_size;
2520 char *buffer = (char *) alloca (len);
2521 struct value *val;
2522 CORE_ADDR to_addr = value_address (toval);
2523
2524 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2525 fromval = value_cast (type, fromval);
2526
2527 read_memory (to_addr, buffer, len);
2528 from_size = value_bitsize (fromval);
2529 if (from_size == 0)
2530 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2531 if (gdbarch_bits_big_endian (get_type_arch (type)))
2532 move_bits (buffer, value_bitpos (toval),
2533 value_contents (fromval), from_size - bits, bits, 1);
2534 else
2535 move_bits (buffer, value_bitpos (toval),
2536 value_contents (fromval), 0, bits, 0);
2537 write_memory (to_addr, buffer, len);
2538 observer_notify_memory_changed (to_addr, len, buffer);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 {
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
2818 else
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2820
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2825 }
2826
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2831
2832 static LONGEST
2833 ada_array_bound (struct value *arr, int n, int which)
2834 {
2835 struct type *arr_type = value_type (arr);
2836
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2841 else
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2843 }
2844
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2850
2851 static LONGEST
2852 ada_array_length (struct value *arr, int n)
2853 {
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2855
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2858
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 else
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2865 }
2866
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2872 {
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 low, low - 1);
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2880 }
2881 \f
2882
2883 /* Name resolution */
2884
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
2887
2888 static const char *
2889 ada_decoded_op_name (enum exp_opcode op)
2890 {
2891 int i;
2892
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 {
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2897 }
2898 error (_("Could not find operator name for opcode"));
2899 }
2900
2901
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2910
2911 static void
2912 resolve (struct expression **expp, int void_context_p)
2913 {
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
2921 }
2922
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2931
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2935 {
2936 int pc = *pos;
2937 int i;
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2942 int oplen;
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
2950 switch (op)
2951 {
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2962 break;
2963
2964 case UNOP_ADDR:
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
2969 case UNOP_QUAL:
2970 *pos += 3;
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2972 break;
2973
2974 case OP_ATR_MODULUS:
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3007 break;
3008 }
3009
3010 case UNOP_CAST:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3028
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
3035
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
3039 *pos += 1;
3040 nargs = 2;
3041 break;
3042
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
3051
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
3057
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
3064
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
3079 case TERNOP_SLICE:
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
3084 case OP_STRING:
3085 break;
3086
3087 default:
3088 error (_("Unexpected operator during name resolution"));
3089 }
3090
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
3103 case OP_VAR_VALUE:
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3113 &candidates, 1);
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
3129 case LOC_COMPUTED:
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
3163 if (i < 0)
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 &candidates, 1);
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
3215 if (i < 0)
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3225 }
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 &candidates, 1);
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3260 if (i < 0)
3261 break;
3262
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3265 exp = *expp;
3266 }
3267 break;
3268
3269 case OP_TYPE:
3270 case OP_REGISTER:
3271 return NULL;
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276 }
3277
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 a non-pointer. */
3281 /* The term "match" here is rather loose. The match is heuristic and
3282 liberal. */
3283
3284 static int
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 {
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
3295 switch (TYPE_CODE (ftype))
3296 {
3297 default:
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3303 else
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
3318
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3327 else
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335 }
3336
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3341
3342 static int
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3344 {
3345 int i;
3346 struct type *func_type = SYMBOL_TYPE (func);
3347
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
3359 if (actuals[i] == NULL)
3360 return 0;
3361 else
3362 {
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
3370 }
3371 return 1;
3372 }
3373
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379 static int
3380 return_match (struct type *func_type, struct type *context_type)
3381 {
3382 struct type *return_type;
3383
3384 if (func_type == NULL)
3385 return 1;
3386
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 else
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3392 return 1;
3393
3394 context_type = get_base_type (context_type);
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402 }
3403
3404
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3416
3417 static int
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3421 {
3422 int fallback;
3423 int k;
3424 int m; /* Number of hits */
3425
3426 m = 0;
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 {
3432 for (k = 0; k < nsyms; k += 1)
3433 {
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
3462 static int
3463 encoded_ordered_before (const char *N0, const char *N1)
3464 {
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
3472
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 ;
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 ;
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
3481
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
3491 return (strcmp (N0, N1) < 0);
3492 }
3493 }
3494
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
3498 static void
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3500 {
3501 int i;
3502
3503 for (i = 1; i < nsyms; i += 1)
3504 {
3505 struct ada_symbol_info sym = syms[i];
3506 int j;
3507
3508 for (j = i - 1; j >= 0; j -= 1)
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
3515 syms[j + 1] = sym;
3516 }
3517 }
3518
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
3523
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3526
3527 int
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3529 {
3530 int i;
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3535
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3538 if (nsyms <= 1)
3539 return nsyms;
3540
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3555
3556 sort_choices (syms, nsyms);
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3567
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 sal.symtab->filename, sal.line);
3577 continue;
3578 }
3579 else
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = syms[i].sym->symtab;
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab->filename, SYMBOL_LINE (syms[i].sym));
3592 else if (is_enumeral
3593 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3594 {
3595 printf_unfiltered (("[%d] "), i + first_choice);
3596 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3597 gdb_stdout, -1, 0);
3598 printf_unfiltered (_("'(%s) (enumeral)\n"),
3599 SYMBOL_PRINT_NAME (syms[i].sym));
3600 }
3601 else if (symtab != NULL)
3602 printf_unfiltered (is_enumeral
3603 ? _("[%d] %s in %s (enumeral)\n")
3604 : _("[%d] %s at %s:?\n"),
3605 i + first_choice,
3606 SYMBOL_PRINT_NAME (syms[i].sym),
3607 symtab->filename);
3608 else
3609 printf_unfiltered (is_enumeral
3610 ? _("[%d] %s (enumeral)\n")
3611 : _("[%d] %s at ?\n"),
3612 i + first_choice,
3613 SYMBOL_PRINT_NAME (syms[i].sym));
3614 }
3615 }
3616
3617 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3618 "overload-choice");
3619
3620 for (i = 0; i < n_chosen; i += 1)
3621 syms[i] = syms[chosen[i]];
3622
3623 return n_chosen;
3624 }
3625
3626 /* Read and validate a set of numeric choices from the user in the
3627 range 0 .. N_CHOICES-1. Place the results in increasing
3628 order in CHOICES[0 .. N-1], and return N.
3629
3630 The user types choices as a sequence of numbers on one line
3631 separated by blanks, encoding them as follows:
3632
3633 + A choice of 0 means to cancel the selection, throwing an error.
3634 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3635 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3636
3637 The user is not allowed to choose more than MAX_RESULTS values.
3638
3639 ANNOTATION_SUFFIX, if present, is used to annotate the input
3640 prompts (for use with the -f switch). */
3641
3642 int
3643 get_selections (int *choices, int n_choices, int max_results,
3644 int is_all_choice, char *annotation_suffix)
3645 {
3646 char *args;
3647 char *prompt;
3648 int n_chosen;
3649 int first_choice = is_all_choice ? 2 : 1;
3650
3651 prompt = getenv ("PS2");
3652 if (prompt == NULL)
3653 prompt = "> ";
3654
3655 args = command_line_input (prompt, 0, annotation_suffix);
3656
3657 if (args == NULL)
3658 error_no_arg (_("one or more choice numbers"));
3659
3660 n_chosen = 0;
3661
3662 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3663 order, as given in args. Choices are validated. */
3664 while (1)
3665 {
3666 char *args2;
3667 int choice, j;
3668
3669 args = skip_spaces (args);
3670 if (*args == '\0' && n_chosen == 0)
3671 error_no_arg (_("one or more choice numbers"));
3672 else if (*args == '\0')
3673 break;
3674
3675 choice = strtol (args, &args2, 10);
3676 if (args == args2 || choice < 0
3677 || choice > n_choices + first_choice - 1)
3678 error (_("Argument must be choice number"));
3679 args = args2;
3680
3681 if (choice == 0)
3682 error (_("cancelled"));
3683
3684 if (choice < first_choice)
3685 {
3686 n_chosen = n_choices;
3687 for (j = 0; j < n_choices; j += 1)
3688 choices[j] = j;
3689 break;
3690 }
3691 choice -= first_choice;
3692
3693 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3694 {
3695 }
3696
3697 if (j < 0 || choice != choices[j])
3698 {
3699 int k;
3700
3701 for (k = n_chosen - 1; k > j; k -= 1)
3702 choices[k + 1] = choices[k];
3703 choices[j + 1] = choice;
3704 n_chosen += 1;
3705 }
3706 }
3707
3708 if (n_chosen > max_results)
3709 error (_("Select no more than %d of the above"), max_results);
3710
3711 return n_chosen;
3712 }
3713
3714 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3715 on the function identified by SYM and BLOCK, and taking NARGS
3716 arguments. Update *EXPP as needed to hold more space. */
3717
3718 static void
3719 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3720 int oplen, struct symbol *sym,
3721 struct block *block)
3722 {
3723 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3724 symbol, -oplen for operator being replaced). */
3725 struct expression *newexp = (struct expression *)
3726 xzalloc (sizeof (struct expression)
3727 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3728 struct expression *exp = *expp;
3729
3730 newexp->nelts = exp->nelts + 7 - oplen;
3731 newexp->language_defn = exp->language_defn;
3732 newexp->gdbarch = exp->gdbarch;
3733 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3734 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3735 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3736
3737 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3738 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3739
3740 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3741 newexp->elts[pc + 4].block = block;
3742 newexp->elts[pc + 5].symbol = sym;
3743
3744 *expp = newexp;
3745 xfree (exp);
3746 }
3747
3748 /* Type-class predicates */
3749
3750 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3751 or FLOAT). */
3752
3753 static int
3754 numeric_type_p (struct type *type)
3755 {
3756 if (type == NULL)
3757 return 0;
3758 else
3759 {
3760 switch (TYPE_CODE (type))
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_FLT:
3764 return 1;
3765 case TYPE_CODE_RANGE:
3766 return (type == TYPE_TARGET_TYPE (type)
3767 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3768 default:
3769 return 0;
3770 }
3771 }
3772 }
3773
3774 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3775
3776 static int
3777 integer_type_p (struct type *type)
3778 {
3779 if (type == NULL)
3780 return 0;
3781 else
3782 {
3783 switch (TYPE_CODE (type))
3784 {
3785 case TYPE_CODE_INT:
3786 return 1;
3787 case TYPE_CODE_RANGE:
3788 return (type == TYPE_TARGET_TYPE (type)
3789 || integer_type_p (TYPE_TARGET_TYPE (type)));
3790 default:
3791 return 0;
3792 }
3793 }
3794 }
3795
3796 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3797
3798 static int
3799 scalar_type_p (struct type *type)
3800 {
3801 if (type == NULL)
3802 return 0;
3803 else
3804 {
3805 switch (TYPE_CODE (type))
3806 {
3807 case TYPE_CODE_INT:
3808 case TYPE_CODE_RANGE:
3809 case TYPE_CODE_ENUM:
3810 case TYPE_CODE_FLT:
3811 return 1;
3812 default:
3813 return 0;
3814 }
3815 }
3816 }
3817
3818 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3819
3820 static int
3821 discrete_type_p (struct type *type)
3822 {
3823 if (type == NULL)
3824 return 0;
3825 else
3826 {
3827 switch (TYPE_CODE (type))
3828 {
3829 case TYPE_CODE_INT:
3830 case TYPE_CODE_RANGE:
3831 case TYPE_CODE_ENUM:
3832 case TYPE_CODE_BOOL:
3833 return 1;
3834 default:
3835 return 0;
3836 }
3837 }
3838 }
3839
3840 /* Returns non-zero if OP with operands in the vector ARGS could be
3841 a user-defined function. Errs on the side of pre-defined operators
3842 (i.e., result 0). */
3843
3844 static int
3845 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3846 {
3847 struct type *type0 =
3848 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3849 struct type *type1 =
3850 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3851
3852 if (type0 == NULL)
3853 return 0;
3854
3855 switch (op)
3856 {
3857 default:
3858 return 0;
3859
3860 case BINOP_ADD:
3861 case BINOP_SUB:
3862 case BINOP_MUL:
3863 case BINOP_DIV:
3864 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3865
3866 case BINOP_REM:
3867 case BINOP_MOD:
3868 case BINOP_BITWISE_AND:
3869 case BINOP_BITWISE_IOR:
3870 case BINOP_BITWISE_XOR:
3871 return (!(integer_type_p (type0) && integer_type_p (type1)));
3872
3873 case BINOP_EQUAL:
3874 case BINOP_NOTEQUAL:
3875 case BINOP_LESS:
3876 case BINOP_GTR:
3877 case BINOP_LEQ:
3878 case BINOP_GEQ:
3879 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3880
3881 case BINOP_CONCAT:
3882 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3883
3884 case BINOP_EXP:
3885 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3886
3887 case UNOP_NEG:
3888 case UNOP_PLUS:
3889 case UNOP_LOGICAL_NOT:
3890 case UNOP_ABS:
3891 return (!numeric_type_p (type0));
3892
3893 }
3894 }
3895 \f
3896 /* Renaming */
3897
3898 /* NOTES:
3899
3900 1. In the following, we assume that a renaming type's name may
3901 have an ___XD suffix. It would be nice if this went away at some
3902 point.
3903 2. We handle both the (old) purely type-based representation of
3904 renamings and the (new) variable-based encoding. At some point,
3905 it is devoutly to be hoped that the former goes away
3906 (FIXME: hilfinger-2007-07-09).
3907 3. Subprogram renamings are not implemented, although the XRS
3908 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3909
3910 /* If SYM encodes a renaming,
3911
3912 <renaming> renames <renamed entity>,
3913
3914 sets *LEN to the length of the renamed entity's name,
3915 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3916 the string describing the subcomponent selected from the renamed
3917 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3918 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3919 are undefined). Otherwise, returns a value indicating the category
3920 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3921 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3922 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3923 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3924 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3925 may be NULL, in which case they are not assigned.
3926
3927 [Currently, however, GCC does not generate subprogram renamings.] */
3928
3929 enum ada_renaming_category
3930 ada_parse_renaming (struct symbol *sym,
3931 const char **renamed_entity, int *len,
3932 const char **renaming_expr)
3933 {
3934 enum ada_renaming_category kind;
3935 const char *info;
3936 const char *suffix;
3937
3938 if (sym == NULL)
3939 return ADA_NOT_RENAMING;
3940 switch (SYMBOL_CLASS (sym))
3941 {
3942 default:
3943 return ADA_NOT_RENAMING;
3944 case LOC_TYPEDEF:
3945 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3946 renamed_entity, len, renaming_expr);
3947 case LOC_LOCAL:
3948 case LOC_STATIC:
3949 case LOC_COMPUTED:
3950 case LOC_OPTIMIZED_OUT:
3951 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3952 if (info == NULL)
3953 return ADA_NOT_RENAMING;
3954 switch (info[5])
3955 {
3956 case '_':
3957 kind = ADA_OBJECT_RENAMING;
3958 info += 6;
3959 break;
3960 case 'E':
3961 kind = ADA_EXCEPTION_RENAMING;
3962 info += 7;
3963 break;
3964 case 'P':
3965 kind = ADA_PACKAGE_RENAMING;
3966 info += 7;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 info += 7;
3971 break;
3972 default:
3973 return ADA_NOT_RENAMING;
3974 }
3975 }
3976
3977 if (renamed_entity != NULL)
3978 *renamed_entity = info;
3979 suffix = strstr (info, "___XE");
3980 if (suffix == NULL || suffix == info)
3981 return ADA_NOT_RENAMING;
3982 if (len != NULL)
3983 *len = strlen (info) - strlen (suffix);
3984 suffix += 5;
3985 if (renaming_expr != NULL)
3986 *renaming_expr = suffix;
3987 return kind;
3988 }
3989
3990 /* Assuming TYPE encodes a renaming according to the old encoding in
3991 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3992 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3993 ADA_NOT_RENAMING otherwise. */
3994 static enum ada_renaming_category
3995 parse_old_style_renaming (struct type *type,
3996 const char **renamed_entity, int *len,
3997 const char **renaming_expr)
3998 {
3999 enum ada_renaming_category kind;
4000 const char *name;
4001 const char *info;
4002 const char *suffix;
4003
4004 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4005 || TYPE_NFIELDS (type) != 1)
4006 return ADA_NOT_RENAMING;
4007
4008 name = type_name_no_tag (type);
4009 if (name == NULL)
4010 return ADA_NOT_RENAMING;
4011
4012 name = strstr (name, "___XR");
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015 switch (name[5])
4016 {
4017 case '\0':
4018 case '_':
4019 kind = ADA_OBJECT_RENAMING;
4020 break;
4021 case 'E':
4022 kind = ADA_EXCEPTION_RENAMING;
4023 break;
4024 case 'P':
4025 kind = ADA_PACKAGE_RENAMING;
4026 break;
4027 case 'S':
4028 kind = ADA_SUBPROGRAM_RENAMING;
4029 break;
4030 default:
4031 return ADA_NOT_RENAMING;
4032 }
4033
4034 info = TYPE_FIELD_NAME (type, 0);
4035 if (info == NULL)
4036 return ADA_NOT_RENAMING;
4037 if (renamed_entity != NULL)
4038 *renamed_entity = info;
4039 suffix = strstr (info, "___XE");
4040 if (renaming_expr != NULL)
4041 *renaming_expr = suffix + 5;
4042 if (suffix == NULL || suffix == info)
4043 return ADA_NOT_RENAMING;
4044 if (len != NULL)
4045 *len = suffix - info;
4046 return kind;
4047 }
4048
4049 /* Compute the value of the given RENAMING_SYM, which is expected to
4050 be a symbol encoding a renaming expression. BLOCK is the block
4051 used to evaluate the renaming. */
4052
4053 static struct value *
4054 ada_read_renaming_var_value (struct symbol *renaming_sym,
4055 struct block *block)
4056 {
4057 char *sym_name;
4058 struct expression *expr;
4059 struct value *value;
4060 struct cleanup *old_chain = NULL;
4061
4062 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4063 old_chain = make_cleanup (xfree, sym_name);
4064 expr = parse_exp_1 (&sym_name, block, 0);
4065 make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070 }
4071 \f
4072
4073 /* Evaluation: Function Calls */
4074
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4078
4079 static struct value *
4080 ensure_lval (struct value *val)
4081 {
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4084 {
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4088
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4092 }
4093
4094 return val;
4095 }
4096
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4101
4102 struct value *
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4104 {
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4113
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4119 {
4120 struct value *result;
4121
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
4130
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4137 }
4138 result = value_addr (actual);
4139 }
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result);
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4224
4225 static int
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4228 {
4229 return 0;
4230 }
4231
4232 static void
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 struct block *block)
4235 {
4236 }
4237 \f
4238 /* Symbol Lookup */
4239
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246 static int
4247 should_use_wild_match (const char *lookup_name)
4248 {
4249 return (strstr (lookup_name, "__") == NULL);
4250 }
4251
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258 {
4259 struct symbol *sym;
4260
4261 if (lookup_cached_symbol (name, domain, &sym, NULL))
4262 return sym;
4263 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4264 cache_symbol (name, domain, sym, block_found);
4265 return sym;
4266 }
4267
4268
4269 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4270 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4271 since they contend in overloading in the same way. */
4272 static int
4273 is_nonfunction (struct ada_symbol_info syms[], int n)
4274 {
4275 int i;
4276
4277 for (i = 0; i < n; i += 1)
4278 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4279 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4280 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4281 return 1;
4282
4283 return 0;
4284 }
4285
4286 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4287 struct types. Otherwise, they may not. */
4288
4289 static int
4290 equiv_types (struct type *type0, struct type *type1)
4291 {
4292 if (type0 == type1)
4293 return 1;
4294 if (type0 == NULL || type1 == NULL
4295 || TYPE_CODE (type0) != TYPE_CODE (type1))
4296 return 0;
4297 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4298 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4299 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4300 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4301 return 1;
4302
4303 return 0;
4304 }
4305
4306 /* True iff SYM0 represents the same entity as SYM1, or one that is
4307 no more defined than that of SYM1. */
4308
4309 static int
4310 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4311 {
4312 if (sym0 == sym1)
4313 return 1;
4314 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4315 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4316 return 0;
4317
4318 switch (SYMBOL_CLASS (sym0))
4319 {
4320 case LOC_UNDEF:
4321 return 1;
4322 case LOC_TYPEDEF:
4323 {
4324 struct type *type0 = SYMBOL_TYPE (sym0);
4325 struct type *type1 = SYMBOL_TYPE (sym1);
4326 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4327 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4328 int len0 = strlen (name0);
4329
4330 return
4331 TYPE_CODE (type0) == TYPE_CODE (type1)
4332 && (equiv_types (type0, type1)
4333 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4334 && strncmp (name1 + len0, "___XV", 5) == 0));
4335 }
4336 case LOC_CONST:
4337 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4338 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4339 default:
4340 return 0;
4341 }
4342 }
4343
4344 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4345 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4346
4347 static void
4348 add_defn_to_vec (struct obstack *obstackp,
4349 struct symbol *sym,
4350 struct block *block)
4351 {
4352 int i;
4353 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4354
4355 /* Do not try to complete stub types, as the debugger is probably
4356 already scanning all symbols matching a certain name at the
4357 time when this function is called. Trying to replace the stub
4358 type by its associated full type will cause us to restart a scan
4359 which may lead to an infinite recursion. Instead, the client
4360 collecting the matching symbols will end up collecting several
4361 matches, with at least one of them complete. It can then filter
4362 out the stub ones if needed. */
4363
4364 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4365 {
4366 if (lesseq_defined_than (sym, prevDefns[i].sym))
4367 return;
4368 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4369 {
4370 prevDefns[i].sym = sym;
4371 prevDefns[i].block = block;
4372 return;
4373 }
4374 }
4375
4376 {
4377 struct ada_symbol_info info;
4378
4379 info.sym = sym;
4380 info.block = block;
4381 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4382 }
4383 }
4384
4385 /* Number of ada_symbol_info structures currently collected in
4386 current vector in *OBSTACKP. */
4387
4388 static int
4389 num_defns_collected (struct obstack *obstackp)
4390 {
4391 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4392 }
4393
4394 /* Vector of ada_symbol_info structures currently collected in current
4395 vector in *OBSTACKP. If FINISH, close off the vector and return
4396 its final address. */
4397
4398 static struct ada_symbol_info *
4399 defns_collected (struct obstack *obstackp, int finish)
4400 {
4401 if (finish)
4402 return obstack_finish (obstackp);
4403 else
4404 return (struct ada_symbol_info *) obstack_base (obstackp);
4405 }
4406
4407 /* Return a minimal symbol matching NAME according to Ada decoding
4408 rules. Returns NULL if there is no such minimal symbol. Names
4409 prefixed with "standard__" are handled specially: "standard__" is
4410 first stripped off, and only static and global symbols are searched. */
4411
4412 struct minimal_symbol *
4413 ada_lookup_simple_minsym (const char *name)
4414 {
4415 struct objfile *objfile;
4416 struct minimal_symbol *msymbol;
4417 const int wild_match_p = should_use_wild_match (name);
4418
4419 /* Special case: If the user specifies a symbol name inside package
4420 Standard, do a non-wild matching of the symbol name without
4421 the "standard__" prefix. This was primarily introduced in order
4422 to allow the user to specifically access the standard exceptions
4423 using, for instance, Standard.Constraint_Error when Constraint_Error
4424 is ambiguous (due to the user defining its own Constraint_Error
4425 entity inside its program). */
4426 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4427 name += sizeof ("standard__") - 1;
4428
4429 ALL_MSYMBOLS (objfile, msymbol)
4430 {
4431 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4432 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4433 return msymbol;
4434 }
4435
4436 return NULL;
4437 }
4438
4439 /* For all subprograms that statically enclose the subprogram of the
4440 selected frame, add symbols matching identifier NAME in DOMAIN
4441 and their blocks to the list of data in OBSTACKP, as for
4442 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4443 with a wildcard prefix. */
4444
4445 static void
4446 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4447 const char *name, domain_enum namespace,
4448 int wild_match_p)
4449 {
4450 }
4451
4452 /* True if TYPE is definitely an artificial type supplied to a symbol
4453 for which no debugging information was given in the symbol file. */
4454
4455 static int
4456 is_nondebugging_type (struct type *type)
4457 {
4458 const char *name = ada_type_name (type);
4459
4460 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4461 }
4462
4463 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4464 that are deemed "identical" for practical purposes.
4465
4466 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4467 types and that their number of enumerals is identical (in other
4468 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4469
4470 static int
4471 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4472 {
4473 int i;
4474
4475 /* The heuristic we use here is fairly conservative. We consider
4476 that 2 enumerate types are identical if they have the same
4477 number of enumerals and that all enumerals have the same
4478 underlying value and name. */
4479
4480 /* All enums in the type should have an identical underlying value. */
4481 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4482 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4483 return 0;
4484
4485 /* All enumerals should also have the same name (modulo any numerical
4486 suffix). */
4487 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4488 {
4489 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4490 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4491 int len_1 = strlen (name_1);
4492 int len_2 = strlen (name_2);
4493
4494 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4496 if (len_1 != len_2
4497 || strncmp (TYPE_FIELD_NAME (type1, i),
4498 TYPE_FIELD_NAME (type2, i),
4499 len_1) != 0)
4500 return 0;
4501 }
4502
4503 return 1;
4504 }
4505
4506 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4507 that are deemed "identical" for practical purposes. Sometimes,
4508 enumerals are not strictly identical, but their types are so similar
4509 that they can be considered identical.
4510
4511 For instance, consider the following code:
4512
4513 type Color is (Black, Red, Green, Blue, White);
4514 type RGB_Color is new Color range Red .. Blue;
4515
4516 Type RGB_Color is a subrange of an implicit type which is a copy
4517 of type Color. If we call that implicit type RGB_ColorB ("B" is
4518 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4519 As a result, when an expression references any of the enumeral
4520 by name (Eg. "print green"), the expression is technically
4521 ambiguous and the user should be asked to disambiguate. But
4522 doing so would only hinder the user, since it wouldn't matter
4523 what choice he makes, the outcome would always be the same.
4524 So, for practical purposes, we consider them as the same. */
4525
4526 static int
4527 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4528 {
4529 int i;
4530
4531 /* Before performing a thorough comparison check of each type,
4532 we perform a series of inexpensive checks. We expect that these
4533 checks will quickly fail in the vast majority of cases, and thus
4534 help prevent the unnecessary use of a more expensive comparison.
4535 Said comparison also expects us to make some of these checks
4536 (see ada_identical_enum_types_p). */
4537
4538 /* Quick check: All symbols should have an enum type. */
4539 for (i = 0; i < nsyms; i++)
4540 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4541 return 0;
4542
4543 /* Quick check: They should all have the same value. */
4544 for (i = 1; i < nsyms; i++)
4545 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4546 return 0;
4547
4548 /* Quick check: They should all have the same number of enumerals. */
4549 for (i = 1; i < nsyms; i++)
4550 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4551 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4552 return 0;
4553
4554 /* All the sanity checks passed, so we might have a set of
4555 identical enumeration types. Perform a more complete
4556 comparison of the type of each symbol. */
4557 for (i = 1; i < nsyms; i++)
4558 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4559 SYMBOL_TYPE (syms[0].sym)))
4560 return 0;
4561
4562 return 1;
4563 }
4564
4565 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4566 duplicate other symbols in the list (The only case I know of where
4567 this happens is when object files containing stabs-in-ecoff are
4568 linked with files containing ordinary ecoff debugging symbols (or no
4569 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4570 Returns the number of items in the modified list. */
4571
4572 static int
4573 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4574 {
4575 int i, j;
4576
4577 /* We should never be called with less than 2 symbols, as there
4578 cannot be any extra symbol in that case. But it's easy to
4579 handle, since we have nothing to do in that case. */
4580 if (nsyms < 2)
4581 return nsyms;
4582
4583 i = 0;
4584 while (i < nsyms)
4585 {
4586 int remove_p = 0;
4587
4588 /* If two symbols have the same name and one of them is a stub type,
4589 the get rid of the stub. */
4590
4591 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4592 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4593 {
4594 for (j = 0; j < nsyms; j++)
4595 {
4596 if (j != i
4597 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4598 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4599 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4600 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4601 remove_p = 1;
4602 }
4603 }
4604
4605 /* Two symbols with the same name, same class and same address
4606 should be identical. */
4607
4608 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4609 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4610 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4611 {
4612 for (j = 0; j < nsyms; j += 1)
4613 {
4614 if (i != j
4615 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4616 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4617 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4618 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4619 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4620 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4621 remove_p = 1;
4622 }
4623 }
4624
4625 if (remove_p)
4626 {
4627 for (j = i + 1; j < nsyms; j += 1)
4628 syms[j - 1] = syms[j];
4629 nsyms -= 1;
4630 }
4631
4632 i += 1;
4633 }
4634
4635 /* If all the remaining symbols are identical enumerals, then
4636 just keep the first one and discard the rest.
4637
4638 Unlike what we did previously, we do not discard any entry
4639 unless they are ALL identical. This is because the symbol
4640 comparison is not a strict comparison, but rather a practical
4641 comparison. If all symbols are considered identical, then
4642 we can just go ahead and use the first one and discard the rest.
4643 But if we cannot reduce the list to a single element, we have
4644 to ask the user to disambiguate anyways. And if we have to
4645 present a multiple-choice menu, it's less confusing if the list
4646 isn't missing some choices that were identical and yet distinct. */
4647 if (symbols_are_identical_enums (syms, nsyms))
4648 nsyms = 1;
4649
4650 return nsyms;
4651 }
4652
4653 /* Given a type that corresponds to a renaming entity, use the type name
4654 to extract the scope (package name or function name, fully qualified,
4655 and following the GNAT encoding convention) where this renaming has been
4656 defined. The string returned needs to be deallocated after use. */
4657
4658 static char *
4659 xget_renaming_scope (struct type *renaming_type)
4660 {
4661 /* The renaming types adhere to the following convention:
4662 <scope>__<rename>___<XR extension>.
4663 So, to extract the scope, we search for the "___XR" extension,
4664 and then backtrack until we find the first "__". */
4665
4666 const char *name = type_name_no_tag (renaming_type);
4667 char *suffix = strstr (name, "___XR");
4668 char *last;
4669 int scope_len;
4670 char *scope;
4671
4672 /* Now, backtrack a bit until we find the first "__". Start looking
4673 at suffix - 3, as the <rename> part is at least one character long. */
4674
4675 for (last = suffix - 3; last > name; last--)
4676 if (last[0] == '_' && last[1] == '_')
4677 break;
4678
4679 /* Make a copy of scope and return it. */
4680
4681 scope_len = last - name;
4682 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4683
4684 strncpy (scope, name, scope_len);
4685 scope[scope_len] = '\0';
4686
4687 return scope;
4688 }
4689
4690 /* Return nonzero if NAME corresponds to a package name. */
4691
4692 static int
4693 is_package_name (const char *name)
4694 {
4695 /* Here, We take advantage of the fact that no symbols are generated
4696 for packages, while symbols are generated for each function.
4697 So the condition for NAME represent a package becomes equivalent
4698 to NAME not existing in our list of symbols. There is only one
4699 small complication with library-level functions (see below). */
4700
4701 char *fun_name;
4702
4703 /* If it is a function that has not been defined at library level,
4704 then we should be able to look it up in the symbols. */
4705 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4706 return 0;
4707
4708 /* Library-level function names start with "_ada_". See if function
4709 "_ada_" followed by NAME can be found. */
4710
4711 /* Do a quick check that NAME does not contain "__", since library-level
4712 functions names cannot contain "__" in them. */
4713 if (strstr (name, "__") != NULL)
4714 return 0;
4715
4716 fun_name = xstrprintf ("_ada_%s", name);
4717
4718 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4719 }
4720
4721 /* Return nonzero if SYM corresponds to a renaming entity that is
4722 not visible from FUNCTION_NAME. */
4723
4724 static int
4725 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4726 {
4727 char *scope;
4728
4729 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4730 return 0;
4731
4732 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4733
4734 make_cleanup (xfree, scope);
4735
4736 /* If the rename has been defined in a package, then it is visible. */
4737 if (is_package_name (scope))
4738 return 0;
4739
4740 /* Check that the rename is in the current function scope by checking
4741 that its name starts with SCOPE. */
4742
4743 /* If the function name starts with "_ada_", it means that it is
4744 a library-level function. Strip this prefix before doing the
4745 comparison, as the encoding for the renaming does not contain
4746 this prefix. */
4747 if (strncmp (function_name, "_ada_", 5) == 0)
4748 function_name += 5;
4749
4750 return (strncmp (function_name, scope, strlen (scope)) != 0);
4751 }
4752
4753 /* Remove entries from SYMS that corresponds to a renaming entity that
4754 is not visible from the function associated with CURRENT_BLOCK or
4755 that is superfluous due to the presence of more specific renaming
4756 information. Places surviving symbols in the initial entries of
4757 SYMS and returns the number of surviving symbols.
4758
4759 Rationale:
4760 First, in cases where an object renaming is implemented as a
4761 reference variable, GNAT may produce both the actual reference
4762 variable and the renaming encoding. In this case, we discard the
4763 latter.
4764
4765 Second, GNAT emits a type following a specified encoding for each renaming
4766 entity. Unfortunately, STABS currently does not support the definition
4767 of types that are local to a given lexical block, so all renamings types
4768 are emitted at library level. As a consequence, if an application
4769 contains two renaming entities using the same name, and a user tries to
4770 print the value of one of these entities, the result of the ada symbol
4771 lookup will also contain the wrong renaming type.
4772
4773 This function partially covers for this limitation by attempting to
4774 remove from the SYMS list renaming symbols that should be visible
4775 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4776 method with the current information available. The implementation
4777 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4778
4779 - When the user tries to print a rename in a function while there
4780 is another rename entity defined in a package: Normally, the
4781 rename in the function has precedence over the rename in the
4782 package, so the latter should be removed from the list. This is
4783 currently not the case.
4784
4785 - This function will incorrectly remove valid renames if
4786 the CURRENT_BLOCK corresponds to a function which symbol name
4787 has been changed by an "Export" pragma. As a consequence,
4788 the user will be unable to print such rename entities. */
4789
4790 static int
4791 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4792 int nsyms, const struct block *current_block)
4793 {
4794 struct symbol *current_function;
4795 const char *current_function_name;
4796 int i;
4797 int is_new_style_renaming;
4798
4799 /* If there is both a renaming foo___XR... encoded as a variable and
4800 a simple variable foo in the same block, discard the latter.
4801 First, zero out such symbols, then compress. */
4802 is_new_style_renaming = 0;
4803 for (i = 0; i < nsyms; i += 1)
4804 {
4805 struct symbol *sym = syms[i].sym;
4806 struct block *block = syms[i].block;
4807 const char *name;
4808 const char *suffix;
4809
4810 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4811 continue;
4812 name = SYMBOL_LINKAGE_NAME (sym);
4813 suffix = strstr (name, "___XR");
4814
4815 if (suffix != NULL)
4816 {
4817 int name_len = suffix - name;
4818 int j;
4819
4820 is_new_style_renaming = 1;
4821 for (j = 0; j < nsyms; j += 1)
4822 if (i != j && syms[j].sym != NULL
4823 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4824 name_len) == 0
4825 && block == syms[j].block)
4826 syms[j].sym = NULL;
4827 }
4828 }
4829 if (is_new_style_renaming)
4830 {
4831 int j, k;
4832
4833 for (j = k = 0; j < nsyms; j += 1)
4834 if (syms[j].sym != NULL)
4835 {
4836 syms[k] = syms[j];
4837 k += 1;
4838 }
4839 return k;
4840 }
4841
4842 /* Extract the function name associated to CURRENT_BLOCK.
4843 Abort if unable to do so. */
4844
4845 if (current_block == NULL)
4846 return nsyms;
4847
4848 current_function = block_linkage_function (current_block);
4849 if (current_function == NULL)
4850 return nsyms;
4851
4852 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4853 if (current_function_name == NULL)
4854 return nsyms;
4855
4856 /* Check each of the symbols, and remove it from the list if it is
4857 a type corresponding to a renaming that is out of the scope of
4858 the current block. */
4859
4860 i = 0;
4861 while (i < nsyms)
4862 {
4863 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4864 == ADA_OBJECT_RENAMING
4865 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4866 {
4867 int j;
4868
4869 for (j = i + 1; j < nsyms; j += 1)
4870 syms[j - 1] = syms[j];
4871 nsyms -= 1;
4872 }
4873 else
4874 i += 1;
4875 }
4876
4877 return nsyms;
4878 }
4879
4880 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4881 whose name and domain match NAME and DOMAIN respectively.
4882 If no match was found, then extend the search to "enclosing"
4883 routines (in other words, if we're inside a nested function,
4884 search the symbols defined inside the enclosing functions).
4885 If WILD_MATCH_P is nonzero, perform the naming matching in
4886 "wild" mode (see function "wild_match" for more info).
4887
4888 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4889
4890 static void
4891 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4892 struct block *block, domain_enum domain,
4893 int wild_match_p)
4894 {
4895 int block_depth = 0;
4896
4897 while (block != NULL)
4898 {
4899 block_depth += 1;
4900 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4901 wild_match_p);
4902
4903 /* If we found a non-function match, assume that's the one. */
4904 if (is_nonfunction (defns_collected (obstackp, 0),
4905 num_defns_collected (obstackp)))
4906 return;
4907
4908 block = BLOCK_SUPERBLOCK (block);
4909 }
4910
4911 /* If no luck so far, try to find NAME as a local symbol in some lexically
4912 enclosing subprogram. */
4913 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4914 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4915 }
4916
4917 /* An object of this type is used as the user_data argument when
4918 calling the map_matching_symbols method. */
4919
4920 struct match_data
4921 {
4922 struct objfile *objfile;
4923 struct obstack *obstackp;
4924 struct symbol *arg_sym;
4925 int found_sym;
4926 };
4927
4928 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4929 to a list of symbols. DATA0 is a pointer to a struct match_data *
4930 containing the obstack that collects the symbol list, the file that SYM
4931 must come from, a flag indicating whether a non-argument symbol has
4932 been found in the current block, and the last argument symbol
4933 passed in SYM within the current block (if any). When SYM is null,
4934 marking the end of a block, the argument symbol is added if no
4935 other has been found. */
4936
4937 static int
4938 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4939 {
4940 struct match_data *data = (struct match_data *) data0;
4941
4942 if (sym == NULL)
4943 {
4944 if (!data->found_sym && data->arg_sym != NULL)
4945 add_defn_to_vec (data->obstackp,
4946 fixup_symbol_section (data->arg_sym, data->objfile),
4947 block);
4948 data->found_sym = 0;
4949 data->arg_sym = NULL;
4950 }
4951 else
4952 {
4953 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4954 return 0;
4955 else if (SYMBOL_IS_ARGUMENT (sym))
4956 data->arg_sym = sym;
4957 else
4958 {
4959 data->found_sym = 1;
4960 add_defn_to_vec (data->obstackp,
4961 fixup_symbol_section (sym, data->objfile),
4962 block);
4963 }
4964 }
4965 return 0;
4966 }
4967
4968 /* Compare STRING1 to STRING2, with results as for strcmp.
4969 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4970 implies compare_names (STRING1, STRING2) (they may differ as to
4971 what symbols compare equal). */
4972
4973 static int
4974 compare_names (const char *string1, const char *string2)
4975 {
4976 while (*string1 != '\0' && *string2 != '\0')
4977 {
4978 if (isspace (*string1) || isspace (*string2))
4979 return strcmp_iw_ordered (string1, string2);
4980 if (*string1 != *string2)
4981 break;
4982 string1 += 1;
4983 string2 += 1;
4984 }
4985 switch (*string1)
4986 {
4987 case '(':
4988 return strcmp_iw_ordered (string1, string2);
4989 case '_':
4990 if (*string2 == '\0')
4991 {
4992 if (is_name_suffix (string1))
4993 return 0;
4994 else
4995 return 1;
4996 }
4997 /* FALLTHROUGH */
4998 default:
4999 if (*string2 == '(')
5000 return strcmp_iw_ordered (string1, string2);
5001 else
5002 return *string1 - *string2;
5003 }
5004 }
5005
5006 /* Add to OBSTACKP all non-local symbols whose name and domain match
5007 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5008 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5009
5010 static void
5011 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5012 domain_enum domain, int global,
5013 int is_wild_match)
5014 {
5015 struct objfile *objfile;
5016 struct match_data data;
5017
5018 memset (&data, 0, sizeof data);
5019 data.obstackp = obstackp;
5020
5021 ALL_OBJFILES (objfile)
5022 {
5023 data.objfile = objfile;
5024
5025 if (is_wild_match)
5026 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5027 aux_add_nonlocal_symbols, &data,
5028 wild_match, NULL);
5029 else
5030 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5031 aux_add_nonlocal_symbols, &data,
5032 full_match, compare_names);
5033 }
5034
5035 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5036 {
5037 ALL_OBJFILES (objfile)
5038 {
5039 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5040 strcpy (name1, "_ada_");
5041 strcpy (name1 + sizeof ("_ada_") - 1, name);
5042 data.objfile = objfile;
5043 objfile->sf->qf->map_matching_symbols (name1, domain,
5044 objfile, global,
5045 aux_add_nonlocal_symbols,
5046 &data,
5047 full_match, compare_names);
5048 }
5049 }
5050 }
5051
5052 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5053 scope and in global scopes, returning the number of matches.
5054 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5055 indicating the symbols found and the blocks and symbol tables (if
5056 any) in which they were found. This vector are transient---good only to
5057 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5058 symbol match within the nest of blocks whose innermost member is BLOCK0,
5059 is the one match returned (no other matches in that or
5060 enclosing blocks is returned). If there are any matches in or
5061 surrounding BLOCK0, then these alone are returned. Otherwise, if
5062 FULL_SEARCH is non-zero, then the search extends to global and
5063 file-scope (static) symbol tables.
5064 Names prefixed with "standard__" are handled specially: "standard__"
5065 is first stripped off, and only static and global symbols are searched. */
5066
5067 int
5068 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5069 domain_enum namespace,
5070 struct ada_symbol_info **results,
5071 int full_search)
5072 {
5073 struct symbol *sym;
5074 struct block *block;
5075 const char *name;
5076 const int wild_match_p = should_use_wild_match (name0);
5077 int cacheIfUnique;
5078 int ndefns;
5079
5080 obstack_free (&symbol_list_obstack, NULL);
5081 obstack_init (&symbol_list_obstack);
5082
5083 cacheIfUnique = 0;
5084
5085 /* Search specified block and its superiors. */
5086
5087 name = name0;
5088 block = (struct block *) block0; /* FIXME: No cast ought to be
5089 needed, but adding const will
5090 have a cascade effect. */
5091
5092 /* Special case: If the user specifies a symbol name inside package
5093 Standard, do a non-wild matching of the symbol name without
5094 the "standard__" prefix. This was primarily introduced in order
5095 to allow the user to specifically access the standard exceptions
5096 using, for instance, Standard.Constraint_Error when Constraint_Error
5097 is ambiguous (due to the user defining its own Constraint_Error
5098 entity inside its program). */
5099 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5100 {
5101 block = NULL;
5102 name = name0 + sizeof ("standard__") - 1;
5103 }
5104
5105 /* Check the non-global symbols. If we have ANY match, then we're done. */
5106
5107 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5108 wild_match_p);
5109 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5110 goto done;
5111
5112 /* No non-global symbols found. Check our cache to see if we have
5113 already performed this search before. If we have, then return
5114 the same result. */
5115
5116 cacheIfUnique = 1;
5117 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5118 {
5119 if (sym != NULL)
5120 add_defn_to_vec (&symbol_list_obstack, sym, block);
5121 goto done;
5122 }
5123
5124 /* Search symbols from all global blocks. */
5125
5126 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5127 wild_match_p);
5128
5129 /* Now add symbols from all per-file blocks if we've gotten no hits
5130 (not strictly correct, but perhaps better than an error). */
5131
5132 if (num_defns_collected (&symbol_list_obstack) == 0)
5133 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5134 wild_match_p);
5135
5136 done:
5137 ndefns = num_defns_collected (&symbol_list_obstack);
5138 *results = defns_collected (&symbol_list_obstack, 1);
5139
5140 ndefns = remove_extra_symbols (*results, ndefns);
5141
5142 if (ndefns == 0 && full_search)
5143 cache_symbol (name0, namespace, NULL, NULL);
5144
5145 if (ndefns == 1 && full_search && cacheIfUnique)
5146 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5147
5148 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5149
5150 return ndefns;
5151 }
5152
5153 /* If NAME is the name of an entity, return a string that should
5154 be used to look that entity up in Ada units. This string should
5155 be deallocated after use using xfree.
5156
5157 NAME can have any form that the "break" or "print" commands might
5158 recognize. In other words, it does not have to be the "natural"
5159 name, or the "encoded" name. */
5160
5161 char *
5162 ada_name_for_lookup (const char *name)
5163 {
5164 char *canon;
5165 int nlen = strlen (name);
5166
5167 if (name[0] == '<' && name[nlen - 1] == '>')
5168 {
5169 canon = xmalloc (nlen - 1);
5170 memcpy (canon, name + 1, nlen - 2);
5171 canon[nlen - 2] = '\0';
5172 }
5173 else
5174 canon = xstrdup (ada_encode (ada_fold_name (name)));
5175 return canon;
5176 }
5177
5178 /* Implementation of the la_iterate_over_symbols method. */
5179
5180 static void
5181 ada_iterate_over_symbols (const struct block *block,
5182 const char *name, domain_enum domain,
5183 symbol_found_callback_ftype *callback,
5184 void *data)
5185 {
5186 int ndefs, i;
5187 struct ada_symbol_info *results;
5188
5189 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5190 for (i = 0; i < ndefs; ++i)
5191 {
5192 if (! (*callback) (results[i].sym, data))
5193 break;
5194 }
5195 }
5196
5197 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5198 to 1, but choosing the first symbol found if there are multiple
5199 choices.
5200
5201 The result is stored in *INFO, which must be non-NULL.
5202 If no match is found, INFO->SYM is set to NULL. */
5203
5204 void
5205 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5206 domain_enum namespace,
5207 struct ada_symbol_info *info)
5208 {
5209 struct ada_symbol_info *candidates;
5210 int n_candidates;
5211
5212 gdb_assert (info != NULL);
5213 memset (info, 0, sizeof (struct ada_symbol_info));
5214
5215 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5216 1);
5217
5218 if (n_candidates == 0)
5219 return;
5220
5221 *info = candidates[0];
5222 info->sym = fixup_symbol_section (info->sym, NULL);
5223 }
5224
5225 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5226 scope and in global scopes, or NULL if none. NAME is folded and
5227 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5228 choosing the first symbol if there are multiple choices.
5229 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5230
5231 struct symbol *
5232 ada_lookup_symbol (const char *name, const struct block *block0,
5233 domain_enum namespace, int *is_a_field_of_this)
5234 {
5235 struct ada_symbol_info info;
5236
5237 if (is_a_field_of_this != NULL)
5238 *is_a_field_of_this = 0;
5239
5240 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5241 block0, namespace, &info);
5242 return info.sym;
5243 }
5244
5245 static struct symbol *
5246 ada_lookup_symbol_nonlocal (const char *name,
5247 const struct block *block,
5248 const domain_enum domain)
5249 {
5250 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5251 }
5252
5253
5254 /* True iff STR is a possible encoded suffix of a normal Ada name
5255 that is to be ignored for matching purposes. Suffixes of parallel
5256 names (e.g., XVE) are not included here. Currently, the possible suffixes
5257 are given by any of the regular expressions:
5258
5259 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5260 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5261 TKB [subprogram suffix for task bodies]
5262 _E[0-9]+[bs]$ [protected object entry suffixes]
5263 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5264
5265 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5266 match is performed. This sequence is used to differentiate homonyms,
5267 is an optional part of a valid name suffix. */
5268
5269 static int
5270 is_name_suffix (const char *str)
5271 {
5272 int k;
5273 const char *matching;
5274 const int len = strlen (str);
5275
5276 /* Skip optional leading __[0-9]+. */
5277
5278 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5279 {
5280 str += 3;
5281 while (isdigit (str[0]))
5282 str += 1;
5283 }
5284
5285 /* [.$][0-9]+ */
5286
5287 if (str[0] == '.' || str[0] == '$')
5288 {
5289 matching = str + 1;
5290 while (isdigit (matching[0]))
5291 matching += 1;
5292 if (matching[0] == '\0')
5293 return 1;
5294 }
5295
5296 /* ___[0-9]+ */
5297
5298 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5299 {
5300 matching = str + 3;
5301 while (isdigit (matching[0]))
5302 matching += 1;
5303 if (matching[0] == '\0')
5304 return 1;
5305 }
5306
5307 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5308
5309 if (strcmp (str, "TKB") == 0)
5310 return 1;
5311
5312 #if 0
5313 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5314 with a N at the end. Unfortunately, the compiler uses the same
5315 convention for other internal types it creates. So treating
5316 all entity names that end with an "N" as a name suffix causes
5317 some regressions. For instance, consider the case of an enumerated
5318 type. To support the 'Image attribute, it creates an array whose
5319 name ends with N.
5320 Having a single character like this as a suffix carrying some
5321 information is a bit risky. Perhaps we should change the encoding
5322 to be something like "_N" instead. In the meantime, do not do
5323 the following check. */
5324 /* Protected Object Subprograms */
5325 if (len == 1 && str [0] == 'N')
5326 return 1;
5327 #endif
5328
5329 /* _E[0-9]+[bs]$ */
5330 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5331 {
5332 matching = str + 3;
5333 while (isdigit (matching[0]))
5334 matching += 1;
5335 if ((matching[0] == 'b' || matching[0] == 's')
5336 && matching [1] == '\0')
5337 return 1;
5338 }
5339
5340 /* ??? We should not modify STR directly, as we are doing below. This
5341 is fine in this case, but may become problematic later if we find
5342 that this alternative did not work, and want to try matching
5343 another one from the begining of STR. Since we modified it, we
5344 won't be able to find the begining of the string anymore! */
5345 if (str[0] == 'X')
5346 {
5347 str += 1;
5348 while (str[0] != '_' && str[0] != '\0')
5349 {
5350 if (str[0] != 'n' && str[0] != 'b')
5351 return 0;
5352 str += 1;
5353 }
5354 }
5355
5356 if (str[0] == '\000')
5357 return 1;
5358
5359 if (str[0] == '_')
5360 {
5361 if (str[1] != '_' || str[2] == '\000')
5362 return 0;
5363 if (str[2] == '_')
5364 {
5365 if (strcmp (str + 3, "JM") == 0)
5366 return 1;
5367 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5368 the LJM suffix in favor of the JM one. But we will
5369 still accept LJM as a valid suffix for a reasonable
5370 amount of time, just to allow ourselves to debug programs
5371 compiled using an older version of GNAT. */
5372 if (strcmp (str + 3, "LJM") == 0)
5373 return 1;
5374 if (str[3] != 'X')
5375 return 0;
5376 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5377 || str[4] == 'U' || str[4] == 'P')
5378 return 1;
5379 if (str[4] == 'R' && str[5] != 'T')
5380 return 1;
5381 return 0;
5382 }
5383 if (!isdigit (str[2]))
5384 return 0;
5385 for (k = 3; str[k] != '\0'; k += 1)
5386 if (!isdigit (str[k]) && str[k] != '_')
5387 return 0;
5388 return 1;
5389 }
5390 if (str[0] == '$' && isdigit (str[1]))
5391 {
5392 for (k = 2; str[k] != '\0'; k += 1)
5393 if (!isdigit (str[k]) && str[k] != '_')
5394 return 0;
5395 return 1;
5396 }
5397 return 0;
5398 }
5399
5400 /* Return non-zero if the string starting at NAME and ending before
5401 NAME_END contains no capital letters. */
5402
5403 static int
5404 is_valid_name_for_wild_match (const char *name0)
5405 {
5406 const char *decoded_name = ada_decode (name0);
5407 int i;
5408
5409 /* If the decoded name starts with an angle bracket, it means that
5410 NAME0 does not follow the GNAT encoding format. It should then
5411 not be allowed as a possible wild match. */
5412 if (decoded_name[0] == '<')
5413 return 0;
5414
5415 for (i=0; decoded_name[i] != '\0'; i++)
5416 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5417 return 0;
5418
5419 return 1;
5420 }
5421
5422 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5423 that could start a simple name. Assumes that *NAMEP points into
5424 the string beginning at NAME0. */
5425
5426 static int
5427 advance_wild_match (const char **namep, const char *name0, int target0)
5428 {
5429 const char *name = *namep;
5430
5431 while (1)
5432 {
5433 int t0, t1;
5434
5435 t0 = *name;
5436 if (t0 == '_')
5437 {
5438 t1 = name[1];
5439 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5440 {
5441 name += 1;
5442 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5443 break;
5444 else
5445 name += 1;
5446 }
5447 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5448 || name[2] == target0))
5449 {
5450 name += 2;
5451 break;
5452 }
5453 else
5454 return 0;
5455 }
5456 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5457 name += 1;
5458 else
5459 return 0;
5460 }
5461
5462 *namep = name;
5463 return 1;
5464 }
5465
5466 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5467 informational suffixes of NAME (i.e., for which is_name_suffix is
5468 true). Assumes that PATN is a lower-cased Ada simple name. */
5469
5470 static int
5471 wild_match (const char *name, const char *patn)
5472 {
5473 const char *p, *n;
5474 const char *name0 = name;
5475
5476 while (1)
5477 {
5478 const char *match = name;
5479
5480 if (*name == *patn)
5481 {
5482 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5483 if (*p != *name)
5484 break;
5485 if (*p == '\0' && is_name_suffix (name))
5486 return match != name0 && !is_valid_name_for_wild_match (name0);
5487
5488 if (name[-1] == '_')
5489 name -= 1;
5490 }
5491 if (!advance_wild_match (&name, name0, *patn))
5492 return 1;
5493 }
5494 }
5495
5496 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5497 informational suffix. */
5498
5499 static int
5500 full_match (const char *sym_name, const char *search_name)
5501 {
5502 return !match_name (sym_name, search_name, 0);
5503 }
5504
5505
5506 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5507 vector *defn_symbols, updating the list of symbols in OBSTACKP
5508 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5509 OBJFILE is the section containing BLOCK.
5510 SYMTAB is recorded with each symbol added. */
5511
5512 static void
5513 ada_add_block_symbols (struct obstack *obstackp,
5514 struct block *block, const char *name,
5515 domain_enum domain, struct objfile *objfile,
5516 int wild)
5517 {
5518 struct dict_iterator iter;
5519 int name_len = strlen (name);
5520 /* A matching argument symbol, if any. */
5521 struct symbol *arg_sym;
5522 /* Set true when we find a matching non-argument symbol. */
5523 int found_sym;
5524 struct symbol *sym;
5525
5526 arg_sym = NULL;
5527 found_sym = 0;
5528 if (wild)
5529 {
5530 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5531 wild_match, &iter);
5532 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5533 {
5534 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5535 SYMBOL_DOMAIN (sym), domain)
5536 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5537 {
5538 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5539 continue;
5540 else if (SYMBOL_IS_ARGUMENT (sym))
5541 arg_sym = sym;
5542 else
5543 {
5544 found_sym = 1;
5545 add_defn_to_vec (obstackp,
5546 fixup_symbol_section (sym, objfile),
5547 block);
5548 }
5549 }
5550 }
5551 }
5552 else
5553 {
5554 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5555 full_match, &iter);
5556 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5557 {
5558 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5559 SYMBOL_DOMAIN (sym), domain))
5560 {
5561 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5562 {
5563 if (SYMBOL_IS_ARGUMENT (sym))
5564 arg_sym = sym;
5565 else
5566 {
5567 found_sym = 1;
5568 add_defn_to_vec (obstackp,
5569 fixup_symbol_section (sym, objfile),
5570 block);
5571 }
5572 }
5573 }
5574 }
5575 }
5576
5577 if (!found_sym && arg_sym != NULL)
5578 {
5579 add_defn_to_vec (obstackp,
5580 fixup_symbol_section (arg_sym, objfile),
5581 block);
5582 }
5583
5584 if (!wild)
5585 {
5586 arg_sym = NULL;
5587 found_sym = 0;
5588
5589 ALL_BLOCK_SYMBOLS (block, iter, sym)
5590 {
5591 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5592 SYMBOL_DOMAIN (sym), domain))
5593 {
5594 int cmp;
5595
5596 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5597 if (cmp == 0)
5598 {
5599 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5600 if (cmp == 0)
5601 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5602 name_len);
5603 }
5604
5605 if (cmp == 0
5606 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5607 {
5608 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5609 {
5610 if (SYMBOL_IS_ARGUMENT (sym))
5611 arg_sym = sym;
5612 else
5613 {
5614 found_sym = 1;
5615 add_defn_to_vec (obstackp,
5616 fixup_symbol_section (sym, objfile),
5617 block);
5618 }
5619 }
5620 }
5621 }
5622 }
5623
5624 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5625 They aren't parameters, right? */
5626 if (!found_sym && arg_sym != NULL)
5627 {
5628 add_defn_to_vec (obstackp,
5629 fixup_symbol_section (arg_sym, objfile),
5630 block);
5631 }
5632 }
5633 }
5634 \f
5635
5636 /* Symbol Completion */
5637
5638 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5639 name in a form that's appropriate for the completion. The result
5640 does not need to be deallocated, but is only good until the next call.
5641
5642 TEXT_LEN is equal to the length of TEXT.
5643 Perform a wild match if WILD_MATCH_P is set.
5644 ENCODED_P should be set if TEXT represents the start of a symbol name
5645 in its encoded form. */
5646
5647 static const char *
5648 symbol_completion_match (const char *sym_name,
5649 const char *text, int text_len,
5650 int wild_match_p, int encoded_p)
5651 {
5652 const int verbatim_match = (text[0] == '<');
5653 int match = 0;
5654
5655 if (verbatim_match)
5656 {
5657 /* Strip the leading angle bracket. */
5658 text = text + 1;
5659 text_len--;
5660 }
5661
5662 /* First, test against the fully qualified name of the symbol. */
5663
5664 if (strncmp (sym_name, text, text_len) == 0)
5665 match = 1;
5666
5667 if (match && !encoded_p)
5668 {
5669 /* One needed check before declaring a positive match is to verify
5670 that iff we are doing a verbatim match, the decoded version
5671 of the symbol name starts with '<'. Otherwise, this symbol name
5672 is not a suitable completion. */
5673 const char *sym_name_copy = sym_name;
5674 int has_angle_bracket;
5675
5676 sym_name = ada_decode (sym_name);
5677 has_angle_bracket = (sym_name[0] == '<');
5678 match = (has_angle_bracket == verbatim_match);
5679 sym_name = sym_name_copy;
5680 }
5681
5682 if (match && !verbatim_match)
5683 {
5684 /* When doing non-verbatim match, another check that needs to
5685 be done is to verify that the potentially matching symbol name
5686 does not include capital letters, because the ada-mode would
5687 not be able to understand these symbol names without the
5688 angle bracket notation. */
5689 const char *tmp;
5690
5691 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5692 if (*tmp != '\0')
5693 match = 0;
5694 }
5695
5696 /* Second: Try wild matching... */
5697
5698 if (!match && wild_match_p)
5699 {
5700 /* Since we are doing wild matching, this means that TEXT
5701 may represent an unqualified symbol name. We therefore must
5702 also compare TEXT against the unqualified name of the symbol. */
5703 sym_name = ada_unqualified_name (ada_decode (sym_name));
5704
5705 if (strncmp (sym_name, text, text_len) == 0)
5706 match = 1;
5707 }
5708
5709 /* Finally: If we found a mach, prepare the result to return. */
5710
5711 if (!match)
5712 return NULL;
5713
5714 if (verbatim_match)
5715 sym_name = add_angle_brackets (sym_name);
5716
5717 if (!encoded_p)
5718 sym_name = ada_decode (sym_name);
5719
5720 return sym_name;
5721 }
5722
5723 /* A companion function to ada_make_symbol_completion_list().
5724 Check if SYM_NAME represents a symbol which name would be suitable
5725 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5726 it is appended at the end of the given string vector SV.
5727
5728 ORIG_TEXT is the string original string from the user command
5729 that needs to be completed. WORD is the entire command on which
5730 completion should be performed. These two parameters are used to
5731 determine which part of the symbol name should be added to the
5732 completion vector.
5733 if WILD_MATCH_P is set, then wild matching is performed.
5734 ENCODED_P should be set if TEXT represents a symbol name in its
5735 encoded formed (in which case the completion should also be
5736 encoded). */
5737
5738 static void
5739 symbol_completion_add (VEC(char_ptr) **sv,
5740 const char *sym_name,
5741 const char *text, int text_len,
5742 const char *orig_text, const char *word,
5743 int wild_match_p, int encoded_p)
5744 {
5745 const char *match = symbol_completion_match (sym_name, text, text_len,
5746 wild_match_p, encoded_p);
5747 char *completion;
5748
5749 if (match == NULL)
5750 return;
5751
5752 /* We found a match, so add the appropriate completion to the given
5753 string vector. */
5754
5755 if (word == orig_text)
5756 {
5757 completion = xmalloc (strlen (match) + 5);
5758 strcpy (completion, match);
5759 }
5760 else if (word > orig_text)
5761 {
5762 /* Return some portion of sym_name. */
5763 completion = xmalloc (strlen (match) + 5);
5764 strcpy (completion, match + (word - orig_text));
5765 }
5766 else
5767 {
5768 /* Return some of ORIG_TEXT plus sym_name. */
5769 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5770 strncpy (completion, word, orig_text - word);
5771 completion[orig_text - word] = '\0';
5772 strcat (completion, match);
5773 }
5774
5775 VEC_safe_push (char_ptr, *sv, completion);
5776 }
5777
5778 /* An object of this type is passed as the user_data argument to the
5779 expand_partial_symbol_names method. */
5780 struct add_partial_datum
5781 {
5782 VEC(char_ptr) **completions;
5783 char *text;
5784 int text_len;
5785 char *text0;
5786 char *word;
5787 int wild_match;
5788 int encoded;
5789 };
5790
5791 /* A callback for expand_partial_symbol_names. */
5792 static int
5793 ada_expand_partial_symbol_name (const char *name, void *user_data)
5794 {
5795 struct add_partial_datum *data = user_data;
5796
5797 return symbol_completion_match (name, data->text, data->text_len,
5798 data->wild_match, data->encoded) != NULL;
5799 }
5800
5801 /* Return a list of possible symbol names completing TEXT0. The list
5802 is NULL terminated. WORD is the entire command on which completion
5803 is made. */
5804
5805 static char **
5806 ada_make_symbol_completion_list (char *text0, char *word)
5807 {
5808 char *text;
5809 int text_len;
5810 int wild_match_p;
5811 int encoded_p;
5812 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5813 struct symbol *sym;
5814 struct symtab *s;
5815 struct minimal_symbol *msymbol;
5816 struct objfile *objfile;
5817 struct block *b, *surrounding_static_block = 0;
5818 int i;
5819 struct dict_iterator iter;
5820
5821 if (text0[0] == '<')
5822 {
5823 text = xstrdup (text0);
5824 make_cleanup (xfree, text);
5825 text_len = strlen (text);
5826 wild_match_p = 0;
5827 encoded_p = 1;
5828 }
5829 else
5830 {
5831 text = xstrdup (ada_encode (text0));
5832 make_cleanup (xfree, text);
5833 text_len = strlen (text);
5834 for (i = 0; i < text_len; i++)
5835 text[i] = tolower (text[i]);
5836
5837 encoded_p = (strstr (text0, "__") != NULL);
5838 /* If the name contains a ".", then the user is entering a fully
5839 qualified entity name, and the match must not be done in wild
5840 mode. Similarly, if the user wants to complete what looks like
5841 an encoded name, the match must not be done in wild mode. */
5842 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5843 }
5844
5845 /* First, look at the partial symtab symbols. */
5846 {
5847 struct add_partial_datum data;
5848
5849 data.completions = &completions;
5850 data.text = text;
5851 data.text_len = text_len;
5852 data.text0 = text0;
5853 data.word = word;
5854 data.wild_match = wild_match_p;
5855 data.encoded = encoded_p;
5856 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5857 }
5858
5859 /* At this point scan through the misc symbol vectors and add each
5860 symbol you find to the list. Eventually we want to ignore
5861 anything that isn't a text symbol (everything else will be
5862 handled by the psymtab code above). */
5863
5864 ALL_MSYMBOLS (objfile, msymbol)
5865 {
5866 QUIT;
5867 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5868 text, text_len, text0, word, wild_match_p,
5869 encoded_p);
5870 }
5871
5872 /* Search upwards from currently selected frame (so that we can
5873 complete on local vars. */
5874
5875 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5876 {
5877 if (!BLOCK_SUPERBLOCK (b))
5878 surrounding_static_block = b; /* For elmin of dups */
5879
5880 ALL_BLOCK_SYMBOLS (b, iter, sym)
5881 {
5882 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5883 text, text_len, text0, word,
5884 wild_match_p, encoded_p);
5885 }
5886 }
5887
5888 /* Go through the symtabs and check the externs and statics for
5889 symbols which match. */
5890
5891 ALL_SYMTABS (objfile, s)
5892 {
5893 QUIT;
5894 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5895 ALL_BLOCK_SYMBOLS (b, iter, sym)
5896 {
5897 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5898 text, text_len, text0, word,
5899 wild_match_p, encoded_p);
5900 }
5901 }
5902
5903 ALL_SYMTABS (objfile, s)
5904 {
5905 QUIT;
5906 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5907 /* Don't do this block twice. */
5908 if (b == surrounding_static_block)
5909 continue;
5910 ALL_BLOCK_SYMBOLS (b, iter, sym)
5911 {
5912 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5913 text, text_len, text0, word,
5914 wild_match_p, encoded_p);
5915 }
5916 }
5917
5918 /* Append the closing NULL entry. */
5919 VEC_safe_push (char_ptr, completions, NULL);
5920
5921 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5922 return the copy. It's unfortunate that we have to make a copy
5923 of an array that we're about to destroy, but there is nothing much
5924 we can do about it. Fortunately, it's typically not a very large
5925 array. */
5926 {
5927 const size_t completions_size =
5928 VEC_length (char_ptr, completions) * sizeof (char *);
5929 char **result = xmalloc (completions_size);
5930
5931 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5932
5933 VEC_free (char_ptr, completions);
5934 return result;
5935 }
5936 }
5937
5938 /* Field Access */
5939
5940 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5941 for tagged types. */
5942
5943 static int
5944 ada_is_dispatch_table_ptr_type (struct type *type)
5945 {
5946 const char *name;
5947
5948 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5949 return 0;
5950
5951 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5952 if (name == NULL)
5953 return 0;
5954
5955 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5956 }
5957
5958 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5959 to be invisible to users. */
5960
5961 int
5962 ada_is_ignored_field (struct type *type, int field_num)
5963 {
5964 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5965 return 1;
5966
5967 /* Check the name of that field. */
5968 {
5969 const char *name = TYPE_FIELD_NAME (type, field_num);
5970
5971 /* Anonymous field names should not be printed.
5972 brobecker/2007-02-20: I don't think this can actually happen
5973 but we don't want to print the value of annonymous fields anyway. */
5974 if (name == NULL)
5975 return 1;
5976
5977 /* Normally, fields whose name start with an underscore ("_")
5978 are fields that have been internally generated by the compiler,
5979 and thus should not be printed. The "_parent" field is special,
5980 however: This is a field internally generated by the compiler
5981 for tagged types, and it contains the components inherited from
5982 the parent type. This field should not be printed as is, but
5983 should not be ignored either. */
5984 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5985 return 1;
5986 }
5987
5988 /* If this is the dispatch table of a tagged type, then ignore. */
5989 if (ada_is_tagged_type (type, 1)
5990 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5991 return 1;
5992
5993 /* Not a special field, so it should not be ignored. */
5994 return 0;
5995 }
5996
5997 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5998 pointer or reference type whose ultimate target has a tag field. */
5999
6000 int
6001 ada_is_tagged_type (struct type *type, int refok)
6002 {
6003 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6004 }
6005
6006 /* True iff TYPE represents the type of X'Tag */
6007
6008 int
6009 ada_is_tag_type (struct type *type)
6010 {
6011 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6012 return 0;
6013 else
6014 {
6015 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6016
6017 return (name != NULL
6018 && strcmp (name, "ada__tags__dispatch_table") == 0);
6019 }
6020 }
6021
6022 /* The type of the tag on VAL. */
6023
6024 struct type *
6025 ada_tag_type (struct value *val)
6026 {
6027 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6028 }
6029
6030 /* The value of the tag on VAL. */
6031
6032 struct value *
6033 ada_value_tag (struct value *val)
6034 {
6035 return ada_value_struct_elt (val, "_tag", 0);
6036 }
6037
6038 /* The value of the tag on the object of type TYPE whose contents are
6039 saved at VALADDR, if it is non-null, or is at memory address
6040 ADDRESS. */
6041
6042 static struct value *
6043 value_tag_from_contents_and_address (struct type *type,
6044 const gdb_byte *valaddr,
6045 CORE_ADDR address)
6046 {
6047 int tag_byte_offset;
6048 struct type *tag_type;
6049
6050 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6051 NULL, NULL, NULL))
6052 {
6053 const gdb_byte *valaddr1 = ((valaddr == NULL)
6054 ? NULL
6055 : valaddr + tag_byte_offset);
6056 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6057
6058 return value_from_contents_and_address (tag_type, valaddr1, address1);
6059 }
6060 return NULL;
6061 }
6062
6063 static struct type *
6064 type_from_tag (struct value *tag)
6065 {
6066 const char *type_name = ada_tag_name (tag);
6067
6068 if (type_name != NULL)
6069 return ada_find_any_type (ada_encode (type_name));
6070 return NULL;
6071 }
6072
6073 /* Return the "ada__tags__type_specific_data" type. */
6074
6075 static struct type *
6076 ada_get_tsd_type (struct inferior *inf)
6077 {
6078 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6079
6080 if (data->tsd_type == 0)
6081 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6082 return data->tsd_type;
6083 }
6084
6085 /* Return the TSD (type-specific data) associated to the given TAG.
6086 TAG is assumed to be the tag of a tagged-type entity.
6087
6088 May return NULL if we are unable to get the TSD. */
6089
6090 static struct value *
6091 ada_get_tsd_from_tag (struct value *tag)
6092 {
6093 struct value *val;
6094 struct type *type;
6095
6096 /* First option: The TSD is simply stored as a field of our TAG.
6097 Only older versions of GNAT would use this format, but we have
6098 to test it first, because there are no visible markers for
6099 the current approach except the absence of that field. */
6100
6101 val = ada_value_struct_elt (tag, "tsd", 1);
6102 if (val)
6103 return val;
6104
6105 /* Try the second representation for the dispatch table (in which
6106 there is no explicit 'tsd' field in the referent of the tag pointer,
6107 and instead the tsd pointer is stored just before the dispatch
6108 table. */
6109
6110 type = ada_get_tsd_type (current_inferior());
6111 if (type == NULL)
6112 return NULL;
6113 type = lookup_pointer_type (lookup_pointer_type (type));
6114 val = value_cast (type, tag);
6115 if (val == NULL)
6116 return NULL;
6117 return value_ind (value_ptradd (val, -1));
6118 }
6119
6120 /* Given the TSD of a tag (type-specific data), return a string
6121 containing the name of the associated type.
6122
6123 The returned value is good until the next call. May return NULL
6124 if we are unable to determine the tag name. */
6125
6126 static char *
6127 ada_tag_name_from_tsd (struct value *tsd)
6128 {
6129 static char name[1024];
6130 char *p;
6131 struct value *val;
6132
6133 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6134 if (val == NULL)
6135 return NULL;
6136 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6137 for (p = name; *p != '\0'; p += 1)
6138 if (isalpha (*p))
6139 *p = tolower (*p);
6140 return name;
6141 }
6142
6143 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6144 a C string.
6145
6146 Return NULL if the TAG is not an Ada tag, or if we were unable to
6147 determine the name of that tag. The result is good until the next
6148 call. */
6149
6150 const char *
6151 ada_tag_name (struct value *tag)
6152 {
6153 volatile struct gdb_exception e;
6154 char *name = NULL;
6155
6156 if (!ada_is_tag_type (value_type (tag)))
6157 return NULL;
6158
6159 /* It is perfectly possible that an exception be raised while trying
6160 to determine the TAG's name, even under normal circumstances:
6161 The associated variable may be uninitialized or corrupted, for
6162 instance. We do not let any exception propagate past this point.
6163 instead we return NULL.
6164
6165 We also do not print the error message either (which often is very
6166 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6167 the caller print a more meaningful message if necessary. */
6168 TRY_CATCH (e, RETURN_MASK_ERROR)
6169 {
6170 struct value *tsd = ada_get_tsd_from_tag (tag);
6171
6172 if (tsd != NULL)
6173 name = ada_tag_name_from_tsd (tsd);
6174 }
6175
6176 return name;
6177 }
6178
6179 /* The parent type of TYPE, or NULL if none. */
6180
6181 struct type *
6182 ada_parent_type (struct type *type)
6183 {
6184 int i;
6185
6186 type = ada_check_typedef (type);
6187
6188 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6189 return NULL;
6190
6191 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6192 if (ada_is_parent_field (type, i))
6193 {
6194 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6195
6196 /* If the _parent field is a pointer, then dereference it. */
6197 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6198 parent_type = TYPE_TARGET_TYPE (parent_type);
6199 /* If there is a parallel XVS type, get the actual base type. */
6200 parent_type = ada_get_base_type (parent_type);
6201
6202 return ada_check_typedef (parent_type);
6203 }
6204
6205 return NULL;
6206 }
6207
6208 /* True iff field number FIELD_NUM of structure type TYPE contains the
6209 parent-type (inherited) fields of a derived type. Assumes TYPE is
6210 a structure type with at least FIELD_NUM+1 fields. */
6211
6212 int
6213 ada_is_parent_field (struct type *type, int field_num)
6214 {
6215 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6216
6217 return (name != NULL
6218 && (strncmp (name, "PARENT", 6) == 0
6219 || strncmp (name, "_parent", 7) == 0));
6220 }
6221
6222 /* True iff field number FIELD_NUM of structure type TYPE is a
6223 transparent wrapper field (which should be silently traversed when doing
6224 field selection and flattened when printing). Assumes TYPE is a
6225 structure type with at least FIELD_NUM+1 fields. Such fields are always
6226 structures. */
6227
6228 int
6229 ada_is_wrapper_field (struct type *type, int field_num)
6230 {
6231 const char *name = TYPE_FIELD_NAME (type, field_num);
6232
6233 return (name != NULL
6234 && (strncmp (name, "PARENT", 6) == 0
6235 || strcmp (name, "REP") == 0
6236 || strncmp (name, "_parent", 7) == 0
6237 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6238 }
6239
6240 /* True iff field number FIELD_NUM of structure or union type TYPE
6241 is a variant wrapper. Assumes TYPE is a structure type with at least
6242 FIELD_NUM+1 fields. */
6243
6244 int
6245 ada_is_variant_part (struct type *type, int field_num)
6246 {
6247 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6248
6249 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6250 || (is_dynamic_field (type, field_num)
6251 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6252 == TYPE_CODE_UNION)));
6253 }
6254
6255 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6256 whose discriminants are contained in the record type OUTER_TYPE,
6257 returns the type of the controlling discriminant for the variant.
6258 May return NULL if the type could not be found. */
6259
6260 struct type *
6261 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6262 {
6263 char *name = ada_variant_discrim_name (var_type);
6264
6265 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6266 }
6267
6268 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6269 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6270 represents a 'when others' clause; otherwise 0. */
6271
6272 int
6273 ada_is_others_clause (struct type *type, int field_num)
6274 {
6275 const char *name = TYPE_FIELD_NAME (type, field_num);
6276
6277 return (name != NULL && name[0] == 'O');
6278 }
6279
6280 /* Assuming that TYPE0 is the type of the variant part of a record,
6281 returns the name of the discriminant controlling the variant.
6282 The value is valid until the next call to ada_variant_discrim_name. */
6283
6284 char *
6285 ada_variant_discrim_name (struct type *type0)
6286 {
6287 static char *result = NULL;
6288 static size_t result_len = 0;
6289 struct type *type;
6290 const char *name;
6291 const char *discrim_end;
6292 const char *discrim_start;
6293
6294 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6295 type = TYPE_TARGET_TYPE (type0);
6296 else
6297 type = type0;
6298
6299 name = ada_type_name (type);
6300
6301 if (name == NULL || name[0] == '\000')
6302 return "";
6303
6304 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6305 discrim_end -= 1)
6306 {
6307 if (strncmp (discrim_end, "___XVN", 6) == 0)
6308 break;
6309 }
6310 if (discrim_end == name)
6311 return "";
6312
6313 for (discrim_start = discrim_end; discrim_start != name + 3;
6314 discrim_start -= 1)
6315 {
6316 if (discrim_start == name + 1)
6317 return "";
6318 if ((discrim_start > name + 3
6319 && strncmp (discrim_start - 3, "___", 3) == 0)
6320 || discrim_start[-1] == '.')
6321 break;
6322 }
6323
6324 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6325 strncpy (result, discrim_start, discrim_end - discrim_start);
6326 result[discrim_end - discrim_start] = '\0';
6327 return result;
6328 }
6329
6330 /* Scan STR for a subtype-encoded number, beginning at position K.
6331 Put the position of the character just past the number scanned in
6332 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6333 Return 1 if there was a valid number at the given position, and 0
6334 otherwise. A "subtype-encoded" number consists of the absolute value
6335 in decimal, followed by the letter 'm' to indicate a negative number.
6336 Assumes 0m does not occur. */
6337
6338 int
6339 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6340 {
6341 ULONGEST RU;
6342
6343 if (!isdigit (str[k]))
6344 return 0;
6345
6346 /* Do it the hard way so as not to make any assumption about
6347 the relationship of unsigned long (%lu scan format code) and
6348 LONGEST. */
6349 RU = 0;
6350 while (isdigit (str[k]))
6351 {
6352 RU = RU * 10 + (str[k] - '0');
6353 k += 1;
6354 }
6355
6356 if (str[k] == 'm')
6357 {
6358 if (R != NULL)
6359 *R = (-(LONGEST) (RU - 1)) - 1;
6360 k += 1;
6361 }
6362 else if (R != NULL)
6363 *R = (LONGEST) RU;
6364
6365 /* NOTE on the above: Technically, C does not say what the results of
6366 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6367 number representable as a LONGEST (although either would probably work
6368 in most implementations). When RU>0, the locution in the then branch
6369 above is always equivalent to the negative of RU. */
6370
6371 if (new_k != NULL)
6372 *new_k = k;
6373 return 1;
6374 }
6375
6376 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6377 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6378 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6379
6380 int
6381 ada_in_variant (LONGEST val, struct type *type, int field_num)
6382 {
6383 const char *name = TYPE_FIELD_NAME (type, field_num);
6384 int p;
6385
6386 p = 0;
6387 while (1)
6388 {
6389 switch (name[p])
6390 {
6391 case '\0':
6392 return 0;
6393 case 'S':
6394 {
6395 LONGEST W;
6396
6397 if (!ada_scan_number (name, p + 1, &W, &p))
6398 return 0;
6399 if (val == W)
6400 return 1;
6401 break;
6402 }
6403 case 'R':
6404 {
6405 LONGEST L, U;
6406
6407 if (!ada_scan_number (name, p + 1, &L, &p)
6408 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6409 return 0;
6410 if (val >= L && val <= U)
6411 return 1;
6412 break;
6413 }
6414 case 'O':
6415 return 1;
6416 default:
6417 return 0;
6418 }
6419 }
6420 }
6421
6422 /* FIXME: Lots of redundancy below. Try to consolidate. */
6423
6424 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6425 ARG_TYPE, extract and return the value of one of its (non-static)
6426 fields. FIELDNO says which field. Differs from value_primitive_field
6427 only in that it can handle packed values of arbitrary type. */
6428
6429 static struct value *
6430 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6431 struct type *arg_type)
6432 {
6433 struct type *type;
6434
6435 arg_type = ada_check_typedef (arg_type);
6436 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6437
6438 /* Handle packed fields. */
6439
6440 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6441 {
6442 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6443 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6444
6445 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6446 offset + bit_pos / 8,
6447 bit_pos % 8, bit_size, type);
6448 }
6449 else
6450 return value_primitive_field (arg1, offset, fieldno, arg_type);
6451 }
6452
6453 /* Find field with name NAME in object of type TYPE. If found,
6454 set the following for each argument that is non-null:
6455 - *FIELD_TYPE_P to the field's type;
6456 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6457 an object of that type;
6458 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6459 - *BIT_SIZE_P to its size in bits if the field is packed, and
6460 0 otherwise;
6461 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6462 fields up to but not including the desired field, or by the total
6463 number of fields if not found. A NULL value of NAME never
6464 matches; the function just counts visible fields in this case.
6465
6466 Returns 1 if found, 0 otherwise. */
6467
6468 static int
6469 find_struct_field (const char *name, struct type *type, int offset,
6470 struct type **field_type_p,
6471 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6472 int *index_p)
6473 {
6474 int i;
6475
6476 type = ada_check_typedef (type);
6477
6478 if (field_type_p != NULL)
6479 *field_type_p = NULL;
6480 if (byte_offset_p != NULL)
6481 *byte_offset_p = 0;
6482 if (bit_offset_p != NULL)
6483 *bit_offset_p = 0;
6484 if (bit_size_p != NULL)
6485 *bit_size_p = 0;
6486
6487 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6488 {
6489 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6490 int fld_offset = offset + bit_pos / 8;
6491 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6492
6493 if (t_field_name == NULL)
6494 continue;
6495
6496 else if (name != NULL && field_name_match (t_field_name, name))
6497 {
6498 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6499
6500 if (field_type_p != NULL)
6501 *field_type_p = TYPE_FIELD_TYPE (type, i);
6502 if (byte_offset_p != NULL)
6503 *byte_offset_p = fld_offset;
6504 if (bit_offset_p != NULL)
6505 *bit_offset_p = bit_pos % 8;
6506 if (bit_size_p != NULL)
6507 *bit_size_p = bit_size;
6508 return 1;
6509 }
6510 else if (ada_is_wrapper_field (type, i))
6511 {
6512 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6513 field_type_p, byte_offset_p, bit_offset_p,
6514 bit_size_p, index_p))
6515 return 1;
6516 }
6517 else if (ada_is_variant_part (type, i))
6518 {
6519 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6520 fixed type?? */
6521 int j;
6522 struct type *field_type
6523 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6524
6525 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6526 {
6527 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6528 fld_offset
6529 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6530 field_type_p, byte_offset_p,
6531 bit_offset_p, bit_size_p, index_p))
6532 return 1;
6533 }
6534 }
6535 else if (index_p != NULL)
6536 *index_p += 1;
6537 }
6538 return 0;
6539 }
6540
6541 /* Number of user-visible fields in record type TYPE. */
6542
6543 static int
6544 num_visible_fields (struct type *type)
6545 {
6546 int n;
6547
6548 n = 0;
6549 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6550 return n;
6551 }
6552
6553 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6554 and search in it assuming it has (class) type TYPE.
6555 If found, return value, else return NULL.
6556
6557 Searches recursively through wrapper fields (e.g., '_parent'). */
6558
6559 static struct value *
6560 ada_search_struct_field (char *name, struct value *arg, int offset,
6561 struct type *type)
6562 {
6563 int i;
6564
6565 type = ada_check_typedef (type);
6566 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6567 {
6568 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6569
6570 if (t_field_name == NULL)
6571 continue;
6572
6573 else if (field_name_match (t_field_name, name))
6574 return ada_value_primitive_field (arg, offset, i, type);
6575
6576 else if (ada_is_wrapper_field (type, i))
6577 {
6578 struct value *v = /* Do not let indent join lines here. */
6579 ada_search_struct_field (name, arg,
6580 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6581 TYPE_FIELD_TYPE (type, i));
6582
6583 if (v != NULL)
6584 return v;
6585 }
6586
6587 else if (ada_is_variant_part (type, i))
6588 {
6589 /* PNH: Do we ever get here? See find_struct_field. */
6590 int j;
6591 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6592 i));
6593 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6594
6595 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6596 {
6597 struct value *v = ada_search_struct_field /* Force line
6598 break. */
6599 (name, arg,
6600 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6601 TYPE_FIELD_TYPE (field_type, j));
6602
6603 if (v != NULL)
6604 return v;
6605 }
6606 }
6607 }
6608 return NULL;
6609 }
6610
6611 static struct value *ada_index_struct_field_1 (int *, struct value *,
6612 int, struct type *);
6613
6614
6615 /* Return field #INDEX in ARG, where the index is that returned by
6616 * find_struct_field through its INDEX_P argument. Adjust the address
6617 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6618 * If found, return value, else return NULL. */
6619
6620 static struct value *
6621 ada_index_struct_field (int index, struct value *arg, int offset,
6622 struct type *type)
6623 {
6624 return ada_index_struct_field_1 (&index, arg, offset, type);
6625 }
6626
6627
6628 /* Auxiliary function for ada_index_struct_field. Like
6629 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6630 * *INDEX_P. */
6631
6632 static struct value *
6633 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6634 struct type *type)
6635 {
6636 int i;
6637 type = ada_check_typedef (type);
6638
6639 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6640 {
6641 if (TYPE_FIELD_NAME (type, i) == NULL)
6642 continue;
6643 else if (ada_is_wrapper_field (type, i))
6644 {
6645 struct value *v = /* Do not let indent join lines here. */
6646 ada_index_struct_field_1 (index_p, arg,
6647 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6648 TYPE_FIELD_TYPE (type, i));
6649
6650 if (v != NULL)
6651 return v;
6652 }
6653
6654 else if (ada_is_variant_part (type, i))
6655 {
6656 /* PNH: Do we ever get here? See ada_search_struct_field,
6657 find_struct_field. */
6658 error (_("Cannot assign this kind of variant record"));
6659 }
6660 else if (*index_p == 0)
6661 return ada_value_primitive_field (arg, offset, i, type);
6662 else
6663 *index_p -= 1;
6664 }
6665 return NULL;
6666 }
6667
6668 /* Given ARG, a value of type (pointer or reference to a)*
6669 structure/union, extract the component named NAME from the ultimate
6670 target structure/union and return it as a value with its
6671 appropriate type.
6672
6673 The routine searches for NAME among all members of the structure itself
6674 and (recursively) among all members of any wrapper members
6675 (e.g., '_parent').
6676
6677 If NO_ERR, then simply return NULL in case of error, rather than
6678 calling error. */
6679
6680 struct value *
6681 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6682 {
6683 struct type *t, *t1;
6684 struct value *v;
6685
6686 v = NULL;
6687 t1 = t = ada_check_typedef (value_type (arg));
6688 if (TYPE_CODE (t) == TYPE_CODE_REF)
6689 {
6690 t1 = TYPE_TARGET_TYPE (t);
6691 if (t1 == NULL)
6692 goto BadValue;
6693 t1 = ada_check_typedef (t1);
6694 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6695 {
6696 arg = coerce_ref (arg);
6697 t = t1;
6698 }
6699 }
6700
6701 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6702 {
6703 t1 = TYPE_TARGET_TYPE (t);
6704 if (t1 == NULL)
6705 goto BadValue;
6706 t1 = ada_check_typedef (t1);
6707 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6708 {
6709 arg = value_ind (arg);
6710 t = t1;
6711 }
6712 else
6713 break;
6714 }
6715
6716 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6717 goto BadValue;
6718
6719 if (t1 == t)
6720 v = ada_search_struct_field (name, arg, 0, t);
6721 else
6722 {
6723 int bit_offset, bit_size, byte_offset;
6724 struct type *field_type;
6725 CORE_ADDR address;
6726
6727 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6728 address = value_as_address (arg);
6729 else
6730 address = unpack_pointer (t, value_contents (arg));
6731
6732 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6733 if (find_struct_field (name, t1, 0,
6734 &field_type, &byte_offset, &bit_offset,
6735 &bit_size, NULL))
6736 {
6737 if (bit_size != 0)
6738 {
6739 if (TYPE_CODE (t) == TYPE_CODE_REF)
6740 arg = ada_coerce_ref (arg);
6741 else
6742 arg = ada_value_ind (arg);
6743 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6744 bit_offset, bit_size,
6745 field_type);
6746 }
6747 else
6748 v = value_at_lazy (field_type, address + byte_offset);
6749 }
6750 }
6751
6752 if (v != NULL || no_err)
6753 return v;
6754 else
6755 error (_("There is no member named %s."), name);
6756
6757 BadValue:
6758 if (no_err)
6759 return NULL;
6760 else
6761 error (_("Attempt to extract a component of "
6762 "a value that is not a record."));
6763 }
6764
6765 /* Given a type TYPE, look up the type of the component of type named NAME.
6766 If DISPP is non-null, add its byte displacement from the beginning of a
6767 structure (pointed to by a value) of type TYPE to *DISPP (does not
6768 work for packed fields).
6769
6770 Matches any field whose name has NAME as a prefix, possibly
6771 followed by "___".
6772
6773 TYPE can be either a struct or union. If REFOK, TYPE may also
6774 be a (pointer or reference)+ to a struct or union, and the
6775 ultimate target type will be searched.
6776
6777 Looks recursively into variant clauses and parent types.
6778
6779 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6780 TYPE is not a type of the right kind. */
6781
6782 static struct type *
6783 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6784 int noerr, int *dispp)
6785 {
6786 int i;
6787
6788 if (name == NULL)
6789 goto BadName;
6790
6791 if (refok && type != NULL)
6792 while (1)
6793 {
6794 type = ada_check_typedef (type);
6795 if (TYPE_CODE (type) != TYPE_CODE_PTR
6796 && TYPE_CODE (type) != TYPE_CODE_REF)
6797 break;
6798 type = TYPE_TARGET_TYPE (type);
6799 }
6800
6801 if (type == NULL
6802 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6803 && TYPE_CODE (type) != TYPE_CODE_UNION))
6804 {
6805 if (noerr)
6806 return NULL;
6807 else
6808 {
6809 target_terminal_ours ();
6810 gdb_flush (gdb_stdout);
6811 if (type == NULL)
6812 error (_("Type (null) is not a structure or union type"));
6813 else
6814 {
6815 /* XXX: type_sprint */
6816 fprintf_unfiltered (gdb_stderr, _("Type "));
6817 type_print (type, "", gdb_stderr, -1);
6818 error (_(" is not a structure or union type"));
6819 }
6820 }
6821 }
6822
6823 type = to_static_fixed_type (type);
6824
6825 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6826 {
6827 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6828 struct type *t;
6829 int disp;
6830
6831 if (t_field_name == NULL)
6832 continue;
6833
6834 else if (field_name_match (t_field_name, name))
6835 {
6836 if (dispp != NULL)
6837 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6838 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6839 }
6840
6841 else if (ada_is_wrapper_field (type, i))
6842 {
6843 disp = 0;
6844 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6845 0, 1, &disp);
6846 if (t != NULL)
6847 {
6848 if (dispp != NULL)
6849 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6850 return t;
6851 }
6852 }
6853
6854 else if (ada_is_variant_part (type, i))
6855 {
6856 int j;
6857 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6858 i));
6859
6860 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6861 {
6862 /* FIXME pnh 2008/01/26: We check for a field that is
6863 NOT wrapped in a struct, since the compiler sometimes
6864 generates these for unchecked variant types. Revisit
6865 if the compiler changes this practice. */
6866 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6867 disp = 0;
6868 if (v_field_name != NULL
6869 && field_name_match (v_field_name, name))
6870 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6871 else
6872 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6873 j),
6874 name, 0, 1, &disp);
6875
6876 if (t != NULL)
6877 {
6878 if (dispp != NULL)
6879 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6880 return t;
6881 }
6882 }
6883 }
6884
6885 }
6886
6887 BadName:
6888 if (!noerr)
6889 {
6890 target_terminal_ours ();
6891 gdb_flush (gdb_stdout);
6892 if (name == NULL)
6893 {
6894 /* XXX: type_sprint */
6895 fprintf_unfiltered (gdb_stderr, _("Type "));
6896 type_print (type, "", gdb_stderr, -1);
6897 error (_(" has no component named <null>"));
6898 }
6899 else
6900 {
6901 /* XXX: type_sprint */
6902 fprintf_unfiltered (gdb_stderr, _("Type "));
6903 type_print (type, "", gdb_stderr, -1);
6904 error (_(" has no component named %s"), name);
6905 }
6906 }
6907
6908 return NULL;
6909 }
6910
6911 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6912 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6913 represents an unchecked union (that is, the variant part of a
6914 record that is named in an Unchecked_Union pragma). */
6915
6916 static int
6917 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6918 {
6919 char *discrim_name = ada_variant_discrim_name (var_type);
6920
6921 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6922 == NULL);
6923 }
6924
6925
6926 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6927 within a value of type OUTER_TYPE that is stored in GDB at
6928 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6929 numbering from 0) is applicable. Returns -1 if none are. */
6930
6931 int
6932 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6933 const gdb_byte *outer_valaddr)
6934 {
6935 int others_clause;
6936 int i;
6937 char *discrim_name = ada_variant_discrim_name (var_type);
6938 struct value *outer;
6939 struct value *discrim;
6940 LONGEST discrim_val;
6941
6942 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6943 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6944 if (discrim == NULL)
6945 return -1;
6946 discrim_val = value_as_long (discrim);
6947
6948 others_clause = -1;
6949 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6950 {
6951 if (ada_is_others_clause (var_type, i))
6952 others_clause = i;
6953 else if (ada_in_variant (discrim_val, var_type, i))
6954 return i;
6955 }
6956
6957 return others_clause;
6958 }
6959 \f
6960
6961
6962 /* Dynamic-Sized Records */
6963
6964 /* Strategy: The type ostensibly attached to a value with dynamic size
6965 (i.e., a size that is not statically recorded in the debugging
6966 data) does not accurately reflect the size or layout of the value.
6967 Our strategy is to convert these values to values with accurate,
6968 conventional types that are constructed on the fly. */
6969
6970 /* There is a subtle and tricky problem here. In general, we cannot
6971 determine the size of dynamic records without its data. However,
6972 the 'struct value' data structure, which GDB uses to represent
6973 quantities in the inferior process (the target), requires the size
6974 of the type at the time of its allocation in order to reserve space
6975 for GDB's internal copy of the data. That's why the
6976 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6977 rather than struct value*s.
6978
6979 However, GDB's internal history variables ($1, $2, etc.) are
6980 struct value*s containing internal copies of the data that are not, in
6981 general, the same as the data at their corresponding addresses in
6982 the target. Fortunately, the types we give to these values are all
6983 conventional, fixed-size types (as per the strategy described
6984 above), so that we don't usually have to perform the
6985 'to_fixed_xxx_type' conversions to look at their values.
6986 Unfortunately, there is one exception: if one of the internal
6987 history variables is an array whose elements are unconstrained
6988 records, then we will need to create distinct fixed types for each
6989 element selected. */
6990
6991 /* The upshot of all of this is that many routines take a (type, host
6992 address, target address) triple as arguments to represent a value.
6993 The host address, if non-null, is supposed to contain an internal
6994 copy of the relevant data; otherwise, the program is to consult the
6995 target at the target address. */
6996
6997 /* Assuming that VAL0 represents a pointer value, the result of
6998 dereferencing it. Differs from value_ind in its treatment of
6999 dynamic-sized types. */
7000
7001 struct value *
7002 ada_value_ind (struct value *val0)
7003 {
7004 struct value *val = value_ind (val0);
7005
7006 return ada_to_fixed_value (val);
7007 }
7008
7009 /* The value resulting from dereferencing any "reference to"
7010 qualifiers on VAL0. */
7011
7012 static struct value *
7013 ada_coerce_ref (struct value *val0)
7014 {
7015 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7016 {
7017 struct value *val = val0;
7018
7019 val = coerce_ref (val);
7020 return ada_to_fixed_value (val);
7021 }
7022 else
7023 return val0;
7024 }
7025
7026 /* Return OFF rounded upward if necessary to a multiple of
7027 ALIGNMENT (a power of 2). */
7028
7029 static unsigned int
7030 align_value (unsigned int off, unsigned int alignment)
7031 {
7032 return (off + alignment - 1) & ~(alignment - 1);
7033 }
7034
7035 /* Return the bit alignment required for field #F of template type TYPE. */
7036
7037 static unsigned int
7038 field_alignment (struct type *type, int f)
7039 {
7040 const char *name = TYPE_FIELD_NAME (type, f);
7041 int len;
7042 int align_offset;
7043
7044 /* The field name should never be null, unless the debugging information
7045 is somehow malformed. In this case, we assume the field does not
7046 require any alignment. */
7047 if (name == NULL)
7048 return 1;
7049
7050 len = strlen (name);
7051
7052 if (!isdigit (name[len - 1]))
7053 return 1;
7054
7055 if (isdigit (name[len - 2]))
7056 align_offset = len - 2;
7057 else
7058 align_offset = len - 1;
7059
7060 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7061 return TARGET_CHAR_BIT;
7062
7063 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7064 }
7065
7066 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7067
7068 static struct symbol *
7069 ada_find_any_type_symbol (const char *name)
7070 {
7071 struct symbol *sym;
7072
7073 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7074 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7075 return sym;
7076
7077 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7078 return sym;
7079 }
7080
7081 /* Find a type named NAME. Ignores ambiguity. This routine will look
7082 solely for types defined by debug info, it will not search the GDB
7083 primitive types. */
7084
7085 static struct type *
7086 ada_find_any_type (const char *name)
7087 {
7088 struct symbol *sym = ada_find_any_type_symbol (name);
7089
7090 if (sym != NULL)
7091 return SYMBOL_TYPE (sym);
7092
7093 return NULL;
7094 }
7095
7096 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7097 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7098 symbol, in which case it is returned. Otherwise, this looks for
7099 symbols whose name is that of NAME_SYM suffixed with "___XR".
7100 Return symbol if found, and NULL otherwise. */
7101
7102 struct symbol *
7103 ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
7104 {
7105 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7106 struct symbol *sym;
7107
7108 if (strstr (name, "___XR") != NULL)
7109 return name_sym;
7110
7111 sym = find_old_style_renaming_symbol (name, block);
7112
7113 if (sym != NULL)
7114 return sym;
7115
7116 /* Not right yet. FIXME pnh 7/20/2007. */
7117 sym = ada_find_any_type_symbol (name);
7118 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7119 return sym;
7120 else
7121 return NULL;
7122 }
7123
7124 static struct symbol *
7125 find_old_style_renaming_symbol (const char *name, struct block *block)
7126 {
7127 const struct symbol *function_sym = block_linkage_function (block);
7128 char *rename;
7129
7130 if (function_sym != NULL)
7131 {
7132 /* If the symbol is defined inside a function, NAME is not fully
7133 qualified. This means we need to prepend the function name
7134 as well as adding the ``___XR'' suffix to build the name of
7135 the associated renaming symbol. */
7136 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7137 /* Function names sometimes contain suffixes used
7138 for instance to qualify nested subprograms. When building
7139 the XR type name, we need to make sure that this suffix is
7140 not included. So do not include any suffix in the function
7141 name length below. */
7142 int function_name_len = ada_name_prefix_len (function_name);
7143 const int rename_len = function_name_len + 2 /* "__" */
7144 + strlen (name) + 6 /* "___XR\0" */ ;
7145
7146 /* Strip the suffix if necessary. */
7147 ada_remove_trailing_digits (function_name, &function_name_len);
7148 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7149 ada_remove_Xbn_suffix (function_name, &function_name_len);
7150
7151 /* Library-level functions are a special case, as GNAT adds
7152 a ``_ada_'' prefix to the function name to avoid namespace
7153 pollution. However, the renaming symbols themselves do not
7154 have this prefix, so we need to skip this prefix if present. */
7155 if (function_name_len > 5 /* "_ada_" */
7156 && strstr (function_name, "_ada_") == function_name)
7157 {
7158 function_name += 5;
7159 function_name_len -= 5;
7160 }
7161
7162 rename = (char *) alloca (rename_len * sizeof (char));
7163 strncpy (rename, function_name, function_name_len);
7164 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7165 "__%s___XR", name);
7166 }
7167 else
7168 {
7169 const int rename_len = strlen (name) + 6;
7170
7171 rename = (char *) alloca (rename_len * sizeof (char));
7172 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7173 }
7174
7175 return ada_find_any_type_symbol (rename);
7176 }
7177
7178 /* Because of GNAT encoding conventions, several GDB symbols may match a
7179 given type name. If the type denoted by TYPE0 is to be preferred to
7180 that of TYPE1 for purposes of type printing, return non-zero;
7181 otherwise return 0. */
7182
7183 int
7184 ada_prefer_type (struct type *type0, struct type *type1)
7185 {
7186 if (type1 == NULL)
7187 return 1;
7188 else if (type0 == NULL)
7189 return 0;
7190 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7191 return 1;
7192 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7193 return 0;
7194 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7195 return 1;
7196 else if (ada_is_constrained_packed_array_type (type0))
7197 return 1;
7198 else if (ada_is_array_descriptor_type (type0)
7199 && !ada_is_array_descriptor_type (type1))
7200 return 1;
7201 else
7202 {
7203 const char *type0_name = type_name_no_tag (type0);
7204 const char *type1_name = type_name_no_tag (type1);
7205
7206 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7207 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7208 return 1;
7209 }
7210 return 0;
7211 }
7212
7213 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7214 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7215
7216 const char *
7217 ada_type_name (struct type *type)
7218 {
7219 if (type == NULL)
7220 return NULL;
7221 else if (TYPE_NAME (type) != NULL)
7222 return TYPE_NAME (type);
7223 else
7224 return TYPE_TAG_NAME (type);
7225 }
7226
7227 /* Search the list of "descriptive" types associated to TYPE for a type
7228 whose name is NAME. */
7229
7230 static struct type *
7231 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7232 {
7233 struct type *result;
7234
7235 /* If there no descriptive-type info, then there is no parallel type
7236 to be found. */
7237 if (!HAVE_GNAT_AUX_INFO (type))
7238 return NULL;
7239
7240 result = TYPE_DESCRIPTIVE_TYPE (type);
7241 while (result != NULL)
7242 {
7243 const char *result_name = ada_type_name (result);
7244
7245 if (result_name == NULL)
7246 {
7247 warning (_("unexpected null name on descriptive type"));
7248 return NULL;
7249 }
7250
7251 /* If the names match, stop. */
7252 if (strcmp (result_name, name) == 0)
7253 break;
7254
7255 /* Otherwise, look at the next item on the list, if any. */
7256 if (HAVE_GNAT_AUX_INFO (result))
7257 result = TYPE_DESCRIPTIVE_TYPE (result);
7258 else
7259 result = NULL;
7260 }
7261
7262 /* If we didn't find a match, see whether this is a packed array. With
7263 older compilers, the descriptive type information is either absent or
7264 irrelevant when it comes to packed arrays so the above lookup fails.
7265 Fall back to using a parallel lookup by name in this case. */
7266 if (result == NULL && ada_is_constrained_packed_array_type (type))
7267 return ada_find_any_type (name);
7268
7269 return result;
7270 }
7271
7272 /* Find a parallel type to TYPE with the specified NAME, using the
7273 descriptive type taken from the debugging information, if available,
7274 and otherwise using the (slower) name-based method. */
7275
7276 static struct type *
7277 ada_find_parallel_type_with_name (struct type *type, const char *name)
7278 {
7279 struct type *result = NULL;
7280
7281 if (HAVE_GNAT_AUX_INFO (type))
7282 result = find_parallel_type_by_descriptive_type (type, name);
7283 else
7284 result = ada_find_any_type (name);
7285
7286 return result;
7287 }
7288
7289 /* Same as above, but specify the name of the parallel type by appending
7290 SUFFIX to the name of TYPE. */
7291
7292 struct type *
7293 ada_find_parallel_type (struct type *type, const char *suffix)
7294 {
7295 char *name;
7296 const char *typename = ada_type_name (type);
7297 int len;
7298
7299 if (typename == NULL)
7300 return NULL;
7301
7302 len = strlen (typename);
7303
7304 name = (char *) alloca (len + strlen (suffix) + 1);
7305
7306 strcpy (name, typename);
7307 strcpy (name + len, suffix);
7308
7309 return ada_find_parallel_type_with_name (type, name);
7310 }
7311
7312 /* If TYPE is a variable-size record type, return the corresponding template
7313 type describing its fields. Otherwise, return NULL. */
7314
7315 static struct type *
7316 dynamic_template_type (struct type *type)
7317 {
7318 type = ada_check_typedef (type);
7319
7320 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7321 || ada_type_name (type) == NULL)
7322 return NULL;
7323 else
7324 {
7325 int len = strlen (ada_type_name (type));
7326
7327 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7328 return type;
7329 else
7330 return ada_find_parallel_type (type, "___XVE");
7331 }
7332 }
7333
7334 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7335 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7336
7337 static int
7338 is_dynamic_field (struct type *templ_type, int field_num)
7339 {
7340 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7341
7342 return name != NULL
7343 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7344 && strstr (name, "___XVL") != NULL;
7345 }
7346
7347 /* The index of the variant field of TYPE, or -1 if TYPE does not
7348 represent a variant record type. */
7349
7350 static int
7351 variant_field_index (struct type *type)
7352 {
7353 int f;
7354
7355 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7356 return -1;
7357
7358 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7359 {
7360 if (ada_is_variant_part (type, f))
7361 return f;
7362 }
7363 return -1;
7364 }
7365
7366 /* A record type with no fields. */
7367
7368 static struct type *
7369 empty_record (struct type *template)
7370 {
7371 struct type *type = alloc_type_copy (template);
7372
7373 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7374 TYPE_NFIELDS (type) = 0;
7375 TYPE_FIELDS (type) = NULL;
7376 INIT_CPLUS_SPECIFIC (type);
7377 TYPE_NAME (type) = "<empty>";
7378 TYPE_TAG_NAME (type) = NULL;
7379 TYPE_LENGTH (type) = 0;
7380 return type;
7381 }
7382
7383 /* An ordinary record type (with fixed-length fields) that describes
7384 the value of type TYPE at VALADDR or ADDRESS (see comments at
7385 the beginning of this section) VAL according to GNAT conventions.
7386 DVAL0 should describe the (portion of a) record that contains any
7387 necessary discriminants. It should be NULL if value_type (VAL) is
7388 an outer-level type (i.e., as opposed to a branch of a variant.) A
7389 variant field (unless unchecked) is replaced by a particular branch
7390 of the variant.
7391
7392 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7393 length are not statically known are discarded. As a consequence,
7394 VALADDR, ADDRESS and DVAL0 are ignored.
7395
7396 NOTE: Limitations: For now, we assume that dynamic fields and
7397 variants occupy whole numbers of bytes. However, they need not be
7398 byte-aligned. */
7399
7400 struct type *
7401 ada_template_to_fixed_record_type_1 (struct type *type,
7402 const gdb_byte *valaddr,
7403 CORE_ADDR address, struct value *dval0,
7404 int keep_dynamic_fields)
7405 {
7406 struct value *mark = value_mark ();
7407 struct value *dval;
7408 struct type *rtype;
7409 int nfields, bit_len;
7410 int variant_field;
7411 long off;
7412 int fld_bit_len;
7413 int f;
7414
7415 /* Compute the number of fields in this record type that are going
7416 to be processed: unless keep_dynamic_fields, this includes only
7417 fields whose position and length are static will be processed. */
7418 if (keep_dynamic_fields)
7419 nfields = TYPE_NFIELDS (type);
7420 else
7421 {
7422 nfields = 0;
7423 while (nfields < TYPE_NFIELDS (type)
7424 && !ada_is_variant_part (type, nfields)
7425 && !is_dynamic_field (type, nfields))
7426 nfields++;
7427 }
7428
7429 rtype = alloc_type_copy (type);
7430 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7431 INIT_CPLUS_SPECIFIC (rtype);
7432 TYPE_NFIELDS (rtype) = nfields;
7433 TYPE_FIELDS (rtype) = (struct field *)
7434 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7435 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7436 TYPE_NAME (rtype) = ada_type_name (type);
7437 TYPE_TAG_NAME (rtype) = NULL;
7438 TYPE_FIXED_INSTANCE (rtype) = 1;
7439
7440 off = 0;
7441 bit_len = 0;
7442 variant_field = -1;
7443
7444 for (f = 0; f < nfields; f += 1)
7445 {
7446 off = align_value (off, field_alignment (type, f))
7447 + TYPE_FIELD_BITPOS (type, f);
7448 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7449 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7450
7451 if (ada_is_variant_part (type, f))
7452 {
7453 variant_field = f;
7454 fld_bit_len = 0;
7455 }
7456 else if (is_dynamic_field (type, f))
7457 {
7458 const gdb_byte *field_valaddr = valaddr;
7459 CORE_ADDR field_address = address;
7460 struct type *field_type =
7461 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7462
7463 if (dval0 == NULL)
7464 {
7465 /* rtype's length is computed based on the run-time
7466 value of discriminants. If the discriminants are not
7467 initialized, the type size may be completely bogus and
7468 GDB may fail to allocate a value for it. So check the
7469 size first before creating the value. */
7470 check_size (rtype);
7471 dval = value_from_contents_and_address (rtype, valaddr, address);
7472 }
7473 else
7474 dval = dval0;
7475
7476 /* If the type referenced by this field is an aligner type, we need
7477 to unwrap that aligner type, because its size might not be set.
7478 Keeping the aligner type would cause us to compute the wrong
7479 size for this field, impacting the offset of the all the fields
7480 that follow this one. */
7481 if (ada_is_aligner_type (field_type))
7482 {
7483 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7484
7485 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7486 field_address = cond_offset_target (field_address, field_offset);
7487 field_type = ada_aligned_type (field_type);
7488 }
7489
7490 field_valaddr = cond_offset_host (field_valaddr,
7491 off / TARGET_CHAR_BIT);
7492 field_address = cond_offset_target (field_address,
7493 off / TARGET_CHAR_BIT);
7494
7495 /* Get the fixed type of the field. Note that, in this case,
7496 we do not want to get the real type out of the tag: if
7497 the current field is the parent part of a tagged record,
7498 we will get the tag of the object. Clearly wrong: the real
7499 type of the parent is not the real type of the child. We
7500 would end up in an infinite loop. */
7501 field_type = ada_get_base_type (field_type);
7502 field_type = ada_to_fixed_type (field_type, field_valaddr,
7503 field_address, dval, 0);
7504 /* If the field size is already larger than the maximum
7505 object size, then the record itself will necessarily
7506 be larger than the maximum object size. We need to make
7507 this check now, because the size might be so ridiculously
7508 large (due to an uninitialized variable in the inferior)
7509 that it would cause an overflow when adding it to the
7510 record size. */
7511 check_size (field_type);
7512
7513 TYPE_FIELD_TYPE (rtype, f) = field_type;
7514 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7515 /* The multiplication can potentially overflow. But because
7516 the field length has been size-checked just above, and
7517 assuming that the maximum size is a reasonable value,
7518 an overflow should not happen in practice. So rather than
7519 adding overflow recovery code to this already complex code,
7520 we just assume that it's not going to happen. */
7521 fld_bit_len =
7522 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7523 }
7524 else
7525 {
7526 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7527
7528 /* If our field is a typedef type (most likely a typedef of
7529 a fat pointer, encoding an array access), then we need to
7530 look at its target type to determine its characteristics.
7531 In particular, we would miscompute the field size if we took
7532 the size of the typedef (zero), instead of the size of
7533 the target type. */
7534 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7535 field_type = ada_typedef_target_type (field_type);
7536
7537 TYPE_FIELD_TYPE (rtype, f) = field_type;
7538 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7539 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7540 fld_bit_len =
7541 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7542 else
7543 fld_bit_len =
7544 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7545 }
7546 if (off + fld_bit_len > bit_len)
7547 bit_len = off + fld_bit_len;
7548 off += fld_bit_len;
7549 TYPE_LENGTH (rtype) =
7550 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7551 }
7552
7553 /* We handle the variant part, if any, at the end because of certain
7554 odd cases in which it is re-ordered so as NOT to be the last field of
7555 the record. This can happen in the presence of representation
7556 clauses. */
7557 if (variant_field >= 0)
7558 {
7559 struct type *branch_type;
7560
7561 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7562
7563 if (dval0 == NULL)
7564 dval = value_from_contents_and_address (rtype, valaddr, address);
7565 else
7566 dval = dval0;
7567
7568 branch_type =
7569 to_fixed_variant_branch_type
7570 (TYPE_FIELD_TYPE (type, variant_field),
7571 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7572 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7573 if (branch_type == NULL)
7574 {
7575 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7576 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7577 TYPE_NFIELDS (rtype) -= 1;
7578 }
7579 else
7580 {
7581 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7582 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7583 fld_bit_len =
7584 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7585 TARGET_CHAR_BIT;
7586 if (off + fld_bit_len > bit_len)
7587 bit_len = off + fld_bit_len;
7588 TYPE_LENGTH (rtype) =
7589 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7590 }
7591 }
7592
7593 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7594 should contain the alignment of that record, which should be a strictly
7595 positive value. If null or negative, then something is wrong, most
7596 probably in the debug info. In that case, we don't round up the size
7597 of the resulting type. If this record is not part of another structure,
7598 the current RTYPE length might be good enough for our purposes. */
7599 if (TYPE_LENGTH (type) <= 0)
7600 {
7601 if (TYPE_NAME (rtype))
7602 warning (_("Invalid type size for `%s' detected: %d."),
7603 TYPE_NAME (rtype), TYPE_LENGTH (type));
7604 else
7605 warning (_("Invalid type size for <unnamed> detected: %d."),
7606 TYPE_LENGTH (type));
7607 }
7608 else
7609 {
7610 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7611 TYPE_LENGTH (type));
7612 }
7613
7614 value_free_to_mark (mark);
7615 if (TYPE_LENGTH (rtype) > varsize_limit)
7616 error (_("record type with dynamic size is larger than varsize-limit"));
7617 return rtype;
7618 }
7619
7620 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7621 of 1. */
7622
7623 static struct type *
7624 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7625 CORE_ADDR address, struct value *dval0)
7626 {
7627 return ada_template_to_fixed_record_type_1 (type, valaddr,
7628 address, dval0, 1);
7629 }
7630
7631 /* An ordinary record type in which ___XVL-convention fields and
7632 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7633 static approximations, containing all possible fields. Uses
7634 no runtime values. Useless for use in values, but that's OK,
7635 since the results are used only for type determinations. Works on both
7636 structs and unions. Representation note: to save space, we memorize
7637 the result of this function in the TYPE_TARGET_TYPE of the
7638 template type. */
7639
7640 static struct type *
7641 template_to_static_fixed_type (struct type *type0)
7642 {
7643 struct type *type;
7644 int nfields;
7645 int f;
7646
7647 if (TYPE_TARGET_TYPE (type0) != NULL)
7648 return TYPE_TARGET_TYPE (type0);
7649
7650 nfields = TYPE_NFIELDS (type0);
7651 type = type0;
7652
7653 for (f = 0; f < nfields; f += 1)
7654 {
7655 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7656 struct type *new_type;
7657
7658 if (is_dynamic_field (type0, f))
7659 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7660 else
7661 new_type = static_unwrap_type (field_type);
7662 if (type == type0 && new_type != field_type)
7663 {
7664 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7665 TYPE_CODE (type) = TYPE_CODE (type0);
7666 INIT_CPLUS_SPECIFIC (type);
7667 TYPE_NFIELDS (type) = nfields;
7668 TYPE_FIELDS (type) = (struct field *)
7669 TYPE_ALLOC (type, nfields * sizeof (struct field));
7670 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7671 sizeof (struct field) * nfields);
7672 TYPE_NAME (type) = ada_type_name (type0);
7673 TYPE_TAG_NAME (type) = NULL;
7674 TYPE_FIXED_INSTANCE (type) = 1;
7675 TYPE_LENGTH (type) = 0;
7676 }
7677 TYPE_FIELD_TYPE (type, f) = new_type;
7678 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7679 }
7680 return type;
7681 }
7682
7683 /* Given an object of type TYPE whose contents are at VALADDR and
7684 whose address in memory is ADDRESS, returns a revision of TYPE,
7685 which should be a non-dynamic-sized record, in which the variant
7686 part, if any, is replaced with the appropriate branch. Looks
7687 for discriminant values in DVAL0, which can be NULL if the record
7688 contains the necessary discriminant values. */
7689
7690 static struct type *
7691 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7692 CORE_ADDR address, struct value *dval0)
7693 {
7694 struct value *mark = value_mark ();
7695 struct value *dval;
7696 struct type *rtype;
7697 struct type *branch_type;
7698 int nfields = TYPE_NFIELDS (type);
7699 int variant_field = variant_field_index (type);
7700
7701 if (variant_field == -1)
7702 return type;
7703
7704 if (dval0 == NULL)
7705 dval = value_from_contents_and_address (type, valaddr, address);
7706 else
7707 dval = dval0;
7708
7709 rtype = alloc_type_copy (type);
7710 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7711 INIT_CPLUS_SPECIFIC (rtype);
7712 TYPE_NFIELDS (rtype) = nfields;
7713 TYPE_FIELDS (rtype) =
7714 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7715 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7716 sizeof (struct field) * nfields);
7717 TYPE_NAME (rtype) = ada_type_name (type);
7718 TYPE_TAG_NAME (rtype) = NULL;
7719 TYPE_FIXED_INSTANCE (rtype) = 1;
7720 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7721
7722 branch_type = to_fixed_variant_branch_type
7723 (TYPE_FIELD_TYPE (type, variant_field),
7724 cond_offset_host (valaddr,
7725 TYPE_FIELD_BITPOS (type, variant_field)
7726 / TARGET_CHAR_BIT),
7727 cond_offset_target (address,
7728 TYPE_FIELD_BITPOS (type, variant_field)
7729 / TARGET_CHAR_BIT), dval);
7730 if (branch_type == NULL)
7731 {
7732 int f;
7733
7734 for (f = variant_field + 1; f < nfields; f += 1)
7735 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7736 TYPE_NFIELDS (rtype) -= 1;
7737 }
7738 else
7739 {
7740 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7741 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7742 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7743 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7744 }
7745 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7746
7747 value_free_to_mark (mark);
7748 return rtype;
7749 }
7750
7751 /* An ordinary record type (with fixed-length fields) that describes
7752 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7753 beginning of this section]. Any necessary discriminants' values
7754 should be in DVAL, a record value; it may be NULL if the object
7755 at ADDR itself contains any necessary discriminant values.
7756 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7757 values from the record are needed. Except in the case that DVAL,
7758 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7759 unchecked) is replaced by a particular branch of the variant.
7760
7761 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7762 is questionable and may be removed. It can arise during the
7763 processing of an unconstrained-array-of-record type where all the
7764 variant branches have exactly the same size. This is because in
7765 such cases, the compiler does not bother to use the XVS convention
7766 when encoding the record. I am currently dubious of this
7767 shortcut and suspect the compiler should be altered. FIXME. */
7768
7769 static struct type *
7770 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7771 CORE_ADDR address, struct value *dval)
7772 {
7773 struct type *templ_type;
7774
7775 if (TYPE_FIXED_INSTANCE (type0))
7776 return type0;
7777
7778 templ_type = dynamic_template_type (type0);
7779
7780 if (templ_type != NULL)
7781 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7782 else if (variant_field_index (type0) >= 0)
7783 {
7784 if (dval == NULL && valaddr == NULL && address == 0)
7785 return type0;
7786 return to_record_with_fixed_variant_part (type0, valaddr, address,
7787 dval);
7788 }
7789 else
7790 {
7791 TYPE_FIXED_INSTANCE (type0) = 1;
7792 return type0;
7793 }
7794
7795 }
7796
7797 /* An ordinary record type (with fixed-length fields) that describes
7798 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7799 union type. Any necessary discriminants' values should be in DVAL,
7800 a record value. That is, this routine selects the appropriate
7801 branch of the union at ADDR according to the discriminant value
7802 indicated in the union's type name. Returns VAR_TYPE0 itself if
7803 it represents a variant subject to a pragma Unchecked_Union. */
7804
7805 static struct type *
7806 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7807 CORE_ADDR address, struct value *dval)
7808 {
7809 int which;
7810 struct type *templ_type;
7811 struct type *var_type;
7812
7813 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7814 var_type = TYPE_TARGET_TYPE (var_type0);
7815 else
7816 var_type = var_type0;
7817
7818 templ_type = ada_find_parallel_type (var_type, "___XVU");
7819
7820 if (templ_type != NULL)
7821 var_type = templ_type;
7822
7823 if (is_unchecked_variant (var_type, value_type (dval)))
7824 return var_type0;
7825 which =
7826 ada_which_variant_applies (var_type,
7827 value_type (dval), value_contents (dval));
7828
7829 if (which < 0)
7830 return empty_record (var_type);
7831 else if (is_dynamic_field (var_type, which))
7832 return to_fixed_record_type
7833 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7834 valaddr, address, dval);
7835 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7836 return
7837 to_fixed_record_type
7838 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7839 else
7840 return TYPE_FIELD_TYPE (var_type, which);
7841 }
7842
7843 /* Assuming that TYPE0 is an array type describing the type of a value
7844 at ADDR, and that DVAL describes a record containing any
7845 discriminants used in TYPE0, returns a type for the value that
7846 contains no dynamic components (that is, no components whose sizes
7847 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7848 true, gives an error message if the resulting type's size is over
7849 varsize_limit. */
7850
7851 static struct type *
7852 to_fixed_array_type (struct type *type0, struct value *dval,
7853 int ignore_too_big)
7854 {
7855 struct type *index_type_desc;
7856 struct type *result;
7857 int constrained_packed_array_p;
7858
7859 type0 = ada_check_typedef (type0);
7860 if (TYPE_FIXED_INSTANCE (type0))
7861 return type0;
7862
7863 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7864 if (constrained_packed_array_p)
7865 type0 = decode_constrained_packed_array_type (type0);
7866
7867 index_type_desc = ada_find_parallel_type (type0, "___XA");
7868 ada_fixup_array_indexes_type (index_type_desc);
7869 if (index_type_desc == NULL)
7870 {
7871 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7872
7873 /* NOTE: elt_type---the fixed version of elt_type0---should never
7874 depend on the contents of the array in properly constructed
7875 debugging data. */
7876 /* Create a fixed version of the array element type.
7877 We're not providing the address of an element here,
7878 and thus the actual object value cannot be inspected to do
7879 the conversion. This should not be a problem, since arrays of
7880 unconstrained objects are not allowed. In particular, all
7881 the elements of an array of a tagged type should all be of
7882 the same type specified in the debugging info. No need to
7883 consult the object tag. */
7884 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7885
7886 /* Make sure we always create a new array type when dealing with
7887 packed array types, since we're going to fix-up the array
7888 type length and element bitsize a little further down. */
7889 if (elt_type0 == elt_type && !constrained_packed_array_p)
7890 result = type0;
7891 else
7892 result = create_array_type (alloc_type_copy (type0),
7893 elt_type, TYPE_INDEX_TYPE (type0));
7894 }
7895 else
7896 {
7897 int i;
7898 struct type *elt_type0;
7899
7900 elt_type0 = type0;
7901 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7902 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7903
7904 /* NOTE: result---the fixed version of elt_type0---should never
7905 depend on the contents of the array in properly constructed
7906 debugging data. */
7907 /* Create a fixed version of the array element type.
7908 We're not providing the address of an element here,
7909 and thus the actual object value cannot be inspected to do
7910 the conversion. This should not be a problem, since arrays of
7911 unconstrained objects are not allowed. In particular, all
7912 the elements of an array of a tagged type should all be of
7913 the same type specified in the debugging info. No need to
7914 consult the object tag. */
7915 result =
7916 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7917
7918 elt_type0 = type0;
7919 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7920 {
7921 struct type *range_type =
7922 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7923
7924 result = create_array_type (alloc_type_copy (elt_type0),
7925 result, range_type);
7926 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7927 }
7928 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7929 error (_("array type with dynamic size is larger than varsize-limit"));
7930 }
7931
7932 /* We want to preserve the type name. This can be useful when
7933 trying to get the type name of a value that has already been
7934 printed (for instance, if the user did "print VAR; whatis $". */
7935 TYPE_NAME (result) = TYPE_NAME (type0);
7936
7937 if (constrained_packed_array_p)
7938 {
7939 /* So far, the resulting type has been created as if the original
7940 type was a regular (non-packed) array type. As a result, the
7941 bitsize of the array elements needs to be set again, and the array
7942 length needs to be recomputed based on that bitsize. */
7943 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7944 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7945
7946 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7947 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7948 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7949 TYPE_LENGTH (result)++;
7950 }
7951
7952 TYPE_FIXED_INSTANCE (result) = 1;
7953 return result;
7954 }
7955
7956
7957 /* A standard type (containing no dynamically sized components)
7958 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7959 DVAL describes a record containing any discriminants used in TYPE0,
7960 and may be NULL if there are none, or if the object of type TYPE at
7961 ADDRESS or in VALADDR contains these discriminants.
7962
7963 If CHECK_TAG is not null, in the case of tagged types, this function
7964 attempts to locate the object's tag and use it to compute the actual
7965 type. However, when ADDRESS is null, we cannot use it to determine the
7966 location of the tag, and therefore compute the tagged type's actual type.
7967 So we return the tagged type without consulting the tag. */
7968
7969 static struct type *
7970 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7971 CORE_ADDR address, struct value *dval, int check_tag)
7972 {
7973 type = ada_check_typedef (type);
7974 switch (TYPE_CODE (type))
7975 {
7976 default:
7977 return type;
7978 case TYPE_CODE_STRUCT:
7979 {
7980 struct type *static_type = to_static_fixed_type (type);
7981 struct type *fixed_record_type =
7982 to_fixed_record_type (type, valaddr, address, NULL);
7983
7984 /* If STATIC_TYPE is a tagged type and we know the object's address,
7985 then we can determine its tag, and compute the object's actual
7986 type from there. Note that we have to use the fixed record
7987 type (the parent part of the record may have dynamic fields
7988 and the way the location of _tag is expressed may depend on
7989 them). */
7990
7991 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7992 {
7993 struct type *real_type =
7994 type_from_tag (value_tag_from_contents_and_address
7995 (fixed_record_type,
7996 valaddr,
7997 address));
7998
7999 if (real_type != NULL)
8000 return to_fixed_record_type (real_type, valaddr, address, NULL);
8001 }
8002
8003 /* Check to see if there is a parallel ___XVZ variable.
8004 If there is, then it provides the actual size of our type. */
8005 else if (ada_type_name (fixed_record_type) != NULL)
8006 {
8007 const char *name = ada_type_name (fixed_record_type);
8008 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8009 int xvz_found = 0;
8010 LONGEST size;
8011
8012 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8013 size = get_int_var_value (xvz_name, &xvz_found);
8014 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8015 {
8016 fixed_record_type = copy_type (fixed_record_type);
8017 TYPE_LENGTH (fixed_record_type) = size;
8018
8019 /* The FIXED_RECORD_TYPE may have be a stub. We have
8020 observed this when the debugging info is STABS, and
8021 apparently it is something that is hard to fix.
8022
8023 In practice, we don't need the actual type definition
8024 at all, because the presence of the XVZ variable allows us
8025 to assume that there must be a XVS type as well, which we
8026 should be able to use later, when we need the actual type
8027 definition.
8028
8029 In the meantime, pretend that the "fixed" type we are
8030 returning is NOT a stub, because this can cause trouble
8031 when using this type to create new types targeting it.
8032 Indeed, the associated creation routines often check
8033 whether the target type is a stub and will try to replace
8034 it, thus using a type with the wrong size. This, in turn,
8035 might cause the new type to have the wrong size too.
8036 Consider the case of an array, for instance, where the size
8037 of the array is computed from the number of elements in
8038 our array multiplied by the size of its element. */
8039 TYPE_STUB (fixed_record_type) = 0;
8040 }
8041 }
8042 return fixed_record_type;
8043 }
8044 case TYPE_CODE_ARRAY:
8045 return to_fixed_array_type (type, dval, 1);
8046 case TYPE_CODE_UNION:
8047 if (dval == NULL)
8048 return type;
8049 else
8050 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8051 }
8052 }
8053
8054 /* The same as ada_to_fixed_type_1, except that it preserves the type
8055 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8056
8057 The typedef layer needs be preserved in order to differentiate between
8058 arrays and array pointers when both types are implemented using the same
8059 fat pointer. In the array pointer case, the pointer is encoded as
8060 a typedef of the pointer type. For instance, considering:
8061
8062 type String_Access is access String;
8063 S1 : String_Access := null;
8064
8065 To the debugger, S1 is defined as a typedef of type String. But
8066 to the user, it is a pointer. So if the user tries to print S1,
8067 we should not dereference the array, but print the array address
8068 instead.
8069
8070 If we didn't preserve the typedef layer, we would lose the fact that
8071 the type is to be presented as a pointer (needs de-reference before
8072 being printed). And we would also use the source-level type name. */
8073
8074 struct type *
8075 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8076 CORE_ADDR address, struct value *dval, int check_tag)
8077
8078 {
8079 struct type *fixed_type =
8080 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8081
8082 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8083 then preserve the typedef layer.
8084
8085 Implementation note: We can only check the main-type portion of
8086 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8087 from TYPE now returns a type that has the same instance flags
8088 as TYPE. For instance, if TYPE is a "typedef const", and its
8089 target type is a "struct", then the typedef elimination will return
8090 a "const" version of the target type. See check_typedef for more
8091 details about how the typedef layer elimination is done.
8092
8093 brobecker/2010-11-19: It seems to me that the only case where it is
8094 useful to preserve the typedef layer is when dealing with fat pointers.
8095 Perhaps, we could add a check for that and preserve the typedef layer
8096 only in that situation. But this seems unecessary so far, probably
8097 because we call check_typedef/ada_check_typedef pretty much everywhere.
8098 */
8099 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8100 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8101 == TYPE_MAIN_TYPE (fixed_type)))
8102 return type;
8103
8104 return fixed_type;
8105 }
8106
8107 /* A standard (static-sized) type corresponding as well as possible to
8108 TYPE0, but based on no runtime data. */
8109
8110 static struct type *
8111 to_static_fixed_type (struct type *type0)
8112 {
8113 struct type *type;
8114
8115 if (type0 == NULL)
8116 return NULL;
8117
8118 if (TYPE_FIXED_INSTANCE (type0))
8119 return type0;
8120
8121 type0 = ada_check_typedef (type0);
8122
8123 switch (TYPE_CODE (type0))
8124 {
8125 default:
8126 return type0;
8127 case TYPE_CODE_STRUCT:
8128 type = dynamic_template_type (type0);
8129 if (type != NULL)
8130 return template_to_static_fixed_type (type);
8131 else
8132 return template_to_static_fixed_type (type0);
8133 case TYPE_CODE_UNION:
8134 type = ada_find_parallel_type (type0, "___XVU");
8135 if (type != NULL)
8136 return template_to_static_fixed_type (type);
8137 else
8138 return template_to_static_fixed_type (type0);
8139 }
8140 }
8141
8142 /* A static approximation of TYPE with all type wrappers removed. */
8143
8144 static struct type *
8145 static_unwrap_type (struct type *type)
8146 {
8147 if (ada_is_aligner_type (type))
8148 {
8149 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8150 if (ada_type_name (type1) == NULL)
8151 TYPE_NAME (type1) = ada_type_name (type);
8152
8153 return static_unwrap_type (type1);
8154 }
8155 else
8156 {
8157 struct type *raw_real_type = ada_get_base_type (type);
8158
8159 if (raw_real_type == type)
8160 return type;
8161 else
8162 return to_static_fixed_type (raw_real_type);
8163 }
8164 }
8165
8166 /* In some cases, incomplete and private types require
8167 cross-references that are not resolved as records (for example,
8168 type Foo;
8169 type FooP is access Foo;
8170 V: FooP;
8171 type Foo is array ...;
8172 ). In these cases, since there is no mechanism for producing
8173 cross-references to such types, we instead substitute for FooP a
8174 stub enumeration type that is nowhere resolved, and whose tag is
8175 the name of the actual type. Call these types "non-record stubs". */
8176
8177 /* A type equivalent to TYPE that is not a non-record stub, if one
8178 exists, otherwise TYPE. */
8179
8180 struct type *
8181 ada_check_typedef (struct type *type)
8182 {
8183 if (type == NULL)
8184 return NULL;
8185
8186 /* If our type is a typedef type of a fat pointer, then we're done.
8187 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8188 what allows us to distinguish between fat pointers that represent
8189 array types, and fat pointers that represent array access types
8190 (in both cases, the compiler implements them as fat pointers). */
8191 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8192 && is_thick_pntr (ada_typedef_target_type (type)))
8193 return type;
8194
8195 CHECK_TYPEDEF (type);
8196 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8197 || !TYPE_STUB (type)
8198 || TYPE_TAG_NAME (type) == NULL)
8199 return type;
8200 else
8201 {
8202 const char *name = TYPE_TAG_NAME (type);
8203 struct type *type1 = ada_find_any_type (name);
8204
8205 if (type1 == NULL)
8206 return type;
8207
8208 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8209 stubs pointing to arrays, as we don't create symbols for array
8210 types, only for the typedef-to-array types). If that's the case,
8211 strip the typedef layer. */
8212 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8213 type1 = ada_check_typedef (type1);
8214
8215 return type1;
8216 }
8217 }
8218
8219 /* A value representing the data at VALADDR/ADDRESS as described by
8220 type TYPE0, but with a standard (static-sized) type that correctly
8221 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8222 type, then return VAL0 [this feature is simply to avoid redundant
8223 creation of struct values]. */
8224
8225 static struct value *
8226 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8227 struct value *val0)
8228 {
8229 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8230
8231 if (type == type0 && val0 != NULL)
8232 return val0;
8233 else
8234 return value_from_contents_and_address (type, 0, address);
8235 }
8236
8237 /* A value representing VAL, but with a standard (static-sized) type
8238 that correctly describes it. Does not necessarily create a new
8239 value. */
8240
8241 struct value *
8242 ada_to_fixed_value (struct value *val)
8243 {
8244 val = unwrap_value (val);
8245 val = ada_to_fixed_value_create (value_type (val),
8246 value_address (val),
8247 val);
8248 return val;
8249 }
8250 \f
8251
8252 /* Attributes */
8253
8254 /* Table mapping attribute numbers to names.
8255 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8256
8257 static const char *attribute_names[] = {
8258 "<?>",
8259
8260 "first",
8261 "last",
8262 "length",
8263 "image",
8264 "max",
8265 "min",
8266 "modulus",
8267 "pos",
8268 "size",
8269 "tag",
8270 "val",
8271 0
8272 };
8273
8274 const char *
8275 ada_attribute_name (enum exp_opcode n)
8276 {
8277 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8278 return attribute_names[n - OP_ATR_FIRST + 1];
8279 else
8280 return attribute_names[0];
8281 }
8282
8283 /* Evaluate the 'POS attribute applied to ARG. */
8284
8285 static LONGEST
8286 pos_atr (struct value *arg)
8287 {
8288 struct value *val = coerce_ref (arg);
8289 struct type *type = value_type (val);
8290
8291 if (!discrete_type_p (type))
8292 error (_("'POS only defined on discrete types"));
8293
8294 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8295 {
8296 int i;
8297 LONGEST v = value_as_long (val);
8298
8299 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8300 {
8301 if (v == TYPE_FIELD_BITPOS (type, i))
8302 return i;
8303 }
8304 error (_("enumeration value is invalid: can't find 'POS"));
8305 }
8306 else
8307 return value_as_long (val);
8308 }
8309
8310 static struct value *
8311 value_pos_atr (struct type *type, struct value *arg)
8312 {
8313 return value_from_longest (type, pos_atr (arg));
8314 }
8315
8316 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8317
8318 static struct value *
8319 value_val_atr (struct type *type, struct value *arg)
8320 {
8321 if (!discrete_type_p (type))
8322 error (_("'VAL only defined on discrete types"));
8323 if (!integer_type_p (value_type (arg)))
8324 error (_("'VAL requires integral argument"));
8325
8326 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8327 {
8328 long pos = value_as_long (arg);
8329
8330 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8331 error (_("argument to 'VAL out of range"));
8332 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8333 }
8334 else
8335 return value_from_longest (type, value_as_long (arg));
8336 }
8337 \f
8338
8339 /* Evaluation */
8340
8341 /* True if TYPE appears to be an Ada character type.
8342 [At the moment, this is true only for Character and Wide_Character;
8343 It is a heuristic test that could stand improvement]. */
8344
8345 int
8346 ada_is_character_type (struct type *type)
8347 {
8348 const char *name;
8349
8350 /* If the type code says it's a character, then assume it really is,
8351 and don't check any further. */
8352 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8353 return 1;
8354
8355 /* Otherwise, assume it's a character type iff it is a discrete type
8356 with a known character type name. */
8357 name = ada_type_name (type);
8358 return (name != NULL
8359 && (TYPE_CODE (type) == TYPE_CODE_INT
8360 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8361 && (strcmp (name, "character") == 0
8362 || strcmp (name, "wide_character") == 0
8363 || strcmp (name, "wide_wide_character") == 0
8364 || strcmp (name, "unsigned char") == 0));
8365 }
8366
8367 /* True if TYPE appears to be an Ada string type. */
8368
8369 int
8370 ada_is_string_type (struct type *type)
8371 {
8372 type = ada_check_typedef (type);
8373 if (type != NULL
8374 && TYPE_CODE (type) != TYPE_CODE_PTR
8375 && (ada_is_simple_array_type (type)
8376 || ada_is_array_descriptor_type (type))
8377 && ada_array_arity (type) == 1)
8378 {
8379 struct type *elttype = ada_array_element_type (type, 1);
8380
8381 return ada_is_character_type (elttype);
8382 }
8383 else
8384 return 0;
8385 }
8386
8387 /* The compiler sometimes provides a parallel XVS type for a given
8388 PAD type. Normally, it is safe to follow the PAD type directly,
8389 but older versions of the compiler have a bug that causes the offset
8390 of its "F" field to be wrong. Following that field in that case
8391 would lead to incorrect results, but this can be worked around
8392 by ignoring the PAD type and using the associated XVS type instead.
8393
8394 Set to True if the debugger should trust the contents of PAD types.
8395 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8396 static int trust_pad_over_xvs = 1;
8397
8398 /* True if TYPE is a struct type introduced by the compiler to force the
8399 alignment of a value. Such types have a single field with a
8400 distinctive name. */
8401
8402 int
8403 ada_is_aligner_type (struct type *type)
8404 {
8405 type = ada_check_typedef (type);
8406
8407 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8408 return 0;
8409
8410 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8411 && TYPE_NFIELDS (type) == 1
8412 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8413 }
8414
8415 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8416 the parallel type. */
8417
8418 struct type *
8419 ada_get_base_type (struct type *raw_type)
8420 {
8421 struct type *real_type_namer;
8422 struct type *raw_real_type;
8423
8424 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8425 return raw_type;
8426
8427 if (ada_is_aligner_type (raw_type))
8428 /* The encoding specifies that we should always use the aligner type.
8429 So, even if this aligner type has an associated XVS type, we should
8430 simply ignore it.
8431
8432 According to the compiler gurus, an XVS type parallel to an aligner
8433 type may exist because of a stabs limitation. In stabs, aligner
8434 types are empty because the field has a variable-sized type, and
8435 thus cannot actually be used as an aligner type. As a result,
8436 we need the associated parallel XVS type to decode the type.
8437 Since the policy in the compiler is to not change the internal
8438 representation based on the debugging info format, we sometimes
8439 end up having a redundant XVS type parallel to the aligner type. */
8440 return raw_type;
8441
8442 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8443 if (real_type_namer == NULL
8444 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8445 || TYPE_NFIELDS (real_type_namer) != 1)
8446 return raw_type;
8447
8448 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8449 {
8450 /* This is an older encoding form where the base type needs to be
8451 looked up by name. We prefer the newer enconding because it is
8452 more efficient. */
8453 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8454 if (raw_real_type == NULL)
8455 return raw_type;
8456 else
8457 return raw_real_type;
8458 }
8459
8460 /* The field in our XVS type is a reference to the base type. */
8461 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8462 }
8463
8464 /* The type of value designated by TYPE, with all aligners removed. */
8465
8466 struct type *
8467 ada_aligned_type (struct type *type)
8468 {
8469 if (ada_is_aligner_type (type))
8470 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8471 else
8472 return ada_get_base_type (type);
8473 }
8474
8475
8476 /* The address of the aligned value in an object at address VALADDR
8477 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8478
8479 const gdb_byte *
8480 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8481 {
8482 if (ada_is_aligner_type (type))
8483 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8484 valaddr +
8485 TYPE_FIELD_BITPOS (type,
8486 0) / TARGET_CHAR_BIT);
8487 else
8488 return valaddr;
8489 }
8490
8491
8492
8493 /* The printed representation of an enumeration literal with encoded
8494 name NAME. The value is good to the next call of ada_enum_name. */
8495 const char *
8496 ada_enum_name (const char *name)
8497 {
8498 static char *result;
8499 static size_t result_len = 0;
8500 char *tmp;
8501
8502 /* First, unqualify the enumeration name:
8503 1. Search for the last '.' character. If we find one, then skip
8504 all the preceding characters, the unqualified name starts
8505 right after that dot.
8506 2. Otherwise, we may be debugging on a target where the compiler
8507 translates dots into "__". Search forward for double underscores,
8508 but stop searching when we hit an overloading suffix, which is
8509 of the form "__" followed by digits. */
8510
8511 tmp = strrchr (name, '.');
8512 if (tmp != NULL)
8513 name = tmp + 1;
8514 else
8515 {
8516 while ((tmp = strstr (name, "__")) != NULL)
8517 {
8518 if (isdigit (tmp[2]))
8519 break;
8520 else
8521 name = tmp + 2;
8522 }
8523 }
8524
8525 if (name[0] == 'Q')
8526 {
8527 int v;
8528
8529 if (name[1] == 'U' || name[1] == 'W')
8530 {
8531 if (sscanf (name + 2, "%x", &v) != 1)
8532 return name;
8533 }
8534 else
8535 return name;
8536
8537 GROW_VECT (result, result_len, 16);
8538 if (isascii (v) && isprint (v))
8539 xsnprintf (result, result_len, "'%c'", v);
8540 else if (name[1] == 'U')
8541 xsnprintf (result, result_len, "[\"%02x\"]", v);
8542 else
8543 xsnprintf (result, result_len, "[\"%04x\"]", v);
8544
8545 return result;
8546 }
8547 else
8548 {
8549 tmp = strstr (name, "__");
8550 if (tmp == NULL)
8551 tmp = strstr (name, "$");
8552 if (tmp != NULL)
8553 {
8554 GROW_VECT (result, result_len, tmp - name + 1);
8555 strncpy (result, name, tmp - name);
8556 result[tmp - name] = '\0';
8557 return result;
8558 }
8559
8560 return name;
8561 }
8562 }
8563
8564 /* Evaluate the subexpression of EXP starting at *POS as for
8565 evaluate_type, updating *POS to point just past the evaluated
8566 expression. */
8567
8568 static struct value *
8569 evaluate_subexp_type (struct expression *exp, int *pos)
8570 {
8571 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8572 }
8573
8574 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8575 value it wraps. */
8576
8577 static struct value *
8578 unwrap_value (struct value *val)
8579 {
8580 struct type *type = ada_check_typedef (value_type (val));
8581
8582 if (ada_is_aligner_type (type))
8583 {
8584 struct value *v = ada_value_struct_elt (val, "F", 0);
8585 struct type *val_type = ada_check_typedef (value_type (v));
8586
8587 if (ada_type_name (val_type) == NULL)
8588 TYPE_NAME (val_type) = ada_type_name (type);
8589
8590 return unwrap_value (v);
8591 }
8592 else
8593 {
8594 struct type *raw_real_type =
8595 ada_check_typedef (ada_get_base_type (type));
8596
8597 /* If there is no parallel XVS or XVE type, then the value is
8598 already unwrapped. Return it without further modification. */
8599 if ((type == raw_real_type)
8600 && ada_find_parallel_type (type, "___XVE") == NULL)
8601 return val;
8602
8603 return
8604 coerce_unspec_val_to_type
8605 (val, ada_to_fixed_type (raw_real_type, 0,
8606 value_address (val),
8607 NULL, 1));
8608 }
8609 }
8610
8611 static struct value *
8612 cast_to_fixed (struct type *type, struct value *arg)
8613 {
8614 LONGEST val;
8615
8616 if (type == value_type (arg))
8617 return arg;
8618 else if (ada_is_fixed_point_type (value_type (arg)))
8619 val = ada_float_to_fixed (type,
8620 ada_fixed_to_float (value_type (arg),
8621 value_as_long (arg)));
8622 else
8623 {
8624 DOUBLEST argd = value_as_double (arg);
8625
8626 val = ada_float_to_fixed (type, argd);
8627 }
8628
8629 return value_from_longest (type, val);
8630 }
8631
8632 static struct value *
8633 cast_from_fixed (struct type *type, struct value *arg)
8634 {
8635 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8636 value_as_long (arg));
8637
8638 return value_from_double (type, val);
8639 }
8640
8641 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8642 return the converted value. */
8643
8644 static struct value *
8645 coerce_for_assign (struct type *type, struct value *val)
8646 {
8647 struct type *type2 = value_type (val);
8648
8649 if (type == type2)
8650 return val;
8651
8652 type2 = ada_check_typedef (type2);
8653 type = ada_check_typedef (type);
8654
8655 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8656 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8657 {
8658 val = ada_value_ind (val);
8659 type2 = value_type (val);
8660 }
8661
8662 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8663 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8664 {
8665 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8666 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8667 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8668 error (_("Incompatible types in assignment"));
8669 deprecated_set_value_type (val, type);
8670 }
8671 return val;
8672 }
8673
8674 static struct value *
8675 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8676 {
8677 struct value *val;
8678 struct type *type1, *type2;
8679 LONGEST v, v1, v2;
8680
8681 arg1 = coerce_ref (arg1);
8682 arg2 = coerce_ref (arg2);
8683 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8684 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8685
8686 if (TYPE_CODE (type1) != TYPE_CODE_INT
8687 || TYPE_CODE (type2) != TYPE_CODE_INT)
8688 return value_binop (arg1, arg2, op);
8689
8690 switch (op)
8691 {
8692 case BINOP_MOD:
8693 case BINOP_DIV:
8694 case BINOP_REM:
8695 break;
8696 default:
8697 return value_binop (arg1, arg2, op);
8698 }
8699
8700 v2 = value_as_long (arg2);
8701 if (v2 == 0)
8702 error (_("second operand of %s must not be zero."), op_string (op));
8703
8704 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8705 return value_binop (arg1, arg2, op);
8706
8707 v1 = value_as_long (arg1);
8708 switch (op)
8709 {
8710 case BINOP_DIV:
8711 v = v1 / v2;
8712 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8713 v += v > 0 ? -1 : 1;
8714 break;
8715 case BINOP_REM:
8716 v = v1 % v2;
8717 if (v * v1 < 0)
8718 v -= v2;
8719 break;
8720 default:
8721 /* Should not reach this point. */
8722 v = 0;
8723 }
8724
8725 val = allocate_value (type1);
8726 store_unsigned_integer (value_contents_raw (val),
8727 TYPE_LENGTH (value_type (val)),
8728 gdbarch_byte_order (get_type_arch (type1)), v);
8729 return val;
8730 }
8731
8732 static int
8733 ada_value_equal (struct value *arg1, struct value *arg2)
8734 {
8735 if (ada_is_direct_array_type (value_type (arg1))
8736 || ada_is_direct_array_type (value_type (arg2)))
8737 {
8738 /* Automatically dereference any array reference before
8739 we attempt to perform the comparison. */
8740 arg1 = ada_coerce_ref (arg1);
8741 arg2 = ada_coerce_ref (arg2);
8742
8743 arg1 = ada_coerce_to_simple_array (arg1);
8744 arg2 = ada_coerce_to_simple_array (arg2);
8745 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8746 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8747 error (_("Attempt to compare array with non-array"));
8748 /* FIXME: The following works only for types whose
8749 representations use all bits (no padding or undefined bits)
8750 and do not have user-defined equality. */
8751 return
8752 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8753 && memcmp (value_contents (arg1), value_contents (arg2),
8754 TYPE_LENGTH (value_type (arg1))) == 0;
8755 }
8756 return value_equal (arg1, arg2);
8757 }
8758
8759 /* Total number of component associations in the aggregate starting at
8760 index PC in EXP. Assumes that index PC is the start of an
8761 OP_AGGREGATE. */
8762
8763 static int
8764 num_component_specs (struct expression *exp, int pc)
8765 {
8766 int n, m, i;
8767
8768 m = exp->elts[pc + 1].longconst;
8769 pc += 3;
8770 n = 0;
8771 for (i = 0; i < m; i += 1)
8772 {
8773 switch (exp->elts[pc].opcode)
8774 {
8775 default:
8776 n += 1;
8777 break;
8778 case OP_CHOICES:
8779 n += exp->elts[pc + 1].longconst;
8780 break;
8781 }
8782 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8783 }
8784 return n;
8785 }
8786
8787 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8788 component of LHS (a simple array or a record), updating *POS past
8789 the expression, assuming that LHS is contained in CONTAINER. Does
8790 not modify the inferior's memory, nor does it modify LHS (unless
8791 LHS == CONTAINER). */
8792
8793 static void
8794 assign_component (struct value *container, struct value *lhs, LONGEST index,
8795 struct expression *exp, int *pos)
8796 {
8797 struct value *mark = value_mark ();
8798 struct value *elt;
8799
8800 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8801 {
8802 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8803 struct value *index_val = value_from_longest (index_type, index);
8804
8805 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8806 }
8807 else
8808 {
8809 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8810 elt = ada_to_fixed_value (elt);
8811 }
8812
8813 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8814 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8815 else
8816 value_assign_to_component (container, elt,
8817 ada_evaluate_subexp (NULL, exp, pos,
8818 EVAL_NORMAL));
8819
8820 value_free_to_mark (mark);
8821 }
8822
8823 /* Assuming that LHS represents an lvalue having a record or array
8824 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8825 of that aggregate's value to LHS, advancing *POS past the
8826 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8827 lvalue containing LHS (possibly LHS itself). Does not modify
8828 the inferior's memory, nor does it modify the contents of
8829 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8830
8831 static struct value *
8832 assign_aggregate (struct value *container,
8833 struct value *lhs, struct expression *exp,
8834 int *pos, enum noside noside)
8835 {
8836 struct type *lhs_type;
8837 int n = exp->elts[*pos+1].longconst;
8838 LONGEST low_index, high_index;
8839 int num_specs;
8840 LONGEST *indices;
8841 int max_indices, num_indices;
8842 int is_array_aggregate;
8843 int i;
8844
8845 *pos += 3;
8846 if (noside != EVAL_NORMAL)
8847 {
8848 for (i = 0; i < n; i += 1)
8849 ada_evaluate_subexp (NULL, exp, pos, noside);
8850 return container;
8851 }
8852
8853 container = ada_coerce_ref (container);
8854 if (ada_is_direct_array_type (value_type (container)))
8855 container = ada_coerce_to_simple_array (container);
8856 lhs = ada_coerce_ref (lhs);
8857 if (!deprecated_value_modifiable (lhs))
8858 error (_("Left operand of assignment is not a modifiable lvalue."));
8859
8860 lhs_type = value_type (lhs);
8861 if (ada_is_direct_array_type (lhs_type))
8862 {
8863 lhs = ada_coerce_to_simple_array (lhs);
8864 lhs_type = value_type (lhs);
8865 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8866 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8867 is_array_aggregate = 1;
8868 }
8869 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8870 {
8871 low_index = 0;
8872 high_index = num_visible_fields (lhs_type) - 1;
8873 is_array_aggregate = 0;
8874 }
8875 else
8876 error (_("Left-hand side must be array or record."));
8877
8878 num_specs = num_component_specs (exp, *pos - 3);
8879 max_indices = 4 * num_specs + 4;
8880 indices = alloca (max_indices * sizeof (indices[0]));
8881 indices[0] = indices[1] = low_index - 1;
8882 indices[2] = indices[3] = high_index + 1;
8883 num_indices = 4;
8884
8885 for (i = 0; i < n; i += 1)
8886 {
8887 switch (exp->elts[*pos].opcode)
8888 {
8889 case OP_CHOICES:
8890 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8891 &num_indices, max_indices,
8892 low_index, high_index);
8893 break;
8894 case OP_POSITIONAL:
8895 aggregate_assign_positional (container, lhs, exp, pos, indices,
8896 &num_indices, max_indices,
8897 low_index, high_index);
8898 break;
8899 case OP_OTHERS:
8900 if (i != n-1)
8901 error (_("Misplaced 'others' clause"));
8902 aggregate_assign_others (container, lhs, exp, pos, indices,
8903 num_indices, low_index, high_index);
8904 break;
8905 default:
8906 error (_("Internal error: bad aggregate clause"));
8907 }
8908 }
8909
8910 return container;
8911 }
8912
8913 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8914 construct at *POS, updating *POS past the construct, given that
8915 the positions are relative to lower bound LOW, where HIGH is the
8916 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8917 updating *NUM_INDICES as needed. CONTAINER is as for
8918 assign_aggregate. */
8919 static void
8920 aggregate_assign_positional (struct value *container,
8921 struct value *lhs, struct expression *exp,
8922 int *pos, LONGEST *indices, int *num_indices,
8923 int max_indices, LONGEST low, LONGEST high)
8924 {
8925 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8926
8927 if (ind - 1 == high)
8928 warning (_("Extra components in aggregate ignored."));
8929 if (ind <= high)
8930 {
8931 add_component_interval (ind, ind, indices, num_indices, max_indices);
8932 *pos += 3;
8933 assign_component (container, lhs, ind, exp, pos);
8934 }
8935 else
8936 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8937 }
8938
8939 /* Assign into the components of LHS indexed by the OP_CHOICES
8940 construct at *POS, updating *POS past the construct, given that
8941 the allowable indices are LOW..HIGH. Record the indices assigned
8942 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8943 needed. CONTAINER is as for assign_aggregate. */
8944 static void
8945 aggregate_assign_from_choices (struct value *container,
8946 struct value *lhs, struct expression *exp,
8947 int *pos, LONGEST *indices, int *num_indices,
8948 int max_indices, LONGEST low, LONGEST high)
8949 {
8950 int j;
8951 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8952 int choice_pos, expr_pc;
8953 int is_array = ada_is_direct_array_type (value_type (lhs));
8954
8955 choice_pos = *pos += 3;
8956
8957 for (j = 0; j < n_choices; j += 1)
8958 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8959 expr_pc = *pos;
8960 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8961
8962 for (j = 0; j < n_choices; j += 1)
8963 {
8964 LONGEST lower, upper;
8965 enum exp_opcode op = exp->elts[choice_pos].opcode;
8966
8967 if (op == OP_DISCRETE_RANGE)
8968 {
8969 choice_pos += 1;
8970 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8971 EVAL_NORMAL));
8972 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8973 EVAL_NORMAL));
8974 }
8975 else if (is_array)
8976 {
8977 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8978 EVAL_NORMAL));
8979 upper = lower;
8980 }
8981 else
8982 {
8983 int ind;
8984 const char *name;
8985
8986 switch (op)
8987 {
8988 case OP_NAME:
8989 name = &exp->elts[choice_pos + 2].string;
8990 break;
8991 case OP_VAR_VALUE:
8992 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8993 break;
8994 default:
8995 error (_("Invalid record component association."));
8996 }
8997 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8998 ind = 0;
8999 if (! find_struct_field (name, value_type (lhs), 0,
9000 NULL, NULL, NULL, NULL, &ind))
9001 error (_("Unknown component name: %s."), name);
9002 lower = upper = ind;
9003 }
9004
9005 if (lower <= upper && (lower < low || upper > high))
9006 error (_("Index in component association out of bounds."));
9007
9008 add_component_interval (lower, upper, indices, num_indices,
9009 max_indices);
9010 while (lower <= upper)
9011 {
9012 int pos1;
9013
9014 pos1 = expr_pc;
9015 assign_component (container, lhs, lower, exp, &pos1);
9016 lower += 1;
9017 }
9018 }
9019 }
9020
9021 /* Assign the value of the expression in the OP_OTHERS construct in
9022 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9023 have not been previously assigned. The index intervals already assigned
9024 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9025 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9026 static void
9027 aggregate_assign_others (struct value *container,
9028 struct value *lhs, struct expression *exp,
9029 int *pos, LONGEST *indices, int num_indices,
9030 LONGEST low, LONGEST high)
9031 {
9032 int i;
9033 int expr_pc = *pos + 1;
9034
9035 for (i = 0; i < num_indices - 2; i += 2)
9036 {
9037 LONGEST ind;
9038
9039 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9040 {
9041 int localpos;
9042
9043 localpos = expr_pc;
9044 assign_component (container, lhs, ind, exp, &localpos);
9045 }
9046 }
9047 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9048 }
9049
9050 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9051 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9052 modifying *SIZE as needed. It is an error if *SIZE exceeds
9053 MAX_SIZE. The resulting intervals do not overlap. */
9054 static void
9055 add_component_interval (LONGEST low, LONGEST high,
9056 LONGEST* indices, int *size, int max_size)
9057 {
9058 int i, j;
9059
9060 for (i = 0; i < *size; i += 2) {
9061 if (high >= indices[i] && low <= indices[i + 1])
9062 {
9063 int kh;
9064
9065 for (kh = i + 2; kh < *size; kh += 2)
9066 if (high < indices[kh])
9067 break;
9068 if (low < indices[i])
9069 indices[i] = low;
9070 indices[i + 1] = indices[kh - 1];
9071 if (high > indices[i + 1])
9072 indices[i + 1] = high;
9073 memcpy (indices + i + 2, indices + kh, *size - kh);
9074 *size -= kh - i - 2;
9075 return;
9076 }
9077 else if (high < indices[i])
9078 break;
9079 }
9080
9081 if (*size == max_size)
9082 error (_("Internal error: miscounted aggregate components."));
9083 *size += 2;
9084 for (j = *size-1; j >= i+2; j -= 1)
9085 indices[j] = indices[j - 2];
9086 indices[i] = low;
9087 indices[i + 1] = high;
9088 }
9089
9090 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9091 is different. */
9092
9093 static struct value *
9094 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9095 {
9096 if (type == ada_check_typedef (value_type (arg2)))
9097 return arg2;
9098
9099 if (ada_is_fixed_point_type (type))
9100 return (cast_to_fixed (type, arg2));
9101
9102 if (ada_is_fixed_point_type (value_type (arg2)))
9103 return cast_from_fixed (type, arg2);
9104
9105 return value_cast (type, arg2);
9106 }
9107
9108 /* Evaluating Ada expressions, and printing their result.
9109 ------------------------------------------------------
9110
9111 1. Introduction:
9112 ----------------
9113
9114 We usually evaluate an Ada expression in order to print its value.
9115 We also evaluate an expression in order to print its type, which
9116 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9117 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9118 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9119 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9120 similar.
9121
9122 Evaluating expressions is a little more complicated for Ada entities
9123 than it is for entities in languages such as C. The main reason for
9124 this is that Ada provides types whose definition might be dynamic.
9125 One example of such types is variant records. Or another example
9126 would be an array whose bounds can only be known at run time.
9127
9128 The following description is a general guide as to what should be
9129 done (and what should NOT be done) in order to evaluate an expression
9130 involving such types, and when. This does not cover how the semantic
9131 information is encoded by GNAT as this is covered separatly. For the
9132 document used as the reference for the GNAT encoding, see exp_dbug.ads
9133 in the GNAT sources.
9134
9135 Ideally, we should embed each part of this description next to its
9136 associated code. Unfortunately, the amount of code is so vast right
9137 now that it's hard to see whether the code handling a particular
9138 situation might be duplicated or not. One day, when the code is
9139 cleaned up, this guide might become redundant with the comments
9140 inserted in the code, and we might want to remove it.
9141
9142 2. ``Fixing'' an Entity, the Simple Case:
9143 -----------------------------------------
9144
9145 When evaluating Ada expressions, the tricky issue is that they may
9146 reference entities whose type contents and size are not statically
9147 known. Consider for instance a variant record:
9148
9149 type Rec (Empty : Boolean := True) is record
9150 case Empty is
9151 when True => null;
9152 when False => Value : Integer;
9153 end case;
9154 end record;
9155 Yes : Rec := (Empty => False, Value => 1);
9156 No : Rec := (empty => True);
9157
9158 The size and contents of that record depends on the value of the
9159 descriminant (Rec.Empty). At this point, neither the debugging
9160 information nor the associated type structure in GDB are able to
9161 express such dynamic types. So what the debugger does is to create
9162 "fixed" versions of the type that applies to the specific object.
9163 We also informally refer to this opperation as "fixing" an object,
9164 which means creating its associated fixed type.
9165
9166 Example: when printing the value of variable "Yes" above, its fixed
9167 type would look like this:
9168
9169 type Rec is record
9170 Empty : Boolean;
9171 Value : Integer;
9172 end record;
9173
9174 On the other hand, if we printed the value of "No", its fixed type
9175 would become:
9176
9177 type Rec is record
9178 Empty : Boolean;
9179 end record;
9180
9181 Things become a little more complicated when trying to fix an entity
9182 with a dynamic type that directly contains another dynamic type,
9183 such as an array of variant records, for instance. There are
9184 two possible cases: Arrays, and records.
9185
9186 3. ``Fixing'' Arrays:
9187 ---------------------
9188
9189 The type structure in GDB describes an array in terms of its bounds,
9190 and the type of its elements. By design, all elements in the array
9191 have the same type and we cannot represent an array of variant elements
9192 using the current type structure in GDB. When fixing an array,
9193 we cannot fix the array element, as we would potentially need one
9194 fixed type per element of the array. As a result, the best we can do
9195 when fixing an array is to produce an array whose bounds and size
9196 are correct (allowing us to read it from memory), but without having
9197 touched its element type. Fixing each element will be done later,
9198 when (if) necessary.
9199
9200 Arrays are a little simpler to handle than records, because the same
9201 amount of memory is allocated for each element of the array, even if
9202 the amount of space actually used by each element differs from element
9203 to element. Consider for instance the following array of type Rec:
9204
9205 type Rec_Array is array (1 .. 2) of Rec;
9206
9207 The actual amount of memory occupied by each element might be different
9208 from element to element, depending on the value of their discriminant.
9209 But the amount of space reserved for each element in the array remains
9210 fixed regardless. So we simply need to compute that size using
9211 the debugging information available, from which we can then determine
9212 the array size (we multiply the number of elements of the array by
9213 the size of each element).
9214
9215 The simplest case is when we have an array of a constrained element
9216 type. For instance, consider the following type declarations:
9217
9218 type Bounded_String (Max_Size : Integer) is
9219 Length : Integer;
9220 Buffer : String (1 .. Max_Size);
9221 end record;
9222 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9223
9224 In this case, the compiler describes the array as an array of
9225 variable-size elements (identified by its XVS suffix) for which
9226 the size can be read in the parallel XVZ variable.
9227
9228 In the case of an array of an unconstrained element type, the compiler
9229 wraps the array element inside a private PAD type. This type should not
9230 be shown to the user, and must be "unwrap"'ed before printing. Note
9231 that we also use the adjective "aligner" in our code to designate
9232 these wrapper types.
9233
9234 In some cases, the size allocated for each element is statically
9235 known. In that case, the PAD type already has the correct size,
9236 and the array element should remain unfixed.
9237
9238 But there are cases when this size is not statically known.
9239 For instance, assuming that "Five" is an integer variable:
9240
9241 type Dynamic is array (1 .. Five) of Integer;
9242 type Wrapper (Has_Length : Boolean := False) is record
9243 Data : Dynamic;
9244 case Has_Length is
9245 when True => Length : Integer;
9246 when False => null;
9247 end case;
9248 end record;
9249 type Wrapper_Array is array (1 .. 2) of Wrapper;
9250
9251 Hello : Wrapper_Array := (others => (Has_Length => True,
9252 Data => (others => 17),
9253 Length => 1));
9254
9255
9256 The debugging info would describe variable Hello as being an
9257 array of a PAD type. The size of that PAD type is not statically
9258 known, but can be determined using a parallel XVZ variable.
9259 In that case, a copy of the PAD type with the correct size should
9260 be used for the fixed array.
9261
9262 3. ``Fixing'' record type objects:
9263 ----------------------------------
9264
9265 Things are slightly different from arrays in the case of dynamic
9266 record types. In this case, in order to compute the associated
9267 fixed type, we need to determine the size and offset of each of
9268 its components. This, in turn, requires us to compute the fixed
9269 type of each of these components.
9270
9271 Consider for instance the example:
9272
9273 type Bounded_String (Max_Size : Natural) is record
9274 Str : String (1 .. Max_Size);
9275 Length : Natural;
9276 end record;
9277 My_String : Bounded_String (Max_Size => 10);
9278
9279 In that case, the position of field "Length" depends on the size
9280 of field Str, which itself depends on the value of the Max_Size
9281 discriminant. In order to fix the type of variable My_String,
9282 we need to fix the type of field Str. Therefore, fixing a variant
9283 record requires us to fix each of its components.
9284
9285 However, if a component does not have a dynamic size, the component
9286 should not be fixed. In particular, fields that use a PAD type
9287 should not fixed. Here is an example where this might happen
9288 (assuming type Rec above):
9289
9290 type Container (Big : Boolean) is record
9291 First : Rec;
9292 After : Integer;
9293 case Big is
9294 when True => Another : Integer;
9295 when False => null;
9296 end case;
9297 end record;
9298 My_Container : Container := (Big => False,
9299 First => (Empty => True),
9300 After => 42);
9301
9302 In that example, the compiler creates a PAD type for component First,
9303 whose size is constant, and then positions the component After just
9304 right after it. The offset of component After is therefore constant
9305 in this case.
9306
9307 The debugger computes the position of each field based on an algorithm
9308 that uses, among other things, the actual position and size of the field
9309 preceding it. Let's now imagine that the user is trying to print
9310 the value of My_Container. If the type fixing was recursive, we would
9311 end up computing the offset of field After based on the size of the
9312 fixed version of field First. And since in our example First has
9313 only one actual field, the size of the fixed type is actually smaller
9314 than the amount of space allocated to that field, and thus we would
9315 compute the wrong offset of field After.
9316
9317 To make things more complicated, we need to watch out for dynamic
9318 components of variant records (identified by the ___XVL suffix in
9319 the component name). Even if the target type is a PAD type, the size
9320 of that type might not be statically known. So the PAD type needs
9321 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9322 we might end up with the wrong size for our component. This can be
9323 observed with the following type declarations:
9324
9325 type Octal is new Integer range 0 .. 7;
9326 type Octal_Array is array (Positive range <>) of Octal;
9327 pragma Pack (Octal_Array);
9328
9329 type Octal_Buffer (Size : Positive) is record
9330 Buffer : Octal_Array (1 .. Size);
9331 Length : Integer;
9332 end record;
9333
9334 In that case, Buffer is a PAD type whose size is unset and needs
9335 to be computed by fixing the unwrapped type.
9336
9337 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9338 ----------------------------------------------------------
9339
9340 Lastly, when should the sub-elements of an entity that remained unfixed
9341 thus far, be actually fixed?
9342
9343 The answer is: Only when referencing that element. For instance
9344 when selecting one component of a record, this specific component
9345 should be fixed at that point in time. Or when printing the value
9346 of a record, each component should be fixed before its value gets
9347 printed. Similarly for arrays, the element of the array should be
9348 fixed when printing each element of the array, or when extracting
9349 one element out of that array. On the other hand, fixing should
9350 not be performed on the elements when taking a slice of an array!
9351
9352 Note that one of the side-effects of miscomputing the offset and
9353 size of each field is that we end up also miscomputing the size
9354 of the containing type. This can have adverse results when computing
9355 the value of an entity. GDB fetches the value of an entity based
9356 on the size of its type, and thus a wrong size causes GDB to fetch
9357 the wrong amount of memory. In the case where the computed size is
9358 too small, GDB fetches too little data to print the value of our
9359 entiry. Results in this case as unpredicatble, as we usually read
9360 past the buffer containing the data =:-o. */
9361
9362 /* Implement the evaluate_exp routine in the exp_descriptor structure
9363 for the Ada language. */
9364
9365 static struct value *
9366 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9367 int *pos, enum noside noside)
9368 {
9369 enum exp_opcode op;
9370 int tem;
9371 int pc;
9372 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9373 struct type *type;
9374 int nargs, oplen;
9375 struct value **argvec;
9376
9377 pc = *pos;
9378 *pos += 1;
9379 op = exp->elts[pc].opcode;
9380
9381 switch (op)
9382 {
9383 default:
9384 *pos -= 1;
9385 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9386 arg1 = unwrap_value (arg1);
9387
9388 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9389 then we need to perform the conversion manually, because
9390 evaluate_subexp_standard doesn't do it. This conversion is
9391 necessary in Ada because the different kinds of float/fixed
9392 types in Ada have different representations.
9393
9394 Similarly, we need to perform the conversion from OP_LONG
9395 ourselves. */
9396 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9397 arg1 = ada_value_cast (expect_type, arg1, noside);
9398
9399 return arg1;
9400
9401 case OP_STRING:
9402 {
9403 struct value *result;
9404
9405 *pos -= 1;
9406 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9407 /* The result type will have code OP_STRING, bashed there from
9408 OP_ARRAY. Bash it back. */
9409 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9410 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9411 return result;
9412 }
9413
9414 case UNOP_CAST:
9415 (*pos) += 2;
9416 type = exp->elts[pc + 1].type;
9417 arg1 = evaluate_subexp (type, exp, pos, noside);
9418 if (noside == EVAL_SKIP)
9419 goto nosideret;
9420 arg1 = ada_value_cast (type, arg1, noside);
9421 return arg1;
9422
9423 case UNOP_QUAL:
9424 (*pos) += 2;
9425 type = exp->elts[pc + 1].type;
9426 return ada_evaluate_subexp (type, exp, pos, noside);
9427
9428 case BINOP_ASSIGN:
9429 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9430 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9431 {
9432 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9433 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9434 return arg1;
9435 return ada_value_assign (arg1, arg1);
9436 }
9437 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9438 except if the lhs of our assignment is a convenience variable.
9439 In the case of assigning to a convenience variable, the lhs
9440 should be exactly the result of the evaluation of the rhs. */
9441 type = value_type (arg1);
9442 if (VALUE_LVAL (arg1) == lval_internalvar)
9443 type = NULL;
9444 arg2 = evaluate_subexp (type, exp, pos, noside);
9445 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9446 return arg1;
9447 if (ada_is_fixed_point_type (value_type (arg1)))
9448 arg2 = cast_to_fixed (value_type (arg1), arg2);
9449 else if (ada_is_fixed_point_type (value_type (arg2)))
9450 error
9451 (_("Fixed-point values must be assigned to fixed-point variables"));
9452 else
9453 arg2 = coerce_for_assign (value_type (arg1), arg2);
9454 return ada_value_assign (arg1, arg2);
9455
9456 case BINOP_ADD:
9457 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9458 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9459 if (noside == EVAL_SKIP)
9460 goto nosideret;
9461 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9462 return (value_from_longest
9463 (value_type (arg1),
9464 value_as_long (arg1) + value_as_long (arg2)));
9465 if ((ada_is_fixed_point_type (value_type (arg1))
9466 || ada_is_fixed_point_type (value_type (arg2)))
9467 && value_type (arg1) != value_type (arg2))
9468 error (_("Operands of fixed-point addition must have the same type"));
9469 /* Do the addition, and cast the result to the type of the first
9470 argument. We cannot cast the result to a reference type, so if
9471 ARG1 is a reference type, find its underlying type. */
9472 type = value_type (arg1);
9473 while (TYPE_CODE (type) == TYPE_CODE_REF)
9474 type = TYPE_TARGET_TYPE (type);
9475 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9476 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9477
9478 case BINOP_SUB:
9479 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9480 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9481 if (noside == EVAL_SKIP)
9482 goto nosideret;
9483 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9484 return (value_from_longest
9485 (value_type (arg1),
9486 value_as_long (arg1) - value_as_long (arg2)));
9487 if ((ada_is_fixed_point_type (value_type (arg1))
9488 || ada_is_fixed_point_type (value_type (arg2)))
9489 && value_type (arg1) != value_type (arg2))
9490 error (_("Operands of fixed-point subtraction "
9491 "must have the same type"));
9492 /* Do the substraction, and cast the result to the type of the first
9493 argument. We cannot cast the result to a reference type, so if
9494 ARG1 is a reference type, find its underlying type. */
9495 type = value_type (arg1);
9496 while (TYPE_CODE (type) == TYPE_CODE_REF)
9497 type = TYPE_TARGET_TYPE (type);
9498 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9499 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9500
9501 case BINOP_MUL:
9502 case BINOP_DIV:
9503 case BINOP_REM:
9504 case BINOP_MOD:
9505 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9506 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9507 if (noside == EVAL_SKIP)
9508 goto nosideret;
9509 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9510 {
9511 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9512 return value_zero (value_type (arg1), not_lval);
9513 }
9514 else
9515 {
9516 type = builtin_type (exp->gdbarch)->builtin_double;
9517 if (ada_is_fixed_point_type (value_type (arg1)))
9518 arg1 = cast_from_fixed (type, arg1);
9519 if (ada_is_fixed_point_type (value_type (arg2)))
9520 arg2 = cast_from_fixed (type, arg2);
9521 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9522 return ada_value_binop (arg1, arg2, op);
9523 }
9524
9525 case BINOP_EQUAL:
9526 case BINOP_NOTEQUAL:
9527 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9528 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9529 if (noside == EVAL_SKIP)
9530 goto nosideret;
9531 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9532 tem = 0;
9533 else
9534 {
9535 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9536 tem = ada_value_equal (arg1, arg2);
9537 }
9538 if (op == BINOP_NOTEQUAL)
9539 tem = !tem;
9540 type = language_bool_type (exp->language_defn, exp->gdbarch);
9541 return value_from_longest (type, (LONGEST) tem);
9542
9543 case UNOP_NEG:
9544 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9545 if (noside == EVAL_SKIP)
9546 goto nosideret;
9547 else if (ada_is_fixed_point_type (value_type (arg1)))
9548 return value_cast (value_type (arg1), value_neg (arg1));
9549 else
9550 {
9551 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9552 return value_neg (arg1);
9553 }
9554
9555 case BINOP_LOGICAL_AND:
9556 case BINOP_LOGICAL_OR:
9557 case UNOP_LOGICAL_NOT:
9558 {
9559 struct value *val;
9560
9561 *pos -= 1;
9562 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9563 type = language_bool_type (exp->language_defn, exp->gdbarch);
9564 return value_cast (type, val);
9565 }
9566
9567 case BINOP_BITWISE_AND:
9568 case BINOP_BITWISE_IOR:
9569 case BINOP_BITWISE_XOR:
9570 {
9571 struct value *val;
9572
9573 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9574 *pos = pc;
9575 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9576
9577 return value_cast (value_type (arg1), val);
9578 }
9579
9580 case OP_VAR_VALUE:
9581 *pos -= 1;
9582
9583 if (noside == EVAL_SKIP)
9584 {
9585 *pos += 4;
9586 goto nosideret;
9587 }
9588 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9589 /* Only encountered when an unresolved symbol occurs in a
9590 context other than a function call, in which case, it is
9591 invalid. */
9592 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9593 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9594 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9595 {
9596 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9597 /* Check to see if this is a tagged type. We also need to handle
9598 the case where the type is a reference to a tagged type, but
9599 we have to be careful to exclude pointers to tagged types.
9600 The latter should be shown as usual (as a pointer), whereas
9601 a reference should mostly be transparent to the user. */
9602 if (ada_is_tagged_type (type, 0)
9603 || (TYPE_CODE(type) == TYPE_CODE_REF
9604 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9605 {
9606 /* Tagged types are a little special in the fact that the real
9607 type is dynamic and can only be determined by inspecting the
9608 object's tag. This means that we need to get the object's
9609 value first (EVAL_NORMAL) and then extract the actual object
9610 type from its tag.
9611
9612 Note that we cannot skip the final step where we extract
9613 the object type from its tag, because the EVAL_NORMAL phase
9614 results in dynamic components being resolved into fixed ones.
9615 This can cause problems when trying to print the type
9616 description of tagged types whose parent has a dynamic size:
9617 We use the type name of the "_parent" component in order
9618 to print the name of the ancestor type in the type description.
9619 If that component had a dynamic size, the resolution into
9620 a fixed type would result in the loss of that type name,
9621 thus preventing us from printing the name of the ancestor
9622 type in the type description. */
9623 struct type *actual_type;
9624
9625 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9626 actual_type = type_from_tag (ada_value_tag (arg1));
9627 if (actual_type == NULL)
9628 /* If, for some reason, we were unable to determine
9629 the actual type from the tag, then use the static
9630 approximation that we just computed as a fallback.
9631 This can happen if the debugging information is
9632 incomplete, for instance. */
9633 actual_type = type;
9634
9635 return value_zero (actual_type, not_lval);
9636 }
9637
9638 *pos += 4;
9639 return value_zero
9640 (to_static_fixed_type
9641 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9642 not_lval);
9643 }
9644 else
9645 {
9646 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9647 return ada_to_fixed_value (arg1);
9648 }
9649
9650 case OP_FUNCALL:
9651 (*pos) += 2;
9652
9653 /* Allocate arg vector, including space for the function to be
9654 called in argvec[0] and a terminating NULL. */
9655 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9656 argvec =
9657 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9658
9659 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9660 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9661 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9662 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9663 else
9664 {
9665 for (tem = 0; tem <= nargs; tem += 1)
9666 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9667 argvec[tem] = 0;
9668
9669 if (noside == EVAL_SKIP)
9670 goto nosideret;
9671 }
9672
9673 if (ada_is_constrained_packed_array_type
9674 (desc_base_type (value_type (argvec[0]))))
9675 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9676 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9677 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9678 /* This is a packed array that has already been fixed, and
9679 therefore already coerced to a simple array. Nothing further
9680 to do. */
9681 ;
9682 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9683 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9684 && VALUE_LVAL (argvec[0]) == lval_memory))
9685 argvec[0] = value_addr (argvec[0]);
9686
9687 type = ada_check_typedef (value_type (argvec[0]));
9688
9689 /* Ada allows us to implicitly dereference arrays when subscripting
9690 them. So, if this is an array typedef (encoding use for array
9691 access types encoded as fat pointers), strip it now. */
9692 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9693 type = ada_typedef_target_type (type);
9694
9695 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9696 {
9697 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9698 {
9699 case TYPE_CODE_FUNC:
9700 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9701 break;
9702 case TYPE_CODE_ARRAY:
9703 break;
9704 case TYPE_CODE_STRUCT:
9705 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9706 argvec[0] = ada_value_ind (argvec[0]);
9707 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9708 break;
9709 default:
9710 error (_("cannot subscript or call something of type `%s'"),
9711 ada_type_name (value_type (argvec[0])));
9712 break;
9713 }
9714 }
9715
9716 switch (TYPE_CODE (type))
9717 {
9718 case TYPE_CODE_FUNC:
9719 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9720 return allocate_value (TYPE_TARGET_TYPE (type));
9721 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9722 case TYPE_CODE_STRUCT:
9723 {
9724 int arity;
9725
9726 arity = ada_array_arity (type);
9727 type = ada_array_element_type (type, nargs);
9728 if (type == NULL)
9729 error (_("cannot subscript or call a record"));
9730 if (arity != nargs)
9731 error (_("wrong number of subscripts; expecting %d"), arity);
9732 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9733 return value_zero (ada_aligned_type (type), lval_memory);
9734 return
9735 unwrap_value (ada_value_subscript
9736 (argvec[0], nargs, argvec + 1));
9737 }
9738 case TYPE_CODE_ARRAY:
9739 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9740 {
9741 type = ada_array_element_type (type, nargs);
9742 if (type == NULL)
9743 error (_("element type of array unknown"));
9744 else
9745 return value_zero (ada_aligned_type (type), lval_memory);
9746 }
9747 return
9748 unwrap_value (ada_value_subscript
9749 (ada_coerce_to_simple_array (argvec[0]),
9750 nargs, argvec + 1));
9751 case TYPE_CODE_PTR: /* Pointer to array */
9752 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9753 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9754 {
9755 type = ada_array_element_type (type, nargs);
9756 if (type == NULL)
9757 error (_("element type of array unknown"));
9758 else
9759 return value_zero (ada_aligned_type (type), lval_memory);
9760 }
9761 return
9762 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9763 nargs, argvec + 1));
9764
9765 default:
9766 error (_("Attempt to index or call something other than an "
9767 "array or function"));
9768 }
9769
9770 case TERNOP_SLICE:
9771 {
9772 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9773 struct value *low_bound_val =
9774 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9775 struct value *high_bound_val =
9776 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9777 LONGEST low_bound;
9778 LONGEST high_bound;
9779
9780 low_bound_val = coerce_ref (low_bound_val);
9781 high_bound_val = coerce_ref (high_bound_val);
9782 low_bound = pos_atr (low_bound_val);
9783 high_bound = pos_atr (high_bound_val);
9784
9785 if (noside == EVAL_SKIP)
9786 goto nosideret;
9787
9788 /* If this is a reference to an aligner type, then remove all
9789 the aligners. */
9790 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9791 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9792 TYPE_TARGET_TYPE (value_type (array)) =
9793 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9794
9795 if (ada_is_constrained_packed_array_type (value_type (array)))
9796 error (_("cannot slice a packed array"));
9797
9798 /* If this is a reference to an array or an array lvalue,
9799 convert to a pointer. */
9800 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9801 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9802 && VALUE_LVAL (array) == lval_memory))
9803 array = value_addr (array);
9804
9805 if (noside == EVAL_AVOID_SIDE_EFFECTS
9806 && ada_is_array_descriptor_type (ada_check_typedef
9807 (value_type (array))))
9808 return empty_array (ada_type_of_array (array, 0), low_bound);
9809
9810 array = ada_coerce_to_simple_array_ptr (array);
9811
9812 /* If we have more than one level of pointer indirection,
9813 dereference the value until we get only one level. */
9814 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9815 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9816 == TYPE_CODE_PTR))
9817 array = value_ind (array);
9818
9819 /* Make sure we really do have an array type before going further,
9820 to avoid a SEGV when trying to get the index type or the target
9821 type later down the road if the debug info generated by
9822 the compiler is incorrect or incomplete. */
9823 if (!ada_is_simple_array_type (value_type (array)))
9824 error (_("cannot take slice of non-array"));
9825
9826 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9827 == TYPE_CODE_PTR)
9828 {
9829 struct type *type0 = ada_check_typedef (value_type (array));
9830
9831 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9832 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9833 else
9834 {
9835 struct type *arr_type0 =
9836 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9837
9838 return ada_value_slice_from_ptr (array, arr_type0,
9839 longest_to_int (low_bound),
9840 longest_to_int (high_bound));
9841 }
9842 }
9843 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9844 return array;
9845 else if (high_bound < low_bound)
9846 return empty_array (value_type (array), low_bound);
9847 else
9848 return ada_value_slice (array, longest_to_int (low_bound),
9849 longest_to_int (high_bound));
9850 }
9851
9852 case UNOP_IN_RANGE:
9853 (*pos) += 2;
9854 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9855 type = check_typedef (exp->elts[pc + 1].type);
9856
9857 if (noside == EVAL_SKIP)
9858 goto nosideret;
9859
9860 switch (TYPE_CODE (type))
9861 {
9862 default:
9863 lim_warning (_("Membership test incompletely implemented; "
9864 "always returns true"));
9865 type = language_bool_type (exp->language_defn, exp->gdbarch);
9866 return value_from_longest (type, (LONGEST) 1);
9867
9868 case TYPE_CODE_RANGE:
9869 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9870 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9871 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9872 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9873 type = language_bool_type (exp->language_defn, exp->gdbarch);
9874 return
9875 value_from_longest (type,
9876 (value_less (arg1, arg3)
9877 || value_equal (arg1, arg3))
9878 && (value_less (arg2, arg1)
9879 || value_equal (arg2, arg1)));
9880 }
9881
9882 case BINOP_IN_BOUNDS:
9883 (*pos) += 2;
9884 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9885 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9886
9887 if (noside == EVAL_SKIP)
9888 goto nosideret;
9889
9890 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9891 {
9892 type = language_bool_type (exp->language_defn, exp->gdbarch);
9893 return value_zero (type, not_lval);
9894 }
9895
9896 tem = longest_to_int (exp->elts[pc + 1].longconst);
9897
9898 type = ada_index_type (value_type (arg2), tem, "range");
9899 if (!type)
9900 type = value_type (arg1);
9901
9902 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9903 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9904
9905 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9906 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9907 type = language_bool_type (exp->language_defn, exp->gdbarch);
9908 return
9909 value_from_longest (type,
9910 (value_less (arg1, arg3)
9911 || value_equal (arg1, arg3))
9912 && (value_less (arg2, arg1)
9913 || value_equal (arg2, arg1)));
9914
9915 case TERNOP_IN_RANGE:
9916 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9917 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9918 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9919
9920 if (noside == EVAL_SKIP)
9921 goto nosideret;
9922
9923 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9924 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9925 type = language_bool_type (exp->language_defn, exp->gdbarch);
9926 return
9927 value_from_longest (type,
9928 (value_less (arg1, arg3)
9929 || value_equal (arg1, arg3))
9930 && (value_less (arg2, arg1)
9931 || value_equal (arg2, arg1)));
9932
9933 case OP_ATR_FIRST:
9934 case OP_ATR_LAST:
9935 case OP_ATR_LENGTH:
9936 {
9937 struct type *type_arg;
9938
9939 if (exp->elts[*pos].opcode == OP_TYPE)
9940 {
9941 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9942 arg1 = NULL;
9943 type_arg = check_typedef (exp->elts[pc + 2].type);
9944 }
9945 else
9946 {
9947 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9948 type_arg = NULL;
9949 }
9950
9951 if (exp->elts[*pos].opcode != OP_LONG)
9952 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9953 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9954 *pos += 4;
9955
9956 if (noside == EVAL_SKIP)
9957 goto nosideret;
9958
9959 if (type_arg == NULL)
9960 {
9961 arg1 = ada_coerce_ref (arg1);
9962
9963 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9964 arg1 = ada_coerce_to_simple_array (arg1);
9965
9966 type = ada_index_type (value_type (arg1), tem,
9967 ada_attribute_name (op));
9968 if (type == NULL)
9969 type = builtin_type (exp->gdbarch)->builtin_int;
9970
9971 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9972 return allocate_value (type);
9973
9974 switch (op)
9975 {
9976 default: /* Should never happen. */
9977 error (_("unexpected attribute encountered"));
9978 case OP_ATR_FIRST:
9979 return value_from_longest
9980 (type, ada_array_bound (arg1, tem, 0));
9981 case OP_ATR_LAST:
9982 return value_from_longest
9983 (type, ada_array_bound (arg1, tem, 1));
9984 case OP_ATR_LENGTH:
9985 return value_from_longest
9986 (type, ada_array_length (arg1, tem));
9987 }
9988 }
9989 else if (discrete_type_p (type_arg))
9990 {
9991 struct type *range_type;
9992 const char *name = ada_type_name (type_arg);
9993
9994 range_type = NULL;
9995 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9996 range_type = to_fixed_range_type (type_arg, NULL);
9997 if (range_type == NULL)
9998 range_type = type_arg;
9999 switch (op)
10000 {
10001 default:
10002 error (_("unexpected attribute encountered"));
10003 case OP_ATR_FIRST:
10004 return value_from_longest
10005 (range_type, ada_discrete_type_low_bound (range_type));
10006 case OP_ATR_LAST:
10007 return value_from_longest
10008 (range_type, ada_discrete_type_high_bound (range_type));
10009 case OP_ATR_LENGTH:
10010 error (_("the 'length attribute applies only to array types"));
10011 }
10012 }
10013 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10014 error (_("unimplemented type attribute"));
10015 else
10016 {
10017 LONGEST low, high;
10018
10019 if (ada_is_constrained_packed_array_type (type_arg))
10020 type_arg = decode_constrained_packed_array_type (type_arg);
10021
10022 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10023 if (type == NULL)
10024 type = builtin_type (exp->gdbarch)->builtin_int;
10025
10026 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10027 return allocate_value (type);
10028
10029 switch (op)
10030 {
10031 default:
10032 error (_("unexpected attribute encountered"));
10033 case OP_ATR_FIRST:
10034 low = ada_array_bound_from_type (type_arg, tem, 0);
10035 return value_from_longest (type, low);
10036 case OP_ATR_LAST:
10037 high = ada_array_bound_from_type (type_arg, tem, 1);
10038 return value_from_longest (type, high);
10039 case OP_ATR_LENGTH:
10040 low = ada_array_bound_from_type (type_arg, tem, 0);
10041 high = ada_array_bound_from_type (type_arg, tem, 1);
10042 return value_from_longest (type, high - low + 1);
10043 }
10044 }
10045 }
10046
10047 case OP_ATR_TAG:
10048 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10049 if (noside == EVAL_SKIP)
10050 goto nosideret;
10051
10052 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10053 return value_zero (ada_tag_type (arg1), not_lval);
10054
10055 return ada_value_tag (arg1);
10056
10057 case OP_ATR_MIN:
10058 case OP_ATR_MAX:
10059 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10060 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10061 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10062 if (noside == EVAL_SKIP)
10063 goto nosideret;
10064 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10065 return value_zero (value_type (arg1), not_lval);
10066 else
10067 {
10068 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10069 return value_binop (arg1, arg2,
10070 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10071 }
10072
10073 case OP_ATR_MODULUS:
10074 {
10075 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10076
10077 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10078 if (noside == EVAL_SKIP)
10079 goto nosideret;
10080
10081 if (!ada_is_modular_type (type_arg))
10082 error (_("'modulus must be applied to modular type"));
10083
10084 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10085 ada_modulus (type_arg));
10086 }
10087
10088
10089 case OP_ATR_POS:
10090 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10091 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10092 if (noside == EVAL_SKIP)
10093 goto nosideret;
10094 type = builtin_type (exp->gdbarch)->builtin_int;
10095 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10096 return value_zero (type, not_lval);
10097 else
10098 return value_pos_atr (type, arg1);
10099
10100 case OP_ATR_SIZE:
10101 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10102 type = value_type (arg1);
10103
10104 /* If the argument is a reference, then dereference its type, since
10105 the user is really asking for the size of the actual object,
10106 not the size of the pointer. */
10107 if (TYPE_CODE (type) == TYPE_CODE_REF)
10108 type = TYPE_TARGET_TYPE (type);
10109
10110 if (noside == EVAL_SKIP)
10111 goto nosideret;
10112 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10113 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10114 else
10115 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10116 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10117
10118 case OP_ATR_VAL:
10119 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10120 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10121 type = exp->elts[pc + 2].type;
10122 if (noside == EVAL_SKIP)
10123 goto nosideret;
10124 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10125 return value_zero (type, not_lval);
10126 else
10127 return value_val_atr (type, arg1);
10128
10129 case BINOP_EXP:
10130 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10131 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10132 if (noside == EVAL_SKIP)
10133 goto nosideret;
10134 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10135 return value_zero (value_type (arg1), not_lval);
10136 else
10137 {
10138 /* For integer exponentiation operations,
10139 only promote the first argument. */
10140 if (is_integral_type (value_type (arg2)))
10141 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10142 else
10143 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10144
10145 return value_binop (arg1, arg2, op);
10146 }
10147
10148 case UNOP_PLUS:
10149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10150 if (noside == EVAL_SKIP)
10151 goto nosideret;
10152 else
10153 return arg1;
10154
10155 case UNOP_ABS:
10156 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10157 if (noside == EVAL_SKIP)
10158 goto nosideret;
10159 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10160 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10161 return value_neg (arg1);
10162 else
10163 return arg1;
10164
10165 case UNOP_IND:
10166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10167 if (noside == EVAL_SKIP)
10168 goto nosideret;
10169 type = ada_check_typedef (value_type (arg1));
10170 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10171 {
10172 if (ada_is_array_descriptor_type (type))
10173 /* GDB allows dereferencing GNAT array descriptors. */
10174 {
10175 struct type *arrType = ada_type_of_array (arg1, 0);
10176
10177 if (arrType == NULL)
10178 error (_("Attempt to dereference null array pointer."));
10179 return value_at_lazy (arrType, 0);
10180 }
10181 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10182 || TYPE_CODE (type) == TYPE_CODE_REF
10183 /* In C you can dereference an array to get the 1st elt. */
10184 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10185 {
10186 type = to_static_fixed_type
10187 (ada_aligned_type
10188 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10189 check_size (type);
10190 return value_zero (type, lval_memory);
10191 }
10192 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10193 {
10194 /* GDB allows dereferencing an int. */
10195 if (expect_type == NULL)
10196 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10197 lval_memory);
10198 else
10199 {
10200 expect_type =
10201 to_static_fixed_type (ada_aligned_type (expect_type));
10202 return value_zero (expect_type, lval_memory);
10203 }
10204 }
10205 else
10206 error (_("Attempt to take contents of a non-pointer value."));
10207 }
10208 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10209 type = ada_check_typedef (value_type (arg1));
10210
10211 if (TYPE_CODE (type) == TYPE_CODE_INT)
10212 /* GDB allows dereferencing an int. If we were given
10213 the expect_type, then use that as the target type.
10214 Otherwise, assume that the target type is an int. */
10215 {
10216 if (expect_type != NULL)
10217 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10218 arg1));
10219 else
10220 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10221 (CORE_ADDR) value_as_address (arg1));
10222 }
10223
10224 if (ada_is_array_descriptor_type (type))
10225 /* GDB allows dereferencing GNAT array descriptors. */
10226 return ada_coerce_to_simple_array (arg1);
10227 else
10228 return ada_value_ind (arg1);
10229
10230 case STRUCTOP_STRUCT:
10231 tem = longest_to_int (exp->elts[pc + 1].longconst);
10232 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10233 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10234 if (noside == EVAL_SKIP)
10235 goto nosideret;
10236 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10237 {
10238 struct type *type1 = value_type (arg1);
10239
10240 if (ada_is_tagged_type (type1, 1))
10241 {
10242 type = ada_lookup_struct_elt_type (type1,
10243 &exp->elts[pc + 2].string,
10244 1, 1, NULL);
10245 if (type == NULL)
10246 /* In this case, we assume that the field COULD exist
10247 in some extension of the type. Return an object of
10248 "type" void, which will match any formal
10249 (see ada_type_match). */
10250 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10251 lval_memory);
10252 }
10253 else
10254 type =
10255 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10256 0, NULL);
10257
10258 return value_zero (ada_aligned_type (type), lval_memory);
10259 }
10260 else
10261 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10262 arg1 = unwrap_value (arg1);
10263 return ada_to_fixed_value (arg1);
10264
10265 case OP_TYPE:
10266 /* The value is not supposed to be used. This is here to make it
10267 easier to accommodate expressions that contain types. */
10268 (*pos) += 2;
10269 if (noside == EVAL_SKIP)
10270 goto nosideret;
10271 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10272 return allocate_value (exp->elts[pc + 1].type);
10273 else
10274 error (_("Attempt to use a type name as an expression"));
10275
10276 case OP_AGGREGATE:
10277 case OP_CHOICES:
10278 case OP_OTHERS:
10279 case OP_DISCRETE_RANGE:
10280 case OP_POSITIONAL:
10281 case OP_NAME:
10282 if (noside == EVAL_NORMAL)
10283 switch (op)
10284 {
10285 case OP_NAME:
10286 error (_("Undefined name, ambiguous name, or renaming used in "
10287 "component association: %s."), &exp->elts[pc+2].string);
10288 case OP_AGGREGATE:
10289 error (_("Aggregates only allowed on the right of an assignment"));
10290 default:
10291 internal_error (__FILE__, __LINE__,
10292 _("aggregate apparently mangled"));
10293 }
10294
10295 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10296 *pos += oplen - 1;
10297 for (tem = 0; tem < nargs; tem += 1)
10298 ada_evaluate_subexp (NULL, exp, pos, noside);
10299 goto nosideret;
10300 }
10301
10302 nosideret:
10303 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10304 }
10305 \f
10306
10307 /* Fixed point */
10308
10309 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10310 type name that encodes the 'small and 'delta information.
10311 Otherwise, return NULL. */
10312
10313 static const char *
10314 fixed_type_info (struct type *type)
10315 {
10316 const char *name = ada_type_name (type);
10317 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10318
10319 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10320 {
10321 const char *tail = strstr (name, "___XF_");
10322
10323 if (tail == NULL)
10324 return NULL;
10325 else
10326 return tail + 5;
10327 }
10328 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10329 return fixed_type_info (TYPE_TARGET_TYPE (type));
10330 else
10331 return NULL;
10332 }
10333
10334 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10335
10336 int
10337 ada_is_fixed_point_type (struct type *type)
10338 {
10339 return fixed_type_info (type) != NULL;
10340 }
10341
10342 /* Return non-zero iff TYPE represents a System.Address type. */
10343
10344 int
10345 ada_is_system_address_type (struct type *type)
10346 {
10347 return (TYPE_NAME (type)
10348 && strcmp (TYPE_NAME (type), "system__address") == 0);
10349 }
10350
10351 /* Assuming that TYPE is the representation of an Ada fixed-point
10352 type, return its delta, or -1 if the type is malformed and the
10353 delta cannot be determined. */
10354
10355 DOUBLEST
10356 ada_delta (struct type *type)
10357 {
10358 const char *encoding = fixed_type_info (type);
10359 DOUBLEST num, den;
10360
10361 /* Strictly speaking, num and den are encoded as integer. However,
10362 they may not fit into a long, and they will have to be converted
10363 to DOUBLEST anyway. So scan them as DOUBLEST. */
10364 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10365 &num, &den) < 2)
10366 return -1.0;
10367 else
10368 return num / den;
10369 }
10370
10371 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10372 factor ('SMALL value) associated with the type. */
10373
10374 static DOUBLEST
10375 scaling_factor (struct type *type)
10376 {
10377 const char *encoding = fixed_type_info (type);
10378 DOUBLEST num0, den0, num1, den1;
10379 int n;
10380
10381 /* Strictly speaking, num's and den's are encoded as integer. However,
10382 they may not fit into a long, and they will have to be converted
10383 to DOUBLEST anyway. So scan them as DOUBLEST. */
10384 n = sscanf (encoding,
10385 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10386 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10387 &num0, &den0, &num1, &den1);
10388
10389 if (n < 2)
10390 return 1.0;
10391 else if (n == 4)
10392 return num1 / den1;
10393 else
10394 return num0 / den0;
10395 }
10396
10397
10398 /* Assuming that X is the representation of a value of fixed-point
10399 type TYPE, return its floating-point equivalent. */
10400
10401 DOUBLEST
10402 ada_fixed_to_float (struct type *type, LONGEST x)
10403 {
10404 return (DOUBLEST) x *scaling_factor (type);
10405 }
10406
10407 /* The representation of a fixed-point value of type TYPE
10408 corresponding to the value X. */
10409
10410 LONGEST
10411 ada_float_to_fixed (struct type *type, DOUBLEST x)
10412 {
10413 return (LONGEST) (x / scaling_factor (type) + 0.5);
10414 }
10415
10416 \f
10417
10418 /* Range types */
10419
10420 /* Scan STR beginning at position K for a discriminant name, and
10421 return the value of that discriminant field of DVAL in *PX. If
10422 PNEW_K is not null, put the position of the character beyond the
10423 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10424 not alter *PX and *PNEW_K if unsuccessful. */
10425
10426 static int
10427 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10428 int *pnew_k)
10429 {
10430 static char *bound_buffer = NULL;
10431 static size_t bound_buffer_len = 0;
10432 char *bound;
10433 char *pend;
10434 struct value *bound_val;
10435
10436 if (dval == NULL || str == NULL || str[k] == '\0')
10437 return 0;
10438
10439 pend = strstr (str + k, "__");
10440 if (pend == NULL)
10441 {
10442 bound = str + k;
10443 k += strlen (bound);
10444 }
10445 else
10446 {
10447 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10448 bound = bound_buffer;
10449 strncpy (bound_buffer, str + k, pend - (str + k));
10450 bound[pend - (str + k)] = '\0';
10451 k = pend - str;
10452 }
10453
10454 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10455 if (bound_val == NULL)
10456 return 0;
10457
10458 *px = value_as_long (bound_val);
10459 if (pnew_k != NULL)
10460 *pnew_k = k;
10461 return 1;
10462 }
10463
10464 /* Value of variable named NAME in the current environment. If
10465 no such variable found, then if ERR_MSG is null, returns 0, and
10466 otherwise causes an error with message ERR_MSG. */
10467
10468 static struct value *
10469 get_var_value (char *name, char *err_msg)
10470 {
10471 struct ada_symbol_info *syms;
10472 int nsyms;
10473
10474 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10475 &syms, 1);
10476
10477 if (nsyms != 1)
10478 {
10479 if (err_msg == NULL)
10480 return 0;
10481 else
10482 error (("%s"), err_msg);
10483 }
10484
10485 return value_of_variable (syms[0].sym, syms[0].block);
10486 }
10487
10488 /* Value of integer variable named NAME in the current environment. If
10489 no such variable found, returns 0, and sets *FLAG to 0. If
10490 successful, sets *FLAG to 1. */
10491
10492 LONGEST
10493 get_int_var_value (char *name, int *flag)
10494 {
10495 struct value *var_val = get_var_value (name, 0);
10496
10497 if (var_val == 0)
10498 {
10499 if (flag != NULL)
10500 *flag = 0;
10501 return 0;
10502 }
10503 else
10504 {
10505 if (flag != NULL)
10506 *flag = 1;
10507 return value_as_long (var_val);
10508 }
10509 }
10510
10511
10512 /* Return a range type whose base type is that of the range type named
10513 NAME in the current environment, and whose bounds are calculated
10514 from NAME according to the GNAT range encoding conventions.
10515 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10516 corresponding range type from debug information; fall back to using it
10517 if symbol lookup fails. If a new type must be created, allocate it
10518 like ORIG_TYPE was. The bounds information, in general, is encoded
10519 in NAME, the base type given in the named range type. */
10520
10521 static struct type *
10522 to_fixed_range_type (struct type *raw_type, struct value *dval)
10523 {
10524 const char *name;
10525 struct type *base_type;
10526 char *subtype_info;
10527
10528 gdb_assert (raw_type != NULL);
10529 gdb_assert (TYPE_NAME (raw_type) != NULL);
10530
10531 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10532 base_type = TYPE_TARGET_TYPE (raw_type);
10533 else
10534 base_type = raw_type;
10535
10536 name = TYPE_NAME (raw_type);
10537 subtype_info = strstr (name, "___XD");
10538 if (subtype_info == NULL)
10539 {
10540 LONGEST L = ada_discrete_type_low_bound (raw_type);
10541 LONGEST U = ada_discrete_type_high_bound (raw_type);
10542
10543 if (L < INT_MIN || U > INT_MAX)
10544 return raw_type;
10545 else
10546 return create_range_type (alloc_type_copy (raw_type), raw_type,
10547 ada_discrete_type_low_bound (raw_type),
10548 ada_discrete_type_high_bound (raw_type));
10549 }
10550 else
10551 {
10552 static char *name_buf = NULL;
10553 static size_t name_len = 0;
10554 int prefix_len = subtype_info - name;
10555 LONGEST L, U;
10556 struct type *type;
10557 char *bounds_str;
10558 int n;
10559
10560 GROW_VECT (name_buf, name_len, prefix_len + 5);
10561 strncpy (name_buf, name, prefix_len);
10562 name_buf[prefix_len] = '\0';
10563
10564 subtype_info += 5;
10565 bounds_str = strchr (subtype_info, '_');
10566 n = 1;
10567
10568 if (*subtype_info == 'L')
10569 {
10570 if (!ada_scan_number (bounds_str, n, &L, &n)
10571 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10572 return raw_type;
10573 if (bounds_str[n] == '_')
10574 n += 2;
10575 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10576 n += 1;
10577 subtype_info += 1;
10578 }
10579 else
10580 {
10581 int ok;
10582
10583 strcpy (name_buf + prefix_len, "___L");
10584 L = get_int_var_value (name_buf, &ok);
10585 if (!ok)
10586 {
10587 lim_warning (_("Unknown lower bound, using 1."));
10588 L = 1;
10589 }
10590 }
10591
10592 if (*subtype_info == 'U')
10593 {
10594 if (!ada_scan_number (bounds_str, n, &U, &n)
10595 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10596 return raw_type;
10597 }
10598 else
10599 {
10600 int ok;
10601
10602 strcpy (name_buf + prefix_len, "___U");
10603 U = get_int_var_value (name_buf, &ok);
10604 if (!ok)
10605 {
10606 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10607 U = L;
10608 }
10609 }
10610
10611 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10612 TYPE_NAME (type) = name;
10613 return type;
10614 }
10615 }
10616
10617 /* True iff NAME is the name of a range type. */
10618
10619 int
10620 ada_is_range_type_name (const char *name)
10621 {
10622 return (name != NULL && strstr (name, "___XD"));
10623 }
10624 \f
10625
10626 /* Modular types */
10627
10628 /* True iff TYPE is an Ada modular type. */
10629
10630 int
10631 ada_is_modular_type (struct type *type)
10632 {
10633 struct type *subranged_type = get_base_type (type);
10634
10635 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10636 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10637 && TYPE_UNSIGNED (subranged_type));
10638 }
10639
10640 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10641
10642 ULONGEST
10643 ada_modulus (struct type *type)
10644 {
10645 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10646 }
10647 \f
10648
10649 /* Ada exception catchpoint support:
10650 ---------------------------------
10651
10652 We support 3 kinds of exception catchpoints:
10653 . catchpoints on Ada exceptions
10654 . catchpoints on unhandled Ada exceptions
10655 . catchpoints on failed assertions
10656
10657 Exceptions raised during failed assertions, or unhandled exceptions
10658 could perfectly be caught with the general catchpoint on Ada exceptions.
10659 However, we can easily differentiate these two special cases, and having
10660 the option to distinguish these two cases from the rest can be useful
10661 to zero-in on certain situations.
10662
10663 Exception catchpoints are a specialized form of breakpoint,
10664 since they rely on inserting breakpoints inside known routines
10665 of the GNAT runtime. The implementation therefore uses a standard
10666 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10667 of breakpoint_ops.
10668
10669 Support in the runtime for exception catchpoints have been changed
10670 a few times already, and these changes affect the implementation
10671 of these catchpoints. In order to be able to support several
10672 variants of the runtime, we use a sniffer that will determine
10673 the runtime variant used by the program being debugged. */
10674
10675 /* The different types of catchpoints that we introduced for catching
10676 Ada exceptions. */
10677
10678 enum exception_catchpoint_kind
10679 {
10680 ex_catch_exception,
10681 ex_catch_exception_unhandled,
10682 ex_catch_assert
10683 };
10684
10685 /* Ada's standard exceptions. */
10686
10687 static char *standard_exc[] = {
10688 "constraint_error",
10689 "program_error",
10690 "storage_error",
10691 "tasking_error"
10692 };
10693
10694 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10695
10696 /* A structure that describes how to support exception catchpoints
10697 for a given executable. */
10698
10699 struct exception_support_info
10700 {
10701 /* The name of the symbol to break on in order to insert
10702 a catchpoint on exceptions. */
10703 const char *catch_exception_sym;
10704
10705 /* The name of the symbol to break on in order to insert
10706 a catchpoint on unhandled exceptions. */
10707 const char *catch_exception_unhandled_sym;
10708
10709 /* The name of the symbol to break on in order to insert
10710 a catchpoint on failed assertions. */
10711 const char *catch_assert_sym;
10712
10713 /* Assuming that the inferior just triggered an unhandled exception
10714 catchpoint, this function is responsible for returning the address
10715 in inferior memory where the name of that exception is stored.
10716 Return zero if the address could not be computed. */
10717 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10718 };
10719
10720 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10721 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10722
10723 /* The following exception support info structure describes how to
10724 implement exception catchpoints with the latest version of the
10725 Ada runtime (as of 2007-03-06). */
10726
10727 static const struct exception_support_info default_exception_support_info =
10728 {
10729 "__gnat_debug_raise_exception", /* catch_exception_sym */
10730 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10731 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10732 ada_unhandled_exception_name_addr
10733 };
10734
10735 /* The following exception support info structure describes how to
10736 implement exception catchpoints with a slightly older version
10737 of the Ada runtime. */
10738
10739 static const struct exception_support_info exception_support_info_fallback =
10740 {
10741 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10742 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10743 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10744 ada_unhandled_exception_name_addr_from_raise
10745 };
10746
10747 /* Return nonzero if we can detect the exception support routines
10748 described in EINFO.
10749
10750 This function errors out if an abnormal situation is detected
10751 (for instance, if we find the exception support routines, but
10752 that support is found to be incomplete). */
10753
10754 static int
10755 ada_has_this_exception_support (const struct exception_support_info *einfo)
10756 {
10757 struct symbol *sym;
10758
10759 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10760 that should be compiled with debugging information. As a result, we
10761 expect to find that symbol in the symtabs. */
10762
10763 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10764 if (sym == NULL)
10765 {
10766 /* Perhaps we did not find our symbol because the Ada runtime was
10767 compiled without debugging info, or simply stripped of it.
10768 It happens on some GNU/Linux distributions for instance, where
10769 users have to install a separate debug package in order to get
10770 the runtime's debugging info. In that situation, let the user
10771 know why we cannot insert an Ada exception catchpoint.
10772
10773 Note: Just for the purpose of inserting our Ada exception
10774 catchpoint, we could rely purely on the associated minimal symbol.
10775 But we would be operating in degraded mode anyway, since we are
10776 still lacking the debugging info needed later on to extract
10777 the name of the exception being raised (this name is printed in
10778 the catchpoint message, and is also used when trying to catch
10779 a specific exception). We do not handle this case for now. */
10780 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10781 error (_("Your Ada runtime appears to be missing some debugging "
10782 "information.\nCannot insert Ada exception catchpoint "
10783 "in this configuration."));
10784
10785 return 0;
10786 }
10787
10788 /* Make sure that the symbol we found corresponds to a function. */
10789
10790 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10791 error (_("Symbol \"%s\" is not a function (class = %d)"),
10792 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10793
10794 return 1;
10795 }
10796
10797 /* Inspect the Ada runtime and determine which exception info structure
10798 should be used to provide support for exception catchpoints.
10799
10800 This function will always set the per-inferior exception_info,
10801 or raise an error. */
10802
10803 static void
10804 ada_exception_support_info_sniffer (void)
10805 {
10806 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10807 struct symbol *sym;
10808
10809 /* If the exception info is already known, then no need to recompute it. */
10810 if (data->exception_info != NULL)
10811 return;
10812
10813 /* Check the latest (default) exception support info. */
10814 if (ada_has_this_exception_support (&default_exception_support_info))
10815 {
10816 data->exception_info = &default_exception_support_info;
10817 return;
10818 }
10819
10820 /* Try our fallback exception suport info. */
10821 if (ada_has_this_exception_support (&exception_support_info_fallback))
10822 {
10823 data->exception_info = &exception_support_info_fallback;
10824 return;
10825 }
10826
10827 /* Sometimes, it is normal for us to not be able to find the routine
10828 we are looking for. This happens when the program is linked with
10829 the shared version of the GNAT runtime, and the program has not been
10830 started yet. Inform the user of these two possible causes if
10831 applicable. */
10832
10833 if (ada_update_initial_language (language_unknown) != language_ada)
10834 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10835
10836 /* If the symbol does not exist, then check that the program is
10837 already started, to make sure that shared libraries have been
10838 loaded. If it is not started, this may mean that the symbol is
10839 in a shared library. */
10840
10841 if (ptid_get_pid (inferior_ptid) == 0)
10842 error (_("Unable to insert catchpoint. Try to start the program first."));
10843
10844 /* At this point, we know that we are debugging an Ada program and
10845 that the inferior has been started, but we still are not able to
10846 find the run-time symbols. That can mean that we are in
10847 configurable run time mode, or that a-except as been optimized
10848 out by the linker... In any case, at this point it is not worth
10849 supporting this feature. */
10850
10851 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10852 }
10853
10854 /* True iff FRAME is very likely to be that of a function that is
10855 part of the runtime system. This is all very heuristic, but is
10856 intended to be used as advice as to what frames are uninteresting
10857 to most users. */
10858
10859 static int
10860 is_known_support_routine (struct frame_info *frame)
10861 {
10862 struct symtab_and_line sal;
10863 const char *func_name;
10864 enum language func_lang;
10865 int i;
10866
10867 /* If this code does not have any debugging information (no symtab),
10868 This cannot be any user code. */
10869
10870 find_frame_sal (frame, &sal);
10871 if (sal.symtab == NULL)
10872 return 1;
10873
10874 /* If there is a symtab, but the associated source file cannot be
10875 located, then assume this is not user code: Selecting a frame
10876 for which we cannot display the code would not be very helpful
10877 for the user. This should also take care of case such as VxWorks
10878 where the kernel has some debugging info provided for a few units. */
10879
10880 if (symtab_to_fullname (sal.symtab) == NULL)
10881 return 1;
10882
10883 /* Check the unit filename againt the Ada runtime file naming.
10884 We also check the name of the objfile against the name of some
10885 known system libraries that sometimes come with debugging info
10886 too. */
10887
10888 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10889 {
10890 re_comp (known_runtime_file_name_patterns[i]);
10891 if (re_exec (sal.symtab->filename))
10892 return 1;
10893 if (sal.symtab->objfile != NULL
10894 && re_exec (sal.symtab->objfile->name))
10895 return 1;
10896 }
10897
10898 /* Check whether the function is a GNAT-generated entity. */
10899
10900 find_frame_funname (frame, &func_name, &func_lang, NULL);
10901 if (func_name == NULL)
10902 return 1;
10903
10904 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10905 {
10906 re_comp (known_auxiliary_function_name_patterns[i]);
10907 if (re_exec (func_name))
10908 return 1;
10909 }
10910
10911 return 0;
10912 }
10913
10914 /* Find the first frame that contains debugging information and that is not
10915 part of the Ada run-time, starting from FI and moving upward. */
10916
10917 void
10918 ada_find_printable_frame (struct frame_info *fi)
10919 {
10920 for (; fi != NULL; fi = get_prev_frame (fi))
10921 {
10922 if (!is_known_support_routine (fi))
10923 {
10924 select_frame (fi);
10925 break;
10926 }
10927 }
10928
10929 }
10930
10931 /* Assuming that the inferior just triggered an unhandled exception
10932 catchpoint, return the address in inferior memory where the name
10933 of the exception is stored.
10934
10935 Return zero if the address could not be computed. */
10936
10937 static CORE_ADDR
10938 ada_unhandled_exception_name_addr (void)
10939 {
10940 return parse_and_eval_address ("e.full_name");
10941 }
10942
10943 /* Same as ada_unhandled_exception_name_addr, except that this function
10944 should be used when the inferior uses an older version of the runtime,
10945 where the exception name needs to be extracted from a specific frame
10946 several frames up in the callstack. */
10947
10948 static CORE_ADDR
10949 ada_unhandled_exception_name_addr_from_raise (void)
10950 {
10951 int frame_level;
10952 struct frame_info *fi;
10953 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10954
10955 /* To determine the name of this exception, we need to select
10956 the frame corresponding to RAISE_SYM_NAME. This frame is
10957 at least 3 levels up, so we simply skip the first 3 frames
10958 without checking the name of their associated function. */
10959 fi = get_current_frame ();
10960 for (frame_level = 0; frame_level < 3; frame_level += 1)
10961 if (fi != NULL)
10962 fi = get_prev_frame (fi);
10963
10964 while (fi != NULL)
10965 {
10966 const char *func_name;
10967 enum language func_lang;
10968
10969 find_frame_funname (fi, &func_name, &func_lang, NULL);
10970 if (func_name != NULL
10971 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10972 break; /* We found the frame we were looking for... */
10973 fi = get_prev_frame (fi);
10974 }
10975
10976 if (fi == NULL)
10977 return 0;
10978
10979 select_frame (fi);
10980 return parse_and_eval_address ("id.full_name");
10981 }
10982
10983 /* Assuming the inferior just triggered an Ada exception catchpoint
10984 (of any type), return the address in inferior memory where the name
10985 of the exception is stored, if applicable.
10986
10987 Return zero if the address could not be computed, or if not relevant. */
10988
10989 static CORE_ADDR
10990 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10991 struct breakpoint *b)
10992 {
10993 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10994
10995 switch (ex)
10996 {
10997 case ex_catch_exception:
10998 return (parse_and_eval_address ("e.full_name"));
10999 break;
11000
11001 case ex_catch_exception_unhandled:
11002 return data->exception_info->unhandled_exception_name_addr ();
11003 break;
11004
11005 case ex_catch_assert:
11006 return 0; /* Exception name is not relevant in this case. */
11007 break;
11008
11009 default:
11010 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11011 break;
11012 }
11013
11014 return 0; /* Should never be reached. */
11015 }
11016
11017 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11018 any error that ada_exception_name_addr_1 might cause to be thrown.
11019 When an error is intercepted, a warning with the error message is printed,
11020 and zero is returned. */
11021
11022 static CORE_ADDR
11023 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11024 struct breakpoint *b)
11025 {
11026 volatile struct gdb_exception e;
11027 CORE_ADDR result = 0;
11028
11029 TRY_CATCH (e, RETURN_MASK_ERROR)
11030 {
11031 result = ada_exception_name_addr_1 (ex, b);
11032 }
11033
11034 if (e.reason < 0)
11035 {
11036 warning (_("failed to get exception name: %s"), e.message);
11037 return 0;
11038 }
11039
11040 return result;
11041 }
11042
11043 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11044 char *, char **,
11045 const struct breakpoint_ops **);
11046 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11047
11048 /* Ada catchpoints.
11049
11050 In the case of catchpoints on Ada exceptions, the catchpoint will
11051 stop the target on every exception the program throws. When a user
11052 specifies the name of a specific exception, we translate this
11053 request into a condition expression (in text form), and then parse
11054 it into an expression stored in each of the catchpoint's locations.
11055 We then use this condition to check whether the exception that was
11056 raised is the one the user is interested in. If not, then the
11057 target is resumed again. We store the name of the requested
11058 exception, in order to be able to re-set the condition expression
11059 when symbols change. */
11060
11061 /* An instance of this type is used to represent an Ada catchpoint
11062 breakpoint location. It includes a "struct bp_location" as a kind
11063 of base class; users downcast to "struct bp_location *" when
11064 needed. */
11065
11066 struct ada_catchpoint_location
11067 {
11068 /* The base class. */
11069 struct bp_location base;
11070
11071 /* The condition that checks whether the exception that was raised
11072 is the specific exception the user specified on catchpoint
11073 creation. */
11074 struct expression *excep_cond_expr;
11075 };
11076
11077 /* Implement the DTOR method in the bp_location_ops structure for all
11078 Ada exception catchpoint kinds. */
11079
11080 static void
11081 ada_catchpoint_location_dtor (struct bp_location *bl)
11082 {
11083 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11084
11085 xfree (al->excep_cond_expr);
11086 }
11087
11088 /* The vtable to be used in Ada catchpoint locations. */
11089
11090 static const struct bp_location_ops ada_catchpoint_location_ops =
11091 {
11092 ada_catchpoint_location_dtor
11093 };
11094
11095 /* An instance of this type is used to represent an Ada catchpoint.
11096 It includes a "struct breakpoint" as a kind of base class; users
11097 downcast to "struct breakpoint *" when needed. */
11098
11099 struct ada_catchpoint
11100 {
11101 /* The base class. */
11102 struct breakpoint base;
11103
11104 /* The name of the specific exception the user specified. */
11105 char *excep_string;
11106 };
11107
11108 /* Parse the exception condition string in the context of each of the
11109 catchpoint's locations, and store them for later evaluation. */
11110
11111 static void
11112 create_excep_cond_exprs (struct ada_catchpoint *c)
11113 {
11114 struct cleanup *old_chain;
11115 struct bp_location *bl;
11116 char *cond_string;
11117
11118 /* Nothing to do if there's no specific exception to catch. */
11119 if (c->excep_string == NULL)
11120 return;
11121
11122 /* Same if there are no locations... */
11123 if (c->base.loc == NULL)
11124 return;
11125
11126 /* Compute the condition expression in text form, from the specific
11127 expection we want to catch. */
11128 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11129 old_chain = make_cleanup (xfree, cond_string);
11130
11131 /* Iterate over all the catchpoint's locations, and parse an
11132 expression for each. */
11133 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11134 {
11135 struct ada_catchpoint_location *ada_loc
11136 = (struct ada_catchpoint_location *) bl;
11137 struct expression *exp = NULL;
11138
11139 if (!bl->shlib_disabled)
11140 {
11141 volatile struct gdb_exception e;
11142 char *s;
11143
11144 s = cond_string;
11145 TRY_CATCH (e, RETURN_MASK_ERROR)
11146 {
11147 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11148 }
11149 if (e.reason < 0)
11150 warning (_("failed to reevaluate internal exception condition "
11151 "for catchpoint %d: %s"),
11152 c->base.number, e.message);
11153 }
11154
11155 ada_loc->excep_cond_expr = exp;
11156 }
11157
11158 do_cleanups (old_chain);
11159 }
11160
11161 /* Implement the DTOR method in the breakpoint_ops structure for all
11162 exception catchpoint kinds. */
11163
11164 static void
11165 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11166 {
11167 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11168
11169 xfree (c->excep_string);
11170
11171 bkpt_breakpoint_ops.dtor (b);
11172 }
11173
11174 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11175 structure for all exception catchpoint kinds. */
11176
11177 static struct bp_location *
11178 allocate_location_exception (enum exception_catchpoint_kind ex,
11179 struct breakpoint *self)
11180 {
11181 struct ada_catchpoint_location *loc;
11182
11183 loc = XNEW (struct ada_catchpoint_location);
11184 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11185 loc->excep_cond_expr = NULL;
11186 return &loc->base;
11187 }
11188
11189 /* Implement the RE_SET method in the breakpoint_ops structure for all
11190 exception catchpoint kinds. */
11191
11192 static void
11193 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11194 {
11195 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11196
11197 /* Call the base class's method. This updates the catchpoint's
11198 locations. */
11199 bkpt_breakpoint_ops.re_set (b);
11200
11201 /* Reparse the exception conditional expressions. One for each
11202 location. */
11203 create_excep_cond_exprs (c);
11204 }
11205
11206 /* Returns true if we should stop for this breakpoint hit. If the
11207 user specified a specific exception, we only want to cause a stop
11208 if the program thrown that exception. */
11209
11210 static int
11211 should_stop_exception (const struct bp_location *bl)
11212 {
11213 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11214 const struct ada_catchpoint_location *ada_loc
11215 = (const struct ada_catchpoint_location *) bl;
11216 volatile struct gdb_exception ex;
11217 int stop;
11218
11219 /* With no specific exception, should always stop. */
11220 if (c->excep_string == NULL)
11221 return 1;
11222
11223 if (ada_loc->excep_cond_expr == NULL)
11224 {
11225 /* We will have a NULL expression if back when we were creating
11226 the expressions, this location's had failed to parse. */
11227 return 1;
11228 }
11229
11230 stop = 1;
11231 TRY_CATCH (ex, RETURN_MASK_ALL)
11232 {
11233 struct value *mark;
11234
11235 mark = value_mark ();
11236 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11237 value_free_to_mark (mark);
11238 }
11239 if (ex.reason < 0)
11240 exception_fprintf (gdb_stderr, ex,
11241 _("Error in testing exception condition:\n"));
11242 return stop;
11243 }
11244
11245 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11246 for all exception catchpoint kinds. */
11247
11248 static void
11249 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11250 {
11251 bs->stop = should_stop_exception (bs->bp_location_at);
11252 }
11253
11254 /* Implement the PRINT_IT method in the breakpoint_ops structure
11255 for all exception catchpoint kinds. */
11256
11257 static enum print_stop_action
11258 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11259 {
11260 struct ui_out *uiout = current_uiout;
11261 struct breakpoint *b = bs->breakpoint_at;
11262
11263 annotate_catchpoint (b->number);
11264
11265 if (ui_out_is_mi_like_p (uiout))
11266 {
11267 ui_out_field_string (uiout, "reason",
11268 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11269 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11270 }
11271
11272 ui_out_text (uiout,
11273 b->disposition == disp_del ? "\nTemporary catchpoint "
11274 : "\nCatchpoint ");
11275 ui_out_field_int (uiout, "bkptno", b->number);
11276 ui_out_text (uiout, ", ");
11277
11278 switch (ex)
11279 {
11280 case ex_catch_exception:
11281 case ex_catch_exception_unhandled:
11282 {
11283 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11284 char exception_name[256];
11285
11286 if (addr != 0)
11287 {
11288 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11289 exception_name [sizeof (exception_name) - 1] = '\0';
11290 }
11291 else
11292 {
11293 /* For some reason, we were unable to read the exception
11294 name. This could happen if the Runtime was compiled
11295 without debugging info, for instance. In that case,
11296 just replace the exception name by the generic string
11297 "exception" - it will read as "an exception" in the
11298 notification we are about to print. */
11299 memcpy (exception_name, "exception", sizeof ("exception"));
11300 }
11301 /* In the case of unhandled exception breakpoints, we print
11302 the exception name as "unhandled EXCEPTION_NAME", to make
11303 it clearer to the user which kind of catchpoint just got
11304 hit. We used ui_out_text to make sure that this extra
11305 info does not pollute the exception name in the MI case. */
11306 if (ex == ex_catch_exception_unhandled)
11307 ui_out_text (uiout, "unhandled ");
11308 ui_out_field_string (uiout, "exception-name", exception_name);
11309 }
11310 break;
11311 case ex_catch_assert:
11312 /* In this case, the name of the exception is not really
11313 important. Just print "failed assertion" to make it clearer
11314 that his program just hit an assertion-failure catchpoint.
11315 We used ui_out_text because this info does not belong in
11316 the MI output. */
11317 ui_out_text (uiout, "failed assertion");
11318 break;
11319 }
11320 ui_out_text (uiout, " at ");
11321 ada_find_printable_frame (get_current_frame ());
11322
11323 return PRINT_SRC_AND_LOC;
11324 }
11325
11326 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11327 for all exception catchpoint kinds. */
11328
11329 static void
11330 print_one_exception (enum exception_catchpoint_kind ex,
11331 struct breakpoint *b, struct bp_location **last_loc)
11332 {
11333 struct ui_out *uiout = current_uiout;
11334 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11335 struct value_print_options opts;
11336
11337 get_user_print_options (&opts);
11338 if (opts.addressprint)
11339 {
11340 annotate_field (4);
11341 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11342 }
11343
11344 annotate_field (5);
11345 *last_loc = b->loc;
11346 switch (ex)
11347 {
11348 case ex_catch_exception:
11349 if (c->excep_string != NULL)
11350 {
11351 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11352
11353 ui_out_field_string (uiout, "what", msg);
11354 xfree (msg);
11355 }
11356 else
11357 ui_out_field_string (uiout, "what", "all Ada exceptions");
11358
11359 break;
11360
11361 case ex_catch_exception_unhandled:
11362 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11363 break;
11364
11365 case ex_catch_assert:
11366 ui_out_field_string (uiout, "what", "failed Ada assertions");
11367 break;
11368
11369 default:
11370 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11371 break;
11372 }
11373 }
11374
11375 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11376 for all exception catchpoint kinds. */
11377
11378 static void
11379 print_mention_exception (enum exception_catchpoint_kind ex,
11380 struct breakpoint *b)
11381 {
11382 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11383 struct ui_out *uiout = current_uiout;
11384
11385 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11386 : _("Catchpoint "));
11387 ui_out_field_int (uiout, "bkptno", b->number);
11388 ui_out_text (uiout, ": ");
11389
11390 switch (ex)
11391 {
11392 case ex_catch_exception:
11393 if (c->excep_string != NULL)
11394 {
11395 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11396 struct cleanup *old_chain = make_cleanup (xfree, info);
11397
11398 ui_out_text (uiout, info);
11399 do_cleanups (old_chain);
11400 }
11401 else
11402 ui_out_text (uiout, _("all Ada exceptions"));
11403 break;
11404
11405 case ex_catch_exception_unhandled:
11406 ui_out_text (uiout, _("unhandled Ada exceptions"));
11407 break;
11408
11409 case ex_catch_assert:
11410 ui_out_text (uiout, _("failed Ada assertions"));
11411 break;
11412
11413 default:
11414 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11415 break;
11416 }
11417 }
11418
11419 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11420 for all exception catchpoint kinds. */
11421
11422 static void
11423 print_recreate_exception (enum exception_catchpoint_kind ex,
11424 struct breakpoint *b, struct ui_file *fp)
11425 {
11426 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11427
11428 switch (ex)
11429 {
11430 case ex_catch_exception:
11431 fprintf_filtered (fp, "catch exception");
11432 if (c->excep_string != NULL)
11433 fprintf_filtered (fp, " %s", c->excep_string);
11434 break;
11435
11436 case ex_catch_exception_unhandled:
11437 fprintf_filtered (fp, "catch exception unhandled");
11438 break;
11439
11440 case ex_catch_assert:
11441 fprintf_filtered (fp, "catch assert");
11442 break;
11443
11444 default:
11445 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11446 }
11447 print_recreate_thread (b, fp);
11448 }
11449
11450 /* Virtual table for "catch exception" breakpoints. */
11451
11452 static void
11453 dtor_catch_exception (struct breakpoint *b)
11454 {
11455 dtor_exception (ex_catch_exception, b);
11456 }
11457
11458 static struct bp_location *
11459 allocate_location_catch_exception (struct breakpoint *self)
11460 {
11461 return allocate_location_exception (ex_catch_exception, self);
11462 }
11463
11464 static void
11465 re_set_catch_exception (struct breakpoint *b)
11466 {
11467 re_set_exception (ex_catch_exception, b);
11468 }
11469
11470 static void
11471 check_status_catch_exception (bpstat bs)
11472 {
11473 check_status_exception (ex_catch_exception, bs);
11474 }
11475
11476 static enum print_stop_action
11477 print_it_catch_exception (bpstat bs)
11478 {
11479 return print_it_exception (ex_catch_exception, bs);
11480 }
11481
11482 static void
11483 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11484 {
11485 print_one_exception (ex_catch_exception, b, last_loc);
11486 }
11487
11488 static void
11489 print_mention_catch_exception (struct breakpoint *b)
11490 {
11491 print_mention_exception (ex_catch_exception, b);
11492 }
11493
11494 static void
11495 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11496 {
11497 print_recreate_exception (ex_catch_exception, b, fp);
11498 }
11499
11500 static struct breakpoint_ops catch_exception_breakpoint_ops;
11501
11502 /* Virtual table for "catch exception unhandled" breakpoints. */
11503
11504 static void
11505 dtor_catch_exception_unhandled (struct breakpoint *b)
11506 {
11507 dtor_exception (ex_catch_exception_unhandled, b);
11508 }
11509
11510 static struct bp_location *
11511 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11512 {
11513 return allocate_location_exception (ex_catch_exception_unhandled, self);
11514 }
11515
11516 static void
11517 re_set_catch_exception_unhandled (struct breakpoint *b)
11518 {
11519 re_set_exception (ex_catch_exception_unhandled, b);
11520 }
11521
11522 static void
11523 check_status_catch_exception_unhandled (bpstat bs)
11524 {
11525 check_status_exception (ex_catch_exception_unhandled, bs);
11526 }
11527
11528 static enum print_stop_action
11529 print_it_catch_exception_unhandled (bpstat bs)
11530 {
11531 return print_it_exception (ex_catch_exception_unhandled, bs);
11532 }
11533
11534 static void
11535 print_one_catch_exception_unhandled (struct breakpoint *b,
11536 struct bp_location **last_loc)
11537 {
11538 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11539 }
11540
11541 static void
11542 print_mention_catch_exception_unhandled (struct breakpoint *b)
11543 {
11544 print_mention_exception (ex_catch_exception_unhandled, b);
11545 }
11546
11547 static void
11548 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11549 struct ui_file *fp)
11550 {
11551 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11552 }
11553
11554 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11555
11556 /* Virtual table for "catch assert" breakpoints. */
11557
11558 static void
11559 dtor_catch_assert (struct breakpoint *b)
11560 {
11561 dtor_exception (ex_catch_assert, b);
11562 }
11563
11564 static struct bp_location *
11565 allocate_location_catch_assert (struct breakpoint *self)
11566 {
11567 return allocate_location_exception (ex_catch_assert, self);
11568 }
11569
11570 static void
11571 re_set_catch_assert (struct breakpoint *b)
11572 {
11573 return re_set_exception (ex_catch_assert, b);
11574 }
11575
11576 static void
11577 check_status_catch_assert (bpstat bs)
11578 {
11579 check_status_exception (ex_catch_assert, bs);
11580 }
11581
11582 static enum print_stop_action
11583 print_it_catch_assert (bpstat bs)
11584 {
11585 return print_it_exception (ex_catch_assert, bs);
11586 }
11587
11588 static void
11589 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11590 {
11591 print_one_exception (ex_catch_assert, b, last_loc);
11592 }
11593
11594 static void
11595 print_mention_catch_assert (struct breakpoint *b)
11596 {
11597 print_mention_exception (ex_catch_assert, b);
11598 }
11599
11600 static void
11601 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11602 {
11603 print_recreate_exception (ex_catch_assert, b, fp);
11604 }
11605
11606 static struct breakpoint_ops catch_assert_breakpoint_ops;
11607
11608 /* Return a newly allocated copy of the first space-separated token
11609 in ARGSP, and then adjust ARGSP to point immediately after that
11610 token.
11611
11612 Return NULL if ARGPS does not contain any more tokens. */
11613
11614 static char *
11615 ada_get_next_arg (char **argsp)
11616 {
11617 char *args = *argsp;
11618 char *end;
11619 char *result;
11620
11621 args = skip_spaces (args);
11622 if (args[0] == '\0')
11623 return NULL; /* No more arguments. */
11624
11625 /* Find the end of the current argument. */
11626
11627 end = skip_to_space (args);
11628
11629 /* Adjust ARGSP to point to the start of the next argument. */
11630
11631 *argsp = end;
11632
11633 /* Make a copy of the current argument and return it. */
11634
11635 result = xmalloc (end - args + 1);
11636 strncpy (result, args, end - args);
11637 result[end - args] = '\0';
11638
11639 return result;
11640 }
11641
11642 /* Split the arguments specified in a "catch exception" command.
11643 Set EX to the appropriate catchpoint type.
11644 Set EXCEP_STRING to the name of the specific exception if
11645 specified by the user.
11646 If a condition is found at the end of the arguments, the condition
11647 expression is stored in COND_STRING (memory must be deallocated
11648 after use). Otherwise COND_STRING is set to NULL. */
11649
11650 static void
11651 catch_ada_exception_command_split (char *args,
11652 enum exception_catchpoint_kind *ex,
11653 char **excep_string,
11654 char **cond_string)
11655 {
11656 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11657 char *exception_name;
11658 char *cond = NULL;
11659
11660 exception_name = ada_get_next_arg (&args);
11661 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11662 {
11663 /* This is not an exception name; this is the start of a condition
11664 expression for a catchpoint on all exceptions. So, "un-get"
11665 this token, and set exception_name to NULL. */
11666 xfree (exception_name);
11667 exception_name = NULL;
11668 args -= 2;
11669 }
11670 make_cleanup (xfree, exception_name);
11671
11672 /* Check to see if we have a condition. */
11673
11674 args = skip_spaces (args);
11675 if (strncmp (args, "if", 2) == 0
11676 && (isspace (args[2]) || args[2] == '\0'))
11677 {
11678 args += 2;
11679 args = skip_spaces (args);
11680
11681 if (args[0] == '\0')
11682 error (_("Condition missing after `if' keyword"));
11683 cond = xstrdup (args);
11684 make_cleanup (xfree, cond);
11685
11686 args += strlen (args);
11687 }
11688
11689 /* Check that we do not have any more arguments. Anything else
11690 is unexpected. */
11691
11692 if (args[0] != '\0')
11693 error (_("Junk at end of expression"));
11694
11695 discard_cleanups (old_chain);
11696
11697 if (exception_name == NULL)
11698 {
11699 /* Catch all exceptions. */
11700 *ex = ex_catch_exception;
11701 *excep_string = NULL;
11702 }
11703 else if (strcmp (exception_name, "unhandled") == 0)
11704 {
11705 /* Catch unhandled exceptions. */
11706 *ex = ex_catch_exception_unhandled;
11707 *excep_string = NULL;
11708 }
11709 else
11710 {
11711 /* Catch a specific exception. */
11712 *ex = ex_catch_exception;
11713 *excep_string = exception_name;
11714 }
11715 *cond_string = cond;
11716 }
11717
11718 /* Return the name of the symbol on which we should break in order to
11719 implement a catchpoint of the EX kind. */
11720
11721 static const char *
11722 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11723 {
11724 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11725
11726 gdb_assert (data->exception_info != NULL);
11727
11728 switch (ex)
11729 {
11730 case ex_catch_exception:
11731 return (data->exception_info->catch_exception_sym);
11732 break;
11733 case ex_catch_exception_unhandled:
11734 return (data->exception_info->catch_exception_unhandled_sym);
11735 break;
11736 case ex_catch_assert:
11737 return (data->exception_info->catch_assert_sym);
11738 break;
11739 default:
11740 internal_error (__FILE__, __LINE__,
11741 _("unexpected catchpoint kind (%d)"), ex);
11742 }
11743 }
11744
11745 /* Return the breakpoint ops "virtual table" used for catchpoints
11746 of the EX kind. */
11747
11748 static const struct breakpoint_ops *
11749 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11750 {
11751 switch (ex)
11752 {
11753 case ex_catch_exception:
11754 return (&catch_exception_breakpoint_ops);
11755 break;
11756 case ex_catch_exception_unhandled:
11757 return (&catch_exception_unhandled_breakpoint_ops);
11758 break;
11759 case ex_catch_assert:
11760 return (&catch_assert_breakpoint_ops);
11761 break;
11762 default:
11763 internal_error (__FILE__, __LINE__,
11764 _("unexpected catchpoint kind (%d)"), ex);
11765 }
11766 }
11767
11768 /* Return the condition that will be used to match the current exception
11769 being raised with the exception that the user wants to catch. This
11770 assumes that this condition is used when the inferior just triggered
11771 an exception catchpoint.
11772
11773 The string returned is a newly allocated string that needs to be
11774 deallocated later. */
11775
11776 static char *
11777 ada_exception_catchpoint_cond_string (const char *excep_string)
11778 {
11779 int i;
11780
11781 /* The standard exceptions are a special case. They are defined in
11782 runtime units that have been compiled without debugging info; if
11783 EXCEP_STRING is the not-fully-qualified name of a standard
11784 exception (e.g. "constraint_error") then, during the evaluation
11785 of the condition expression, the symbol lookup on this name would
11786 *not* return this standard exception. The catchpoint condition
11787 may then be set only on user-defined exceptions which have the
11788 same not-fully-qualified name (e.g. my_package.constraint_error).
11789
11790 To avoid this unexcepted behavior, these standard exceptions are
11791 systematically prefixed by "standard". This means that "catch
11792 exception constraint_error" is rewritten into "catch exception
11793 standard.constraint_error".
11794
11795 If an exception named contraint_error is defined in another package of
11796 the inferior program, then the only way to specify this exception as a
11797 breakpoint condition is to use its fully-qualified named:
11798 e.g. my_package.constraint_error. */
11799
11800 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11801 {
11802 if (strcmp (standard_exc [i], excep_string) == 0)
11803 {
11804 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11805 excep_string);
11806 }
11807 }
11808 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11809 }
11810
11811 /* Return the symtab_and_line that should be used to insert an exception
11812 catchpoint of the TYPE kind.
11813
11814 EXCEP_STRING should contain the name of a specific exception that
11815 the catchpoint should catch, or NULL otherwise.
11816
11817 ADDR_STRING returns the name of the function where the real
11818 breakpoint that implements the catchpoints is set, depending on the
11819 type of catchpoint we need to create. */
11820
11821 static struct symtab_and_line
11822 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11823 char **addr_string, const struct breakpoint_ops **ops)
11824 {
11825 const char *sym_name;
11826 struct symbol *sym;
11827
11828 /* First, find out which exception support info to use. */
11829 ada_exception_support_info_sniffer ();
11830
11831 /* Then lookup the function on which we will break in order to catch
11832 the Ada exceptions requested by the user. */
11833 sym_name = ada_exception_sym_name (ex);
11834 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11835
11836 /* We can assume that SYM is not NULL at this stage. If the symbol
11837 did not exist, ada_exception_support_info_sniffer would have
11838 raised an exception.
11839
11840 Also, ada_exception_support_info_sniffer should have already
11841 verified that SYM is a function symbol. */
11842 gdb_assert (sym != NULL);
11843 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11844
11845 /* Set ADDR_STRING. */
11846 *addr_string = xstrdup (sym_name);
11847
11848 /* Set OPS. */
11849 *ops = ada_exception_breakpoint_ops (ex);
11850
11851 return find_function_start_sal (sym, 1);
11852 }
11853
11854 /* Parse the arguments (ARGS) of the "catch exception" command.
11855
11856 If the user asked the catchpoint to catch only a specific
11857 exception, then save the exception name in ADDR_STRING.
11858
11859 If the user provided a condition, then set COND_STRING to
11860 that condition expression (the memory must be deallocated
11861 after use). Otherwise, set COND_STRING to NULL.
11862
11863 See ada_exception_sal for a description of all the remaining
11864 function arguments of this function. */
11865
11866 static struct symtab_and_line
11867 ada_decode_exception_location (char *args, char **addr_string,
11868 char **excep_string,
11869 char **cond_string,
11870 const struct breakpoint_ops **ops)
11871 {
11872 enum exception_catchpoint_kind ex;
11873
11874 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11875 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11876 }
11877
11878 /* Create an Ada exception catchpoint. */
11879
11880 static void
11881 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11882 struct symtab_and_line sal,
11883 char *addr_string,
11884 char *excep_string,
11885 char *cond_string,
11886 const struct breakpoint_ops *ops,
11887 int tempflag,
11888 int from_tty)
11889 {
11890 struct ada_catchpoint *c;
11891
11892 c = XNEW (struct ada_catchpoint);
11893 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11894 ops, tempflag, from_tty);
11895 c->excep_string = excep_string;
11896 create_excep_cond_exprs (c);
11897 if (cond_string != NULL)
11898 set_breakpoint_condition (&c->base, cond_string, from_tty);
11899 install_breakpoint (0, &c->base, 1);
11900 }
11901
11902 /* Implement the "catch exception" command. */
11903
11904 static void
11905 catch_ada_exception_command (char *arg, int from_tty,
11906 struct cmd_list_element *command)
11907 {
11908 struct gdbarch *gdbarch = get_current_arch ();
11909 int tempflag;
11910 struct symtab_and_line sal;
11911 char *addr_string = NULL;
11912 char *excep_string = NULL;
11913 char *cond_string = NULL;
11914 const struct breakpoint_ops *ops = NULL;
11915
11916 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11917
11918 if (!arg)
11919 arg = "";
11920 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11921 &cond_string, &ops);
11922 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11923 excep_string, cond_string, ops,
11924 tempflag, from_tty);
11925 }
11926
11927 /* Assuming that ARGS contains the arguments of a "catch assert"
11928 command, parse those arguments and return a symtab_and_line object
11929 for a failed assertion catchpoint.
11930
11931 Set ADDR_STRING to the name of the function where the real
11932 breakpoint that implements the catchpoint is set.
11933
11934 If ARGS contains a condition, set COND_STRING to that condition
11935 (the memory needs to be deallocated after use). Otherwise, set
11936 COND_STRING to NULL. */
11937
11938 static struct symtab_and_line
11939 ada_decode_assert_location (char *args, char **addr_string,
11940 char **cond_string,
11941 const struct breakpoint_ops **ops)
11942 {
11943 args = skip_spaces (args);
11944
11945 /* Check whether a condition was provided. */
11946 if (strncmp (args, "if", 2) == 0
11947 && (isspace (args[2]) || args[2] == '\0'))
11948 {
11949 args += 2;
11950 args = skip_spaces (args);
11951 if (args[0] == '\0')
11952 error (_("condition missing after `if' keyword"));
11953 *cond_string = xstrdup (args);
11954 }
11955
11956 /* Otherwise, there should be no other argument at the end of
11957 the command. */
11958 else if (args[0] != '\0')
11959 error (_("Junk at end of arguments."));
11960
11961 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11962 }
11963
11964 /* Implement the "catch assert" command. */
11965
11966 static void
11967 catch_assert_command (char *arg, int from_tty,
11968 struct cmd_list_element *command)
11969 {
11970 struct gdbarch *gdbarch = get_current_arch ();
11971 int tempflag;
11972 struct symtab_and_line sal;
11973 char *addr_string = NULL;
11974 char *cond_string = NULL;
11975 const struct breakpoint_ops *ops = NULL;
11976
11977 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11978
11979 if (!arg)
11980 arg = "";
11981 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11982 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11983 NULL, cond_string, ops, tempflag,
11984 from_tty);
11985 }
11986 /* Operators */
11987 /* Information about operators given special treatment in functions
11988 below. */
11989 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11990
11991 #define ADA_OPERATORS \
11992 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11993 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11994 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11995 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11996 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11997 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11998 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11999 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12000 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12001 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12002 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12003 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12004 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12005 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12006 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12007 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12008 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12009 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12010 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12011
12012 static void
12013 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12014 int *argsp)
12015 {
12016 switch (exp->elts[pc - 1].opcode)
12017 {
12018 default:
12019 operator_length_standard (exp, pc, oplenp, argsp);
12020 break;
12021
12022 #define OP_DEFN(op, len, args, binop) \
12023 case op: *oplenp = len; *argsp = args; break;
12024 ADA_OPERATORS;
12025 #undef OP_DEFN
12026
12027 case OP_AGGREGATE:
12028 *oplenp = 3;
12029 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12030 break;
12031
12032 case OP_CHOICES:
12033 *oplenp = 3;
12034 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12035 break;
12036 }
12037 }
12038
12039 /* Implementation of the exp_descriptor method operator_check. */
12040
12041 static int
12042 ada_operator_check (struct expression *exp, int pos,
12043 int (*objfile_func) (struct objfile *objfile, void *data),
12044 void *data)
12045 {
12046 const union exp_element *const elts = exp->elts;
12047 struct type *type = NULL;
12048
12049 switch (elts[pos].opcode)
12050 {
12051 case UNOP_IN_RANGE:
12052 case UNOP_QUAL:
12053 type = elts[pos + 1].type;
12054 break;
12055
12056 default:
12057 return operator_check_standard (exp, pos, objfile_func, data);
12058 }
12059
12060 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12061
12062 if (type && TYPE_OBJFILE (type)
12063 && (*objfile_func) (TYPE_OBJFILE (type), data))
12064 return 1;
12065
12066 return 0;
12067 }
12068
12069 static char *
12070 ada_op_name (enum exp_opcode opcode)
12071 {
12072 switch (opcode)
12073 {
12074 default:
12075 return op_name_standard (opcode);
12076
12077 #define OP_DEFN(op, len, args, binop) case op: return #op;
12078 ADA_OPERATORS;
12079 #undef OP_DEFN
12080
12081 case OP_AGGREGATE:
12082 return "OP_AGGREGATE";
12083 case OP_CHOICES:
12084 return "OP_CHOICES";
12085 case OP_NAME:
12086 return "OP_NAME";
12087 }
12088 }
12089
12090 /* As for operator_length, but assumes PC is pointing at the first
12091 element of the operator, and gives meaningful results only for the
12092 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12093
12094 static void
12095 ada_forward_operator_length (struct expression *exp, int pc,
12096 int *oplenp, int *argsp)
12097 {
12098 switch (exp->elts[pc].opcode)
12099 {
12100 default:
12101 *oplenp = *argsp = 0;
12102 break;
12103
12104 #define OP_DEFN(op, len, args, binop) \
12105 case op: *oplenp = len; *argsp = args; break;
12106 ADA_OPERATORS;
12107 #undef OP_DEFN
12108
12109 case OP_AGGREGATE:
12110 *oplenp = 3;
12111 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12112 break;
12113
12114 case OP_CHOICES:
12115 *oplenp = 3;
12116 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12117 break;
12118
12119 case OP_STRING:
12120 case OP_NAME:
12121 {
12122 int len = longest_to_int (exp->elts[pc + 1].longconst);
12123
12124 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12125 *argsp = 0;
12126 break;
12127 }
12128 }
12129 }
12130
12131 static int
12132 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12133 {
12134 enum exp_opcode op = exp->elts[elt].opcode;
12135 int oplen, nargs;
12136 int pc = elt;
12137 int i;
12138
12139 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12140
12141 switch (op)
12142 {
12143 /* Ada attributes ('Foo). */
12144 case OP_ATR_FIRST:
12145 case OP_ATR_LAST:
12146 case OP_ATR_LENGTH:
12147 case OP_ATR_IMAGE:
12148 case OP_ATR_MAX:
12149 case OP_ATR_MIN:
12150 case OP_ATR_MODULUS:
12151 case OP_ATR_POS:
12152 case OP_ATR_SIZE:
12153 case OP_ATR_TAG:
12154 case OP_ATR_VAL:
12155 break;
12156
12157 case UNOP_IN_RANGE:
12158 case UNOP_QUAL:
12159 /* XXX: gdb_sprint_host_address, type_sprint */
12160 fprintf_filtered (stream, _("Type @"));
12161 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12162 fprintf_filtered (stream, " (");
12163 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12164 fprintf_filtered (stream, ")");
12165 break;
12166 case BINOP_IN_BOUNDS:
12167 fprintf_filtered (stream, " (%d)",
12168 longest_to_int (exp->elts[pc + 2].longconst));
12169 break;
12170 case TERNOP_IN_RANGE:
12171 break;
12172
12173 case OP_AGGREGATE:
12174 case OP_OTHERS:
12175 case OP_DISCRETE_RANGE:
12176 case OP_POSITIONAL:
12177 case OP_CHOICES:
12178 break;
12179
12180 case OP_NAME:
12181 case OP_STRING:
12182 {
12183 char *name = &exp->elts[elt + 2].string;
12184 int len = longest_to_int (exp->elts[elt + 1].longconst);
12185
12186 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12187 break;
12188 }
12189
12190 default:
12191 return dump_subexp_body_standard (exp, stream, elt);
12192 }
12193
12194 elt += oplen;
12195 for (i = 0; i < nargs; i += 1)
12196 elt = dump_subexp (exp, stream, elt);
12197
12198 return elt;
12199 }
12200
12201 /* The Ada extension of print_subexp (q.v.). */
12202
12203 static void
12204 ada_print_subexp (struct expression *exp, int *pos,
12205 struct ui_file *stream, enum precedence prec)
12206 {
12207 int oplen, nargs, i;
12208 int pc = *pos;
12209 enum exp_opcode op = exp->elts[pc].opcode;
12210
12211 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12212
12213 *pos += oplen;
12214 switch (op)
12215 {
12216 default:
12217 *pos -= oplen;
12218 print_subexp_standard (exp, pos, stream, prec);
12219 return;
12220
12221 case OP_VAR_VALUE:
12222 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12223 return;
12224
12225 case BINOP_IN_BOUNDS:
12226 /* XXX: sprint_subexp */
12227 print_subexp (exp, pos, stream, PREC_SUFFIX);
12228 fputs_filtered (" in ", stream);
12229 print_subexp (exp, pos, stream, PREC_SUFFIX);
12230 fputs_filtered ("'range", stream);
12231 if (exp->elts[pc + 1].longconst > 1)
12232 fprintf_filtered (stream, "(%ld)",
12233 (long) exp->elts[pc + 1].longconst);
12234 return;
12235
12236 case TERNOP_IN_RANGE:
12237 if (prec >= PREC_EQUAL)
12238 fputs_filtered ("(", stream);
12239 /* XXX: sprint_subexp */
12240 print_subexp (exp, pos, stream, PREC_SUFFIX);
12241 fputs_filtered (" in ", stream);
12242 print_subexp (exp, pos, stream, PREC_EQUAL);
12243 fputs_filtered (" .. ", stream);
12244 print_subexp (exp, pos, stream, PREC_EQUAL);
12245 if (prec >= PREC_EQUAL)
12246 fputs_filtered (")", stream);
12247 return;
12248
12249 case OP_ATR_FIRST:
12250 case OP_ATR_LAST:
12251 case OP_ATR_LENGTH:
12252 case OP_ATR_IMAGE:
12253 case OP_ATR_MAX:
12254 case OP_ATR_MIN:
12255 case OP_ATR_MODULUS:
12256 case OP_ATR_POS:
12257 case OP_ATR_SIZE:
12258 case OP_ATR_TAG:
12259 case OP_ATR_VAL:
12260 if (exp->elts[*pos].opcode == OP_TYPE)
12261 {
12262 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12263 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12264 *pos += 3;
12265 }
12266 else
12267 print_subexp (exp, pos, stream, PREC_SUFFIX);
12268 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12269 if (nargs > 1)
12270 {
12271 int tem;
12272
12273 for (tem = 1; tem < nargs; tem += 1)
12274 {
12275 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12276 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12277 }
12278 fputs_filtered (")", stream);
12279 }
12280 return;
12281
12282 case UNOP_QUAL:
12283 type_print (exp->elts[pc + 1].type, "", stream, 0);
12284 fputs_filtered ("'(", stream);
12285 print_subexp (exp, pos, stream, PREC_PREFIX);
12286 fputs_filtered (")", stream);
12287 return;
12288
12289 case UNOP_IN_RANGE:
12290 /* XXX: sprint_subexp */
12291 print_subexp (exp, pos, stream, PREC_SUFFIX);
12292 fputs_filtered (" in ", stream);
12293 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12294 return;
12295
12296 case OP_DISCRETE_RANGE:
12297 print_subexp (exp, pos, stream, PREC_SUFFIX);
12298 fputs_filtered ("..", stream);
12299 print_subexp (exp, pos, stream, PREC_SUFFIX);
12300 return;
12301
12302 case OP_OTHERS:
12303 fputs_filtered ("others => ", stream);
12304 print_subexp (exp, pos, stream, PREC_SUFFIX);
12305 return;
12306
12307 case OP_CHOICES:
12308 for (i = 0; i < nargs-1; i += 1)
12309 {
12310 if (i > 0)
12311 fputs_filtered ("|", stream);
12312 print_subexp (exp, pos, stream, PREC_SUFFIX);
12313 }
12314 fputs_filtered (" => ", stream);
12315 print_subexp (exp, pos, stream, PREC_SUFFIX);
12316 return;
12317
12318 case OP_POSITIONAL:
12319 print_subexp (exp, pos, stream, PREC_SUFFIX);
12320 return;
12321
12322 case OP_AGGREGATE:
12323 fputs_filtered ("(", stream);
12324 for (i = 0; i < nargs; i += 1)
12325 {
12326 if (i > 0)
12327 fputs_filtered (", ", stream);
12328 print_subexp (exp, pos, stream, PREC_SUFFIX);
12329 }
12330 fputs_filtered (")", stream);
12331 return;
12332 }
12333 }
12334
12335 /* Table mapping opcodes into strings for printing operators
12336 and precedences of the operators. */
12337
12338 static const struct op_print ada_op_print_tab[] = {
12339 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12340 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12341 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12342 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12343 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12344 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12345 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12346 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12347 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12348 {">=", BINOP_GEQ, PREC_ORDER, 0},
12349 {">", BINOP_GTR, PREC_ORDER, 0},
12350 {"<", BINOP_LESS, PREC_ORDER, 0},
12351 {">>", BINOP_RSH, PREC_SHIFT, 0},
12352 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12353 {"+", BINOP_ADD, PREC_ADD, 0},
12354 {"-", BINOP_SUB, PREC_ADD, 0},
12355 {"&", BINOP_CONCAT, PREC_ADD, 0},
12356 {"*", BINOP_MUL, PREC_MUL, 0},
12357 {"/", BINOP_DIV, PREC_MUL, 0},
12358 {"rem", BINOP_REM, PREC_MUL, 0},
12359 {"mod", BINOP_MOD, PREC_MUL, 0},
12360 {"**", BINOP_EXP, PREC_REPEAT, 0},
12361 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12362 {"-", UNOP_NEG, PREC_PREFIX, 0},
12363 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12364 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12365 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12366 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12367 {".all", UNOP_IND, PREC_SUFFIX, 1},
12368 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12369 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12370 {NULL, 0, 0, 0}
12371 };
12372 \f
12373 enum ada_primitive_types {
12374 ada_primitive_type_int,
12375 ada_primitive_type_long,
12376 ada_primitive_type_short,
12377 ada_primitive_type_char,
12378 ada_primitive_type_float,
12379 ada_primitive_type_double,
12380 ada_primitive_type_void,
12381 ada_primitive_type_long_long,
12382 ada_primitive_type_long_double,
12383 ada_primitive_type_natural,
12384 ada_primitive_type_positive,
12385 ada_primitive_type_system_address,
12386 nr_ada_primitive_types
12387 };
12388
12389 static void
12390 ada_language_arch_info (struct gdbarch *gdbarch,
12391 struct language_arch_info *lai)
12392 {
12393 const struct builtin_type *builtin = builtin_type (gdbarch);
12394
12395 lai->primitive_type_vector
12396 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12397 struct type *);
12398
12399 lai->primitive_type_vector [ada_primitive_type_int]
12400 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12401 0, "integer");
12402 lai->primitive_type_vector [ada_primitive_type_long]
12403 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12404 0, "long_integer");
12405 lai->primitive_type_vector [ada_primitive_type_short]
12406 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12407 0, "short_integer");
12408 lai->string_char_type
12409 = lai->primitive_type_vector [ada_primitive_type_char]
12410 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12411 lai->primitive_type_vector [ada_primitive_type_float]
12412 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12413 "float", NULL);
12414 lai->primitive_type_vector [ada_primitive_type_double]
12415 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12416 "long_float", NULL);
12417 lai->primitive_type_vector [ada_primitive_type_long_long]
12418 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12419 0, "long_long_integer");
12420 lai->primitive_type_vector [ada_primitive_type_long_double]
12421 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12422 "long_long_float", NULL);
12423 lai->primitive_type_vector [ada_primitive_type_natural]
12424 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12425 0, "natural");
12426 lai->primitive_type_vector [ada_primitive_type_positive]
12427 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12428 0, "positive");
12429 lai->primitive_type_vector [ada_primitive_type_void]
12430 = builtin->builtin_void;
12431
12432 lai->primitive_type_vector [ada_primitive_type_system_address]
12433 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12434 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12435 = "system__address";
12436
12437 lai->bool_type_symbol = NULL;
12438 lai->bool_type_default = builtin->builtin_bool;
12439 }
12440 \f
12441 /* Language vector */
12442
12443 /* Not really used, but needed in the ada_language_defn. */
12444
12445 static void
12446 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12447 {
12448 ada_emit_char (c, type, stream, quoter, 1);
12449 }
12450
12451 static int
12452 parse (void)
12453 {
12454 warnings_issued = 0;
12455 return ada_parse ();
12456 }
12457
12458 static const struct exp_descriptor ada_exp_descriptor = {
12459 ada_print_subexp,
12460 ada_operator_length,
12461 ada_operator_check,
12462 ada_op_name,
12463 ada_dump_subexp_body,
12464 ada_evaluate_subexp
12465 };
12466
12467 /* Implement the "la_get_symbol_name_cmp" language_defn method
12468 for Ada. */
12469
12470 static symbol_name_cmp_ftype
12471 ada_get_symbol_name_cmp (const char *lookup_name)
12472 {
12473 if (should_use_wild_match (lookup_name))
12474 return wild_match;
12475 else
12476 return compare_names;
12477 }
12478
12479 /* Implement the "la_read_var_value" language_defn method for Ada. */
12480
12481 static struct value *
12482 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12483 {
12484 struct block *frame_block = NULL;
12485 struct symbol *renaming_sym = NULL;
12486
12487 /* The only case where default_read_var_value is not sufficient
12488 is when VAR is a renaming... */
12489 if (frame)
12490 frame_block = get_frame_block (frame, NULL);
12491 if (frame_block)
12492 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12493 if (renaming_sym != NULL)
12494 return ada_read_renaming_var_value (renaming_sym, frame_block);
12495
12496 /* This is a typical case where we expect the default_read_var_value
12497 function to work. */
12498 return default_read_var_value (var, frame);
12499 }
12500
12501 const struct language_defn ada_language_defn = {
12502 "ada", /* Language name */
12503 language_ada,
12504 range_check_off,
12505 type_check_off,
12506 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12507 that's not quite what this means. */
12508 array_row_major,
12509 macro_expansion_no,
12510 &ada_exp_descriptor,
12511 parse,
12512 ada_error,
12513 resolve,
12514 ada_printchar, /* Print a character constant */
12515 ada_printstr, /* Function to print string constant */
12516 emit_char, /* Function to print single char (not used) */
12517 ada_print_type, /* Print a type using appropriate syntax */
12518 ada_print_typedef, /* Print a typedef using appropriate syntax */
12519 ada_val_print, /* Print a value using appropriate syntax */
12520 ada_value_print, /* Print a top-level value */
12521 ada_read_var_value, /* la_read_var_value */
12522 NULL, /* Language specific skip_trampoline */
12523 NULL, /* name_of_this */
12524 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12525 basic_lookup_transparent_type, /* lookup_transparent_type */
12526 ada_la_decode, /* Language specific symbol demangler */
12527 NULL, /* Language specific
12528 class_name_from_physname */
12529 ada_op_print_tab, /* expression operators for printing */
12530 0, /* c-style arrays */
12531 1, /* String lower bound */
12532 ada_get_gdb_completer_word_break_characters,
12533 ada_make_symbol_completion_list,
12534 ada_language_arch_info,
12535 ada_print_array_index,
12536 default_pass_by_reference,
12537 c_get_string,
12538 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12539 ada_iterate_over_symbols,
12540 LANG_MAGIC
12541 };
12542
12543 /* Provide a prototype to silence -Wmissing-prototypes. */
12544 extern initialize_file_ftype _initialize_ada_language;
12545
12546 /* Command-list for the "set/show ada" prefix command. */
12547 static struct cmd_list_element *set_ada_list;
12548 static struct cmd_list_element *show_ada_list;
12549
12550 /* Implement the "set ada" prefix command. */
12551
12552 static void
12553 set_ada_command (char *arg, int from_tty)
12554 {
12555 printf_unfiltered (_(\
12556 "\"set ada\" must be followed by the name of a setting.\n"));
12557 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12558 }
12559
12560 /* Implement the "show ada" prefix command. */
12561
12562 static void
12563 show_ada_command (char *args, int from_tty)
12564 {
12565 cmd_show_list (show_ada_list, from_tty, "");
12566 }
12567
12568 static void
12569 initialize_ada_catchpoint_ops (void)
12570 {
12571 struct breakpoint_ops *ops;
12572
12573 initialize_breakpoint_ops ();
12574
12575 ops = &catch_exception_breakpoint_ops;
12576 *ops = bkpt_breakpoint_ops;
12577 ops->dtor = dtor_catch_exception;
12578 ops->allocate_location = allocate_location_catch_exception;
12579 ops->re_set = re_set_catch_exception;
12580 ops->check_status = check_status_catch_exception;
12581 ops->print_it = print_it_catch_exception;
12582 ops->print_one = print_one_catch_exception;
12583 ops->print_mention = print_mention_catch_exception;
12584 ops->print_recreate = print_recreate_catch_exception;
12585
12586 ops = &catch_exception_unhandled_breakpoint_ops;
12587 *ops = bkpt_breakpoint_ops;
12588 ops->dtor = dtor_catch_exception_unhandled;
12589 ops->allocate_location = allocate_location_catch_exception_unhandled;
12590 ops->re_set = re_set_catch_exception_unhandled;
12591 ops->check_status = check_status_catch_exception_unhandled;
12592 ops->print_it = print_it_catch_exception_unhandled;
12593 ops->print_one = print_one_catch_exception_unhandled;
12594 ops->print_mention = print_mention_catch_exception_unhandled;
12595 ops->print_recreate = print_recreate_catch_exception_unhandled;
12596
12597 ops = &catch_assert_breakpoint_ops;
12598 *ops = bkpt_breakpoint_ops;
12599 ops->dtor = dtor_catch_assert;
12600 ops->allocate_location = allocate_location_catch_assert;
12601 ops->re_set = re_set_catch_assert;
12602 ops->check_status = check_status_catch_assert;
12603 ops->print_it = print_it_catch_assert;
12604 ops->print_one = print_one_catch_assert;
12605 ops->print_mention = print_mention_catch_assert;
12606 ops->print_recreate = print_recreate_catch_assert;
12607 }
12608
12609 void
12610 _initialize_ada_language (void)
12611 {
12612 add_language (&ada_language_defn);
12613
12614 initialize_ada_catchpoint_ops ();
12615
12616 add_prefix_cmd ("ada", no_class, set_ada_command,
12617 _("Prefix command for changing Ada-specfic settings"),
12618 &set_ada_list, "set ada ", 0, &setlist);
12619
12620 add_prefix_cmd ("ada", no_class, show_ada_command,
12621 _("Generic command for showing Ada-specific settings."),
12622 &show_ada_list, "show ada ", 0, &showlist);
12623
12624 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12625 &trust_pad_over_xvs, _("\
12626 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12627 Show whether an optimization trusting PAD types over XVS types is activated"),
12628 _("\
12629 This is related to the encoding used by the GNAT compiler. The debugger\n\
12630 should normally trust the contents of PAD types, but certain older versions\n\
12631 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12632 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12633 work around this bug. It is always safe to turn this option \"off\", but\n\
12634 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12635 this option to \"off\" unless necessary."),
12636 NULL, NULL, &set_ada_list, &show_ada_list);
12637
12638 add_catch_command ("exception", _("\
12639 Catch Ada exceptions, when raised.\n\
12640 With an argument, catch only exceptions with the given name."),
12641 catch_ada_exception_command,
12642 NULL,
12643 CATCH_PERMANENT,
12644 CATCH_TEMPORARY);
12645 add_catch_command ("assert", _("\
12646 Catch failed Ada assertions, when raised.\n\
12647 With an argument, catch only exceptions with the given name."),
12648 catch_assert_command,
12649 NULL,
12650 CATCH_PERMANENT,
12651 CATCH_TEMPORARY);
12652
12653 varsize_limit = 65536;
12654
12655 obstack_init (&symbol_list_obstack);
12656
12657 decoded_names_store = htab_create_alloc
12658 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12659 NULL, xcalloc, xfree);
12660
12661 /* Setup per-inferior data. */
12662 observer_attach_inferior_exit (ada_inferior_exit);
12663 ada_inferior_data
12664 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12665 }