]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
Constify add_prefix_cmd
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static int full_match (const char *, const char *);
108
109 static struct value *make_array_descriptor (struct type *, struct value *);
110
111 static void ada_add_block_symbols (struct obstack *,
112 const struct block *, const char *,
113 domain_enum, struct objfile *, int);
114
115 static void ada_add_all_symbols (struct obstack *, const struct block *,
116 const char *, domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static int wild_match (const char *, const char *);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272 static struct type *ada_find_any_type (const char *name);
273 \f
274
275 /* The result of a symbol lookup to be stored in our symbol cache. */
276
277 struct cache_entry
278 {
279 /* The name used to perform the lookup. */
280 const char *name;
281 /* The namespace used during the lookup. */
282 domain_enum domain;
283 /* The symbol returned by the lookup, or NULL if no matching symbol
284 was found. */
285 struct symbol *sym;
286 /* The block where the symbol was found, or NULL if no matching
287 symbol was found. */
288 const struct block *block;
289 /* A pointer to the next entry with the same hash. */
290 struct cache_entry *next;
291 };
292
293 /* The Ada symbol cache, used to store the result of Ada-mode symbol
294 lookups in the course of executing the user's commands.
295
296 The cache is implemented using a simple, fixed-sized hash.
297 The size is fixed on the grounds that there are not likely to be
298 all that many symbols looked up during any given session, regardless
299 of the size of the symbol table. If we decide to go to a resizable
300 table, let's just use the stuff from libiberty instead. */
301
302 #define HASH_SIZE 1009
303
304 struct ada_symbol_cache
305 {
306 /* An obstack used to store the entries in our cache. */
307 struct obstack cache_space;
308
309 /* The root of the hash table used to implement our symbol cache. */
310 struct cache_entry *root[HASH_SIZE];
311 };
312
313 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
314
315 /* Maximum-sized dynamic type. */
316 static unsigned int varsize_limit;
317
318 static const char ada_completer_word_break_characters[] =
319 #ifdef VMS
320 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
321 #else
322 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
323 #endif
324
325 /* The name of the symbol to use to get the name of the main subprogram. */
326 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
327 = "__gnat_ada_main_program_name";
328
329 /* Limit on the number of warnings to raise per expression evaluation. */
330 static int warning_limit = 2;
331
332 /* Number of warning messages issued; reset to 0 by cleanups after
333 expression evaluation. */
334 static int warnings_issued = 0;
335
336 static const char *known_runtime_file_name_patterns[] = {
337 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
338 };
339
340 static const char *known_auxiliary_function_name_patterns[] = {
341 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
342 };
343
344 /* Space for allocating results of ada_lookup_symbol_list. */
345 static struct obstack symbol_list_obstack;
346
347 /* Maintenance-related settings for this module. */
348
349 static struct cmd_list_element *maint_set_ada_cmdlist;
350 static struct cmd_list_element *maint_show_ada_cmdlist;
351
352 /* Implement the "maintenance set ada" (prefix) command. */
353
354 static void
355 maint_set_ada_cmd (const char *args, int from_tty)
356 {
357 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
358 gdb_stdout);
359 }
360
361 /* Implement the "maintenance show ada" (prefix) command. */
362
363 static void
364 maint_show_ada_cmd (const char *args, int from_tty)
365 {
366 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
367 }
368
369 /* The "maintenance ada set/show ignore-descriptive-type" value. */
370
371 static int ada_ignore_descriptive_types_p = 0;
372
373 /* Inferior-specific data. */
374
375 /* Per-inferior data for this module. */
376
377 struct ada_inferior_data
378 {
379 /* The ada__tags__type_specific_data type, which is used when decoding
380 tagged types. With older versions of GNAT, this type was directly
381 accessible through a component ("tsd") in the object tag. But this
382 is no longer the case, so we cache it for each inferior. */
383 struct type *tsd_type;
384
385 /* The exception_support_info data. This data is used to determine
386 how to implement support for Ada exception catchpoints in a given
387 inferior. */
388 const struct exception_support_info *exception_info;
389 };
390
391 /* Our key to this module's inferior data. */
392 static const struct inferior_data *ada_inferior_data;
393
394 /* A cleanup routine for our inferior data. */
395 static void
396 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
397 {
398 struct ada_inferior_data *data;
399
400 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
401 if (data != NULL)
402 xfree (data);
403 }
404
405 /* Return our inferior data for the given inferior (INF).
406
407 This function always returns a valid pointer to an allocated
408 ada_inferior_data structure. If INF's inferior data has not
409 been previously set, this functions creates a new one with all
410 fields set to zero, sets INF's inferior to it, and then returns
411 a pointer to that newly allocated ada_inferior_data. */
412
413 static struct ada_inferior_data *
414 get_ada_inferior_data (struct inferior *inf)
415 {
416 struct ada_inferior_data *data;
417
418 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
419 if (data == NULL)
420 {
421 data = XCNEW (struct ada_inferior_data);
422 set_inferior_data (inf, ada_inferior_data, data);
423 }
424
425 return data;
426 }
427
428 /* Perform all necessary cleanups regarding our module's inferior data
429 that is required after the inferior INF just exited. */
430
431 static void
432 ada_inferior_exit (struct inferior *inf)
433 {
434 ada_inferior_data_cleanup (inf, NULL);
435 set_inferior_data (inf, ada_inferior_data, NULL);
436 }
437
438
439 /* program-space-specific data. */
440
441 /* This module's per-program-space data. */
442 struct ada_pspace_data
443 {
444 /* The Ada symbol cache. */
445 struct ada_symbol_cache *sym_cache;
446 };
447
448 /* Key to our per-program-space data. */
449 static const struct program_space_data *ada_pspace_data_handle;
450
451 /* Return this module's data for the given program space (PSPACE).
452 If not is found, add a zero'ed one now.
453
454 This function always returns a valid object. */
455
456 static struct ada_pspace_data *
457 get_ada_pspace_data (struct program_space *pspace)
458 {
459 struct ada_pspace_data *data;
460
461 data = ((struct ada_pspace_data *)
462 program_space_data (pspace, ada_pspace_data_handle));
463 if (data == NULL)
464 {
465 data = XCNEW (struct ada_pspace_data);
466 set_program_space_data (pspace, ada_pspace_data_handle, data);
467 }
468
469 return data;
470 }
471
472 /* The cleanup callback for this module's per-program-space data. */
473
474 static void
475 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
476 {
477 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
478
479 if (pspace_data->sym_cache != NULL)
480 ada_free_symbol_cache (pspace_data->sym_cache);
481 xfree (pspace_data);
482 }
483
484 /* Utilities */
485
486 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
487 all typedef layers have been peeled. Otherwise, return TYPE.
488
489 Normally, we really expect a typedef type to only have 1 typedef layer.
490 In other words, we really expect the target type of a typedef type to be
491 a non-typedef type. This is particularly true for Ada units, because
492 the language does not have a typedef vs not-typedef distinction.
493 In that respect, the Ada compiler has been trying to eliminate as many
494 typedef definitions in the debugging information, since they generally
495 do not bring any extra information (we still use typedef under certain
496 circumstances related mostly to the GNAT encoding).
497
498 Unfortunately, we have seen situations where the debugging information
499 generated by the compiler leads to such multiple typedef layers. For
500 instance, consider the following example with stabs:
501
502 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
503 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
504
505 This is an error in the debugging information which causes type
506 pck__float_array___XUP to be defined twice, and the second time,
507 it is defined as a typedef of a typedef.
508
509 This is on the fringe of legality as far as debugging information is
510 concerned, and certainly unexpected. But it is easy to handle these
511 situations correctly, so we can afford to be lenient in this case. */
512
513 static struct type *
514 ada_typedef_target_type (struct type *type)
515 {
516 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
517 type = TYPE_TARGET_TYPE (type);
518 return type;
519 }
520
521 /* Given DECODED_NAME a string holding a symbol name in its
522 decoded form (ie using the Ada dotted notation), returns
523 its unqualified name. */
524
525 static const char *
526 ada_unqualified_name (const char *decoded_name)
527 {
528 const char *result;
529
530 /* If the decoded name starts with '<', it means that the encoded
531 name does not follow standard naming conventions, and thus that
532 it is not your typical Ada symbol name. Trying to unqualify it
533 is therefore pointless and possibly erroneous. */
534 if (decoded_name[0] == '<')
535 return decoded_name;
536
537 result = strrchr (decoded_name, '.');
538 if (result != NULL)
539 result++; /* Skip the dot... */
540 else
541 result = decoded_name;
542
543 return result;
544 }
545
546 /* Return a string starting with '<', followed by STR, and '>'.
547 The result is good until the next call. */
548
549 static char *
550 add_angle_brackets (const char *str)
551 {
552 static char *result = NULL;
553
554 xfree (result);
555 result = xstrprintf ("<%s>", str);
556 return result;
557 }
558
559 static const char *
560 ada_get_gdb_completer_word_break_characters (void)
561 {
562 return ada_completer_word_break_characters;
563 }
564
565 /* Print an array element index using the Ada syntax. */
566
567 static void
568 ada_print_array_index (struct value *index_value, struct ui_file *stream,
569 const struct value_print_options *options)
570 {
571 LA_VALUE_PRINT (index_value, stream, options);
572 fprintf_filtered (stream, " => ");
573 }
574
575 /* Assuming VECT points to an array of *SIZE objects of size
576 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
577 updating *SIZE as necessary and returning the (new) array. */
578
579 void *
580 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
581 {
582 if (*size < min_size)
583 {
584 *size *= 2;
585 if (*size < min_size)
586 *size = min_size;
587 vect = xrealloc (vect, *size * element_size);
588 }
589 return vect;
590 }
591
592 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
593 suffix of FIELD_NAME beginning "___". */
594
595 static int
596 field_name_match (const char *field_name, const char *target)
597 {
598 int len = strlen (target);
599
600 return
601 (strncmp (field_name, target, len) == 0
602 && (field_name[len] == '\0'
603 || (startswith (field_name + len, "___")
604 && strcmp (field_name + strlen (field_name) - 6,
605 "___XVN") != 0)));
606 }
607
608
609 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
610 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
611 and return its index. This function also handles fields whose name
612 have ___ suffixes because the compiler sometimes alters their name
613 by adding such a suffix to represent fields with certain constraints.
614 If the field could not be found, return a negative number if
615 MAYBE_MISSING is set. Otherwise raise an error. */
616
617 int
618 ada_get_field_index (const struct type *type, const char *field_name,
619 int maybe_missing)
620 {
621 int fieldno;
622 struct type *struct_type = check_typedef ((struct type *) type);
623
624 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
625 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
626 return fieldno;
627
628 if (!maybe_missing)
629 error (_("Unable to find field %s in struct %s. Aborting"),
630 field_name, TYPE_NAME (struct_type));
631
632 return -1;
633 }
634
635 /* The length of the prefix of NAME prior to any "___" suffix. */
636
637 int
638 ada_name_prefix_len (const char *name)
639 {
640 if (name == NULL)
641 return 0;
642 else
643 {
644 const char *p = strstr (name, "___");
645
646 if (p == NULL)
647 return strlen (name);
648 else
649 return p - name;
650 }
651 }
652
653 /* Return non-zero if SUFFIX is a suffix of STR.
654 Return zero if STR is null. */
655
656 static int
657 is_suffix (const char *str, const char *suffix)
658 {
659 int len1, len2;
660
661 if (str == NULL)
662 return 0;
663 len1 = strlen (str);
664 len2 = strlen (suffix);
665 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
666 }
667
668 /* The contents of value VAL, treated as a value of type TYPE. The
669 result is an lval in memory if VAL is. */
670
671 static struct value *
672 coerce_unspec_val_to_type (struct value *val, struct type *type)
673 {
674 type = ada_check_typedef (type);
675 if (value_type (val) == type)
676 return val;
677 else
678 {
679 struct value *result;
680
681 /* Make sure that the object size is not unreasonable before
682 trying to allocate some memory for it. */
683 ada_ensure_varsize_limit (type);
684
685 if (value_lazy (val)
686 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
687 result = allocate_value_lazy (type);
688 else
689 {
690 result = allocate_value (type);
691 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
692 }
693 set_value_component_location (result, val);
694 set_value_bitsize (result, value_bitsize (val));
695 set_value_bitpos (result, value_bitpos (val));
696 set_value_address (result, value_address (val));
697 return result;
698 }
699 }
700
701 static const gdb_byte *
702 cond_offset_host (const gdb_byte *valaddr, long offset)
703 {
704 if (valaddr == NULL)
705 return NULL;
706 else
707 return valaddr + offset;
708 }
709
710 static CORE_ADDR
711 cond_offset_target (CORE_ADDR address, long offset)
712 {
713 if (address == 0)
714 return 0;
715 else
716 return address + offset;
717 }
718
719 /* Issue a warning (as for the definition of warning in utils.c, but
720 with exactly one argument rather than ...), unless the limit on the
721 number of warnings has passed during the evaluation of the current
722 expression. */
723
724 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
725 provided by "complaint". */
726 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
727
728 static void
729 lim_warning (const char *format, ...)
730 {
731 va_list args;
732
733 va_start (args, format);
734 warnings_issued += 1;
735 if (warnings_issued <= warning_limit)
736 vwarning (format, args);
737
738 va_end (args);
739 }
740
741 /* Issue an error if the size of an object of type T is unreasonable,
742 i.e. if it would be a bad idea to allocate a value of this type in
743 GDB. */
744
745 void
746 ada_ensure_varsize_limit (const struct type *type)
747 {
748 if (TYPE_LENGTH (type) > varsize_limit)
749 error (_("object size is larger than varsize-limit"));
750 }
751
752 /* Maximum value of a SIZE-byte signed integer type. */
753 static LONGEST
754 max_of_size (int size)
755 {
756 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
757
758 return top_bit | (top_bit - 1);
759 }
760
761 /* Minimum value of a SIZE-byte signed integer type. */
762 static LONGEST
763 min_of_size (int size)
764 {
765 return -max_of_size (size) - 1;
766 }
767
768 /* Maximum value of a SIZE-byte unsigned integer type. */
769 static ULONGEST
770 umax_of_size (int size)
771 {
772 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
773
774 return top_bit | (top_bit - 1);
775 }
776
777 /* Maximum value of integral type T, as a signed quantity. */
778 static LONGEST
779 max_of_type (struct type *t)
780 {
781 if (TYPE_UNSIGNED (t))
782 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
783 else
784 return max_of_size (TYPE_LENGTH (t));
785 }
786
787 /* Minimum value of integral type T, as a signed quantity. */
788 static LONGEST
789 min_of_type (struct type *t)
790 {
791 if (TYPE_UNSIGNED (t))
792 return 0;
793 else
794 return min_of_size (TYPE_LENGTH (t));
795 }
796
797 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
798 LONGEST
799 ada_discrete_type_high_bound (struct type *type)
800 {
801 type = resolve_dynamic_type (type, NULL, 0);
802 switch (TYPE_CODE (type))
803 {
804 case TYPE_CODE_RANGE:
805 return TYPE_HIGH_BOUND (type);
806 case TYPE_CODE_ENUM:
807 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
808 case TYPE_CODE_BOOL:
809 return 1;
810 case TYPE_CODE_CHAR:
811 case TYPE_CODE_INT:
812 return max_of_type (type);
813 default:
814 error (_("Unexpected type in ada_discrete_type_high_bound."));
815 }
816 }
817
818 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
819 LONGEST
820 ada_discrete_type_low_bound (struct type *type)
821 {
822 type = resolve_dynamic_type (type, NULL, 0);
823 switch (TYPE_CODE (type))
824 {
825 case TYPE_CODE_RANGE:
826 return TYPE_LOW_BOUND (type);
827 case TYPE_CODE_ENUM:
828 return TYPE_FIELD_ENUMVAL (type, 0);
829 case TYPE_CODE_BOOL:
830 return 0;
831 case TYPE_CODE_CHAR:
832 case TYPE_CODE_INT:
833 return min_of_type (type);
834 default:
835 error (_("Unexpected type in ada_discrete_type_low_bound."));
836 }
837 }
838
839 /* The identity on non-range types. For range types, the underlying
840 non-range scalar type. */
841
842 static struct type *
843 get_base_type (struct type *type)
844 {
845 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
846 {
847 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
848 return type;
849 type = TYPE_TARGET_TYPE (type);
850 }
851 return type;
852 }
853
854 /* Return a decoded version of the given VALUE. This means returning
855 a value whose type is obtained by applying all the GNAT-specific
856 encondings, making the resulting type a static but standard description
857 of the initial type. */
858
859 struct value *
860 ada_get_decoded_value (struct value *value)
861 {
862 struct type *type = ada_check_typedef (value_type (value));
863
864 if (ada_is_array_descriptor_type (type)
865 || (ada_is_constrained_packed_array_type (type)
866 && TYPE_CODE (type) != TYPE_CODE_PTR))
867 {
868 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
869 value = ada_coerce_to_simple_array_ptr (value);
870 else
871 value = ada_coerce_to_simple_array (value);
872 }
873 else
874 value = ada_to_fixed_value (value);
875
876 return value;
877 }
878
879 /* Same as ada_get_decoded_value, but with the given TYPE.
880 Because there is no associated actual value for this type,
881 the resulting type might be a best-effort approximation in
882 the case of dynamic types. */
883
884 struct type *
885 ada_get_decoded_type (struct type *type)
886 {
887 type = to_static_fixed_type (type);
888 if (ada_is_constrained_packed_array_type (type))
889 type = ada_coerce_to_simple_array_type (type);
890 return type;
891 }
892
893 \f
894
895 /* Language Selection */
896
897 /* If the main program is in Ada, return language_ada, otherwise return LANG
898 (the main program is in Ada iif the adainit symbol is found). */
899
900 enum language
901 ada_update_initial_language (enum language lang)
902 {
903 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
904 (struct objfile *) NULL).minsym != NULL)
905 return language_ada;
906
907 return lang;
908 }
909
910 /* If the main procedure is written in Ada, then return its name.
911 The result is good until the next call. Return NULL if the main
912 procedure doesn't appear to be in Ada. */
913
914 char *
915 ada_main_name (void)
916 {
917 struct bound_minimal_symbol msym;
918 static char *main_program_name = NULL;
919
920 /* For Ada, the name of the main procedure is stored in a specific
921 string constant, generated by the binder. Look for that symbol,
922 extract its address, and then read that string. If we didn't find
923 that string, then most probably the main procedure is not written
924 in Ada. */
925 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
926
927 if (msym.minsym != NULL)
928 {
929 CORE_ADDR main_program_name_addr;
930 int err_code;
931
932 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
933 if (main_program_name_addr == 0)
934 error (_("Invalid address for Ada main program name."));
935
936 xfree (main_program_name);
937 target_read_string (main_program_name_addr, &main_program_name,
938 1024, &err_code);
939
940 if (err_code != 0)
941 return NULL;
942 return main_program_name;
943 }
944
945 /* The main procedure doesn't seem to be in Ada. */
946 return NULL;
947 }
948 \f
949 /* Symbols */
950
951 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
952 of NULLs. */
953
954 const struct ada_opname_map ada_opname_table[] = {
955 {"Oadd", "\"+\"", BINOP_ADD},
956 {"Osubtract", "\"-\"", BINOP_SUB},
957 {"Omultiply", "\"*\"", BINOP_MUL},
958 {"Odivide", "\"/\"", BINOP_DIV},
959 {"Omod", "\"mod\"", BINOP_MOD},
960 {"Orem", "\"rem\"", BINOP_REM},
961 {"Oexpon", "\"**\"", BINOP_EXP},
962 {"Olt", "\"<\"", BINOP_LESS},
963 {"Ole", "\"<=\"", BINOP_LEQ},
964 {"Ogt", "\">\"", BINOP_GTR},
965 {"Oge", "\">=\"", BINOP_GEQ},
966 {"Oeq", "\"=\"", BINOP_EQUAL},
967 {"One", "\"/=\"", BINOP_NOTEQUAL},
968 {"Oand", "\"and\"", BINOP_BITWISE_AND},
969 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
970 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
971 {"Oconcat", "\"&\"", BINOP_CONCAT},
972 {"Oabs", "\"abs\"", UNOP_ABS},
973 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
974 {"Oadd", "\"+\"", UNOP_PLUS},
975 {"Osubtract", "\"-\"", UNOP_NEG},
976 {NULL, NULL}
977 };
978
979 /* The "encoded" form of DECODED, according to GNAT conventions.
980 The result is valid until the next call to ada_encode. */
981
982 char *
983 ada_encode (const char *decoded)
984 {
985 static char *encoding_buffer = NULL;
986 static size_t encoding_buffer_size = 0;
987 const char *p;
988 int k;
989
990 if (decoded == NULL)
991 return NULL;
992
993 GROW_VECT (encoding_buffer, encoding_buffer_size,
994 2 * strlen (decoded) + 10);
995
996 k = 0;
997 for (p = decoded; *p != '\0'; p += 1)
998 {
999 if (*p == '.')
1000 {
1001 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1002 k += 2;
1003 }
1004 else if (*p == '"')
1005 {
1006 const struct ada_opname_map *mapping;
1007
1008 for (mapping = ada_opname_table;
1009 mapping->encoded != NULL
1010 && !startswith (p, mapping->decoded); mapping += 1)
1011 ;
1012 if (mapping->encoded == NULL)
1013 error (_("invalid Ada operator name: %s"), p);
1014 strcpy (encoding_buffer + k, mapping->encoded);
1015 k += strlen (mapping->encoded);
1016 break;
1017 }
1018 else
1019 {
1020 encoding_buffer[k] = *p;
1021 k += 1;
1022 }
1023 }
1024
1025 encoding_buffer[k] = '\0';
1026 return encoding_buffer;
1027 }
1028
1029 /* Return NAME folded to lower case, or, if surrounded by single
1030 quotes, unfolded, but with the quotes stripped away. Result good
1031 to next call. */
1032
1033 char *
1034 ada_fold_name (const char *name)
1035 {
1036 static char *fold_buffer = NULL;
1037 static size_t fold_buffer_size = 0;
1038
1039 int len = strlen (name);
1040 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1041
1042 if (name[0] == '\'')
1043 {
1044 strncpy (fold_buffer, name + 1, len - 2);
1045 fold_buffer[len - 2] = '\000';
1046 }
1047 else
1048 {
1049 int i;
1050
1051 for (i = 0; i <= len; i += 1)
1052 fold_buffer[i] = tolower (name[i]);
1053 }
1054
1055 return fold_buffer;
1056 }
1057
1058 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1059
1060 static int
1061 is_lower_alphanum (const char c)
1062 {
1063 return (isdigit (c) || (isalpha (c) && islower (c)));
1064 }
1065
1066 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1067 This function saves in LEN the length of that same symbol name but
1068 without either of these suffixes:
1069 . .{DIGIT}+
1070 . ${DIGIT}+
1071 . ___{DIGIT}+
1072 . __{DIGIT}+.
1073
1074 These are suffixes introduced by the compiler for entities such as
1075 nested subprogram for instance, in order to avoid name clashes.
1076 They do not serve any purpose for the debugger. */
1077
1078 static void
1079 ada_remove_trailing_digits (const char *encoded, int *len)
1080 {
1081 if (*len > 1 && isdigit (encoded[*len - 1]))
1082 {
1083 int i = *len - 2;
1084
1085 while (i > 0 && isdigit (encoded[i]))
1086 i--;
1087 if (i >= 0 && encoded[i] == '.')
1088 *len = i;
1089 else if (i >= 0 && encoded[i] == '$')
1090 *len = i;
1091 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1092 *len = i - 2;
1093 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1094 *len = i - 1;
1095 }
1096 }
1097
1098 /* Remove the suffix introduced by the compiler for protected object
1099 subprograms. */
1100
1101 static void
1102 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1103 {
1104 /* Remove trailing N. */
1105
1106 /* Protected entry subprograms are broken into two
1107 separate subprograms: The first one is unprotected, and has
1108 a 'N' suffix; the second is the protected version, and has
1109 the 'P' suffix. The second calls the first one after handling
1110 the protection. Since the P subprograms are internally generated,
1111 we leave these names undecoded, giving the user a clue that this
1112 entity is internal. */
1113
1114 if (*len > 1
1115 && encoded[*len - 1] == 'N'
1116 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1117 *len = *len - 1;
1118 }
1119
1120 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1121
1122 static void
1123 ada_remove_Xbn_suffix (const char *encoded, int *len)
1124 {
1125 int i = *len - 1;
1126
1127 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1128 i--;
1129
1130 if (encoded[i] != 'X')
1131 return;
1132
1133 if (i == 0)
1134 return;
1135
1136 if (isalnum (encoded[i-1]))
1137 *len = i;
1138 }
1139
1140 /* If ENCODED follows the GNAT entity encoding conventions, then return
1141 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1142 replaced by ENCODED.
1143
1144 The resulting string is valid until the next call of ada_decode.
1145 If the string is unchanged by decoding, the original string pointer
1146 is returned. */
1147
1148 const char *
1149 ada_decode (const char *encoded)
1150 {
1151 int i, j;
1152 int len0;
1153 const char *p;
1154 char *decoded;
1155 int at_start_name;
1156 static char *decoding_buffer = NULL;
1157 static size_t decoding_buffer_size = 0;
1158
1159 /* The name of the Ada main procedure starts with "_ada_".
1160 This prefix is not part of the decoded name, so skip this part
1161 if we see this prefix. */
1162 if (startswith (encoded, "_ada_"))
1163 encoded += 5;
1164
1165 /* If the name starts with '_', then it is not a properly encoded
1166 name, so do not attempt to decode it. Similarly, if the name
1167 starts with '<', the name should not be decoded. */
1168 if (encoded[0] == '_' || encoded[0] == '<')
1169 goto Suppress;
1170
1171 len0 = strlen (encoded);
1172
1173 ada_remove_trailing_digits (encoded, &len0);
1174 ada_remove_po_subprogram_suffix (encoded, &len0);
1175
1176 /* Remove the ___X.* suffix if present. Do not forget to verify that
1177 the suffix is located before the current "end" of ENCODED. We want
1178 to avoid re-matching parts of ENCODED that have previously been
1179 marked as discarded (by decrementing LEN0). */
1180 p = strstr (encoded, "___");
1181 if (p != NULL && p - encoded < len0 - 3)
1182 {
1183 if (p[3] == 'X')
1184 len0 = p - encoded;
1185 else
1186 goto Suppress;
1187 }
1188
1189 /* Remove any trailing TKB suffix. It tells us that this symbol
1190 is for the body of a task, but that information does not actually
1191 appear in the decoded name. */
1192
1193 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1194 len0 -= 3;
1195
1196 /* Remove any trailing TB suffix. The TB suffix is slightly different
1197 from the TKB suffix because it is used for non-anonymous task
1198 bodies. */
1199
1200 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1201 len0 -= 2;
1202
1203 /* Remove trailing "B" suffixes. */
1204 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1205
1206 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1207 len0 -= 1;
1208
1209 /* Make decoded big enough for possible expansion by operator name. */
1210
1211 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1212 decoded = decoding_buffer;
1213
1214 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1215
1216 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1217 {
1218 i = len0 - 2;
1219 while ((i >= 0 && isdigit (encoded[i]))
1220 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1221 i -= 1;
1222 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1223 len0 = i - 1;
1224 else if (encoded[i] == '$')
1225 len0 = i;
1226 }
1227
1228 /* The first few characters that are not alphabetic are not part
1229 of any encoding we use, so we can copy them over verbatim. */
1230
1231 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1232 decoded[j] = encoded[i];
1233
1234 at_start_name = 1;
1235 while (i < len0)
1236 {
1237 /* Is this a symbol function? */
1238 if (at_start_name && encoded[i] == 'O')
1239 {
1240 int k;
1241
1242 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1243 {
1244 int op_len = strlen (ada_opname_table[k].encoded);
1245 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1246 op_len - 1) == 0)
1247 && !isalnum (encoded[i + op_len]))
1248 {
1249 strcpy (decoded + j, ada_opname_table[k].decoded);
1250 at_start_name = 0;
1251 i += op_len;
1252 j += strlen (ada_opname_table[k].decoded);
1253 break;
1254 }
1255 }
1256 if (ada_opname_table[k].encoded != NULL)
1257 continue;
1258 }
1259 at_start_name = 0;
1260
1261 /* Replace "TK__" with "__", which will eventually be translated
1262 into "." (just below). */
1263
1264 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1265 i += 2;
1266
1267 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1268 be translated into "." (just below). These are internal names
1269 generated for anonymous blocks inside which our symbol is nested. */
1270
1271 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1272 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1273 && isdigit (encoded [i+4]))
1274 {
1275 int k = i + 5;
1276
1277 while (k < len0 && isdigit (encoded[k]))
1278 k++; /* Skip any extra digit. */
1279
1280 /* Double-check that the "__B_{DIGITS}+" sequence we found
1281 is indeed followed by "__". */
1282 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1283 i = k;
1284 }
1285
1286 /* Remove _E{DIGITS}+[sb] */
1287
1288 /* Just as for protected object subprograms, there are 2 categories
1289 of subprograms created by the compiler for each entry. The first
1290 one implements the actual entry code, and has a suffix following
1291 the convention above; the second one implements the barrier and
1292 uses the same convention as above, except that the 'E' is replaced
1293 by a 'B'.
1294
1295 Just as above, we do not decode the name of barrier functions
1296 to give the user a clue that the code he is debugging has been
1297 internally generated. */
1298
1299 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1300 && isdigit (encoded[i+2]))
1301 {
1302 int k = i + 3;
1303
1304 while (k < len0 && isdigit (encoded[k]))
1305 k++;
1306
1307 if (k < len0
1308 && (encoded[k] == 'b' || encoded[k] == 's'))
1309 {
1310 k++;
1311 /* Just as an extra precaution, make sure that if this
1312 suffix is followed by anything else, it is a '_'.
1313 Otherwise, we matched this sequence by accident. */
1314 if (k == len0
1315 || (k < len0 && encoded[k] == '_'))
1316 i = k;
1317 }
1318 }
1319
1320 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1321 the GNAT front-end in protected object subprograms. */
1322
1323 if (i < len0 + 3
1324 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1325 {
1326 /* Backtrack a bit up until we reach either the begining of
1327 the encoded name, or "__". Make sure that we only find
1328 digits or lowercase characters. */
1329 const char *ptr = encoded + i - 1;
1330
1331 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1332 ptr--;
1333 if (ptr < encoded
1334 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1335 i++;
1336 }
1337
1338 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1339 {
1340 /* This is a X[bn]* sequence not separated from the previous
1341 part of the name with a non-alpha-numeric character (in other
1342 words, immediately following an alpha-numeric character), then
1343 verify that it is placed at the end of the encoded name. If
1344 not, then the encoding is not valid and we should abort the
1345 decoding. Otherwise, just skip it, it is used in body-nested
1346 package names. */
1347 do
1348 i += 1;
1349 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1350 if (i < len0)
1351 goto Suppress;
1352 }
1353 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1354 {
1355 /* Replace '__' by '.'. */
1356 decoded[j] = '.';
1357 at_start_name = 1;
1358 i += 2;
1359 j += 1;
1360 }
1361 else
1362 {
1363 /* It's a character part of the decoded name, so just copy it
1364 over. */
1365 decoded[j] = encoded[i];
1366 i += 1;
1367 j += 1;
1368 }
1369 }
1370 decoded[j] = '\000';
1371
1372 /* Decoded names should never contain any uppercase character.
1373 Double-check this, and abort the decoding if we find one. */
1374
1375 for (i = 0; decoded[i] != '\0'; i += 1)
1376 if (isupper (decoded[i]) || decoded[i] == ' ')
1377 goto Suppress;
1378
1379 if (strcmp (decoded, encoded) == 0)
1380 return encoded;
1381 else
1382 return decoded;
1383
1384 Suppress:
1385 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1386 decoded = decoding_buffer;
1387 if (encoded[0] == '<')
1388 strcpy (decoded, encoded);
1389 else
1390 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1391 return decoded;
1392
1393 }
1394
1395 /* Table for keeping permanent unique copies of decoded names. Once
1396 allocated, names in this table are never released. While this is a
1397 storage leak, it should not be significant unless there are massive
1398 changes in the set of decoded names in successive versions of a
1399 symbol table loaded during a single session. */
1400 static struct htab *decoded_names_store;
1401
1402 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1403 in the language-specific part of GSYMBOL, if it has not been
1404 previously computed. Tries to save the decoded name in the same
1405 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1406 in any case, the decoded symbol has a lifetime at least that of
1407 GSYMBOL).
1408 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1409 const, but nevertheless modified to a semantically equivalent form
1410 when a decoded name is cached in it. */
1411
1412 const char *
1413 ada_decode_symbol (const struct general_symbol_info *arg)
1414 {
1415 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1416 const char **resultp =
1417 &gsymbol->language_specific.demangled_name;
1418
1419 if (!gsymbol->ada_mangled)
1420 {
1421 const char *decoded = ada_decode (gsymbol->name);
1422 struct obstack *obstack = gsymbol->language_specific.obstack;
1423
1424 gsymbol->ada_mangled = 1;
1425
1426 if (obstack != NULL)
1427 *resultp
1428 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1429 else
1430 {
1431 /* Sometimes, we can't find a corresponding objfile, in
1432 which case, we put the result on the heap. Since we only
1433 decode when needed, we hope this usually does not cause a
1434 significant memory leak (FIXME). */
1435
1436 char **slot = (char **) htab_find_slot (decoded_names_store,
1437 decoded, INSERT);
1438
1439 if (*slot == NULL)
1440 *slot = xstrdup (decoded);
1441 *resultp = *slot;
1442 }
1443 }
1444
1445 return *resultp;
1446 }
1447
1448 static char *
1449 ada_la_decode (const char *encoded, int options)
1450 {
1451 return xstrdup (ada_decode (encoded));
1452 }
1453
1454 /* Implement la_sniff_from_mangled_name for Ada. */
1455
1456 static int
1457 ada_sniff_from_mangled_name (const char *mangled, char **out)
1458 {
1459 const char *demangled = ada_decode (mangled);
1460
1461 *out = NULL;
1462
1463 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1464 {
1465 /* Set the gsymbol language to Ada, but still return 0.
1466 Two reasons for that:
1467
1468 1. For Ada, we prefer computing the symbol's decoded name
1469 on the fly rather than pre-compute it, in order to save
1470 memory (Ada projects are typically very large).
1471
1472 2. There are some areas in the definition of the GNAT
1473 encoding where, with a bit of bad luck, we might be able
1474 to decode a non-Ada symbol, generating an incorrect
1475 demangled name (Eg: names ending with "TB" for instance
1476 are identified as task bodies and so stripped from
1477 the decoded name returned).
1478
1479 Returning 1, here, but not setting *DEMANGLED, helps us get a
1480 little bit of the best of both worlds. Because we're last,
1481 we should not affect any of the other languages that were
1482 able to demangle the symbol before us; we get to correctly
1483 tag Ada symbols as such; and even if we incorrectly tagged a
1484 non-Ada symbol, which should be rare, any routing through the
1485 Ada language should be transparent (Ada tries to behave much
1486 like C/C++ with non-Ada symbols). */
1487 return 1;
1488 }
1489
1490 return 0;
1491 }
1492
1493 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1494 suffixes that encode debugging information or leading _ada_ on
1495 SYM_NAME (see is_name_suffix commentary for the debugging
1496 information that is ignored). If WILD, then NAME need only match a
1497 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1498 either argument is NULL. */
1499
1500 static int
1501 match_name (const char *sym_name, const char *name, int wild)
1502 {
1503 if (sym_name == NULL || name == NULL)
1504 return 0;
1505 else if (wild)
1506 return wild_match (sym_name, name) == 0;
1507 else
1508 {
1509 int len_name = strlen (name);
1510
1511 return (strncmp (sym_name, name, len_name) == 0
1512 && is_name_suffix (sym_name + len_name))
1513 || (startswith (sym_name, "_ada_")
1514 && strncmp (sym_name + 5, name, len_name) == 0
1515 && is_name_suffix (sym_name + len_name + 5));
1516 }
1517 }
1518 \f
1519
1520 /* Arrays */
1521
1522 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1523 generated by the GNAT compiler to describe the index type used
1524 for each dimension of an array, check whether it follows the latest
1525 known encoding. If not, fix it up to conform to the latest encoding.
1526 Otherwise, do nothing. This function also does nothing if
1527 INDEX_DESC_TYPE is NULL.
1528
1529 The GNAT encoding used to describle the array index type evolved a bit.
1530 Initially, the information would be provided through the name of each
1531 field of the structure type only, while the type of these fields was
1532 described as unspecified and irrelevant. The debugger was then expected
1533 to perform a global type lookup using the name of that field in order
1534 to get access to the full index type description. Because these global
1535 lookups can be very expensive, the encoding was later enhanced to make
1536 the global lookup unnecessary by defining the field type as being
1537 the full index type description.
1538
1539 The purpose of this routine is to allow us to support older versions
1540 of the compiler by detecting the use of the older encoding, and by
1541 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1542 we essentially replace each field's meaningless type by the associated
1543 index subtype). */
1544
1545 void
1546 ada_fixup_array_indexes_type (struct type *index_desc_type)
1547 {
1548 int i;
1549
1550 if (index_desc_type == NULL)
1551 return;
1552 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1553
1554 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1555 to check one field only, no need to check them all). If not, return
1556 now.
1557
1558 If our INDEX_DESC_TYPE was generated using the older encoding,
1559 the field type should be a meaningless integer type whose name
1560 is not equal to the field name. */
1561 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1562 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1563 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1564 return;
1565
1566 /* Fixup each field of INDEX_DESC_TYPE. */
1567 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1568 {
1569 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1570 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1571
1572 if (raw_type)
1573 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1574 }
1575 }
1576
1577 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1578
1579 static const char *bound_name[] = {
1580 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1581 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1582 };
1583
1584 /* Maximum number of array dimensions we are prepared to handle. */
1585
1586 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1587
1588
1589 /* The desc_* routines return primitive portions of array descriptors
1590 (fat pointers). */
1591
1592 /* The descriptor or array type, if any, indicated by TYPE; removes
1593 level of indirection, if needed. */
1594
1595 static struct type *
1596 desc_base_type (struct type *type)
1597 {
1598 if (type == NULL)
1599 return NULL;
1600 type = ada_check_typedef (type);
1601 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1602 type = ada_typedef_target_type (type);
1603
1604 if (type != NULL
1605 && (TYPE_CODE (type) == TYPE_CODE_PTR
1606 || TYPE_CODE (type) == TYPE_CODE_REF))
1607 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1608 else
1609 return type;
1610 }
1611
1612 /* True iff TYPE indicates a "thin" array pointer type. */
1613
1614 static int
1615 is_thin_pntr (struct type *type)
1616 {
1617 return
1618 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1619 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1620 }
1621
1622 /* The descriptor type for thin pointer type TYPE. */
1623
1624 static struct type *
1625 thin_descriptor_type (struct type *type)
1626 {
1627 struct type *base_type = desc_base_type (type);
1628
1629 if (base_type == NULL)
1630 return NULL;
1631 if (is_suffix (ada_type_name (base_type), "___XVE"))
1632 return base_type;
1633 else
1634 {
1635 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1636
1637 if (alt_type == NULL)
1638 return base_type;
1639 else
1640 return alt_type;
1641 }
1642 }
1643
1644 /* A pointer to the array data for thin-pointer value VAL. */
1645
1646 static struct value *
1647 thin_data_pntr (struct value *val)
1648 {
1649 struct type *type = ada_check_typedef (value_type (val));
1650 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1651
1652 data_type = lookup_pointer_type (data_type);
1653
1654 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1655 return value_cast (data_type, value_copy (val));
1656 else
1657 return value_from_longest (data_type, value_address (val));
1658 }
1659
1660 /* True iff TYPE indicates a "thick" array pointer type. */
1661
1662 static int
1663 is_thick_pntr (struct type *type)
1664 {
1665 type = desc_base_type (type);
1666 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1667 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1668 }
1669
1670 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1671 pointer to one, the type of its bounds data; otherwise, NULL. */
1672
1673 static struct type *
1674 desc_bounds_type (struct type *type)
1675 {
1676 struct type *r;
1677
1678 type = desc_base_type (type);
1679
1680 if (type == NULL)
1681 return NULL;
1682 else if (is_thin_pntr (type))
1683 {
1684 type = thin_descriptor_type (type);
1685 if (type == NULL)
1686 return NULL;
1687 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1688 if (r != NULL)
1689 return ada_check_typedef (r);
1690 }
1691 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1692 {
1693 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1694 if (r != NULL)
1695 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1696 }
1697 return NULL;
1698 }
1699
1700 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1701 one, a pointer to its bounds data. Otherwise NULL. */
1702
1703 static struct value *
1704 desc_bounds (struct value *arr)
1705 {
1706 struct type *type = ada_check_typedef (value_type (arr));
1707
1708 if (is_thin_pntr (type))
1709 {
1710 struct type *bounds_type =
1711 desc_bounds_type (thin_descriptor_type (type));
1712 LONGEST addr;
1713
1714 if (bounds_type == NULL)
1715 error (_("Bad GNAT array descriptor"));
1716
1717 /* NOTE: The following calculation is not really kosher, but
1718 since desc_type is an XVE-encoded type (and shouldn't be),
1719 the correct calculation is a real pain. FIXME (and fix GCC). */
1720 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1721 addr = value_as_long (arr);
1722 else
1723 addr = value_address (arr);
1724
1725 return
1726 value_from_longest (lookup_pointer_type (bounds_type),
1727 addr - TYPE_LENGTH (bounds_type));
1728 }
1729
1730 else if (is_thick_pntr (type))
1731 {
1732 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1733 _("Bad GNAT array descriptor"));
1734 struct type *p_bounds_type = value_type (p_bounds);
1735
1736 if (p_bounds_type
1737 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1738 {
1739 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1740
1741 if (TYPE_STUB (target_type))
1742 p_bounds = value_cast (lookup_pointer_type
1743 (ada_check_typedef (target_type)),
1744 p_bounds);
1745 }
1746 else
1747 error (_("Bad GNAT array descriptor"));
1748
1749 return p_bounds;
1750 }
1751 else
1752 return NULL;
1753 }
1754
1755 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1756 position of the field containing the address of the bounds data. */
1757
1758 static int
1759 fat_pntr_bounds_bitpos (struct type *type)
1760 {
1761 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1762 }
1763
1764 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1765 size of the field containing the address of the bounds data. */
1766
1767 static int
1768 fat_pntr_bounds_bitsize (struct type *type)
1769 {
1770 type = desc_base_type (type);
1771
1772 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1773 return TYPE_FIELD_BITSIZE (type, 1);
1774 else
1775 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1776 }
1777
1778 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1779 pointer to one, the type of its array data (a array-with-no-bounds type);
1780 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1781 data. */
1782
1783 static struct type *
1784 desc_data_target_type (struct type *type)
1785 {
1786 type = desc_base_type (type);
1787
1788 /* NOTE: The following is bogus; see comment in desc_bounds. */
1789 if (is_thin_pntr (type))
1790 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1791 else if (is_thick_pntr (type))
1792 {
1793 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1794
1795 if (data_type
1796 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1797 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1798 }
1799
1800 return NULL;
1801 }
1802
1803 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1804 its array data. */
1805
1806 static struct value *
1807 desc_data (struct value *arr)
1808 {
1809 struct type *type = value_type (arr);
1810
1811 if (is_thin_pntr (type))
1812 return thin_data_pntr (arr);
1813 else if (is_thick_pntr (type))
1814 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1815 _("Bad GNAT array descriptor"));
1816 else
1817 return NULL;
1818 }
1819
1820
1821 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1822 position of the field containing the address of the data. */
1823
1824 static int
1825 fat_pntr_data_bitpos (struct type *type)
1826 {
1827 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1828 }
1829
1830 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1831 size of the field containing the address of the data. */
1832
1833 static int
1834 fat_pntr_data_bitsize (struct type *type)
1835 {
1836 type = desc_base_type (type);
1837
1838 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1839 return TYPE_FIELD_BITSIZE (type, 0);
1840 else
1841 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1842 }
1843
1844 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1845 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1846 bound, if WHICH is 1. The first bound is I=1. */
1847
1848 static struct value *
1849 desc_one_bound (struct value *bounds, int i, int which)
1850 {
1851 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1852 _("Bad GNAT array descriptor bounds"));
1853 }
1854
1855 /* If BOUNDS is an array-bounds structure type, return the bit position
1856 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1857 bound, if WHICH is 1. The first bound is I=1. */
1858
1859 static int
1860 desc_bound_bitpos (struct type *type, int i, int which)
1861 {
1862 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1863 }
1864
1865 /* If BOUNDS is an array-bounds structure type, return the bit field size
1866 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1867 bound, if WHICH is 1. The first bound is I=1. */
1868
1869 static int
1870 desc_bound_bitsize (struct type *type, int i, int which)
1871 {
1872 type = desc_base_type (type);
1873
1874 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1875 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1876 else
1877 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1878 }
1879
1880 /* If TYPE is the type of an array-bounds structure, the type of its
1881 Ith bound (numbering from 1). Otherwise, NULL. */
1882
1883 static struct type *
1884 desc_index_type (struct type *type, int i)
1885 {
1886 type = desc_base_type (type);
1887
1888 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1889 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1890 else
1891 return NULL;
1892 }
1893
1894 /* The number of index positions in the array-bounds type TYPE.
1895 Return 0 if TYPE is NULL. */
1896
1897 static int
1898 desc_arity (struct type *type)
1899 {
1900 type = desc_base_type (type);
1901
1902 if (type != NULL)
1903 return TYPE_NFIELDS (type) / 2;
1904 return 0;
1905 }
1906
1907 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1908 an array descriptor type (representing an unconstrained array
1909 type). */
1910
1911 static int
1912 ada_is_direct_array_type (struct type *type)
1913 {
1914 if (type == NULL)
1915 return 0;
1916 type = ada_check_typedef (type);
1917 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1918 || ada_is_array_descriptor_type (type));
1919 }
1920
1921 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1922 * to one. */
1923
1924 static int
1925 ada_is_array_type (struct type *type)
1926 {
1927 while (type != NULL
1928 && (TYPE_CODE (type) == TYPE_CODE_PTR
1929 || TYPE_CODE (type) == TYPE_CODE_REF))
1930 type = TYPE_TARGET_TYPE (type);
1931 return ada_is_direct_array_type (type);
1932 }
1933
1934 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1935
1936 int
1937 ada_is_simple_array_type (struct type *type)
1938 {
1939 if (type == NULL)
1940 return 0;
1941 type = ada_check_typedef (type);
1942 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1943 || (TYPE_CODE (type) == TYPE_CODE_PTR
1944 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1945 == TYPE_CODE_ARRAY));
1946 }
1947
1948 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1949
1950 int
1951 ada_is_array_descriptor_type (struct type *type)
1952 {
1953 struct type *data_type = desc_data_target_type (type);
1954
1955 if (type == NULL)
1956 return 0;
1957 type = ada_check_typedef (type);
1958 return (data_type != NULL
1959 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1960 && desc_arity (desc_bounds_type (type)) > 0);
1961 }
1962
1963 /* Non-zero iff type is a partially mal-formed GNAT array
1964 descriptor. FIXME: This is to compensate for some problems with
1965 debugging output from GNAT. Re-examine periodically to see if it
1966 is still needed. */
1967
1968 int
1969 ada_is_bogus_array_descriptor (struct type *type)
1970 {
1971 return
1972 type != NULL
1973 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1974 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1975 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1976 && !ada_is_array_descriptor_type (type);
1977 }
1978
1979
1980 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1981 (fat pointer) returns the type of the array data described---specifically,
1982 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1983 in from the descriptor; otherwise, they are left unspecified. If
1984 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1985 returns NULL. The result is simply the type of ARR if ARR is not
1986 a descriptor. */
1987 struct type *
1988 ada_type_of_array (struct value *arr, int bounds)
1989 {
1990 if (ada_is_constrained_packed_array_type (value_type (arr)))
1991 return decode_constrained_packed_array_type (value_type (arr));
1992
1993 if (!ada_is_array_descriptor_type (value_type (arr)))
1994 return value_type (arr);
1995
1996 if (!bounds)
1997 {
1998 struct type *array_type =
1999 ada_check_typedef (desc_data_target_type (value_type (arr)));
2000
2001 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2002 TYPE_FIELD_BITSIZE (array_type, 0) =
2003 decode_packed_array_bitsize (value_type (arr));
2004
2005 return array_type;
2006 }
2007 else
2008 {
2009 struct type *elt_type;
2010 int arity;
2011 struct value *descriptor;
2012
2013 elt_type = ada_array_element_type (value_type (arr), -1);
2014 arity = ada_array_arity (value_type (arr));
2015
2016 if (elt_type == NULL || arity == 0)
2017 return ada_check_typedef (value_type (arr));
2018
2019 descriptor = desc_bounds (arr);
2020 if (value_as_long (descriptor) == 0)
2021 return NULL;
2022 while (arity > 0)
2023 {
2024 struct type *range_type = alloc_type_copy (value_type (arr));
2025 struct type *array_type = alloc_type_copy (value_type (arr));
2026 struct value *low = desc_one_bound (descriptor, arity, 0);
2027 struct value *high = desc_one_bound (descriptor, arity, 1);
2028
2029 arity -= 1;
2030 create_static_range_type (range_type, value_type (low),
2031 longest_to_int (value_as_long (low)),
2032 longest_to_int (value_as_long (high)));
2033 elt_type = create_array_type (array_type, elt_type, range_type);
2034
2035 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2036 {
2037 /* We need to store the element packed bitsize, as well as
2038 recompute the array size, because it was previously
2039 computed based on the unpacked element size. */
2040 LONGEST lo = value_as_long (low);
2041 LONGEST hi = value_as_long (high);
2042
2043 TYPE_FIELD_BITSIZE (elt_type, 0) =
2044 decode_packed_array_bitsize (value_type (arr));
2045 /* If the array has no element, then the size is already
2046 zero, and does not need to be recomputed. */
2047 if (lo < hi)
2048 {
2049 int array_bitsize =
2050 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2051
2052 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2053 }
2054 }
2055 }
2056
2057 return lookup_pointer_type (elt_type);
2058 }
2059 }
2060
2061 /* If ARR does not represent an array, returns ARR unchanged.
2062 Otherwise, returns either a standard GDB array with bounds set
2063 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2064 GDB array. Returns NULL if ARR is a null fat pointer. */
2065
2066 struct value *
2067 ada_coerce_to_simple_array_ptr (struct value *arr)
2068 {
2069 if (ada_is_array_descriptor_type (value_type (arr)))
2070 {
2071 struct type *arrType = ada_type_of_array (arr, 1);
2072
2073 if (arrType == NULL)
2074 return NULL;
2075 return value_cast (arrType, value_copy (desc_data (arr)));
2076 }
2077 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2078 return decode_constrained_packed_array (arr);
2079 else
2080 return arr;
2081 }
2082
2083 /* If ARR does not represent an array, returns ARR unchanged.
2084 Otherwise, returns a standard GDB array describing ARR (which may
2085 be ARR itself if it already is in the proper form). */
2086
2087 struct value *
2088 ada_coerce_to_simple_array (struct value *arr)
2089 {
2090 if (ada_is_array_descriptor_type (value_type (arr)))
2091 {
2092 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2093
2094 if (arrVal == NULL)
2095 error (_("Bounds unavailable for null array pointer."));
2096 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2097 return value_ind (arrVal);
2098 }
2099 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2100 return decode_constrained_packed_array (arr);
2101 else
2102 return arr;
2103 }
2104
2105 /* If TYPE represents a GNAT array type, return it translated to an
2106 ordinary GDB array type (possibly with BITSIZE fields indicating
2107 packing). For other types, is the identity. */
2108
2109 struct type *
2110 ada_coerce_to_simple_array_type (struct type *type)
2111 {
2112 if (ada_is_constrained_packed_array_type (type))
2113 return decode_constrained_packed_array_type (type);
2114
2115 if (ada_is_array_descriptor_type (type))
2116 return ada_check_typedef (desc_data_target_type (type));
2117
2118 return type;
2119 }
2120
2121 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2122
2123 static int
2124 ada_is_packed_array_type (struct type *type)
2125 {
2126 if (type == NULL)
2127 return 0;
2128 type = desc_base_type (type);
2129 type = ada_check_typedef (type);
2130 return
2131 ada_type_name (type) != NULL
2132 && strstr (ada_type_name (type), "___XP") != NULL;
2133 }
2134
2135 /* Non-zero iff TYPE represents a standard GNAT constrained
2136 packed-array type. */
2137
2138 int
2139 ada_is_constrained_packed_array_type (struct type *type)
2140 {
2141 return ada_is_packed_array_type (type)
2142 && !ada_is_array_descriptor_type (type);
2143 }
2144
2145 /* Non-zero iff TYPE represents an array descriptor for a
2146 unconstrained packed-array type. */
2147
2148 static int
2149 ada_is_unconstrained_packed_array_type (struct type *type)
2150 {
2151 return ada_is_packed_array_type (type)
2152 && ada_is_array_descriptor_type (type);
2153 }
2154
2155 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2156 return the size of its elements in bits. */
2157
2158 static long
2159 decode_packed_array_bitsize (struct type *type)
2160 {
2161 const char *raw_name;
2162 const char *tail;
2163 long bits;
2164
2165 /* Access to arrays implemented as fat pointers are encoded as a typedef
2166 of the fat pointer type. We need the name of the fat pointer type
2167 to do the decoding, so strip the typedef layer. */
2168 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2169 type = ada_typedef_target_type (type);
2170
2171 raw_name = ada_type_name (ada_check_typedef (type));
2172 if (!raw_name)
2173 raw_name = ada_type_name (desc_base_type (type));
2174
2175 if (!raw_name)
2176 return 0;
2177
2178 tail = strstr (raw_name, "___XP");
2179 gdb_assert (tail != NULL);
2180
2181 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2182 {
2183 lim_warning
2184 (_("could not understand bit size information on packed array"));
2185 return 0;
2186 }
2187
2188 return bits;
2189 }
2190
2191 /* Given that TYPE is a standard GDB array type with all bounds filled
2192 in, and that the element size of its ultimate scalar constituents
2193 (that is, either its elements, or, if it is an array of arrays, its
2194 elements' elements, etc.) is *ELT_BITS, return an identical type,
2195 but with the bit sizes of its elements (and those of any
2196 constituent arrays) recorded in the BITSIZE components of its
2197 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2198 in bits.
2199
2200 Note that, for arrays whose index type has an XA encoding where
2201 a bound references a record discriminant, getting that discriminant,
2202 and therefore the actual value of that bound, is not possible
2203 because none of the given parameters gives us access to the record.
2204 This function assumes that it is OK in the context where it is being
2205 used to return an array whose bounds are still dynamic and where
2206 the length is arbitrary. */
2207
2208 static struct type *
2209 constrained_packed_array_type (struct type *type, long *elt_bits)
2210 {
2211 struct type *new_elt_type;
2212 struct type *new_type;
2213 struct type *index_type_desc;
2214 struct type *index_type;
2215 LONGEST low_bound, high_bound;
2216
2217 type = ada_check_typedef (type);
2218 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2219 return type;
2220
2221 index_type_desc = ada_find_parallel_type (type, "___XA");
2222 if (index_type_desc)
2223 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2224 NULL);
2225 else
2226 index_type = TYPE_INDEX_TYPE (type);
2227
2228 new_type = alloc_type_copy (type);
2229 new_elt_type =
2230 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2231 elt_bits);
2232 create_array_type (new_type, new_elt_type, index_type);
2233 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2234 TYPE_NAME (new_type) = ada_type_name (type);
2235
2236 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2237 && is_dynamic_type (check_typedef (index_type)))
2238 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2239 low_bound = high_bound = 0;
2240 if (high_bound < low_bound)
2241 *elt_bits = TYPE_LENGTH (new_type) = 0;
2242 else
2243 {
2244 *elt_bits *= (high_bound - low_bound + 1);
2245 TYPE_LENGTH (new_type) =
2246 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2247 }
2248
2249 TYPE_FIXED_INSTANCE (new_type) = 1;
2250 return new_type;
2251 }
2252
2253 /* The array type encoded by TYPE, where
2254 ada_is_constrained_packed_array_type (TYPE). */
2255
2256 static struct type *
2257 decode_constrained_packed_array_type (struct type *type)
2258 {
2259 const char *raw_name = ada_type_name (ada_check_typedef (type));
2260 char *name;
2261 const char *tail;
2262 struct type *shadow_type;
2263 long bits;
2264
2265 if (!raw_name)
2266 raw_name = ada_type_name (desc_base_type (type));
2267
2268 if (!raw_name)
2269 return NULL;
2270
2271 name = (char *) alloca (strlen (raw_name) + 1);
2272 tail = strstr (raw_name, "___XP");
2273 type = desc_base_type (type);
2274
2275 memcpy (name, raw_name, tail - raw_name);
2276 name[tail - raw_name] = '\000';
2277
2278 shadow_type = ada_find_parallel_type_with_name (type, name);
2279
2280 if (shadow_type == NULL)
2281 {
2282 lim_warning (_("could not find bounds information on packed array"));
2283 return NULL;
2284 }
2285 shadow_type = check_typedef (shadow_type);
2286
2287 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2288 {
2289 lim_warning (_("could not understand bounds "
2290 "information on packed array"));
2291 return NULL;
2292 }
2293
2294 bits = decode_packed_array_bitsize (type);
2295 return constrained_packed_array_type (shadow_type, &bits);
2296 }
2297
2298 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2299 array, returns a simple array that denotes that array. Its type is a
2300 standard GDB array type except that the BITSIZEs of the array
2301 target types are set to the number of bits in each element, and the
2302 type length is set appropriately. */
2303
2304 static struct value *
2305 decode_constrained_packed_array (struct value *arr)
2306 {
2307 struct type *type;
2308
2309 /* If our value is a pointer, then dereference it. Likewise if
2310 the value is a reference. Make sure that this operation does not
2311 cause the target type to be fixed, as this would indirectly cause
2312 this array to be decoded. The rest of the routine assumes that
2313 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2314 and "value_ind" routines to perform the dereferencing, as opposed
2315 to using "ada_coerce_ref" or "ada_value_ind". */
2316 arr = coerce_ref (arr);
2317 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2318 arr = value_ind (arr);
2319
2320 type = decode_constrained_packed_array_type (value_type (arr));
2321 if (type == NULL)
2322 {
2323 error (_("can't unpack array"));
2324 return NULL;
2325 }
2326
2327 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2328 && ada_is_modular_type (value_type (arr)))
2329 {
2330 /* This is a (right-justified) modular type representing a packed
2331 array with no wrapper. In order to interpret the value through
2332 the (left-justified) packed array type we just built, we must
2333 first left-justify it. */
2334 int bit_size, bit_pos;
2335 ULONGEST mod;
2336
2337 mod = ada_modulus (value_type (arr)) - 1;
2338 bit_size = 0;
2339 while (mod > 0)
2340 {
2341 bit_size += 1;
2342 mod >>= 1;
2343 }
2344 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2345 arr = ada_value_primitive_packed_val (arr, NULL,
2346 bit_pos / HOST_CHAR_BIT,
2347 bit_pos % HOST_CHAR_BIT,
2348 bit_size,
2349 type);
2350 }
2351
2352 return coerce_unspec_val_to_type (arr, type);
2353 }
2354
2355
2356 /* The value of the element of packed array ARR at the ARITY indices
2357 given in IND. ARR must be a simple array. */
2358
2359 static struct value *
2360 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2361 {
2362 int i;
2363 int bits, elt_off, bit_off;
2364 long elt_total_bit_offset;
2365 struct type *elt_type;
2366 struct value *v;
2367
2368 bits = 0;
2369 elt_total_bit_offset = 0;
2370 elt_type = ada_check_typedef (value_type (arr));
2371 for (i = 0; i < arity; i += 1)
2372 {
2373 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2374 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2375 error
2376 (_("attempt to do packed indexing of "
2377 "something other than a packed array"));
2378 else
2379 {
2380 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2381 LONGEST lowerbound, upperbound;
2382 LONGEST idx;
2383
2384 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2385 {
2386 lim_warning (_("don't know bounds of array"));
2387 lowerbound = upperbound = 0;
2388 }
2389
2390 idx = pos_atr (ind[i]);
2391 if (idx < lowerbound || idx > upperbound)
2392 lim_warning (_("packed array index %ld out of bounds"),
2393 (long) idx);
2394 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2395 elt_total_bit_offset += (idx - lowerbound) * bits;
2396 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2397 }
2398 }
2399 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2400 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2401
2402 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2403 bits, elt_type);
2404 return v;
2405 }
2406
2407 /* Non-zero iff TYPE includes negative integer values. */
2408
2409 static int
2410 has_negatives (struct type *type)
2411 {
2412 switch (TYPE_CODE (type))
2413 {
2414 default:
2415 return 0;
2416 case TYPE_CODE_INT:
2417 return !TYPE_UNSIGNED (type);
2418 case TYPE_CODE_RANGE:
2419 return TYPE_LOW_BOUND (type) < 0;
2420 }
2421 }
2422
2423 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2424 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2425 the unpacked buffer.
2426
2427 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2428 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2429
2430 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2431 zero otherwise.
2432
2433 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2434
2435 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2436
2437 static void
2438 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2439 gdb_byte *unpacked, int unpacked_len,
2440 int is_big_endian, int is_signed_type,
2441 int is_scalar)
2442 {
2443 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2444 int src_idx; /* Index into the source area */
2445 int src_bytes_left; /* Number of source bytes left to process. */
2446 int srcBitsLeft; /* Number of source bits left to move */
2447 int unusedLS; /* Number of bits in next significant
2448 byte of source that are unused */
2449
2450 int unpacked_idx; /* Index into the unpacked buffer */
2451 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2452
2453 unsigned long accum; /* Staging area for bits being transferred */
2454 int accumSize; /* Number of meaningful bits in accum */
2455 unsigned char sign;
2456
2457 /* Transmit bytes from least to most significant; delta is the direction
2458 the indices move. */
2459 int delta = is_big_endian ? -1 : 1;
2460
2461 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2462 bits from SRC. .*/
2463 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2464 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2465 bit_size, unpacked_len);
2466
2467 srcBitsLeft = bit_size;
2468 src_bytes_left = src_len;
2469 unpacked_bytes_left = unpacked_len;
2470 sign = 0;
2471
2472 if (is_big_endian)
2473 {
2474 src_idx = src_len - 1;
2475 if (is_signed_type
2476 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2477 sign = ~0;
2478
2479 unusedLS =
2480 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2481 % HOST_CHAR_BIT;
2482
2483 if (is_scalar)
2484 {
2485 accumSize = 0;
2486 unpacked_idx = unpacked_len - 1;
2487 }
2488 else
2489 {
2490 /* Non-scalar values must be aligned at a byte boundary... */
2491 accumSize =
2492 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2493 /* ... And are placed at the beginning (most-significant) bytes
2494 of the target. */
2495 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2496 unpacked_bytes_left = unpacked_idx + 1;
2497 }
2498 }
2499 else
2500 {
2501 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2502
2503 src_idx = unpacked_idx = 0;
2504 unusedLS = bit_offset;
2505 accumSize = 0;
2506
2507 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2508 sign = ~0;
2509 }
2510
2511 accum = 0;
2512 while (src_bytes_left > 0)
2513 {
2514 /* Mask for removing bits of the next source byte that are not
2515 part of the value. */
2516 unsigned int unusedMSMask =
2517 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2518 1;
2519 /* Sign-extend bits for this byte. */
2520 unsigned int signMask = sign & ~unusedMSMask;
2521
2522 accum |=
2523 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2524 accumSize += HOST_CHAR_BIT - unusedLS;
2525 if (accumSize >= HOST_CHAR_BIT)
2526 {
2527 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2528 accumSize -= HOST_CHAR_BIT;
2529 accum >>= HOST_CHAR_BIT;
2530 unpacked_bytes_left -= 1;
2531 unpacked_idx += delta;
2532 }
2533 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2534 unusedLS = 0;
2535 src_bytes_left -= 1;
2536 src_idx += delta;
2537 }
2538 while (unpacked_bytes_left > 0)
2539 {
2540 accum |= sign << accumSize;
2541 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2542 accumSize -= HOST_CHAR_BIT;
2543 if (accumSize < 0)
2544 accumSize = 0;
2545 accum >>= HOST_CHAR_BIT;
2546 unpacked_bytes_left -= 1;
2547 unpacked_idx += delta;
2548 }
2549 }
2550
2551 /* Create a new value of type TYPE from the contents of OBJ starting
2552 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2553 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2554 assigning through the result will set the field fetched from.
2555 VALADDR is ignored unless OBJ is NULL, in which case,
2556 VALADDR+OFFSET must address the start of storage containing the
2557 packed value. The value returned in this case is never an lval.
2558 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2559
2560 struct value *
2561 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2562 long offset, int bit_offset, int bit_size,
2563 struct type *type)
2564 {
2565 struct value *v;
2566 const gdb_byte *src; /* First byte containing data to unpack */
2567 gdb_byte *unpacked;
2568 const int is_scalar = is_scalar_type (type);
2569 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2570 gdb::byte_vector staging;
2571
2572 type = ada_check_typedef (type);
2573
2574 if (obj == NULL)
2575 src = valaddr + offset;
2576 else
2577 src = value_contents (obj) + offset;
2578
2579 if (is_dynamic_type (type))
2580 {
2581 /* The length of TYPE might by dynamic, so we need to resolve
2582 TYPE in order to know its actual size, which we then use
2583 to create the contents buffer of the value we return.
2584 The difficulty is that the data containing our object is
2585 packed, and therefore maybe not at a byte boundary. So, what
2586 we do, is unpack the data into a byte-aligned buffer, and then
2587 use that buffer as our object's value for resolving the type. */
2588 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2589 staging.resize (staging_len);
2590
2591 ada_unpack_from_contents (src, bit_offset, bit_size,
2592 staging.data (), staging.size (),
2593 is_big_endian, has_negatives (type),
2594 is_scalar);
2595 type = resolve_dynamic_type (type, staging.data (), 0);
2596 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2597 {
2598 /* This happens when the length of the object is dynamic,
2599 and is actually smaller than the space reserved for it.
2600 For instance, in an array of variant records, the bit_size
2601 we're given is the array stride, which is constant and
2602 normally equal to the maximum size of its element.
2603 But, in reality, each element only actually spans a portion
2604 of that stride. */
2605 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2606 }
2607 }
2608
2609 if (obj == NULL)
2610 {
2611 v = allocate_value (type);
2612 src = valaddr + offset;
2613 }
2614 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2615 {
2616 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2617 gdb_byte *buf;
2618
2619 v = value_at (type, value_address (obj) + offset);
2620 buf = (gdb_byte *) alloca (src_len);
2621 read_memory (value_address (v), buf, src_len);
2622 src = buf;
2623 }
2624 else
2625 {
2626 v = allocate_value (type);
2627 src = value_contents (obj) + offset;
2628 }
2629
2630 if (obj != NULL)
2631 {
2632 long new_offset = offset;
2633
2634 set_value_component_location (v, obj);
2635 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2636 set_value_bitsize (v, bit_size);
2637 if (value_bitpos (v) >= HOST_CHAR_BIT)
2638 {
2639 ++new_offset;
2640 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2641 }
2642 set_value_offset (v, new_offset);
2643
2644 /* Also set the parent value. This is needed when trying to
2645 assign a new value (in inferior memory). */
2646 set_value_parent (v, obj);
2647 }
2648 else
2649 set_value_bitsize (v, bit_size);
2650 unpacked = value_contents_writeable (v);
2651
2652 if (bit_size == 0)
2653 {
2654 memset (unpacked, 0, TYPE_LENGTH (type));
2655 return v;
2656 }
2657
2658 if (staging.size () == TYPE_LENGTH (type))
2659 {
2660 /* Small short-cut: If we've unpacked the data into a buffer
2661 of the same size as TYPE's length, then we can reuse that,
2662 instead of doing the unpacking again. */
2663 memcpy (unpacked, staging.data (), staging.size ());
2664 }
2665 else
2666 ada_unpack_from_contents (src, bit_offset, bit_size,
2667 unpacked, TYPE_LENGTH (type),
2668 is_big_endian, has_negatives (type), is_scalar);
2669
2670 return v;
2671 }
2672
2673 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2674 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2675 not overlap. */
2676 static void
2677 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2678 int src_offset, int n, int bits_big_endian_p)
2679 {
2680 unsigned int accum, mask;
2681 int accum_bits, chunk_size;
2682
2683 target += targ_offset / HOST_CHAR_BIT;
2684 targ_offset %= HOST_CHAR_BIT;
2685 source += src_offset / HOST_CHAR_BIT;
2686 src_offset %= HOST_CHAR_BIT;
2687 if (bits_big_endian_p)
2688 {
2689 accum = (unsigned char) *source;
2690 source += 1;
2691 accum_bits = HOST_CHAR_BIT - src_offset;
2692
2693 while (n > 0)
2694 {
2695 int unused_right;
2696
2697 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2698 accum_bits += HOST_CHAR_BIT;
2699 source += 1;
2700 chunk_size = HOST_CHAR_BIT - targ_offset;
2701 if (chunk_size > n)
2702 chunk_size = n;
2703 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2704 mask = ((1 << chunk_size) - 1) << unused_right;
2705 *target =
2706 (*target & ~mask)
2707 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2708 n -= chunk_size;
2709 accum_bits -= chunk_size;
2710 target += 1;
2711 targ_offset = 0;
2712 }
2713 }
2714 else
2715 {
2716 accum = (unsigned char) *source >> src_offset;
2717 source += 1;
2718 accum_bits = HOST_CHAR_BIT - src_offset;
2719
2720 while (n > 0)
2721 {
2722 accum = accum + ((unsigned char) *source << accum_bits);
2723 accum_bits += HOST_CHAR_BIT;
2724 source += 1;
2725 chunk_size = HOST_CHAR_BIT - targ_offset;
2726 if (chunk_size > n)
2727 chunk_size = n;
2728 mask = ((1 << chunk_size) - 1) << targ_offset;
2729 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2730 n -= chunk_size;
2731 accum_bits -= chunk_size;
2732 accum >>= chunk_size;
2733 target += 1;
2734 targ_offset = 0;
2735 }
2736 }
2737 }
2738
2739 /* Store the contents of FROMVAL into the location of TOVAL.
2740 Return a new value with the location of TOVAL and contents of
2741 FROMVAL. Handles assignment into packed fields that have
2742 floating-point or non-scalar types. */
2743
2744 static struct value *
2745 ada_value_assign (struct value *toval, struct value *fromval)
2746 {
2747 struct type *type = value_type (toval);
2748 int bits = value_bitsize (toval);
2749
2750 toval = ada_coerce_ref (toval);
2751 fromval = ada_coerce_ref (fromval);
2752
2753 if (ada_is_direct_array_type (value_type (toval)))
2754 toval = ada_coerce_to_simple_array (toval);
2755 if (ada_is_direct_array_type (value_type (fromval)))
2756 fromval = ada_coerce_to_simple_array (fromval);
2757
2758 if (!deprecated_value_modifiable (toval))
2759 error (_("Left operand of assignment is not a modifiable lvalue."));
2760
2761 if (VALUE_LVAL (toval) == lval_memory
2762 && bits > 0
2763 && (TYPE_CODE (type) == TYPE_CODE_FLT
2764 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2765 {
2766 int len = (value_bitpos (toval)
2767 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2768 int from_size;
2769 gdb_byte *buffer = (gdb_byte *) alloca (len);
2770 struct value *val;
2771 CORE_ADDR to_addr = value_address (toval);
2772
2773 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2774 fromval = value_cast (type, fromval);
2775
2776 read_memory (to_addr, buffer, len);
2777 from_size = value_bitsize (fromval);
2778 if (from_size == 0)
2779 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2780 if (gdbarch_bits_big_endian (get_type_arch (type)))
2781 move_bits (buffer, value_bitpos (toval),
2782 value_contents (fromval), from_size - bits, bits, 1);
2783 else
2784 move_bits (buffer, value_bitpos (toval),
2785 value_contents (fromval), 0, bits, 0);
2786 write_memory_with_notification (to_addr, buffer, len);
2787
2788 val = value_copy (toval);
2789 memcpy (value_contents_raw (val), value_contents (fromval),
2790 TYPE_LENGTH (type));
2791 deprecated_set_value_type (val, type);
2792
2793 return val;
2794 }
2795
2796 return value_assign (toval, fromval);
2797 }
2798
2799
2800 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2801 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2802 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2803 COMPONENT, and not the inferior's memory. The current contents
2804 of COMPONENT are ignored.
2805
2806 Although not part of the initial design, this function also works
2807 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2808 had a null address, and COMPONENT had an address which is equal to
2809 its offset inside CONTAINER. */
2810
2811 static void
2812 value_assign_to_component (struct value *container, struct value *component,
2813 struct value *val)
2814 {
2815 LONGEST offset_in_container =
2816 (LONGEST) (value_address (component) - value_address (container));
2817 int bit_offset_in_container =
2818 value_bitpos (component) - value_bitpos (container);
2819 int bits;
2820
2821 val = value_cast (value_type (component), val);
2822
2823 if (value_bitsize (component) == 0)
2824 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2825 else
2826 bits = value_bitsize (component);
2827
2828 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2829 move_bits (value_contents_writeable (container) + offset_in_container,
2830 value_bitpos (container) + bit_offset_in_container,
2831 value_contents (val),
2832 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2833 bits, 1);
2834 else
2835 move_bits (value_contents_writeable (container) + offset_in_container,
2836 value_bitpos (container) + bit_offset_in_container,
2837 value_contents (val), 0, bits, 0);
2838 }
2839
2840 /* The value of the element of array ARR at the ARITY indices given in IND.
2841 ARR may be either a simple array, GNAT array descriptor, or pointer
2842 thereto. */
2843
2844 struct value *
2845 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2846 {
2847 int k;
2848 struct value *elt;
2849 struct type *elt_type;
2850
2851 elt = ada_coerce_to_simple_array (arr);
2852
2853 elt_type = ada_check_typedef (value_type (elt));
2854 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2855 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2856 return value_subscript_packed (elt, arity, ind);
2857
2858 for (k = 0; k < arity; k += 1)
2859 {
2860 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2861 error (_("too many subscripts (%d expected)"), k);
2862 elt = value_subscript (elt, pos_atr (ind[k]));
2863 }
2864 return elt;
2865 }
2866
2867 /* Assuming ARR is a pointer to a GDB array, the value of the element
2868 of *ARR at the ARITY indices given in IND.
2869 Does not read the entire array into memory.
2870
2871 Note: Unlike what one would expect, this function is used instead of
2872 ada_value_subscript for basically all non-packed array types. The reason
2873 for this is that a side effect of doing our own pointer arithmetics instead
2874 of relying on value_subscript is that there is no implicit typedef peeling.
2875 This is important for arrays of array accesses, where it allows us to
2876 preserve the fact that the array's element is an array access, where the
2877 access part os encoded in a typedef layer. */
2878
2879 static struct value *
2880 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2881 {
2882 int k;
2883 struct value *array_ind = ada_value_ind (arr);
2884 struct type *type
2885 = check_typedef (value_enclosing_type (array_ind));
2886
2887 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2888 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2889 return value_subscript_packed (array_ind, arity, ind);
2890
2891 for (k = 0; k < arity; k += 1)
2892 {
2893 LONGEST lwb, upb;
2894 struct value *lwb_value;
2895
2896 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2897 error (_("too many subscripts (%d expected)"), k);
2898 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2899 value_copy (arr));
2900 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2901 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2902 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2903 type = TYPE_TARGET_TYPE (type);
2904 }
2905
2906 return value_ind (arr);
2907 }
2908
2909 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2910 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2911 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2912 this array is LOW, as per Ada rules. */
2913 static struct value *
2914 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2915 int low, int high)
2916 {
2917 struct type *type0 = ada_check_typedef (type);
2918 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2919 struct type *index_type
2920 = create_static_range_type (NULL, base_index_type, low, high);
2921 struct type *slice_type =
2922 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2923 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2924 LONGEST base_low_pos, low_pos;
2925 CORE_ADDR base;
2926
2927 if (!discrete_position (base_index_type, low, &low_pos)
2928 || !discrete_position (base_index_type, base_low, &base_low_pos))
2929 {
2930 warning (_("unable to get positions in slice, use bounds instead"));
2931 low_pos = low;
2932 base_low_pos = base_low;
2933 }
2934
2935 base = value_as_address (array_ptr)
2936 + ((low_pos - base_low_pos)
2937 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2938 return value_at_lazy (slice_type, base);
2939 }
2940
2941
2942 static struct value *
2943 ada_value_slice (struct value *array, int low, int high)
2944 {
2945 struct type *type = ada_check_typedef (value_type (array));
2946 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2947 struct type *index_type
2948 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2949 struct type *slice_type =
2950 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2951 LONGEST low_pos, high_pos;
2952
2953 if (!discrete_position (base_index_type, low, &low_pos)
2954 || !discrete_position (base_index_type, high, &high_pos))
2955 {
2956 warning (_("unable to get positions in slice, use bounds instead"));
2957 low_pos = low;
2958 high_pos = high;
2959 }
2960
2961 return value_cast (slice_type,
2962 value_slice (array, low, high_pos - low_pos + 1));
2963 }
2964
2965 /* If type is a record type in the form of a standard GNAT array
2966 descriptor, returns the number of dimensions for type. If arr is a
2967 simple array, returns the number of "array of"s that prefix its
2968 type designation. Otherwise, returns 0. */
2969
2970 int
2971 ada_array_arity (struct type *type)
2972 {
2973 int arity;
2974
2975 if (type == NULL)
2976 return 0;
2977
2978 type = desc_base_type (type);
2979
2980 arity = 0;
2981 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2982 return desc_arity (desc_bounds_type (type));
2983 else
2984 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2985 {
2986 arity += 1;
2987 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2988 }
2989
2990 return arity;
2991 }
2992
2993 /* If TYPE is a record type in the form of a standard GNAT array
2994 descriptor or a simple array type, returns the element type for
2995 TYPE after indexing by NINDICES indices, or by all indices if
2996 NINDICES is -1. Otherwise, returns NULL. */
2997
2998 struct type *
2999 ada_array_element_type (struct type *type, int nindices)
3000 {
3001 type = desc_base_type (type);
3002
3003 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3004 {
3005 int k;
3006 struct type *p_array_type;
3007
3008 p_array_type = desc_data_target_type (type);
3009
3010 k = ada_array_arity (type);
3011 if (k == 0)
3012 return NULL;
3013
3014 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3015 if (nindices >= 0 && k > nindices)
3016 k = nindices;
3017 while (k > 0 && p_array_type != NULL)
3018 {
3019 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3020 k -= 1;
3021 }
3022 return p_array_type;
3023 }
3024 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3025 {
3026 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3027 {
3028 type = TYPE_TARGET_TYPE (type);
3029 nindices -= 1;
3030 }
3031 return type;
3032 }
3033
3034 return NULL;
3035 }
3036
3037 /* The type of nth index in arrays of given type (n numbering from 1).
3038 Does not examine memory. Throws an error if N is invalid or TYPE
3039 is not an array type. NAME is the name of the Ada attribute being
3040 evaluated ('range, 'first, 'last, or 'length); it is used in building
3041 the error message. */
3042
3043 static struct type *
3044 ada_index_type (struct type *type, int n, const char *name)
3045 {
3046 struct type *result_type;
3047
3048 type = desc_base_type (type);
3049
3050 if (n < 0 || n > ada_array_arity (type))
3051 error (_("invalid dimension number to '%s"), name);
3052
3053 if (ada_is_simple_array_type (type))
3054 {
3055 int i;
3056
3057 for (i = 1; i < n; i += 1)
3058 type = TYPE_TARGET_TYPE (type);
3059 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3060 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3061 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3062 perhaps stabsread.c would make more sense. */
3063 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3064 result_type = NULL;
3065 }
3066 else
3067 {
3068 result_type = desc_index_type (desc_bounds_type (type), n);
3069 if (result_type == NULL)
3070 error (_("attempt to take bound of something that is not an array"));
3071 }
3072
3073 return result_type;
3074 }
3075
3076 /* Given that arr is an array type, returns the lower bound of the
3077 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3078 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3079 array-descriptor type. It works for other arrays with bounds supplied
3080 by run-time quantities other than discriminants. */
3081
3082 static LONGEST
3083 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3084 {
3085 struct type *type, *index_type_desc, *index_type;
3086 int i;
3087
3088 gdb_assert (which == 0 || which == 1);
3089
3090 if (ada_is_constrained_packed_array_type (arr_type))
3091 arr_type = decode_constrained_packed_array_type (arr_type);
3092
3093 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3094 return (LONGEST) - which;
3095
3096 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3097 type = TYPE_TARGET_TYPE (arr_type);
3098 else
3099 type = arr_type;
3100
3101 if (TYPE_FIXED_INSTANCE (type))
3102 {
3103 /* The array has already been fixed, so we do not need to
3104 check the parallel ___XA type again. That encoding has
3105 already been applied, so ignore it now. */
3106 index_type_desc = NULL;
3107 }
3108 else
3109 {
3110 index_type_desc = ada_find_parallel_type (type, "___XA");
3111 ada_fixup_array_indexes_type (index_type_desc);
3112 }
3113
3114 if (index_type_desc != NULL)
3115 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3116 NULL);
3117 else
3118 {
3119 struct type *elt_type = check_typedef (type);
3120
3121 for (i = 1; i < n; i++)
3122 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3123
3124 index_type = TYPE_INDEX_TYPE (elt_type);
3125 }
3126
3127 return
3128 (LONGEST) (which == 0
3129 ? ada_discrete_type_low_bound (index_type)
3130 : ada_discrete_type_high_bound (index_type));
3131 }
3132
3133 /* Given that arr is an array value, returns the lower bound of the
3134 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3135 WHICH is 1. This routine will also work for arrays with bounds
3136 supplied by run-time quantities other than discriminants. */
3137
3138 static LONGEST
3139 ada_array_bound (struct value *arr, int n, int which)
3140 {
3141 struct type *arr_type;
3142
3143 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3144 arr = value_ind (arr);
3145 arr_type = value_enclosing_type (arr);
3146
3147 if (ada_is_constrained_packed_array_type (arr_type))
3148 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3149 else if (ada_is_simple_array_type (arr_type))
3150 return ada_array_bound_from_type (arr_type, n, which);
3151 else
3152 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3153 }
3154
3155 /* Given that arr is an array value, returns the length of the
3156 nth index. This routine will also work for arrays with bounds
3157 supplied by run-time quantities other than discriminants.
3158 Does not work for arrays indexed by enumeration types with representation
3159 clauses at the moment. */
3160
3161 static LONGEST
3162 ada_array_length (struct value *arr, int n)
3163 {
3164 struct type *arr_type, *index_type;
3165 int low, high;
3166
3167 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3168 arr = value_ind (arr);
3169 arr_type = value_enclosing_type (arr);
3170
3171 if (ada_is_constrained_packed_array_type (arr_type))
3172 return ada_array_length (decode_constrained_packed_array (arr), n);
3173
3174 if (ada_is_simple_array_type (arr_type))
3175 {
3176 low = ada_array_bound_from_type (arr_type, n, 0);
3177 high = ada_array_bound_from_type (arr_type, n, 1);
3178 }
3179 else
3180 {
3181 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3182 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3183 }
3184
3185 arr_type = check_typedef (arr_type);
3186 index_type = TYPE_INDEX_TYPE (arr_type);
3187 if (index_type != NULL)
3188 {
3189 struct type *base_type;
3190 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3191 base_type = TYPE_TARGET_TYPE (index_type);
3192 else
3193 base_type = index_type;
3194
3195 low = pos_atr (value_from_longest (base_type, low));
3196 high = pos_atr (value_from_longest (base_type, high));
3197 }
3198 return high - low + 1;
3199 }
3200
3201 /* An empty array whose type is that of ARR_TYPE (an array type),
3202 with bounds LOW to LOW-1. */
3203
3204 static struct value *
3205 empty_array (struct type *arr_type, int low)
3206 {
3207 struct type *arr_type0 = ada_check_typedef (arr_type);
3208 struct type *index_type
3209 = create_static_range_type
3210 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3211 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3212
3213 return allocate_value (create_array_type (NULL, elt_type, index_type));
3214 }
3215 \f
3216
3217 /* Name resolution */
3218
3219 /* The "decoded" name for the user-definable Ada operator corresponding
3220 to OP. */
3221
3222 static const char *
3223 ada_decoded_op_name (enum exp_opcode op)
3224 {
3225 int i;
3226
3227 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3228 {
3229 if (ada_opname_table[i].op == op)
3230 return ada_opname_table[i].decoded;
3231 }
3232 error (_("Could not find operator name for opcode"));
3233 }
3234
3235
3236 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3237 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3238 undefined namespace) and converts operators that are
3239 user-defined into appropriate function calls. If CONTEXT_TYPE is
3240 non-null, it provides a preferred result type [at the moment, only
3241 type void has any effect---causing procedures to be preferred over
3242 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3243 return type is preferred. May change (expand) *EXP. */
3244
3245 static void
3246 resolve (struct expression **expp, int void_context_p)
3247 {
3248 struct type *context_type = NULL;
3249 int pc = 0;
3250
3251 if (void_context_p)
3252 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3253
3254 resolve_subexp (expp, &pc, 1, context_type);
3255 }
3256
3257 /* Resolve the operator of the subexpression beginning at
3258 position *POS of *EXPP. "Resolving" consists of replacing
3259 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3260 with their resolutions, replacing built-in operators with
3261 function calls to user-defined operators, where appropriate, and,
3262 when DEPROCEDURE_P is non-zero, converting function-valued variables
3263 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3264 are as in ada_resolve, above. */
3265
3266 static struct value *
3267 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3268 struct type *context_type)
3269 {
3270 int pc = *pos;
3271 int i;
3272 struct expression *exp; /* Convenience: == *expp. */
3273 enum exp_opcode op = (*expp)->elts[pc].opcode;
3274 struct value **argvec; /* Vector of operand types (alloca'ed). */
3275 int nargs; /* Number of operands. */
3276 int oplen;
3277
3278 argvec = NULL;
3279 nargs = 0;
3280 exp = *expp;
3281
3282 /* Pass one: resolve operands, saving their types and updating *pos,
3283 if needed. */
3284 switch (op)
3285 {
3286 case OP_FUNCALL:
3287 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3288 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3289 *pos += 7;
3290 else
3291 {
3292 *pos += 3;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 }
3295 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3296 break;
3297
3298 case UNOP_ADDR:
3299 *pos += 1;
3300 resolve_subexp (expp, pos, 0, NULL);
3301 break;
3302
3303 case UNOP_QUAL:
3304 *pos += 3;
3305 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3306 break;
3307
3308 case OP_ATR_MODULUS:
3309 case OP_ATR_SIZE:
3310 case OP_ATR_TAG:
3311 case OP_ATR_FIRST:
3312 case OP_ATR_LAST:
3313 case OP_ATR_LENGTH:
3314 case OP_ATR_POS:
3315 case OP_ATR_VAL:
3316 case OP_ATR_MIN:
3317 case OP_ATR_MAX:
3318 case TERNOP_IN_RANGE:
3319 case BINOP_IN_BOUNDS:
3320 case UNOP_IN_RANGE:
3321 case OP_AGGREGATE:
3322 case OP_OTHERS:
3323 case OP_CHOICES:
3324 case OP_POSITIONAL:
3325 case OP_DISCRETE_RANGE:
3326 case OP_NAME:
3327 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3328 *pos += oplen;
3329 break;
3330
3331 case BINOP_ASSIGN:
3332 {
3333 struct value *arg1;
3334
3335 *pos += 1;
3336 arg1 = resolve_subexp (expp, pos, 0, NULL);
3337 if (arg1 == NULL)
3338 resolve_subexp (expp, pos, 1, NULL);
3339 else
3340 resolve_subexp (expp, pos, 1, value_type (arg1));
3341 break;
3342 }
3343
3344 case UNOP_CAST:
3345 *pos += 3;
3346 nargs = 1;
3347 break;
3348
3349 case BINOP_ADD:
3350 case BINOP_SUB:
3351 case BINOP_MUL:
3352 case BINOP_DIV:
3353 case BINOP_REM:
3354 case BINOP_MOD:
3355 case BINOP_EXP:
3356 case BINOP_CONCAT:
3357 case BINOP_LOGICAL_AND:
3358 case BINOP_LOGICAL_OR:
3359 case BINOP_BITWISE_AND:
3360 case BINOP_BITWISE_IOR:
3361 case BINOP_BITWISE_XOR:
3362
3363 case BINOP_EQUAL:
3364 case BINOP_NOTEQUAL:
3365 case BINOP_LESS:
3366 case BINOP_GTR:
3367 case BINOP_LEQ:
3368 case BINOP_GEQ:
3369
3370 case BINOP_REPEAT:
3371 case BINOP_SUBSCRIPT:
3372 case BINOP_COMMA:
3373 *pos += 1;
3374 nargs = 2;
3375 break;
3376
3377 case UNOP_NEG:
3378 case UNOP_PLUS:
3379 case UNOP_LOGICAL_NOT:
3380 case UNOP_ABS:
3381 case UNOP_IND:
3382 *pos += 1;
3383 nargs = 1;
3384 break;
3385
3386 case OP_LONG:
3387 case OP_DOUBLE:
3388 case OP_VAR_VALUE:
3389 case OP_VAR_MSYM_VALUE:
3390 *pos += 4;
3391 break;
3392
3393 case OP_TYPE:
3394 case OP_BOOL:
3395 case OP_LAST:
3396 case OP_INTERNALVAR:
3397 *pos += 3;
3398 break;
3399
3400 case UNOP_MEMVAL:
3401 *pos += 3;
3402 nargs = 1;
3403 break;
3404
3405 case OP_REGISTER:
3406 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3407 break;
3408
3409 case STRUCTOP_STRUCT:
3410 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3411 nargs = 1;
3412 break;
3413
3414 case TERNOP_SLICE:
3415 *pos += 1;
3416 nargs = 3;
3417 break;
3418
3419 case OP_STRING:
3420 break;
3421
3422 default:
3423 error (_("Unexpected operator during name resolution"));
3424 }
3425
3426 argvec = XALLOCAVEC (struct value *, nargs + 1);
3427 for (i = 0; i < nargs; i += 1)
3428 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3429 argvec[i] = NULL;
3430 exp = *expp;
3431
3432 /* Pass two: perform any resolution on principal operator. */
3433 switch (op)
3434 {
3435 default:
3436 break;
3437
3438 case OP_VAR_VALUE:
3439 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3440 {
3441 struct block_symbol *candidates;
3442 int n_candidates;
3443
3444 n_candidates =
3445 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3446 (exp->elts[pc + 2].symbol),
3447 exp->elts[pc + 1].block, VAR_DOMAIN,
3448 &candidates);
3449
3450 if (n_candidates > 1)
3451 {
3452 /* Types tend to get re-introduced locally, so if there
3453 are any local symbols that are not types, first filter
3454 out all types. */
3455 int j;
3456 for (j = 0; j < n_candidates; j += 1)
3457 switch (SYMBOL_CLASS (candidates[j].symbol))
3458 {
3459 case LOC_REGISTER:
3460 case LOC_ARG:
3461 case LOC_REF_ARG:
3462 case LOC_REGPARM_ADDR:
3463 case LOC_LOCAL:
3464 case LOC_COMPUTED:
3465 goto FoundNonType;
3466 default:
3467 break;
3468 }
3469 FoundNonType:
3470 if (j < n_candidates)
3471 {
3472 j = 0;
3473 while (j < n_candidates)
3474 {
3475 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3476 {
3477 candidates[j] = candidates[n_candidates - 1];
3478 n_candidates -= 1;
3479 }
3480 else
3481 j += 1;
3482 }
3483 }
3484 }
3485
3486 if (n_candidates == 0)
3487 error (_("No definition found for %s"),
3488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3489 else if (n_candidates == 1)
3490 i = 0;
3491 else if (deprocedure_p
3492 && !is_nonfunction (candidates, n_candidates))
3493 {
3494 i = ada_resolve_function
3495 (candidates, n_candidates, NULL, 0,
3496 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3497 context_type);
3498 if (i < 0)
3499 error (_("Could not find a match for %s"),
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 }
3502 else
3503 {
3504 printf_filtered (_("Multiple matches for %s\n"),
3505 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506 user_select_syms (candidates, n_candidates, 1);
3507 i = 0;
3508 }
3509
3510 exp->elts[pc + 1].block = candidates[i].block;
3511 exp->elts[pc + 2].symbol = candidates[i].symbol;
3512 if (innermost_block == NULL
3513 || contained_in (candidates[i].block, innermost_block))
3514 innermost_block = candidates[i].block;
3515 }
3516
3517 if (deprocedure_p
3518 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3519 == TYPE_CODE_FUNC))
3520 {
3521 replace_operator_with_call (expp, pc, 0, 0,
3522 exp->elts[pc + 2].symbol,
3523 exp->elts[pc + 1].block);
3524 exp = *expp;
3525 }
3526 break;
3527
3528 case OP_FUNCALL:
3529 {
3530 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3531 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3532 {
3533 struct block_symbol *candidates;
3534 int n_candidates;
3535
3536 n_candidates =
3537 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3538 (exp->elts[pc + 5].symbol),
3539 exp->elts[pc + 4].block, VAR_DOMAIN,
3540 &candidates);
3541 if (n_candidates == 1)
3542 i = 0;
3543 else
3544 {
3545 i = ada_resolve_function
3546 (candidates, n_candidates,
3547 argvec, nargs,
3548 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3549 context_type);
3550 if (i < 0)
3551 error (_("Could not find a match for %s"),
3552 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3553 }
3554
3555 exp->elts[pc + 4].block = candidates[i].block;
3556 exp->elts[pc + 5].symbol = candidates[i].symbol;
3557 if (innermost_block == NULL
3558 || contained_in (candidates[i].block, innermost_block))
3559 innermost_block = candidates[i].block;
3560 }
3561 }
3562 break;
3563 case BINOP_ADD:
3564 case BINOP_SUB:
3565 case BINOP_MUL:
3566 case BINOP_DIV:
3567 case BINOP_REM:
3568 case BINOP_MOD:
3569 case BINOP_CONCAT:
3570 case BINOP_BITWISE_AND:
3571 case BINOP_BITWISE_IOR:
3572 case BINOP_BITWISE_XOR:
3573 case BINOP_EQUAL:
3574 case BINOP_NOTEQUAL:
3575 case BINOP_LESS:
3576 case BINOP_GTR:
3577 case BINOP_LEQ:
3578 case BINOP_GEQ:
3579 case BINOP_EXP:
3580 case UNOP_NEG:
3581 case UNOP_PLUS:
3582 case UNOP_LOGICAL_NOT:
3583 case UNOP_ABS:
3584 if (possible_user_operator_p (op, argvec))
3585 {
3586 struct block_symbol *candidates;
3587 int n_candidates;
3588
3589 n_candidates =
3590 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3591 (struct block *) NULL, VAR_DOMAIN,
3592 &candidates);
3593 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3594 ada_decoded_op_name (op), NULL);
3595 if (i < 0)
3596 break;
3597
3598 replace_operator_with_call (expp, pc, nargs, 1,
3599 candidates[i].symbol,
3600 candidates[i].block);
3601 exp = *expp;
3602 }
3603 break;
3604
3605 case OP_TYPE:
3606 case OP_REGISTER:
3607 return NULL;
3608 }
3609
3610 *pos = pc;
3611 return evaluate_subexp_type (exp, pos);
3612 }
3613
3614 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3615 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3616 a non-pointer. */
3617 /* The term "match" here is rather loose. The match is heuristic and
3618 liberal. */
3619
3620 static int
3621 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3622 {
3623 ftype = ada_check_typedef (ftype);
3624 atype = ada_check_typedef (atype);
3625
3626 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3627 ftype = TYPE_TARGET_TYPE (ftype);
3628 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3629 atype = TYPE_TARGET_TYPE (atype);
3630
3631 switch (TYPE_CODE (ftype))
3632 {
3633 default:
3634 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3635 case TYPE_CODE_PTR:
3636 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3637 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3638 TYPE_TARGET_TYPE (atype), 0);
3639 else
3640 return (may_deref
3641 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 switch (TYPE_CODE (atype))
3646 {
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 return 1;
3651 default:
3652 return 0;
3653 }
3654
3655 case TYPE_CODE_ARRAY:
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3658
3659 case TYPE_CODE_STRUCT:
3660 if (ada_is_array_descriptor_type (ftype))
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663 else
3664 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3665 && !ada_is_array_descriptor_type (atype));
3666
3667 case TYPE_CODE_UNION:
3668 case TYPE_CODE_FLT:
3669 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3670 }
3671 }
3672
3673 /* Return non-zero if the formals of FUNC "sufficiently match" the
3674 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3675 may also be an enumeral, in which case it is treated as a 0-
3676 argument function. */
3677
3678 static int
3679 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3680 {
3681 int i;
3682 struct type *func_type = SYMBOL_TYPE (func);
3683
3684 if (SYMBOL_CLASS (func) == LOC_CONST
3685 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3686 return (n_actuals == 0);
3687 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3688 return 0;
3689
3690 if (TYPE_NFIELDS (func_type) != n_actuals)
3691 return 0;
3692
3693 for (i = 0; i < n_actuals; i += 1)
3694 {
3695 if (actuals[i] == NULL)
3696 return 0;
3697 else
3698 {
3699 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3700 i));
3701 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3702
3703 if (!ada_type_match (ftype, atype, 1))
3704 return 0;
3705 }
3706 }
3707 return 1;
3708 }
3709
3710 /* False iff function type FUNC_TYPE definitely does not produce a value
3711 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3712 FUNC_TYPE is not a valid function type with a non-null return type
3713 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3714
3715 static int
3716 return_match (struct type *func_type, struct type *context_type)
3717 {
3718 struct type *return_type;
3719
3720 if (func_type == NULL)
3721 return 1;
3722
3723 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3724 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3725 else
3726 return_type = get_base_type (func_type);
3727 if (return_type == NULL)
3728 return 1;
3729
3730 context_type = get_base_type (context_type);
3731
3732 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3733 return context_type == NULL || return_type == context_type;
3734 else if (context_type == NULL)
3735 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3736 else
3737 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3738 }
3739
3740
3741 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3742 function (if any) that matches the types of the NARGS arguments in
3743 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3744 that returns that type, then eliminate matches that don't. If
3745 CONTEXT_TYPE is void and there is at least one match that does not
3746 return void, eliminate all matches that do.
3747
3748 Asks the user if there is more than one match remaining. Returns -1
3749 if there is no such symbol or none is selected. NAME is used
3750 solely for messages. May re-arrange and modify SYMS in
3751 the process; the index returned is for the modified vector. */
3752
3753 static int
3754 ada_resolve_function (struct block_symbol syms[],
3755 int nsyms, struct value **args, int nargs,
3756 const char *name, struct type *context_type)
3757 {
3758 int fallback;
3759 int k;
3760 int m; /* Number of hits */
3761
3762 m = 0;
3763 /* In the first pass of the loop, we only accept functions matching
3764 context_type. If none are found, we add a second pass of the loop
3765 where every function is accepted. */
3766 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3767 {
3768 for (k = 0; k < nsyms; k += 1)
3769 {
3770 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3771
3772 if (ada_args_match (syms[k].symbol, args, nargs)
3773 && (fallback || return_match (type, context_type)))
3774 {
3775 syms[m] = syms[k];
3776 m += 1;
3777 }
3778 }
3779 }
3780
3781 /* If we got multiple matches, ask the user which one to use. Don't do this
3782 interactive thing during completion, though, as the purpose of the
3783 completion is providing a list of all possible matches. Prompting the
3784 user to filter it down would be completely unexpected in this case. */
3785 if (m == 0)
3786 return -1;
3787 else if (m > 1 && !parse_completion)
3788 {
3789 printf_filtered (_("Multiple matches for %s\n"), name);
3790 user_select_syms (syms, m, 1);
3791 return 0;
3792 }
3793 return 0;
3794 }
3795
3796 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3797 in a listing of choices during disambiguation (see sort_choices, below).
3798 The idea is that overloadings of a subprogram name from the
3799 same package should sort in their source order. We settle for ordering
3800 such symbols by their trailing number (__N or $N). */
3801
3802 static int
3803 encoded_ordered_before (const char *N0, const char *N1)
3804 {
3805 if (N1 == NULL)
3806 return 0;
3807 else if (N0 == NULL)
3808 return 1;
3809 else
3810 {
3811 int k0, k1;
3812
3813 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3814 ;
3815 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3816 ;
3817 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3818 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3819 {
3820 int n0, n1;
3821
3822 n0 = k0;
3823 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3824 n0 -= 1;
3825 n1 = k1;
3826 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3827 n1 -= 1;
3828 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3829 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3830 }
3831 return (strcmp (N0, N1) < 0);
3832 }
3833 }
3834
3835 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3836 encoded names. */
3837
3838 static void
3839 sort_choices (struct block_symbol syms[], int nsyms)
3840 {
3841 int i;
3842
3843 for (i = 1; i < nsyms; i += 1)
3844 {
3845 struct block_symbol sym = syms[i];
3846 int j;
3847
3848 for (j = i - 1; j >= 0; j -= 1)
3849 {
3850 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3851 SYMBOL_LINKAGE_NAME (sym.symbol)))
3852 break;
3853 syms[j + 1] = syms[j];
3854 }
3855 syms[j + 1] = sym;
3856 }
3857 }
3858
3859 /* Whether GDB should display formals and return types for functions in the
3860 overloads selection menu. */
3861 static int print_signatures = 1;
3862
3863 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3864 all but functions, the signature is just the name of the symbol. For
3865 functions, this is the name of the function, the list of types for formals
3866 and the return type (if any). */
3867
3868 static void
3869 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3870 const struct type_print_options *flags)
3871 {
3872 struct type *type = SYMBOL_TYPE (sym);
3873
3874 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3875 if (!print_signatures
3876 || type == NULL
3877 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3878 return;
3879
3880 if (TYPE_NFIELDS (type) > 0)
3881 {
3882 int i;
3883
3884 fprintf_filtered (stream, " (");
3885 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3886 {
3887 if (i > 0)
3888 fprintf_filtered (stream, "; ");
3889 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3890 flags);
3891 }
3892 fprintf_filtered (stream, ")");
3893 }
3894 if (TYPE_TARGET_TYPE (type) != NULL
3895 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3896 {
3897 fprintf_filtered (stream, " return ");
3898 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3899 }
3900 }
3901
3902 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3903 by asking the user (if necessary), returning the number selected,
3904 and setting the first elements of SYMS items. Error if no symbols
3905 selected. */
3906
3907 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3908 to be re-integrated one of these days. */
3909
3910 int
3911 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3912 {
3913 int i;
3914 int *chosen = XALLOCAVEC (int , nsyms);
3915 int n_chosen;
3916 int first_choice = (max_results == 1) ? 1 : 2;
3917 const char *select_mode = multiple_symbols_select_mode ();
3918
3919 if (max_results < 1)
3920 error (_("Request to select 0 symbols!"));
3921 if (nsyms <= 1)
3922 return nsyms;
3923
3924 if (select_mode == multiple_symbols_cancel)
3925 error (_("\
3926 canceled because the command is ambiguous\n\
3927 See set/show multiple-symbol."));
3928
3929 /* If select_mode is "all", then return all possible symbols.
3930 Only do that if more than one symbol can be selected, of course.
3931 Otherwise, display the menu as usual. */
3932 if (select_mode == multiple_symbols_all && max_results > 1)
3933 return nsyms;
3934
3935 printf_unfiltered (_("[0] cancel\n"));
3936 if (max_results > 1)
3937 printf_unfiltered (_("[1] all\n"));
3938
3939 sort_choices (syms, nsyms);
3940
3941 for (i = 0; i < nsyms; i += 1)
3942 {
3943 if (syms[i].symbol == NULL)
3944 continue;
3945
3946 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3947 {
3948 struct symtab_and_line sal =
3949 find_function_start_sal (syms[i].symbol, 1);
3950
3951 printf_unfiltered ("[%d] ", i + first_choice);
3952 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3953 &type_print_raw_options);
3954 if (sal.symtab == NULL)
3955 printf_unfiltered (_(" at <no source file available>:%d\n"),
3956 sal.line);
3957 else
3958 printf_unfiltered (_(" at %s:%d\n"),
3959 symtab_to_filename_for_display (sal.symtab),
3960 sal.line);
3961 continue;
3962 }
3963 else
3964 {
3965 int is_enumeral =
3966 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3967 && SYMBOL_TYPE (syms[i].symbol) != NULL
3968 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3969 struct symtab *symtab = NULL;
3970
3971 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3972 symtab = symbol_symtab (syms[i].symbol);
3973
3974 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3975 {
3976 printf_unfiltered ("[%d] ", i + first_choice);
3977 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3978 &type_print_raw_options);
3979 printf_unfiltered (_(" at %s:%d\n"),
3980 symtab_to_filename_for_display (symtab),
3981 SYMBOL_LINE (syms[i].symbol));
3982 }
3983 else if (is_enumeral
3984 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3985 {
3986 printf_unfiltered (("[%d] "), i + first_choice);
3987 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3988 gdb_stdout, -1, 0, &type_print_raw_options);
3989 printf_unfiltered (_("'(%s) (enumeral)\n"),
3990 SYMBOL_PRINT_NAME (syms[i].symbol));
3991 }
3992 else
3993 {
3994 printf_unfiltered ("[%d] ", i + first_choice);
3995 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3996 &type_print_raw_options);
3997
3998 if (symtab != NULL)
3999 printf_unfiltered (is_enumeral
4000 ? _(" in %s (enumeral)\n")
4001 : _(" at %s:?\n"),
4002 symtab_to_filename_for_display (symtab));
4003 else
4004 printf_unfiltered (is_enumeral
4005 ? _(" (enumeral)\n")
4006 : _(" at ?\n"));
4007 }
4008 }
4009 }
4010
4011 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4012 "overload-choice");
4013
4014 for (i = 0; i < n_chosen; i += 1)
4015 syms[i] = syms[chosen[i]];
4016
4017 return n_chosen;
4018 }
4019
4020 /* Read and validate a set of numeric choices from the user in the
4021 range 0 .. N_CHOICES-1. Place the results in increasing
4022 order in CHOICES[0 .. N-1], and return N.
4023
4024 The user types choices as a sequence of numbers on one line
4025 separated by blanks, encoding them as follows:
4026
4027 + A choice of 0 means to cancel the selection, throwing an error.
4028 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4029 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4030
4031 The user is not allowed to choose more than MAX_RESULTS values.
4032
4033 ANNOTATION_SUFFIX, if present, is used to annotate the input
4034 prompts (for use with the -f switch). */
4035
4036 int
4037 get_selections (int *choices, int n_choices, int max_results,
4038 int is_all_choice, const char *annotation_suffix)
4039 {
4040 char *args;
4041 const char *prompt;
4042 int n_chosen;
4043 int first_choice = is_all_choice ? 2 : 1;
4044
4045 prompt = getenv ("PS2");
4046 if (prompt == NULL)
4047 prompt = "> ";
4048
4049 args = command_line_input (prompt, 0, annotation_suffix);
4050
4051 if (args == NULL)
4052 error_no_arg (_("one or more choice numbers"));
4053
4054 n_chosen = 0;
4055
4056 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4057 order, as given in args. Choices are validated. */
4058 while (1)
4059 {
4060 char *args2;
4061 int choice, j;
4062
4063 args = skip_spaces (args);
4064 if (*args == '\0' && n_chosen == 0)
4065 error_no_arg (_("one or more choice numbers"));
4066 else if (*args == '\0')
4067 break;
4068
4069 choice = strtol (args, &args2, 10);
4070 if (args == args2 || choice < 0
4071 || choice > n_choices + first_choice - 1)
4072 error (_("Argument must be choice number"));
4073 args = args2;
4074
4075 if (choice == 0)
4076 error (_("cancelled"));
4077
4078 if (choice < first_choice)
4079 {
4080 n_chosen = n_choices;
4081 for (j = 0; j < n_choices; j += 1)
4082 choices[j] = j;
4083 break;
4084 }
4085 choice -= first_choice;
4086
4087 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4088 {
4089 }
4090
4091 if (j < 0 || choice != choices[j])
4092 {
4093 int k;
4094
4095 for (k = n_chosen - 1; k > j; k -= 1)
4096 choices[k + 1] = choices[k];
4097 choices[j + 1] = choice;
4098 n_chosen += 1;
4099 }
4100 }
4101
4102 if (n_chosen > max_results)
4103 error (_("Select no more than %d of the above"), max_results);
4104
4105 return n_chosen;
4106 }
4107
4108 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4109 on the function identified by SYM and BLOCK, and taking NARGS
4110 arguments. Update *EXPP as needed to hold more space. */
4111
4112 static void
4113 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4114 int oplen, struct symbol *sym,
4115 const struct block *block)
4116 {
4117 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4118 symbol, -oplen for operator being replaced). */
4119 struct expression *newexp = (struct expression *)
4120 xzalloc (sizeof (struct expression)
4121 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4122 struct expression *exp = *expp;
4123
4124 newexp->nelts = exp->nelts + 7 - oplen;
4125 newexp->language_defn = exp->language_defn;
4126 newexp->gdbarch = exp->gdbarch;
4127 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4128 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4129 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4130
4131 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4132 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4133
4134 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4135 newexp->elts[pc + 4].block = block;
4136 newexp->elts[pc + 5].symbol = sym;
4137
4138 *expp = newexp;
4139 xfree (exp);
4140 }
4141
4142 /* Type-class predicates */
4143
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
4146
4147 static int
4148 numeric_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
4165 }
4166 }
4167
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4169
4170 static int
4171 integer_type_p (struct type *type)
4172 {
4173 if (type == NULL)
4174 return 0;
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
4187 }
4188 }
4189
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4191
4192 static int
4193 scalar_type_p (struct type *type)
4194 {
4195 if (type == NULL)
4196 return 0;
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
4209 }
4210 }
4211
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4213
4214 static int
4215 discrete_type_p (struct type *type)
4216 {
4217 if (type == NULL)
4218 return 0;
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4227 return 1;
4228 default:
4229 return 0;
4230 }
4231 }
4232 }
4233
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4237
4238 static int
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4240 {
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4245
4246 if (type0 == NULL)
4247 return 0;
4248
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4274
4275 case BINOP_CONCAT:
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4277
4278 case BINOP_EXP:
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
4286
4287 }
4288 }
4289 \f
4290 /* Renaming */
4291
4292 /* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304 /* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327 {
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4335 {
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
4369 }
4370
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382 }
4383
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392 {
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
4397
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4401
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
4427
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
4441 }
4442
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4446
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4450 {
4451 const char *sym_name;
4452
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4456 }
4457 \f
4458
4459 /* Evaluation: Function Calls */
4460
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4464
4465 static struct value *
4466 ensure_lval (struct value *val)
4467 {
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4470 {
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4474
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4478 }
4479
4480 return val;
4481 }
4482
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4487
4488 struct value *
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4490 {
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4499
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4505 {
4506 struct value *result;
4507
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
4516
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4523 }
4524 result = value_addr (actual);
4525 }
4526 else
4527 return actual;
4528 return value_cast_pointers (formal_type, result, 0);
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
4542
4543 return actual;
4544 }
4545
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551 static CORE_ADDR
4552 value_pointer (struct value *value, struct type *type)
4553 {
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563 }
4564
4565
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4571
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4574 {
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4579 int i;
4580
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
4583 {
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4592 }
4593
4594 bounds = ensure_lval (bounds);
4595
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4609
4610 descriptor = ensure_lval (descriptor);
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616 }
4617 \f
4618 /* Symbol Cache Module */
4619
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
4630 /* Initialize the contents of SYM_CACHE. */
4631
4632 static void
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634 {
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637 }
4638
4639 /* Free the memory used by SYM_CACHE. */
4640
4641 static void
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4643 {
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646 }
4647
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4650
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4653 {
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4655
4656 if (pspace_data->sym_cache == NULL)
4657 {
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4660 }
4661
4662 return pspace_data->sym_cache;
4663 }
4664
4665 /* Clear all entries from the symbol cache. */
4666
4667 static void
4668 ada_clear_symbol_cache (void)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4675 }
4676
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4679
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4682 {
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4689 {
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4691 return e;
4692 }
4693 return NULL;
4694 }
4695
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4701
4702 static int
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4705 {
4706 struct cache_entry **e = find_entry (name, domain);
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
4715 }
4716
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4719
4720 static void
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4723 {
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748 sizeof (*e));
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4753 strcpy (copy, name);
4754 e->sym = sym;
4755 e->domain = domain;
4756 e->block = block;
4757 }
4758 \f
4759 /* Symbol Lookup */
4760
4761 /* Return nonzero if wild matching should be used when searching for
4762 all symbols matching LOOKUP_NAME.
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups (see ada_name_for_lookup). */
4766
4767 static int
4768 should_use_wild_match (const char *lookup_name)
4769 {
4770 return (strstr (lookup_name, "__") == NULL);
4771 }
4772
4773 /* Return the result of a standard (literal, C-like) lookup of NAME in
4774 given DOMAIN, visible from lexical block BLOCK. */
4775
4776 static struct symbol *
4777 standard_lookup (const char *name, const struct block *block,
4778 domain_enum domain)
4779 {
4780 /* Initialize it just to avoid a GCC false warning. */
4781 struct block_symbol sym = {NULL, NULL};
4782
4783 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4784 return sym.symbol;
4785 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4786 cache_symbol (name, domain, sym.symbol, sym.block);
4787 return sym.symbol;
4788 }
4789
4790
4791 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4792 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4793 since they contend in overloading in the same way. */
4794 static int
4795 is_nonfunction (struct block_symbol syms[], int n)
4796 {
4797 int i;
4798
4799 for (i = 0; i < n; i += 1)
4800 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4801 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4802 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4803 return 1;
4804
4805 return 0;
4806 }
4807
4808 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4809 struct types. Otherwise, they may not. */
4810
4811 static int
4812 equiv_types (struct type *type0, struct type *type1)
4813 {
4814 if (type0 == type1)
4815 return 1;
4816 if (type0 == NULL || type1 == NULL
4817 || TYPE_CODE (type0) != TYPE_CODE (type1))
4818 return 0;
4819 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4820 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4821 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4822 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4823 return 1;
4824
4825 return 0;
4826 }
4827
4828 /* True iff SYM0 represents the same entity as SYM1, or one that is
4829 no more defined than that of SYM1. */
4830
4831 static int
4832 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4833 {
4834 if (sym0 == sym1)
4835 return 1;
4836 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4837 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4838 return 0;
4839
4840 switch (SYMBOL_CLASS (sym0))
4841 {
4842 case LOC_UNDEF:
4843 return 1;
4844 case LOC_TYPEDEF:
4845 {
4846 struct type *type0 = SYMBOL_TYPE (sym0);
4847 struct type *type1 = SYMBOL_TYPE (sym1);
4848 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4849 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4850 int len0 = strlen (name0);
4851
4852 return
4853 TYPE_CODE (type0) == TYPE_CODE (type1)
4854 && (equiv_types (type0, type1)
4855 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4856 && startswith (name1 + len0, "___XV")));
4857 }
4858 case LOC_CONST:
4859 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4860 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4861 default:
4862 return 0;
4863 }
4864 }
4865
4866 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4867 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4868
4869 static void
4870 add_defn_to_vec (struct obstack *obstackp,
4871 struct symbol *sym,
4872 const struct block *block)
4873 {
4874 int i;
4875 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4876
4877 /* Do not try to complete stub types, as the debugger is probably
4878 already scanning all symbols matching a certain name at the
4879 time when this function is called. Trying to replace the stub
4880 type by its associated full type will cause us to restart a scan
4881 which may lead to an infinite recursion. Instead, the client
4882 collecting the matching symbols will end up collecting several
4883 matches, with at least one of them complete. It can then filter
4884 out the stub ones if needed. */
4885
4886 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4887 {
4888 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4889 return;
4890 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4891 {
4892 prevDefns[i].symbol = sym;
4893 prevDefns[i].block = block;
4894 return;
4895 }
4896 }
4897
4898 {
4899 struct block_symbol info;
4900
4901 info.symbol = sym;
4902 info.block = block;
4903 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4904 }
4905 }
4906
4907 /* Number of block_symbol structures currently collected in current vector in
4908 OBSTACKP. */
4909
4910 static int
4911 num_defns_collected (struct obstack *obstackp)
4912 {
4913 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4914 }
4915
4916 /* Vector of block_symbol structures currently collected in current vector in
4917 OBSTACKP. If FINISH, close off the vector and return its final address. */
4918
4919 static struct block_symbol *
4920 defns_collected (struct obstack *obstackp, int finish)
4921 {
4922 if (finish)
4923 return (struct block_symbol *) obstack_finish (obstackp);
4924 else
4925 return (struct block_symbol *) obstack_base (obstackp);
4926 }
4927
4928 /* Return a bound minimal symbol matching NAME according to Ada
4929 decoding rules. Returns an invalid symbol if there is no such
4930 minimal symbol. Names prefixed with "standard__" are handled
4931 specially: "standard__" is first stripped off, and only static and
4932 global symbols are searched. */
4933
4934 struct bound_minimal_symbol
4935 ada_lookup_simple_minsym (const char *name)
4936 {
4937 struct bound_minimal_symbol result;
4938 struct objfile *objfile;
4939 struct minimal_symbol *msymbol;
4940 const int wild_match_p = should_use_wild_match (name);
4941
4942 memset (&result, 0, sizeof (result));
4943
4944 /* Special case: If the user specifies a symbol name inside package
4945 Standard, do a non-wild matching of the symbol name without
4946 the "standard__" prefix. This was primarily introduced in order
4947 to allow the user to specifically access the standard exceptions
4948 using, for instance, Standard.Constraint_Error when Constraint_Error
4949 is ambiguous (due to the user defining its own Constraint_Error
4950 entity inside its program). */
4951 if (startswith (name, "standard__"))
4952 name += sizeof ("standard__") - 1;
4953
4954 ALL_MSYMBOLS (objfile, msymbol)
4955 {
4956 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4957 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4958 {
4959 result.minsym = msymbol;
4960 result.objfile = objfile;
4961 break;
4962 }
4963 }
4964
4965 return result;
4966 }
4967
4968 /* For all subprograms that statically enclose the subprogram of the
4969 selected frame, add symbols matching identifier NAME in DOMAIN
4970 and their blocks to the list of data in OBSTACKP, as for
4971 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4972 with a wildcard prefix. */
4973
4974 static void
4975 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4976 const char *name, domain_enum domain,
4977 int wild_match_p)
4978 {
4979 }
4980
4981 /* True if TYPE is definitely an artificial type supplied to a symbol
4982 for which no debugging information was given in the symbol file. */
4983
4984 static int
4985 is_nondebugging_type (struct type *type)
4986 {
4987 const char *name = ada_type_name (type);
4988
4989 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4990 }
4991
4992 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4993 that are deemed "identical" for practical purposes.
4994
4995 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4996 types and that their number of enumerals is identical (in other
4997 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4998
4999 static int
5000 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5001 {
5002 int i;
5003
5004 /* The heuristic we use here is fairly conservative. We consider
5005 that 2 enumerate types are identical if they have the same
5006 number of enumerals and that all enumerals have the same
5007 underlying value and name. */
5008
5009 /* All enums in the type should have an identical underlying value. */
5010 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5011 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5012 return 0;
5013
5014 /* All enumerals should also have the same name (modulo any numerical
5015 suffix). */
5016 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5017 {
5018 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5019 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5020 int len_1 = strlen (name_1);
5021 int len_2 = strlen (name_2);
5022
5023 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5025 if (len_1 != len_2
5026 || strncmp (TYPE_FIELD_NAME (type1, i),
5027 TYPE_FIELD_NAME (type2, i),
5028 len_1) != 0)
5029 return 0;
5030 }
5031
5032 return 1;
5033 }
5034
5035 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5036 that are deemed "identical" for practical purposes. Sometimes,
5037 enumerals are not strictly identical, but their types are so similar
5038 that they can be considered identical.
5039
5040 For instance, consider the following code:
5041
5042 type Color is (Black, Red, Green, Blue, White);
5043 type RGB_Color is new Color range Red .. Blue;
5044
5045 Type RGB_Color is a subrange of an implicit type which is a copy
5046 of type Color. If we call that implicit type RGB_ColorB ("B" is
5047 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5048 As a result, when an expression references any of the enumeral
5049 by name (Eg. "print green"), the expression is technically
5050 ambiguous and the user should be asked to disambiguate. But
5051 doing so would only hinder the user, since it wouldn't matter
5052 what choice he makes, the outcome would always be the same.
5053 So, for practical purposes, we consider them as the same. */
5054
5055 static int
5056 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5057 {
5058 int i;
5059
5060 /* Before performing a thorough comparison check of each type,
5061 we perform a series of inexpensive checks. We expect that these
5062 checks will quickly fail in the vast majority of cases, and thus
5063 help prevent the unnecessary use of a more expensive comparison.
5064 Said comparison also expects us to make some of these checks
5065 (see ada_identical_enum_types_p). */
5066
5067 /* Quick check: All symbols should have an enum type. */
5068 for (i = 0; i < nsyms; i++)
5069 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5070 return 0;
5071
5072 /* Quick check: They should all have the same value. */
5073 for (i = 1; i < nsyms; i++)
5074 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5075 return 0;
5076
5077 /* Quick check: They should all have the same number of enumerals. */
5078 for (i = 1; i < nsyms; i++)
5079 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5080 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5081 return 0;
5082
5083 /* All the sanity checks passed, so we might have a set of
5084 identical enumeration types. Perform a more complete
5085 comparison of the type of each symbol. */
5086 for (i = 1; i < nsyms; i++)
5087 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5088 SYMBOL_TYPE (syms[0].symbol)))
5089 return 0;
5090
5091 return 1;
5092 }
5093
5094 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5095 duplicate other symbols in the list (The only case I know of where
5096 this happens is when object files containing stabs-in-ecoff are
5097 linked with files containing ordinary ecoff debugging symbols (or no
5098 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5099 Returns the number of items in the modified list. */
5100
5101 static int
5102 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5103 {
5104 int i, j;
5105
5106 /* We should never be called with less than 2 symbols, as there
5107 cannot be any extra symbol in that case. But it's easy to
5108 handle, since we have nothing to do in that case. */
5109 if (nsyms < 2)
5110 return nsyms;
5111
5112 i = 0;
5113 while (i < nsyms)
5114 {
5115 int remove_p = 0;
5116
5117 /* If two symbols have the same name and one of them is a stub type,
5118 the get rid of the stub. */
5119
5120 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5121 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5122 {
5123 for (j = 0; j < nsyms; j++)
5124 {
5125 if (j != i
5126 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5127 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5128 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5129 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5130 remove_p = 1;
5131 }
5132 }
5133
5134 /* Two symbols with the same name, same class and same address
5135 should be identical. */
5136
5137 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5138 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5139 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5140 {
5141 for (j = 0; j < nsyms; j += 1)
5142 {
5143 if (i != j
5144 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5145 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5146 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5147 && SYMBOL_CLASS (syms[i].symbol)
5148 == SYMBOL_CLASS (syms[j].symbol)
5149 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5150 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5151 remove_p = 1;
5152 }
5153 }
5154
5155 if (remove_p)
5156 {
5157 for (j = i + 1; j < nsyms; j += 1)
5158 syms[j - 1] = syms[j];
5159 nsyms -= 1;
5160 }
5161
5162 i += 1;
5163 }
5164
5165 /* If all the remaining symbols are identical enumerals, then
5166 just keep the first one and discard the rest.
5167
5168 Unlike what we did previously, we do not discard any entry
5169 unless they are ALL identical. This is because the symbol
5170 comparison is not a strict comparison, but rather a practical
5171 comparison. If all symbols are considered identical, then
5172 we can just go ahead and use the first one and discard the rest.
5173 But if we cannot reduce the list to a single element, we have
5174 to ask the user to disambiguate anyways. And if we have to
5175 present a multiple-choice menu, it's less confusing if the list
5176 isn't missing some choices that were identical and yet distinct. */
5177 if (symbols_are_identical_enums (syms, nsyms))
5178 nsyms = 1;
5179
5180 return nsyms;
5181 }
5182
5183 /* Given a type that corresponds to a renaming entity, use the type name
5184 to extract the scope (package name or function name, fully qualified,
5185 and following the GNAT encoding convention) where this renaming has been
5186 defined. The string returned needs to be deallocated after use. */
5187
5188 static char *
5189 xget_renaming_scope (struct type *renaming_type)
5190 {
5191 /* The renaming types adhere to the following convention:
5192 <scope>__<rename>___<XR extension>.
5193 So, to extract the scope, we search for the "___XR" extension,
5194 and then backtrack until we find the first "__". */
5195
5196 const char *name = type_name_no_tag (renaming_type);
5197 const char *suffix = strstr (name, "___XR");
5198 const char *last;
5199 int scope_len;
5200 char *scope;
5201
5202 /* Now, backtrack a bit until we find the first "__". Start looking
5203 at suffix - 3, as the <rename> part is at least one character long. */
5204
5205 for (last = suffix - 3; last > name; last--)
5206 if (last[0] == '_' && last[1] == '_')
5207 break;
5208
5209 /* Make a copy of scope and return it. */
5210
5211 scope_len = last - name;
5212 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5213
5214 strncpy (scope, name, scope_len);
5215 scope[scope_len] = '\0';
5216
5217 return scope;
5218 }
5219
5220 /* Return nonzero if NAME corresponds to a package name. */
5221
5222 static int
5223 is_package_name (const char *name)
5224 {
5225 /* Here, We take advantage of the fact that no symbols are generated
5226 for packages, while symbols are generated for each function.
5227 So the condition for NAME represent a package becomes equivalent
5228 to NAME not existing in our list of symbols. There is only one
5229 small complication with library-level functions (see below). */
5230
5231 char *fun_name;
5232
5233 /* If it is a function that has not been defined at library level,
5234 then we should be able to look it up in the symbols. */
5235 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5236 return 0;
5237
5238 /* Library-level function names start with "_ada_". See if function
5239 "_ada_" followed by NAME can be found. */
5240
5241 /* Do a quick check that NAME does not contain "__", since library-level
5242 functions names cannot contain "__" in them. */
5243 if (strstr (name, "__") != NULL)
5244 return 0;
5245
5246 fun_name = xstrprintf ("_ada_%s", name);
5247
5248 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5249 }
5250
5251 /* Return nonzero if SYM corresponds to a renaming entity that is
5252 not visible from FUNCTION_NAME. */
5253
5254 static int
5255 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5256 {
5257 char *scope;
5258 struct cleanup *old_chain;
5259
5260 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5261 return 0;
5262
5263 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5264 old_chain = make_cleanup (xfree, scope);
5265
5266 /* If the rename has been defined in a package, then it is visible. */
5267 if (is_package_name (scope))
5268 {
5269 do_cleanups (old_chain);
5270 return 0;
5271 }
5272
5273 /* Check that the rename is in the current function scope by checking
5274 that its name starts with SCOPE. */
5275
5276 /* If the function name starts with "_ada_", it means that it is
5277 a library-level function. Strip this prefix before doing the
5278 comparison, as the encoding for the renaming does not contain
5279 this prefix. */
5280 if (startswith (function_name, "_ada_"))
5281 function_name += 5;
5282
5283 {
5284 int is_invisible = !startswith (function_name, scope);
5285
5286 do_cleanups (old_chain);
5287 return is_invisible;
5288 }
5289 }
5290
5291 /* Remove entries from SYMS that corresponds to a renaming entity that
5292 is not visible from the function associated with CURRENT_BLOCK or
5293 that is superfluous due to the presence of more specific renaming
5294 information. Places surviving symbols in the initial entries of
5295 SYMS and returns the number of surviving symbols.
5296
5297 Rationale:
5298 First, in cases where an object renaming is implemented as a
5299 reference variable, GNAT may produce both the actual reference
5300 variable and the renaming encoding. In this case, we discard the
5301 latter.
5302
5303 Second, GNAT emits a type following a specified encoding for each renaming
5304 entity. Unfortunately, STABS currently does not support the definition
5305 of types that are local to a given lexical block, so all renamings types
5306 are emitted at library level. As a consequence, if an application
5307 contains two renaming entities using the same name, and a user tries to
5308 print the value of one of these entities, the result of the ada symbol
5309 lookup will also contain the wrong renaming type.
5310
5311 This function partially covers for this limitation by attempting to
5312 remove from the SYMS list renaming symbols that should be visible
5313 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5314 method with the current information available. The implementation
5315 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5316
5317 - When the user tries to print a rename in a function while there
5318 is another rename entity defined in a package: Normally, the
5319 rename in the function has precedence over the rename in the
5320 package, so the latter should be removed from the list. This is
5321 currently not the case.
5322
5323 - This function will incorrectly remove valid renames if
5324 the CURRENT_BLOCK corresponds to a function which symbol name
5325 has been changed by an "Export" pragma. As a consequence,
5326 the user will be unable to print such rename entities. */
5327
5328 static int
5329 remove_irrelevant_renamings (struct block_symbol *syms,
5330 int nsyms, const struct block *current_block)
5331 {
5332 struct symbol *current_function;
5333 const char *current_function_name;
5334 int i;
5335 int is_new_style_renaming;
5336
5337 /* If there is both a renaming foo___XR... encoded as a variable and
5338 a simple variable foo in the same block, discard the latter.
5339 First, zero out such symbols, then compress. */
5340 is_new_style_renaming = 0;
5341 for (i = 0; i < nsyms; i += 1)
5342 {
5343 struct symbol *sym = syms[i].symbol;
5344 const struct block *block = syms[i].block;
5345 const char *name;
5346 const char *suffix;
5347
5348 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5349 continue;
5350 name = SYMBOL_LINKAGE_NAME (sym);
5351 suffix = strstr (name, "___XR");
5352
5353 if (suffix != NULL)
5354 {
5355 int name_len = suffix - name;
5356 int j;
5357
5358 is_new_style_renaming = 1;
5359 for (j = 0; j < nsyms; j += 1)
5360 if (i != j && syms[j].symbol != NULL
5361 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5362 name_len) == 0
5363 && block == syms[j].block)
5364 syms[j].symbol = NULL;
5365 }
5366 }
5367 if (is_new_style_renaming)
5368 {
5369 int j, k;
5370
5371 for (j = k = 0; j < nsyms; j += 1)
5372 if (syms[j].symbol != NULL)
5373 {
5374 syms[k] = syms[j];
5375 k += 1;
5376 }
5377 return k;
5378 }
5379
5380 /* Extract the function name associated to CURRENT_BLOCK.
5381 Abort if unable to do so. */
5382
5383 if (current_block == NULL)
5384 return nsyms;
5385
5386 current_function = block_linkage_function (current_block);
5387 if (current_function == NULL)
5388 return nsyms;
5389
5390 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5391 if (current_function_name == NULL)
5392 return nsyms;
5393
5394 /* Check each of the symbols, and remove it from the list if it is
5395 a type corresponding to a renaming that is out of the scope of
5396 the current block. */
5397
5398 i = 0;
5399 while (i < nsyms)
5400 {
5401 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5402 == ADA_OBJECT_RENAMING
5403 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5404 {
5405 int j;
5406
5407 for (j = i + 1; j < nsyms; j += 1)
5408 syms[j - 1] = syms[j];
5409 nsyms -= 1;
5410 }
5411 else
5412 i += 1;
5413 }
5414
5415 return nsyms;
5416 }
5417
5418 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5419 whose name and domain match NAME and DOMAIN respectively.
5420 If no match was found, then extend the search to "enclosing"
5421 routines (in other words, if we're inside a nested function,
5422 search the symbols defined inside the enclosing functions).
5423 If WILD_MATCH_P is nonzero, perform the naming matching in
5424 "wild" mode (see function "wild_match" for more info).
5425
5426 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5427
5428 static void
5429 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5430 const struct block *block, domain_enum domain,
5431 int wild_match_p)
5432 {
5433 int block_depth = 0;
5434
5435 while (block != NULL)
5436 {
5437 block_depth += 1;
5438 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5439 wild_match_p);
5440
5441 /* If we found a non-function match, assume that's the one. */
5442 if (is_nonfunction (defns_collected (obstackp, 0),
5443 num_defns_collected (obstackp)))
5444 return;
5445
5446 block = BLOCK_SUPERBLOCK (block);
5447 }
5448
5449 /* If no luck so far, try to find NAME as a local symbol in some lexically
5450 enclosing subprogram. */
5451 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5452 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5453 }
5454
5455 /* An object of this type is used as the user_data argument when
5456 calling the map_matching_symbols method. */
5457
5458 struct match_data
5459 {
5460 struct objfile *objfile;
5461 struct obstack *obstackp;
5462 struct symbol *arg_sym;
5463 int found_sym;
5464 };
5465
5466 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5467 to a list of symbols. DATA0 is a pointer to a struct match_data *
5468 containing the obstack that collects the symbol list, the file that SYM
5469 must come from, a flag indicating whether a non-argument symbol has
5470 been found in the current block, and the last argument symbol
5471 passed in SYM within the current block (if any). When SYM is null,
5472 marking the end of a block, the argument symbol is added if no
5473 other has been found. */
5474
5475 static int
5476 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5477 {
5478 struct match_data *data = (struct match_data *) data0;
5479
5480 if (sym == NULL)
5481 {
5482 if (!data->found_sym && data->arg_sym != NULL)
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (data->arg_sym, data->objfile),
5485 block);
5486 data->found_sym = 0;
5487 data->arg_sym = NULL;
5488 }
5489 else
5490 {
5491 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5492 return 0;
5493 else if (SYMBOL_IS_ARGUMENT (sym))
5494 data->arg_sym = sym;
5495 else
5496 {
5497 data->found_sym = 1;
5498 add_defn_to_vec (data->obstackp,
5499 fixup_symbol_section (sym, data->objfile),
5500 block);
5501 }
5502 }
5503 return 0;
5504 }
5505
5506 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5507 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5508 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5509 function "wild_match" for more information). Return whether we found such
5510 symbols. */
5511
5512 static int
5513 ada_add_block_renamings (struct obstack *obstackp,
5514 const struct block *block,
5515 const char *name,
5516 domain_enum domain,
5517 int wild_match_p)
5518 {
5519 struct using_direct *renaming;
5520 int defns_mark = num_defns_collected (obstackp);
5521
5522 for (renaming = block_using (block);
5523 renaming != NULL;
5524 renaming = renaming->next)
5525 {
5526 const char *r_name;
5527 int name_match;
5528
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5531
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5539 continue;
5540 renaming->searched = 1;
5541
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5550 ? renaming->alias
5551 : renaming->declaration);
5552 name_match
5553 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5554 if (name_match == 0)
5555 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5556 1, NULL);
5557 renaming->searched = 0;
5558 }
5559 return num_defns_collected (obstackp) != defns_mark;
5560 }
5561
5562 /* Implements compare_names, but only applying the comparision using
5563 the given CASING. */
5564
5565 static int
5566 compare_names_with_case (const char *string1, const char *string2,
5567 enum case_sensitivity casing)
5568 {
5569 while (*string1 != '\0' && *string2 != '\0')
5570 {
5571 char c1, c2;
5572
5573 if (isspace (*string1) || isspace (*string2))
5574 return strcmp_iw_ordered (string1, string2);
5575
5576 if (casing == case_sensitive_off)
5577 {
5578 c1 = tolower (*string1);
5579 c2 = tolower (*string2);
5580 }
5581 else
5582 {
5583 c1 = *string1;
5584 c2 = *string2;
5585 }
5586 if (c1 != c2)
5587 break;
5588
5589 string1 += 1;
5590 string2 += 1;
5591 }
5592
5593 switch (*string1)
5594 {
5595 case '(':
5596 return strcmp_iw_ordered (string1, string2);
5597 case '_':
5598 if (*string2 == '\0')
5599 {
5600 if (is_name_suffix (string1))
5601 return 0;
5602 else
5603 return 1;
5604 }
5605 /* FALLTHROUGH */
5606 default:
5607 if (*string2 == '(')
5608 return strcmp_iw_ordered (string1, string2);
5609 else
5610 {
5611 if (casing == case_sensitive_off)
5612 return tolower (*string1) - tolower (*string2);
5613 else
5614 return *string1 - *string2;
5615 }
5616 }
5617 }
5618
5619 /* Compare STRING1 to STRING2, with results as for strcmp.
5620 Compatible with strcmp_iw_ordered in that...
5621
5622 strcmp_iw_ordered (STRING1, STRING2) <= 0
5623
5624 ... implies...
5625
5626 compare_names (STRING1, STRING2) <= 0
5627
5628 (they may differ as to what symbols compare equal). */
5629
5630 static int
5631 compare_names (const char *string1, const char *string2)
5632 {
5633 int result;
5634
5635 /* Similar to what strcmp_iw_ordered does, we need to perform
5636 a case-insensitive comparison first, and only resort to
5637 a second, case-sensitive, comparison if the first one was
5638 not sufficient to differentiate the two strings. */
5639
5640 result = compare_names_with_case (string1, string2, case_sensitive_off);
5641 if (result == 0)
5642 result = compare_names_with_case (string1, string2, case_sensitive_on);
5643
5644 return result;
5645 }
5646
5647 /* Add to OBSTACKP all non-local symbols whose name and domain match
5648 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5649 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5650
5651 static void
5652 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5653 domain_enum domain, int global,
5654 int is_wild_match)
5655 {
5656 struct objfile *objfile;
5657 struct compunit_symtab *cu;
5658 struct match_data data;
5659
5660 memset (&data, 0, sizeof data);
5661 data.obstackp = obstackp;
5662
5663 ALL_OBJFILES (objfile)
5664 {
5665 data.objfile = objfile;
5666
5667 if (is_wild_match)
5668 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5669 aux_add_nonlocal_symbols, &data,
5670 wild_match, NULL);
5671 else
5672 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5673 aux_add_nonlocal_symbols, &data,
5674 full_match, compare_names);
5675
5676 ALL_OBJFILE_COMPUNITS (objfile, cu)
5677 {
5678 const struct block *global_block
5679 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5680
5681 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5682 is_wild_match))
5683 data.found_sym = 1;
5684 }
5685 }
5686
5687 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5688 {
5689 ALL_OBJFILES (objfile)
5690 {
5691 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5692 strcpy (name1, "_ada_");
5693 strcpy (name1 + sizeof ("_ada_") - 1, name);
5694 data.objfile = objfile;
5695 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5696 global,
5697 aux_add_nonlocal_symbols,
5698 &data,
5699 full_match, compare_names);
5700 }
5701 }
5702 }
5703
5704 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5705 non-zero, enclosing scope and in global scopes, returning the number of
5706 matches. Add these to OBSTACKP.
5707
5708 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5709 symbol match within the nest of blocks whose innermost member is BLOCK,
5710 is the one match returned (no other matches in that or
5711 enclosing blocks is returned). If there are any matches in or
5712 surrounding BLOCK, then these alone are returned.
5713
5714 Names prefixed with "standard__" are handled specially: "standard__"
5715 is first stripped off, and only static and global symbols are searched.
5716
5717 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5718 to lookup global symbols. */
5719
5720 static void
5721 ada_add_all_symbols (struct obstack *obstackp,
5722 const struct block *block,
5723 const char *name,
5724 domain_enum domain,
5725 int full_search,
5726 int *made_global_lookup_p)
5727 {
5728 struct symbol *sym;
5729 const int wild_match_p = should_use_wild_match (name);
5730
5731 if (made_global_lookup_p)
5732 *made_global_lookup_p = 0;
5733
5734 /* Special case: If the user specifies a symbol name inside package
5735 Standard, do a non-wild matching of the symbol name without
5736 the "standard__" prefix. This was primarily introduced in order
5737 to allow the user to specifically access the standard exceptions
5738 using, for instance, Standard.Constraint_Error when Constraint_Error
5739 is ambiguous (due to the user defining its own Constraint_Error
5740 entity inside its program). */
5741 if (startswith (name, "standard__"))
5742 {
5743 block = NULL;
5744 name = name + sizeof ("standard__") - 1;
5745 }
5746
5747 /* Check the non-global symbols. If we have ANY match, then we're done. */
5748
5749 if (block != NULL)
5750 {
5751 if (full_search)
5752 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5753 else
5754 {
5755 /* In the !full_search case we're are being called by
5756 ada_iterate_over_symbols, and we don't want to search
5757 superblocks. */
5758 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5759 wild_match_p);
5760 }
5761 if (num_defns_collected (obstackp) > 0 || !full_search)
5762 return;
5763 }
5764
5765 /* No non-global symbols found. Check our cache to see if we have
5766 already performed this search before. If we have, then return
5767 the same result. */
5768
5769 if (lookup_cached_symbol (name, domain, &sym, &block))
5770 {
5771 if (sym != NULL)
5772 add_defn_to_vec (obstackp, sym, block);
5773 return;
5774 }
5775
5776 if (made_global_lookup_p)
5777 *made_global_lookup_p = 1;
5778
5779 /* Search symbols from all global blocks. */
5780
5781 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5782
5783 /* Now add symbols from all per-file blocks if we've gotten no hits
5784 (not strictly correct, but perhaps better than an error). */
5785
5786 if (num_defns_collected (obstackp) == 0)
5787 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5788 }
5789
5790 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5791 non-zero, enclosing scope and in global scopes, returning the number of
5792 matches.
5793 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5794 indicating the symbols found and the blocks and symbol tables (if
5795 any) in which they were found. This vector is transient---good only to
5796 the next call of ada_lookup_symbol_list.
5797
5798 When full_search is non-zero, any non-function/non-enumeral
5799 symbol match within the nest of blocks whose innermost member is BLOCK,
5800 is the one match returned (no other matches in that or
5801 enclosing blocks is returned). If there are any matches in or
5802 surrounding BLOCK, then these alone are returned.
5803
5804 Names prefixed with "standard__" are handled specially: "standard__"
5805 is first stripped off, and only static and global symbols are searched. */
5806
5807 static int
5808 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5809 domain_enum domain,
5810 struct block_symbol **results,
5811 int full_search)
5812 {
5813 const int wild_match_p = should_use_wild_match (name);
5814 int syms_from_global_search;
5815 int ndefns;
5816
5817 obstack_free (&symbol_list_obstack, NULL);
5818 obstack_init (&symbol_list_obstack);
5819 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5820 full_search, &syms_from_global_search);
5821
5822 ndefns = num_defns_collected (&symbol_list_obstack);
5823 *results = defns_collected (&symbol_list_obstack, 1);
5824
5825 ndefns = remove_extra_symbols (*results, ndefns);
5826
5827 if (ndefns == 0 && full_search && syms_from_global_search)
5828 cache_symbol (name, domain, NULL, NULL);
5829
5830 if (ndefns == 1 && full_search && syms_from_global_search)
5831 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5832
5833 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5834 return ndefns;
5835 }
5836
5837 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5838 in global scopes, returning the number of matches, and setting *RESULTS
5839 to a vector of (SYM,BLOCK) tuples.
5840 See ada_lookup_symbol_list_worker for further details. */
5841
5842 int
5843 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5844 domain_enum domain, struct block_symbol **results)
5845 {
5846 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5847 }
5848
5849 /* Implementation of the la_iterate_over_symbols method. */
5850
5851 static void
5852 ada_iterate_over_symbols
5853 (const struct block *block, const char *name, domain_enum domain,
5854 gdb::function_view<symbol_found_callback_ftype> callback)
5855 {
5856 int ndefs, i;
5857 struct block_symbol *results;
5858
5859 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5860 for (i = 0; i < ndefs; ++i)
5861 {
5862 if (!callback (results[i].symbol))
5863 break;
5864 }
5865 }
5866
5867 /* If NAME is the name of an entity, return a string that should
5868 be used to look that entity up in Ada units.
5869
5870 NAME can have any form that the "break" or "print" commands might
5871 recognize. In other words, it does not have to be the "natural"
5872 name, or the "encoded" name. */
5873
5874 std::string
5875 ada_name_for_lookup (const char *name)
5876 {
5877 int nlen = strlen (name);
5878
5879 if (name[0] == '<' && name[nlen - 1] == '>')
5880 return std::string (name + 1, nlen - 2);
5881 else
5882 return ada_encode (ada_fold_name (name));
5883 }
5884
5885 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5886 to 1, but choosing the first symbol found if there are multiple
5887 choices.
5888
5889 The result is stored in *INFO, which must be non-NULL.
5890 If no match is found, INFO->SYM is set to NULL. */
5891
5892 void
5893 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5894 domain_enum domain,
5895 struct block_symbol *info)
5896 {
5897 struct block_symbol *candidates;
5898 int n_candidates;
5899
5900 gdb_assert (info != NULL);
5901 memset (info, 0, sizeof (struct block_symbol));
5902
5903 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5904 if (n_candidates == 0)
5905 return;
5906
5907 *info = candidates[0];
5908 info->symbol = fixup_symbol_section (info->symbol, NULL);
5909 }
5910
5911 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5912 scope and in global scopes, or NULL if none. NAME is folded and
5913 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5914 choosing the first symbol if there are multiple choices.
5915 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5916
5917 struct block_symbol
5918 ada_lookup_symbol (const char *name, const struct block *block0,
5919 domain_enum domain, int *is_a_field_of_this)
5920 {
5921 struct block_symbol info;
5922
5923 if (is_a_field_of_this != NULL)
5924 *is_a_field_of_this = 0;
5925
5926 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5927 block0, domain, &info);
5928 return info;
5929 }
5930
5931 static struct block_symbol
5932 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5933 const char *name,
5934 const struct block *block,
5935 const domain_enum domain)
5936 {
5937 struct block_symbol sym;
5938
5939 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5940 if (sym.symbol != NULL)
5941 return sym;
5942
5943 /* If we haven't found a match at this point, try the primitive
5944 types. In other languages, this search is performed before
5945 searching for global symbols in order to short-circuit that
5946 global-symbol search if it happens that the name corresponds
5947 to a primitive type. But we cannot do the same in Ada, because
5948 it is perfectly legitimate for a program to declare a type which
5949 has the same name as a standard type. If looking up a type in
5950 that situation, we have traditionally ignored the primitive type
5951 in favor of user-defined types. This is why, unlike most other
5952 languages, we search the primitive types this late and only after
5953 having searched the global symbols without success. */
5954
5955 if (domain == VAR_DOMAIN)
5956 {
5957 struct gdbarch *gdbarch;
5958
5959 if (block == NULL)
5960 gdbarch = target_gdbarch ();
5961 else
5962 gdbarch = block_gdbarch (block);
5963 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5964 if (sym.symbol != NULL)
5965 return sym;
5966 }
5967
5968 return (struct block_symbol) {NULL, NULL};
5969 }
5970
5971
5972 /* True iff STR is a possible encoded suffix of a normal Ada name
5973 that is to be ignored for matching purposes. Suffixes of parallel
5974 names (e.g., XVE) are not included here. Currently, the possible suffixes
5975 are given by any of the regular expressions:
5976
5977 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5979 TKB [subprogram suffix for task bodies]
5980 _E[0-9]+[bs]$ [protected object entry suffixes]
5981 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5982
5983 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5984 match is performed. This sequence is used to differentiate homonyms,
5985 is an optional part of a valid name suffix. */
5986
5987 static int
5988 is_name_suffix (const char *str)
5989 {
5990 int k;
5991 const char *matching;
5992 const int len = strlen (str);
5993
5994 /* Skip optional leading __[0-9]+. */
5995
5996 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5997 {
5998 str += 3;
5999 while (isdigit (str[0]))
6000 str += 1;
6001 }
6002
6003 /* [.$][0-9]+ */
6004
6005 if (str[0] == '.' || str[0] == '$')
6006 {
6007 matching = str + 1;
6008 while (isdigit (matching[0]))
6009 matching += 1;
6010 if (matching[0] == '\0')
6011 return 1;
6012 }
6013
6014 /* ___[0-9]+ */
6015
6016 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6017 {
6018 matching = str + 3;
6019 while (isdigit (matching[0]))
6020 matching += 1;
6021 if (matching[0] == '\0')
6022 return 1;
6023 }
6024
6025 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6026
6027 if (strcmp (str, "TKB") == 0)
6028 return 1;
6029
6030 #if 0
6031 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6032 with a N at the end. Unfortunately, the compiler uses the same
6033 convention for other internal types it creates. So treating
6034 all entity names that end with an "N" as a name suffix causes
6035 some regressions. For instance, consider the case of an enumerated
6036 type. To support the 'Image attribute, it creates an array whose
6037 name ends with N.
6038 Having a single character like this as a suffix carrying some
6039 information is a bit risky. Perhaps we should change the encoding
6040 to be something like "_N" instead. In the meantime, do not do
6041 the following check. */
6042 /* Protected Object Subprograms */
6043 if (len == 1 && str [0] == 'N')
6044 return 1;
6045 #endif
6046
6047 /* _E[0-9]+[bs]$ */
6048 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6049 {
6050 matching = str + 3;
6051 while (isdigit (matching[0]))
6052 matching += 1;
6053 if ((matching[0] == 'b' || matching[0] == 's')
6054 && matching [1] == '\0')
6055 return 1;
6056 }
6057
6058 /* ??? We should not modify STR directly, as we are doing below. This
6059 is fine in this case, but may become problematic later if we find
6060 that this alternative did not work, and want to try matching
6061 another one from the begining of STR. Since we modified it, we
6062 won't be able to find the begining of the string anymore! */
6063 if (str[0] == 'X')
6064 {
6065 str += 1;
6066 while (str[0] != '_' && str[0] != '\0')
6067 {
6068 if (str[0] != 'n' && str[0] != 'b')
6069 return 0;
6070 str += 1;
6071 }
6072 }
6073
6074 if (str[0] == '\000')
6075 return 1;
6076
6077 if (str[0] == '_')
6078 {
6079 if (str[1] != '_' || str[2] == '\000')
6080 return 0;
6081 if (str[2] == '_')
6082 {
6083 if (strcmp (str + 3, "JM") == 0)
6084 return 1;
6085 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6086 the LJM suffix in favor of the JM one. But we will
6087 still accept LJM as a valid suffix for a reasonable
6088 amount of time, just to allow ourselves to debug programs
6089 compiled using an older version of GNAT. */
6090 if (strcmp (str + 3, "LJM") == 0)
6091 return 1;
6092 if (str[3] != 'X')
6093 return 0;
6094 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6095 || str[4] == 'U' || str[4] == 'P')
6096 return 1;
6097 if (str[4] == 'R' && str[5] != 'T')
6098 return 1;
6099 return 0;
6100 }
6101 if (!isdigit (str[2]))
6102 return 0;
6103 for (k = 3; str[k] != '\0'; k += 1)
6104 if (!isdigit (str[k]) && str[k] != '_')
6105 return 0;
6106 return 1;
6107 }
6108 if (str[0] == '$' && isdigit (str[1]))
6109 {
6110 for (k = 2; str[k] != '\0'; k += 1)
6111 if (!isdigit (str[k]) && str[k] != '_')
6112 return 0;
6113 return 1;
6114 }
6115 return 0;
6116 }
6117
6118 /* Return non-zero if the string starting at NAME and ending before
6119 NAME_END contains no capital letters. */
6120
6121 static int
6122 is_valid_name_for_wild_match (const char *name0)
6123 {
6124 const char *decoded_name = ada_decode (name0);
6125 int i;
6126
6127 /* If the decoded name starts with an angle bracket, it means that
6128 NAME0 does not follow the GNAT encoding format. It should then
6129 not be allowed as a possible wild match. */
6130 if (decoded_name[0] == '<')
6131 return 0;
6132
6133 for (i=0; decoded_name[i] != '\0'; i++)
6134 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6135 return 0;
6136
6137 return 1;
6138 }
6139
6140 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6141 that could start a simple name. Assumes that *NAMEP points into
6142 the string beginning at NAME0. */
6143
6144 static int
6145 advance_wild_match (const char **namep, const char *name0, int target0)
6146 {
6147 const char *name = *namep;
6148
6149 while (1)
6150 {
6151 int t0, t1;
6152
6153 t0 = *name;
6154 if (t0 == '_')
6155 {
6156 t1 = name[1];
6157 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6158 {
6159 name += 1;
6160 if (name == name0 + 5 && startswith (name0, "_ada"))
6161 break;
6162 else
6163 name += 1;
6164 }
6165 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6166 || name[2] == target0))
6167 {
6168 name += 2;
6169 break;
6170 }
6171 else
6172 return 0;
6173 }
6174 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6175 name += 1;
6176 else
6177 return 0;
6178 }
6179
6180 *namep = name;
6181 return 1;
6182 }
6183
6184 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6185 informational suffixes of NAME (i.e., for which is_name_suffix is
6186 true). Assumes that PATN is a lower-cased Ada simple name. */
6187
6188 static int
6189 wild_match (const char *name, const char *patn)
6190 {
6191 const char *p;
6192 const char *name0 = name;
6193
6194 while (1)
6195 {
6196 const char *match = name;
6197
6198 if (*name == *patn)
6199 {
6200 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6201 if (*p != *name)
6202 break;
6203 if (*p == '\0' && is_name_suffix (name))
6204 return match != name0 && !is_valid_name_for_wild_match (name0);
6205
6206 if (name[-1] == '_')
6207 name -= 1;
6208 }
6209 if (!advance_wild_match (&name, name0, *patn))
6210 return 1;
6211 }
6212 }
6213
6214 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6215 informational suffix. */
6216
6217 static int
6218 full_match (const char *sym_name, const char *search_name)
6219 {
6220 return !match_name (sym_name, search_name, 0);
6221 }
6222
6223
6224 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6225 vector *defn_symbols, updating the list of symbols in OBSTACKP
6226 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6227 OBJFILE is the section containing BLOCK. */
6228
6229 static void
6230 ada_add_block_symbols (struct obstack *obstackp,
6231 const struct block *block, const char *name,
6232 domain_enum domain, struct objfile *objfile,
6233 int wild)
6234 {
6235 struct block_iterator iter;
6236 int name_len = strlen (name);
6237 /* A matching argument symbol, if any. */
6238 struct symbol *arg_sym;
6239 /* Set true when we find a matching non-argument symbol. */
6240 int found_sym;
6241 struct symbol *sym;
6242
6243 arg_sym = NULL;
6244 found_sym = 0;
6245 if (wild)
6246 {
6247 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6248 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6249 {
6250 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6251 SYMBOL_DOMAIN (sym), domain)
6252 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6253 {
6254 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6255 continue;
6256 else if (SYMBOL_IS_ARGUMENT (sym))
6257 arg_sym = sym;
6258 else
6259 {
6260 found_sym = 1;
6261 add_defn_to_vec (obstackp,
6262 fixup_symbol_section (sym, objfile),
6263 block);
6264 }
6265 }
6266 }
6267 }
6268 else
6269 {
6270 for (sym = block_iter_match_first (block, name, full_match, &iter);
6271 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6272 {
6273 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6274 SYMBOL_DOMAIN (sym), domain))
6275 {
6276 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6277 {
6278 if (SYMBOL_IS_ARGUMENT (sym))
6279 arg_sym = sym;
6280 else
6281 {
6282 found_sym = 1;
6283 add_defn_to_vec (obstackp,
6284 fixup_symbol_section (sym, objfile),
6285 block);
6286 }
6287 }
6288 }
6289 }
6290 }
6291
6292 /* Handle renamings. */
6293
6294 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6295 found_sym = 1;
6296
6297 if (!found_sym && arg_sym != NULL)
6298 {
6299 add_defn_to_vec (obstackp,
6300 fixup_symbol_section (arg_sym, objfile),
6301 block);
6302 }
6303
6304 if (!wild)
6305 {
6306 arg_sym = NULL;
6307 found_sym = 0;
6308
6309 ALL_BLOCK_SYMBOLS (block, iter, sym)
6310 {
6311 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6312 SYMBOL_DOMAIN (sym), domain))
6313 {
6314 int cmp;
6315
6316 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6317 if (cmp == 0)
6318 {
6319 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6320 if (cmp == 0)
6321 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6322 name_len);
6323 }
6324
6325 if (cmp == 0
6326 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6327 {
6328 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6329 {
6330 if (SYMBOL_IS_ARGUMENT (sym))
6331 arg_sym = sym;
6332 else
6333 {
6334 found_sym = 1;
6335 add_defn_to_vec (obstackp,
6336 fixup_symbol_section (sym, objfile),
6337 block);
6338 }
6339 }
6340 }
6341 }
6342 }
6343
6344 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6345 They aren't parameters, right? */
6346 if (!found_sym && arg_sym != NULL)
6347 {
6348 add_defn_to_vec (obstackp,
6349 fixup_symbol_section (arg_sym, objfile),
6350 block);
6351 }
6352 }
6353 }
6354 \f
6355
6356 /* Symbol Completion */
6357
6358 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6359 name in a form that's appropriate for the completion. The result
6360 does not need to be deallocated, but is only good until the next call.
6361
6362 TEXT_LEN is equal to the length of TEXT.
6363 Perform a wild match if WILD_MATCH_P is set.
6364 ENCODED_P should be set if TEXT represents the start of a symbol name
6365 in its encoded form. */
6366
6367 static const char *
6368 symbol_completion_match (const char *sym_name,
6369 const char *text, int text_len,
6370 int wild_match_p, int encoded_p)
6371 {
6372 const int verbatim_match = (text[0] == '<');
6373 int match = 0;
6374
6375 if (verbatim_match)
6376 {
6377 /* Strip the leading angle bracket. */
6378 text = text + 1;
6379 text_len--;
6380 }
6381
6382 /* First, test against the fully qualified name of the symbol. */
6383
6384 if (strncmp (sym_name, text, text_len) == 0)
6385 match = 1;
6386
6387 if (match && !encoded_p)
6388 {
6389 /* One needed check before declaring a positive match is to verify
6390 that iff we are doing a verbatim match, the decoded version
6391 of the symbol name starts with '<'. Otherwise, this symbol name
6392 is not a suitable completion. */
6393 const char *sym_name_copy = sym_name;
6394 int has_angle_bracket;
6395
6396 sym_name = ada_decode (sym_name);
6397 has_angle_bracket = (sym_name[0] == '<');
6398 match = (has_angle_bracket == verbatim_match);
6399 sym_name = sym_name_copy;
6400 }
6401
6402 if (match && !verbatim_match)
6403 {
6404 /* When doing non-verbatim match, another check that needs to
6405 be done is to verify that the potentially matching symbol name
6406 does not include capital letters, because the ada-mode would
6407 not be able to understand these symbol names without the
6408 angle bracket notation. */
6409 const char *tmp;
6410
6411 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6412 if (*tmp != '\0')
6413 match = 0;
6414 }
6415
6416 /* Second: Try wild matching... */
6417
6418 if (!match && wild_match_p)
6419 {
6420 /* Since we are doing wild matching, this means that TEXT
6421 may represent an unqualified symbol name. We therefore must
6422 also compare TEXT against the unqualified name of the symbol. */
6423 sym_name = ada_unqualified_name (ada_decode (sym_name));
6424
6425 if (strncmp (sym_name, text, text_len) == 0)
6426 match = 1;
6427 }
6428
6429 /* Finally: If we found a mach, prepare the result to return. */
6430
6431 if (!match)
6432 return NULL;
6433
6434 if (verbatim_match)
6435 sym_name = add_angle_brackets (sym_name);
6436
6437 if (!encoded_p)
6438 sym_name = ada_decode (sym_name);
6439
6440 return sym_name;
6441 }
6442
6443 /* A companion function to ada_collect_symbol_completion_matches().
6444 Check if SYM_NAME represents a symbol which name would be suitable
6445 to complete TEXT (TEXT_LEN is the length of TEXT), in which case it
6446 is added as a completion match to TRACKER.
6447
6448 ORIG_TEXT is the string original string from the user command
6449 that needs to be completed. WORD is the entire command on which
6450 completion should be performed. These two parameters are used to
6451 determine which part of the symbol name should be added to the
6452 completion vector.
6453 if WILD_MATCH_P is set, then wild matching is performed.
6454 ENCODED_P should be set if TEXT represents a symbol name in its
6455 encoded formed (in which case the completion should also be
6456 encoded). */
6457
6458 static void
6459 symbol_completion_add (completion_tracker &tracker,
6460 const char *sym_name,
6461 const char *text, int text_len,
6462 const char *orig_text, const char *word,
6463 int wild_match_p, int encoded_p)
6464 {
6465 const char *match = symbol_completion_match (sym_name, text, text_len,
6466 wild_match_p, encoded_p);
6467 char *completion;
6468
6469 if (match == NULL)
6470 return;
6471
6472 /* We found a match, so add the appropriate completion to the given
6473 string vector. */
6474
6475 if (word == orig_text)
6476 {
6477 completion = (char *) xmalloc (strlen (match) + 5);
6478 strcpy (completion, match);
6479 }
6480 else if (word > orig_text)
6481 {
6482 /* Return some portion of sym_name. */
6483 completion = (char *) xmalloc (strlen (match) + 5);
6484 strcpy (completion, match + (word - orig_text));
6485 }
6486 else
6487 {
6488 /* Return some of ORIG_TEXT plus sym_name. */
6489 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6490 strncpy (completion, word, orig_text - word);
6491 completion[orig_text - word] = '\0';
6492 strcat (completion, match);
6493 }
6494
6495 tracker.add_completion (gdb::unique_xmalloc_ptr<char> (completion));
6496 }
6497
6498 /* Add the list of possible symbol names completing TEXT0 to TRACKER.
6499 WORD is the entire command on which completion is made. */
6500
6501 static void
6502 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6503 complete_symbol_mode mode,
6504 const char *text0, const char *word,
6505 enum type_code code)
6506 {
6507 char *text;
6508 int text_len;
6509 int wild_match_p;
6510 int encoded_p;
6511 struct symbol *sym;
6512 struct compunit_symtab *s;
6513 struct minimal_symbol *msymbol;
6514 struct objfile *objfile;
6515 const struct block *b, *surrounding_static_block = 0;
6516 int i;
6517 struct block_iterator iter;
6518 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6519
6520 gdb_assert (code == TYPE_CODE_UNDEF);
6521
6522 if (text0[0] == '<')
6523 {
6524 text = xstrdup (text0);
6525 make_cleanup (xfree, text);
6526 text_len = strlen (text);
6527 wild_match_p = 0;
6528 encoded_p = 1;
6529 }
6530 else
6531 {
6532 text = xstrdup (ada_encode (text0));
6533 make_cleanup (xfree, text);
6534 text_len = strlen (text);
6535 for (i = 0; i < text_len; i++)
6536 text[i] = tolower (text[i]);
6537
6538 encoded_p = (strstr (text0, "__") != NULL);
6539 /* If the name contains a ".", then the user is entering a fully
6540 qualified entity name, and the match must not be done in wild
6541 mode. Similarly, if the user wants to complete what looks like
6542 an encoded name, the match must not be done in wild mode. */
6543 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6544 }
6545
6546 /* First, look at the partial symtab symbols. */
6547 expand_symtabs_matching (NULL,
6548 [&] (const char *symname)
6549 {
6550 return symbol_completion_match (symname,
6551 text, text_len,
6552 wild_match_p,
6553 encoded_p);
6554 },
6555 NULL,
6556 ALL_DOMAIN);
6557
6558 /* At this point scan through the misc symbol vectors and add each
6559 symbol you find to the list. Eventually we want to ignore
6560 anything that isn't a text symbol (everything else will be
6561 handled by the psymtab code above). */
6562
6563 ALL_MSYMBOLS (objfile, msymbol)
6564 {
6565 QUIT;
6566 symbol_completion_add (tracker, MSYMBOL_LINKAGE_NAME (msymbol),
6567 text, text_len, text0, word, wild_match_p,
6568 encoded_p);
6569 }
6570
6571 /* Search upwards from currently selected frame (so that we can
6572 complete on local vars. */
6573
6574 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6575 {
6576 if (!BLOCK_SUPERBLOCK (b))
6577 surrounding_static_block = b; /* For elmin of dups */
6578
6579 ALL_BLOCK_SYMBOLS (b, iter, sym)
6580 {
6581 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6582 text, text_len, text0, word,
6583 wild_match_p, encoded_p);
6584 }
6585 }
6586
6587 /* Go through the symtabs and check the externs and statics for
6588 symbols which match. */
6589
6590 ALL_COMPUNITS (objfile, s)
6591 {
6592 QUIT;
6593 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6594 ALL_BLOCK_SYMBOLS (b, iter, sym)
6595 {
6596 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6597 text, text_len, text0, word,
6598 wild_match_p, encoded_p);
6599 }
6600 }
6601
6602 ALL_COMPUNITS (objfile, s)
6603 {
6604 QUIT;
6605 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6606 /* Don't do this block twice. */
6607 if (b == surrounding_static_block)
6608 continue;
6609 ALL_BLOCK_SYMBOLS (b, iter, sym)
6610 {
6611 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6612 text, text_len, text0, word,
6613 wild_match_p, encoded_p);
6614 }
6615 }
6616
6617 do_cleanups (old_chain);
6618 }
6619
6620 /* Field Access */
6621
6622 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6623 for tagged types. */
6624
6625 static int
6626 ada_is_dispatch_table_ptr_type (struct type *type)
6627 {
6628 const char *name;
6629
6630 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6631 return 0;
6632
6633 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6634 if (name == NULL)
6635 return 0;
6636
6637 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6638 }
6639
6640 /* Return non-zero if TYPE is an interface tag. */
6641
6642 static int
6643 ada_is_interface_tag (struct type *type)
6644 {
6645 const char *name = TYPE_NAME (type);
6646
6647 if (name == NULL)
6648 return 0;
6649
6650 return (strcmp (name, "ada__tags__interface_tag") == 0);
6651 }
6652
6653 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6654 to be invisible to users. */
6655
6656 int
6657 ada_is_ignored_field (struct type *type, int field_num)
6658 {
6659 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6660 return 1;
6661
6662 /* Check the name of that field. */
6663 {
6664 const char *name = TYPE_FIELD_NAME (type, field_num);
6665
6666 /* Anonymous field names should not be printed.
6667 brobecker/2007-02-20: I don't think this can actually happen
6668 but we don't want to print the value of annonymous fields anyway. */
6669 if (name == NULL)
6670 return 1;
6671
6672 /* Normally, fields whose name start with an underscore ("_")
6673 are fields that have been internally generated by the compiler,
6674 and thus should not be printed. The "_parent" field is special,
6675 however: This is a field internally generated by the compiler
6676 for tagged types, and it contains the components inherited from
6677 the parent type. This field should not be printed as is, but
6678 should not be ignored either. */
6679 if (name[0] == '_' && !startswith (name, "_parent"))
6680 return 1;
6681 }
6682
6683 /* If this is the dispatch table of a tagged type or an interface tag,
6684 then ignore. */
6685 if (ada_is_tagged_type (type, 1)
6686 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6687 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6688 return 1;
6689
6690 /* Not a special field, so it should not be ignored. */
6691 return 0;
6692 }
6693
6694 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6695 pointer or reference type whose ultimate target has a tag field. */
6696
6697 int
6698 ada_is_tagged_type (struct type *type, int refok)
6699 {
6700 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6701 }
6702
6703 /* True iff TYPE represents the type of X'Tag */
6704
6705 int
6706 ada_is_tag_type (struct type *type)
6707 {
6708 type = ada_check_typedef (type);
6709
6710 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6711 return 0;
6712 else
6713 {
6714 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6715
6716 return (name != NULL
6717 && strcmp (name, "ada__tags__dispatch_table") == 0);
6718 }
6719 }
6720
6721 /* The type of the tag on VAL. */
6722
6723 struct type *
6724 ada_tag_type (struct value *val)
6725 {
6726 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6727 }
6728
6729 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6730 retired at Ada 05). */
6731
6732 static int
6733 is_ada95_tag (struct value *tag)
6734 {
6735 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6736 }
6737
6738 /* The value of the tag on VAL. */
6739
6740 struct value *
6741 ada_value_tag (struct value *val)
6742 {
6743 return ada_value_struct_elt (val, "_tag", 0);
6744 }
6745
6746 /* The value of the tag on the object of type TYPE whose contents are
6747 saved at VALADDR, if it is non-null, or is at memory address
6748 ADDRESS. */
6749
6750 static struct value *
6751 value_tag_from_contents_and_address (struct type *type,
6752 const gdb_byte *valaddr,
6753 CORE_ADDR address)
6754 {
6755 int tag_byte_offset;
6756 struct type *tag_type;
6757
6758 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6759 NULL, NULL, NULL))
6760 {
6761 const gdb_byte *valaddr1 = ((valaddr == NULL)
6762 ? NULL
6763 : valaddr + tag_byte_offset);
6764 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6765
6766 return value_from_contents_and_address (tag_type, valaddr1, address1);
6767 }
6768 return NULL;
6769 }
6770
6771 static struct type *
6772 type_from_tag (struct value *tag)
6773 {
6774 const char *type_name = ada_tag_name (tag);
6775
6776 if (type_name != NULL)
6777 return ada_find_any_type (ada_encode (type_name));
6778 return NULL;
6779 }
6780
6781 /* Given a value OBJ of a tagged type, return a value of this
6782 type at the base address of the object. The base address, as
6783 defined in Ada.Tags, it is the address of the primary tag of
6784 the object, and therefore where the field values of its full
6785 view can be fetched. */
6786
6787 struct value *
6788 ada_tag_value_at_base_address (struct value *obj)
6789 {
6790 struct value *val;
6791 LONGEST offset_to_top = 0;
6792 struct type *ptr_type, *obj_type;
6793 struct value *tag;
6794 CORE_ADDR base_address;
6795
6796 obj_type = value_type (obj);
6797
6798 /* It is the responsability of the caller to deref pointers. */
6799
6800 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6801 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6802 return obj;
6803
6804 tag = ada_value_tag (obj);
6805 if (!tag)
6806 return obj;
6807
6808 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6809
6810 if (is_ada95_tag (tag))
6811 return obj;
6812
6813 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6814 ptr_type = lookup_pointer_type (ptr_type);
6815 val = value_cast (ptr_type, tag);
6816 if (!val)
6817 return obj;
6818
6819 /* It is perfectly possible that an exception be raised while
6820 trying to determine the base address, just like for the tag;
6821 see ada_tag_name for more details. We do not print the error
6822 message for the same reason. */
6823
6824 TRY
6825 {
6826 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6827 }
6828
6829 CATCH (e, RETURN_MASK_ERROR)
6830 {
6831 return obj;
6832 }
6833 END_CATCH
6834
6835 /* If offset is null, nothing to do. */
6836
6837 if (offset_to_top == 0)
6838 return obj;
6839
6840 /* -1 is a special case in Ada.Tags; however, what should be done
6841 is not quite clear from the documentation. So do nothing for
6842 now. */
6843
6844 if (offset_to_top == -1)
6845 return obj;
6846
6847 base_address = value_address (obj) - offset_to_top;
6848 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6849
6850 /* Make sure that we have a proper tag at the new address.
6851 Otherwise, offset_to_top is bogus (which can happen when
6852 the object is not initialized yet). */
6853
6854 if (!tag)
6855 return obj;
6856
6857 obj_type = type_from_tag (tag);
6858
6859 if (!obj_type)
6860 return obj;
6861
6862 return value_from_contents_and_address (obj_type, NULL, base_address);
6863 }
6864
6865 /* Return the "ada__tags__type_specific_data" type. */
6866
6867 static struct type *
6868 ada_get_tsd_type (struct inferior *inf)
6869 {
6870 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6871
6872 if (data->tsd_type == 0)
6873 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6874 return data->tsd_type;
6875 }
6876
6877 /* Return the TSD (type-specific data) associated to the given TAG.
6878 TAG is assumed to be the tag of a tagged-type entity.
6879
6880 May return NULL if we are unable to get the TSD. */
6881
6882 static struct value *
6883 ada_get_tsd_from_tag (struct value *tag)
6884 {
6885 struct value *val;
6886 struct type *type;
6887
6888 /* First option: The TSD is simply stored as a field of our TAG.
6889 Only older versions of GNAT would use this format, but we have
6890 to test it first, because there are no visible markers for
6891 the current approach except the absence of that field. */
6892
6893 val = ada_value_struct_elt (tag, "tsd", 1);
6894 if (val)
6895 return val;
6896
6897 /* Try the second representation for the dispatch table (in which
6898 there is no explicit 'tsd' field in the referent of the tag pointer,
6899 and instead the tsd pointer is stored just before the dispatch
6900 table. */
6901
6902 type = ada_get_tsd_type (current_inferior());
6903 if (type == NULL)
6904 return NULL;
6905 type = lookup_pointer_type (lookup_pointer_type (type));
6906 val = value_cast (type, tag);
6907 if (val == NULL)
6908 return NULL;
6909 return value_ind (value_ptradd (val, -1));
6910 }
6911
6912 /* Given the TSD of a tag (type-specific data), return a string
6913 containing the name of the associated type.
6914
6915 The returned value is good until the next call. May return NULL
6916 if we are unable to determine the tag name. */
6917
6918 static char *
6919 ada_tag_name_from_tsd (struct value *tsd)
6920 {
6921 static char name[1024];
6922 char *p;
6923 struct value *val;
6924
6925 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6926 if (val == NULL)
6927 return NULL;
6928 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6929 for (p = name; *p != '\0'; p += 1)
6930 if (isalpha (*p))
6931 *p = tolower (*p);
6932 return name;
6933 }
6934
6935 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6936 a C string.
6937
6938 Return NULL if the TAG is not an Ada tag, or if we were unable to
6939 determine the name of that tag. The result is good until the next
6940 call. */
6941
6942 const char *
6943 ada_tag_name (struct value *tag)
6944 {
6945 char *name = NULL;
6946
6947 if (!ada_is_tag_type (value_type (tag)))
6948 return NULL;
6949
6950 /* It is perfectly possible that an exception be raised while trying
6951 to determine the TAG's name, even under normal circumstances:
6952 The associated variable may be uninitialized or corrupted, for
6953 instance. We do not let any exception propagate past this point.
6954 instead we return NULL.
6955
6956 We also do not print the error message either (which often is very
6957 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6958 the caller print a more meaningful message if necessary. */
6959 TRY
6960 {
6961 struct value *tsd = ada_get_tsd_from_tag (tag);
6962
6963 if (tsd != NULL)
6964 name = ada_tag_name_from_tsd (tsd);
6965 }
6966 CATCH (e, RETURN_MASK_ERROR)
6967 {
6968 }
6969 END_CATCH
6970
6971 return name;
6972 }
6973
6974 /* The parent type of TYPE, or NULL if none. */
6975
6976 struct type *
6977 ada_parent_type (struct type *type)
6978 {
6979 int i;
6980
6981 type = ada_check_typedef (type);
6982
6983 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6984 return NULL;
6985
6986 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6987 if (ada_is_parent_field (type, i))
6988 {
6989 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6990
6991 /* If the _parent field is a pointer, then dereference it. */
6992 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6993 parent_type = TYPE_TARGET_TYPE (parent_type);
6994 /* If there is a parallel XVS type, get the actual base type. */
6995 parent_type = ada_get_base_type (parent_type);
6996
6997 return ada_check_typedef (parent_type);
6998 }
6999
7000 return NULL;
7001 }
7002
7003 /* True iff field number FIELD_NUM of structure type TYPE contains the
7004 parent-type (inherited) fields of a derived type. Assumes TYPE is
7005 a structure type with at least FIELD_NUM+1 fields. */
7006
7007 int
7008 ada_is_parent_field (struct type *type, int field_num)
7009 {
7010 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7011
7012 return (name != NULL
7013 && (startswith (name, "PARENT")
7014 || startswith (name, "_parent")));
7015 }
7016
7017 /* True iff field number FIELD_NUM of structure type TYPE is a
7018 transparent wrapper field (which should be silently traversed when doing
7019 field selection and flattened when printing). Assumes TYPE is a
7020 structure type with at least FIELD_NUM+1 fields. Such fields are always
7021 structures. */
7022
7023 int
7024 ada_is_wrapper_field (struct type *type, int field_num)
7025 {
7026 const char *name = TYPE_FIELD_NAME (type, field_num);
7027
7028 if (name != NULL && strcmp (name, "RETVAL") == 0)
7029 {
7030 /* This happens in functions with "out" or "in out" parameters
7031 which are passed by copy. For such functions, GNAT describes
7032 the function's return type as being a struct where the return
7033 value is in a field called RETVAL, and where the other "out"
7034 or "in out" parameters are fields of that struct. This is not
7035 a wrapper. */
7036 return 0;
7037 }
7038
7039 return (name != NULL
7040 && (startswith (name, "PARENT")
7041 || strcmp (name, "REP") == 0
7042 || startswith (name, "_parent")
7043 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7044 }
7045
7046 /* True iff field number FIELD_NUM of structure or union type TYPE
7047 is a variant wrapper. Assumes TYPE is a structure type with at least
7048 FIELD_NUM+1 fields. */
7049
7050 int
7051 ada_is_variant_part (struct type *type, int field_num)
7052 {
7053 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7054
7055 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7056 || (is_dynamic_field (type, field_num)
7057 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7058 == TYPE_CODE_UNION)));
7059 }
7060
7061 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7062 whose discriminants are contained in the record type OUTER_TYPE,
7063 returns the type of the controlling discriminant for the variant.
7064 May return NULL if the type could not be found. */
7065
7066 struct type *
7067 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7068 {
7069 const char *name = ada_variant_discrim_name (var_type);
7070
7071 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7072 }
7073
7074 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7075 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7076 represents a 'when others' clause; otherwise 0. */
7077
7078 int
7079 ada_is_others_clause (struct type *type, int field_num)
7080 {
7081 const char *name = TYPE_FIELD_NAME (type, field_num);
7082
7083 return (name != NULL && name[0] == 'O');
7084 }
7085
7086 /* Assuming that TYPE0 is the type of the variant part of a record,
7087 returns the name of the discriminant controlling the variant.
7088 The value is valid until the next call to ada_variant_discrim_name. */
7089
7090 const char *
7091 ada_variant_discrim_name (struct type *type0)
7092 {
7093 static char *result = NULL;
7094 static size_t result_len = 0;
7095 struct type *type;
7096 const char *name;
7097 const char *discrim_end;
7098 const char *discrim_start;
7099
7100 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7101 type = TYPE_TARGET_TYPE (type0);
7102 else
7103 type = type0;
7104
7105 name = ada_type_name (type);
7106
7107 if (name == NULL || name[0] == '\000')
7108 return "";
7109
7110 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7111 discrim_end -= 1)
7112 {
7113 if (startswith (discrim_end, "___XVN"))
7114 break;
7115 }
7116 if (discrim_end == name)
7117 return "";
7118
7119 for (discrim_start = discrim_end; discrim_start != name + 3;
7120 discrim_start -= 1)
7121 {
7122 if (discrim_start == name + 1)
7123 return "";
7124 if ((discrim_start > name + 3
7125 && startswith (discrim_start - 3, "___"))
7126 || discrim_start[-1] == '.')
7127 break;
7128 }
7129
7130 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7131 strncpy (result, discrim_start, discrim_end - discrim_start);
7132 result[discrim_end - discrim_start] = '\0';
7133 return result;
7134 }
7135
7136 /* Scan STR for a subtype-encoded number, beginning at position K.
7137 Put the position of the character just past the number scanned in
7138 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7139 Return 1 if there was a valid number at the given position, and 0
7140 otherwise. A "subtype-encoded" number consists of the absolute value
7141 in decimal, followed by the letter 'm' to indicate a negative number.
7142 Assumes 0m does not occur. */
7143
7144 int
7145 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7146 {
7147 ULONGEST RU;
7148
7149 if (!isdigit (str[k]))
7150 return 0;
7151
7152 /* Do it the hard way so as not to make any assumption about
7153 the relationship of unsigned long (%lu scan format code) and
7154 LONGEST. */
7155 RU = 0;
7156 while (isdigit (str[k]))
7157 {
7158 RU = RU * 10 + (str[k] - '0');
7159 k += 1;
7160 }
7161
7162 if (str[k] == 'm')
7163 {
7164 if (R != NULL)
7165 *R = (-(LONGEST) (RU - 1)) - 1;
7166 k += 1;
7167 }
7168 else if (R != NULL)
7169 *R = (LONGEST) RU;
7170
7171 /* NOTE on the above: Technically, C does not say what the results of
7172 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7173 number representable as a LONGEST (although either would probably work
7174 in most implementations). When RU>0, the locution in the then branch
7175 above is always equivalent to the negative of RU. */
7176
7177 if (new_k != NULL)
7178 *new_k = k;
7179 return 1;
7180 }
7181
7182 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7183 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7184 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7185
7186 int
7187 ada_in_variant (LONGEST val, struct type *type, int field_num)
7188 {
7189 const char *name = TYPE_FIELD_NAME (type, field_num);
7190 int p;
7191
7192 p = 0;
7193 while (1)
7194 {
7195 switch (name[p])
7196 {
7197 case '\0':
7198 return 0;
7199 case 'S':
7200 {
7201 LONGEST W;
7202
7203 if (!ada_scan_number (name, p + 1, &W, &p))
7204 return 0;
7205 if (val == W)
7206 return 1;
7207 break;
7208 }
7209 case 'R':
7210 {
7211 LONGEST L, U;
7212
7213 if (!ada_scan_number (name, p + 1, &L, &p)
7214 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7215 return 0;
7216 if (val >= L && val <= U)
7217 return 1;
7218 break;
7219 }
7220 case 'O':
7221 return 1;
7222 default:
7223 return 0;
7224 }
7225 }
7226 }
7227
7228 /* FIXME: Lots of redundancy below. Try to consolidate. */
7229
7230 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7231 ARG_TYPE, extract and return the value of one of its (non-static)
7232 fields. FIELDNO says which field. Differs from value_primitive_field
7233 only in that it can handle packed values of arbitrary type. */
7234
7235 static struct value *
7236 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7237 struct type *arg_type)
7238 {
7239 struct type *type;
7240
7241 arg_type = ada_check_typedef (arg_type);
7242 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7243
7244 /* Handle packed fields. */
7245
7246 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7247 {
7248 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7249 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7250
7251 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7252 offset + bit_pos / 8,
7253 bit_pos % 8, bit_size, type);
7254 }
7255 else
7256 return value_primitive_field (arg1, offset, fieldno, arg_type);
7257 }
7258
7259 /* Find field with name NAME in object of type TYPE. If found,
7260 set the following for each argument that is non-null:
7261 - *FIELD_TYPE_P to the field's type;
7262 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7263 an object of that type;
7264 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7265 - *BIT_SIZE_P to its size in bits if the field is packed, and
7266 0 otherwise;
7267 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7268 fields up to but not including the desired field, or by the total
7269 number of fields if not found. A NULL value of NAME never
7270 matches; the function just counts visible fields in this case.
7271
7272 Returns 1 if found, 0 otherwise. */
7273
7274 static int
7275 find_struct_field (const char *name, struct type *type, int offset,
7276 struct type **field_type_p,
7277 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7278 int *index_p)
7279 {
7280 int i;
7281
7282 type = ada_check_typedef (type);
7283
7284 if (field_type_p != NULL)
7285 *field_type_p = NULL;
7286 if (byte_offset_p != NULL)
7287 *byte_offset_p = 0;
7288 if (bit_offset_p != NULL)
7289 *bit_offset_p = 0;
7290 if (bit_size_p != NULL)
7291 *bit_size_p = 0;
7292
7293 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7294 {
7295 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7296 int fld_offset = offset + bit_pos / 8;
7297 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7298
7299 if (t_field_name == NULL)
7300 continue;
7301
7302 else if (name != NULL && field_name_match (t_field_name, name))
7303 {
7304 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7305
7306 if (field_type_p != NULL)
7307 *field_type_p = TYPE_FIELD_TYPE (type, i);
7308 if (byte_offset_p != NULL)
7309 *byte_offset_p = fld_offset;
7310 if (bit_offset_p != NULL)
7311 *bit_offset_p = bit_pos % 8;
7312 if (bit_size_p != NULL)
7313 *bit_size_p = bit_size;
7314 return 1;
7315 }
7316 else if (ada_is_wrapper_field (type, i))
7317 {
7318 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7319 field_type_p, byte_offset_p, bit_offset_p,
7320 bit_size_p, index_p))
7321 return 1;
7322 }
7323 else if (ada_is_variant_part (type, i))
7324 {
7325 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7326 fixed type?? */
7327 int j;
7328 struct type *field_type
7329 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7330
7331 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7332 {
7333 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7334 fld_offset
7335 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7336 field_type_p, byte_offset_p,
7337 bit_offset_p, bit_size_p, index_p))
7338 return 1;
7339 }
7340 }
7341 else if (index_p != NULL)
7342 *index_p += 1;
7343 }
7344 return 0;
7345 }
7346
7347 /* Number of user-visible fields in record type TYPE. */
7348
7349 static int
7350 num_visible_fields (struct type *type)
7351 {
7352 int n;
7353
7354 n = 0;
7355 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7356 return n;
7357 }
7358
7359 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7360 and search in it assuming it has (class) type TYPE.
7361 If found, return value, else return NULL.
7362
7363 Searches recursively through wrapper fields (e.g., '_parent'). */
7364
7365 static struct value *
7366 ada_search_struct_field (const char *name, struct value *arg, int offset,
7367 struct type *type)
7368 {
7369 int i;
7370
7371 type = ada_check_typedef (type);
7372 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7373 {
7374 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7375
7376 if (t_field_name == NULL)
7377 continue;
7378
7379 else if (field_name_match (t_field_name, name))
7380 return ada_value_primitive_field (arg, offset, i, type);
7381
7382 else if (ada_is_wrapper_field (type, i))
7383 {
7384 struct value *v = /* Do not let indent join lines here. */
7385 ada_search_struct_field (name, arg,
7386 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7387 TYPE_FIELD_TYPE (type, i));
7388
7389 if (v != NULL)
7390 return v;
7391 }
7392
7393 else if (ada_is_variant_part (type, i))
7394 {
7395 /* PNH: Do we ever get here? See find_struct_field. */
7396 int j;
7397 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7398 i));
7399 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7400
7401 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7402 {
7403 struct value *v = ada_search_struct_field /* Force line
7404 break. */
7405 (name, arg,
7406 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7407 TYPE_FIELD_TYPE (field_type, j));
7408
7409 if (v != NULL)
7410 return v;
7411 }
7412 }
7413 }
7414 return NULL;
7415 }
7416
7417 static struct value *ada_index_struct_field_1 (int *, struct value *,
7418 int, struct type *);
7419
7420
7421 /* Return field #INDEX in ARG, where the index is that returned by
7422 * find_struct_field through its INDEX_P argument. Adjust the address
7423 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7424 * If found, return value, else return NULL. */
7425
7426 static struct value *
7427 ada_index_struct_field (int index, struct value *arg, int offset,
7428 struct type *type)
7429 {
7430 return ada_index_struct_field_1 (&index, arg, offset, type);
7431 }
7432
7433
7434 /* Auxiliary function for ada_index_struct_field. Like
7435 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7436 * *INDEX_P. */
7437
7438 static struct value *
7439 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7440 struct type *type)
7441 {
7442 int i;
7443 type = ada_check_typedef (type);
7444
7445 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7446 {
7447 if (TYPE_FIELD_NAME (type, i) == NULL)
7448 continue;
7449 else if (ada_is_wrapper_field (type, i))
7450 {
7451 struct value *v = /* Do not let indent join lines here. */
7452 ada_index_struct_field_1 (index_p, arg,
7453 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7454 TYPE_FIELD_TYPE (type, i));
7455
7456 if (v != NULL)
7457 return v;
7458 }
7459
7460 else if (ada_is_variant_part (type, i))
7461 {
7462 /* PNH: Do we ever get here? See ada_search_struct_field,
7463 find_struct_field. */
7464 error (_("Cannot assign this kind of variant record"));
7465 }
7466 else if (*index_p == 0)
7467 return ada_value_primitive_field (arg, offset, i, type);
7468 else
7469 *index_p -= 1;
7470 }
7471 return NULL;
7472 }
7473
7474 /* Given ARG, a value of type (pointer or reference to a)*
7475 structure/union, extract the component named NAME from the ultimate
7476 target structure/union and return it as a value with its
7477 appropriate type.
7478
7479 The routine searches for NAME among all members of the structure itself
7480 and (recursively) among all members of any wrapper members
7481 (e.g., '_parent').
7482
7483 If NO_ERR, then simply return NULL in case of error, rather than
7484 calling error. */
7485
7486 struct value *
7487 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7488 {
7489 struct type *t, *t1;
7490 struct value *v;
7491
7492 v = NULL;
7493 t1 = t = ada_check_typedef (value_type (arg));
7494 if (TYPE_CODE (t) == TYPE_CODE_REF)
7495 {
7496 t1 = TYPE_TARGET_TYPE (t);
7497 if (t1 == NULL)
7498 goto BadValue;
7499 t1 = ada_check_typedef (t1);
7500 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7501 {
7502 arg = coerce_ref (arg);
7503 t = t1;
7504 }
7505 }
7506
7507 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7508 {
7509 t1 = TYPE_TARGET_TYPE (t);
7510 if (t1 == NULL)
7511 goto BadValue;
7512 t1 = ada_check_typedef (t1);
7513 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7514 {
7515 arg = value_ind (arg);
7516 t = t1;
7517 }
7518 else
7519 break;
7520 }
7521
7522 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7523 goto BadValue;
7524
7525 if (t1 == t)
7526 v = ada_search_struct_field (name, arg, 0, t);
7527 else
7528 {
7529 int bit_offset, bit_size, byte_offset;
7530 struct type *field_type;
7531 CORE_ADDR address;
7532
7533 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7534 address = value_address (ada_value_ind (arg));
7535 else
7536 address = value_address (ada_coerce_ref (arg));
7537
7538 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7539 if (find_struct_field (name, t1, 0,
7540 &field_type, &byte_offset, &bit_offset,
7541 &bit_size, NULL))
7542 {
7543 if (bit_size != 0)
7544 {
7545 if (TYPE_CODE (t) == TYPE_CODE_REF)
7546 arg = ada_coerce_ref (arg);
7547 else
7548 arg = ada_value_ind (arg);
7549 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7550 bit_offset, bit_size,
7551 field_type);
7552 }
7553 else
7554 v = value_at_lazy (field_type, address + byte_offset);
7555 }
7556 }
7557
7558 if (v != NULL || no_err)
7559 return v;
7560 else
7561 error (_("There is no member named %s."), name);
7562
7563 BadValue:
7564 if (no_err)
7565 return NULL;
7566 else
7567 error (_("Attempt to extract a component of "
7568 "a value that is not a record."));
7569 }
7570
7571 /* Return a string representation of type TYPE. */
7572
7573 static std::string
7574 type_as_string (struct type *type)
7575 {
7576 string_file tmp_stream;
7577
7578 type_print (type, "", &tmp_stream, -1);
7579
7580 return std::move (tmp_stream.string ());
7581 }
7582
7583 /* Given a type TYPE, look up the type of the component of type named NAME.
7584 If DISPP is non-null, add its byte displacement from the beginning of a
7585 structure (pointed to by a value) of type TYPE to *DISPP (does not
7586 work for packed fields).
7587
7588 Matches any field whose name has NAME as a prefix, possibly
7589 followed by "___".
7590
7591 TYPE can be either a struct or union. If REFOK, TYPE may also
7592 be a (pointer or reference)+ to a struct or union, and the
7593 ultimate target type will be searched.
7594
7595 Looks recursively into variant clauses and parent types.
7596
7597 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7598 TYPE is not a type of the right kind. */
7599
7600 static struct type *
7601 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7602 int noerr)
7603 {
7604 int i;
7605
7606 if (name == NULL)
7607 goto BadName;
7608
7609 if (refok && type != NULL)
7610 while (1)
7611 {
7612 type = ada_check_typedef (type);
7613 if (TYPE_CODE (type) != TYPE_CODE_PTR
7614 && TYPE_CODE (type) != TYPE_CODE_REF)
7615 break;
7616 type = TYPE_TARGET_TYPE (type);
7617 }
7618
7619 if (type == NULL
7620 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7621 && TYPE_CODE (type) != TYPE_CODE_UNION))
7622 {
7623 if (noerr)
7624 return NULL;
7625
7626 error (_("Type %s is not a structure or union type"),
7627 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7628 }
7629
7630 type = to_static_fixed_type (type);
7631
7632 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7633 {
7634 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7635 struct type *t;
7636
7637 if (t_field_name == NULL)
7638 continue;
7639
7640 else if (field_name_match (t_field_name, name))
7641 return TYPE_FIELD_TYPE (type, i);
7642
7643 else if (ada_is_wrapper_field (type, i))
7644 {
7645 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7646 0, 1);
7647 if (t != NULL)
7648 return t;
7649 }
7650
7651 else if (ada_is_variant_part (type, i))
7652 {
7653 int j;
7654 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7655 i));
7656
7657 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7658 {
7659 /* FIXME pnh 2008/01/26: We check for a field that is
7660 NOT wrapped in a struct, since the compiler sometimes
7661 generates these for unchecked variant types. Revisit
7662 if the compiler changes this practice. */
7663 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7664
7665 if (v_field_name != NULL
7666 && field_name_match (v_field_name, name))
7667 t = TYPE_FIELD_TYPE (field_type, j);
7668 else
7669 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7670 j),
7671 name, 0, 1);
7672
7673 if (t != NULL)
7674 return t;
7675 }
7676 }
7677
7678 }
7679
7680 BadName:
7681 if (!noerr)
7682 {
7683 const char *name_str = name != NULL ? name : _("<null>");
7684
7685 error (_("Type %s has no component named %s"),
7686 type_as_string (type).c_str (), name_str);
7687 }
7688
7689 return NULL;
7690 }
7691
7692 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7693 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7694 represents an unchecked union (that is, the variant part of a
7695 record that is named in an Unchecked_Union pragma). */
7696
7697 static int
7698 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7699 {
7700 const char *discrim_name = ada_variant_discrim_name (var_type);
7701
7702 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7703 }
7704
7705
7706 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7707 within a value of type OUTER_TYPE that is stored in GDB at
7708 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7709 numbering from 0) is applicable. Returns -1 if none are. */
7710
7711 int
7712 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7713 const gdb_byte *outer_valaddr)
7714 {
7715 int others_clause;
7716 int i;
7717 const char *discrim_name = ada_variant_discrim_name (var_type);
7718 struct value *outer;
7719 struct value *discrim;
7720 LONGEST discrim_val;
7721
7722 /* Using plain value_from_contents_and_address here causes problems
7723 because we will end up trying to resolve a type that is currently
7724 being constructed. */
7725 outer = value_from_contents_and_address_unresolved (outer_type,
7726 outer_valaddr, 0);
7727 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7728 if (discrim == NULL)
7729 return -1;
7730 discrim_val = value_as_long (discrim);
7731
7732 others_clause = -1;
7733 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7734 {
7735 if (ada_is_others_clause (var_type, i))
7736 others_clause = i;
7737 else if (ada_in_variant (discrim_val, var_type, i))
7738 return i;
7739 }
7740
7741 return others_clause;
7742 }
7743 \f
7744
7745
7746 /* Dynamic-Sized Records */
7747
7748 /* Strategy: The type ostensibly attached to a value with dynamic size
7749 (i.e., a size that is not statically recorded in the debugging
7750 data) does not accurately reflect the size or layout of the value.
7751 Our strategy is to convert these values to values with accurate,
7752 conventional types that are constructed on the fly. */
7753
7754 /* There is a subtle and tricky problem here. In general, we cannot
7755 determine the size of dynamic records without its data. However,
7756 the 'struct value' data structure, which GDB uses to represent
7757 quantities in the inferior process (the target), requires the size
7758 of the type at the time of its allocation in order to reserve space
7759 for GDB's internal copy of the data. That's why the
7760 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7761 rather than struct value*s.
7762
7763 However, GDB's internal history variables ($1, $2, etc.) are
7764 struct value*s containing internal copies of the data that are not, in
7765 general, the same as the data at their corresponding addresses in
7766 the target. Fortunately, the types we give to these values are all
7767 conventional, fixed-size types (as per the strategy described
7768 above), so that we don't usually have to perform the
7769 'to_fixed_xxx_type' conversions to look at their values.
7770 Unfortunately, there is one exception: if one of the internal
7771 history variables is an array whose elements are unconstrained
7772 records, then we will need to create distinct fixed types for each
7773 element selected. */
7774
7775 /* The upshot of all of this is that many routines take a (type, host
7776 address, target address) triple as arguments to represent a value.
7777 The host address, if non-null, is supposed to contain an internal
7778 copy of the relevant data; otherwise, the program is to consult the
7779 target at the target address. */
7780
7781 /* Assuming that VAL0 represents a pointer value, the result of
7782 dereferencing it. Differs from value_ind in its treatment of
7783 dynamic-sized types. */
7784
7785 struct value *
7786 ada_value_ind (struct value *val0)
7787 {
7788 struct value *val = value_ind (val0);
7789
7790 if (ada_is_tagged_type (value_type (val), 0))
7791 val = ada_tag_value_at_base_address (val);
7792
7793 return ada_to_fixed_value (val);
7794 }
7795
7796 /* The value resulting from dereferencing any "reference to"
7797 qualifiers on VAL0. */
7798
7799 static struct value *
7800 ada_coerce_ref (struct value *val0)
7801 {
7802 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7803 {
7804 struct value *val = val0;
7805
7806 val = coerce_ref (val);
7807
7808 if (ada_is_tagged_type (value_type (val), 0))
7809 val = ada_tag_value_at_base_address (val);
7810
7811 return ada_to_fixed_value (val);
7812 }
7813 else
7814 return val0;
7815 }
7816
7817 /* Return OFF rounded upward if necessary to a multiple of
7818 ALIGNMENT (a power of 2). */
7819
7820 static unsigned int
7821 align_value (unsigned int off, unsigned int alignment)
7822 {
7823 return (off + alignment - 1) & ~(alignment - 1);
7824 }
7825
7826 /* Return the bit alignment required for field #F of template type TYPE. */
7827
7828 static unsigned int
7829 field_alignment (struct type *type, int f)
7830 {
7831 const char *name = TYPE_FIELD_NAME (type, f);
7832 int len;
7833 int align_offset;
7834
7835 /* The field name should never be null, unless the debugging information
7836 is somehow malformed. In this case, we assume the field does not
7837 require any alignment. */
7838 if (name == NULL)
7839 return 1;
7840
7841 len = strlen (name);
7842
7843 if (!isdigit (name[len - 1]))
7844 return 1;
7845
7846 if (isdigit (name[len - 2]))
7847 align_offset = len - 2;
7848 else
7849 align_offset = len - 1;
7850
7851 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7852 return TARGET_CHAR_BIT;
7853
7854 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7855 }
7856
7857 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7858
7859 static struct symbol *
7860 ada_find_any_type_symbol (const char *name)
7861 {
7862 struct symbol *sym;
7863
7864 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7865 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7866 return sym;
7867
7868 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7869 return sym;
7870 }
7871
7872 /* Find a type named NAME. Ignores ambiguity. This routine will look
7873 solely for types defined by debug info, it will not search the GDB
7874 primitive types. */
7875
7876 static struct type *
7877 ada_find_any_type (const char *name)
7878 {
7879 struct symbol *sym = ada_find_any_type_symbol (name);
7880
7881 if (sym != NULL)
7882 return SYMBOL_TYPE (sym);
7883
7884 return NULL;
7885 }
7886
7887 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7888 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7889 symbol, in which case it is returned. Otherwise, this looks for
7890 symbols whose name is that of NAME_SYM suffixed with "___XR".
7891 Return symbol if found, and NULL otherwise. */
7892
7893 struct symbol *
7894 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7895 {
7896 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7897 struct symbol *sym;
7898
7899 if (strstr (name, "___XR") != NULL)
7900 return name_sym;
7901
7902 sym = find_old_style_renaming_symbol (name, block);
7903
7904 if (sym != NULL)
7905 return sym;
7906
7907 /* Not right yet. FIXME pnh 7/20/2007. */
7908 sym = ada_find_any_type_symbol (name);
7909 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7910 return sym;
7911 else
7912 return NULL;
7913 }
7914
7915 static struct symbol *
7916 find_old_style_renaming_symbol (const char *name, const struct block *block)
7917 {
7918 const struct symbol *function_sym = block_linkage_function (block);
7919 char *rename;
7920
7921 if (function_sym != NULL)
7922 {
7923 /* If the symbol is defined inside a function, NAME is not fully
7924 qualified. This means we need to prepend the function name
7925 as well as adding the ``___XR'' suffix to build the name of
7926 the associated renaming symbol. */
7927 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7928 /* Function names sometimes contain suffixes used
7929 for instance to qualify nested subprograms. When building
7930 the XR type name, we need to make sure that this suffix is
7931 not included. So do not include any suffix in the function
7932 name length below. */
7933 int function_name_len = ada_name_prefix_len (function_name);
7934 const int rename_len = function_name_len + 2 /* "__" */
7935 + strlen (name) + 6 /* "___XR\0" */ ;
7936
7937 /* Strip the suffix if necessary. */
7938 ada_remove_trailing_digits (function_name, &function_name_len);
7939 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7940 ada_remove_Xbn_suffix (function_name, &function_name_len);
7941
7942 /* Library-level functions are a special case, as GNAT adds
7943 a ``_ada_'' prefix to the function name to avoid namespace
7944 pollution. However, the renaming symbols themselves do not
7945 have this prefix, so we need to skip this prefix if present. */
7946 if (function_name_len > 5 /* "_ada_" */
7947 && strstr (function_name, "_ada_") == function_name)
7948 {
7949 function_name += 5;
7950 function_name_len -= 5;
7951 }
7952
7953 rename = (char *) alloca (rename_len * sizeof (char));
7954 strncpy (rename, function_name, function_name_len);
7955 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7956 "__%s___XR", name);
7957 }
7958 else
7959 {
7960 const int rename_len = strlen (name) + 6;
7961
7962 rename = (char *) alloca (rename_len * sizeof (char));
7963 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7964 }
7965
7966 return ada_find_any_type_symbol (rename);
7967 }
7968
7969 /* Because of GNAT encoding conventions, several GDB symbols may match a
7970 given type name. If the type denoted by TYPE0 is to be preferred to
7971 that of TYPE1 for purposes of type printing, return non-zero;
7972 otherwise return 0. */
7973
7974 int
7975 ada_prefer_type (struct type *type0, struct type *type1)
7976 {
7977 if (type1 == NULL)
7978 return 1;
7979 else if (type0 == NULL)
7980 return 0;
7981 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7982 return 1;
7983 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7984 return 0;
7985 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7986 return 1;
7987 else if (ada_is_constrained_packed_array_type (type0))
7988 return 1;
7989 else if (ada_is_array_descriptor_type (type0)
7990 && !ada_is_array_descriptor_type (type1))
7991 return 1;
7992 else
7993 {
7994 const char *type0_name = type_name_no_tag (type0);
7995 const char *type1_name = type_name_no_tag (type1);
7996
7997 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7998 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7999 return 1;
8000 }
8001 return 0;
8002 }
8003
8004 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8005 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8006
8007 const char *
8008 ada_type_name (struct type *type)
8009 {
8010 if (type == NULL)
8011 return NULL;
8012 else if (TYPE_NAME (type) != NULL)
8013 return TYPE_NAME (type);
8014 else
8015 return TYPE_TAG_NAME (type);
8016 }
8017
8018 /* Search the list of "descriptive" types associated to TYPE for a type
8019 whose name is NAME. */
8020
8021 static struct type *
8022 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8023 {
8024 struct type *result, *tmp;
8025
8026 if (ada_ignore_descriptive_types_p)
8027 return NULL;
8028
8029 /* If there no descriptive-type info, then there is no parallel type
8030 to be found. */
8031 if (!HAVE_GNAT_AUX_INFO (type))
8032 return NULL;
8033
8034 result = TYPE_DESCRIPTIVE_TYPE (type);
8035 while (result != NULL)
8036 {
8037 const char *result_name = ada_type_name (result);
8038
8039 if (result_name == NULL)
8040 {
8041 warning (_("unexpected null name on descriptive type"));
8042 return NULL;
8043 }
8044
8045 /* If the names match, stop. */
8046 if (strcmp (result_name, name) == 0)
8047 break;
8048
8049 /* Otherwise, look at the next item on the list, if any. */
8050 if (HAVE_GNAT_AUX_INFO (result))
8051 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8052 else
8053 tmp = NULL;
8054
8055 /* If not found either, try after having resolved the typedef. */
8056 if (tmp != NULL)
8057 result = tmp;
8058 else
8059 {
8060 result = check_typedef (result);
8061 if (HAVE_GNAT_AUX_INFO (result))
8062 result = TYPE_DESCRIPTIVE_TYPE (result);
8063 else
8064 result = NULL;
8065 }
8066 }
8067
8068 /* If we didn't find a match, see whether this is a packed array. With
8069 older compilers, the descriptive type information is either absent or
8070 irrelevant when it comes to packed arrays so the above lookup fails.
8071 Fall back to using a parallel lookup by name in this case. */
8072 if (result == NULL && ada_is_constrained_packed_array_type (type))
8073 return ada_find_any_type (name);
8074
8075 return result;
8076 }
8077
8078 /* Find a parallel type to TYPE with the specified NAME, using the
8079 descriptive type taken from the debugging information, if available,
8080 and otherwise using the (slower) name-based method. */
8081
8082 static struct type *
8083 ada_find_parallel_type_with_name (struct type *type, const char *name)
8084 {
8085 struct type *result = NULL;
8086
8087 if (HAVE_GNAT_AUX_INFO (type))
8088 result = find_parallel_type_by_descriptive_type (type, name);
8089 else
8090 result = ada_find_any_type (name);
8091
8092 return result;
8093 }
8094
8095 /* Same as above, but specify the name of the parallel type by appending
8096 SUFFIX to the name of TYPE. */
8097
8098 struct type *
8099 ada_find_parallel_type (struct type *type, const char *suffix)
8100 {
8101 char *name;
8102 const char *type_name = ada_type_name (type);
8103 int len;
8104
8105 if (type_name == NULL)
8106 return NULL;
8107
8108 len = strlen (type_name);
8109
8110 name = (char *) alloca (len + strlen (suffix) + 1);
8111
8112 strcpy (name, type_name);
8113 strcpy (name + len, suffix);
8114
8115 return ada_find_parallel_type_with_name (type, name);
8116 }
8117
8118 /* If TYPE is a variable-size record type, return the corresponding template
8119 type describing its fields. Otherwise, return NULL. */
8120
8121 static struct type *
8122 dynamic_template_type (struct type *type)
8123 {
8124 type = ada_check_typedef (type);
8125
8126 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8127 || ada_type_name (type) == NULL)
8128 return NULL;
8129 else
8130 {
8131 int len = strlen (ada_type_name (type));
8132
8133 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8134 return type;
8135 else
8136 return ada_find_parallel_type (type, "___XVE");
8137 }
8138 }
8139
8140 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8141 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8142
8143 static int
8144 is_dynamic_field (struct type *templ_type, int field_num)
8145 {
8146 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8147
8148 return name != NULL
8149 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8150 && strstr (name, "___XVL") != NULL;
8151 }
8152
8153 /* The index of the variant field of TYPE, or -1 if TYPE does not
8154 represent a variant record type. */
8155
8156 static int
8157 variant_field_index (struct type *type)
8158 {
8159 int f;
8160
8161 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8162 return -1;
8163
8164 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8165 {
8166 if (ada_is_variant_part (type, f))
8167 return f;
8168 }
8169 return -1;
8170 }
8171
8172 /* A record type with no fields. */
8173
8174 static struct type *
8175 empty_record (struct type *templ)
8176 {
8177 struct type *type = alloc_type_copy (templ);
8178
8179 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8180 TYPE_NFIELDS (type) = 0;
8181 TYPE_FIELDS (type) = NULL;
8182 INIT_CPLUS_SPECIFIC (type);
8183 TYPE_NAME (type) = "<empty>";
8184 TYPE_TAG_NAME (type) = NULL;
8185 TYPE_LENGTH (type) = 0;
8186 return type;
8187 }
8188
8189 /* An ordinary record type (with fixed-length fields) that describes
8190 the value of type TYPE at VALADDR or ADDRESS (see comments at
8191 the beginning of this section) VAL according to GNAT conventions.
8192 DVAL0 should describe the (portion of a) record that contains any
8193 necessary discriminants. It should be NULL if value_type (VAL) is
8194 an outer-level type (i.e., as opposed to a branch of a variant.) A
8195 variant field (unless unchecked) is replaced by a particular branch
8196 of the variant.
8197
8198 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8199 length are not statically known are discarded. As a consequence,
8200 VALADDR, ADDRESS and DVAL0 are ignored.
8201
8202 NOTE: Limitations: For now, we assume that dynamic fields and
8203 variants occupy whole numbers of bytes. However, they need not be
8204 byte-aligned. */
8205
8206 struct type *
8207 ada_template_to_fixed_record_type_1 (struct type *type,
8208 const gdb_byte *valaddr,
8209 CORE_ADDR address, struct value *dval0,
8210 int keep_dynamic_fields)
8211 {
8212 struct value *mark = value_mark ();
8213 struct value *dval;
8214 struct type *rtype;
8215 int nfields, bit_len;
8216 int variant_field;
8217 long off;
8218 int fld_bit_len;
8219 int f;
8220
8221 /* Compute the number of fields in this record type that are going
8222 to be processed: unless keep_dynamic_fields, this includes only
8223 fields whose position and length are static will be processed. */
8224 if (keep_dynamic_fields)
8225 nfields = TYPE_NFIELDS (type);
8226 else
8227 {
8228 nfields = 0;
8229 while (nfields < TYPE_NFIELDS (type)
8230 && !ada_is_variant_part (type, nfields)
8231 && !is_dynamic_field (type, nfields))
8232 nfields++;
8233 }
8234
8235 rtype = alloc_type_copy (type);
8236 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8237 INIT_CPLUS_SPECIFIC (rtype);
8238 TYPE_NFIELDS (rtype) = nfields;
8239 TYPE_FIELDS (rtype) = (struct field *)
8240 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8241 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8242 TYPE_NAME (rtype) = ada_type_name (type);
8243 TYPE_TAG_NAME (rtype) = NULL;
8244 TYPE_FIXED_INSTANCE (rtype) = 1;
8245
8246 off = 0;
8247 bit_len = 0;
8248 variant_field = -1;
8249
8250 for (f = 0; f < nfields; f += 1)
8251 {
8252 off = align_value (off, field_alignment (type, f))
8253 + TYPE_FIELD_BITPOS (type, f);
8254 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8255 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8256
8257 if (ada_is_variant_part (type, f))
8258 {
8259 variant_field = f;
8260 fld_bit_len = 0;
8261 }
8262 else if (is_dynamic_field (type, f))
8263 {
8264 const gdb_byte *field_valaddr = valaddr;
8265 CORE_ADDR field_address = address;
8266 struct type *field_type =
8267 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8268
8269 if (dval0 == NULL)
8270 {
8271 /* rtype's length is computed based on the run-time
8272 value of discriminants. If the discriminants are not
8273 initialized, the type size may be completely bogus and
8274 GDB may fail to allocate a value for it. So check the
8275 size first before creating the value. */
8276 ada_ensure_varsize_limit (rtype);
8277 /* Using plain value_from_contents_and_address here
8278 causes problems because we will end up trying to
8279 resolve a type that is currently being
8280 constructed. */
8281 dval = value_from_contents_and_address_unresolved (rtype,
8282 valaddr,
8283 address);
8284 rtype = value_type (dval);
8285 }
8286 else
8287 dval = dval0;
8288
8289 /* If the type referenced by this field is an aligner type, we need
8290 to unwrap that aligner type, because its size might not be set.
8291 Keeping the aligner type would cause us to compute the wrong
8292 size for this field, impacting the offset of the all the fields
8293 that follow this one. */
8294 if (ada_is_aligner_type (field_type))
8295 {
8296 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8297
8298 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8299 field_address = cond_offset_target (field_address, field_offset);
8300 field_type = ada_aligned_type (field_type);
8301 }
8302
8303 field_valaddr = cond_offset_host (field_valaddr,
8304 off / TARGET_CHAR_BIT);
8305 field_address = cond_offset_target (field_address,
8306 off / TARGET_CHAR_BIT);
8307
8308 /* Get the fixed type of the field. Note that, in this case,
8309 we do not want to get the real type out of the tag: if
8310 the current field is the parent part of a tagged record,
8311 we will get the tag of the object. Clearly wrong: the real
8312 type of the parent is not the real type of the child. We
8313 would end up in an infinite loop. */
8314 field_type = ada_get_base_type (field_type);
8315 field_type = ada_to_fixed_type (field_type, field_valaddr,
8316 field_address, dval, 0);
8317 /* If the field size is already larger than the maximum
8318 object size, then the record itself will necessarily
8319 be larger than the maximum object size. We need to make
8320 this check now, because the size might be so ridiculously
8321 large (due to an uninitialized variable in the inferior)
8322 that it would cause an overflow when adding it to the
8323 record size. */
8324 ada_ensure_varsize_limit (field_type);
8325
8326 TYPE_FIELD_TYPE (rtype, f) = field_type;
8327 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8328 /* The multiplication can potentially overflow. But because
8329 the field length has been size-checked just above, and
8330 assuming that the maximum size is a reasonable value,
8331 an overflow should not happen in practice. So rather than
8332 adding overflow recovery code to this already complex code,
8333 we just assume that it's not going to happen. */
8334 fld_bit_len =
8335 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8336 }
8337 else
8338 {
8339 /* Note: If this field's type is a typedef, it is important
8340 to preserve the typedef layer.
8341
8342 Otherwise, we might be transforming a typedef to a fat
8343 pointer (encoding a pointer to an unconstrained array),
8344 into a basic fat pointer (encoding an unconstrained
8345 array). As both types are implemented using the same
8346 structure, the typedef is the only clue which allows us
8347 to distinguish between the two options. Stripping it
8348 would prevent us from printing this field appropriately. */
8349 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8350 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8351 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8352 fld_bit_len =
8353 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8354 else
8355 {
8356 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8357
8358 /* We need to be careful of typedefs when computing
8359 the length of our field. If this is a typedef,
8360 get the length of the target type, not the length
8361 of the typedef. */
8362 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8363 field_type = ada_typedef_target_type (field_type);
8364
8365 fld_bit_len =
8366 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8367 }
8368 }
8369 if (off + fld_bit_len > bit_len)
8370 bit_len = off + fld_bit_len;
8371 off += fld_bit_len;
8372 TYPE_LENGTH (rtype) =
8373 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8374 }
8375
8376 /* We handle the variant part, if any, at the end because of certain
8377 odd cases in which it is re-ordered so as NOT to be the last field of
8378 the record. This can happen in the presence of representation
8379 clauses. */
8380 if (variant_field >= 0)
8381 {
8382 struct type *branch_type;
8383
8384 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8385
8386 if (dval0 == NULL)
8387 {
8388 /* Using plain value_from_contents_and_address here causes
8389 problems because we will end up trying to resolve a type
8390 that is currently being constructed. */
8391 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8392 address);
8393 rtype = value_type (dval);
8394 }
8395 else
8396 dval = dval0;
8397
8398 branch_type =
8399 to_fixed_variant_branch_type
8400 (TYPE_FIELD_TYPE (type, variant_field),
8401 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8402 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8403 if (branch_type == NULL)
8404 {
8405 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8406 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8407 TYPE_NFIELDS (rtype) -= 1;
8408 }
8409 else
8410 {
8411 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8412 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8413 fld_bit_len =
8414 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8415 TARGET_CHAR_BIT;
8416 if (off + fld_bit_len > bit_len)
8417 bit_len = off + fld_bit_len;
8418 TYPE_LENGTH (rtype) =
8419 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8420 }
8421 }
8422
8423 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8424 should contain the alignment of that record, which should be a strictly
8425 positive value. If null or negative, then something is wrong, most
8426 probably in the debug info. In that case, we don't round up the size
8427 of the resulting type. If this record is not part of another structure,
8428 the current RTYPE length might be good enough for our purposes. */
8429 if (TYPE_LENGTH (type) <= 0)
8430 {
8431 if (TYPE_NAME (rtype))
8432 warning (_("Invalid type size for `%s' detected: %d."),
8433 TYPE_NAME (rtype), TYPE_LENGTH (type));
8434 else
8435 warning (_("Invalid type size for <unnamed> detected: %d."),
8436 TYPE_LENGTH (type));
8437 }
8438 else
8439 {
8440 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8441 TYPE_LENGTH (type));
8442 }
8443
8444 value_free_to_mark (mark);
8445 if (TYPE_LENGTH (rtype) > varsize_limit)
8446 error (_("record type with dynamic size is larger than varsize-limit"));
8447 return rtype;
8448 }
8449
8450 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8451 of 1. */
8452
8453 static struct type *
8454 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8455 CORE_ADDR address, struct value *dval0)
8456 {
8457 return ada_template_to_fixed_record_type_1 (type, valaddr,
8458 address, dval0, 1);
8459 }
8460
8461 /* An ordinary record type in which ___XVL-convention fields and
8462 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8463 static approximations, containing all possible fields. Uses
8464 no runtime values. Useless for use in values, but that's OK,
8465 since the results are used only for type determinations. Works on both
8466 structs and unions. Representation note: to save space, we memorize
8467 the result of this function in the TYPE_TARGET_TYPE of the
8468 template type. */
8469
8470 static struct type *
8471 template_to_static_fixed_type (struct type *type0)
8472 {
8473 struct type *type;
8474 int nfields;
8475 int f;
8476
8477 /* No need no do anything if the input type is already fixed. */
8478 if (TYPE_FIXED_INSTANCE (type0))
8479 return type0;
8480
8481 /* Likewise if we already have computed the static approximation. */
8482 if (TYPE_TARGET_TYPE (type0) != NULL)
8483 return TYPE_TARGET_TYPE (type0);
8484
8485 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8486 type = type0;
8487 nfields = TYPE_NFIELDS (type0);
8488
8489 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8490 recompute all over next time. */
8491 TYPE_TARGET_TYPE (type0) = type;
8492
8493 for (f = 0; f < nfields; f += 1)
8494 {
8495 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8496 struct type *new_type;
8497
8498 if (is_dynamic_field (type0, f))
8499 {
8500 field_type = ada_check_typedef (field_type);
8501 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8502 }
8503 else
8504 new_type = static_unwrap_type (field_type);
8505
8506 if (new_type != field_type)
8507 {
8508 /* Clone TYPE0 only the first time we get a new field type. */
8509 if (type == type0)
8510 {
8511 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8512 TYPE_CODE (type) = TYPE_CODE (type0);
8513 INIT_CPLUS_SPECIFIC (type);
8514 TYPE_NFIELDS (type) = nfields;
8515 TYPE_FIELDS (type) = (struct field *)
8516 TYPE_ALLOC (type, nfields * sizeof (struct field));
8517 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8518 sizeof (struct field) * nfields);
8519 TYPE_NAME (type) = ada_type_name (type0);
8520 TYPE_TAG_NAME (type) = NULL;
8521 TYPE_FIXED_INSTANCE (type) = 1;
8522 TYPE_LENGTH (type) = 0;
8523 }
8524 TYPE_FIELD_TYPE (type, f) = new_type;
8525 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8526 }
8527 }
8528
8529 return type;
8530 }
8531
8532 /* Given an object of type TYPE whose contents are at VALADDR and
8533 whose address in memory is ADDRESS, returns a revision of TYPE,
8534 which should be a non-dynamic-sized record, in which the variant
8535 part, if any, is replaced with the appropriate branch. Looks
8536 for discriminant values in DVAL0, which can be NULL if the record
8537 contains the necessary discriminant values. */
8538
8539 static struct type *
8540 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8541 CORE_ADDR address, struct value *dval0)
8542 {
8543 struct value *mark = value_mark ();
8544 struct value *dval;
8545 struct type *rtype;
8546 struct type *branch_type;
8547 int nfields = TYPE_NFIELDS (type);
8548 int variant_field = variant_field_index (type);
8549
8550 if (variant_field == -1)
8551 return type;
8552
8553 if (dval0 == NULL)
8554 {
8555 dval = value_from_contents_and_address (type, valaddr, address);
8556 type = value_type (dval);
8557 }
8558 else
8559 dval = dval0;
8560
8561 rtype = alloc_type_copy (type);
8562 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8563 INIT_CPLUS_SPECIFIC (rtype);
8564 TYPE_NFIELDS (rtype) = nfields;
8565 TYPE_FIELDS (rtype) =
8566 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8567 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8568 sizeof (struct field) * nfields);
8569 TYPE_NAME (rtype) = ada_type_name (type);
8570 TYPE_TAG_NAME (rtype) = NULL;
8571 TYPE_FIXED_INSTANCE (rtype) = 1;
8572 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8573
8574 branch_type = to_fixed_variant_branch_type
8575 (TYPE_FIELD_TYPE (type, variant_field),
8576 cond_offset_host (valaddr,
8577 TYPE_FIELD_BITPOS (type, variant_field)
8578 / TARGET_CHAR_BIT),
8579 cond_offset_target (address,
8580 TYPE_FIELD_BITPOS (type, variant_field)
8581 / TARGET_CHAR_BIT), dval);
8582 if (branch_type == NULL)
8583 {
8584 int f;
8585
8586 for (f = variant_field + 1; f < nfields; f += 1)
8587 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8588 TYPE_NFIELDS (rtype) -= 1;
8589 }
8590 else
8591 {
8592 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8593 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8594 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8595 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8596 }
8597 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8598
8599 value_free_to_mark (mark);
8600 return rtype;
8601 }
8602
8603 /* An ordinary record type (with fixed-length fields) that describes
8604 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8605 beginning of this section]. Any necessary discriminants' values
8606 should be in DVAL, a record value; it may be NULL if the object
8607 at ADDR itself contains any necessary discriminant values.
8608 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8609 values from the record are needed. Except in the case that DVAL,
8610 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8611 unchecked) is replaced by a particular branch of the variant.
8612
8613 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8614 is questionable and may be removed. It can arise during the
8615 processing of an unconstrained-array-of-record type where all the
8616 variant branches have exactly the same size. This is because in
8617 such cases, the compiler does not bother to use the XVS convention
8618 when encoding the record. I am currently dubious of this
8619 shortcut and suspect the compiler should be altered. FIXME. */
8620
8621 static struct type *
8622 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8623 CORE_ADDR address, struct value *dval)
8624 {
8625 struct type *templ_type;
8626
8627 if (TYPE_FIXED_INSTANCE (type0))
8628 return type0;
8629
8630 templ_type = dynamic_template_type (type0);
8631
8632 if (templ_type != NULL)
8633 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8634 else if (variant_field_index (type0) >= 0)
8635 {
8636 if (dval == NULL && valaddr == NULL && address == 0)
8637 return type0;
8638 return to_record_with_fixed_variant_part (type0, valaddr, address,
8639 dval);
8640 }
8641 else
8642 {
8643 TYPE_FIXED_INSTANCE (type0) = 1;
8644 return type0;
8645 }
8646
8647 }
8648
8649 /* An ordinary record type (with fixed-length fields) that describes
8650 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8651 union type. Any necessary discriminants' values should be in DVAL,
8652 a record value. That is, this routine selects the appropriate
8653 branch of the union at ADDR according to the discriminant value
8654 indicated in the union's type name. Returns VAR_TYPE0 itself if
8655 it represents a variant subject to a pragma Unchecked_Union. */
8656
8657 static struct type *
8658 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8659 CORE_ADDR address, struct value *dval)
8660 {
8661 int which;
8662 struct type *templ_type;
8663 struct type *var_type;
8664
8665 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8666 var_type = TYPE_TARGET_TYPE (var_type0);
8667 else
8668 var_type = var_type0;
8669
8670 templ_type = ada_find_parallel_type (var_type, "___XVU");
8671
8672 if (templ_type != NULL)
8673 var_type = templ_type;
8674
8675 if (is_unchecked_variant (var_type, value_type (dval)))
8676 return var_type0;
8677 which =
8678 ada_which_variant_applies (var_type,
8679 value_type (dval), value_contents (dval));
8680
8681 if (which < 0)
8682 return empty_record (var_type);
8683 else if (is_dynamic_field (var_type, which))
8684 return to_fixed_record_type
8685 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8686 valaddr, address, dval);
8687 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8688 return
8689 to_fixed_record_type
8690 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8691 else
8692 return TYPE_FIELD_TYPE (var_type, which);
8693 }
8694
8695 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8696 ENCODING_TYPE, a type following the GNAT conventions for discrete
8697 type encodings, only carries redundant information. */
8698
8699 static int
8700 ada_is_redundant_range_encoding (struct type *range_type,
8701 struct type *encoding_type)
8702 {
8703 struct type *fixed_range_type;
8704 const char *bounds_str;
8705 int n;
8706 LONGEST lo, hi;
8707
8708 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8709
8710 if (TYPE_CODE (get_base_type (range_type))
8711 != TYPE_CODE (get_base_type (encoding_type)))
8712 {
8713 /* The compiler probably used a simple base type to describe
8714 the range type instead of the range's actual base type,
8715 expecting us to get the real base type from the encoding
8716 anyway. In this situation, the encoding cannot be ignored
8717 as redundant. */
8718 return 0;
8719 }
8720
8721 if (is_dynamic_type (range_type))
8722 return 0;
8723
8724 if (TYPE_NAME (encoding_type) == NULL)
8725 return 0;
8726
8727 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8728 if (bounds_str == NULL)
8729 return 0;
8730
8731 n = 8; /* Skip "___XDLU_". */
8732 if (!ada_scan_number (bounds_str, n, &lo, &n))
8733 return 0;
8734 if (TYPE_LOW_BOUND (range_type) != lo)
8735 return 0;
8736
8737 n += 2; /* Skip the "__" separator between the two bounds. */
8738 if (!ada_scan_number (bounds_str, n, &hi, &n))
8739 return 0;
8740 if (TYPE_HIGH_BOUND (range_type) != hi)
8741 return 0;
8742
8743 return 1;
8744 }
8745
8746 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8747 a type following the GNAT encoding for describing array type
8748 indices, only carries redundant information. */
8749
8750 static int
8751 ada_is_redundant_index_type_desc (struct type *array_type,
8752 struct type *desc_type)
8753 {
8754 struct type *this_layer = check_typedef (array_type);
8755 int i;
8756
8757 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8758 {
8759 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8760 TYPE_FIELD_TYPE (desc_type, i)))
8761 return 0;
8762 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8763 }
8764
8765 return 1;
8766 }
8767
8768 /* Assuming that TYPE0 is an array type describing the type of a value
8769 at ADDR, and that DVAL describes a record containing any
8770 discriminants used in TYPE0, returns a type for the value that
8771 contains no dynamic components (that is, no components whose sizes
8772 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8773 true, gives an error message if the resulting type's size is over
8774 varsize_limit. */
8775
8776 static struct type *
8777 to_fixed_array_type (struct type *type0, struct value *dval,
8778 int ignore_too_big)
8779 {
8780 struct type *index_type_desc;
8781 struct type *result;
8782 int constrained_packed_array_p;
8783 static const char *xa_suffix = "___XA";
8784
8785 type0 = ada_check_typedef (type0);
8786 if (TYPE_FIXED_INSTANCE (type0))
8787 return type0;
8788
8789 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8790 if (constrained_packed_array_p)
8791 type0 = decode_constrained_packed_array_type (type0);
8792
8793 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8794
8795 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8796 encoding suffixed with 'P' may still be generated. If so,
8797 it should be used to find the XA type. */
8798
8799 if (index_type_desc == NULL)
8800 {
8801 const char *type_name = ada_type_name (type0);
8802
8803 if (type_name != NULL)
8804 {
8805 const int len = strlen (type_name);
8806 char *name = (char *) alloca (len + strlen (xa_suffix));
8807
8808 if (type_name[len - 1] == 'P')
8809 {
8810 strcpy (name, type_name);
8811 strcpy (name + len - 1, xa_suffix);
8812 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8813 }
8814 }
8815 }
8816
8817 ada_fixup_array_indexes_type (index_type_desc);
8818 if (index_type_desc != NULL
8819 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8820 {
8821 /* Ignore this ___XA parallel type, as it does not bring any
8822 useful information. This allows us to avoid creating fixed
8823 versions of the array's index types, which would be identical
8824 to the original ones. This, in turn, can also help avoid
8825 the creation of fixed versions of the array itself. */
8826 index_type_desc = NULL;
8827 }
8828
8829 if (index_type_desc == NULL)
8830 {
8831 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8832
8833 /* NOTE: elt_type---the fixed version of elt_type0---should never
8834 depend on the contents of the array in properly constructed
8835 debugging data. */
8836 /* Create a fixed version of the array element type.
8837 We're not providing the address of an element here,
8838 and thus the actual object value cannot be inspected to do
8839 the conversion. This should not be a problem, since arrays of
8840 unconstrained objects are not allowed. In particular, all
8841 the elements of an array of a tagged type should all be of
8842 the same type specified in the debugging info. No need to
8843 consult the object tag. */
8844 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8845
8846 /* Make sure we always create a new array type when dealing with
8847 packed array types, since we're going to fix-up the array
8848 type length and element bitsize a little further down. */
8849 if (elt_type0 == elt_type && !constrained_packed_array_p)
8850 result = type0;
8851 else
8852 result = create_array_type (alloc_type_copy (type0),
8853 elt_type, TYPE_INDEX_TYPE (type0));
8854 }
8855 else
8856 {
8857 int i;
8858 struct type *elt_type0;
8859
8860 elt_type0 = type0;
8861 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8862 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8863
8864 /* NOTE: result---the fixed version of elt_type0---should never
8865 depend on the contents of the array in properly constructed
8866 debugging data. */
8867 /* Create a fixed version of the array element type.
8868 We're not providing the address of an element here,
8869 and thus the actual object value cannot be inspected to do
8870 the conversion. This should not be a problem, since arrays of
8871 unconstrained objects are not allowed. In particular, all
8872 the elements of an array of a tagged type should all be of
8873 the same type specified in the debugging info. No need to
8874 consult the object tag. */
8875 result =
8876 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8877
8878 elt_type0 = type0;
8879 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8880 {
8881 struct type *range_type =
8882 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8883
8884 result = create_array_type (alloc_type_copy (elt_type0),
8885 result, range_type);
8886 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8887 }
8888 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8889 error (_("array type with dynamic size is larger than varsize-limit"));
8890 }
8891
8892 /* We want to preserve the type name. This can be useful when
8893 trying to get the type name of a value that has already been
8894 printed (for instance, if the user did "print VAR; whatis $". */
8895 TYPE_NAME (result) = TYPE_NAME (type0);
8896
8897 if (constrained_packed_array_p)
8898 {
8899 /* So far, the resulting type has been created as if the original
8900 type was a regular (non-packed) array type. As a result, the
8901 bitsize of the array elements needs to be set again, and the array
8902 length needs to be recomputed based on that bitsize. */
8903 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8904 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8905
8906 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8907 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8908 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8909 TYPE_LENGTH (result)++;
8910 }
8911
8912 TYPE_FIXED_INSTANCE (result) = 1;
8913 return result;
8914 }
8915
8916
8917 /* A standard type (containing no dynamically sized components)
8918 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8919 DVAL describes a record containing any discriminants used in TYPE0,
8920 and may be NULL if there are none, or if the object of type TYPE at
8921 ADDRESS or in VALADDR contains these discriminants.
8922
8923 If CHECK_TAG is not null, in the case of tagged types, this function
8924 attempts to locate the object's tag and use it to compute the actual
8925 type. However, when ADDRESS is null, we cannot use it to determine the
8926 location of the tag, and therefore compute the tagged type's actual type.
8927 So we return the tagged type without consulting the tag. */
8928
8929 static struct type *
8930 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8931 CORE_ADDR address, struct value *dval, int check_tag)
8932 {
8933 type = ada_check_typedef (type);
8934 switch (TYPE_CODE (type))
8935 {
8936 default:
8937 return type;
8938 case TYPE_CODE_STRUCT:
8939 {
8940 struct type *static_type = to_static_fixed_type (type);
8941 struct type *fixed_record_type =
8942 to_fixed_record_type (type, valaddr, address, NULL);
8943
8944 /* If STATIC_TYPE is a tagged type and we know the object's address,
8945 then we can determine its tag, and compute the object's actual
8946 type from there. Note that we have to use the fixed record
8947 type (the parent part of the record may have dynamic fields
8948 and the way the location of _tag is expressed may depend on
8949 them). */
8950
8951 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8952 {
8953 struct value *tag =
8954 value_tag_from_contents_and_address
8955 (fixed_record_type,
8956 valaddr,
8957 address);
8958 struct type *real_type = type_from_tag (tag);
8959 struct value *obj =
8960 value_from_contents_and_address (fixed_record_type,
8961 valaddr,
8962 address);
8963 fixed_record_type = value_type (obj);
8964 if (real_type != NULL)
8965 return to_fixed_record_type
8966 (real_type, NULL,
8967 value_address (ada_tag_value_at_base_address (obj)), NULL);
8968 }
8969
8970 /* Check to see if there is a parallel ___XVZ variable.
8971 If there is, then it provides the actual size of our type. */
8972 else if (ada_type_name (fixed_record_type) != NULL)
8973 {
8974 const char *name = ada_type_name (fixed_record_type);
8975 char *xvz_name
8976 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8977 LONGEST size;
8978
8979 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8980 if (get_int_var_value (xvz_name, size)
8981 && TYPE_LENGTH (fixed_record_type) != size)
8982 {
8983 fixed_record_type = copy_type (fixed_record_type);
8984 TYPE_LENGTH (fixed_record_type) = size;
8985
8986 /* The FIXED_RECORD_TYPE may have be a stub. We have
8987 observed this when the debugging info is STABS, and
8988 apparently it is something that is hard to fix.
8989
8990 In practice, we don't need the actual type definition
8991 at all, because the presence of the XVZ variable allows us
8992 to assume that there must be a XVS type as well, which we
8993 should be able to use later, when we need the actual type
8994 definition.
8995
8996 In the meantime, pretend that the "fixed" type we are
8997 returning is NOT a stub, because this can cause trouble
8998 when using this type to create new types targeting it.
8999 Indeed, the associated creation routines often check
9000 whether the target type is a stub and will try to replace
9001 it, thus using a type with the wrong size. This, in turn,
9002 might cause the new type to have the wrong size too.
9003 Consider the case of an array, for instance, where the size
9004 of the array is computed from the number of elements in
9005 our array multiplied by the size of its element. */
9006 TYPE_STUB (fixed_record_type) = 0;
9007 }
9008 }
9009 return fixed_record_type;
9010 }
9011 case TYPE_CODE_ARRAY:
9012 return to_fixed_array_type (type, dval, 1);
9013 case TYPE_CODE_UNION:
9014 if (dval == NULL)
9015 return type;
9016 else
9017 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9018 }
9019 }
9020
9021 /* The same as ada_to_fixed_type_1, except that it preserves the type
9022 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9023
9024 The typedef layer needs be preserved in order to differentiate between
9025 arrays and array pointers when both types are implemented using the same
9026 fat pointer. In the array pointer case, the pointer is encoded as
9027 a typedef of the pointer type. For instance, considering:
9028
9029 type String_Access is access String;
9030 S1 : String_Access := null;
9031
9032 To the debugger, S1 is defined as a typedef of type String. But
9033 to the user, it is a pointer. So if the user tries to print S1,
9034 we should not dereference the array, but print the array address
9035 instead.
9036
9037 If we didn't preserve the typedef layer, we would lose the fact that
9038 the type is to be presented as a pointer (needs de-reference before
9039 being printed). And we would also use the source-level type name. */
9040
9041 struct type *
9042 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9043 CORE_ADDR address, struct value *dval, int check_tag)
9044
9045 {
9046 struct type *fixed_type =
9047 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9048
9049 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9050 then preserve the typedef layer.
9051
9052 Implementation note: We can only check the main-type portion of
9053 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9054 from TYPE now returns a type that has the same instance flags
9055 as TYPE. For instance, if TYPE is a "typedef const", and its
9056 target type is a "struct", then the typedef elimination will return
9057 a "const" version of the target type. See check_typedef for more
9058 details about how the typedef layer elimination is done.
9059
9060 brobecker/2010-11-19: It seems to me that the only case where it is
9061 useful to preserve the typedef layer is when dealing with fat pointers.
9062 Perhaps, we could add a check for that and preserve the typedef layer
9063 only in that situation. But this seems unecessary so far, probably
9064 because we call check_typedef/ada_check_typedef pretty much everywhere.
9065 */
9066 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9067 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9068 == TYPE_MAIN_TYPE (fixed_type)))
9069 return type;
9070
9071 return fixed_type;
9072 }
9073
9074 /* A standard (static-sized) type corresponding as well as possible to
9075 TYPE0, but based on no runtime data. */
9076
9077 static struct type *
9078 to_static_fixed_type (struct type *type0)
9079 {
9080 struct type *type;
9081
9082 if (type0 == NULL)
9083 return NULL;
9084
9085 if (TYPE_FIXED_INSTANCE (type0))
9086 return type0;
9087
9088 type0 = ada_check_typedef (type0);
9089
9090 switch (TYPE_CODE (type0))
9091 {
9092 default:
9093 return type0;
9094 case TYPE_CODE_STRUCT:
9095 type = dynamic_template_type (type0);
9096 if (type != NULL)
9097 return template_to_static_fixed_type (type);
9098 else
9099 return template_to_static_fixed_type (type0);
9100 case TYPE_CODE_UNION:
9101 type = ada_find_parallel_type (type0, "___XVU");
9102 if (type != NULL)
9103 return template_to_static_fixed_type (type);
9104 else
9105 return template_to_static_fixed_type (type0);
9106 }
9107 }
9108
9109 /* A static approximation of TYPE with all type wrappers removed. */
9110
9111 static struct type *
9112 static_unwrap_type (struct type *type)
9113 {
9114 if (ada_is_aligner_type (type))
9115 {
9116 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9117 if (ada_type_name (type1) == NULL)
9118 TYPE_NAME (type1) = ada_type_name (type);
9119
9120 return static_unwrap_type (type1);
9121 }
9122 else
9123 {
9124 struct type *raw_real_type = ada_get_base_type (type);
9125
9126 if (raw_real_type == type)
9127 return type;
9128 else
9129 return to_static_fixed_type (raw_real_type);
9130 }
9131 }
9132
9133 /* In some cases, incomplete and private types require
9134 cross-references that are not resolved as records (for example,
9135 type Foo;
9136 type FooP is access Foo;
9137 V: FooP;
9138 type Foo is array ...;
9139 ). In these cases, since there is no mechanism for producing
9140 cross-references to such types, we instead substitute for FooP a
9141 stub enumeration type that is nowhere resolved, and whose tag is
9142 the name of the actual type. Call these types "non-record stubs". */
9143
9144 /* A type equivalent to TYPE that is not a non-record stub, if one
9145 exists, otherwise TYPE. */
9146
9147 struct type *
9148 ada_check_typedef (struct type *type)
9149 {
9150 if (type == NULL)
9151 return NULL;
9152
9153 /* If our type is a typedef type of a fat pointer, then we're done.
9154 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9155 what allows us to distinguish between fat pointers that represent
9156 array types, and fat pointers that represent array access types
9157 (in both cases, the compiler implements them as fat pointers). */
9158 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9159 && is_thick_pntr (ada_typedef_target_type (type)))
9160 return type;
9161
9162 type = check_typedef (type);
9163 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9164 || !TYPE_STUB (type)
9165 || TYPE_TAG_NAME (type) == NULL)
9166 return type;
9167 else
9168 {
9169 const char *name = TYPE_TAG_NAME (type);
9170 struct type *type1 = ada_find_any_type (name);
9171
9172 if (type1 == NULL)
9173 return type;
9174
9175 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9176 stubs pointing to arrays, as we don't create symbols for array
9177 types, only for the typedef-to-array types). If that's the case,
9178 strip the typedef layer. */
9179 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9180 type1 = ada_check_typedef (type1);
9181
9182 return type1;
9183 }
9184 }
9185
9186 /* A value representing the data at VALADDR/ADDRESS as described by
9187 type TYPE0, but with a standard (static-sized) type that correctly
9188 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9189 type, then return VAL0 [this feature is simply to avoid redundant
9190 creation of struct values]. */
9191
9192 static struct value *
9193 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9194 struct value *val0)
9195 {
9196 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9197
9198 if (type == type0 && val0 != NULL)
9199 return val0;
9200 else
9201 return value_from_contents_and_address (type, 0, address);
9202 }
9203
9204 /* A value representing VAL, but with a standard (static-sized) type
9205 that correctly describes it. Does not necessarily create a new
9206 value. */
9207
9208 struct value *
9209 ada_to_fixed_value (struct value *val)
9210 {
9211 val = unwrap_value (val);
9212 val = ada_to_fixed_value_create (value_type (val),
9213 value_address (val),
9214 val);
9215 return val;
9216 }
9217 \f
9218
9219 /* Attributes */
9220
9221 /* Table mapping attribute numbers to names.
9222 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9223
9224 static const char *attribute_names[] = {
9225 "<?>",
9226
9227 "first",
9228 "last",
9229 "length",
9230 "image",
9231 "max",
9232 "min",
9233 "modulus",
9234 "pos",
9235 "size",
9236 "tag",
9237 "val",
9238 0
9239 };
9240
9241 const char *
9242 ada_attribute_name (enum exp_opcode n)
9243 {
9244 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9245 return attribute_names[n - OP_ATR_FIRST + 1];
9246 else
9247 return attribute_names[0];
9248 }
9249
9250 /* Evaluate the 'POS attribute applied to ARG. */
9251
9252 static LONGEST
9253 pos_atr (struct value *arg)
9254 {
9255 struct value *val = coerce_ref (arg);
9256 struct type *type = value_type (val);
9257 LONGEST result;
9258
9259 if (!discrete_type_p (type))
9260 error (_("'POS only defined on discrete types"));
9261
9262 if (!discrete_position (type, value_as_long (val), &result))
9263 error (_("enumeration value is invalid: can't find 'POS"));
9264
9265 return result;
9266 }
9267
9268 static struct value *
9269 value_pos_atr (struct type *type, struct value *arg)
9270 {
9271 return value_from_longest (type, pos_atr (arg));
9272 }
9273
9274 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9275
9276 static struct value *
9277 value_val_atr (struct type *type, struct value *arg)
9278 {
9279 if (!discrete_type_p (type))
9280 error (_("'VAL only defined on discrete types"));
9281 if (!integer_type_p (value_type (arg)))
9282 error (_("'VAL requires integral argument"));
9283
9284 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9285 {
9286 long pos = value_as_long (arg);
9287
9288 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9289 error (_("argument to 'VAL out of range"));
9290 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9291 }
9292 else
9293 return value_from_longest (type, value_as_long (arg));
9294 }
9295 \f
9296
9297 /* Evaluation */
9298
9299 /* True if TYPE appears to be an Ada character type.
9300 [At the moment, this is true only for Character and Wide_Character;
9301 It is a heuristic test that could stand improvement]. */
9302
9303 int
9304 ada_is_character_type (struct type *type)
9305 {
9306 const char *name;
9307
9308 /* If the type code says it's a character, then assume it really is,
9309 and don't check any further. */
9310 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9311 return 1;
9312
9313 /* Otherwise, assume it's a character type iff it is a discrete type
9314 with a known character type name. */
9315 name = ada_type_name (type);
9316 return (name != NULL
9317 && (TYPE_CODE (type) == TYPE_CODE_INT
9318 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9319 && (strcmp (name, "character") == 0
9320 || strcmp (name, "wide_character") == 0
9321 || strcmp (name, "wide_wide_character") == 0
9322 || strcmp (name, "unsigned char") == 0));
9323 }
9324
9325 /* True if TYPE appears to be an Ada string type. */
9326
9327 int
9328 ada_is_string_type (struct type *type)
9329 {
9330 type = ada_check_typedef (type);
9331 if (type != NULL
9332 && TYPE_CODE (type) != TYPE_CODE_PTR
9333 && (ada_is_simple_array_type (type)
9334 || ada_is_array_descriptor_type (type))
9335 && ada_array_arity (type) == 1)
9336 {
9337 struct type *elttype = ada_array_element_type (type, 1);
9338
9339 return ada_is_character_type (elttype);
9340 }
9341 else
9342 return 0;
9343 }
9344
9345 /* The compiler sometimes provides a parallel XVS type for a given
9346 PAD type. Normally, it is safe to follow the PAD type directly,
9347 but older versions of the compiler have a bug that causes the offset
9348 of its "F" field to be wrong. Following that field in that case
9349 would lead to incorrect results, but this can be worked around
9350 by ignoring the PAD type and using the associated XVS type instead.
9351
9352 Set to True if the debugger should trust the contents of PAD types.
9353 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9354 static int trust_pad_over_xvs = 1;
9355
9356 /* True if TYPE is a struct type introduced by the compiler to force the
9357 alignment of a value. Such types have a single field with a
9358 distinctive name. */
9359
9360 int
9361 ada_is_aligner_type (struct type *type)
9362 {
9363 type = ada_check_typedef (type);
9364
9365 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9366 return 0;
9367
9368 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9369 && TYPE_NFIELDS (type) == 1
9370 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9371 }
9372
9373 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9374 the parallel type. */
9375
9376 struct type *
9377 ada_get_base_type (struct type *raw_type)
9378 {
9379 struct type *real_type_namer;
9380 struct type *raw_real_type;
9381
9382 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9383 return raw_type;
9384
9385 if (ada_is_aligner_type (raw_type))
9386 /* The encoding specifies that we should always use the aligner type.
9387 So, even if this aligner type has an associated XVS type, we should
9388 simply ignore it.
9389
9390 According to the compiler gurus, an XVS type parallel to an aligner
9391 type may exist because of a stabs limitation. In stabs, aligner
9392 types are empty because the field has a variable-sized type, and
9393 thus cannot actually be used as an aligner type. As a result,
9394 we need the associated parallel XVS type to decode the type.
9395 Since the policy in the compiler is to not change the internal
9396 representation based on the debugging info format, we sometimes
9397 end up having a redundant XVS type parallel to the aligner type. */
9398 return raw_type;
9399
9400 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9401 if (real_type_namer == NULL
9402 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9403 || TYPE_NFIELDS (real_type_namer) != 1)
9404 return raw_type;
9405
9406 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9407 {
9408 /* This is an older encoding form where the base type needs to be
9409 looked up by name. We prefer the newer enconding because it is
9410 more efficient. */
9411 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9412 if (raw_real_type == NULL)
9413 return raw_type;
9414 else
9415 return raw_real_type;
9416 }
9417
9418 /* The field in our XVS type is a reference to the base type. */
9419 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9420 }
9421
9422 /* The type of value designated by TYPE, with all aligners removed. */
9423
9424 struct type *
9425 ada_aligned_type (struct type *type)
9426 {
9427 if (ada_is_aligner_type (type))
9428 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9429 else
9430 return ada_get_base_type (type);
9431 }
9432
9433
9434 /* The address of the aligned value in an object at address VALADDR
9435 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9436
9437 const gdb_byte *
9438 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9439 {
9440 if (ada_is_aligner_type (type))
9441 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9442 valaddr +
9443 TYPE_FIELD_BITPOS (type,
9444 0) / TARGET_CHAR_BIT);
9445 else
9446 return valaddr;
9447 }
9448
9449
9450
9451 /* The printed representation of an enumeration literal with encoded
9452 name NAME. The value is good to the next call of ada_enum_name. */
9453 const char *
9454 ada_enum_name (const char *name)
9455 {
9456 static char *result;
9457 static size_t result_len = 0;
9458 const char *tmp;
9459
9460 /* First, unqualify the enumeration name:
9461 1. Search for the last '.' character. If we find one, then skip
9462 all the preceding characters, the unqualified name starts
9463 right after that dot.
9464 2. Otherwise, we may be debugging on a target where the compiler
9465 translates dots into "__". Search forward for double underscores,
9466 but stop searching when we hit an overloading suffix, which is
9467 of the form "__" followed by digits. */
9468
9469 tmp = strrchr (name, '.');
9470 if (tmp != NULL)
9471 name = tmp + 1;
9472 else
9473 {
9474 while ((tmp = strstr (name, "__")) != NULL)
9475 {
9476 if (isdigit (tmp[2]))
9477 break;
9478 else
9479 name = tmp + 2;
9480 }
9481 }
9482
9483 if (name[0] == 'Q')
9484 {
9485 int v;
9486
9487 if (name[1] == 'U' || name[1] == 'W')
9488 {
9489 if (sscanf (name + 2, "%x", &v) != 1)
9490 return name;
9491 }
9492 else
9493 return name;
9494
9495 GROW_VECT (result, result_len, 16);
9496 if (isascii (v) && isprint (v))
9497 xsnprintf (result, result_len, "'%c'", v);
9498 else if (name[1] == 'U')
9499 xsnprintf (result, result_len, "[\"%02x\"]", v);
9500 else
9501 xsnprintf (result, result_len, "[\"%04x\"]", v);
9502
9503 return result;
9504 }
9505 else
9506 {
9507 tmp = strstr (name, "__");
9508 if (tmp == NULL)
9509 tmp = strstr (name, "$");
9510 if (tmp != NULL)
9511 {
9512 GROW_VECT (result, result_len, tmp - name + 1);
9513 strncpy (result, name, tmp - name);
9514 result[tmp - name] = '\0';
9515 return result;
9516 }
9517
9518 return name;
9519 }
9520 }
9521
9522 /* Evaluate the subexpression of EXP starting at *POS as for
9523 evaluate_type, updating *POS to point just past the evaluated
9524 expression. */
9525
9526 static struct value *
9527 evaluate_subexp_type (struct expression *exp, int *pos)
9528 {
9529 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9530 }
9531
9532 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9533 value it wraps. */
9534
9535 static struct value *
9536 unwrap_value (struct value *val)
9537 {
9538 struct type *type = ada_check_typedef (value_type (val));
9539
9540 if (ada_is_aligner_type (type))
9541 {
9542 struct value *v = ada_value_struct_elt (val, "F", 0);
9543 struct type *val_type = ada_check_typedef (value_type (v));
9544
9545 if (ada_type_name (val_type) == NULL)
9546 TYPE_NAME (val_type) = ada_type_name (type);
9547
9548 return unwrap_value (v);
9549 }
9550 else
9551 {
9552 struct type *raw_real_type =
9553 ada_check_typedef (ada_get_base_type (type));
9554
9555 /* If there is no parallel XVS or XVE type, then the value is
9556 already unwrapped. Return it without further modification. */
9557 if ((type == raw_real_type)
9558 && ada_find_parallel_type (type, "___XVE") == NULL)
9559 return val;
9560
9561 return
9562 coerce_unspec_val_to_type
9563 (val, ada_to_fixed_type (raw_real_type, 0,
9564 value_address (val),
9565 NULL, 1));
9566 }
9567 }
9568
9569 static struct value *
9570 cast_to_fixed (struct type *type, struct value *arg)
9571 {
9572 LONGEST val;
9573
9574 if (type == value_type (arg))
9575 return arg;
9576 else if (ada_is_fixed_point_type (value_type (arg)))
9577 val = ada_float_to_fixed (type,
9578 ada_fixed_to_float (value_type (arg),
9579 value_as_long (arg)));
9580 else
9581 {
9582 DOUBLEST argd = value_as_double (arg);
9583
9584 val = ada_float_to_fixed (type, argd);
9585 }
9586
9587 return value_from_longest (type, val);
9588 }
9589
9590 static struct value *
9591 cast_from_fixed (struct type *type, struct value *arg)
9592 {
9593 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9594 value_as_long (arg));
9595
9596 return value_from_double (type, val);
9597 }
9598
9599 /* Given two array types T1 and T2, return nonzero iff both arrays
9600 contain the same number of elements. */
9601
9602 static int
9603 ada_same_array_size_p (struct type *t1, struct type *t2)
9604 {
9605 LONGEST lo1, hi1, lo2, hi2;
9606
9607 /* Get the array bounds in order to verify that the size of
9608 the two arrays match. */
9609 if (!get_array_bounds (t1, &lo1, &hi1)
9610 || !get_array_bounds (t2, &lo2, &hi2))
9611 error (_("unable to determine array bounds"));
9612
9613 /* To make things easier for size comparison, normalize a bit
9614 the case of empty arrays by making sure that the difference
9615 between upper bound and lower bound is always -1. */
9616 if (lo1 > hi1)
9617 hi1 = lo1 - 1;
9618 if (lo2 > hi2)
9619 hi2 = lo2 - 1;
9620
9621 return (hi1 - lo1 == hi2 - lo2);
9622 }
9623
9624 /* Assuming that VAL is an array of integrals, and TYPE represents
9625 an array with the same number of elements, but with wider integral
9626 elements, return an array "casted" to TYPE. In practice, this
9627 means that the returned array is built by casting each element
9628 of the original array into TYPE's (wider) element type. */
9629
9630 static struct value *
9631 ada_promote_array_of_integrals (struct type *type, struct value *val)
9632 {
9633 struct type *elt_type = TYPE_TARGET_TYPE (type);
9634 LONGEST lo, hi;
9635 struct value *res;
9636 LONGEST i;
9637
9638 /* Verify that both val and type are arrays of scalars, and
9639 that the size of val's elements is smaller than the size
9640 of type's element. */
9641 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9642 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9643 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9644 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9645 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9646 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9647
9648 if (!get_array_bounds (type, &lo, &hi))
9649 error (_("unable to determine array bounds"));
9650
9651 res = allocate_value (type);
9652
9653 /* Promote each array element. */
9654 for (i = 0; i < hi - lo + 1; i++)
9655 {
9656 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9657
9658 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9659 value_contents_all (elt), TYPE_LENGTH (elt_type));
9660 }
9661
9662 return res;
9663 }
9664
9665 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9666 return the converted value. */
9667
9668 static struct value *
9669 coerce_for_assign (struct type *type, struct value *val)
9670 {
9671 struct type *type2 = value_type (val);
9672
9673 if (type == type2)
9674 return val;
9675
9676 type2 = ada_check_typedef (type2);
9677 type = ada_check_typedef (type);
9678
9679 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9680 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9681 {
9682 val = ada_value_ind (val);
9683 type2 = value_type (val);
9684 }
9685
9686 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9687 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9688 {
9689 if (!ada_same_array_size_p (type, type2))
9690 error (_("cannot assign arrays of different length"));
9691
9692 if (is_integral_type (TYPE_TARGET_TYPE (type))
9693 && is_integral_type (TYPE_TARGET_TYPE (type2))
9694 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9695 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9696 {
9697 /* Allow implicit promotion of the array elements to
9698 a wider type. */
9699 return ada_promote_array_of_integrals (type, val);
9700 }
9701
9702 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9703 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9704 error (_("Incompatible types in assignment"));
9705 deprecated_set_value_type (val, type);
9706 }
9707 return val;
9708 }
9709
9710 static struct value *
9711 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9712 {
9713 struct value *val;
9714 struct type *type1, *type2;
9715 LONGEST v, v1, v2;
9716
9717 arg1 = coerce_ref (arg1);
9718 arg2 = coerce_ref (arg2);
9719 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9720 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9721
9722 if (TYPE_CODE (type1) != TYPE_CODE_INT
9723 || TYPE_CODE (type2) != TYPE_CODE_INT)
9724 return value_binop (arg1, arg2, op);
9725
9726 switch (op)
9727 {
9728 case BINOP_MOD:
9729 case BINOP_DIV:
9730 case BINOP_REM:
9731 break;
9732 default:
9733 return value_binop (arg1, arg2, op);
9734 }
9735
9736 v2 = value_as_long (arg2);
9737 if (v2 == 0)
9738 error (_("second operand of %s must not be zero."), op_string (op));
9739
9740 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9741 return value_binop (arg1, arg2, op);
9742
9743 v1 = value_as_long (arg1);
9744 switch (op)
9745 {
9746 case BINOP_DIV:
9747 v = v1 / v2;
9748 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9749 v += v > 0 ? -1 : 1;
9750 break;
9751 case BINOP_REM:
9752 v = v1 % v2;
9753 if (v * v1 < 0)
9754 v -= v2;
9755 break;
9756 default:
9757 /* Should not reach this point. */
9758 v = 0;
9759 }
9760
9761 val = allocate_value (type1);
9762 store_unsigned_integer (value_contents_raw (val),
9763 TYPE_LENGTH (value_type (val)),
9764 gdbarch_byte_order (get_type_arch (type1)), v);
9765 return val;
9766 }
9767
9768 static int
9769 ada_value_equal (struct value *arg1, struct value *arg2)
9770 {
9771 if (ada_is_direct_array_type (value_type (arg1))
9772 || ada_is_direct_array_type (value_type (arg2)))
9773 {
9774 /* Automatically dereference any array reference before
9775 we attempt to perform the comparison. */
9776 arg1 = ada_coerce_ref (arg1);
9777 arg2 = ada_coerce_ref (arg2);
9778
9779 arg1 = ada_coerce_to_simple_array (arg1);
9780 arg2 = ada_coerce_to_simple_array (arg2);
9781 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9782 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9783 error (_("Attempt to compare array with non-array"));
9784 /* FIXME: The following works only for types whose
9785 representations use all bits (no padding or undefined bits)
9786 and do not have user-defined equality. */
9787 return
9788 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9789 && memcmp (value_contents (arg1), value_contents (arg2),
9790 TYPE_LENGTH (value_type (arg1))) == 0;
9791 }
9792 return value_equal (arg1, arg2);
9793 }
9794
9795 /* Total number of component associations in the aggregate starting at
9796 index PC in EXP. Assumes that index PC is the start of an
9797 OP_AGGREGATE. */
9798
9799 static int
9800 num_component_specs (struct expression *exp, int pc)
9801 {
9802 int n, m, i;
9803
9804 m = exp->elts[pc + 1].longconst;
9805 pc += 3;
9806 n = 0;
9807 for (i = 0; i < m; i += 1)
9808 {
9809 switch (exp->elts[pc].opcode)
9810 {
9811 default:
9812 n += 1;
9813 break;
9814 case OP_CHOICES:
9815 n += exp->elts[pc + 1].longconst;
9816 break;
9817 }
9818 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9819 }
9820 return n;
9821 }
9822
9823 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9824 component of LHS (a simple array or a record), updating *POS past
9825 the expression, assuming that LHS is contained in CONTAINER. Does
9826 not modify the inferior's memory, nor does it modify LHS (unless
9827 LHS == CONTAINER). */
9828
9829 static void
9830 assign_component (struct value *container, struct value *lhs, LONGEST index,
9831 struct expression *exp, int *pos)
9832 {
9833 struct value *mark = value_mark ();
9834 struct value *elt;
9835
9836 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9837 {
9838 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9839 struct value *index_val = value_from_longest (index_type, index);
9840
9841 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9842 }
9843 else
9844 {
9845 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9846 elt = ada_to_fixed_value (elt);
9847 }
9848
9849 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9850 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9851 else
9852 value_assign_to_component (container, elt,
9853 ada_evaluate_subexp (NULL, exp, pos,
9854 EVAL_NORMAL));
9855
9856 value_free_to_mark (mark);
9857 }
9858
9859 /* Assuming that LHS represents an lvalue having a record or array
9860 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9861 of that aggregate's value to LHS, advancing *POS past the
9862 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9863 lvalue containing LHS (possibly LHS itself). Does not modify
9864 the inferior's memory, nor does it modify the contents of
9865 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9866
9867 static struct value *
9868 assign_aggregate (struct value *container,
9869 struct value *lhs, struct expression *exp,
9870 int *pos, enum noside noside)
9871 {
9872 struct type *lhs_type;
9873 int n = exp->elts[*pos+1].longconst;
9874 LONGEST low_index, high_index;
9875 int num_specs;
9876 LONGEST *indices;
9877 int max_indices, num_indices;
9878 int i;
9879
9880 *pos += 3;
9881 if (noside != EVAL_NORMAL)
9882 {
9883 for (i = 0; i < n; i += 1)
9884 ada_evaluate_subexp (NULL, exp, pos, noside);
9885 return container;
9886 }
9887
9888 container = ada_coerce_ref (container);
9889 if (ada_is_direct_array_type (value_type (container)))
9890 container = ada_coerce_to_simple_array (container);
9891 lhs = ada_coerce_ref (lhs);
9892 if (!deprecated_value_modifiable (lhs))
9893 error (_("Left operand of assignment is not a modifiable lvalue."));
9894
9895 lhs_type = value_type (lhs);
9896 if (ada_is_direct_array_type (lhs_type))
9897 {
9898 lhs = ada_coerce_to_simple_array (lhs);
9899 lhs_type = value_type (lhs);
9900 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9901 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9902 }
9903 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9904 {
9905 low_index = 0;
9906 high_index = num_visible_fields (lhs_type) - 1;
9907 }
9908 else
9909 error (_("Left-hand side must be array or record."));
9910
9911 num_specs = num_component_specs (exp, *pos - 3);
9912 max_indices = 4 * num_specs + 4;
9913 indices = XALLOCAVEC (LONGEST, max_indices);
9914 indices[0] = indices[1] = low_index - 1;
9915 indices[2] = indices[3] = high_index + 1;
9916 num_indices = 4;
9917
9918 for (i = 0; i < n; i += 1)
9919 {
9920 switch (exp->elts[*pos].opcode)
9921 {
9922 case OP_CHOICES:
9923 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9924 &num_indices, max_indices,
9925 low_index, high_index);
9926 break;
9927 case OP_POSITIONAL:
9928 aggregate_assign_positional (container, lhs, exp, pos, indices,
9929 &num_indices, max_indices,
9930 low_index, high_index);
9931 break;
9932 case OP_OTHERS:
9933 if (i != n-1)
9934 error (_("Misplaced 'others' clause"));
9935 aggregate_assign_others (container, lhs, exp, pos, indices,
9936 num_indices, low_index, high_index);
9937 break;
9938 default:
9939 error (_("Internal error: bad aggregate clause"));
9940 }
9941 }
9942
9943 return container;
9944 }
9945
9946 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9947 construct at *POS, updating *POS past the construct, given that
9948 the positions are relative to lower bound LOW, where HIGH is the
9949 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9950 updating *NUM_INDICES as needed. CONTAINER is as for
9951 assign_aggregate. */
9952 static void
9953 aggregate_assign_positional (struct value *container,
9954 struct value *lhs, struct expression *exp,
9955 int *pos, LONGEST *indices, int *num_indices,
9956 int max_indices, LONGEST low, LONGEST high)
9957 {
9958 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9959
9960 if (ind - 1 == high)
9961 warning (_("Extra components in aggregate ignored."));
9962 if (ind <= high)
9963 {
9964 add_component_interval (ind, ind, indices, num_indices, max_indices);
9965 *pos += 3;
9966 assign_component (container, lhs, ind, exp, pos);
9967 }
9968 else
9969 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9970 }
9971
9972 /* Assign into the components of LHS indexed by the OP_CHOICES
9973 construct at *POS, updating *POS past the construct, given that
9974 the allowable indices are LOW..HIGH. Record the indices assigned
9975 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9976 needed. CONTAINER is as for assign_aggregate. */
9977 static void
9978 aggregate_assign_from_choices (struct value *container,
9979 struct value *lhs, struct expression *exp,
9980 int *pos, LONGEST *indices, int *num_indices,
9981 int max_indices, LONGEST low, LONGEST high)
9982 {
9983 int j;
9984 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9985 int choice_pos, expr_pc;
9986 int is_array = ada_is_direct_array_type (value_type (lhs));
9987
9988 choice_pos = *pos += 3;
9989
9990 for (j = 0; j < n_choices; j += 1)
9991 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9992 expr_pc = *pos;
9993 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9994
9995 for (j = 0; j < n_choices; j += 1)
9996 {
9997 LONGEST lower, upper;
9998 enum exp_opcode op = exp->elts[choice_pos].opcode;
9999
10000 if (op == OP_DISCRETE_RANGE)
10001 {
10002 choice_pos += 1;
10003 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10004 EVAL_NORMAL));
10005 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10006 EVAL_NORMAL));
10007 }
10008 else if (is_array)
10009 {
10010 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10011 EVAL_NORMAL));
10012 upper = lower;
10013 }
10014 else
10015 {
10016 int ind;
10017 const char *name;
10018
10019 switch (op)
10020 {
10021 case OP_NAME:
10022 name = &exp->elts[choice_pos + 2].string;
10023 break;
10024 case OP_VAR_VALUE:
10025 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10026 break;
10027 default:
10028 error (_("Invalid record component association."));
10029 }
10030 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10031 ind = 0;
10032 if (! find_struct_field (name, value_type (lhs), 0,
10033 NULL, NULL, NULL, NULL, &ind))
10034 error (_("Unknown component name: %s."), name);
10035 lower = upper = ind;
10036 }
10037
10038 if (lower <= upper && (lower < low || upper > high))
10039 error (_("Index in component association out of bounds."));
10040
10041 add_component_interval (lower, upper, indices, num_indices,
10042 max_indices);
10043 while (lower <= upper)
10044 {
10045 int pos1;
10046
10047 pos1 = expr_pc;
10048 assign_component (container, lhs, lower, exp, &pos1);
10049 lower += 1;
10050 }
10051 }
10052 }
10053
10054 /* Assign the value of the expression in the OP_OTHERS construct in
10055 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10056 have not been previously assigned. The index intervals already assigned
10057 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10058 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10059 static void
10060 aggregate_assign_others (struct value *container,
10061 struct value *lhs, struct expression *exp,
10062 int *pos, LONGEST *indices, int num_indices,
10063 LONGEST low, LONGEST high)
10064 {
10065 int i;
10066 int expr_pc = *pos + 1;
10067
10068 for (i = 0; i < num_indices - 2; i += 2)
10069 {
10070 LONGEST ind;
10071
10072 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10073 {
10074 int localpos;
10075
10076 localpos = expr_pc;
10077 assign_component (container, lhs, ind, exp, &localpos);
10078 }
10079 }
10080 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10081 }
10082
10083 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10084 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10085 modifying *SIZE as needed. It is an error if *SIZE exceeds
10086 MAX_SIZE. The resulting intervals do not overlap. */
10087 static void
10088 add_component_interval (LONGEST low, LONGEST high,
10089 LONGEST* indices, int *size, int max_size)
10090 {
10091 int i, j;
10092
10093 for (i = 0; i < *size; i += 2) {
10094 if (high >= indices[i] && low <= indices[i + 1])
10095 {
10096 int kh;
10097
10098 for (kh = i + 2; kh < *size; kh += 2)
10099 if (high < indices[kh])
10100 break;
10101 if (low < indices[i])
10102 indices[i] = low;
10103 indices[i + 1] = indices[kh - 1];
10104 if (high > indices[i + 1])
10105 indices[i + 1] = high;
10106 memcpy (indices + i + 2, indices + kh, *size - kh);
10107 *size -= kh - i - 2;
10108 return;
10109 }
10110 else if (high < indices[i])
10111 break;
10112 }
10113
10114 if (*size == max_size)
10115 error (_("Internal error: miscounted aggregate components."));
10116 *size += 2;
10117 for (j = *size-1; j >= i+2; j -= 1)
10118 indices[j] = indices[j - 2];
10119 indices[i] = low;
10120 indices[i + 1] = high;
10121 }
10122
10123 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10124 is different. */
10125
10126 static struct value *
10127 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10128 {
10129 if (type == ada_check_typedef (value_type (arg2)))
10130 return arg2;
10131
10132 if (ada_is_fixed_point_type (type))
10133 return (cast_to_fixed (type, arg2));
10134
10135 if (ada_is_fixed_point_type (value_type (arg2)))
10136 return cast_from_fixed (type, arg2);
10137
10138 return value_cast (type, arg2);
10139 }
10140
10141 /* Evaluating Ada expressions, and printing their result.
10142 ------------------------------------------------------
10143
10144 1. Introduction:
10145 ----------------
10146
10147 We usually evaluate an Ada expression in order to print its value.
10148 We also evaluate an expression in order to print its type, which
10149 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10150 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10151 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10152 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10153 similar.
10154
10155 Evaluating expressions is a little more complicated for Ada entities
10156 than it is for entities in languages such as C. The main reason for
10157 this is that Ada provides types whose definition might be dynamic.
10158 One example of such types is variant records. Or another example
10159 would be an array whose bounds can only be known at run time.
10160
10161 The following description is a general guide as to what should be
10162 done (and what should NOT be done) in order to evaluate an expression
10163 involving such types, and when. This does not cover how the semantic
10164 information is encoded by GNAT as this is covered separatly. For the
10165 document used as the reference for the GNAT encoding, see exp_dbug.ads
10166 in the GNAT sources.
10167
10168 Ideally, we should embed each part of this description next to its
10169 associated code. Unfortunately, the amount of code is so vast right
10170 now that it's hard to see whether the code handling a particular
10171 situation might be duplicated or not. One day, when the code is
10172 cleaned up, this guide might become redundant with the comments
10173 inserted in the code, and we might want to remove it.
10174
10175 2. ``Fixing'' an Entity, the Simple Case:
10176 -----------------------------------------
10177
10178 When evaluating Ada expressions, the tricky issue is that they may
10179 reference entities whose type contents and size are not statically
10180 known. Consider for instance a variant record:
10181
10182 type Rec (Empty : Boolean := True) is record
10183 case Empty is
10184 when True => null;
10185 when False => Value : Integer;
10186 end case;
10187 end record;
10188 Yes : Rec := (Empty => False, Value => 1);
10189 No : Rec := (empty => True);
10190
10191 The size and contents of that record depends on the value of the
10192 descriminant (Rec.Empty). At this point, neither the debugging
10193 information nor the associated type structure in GDB are able to
10194 express such dynamic types. So what the debugger does is to create
10195 "fixed" versions of the type that applies to the specific object.
10196 We also informally refer to this opperation as "fixing" an object,
10197 which means creating its associated fixed type.
10198
10199 Example: when printing the value of variable "Yes" above, its fixed
10200 type would look like this:
10201
10202 type Rec is record
10203 Empty : Boolean;
10204 Value : Integer;
10205 end record;
10206
10207 On the other hand, if we printed the value of "No", its fixed type
10208 would become:
10209
10210 type Rec is record
10211 Empty : Boolean;
10212 end record;
10213
10214 Things become a little more complicated when trying to fix an entity
10215 with a dynamic type that directly contains another dynamic type,
10216 such as an array of variant records, for instance. There are
10217 two possible cases: Arrays, and records.
10218
10219 3. ``Fixing'' Arrays:
10220 ---------------------
10221
10222 The type structure in GDB describes an array in terms of its bounds,
10223 and the type of its elements. By design, all elements in the array
10224 have the same type and we cannot represent an array of variant elements
10225 using the current type structure in GDB. When fixing an array,
10226 we cannot fix the array element, as we would potentially need one
10227 fixed type per element of the array. As a result, the best we can do
10228 when fixing an array is to produce an array whose bounds and size
10229 are correct (allowing us to read it from memory), but without having
10230 touched its element type. Fixing each element will be done later,
10231 when (if) necessary.
10232
10233 Arrays are a little simpler to handle than records, because the same
10234 amount of memory is allocated for each element of the array, even if
10235 the amount of space actually used by each element differs from element
10236 to element. Consider for instance the following array of type Rec:
10237
10238 type Rec_Array is array (1 .. 2) of Rec;
10239
10240 The actual amount of memory occupied by each element might be different
10241 from element to element, depending on the value of their discriminant.
10242 But the amount of space reserved for each element in the array remains
10243 fixed regardless. So we simply need to compute that size using
10244 the debugging information available, from which we can then determine
10245 the array size (we multiply the number of elements of the array by
10246 the size of each element).
10247
10248 The simplest case is when we have an array of a constrained element
10249 type. For instance, consider the following type declarations:
10250
10251 type Bounded_String (Max_Size : Integer) is
10252 Length : Integer;
10253 Buffer : String (1 .. Max_Size);
10254 end record;
10255 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10256
10257 In this case, the compiler describes the array as an array of
10258 variable-size elements (identified by its XVS suffix) for which
10259 the size can be read in the parallel XVZ variable.
10260
10261 In the case of an array of an unconstrained element type, the compiler
10262 wraps the array element inside a private PAD type. This type should not
10263 be shown to the user, and must be "unwrap"'ed before printing. Note
10264 that we also use the adjective "aligner" in our code to designate
10265 these wrapper types.
10266
10267 In some cases, the size allocated for each element is statically
10268 known. In that case, the PAD type already has the correct size,
10269 and the array element should remain unfixed.
10270
10271 But there are cases when this size is not statically known.
10272 For instance, assuming that "Five" is an integer variable:
10273
10274 type Dynamic is array (1 .. Five) of Integer;
10275 type Wrapper (Has_Length : Boolean := False) is record
10276 Data : Dynamic;
10277 case Has_Length is
10278 when True => Length : Integer;
10279 when False => null;
10280 end case;
10281 end record;
10282 type Wrapper_Array is array (1 .. 2) of Wrapper;
10283
10284 Hello : Wrapper_Array := (others => (Has_Length => True,
10285 Data => (others => 17),
10286 Length => 1));
10287
10288
10289 The debugging info would describe variable Hello as being an
10290 array of a PAD type. The size of that PAD type is not statically
10291 known, but can be determined using a parallel XVZ variable.
10292 In that case, a copy of the PAD type with the correct size should
10293 be used for the fixed array.
10294
10295 3. ``Fixing'' record type objects:
10296 ----------------------------------
10297
10298 Things are slightly different from arrays in the case of dynamic
10299 record types. In this case, in order to compute the associated
10300 fixed type, we need to determine the size and offset of each of
10301 its components. This, in turn, requires us to compute the fixed
10302 type of each of these components.
10303
10304 Consider for instance the example:
10305
10306 type Bounded_String (Max_Size : Natural) is record
10307 Str : String (1 .. Max_Size);
10308 Length : Natural;
10309 end record;
10310 My_String : Bounded_String (Max_Size => 10);
10311
10312 In that case, the position of field "Length" depends on the size
10313 of field Str, which itself depends on the value of the Max_Size
10314 discriminant. In order to fix the type of variable My_String,
10315 we need to fix the type of field Str. Therefore, fixing a variant
10316 record requires us to fix each of its components.
10317
10318 However, if a component does not have a dynamic size, the component
10319 should not be fixed. In particular, fields that use a PAD type
10320 should not fixed. Here is an example where this might happen
10321 (assuming type Rec above):
10322
10323 type Container (Big : Boolean) is record
10324 First : Rec;
10325 After : Integer;
10326 case Big is
10327 when True => Another : Integer;
10328 when False => null;
10329 end case;
10330 end record;
10331 My_Container : Container := (Big => False,
10332 First => (Empty => True),
10333 After => 42);
10334
10335 In that example, the compiler creates a PAD type for component First,
10336 whose size is constant, and then positions the component After just
10337 right after it. The offset of component After is therefore constant
10338 in this case.
10339
10340 The debugger computes the position of each field based on an algorithm
10341 that uses, among other things, the actual position and size of the field
10342 preceding it. Let's now imagine that the user is trying to print
10343 the value of My_Container. If the type fixing was recursive, we would
10344 end up computing the offset of field After based on the size of the
10345 fixed version of field First. And since in our example First has
10346 only one actual field, the size of the fixed type is actually smaller
10347 than the amount of space allocated to that field, and thus we would
10348 compute the wrong offset of field After.
10349
10350 To make things more complicated, we need to watch out for dynamic
10351 components of variant records (identified by the ___XVL suffix in
10352 the component name). Even if the target type is a PAD type, the size
10353 of that type might not be statically known. So the PAD type needs
10354 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10355 we might end up with the wrong size for our component. This can be
10356 observed with the following type declarations:
10357
10358 type Octal is new Integer range 0 .. 7;
10359 type Octal_Array is array (Positive range <>) of Octal;
10360 pragma Pack (Octal_Array);
10361
10362 type Octal_Buffer (Size : Positive) is record
10363 Buffer : Octal_Array (1 .. Size);
10364 Length : Integer;
10365 end record;
10366
10367 In that case, Buffer is a PAD type whose size is unset and needs
10368 to be computed by fixing the unwrapped type.
10369
10370 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10371 ----------------------------------------------------------
10372
10373 Lastly, when should the sub-elements of an entity that remained unfixed
10374 thus far, be actually fixed?
10375
10376 The answer is: Only when referencing that element. For instance
10377 when selecting one component of a record, this specific component
10378 should be fixed at that point in time. Or when printing the value
10379 of a record, each component should be fixed before its value gets
10380 printed. Similarly for arrays, the element of the array should be
10381 fixed when printing each element of the array, or when extracting
10382 one element out of that array. On the other hand, fixing should
10383 not be performed on the elements when taking a slice of an array!
10384
10385 Note that one of the side-effects of miscomputing the offset and
10386 size of each field is that we end up also miscomputing the size
10387 of the containing type. This can have adverse results when computing
10388 the value of an entity. GDB fetches the value of an entity based
10389 on the size of its type, and thus a wrong size causes GDB to fetch
10390 the wrong amount of memory. In the case where the computed size is
10391 too small, GDB fetches too little data to print the value of our
10392 entiry. Results in this case as unpredicatble, as we usually read
10393 past the buffer containing the data =:-o. */
10394
10395 /* Implement the evaluate_exp routine in the exp_descriptor structure
10396 for the Ada language. */
10397
10398 static struct value *
10399 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10400 int *pos, enum noside noside)
10401 {
10402 enum exp_opcode op;
10403 int tem;
10404 int pc;
10405 int preeval_pos;
10406 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10407 struct type *type;
10408 int nargs, oplen;
10409 struct value **argvec;
10410
10411 pc = *pos;
10412 *pos += 1;
10413 op = exp->elts[pc].opcode;
10414
10415 switch (op)
10416 {
10417 default:
10418 *pos -= 1;
10419 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10420
10421 if (noside == EVAL_NORMAL)
10422 arg1 = unwrap_value (arg1);
10423
10424 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10425 then we need to perform the conversion manually, because
10426 evaluate_subexp_standard doesn't do it. This conversion is
10427 necessary in Ada because the different kinds of float/fixed
10428 types in Ada have different representations.
10429
10430 Similarly, we need to perform the conversion from OP_LONG
10431 ourselves. */
10432 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10433 arg1 = ada_value_cast (expect_type, arg1, noside);
10434
10435 return arg1;
10436
10437 case OP_STRING:
10438 {
10439 struct value *result;
10440
10441 *pos -= 1;
10442 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10443 /* The result type will have code OP_STRING, bashed there from
10444 OP_ARRAY. Bash it back. */
10445 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10446 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10447 return result;
10448 }
10449
10450 case UNOP_CAST:
10451 (*pos) += 2;
10452 type = exp->elts[pc + 1].type;
10453 arg1 = evaluate_subexp (type, exp, pos, noside);
10454 if (noside == EVAL_SKIP)
10455 goto nosideret;
10456 arg1 = ada_value_cast (type, arg1, noside);
10457 return arg1;
10458
10459 case UNOP_QUAL:
10460 (*pos) += 2;
10461 type = exp->elts[pc + 1].type;
10462 return ada_evaluate_subexp (type, exp, pos, noside);
10463
10464 case BINOP_ASSIGN:
10465 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10466 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10467 {
10468 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10469 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10470 return arg1;
10471 return ada_value_assign (arg1, arg1);
10472 }
10473 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10474 except if the lhs of our assignment is a convenience variable.
10475 In the case of assigning to a convenience variable, the lhs
10476 should be exactly the result of the evaluation of the rhs. */
10477 type = value_type (arg1);
10478 if (VALUE_LVAL (arg1) == lval_internalvar)
10479 type = NULL;
10480 arg2 = evaluate_subexp (type, exp, pos, noside);
10481 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10482 return arg1;
10483 if (ada_is_fixed_point_type (value_type (arg1)))
10484 arg2 = cast_to_fixed (value_type (arg1), arg2);
10485 else if (ada_is_fixed_point_type (value_type (arg2)))
10486 error
10487 (_("Fixed-point values must be assigned to fixed-point variables"));
10488 else
10489 arg2 = coerce_for_assign (value_type (arg1), arg2);
10490 return ada_value_assign (arg1, arg2);
10491
10492 case BINOP_ADD:
10493 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10494 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10495 if (noside == EVAL_SKIP)
10496 goto nosideret;
10497 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10498 return (value_from_longest
10499 (value_type (arg1),
10500 value_as_long (arg1) + value_as_long (arg2)));
10501 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10502 return (value_from_longest
10503 (value_type (arg2),
10504 value_as_long (arg1) + value_as_long (arg2)));
10505 if ((ada_is_fixed_point_type (value_type (arg1))
10506 || ada_is_fixed_point_type (value_type (arg2)))
10507 && value_type (arg1) != value_type (arg2))
10508 error (_("Operands of fixed-point addition must have the same type"));
10509 /* Do the addition, and cast the result to the type of the first
10510 argument. We cannot cast the result to a reference type, so if
10511 ARG1 is a reference type, find its underlying type. */
10512 type = value_type (arg1);
10513 while (TYPE_CODE (type) == TYPE_CODE_REF)
10514 type = TYPE_TARGET_TYPE (type);
10515 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10516 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10517
10518 case BINOP_SUB:
10519 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10520 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10521 if (noside == EVAL_SKIP)
10522 goto nosideret;
10523 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10524 return (value_from_longest
10525 (value_type (arg1),
10526 value_as_long (arg1) - value_as_long (arg2)));
10527 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10528 return (value_from_longest
10529 (value_type (arg2),
10530 value_as_long (arg1) - value_as_long (arg2)));
10531 if ((ada_is_fixed_point_type (value_type (arg1))
10532 || ada_is_fixed_point_type (value_type (arg2)))
10533 && value_type (arg1) != value_type (arg2))
10534 error (_("Operands of fixed-point subtraction "
10535 "must have the same type"));
10536 /* Do the substraction, and cast the result to the type of the first
10537 argument. We cannot cast the result to a reference type, so if
10538 ARG1 is a reference type, find its underlying type. */
10539 type = value_type (arg1);
10540 while (TYPE_CODE (type) == TYPE_CODE_REF)
10541 type = TYPE_TARGET_TYPE (type);
10542 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10543 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10544
10545 case BINOP_MUL:
10546 case BINOP_DIV:
10547 case BINOP_REM:
10548 case BINOP_MOD:
10549 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10550 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10551 if (noside == EVAL_SKIP)
10552 goto nosideret;
10553 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10554 {
10555 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10556 return value_zero (value_type (arg1), not_lval);
10557 }
10558 else
10559 {
10560 type = builtin_type (exp->gdbarch)->builtin_double;
10561 if (ada_is_fixed_point_type (value_type (arg1)))
10562 arg1 = cast_from_fixed (type, arg1);
10563 if (ada_is_fixed_point_type (value_type (arg2)))
10564 arg2 = cast_from_fixed (type, arg2);
10565 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10566 return ada_value_binop (arg1, arg2, op);
10567 }
10568
10569 case BINOP_EQUAL:
10570 case BINOP_NOTEQUAL:
10571 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10572 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10573 if (noside == EVAL_SKIP)
10574 goto nosideret;
10575 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10576 tem = 0;
10577 else
10578 {
10579 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10580 tem = ada_value_equal (arg1, arg2);
10581 }
10582 if (op == BINOP_NOTEQUAL)
10583 tem = !tem;
10584 type = language_bool_type (exp->language_defn, exp->gdbarch);
10585 return value_from_longest (type, (LONGEST) tem);
10586
10587 case UNOP_NEG:
10588 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10589 if (noside == EVAL_SKIP)
10590 goto nosideret;
10591 else if (ada_is_fixed_point_type (value_type (arg1)))
10592 return value_cast (value_type (arg1), value_neg (arg1));
10593 else
10594 {
10595 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10596 return value_neg (arg1);
10597 }
10598
10599 case BINOP_LOGICAL_AND:
10600 case BINOP_LOGICAL_OR:
10601 case UNOP_LOGICAL_NOT:
10602 {
10603 struct value *val;
10604
10605 *pos -= 1;
10606 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10607 type = language_bool_type (exp->language_defn, exp->gdbarch);
10608 return value_cast (type, val);
10609 }
10610
10611 case BINOP_BITWISE_AND:
10612 case BINOP_BITWISE_IOR:
10613 case BINOP_BITWISE_XOR:
10614 {
10615 struct value *val;
10616
10617 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10618 *pos = pc;
10619 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10620
10621 return value_cast (value_type (arg1), val);
10622 }
10623
10624 case OP_VAR_VALUE:
10625 *pos -= 1;
10626
10627 if (noside == EVAL_SKIP)
10628 {
10629 *pos += 4;
10630 goto nosideret;
10631 }
10632
10633 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10634 /* Only encountered when an unresolved symbol occurs in a
10635 context other than a function call, in which case, it is
10636 invalid. */
10637 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10638 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10639
10640 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10641 {
10642 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10643 /* Check to see if this is a tagged type. We also need to handle
10644 the case where the type is a reference to a tagged type, but
10645 we have to be careful to exclude pointers to tagged types.
10646 The latter should be shown as usual (as a pointer), whereas
10647 a reference should mostly be transparent to the user. */
10648 if (ada_is_tagged_type (type, 0)
10649 || (TYPE_CODE (type) == TYPE_CODE_REF
10650 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10651 {
10652 /* Tagged types are a little special in the fact that the real
10653 type is dynamic and can only be determined by inspecting the
10654 object's tag. This means that we need to get the object's
10655 value first (EVAL_NORMAL) and then extract the actual object
10656 type from its tag.
10657
10658 Note that we cannot skip the final step where we extract
10659 the object type from its tag, because the EVAL_NORMAL phase
10660 results in dynamic components being resolved into fixed ones.
10661 This can cause problems when trying to print the type
10662 description of tagged types whose parent has a dynamic size:
10663 We use the type name of the "_parent" component in order
10664 to print the name of the ancestor type in the type description.
10665 If that component had a dynamic size, the resolution into
10666 a fixed type would result in the loss of that type name,
10667 thus preventing us from printing the name of the ancestor
10668 type in the type description. */
10669 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10670
10671 if (TYPE_CODE (type) != TYPE_CODE_REF)
10672 {
10673 struct type *actual_type;
10674
10675 actual_type = type_from_tag (ada_value_tag (arg1));
10676 if (actual_type == NULL)
10677 /* If, for some reason, we were unable to determine
10678 the actual type from the tag, then use the static
10679 approximation that we just computed as a fallback.
10680 This can happen if the debugging information is
10681 incomplete, for instance. */
10682 actual_type = type;
10683 return value_zero (actual_type, not_lval);
10684 }
10685 else
10686 {
10687 /* In the case of a ref, ada_coerce_ref takes care
10688 of determining the actual type. But the evaluation
10689 should return a ref as it should be valid to ask
10690 for its address; so rebuild a ref after coerce. */
10691 arg1 = ada_coerce_ref (arg1);
10692 return value_ref (arg1, TYPE_CODE_REF);
10693 }
10694 }
10695
10696 /* Records and unions for which GNAT encodings have been
10697 generated need to be statically fixed as well.
10698 Otherwise, non-static fixing produces a type where
10699 all dynamic properties are removed, which prevents "ptype"
10700 from being able to completely describe the type.
10701 For instance, a case statement in a variant record would be
10702 replaced by the relevant components based on the actual
10703 value of the discriminants. */
10704 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10705 && dynamic_template_type (type) != NULL)
10706 || (TYPE_CODE (type) == TYPE_CODE_UNION
10707 && ada_find_parallel_type (type, "___XVU") != NULL))
10708 {
10709 *pos += 4;
10710 return value_zero (to_static_fixed_type (type), not_lval);
10711 }
10712 }
10713
10714 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10715 return ada_to_fixed_value (arg1);
10716
10717 case OP_FUNCALL:
10718 (*pos) += 2;
10719
10720 /* Allocate arg vector, including space for the function to be
10721 called in argvec[0] and a terminating NULL. */
10722 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10723 argvec = XALLOCAVEC (struct value *, nargs + 2);
10724
10725 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10726 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10727 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10728 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10729 else
10730 {
10731 for (tem = 0; tem <= nargs; tem += 1)
10732 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10733 argvec[tem] = 0;
10734
10735 if (noside == EVAL_SKIP)
10736 goto nosideret;
10737 }
10738
10739 if (ada_is_constrained_packed_array_type
10740 (desc_base_type (value_type (argvec[0]))))
10741 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10742 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10743 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10744 /* This is a packed array that has already been fixed, and
10745 therefore already coerced to a simple array. Nothing further
10746 to do. */
10747 ;
10748 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10749 {
10750 /* Make sure we dereference references so that all the code below
10751 feels like it's really handling the referenced value. Wrapping
10752 types (for alignment) may be there, so make sure we strip them as
10753 well. */
10754 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10755 }
10756 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10757 && VALUE_LVAL (argvec[0]) == lval_memory)
10758 argvec[0] = value_addr (argvec[0]);
10759
10760 type = ada_check_typedef (value_type (argvec[0]));
10761
10762 /* Ada allows us to implicitly dereference arrays when subscripting
10763 them. So, if this is an array typedef (encoding use for array
10764 access types encoded as fat pointers), strip it now. */
10765 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10766 type = ada_typedef_target_type (type);
10767
10768 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10769 {
10770 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10771 {
10772 case TYPE_CODE_FUNC:
10773 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10774 break;
10775 case TYPE_CODE_ARRAY:
10776 break;
10777 case TYPE_CODE_STRUCT:
10778 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10779 argvec[0] = ada_value_ind (argvec[0]);
10780 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10781 break;
10782 default:
10783 error (_("cannot subscript or call something of type `%s'"),
10784 ada_type_name (value_type (argvec[0])));
10785 break;
10786 }
10787 }
10788
10789 switch (TYPE_CODE (type))
10790 {
10791 case TYPE_CODE_FUNC:
10792 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10793 {
10794 if (TYPE_TARGET_TYPE (type) == NULL)
10795 error_call_unknown_return_type (NULL);
10796 return allocate_value (TYPE_TARGET_TYPE (type));
10797 }
10798 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10799 case TYPE_CODE_INTERNAL_FUNCTION:
10800 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10801 /* We don't know anything about what the internal
10802 function might return, but we have to return
10803 something. */
10804 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10805 not_lval);
10806 else
10807 return call_internal_function (exp->gdbarch, exp->language_defn,
10808 argvec[0], nargs, argvec + 1);
10809
10810 case TYPE_CODE_STRUCT:
10811 {
10812 int arity;
10813
10814 arity = ada_array_arity (type);
10815 type = ada_array_element_type (type, nargs);
10816 if (type == NULL)
10817 error (_("cannot subscript or call a record"));
10818 if (arity != nargs)
10819 error (_("wrong number of subscripts; expecting %d"), arity);
10820 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10821 return value_zero (ada_aligned_type (type), lval_memory);
10822 return
10823 unwrap_value (ada_value_subscript
10824 (argvec[0], nargs, argvec + 1));
10825 }
10826 case TYPE_CODE_ARRAY:
10827 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10828 {
10829 type = ada_array_element_type (type, nargs);
10830 if (type == NULL)
10831 error (_("element type of array unknown"));
10832 else
10833 return value_zero (ada_aligned_type (type), lval_memory);
10834 }
10835 return
10836 unwrap_value (ada_value_subscript
10837 (ada_coerce_to_simple_array (argvec[0]),
10838 nargs, argvec + 1));
10839 case TYPE_CODE_PTR: /* Pointer to array */
10840 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10841 {
10842 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10843 type = ada_array_element_type (type, nargs);
10844 if (type == NULL)
10845 error (_("element type of array unknown"));
10846 else
10847 return value_zero (ada_aligned_type (type), lval_memory);
10848 }
10849 return
10850 unwrap_value (ada_value_ptr_subscript (argvec[0],
10851 nargs, argvec + 1));
10852
10853 default:
10854 error (_("Attempt to index or call something other than an "
10855 "array or function"));
10856 }
10857
10858 case TERNOP_SLICE:
10859 {
10860 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10861 struct value *low_bound_val =
10862 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10863 struct value *high_bound_val =
10864 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10865 LONGEST low_bound;
10866 LONGEST high_bound;
10867
10868 low_bound_val = coerce_ref (low_bound_val);
10869 high_bound_val = coerce_ref (high_bound_val);
10870 low_bound = value_as_long (low_bound_val);
10871 high_bound = value_as_long (high_bound_val);
10872
10873 if (noside == EVAL_SKIP)
10874 goto nosideret;
10875
10876 /* If this is a reference to an aligner type, then remove all
10877 the aligners. */
10878 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10879 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10880 TYPE_TARGET_TYPE (value_type (array)) =
10881 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10882
10883 if (ada_is_constrained_packed_array_type (value_type (array)))
10884 error (_("cannot slice a packed array"));
10885
10886 /* If this is a reference to an array or an array lvalue,
10887 convert to a pointer. */
10888 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10889 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10890 && VALUE_LVAL (array) == lval_memory))
10891 array = value_addr (array);
10892
10893 if (noside == EVAL_AVOID_SIDE_EFFECTS
10894 && ada_is_array_descriptor_type (ada_check_typedef
10895 (value_type (array))))
10896 return empty_array (ada_type_of_array (array, 0), low_bound);
10897
10898 array = ada_coerce_to_simple_array_ptr (array);
10899
10900 /* If we have more than one level of pointer indirection,
10901 dereference the value until we get only one level. */
10902 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10903 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10904 == TYPE_CODE_PTR))
10905 array = value_ind (array);
10906
10907 /* Make sure we really do have an array type before going further,
10908 to avoid a SEGV when trying to get the index type or the target
10909 type later down the road if the debug info generated by
10910 the compiler is incorrect or incomplete. */
10911 if (!ada_is_simple_array_type (value_type (array)))
10912 error (_("cannot take slice of non-array"));
10913
10914 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10915 == TYPE_CODE_PTR)
10916 {
10917 struct type *type0 = ada_check_typedef (value_type (array));
10918
10919 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10920 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10921 else
10922 {
10923 struct type *arr_type0 =
10924 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10925
10926 return ada_value_slice_from_ptr (array, arr_type0,
10927 longest_to_int (low_bound),
10928 longest_to_int (high_bound));
10929 }
10930 }
10931 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10932 return array;
10933 else if (high_bound < low_bound)
10934 return empty_array (value_type (array), low_bound);
10935 else
10936 return ada_value_slice (array, longest_to_int (low_bound),
10937 longest_to_int (high_bound));
10938 }
10939
10940 case UNOP_IN_RANGE:
10941 (*pos) += 2;
10942 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10943 type = check_typedef (exp->elts[pc + 1].type);
10944
10945 if (noside == EVAL_SKIP)
10946 goto nosideret;
10947
10948 switch (TYPE_CODE (type))
10949 {
10950 default:
10951 lim_warning (_("Membership test incompletely implemented; "
10952 "always returns true"));
10953 type = language_bool_type (exp->language_defn, exp->gdbarch);
10954 return value_from_longest (type, (LONGEST) 1);
10955
10956 case TYPE_CODE_RANGE:
10957 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10958 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10959 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10960 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10961 type = language_bool_type (exp->language_defn, exp->gdbarch);
10962 return
10963 value_from_longest (type,
10964 (value_less (arg1, arg3)
10965 || value_equal (arg1, arg3))
10966 && (value_less (arg2, arg1)
10967 || value_equal (arg2, arg1)));
10968 }
10969
10970 case BINOP_IN_BOUNDS:
10971 (*pos) += 2;
10972 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10973 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10974
10975 if (noside == EVAL_SKIP)
10976 goto nosideret;
10977
10978 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10979 {
10980 type = language_bool_type (exp->language_defn, exp->gdbarch);
10981 return value_zero (type, not_lval);
10982 }
10983
10984 tem = longest_to_int (exp->elts[pc + 1].longconst);
10985
10986 type = ada_index_type (value_type (arg2), tem, "range");
10987 if (!type)
10988 type = value_type (arg1);
10989
10990 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10991 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10992
10993 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10994 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10995 type = language_bool_type (exp->language_defn, exp->gdbarch);
10996 return
10997 value_from_longest (type,
10998 (value_less (arg1, arg3)
10999 || value_equal (arg1, arg3))
11000 && (value_less (arg2, arg1)
11001 || value_equal (arg2, arg1)));
11002
11003 case TERNOP_IN_RANGE:
11004 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11005 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11006 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11007
11008 if (noside == EVAL_SKIP)
11009 goto nosideret;
11010
11011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11012 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11013 type = language_bool_type (exp->language_defn, exp->gdbarch);
11014 return
11015 value_from_longest (type,
11016 (value_less (arg1, arg3)
11017 || value_equal (arg1, arg3))
11018 && (value_less (arg2, arg1)
11019 || value_equal (arg2, arg1)));
11020
11021 case OP_ATR_FIRST:
11022 case OP_ATR_LAST:
11023 case OP_ATR_LENGTH:
11024 {
11025 struct type *type_arg;
11026
11027 if (exp->elts[*pos].opcode == OP_TYPE)
11028 {
11029 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11030 arg1 = NULL;
11031 type_arg = check_typedef (exp->elts[pc + 2].type);
11032 }
11033 else
11034 {
11035 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11036 type_arg = NULL;
11037 }
11038
11039 if (exp->elts[*pos].opcode != OP_LONG)
11040 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11041 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11042 *pos += 4;
11043
11044 if (noside == EVAL_SKIP)
11045 goto nosideret;
11046
11047 if (type_arg == NULL)
11048 {
11049 arg1 = ada_coerce_ref (arg1);
11050
11051 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11052 arg1 = ada_coerce_to_simple_array (arg1);
11053
11054 if (op == OP_ATR_LENGTH)
11055 type = builtin_type (exp->gdbarch)->builtin_int;
11056 else
11057 {
11058 type = ada_index_type (value_type (arg1), tem,
11059 ada_attribute_name (op));
11060 if (type == NULL)
11061 type = builtin_type (exp->gdbarch)->builtin_int;
11062 }
11063
11064 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11065 return allocate_value (type);
11066
11067 switch (op)
11068 {
11069 default: /* Should never happen. */
11070 error (_("unexpected attribute encountered"));
11071 case OP_ATR_FIRST:
11072 return value_from_longest
11073 (type, ada_array_bound (arg1, tem, 0));
11074 case OP_ATR_LAST:
11075 return value_from_longest
11076 (type, ada_array_bound (arg1, tem, 1));
11077 case OP_ATR_LENGTH:
11078 return value_from_longest
11079 (type, ada_array_length (arg1, tem));
11080 }
11081 }
11082 else if (discrete_type_p (type_arg))
11083 {
11084 struct type *range_type;
11085 const char *name = ada_type_name (type_arg);
11086
11087 range_type = NULL;
11088 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11089 range_type = to_fixed_range_type (type_arg, NULL);
11090 if (range_type == NULL)
11091 range_type = type_arg;
11092 switch (op)
11093 {
11094 default:
11095 error (_("unexpected attribute encountered"));
11096 case OP_ATR_FIRST:
11097 return value_from_longest
11098 (range_type, ada_discrete_type_low_bound (range_type));
11099 case OP_ATR_LAST:
11100 return value_from_longest
11101 (range_type, ada_discrete_type_high_bound (range_type));
11102 case OP_ATR_LENGTH:
11103 error (_("the 'length attribute applies only to array types"));
11104 }
11105 }
11106 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11107 error (_("unimplemented type attribute"));
11108 else
11109 {
11110 LONGEST low, high;
11111
11112 if (ada_is_constrained_packed_array_type (type_arg))
11113 type_arg = decode_constrained_packed_array_type (type_arg);
11114
11115 if (op == OP_ATR_LENGTH)
11116 type = builtin_type (exp->gdbarch)->builtin_int;
11117 else
11118 {
11119 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11120 if (type == NULL)
11121 type = builtin_type (exp->gdbarch)->builtin_int;
11122 }
11123
11124 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11125 return allocate_value (type);
11126
11127 switch (op)
11128 {
11129 default:
11130 error (_("unexpected attribute encountered"));
11131 case OP_ATR_FIRST:
11132 low = ada_array_bound_from_type (type_arg, tem, 0);
11133 return value_from_longest (type, low);
11134 case OP_ATR_LAST:
11135 high = ada_array_bound_from_type (type_arg, tem, 1);
11136 return value_from_longest (type, high);
11137 case OP_ATR_LENGTH:
11138 low = ada_array_bound_from_type (type_arg, tem, 0);
11139 high = ada_array_bound_from_type (type_arg, tem, 1);
11140 return value_from_longest (type, high - low + 1);
11141 }
11142 }
11143 }
11144
11145 case OP_ATR_TAG:
11146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11147 if (noside == EVAL_SKIP)
11148 goto nosideret;
11149
11150 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11151 return value_zero (ada_tag_type (arg1), not_lval);
11152
11153 return ada_value_tag (arg1);
11154
11155 case OP_ATR_MIN:
11156 case OP_ATR_MAX:
11157 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11158 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11160 if (noside == EVAL_SKIP)
11161 goto nosideret;
11162 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11163 return value_zero (value_type (arg1), not_lval);
11164 else
11165 {
11166 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11167 return value_binop (arg1, arg2,
11168 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11169 }
11170
11171 case OP_ATR_MODULUS:
11172 {
11173 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11174
11175 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11176 if (noside == EVAL_SKIP)
11177 goto nosideret;
11178
11179 if (!ada_is_modular_type (type_arg))
11180 error (_("'modulus must be applied to modular type"));
11181
11182 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11183 ada_modulus (type_arg));
11184 }
11185
11186
11187 case OP_ATR_POS:
11188 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11189 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11190 if (noside == EVAL_SKIP)
11191 goto nosideret;
11192 type = builtin_type (exp->gdbarch)->builtin_int;
11193 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11194 return value_zero (type, not_lval);
11195 else
11196 return value_pos_atr (type, arg1);
11197
11198 case OP_ATR_SIZE:
11199 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11200 type = value_type (arg1);
11201
11202 /* If the argument is a reference, then dereference its type, since
11203 the user is really asking for the size of the actual object,
11204 not the size of the pointer. */
11205 if (TYPE_CODE (type) == TYPE_CODE_REF)
11206 type = TYPE_TARGET_TYPE (type);
11207
11208 if (noside == EVAL_SKIP)
11209 goto nosideret;
11210 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11211 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11212 else
11213 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11214 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11215
11216 case OP_ATR_VAL:
11217 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11218 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11219 type = exp->elts[pc + 2].type;
11220 if (noside == EVAL_SKIP)
11221 goto nosideret;
11222 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11223 return value_zero (type, not_lval);
11224 else
11225 return value_val_atr (type, arg1);
11226
11227 case BINOP_EXP:
11228 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11230 if (noside == EVAL_SKIP)
11231 goto nosideret;
11232 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11233 return value_zero (value_type (arg1), not_lval);
11234 else
11235 {
11236 /* For integer exponentiation operations,
11237 only promote the first argument. */
11238 if (is_integral_type (value_type (arg2)))
11239 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11240 else
11241 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11242
11243 return value_binop (arg1, arg2, op);
11244 }
11245
11246 case UNOP_PLUS:
11247 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11248 if (noside == EVAL_SKIP)
11249 goto nosideret;
11250 else
11251 return arg1;
11252
11253 case UNOP_ABS:
11254 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11255 if (noside == EVAL_SKIP)
11256 goto nosideret;
11257 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11258 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11259 return value_neg (arg1);
11260 else
11261 return arg1;
11262
11263 case UNOP_IND:
11264 preeval_pos = *pos;
11265 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11266 if (noside == EVAL_SKIP)
11267 goto nosideret;
11268 type = ada_check_typedef (value_type (arg1));
11269 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11270 {
11271 if (ada_is_array_descriptor_type (type))
11272 /* GDB allows dereferencing GNAT array descriptors. */
11273 {
11274 struct type *arrType = ada_type_of_array (arg1, 0);
11275
11276 if (arrType == NULL)
11277 error (_("Attempt to dereference null array pointer."));
11278 return value_at_lazy (arrType, 0);
11279 }
11280 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11281 || TYPE_CODE (type) == TYPE_CODE_REF
11282 /* In C you can dereference an array to get the 1st elt. */
11283 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11284 {
11285 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11286 only be determined by inspecting the object's tag.
11287 This means that we need to evaluate completely the
11288 expression in order to get its type. */
11289
11290 if ((TYPE_CODE (type) == TYPE_CODE_REF
11291 || TYPE_CODE (type) == TYPE_CODE_PTR)
11292 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11293 {
11294 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11295 EVAL_NORMAL);
11296 type = value_type (ada_value_ind (arg1));
11297 }
11298 else
11299 {
11300 type = to_static_fixed_type
11301 (ada_aligned_type
11302 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11303 }
11304 ada_ensure_varsize_limit (type);
11305 return value_zero (type, lval_memory);
11306 }
11307 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11308 {
11309 /* GDB allows dereferencing an int. */
11310 if (expect_type == NULL)
11311 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11312 lval_memory);
11313 else
11314 {
11315 expect_type =
11316 to_static_fixed_type (ada_aligned_type (expect_type));
11317 return value_zero (expect_type, lval_memory);
11318 }
11319 }
11320 else
11321 error (_("Attempt to take contents of a non-pointer value."));
11322 }
11323 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11324 type = ada_check_typedef (value_type (arg1));
11325
11326 if (TYPE_CODE (type) == TYPE_CODE_INT)
11327 /* GDB allows dereferencing an int. If we were given
11328 the expect_type, then use that as the target type.
11329 Otherwise, assume that the target type is an int. */
11330 {
11331 if (expect_type != NULL)
11332 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11333 arg1));
11334 else
11335 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11336 (CORE_ADDR) value_as_address (arg1));
11337 }
11338
11339 if (ada_is_array_descriptor_type (type))
11340 /* GDB allows dereferencing GNAT array descriptors. */
11341 return ada_coerce_to_simple_array (arg1);
11342 else
11343 return ada_value_ind (arg1);
11344
11345 case STRUCTOP_STRUCT:
11346 tem = longest_to_int (exp->elts[pc + 1].longconst);
11347 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11348 preeval_pos = *pos;
11349 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11350 if (noside == EVAL_SKIP)
11351 goto nosideret;
11352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11353 {
11354 struct type *type1 = value_type (arg1);
11355
11356 if (ada_is_tagged_type (type1, 1))
11357 {
11358 type = ada_lookup_struct_elt_type (type1,
11359 &exp->elts[pc + 2].string,
11360 1, 1);
11361
11362 /* If the field is not found, check if it exists in the
11363 extension of this object's type. This means that we
11364 need to evaluate completely the expression. */
11365
11366 if (type == NULL)
11367 {
11368 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11369 EVAL_NORMAL);
11370 arg1 = ada_value_struct_elt (arg1,
11371 &exp->elts[pc + 2].string,
11372 0);
11373 arg1 = unwrap_value (arg1);
11374 type = value_type (ada_to_fixed_value (arg1));
11375 }
11376 }
11377 else
11378 type =
11379 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11380 0);
11381
11382 return value_zero (ada_aligned_type (type), lval_memory);
11383 }
11384 else
11385 {
11386 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11387 arg1 = unwrap_value (arg1);
11388 return ada_to_fixed_value (arg1);
11389 }
11390
11391 case OP_TYPE:
11392 /* The value is not supposed to be used. This is here to make it
11393 easier to accommodate expressions that contain types. */
11394 (*pos) += 2;
11395 if (noside == EVAL_SKIP)
11396 goto nosideret;
11397 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11398 return allocate_value (exp->elts[pc + 1].type);
11399 else
11400 error (_("Attempt to use a type name as an expression"));
11401
11402 case OP_AGGREGATE:
11403 case OP_CHOICES:
11404 case OP_OTHERS:
11405 case OP_DISCRETE_RANGE:
11406 case OP_POSITIONAL:
11407 case OP_NAME:
11408 if (noside == EVAL_NORMAL)
11409 switch (op)
11410 {
11411 case OP_NAME:
11412 error (_("Undefined name, ambiguous name, or renaming used in "
11413 "component association: %s."), &exp->elts[pc+2].string);
11414 case OP_AGGREGATE:
11415 error (_("Aggregates only allowed on the right of an assignment"));
11416 default:
11417 internal_error (__FILE__, __LINE__,
11418 _("aggregate apparently mangled"));
11419 }
11420
11421 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11422 *pos += oplen - 1;
11423 for (tem = 0; tem < nargs; tem += 1)
11424 ada_evaluate_subexp (NULL, exp, pos, noside);
11425 goto nosideret;
11426 }
11427
11428 nosideret:
11429 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11430 }
11431 \f
11432
11433 /* Fixed point */
11434
11435 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11436 type name that encodes the 'small and 'delta information.
11437 Otherwise, return NULL. */
11438
11439 static const char *
11440 fixed_type_info (struct type *type)
11441 {
11442 const char *name = ada_type_name (type);
11443 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11444
11445 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11446 {
11447 const char *tail = strstr (name, "___XF_");
11448
11449 if (tail == NULL)
11450 return NULL;
11451 else
11452 return tail + 5;
11453 }
11454 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11455 return fixed_type_info (TYPE_TARGET_TYPE (type));
11456 else
11457 return NULL;
11458 }
11459
11460 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11461
11462 int
11463 ada_is_fixed_point_type (struct type *type)
11464 {
11465 return fixed_type_info (type) != NULL;
11466 }
11467
11468 /* Return non-zero iff TYPE represents a System.Address type. */
11469
11470 int
11471 ada_is_system_address_type (struct type *type)
11472 {
11473 return (TYPE_NAME (type)
11474 && strcmp (TYPE_NAME (type), "system__address") == 0);
11475 }
11476
11477 /* Assuming that TYPE is the representation of an Ada fixed-point
11478 type, return its delta, or -1 if the type is malformed and the
11479 delta cannot be determined. */
11480
11481 DOUBLEST
11482 ada_delta (struct type *type)
11483 {
11484 const char *encoding = fixed_type_info (type);
11485 DOUBLEST num, den;
11486
11487 /* Strictly speaking, num and den are encoded as integer. However,
11488 they may not fit into a long, and they will have to be converted
11489 to DOUBLEST anyway. So scan them as DOUBLEST. */
11490 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11491 &num, &den) < 2)
11492 return -1.0;
11493 else
11494 return num / den;
11495 }
11496
11497 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11498 factor ('SMALL value) associated with the type. */
11499
11500 static DOUBLEST
11501 scaling_factor (struct type *type)
11502 {
11503 const char *encoding = fixed_type_info (type);
11504 DOUBLEST num0, den0, num1, den1;
11505 int n;
11506
11507 /* Strictly speaking, num's and den's are encoded as integer. However,
11508 they may not fit into a long, and they will have to be converted
11509 to DOUBLEST anyway. So scan them as DOUBLEST. */
11510 n = sscanf (encoding,
11511 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11512 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11513 &num0, &den0, &num1, &den1);
11514
11515 if (n < 2)
11516 return 1.0;
11517 else if (n == 4)
11518 return num1 / den1;
11519 else
11520 return num0 / den0;
11521 }
11522
11523
11524 /* Assuming that X is the representation of a value of fixed-point
11525 type TYPE, return its floating-point equivalent. */
11526
11527 DOUBLEST
11528 ada_fixed_to_float (struct type *type, LONGEST x)
11529 {
11530 return (DOUBLEST) x *scaling_factor (type);
11531 }
11532
11533 /* The representation of a fixed-point value of type TYPE
11534 corresponding to the value X. */
11535
11536 LONGEST
11537 ada_float_to_fixed (struct type *type, DOUBLEST x)
11538 {
11539 return (LONGEST) (x / scaling_factor (type) + 0.5);
11540 }
11541
11542 \f
11543
11544 /* Range types */
11545
11546 /* Scan STR beginning at position K for a discriminant name, and
11547 return the value of that discriminant field of DVAL in *PX. If
11548 PNEW_K is not null, put the position of the character beyond the
11549 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11550 not alter *PX and *PNEW_K if unsuccessful. */
11551
11552 static int
11553 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11554 int *pnew_k)
11555 {
11556 static char *bound_buffer = NULL;
11557 static size_t bound_buffer_len = 0;
11558 const char *pstart, *pend, *bound;
11559 struct value *bound_val;
11560
11561 if (dval == NULL || str == NULL || str[k] == '\0')
11562 return 0;
11563
11564 pstart = str + k;
11565 pend = strstr (pstart, "__");
11566 if (pend == NULL)
11567 {
11568 bound = pstart;
11569 k += strlen (bound);
11570 }
11571 else
11572 {
11573 int len = pend - pstart;
11574
11575 /* Strip __ and beyond. */
11576 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11577 strncpy (bound_buffer, pstart, len);
11578 bound_buffer[len] = '\0';
11579
11580 bound = bound_buffer;
11581 k = pend - str;
11582 }
11583
11584 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11585 if (bound_val == NULL)
11586 return 0;
11587
11588 *px = value_as_long (bound_val);
11589 if (pnew_k != NULL)
11590 *pnew_k = k;
11591 return 1;
11592 }
11593
11594 /* Value of variable named NAME in the current environment. If
11595 no such variable found, then if ERR_MSG is null, returns 0, and
11596 otherwise causes an error with message ERR_MSG. */
11597
11598 static struct value *
11599 get_var_value (const char *name, const char *err_msg)
11600 {
11601 struct block_symbol *syms;
11602 int nsyms;
11603
11604 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11605 &syms);
11606
11607 if (nsyms != 1)
11608 {
11609 if (err_msg == NULL)
11610 return 0;
11611 else
11612 error (("%s"), err_msg);
11613 }
11614
11615 return value_of_variable (syms[0].symbol, syms[0].block);
11616 }
11617
11618 /* Value of integer variable named NAME in the current environment.
11619 If no such variable is found, returns false. Otherwise, sets VALUE
11620 to the variable's value and returns true. */
11621
11622 bool
11623 get_int_var_value (const char *name, LONGEST &value)
11624 {
11625 struct value *var_val = get_var_value (name, 0);
11626
11627 if (var_val == 0)
11628 return false;
11629
11630 value = value_as_long (var_val);
11631 return true;
11632 }
11633
11634
11635 /* Return a range type whose base type is that of the range type named
11636 NAME in the current environment, and whose bounds are calculated
11637 from NAME according to the GNAT range encoding conventions.
11638 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11639 corresponding range type from debug information; fall back to using it
11640 if symbol lookup fails. If a new type must be created, allocate it
11641 like ORIG_TYPE was. The bounds information, in general, is encoded
11642 in NAME, the base type given in the named range type. */
11643
11644 static struct type *
11645 to_fixed_range_type (struct type *raw_type, struct value *dval)
11646 {
11647 const char *name;
11648 struct type *base_type;
11649 const char *subtype_info;
11650
11651 gdb_assert (raw_type != NULL);
11652 gdb_assert (TYPE_NAME (raw_type) != NULL);
11653
11654 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11655 base_type = TYPE_TARGET_TYPE (raw_type);
11656 else
11657 base_type = raw_type;
11658
11659 name = TYPE_NAME (raw_type);
11660 subtype_info = strstr (name, "___XD");
11661 if (subtype_info == NULL)
11662 {
11663 LONGEST L = ada_discrete_type_low_bound (raw_type);
11664 LONGEST U = ada_discrete_type_high_bound (raw_type);
11665
11666 if (L < INT_MIN || U > INT_MAX)
11667 return raw_type;
11668 else
11669 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11670 L, U);
11671 }
11672 else
11673 {
11674 static char *name_buf = NULL;
11675 static size_t name_len = 0;
11676 int prefix_len = subtype_info - name;
11677 LONGEST L, U;
11678 struct type *type;
11679 const char *bounds_str;
11680 int n;
11681
11682 GROW_VECT (name_buf, name_len, prefix_len + 5);
11683 strncpy (name_buf, name, prefix_len);
11684 name_buf[prefix_len] = '\0';
11685
11686 subtype_info += 5;
11687 bounds_str = strchr (subtype_info, '_');
11688 n = 1;
11689
11690 if (*subtype_info == 'L')
11691 {
11692 if (!ada_scan_number (bounds_str, n, &L, &n)
11693 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11694 return raw_type;
11695 if (bounds_str[n] == '_')
11696 n += 2;
11697 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11698 n += 1;
11699 subtype_info += 1;
11700 }
11701 else
11702 {
11703 strcpy (name_buf + prefix_len, "___L");
11704 if (!get_int_var_value (name_buf, L))
11705 {
11706 lim_warning (_("Unknown lower bound, using 1."));
11707 L = 1;
11708 }
11709 }
11710
11711 if (*subtype_info == 'U')
11712 {
11713 if (!ada_scan_number (bounds_str, n, &U, &n)
11714 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11715 return raw_type;
11716 }
11717 else
11718 {
11719 strcpy (name_buf + prefix_len, "___U");
11720 if (!get_int_var_value (name_buf, U))
11721 {
11722 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11723 U = L;
11724 }
11725 }
11726
11727 type = create_static_range_type (alloc_type_copy (raw_type),
11728 base_type, L, U);
11729 TYPE_NAME (type) = name;
11730 return type;
11731 }
11732 }
11733
11734 /* True iff NAME is the name of a range type. */
11735
11736 int
11737 ada_is_range_type_name (const char *name)
11738 {
11739 return (name != NULL && strstr (name, "___XD"));
11740 }
11741 \f
11742
11743 /* Modular types */
11744
11745 /* True iff TYPE is an Ada modular type. */
11746
11747 int
11748 ada_is_modular_type (struct type *type)
11749 {
11750 struct type *subranged_type = get_base_type (type);
11751
11752 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11753 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11754 && TYPE_UNSIGNED (subranged_type));
11755 }
11756
11757 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11758
11759 ULONGEST
11760 ada_modulus (struct type *type)
11761 {
11762 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11763 }
11764 \f
11765
11766 /* Ada exception catchpoint support:
11767 ---------------------------------
11768
11769 We support 3 kinds of exception catchpoints:
11770 . catchpoints on Ada exceptions
11771 . catchpoints on unhandled Ada exceptions
11772 . catchpoints on failed assertions
11773
11774 Exceptions raised during failed assertions, or unhandled exceptions
11775 could perfectly be caught with the general catchpoint on Ada exceptions.
11776 However, we can easily differentiate these two special cases, and having
11777 the option to distinguish these two cases from the rest can be useful
11778 to zero-in on certain situations.
11779
11780 Exception catchpoints are a specialized form of breakpoint,
11781 since they rely on inserting breakpoints inside known routines
11782 of the GNAT runtime. The implementation therefore uses a standard
11783 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11784 of breakpoint_ops.
11785
11786 Support in the runtime for exception catchpoints have been changed
11787 a few times already, and these changes affect the implementation
11788 of these catchpoints. In order to be able to support several
11789 variants of the runtime, we use a sniffer that will determine
11790 the runtime variant used by the program being debugged. */
11791
11792 /* Ada's standard exceptions.
11793
11794 The Ada 83 standard also defined Numeric_Error. But there so many
11795 situations where it was unclear from the Ada 83 Reference Manual
11796 (RM) whether Constraint_Error or Numeric_Error should be raised,
11797 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11798 Interpretation saying that anytime the RM says that Numeric_Error
11799 should be raised, the implementation may raise Constraint_Error.
11800 Ada 95 went one step further and pretty much removed Numeric_Error
11801 from the list of standard exceptions (it made it a renaming of
11802 Constraint_Error, to help preserve compatibility when compiling
11803 an Ada83 compiler). As such, we do not include Numeric_Error from
11804 this list of standard exceptions. */
11805
11806 static const char *standard_exc[] = {
11807 "constraint_error",
11808 "program_error",
11809 "storage_error",
11810 "tasking_error"
11811 };
11812
11813 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11814
11815 /* A structure that describes how to support exception catchpoints
11816 for a given executable. */
11817
11818 struct exception_support_info
11819 {
11820 /* The name of the symbol to break on in order to insert
11821 a catchpoint on exceptions. */
11822 const char *catch_exception_sym;
11823
11824 /* The name of the symbol to break on in order to insert
11825 a catchpoint on unhandled exceptions. */
11826 const char *catch_exception_unhandled_sym;
11827
11828 /* The name of the symbol to break on in order to insert
11829 a catchpoint on failed assertions. */
11830 const char *catch_assert_sym;
11831
11832 /* Assuming that the inferior just triggered an unhandled exception
11833 catchpoint, this function is responsible for returning the address
11834 in inferior memory where the name of that exception is stored.
11835 Return zero if the address could not be computed. */
11836 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11837 };
11838
11839 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11840 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11841
11842 /* The following exception support info structure describes how to
11843 implement exception catchpoints with the latest version of the
11844 Ada runtime (as of 2007-03-06). */
11845
11846 static const struct exception_support_info default_exception_support_info =
11847 {
11848 "__gnat_debug_raise_exception", /* catch_exception_sym */
11849 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11850 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11851 ada_unhandled_exception_name_addr
11852 };
11853
11854 /* The following exception support info structure describes how to
11855 implement exception catchpoints with a slightly older version
11856 of the Ada runtime. */
11857
11858 static const struct exception_support_info exception_support_info_fallback =
11859 {
11860 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11861 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11862 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11863 ada_unhandled_exception_name_addr_from_raise
11864 };
11865
11866 /* Return nonzero if we can detect the exception support routines
11867 described in EINFO.
11868
11869 This function errors out if an abnormal situation is detected
11870 (for instance, if we find the exception support routines, but
11871 that support is found to be incomplete). */
11872
11873 static int
11874 ada_has_this_exception_support (const struct exception_support_info *einfo)
11875 {
11876 struct symbol *sym;
11877
11878 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11879 that should be compiled with debugging information. As a result, we
11880 expect to find that symbol in the symtabs. */
11881
11882 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11883 if (sym == NULL)
11884 {
11885 /* Perhaps we did not find our symbol because the Ada runtime was
11886 compiled without debugging info, or simply stripped of it.
11887 It happens on some GNU/Linux distributions for instance, where
11888 users have to install a separate debug package in order to get
11889 the runtime's debugging info. In that situation, let the user
11890 know why we cannot insert an Ada exception catchpoint.
11891
11892 Note: Just for the purpose of inserting our Ada exception
11893 catchpoint, we could rely purely on the associated minimal symbol.
11894 But we would be operating in degraded mode anyway, since we are
11895 still lacking the debugging info needed later on to extract
11896 the name of the exception being raised (this name is printed in
11897 the catchpoint message, and is also used when trying to catch
11898 a specific exception). We do not handle this case for now. */
11899 struct bound_minimal_symbol msym
11900 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11901
11902 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11903 error (_("Your Ada runtime appears to be missing some debugging "
11904 "information.\nCannot insert Ada exception catchpoint "
11905 "in this configuration."));
11906
11907 return 0;
11908 }
11909
11910 /* Make sure that the symbol we found corresponds to a function. */
11911
11912 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11913 error (_("Symbol \"%s\" is not a function (class = %d)"),
11914 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11915
11916 return 1;
11917 }
11918
11919 /* Inspect the Ada runtime and determine which exception info structure
11920 should be used to provide support for exception catchpoints.
11921
11922 This function will always set the per-inferior exception_info,
11923 or raise an error. */
11924
11925 static void
11926 ada_exception_support_info_sniffer (void)
11927 {
11928 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11929
11930 /* If the exception info is already known, then no need to recompute it. */
11931 if (data->exception_info != NULL)
11932 return;
11933
11934 /* Check the latest (default) exception support info. */
11935 if (ada_has_this_exception_support (&default_exception_support_info))
11936 {
11937 data->exception_info = &default_exception_support_info;
11938 return;
11939 }
11940
11941 /* Try our fallback exception suport info. */
11942 if (ada_has_this_exception_support (&exception_support_info_fallback))
11943 {
11944 data->exception_info = &exception_support_info_fallback;
11945 return;
11946 }
11947
11948 /* Sometimes, it is normal for us to not be able to find the routine
11949 we are looking for. This happens when the program is linked with
11950 the shared version of the GNAT runtime, and the program has not been
11951 started yet. Inform the user of these two possible causes if
11952 applicable. */
11953
11954 if (ada_update_initial_language (language_unknown) != language_ada)
11955 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11956
11957 /* If the symbol does not exist, then check that the program is
11958 already started, to make sure that shared libraries have been
11959 loaded. If it is not started, this may mean that the symbol is
11960 in a shared library. */
11961
11962 if (ptid_get_pid (inferior_ptid) == 0)
11963 error (_("Unable to insert catchpoint. Try to start the program first."));
11964
11965 /* At this point, we know that we are debugging an Ada program and
11966 that the inferior has been started, but we still are not able to
11967 find the run-time symbols. That can mean that we are in
11968 configurable run time mode, or that a-except as been optimized
11969 out by the linker... In any case, at this point it is not worth
11970 supporting this feature. */
11971
11972 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11973 }
11974
11975 /* True iff FRAME is very likely to be that of a function that is
11976 part of the runtime system. This is all very heuristic, but is
11977 intended to be used as advice as to what frames are uninteresting
11978 to most users. */
11979
11980 static int
11981 is_known_support_routine (struct frame_info *frame)
11982 {
11983 enum language func_lang;
11984 int i;
11985 const char *fullname;
11986
11987 /* If this code does not have any debugging information (no symtab),
11988 This cannot be any user code. */
11989
11990 symtab_and_line sal = find_frame_sal (frame);
11991 if (sal.symtab == NULL)
11992 return 1;
11993
11994 /* If there is a symtab, but the associated source file cannot be
11995 located, then assume this is not user code: Selecting a frame
11996 for which we cannot display the code would not be very helpful
11997 for the user. This should also take care of case such as VxWorks
11998 where the kernel has some debugging info provided for a few units. */
11999
12000 fullname = symtab_to_fullname (sal.symtab);
12001 if (access (fullname, R_OK) != 0)
12002 return 1;
12003
12004 /* Check the unit filename againt the Ada runtime file naming.
12005 We also check the name of the objfile against the name of some
12006 known system libraries that sometimes come with debugging info
12007 too. */
12008
12009 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12010 {
12011 re_comp (known_runtime_file_name_patterns[i]);
12012 if (re_exec (lbasename (sal.symtab->filename)))
12013 return 1;
12014 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12015 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12016 return 1;
12017 }
12018
12019 /* Check whether the function is a GNAT-generated entity. */
12020
12021 gdb::unique_xmalloc_ptr<char> func_name
12022 = find_frame_funname (frame, &func_lang, NULL);
12023 if (func_name == NULL)
12024 return 1;
12025
12026 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12027 {
12028 re_comp (known_auxiliary_function_name_patterns[i]);
12029 if (re_exec (func_name.get ()))
12030 return 1;
12031 }
12032
12033 return 0;
12034 }
12035
12036 /* Find the first frame that contains debugging information and that is not
12037 part of the Ada run-time, starting from FI and moving upward. */
12038
12039 void
12040 ada_find_printable_frame (struct frame_info *fi)
12041 {
12042 for (; fi != NULL; fi = get_prev_frame (fi))
12043 {
12044 if (!is_known_support_routine (fi))
12045 {
12046 select_frame (fi);
12047 break;
12048 }
12049 }
12050
12051 }
12052
12053 /* Assuming that the inferior just triggered an unhandled exception
12054 catchpoint, return the address in inferior memory where the name
12055 of the exception is stored.
12056
12057 Return zero if the address could not be computed. */
12058
12059 static CORE_ADDR
12060 ada_unhandled_exception_name_addr (void)
12061 {
12062 return parse_and_eval_address ("e.full_name");
12063 }
12064
12065 /* Same as ada_unhandled_exception_name_addr, except that this function
12066 should be used when the inferior uses an older version of the runtime,
12067 where the exception name needs to be extracted from a specific frame
12068 several frames up in the callstack. */
12069
12070 static CORE_ADDR
12071 ada_unhandled_exception_name_addr_from_raise (void)
12072 {
12073 int frame_level;
12074 struct frame_info *fi;
12075 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12076
12077 /* To determine the name of this exception, we need to select
12078 the frame corresponding to RAISE_SYM_NAME. This frame is
12079 at least 3 levels up, so we simply skip the first 3 frames
12080 without checking the name of their associated function. */
12081 fi = get_current_frame ();
12082 for (frame_level = 0; frame_level < 3; frame_level += 1)
12083 if (fi != NULL)
12084 fi = get_prev_frame (fi);
12085
12086 while (fi != NULL)
12087 {
12088 enum language func_lang;
12089
12090 gdb::unique_xmalloc_ptr<char> func_name
12091 = find_frame_funname (fi, &func_lang, NULL);
12092 if (func_name != NULL)
12093 {
12094 if (strcmp (func_name.get (),
12095 data->exception_info->catch_exception_sym) == 0)
12096 break; /* We found the frame we were looking for... */
12097 fi = get_prev_frame (fi);
12098 }
12099 }
12100
12101 if (fi == NULL)
12102 return 0;
12103
12104 select_frame (fi);
12105 return parse_and_eval_address ("id.full_name");
12106 }
12107
12108 /* Assuming the inferior just triggered an Ada exception catchpoint
12109 (of any type), return the address in inferior memory where the name
12110 of the exception is stored, if applicable.
12111
12112 Assumes the selected frame is the current frame.
12113
12114 Return zero if the address could not be computed, or if not relevant. */
12115
12116 static CORE_ADDR
12117 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12118 struct breakpoint *b)
12119 {
12120 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12121
12122 switch (ex)
12123 {
12124 case ada_catch_exception:
12125 return (parse_and_eval_address ("e.full_name"));
12126 break;
12127
12128 case ada_catch_exception_unhandled:
12129 return data->exception_info->unhandled_exception_name_addr ();
12130 break;
12131
12132 case ada_catch_assert:
12133 return 0; /* Exception name is not relevant in this case. */
12134 break;
12135
12136 default:
12137 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12138 break;
12139 }
12140
12141 return 0; /* Should never be reached. */
12142 }
12143
12144 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12145 any error that ada_exception_name_addr_1 might cause to be thrown.
12146 When an error is intercepted, a warning with the error message is printed,
12147 and zero is returned. */
12148
12149 static CORE_ADDR
12150 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12151 struct breakpoint *b)
12152 {
12153 CORE_ADDR result = 0;
12154
12155 TRY
12156 {
12157 result = ada_exception_name_addr_1 (ex, b);
12158 }
12159
12160 CATCH (e, RETURN_MASK_ERROR)
12161 {
12162 warning (_("failed to get exception name: %s"), e.message);
12163 return 0;
12164 }
12165 END_CATCH
12166
12167 return result;
12168 }
12169
12170 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12171
12172 /* Ada catchpoints.
12173
12174 In the case of catchpoints on Ada exceptions, the catchpoint will
12175 stop the target on every exception the program throws. When a user
12176 specifies the name of a specific exception, we translate this
12177 request into a condition expression (in text form), and then parse
12178 it into an expression stored in each of the catchpoint's locations.
12179 We then use this condition to check whether the exception that was
12180 raised is the one the user is interested in. If not, then the
12181 target is resumed again. We store the name of the requested
12182 exception, in order to be able to re-set the condition expression
12183 when symbols change. */
12184
12185 /* An instance of this type is used to represent an Ada catchpoint
12186 breakpoint location. */
12187
12188 class ada_catchpoint_location : public bp_location
12189 {
12190 public:
12191 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12192 : bp_location (ops, owner)
12193 {}
12194
12195 /* The condition that checks whether the exception that was raised
12196 is the specific exception the user specified on catchpoint
12197 creation. */
12198 expression_up excep_cond_expr;
12199 };
12200
12201 /* Implement the DTOR method in the bp_location_ops structure for all
12202 Ada exception catchpoint kinds. */
12203
12204 static void
12205 ada_catchpoint_location_dtor (struct bp_location *bl)
12206 {
12207 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12208
12209 al->excep_cond_expr.reset ();
12210 }
12211
12212 /* The vtable to be used in Ada catchpoint locations. */
12213
12214 static const struct bp_location_ops ada_catchpoint_location_ops =
12215 {
12216 ada_catchpoint_location_dtor
12217 };
12218
12219 /* An instance of this type is used to represent an Ada catchpoint. */
12220
12221 struct ada_catchpoint : public breakpoint
12222 {
12223 ~ada_catchpoint () override;
12224
12225 /* The name of the specific exception the user specified. */
12226 char *excep_string;
12227 };
12228
12229 /* Parse the exception condition string in the context of each of the
12230 catchpoint's locations, and store them for later evaluation. */
12231
12232 static void
12233 create_excep_cond_exprs (struct ada_catchpoint *c)
12234 {
12235 struct cleanup *old_chain;
12236 struct bp_location *bl;
12237 char *cond_string;
12238
12239 /* Nothing to do if there's no specific exception to catch. */
12240 if (c->excep_string == NULL)
12241 return;
12242
12243 /* Same if there are no locations... */
12244 if (c->loc == NULL)
12245 return;
12246
12247 /* Compute the condition expression in text form, from the specific
12248 expection we want to catch. */
12249 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12250 old_chain = make_cleanup (xfree, cond_string);
12251
12252 /* Iterate over all the catchpoint's locations, and parse an
12253 expression for each. */
12254 for (bl = c->loc; bl != NULL; bl = bl->next)
12255 {
12256 struct ada_catchpoint_location *ada_loc
12257 = (struct ada_catchpoint_location *) bl;
12258 expression_up exp;
12259
12260 if (!bl->shlib_disabled)
12261 {
12262 const char *s;
12263
12264 s = cond_string;
12265 TRY
12266 {
12267 exp = parse_exp_1 (&s, bl->address,
12268 block_for_pc (bl->address),
12269 0);
12270 }
12271 CATCH (e, RETURN_MASK_ERROR)
12272 {
12273 warning (_("failed to reevaluate internal exception condition "
12274 "for catchpoint %d: %s"),
12275 c->number, e.message);
12276 }
12277 END_CATCH
12278 }
12279
12280 ada_loc->excep_cond_expr = std::move (exp);
12281 }
12282
12283 do_cleanups (old_chain);
12284 }
12285
12286 /* ada_catchpoint destructor. */
12287
12288 ada_catchpoint::~ada_catchpoint ()
12289 {
12290 xfree (this->excep_string);
12291 }
12292
12293 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12294 structure for all exception catchpoint kinds. */
12295
12296 static struct bp_location *
12297 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12298 struct breakpoint *self)
12299 {
12300 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12301 }
12302
12303 /* Implement the RE_SET method in the breakpoint_ops structure for all
12304 exception catchpoint kinds. */
12305
12306 static void
12307 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12308 {
12309 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12310
12311 /* Call the base class's method. This updates the catchpoint's
12312 locations. */
12313 bkpt_breakpoint_ops.re_set (b);
12314
12315 /* Reparse the exception conditional expressions. One for each
12316 location. */
12317 create_excep_cond_exprs (c);
12318 }
12319
12320 /* Returns true if we should stop for this breakpoint hit. If the
12321 user specified a specific exception, we only want to cause a stop
12322 if the program thrown that exception. */
12323
12324 static int
12325 should_stop_exception (const struct bp_location *bl)
12326 {
12327 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12328 const struct ada_catchpoint_location *ada_loc
12329 = (const struct ada_catchpoint_location *) bl;
12330 int stop;
12331
12332 /* With no specific exception, should always stop. */
12333 if (c->excep_string == NULL)
12334 return 1;
12335
12336 if (ada_loc->excep_cond_expr == NULL)
12337 {
12338 /* We will have a NULL expression if back when we were creating
12339 the expressions, this location's had failed to parse. */
12340 return 1;
12341 }
12342
12343 stop = 1;
12344 TRY
12345 {
12346 struct value *mark;
12347
12348 mark = value_mark ();
12349 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12350 value_free_to_mark (mark);
12351 }
12352 CATCH (ex, RETURN_MASK_ALL)
12353 {
12354 exception_fprintf (gdb_stderr, ex,
12355 _("Error in testing exception condition:\n"));
12356 }
12357 END_CATCH
12358
12359 return stop;
12360 }
12361
12362 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12363 for all exception catchpoint kinds. */
12364
12365 static void
12366 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12367 {
12368 bs->stop = should_stop_exception (bs->bp_location_at);
12369 }
12370
12371 /* Implement the PRINT_IT method in the breakpoint_ops structure
12372 for all exception catchpoint kinds. */
12373
12374 static enum print_stop_action
12375 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12376 {
12377 struct ui_out *uiout = current_uiout;
12378 struct breakpoint *b = bs->breakpoint_at;
12379
12380 annotate_catchpoint (b->number);
12381
12382 if (uiout->is_mi_like_p ())
12383 {
12384 uiout->field_string ("reason",
12385 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12386 uiout->field_string ("disp", bpdisp_text (b->disposition));
12387 }
12388
12389 uiout->text (b->disposition == disp_del
12390 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12391 uiout->field_int ("bkptno", b->number);
12392 uiout->text (", ");
12393
12394 /* ada_exception_name_addr relies on the selected frame being the
12395 current frame. Need to do this here because this function may be
12396 called more than once when printing a stop, and below, we'll
12397 select the first frame past the Ada run-time (see
12398 ada_find_printable_frame). */
12399 select_frame (get_current_frame ());
12400
12401 switch (ex)
12402 {
12403 case ada_catch_exception:
12404 case ada_catch_exception_unhandled:
12405 {
12406 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12407 char exception_name[256];
12408
12409 if (addr != 0)
12410 {
12411 read_memory (addr, (gdb_byte *) exception_name,
12412 sizeof (exception_name) - 1);
12413 exception_name [sizeof (exception_name) - 1] = '\0';
12414 }
12415 else
12416 {
12417 /* For some reason, we were unable to read the exception
12418 name. This could happen if the Runtime was compiled
12419 without debugging info, for instance. In that case,
12420 just replace the exception name by the generic string
12421 "exception" - it will read as "an exception" in the
12422 notification we are about to print. */
12423 memcpy (exception_name, "exception", sizeof ("exception"));
12424 }
12425 /* In the case of unhandled exception breakpoints, we print
12426 the exception name as "unhandled EXCEPTION_NAME", to make
12427 it clearer to the user which kind of catchpoint just got
12428 hit. We used ui_out_text to make sure that this extra
12429 info does not pollute the exception name in the MI case. */
12430 if (ex == ada_catch_exception_unhandled)
12431 uiout->text ("unhandled ");
12432 uiout->field_string ("exception-name", exception_name);
12433 }
12434 break;
12435 case ada_catch_assert:
12436 /* In this case, the name of the exception is not really
12437 important. Just print "failed assertion" to make it clearer
12438 that his program just hit an assertion-failure catchpoint.
12439 We used ui_out_text because this info does not belong in
12440 the MI output. */
12441 uiout->text ("failed assertion");
12442 break;
12443 }
12444 uiout->text (" at ");
12445 ada_find_printable_frame (get_current_frame ());
12446
12447 return PRINT_SRC_AND_LOC;
12448 }
12449
12450 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12451 for all exception catchpoint kinds. */
12452
12453 static void
12454 print_one_exception (enum ada_exception_catchpoint_kind ex,
12455 struct breakpoint *b, struct bp_location **last_loc)
12456 {
12457 struct ui_out *uiout = current_uiout;
12458 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12459 struct value_print_options opts;
12460
12461 get_user_print_options (&opts);
12462 if (opts.addressprint)
12463 {
12464 annotate_field (4);
12465 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12466 }
12467
12468 annotate_field (5);
12469 *last_loc = b->loc;
12470 switch (ex)
12471 {
12472 case ada_catch_exception:
12473 if (c->excep_string != NULL)
12474 {
12475 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12476
12477 uiout->field_string ("what", msg);
12478 xfree (msg);
12479 }
12480 else
12481 uiout->field_string ("what", "all Ada exceptions");
12482
12483 break;
12484
12485 case ada_catch_exception_unhandled:
12486 uiout->field_string ("what", "unhandled Ada exceptions");
12487 break;
12488
12489 case ada_catch_assert:
12490 uiout->field_string ("what", "failed Ada assertions");
12491 break;
12492
12493 default:
12494 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12495 break;
12496 }
12497 }
12498
12499 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12500 for all exception catchpoint kinds. */
12501
12502 static void
12503 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12504 struct breakpoint *b)
12505 {
12506 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12507 struct ui_out *uiout = current_uiout;
12508
12509 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12510 : _("Catchpoint "));
12511 uiout->field_int ("bkptno", b->number);
12512 uiout->text (": ");
12513
12514 switch (ex)
12515 {
12516 case ada_catch_exception:
12517 if (c->excep_string != NULL)
12518 {
12519 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12520 struct cleanup *old_chain = make_cleanup (xfree, info);
12521
12522 uiout->text (info);
12523 do_cleanups (old_chain);
12524 }
12525 else
12526 uiout->text (_("all Ada exceptions"));
12527 break;
12528
12529 case ada_catch_exception_unhandled:
12530 uiout->text (_("unhandled Ada exceptions"));
12531 break;
12532
12533 case ada_catch_assert:
12534 uiout->text (_("failed Ada assertions"));
12535 break;
12536
12537 default:
12538 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12539 break;
12540 }
12541 }
12542
12543 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12544 for all exception catchpoint kinds. */
12545
12546 static void
12547 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12548 struct breakpoint *b, struct ui_file *fp)
12549 {
12550 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12551
12552 switch (ex)
12553 {
12554 case ada_catch_exception:
12555 fprintf_filtered (fp, "catch exception");
12556 if (c->excep_string != NULL)
12557 fprintf_filtered (fp, " %s", c->excep_string);
12558 break;
12559
12560 case ada_catch_exception_unhandled:
12561 fprintf_filtered (fp, "catch exception unhandled");
12562 break;
12563
12564 case ada_catch_assert:
12565 fprintf_filtered (fp, "catch assert");
12566 break;
12567
12568 default:
12569 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12570 }
12571 print_recreate_thread (b, fp);
12572 }
12573
12574 /* Virtual table for "catch exception" breakpoints. */
12575
12576 static struct bp_location *
12577 allocate_location_catch_exception (struct breakpoint *self)
12578 {
12579 return allocate_location_exception (ada_catch_exception, self);
12580 }
12581
12582 static void
12583 re_set_catch_exception (struct breakpoint *b)
12584 {
12585 re_set_exception (ada_catch_exception, b);
12586 }
12587
12588 static void
12589 check_status_catch_exception (bpstat bs)
12590 {
12591 check_status_exception (ada_catch_exception, bs);
12592 }
12593
12594 static enum print_stop_action
12595 print_it_catch_exception (bpstat bs)
12596 {
12597 return print_it_exception (ada_catch_exception, bs);
12598 }
12599
12600 static void
12601 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12602 {
12603 print_one_exception (ada_catch_exception, b, last_loc);
12604 }
12605
12606 static void
12607 print_mention_catch_exception (struct breakpoint *b)
12608 {
12609 print_mention_exception (ada_catch_exception, b);
12610 }
12611
12612 static void
12613 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12614 {
12615 print_recreate_exception (ada_catch_exception, b, fp);
12616 }
12617
12618 static struct breakpoint_ops catch_exception_breakpoint_ops;
12619
12620 /* Virtual table for "catch exception unhandled" breakpoints. */
12621
12622 static struct bp_location *
12623 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12624 {
12625 return allocate_location_exception (ada_catch_exception_unhandled, self);
12626 }
12627
12628 static void
12629 re_set_catch_exception_unhandled (struct breakpoint *b)
12630 {
12631 re_set_exception (ada_catch_exception_unhandled, b);
12632 }
12633
12634 static void
12635 check_status_catch_exception_unhandled (bpstat bs)
12636 {
12637 check_status_exception (ada_catch_exception_unhandled, bs);
12638 }
12639
12640 static enum print_stop_action
12641 print_it_catch_exception_unhandled (bpstat bs)
12642 {
12643 return print_it_exception (ada_catch_exception_unhandled, bs);
12644 }
12645
12646 static void
12647 print_one_catch_exception_unhandled (struct breakpoint *b,
12648 struct bp_location **last_loc)
12649 {
12650 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12651 }
12652
12653 static void
12654 print_mention_catch_exception_unhandled (struct breakpoint *b)
12655 {
12656 print_mention_exception (ada_catch_exception_unhandled, b);
12657 }
12658
12659 static void
12660 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12661 struct ui_file *fp)
12662 {
12663 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12664 }
12665
12666 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12667
12668 /* Virtual table for "catch assert" breakpoints. */
12669
12670 static struct bp_location *
12671 allocate_location_catch_assert (struct breakpoint *self)
12672 {
12673 return allocate_location_exception (ada_catch_assert, self);
12674 }
12675
12676 static void
12677 re_set_catch_assert (struct breakpoint *b)
12678 {
12679 re_set_exception (ada_catch_assert, b);
12680 }
12681
12682 static void
12683 check_status_catch_assert (bpstat bs)
12684 {
12685 check_status_exception (ada_catch_assert, bs);
12686 }
12687
12688 static enum print_stop_action
12689 print_it_catch_assert (bpstat bs)
12690 {
12691 return print_it_exception (ada_catch_assert, bs);
12692 }
12693
12694 static void
12695 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12696 {
12697 print_one_exception (ada_catch_assert, b, last_loc);
12698 }
12699
12700 static void
12701 print_mention_catch_assert (struct breakpoint *b)
12702 {
12703 print_mention_exception (ada_catch_assert, b);
12704 }
12705
12706 static void
12707 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12708 {
12709 print_recreate_exception (ada_catch_assert, b, fp);
12710 }
12711
12712 static struct breakpoint_ops catch_assert_breakpoint_ops;
12713
12714 /* Return a newly allocated copy of the first space-separated token
12715 in ARGSP, and then adjust ARGSP to point immediately after that
12716 token.
12717
12718 Return NULL if ARGPS does not contain any more tokens. */
12719
12720 static char *
12721 ada_get_next_arg (const char **argsp)
12722 {
12723 const char *args = *argsp;
12724 const char *end;
12725 char *result;
12726
12727 args = skip_spaces (args);
12728 if (args[0] == '\0')
12729 return NULL; /* No more arguments. */
12730
12731 /* Find the end of the current argument. */
12732
12733 end = skip_to_space (args);
12734
12735 /* Adjust ARGSP to point to the start of the next argument. */
12736
12737 *argsp = end;
12738
12739 /* Make a copy of the current argument and return it. */
12740
12741 result = (char *) xmalloc (end - args + 1);
12742 strncpy (result, args, end - args);
12743 result[end - args] = '\0';
12744
12745 return result;
12746 }
12747
12748 /* Split the arguments specified in a "catch exception" command.
12749 Set EX to the appropriate catchpoint type.
12750 Set EXCEP_STRING to the name of the specific exception if
12751 specified by the user.
12752 If a condition is found at the end of the arguments, the condition
12753 expression is stored in COND_STRING (memory must be deallocated
12754 after use). Otherwise COND_STRING is set to NULL. */
12755
12756 static void
12757 catch_ada_exception_command_split (const char *args,
12758 enum ada_exception_catchpoint_kind *ex,
12759 char **excep_string,
12760 char **cond_string)
12761 {
12762 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12763 char *exception_name;
12764 char *cond = NULL;
12765
12766 exception_name = ada_get_next_arg (&args);
12767 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12768 {
12769 /* This is not an exception name; this is the start of a condition
12770 expression for a catchpoint on all exceptions. So, "un-get"
12771 this token, and set exception_name to NULL. */
12772 xfree (exception_name);
12773 exception_name = NULL;
12774 args -= 2;
12775 }
12776 make_cleanup (xfree, exception_name);
12777
12778 /* Check to see if we have a condition. */
12779
12780 args = skip_spaces (args);
12781 if (startswith (args, "if")
12782 && (isspace (args[2]) || args[2] == '\0'))
12783 {
12784 args += 2;
12785 args = skip_spaces (args);
12786
12787 if (args[0] == '\0')
12788 error (_("Condition missing after `if' keyword"));
12789 cond = xstrdup (args);
12790 make_cleanup (xfree, cond);
12791
12792 args += strlen (args);
12793 }
12794
12795 /* Check that we do not have any more arguments. Anything else
12796 is unexpected. */
12797
12798 if (args[0] != '\0')
12799 error (_("Junk at end of expression"));
12800
12801 discard_cleanups (old_chain);
12802
12803 if (exception_name == NULL)
12804 {
12805 /* Catch all exceptions. */
12806 *ex = ada_catch_exception;
12807 *excep_string = NULL;
12808 }
12809 else if (strcmp (exception_name, "unhandled") == 0)
12810 {
12811 /* Catch unhandled exceptions. */
12812 *ex = ada_catch_exception_unhandled;
12813 *excep_string = NULL;
12814 }
12815 else
12816 {
12817 /* Catch a specific exception. */
12818 *ex = ada_catch_exception;
12819 *excep_string = exception_name;
12820 }
12821 *cond_string = cond;
12822 }
12823
12824 /* Return the name of the symbol on which we should break in order to
12825 implement a catchpoint of the EX kind. */
12826
12827 static const char *
12828 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12829 {
12830 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12831
12832 gdb_assert (data->exception_info != NULL);
12833
12834 switch (ex)
12835 {
12836 case ada_catch_exception:
12837 return (data->exception_info->catch_exception_sym);
12838 break;
12839 case ada_catch_exception_unhandled:
12840 return (data->exception_info->catch_exception_unhandled_sym);
12841 break;
12842 case ada_catch_assert:
12843 return (data->exception_info->catch_assert_sym);
12844 break;
12845 default:
12846 internal_error (__FILE__, __LINE__,
12847 _("unexpected catchpoint kind (%d)"), ex);
12848 }
12849 }
12850
12851 /* Return the breakpoint ops "virtual table" used for catchpoints
12852 of the EX kind. */
12853
12854 static const struct breakpoint_ops *
12855 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12856 {
12857 switch (ex)
12858 {
12859 case ada_catch_exception:
12860 return (&catch_exception_breakpoint_ops);
12861 break;
12862 case ada_catch_exception_unhandled:
12863 return (&catch_exception_unhandled_breakpoint_ops);
12864 break;
12865 case ada_catch_assert:
12866 return (&catch_assert_breakpoint_ops);
12867 break;
12868 default:
12869 internal_error (__FILE__, __LINE__,
12870 _("unexpected catchpoint kind (%d)"), ex);
12871 }
12872 }
12873
12874 /* Return the condition that will be used to match the current exception
12875 being raised with the exception that the user wants to catch. This
12876 assumes that this condition is used when the inferior just triggered
12877 an exception catchpoint.
12878
12879 The string returned is a newly allocated string that needs to be
12880 deallocated later. */
12881
12882 static char *
12883 ada_exception_catchpoint_cond_string (const char *excep_string)
12884 {
12885 int i;
12886
12887 /* The standard exceptions are a special case. They are defined in
12888 runtime units that have been compiled without debugging info; if
12889 EXCEP_STRING is the not-fully-qualified name of a standard
12890 exception (e.g. "constraint_error") then, during the evaluation
12891 of the condition expression, the symbol lookup on this name would
12892 *not* return this standard exception. The catchpoint condition
12893 may then be set only on user-defined exceptions which have the
12894 same not-fully-qualified name (e.g. my_package.constraint_error).
12895
12896 To avoid this unexcepted behavior, these standard exceptions are
12897 systematically prefixed by "standard". This means that "catch
12898 exception constraint_error" is rewritten into "catch exception
12899 standard.constraint_error".
12900
12901 If an exception named contraint_error is defined in another package of
12902 the inferior program, then the only way to specify this exception as a
12903 breakpoint condition is to use its fully-qualified named:
12904 e.g. my_package.constraint_error. */
12905
12906 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12907 {
12908 if (strcmp (standard_exc [i], excep_string) == 0)
12909 {
12910 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12911 excep_string);
12912 }
12913 }
12914 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12915 }
12916
12917 /* Return the symtab_and_line that should be used to insert an exception
12918 catchpoint of the TYPE kind.
12919
12920 EXCEP_STRING should contain the name of a specific exception that
12921 the catchpoint should catch, or NULL otherwise.
12922
12923 ADDR_STRING returns the name of the function where the real
12924 breakpoint that implements the catchpoints is set, depending on the
12925 type of catchpoint we need to create. */
12926
12927 static struct symtab_and_line
12928 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12929 const char **addr_string, const struct breakpoint_ops **ops)
12930 {
12931 const char *sym_name;
12932 struct symbol *sym;
12933
12934 /* First, find out which exception support info to use. */
12935 ada_exception_support_info_sniffer ();
12936
12937 /* Then lookup the function on which we will break in order to catch
12938 the Ada exceptions requested by the user. */
12939 sym_name = ada_exception_sym_name (ex);
12940 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12941
12942 /* We can assume that SYM is not NULL at this stage. If the symbol
12943 did not exist, ada_exception_support_info_sniffer would have
12944 raised an exception.
12945
12946 Also, ada_exception_support_info_sniffer should have already
12947 verified that SYM is a function symbol. */
12948 gdb_assert (sym != NULL);
12949 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12950
12951 /* Set ADDR_STRING. */
12952 *addr_string = xstrdup (sym_name);
12953
12954 /* Set OPS. */
12955 *ops = ada_exception_breakpoint_ops (ex);
12956
12957 return find_function_start_sal (sym, 1);
12958 }
12959
12960 /* Create an Ada exception catchpoint.
12961
12962 EX_KIND is the kind of exception catchpoint to be created.
12963
12964 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12965 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12966 of the exception to which this catchpoint applies. When not NULL,
12967 the string must be allocated on the heap, and its deallocation
12968 is no longer the responsibility of the caller.
12969
12970 COND_STRING, if not NULL, is the catchpoint condition. This string
12971 must be allocated on the heap, and its deallocation is no longer
12972 the responsibility of the caller.
12973
12974 TEMPFLAG, if nonzero, means that the underlying breakpoint
12975 should be temporary.
12976
12977 FROM_TTY is the usual argument passed to all commands implementations. */
12978
12979 void
12980 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12981 enum ada_exception_catchpoint_kind ex_kind,
12982 char *excep_string,
12983 char *cond_string,
12984 int tempflag,
12985 int disabled,
12986 int from_tty)
12987 {
12988 const char *addr_string = NULL;
12989 const struct breakpoint_ops *ops = NULL;
12990 struct symtab_and_line sal
12991 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12992
12993 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
12994 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
12995 ops, tempflag, disabled, from_tty);
12996 c->excep_string = excep_string;
12997 create_excep_cond_exprs (c.get ());
12998 if (cond_string != NULL)
12999 set_breakpoint_condition (c.get (), cond_string, from_tty);
13000 install_breakpoint (0, std::move (c), 1);
13001 }
13002
13003 /* Implement the "catch exception" command. */
13004
13005 static void
13006 catch_ada_exception_command (char *arg_entry, int from_tty,
13007 struct cmd_list_element *command)
13008 {
13009 const char *arg = arg_entry;
13010 struct gdbarch *gdbarch = get_current_arch ();
13011 int tempflag;
13012 enum ada_exception_catchpoint_kind ex_kind;
13013 char *excep_string = NULL;
13014 char *cond_string = NULL;
13015
13016 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13017
13018 if (!arg)
13019 arg = "";
13020 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13021 &cond_string);
13022 create_ada_exception_catchpoint (gdbarch, ex_kind,
13023 excep_string, cond_string,
13024 tempflag, 1 /* enabled */,
13025 from_tty);
13026 }
13027
13028 /* Split the arguments specified in a "catch assert" command.
13029
13030 ARGS contains the command's arguments (or the empty string if
13031 no arguments were passed).
13032
13033 If ARGS contains a condition, set COND_STRING to that condition
13034 (the memory needs to be deallocated after use). */
13035
13036 static void
13037 catch_ada_assert_command_split (const char *args, char **cond_string)
13038 {
13039 args = skip_spaces (args);
13040
13041 /* Check whether a condition was provided. */
13042 if (startswith (args, "if")
13043 && (isspace (args[2]) || args[2] == '\0'))
13044 {
13045 args += 2;
13046 args = skip_spaces (args);
13047 if (args[0] == '\0')
13048 error (_("condition missing after `if' keyword"));
13049 *cond_string = xstrdup (args);
13050 }
13051
13052 /* Otherwise, there should be no other argument at the end of
13053 the command. */
13054 else if (args[0] != '\0')
13055 error (_("Junk at end of arguments."));
13056 }
13057
13058 /* Implement the "catch assert" command. */
13059
13060 static void
13061 catch_assert_command (char *arg_entry, int from_tty,
13062 struct cmd_list_element *command)
13063 {
13064 const char *arg = arg_entry;
13065 struct gdbarch *gdbarch = get_current_arch ();
13066 int tempflag;
13067 char *cond_string = NULL;
13068
13069 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13070
13071 if (!arg)
13072 arg = "";
13073 catch_ada_assert_command_split (arg, &cond_string);
13074 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13075 NULL, cond_string,
13076 tempflag, 1 /* enabled */,
13077 from_tty);
13078 }
13079
13080 /* Return non-zero if the symbol SYM is an Ada exception object. */
13081
13082 static int
13083 ada_is_exception_sym (struct symbol *sym)
13084 {
13085 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13086
13087 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13088 && SYMBOL_CLASS (sym) != LOC_BLOCK
13089 && SYMBOL_CLASS (sym) != LOC_CONST
13090 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13091 && type_name != NULL && strcmp (type_name, "exception") == 0);
13092 }
13093
13094 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13095 Ada exception object. This matches all exceptions except the ones
13096 defined by the Ada language. */
13097
13098 static int
13099 ada_is_non_standard_exception_sym (struct symbol *sym)
13100 {
13101 int i;
13102
13103 if (!ada_is_exception_sym (sym))
13104 return 0;
13105
13106 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13107 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13108 return 0; /* A standard exception. */
13109
13110 /* Numeric_Error is also a standard exception, so exclude it.
13111 See the STANDARD_EXC description for more details as to why
13112 this exception is not listed in that array. */
13113 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13114 return 0;
13115
13116 return 1;
13117 }
13118
13119 /* A helper function for std::sort, comparing two struct ada_exc_info
13120 objects.
13121
13122 The comparison is determined first by exception name, and then
13123 by exception address. */
13124
13125 bool
13126 ada_exc_info::operator< (const ada_exc_info &other) const
13127 {
13128 int result;
13129
13130 result = strcmp (name, other.name);
13131 if (result < 0)
13132 return true;
13133 if (result == 0 && addr < other.addr)
13134 return true;
13135 return false;
13136 }
13137
13138 bool
13139 ada_exc_info::operator== (const ada_exc_info &other) const
13140 {
13141 return addr == other.addr && strcmp (name, other.name) == 0;
13142 }
13143
13144 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13145 routine, but keeping the first SKIP elements untouched.
13146
13147 All duplicates are also removed. */
13148
13149 static void
13150 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13151 int skip)
13152 {
13153 std::sort (exceptions->begin () + skip, exceptions->end ());
13154 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13155 exceptions->end ());
13156 }
13157
13158 /* Add all exceptions defined by the Ada standard whose name match
13159 a regular expression.
13160
13161 If PREG is not NULL, then this regexp_t object is used to
13162 perform the symbol name matching. Otherwise, no name-based
13163 filtering is performed.
13164
13165 EXCEPTIONS is a vector of exceptions to which matching exceptions
13166 gets pushed. */
13167
13168 static void
13169 ada_add_standard_exceptions (compiled_regex *preg,
13170 std::vector<ada_exc_info> *exceptions)
13171 {
13172 int i;
13173
13174 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13175 {
13176 if (preg == NULL
13177 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13178 {
13179 struct bound_minimal_symbol msymbol
13180 = ada_lookup_simple_minsym (standard_exc[i]);
13181
13182 if (msymbol.minsym != NULL)
13183 {
13184 struct ada_exc_info info
13185 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13186
13187 exceptions->push_back (info);
13188 }
13189 }
13190 }
13191 }
13192
13193 /* Add all Ada exceptions defined locally and accessible from the given
13194 FRAME.
13195
13196 If PREG is not NULL, then this regexp_t object is used to
13197 perform the symbol name matching. Otherwise, no name-based
13198 filtering is performed.
13199
13200 EXCEPTIONS is a vector of exceptions to which matching exceptions
13201 gets pushed. */
13202
13203 static void
13204 ada_add_exceptions_from_frame (compiled_regex *preg,
13205 struct frame_info *frame,
13206 std::vector<ada_exc_info> *exceptions)
13207 {
13208 const struct block *block = get_frame_block (frame, 0);
13209
13210 while (block != 0)
13211 {
13212 struct block_iterator iter;
13213 struct symbol *sym;
13214
13215 ALL_BLOCK_SYMBOLS (block, iter, sym)
13216 {
13217 switch (SYMBOL_CLASS (sym))
13218 {
13219 case LOC_TYPEDEF:
13220 case LOC_BLOCK:
13221 case LOC_CONST:
13222 break;
13223 default:
13224 if (ada_is_exception_sym (sym))
13225 {
13226 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13227 SYMBOL_VALUE_ADDRESS (sym)};
13228
13229 exceptions->push_back (info);
13230 }
13231 }
13232 }
13233 if (BLOCK_FUNCTION (block) != NULL)
13234 break;
13235 block = BLOCK_SUPERBLOCK (block);
13236 }
13237 }
13238
13239 /* Return true if NAME matches PREG or if PREG is NULL. */
13240
13241 static bool
13242 name_matches_regex (const char *name, compiled_regex *preg)
13243 {
13244 return (preg == NULL
13245 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13246 }
13247
13248 /* Add all exceptions defined globally whose name name match
13249 a regular expression, excluding standard exceptions.
13250
13251 The reason we exclude standard exceptions is that they need
13252 to be handled separately: Standard exceptions are defined inside
13253 a runtime unit which is normally not compiled with debugging info,
13254 and thus usually do not show up in our symbol search. However,
13255 if the unit was in fact built with debugging info, we need to
13256 exclude them because they would duplicate the entry we found
13257 during the special loop that specifically searches for those
13258 standard exceptions.
13259
13260 If PREG is not NULL, then this regexp_t object is used to
13261 perform the symbol name matching. Otherwise, no name-based
13262 filtering is performed.
13263
13264 EXCEPTIONS is a vector of exceptions to which matching exceptions
13265 gets pushed. */
13266
13267 static void
13268 ada_add_global_exceptions (compiled_regex *preg,
13269 std::vector<ada_exc_info> *exceptions)
13270 {
13271 struct objfile *objfile;
13272 struct compunit_symtab *s;
13273
13274 /* In Ada, the symbol "search name" is a linkage name, whereas the
13275 regular expression used to do the matching refers to the natural
13276 name. So match against the decoded name. */
13277 expand_symtabs_matching (NULL,
13278 [&] (const char *search_name)
13279 {
13280 const char *decoded = ada_decode (search_name);
13281 return name_matches_regex (decoded, preg);
13282 },
13283 NULL,
13284 VARIABLES_DOMAIN);
13285
13286 ALL_COMPUNITS (objfile, s)
13287 {
13288 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13289 int i;
13290
13291 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13292 {
13293 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13294 struct block_iterator iter;
13295 struct symbol *sym;
13296
13297 ALL_BLOCK_SYMBOLS (b, iter, sym)
13298 if (ada_is_non_standard_exception_sym (sym)
13299 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13300 {
13301 struct ada_exc_info info
13302 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13303
13304 exceptions->push_back (info);
13305 }
13306 }
13307 }
13308 }
13309
13310 /* Implements ada_exceptions_list with the regular expression passed
13311 as a regex_t, rather than a string.
13312
13313 If not NULL, PREG is used to filter out exceptions whose names
13314 do not match. Otherwise, all exceptions are listed. */
13315
13316 static std::vector<ada_exc_info>
13317 ada_exceptions_list_1 (compiled_regex *preg)
13318 {
13319 std::vector<ada_exc_info> result;
13320 int prev_len;
13321
13322 /* First, list the known standard exceptions. These exceptions
13323 need to be handled separately, as they are usually defined in
13324 runtime units that have been compiled without debugging info. */
13325
13326 ada_add_standard_exceptions (preg, &result);
13327
13328 /* Next, find all exceptions whose scope is local and accessible
13329 from the currently selected frame. */
13330
13331 if (has_stack_frames ())
13332 {
13333 prev_len = result.size ();
13334 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13335 &result);
13336 if (result.size () > prev_len)
13337 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13338 }
13339
13340 /* Add all exceptions whose scope is global. */
13341
13342 prev_len = result.size ();
13343 ada_add_global_exceptions (preg, &result);
13344 if (result.size () > prev_len)
13345 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13346
13347 return result;
13348 }
13349
13350 /* Return a vector of ada_exc_info.
13351
13352 If REGEXP is NULL, all exceptions are included in the result.
13353 Otherwise, it should contain a valid regular expression,
13354 and only the exceptions whose names match that regular expression
13355 are included in the result.
13356
13357 The exceptions are sorted in the following order:
13358 - Standard exceptions (defined by the Ada language), in
13359 alphabetical order;
13360 - Exceptions only visible from the current frame, in
13361 alphabetical order;
13362 - Exceptions whose scope is global, in alphabetical order. */
13363
13364 std::vector<ada_exc_info>
13365 ada_exceptions_list (const char *regexp)
13366 {
13367 if (regexp == NULL)
13368 return ada_exceptions_list_1 (NULL);
13369
13370 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13371 return ada_exceptions_list_1 (&reg);
13372 }
13373
13374 /* Implement the "info exceptions" command. */
13375
13376 static void
13377 info_exceptions_command (char *regexp, int from_tty)
13378 {
13379 struct gdbarch *gdbarch = get_current_arch ();
13380
13381 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13382
13383 if (regexp != NULL)
13384 printf_filtered
13385 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13386 else
13387 printf_filtered (_("All defined Ada exceptions:\n"));
13388
13389 for (const ada_exc_info &info : exceptions)
13390 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13391 }
13392
13393 /* Operators */
13394 /* Information about operators given special treatment in functions
13395 below. */
13396 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13397
13398 #define ADA_OPERATORS \
13399 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13400 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13401 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13402 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13403 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13404 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13405 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13406 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13407 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13408 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13409 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13410 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13411 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13412 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13413 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13414 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13415 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13416 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13417 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13418
13419 static void
13420 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13421 int *argsp)
13422 {
13423 switch (exp->elts[pc - 1].opcode)
13424 {
13425 default:
13426 operator_length_standard (exp, pc, oplenp, argsp);
13427 break;
13428
13429 #define OP_DEFN(op, len, args, binop) \
13430 case op: *oplenp = len; *argsp = args; break;
13431 ADA_OPERATORS;
13432 #undef OP_DEFN
13433
13434 case OP_AGGREGATE:
13435 *oplenp = 3;
13436 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13437 break;
13438
13439 case OP_CHOICES:
13440 *oplenp = 3;
13441 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13442 break;
13443 }
13444 }
13445
13446 /* Implementation of the exp_descriptor method operator_check. */
13447
13448 static int
13449 ada_operator_check (struct expression *exp, int pos,
13450 int (*objfile_func) (struct objfile *objfile, void *data),
13451 void *data)
13452 {
13453 const union exp_element *const elts = exp->elts;
13454 struct type *type = NULL;
13455
13456 switch (elts[pos].opcode)
13457 {
13458 case UNOP_IN_RANGE:
13459 case UNOP_QUAL:
13460 type = elts[pos + 1].type;
13461 break;
13462
13463 default:
13464 return operator_check_standard (exp, pos, objfile_func, data);
13465 }
13466
13467 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13468
13469 if (type && TYPE_OBJFILE (type)
13470 && (*objfile_func) (TYPE_OBJFILE (type), data))
13471 return 1;
13472
13473 return 0;
13474 }
13475
13476 static const char *
13477 ada_op_name (enum exp_opcode opcode)
13478 {
13479 switch (opcode)
13480 {
13481 default:
13482 return op_name_standard (opcode);
13483
13484 #define OP_DEFN(op, len, args, binop) case op: return #op;
13485 ADA_OPERATORS;
13486 #undef OP_DEFN
13487
13488 case OP_AGGREGATE:
13489 return "OP_AGGREGATE";
13490 case OP_CHOICES:
13491 return "OP_CHOICES";
13492 case OP_NAME:
13493 return "OP_NAME";
13494 }
13495 }
13496
13497 /* As for operator_length, but assumes PC is pointing at the first
13498 element of the operator, and gives meaningful results only for the
13499 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13500
13501 static void
13502 ada_forward_operator_length (struct expression *exp, int pc,
13503 int *oplenp, int *argsp)
13504 {
13505 switch (exp->elts[pc].opcode)
13506 {
13507 default:
13508 *oplenp = *argsp = 0;
13509 break;
13510
13511 #define OP_DEFN(op, len, args, binop) \
13512 case op: *oplenp = len; *argsp = args; break;
13513 ADA_OPERATORS;
13514 #undef OP_DEFN
13515
13516 case OP_AGGREGATE:
13517 *oplenp = 3;
13518 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13519 break;
13520
13521 case OP_CHOICES:
13522 *oplenp = 3;
13523 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13524 break;
13525
13526 case OP_STRING:
13527 case OP_NAME:
13528 {
13529 int len = longest_to_int (exp->elts[pc + 1].longconst);
13530
13531 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13532 *argsp = 0;
13533 break;
13534 }
13535 }
13536 }
13537
13538 static int
13539 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13540 {
13541 enum exp_opcode op = exp->elts[elt].opcode;
13542 int oplen, nargs;
13543 int pc = elt;
13544 int i;
13545
13546 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13547
13548 switch (op)
13549 {
13550 /* Ada attributes ('Foo). */
13551 case OP_ATR_FIRST:
13552 case OP_ATR_LAST:
13553 case OP_ATR_LENGTH:
13554 case OP_ATR_IMAGE:
13555 case OP_ATR_MAX:
13556 case OP_ATR_MIN:
13557 case OP_ATR_MODULUS:
13558 case OP_ATR_POS:
13559 case OP_ATR_SIZE:
13560 case OP_ATR_TAG:
13561 case OP_ATR_VAL:
13562 break;
13563
13564 case UNOP_IN_RANGE:
13565 case UNOP_QUAL:
13566 /* XXX: gdb_sprint_host_address, type_sprint */
13567 fprintf_filtered (stream, _("Type @"));
13568 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13569 fprintf_filtered (stream, " (");
13570 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13571 fprintf_filtered (stream, ")");
13572 break;
13573 case BINOP_IN_BOUNDS:
13574 fprintf_filtered (stream, " (%d)",
13575 longest_to_int (exp->elts[pc + 2].longconst));
13576 break;
13577 case TERNOP_IN_RANGE:
13578 break;
13579
13580 case OP_AGGREGATE:
13581 case OP_OTHERS:
13582 case OP_DISCRETE_RANGE:
13583 case OP_POSITIONAL:
13584 case OP_CHOICES:
13585 break;
13586
13587 case OP_NAME:
13588 case OP_STRING:
13589 {
13590 char *name = &exp->elts[elt + 2].string;
13591 int len = longest_to_int (exp->elts[elt + 1].longconst);
13592
13593 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13594 break;
13595 }
13596
13597 default:
13598 return dump_subexp_body_standard (exp, stream, elt);
13599 }
13600
13601 elt += oplen;
13602 for (i = 0; i < nargs; i += 1)
13603 elt = dump_subexp (exp, stream, elt);
13604
13605 return elt;
13606 }
13607
13608 /* The Ada extension of print_subexp (q.v.). */
13609
13610 static void
13611 ada_print_subexp (struct expression *exp, int *pos,
13612 struct ui_file *stream, enum precedence prec)
13613 {
13614 int oplen, nargs, i;
13615 int pc = *pos;
13616 enum exp_opcode op = exp->elts[pc].opcode;
13617
13618 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13619
13620 *pos += oplen;
13621 switch (op)
13622 {
13623 default:
13624 *pos -= oplen;
13625 print_subexp_standard (exp, pos, stream, prec);
13626 return;
13627
13628 case OP_VAR_VALUE:
13629 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13630 return;
13631
13632 case BINOP_IN_BOUNDS:
13633 /* XXX: sprint_subexp */
13634 print_subexp (exp, pos, stream, PREC_SUFFIX);
13635 fputs_filtered (" in ", stream);
13636 print_subexp (exp, pos, stream, PREC_SUFFIX);
13637 fputs_filtered ("'range", stream);
13638 if (exp->elts[pc + 1].longconst > 1)
13639 fprintf_filtered (stream, "(%ld)",
13640 (long) exp->elts[pc + 1].longconst);
13641 return;
13642
13643 case TERNOP_IN_RANGE:
13644 if (prec >= PREC_EQUAL)
13645 fputs_filtered ("(", stream);
13646 /* XXX: sprint_subexp */
13647 print_subexp (exp, pos, stream, PREC_SUFFIX);
13648 fputs_filtered (" in ", stream);
13649 print_subexp (exp, pos, stream, PREC_EQUAL);
13650 fputs_filtered (" .. ", stream);
13651 print_subexp (exp, pos, stream, PREC_EQUAL);
13652 if (prec >= PREC_EQUAL)
13653 fputs_filtered (")", stream);
13654 return;
13655
13656 case OP_ATR_FIRST:
13657 case OP_ATR_LAST:
13658 case OP_ATR_LENGTH:
13659 case OP_ATR_IMAGE:
13660 case OP_ATR_MAX:
13661 case OP_ATR_MIN:
13662 case OP_ATR_MODULUS:
13663 case OP_ATR_POS:
13664 case OP_ATR_SIZE:
13665 case OP_ATR_TAG:
13666 case OP_ATR_VAL:
13667 if (exp->elts[*pos].opcode == OP_TYPE)
13668 {
13669 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13670 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13671 &type_print_raw_options);
13672 *pos += 3;
13673 }
13674 else
13675 print_subexp (exp, pos, stream, PREC_SUFFIX);
13676 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13677 if (nargs > 1)
13678 {
13679 int tem;
13680
13681 for (tem = 1; tem < nargs; tem += 1)
13682 {
13683 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13684 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13685 }
13686 fputs_filtered (")", stream);
13687 }
13688 return;
13689
13690 case UNOP_QUAL:
13691 type_print (exp->elts[pc + 1].type, "", stream, 0);
13692 fputs_filtered ("'(", stream);
13693 print_subexp (exp, pos, stream, PREC_PREFIX);
13694 fputs_filtered (")", stream);
13695 return;
13696
13697 case UNOP_IN_RANGE:
13698 /* XXX: sprint_subexp */
13699 print_subexp (exp, pos, stream, PREC_SUFFIX);
13700 fputs_filtered (" in ", stream);
13701 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13702 &type_print_raw_options);
13703 return;
13704
13705 case OP_DISCRETE_RANGE:
13706 print_subexp (exp, pos, stream, PREC_SUFFIX);
13707 fputs_filtered ("..", stream);
13708 print_subexp (exp, pos, stream, PREC_SUFFIX);
13709 return;
13710
13711 case OP_OTHERS:
13712 fputs_filtered ("others => ", stream);
13713 print_subexp (exp, pos, stream, PREC_SUFFIX);
13714 return;
13715
13716 case OP_CHOICES:
13717 for (i = 0; i < nargs-1; i += 1)
13718 {
13719 if (i > 0)
13720 fputs_filtered ("|", stream);
13721 print_subexp (exp, pos, stream, PREC_SUFFIX);
13722 }
13723 fputs_filtered (" => ", stream);
13724 print_subexp (exp, pos, stream, PREC_SUFFIX);
13725 return;
13726
13727 case OP_POSITIONAL:
13728 print_subexp (exp, pos, stream, PREC_SUFFIX);
13729 return;
13730
13731 case OP_AGGREGATE:
13732 fputs_filtered ("(", stream);
13733 for (i = 0; i < nargs; i += 1)
13734 {
13735 if (i > 0)
13736 fputs_filtered (", ", stream);
13737 print_subexp (exp, pos, stream, PREC_SUFFIX);
13738 }
13739 fputs_filtered (")", stream);
13740 return;
13741 }
13742 }
13743
13744 /* Table mapping opcodes into strings for printing operators
13745 and precedences of the operators. */
13746
13747 static const struct op_print ada_op_print_tab[] = {
13748 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13749 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13750 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13751 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13752 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13753 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13754 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13755 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13756 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13757 {">=", BINOP_GEQ, PREC_ORDER, 0},
13758 {">", BINOP_GTR, PREC_ORDER, 0},
13759 {"<", BINOP_LESS, PREC_ORDER, 0},
13760 {">>", BINOP_RSH, PREC_SHIFT, 0},
13761 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13762 {"+", BINOP_ADD, PREC_ADD, 0},
13763 {"-", BINOP_SUB, PREC_ADD, 0},
13764 {"&", BINOP_CONCAT, PREC_ADD, 0},
13765 {"*", BINOP_MUL, PREC_MUL, 0},
13766 {"/", BINOP_DIV, PREC_MUL, 0},
13767 {"rem", BINOP_REM, PREC_MUL, 0},
13768 {"mod", BINOP_MOD, PREC_MUL, 0},
13769 {"**", BINOP_EXP, PREC_REPEAT, 0},
13770 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13771 {"-", UNOP_NEG, PREC_PREFIX, 0},
13772 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13773 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13774 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13775 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13776 {".all", UNOP_IND, PREC_SUFFIX, 1},
13777 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13778 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13779 {NULL, OP_NULL, PREC_SUFFIX, 0}
13780 };
13781 \f
13782 enum ada_primitive_types {
13783 ada_primitive_type_int,
13784 ada_primitive_type_long,
13785 ada_primitive_type_short,
13786 ada_primitive_type_char,
13787 ada_primitive_type_float,
13788 ada_primitive_type_double,
13789 ada_primitive_type_void,
13790 ada_primitive_type_long_long,
13791 ada_primitive_type_long_double,
13792 ada_primitive_type_natural,
13793 ada_primitive_type_positive,
13794 ada_primitive_type_system_address,
13795 nr_ada_primitive_types
13796 };
13797
13798 static void
13799 ada_language_arch_info (struct gdbarch *gdbarch,
13800 struct language_arch_info *lai)
13801 {
13802 const struct builtin_type *builtin = builtin_type (gdbarch);
13803
13804 lai->primitive_type_vector
13805 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13806 struct type *);
13807
13808 lai->primitive_type_vector [ada_primitive_type_int]
13809 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13810 0, "integer");
13811 lai->primitive_type_vector [ada_primitive_type_long]
13812 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13813 0, "long_integer");
13814 lai->primitive_type_vector [ada_primitive_type_short]
13815 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13816 0, "short_integer");
13817 lai->string_char_type
13818 = lai->primitive_type_vector [ada_primitive_type_char]
13819 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13820 lai->primitive_type_vector [ada_primitive_type_float]
13821 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13822 "float", gdbarch_float_format (gdbarch));
13823 lai->primitive_type_vector [ada_primitive_type_double]
13824 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13825 "long_float", gdbarch_double_format (gdbarch));
13826 lai->primitive_type_vector [ada_primitive_type_long_long]
13827 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13828 0, "long_long_integer");
13829 lai->primitive_type_vector [ada_primitive_type_long_double]
13830 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13831 "long_long_float", gdbarch_long_double_format (gdbarch));
13832 lai->primitive_type_vector [ada_primitive_type_natural]
13833 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13834 0, "natural");
13835 lai->primitive_type_vector [ada_primitive_type_positive]
13836 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13837 0, "positive");
13838 lai->primitive_type_vector [ada_primitive_type_void]
13839 = builtin->builtin_void;
13840
13841 lai->primitive_type_vector [ada_primitive_type_system_address]
13842 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13843 "void"));
13844 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13845 = "system__address";
13846
13847 lai->bool_type_symbol = NULL;
13848 lai->bool_type_default = builtin->builtin_bool;
13849 }
13850 \f
13851 /* Language vector */
13852
13853 /* Not really used, but needed in the ada_language_defn. */
13854
13855 static void
13856 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13857 {
13858 ada_emit_char (c, type, stream, quoter, 1);
13859 }
13860
13861 static int
13862 parse (struct parser_state *ps)
13863 {
13864 warnings_issued = 0;
13865 return ada_parse (ps);
13866 }
13867
13868 static const struct exp_descriptor ada_exp_descriptor = {
13869 ada_print_subexp,
13870 ada_operator_length,
13871 ada_operator_check,
13872 ada_op_name,
13873 ada_dump_subexp_body,
13874 ada_evaluate_subexp
13875 };
13876
13877 /* Implement the "la_get_symbol_name_cmp" language_defn method
13878 for Ada. */
13879
13880 static symbol_name_cmp_ftype
13881 ada_get_symbol_name_cmp (const char *lookup_name)
13882 {
13883 if (should_use_wild_match (lookup_name))
13884 return wild_match;
13885 else
13886 return compare_names;
13887 }
13888
13889 /* Implement the "la_read_var_value" language_defn method for Ada. */
13890
13891 static struct value *
13892 ada_read_var_value (struct symbol *var, const struct block *var_block,
13893 struct frame_info *frame)
13894 {
13895 const struct block *frame_block = NULL;
13896 struct symbol *renaming_sym = NULL;
13897
13898 /* The only case where default_read_var_value is not sufficient
13899 is when VAR is a renaming... */
13900 if (frame)
13901 frame_block = get_frame_block (frame, NULL);
13902 if (frame_block)
13903 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13904 if (renaming_sym != NULL)
13905 return ada_read_renaming_var_value (renaming_sym, frame_block);
13906
13907 /* This is a typical case where we expect the default_read_var_value
13908 function to work. */
13909 return default_read_var_value (var, var_block, frame);
13910 }
13911
13912 static const char *ada_extensions[] =
13913 {
13914 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13915 };
13916
13917 extern const struct language_defn ada_language_defn = {
13918 "ada", /* Language name */
13919 "Ada",
13920 language_ada,
13921 range_check_off,
13922 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13923 that's not quite what this means. */
13924 array_row_major,
13925 macro_expansion_no,
13926 ada_extensions,
13927 &ada_exp_descriptor,
13928 parse,
13929 ada_yyerror,
13930 resolve,
13931 ada_printchar, /* Print a character constant */
13932 ada_printstr, /* Function to print string constant */
13933 emit_char, /* Function to print single char (not used) */
13934 ada_print_type, /* Print a type using appropriate syntax */
13935 ada_print_typedef, /* Print a typedef using appropriate syntax */
13936 ada_val_print, /* Print a value using appropriate syntax */
13937 ada_value_print, /* Print a top-level value */
13938 ada_read_var_value, /* la_read_var_value */
13939 NULL, /* Language specific skip_trampoline */
13940 NULL, /* name_of_this */
13941 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13942 basic_lookup_transparent_type, /* lookup_transparent_type */
13943 ada_la_decode, /* Language specific symbol demangler */
13944 ada_sniff_from_mangled_name,
13945 NULL, /* Language specific
13946 class_name_from_physname */
13947 ada_op_print_tab, /* expression operators for printing */
13948 0, /* c-style arrays */
13949 1, /* String lower bound */
13950 ada_get_gdb_completer_word_break_characters,
13951 ada_collect_symbol_completion_matches,
13952 ada_language_arch_info,
13953 ada_print_array_index,
13954 default_pass_by_reference,
13955 c_get_string,
13956 c_watch_location_expression,
13957 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13958 ada_iterate_over_symbols,
13959 &ada_varobj_ops,
13960 NULL,
13961 NULL,
13962 LANG_MAGIC
13963 };
13964
13965 /* Command-list for the "set/show ada" prefix command. */
13966 static struct cmd_list_element *set_ada_list;
13967 static struct cmd_list_element *show_ada_list;
13968
13969 /* Implement the "set ada" prefix command. */
13970
13971 static void
13972 set_ada_command (const char *arg, int from_tty)
13973 {
13974 printf_unfiltered (_(\
13975 "\"set ada\" must be followed by the name of a setting.\n"));
13976 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13977 }
13978
13979 /* Implement the "show ada" prefix command. */
13980
13981 static void
13982 show_ada_command (const char *args, int from_tty)
13983 {
13984 cmd_show_list (show_ada_list, from_tty, "");
13985 }
13986
13987 static void
13988 initialize_ada_catchpoint_ops (void)
13989 {
13990 struct breakpoint_ops *ops;
13991
13992 initialize_breakpoint_ops ();
13993
13994 ops = &catch_exception_breakpoint_ops;
13995 *ops = bkpt_breakpoint_ops;
13996 ops->allocate_location = allocate_location_catch_exception;
13997 ops->re_set = re_set_catch_exception;
13998 ops->check_status = check_status_catch_exception;
13999 ops->print_it = print_it_catch_exception;
14000 ops->print_one = print_one_catch_exception;
14001 ops->print_mention = print_mention_catch_exception;
14002 ops->print_recreate = print_recreate_catch_exception;
14003
14004 ops = &catch_exception_unhandled_breakpoint_ops;
14005 *ops = bkpt_breakpoint_ops;
14006 ops->allocate_location = allocate_location_catch_exception_unhandled;
14007 ops->re_set = re_set_catch_exception_unhandled;
14008 ops->check_status = check_status_catch_exception_unhandled;
14009 ops->print_it = print_it_catch_exception_unhandled;
14010 ops->print_one = print_one_catch_exception_unhandled;
14011 ops->print_mention = print_mention_catch_exception_unhandled;
14012 ops->print_recreate = print_recreate_catch_exception_unhandled;
14013
14014 ops = &catch_assert_breakpoint_ops;
14015 *ops = bkpt_breakpoint_ops;
14016 ops->allocate_location = allocate_location_catch_assert;
14017 ops->re_set = re_set_catch_assert;
14018 ops->check_status = check_status_catch_assert;
14019 ops->print_it = print_it_catch_assert;
14020 ops->print_one = print_one_catch_assert;
14021 ops->print_mention = print_mention_catch_assert;
14022 ops->print_recreate = print_recreate_catch_assert;
14023 }
14024
14025 /* This module's 'new_objfile' observer. */
14026
14027 static void
14028 ada_new_objfile_observer (struct objfile *objfile)
14029 {
14030 ada_clear_symbol_cache ();
14031 }
14032
14033 /* This module's 'free_objfile' observer. */
14034
14035 static void
14036 ada_free_objfile_observer (struct objfile *objfile)
14037 {
14038 ada_clear_symbol_cache ();
14039 }
14040
14041 void
14042 _initialize_ada_language (void)
14043 {
14044 initialize_ada_catchpoint_ops ();
14045
14046 add_prefix_cmd ("ada", no_class, set_ada_command,
14047 _("Prefix command for changing Ada-specfic settings"),
14048 &set_ada_list, "set ada ", 0, &setlist);
14049
14050 add_prefix_cmd ("ada", no_class, show_ada_command,
14051 _("Generic command for showing Ada-specific settings."),
14052 &show_ada_list, "show ada ", 0, &showlist);
14053
14054 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14055 &trust_pad_over_xvs, _("\
14056 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14057 Show whether an optimization trusting PAD types over XVS types is activated"),
14058 _("\
14059 This is related to the encoding used by the GNAT compiler. The debugger\n\
14060 should normally trust the contents of PAD types, but certain older versions\n\
14061 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14062 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14063 work around this bug. It is always safe to turn this option \"off\", but\n\
14064 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14065 this option to \"off\" unless necessary."),
14066 NULL, NULL, &set_ada_list, &show_ada_list);
14067
14068 add_setshow_boolean_cmd ("print-signatures", class_vars,
14069 &print_signatures, _("\
14070 Enable or disable the output of formal and return types for functions in the \
14071 overloads selection menu"), _("\
14072 Show whether the output of formal and return types for functions in the \
14073 overloads selection menu is activated"),
14074 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14075
14076 add_catch_command ("exception", _("\
14077 Catch Ada exceptions, when raised.\n\
14078 With an argument, catch only exceptions with the given name."),
14079 catch_ada_exception_command,
14080 NULL,
14081 CATCH_PERMANENT,
14082 CATCH_TEMPORARY);
14083 add_catch_command ("assert", _("\
14084 Catch failed Ada assertions, when raised.\n\
14085 With an argument, catch only exceptions with the given name."),
14086 catch_assert_command,
14087 NULL,
14088 CATCH_PERMANENT,
14089 CATCH_TEMPORARY);
14090
14091 varsize_limit = 65536;
14092
14093 add_info ("exceptions", info_exceptions_command,
14094 _("\
14095 List all Ada exception names.\n\
14096 If a regular expression is passed as an argument, only those matching\n\
14097 the regular expression are listed."));
14098
14099 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14100 _("Set Ada maintenance-related variables."),
14101 &maint_set_ada_cmdlist, "maintenance set ada ",
14102 0/*allow-unknown*/, &maintenance_set_cmdlist);
14103
14104 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14105 _("Show Ada maintenance-related variables"),
14106 &maint_show_ada_cmdlist, "maintenance show ada ",
14107 0/*allow-unknown*/, &maintenance_show_cmdlist);
14108
14109 add_setshow_boolean_cmd
14110 ("ignore-descriptive-types", class_maintenance,
14111 &ada_ignore_descriptive_types_p,
14112 _("Set whether descriptive types generated by GNAT should be ignored."),
14113 _("Show whether descriptive types generated by GNAT should be ignored."),
14114 _("\
14115 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14116 DWARF attribute."),
14117 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14118
14119 obstack_init (&symbol_list_obstack);
14120
14121 decoded_names_store = htab_create_alloc
14122 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14123 NULL, xcalloc, xfree);
14124
14125 /* The ada-lang observers. */
14126 observer_attach_new_objfile (ada_new_objfile_observer);
14127 observer_attach_free_objfile (ada_free_objfile_observer);
14128 observer_attach_inferior_exit (ada_inferior_exit);
14129
14130 /* Setup various context-specific data. */
14131 ada_inferior_data
14132 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14133 ada_pspace_data_handle
14134 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14135 }