]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
ada-lang.c::ada_value_cast: remove unused parameter noside
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (struct expression **, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (struct expression **, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
229 struct value *);
230
231 static int ada_resolve_function (struct block_symbol *, int,
232 struct value **, int, const char *,
233 struct type *);
234
235 static int ada_is_direct_array_type (struct type *);
236
237 static void ada_language_arch_info (struct gdbarch *,
238 struct language_arch_info *);
239
240 static struct value *ada_index_struct_field (int, struct value *, int,
241 struct type *);
242
243 static struct value *assign_aggregate (struct value *, struct value *,
244 struct expression *,
245 int *, enum noside);
246
247 static void aggregate_assign_from_choices (struct value *, struct value *,
248 struct expression *,
249 int *, LONGEST *, int *,
250 int, LONGEST, LONGEST);
251
252 static void aggregate_assign_positional (struct value *, struct value *,
253 struct expression *,
254 int *, LONGEST *, int *, int,
255 LONGEST, LONGEST);
256
257
258 static void aggregate_assign_others (struct value *, struct value *,
259 struct expression *,
260 int *, LONGEST *, int, LONGEST, LONGEST);
261
262
263 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
264
265
266 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
267 int *, enum noside);
268
269 static void ada_forward_operator_length (struct expression *, int, int *,
270 int *);
271
272 static struct type *ada_find_any_type (const char *name);
273
274 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
275 (const lookup_name_info &lookup_name);
276
277 \f
278
279 /* The result of a symbol lookup to be stored in our symbol cache. */
280
281 struct cache_entry
282 {
283 /* The name used to perform the lookup. */
284 const char *name;
285 /* The namespace used during the lookup. */
286 domain_enum domain;
287 /* The symbol returned by the lookup, or NULL if no matching symbol
288 was found. */
289 struct symbol *sym;
290 /* The block where the symbol was found, or NULL if no matching
291 symbol was found. */
292 const struct block *block;
293 /* A pointer to the next entry with the same hash. */
294 struct cache_entry *next;
295 };
296
297 /* The Ada symbol cache, used to store the result of Ada-mode symbol
298 lookups in the course of executing the user's commands.
299
300 The cache is implemented using a simple, fixed-sized hash.
301 The size is fixed on the grounds that there are not likely to be
302 all that many symbols looked up during any given session, regardless
303 of the size of the symbol table. If we decide to go to a resizable
304 table, let's just use the stuff from libiberty instead. */
305
306 #define HASH_SIZE 1009
307
308 struct ada_symbol_cache
309 {
310 /* An obstack used to store the entries in our cache. */
311 struct obstack cache_space;
312
313 /* The root of the hash table used to implement our symbol cache. */
314 struct cache_entry *root[HASH_SIZE];
315 };
316
317 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
318
319 /* Maximum-sized dynamic type. */
320 static unsigned int varsize_limit;
321
322 static const char ada_completer_word_break_characters[] =
323 #ifdef VMS
324 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
325 #else
326 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
327 #endif
328
329 /* The name of the symbol to use to get the name of the main subprogram. */
330 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
331 = "__gnat_ada_main_program_name";
332
333 /* Limit on the number of warnings to raise per expression evaluation. */
334 static int warning_limit = 2;
335
336 /* Number of warning messages issued; reset to 0 by cleanups after
337 expression evaluation. */
338 static int warnings_issued = 0;
339
340 static const char *known_runtime_file_name_patterns[] = {
341 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
342 };
343
344 static const char *known_auxiliary_function_name_patterns[] = {
345 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
346 };
347
348 /* Space for allocating results of ada_lookup_symbol_list. */
349 static struct obstack symbol_list_obstack;
350
351 /* Maintenance-related settings for this module. */
352
353 static struct cmd_list_element *maint_set_ada_cmdlist;
354 static struct cmd_list_element *maint_show_ada_cmdlist;
355
356 /* Implement the "maintenance set ada" (prefix) command. */
357
358 static void
359 maint_set_ada_cmd (const char *args, int from_tty)
360 {
361 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
362 gdb_stdout);
363 }
364
365 /* Implement the "maintenance show ada" (prefix) command. */
366
367 static void
368 maint_show_ada_cmd (const char *args, int from_tty)
369 {
370 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
371 }
372
373 /* The "maintenance ada set/show ignore-descriptive-type" value. */
374
375 static int ada_ignore_descriptive_types_p = 0;
376
377 /* Inferior-specific data. */
378
379 /* Per-inferior data for this module. */
380
381 struct ada_inferior_data
382 {
383 /* The ada__tags__type_specific_data type, which is used when decoding
384 tagged types. With older versions of GNAT, this type was directly
385 accessible through a component ("tsd") in the object tag. But this
386 is no longer the case, so we cache it for each inferior. */
387 struct type *tsd_type;
388
389 /* The exception_support_info data. This data is used to determine
390 how to implement support for Ada exception catchpoints in a given
391 inferior. */
392 const struct exception_support_info *exception_info;
393 };
394
395 /* Our key to this module's inferior data. */
396 static const struct inferior_data *ada_inferior_data;
397
398 /* A cleanup routine for our inferior data. */
399 static void
400 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
401 {
402 struct ada_inferior_data *data;
403
404 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
405 if (data != NULL)
406 xfree (data);
407 }
408
409 /* Return our inferior data for the given inferior (INF).
410
411 This function always returns a valid pointer to an allocated
412 ada_inferior_data structure. If INF's inferior data has not
413 been previously set, this functions creates a new one with all
414 fields set to zero, sets INF's inferior to it, and then returns
415 a pointer to that newly allocated ada_inferior_data. */
416
417 static struct ada_inferior_data *
418 get_ada_inferior_data (struct inferior *inf)
419 {
420 struct ada_inferior_data *data;
421
422 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
423 if (data == NULL)
424 {
425 data = XCNEW (struct ada_inferior_data);
426 set_inferior_data (inf, ada_inferior_data, data);
427 }
428
429 return data;
430 }
431
432 /* Perform all necessary cleanups regarding our module's inferior data
433 that is required after the inferior INF just exited. */
434
435 static void
436 ada_inferior_exit (struct inferior *inf)
437 {
438 ada_inferior_data_cleanup (inf, NULL);
439 set_inferior_data (inf, ada_inferior_data, NULL);
440 }
441
442
443 /* program-space-specific data. */
444
445 /* This module's per-program-space data. */
446 struct ada_pspace_data
447 {
448 /* The Ada symbol cache. */
449 struct ada_symbol_cache *sym_cache;
450 };
451
452 /* Key to our per-program-space data. */
453 static const struct program_space_data *ada_pspace_data_handle;
454
455 /* Return this module's data for the given program space (PSPACE).
456 If not is found, add a zero'ed one now.
457
458 This function always returns a valid object. */
459
460 static struct ada_pspace_data *
461 get_ada_pspace_data (struct program_space *pspace)
462 {
463 struct ada_pspace_data *data;
464
465 data = ((struct ada_pspace_data *)
466 program_space_data (pspace, ada_pspace_data_handle));
467 if (data == NULL)
468 {
469 data = XCNEW (struct ada_pspace_data);
470 set_program_space_data (pspace, ada_pspace_data_handle, data);
471 }
472
473 return data;
474 }
475
476 /* The cleanup callback for this module's per-program-space data. */
477
478 static void
479 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
480 {
481 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
482
483 if (pspace_data->sym_cache != NULL)
484 ada_free_symbol_cache (pspace_data->sym_cache);
485 xfree (pspace_data);
486 }
487
488 /* Utilities */
489
490 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
491 all typedef layers have been peeled. Otherwise, return TYPE.
492
493 Normally, we really expect a typedef type to only have 1 typedef layer.
494 In other words, we really expect the target type of a typedef type to be
495 a non-typedef type. This is particularly true for Ada units, because
496 the language does not have a typedef vs not-typedef distinction.
497 In that respect, the Ada compiler has been trying to eliminate as many
498 typedef definitions in the debugging information, since they generally
499 do not bring any extra information (we still use typedef under certain
500 circumstances related mostly to the GNAT encoding).
501
502 Unfortunately, we have seen situations where the debugging information
503 generated by the compiler leads to such multiple typedef layers. For
504 instance, consider the following example with stabs:
505
506 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
507 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
508
509 This is an error in the debugging information which causes type
510 pck__float_array___XUP to be defined twice, and the second time,
511 it is defined as a typedef of a typedef.
512
513 This is on the fringe of legality as far as debugging information is
514 concerned, and certainly unexpected. But it is easy to handle these
515 situations correctly, so we can afford to be lenient in this case. */
516
517 static struct type *
518 ada_typedef_target_type (struct type *type)
519 {
520 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
521 type = TYPE_TARGET_TYPE (type);
522 return type;
523 }
524
525 /* Given DECODED_NAME a string holding a symbol name in its
526 decoded form (ie using the Ada dotted notation), returns
527 its unqualified name. */
528
529 static const char *
530 ada_unqualified_name (const char *decoded_name)
531 {
532 const char *result;
533
534 /* If the decoded name starts with '<', it means that the encoded
535 name does not follow standard naming conventions, and thus that
536 it is not your typical Ada symbol name. Trying to unqualify it
537 is therefore pointless and possibly erroneous. */
538 if (decoded_name[0] == '<')
539 return decoded_name;
540
541 result = strrchr (decoded_name, '.');
542 if (result != NULL)
543 result++; /* Skip the dot... */
544 else
545 result = decoded_name;
546
547 return result;
548 }
549
550 /* Return a string starting with '<', followed by STR, and '>'.
551 The result is good until the next call. */
552
553 static char *
554 add_angle_brackets (const char *str)
555 {
556 static char *result = NULL;
557
558 xfree (result);
559 result = xstrprintf ("<%s>", str);
560 return result;
561 }
562
563 static const char *
564 ada_get_gdb_completer_word_break_characters (void)
565 {
566 return ada_completer_word_break_characters;
567 }
568
569 /* Print an array element index using the Ada syntax. */
570
571 static void
572 ada_print_array_index (struct value *index_value, struct ui_file *stream,
573 const struct value_print_options *options)
574 {
575 LA_VALUE_PRINT (index_value, stream, options);
576 fprintf_filtered (stream, " => ");
577 }
578
579 /* Assuming VECT points to an array of *SIZE objects of size
580 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
581 updating *SIZE as necessary and returning the (new) array. */
582
583 void *
584 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
585 {
586 if (*size < min_size)
587 {
588 *size *= 2;
589 if (*size < min_size)
590 *size = min_size;
591 vect = xrealloc (vect, *size * element_size);
592 }
593 return vect;
594 }
595
596 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
597 suffix of FIELD_NAME beginning "___". */
598
599 static int
600 field_name_match (const char *field_name, const char *target)
601 {
602 int len = strlen (target);
603
604 return
605 (strncmp (field_name, target, len) == 0
606 && (field_name[len] == '\0'
607 || (startswith (field_name + len, "___")
608 && strcmp (field_name + strlen (field_name) - 6,
609 "___XVN") != 0)));
610 }
611
612
613 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
614 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
615 and return its index. This function also handles fields whose name
616 have ___ suffixes because the compiler sometimes alters their name
617 by adding such a suffix to represent fields with certain constraints.
618 If the field could not be found, return a negative number if
619 MAYBE_MISSING is set. Otherwise raise an error. */
620
621 int
622 ada_get_field_index (const struct type *type, const char *field_name,
623 int maybe_missing)
624 {
625 int fieldno;
626 struct type *struct_type = check_typedef ((struct type *) type);
627
628 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
629 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
630 return fieldno;
631
632 if (!maybe_missing)
633 error (_("Unable to find field %s in struct %s. Aborting"),
634 field_name, TYPE_NAME (struct_type));
635
636 return -1;
637 }
638
639 /* The length of the prefix of NAME prior to any "___" suffix. */
640
641 int
642 ada_name_prefix_len (const char *name)
643 {
644 if (name == NULL)
645 return 0;
646 else
647 {
648 const char *p = strstr (name, "___");
649
650 if (p == NULL)
651 return strlen (name);
652 else
653 return p - name;
654 }
655 }
656
657 /* Return non-zero if SUFFIX is a suffix of STR.
658 Return zero if STR is null. */
659
660 static int
661 is_suffix (const char *str, const char *suffix)
662 {
663 int len1, len2;
664
665 if (str == NULL)
666 return 0;
667 len1 = strlen (str);
668 len2 = strlen (suffix);
669 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
670 }
671
672 /* The contents of value VAL, treated as a value of type TYPE. The
673 result is an lval in memory if VAL is. */
674
675 static struct value *
676 coerce_unspec_val_to_type (struct value *val, struct type *type)
677 {
678 type = ada_check_typedef (type);
679 if (value_type (val) == type)
680 return val;
681 else
682 {
683 struct value *result;
684
685 /* Make sure that the object size is not unreasonable before
686 trying to allocate some memory for it. */
687 ada_ensure_varsize_limit (type);
688
689 if (value_lazy (val)
690 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
691 result = allocate_value_lazy (type);
692 else
693 {
694 result = allocate_value (type);
695 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
696 }
697 set_value_component_location (result, val);
698 set_value_bitsize (result, value_bitsize (val));
699 set_value_bitpos (result, value_bitpos (val));
700 set_value_address (result, value_address (val));
701 return result;
702 }
703 }
704
705 static const gdb_byte *
706 cond_offset_host (const gdb_byte *valaddr, long offset)
707 {
708 if (valaddr == NULL)
709 return NULL;
710 else
711 return valaddr + offset;
712 }
713
714 static CORE_ADDR
715 cond_offset_target (CORE_ADDR address, long offset)
716 {
717 if (address == 0)
718 return 0;
719 else
720 return address + offset;
721 }
722
723 /* Issue a warning (as for the definition of warning in utils.c, but
724 with exactly one argument rather than ...), unless the limit on the
725 number of warnings has passed during the evaluation of the current
726 expression. */
727
728 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
729 provided by "complaint". */
730 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
731
732 static void
733 lim_warning (const char *format, ...)
734 {
735 va_list args;
736
737 va_start (args, format);
738 warnings_issued += 1;
739 if (warnings_issued <= warning_limit)
740 vwarning (format, args);
741
742 va_end (args);
743 }
744
745 /* Issue an error if the size of an object of type T is unreasonable,
746 i.e. if it would be a bad idea to allocate a value of this type in
747 GDB. */
748
749 void
750 ada_ensure_varsize_limit (const struct type *type)
751 {
752 if (TYPE_LENGTH (type) > varsize_limit)
753 error (_("object size is larger than varsize-limit"));
754 }
755
756 /* Maximum value of a SIZE-byte signed integer type. */
757 static LONGEST
758 max_of_size (int size)
759 {
760 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
761
762 return top_bit | (top_bit - 1);
763 }
764
765 /* Minimum value of a SIZE-byte signed integer type. */
766 static LONGEST
767 min_of_size (int size)
768 {
769 return -max_of_size (size) - 1;
770 }
771
772 /* Maximum value of a SIZE-byte unsigned integer type. */
773 static ULONGEST
774 umax_of_size (int size)
775 {
776 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
777
778 return top_bit | (top_bit - 1);
779 }
780
781 /* Maximum value of integral type T, as a signed quantity. */
782 static LONGEST
783 max_of_type (struct type *t)
784 {
785 if (TYPE_UNSIGNED (t))
786 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
787 else
788 return max_of_size (TYPE_LENGTH (t));
789 }
790
791 /* Minimum value of integral type T, as a signed quantity. */
792 static LONGEST
793 min_of_type (struct type *t)
794 {
795 if (TYPE_UNSIGNED (t))
796 return 0;
797 else
798 return min_of_size (TYPE_LENGTH (t));
799 }
800
801 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
802 LONGEST
803 ada_discrete_type_high_bound (struct type *type)
804 {
805 type = resolve_dynamic_type (type, NULL, 0);
806 switch (TYPE_CODE (type))
807 {
808 case TYPE_CODE_RANGE:
809 return TYPE_HIGH_BOUND (type);
810 case TYPE_CODE_ENUM:
811 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
812 case TYPE_CODE_BOOL:
813 return 1;
814 case TYPE_CODE_CHAR:
815 case TYPE_CODE_INT:
816 return max_of_type (type);
817 default:
818 error (_("Unexpected type in ada_discrete_type_high_bound."));
819 }
820 }
821
822 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
823 LONGEST
824 ada_discrete_type_low_bound (struct type *type)
825 {
826 type = resolve_dynamic_type (type, NULL, 0);
827 switch (TYPE_CODE (type))
828 {
829 case TYPE_CODE_RANGE:
830 return TYPE_LOW_BOUND (type);
831 case TYPE_CODE_ENUM:
832 return TYPE_FIELD_ENUMVAL (type, 0);
833 case TYPE_CODE_BOOL:
834 return 0;
835 case TYPE_CODE_CHAR:
836 case TYPE_CODE_INT:
837 return min_of_type (type);
838 default:
839 error (_("Unexpected type in ada_discrete_type_low_bound."));
840 }
841 }
842
843 /* The identity on non-range types. For range types, the underlying
844 non-range scalar type. */
845
846 static struct type *
847 get_base_type (struct type *type)
848 {
849 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
850 {
851 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
852 return type;
853 type = TYPE_TARGET_TYPE (type);
854 }
855 return type;
856 }
857
858 /* Return a decoded version of the given VALUE. This means returning
859 a value whose type is obtained by applying all the GNAT-specific
860 encondings, making the resulting type a static but standard description
861 of the initial type. */
862
863 struct value *
864 ada_get_decoded_value (struct value *value)
865 {
866 struct type *type = ada_check_typedef (value_type (value));
867
868 if (ada_is_array_descriptor_type (type)
869 || (ada_is_constrained_packed_array_type (type)
870 && TYPE_CODE (type) != TYPE_CODE_PTR))
871 {
872 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
873 value = ada_coerce_to_simple_array_ptr (value);
874 else
875 value = ada_coerce_to_simple_array (value);
876 }
877 else
878 value = ada_to_fixed_value (value);
879
880 return value;
881 }
882
883 /* Same as ada_get_decoded_value, but with the given TYPE.
884 Because there is no associated actual value for this type,
885 the resulting type might be a best-effort approximation in
886 the case of dynamic types. */
887
888 struct type *
889 ada_get_decoded_type (struct type *type)
890 {
891 type = to_static_fixed_type (type);
892 if (ada_is_constrained_packed_array_type (type))
893 type = ada_coerce_to_simple_array_type (type);
894 return type;
895 }
896
897 \f
898
899 /* Language Selection */
900
901 /* If the main program is in Ada, return language_ada, otherwise return LANG
902 (the main program is in Ada iif the adainit symbol is found). */
903
904 enum language
905 ada_update_initial_language (enum language lang)
906 {
907 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
908 (struct objfile *) NULL).minsym != NULL)
909 return language_ada;
910
911 return lang;
912 }
913
914 /* If the main procedure is written in Ada, then return its name.
915 The result is good until the next call. Return NULL if the main
916 procedure doesn't appear to be in Ada. */
917
918 char *
919 ada_main_name (void)
920 {
921 struct bound_minimal_symbol msym;
922 static char *main_program_name = NULL;
923
924 /* For Ada, the name of the main procedure is stored in a specific
925 string constant, generated by the binder. Look for that symbol,
926 extract its address, and then read that string. If we didn't find
927 that string, then most probably the main procedure is not written
928 in Ada. */
929 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
930
931 if (msym.minsym != NULL)
932 {
933 CORE_ADDR main_program_name_addr;
934 int err_code;
935
936 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
937 if (main_program_name_addr == 0)
938 error (_("Invalid address for Ada main program name."));
939
940 xfree (main_program_name);
941 target_read_string (main_program_name_addr, &main_program_name,
942 1024, &err_code);
943
944 if (err_code != 0)
945 return NULL;
946 return main_program_name;
947 }
948
949 /* The main procedure doesn't seem to be in Ada. */
950 return NULL;
951 }
952 \f
953 /* Symbols */
954
955 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
956 of NULLs. */
957
958 const struct ada_opname_map ada_opname_table[] = {
959 {"Oadd", "\"+\"", BINOP_ADD},
960 {"Osubtract", "\"-\"", BINOP_SUB},
961 {"Omultiply", "\"*\"", BINOP_MUL},
962 {"Odivide", "\"/\"", BINOP_DIV},
963 {"Omod", "\"mod\"", BINOP_MOD},
964 {"Orem", "\"rem\"", BINOP_REM},
965 {"Oexpon", "\"**\"", BINOP_EXP},
966 {"Olt", "\"<\"", BINOP_LESS},
967 {"Ole", "\"<=\"", BINOP_LEQ},
968 {"Ogt", "\">\"", BINOP_GTR},
969 {"Oge", "\">=\"", BINOP_GEQ},
970 {"Oeq", "\"=\"", BINOP_EQUAL},
971 {"One", "\"/=\"", BINOP_NOTEQUAL},
972 {"Oand", "\"and\"", BINOP_BITWISE_AND},
973 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
974 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
975 {"Oconcat", "\"&\"", BINOP_CONCAT},
976 {"Oabs", "\"abs\"", UNOP_ABS},
977 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
978 {"Oadd", "\"+\"", UNOP_PLUS},
979 {"Osubtract", "\"-\"", UNOP_NEG},
980 {NULL, NULL}
981 };
982
983 /* The "encoded" form of DECODED, according to GNAT conventions. The
984 result is valid until the next call to ada_encode. If
985 THROW_ERRORS, throw an error if invalid operator name is found.
986 Otherwise, return NULL in that case. */
987
988 static char *
989 ada_encode_1 (const char *decoded, bool throw_errors)
990 {
991 static char *encoding_buffer = NULL;
992 static size_t encoding_buffer_size = 0;
993 const char *p;
994 int k;
995
996 if (decoded == NULL)
997 return NULL;
998
999 GROW_VECT (encoding_buffer, encoding_buffer_size,
1000 2 * strlen (decoded) + 10);
1001
1002 k = 0;
1003 for (p = decoded; *p != '\0'; p += 1)
1004 {
1005 if (*p == '.')
1006 {
1007 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1008 k += 2;
1009 }
1010 else if (*p == '"')
1011 {
1012 const struct ada_opname_map *mapping;
1013
1014 for (mapping = ada_opname_table;
1015 mapping->encoded != NULL
1016 && !startswith (p, mapping->decoded); mapping += 1)
1017 ;
1018 if (mapping->encoded == NULL)
1019 {
1020 if (throw_errors)
1021 error (_("invalid Ada operator name: %s"), p);
1022 else
1023 return NULL;
1024 }
1025 strcpy (encoding_buffer + k, mapping->encoded);
1026 k += strlen (mapping->encoded);
1027 break;
1028 }
1029 else
1030 {
1031 encoding_buffer[k] = *p;
1032 k += 1;
1033 }
1034 }
1035
1036 encoding_buffer[k] = '\0';
1037 return encoding_buffer;
1038 }
1039
1040 /* The "encoded" form of DECODED, according to GNAT conventions.
1041 The result is valid until the next call to ada_encode. */
1042
1043 char *
1044 ada_encode (const char *decoded)
1045 {
1046 return ada_encode_1 (decoded, true);
1047 }
1048
1049 /* Return NAME folded to lower case, or, if surrounded by single
1050 quotes, unfolded, but with the quotes stripped away. Result good
1051 to next call. */
1052
1053 char *
1054 ada_fold_name (const char *name)
1055 {
1056 static char *fold_buffer = NULL;
1057 static size_t fold_buffer_size = 0;
1058
1059 int len = strlen (name);
1060 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1061
1062 if (name[0] == '\'')
1063 {
1064 strncpy (fold_buffer, name + 1, len - 2);
1065 fold_buffer[len - 2] = '\000';
1066 }
1067 else
1068 {
1069 int i;
1070
1071 for (i = 0; i <= len; i += 1)
1072 fold_buffer[i] = tolower (name[i]);
1073 }
1074
1075 return fold_buffer;
1076 }
1077
1078 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1079
1080 static int
1081 is_lower_alphanum (const char c)
1082 {
1083 return (isdigit (c) || (isalpha (c) && islower (c)));
1084 }
1085
1086 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1087 This function saves in LEN the length of that same symbol name but
1088 without either of these suffixes:
1089 . .{DIGIT}+
1090 . ${DIGIT}+
1091 . ___{DIGIT}+
1092 . __{DIGIT}+.
1093
1094 These are suffixes introduced by the compiler for entities such as
1095 nested subprogram for instance, in order to avoid name clashes.
1096 They do not serve any purpose for the debugger. */
1097
1098 static void
1099 ada_remove_trailing_digits (const char *encoded, int *len)
1100 {
1101 if (*len > 1 && isdigit (encoded[*len - 1]))
1102 {
1103 int i = *len - 2;
1104
1105 while (i > 0 && isdigit (encoded[i]))
1106 i--;
1107 if (i >= 0 && encoded[i] == '.')
1108 *len = i;
1109 else if (i >= 0 && encoded[i] == '$')
1110 *len = i;
1111 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1112 *len = i - 2;
1113 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1114 *len = i - 1;
1115 }
1116 }
1117
1118 /* Remove the suffix introduced by the compiler for protected object
1119 subprograms. */
1120
1121 static void
1122 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1123 {
1124 /* Remove trailing N. */
1125
1126 /* Protected entry subprograms are broken into two
1127 separate subprograms: The first one is unprotected, and has
1128 a 'N' suffix; the second is the protected version, and has
1129 the 'P' suffix. The second calls the first one after handling
1130 the protection. Since the P subprograms are internally generated,
1131 we leave these names undecoded, giving the user a clue that this
1132 entity is internal. */
1133
1134 if (*len > 1
1135 && encoded[*len - 1] == 'N'
1136 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1137 *len = *len - 1;
1138 }
1139
1140 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1141
1142 static void
1143 ada_remove_Xbn_suffix (const char *encoded, int *len)
1144 {
1145 int i = *len - 1;
1146
1147 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1148 i--;
1149
1150 if (encoded[i] != 'X')
1151 return;
1152
1153 if (i == 0)
1154 return;
1155
1156 if (isalnum (encoded[i-1]))
1157 *len = i;
1158 }
1159
1160 /* If ENCODED follows the GNAT entity encoding conventions, then return
1161 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1162 replaced by ENCODED.
1163
1164 The resulting string is valid until the next call of ada_decode.
1165 If the string is unchanged by decoding, the original string pointer
1166 is returned. */
1167
1168 const char *
1169 ada_decode (const char *encoded)
1170 {
1171 int i, j;
1172 int len0;
1173 const char *p;
1174 char *decoded;
1175 int at_start_name;
1176 static char *decoding_buffer = NULL;
1177 static size_t decoding_buffer_size = 0;
1178
1179 /* The name of the Ada main procedure starts with "_ada_".
1180 This prefix is not part of the decoded name, so skip this part
1181 if we see this prefix. */
1182 if (startswith (encoded, "_ada_"))
1183 encoded += 5;
1184
1185 /* If the name starts with '_', then it is not a properly encoded
1186 name, so do not attempt to decode it. Similarly, if the name
1187 starts with '<', the name should not be decoded. */
1188 if (encoded[0] == '_' || encoded[0] == '<')
1189 goto Suppress;
1190
1191 len0 = strlen (encoded);
1192
1193 ada_remove_trailing_digits (encoded, &len0);
1194 ada_remove_po_subprogram_suffix (encoded, &len0);
1195
1196 /* Remove the ___X.* suffix if present. Do not forget to verify that
1197 the suffix is located before the current "end" of ENCODED. We want
1198 to avoid re-matching parts of ENCODED that have previously been
1199 marked as discarded (by decrementing LEN0). */
1200 p = strstr (encoded, "___");
1201 if (p != NULL && p - encoded < len0 - 3)
1202 {
1203 if (p[3] == 'X')
1204 len0 = p - encoded;
1205 else
1206 goto Suppress;
1207 }
1208
1209 /* Remove any trailing TKB suffix. It tells us that this symbol
1210 is for the body of a task, but that information does not actually
1211 appear in the decoded name. */
1212
1213 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1214 len0 -= 3;
1215
1216 /* Remove any trailing TB suffix. The TB suffix is slightly different
1217 from the TKB suffix because it is used for non-anonymous task
1218 bodies. */
1219
1220 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1221 len0 -= 2;
1222
1223 /* Remove trailing "B" suffixes. */
1224 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1225
1226 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1227 len0 -= 1;
1228
1229 /* Make decoded big enough for possible expansion by operator name. */
1230
1231 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1232 decoded = decoding_buffer;
1233
1234 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1235
1236 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1237 {
1238 i = len0 - 2;
1239 while ((i >= 0 && isdigit (encoded[i]))
1240 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1241 i -= 1;
1242 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1243 len0 = i - 1;
1244 else if (encoded[i] == '$')
1245 len0 = i;
1246 }
1247
1248 /* The first few characters that are not alphabetic are not part
1249 of any encoding we use, so we can copy them over verbatim. */
1250
1251 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1252 decoded[j] = encoded[i];
1253
1254 at_start_name = 1;
1255 while (i < len0)
1256 {
1257 /* Is this a symbol function? */
1258 if (at_start_name && encoded[i] == 'O')
1259 {
1260 int k;
1261
1262 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1263 {
1264 int op_len = strlen (ada_opname_table[k].encoded);
1265 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1266 op_len - 1) == 0)
1267 && !isalnum (encoded[i + op_len]))
1268 {
1269 strcpy (decoded + j, ada_opname_table[k].decoded);
1270 at_start_name = 0;
1271 i += op_len;
1272 j += strlen (ada_opname_table[k].decoded);
1273 break;
1274 }
1275 }
1276 if (ada_opname_table[k].encoded != NULL)
1277 continue;
1278 }
1279 at_start_name = 0;
1280
1281 /* Replace "TK__" with "__", which will eventually be translated
1282 into "." (just below). */
1283
1284 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1285 i += 2;
1286
1287 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1288 be translated into "." (just below). These are internal names
1289 generated for anonymous blocks inside which our symbol is nested. */
1290
1291 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1292 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1293 && isdigit (encoded [i+4]))
1294 {
1295 int k = i + 5;
1296
1297 while (k < len0 && isdigit (encoded[k]))
1298 k++; /* Skip any extra digit. */
1299
1300 /* Double-check that the "__B_{DIGITS}+" sequence we found
1301 is indeed followed by "__". */
1302 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1303 i = k;
1304 }
1305
1306 /* Remove _E{DIGITS}+[sb] */
1307
1308 /* Just as for protected object subprograms, there are 2 categories
1309 of subprograms created by the compiler for each entry. The first
1310 one implements the actual entry code, and has a suffix following
1311 the convention above; the second one implements the barrier and
1312 uses the same convention as above, except that the 'E' is replaced
1313 by a 'B'.
1314
1315 Just as above, we do not decode the name of barrier functions
1316 to give the user a clue that the code he is debugging has been
1317 internally generated. */
1318
1319 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1320 && isdigit (encoded[i+2]))
1321 {
1322 int k = i + 3;
1323
1324 while (k < len0 && isdigit (encoded[k]))
1325 k++;
1326
1327 if (k < len0
1328 && (encoded[k] == 'b' || encoded[k] == 's'))
1329 {
1330 k++;
1331 /* Just as an extra precaution, make sure that if this
1332 suffix is followed by anything else, it is a '_'.
1333 Otherwise, we matched this sequence by accident. */
1334 if (k == len0
1335 || (k < len0 && encoded[k] == '_'))
1336 i = k;
1337 }
1338 }
1339
1340 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1341 the GNAT front-end in protected object subprograms. */
1342
1343 if (i < len0 + 3
1344 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1345 {
1346 /* Backtrack a bit up until we reach either the begining of
1347 the encoded name, or "__". Make sure that we only find
1348 digits or lowercase characters. */
1349 const char *ptr = encoded + i - 1;
1350
1351 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1352 ptr--;
1353 if (ptr < encoded
1354 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1355 i++;
1356 }
1357
1358 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1359 {
1360 /* This is a X[bn]* sequence not separated from the previous
1361 part of the name with a non-alpha-numeric character (in other
1362 words, immediately following an alpha-numeric character), then
1363 verify that it is placed at the end of the encoded name. If
1364 not, then the encoding is not valid and we should abort the
1365 decoding. Otherwise, just skip it, it is used in body-nested
1366 package names. */
1367 do
1368 i += 1;
1369 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1370 if (i < len0)
1371 goto Suppress;
1372 }
1373 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1374 {
1375 /* Replace '__' by '.'. */
1376 decoded[j] = '.';
1377 at_start_name = 1;
1378 i += 2;
1379 j += 1;
1380 }
1381 else
1382 {
1383 /* It's a character part of the decoded name, so just copy it
1384 over. */
1385 decoded[j] = encoded[i];
1386 i += 1;
1387 j += 1;
1388 }
1389 }
1390 decoded[j] = '\000';
1391
1392 /* Decoded names should never contain any uppercase character.
1393 Double-check this, and abort the decoding if we find one. */
1394
1395 for (i = 0; decoded[i] != '\0'; i += 1)
1396 if (isupper (decoded[i]) || decoded[i] == ' ')
1397 goto Suppress;
1398
1399 if (strcmp (decoded, encoded) == 0)
1400 return encoded;
1401 else
1402 return decoded;
1403
1404 Suppress:
1405 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1406 decoded = decoding_buffer;
1407 if (encoded[0] == '<')
1408 strcpy (decoded, encoded);
1409 else
1410 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1411 return decoded;
1412
1413 }
1414
1415 /* Table for keeping permanent unique copies of decoded names. Once
1416 allocated, names in this table are never released. While this is a
1417 storage leak, it should not be significant unless there are massive
1418 changes in the set of decoded names in successive versions of a
1419 symbol table loaded during a single session. */
1420 static struct htab *decoded_names_store;
1421
1422 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1423 in the language-specific part of GSYMBOL, if it has not been
1424 previously computed. Tries to save the decoded name in the same
1425 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1426 in any case, the decoded symbol has a lifetime at least that of
1427 GSYMBOL).
1428 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1429 const, but nevertheless modified to a semantically equivalent form
1430 when a decoded name is cached in it. */
1431
1432 const char *
1433 ada_decode_symbol (const struct general_symbol_info *arg)
1434 {
1435 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1436 const char **resultp =
1437 &gsymbol->language_specific.demangled_name;
1438
1439 if (!gsymbol->ada_mangled)
1440 {
1441 const char *decoded = ada_decode (gsymbol->name);
1442 struct obstack *obstack = gsymbol->language_specific.obstack;
1443
1444 gsymbol->ada_mangled = 1;
1445
1446 if (obstack != NULL)
1447 *resultp
1448 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1449 else
1450 {
1451 /* Sometimes, we can't find a corresponding objfile, in
1452 which case, we put the result on the heap. Since we only
1453 decode when needed, we hope this usually does not cause a
1454 significant memory leak (FIXME). */
1455
1456 char **slot = (char **) htab_find_slot (decoded_names_store,
1457 decoded, INSERT);
1458
1459 if (*slot == NULL)
1460 *slot = xstrdup (decoded);
1461 *resultp = *slot;
1462 }
1463 }
1464
1465 return *resultp;
1466 }
1467
1468 static char *
1469 ada_la_decode (const char *encoded, int options)
1470 {
1471 return xstrdup (ada_decode (encoded));
1472 }
1473
1474 /* Implement la_sniff_from_mangled_name for Ada. */
1475
1476 static int
1477 ada_sniff_from_mangled_name (const char *mangled, char **out)
1478 {
1479 const char *demangled = ada_decode (mangled);
1480
1481 *out = NULL;
1482
1483 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1484 {
1485 /* Set the gsymbol language to Ada, but still return 0.
1486 Two reasons for that:
1487
1488 1. For Ada, we prefer computing the symbol's decoded name
1489 on the fly rather than pre-compute it, in order to save
1490 memory (Ada projects are typically very large).
1491
1492 2. There are some areas in the definition of the GNAT
1493 encoding where, with a bit of bad luck, we might be able
1494 to decode a non-Ada symbol, generating an incorrect
1495 demangled name (Eg: names ending with "TB" for instance
1496 are identified as task bodies and so stripped from
1497 the decoded name returned).
1498
1499 Returning 1, here, but not setting *DEMANGLED, helps us get a
1500 little bit of the best of both worlds. Because we're last,
1501 we should not affect any of the other languages that were
1502 able to demangle the symbol before us; we get to correctly
1503 tag Ada symbols as such; and even if we incorrectly tagged a
1504 non-Ada symbol, which should be rare, any routing through the
1505 Ada language should be transparent (Ada tries to behave much
1506 like C/C++ with non-Ada symbols). */
1507 return 1;
1508 }
1509
1510 return 0;
1511 }
1512
1513 \f
1514
1515 /* Arrays */
1516
1517 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1518 generated by the GNAT compiler to describe the index type used
1519 for each dimension of an array, check whether it follows the latest
1520 known encoding. If not, fix it up to conform to the latest encoding.
1521 Otherwise, do nothing. This function also does nothing if
1522 INDEX_DESC_TYPE is NULL.
1523
1524 The GNAT encoding used to describle the array index type evolved a bit.
1525 Initially, the information would be provided through the name of each
1526 field of the structure type only, while the type of these fields was
1527 described as unspecified and irrelevant. The debugger was then expected
1528 to perform a global type lookup using the name of that field in order
1529 to get access to the full index type description. Because these global
1530 lookups can be very expensive, the encoding was later enhanced to make
1531 the global lookup unnecessary by defining the field type as being
1532 the full index type description.
1533
1534 The purpose of this routine is to allow us to support older versions
1535 of the compiler by detecting the use of the older encoding, and by
1536 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1537 we essentially replace each field's meaningless type by the associated
1538 index subtype). */
1539
1540 void
1541 ada_fixup_array_indexes_type (struct type *index_desc_type)
1542 {
1543 int i;
1544
1545 if (index_desc_type == NULL)
1546 return;
1547 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1548
1549 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1550 to check one field only, no need to check them all). If not, return
1551 now.
1552
1553 If our INDEX_DESC_TYPE was generated using the older encoding,
1554 the field type should be a meaningless integer type whose name
1555 is not equal to the field name. */
1556 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1557 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1558 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1559 return;
1560
1561 /* Fixup each field of INDEX_DESC_TYPE. */
1562 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1563 {
1564 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1565 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1566
1567 if (raw_type)
1568 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1569 }
1570 }
1571
1572 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1573
1574 static const char *bound_name[] = {
1575 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1576 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1577 };
1578
1579 /* Maximum number of array dimensions we are prepared to handle. */
1580
1581 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1582
1583
1584 /* The desc_* routines return primitive portions of array descriptors
1585 (fat pointers). */
1586
1587 /* The descriptor or array type, if any, indicated by TYPE; removes
1588 level of indirection, if needed. */
1589
1590 static struct type *
1591 desc_base_type (struct type *type)
1592 {
1593 if (type == NULL)
1594 return NULL;
1595 type = ada_check_typedef (type);
1596 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1597 type = ada_typedef_target_type (type);
1598
1599 if (type != NULL
1600 && (TYPE_CODE (type) == TYPE_CODE_PTR
1601 || TYPE_CODE (type) == TYPE_CODE_REF))
1602 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1603 else
1604 return type;
1605 }
1606
1607 /* True iff TYPE indicates a "thin" array pointer type. */
1608
1609 static int
1610 is_thin_pntr (struct type *type)
1611 {
1612 return
1613 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1614 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1615 }
1616
1617 /* The descriptor type for thin pointer type TYPE. */
1618
1619 static struct type *
1620 thin_descriptor_type (struct type *type)
1621 {
1622 struct type *base_type = desc_base_type (type);
1623
1624 if (base_type == NULL)
1625 return NULL;
1626 if (is_suffix (ada_type_name (base_type), "___XVE"))
1627 return base_type;
1628 else
1629 {
1630 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1631
1632 if (alt_type == NULL)
1633 return base_type;
1634 else
1635 return alt_type;
1636 }
1637 }
1638
1639 /* A pointer to the array data for thin-pointer value VAL. */
1640
1641 static struct value *
1642 thin_data_pntr (struct value *val)
1643 {
1644 struct type *type = ada_check_typedef (value_type (val));
1645 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1646
1647 data_type = lookup_pointer_type (data_type);
1648
1649 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1650 return value_cast (data_type, value_copy (val));
1651 else
1652 return value_from_longest (data_type, value_address (val));
1653 }
1654
1655 /* True iff TYPE indicates a "thick" array pointer type. */
1656
1657 static int
1658 is_thick_pntr (struct type *type)
1659 {
1660 type = desc_base_type (type);
1661 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1662 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1663 }
1664
1665 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1666 pointer to one, the type of its bounds data; otherwise, NULL. */
1667
1668 static struct type *
1669 desc_bounds_type (struct type *type)
1670 {
1671 struct type *r;
1672
1673 type = desc_base_type (type);
1674
1675 if (type == NULL)
1676 return NULL;
1677 else if (is_thin_pntr (type))
1678 {
1679 type = thin_descriptor_type (type);
1680 if (type == NULL)
1681 return NULL;
1682 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1683 if (r != NULL)
1684 return ada_check_typedef (r);
1685 }
1686 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1687 {
1688 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1689 if (r != NULL)
1690 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1691 }
1692 return NULL;
1693 }
1694
1695 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1696 one, a pointer to its bounds data. Otherwise NULL. */
1697
1698 static struct value *
1699 desc_bounds (struct value *arr)
1700 {
1701 struct type *type = ada_check_typedef (value_type (arr));
1702
1703 if (is_thin_pntr (type))
1704 {
1705 struct type *bounds_type =
1706 desc_bounds_type (thin_descriptor_type (type));
1707 LONGEST addr;
1708
1709 if (bounds_type == NULL)
1710 error (_("Bad GNAT array descriptor"));
1711
1712 /* NOTE: The following calculation is not really kosher, but
1713 since desc_type is an XVE-encoded type (and shouldn't be),
1714 the correct calculation is a real pain. FIXME (and fix GCC). */
1715 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1716 addr = value_as_long (arr);
1717 else
1718 addr = value_address (arr);
1719
1720 return
1721 value_from_longest (lookup_pointer_type (bounds_type),
1722 addr - TYPE_LENGTH (bounds_type));
1723 }
1724
1725 else if (is_thick_pntr (type))
1726 {
1727 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1728 _("Bad GNAT array descriptor"));
1729 struct type *p_bounds_type = value_type (p_bounds);
1730
1731 if (p_bounds_type
1732 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1733 {
1734 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1735
1736 if (TYPE_STUB (target_type))
1737 p_bounds = value_cast (lookup_pointer_type
1738 (ada_check_typedef (target_type)),
1739 p_bounds);
1740 }
1741 else
1742 error (_("Bad GNAT array descriptor"));
1743
1744 return p_bounds;
1745 }
1746 else
1747 return NULL;
1748 }
1749
1750 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1751 position of the field containing the address of the bounds data. */
1752
1753 static int
1754 fat_pntr_bounds_bitpos (struct type *type)
1755 {
1756 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1757 }
1758
1759 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1760 size of the field containing the address of the bounds data. */
1761
1762 static int
1763 fat_pntr_bounds_bitsize (struct type *type)
1764 {
1765 type = desc_base_type (type);
1766
1767 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1768 return TYPE_FIELD_BITSIZE (type, 1);
1769 else
1770 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1771 }
1772
1773 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1774 pointer to one, the type of its array data (a array-with-no-bounds type);
1775 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1776 data. */
1777
1778 static struct type *
1779 desc_data_target_type (struct type *type)
1780 {
1781 type = desc_base_type (type);
1782
1783 /* NOTE: The following is bogus; see comment in desc_bounds. */
1784 if (is_thin_pntr (type))
1785 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1786 else if (is_thick_pntr (type))
1787 {
1788 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1789
1790 if (data_type
1791 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1792 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1793 }
1794
1795 return NULL;
1796 }
1797
1798 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1799 its array data. */
1800
1801 static struct value *
1802 desc_data (struct value *arr)
1803 {
1804 struct type *type = value_type (arr);
1805
1806 if (is_thin_pntr (type))
1807 return thin_data_pntr (arr);
1808 else if (is_thick_pntr (type))
1809 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1810 _("Bad GNAT array descriptor"));
1811 else
1812 return NULL;
1813 }
1814
1815
1816 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1817 position of the field containing the address of the data. */
1818
1819 static int
1820 fat_pntr_data_bitpos (struct type *type)
1821 {
1822 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1823 }
1824
1825 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1826 size of the field containing the address of the data. */
1827
1828 static int
1829 fat_pntr_data_bitsize (struct type *type)
1830 {
1831 type = desc_base_type (type);
1832
1833 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1834 return TYPE_FIELD_BITSIZE (type, 0);
1835 else
1836 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1837 }
1838
1839 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1840 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1841 bound, if WHICH is 1. The first bound is I=1. */
1842
1843 static struct value *
1844 desc_one_bound (struct value *bounds, int i, int which)
1845 {
1846 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1847 _("Bad GNAT array descriptor bounds"));
1848 }
1849
1850 /* If BOUNDS is an array-bounds structure type, return the bit position
1851 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1852 bound, if WHICH is 1. The first bound is I=1. */
1853
1854 static int
1855 desc_bound_bitpos (struct type *type, int i, int which)
1856 {
1857 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1858 }
1859
1860 /* If BOUNDS is an array-bounds structure type, return the bit field size
1861 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1862 bound, if WHICH is 1. The first bound is I=1. */
1863
1864 static int
1865 desc_bound_bitsize (struct type *type, int i, int which)
1866 {
1867 type = desc_base_type (type);
1868
1869 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1870 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1871 else
1872 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1873 }
1874
1875 /* If TYPE is the type of an array-bounds structure, the type of its
1876 Ith bound (numbering from 1). Otherwise, NULL. */
1877
1878 static struct type *
1879 desc_index_type (struct type *type, int i)
1880 {
1881 type = desc_base_type (type);
1882
1883 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1884 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1885 else
1886 return NULL;
1887 }
1888
1889 /* The number of index positions in the array-bounds type TYPE.
1890 Return 0 if TYPE is NULL. */
1891
1892 static int
1893 desc_arity (struct type *type)
1894 {
1895 type = desc_base_type (type);
1896
1897 if (type != NULL)
1898 return TYPE_NFIELDS (type) / 2;
1899 return 0;
1900 }
1901
1902 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1903 an array descriptor type (representing an unconstrained array
1904 type). */
1905
1906 static int
1907 ada_is_direct_array_type (struct type *type)
1908 {
1909 if (type == NULL)
1910 return 0;
1911 type = ada_check_typedef (type);
1912 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1913 || ada_is_array_descriptor_type (type));
1914 }
1915
1916 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1917 * to one. */
1918
1919 static int
1920 ada_is_array_type (struct type *type)
1921 {
1922 while (type != NULL
1923 && (TYPE_CODE (type) == TYPE_CODE_PTR
1924 || TYPE_CODE (type) == TYPE_CODE_REF))
1925 type = TYPE_TARGET_TYPE (type);
1926 return ada_is_direct_array_type (type);
1927 }
1928
1929 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1930
1931 int
1932 ada_is_simple_array_type (struct type *type)
1933 {
1934 if (type == NULL)
1935 return 0;
1936 type = ada_check_typedef (type);
1937 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1938 || (TYPE_CODE (type) == TYPE_CODE_PTR
1939 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1940 == TYPE_CODE_ARRAY));
1941 }
1942
1943 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1944
1945 int
1946 ada_is_array_descriptor_type (struct type *type)
1947 {
1948 struct type *data_type = desc_data_target_type (type);
1949
1950 if (type == NULL)
1951 return 0;
1952 type = ada_check_typedef (type);
1953 return (data_type != NULL
1954 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1955 && desc_arity (desc_bounds_type (type)) > 0);
1956 }
1957
1958 /* Non-zero iff type is a partially mal-formed GNAT array
1959 descriptor. FIXME: This is to compensate for some problems with
1960 debugging output from GNAT. Re-examine periodically to see if it
1961 is still needed. */
1962
1963 int
1964 ada_is_bogus_array_descriptor (struct type *type)
1965 {
1966 return
1967 type != NULL
1968 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1969 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1970 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1971 && !ada_is_array_descriptor_type (type);
1972 }
1973
1974
1975 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1976 (fat pointer) returns the type of the array data described---specifically,
1977 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1978 in from the descriptor; otherwise, they are left unspecified. If
1979 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1980 returns NULL. The result is simply the type of ARR if ARR is not
1981 a descriptor. */
1982 struct type *
1983 ada_type_of_array (struct value *arr, int bounds)
1984 {
1985 if (ada_is_constrained_packed_array_type (value_type (arr)))
1986 return decode_constrained_packed_array_type (value_type (arr));
1987
1988 if (!ada_is_array_descriptor_type (value_type (arr)))
1989 return value_type (arr);
1990
1991 if (!bounds)
1992 {
1993 struct type *array_type =
1994 ada_check_typedef (desc_data_target_type (value_type (arr)));
1995
1996 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1997 TYPE_FIELD_BITSIZE (array_type, 0) =
1998 decode_packed_array_bitsize (value_type (arr));
1999
2000 return array_type;
2001 }
2002 else
2003 {
2004 struct type *elt_type;
2005 int arity;
2006 struct value *descriptor;
2007
2008 elt_type = ada_array_element_type (value_type (arr), -1);
2009 arity = ada_array_arity (value_type (arr));
2010
2011 if (elt_type == NULL || arity == 0)
2012 return ada_check_typedef (value_type (arr));
2013
2014 descriptor = desc_bounds (arr);
2015 if (value_as_long (descriptor) == 0)
2016 return NULL;
2017 while (arity > 0)
2018 {
2019 struct type *range_type = alloc_type_copy (value_type (arr));
2020 struct type *array_type = alloc_type_copy (value_type (arr));
2021 struct value *low = desc_one_bound (descriptor, arity, 0);
2022 struct value *high = desc_one_bound (descriptor, arity, 1);
2023
2024 arity -= 1;
2025 create_static_range_type (range_type, value_type (low),
2026 longest_to_int (value_as_long (low)),
2027 longest_to_int (value_as_long (high)));
2028 elt_type = create_array_type (array_type, elt_type, range_type);
2029
2030 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2031 {
2032 /* We need to store the element packed bitsize, as well as
2033 recompute the array size, because it was previously
2034 computed based on the unpacked element size. */
2035 LONGEST lo = value_as_long (low);
2036 LONGEST hi = value_as_long (high);
2037
2038 TYPE_FIELD_BITSIZE (elt_type, 0) =
2039 decode_packed_array_bitsize (value_type (arr));
2040 /* If the array has no element, then the size is already
2041 zero, and does not need to be recomputed. */
2042 if (lo < hi)
2043 {
2044 int array_bitsize =
2045 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2046
2047 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2048 }
2049 }
2050 }
2051
2052 return lookup_pointer_type (elt_type);
2053 }
2054 }
2055
2056 /* If ARR does not represent an array, returns ARR unchanged.
2057 Otherwise, returns either a standard GDB array with bounds set
2058 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2059 GDB array. Returns NULL if ARR is a null fat pointer. */
2060
2061 struct value *
2062 ada_coerce_to_simple_array_ptr (struct value *arr)
2063 {
2064 if (ada_is_array_descriptor_type (value_type (arr)))
2065 {
2066 struct type *arrType = ada_type_of_array (arr, 1);
2067
2068 if (arrType == NULL)
2069 return NULL;
2070 return value_cast (arrType, value_copy (desc_data (arr)));
2071 }
2072 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2073 return decode_constrained_packed_array (arr);
2074 else
2075 return arr;
2076 }
2077
2078 /* If ARR does not represent an array, returns ARR unchanged.
2079 Otherwise, returns a standard GDB array describing ARR (which may
2080 be ARR itself if it already is in the proper form). */
2081
2082 struct value *
2083 ada_coerce_to_simple_array (struct value *arr)
2084 {
2085 if (ada_is_array_descriptor_type (value_type (arr)))
2086 {
2087 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2088
2089 if (arrVal == NULL)
2090 error (_("Bounds unavailable for null array pointer."));
2091 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2092 return value_ind (arrVal);
2093 }
2094 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2095 return decode_constrained_packed_array (arr);
2096 else
2097 return arr;
2098 }
2099
2100 /* If TYPE represents a GNAT array type, return it translated to an
2101 ordinary GDB array type (possibly with BITSIZE fields indicating
2102 packing). For other types, is the identity. */
2103
2104 struct type *
2105 ada_coerce_to_simple_array_type (struct type *type)
2106 {
2107 if (ada_is_constrained_packed_array_type (type))
2108 return decode_constrained_packed_array_type (type);
2109
2110 if (ada_is_array_descriptor_type (type))
2111 return ada_check_typedef (desc_data_target_type (type));
2112
2113 return type;
2114 }
2115
2116 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2117
2118 static int
2119 ada_is_packed_array_type (struct type *type)
2120 {
2121 if (type == NULL)
2122 return 0;
2123 type = desc_base_type (type);
2124 type = ada_check_typedef (type);
2125 return
2126 ada_type_name (type) != NULL
2127 && strstr (ada_type_name (type), "___XP") != NULL;
2128 }
2129
2130 /* Non-zero iff TYPE represents a standard GNAT constrained
2131 packed-array type. */
2132
2133 int
2134 ada_is_constrained_packed_array_type (struct type *type)
2135 {
2136 return ada_is_packed_array_type (type)
2137 && !ada_is_array_descriptor_type (type);
2138 }
2139
2140 /* Non-zero iff TYPE represents an array descriptor for a
2141 unconstrained packed-array type. */
2142
2143 static int
2144 ada_is_unconstrained_packed_array_type (struct type *type)
2145 {
2146 return ada_is_packed_array_type (type)
2147 && ada_is_array_descriptor_type (type);
2148 }
2149
2150 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2151 return the size of its elements in bits. */
2152
2153 static long
2154 decode_packed_array_bitsize (struct type *type)
2155 {
2156 const char *raw_name;
2157 const char *tail;
2158 long bits;
2159
2160 /* Access to arrays implemented as fat pointers are encoded as a typedef
2161 of the fat pointer type. We need the name of the fat pointer type
2162 to do the decoding, so strip the typedef layer. */
2163 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2164 type = ada_typedef_target_type (type);
2165
2166 raw_name = ada_type_name (ada_check_typedef (type));
2167 if (!raw_name)
2168 raw_name = ada_type_name (desc_base_type (type));
2169
2170 if (!raw_name)
2171 return 0;
2172
2173 tail = strstr (raw_name, "___XP");
2174 gdb_assert (tail != NULL);
2175
2176 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2177 {
2178 lim_warning
2179 (_("could not understand bit size information on packed array"));
2180 return 0;
2181 }
2182
2183 return bits;
2184 }
2185
2186 /* Given that TYPE is a standard GDB array type with all bounds filled
2187 in, and that the element size of its ultimate scalar constituents
2188 (that is, either its elements, or, if it is an array of arrays, its
2189 elements' elements, etc.) is *ELT_BITS, return an identical type,
2190 but with the bit sizes of its elements (and those of any
2191 constituent arrays) recorded in the BITSIZE components of its
2192 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2193 in bits.
2194
2195 Note that, for arrays whose index type has an XA encoding where
2196 a bound references a record discriminant, getting that discriminant,
2197 and therefore the actual value of that bound, is not possible
2198 because none of the given parameters gives us access to the record.
2199 This function assumes that it is OK in the context where it is being
2200 used to return an array whose bounds are still dynamic and where
2201 the length is arbitrary. */
2202
2203 static struct type *
2204 constrained_packed_array_type (struct type *type, long *elt_bits)
2205 {
2206 struct type *new_elt_type;
2207 struct type *new_type;
2208 struct type *index_type_desc;
2209 struct type *index_type;
2210 LONGEST low_bound, high_bound;
2211
2212 type = ada_check_typedef (type);
2213 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2214 return type;
2215
2216 index_type_desc = ada_find_parallel_type (type, "___XA");
2217 if (index_type_desc)
2218 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2219 NULL);
2220 else
2221 index_type = TYPE_INDEX_TYPE (type);
2222
2223 new_type = alloc_type_copy (type);
2224 new_elt_type =
2225 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2226 elt_bits);
2227 create_array_type (new_type, new_elt_type, index_type);
2228 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2229 TYPE_NAME (new_type) = ada_type_name (type);
2230
2231 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2232 && is_dynamic_type (check_typedef (index_type)))
2233 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2234 low_bound = high_bound = 0;
2235 if (high_bound < low_bound)
2236 *elt_bits = TYPE_LENGTH (new_type) = 0;
2237 else
2238 {
2239 *elt_bits *= (high_bound - low_bound + 1);
2240 TYPE_LENGTH (new_type) =
2241 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2242 }
2243
2244 TYPE_FIXED_INSTANCE (new_type) = 1;
2245 return new_type;
2246 }
2247
2248 /* The array type encoded by TYPE, where
2249 ada_is_constrained_packed_array_type (TYPE). */
2250
2251 static struct type *
2252 decode_constrained_packed_array_type (struct type *type)
2253 {
2254 const char *raw_name = ada_type_name (ada_check_typedef (type));
2255 char *name;
2256 const char *tail;
2257 struct type *shadow_type;
2258 long bits;
2259
2260 if (!raw_name)
2261 raw_name = ada_type_name (desc_base_type (type));
2262
2263 if (!raw_name)
2264 return NULL;
2265
2266 name = (char *) alloca (strlen (raw_name) + 1);
2267 tail = strstr (raw_name, "___XP");
2268 type = desc_base_type (type);
2269
2270 memcpy (name, raw_name, tail - raw_name);
2271 name[tail - raw_name] = '\000';
2272
2273 shadow_type = ada_find_parallel_type_with_name (type, name);
2274
2275 if (shadow_type == NULL)
2276 {
2277 lim_warning (_("could not find bounds information on packed array"));
2278 return NULL;
2279 }
2280 shadow_type = check_typedef (shadow_type);
2281
2282 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2283 {
2284 lim_warning (_("could not understand bounds "
2285 "information on packed array"));
2286 return NULL;
2287 }
2288
2289 bits = decode_packed_array_bitsize (type);
2290 return constrained_packed_array_type (shadow_type, &bits);
2291 }
2292
2293 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2294 array, returns a simple array that denotes that array. Its type is a
2295 standard GDB array type except that the BITSIZEs of the array
2296 target types are set to the number of bits in each element, and the
2297 type length is set appropriately. */
2298
2299 static struct value *
2300 decode_constrained_packed_array (struct value *arr)
2301 {
2302 struct type *type;
2303
2304 /* If our value is a pointer, then dereference it. Likewise if
2305 the value is a reference. Make sure that this operation does not
2306 cause the target type to be fixed, as this would indirectly cause
2307 this array to be decoded. The rest of the routine assumes that
2308 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2309 and "value_ind" routines to perform the dereferencing, as opposed
2310 to using "ada_coerce_ref" or "ada_value_ind". */
2311 arr = coerce_ref (arr);
2312 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2313 arr = value_ind (arr);
2314
2315 type = decode_constrained_packed_array_type (value_type (arr));
2316 if (type == NULL)
2317 {
2318 error (_("can't unpack array"));
2319 return NULL;
2320 }
2321
2322 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2323 && ada_is_modular_type (value_type (arr)))
2324 {
2325 /* This is a (right-justified) modular type representing a packed
2326 array with no wrapper. In order to interpret the value through
2327 the (left-justified) packed array type we just built, we must
2328 first left-justify it. */
2329 int bit_size, bit_pos;
2330 ULONGEST mod;
2331
2332 mod = ada_modulus (value_type (arr)) - 1;
2333 bit_size = 0;
2334 while (mod > 0)
2335 {
2336 bit_size += 1;
2337 mod >>= 1;
2338 }
2339 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2340 arr = ada_value_primitive_packed_val (arr, NULL,
2341 bit_pos / HOST_CHAR_BIT,
2342 bit_pos % HOST_CHAR_BIT,
2343 bit_size,
2344 type);
2345 }
2346
2347 return coerce_unspec_val_to_type (arr, type);
2348 }
2349
2350
2351 /* The value of the element of packed array ARR at the ARITY indices
2352 given in IND. ARR must be a simple array. */
2353
2354 static struct value *
2355 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2356 {
2357 int i;
2358 int bits, elt_off, bit_off;
2359 long elt_total_bit_offset;
2360 struct type *elt_type;
2361 struct value *v;
2362
2363 bits = 0;
2364 elt_total_bit_offset = 0;
2365 elt_type = ada_check_typedef (value_type (arr));
2366 for (i = 0; i < arity; i += 1)
2367 {
2368 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2369 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2370 error
2371 (_("attempt to do packed indexing of "
2372 "something other than a packed array"));
2373 else
2374 {
2375 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2376 LONGEST lowerbound, upperbound;
2377 LONGEST idx;
2378
2379 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2380 {
2381 lim_warning (_("don't know bounds of array"));
2382 lowerbound = upperbound = 0;
2383 }
2384
2385 idx = pos_atr (ind[i]);
2386 if (idx < lowerbound || idx > upperbound)
2387 lim_warning (_("packed array index %ld out of bounds"),
2388 (long) idx);
2389 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2390 elt_total_bit_offset += (idx - lowerbound) * bits;
2391 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2392 }
2393 }
2394 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2395 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2396
2397 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2398 bits, elt_type);
2399 return v;
2400 }
2401
2402 /* Non-zero iff TYPE includes negative integer values. */
2403
2404 static int
2405 has_negatives (struct type *type)
2406 {
2407 switch (TYPE_CODE (type))
2408 {
2409 default:
2410 return 0;
2411 case TYPE_CODE_INT:
2412 return !TYPE_UNSIGNED (type);
2413 case TYPE_CODE_RANGE:
2414 return TYPE_LOW_BOUND (type) < 0;
2415 }
2416 }
2417
2418 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2419 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2420 the unpacked buffer.
2421
2422 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2423 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2424
2425 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2426 zero otherwise.
2427
2428 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2429
2430 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2431
2432 static void
2433 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2434 gdb_byte *unpacked, int unpacked_len,
2435 int is_big_endian, int is_signed_type,
2436 int is_scalar)
2437 {
2438 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2439 int src_idx; /* Index into the source area */
2440 int src_bytes_left; /* Number of source bytes left to process. */
2441 int srcBitsLeft; /* Number of source bits left to move */
2442 int unusedLS; /* Number of bits in next significant
2443 byte of source that are unused */
2444
2445 int unpacked_idx; /* Index into the unpacked buffer */
2446 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2447
2448 unsigned long accum; /* Staging area for bits being transferred */
2449 int accumSize; /* Number of meaningful bits in accum */
2450 unsigned char sign;
2451
2452 /* Transmit bytes from least to most significant; delta is the direction
2453 the indices move. */
2454 int delta = is_big_endian ? -1 : 1;
2455
2456 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2457 bits from SRC. .*/
2458 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2459 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2460 bit_size, unpacked_len);
2461
2462 srcBitsLeft = bit_size;
2463 src_bytes_left = src_len;
2464 unpacked_bytes_left = unpacked_len;
2465 sign = 0;
2466
2467 if (is_big_endian)
2468 {
2469 src_idx = src_len - 1;
2470 if (is_signed_type
2471 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2472 sign = ~0;
2473
2474 unusedLS =
2475 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2476 % HOST_CHAR_BIT;
2477
2478 if (is_scalar)
2479 {
2480 accumSize = 0;
2481 unpacked_idx = unpacked_len - 1;
2482 }
2483 else
2484 {
2485 /* Non-scalar values must be aligned at a byte boundary... */
2486 accumSize =
2487 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2488 /* ... And are placed at the beginning (most-significant) bytes
2489 of the target. */
2490 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2491 unpacked_bytes_left = unpacked_idx + 1;
2492 }
2493 }
2494 else
2495 {
2496 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2497
2498 src_idx = unpacked_idx = 0;
2499 unusedLS = bit_offset;
2500 accumSize = 0;
2501
2502 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2503 sign = ~0;
2504 }
2505
2506 accum = 0;
2507 while (src_bytes_left > 0)
2508 {
2509 /* Mask for removing bits of the next source byte that are not
2510 part of the value. */
2511 unsigned int unusedMSMask =
2512 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2513 1;
2514 /* Sign-extend bits for this byte. */
2515 unsigned int signMask = sign & ~unusedMSMask;
2516
2517 accum |=
2518 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2519 accumSize += HOST_CHAR_BIT - unusedLS;
2520 if (accumSize >= HOST_CHAR_BIT)
2521 {
2522 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2523 accumSize -= HOST_CHAR_BIT;
2524 accum >>= HOST_CHAR_BIT;
2525 unpacked_bytes_left -= 1;
2526 unpacked_idx += delta;
2527 }
2528 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2529 unusedLS = 0;
2530 src_bytes_left -= 1;
2531 src_idx += delta;
2532 }
2533 while (unpacked_bytes_left > 0)
2534 {
2535 accum |= sign << accumSize;
2536 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2537 accumSize -= HOST_CHAR_BIT;
2538 if (accumSize < 0)
2539 accumSize = 0;
2540 accum >>= HOST_CHAR_BIT;
2541 unpacked_bytes_left -= 1;
2542 unpacked_idx += delta;
2543 }
2544 }
2545
2546 /* Create a new value of type TYPE from the contents of OBJ starting
2547 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2548 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2549 assigning through the result will set the field fetched from.
2550 VALADDR is ignored unless OBJ is NULL, in which case,
2551 VALADDR+OFFSET must address the start of storage containing the
2552 packed value. The value returned in this case is never an lval.
2553 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2554
2555 struct value *
2556 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2557 long offset, int bit_offset, int bit_size,
2558 struct type *type)
2559 {
2560 struct value *v;
2561 const gdb_byte *src; /* First byte containing data to unpack */
2562 gdb_byte *unpacked;
2563 const int is_scalar = is_scalar_type (type);
2564 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2565 gdb::byte_vector staging;
2566
2567 type = ada_check_typedef (type);
2568
2569 if (obj == NULL)
2570 src = valaddr + offset;
2571 else
2572 src = value_contents (obj) + offset;
2573
2574 if (is_dynamic_type (type))
2575 {
2576 /* The length of TYPE might by dynamic, so we need to resolve
2577 TYPE in order to know its actual size, which we then use
2578 to create the contents buffer of the value we return.
2579 The difficulty is that the data containing our object is
2580 packed, and therefore maybe not at a byte boundary. So, what
2581 we do, is unpack the data into a byte-aligned buffer, and then
2582 use that buffer as our object's value for resolving the type. */
2583 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2584 staging.resize (staging_len);
2585
2586 ada_unpack_from_contents (src, bit_offset, bit_size,
2587 staging.data (), staging.size (),
2588 is_big_endian, has_negatives (type),
2589 is_scalar);
2590 type = resolve_dynamic_type (type, staging.data (), 0);
2591 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2592 {
2593 /* This happens when the length of the object is dynamic,
2594 and is actually smaller than the space reserved for it.
2595 For instance, in an array of variant records, the bit_size
2596 we're given is the array stride, which is constant and
2597 normally equal to the maximum size of its element.
2598 But, in reality, each element only actually spans a portion
2599 of that stride. */
2600 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2601 }
2602 }
2603
2604 if (obj == NULL)
2605 {
2606 v = allocate_value (type);
2607 src = valaddr + offset;
2608 }
2609 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2610 {
2611 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2612 gdb_byte *buf;
2613
2614 v = value_at (type, value_address (obj) + offset);
2615 buf = (gdb_byte *) alloca (src_len);
2616 read_memory (value_address (v), buf, src_len);
2617 src = buf;
2618 }
2619 else
2620 {
2621 v = allocate_value (type);
2622 src = value_contents (obj) + offset;
2623 }
2624
2625 if (obj != NULL)
2626 {
2627 long new_offset = offset;
2628
2629 set_value_component_location (v, obj);
2630 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2631 set_value_bitsize (v, bit_size);
2632 if (value_bitpos (v) >= HOST_CHAR_BIT)
2633 {
2634 ++new_offset;
2635 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2636 }
2637 set_value_offset (v, new_offset);
2638
2639 /* Also set the parent value. This is needed when trying to
2640 assign a new value (in inferior memory). */
2641 set_value_parent (v, obj);
2642 }
2643 else
2644 set_value_bitsize (v, bit_size);
2645 unpacked = value_contents_writeable (v);
2646
2647 if (bit_size == 0)
2648 {
2649 memset (unpacked, 0, TYPE_LENGTH (type));
2650 return v;
2651 }
2652
2653 if (staging.size () == TYPE_LENGTH (type))
2654 {
2655 /* Small short-cut: If we've unpacked the data into a buffer
2656 of the same size as TYPE's length, then we can reuse that,
2657 instead of doing the unpacking again. */
2658 memcpy (unpacked, staging.data (), staging.size ());
2659 }
2660 else
2661 ada_unpack_from_contents (src, bit_offset, bit_size,
2662 unpacked, TYPE_LENGTH (type),
2663 is_big_endian, has_negatives (type), is_scalar);
2664
2665 return v;
2666 }
2667
2668 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2669 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2670 not overlap. */
2671 static void
2672 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2673 int src_offset, int n, int bits_big_endian_p)
2674 {
2675 unsigned int accum, mask;
2676 int accum_bits, chunk_size;
2677
2678 target += targ_offset / HOST_CHAR_BIT;
2679 targ_offset %= HOST_CHAR_BIT;
2680 source += src_offset / HOST_CHAR_BIT;
2681 src_offset %= HOST_CHAR_BIT;
2682 if (bits_big_endian_p)
2683 {
2684 accum = (unsigned char) *source;
2685 source += 1;
2686 accum_bits = HOST_CHAR_BIT - src_offset;
2687
2688 while (n > 0)
2689 {
2690 int unused_right;
2691
2692 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2693 accum_bits += HOST_CHAR_BIT;
2694 source += 1;
2695 chunk_size = HOST_CHAR_BIT - targ_offset;
2696 if (chunk_size > n)
2697 chunk_size = n;
2698 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2699 mask = ((1 << chunk_size) - 1) << unused_right;
2700 *target =
2701 (*target & ~mask)
2702 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2703 n -= chunk_size;
2704 accum_bits -= chunk_size;
2705 target += 1;
2706 targ_offset = 0;
2707 }
2708 }
2709 else
2710 {
2711 accum = (unsigned char) *source >> src_offset;
2712 source += 1;
2713 accum_bits = HOST_CHAR_BIT - src_offset;
2714
2715 while (n > 0)
2716 {
2717 accum = accum + ((unsigned char) *source << accum_bits);
2718 accum_bits += HOST_CHAR_BIT;
2719 source += 1;
2720 chunk_size = HOST_CHAR_BIT - targ_offset;
2721 if (chunk_size > n)
2722 chunk_size = n;
2723 mask = ((1 << chunk_size) - 1) << targ_offset;
2724 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2725 n -= chunk_size;
2726 accum_bits -= chunk_size;
2727 accum >>= chunk_size;
2728 target += 1;
2729 targ_offset = 0;
2730 }
2731 }
2732 }
2733
2734 /* Store the contents of FROMVAL into the location of TOVAL.
2735 Return a new value with the location of TOVAL and contents of
2736 FROMVAL. Handles assignment into packed fields that have
2737 floating-point or non-scalar types. */
2738
2739 static struct value *
2740 ada_value_assign (struct value *toval, struct value *fromval)
2741 {
2742 struct type *type = value_type (toval);
2743 int bits = value_bitsize (toval);
2744
2745 toval = ada_coerce_ref (toval);
2746 fromval = ada_coerce_ref (fromval);
2747
2748 if (ada_is_direct_array_type (value_type (toval)))
2749 toval = ada_coerce_to_simple_array (toval);
2750 if (ada_is_direct_array_type (value_type (fromval)))
2751 fromval = ada_coerce_to_simple_array (fromval);
2752
2753 if (!deprecated_value_modifiable (toval))
2754 error (_("Left operand of assignment is not a modifiable lvalue."));
2755
2756 if (VALUE_LVAL (toval) == lval_memory
2757 && bits > 0
2758 && (TYPE_CODE (type) == TYPE_CODE_FLT
2759 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2760 {
2761 int len = (value_bitpos (toval)
2762 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2763 int from_size;
2764 gdb_byte *buffer = (gdb_byte *) alloca (len);
2765 struct value *val;
2766 CORE_ADDR to_addr = value_address (toval);
2767
2768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2769 fromval = value_cast (type, fromval);
2770
2771 read_memory (to_addr, buffer, len);
2772 from_size = value_bitsize (fromval);
2773 if (from_size == 0)
2774 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2775 if (gdbarch_bits_big_endian (get_type_arch (type)))
2776 move_bits (buffer, value_bitpos (toval),
2777 value_contents (fromval), from_size - bits, bits, 1);
2778 else
2779 move_bits (buffer, value_bitpos (toval),
2780 value_contents (fromval), 0, bits, 0);
2781 write_memory_with_notification (to_addr, buffer, len);
2782
2783 val = value_copy (toval);
2784 memcpy (value_contents_raw (val), value_contents (fromval),
2785 TYPE_LENGTH (type));
2786 deprecated_set_value_type (val, type);
2787
2788 return val;
2789 }
2790
2791 return value_assign (toval, fromval);
2792 }
2793
2794
2795 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2796 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2797 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2798 COMPONENT, and not the inferior's memory. The current contents
2799 of COMPONENT are ignored.
2800
2801 Although not part of the initial design, this function also works
2802 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2803 had a null address, and COMPONENT had an address which is equal to
2804 its offset inside CONTAINER. */
2805
2806 static void
2807 value_assign_to_component (struct value *container, struct value *component,
2808 struct value *val)
2809 {
2810 LONGEST offset_in_container =
2811 (LONGEST) (value_address (component) - value_address (container));
2812 int bit_offset_in_container =
2813 value_bitpos (component) - value_bitpos (container);
2814 int bits;
2815
2816 val = value_cast (value_type (component), val);
2817
2818 if (value_bitsize (component) == 0)
2819 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2820 else
2821 bits = value_bitsize (component);
2822
2823 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2824 move_bits (value_contents_writeable (container) + offset_in_container,
2825 value_bitpos (container) + bit_offset_in_container,
2826 value_contents (val),
2827 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2828 bits, 1);
2829 else
2830 move_bits (value_contents_writeable (container) + offset_in_container,
2831 value_bitpos (container) + bit_offset_in_container,
2832 value_contents (val), 0, bits, 0);
2833 }
2834
2835 /* The value of the element of array ARR at the ARITY indices given in IND.
2836 ARR may be either a simple array, GNAT array descriptor, or pointer
2837 thereto. */
2838
2839 struct value *
2840 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2841 {
2842 int k;
2843 struct value *elt;
2844 struct type *elt_type;
2845
2846 elt = ada_coerce_to_simple_array (arr);
2847
2848 elt_type = ada_check_typedef (value_type (elt));
2849 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2850 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2851 return value_subscript_packed (elt, arity, ind);
2852
2853 for (k = 0; k < arity; k += 1)
2854 {
2855 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2856 error (_("too many subscripts (%d expected)"), k);
2857 elt = value_subscript (elt, pos_atr (ind[k]));
2858 }
2859 return elt;
2860 }
2861
2862 /* Assuming ARR is a pointer to a GDB array, the value of the element
2863 of *ARR at the ARITY indices given in IND.
2864 Does not read the entire array into memory.
2865
2866 Note: Unlike what one would expect, this function is used instead of
2867 ada_value_subscript for basically all non-packed array types. The reason
2868 for this is that a side effect of doing our own pointer arithmetics instead
2869 of relying on value_subscript is that there is no implicit typedef peeling.
2870 This is important for arrays of array accesses, where it allows us to
2871 preserve the fact that the array's element is an array access, where the
2872 access part os encoded in a typedef layer. */
2873
2874 static struct value *
2875 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2876 {
2877 int k;
2878 struct value *array_ind = ada_value_ind (arr);
2879 struct type *type
2880 = check_typedef (value_enclosing_type (array_ind));
2881
2882 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2883 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2884 return value_subscript_packed (array_ind, arity, ind);
2885
2886 for (k = 0; k < arity; k += 1)
2887 {
2888 LONGEST lwb, upb;
2889 struct value *lwb_value;
2890
2891 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2892 error (_("too many subscripts (%d expected)"), k);
2893 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2894 value_copy (arr));
2895 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2896 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2897 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2898 type = TYPE_TARGET_TYPE (type);
2899 }
2900
2901 return value_ind (arr);
2902 }
2903
2904 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2905 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2906 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2907 this array is LOW, as per Ada rules. */
2908 static struct value *
2909 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2910 int low, int high)
2911 {
2912 struct type *type0 = ada_check_typedef (type);
2913 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2914 struct type *index_type
2915 = create_static_range_type (NULL, base_index_type, low, high);
2916 struct type *slice_type =
2917 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2918 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2919 LONGEST base_low_pos, low_pos;
2920 CORE_ADDR base;
2921
2922 if (!discrete_position (base_index_type, low, &low_pos)
2923 || !discrete_position (base_index_type, base_low, &base_low_pos))
2924 {
2925 warning (_("unable to get positions in slice, use bounds instead"));
2926 low_pos = low;
2927 base_low_pos = base_low;
2928 }
2929
2930 base = value_as_address (array_ptr)
2931 + ((low_pos - base_low_pos)
2932 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2933 return value_at_lazy (slice_type, base);
2934 }
2935
2936
2937 static struct value *
2938 ada_value_slice (struct value *array, int low, int high)
2939 {
2940 struct type *type = ada_check_typedef (value_type (array));
2941 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2942 struct type *index_type
2943 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2944 struct type *slice_type =
2945 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2946 LONGEST low_pos, high_pos;
2947
2948 if (!discrete_position (base_index_type, low, &low_pos)
2949 || !discrete_position (base_index_type, high, &high_pos))
2950 {
2951 warning (_("unable to get positions in slice, use bounds instead"));
2952 low_pos = low;
2953 high_pos = high;
2954 }
2955
2956 return value_cast (slice_type,
2957 value_slice (array, low, high_pos - low_pos + 1));
2958 }
2959
2960 /* If type is a record type in the form of a standard GNAT array
2961 descriptor, returns the number of dimensions for type. If arr is a
2962 simple array, returns the number of "array of"s that prefix its
2963 type designation. Otherwise, returns 0. */
2964
2965 int
2966 ada_array_arity (struct type *type)
2967 {
2968 int arity;
2969
2970 if (type == NULL)
2971 return 0;
2972
2973 type = desc_base_type (type);
2974
2975 arity = 0;
2976 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2977 return desc_arity (desc_bounds_type (type));
2978 else
2979 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2980 {
2981 arity += 1;
2982 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2983 }
2984
2985 return arity;
2986 }
2987
2988 /* If TYPE is a record type in the form of a standard GNAT array
2989 descriptor or a simple array type, returns the element type for
2990 TYPE after indexing by NINDICES indices, or by all indices if
2991 NINDICES is -1. Otherwise, returns NULL. */
2992
2993 struct type *
2994 ada_array_element_type (struct type *type, int nindices)
2995 {
2996 type = desc_base_type (type);
2997
2998 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2999 {
3000 int k;
3001 struct type *p_array_type;
3002
3003 p_array_type = desc_data_target_type (type);
3004
3005 k = ada_array_arity (type);
3006 if (k == 0)
3007 return NULL;
3008
3009 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3010 if (nindices >= 0 && k > nindices)
3011 k = nindices;
3012 while (k > 0 && p_array_type != NULL)
3013 {
3014 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3015 k -= 1;
3016 }
3017 return p_array_type;
3018 }
3019 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3020 {
3021 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3022 {
3023 type = TYPE_TARGET_TYPE (type);
3024 nindices -= 1;
3025 }
3026 return type;
3027 }
3028
3029 return NULL;
3030 }
3031
3032 /* The type of nth index in arrays of given type (n numbering from 1).
3033 Does not examine memory. Throws an error if N is invalid or TYPE
3034 is not an array type. NAME is the name of the Ada attribute being
3035 evaluated ('range, 'first, 'last, or 'length); it is used in building
3036 the error message. */
3037
3038 static struct type *
3039 ada_index_type (struct type *type, int n, const char *name)
3040 {
3041 struct type *result_type;
3042
3043 type = desc_base_type (type);
3044
3045 if (n < 0 || n > ada_array_arity (type))
3046 error (_("invalid dimension number to '%s"), name);
3047
3048 if (ada_is_simple_array_type (type))
3049 {
3050 int i;
3051
3052 for (i = 1; i < n; i += 1)
3053 type = TYPE_TARGET_TYPE (type);
3054 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3055 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3056 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3057 perhaps stabsread.c would make more sense. */
3058 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3059 result_type = NULL;
3060 }
3061 else
3062 {
3063 result_type = desc_index_type (desc_bounds_type (type), n);
3064 if (result_type == NULL)
3065 error (_("attempt to take bound of something that is not an array"));
3066 }
3067
3068 return result_type;
3069 }
3070
3071 /* Given that arr is an array type, returns the lower bound of the
3072 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3073 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3074 array-descriptor type. It works for other arrays with bounds supplied
3075 by run-time quantities other than discriminants. */
3076
3077 static LONGEST
3078 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3079 {
3080 struct type *type, *index_type_desc, *index_type;
3081 int i;
3082
3083 gdb_assert (which == 0 || which == 1);
3084
3085 if (ada_is_constrained_packed_array_type (arr_type))
3086 arr_type = decode_constrained_packed_array_type (arr_type);
3087
3088 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3089 return (LONGEST) - which;
3090
3091 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3092 type = TYPE_TARGET_TYPE (arr_type);
3093 else
3094 type = arr_type;
3095
3096 if (TYPE_FIXED_INSTANCE (type))
3097 {
3098 /* The array has already been fixed, so we do not need to
3099 check the parallel ___XA type again. That encoding has
3100 already been applied, so ignore it now. */
3101 index_type_desc = NULL;
3102 }
3103 else
3104 {
3105 index_type_desc = ada_find_parallel_type (type, "___XA");
3106 ada_fixup_array_indexes_type (index_type_desc);
3107 }
3108
3109 if (index_type_desc != NULL)
3110 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3111 NULL);
3112 else
3113 {
3114 struct type *elt_type = check_typedef (type);
3115
3116 for (i = 1; i < n; i++)
3117 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3118
3119 index_type = TYPE_INDEX_TYPE (elt_type);
3120 }
3121
3122 return
3123 (LONGEST) (which == 0
3124 ? ada_discrete_type_low_bound (index_type)
3125 : ada_discrete_type_high_bound (index_type));
3126 }
3127
3128 /* Given that arr is an array value, returns the lower bound of the
3129 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3130 WHICH is 1. This routine will also work for arrays with bounds
3131 supplied by run-time quantities other than discriminants. */
3132
3133 static LONGEST
3134 ada_array_bound (struct value *arr, int n, int which)
3135 {
3136 struct type *arr_type;
3137
3138 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3139 arr = value_ind (arr);
3140 arr_type = value_enclosing_type (arr);
3141
3142 if (ada_is_constrained_packed_array_type (arr_type))
3143 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3144 else if (ada_is_simple_array_type (arr_type))
3145 return ada_array_bound_from_type (arr_type, n, which);
3146 else
3147 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3148 }
3149
3150 /* Given that arr is an array value, returns the length of the
3151 nth index. This routine will also work for arrays with bounds
3152 supplied by run-time quantities other than discriminants.
3153 Does not work for arrays indexed by enumeration types with representation
3154 clauses at the moment. */
3155
3156 static LONGEST
3157 ada_array_length (struct value *arr, int n)
3158 {
3159 struct type *arr_type, *index_type;
3160 int low, high;
3161
3162 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3163 arr = value_ind (arr);
3164 arr_type = value_enclosing_type (arr);
3165
3166 if (ada_is_constrained_packed_array_type (arr_type))
3167 return ada_array_length (decode_constrained_packed_array (arr), n);
3168
3169 if (ada_is_simple_array_type (arr_type))
3170 {
3171 low = ada_array_bound_from_type (arr_type, n, 0);
3172 high = ada_array_bound_from_type (arr_type, n, 1);
3173 }
3174 else
3175 {
3176 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3177 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3178 }
3179
3180 arr_type = check_typedef (arr_type);
3181 index_type = TYPE_INDEX_TYPE (arr_type);
3182 if (index_type != NULL)
3183 {
3184 struct type *base_type;
3185 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3186 base_type = TYPE_TARGET_TYPE (index_type);
3187 else
3188 base_type = index_type;
3189
3190 low = pos_atr (value_from_longest (base_type, low));
3191 high = pos_atr (value_from_longest (base_type, high));
3192 }
3193 return high - low + 1;
3194 }
3195
3196 /* An empty array whose type is that of ARR_TYPE (an array type),
3197 with bounds LOW to LOW-1. */
3198
3199 static struct value *
3200 empty_array (struct type *arr_type, int low)
3201 {
3202 struct type *arr_type0 = ada_check_typedef (arr_type);
3203 struct type *index_type
3204 = create_static_range_type
3205 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3206 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3207
3208 return allocate_value (create_array_type (NULL, elt_type, index_type));
3209 }
3210 \f
3211
3212 /* Name resolution */
3213
3214 /* The "decoded" name for the user-definable Ada operator corresponding
3215 to OP. */
3216
3217 static const char *
3218 ada_decoded_op_name (enum exp_opcode op)
3219 {
3220 int i;
3221
3222 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3223 {
3224 if (ada_opname_table[i].op == op)
3225 return ada_opname_table[i].decoded;
3226 }
3227 error (_("Could not find operator name for opcode"));
3228 }
3229
3230
3231 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3232 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3233 undefined namespace) and converts operators that are
3234 user-defined into appropriate function calls. If CONTEXT_TYPE is
3235 non-null, it provides a preferred result type [at the moment, only
3236 type void has any effect---causing procedures to be preferred over
3237 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3238 return type is preferred. May change (expand) *EXP. */
3239
3240 static void
3241 resolve (struct expression **expp, int void_context_p)
3242 {
3243 struct type *context_type = NULL;
3244 int pc = 0;
3245
3246 if (void_context_p)
3247 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3248
3249 resolve_subexp (expp, &pc, 1, context_type);
3250 }
3251
3252 /* Resolve the operator of the subexpression beginning at
3253 position *POS of *EXPP. "Resolving" consists of replacing
3254 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3255 with their resolutions, replacing built-in operators with
3256 function calls to user-defined operators, where appropriate, and,
3257 when DEPROCEDURE_P is non-zero, converting function-valued variables
3258 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3259 are as in ada_resolve, above. */
3260
3261 static struct value *
3262 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3263 struct type *context_type)
3264 {
3265 int pc = *pos;
3266 int i;
3267 struct expression *exp; /* Convenience: == *expp. */
3268 enum exp_opcode op = (*expp)->elts[pc].opcode;
3269 struct value **argvec; /* Vector of operand types (alloca'ed). */
3270 int nargs; /* Number of operands. */
3271 int oplen;
3272
3273 argvec = NULL;
3274 nargs = 0;
3275 exp = *expp;
3276
3277 /* Pass one: resolve operands, saving their types and updating *pos,
3278 if needed. */
3279 switch (op)
3280 {
3281 case OP_FUNCALL:
3282 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3283 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3284 *pos += 7;
3285 else
3286 {
3287 *pos += 3;
3288 resolve_subexp (expp, pos, 0, NULL);
3289 }
3290 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3291 break;
3292
3293 case UNOP_ADDR:
3294 *pos += 1;
3295 resolve_subexp (expp, pos, 0, NULL);
3296 break;
3297
3298 case UNOP_QUAL:
3299 *pos += 3;
3300 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3301 break;
3302
3303 case OP_ATR_MODULUS:
3304 case OP_ATR_SIZE:
3305 case OP_ATR_TAG:
3306 case OP_ATR_FIRST:
3307 case OP_ATR_LAST:
3308 case OP_ATR_LENGTH:
3309 case OP_ATR_POS:
3310 case OP_ATR_VAL:
3311 case OP_ATR_MIN:
3312 case OP_ATR_MAX:
3313 case TERNOP_IN_RANGE:
3314 case BINOP_IN_BOUNDS:
3315 case UNOP_IN_RANGE:
3316 case OP_AGGREGATE:
3317 case OP_OTHERS:
3318 case OP_CHOICES:
3319 case OP_POSITIONAL:
3320 case OP_DISCRETE_RANGE:
3321 case OP_NAME:
3322 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3323 *pos += oplen;
3324 break;
3325
3326 case BINOP_ASSIGN:
3327 {
3328 struct value *arg1;
3329
3330 *pos += 1;
3331 arg1 = resolve_subexp (expp, pos, 0, NULL);
3332 if (arg1 == NULL)
3333 resolve_subexp (expp, pos, 1, NULL);
3334 else
3335 resolve_subexp (expp, pos, 1, value_type (arg1));
3336 break;
3337 }
3338
3339 case UNOP_CAST:
3340 *pos += 3;
3341 nargs = 1;
3342 break;
3343
3344 case BINOP_ADD:
3345 case BINOP_SUB:
3346 case BINOP_MUL:
3347 case BINOP_DIV:
3348 case BINOP_REM:
3349 case BINOP_MOD:
3350 case BINOP_EXP:
3351 case BINOP_CONCAT:
3352 case BINOP_LOGICAL_AND:
3353 case BINOP_LOGICAL_OR:
3354 case BINOP_BITWISE_AND:
3355 case BINOP_BITWISE_IOR:
3356 case BINOP_BITWISE_XOR:
3357
3358 case BINOP_EQUAL:
3359 case BINOP_NOTEQUAL:
3360 case BINOP_LESS:
3361 case BINOP_GTR:
3362 case BINOP_LEQ:
3363 case BINOP_GEQ:
3364
3365 case BINOP_REPEAT:
3366 case BINOP_SUBSCRIPT:
3367 case BINOP_COMMA:
3368 *pos += 1;
3369 nargs = 2;
3370 break;
3371
3372 case UNOP_NEG:
3373 case UNOP_PLUS:
3374 case UNOP_LOGICAL_NOT:
3375 case UNOP_ABS:
3376 case UNOP_IND:
3377 *pos += 1;
3378 nargs = 1;
3379 break;
3380
3381 case OP_LONG:
3382 case OP_FLOAT:
3383 case OP_VAR_VALUE:
3384 case OP_VAR_MSYM_VALUE:
3385 *pos += 4;
3386 break;
3387
3388 case OP_TYPE:
3389 case OP_BOOL:
3390 case OP_LAST:
3391 case OP_INTERNALVAR:
3392 *pos += 3;
3393 break;
3394
3395 case UNOP_MEMVAL:
3396 *pos += 3;
3397 nargs = 1;
3398 break;
3399
3400 case OP_REGISTER:
3401 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3402 break;
3403
3404 case STRUCTOP_STRUCT:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 nargs = 1;
3407 break;
3408
3409 case TERNOP_SLICE:
3410 *pos += 1;
3411 nargs = 3;
3412 break;
3413
3414 case OP_STRING:
3415 break;
3416
3417 default:
3418 error (_("Unexpected operator during name resolution"));
3419 }
3420
3421 argvec = XALLOCAVEC (struct value *, nargs + 1);
3422 for (i = 0; i < nargs; i += 1)
3423 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3424 argvec[i] = NULL;
3425 exp = *expp;
3426
3427 /* Pass two: perform any resolution on principal operator. */
3428 switch (op)
3429 {
3430 default:
3431 break;
3432
3433 case OP_VAR_VALUE:
3434 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3435 {
3436 struct block_symbol *candidates;
3437 int n_candidates;
3438
3439 n_candidates =
3440 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3441 (exp->elts[pc + 2].symbol),
3442 exp->elts[pc + 1].block, VAR_DOMAIN,
3443 &candidates);
3444
3445 if (n_candidates > 1)
3446 {
3447 /* Types tend to get re-introduced locally, so if there
3448 are any local symbols that are not types, first filter
3449 out all types. */
3450 int j;
3451 for (j = 0; j < n_candidates; j += 1)
3452 switch (SYMBOL_CLASS (candidates[j].symbol))
3453 {
3454 case LOC_REGISTER:
3455 case LOC_ARG:
3456 case LOC_REF_ARG:
3457 case LOC_REGPARM_ADDR:
3458 case LOC_LOCAL:
3459 case LOC_COMPUTED:
3460 goto FoundNonType;
3461 default:
3462 break;
3463 }
3464 FoundNonType:
3465 if (j < n_candidates)
3466 {
3467 j = 0;
3468 while (j < n_candidates)
3469 {
3470 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3471 {
3472 candidates[j] = candidates[n_candidates - 1];
3473 n_candidates -= 1;
3474 }
3475 else
3476 j += 1;
3477 }
3478 }
3479 }
3480
3481 if (n_candidates == 0)
3482 error (_("No definition found for %s"),
3483 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3484 else if (n_candidates == 1)
3485 i = 0;
3486 else if (deprocedure_p
3487 && !is_nonfunction (candidates, n_candidates))
3488 {
3489 i = ada_resolve_function
3490 (candidates, n_candidates, NULL, 0,
3491 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3492 context_type);
3493 if (i < 0)
3494 error (_("Could not find a match for %s"),
3495 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3496 }
3497 else
3498 {
3499 printf_filtered (_("Multiple matches for %s\n"),
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 user_select_syms (candidates, n_candidates, 1);
3502 i = 0;
3503 }
3504
3505 exp->elts[pc + 1].block = candidates[i].block;
3506 exp->elts[pc + 2].symbol = candidates[i].symbol;
3507 if (innermost_block == NULL
3508 || contained_in (candidates[i].block, innermost_block))
3509 innermost_block = candidates[i].block;
3510 }
3511
3512 if (deprocedure_p
3513 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3514 == TYPE_CODE_FUNC))
3515 {
3516 replace_operator_with_call (expp, pc, 0, 0,
3517 exp->elts[pc + 2].symbol,
3518 exp->elts[pc + 1].block);
3519 exp = *expp;
3520 }
3521 break;
3522
3523 case OP_FUNCALL:
3524 {
3525 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3526 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3527 {
3528 struct block_symbol *candidates;
3529 int n_candidates;
3530
3531 n_candidates =
3532 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3533 (exp->elts[pc + 5].symbol),
3534 exp->elts[pc + 4].block, VAR_DOMAIN,
3535 &candidates);
3536 if (n_candidates == 1)
3537 i = 0;
3538 else
3539 {
3540 i = ada_resolve_function
3541 (candidates, n_candidates,
3542 argvec, nargs,
3543 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3544 context_type);
3545 if (i < 0)
3546 error (_("Could not find a match for %s"),
3547 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3548 }
3549
3550 exp->elts[pc + 4].block = candidates[i].block;
3551 exp->elts[pc + 5].symbol = candidates[i].symbol;
3552 if (innermost_block == NULL
3553 || contained_in (candidates[i].block, innermost_block))
3554 innermost_block = candidates[i].block;
3555 }
3556 }
3557 break;
3558 case BINOP_ADD:
3559 case BINOP_SUB:
3560 case BINOP_MUL:
3561 case BINOP_DIV:
3562 case BINOP_REM:
3563 case BINOP_MOD:
3564 case BINOP_CONCAT:
3565 case BINOP_BITWISE_AND:
3566 case BINOP_BITWISE_IOR:
3567 case BINOP_BITWISE_XOR:
3568 case BINOP_EQUAL:
3569 case BINOP_NOTEQUAL:
3570 case BINOP_LESS:
3571 case BINOP_GTR:
3572 case BINOP_LEQ:
3573 case BINOP_GEQ:
3574 case BINOP_EXP:
3575 case UNOP_NEG:
3576 case UNOP_PLUS:
3577 case UNOP_LOGICAL_NOT:
3578 case UNOP_ABS:
3579 if (possible_user_operator_p (op, argvec))
3580 {
3581 struct block_symbol *candidates;
3582 int n_candidates;
3583
3584 n_candidates =
3585 ada_lookup_symbol_list (ada_decoded_op_name (op),
3586 (struct block *) NULL, VAR_DOMAIN,
3587 &candidates);
3588 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3589 ada_decoded_op_name (op), NULL);
3590 if (i < 0)
3591 break;
3592
3593 replace_operator_with_call (expp, pc, nargs, 1,
3594 candidates[i].symbol,
3595 candidates[i].block);
3596 exp = *expp;
3597 }
3598 break;
3599
3600 case OP_TYPE:
3601 case OP_REGISTER:
3602 return NULL;
3603 }
3604
3605 *pos = pc;
3606 return evaluate_subexp_type (exp, pos);
3607 }
3608
3609 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3610 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3611 a non-pointer. */
3612 /* The term "match" here is rather loose. The match is heuristic and
3613 liberal. */
3614
3615 static int
3616 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3617 {
3618 ftype = ada_check_typedef (ftype);
3619 atype = ada_check_typedef (atype);
3620
3621 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3622 ftype = TYPE_TARGET_TYPE (ftype);
3623 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3624 atype = TYPE_TARGET_TYPE (atype);
3625
3626 switch (TYPE_CODE (ftype))
3627 {
3628 default:
3629 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3630 case TYPE_CODE_PTR:
3631 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3632 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3633 TYPE_TARGET_TYPE (atype), 0);
3634 else
3635 return (may_deref
3636 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 switch (TYPE_CODE (atype))
3641 {
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 return 1;
3646 default:
3647 return 0;
3648 }
3649
3650 case TYPE_CODE_ARRAY:
3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3652 || ada_is_array_descriptor_type (atype));
3653
3654 case TYPE_CODE_STRUCT:
3655 if (ada_is_array_descriptor_type (ftype))
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3658 else
3659 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3660 && !ada_is_array_descriptor_type (atype));
3661
3662 case TYPE_CODE_UNION:
3663 case TYPE_CODE_FLT:
3664 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3665 }
3666 }
3667
3668 /* Return non-zero if the formals of FUNC "sufficiently match" the
3669 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3670 may also be an enumeral, in which case it is treated as a 0-
3671 argument function. */
3672
3673 static int
3674 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3675 {
3676 int i;
3677 struct type *func_type = SYMBOL_TYPE (func);
3678
3679 if (SYMBOL_CLASS (func) == LOC_CONST
3680 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3681 return (n_actuals == 0);
3682 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3683 return 0;
3684
3685 if (TYPE_NFIELDS (func_type) != n_actuals)
3686 return 0;
3687
3688 for (i = 0; i < n_actuals; i += 1)
3689 {
3690 if (actuals[i] == NULL)
3691 return 0;
3692 else
3693 {
3694 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3695 i));
3696 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3697
3698 if (!ada_type_match (ftype, atype, 1))
3699 return 0;
3700 }
3701 }
3702 return 1;
3703 }
3704
3705 /* False iff function type FUNC_TYPE definitely does not produce a value
3706 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3707 FUNC_TYPE is not a valid function type with a non-null return type
3708 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3709
3710 static int
3711 return_match (struct type *func_type, struct type *context_type)
3712 {
3713 struct type *return_type;
3714
3715 if (func_type == NULL)
3716 return 1;
3717
3718 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3719 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3720 else
3721 return_type = get_base_type (func_type);
3722 if (return_type == NULL)
3723 return 1;
3724
3725 context_type = get_base_type (context_type);
3726
3727 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3728 return context_type == NULL || return_type == context_type;
3729 else if (context_type == NULL)
3730 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3731 else
3732 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3733 }
3734
3735
3736 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3737 function (if any) that matches the types of the NARGS arguments in
3738 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3739 that returns that type, then eliminate matches that don't. If
3740 CONTEXT_TYPE is void and there is at least one match that does not
3741 return void, eliminate all matches that do.
3742
3743 Asks the user if there is more than one match remaining. Returns -1
3744 if there is no such symbol or none is selected. NAME is used
3745 solely for messages. May re-arrange and modify SYMS in
3746 the process; the index returned is for the modified vector. */
3747
3748 static int
3749 ada_resolve_function (struct block_symbol syms[],
3750 int nsyms, struct value **args, int nargs,
3751 const char *name, struct type *context_type)
3752 {
3753 int fallback;
3754 int k;
3755 int m; /* Number of hits */
3756
3757 m = 0;
3758 /* In the first pass of the loop, we only accept functions matching
3759 context_type. If none are found, we add a second pass of the loop
3760 where every function is accepted. */
3761 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3762 {
3763 for (k = 0; k < nsyms; k += 1)
3764 {
3765 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3766
3767 if (ada_args_match (syms[k].symbol, args, nargs)
3768 && (fallback || return_match (type, context_type)))
3769 {
3770 syms[m] = syms[k];
3771 m += 1;
3772 }
3773 }
3774 }
3775
3776 /* If we got multiple matches, ask the user which one to use. Don't do this
3777 interactive thing during completion, though, as the purpose of the
3778 completion is providing a list of all possible matches. Prompting the
3779 user to filter it down would be completely unexpected in this case. */
3780 if (m == 0)
3781 return -1;
3782 else if (m > 1 && !parse_completion)
3783 {
3784 printf_filtered (_("Multiple matches for %s\n"), name);
3785 user_select_syms (syms, m, 1);
3786 return 0;
3787 }
3788 return 0;
3789 }
3790
3791 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3792 in a listing of choices during disambiguation (see sort_choices, below).
3793 The idea is that overloadings of a subprogram name from the
3794 same package should sort in their source order. We settle for ordering
3795 such symbols by their trailing number (__N or $N). */
3796
3797 static int
3798 encoded_ordered_before (const char *N0, const char *N1)
3799 {
3800 if (N1 == NULL)
3801 return 0;
3802 else if (N0 == NULL)
3803 return 1;
3804 else
3805 {
3806 int k0, k1;
3807
3808 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3809 ;
3810 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3811 ;
3812 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3813 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3814 {
3815 int n0, n1;
3816
3817 n0 = k0;
3818 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3819 n0 -= 1;
3820 n1 = k1;
3821 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3822 n1 -= 1;
3823 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3824 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3825 }
3826 return (strcmp (N0, N1) < 0);
3827 }
3828 }
3829
3830 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3831 encoded names. */
3832
3833 static void
3834 sort_choices (struct block_symbol syms[], int nsyms)
3835 {
3836 int i;
3837
3838 for (i = 1; i < nsyms; i += 1)
3839 {
3840 struct block_symbol sym = syms[i];
3841 int j;
3842
3843 for (j = i - 1; j >= 0; j -= 1)
3844 {
3845 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3846 SYMBOL_LINKAGE_NAME (sym.symbol)))
3847 break;
3848 syms[j + 1] = syms[j];
3849 }
3850 syms[j + 1] = sym;
3851 }
3852 }
3853
3854 /* Whether GDB should display formals and return types for functions in the
3855 overloads selection menu. */
3856 static int print_signatures = 1;
3857
3858 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3859 all but functions, the signature is just the name of the symbol. For
3860 functions, this is the name of the function, the list of types for formals
3861 and the return type (if any). */
3862
3863 static void
3864 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3865 const struct type_print_options *flags)
3866 {
3867 struct type *type = SYMBOL_TYPE (sym);
3868
3869 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3870 if (!print_signatures
3871 || type == NULL
3872 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3873 return;
3874
3875 if (TYPE_NFIELDS (type) > 0)
3876 {
3877 int i;
3878
3879 fprintf_filtered (stream, " (");
3880 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3881 {
3882 if (i > 0)
3883 fprintf_filtered (stream, "; ");
3884 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3885 flags);
3886 }
3887 fprintf_filtered (stream, ")");
3888 }
3889 if (TYPE_TARGET_TYPE (type) != NULL
3890 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3891 {
3892 fprintf_filtered (stream, " return ");
3893 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3894 }
3895 }
3896
3897 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3898 by asking the user (if necessary), returning the number selected,
3899 and setting the first elements of SYMS items. Error if no symbols
3900 selected. */
3901
3902 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3903 to be re-integrated one of these days. */
3904
3905 int
3906 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3907 {
3908 int i;
3909 int *chosen = XALLOCAVEC (int , nsyms);
3910 int n_chosen;
3911 int first_choice = (max_results == 1) ? 1 : 2;
3912 const char *select_mode = multiple_symbols_select_mode ();
3913
3914 if (max_results < 1)
3915 error (_("Request to select 0 symbols!"));
3916 if (nsyms <= 1)
3917 return nsyms;
3918
3919 if (select_mode == multiple_symbols_cancel)
3920 error (_("\
3921 canceled because the command is ambiguous\n\
3922 See set/show multiple-symbol."));
3923
3924 /* If select_mode is "all", then return all possible symbols.
3925 Only do that if more than one symbol can be selected, of course.
3926 Otherwise, display the menu as usual. */
3927 if (select_mode == multiple_symbols_all && max_results > 1)
3928 return nsyms;
3929
3930 printf_unfiltered (_("[0] cancel\n"));
3931 if (max_results > 1)
3932 printf_unfiltered (_("[1] all\n"));
3933
3934 sort_choices (syms, nsyms);
3935
3936 for (i = 0; i < nsyms; i += 1)
3937 {
3938 if (syms[i].symbol == NULL)
3939 continue;
3940
3941 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3942 {
3943 struct symtab_and_line sal =
3944 find_function_start_sal (syms[i].symbol, 1);
3945
3946 printf_unfiltered ("[%d] ", i + first_choice);
3947 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3948 &type_print_raw_options);
3949 if (sal.symtab == NULL)
3950 printf_unfiltered (_(" at <no source file available>:%d\n"),
3951 sal.line);
3952 else
3953 printf_unfiltered (_(" at %s:%d\n"),
3954 symtab_to_filename_for_display (sal.symtab),
3955 sal.line);
3956 continue;
3957 }
3958 else
3959 {
3960 int is_enumeral =
3961 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3962 && SYMBOL_TYPE (syms[i].symbol) != NULL
3963 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3964 struct symtab *symtab = NULL;
3965
3966 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3967 symtab = symbol_symtab (syms[i].symbol);
3968
3969 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3970 {
3971 printf_unfiltered ("[%d] ", i + first_choice);
3972 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3973 &type_print_raw_options);
3974 printf_unfiltered (_(" at %s:%d\n"),
3975 symtab_to_filename_for_display (symtab),
3976 SYMBOL_LINE (syms[i].symbol));
3977 }
3978 else if (is_enumeral
3979 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3980 {
3981 printf_unfiltered (("[%d] "), i + first_choice);
3982 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3983 gdb_stdout, -1, 0, &type_print_raw_options);
3984 printf_unfiltered (_("'(%s) (enumeral)\n"),
3985 SYMBOL_PRINT_NAME (syms[i].symbol));
3986 }
3987 else
3988 {
3989 printf_unfiltered ("[%d] ", i + first_choice);
3990 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3991 &type_print_raw_options);
3992
3993 if (symtab != NULL)
3994 printf_unfiltered (is_enumeral
3995 ? _(" in %s (enumeral)\n")
3996 : _(" at %s:?\n"),
3997 symtab_to_filename_for_display (symtab));
3998 else
3999 printf_unfiltered (is_enumeral
4000 ? _(" (enumeral)\n")
4001 : _(" at ?\n"));
4002 }
4003 }
4004 }
4005
4006 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4007 "overload-choice");
4008
4009 for (i = 0; i < n_chosen; i += 1)
4010 syms[i] = syms[chosen[i]];
4011
4012 return n_chosen;
4013 }
4014
4015 /* Read and validate a set of numeric choices from the user in the
4016 range 0 .. N_CHOICES-1. Place the results in increasing
4017 order in CHOICES[0 .. N-1], and return N.
4018
4019 The user types choices as a sequence of numbers on one line
4020 separated by blanks, encoding them as follows:
4021
4022 + A choice of 0 means to cancel the selection, throwing an error.
4023 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4024 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4025
4026 The user is not allowed to choose more than MAX_RESULTS values.
4027
4028 ANNOTATION_SUFFIX, if present, is used to annotate the input
4029 prompts (for use with the -f switch). */
4030
4031 int
4032 get_selections (int *choices, int n_choices, int max_results,
4033 int is_all_choice, const char *annotation_suffix)
4034 {
4035 char *args;
4036 const char *prompt;
4037 int n_chosen;
4038 int first_choice = is_all_choice ? 2 : 1;
4039
4040 prompt = getenv ("PS2");
4041 if (prompt == NULL)
4042 prompt = "> ";
4043
4044 args = command_line_input (prompt, 0, annotation_suffix);
4045
4046 if (args == NULL)
4047 error_no_arg (_("one or more choice numbers"));
4048
4049 n_chosen = 0;
4050
4051 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4052 order, as given in args. Choices are validated. */
4053 while (1)
4054 {
4055 char *args2;
4056 int choice, j;
4057
4058 args = skip_spaces (args);
4059 if (*args == '\0' && n_chosen == 0)
4060 error_no_arg (_("one or more choice numbers"));
4061 else if (*args == '\0')
4062 break;
4063
4064 choice = strtol (args, &args2, 10);
4065 if (args == args2 || choice < 0
4066 || choice > n_choices + first_choice - 1)
4067 error (_("Argument must be choice number"));
4068 args = args2;
4069
4070 if (choice == 0)
4071 error (_("cancelled"));
4072
4073 if (choice < first_choice)
4074 {
4075 n_chosen = n_choices;
4076 for (j = 0; j < n_choices; j += 1)
4077 choices[j] = j;
4078 break;
4079 }
4080 choice -= first_choice;
4081
4082 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4083 {
4084 }
4085
4086 if (j < 0 || choice != choices[j])
4087 {
4088 int k;
4089
4090 for (k = n_chosen - 1; k > j; k -= 1)
4091 choices[k + 1] = choices[k];
4092 choices[j + 1] = choice;
4093 n_chosen += 1;
4094 }
4095 }
4096
4097 if (n_chosen > max_results)
4098 error (_("Select no more than %d of the above"), max_results);
4099
4100 return n_chosen;
4101 }
4102
4103 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4104 on the function identified by SYM and BLOCK, and taking NARGS
4105 arguments. Update *EXPP as needed to hold more space. */
4106
4107 static void
4108 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4109 int oplen, struct symbol *sym,
4110 const struct block *block)
4111 {
4112 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4113 symbol, -oplen for operator being replaced). */
4114 struct expression *newexp = (struct expression *)
4115 xzalloc (sizeof (struct expression)
4116 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4117 struct expression *exp = *expp;
4118
4119 newexp->nelts = exp->nelts + 7 - oplen;
4120 newexp->language_defn = exp->language_defn;
4121 newexp->gdbarch = exp->gdbarch;
4122 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4123 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4124 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4125
4126 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4127 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4128
4129 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4130 newexp->elts[pc + 4].block = block;
4131 newexp->elts[pc + 5].symbol = sym;
4132
4133 *expp = newexp;
4134 xfree (exp);
4135 }
4136
4137 /* Type-class predicates */
4138
4139 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4140 or FLOAT). */
4141
4142 static int
4143 numeric_type_p (struct type *type)
4144 {
4145 if (type == NULL)
4146 return 0;
4147 else
4148 {
4149 switch (TYPE_CODE (type))
4150 {
4151 case TYPE_CODE_INT:
4152 case TYPE_CODE_FLT:
4153 return 1;
4154 case TYPE_CODE_RANGE:
4155 return (type == TYPE_TARGET_TYPE (type)
4156 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4157 default:
4158 return 0;
4159 }
4160 }
4161 }
4162
4163 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4164
4165 static int
4166 integer_type_p (struct type *type)
4167 {
4168 if (type == NULL)
4169 return 0;
4170 else
4171 {
4172 switch (TYPE_CODE (type))
4173 {
4174 case TYPE_CODE_INT:
4175 return 1;
4176 case TYPE_CODE_RANGE:
4177 return (type == TYPE_TARGET_TYPE (type)
4178 || integer_type_p (TYPE_TARGET_TYPE (type)));
4179 default:
4180 return 0;
4181 }
4182 }
4183 }
4184
4185 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4186
4187 static int
4188 scalar_type_p (struct type *type)
4189 {
4190 if (type == NULL)
4191 return 0;
4192 else
4193 {
4194 switch (TYPE_CODE (type))
4195 {
4196 case TYPE_CODE_INT:
4197 case TYPE_CODE_RANGE:
4198 case TYPE_CODE_ENUM:
4199 case TYPE_CODE_FLT:
4200 return 1;
4201 default:
4202 return 0;
4203 }
4204 }
4205 }
4206
4207 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4208
4209 static int
4210 discrete_type_p (struct type *type)
4211 {
4212 if (type == NULL)
4213 return 0;
4214 else
4215 {
4216 switch (TYPE_CODE (type))
4217 {
4218 case TYPE_CODE_INT:
4219 case TYPE_CODE_RANGE:
4220 case TYPE_CODE_ENUM:
4221 case TYPE_CODE_BOOL:
4222 return 1;
4223 default:
4224 return 0;
4225 }
4226 }
4227 }
4228
4229 /* Returns non-zero if OP with operands in the vector ARGS could be
4230 a user-defined function. Errs on the side of pre-defined operators
4231 (i.e., result 0). */
4232
4233 static int
4234 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4235 {
4236 struct type *type0 =
4237 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4238 struct type *type1 =
4239 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4240
4241 if (type0 == NULL)
4242 return 0;
4243
4244 switch (op)
4245 {
4246 default:
4247 return 0;
4248
4249 case BINOP_ADD:
4250 case BINOP_SUB:
4251 case BINOP_MUL:
4252 case BINOP_DIV:
4253 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4254
4255 case BINOP_REM:
4256 case BINOP_MOD:
4257 case BINOP_BITWISE_AND:
4258 case BINOP_BITWISE_IOR:
4259 case BINOP_BITWISE_XOR:
4260 return (!(integer_type_p (type0) && integer_type_p (type1)));
4261
4262 case BINOP_EQUAL:
4263 case BINOP_NOTEQUAL:
4264 case BINOP_LESS:
4265 case BINOP_GTR:
4266 case BINOP_LEQ:
4267 case BINOP_GEQ:
4268 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4269
4270 case BINOP_CONCAT:
4271 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4272
4273 case BINOP_EXP:
4274 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4275
4276 case UNOP_NEG:
4277 case UNOP_PLUS:
4278 case UNOP_LOGICAL_NOT:
4279 case UNOP_ABS:
4280 return (!numeric_type_p (type0));
4281
4282 }
4283 }
4284 \f
4285 /* Renaming */
4286
4287 /* NOTES:
4288
4289 1. In the following, we assume that a renaming type's name may
4290 have an ___XD suffix. It would be nice if this went away at some
4291 point.
4292 2. We handle both the (old) purely type-based representation of
4293 renamings and the (new) variable-based encoding. At some point,
4294 it is devoutly to be hoped that the former goes away
4295 (FIXME: hilfinger-2007-07-09).
4296 3. Subprogram renamings are not implemented, although the XRS
4297 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4298
4299 /* If SYM encodes a renaming,
4300
4301 <renaming> renames <renamed entity>,
4302
4303 sets *LEN to the length of the renamed entity's name,
4304 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4305 the string describing the subcomponent selected from the renamed
4306 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4307 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4308 are undefined). Otherwise, returns a value indicating the category
4309 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4310 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4311 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4312 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4313 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4314 may be NULL, in which case they are not assigned.
4315
4316 [Currently, however, GCC does not generate subprogram renamings.] */
4317
4318 enum ada_renaming_category
4319 ada_parse_renaming (struct symbol *sym,
4320 const char **renamed_entity, int *len,
4321 const char **renaming_expr)
4322 {
4323 enum ada_renaming_category kind;
4324 const char *info;
4325 const char *suffix;
4326
4327 if (sym == NULL)
4328 return ADA_NOT_RENAMING;
4329 switch (SYMBOL_CLASS (sym))
4330 {
4331 default:
4332 return ADA_NOT_RENAMING;
4333 case LOC_TYPEDEF:
4334 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4335 renamed_entity, len, renaming_expr);
4336 case LOC_LOCAL:
4337 case LOC_STATIC:
4338 case LOC_COMPUTED:
4339 case LOC_OPTIMIZED_OUT:
4340 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4341 if (info == NULL)
4342 return ADA_NOT_RENAMING;
4343 switch (info[5])
4344 {
4345 case '_':
4346 kind = ADA_OBJECT_RENAMING;
4347 info += 6;
4348 break;
4349 case 'E':
4350 kind = ADA_EXCEPTION_RENAMING;
4351 info += 7;
4352 break;
4353 case 'P':
4354 kind = ADA_PACKAGE_RENAMING;
4355 info += 7;
4356 break;
4357 case 'S':
4358 kind = ADA_SUBPROGRAM_RENAMING;
4359 info += 7;
4360 break;
4361 default:
4362 return ADA_NOT_RENAMING;
4363 }
4364 }
4365
4366 if (renamed_entity != NULL)
4367 *renamed_entity = info;
4368 suffix = strstr (info, "___XE");
4369 if (suffix == NULL || suffix == info)
4370 return ADA_NOT_RENAMING;
4371 if (len != NULL)
4372 *len = strlen (info) - strlen (suffix);
4373 suffix += 5;
4374 if (renaming_expr != NULL)
4375 *renaming_expr = suffix;
4376 return kind;
4377 }
4378
4379 /* Assuming TYPE encodes a renaming according to the old encoding in
4380 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4381 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4382 ADA_NOT_RENAMING otherwise. */
4383 static enum ada_renaming_category
4384 parse_old_style_renaming (struct type *type,
4385 const char **renamed_entity, int *len,
4386 const char **renaming_expr)
4387 {
4388 enum ada_renaming_category kind;
4389 const char *name;
4390 const char *info;
4391 const char *suffix;
4392
4393 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4394 || TYPE_NFIELDS (type) != 1)
4395 return ADA_NOT_RENAMING;
4396
4397 name = type_name_no_tag (type);
4398 if (name == NULL)
4399 return ADA_NOT_RENAMING;
4400
4401 name = strstr (name, "___XR");
4402 if (name == NULL)
4403 return ADA_NOT_RENAMING;
4404 switch (name[5])
4405 {
4406 case '\0':
4407 case '_':
4408 kind = ADA_OBJECT_RENAMING;
4409 break;
4410 case 'E':
4411 kind = ADA_EXCEPTION_RENAMING;
4412 break;
4413 case 'P':
4414 kind = ADA_PACKAGE_RENAMING;
4415 break;
4416 case 'S':
4417 kind = ADA_SUBPROGRAM_RENAMING;
4418 break;
4419 default:
4420 return ADA_NOT_RENAMING;
4421 }
4422
4423 info = TYPE_FIELD_NAME (type, 0);
4424 if (info == NULL)
4425 return ADA_NOT_RENAMING;
4426 if (renamed_entity != NULL)
4427 *renamed_entity = info;
4428 suffix = strstr (info, "___XE");
4429 if (renaming_expr != NULL)
4430 *renaming_expr = suffix + 5;
4431 if (suffix == NULL || suffix == info)
4432 return ADA_NOT_RENAMING;
4433 if (len != NULL)
4434 *len = suffix - info;
4435 return kind;
4436 }
4437
4438 /* Compute the value of the given RENAMING_SYM, which is expected to
4439 be a symbol encoding a renaming expression. BLOCK is the block
4440 used to evaluate the renaming. */
4441
4442 static struct value *
4443 ada_read_renaming_var_value (struct symbol *renaming_sym,
4444 const struct block *block)
4445 {
4446 const char *sym_name;
4447
4448 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4449 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4450 return evaluate_expression (expr.get ());
4451 }
4452 \f
4453
4454 /* Evaluation: Function Calls */
4455
4456 /* Return an lvalue containing the value VAL. This is the identity on
4457 lvalues, and otherwise has the side-effect of allocating memory
4458 in the inferior where a copy of the value contents is copied. */
4459
4460 static struct value *
4461 ensure_lval (struct value *val)
4462 {
4463 if (VALUE_LVAL (val) == not_lval
4464 || VALUE_LVAL (val) == lval_internalvar)
4465 {
4466 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4467 const CORE_ADDR addr =
4468 value_as_long (value_allocate_space_in_inferior (len));
4469
4470 VALUE_LVAL (val) = lval_memory;
4471 set_value_address (val, addr);
4472 write_memory (addr, value_contents (val), len);
4473 }
4474
4475 return val;
4476 }
4477
4478 /* Return the value ACTUAL, converted to be an appropriate value for a
4479 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4480 allocating any necessary descriptors (fat pointers), or copies of
4481 values not residing in memory, updating it as needed. */
4482
4483 struct value *
4484 ada_convert_actual (struct value *actual, struct type *formal_type0)
4485 {
4486 struct type *actual_type = ada_check_typedef (value_type (actual));
4487 struct type *formal_type = ada_check_typedef (formal_type0);
4488 struct type *formal_target =
4489 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4490 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4491 struct type *actual_target =
4492 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4493 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4494
4495 if (ada_is_array_descriptor_type (formal_target)
4496 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4497 return make_array_descriptor (formal_type, actual);
4498 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4499 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4500 {
4501 struct value *result;
4502
4503 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4504 && ada_is_array_descriptor_type (actual_target))
4505 result = desc_data (actual);
4506 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4507 {
4508 if (VALUE_LVAL (actual) != lval_memory)
4509 {
4510 struct value *val;
4511
4512 actual_type = ada_check_typedef (value_type (actual));
4513 val = allocate_value (actual_type);
4514 memcpy ((char *) value_contents_raw (val),
4515 (char *) value_contents (actual),
4516 TYPE_LENGTH (actual_type));
4517 actual = ensure_lval (val);
4518 }
4519 result = value_addr (actual);
4520 }
4521 else
4522 return actual;
4523 return value_cast_pointers (formal_type, result, 0);
4524 }
4525 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4526 return ada_value_ind (actual);
4527 else if (ada_is_aligner_type (formal_type))
4528 {
4529 /* We need to turn this parameter into an aligner type
4530 as well. */
4531 struct value *aligner = allocate_value (formal_type);
4532 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4533
4534 value_assign_to_component (aligner, component, actual);
4535 return aligner;
4536 }
4537
4538 return actual;
4539 }
4540
4541 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4542 type TYPE. This is usually an inefficient no-op except on some targets
4543 (such as AVR) where the representation of a pointer and an address
4544 differs. */
4545
4546 static CORE_ADDR
4547 value_pointer (struct value *value, struct type *type)
4548 {
4549 struct gdbarch *gdbarch = get_type_arch (type);
4550 unsigned len = TYPE_LENGTH (type);
4551 gdb_byte *buf = (gdb_byte *) alloca (len);
4552 CORE_ADDR addr;
4553
4554 addr = value_address (value);
4555 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4556 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4557 return addr;
4558 }
4559
4560
4561 /* Push a descriptor of type TYPE for array value ARR on the stack at
4562 *SP, updating *SP to reflect the new descriptor. Return either
4563 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4564 to-descriptor type rather than a descriptor type), a struct value *
4565 representing a pointer to this descriptor. */
4566
4567 static struct value *
4568 make_array_descriptor (struct type *type, struct value *arr)
4569 {
4570 struct type *bounds_type = desc_bounds_type (type);
4571 struct type *desc_type = desc_base_type (type);
4572 struct value *descriptor = allocate_value (desc_type);
4573 struct value *bounds = allocate_value (bounds_type);
4574 int i;
4575
4576 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4577 i > 0; i -= 1)
4578 {
4579 modify_field (value_type (bounds), value_contents_writeable (bounds),
4580 ada_array_bound (arr, i, 0),
4581 desc_bound_bitpos (bounds_type, i, 0),
4582 desc_bound_bitsize (bounds_type, i, 0));
4583 modify_field (value_type (bounds), value_contents_writeable (bounds),
4584 ada_array_bound (arr, i, 1),
4585 desc_bound_bitpos (bounds_type, i, 1),
4586 desc_bound_bitsize (bounds_type, i, 1));
4587 }
4588
4589 bounds = ensure_lval (bounds);
4590
4591 modify_field (value_type (descriptor),
4592 value_contents_writeable (descriptor),
4593 value_pointer (ensure_lval (arr),
4594 TYPE_FIELD_TYPE (desc_type, 0)),
4595 fat_pntr_data_bitpos (desc_type),
4596 fat_pntr_data_bitsize (desc_type));
4597
4598 modify_field (value_type (descriptor),
4599 value_contents_writeable (descriptor),
4600 value_pointer (bounds,
4601 TYPE_FIELD_TYPE (desc_type, 1)),
4602 fat_pntr_bounds_bitpos (desc_type),
4603 fat_pntr_bounds_bitsize (desc_type));
4604
4605 descriptor = ensure_lval (descriptor);
4606
4607 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4608 return value_addr (descriptor);
4609 else
4610 return descriptor;
4611 }
4612 \f
4613 /* Symbol Cache Module */
4614
4615 /* Performance measurements made as of 2010-01-15 indicate that
4616 this cache does bring some noticeable improvements. Depending
4617 on the type of entity being printed, the cache can make it as much
4618 as an order of magnitude faster than without it.
4619
4620 The descriptive type DWARF extension has significantly reduced
4621 the need for this cache, at least when DWARF is being used. However,
4622 even in this case, some expensive name-based symbol searches are still
4623 sometimes necessary - to find an XVZ variable, mostly. */
4624
4625 /* Initialize the contents of SYM_CACHE. */
4626
4627 static void
4628 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4629 {
4630 obstack_init (&sym_cache->cache_space);
4631 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4632 }
4633
4634 /* Free the memory used by SYM_CACHE. */
4635
4636 static void
4637 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4638 {
4639 obstack_free (&sym_cache->cache_space, NULL);
4640 xfree (sym_cache);
4641 }
4642
4643 /* Return the symbol cache associated to the given program space PSPACE.
4644 If not allocated for this PSPACE yet, allocate and initialize one. */
4645
4646 static struct ada_symbol_cache *
4647 ada_get_symbol_cache (struct program_space *pspace)
4648 {
4649 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4650
4651 if (pspace_data->sym_cache == NULL)
4652 {
4653 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4654 ada_init_symbol_cache (pspace_data->sym_cache);
4655 }
4656
4657 return pspace_data->sym_cache;
4658 }
4659
4660 /* Clear all entries from the symbol cache. */
4661
4662 static void
4663 ada_clear_symbol_cache (void)
4664 {
4665 struct ada_symbol_cache *sym_cache
4666 = ada_get_symbol_cache (current_program_space);
4667
4668 obstack_free (&sym_cache->cache_space, NULL);
4669 ada_init_symbol_cache (sym_cache);
4670 }
4671
4672 /* Search our cache for an entry matching NAME and DOMAIN.
4673 Return it if found, or NULL otherwise. */
4674
4675 static struct cache_entry **
4676 find_entry (const char *name, domain_enum domain)
4677 {
4678 struct ada_symbol_cache *sym_cache
4679 = ada_get_symbol_cache (current_program_space);
4680 int h = msymbol_hash (name) % HASH_SIZE;
4681 struct cache_entry **e;
4682
4683 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4684 {
4685 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4686 return e;
4687 }
4688 return NULL;
4689 }
4690
4691 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4692 Return 1 if found, 0 otherwise.
4693
4694 If an entry was found and SYM is not NULL, set *SYM to the entry's
4695 SYM. Same principle for BLOCK if not NULL. */
4696
4697 static int
4698 lookup_cached_symbol (const char *name, domain_enum domain,
4699 struct symbol **sym, const struct block **block)
4700 {
4701 struct cache_entry **e = find_entry (name, domain);
4702
4703 if (e == NULL)
4704 return 0;
4705 if (sym != NULL)
4706 *sym = (*e)->sym;
4707 if (block != NULL)
4708 *block = (*e)->block;
4709 return 1;
4710 }
4711
4712 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4713 in domain DOMAIN, save this result in our symbol cache. */
4714
4715 static void
4716 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4717 const struct block *block)
4718 {
4719 struct ada_symbol_cache *sym_cache
4720 = ada_get_symbol_cache (current_program_space);
4721 int h;
4722 char *copy;
4723 struct cache_entry *e;
4724
4725 /* Symbols for builtin types don't have a block.
4726 For now don't cache such symbols. */
4727 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4728 return;
4729
4730 /* If the symbol is a local symbol, then do not cache it, as a search
4731 for that symbol depends on the context. To determine whether
4732 the symbol is local or not, we check the block where we found it
4733 against the global and static blocks of its associated symtab. */
4734 if (sym
4735 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4736 GLOBAL_BLOCK) != block
4737 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4738 STATIC_BLOCK) != block)
4739 return;
4740
4741 h = msymbol_hash (name) % HASH_SIZE;
4742 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4743 sizeof (*e));
4744 e->next = sym_cache->root[h];
4745 sym_cache->root[h] = e;
4746 e->name = copy
4747 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4748 strcpy (copy, name);
4749 e->sym = sym;
4750 e->domain = domain;
4751 e->block = block;
4752 }
4753 \f
4754 /* Symbol Lookup */
4755
4756 /* Return the symbol name match type that should be used used when
4757 searching for all symbols matching LOOKUP_NAME.
4758
4759 LOOKUP_NAME is expected to be a symbol name after transformation
4760 for Ada lookups (see ada_name_for_lookup). */
4761
4762 static symbol_name_match_type
4763 name_match_type_from_name (const char *lookup_name)
4764 {
4765 return (strstr (lookup_name, "__") == NULL
4766 ? symbol_name_match_type::WILD
4767 : symbol_name_match_type::FULL);
4768 }
4769
4770 /* Return the result of a standard (literal, C-like) lookup of NAME in
4771 given DOMAIN, visible from lexical block BLOCK. */
4772
4773 static struct symbol *
4774 standard_lookup (const char *name, const struct block *block,
4775 domain_enum domain)
4776 {
4777 /* Initialize it just to avoid a GCC false warning. */
4778 struct block_symbol sym = {NULL, NULL};
4779
4780 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4781 return sym.symbol;
4782 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4783 cache_symbol (name, domain, sym.symbol, sym.block);
4784 return sym.symbol;
4785 }
4786
4787
4788 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4789 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4790 since they contend in overloading in the same way. */
4791 static int
4792 is_nonfunction (struct block_symbol syms[], int n)
4793 {
4794 int i;
4795
4796 for (i = 0; i < n; i += 1)
4797 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4798 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4799 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4800 return 1;
4801
4802 return 0;
4803 }
4804
4805 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4806 struct types. Otherwise, they may not. */
4807
4808 static int
4809 equiv_types (struct type *type0, struct type *type1)
4810 {
4811 if (type0 == type1)
4812 return 1;
4813 if (type0 == NULL || type1 == NULL
4814 || TYPE_CODE (type0) != TYPE_CODE (type1))
4815 return 0;
4816 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4817 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4818 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4819 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4820 return 1;
4821
4822 return 0;
4823 }
4824
4825 /* True iff SYM0 represents the same entity as SYM1, or one that is
4826 no more defined than that of SYM1. */
4827
4828 static int
4829 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4830 {
4831 if (sym0 == sym1)
4832 return 1;
4833 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4834 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4835 return 0;
4836
4837 switch (SYMBOL_CLASS (sym0))
4838 {
4839 case LOC_UNDEF:
4840 return 1;
4841 case LOC_TYPEDEF:
4842 {
4843 struct type *type0 = SYMBOL_TYPE (sym0);
4844 struct type *type1 = SYMBOL_TYPE (sym1);
4845 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4846 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4847 int len0 = strlen (name0);
4848
4849 return
4850 TYPE_CODE (type0) == TYPE_CODE (type1)
4851 && (equiv_types (type0, type1)
4852 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4853 && startswith (name1 + len0, "___XV")));
4854 }
4855 case LOC_CONST:
4856 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4857 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4858 default:
4859 return 0;
4860 }
4861 }
4862
4863 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4864 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4865
4866 static void
4867 add_defn_to_vec (struct obstack *obstackp,
4868 struct symbol *sym,
4869 const struct block *block)
4870 {
4871 int i;
4872 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4873
4874 /* Do not try to complete stub types, as the debugger is probably
4875 already scanning all symbols matching a certain name at the
4876 time when this function is called. Trying to replace the stub
4877 type by its associated full type will cause us to restart a scan
4878 which may lead to an infinite recursion. Instead, the client
4879 collecting the matching symbols will end up collecting several
4880 matches, with at least one of them complete. It can then filter
4881 out the stub ones if needed. */
4882
4883 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4884 {
4885 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4886 return;
4887 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4888 {
4889 prevDefns[i].symbol = sym;
4890 prevDefns[i].block = block;
4891 return;
4892 }
4893 }
4894
4895 {
4896 struct block_symbol info;
4897
4898 info.symbol = sym;
4899 info.block = block;
4900 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4901 }
4902 }
4903
4904 /* Number of block_symbol structures currently collected in current vector in
4905 OBSTACKP. */
4906
4907 static int
4908 num_defns_collected (struct obstack *obstackp)
4909 {
4910 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4911 }
4912
4913 /* Vector of block_symbol structures currently collected in current vector in
4914 OBSTACKP. If FINISH, close off the vector and return its final address. */
4915
4916 static struct block_symbol *
4917 defns_collected (struct obstack *obstackp, int finish)
4918 {
4919 if (finish)
4920 return (struct block_symbol *) obstack_finish (obstackp);
4921 else
4922 return (struct block_symbol *) obstack_base (obstackp);
4923 }
4924
4925 /* Return a bound minimal symbol matching NAME according to Ada
4926 decoding rules. Returns an invalid symbol if there is no such
4927 minimal symbol. Names prefixed with "standard__" are handled
4928 specially: "standard__" is first stripped off, and only static and
4929 global symbols are searched. */
4930
4931 struct bound_minimal_symbol
4932 ada_lookup_simple_minsym (const char *name)
4933 {
4934 struct bound_minimal_symbol result;
4935 struct objfile *objfile;
4936 struct minimal_symbol *msymbol;
4937
4938 memset (&result, 0, sizeof (result));
4939
4940 symbol_name_match_type match_type = name_match_type_from_name (name);
4941 lookup_name_info lookup_name (name, match_type);
4942
4943 symbol_name_matcher_ftype *match_name
4944 = ada_get_symbol_name_matcher (lookup_name);
4945
4946 ALL_MSYMBOLS (objfile, msymbol)
4947 {
4948 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4949 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4950 {
4951 result.minsym = msymbol;
4952 result.objfile = objfile;
4953 break;
4954 }
4955 }
4956
4957 return result;
4958 }
4959
4960 /* For all subprograms that statically enclose the subprogram of the
4961 selected frame, add symbols matching identifier NAME in DOMAIN
4962 and their blocks to the list of data in OBSTACKP, as for
4963 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4964 with a wildcard prefix. */
4965
4966 static void
4967 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4968 const lookup_name_info &lookup_name,
4969 domain_enum domain)
4970 {
4971 }
4972
4973 /* True if TYPE is definitely an artificial type supplied to a symbol
4974 for which no debugging information was given in the symbol file. */
4975
4976 static int
4977 is_nondebugging_type (struct type *type)
4978 {
4979 const char *name = ada_type_name (type);
4980
4981 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4982 }
4983
4984 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4985 that are deemed "identical" for practical purposes.
4986
4987 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4988 types and that their number of enumerals is identical (in other
4989 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4990
4991 static int
4992 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4993 {
4994 int i;
4995
4996 /* The heuristic we use here is fairly conservative. We consider
4997 that 2 enumerate types are identical if they have the same
4998 number of enumerals and that all enumerals have the same
4999 underlying value and name. */
5000
5001 /* All enums in the type should have an identical underlying value. */
5002 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5003 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5004 return 0;
5005
5006 /* All enumerals should also have the same name (modulo any numerical
5007 suffix). */
5008 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5009 {
5010 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5011 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5012 int len_1 = strlen (name_1);
5013 int len_2 = strlen (name_2);
5014
5015 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5016 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5017 if (len_1 != len_2
5018 || strncmp (TYPE_FIELD_NAME (type1, i),
5019 TYPE_FIELD_NAME (type2, i),
5020 len_1) != 0)
5021 return 0;
5022 }
5023
5024 return 1;
5025 }
5026
5027 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5028 that are deemed "identical" for practical purposes. Sometimes,
5029 enumerals are not strictly identical, but their types are so similar
5030 that they can be considered identical.
5031
5032 For instance, consider the following code:
5033
5034 type Color is (Black, Red, Green, Blue, White);
5035 type RGB_Color is new Color range Red .. Blue;
5036
5037 Type RGB_Color is a subrange of an implicit type which is a copy
5038 of type Color. If we call that implicit type RGB_ColorB ("B" is
5039 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5040 As a result, when an expression references any of the enumeral
5041 by name (Eg. "print green"), the expression is technically
5042 ambiguous and the user should be asked to disambiguate. But
5043 doing so would only hinder the user, since it wouldn't matter
5044 what choice he makes, the outcome would always be the same.
5045 So, for practical purposes, we consider them as the same. */
5046
5047 static int
5048 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5049 {
5050 int i;
5051
5052 /* Before performing a thorough comparison check of each type,
5053 we perform a series of inexpensive checks. We expect that these
5054 checks will quickly fail in the vast majority of cases, and thus
5055 help prevent the unnecessary use of a more expensive comparison.
5056 Said comparison also expects us to make some of these checks
5057 (see ada_identical_enum_types_p). */
5058
5059 /* Quick check: All symbols should have an enum type. */
5060 for (i = 0; i < nsyms; i++)
5061 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5062 return 0;
5063
5064 /* Quick check: They should all have the same value. */
5065 for (i = 1; i < nsyms; i++)
5066 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5067 return 0;
5068
5069 /* Quick check: They should all have the same number of enumerals. */
5070 for (i = 1; i < nsyms; i++)
5071 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5072 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5073 return 0;
5074
5075 /* All the sanity checks passed, so we might have a set of
5076 identical enumeration types. Perform a more complete
5077 comparison of the type of each symbol. */
5078 for (i = 1; i < nsyms; i++)
5079 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5080 SYMBOL_TYPE (syms[0].symbol)))
5081 return 0;
5082
5083 return 1;
5084 }
5085
5086 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5087 duplicate other symbols in the list (The only case I know of where
5088 this happens is when object files containing stabs-in-ecoff are
5089 linked with files containing ordinary ecoff debugging symbols (or no
5090 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5091 Returns the number of items in the modified list. */
5092
5093 static int
5094 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5095 {
5096 int i, j;
5097
5098 /* We should never be called with less than 2 symbols, as there
5099 cannot be any extra symbol in that case. But it's easy to
5100 handle, since we have nothing to do in that case. */
5101 if (nsyms < 2)
5102 return nsyms;
5103
5104 i = 0;
5105 while (i < nsyms)
5106 {
5107 int remove_p = 0;
5108
5109 /* If two symbols have the same name and one of them is a stub type,
5110 the get rid of the stub. */
5111
5112 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5113 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5114 {
5115 for (j = 0; j < nsyms; j++)
5116 {
5117 if (j != i
5118 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5119 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5120 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5121 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5122 remove_p = 1;
5123 }
5124 }
5125
5126 /* Two symbols with the same name, same class and same address
5127 should be identical. */
5128
5129 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5130 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5131 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5132 {
5133 for (j = 0; j < nsyms; j += 1)
5134 {
5135 if (i != j
5136 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5137 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5138 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5139 && SYMBOL_CLASS (syms[i].symbol)
5140 == SYMBOL_CLASS (syms[j].symbol)
5141 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5142 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5143 remove_p = 1;
5144 }
5145 }
5146
5147 if (remove_p)
5148 {
5149 for (j = i + 1; j < nsyms; j += 1)
5150 syms[j - 1] = syms[j];
5151 nsyms -= 1;
5152 }
5153
5154 i += 1;
5155 }
5156
5157 /* If all the remaining symbols are identical enumerals, then
5158 just keep the first one and discard the rest.
5159
5160 Unlike what we did previously, we do not discard any entry
5161 unless they are ALL identical. This is because the symbol
5162 comparison is not a strict comparison, but rather a practical
5163 comparison. If all symbols are considered identical, then
5164 we can just go ahead and use the first one and discard the rest.
5165 But if we cannot reduce the list to a single element, we have
5166 to ask the user to disambiguate anyways. And if we have to
5167 present a multiple-choice menu, it's less confusing if the list
5168 isn't missing some choices that were identical and yet distinct. */
5169 if (symbols_are_identical_enums (syms, nsyms))
5170 nsyms = 1;
5171
5172 return nsyms;
5173 }
5174
5175 /* Given a type that corresponds to a renaming entity, use the type name
5176 to extract the scope (package name or function name, fully qualified,
5177 and following the GNAT encoding convention) where this renaming has been
5178 defined. The string returned needs to be deallocated after use. */
5179
5180 static char *
5181 xget_renaming_scope (struct type *renaming_type)
5182 {
5183 /* The renaming types adhere to the following convention:
5184 <scope>__<rename>___<XR extension>.
5185 So, to extract the scope, we search for the "___XR" extension,
5186 and then backtrack until we find the first "__". */
5187
5188 const char *name = type_name_no_tag (renaming_type);
5189 const char *suffix = strstr (name, "___XR");
5190 const char *last;
5191 int scope_len;
5192 char *scope;
5193
5194 /* Now, backtrack a bit until we find the first "__". Start looking
5195 at suffix - 3, as the <rename> part is at least one character long. */
5196
5197 for (last = suffix - 3; last > name; last--)
5198 if (last[0] == '_' && last[1] == '_')
5199 break;
5200
5201 /* Make a copy of scope and return it. */
5202
5203 scope_len = last - name;
5204 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5205
5206 strncpy (scope, name, scope_len);
5207 scope[scope_len] = '\0';
5208
5209 return scope;
5210 }
5211
5212 /* Return nonzero if NAME corresponds to a package name. */
5213
5214 static int
5215 is_package_name (const char *name)
5216 {
5217 /* Here, We take advantage of the fact that no symbols are generated
5218 for packages, while symbols are generated for each function.
5219 So the condition for NAME represent a package becomes equivalent
5220 to NAME not existing in our list of symbols. There is only one
5221 small complication with library-level functions (see below). */
5222
5223 char *fun_name;
5224
5225 /* If it is a function that has not been defined at library level,
5226 then we should be able to look it up in the symbols. */
5227 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5228 return 0;
5229
5230 /* Library-level function names start with "_ada_". See if function
5231 "_ada_" followed by NAME can be found. */
5232
5233 /* Do a quick check that NAME does not contain "__", since library-level
5234 functions names cannot contain "__" in them. */
5235 if (strstr (name, "__") != NULL)
5236 return 0;
5237
5238 fun_name = xstrprintf ("_ada_%s", name);
5239
5240 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5241 }
5242
5243 /* Return nonzero if SYM corresponds to a renaming entity that is
5244 not visible from FUNCTION_NAME. */
5245
5246 static int
5247 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5248 {
5249 char *scope;
5250 struct cleanup *old_chain;
5251
5252 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5253 return 0;
5254
5255 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5256 old_chain = make_cleanup (xfree, scope);
5257
5258 /* If the rename has been defined in a package, then it is visible. */
5259 if (is_package_name (scope))
5260 {
5261 do_cleanups (old_chain);
5262 return 0;
5263 }
5264
5265 /* Check that the rename is in the current function scope by checking
5266 that its name starts with SCOPE. */
5267
5268 /* If the function name starts with "_ada_", it means that it is
5269 a library-level function. Strip this prefix before doing the
5270 comparison, as the encoding for the renaming does not contain
5271 this prefix. */
5272 if (startswith (function_name, "_ada_"))
5273 function_name += 5;
5274
5275 {
5276 int is_invisible = !startswith (function_name, scope);
5277
5278 do_cleanups (old_chain);
5279 return is_invisible;
5280 }
5281 }
5282
5283 /* Remove entries from SYMS that corresponds to a renaming entity that
5284 is not visible from the function associated with CURRENT_BLOCK or
5285 that is superfluous due to the presence of more specific renaming
5286 information. Places surviving symbols in the initial entries of
5287 SYMS and returns the number of surviving symbols.
5288
5289 Rationale:
5290 First, in cases where an object renaming is implemented as a
5291 reference variable, GNAT may produce both the actual reference
5292 variable and the renaming encoding. In this case, we discard the
5293 latter.
5294
5295 Second, GNAT emits a type following a specified encoding for each renaming
5296 entity. Unfortunately, STABS currently does not support the definition
5297 of types that are local to a given lexical block, so all renamings types
5298 are emitted at library level. As a consequence, if an application
5299 contains two renaming entities using the same name, and a user tries to
5300 print the value of one of these entities, the result of the ada symbol
5301 lookup will also contain the wrong renaming type.
5302
5303 This function partially covers for this limitation by attempting to
5304 remove from the SYMS list renaming symbols that should be visible
5305 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5306 method with the current information available. The implementation
5307 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5308
5309 - When the user tries to print a rename in a function while there
5310 is another rename entity defined in a package: Normally, the
5311 rename in the function has precedence over the rename in the
5312 package, so the latter should be removed from the list. This is
5313 currently not the case.
5314
5315 - This function will incorrectly remove valid renames if
5316 the CURRENT_BLOCK corresponds to a function which symbol name
5317 has been changed by an "Export" pragma. As a consequence,
5318 the user will be unable to print such rename entities. */
5319
5320 static int
5321 remove_irrelevant_renamings (struct block_symbol *syms,
5322 int nsyms, const struct block *current_block)
5323 {
5324 struct symbol *current_function;
5325 const char *current_function_name;
5326 int i;
5327 int is_new_style_renaming;
5328
5329 /* If there is both a renaming foo___XR... encoded as a variable and
5330 a simple variable foo in the same block, discard the latter.
5331 First, zero out such symbols, then compress. */
5332 is_new_style_renaming = 0;
5333 for (i = 0; i < nsyms; i += 1)
5334 {
5335 struct symbol *sym = syms[i].symbol;
5336 const struct block *block = syms[i].block;
5337 const char *name;
5338 const char *suffix;
5339
5340 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5341 continue;
5342 name = SYMBOL_LINKAGE_NAME (sym);
5343 suffix = strstr (name, "___XR");
5344
5345 if (suffix != NULL)
5346 {
5347 int name_len = suffix - name;
5348 int j;
5349
5350 is_new_style_renaming = 1;
5351 for (j = 0; j < nsyms; j += 1)
5352 if (i != j && syms[j].symbol != NULL
5353 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5354 name_len) == 0
5355 && block == syms[j].block)
5356 syms[j].symbol = NULL;
5357 }
5358 }
5359 if (is_new_style_renaming)
5360 {
5361 int j, k;
5362
5363 for (j = k = 0; j < nsyms; j += 1)
5364 if (syms[j].symbol != NULL)
5365 {
5366 syms[k] = syms[j];
5367 k += 1;
5368 }
5369 return k;
5370 }
5371
5372 /* Extract the function name associated to CURRENT_BLOCK.
5373 Abort if unable to do so. */
5374
5375 if (current_block == NULL)
5376 return nsyms;
5377
5378 current_function = block_linkage_function (current_block);
5379 if (current_function == NULL)
5380 return nsyms;
5381
5382 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5383 if (current_function_name == NULL)
5384 return nsyms;
5385
5386 /* Check each of the symbols, and remove it from the list if it is
5387 a type corresponding to a renaming that is out of the scope of
5388 the current block. */
5389
5390 i = 0;
5391 while (i < nsyms)
5392 {
5393 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5394 == ADA_OBJECT_RENAMING
5395 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5396 {
5397 int j;
5398
5399 for (j = i + 1; j < nsyms; j += 1)
5400 syms[j - 1] = syms[j];
5401 nsyms -= 1;
5402 }
5403 else
5404 i += 1;
5405 }
5406
5407 return nsyms;
5408 }
5409
5410 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5411 whose name and domain match NAME and DOMAIN respectively.
5412 If no match was found, then extend the search to "enclosing"
5413 routines (in other words, if we're inside a nested function,
5414 search the symbols defined inside the enclosing functions).
5415 If WILD_MATCH_P is nonzero, perform the naming matching in
5416 "wild" mode (see function "wild_match" for more info).
5417
5418 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5419
5420 static void
5421 ada_add_local_symbols (struct obstack *obstackp,
5422 const lookup_name_info &lookup_name,
5423 const struct block *block, domain_enum domain)
5424 {
5425 int block_depth = 0;
5426
5427 while (block != NULL)
5428 {
5429 block_depth += 1;
5430 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5431
5432 /* If we found a non-function match, assume that's the one. */
5433 if (is_nonfunction (defns_collected (obstackp, 0),
5434 num_defns_collected (obstackp)))
5435 return;
5436
5437 block = BLOCK_SUPERBLOCK (block);
5438 }
5439
5440 /* If no luck so far, try to find NAME as a local symbol in some lexically
5441 enclosing subprogram. */
5442 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5443 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5444 }
5445
5446 /* An object of this type is used as the user_data argument when
5447 calling the map_matching_symbols method. */
5448
5449 struct match_data
5450 {
5451 struct objfile *objfile;
5452 struct obstack *obstackp;
5453 struct symbol *arg_sym;
5454 int found_sym;
5455 };
5456
5457 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5458 to a list of symbols. DATA0 is a pointer to a struct match_data *
5459 containing the obstack that collects the symbol list, the file that SYM
5460 must come from, a flag indicating whether a non-argument symbol has
5461 been found in the current block, and the last argument symbol
5462 passed in SYM within the current block (if any). When SYM is null,
5463 marking the end of a block, the argument symbol is added if no
5464 other has been found. */
5465
5466 static int
5467 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5468 {
5469 struct match_data *data = (struct match_data *) data0;
5470
5471 if (sym == NULL)
5472 {
5473 if (!data->found_sym && data->arg_sym != NULL)
5474 add_defn_to_vec (data->obstackp,
5475 fixup_symbol_section (data->arg_sym, data->objfile),
5476 block);
5477 data->found_sym = 0;
5478 data->arg_sym = NULL;
5479 }
5480 else
5481 {
5482 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5483 return 0;
5484 else if (SYMBOL_IS_ARGUMENT (sym))
5485 data->arg_sym = sym;
5486 else
5487 {
5488 data->found_sym = 1;
5489 add_defn_to_vec (data->obstackp,
5490 fixup_symbol_section (sym, data->objfile),
5491 block);
5492 }
5493 }
5494 return 0;
5495 }
5496
5497 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5498 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5499 symbols to OBSTACKP. Return whether we found such symbols. */
5500
5501 static int
5502 ada_add_block_renamings (struct obstack *obstackp,
5503 const struct block *block,
5504 const lookup_name_info &lookup_name,
5505 domain_enum domain)
5506 {
5507 struct using_direct *renaming;
5508 int defns_mark = num_defns_collected (obstackp);
5509
5510 symbol_name_matcher_ftype *name_match
5511 = ada_get_symbol_name_matcher (lookup_name);
5512
5513 for (renaming = block_using (block);
5514 renaming != NULL;
5515 renaming = renaming->next)
5516 {
5517 const char *r_name;
5518
5519 /* Avoid infinite recursions: skip this renaming if we are actually
5520 already traversing it.
5521
5522 Currently, symbol lookup in Ada don't use the namespace machinery from
5523 C++/Fortran support: skip namespace imports that use them. */
5524 if (renaming->searched
5525 || (renaming->import_src != NULL
5526 && renaming->import_src[0] != '\0')
5527 || (renaming->import_dest != NULL
5528 && renaming->import_dest[0] != '\0'))
5529 continue;
5530 renaming->searched = 1;
5531
5532 /* TODO: here, we perform another name-based symbol lookup, which can
5533 pull its own multiple overloads. In theory, we should be able to do
5534 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5535 not a simple name. But in order to do this, we would need to enhance
5536 the DWARF reader to associate a symbol to this renaming, instead of a
5537 name. So, for now, we do something simpler: re-use the C++/Fortran
5538 namespace machinery. */
5539 r_name = (renaming->alias != NULL
5540 ? renaming->alias
5541 : renaming->declaration);
5542 if (name_match (r_name, lookup_name, NULL))
5543 {
5544 lookup_name_info decl_lookup_name (renaming->declaration,
5545 lookup_name.match_type ());
5546 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5547 1, NULL);
5548 }
5549 renaming->searched = 0;
5550 }
5551 return num_defns_collected (obstackp) != defns_mark;
5552 }
5553
5554 /* Implements compare_names, but only applying the comparision using
5555 the given CASING. */
5556
5557 static int
5558 compare_names_with_case (const char *string1, const char *string2,
5559 enum case_sensitivity casing)
5560 {
5561 while (*string1 != '\0' && *string2 != '\0')
5562 {
5563 char c1, c2;
5564
5565 if (isspace (*string1) || isspace (*string2))
5566 return strcmp_iw_ordered (string1, string2);
5567
5568 if (casing == case_sensitive_off)
5569 {
5570 c1 = tolower (*string1);
5571 c2 = tolower (*string2);
5572 }
5573 else
5574 {
5575 c1 = *string1;
5576 c2 = *string2;
5577 }
5578 if (c1 != c2)
5579 break;
5580
5581 string1 += 1;
5582 string2 += 1;
5583 }
5584
5585 switch (*string1)
5586 {
5587 case '(':
5588 return strcmp_iw_ordered (string1, string2);
5589 case '_':
5590 if (*string2 == '\0')
5591 {
5592 if (is_name_suffix (string1))
5593 return 0;
5594 else
5595 return 1;
5596 }
5597 /* FALLTHROUGH */
5598 default:
5599 if (*string2 == '(')
5600 return strcmp_iw_ordered (string1, string2);
5601 else
5602 {
5603 if (casing == case_sensitive_off)
5604 return tolower (*string1) - tolower (*string2);
5605 else
5606 return *string1 - *string2;
5607 }
5608 }
5609 }
5610
5611 /* Compare STRING1 to STRING2, with results as for strcmp.
5612 Compatible with strcmp_iw_ordered in that...
5613
5614 strcmp_iw_ordered (STRING1, STRING2) <= 0
5615
5616 ... implies...
5617
5618 compare_names (STRING1, STRING2) <= 0
5619
5620 (they may differ as to what symbols compare equal). */
5621
5622 static int
5623 compare_names (const char *string1, const char *string2)
5624 {
5625 int result;
5626
5627 /* Similar to what strcmp_iw_ordered does, we need to perform
5628 a case-insensitive comparison first, and only resort to
5629 a second, case-sensitive, comparison if the first one was
5630 not sufficient to differentiate the two strings. */
5631
5632 result = compare_names_with_case (string1, string2, case_sensitive_off);
5633 if (result == 0)
5634 result = compare_names_with_case (string1, string2, case_sensitive_on);
5635
5636 return result;
5637 }
5638
5639 /* Convenience function to get at the Ada encoded lookup name for
5640 LOOKUP_NAME, as a C string. */
5641
5642 static const char *
5643 ada_lookup_name (const lookup_name_info &lookup_name)
5644 {
5645 return lookup_name.ada ().lookup_name ().c_str ();
5646 }
5647
5648 /* Add to OBSTACKP all non-local symbols whose name and domain match
5649 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5650 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5651 symbols otherwise. */
5652
5653 static void
5654 add_nonlocal_symbols (struct obstack *obstackp,
5655 const lookup_name_info &lookup_name,
5656 domain_enum domain, int global)
5657 {
5658 struct objfile *objfile;
5659 struct compunit_symtab *cu;
5660 struct match_data data;
5661
5662 memset (&data, 0, sizeof data);
5663 data.obstackp = obstackp;
5664
5665 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5666
5667 ALL_OBJFILES (objfile)
5668 {
5669 data.objfile = objfile;
5670
5671 if (is_wild_match)
5672 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5673 domain, global,
5674 aux_add_nonlocal_symbols, &data,
5675 symbol_name_match_type::WILD,
5676 NULL);
5677 else
5678 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5679 domain, global,
5680 aux_add_nonlocal_symbols, &data,
5681 symbol_name_match_type::FULL,
5682 compare_names);
5683
5684 ALL_OBJFILE_COMPUNITS (objfile, cu)
5685 {
5686 const struct block *global_block
5687 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5688
5689 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5690 domain))
5691 data.found_sym = 1;
5692 }
5693 }
5694
5695 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5696 {
5697 const char *name = ada_lookup_name (lookup_name);
5698 std::string name1 = std::string ("<_ada_") + name + '>';
5699
5700 ALL_OBJFILES (objfile)
5701 {
5702 data.objfile = objfile;
5703 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5704 domain, global,
5705 aux_add_nonlocal_symbols,
5706 &data,
5707 symbol_name_match_type::FULL,
5708 compare_names);
5709 }
5710 }
5711 }
5712
5713 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5714 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5715 returning the number of matches. Add these to OBSTACKP.
5716
5717 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5718 symbol match within the nest of blocks whose innermost member is BLOCK,
5719 is the one match returned (no other matches in that or
5720 enclosing blocks is returned). If there are any matches in or
5721 surrounding BLOCK, then these alone are returned.
5722
5723 Names prefixed with "standard__" are handled specially:
5724 "standard__" is first stripped off (by the lookup_name
5725 constructor), and only static and global symbols are searched.
5726
5727 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5728 to lookup global symbols. */
5729
5730 static void
5731 ada_add_all_symbols (struct obstack *obstackp,
5732 const struct block *block,
5733 const lookup_name_info &lookup_name,
5734 domain_enum domain,
5735 int full_search,
5736 int *made_global_lookup_p)
5737 {
5738 struct symbol *sym;
5739
5740 if (made_global_lookup_p)
5741 *made_global_lookup_p = 0;
5742
5743 /* Special case: If the user specifies a symbol name inside package
5744 Standard, do a non-wild matching of the symbol name without
5745 the "standard__" prefix. This was primarily introduced in order
5746 to allow the user to specifically access the standard exceptions
5747 using, for instance, Standard.Constraint_Error when Constraint_Error
5748 is ambiguous (due to the user defining its own Constraint_Error
5749 entity inside its program). */
5750 if (lookup_name.ada ().standard_p ())
5751 block = NULL;
5752
5753 /* Check the non-global symbols. If we have ANY match, then we're done. */
5754
5755 if (block != NULL)
5756 {
5757 if (full_search)
5758 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5759 else
5760 {
5761 /* In the !full_search case we're are being called by
5762 ada_iterate_over_symbols, and we don't want to search
5763 superblocks. */
5764 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5765 }
5766 if (num_defns_collected (obstackp) > 0 || !full_search)
5767 return;
5768 }
5769
5770 /* No non-global symbols found. Check our cache to see if we have
5771 already performed this search before. If we have, then return
5772 the same result. */
5773
5774 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5775 domain, &sym, &block))
5776 {
5777 if (sym != NULL)
5778 add_defn_to_vec (obstackp, sym, block);
5779 return;
5780 }
5781
5782 if (made_global_lookup_p)
5783 *made_global_lookup_p = 1;
5784
5785 /* Search symbols from all global blocks. */
5786
5787 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5788
5789 /* Now add symbols from all per-file blocks if we've gotten no hits
5790 (not strictly correct, but perhaps better than an error). */
5791
5792 if (num_defns_collected (obstackp) == 0)
5793 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5794 }
5795
5796 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5797 is non-zero, enclosing scope and in global scopes, returning the number of
5798 matches.
5799 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5800 indicating the symbols found and the blocks and symbol tables (if
5801 any) in which they were found. This vector is transient---good only to
5802 the next call of ada_lookup_symbol_list.
5803
5804 When full_search is non-zero, any non-function/non-enumeral
5805 symbol match within the nest of blocks whose innermost member is BLOCK,
5806 is the one match returned (no other matches in that or
5807 enclosing blocks is returned). If there are any matches in or
5808 surrounding BLOCK, then these alone are returned.
5809
5810 Names prefixed with "standard__" are handled specially: "standard__"
5811 is first stripped off, and only static and global symbols are searched. */
5812
5813 static int
5814 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5815 const struct block *block,
5816 domain_enum domain,
5817 struct block_symbol **results,
5818 int full_search)
5819 {
5820 int syms_from_global_search;
5821 int ndefns;
5822
5823 obstack_free (&symbol_list_obstack, NULL);
5824 obstack_init (&symbol_list_obstack);
5825 ada_add_all_symbols (&symbol_list_obstack, block, lookup_name,
5826 domain, full_search, &syms_from_global_search);
5827
5828 ndefns = num_defns_collected (&symbol_list_obstack);
5829 *results = defns_collected (&symbol_list_obstack, 1);
5830
5831 ndefns = remove_extra_symbols (*results, ndefns);
5832
5833 if (ndefns == 0 && full_search && syms_from_global_search)
5834 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5835
5836 if (ndefns == 1 && full_search && syms_from_global_search)
5837 cache_symbol (ada_lookup_name (lookup_name), domain,
5838 (*results)[0].symbol, (*results)[0].block);
5839
5840 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5841 return ndefns;
5842 }
5843
5844 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5845 in global scopes, returning the number of matches, and setting *RESULTS
5846 to a vector of (SYM,BLOCK) tuples.
5847 See ada_lookup_symbol_list_worker for further details. */
5848
5849 int
5850 ada_lookup_symbol_list (const char *name, const struct block *block,
5851 domain_enum domain, struct block_symbol **results)
5852 {
5853 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5854 lookup_name_info lookup_name (name, name_match_type);
5855
5856 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5857 }
5858
5859 /* Implementation of the la_iterate_over_symbols method. */
5860
5861 static void
5862 ada_iterate_over_symbols
5863 (const struct block *block, const lookup_name_info &name,
5864 domain_enum domain,
5865 gdb::function_view<symbol_found_callback_ftype> callback)
5866 {
5867 int ndefs, i;
5868 struct block_symbol *results;
5869
5870 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5871 for (i = 0; i < ndefs; ++i)
5872 {
5873 if (!callback (results[i].symbol))
5874 break;
5875 }
5876 }
5877
5878 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5879 to 1, but choosing the first symbol found if there are multiple
5880 choices.
5881
5882 The result is stored in *INFO, which must be non-NULL.
5883 If no match is found, INFO->SYM is set to NULL. */
5884
5885 void
5886 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5887 domain_enum domain,
5888 struct block_symbol *info)
5889 {
5890 struct block_symbol *candidates;
5891 int n_candidates;
5892
5893 /* Since we already have an encoded name, wrap it in '<>' to force a
5894 verbatim match. Otherwise, if the name happens to not look like
5895 an encoded name (because it doesn't include a "__"),
5896 ada_lookup_name_info would re-encode/fold it again, and that
5897 would e.g., incorrectly lowercase object renaming names like
5898 "R28b" -> "r28b". */
5899 std::string verbatim = std::string ("<") + name + '>';
5900
5901 gdb_assert (info != NULL);
5902 memset (info, 0, sizeof (struct block_symbol));
5903
5904 n_candidates = ada_lookup_symbol_list (verbatim.c_str (), block,
5905 domain, &candidates);
5906 if (n_candidates == 0)
5907 return;
5908
5909 *info = candidates[0];
5910 info->symbol = fixup_symbol_section (info->symbol, NULL);
5911 }
5912
5913 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5914 scope and in global scopes, or NULL if none. NAME is folded and
5915 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5916 choosing the first symbol if there are multiple choices.
5917 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5918
5919 struct block_symbol
5920 ada_lookup_symbol (const char *name, const struct block *block0,
5921 domain_enum domain, int *is_a_field_of_this)
5922 {
5923 struct block_symbol info;
5924
5925 if (is_a_field_of_this != NULL)
5926 *is_a_field_of_this = 0;
5927
5928 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5929 block0, domain, &info);
5930 return info;
5931 }
5932
5933 static struct block_symbol
5934 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5935 const char *name,
5936 const struct block *block,
5937 const domain_enum domain)
5938 {
5939 struct block_symbol sym;
5940
5941 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5942 if (sym.symbol != NULL)
5943 return sym;
5944
5945 /* If we haven't found a match at this point, try the primitive
5946 types. In other languages, this search is performed before
5947 searching for global symbols in order to short-circuit that
5948 global-symbol search if it happens that the name corresponds
5949 to a primitive type. But we cannot do the same in Ada, because
5950 it is perfectly legitimate for a program to declare a type which
5951 has the same name as a standard type. If looking up a type in
5952 that situation, we have traditionally ignored the primitive type
5953 in favor of user-defined types. This is why, unlike most other
5954 languages, we search the primitive types this late and only after
5955 having searched the global symbols without success. */
5956
5957 if (domain == VAR_DOMAIN)
5958 {
5959 struct gdbarch *gdbarch;
5960
5961 if (block == NULL)
5962 gdbarch = target_gdbarch ();
5963 else
5964 gdbarch = block_gdbarch (block);
5965 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5966 if (sym.symbol != NULL)
5967 return sym;
5968 }
5969
5970 return (struct block_symbol) {NULL, NULL};
5971 }
5972
5973
5974 /* True iff STR is a possible encoded suffix of a normal Ada name
5975 that is to be ignored for matching purposes. Suffixes of parallel
5976 names (e.g., XVE) are not included here. Currently, the possible suffixes
5977 are given by any of the regular expressions:
5978
5979 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5980 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5981 TKB [subprogram suffix for task bodies]
5982 _E[0-9]+[bs]$ [protected object entry suffixes]
5983 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5984
5985 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5986 match is performed. This sequence is used to differentiate homonyms,
5987 is an optional part of a valid name suffix. */
5988
5989 static int
5990 is_name_suffix (const char *str)
5991 {
5992 int k;
5993 const char *matching;
5994 const int len = strlen (str);
5995
5996 /* Skip optional leading __[0-9]+. */
5997
5998 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5999 {
6000 str += 3;
6001 while (isdigit (str[0]))
6002 str += 1;
6003 }
6004
6005 /* [.$][0-9]+ */
6006
6007 if (str[0] == '.' || str[0] == '$')
6008 {
6009 matching = str + 1;
6010 while (isdigit (matching[0]))
6011 matching += 1;
6012 if (matching[0] == '\0')
6013 return 1;
6014 }
6015
6016 /* ___[0-9]+ */
6017
6018 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6019 {
6020 matching = str + 3;
6021 while (isdigit (matching[0]))
6022 matching += 1;
6023 if (matching[0] == '\0')
6024 return 1;
6025 }
6026
6027 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6028
6029 if (strcmp (str, "TKB") == 0)
6030 return 1;
6031
6032 #if 0
6033 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6034 with a N at the end. Unfortunately, the compiler uses the same
6035 convention for other internal types it creates. So treating
6036 all entity names that end with an "N" as a name suffix causes
6037 some regressions. For instance, consider the case of an enumerated
6038 type. To support the 'Image attribute, it creates an array whose
6039 name ends with N.
6040 Having a single character like this as a suffix carrying some
6041 information is a bit risky. Perhaps we should change the encoding
6042 to be something like "_N" instead. In the meantime, do not do
6043 the following check. */
6044 /* Protected Object Subprograms */
6045 if (len == 1 && str [0] == 'N')
6046 return 1;
6047 #endif
6048
6049 /* _E[0-9]+[bs]$ */
6050 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6051 {
6052 matching = str + 3;
6053 while (isdigit (matching[0]))
6054 matching += 1;
6055 if ((matching[0] == 'b' || matching[0] == 's')
6056 && matching [1] == '\0')
6057 return 1;
6058 }
6059
6060 /* ??? We should not modify STR directly, as we are doing below. This
6061 is fine in this case, but may become problematic later if we find
6062 that this alternative did not work, and want to try matching
6063 another one from the begining of STR. Since we modified it, we
6064 won't be able to find the begining of the string anymore! */
6065 if (str[0] == 'X')
6066 {
6067 str += 1;
6068 while (str[0] != '_' && str[0] != '\0')
6069 {
6070 if (str[0] != 'n' && str[0] != 'b')
6071 return 0;
6072 str += 1;
6073 }
6074 }
6075
6076 if (str[0] == '\000')
6077 return 1;
6078
6079 if (str[0] == '_')
6080 {
6081 if (str[1] != '_' || str[2] == '\000')
6082 return 0;
6083 if (str[2] == '_')
6084 {
6085 if (strcmp (str + 3, "JM") == 0)
6086 return 1;
6087 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6088 the LJM suffix in favor of the JM one. But we will
6089 still accept LJM as a valid suffix for a reasonable
6090 amount of time, just to allow ourselves to debug programs
6091 compiled using an older version of GNAT. */
6092 if (strcmp (str + 3, "LJM") == 0)
6093 return 1;
6094 if (str[3] != 'X')
6095 return 0;
6096 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6097 || str[4] == 'U' || str[4] == 'P')
6098 return 1;
6099 if (str[4] == 'R' && str[5] != 'T')
6100 return 1;
6101 return 0;
6102 }
6103 if (!isdigit (str[2]))
6104 return 0;
6105 for (k = 3; str[k] != '\0'; k += 1)
6106 if (!isdigit (str[k]) && str[k] != '_')
6107 return 0;
6108 return 1;
6109 }
6110 if (str[0] == '$' && isdigit (str[1]))
6111 {
6112 for (k = 2; str[k] != '\0'; k += 1)
6113 if (!isdigit (str[k]) && str[k] != '_')
6114 return 0;
6115 return 1;
6116 }
6117 return 0;
6118 }
6119
6120 /* Return non-zero if the string starting at NAME and ending before
6121 NAME_END contains no capital letters. */
6122
6123 static int
6124 is_valid_name_for_wild_match (const char *name0)
6125 {
6126 const char *decoded_name = ada_decode (name0);
6127 int i;
6128
6129 /* If the decoded name starts with an angle bracket, it means that
6130 NAME0 does not follow the GNAT encoding format. It should then
6131 not be allowed as a possible wild match. */
6132 if (decoded_name[0] == '<')
6133 return 0;
6134
6135 for (i=0; decoded_name[i] != '\0'; i++)
6136 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6137 return 0;
6138
6139 return 1;
6140 }
6141
6142 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6143 that could start a simple name. Assumes that *NAMEP points into
6144 the string beginning at NAME0. */
6145
6146 static int
6147 advance_wild_match (const char **namep, const char *name0, int target0)
6148 {
6149 const char *name = *namep;
6150
6151 while (1)
6152 {
6153 int t0, t1;
6154
6155 t0 = *name;
6156 if (t0 == '_')
6157 {
6158 t1 = name[1];
6159 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6160 {
6161 name += 1;
6162 if (name == name0 + 5 && startswith (name0, "_ada"))
6163 break;
6164 else
6165 name += 1;
6166 }
6167 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6168 || name[2] == target0))
6169 {
6170 name += 2;
6171 break;
6172 }
6173 else
6174 return 0;
6175 }
6176 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6177 name += 1;
6178 else
6179 return 0;
6180 }
6181
6182 *namep = name;
6183 return 1;
6184 }
6185
6186 /* Return true iff NAME encodes a name of the form prefix.PATN.
6187 Ignores any informational suffixes of NAME (i.e., for which
6188 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6189 simple name. */
6190
6191 static bool
6192 wild_match (const char *name, const char *patn)
6193 {
6194 const char *p;
6195 const char *name0 = name;
6196
6197 while (1)
6198 {
6199 const char *match = name;
6200
6201 if (*name == *patn)
6202 {
6203 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6204 if (*p != *name)
6205 break;
6206 if (*p == '\0' && is_name_suffix (name))
6207 return match == name0 || is_valid_name_for_wild_match (name0);
6208
6209 if (name[-1] == '_')
6210 name -= 1;
6211 }
6212 if (!advance_wild_match (&name, name0, *patn))
6213 return false;
6214 }
6215 }
6216
6217 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6218 any trailing suffixes that encode debugging information or leading
6219 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6220 information that is ignored). */
6221
6222 static bool
6223 full_match (const char *sym_name, const char *search_name)
6224 {
6225 size_t search_name_len = strlen (search_name);
6226
6227 if (strncmp (sym_name, search_name, search_name_len) == 0
6228 && is_name_suffix (sym_name + search_name_len))
6229 return true;
6230
6231 if (startswith (sym_name, "_ada_")
6232 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6233 && is_name_suffix (sym_name + search_name_len + 5))
6234 return true;
6235
6236 return false;
6237 }
6238
6239 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6240 *defn_symbols, updating the list of symbols in OBSTACKP (if
6241 necessary). OBJFILE is the section containing BLOCK. */
6242
6243 static void
6244 ada_add_block_symbols (struct obstack *obstackp,
6245 const struct block *block,
6246 const lookup_name_info &lookup_name,
6247 domain_enum domain, struct objfile *objfile)
6248 {
6249 struct block_iterator iter;
6250 /* A matching argument symbol, if any. */
6251 struct symbol *arg_sym;
6252 /* Set true when we find a matching non-argument symbol. */
6253 int found_sym;
6254 struct symbol *sym;
6255
6256 arg_sym = NULL;
6257 found_sym = 0;
6258 for (sym = block_iter_match_first (block, lookup_name, &iter);
6259 sym != NULL;
6260 sym = block_iter_match_next (lookup_name, &iter))
6261 {
6262 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6263 SYMBOL_DOMAIN (sym), domain))
6264 {
6265 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6266 {
6267 if (SYMBOL_IS_ARGUMENT (sym))
6268 arg_sym = sym;
6269 else
6270 {
6271 found_sym = 1;
6272 add_defn_to_vec (obstackp,
6273 fixup_symbol_section (sym, objfile),
6274 block);
6275 }
6276 }
6277 }
6278 }
6279
6280 /* Handle renamings. */
6281
6282 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6283 found_sym = 1;
6284
6285 if (!found_sym && arg_sym != NULL)
6286 {
6287 add_defn_to_vec (obstackp,
6288 fixup_symbol_section (arg_sym, objfile),
6289 block);
6290 }
6291
6292 if (!lookup_name.ada ().wild_match_p ())
6293 {
6294 arg_sym = NULL;
6295 found_sym = 0;
6296 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6297 const char *name = ada_lookup_name.c_str ();
6298 size_t name_len = ada_lookup_name.size ();
6299
6300 ALL_BLOCK_SYMBOLS (block, iter, sym)
6301 {
6302 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6303 SYMBOL_DOMAIN (sym), domain))
6304 {
6305 int cmp;
6306
6307 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6308 if (cmp == 0)
6309 {
6310 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6311 if (cmp == 0)
6312 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6313 name_len);
6314 }
6315
6316 if (cmp == 0
6317 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6318 {
6319 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6320 {
6321 if (SYMBOL_IS_ARGUMENT (sym))
6322 arg_sym = sym;
6323 else
6324 {
6325 found_sym = 1;
6326 add_defn_to_vec (obstackp,
6327 fixup_symbol_section (sym, objfile),
6328 block);
6329 }
6330 }
6331 }
6332 }
6333 }
6334
6335 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6336 They aren't parameters, right? */
6337 if (!found_sym && arg_sym != NULL)
6338 {
6339 add_defn_to_vec (obstackp,
6340 fixup_symbol_section (arg_sym, objfile),
6341 block);
6342 }
6343 }
6344 }
6345 \f
6346
6347 /* Symbol Completion */
6348
6349 /* See symtab.h. */
6350
6351 bool
6352 ada_lookup_name_info::matches
6353 (const char *sym_name,
6354 symbol_name_match_type match_type,
6355 completion_match *comp_match) const
6356 {
6357 bool match = false;
6358 const char *text = m_encoded_name.c_str ();
6359 size_t text_len = m_encoded_name.size ();
6360
6361 /* First, test against the fully qualified name of the symbol. */
6362
6363 if (strncmp (sym_name, text, text_len) == 0)
6364 match = true;
6365
6366 if (match && !m_encoded_p)
6367 {
6368 /* One needed check before declaring a positive match is to verify
6369 that iff we are doing a verbatim match, the decoded version
6370 of the symbol name starts with '<'. Otherwise, this symbol name
6371 is not a suitable completion. */
6372 const char *sym_name_copy = sym_name;
6373 bool has_angle_bracket;
6374
6375 sym_name = ada_decode (sym_name);
6376 has_angle_bracket = (sym_name[0] == '<');
6377 match = (has_angle_bracket == m_verbatim_p);
6378 sym_name = sym_name_copy;
6379 }
6380
6381 if (match && !m_verbatim_p)
6382 {
6383 /* When doing non-verbatim match, another check that needs to
6384 be done is to verify that the potentially matching symbol name
6385 does not include capital letters, because the ada-mode would
6386 not be able to understand these symbol names without the
6387 angle bracket notation. */
6388 const char *tmp;
6389
6390 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6391 if (*tmp != '\0')
6392 match = false;
6393 }
6394
6395 /* Second: Try wild matching... */
6396
6397 if (!match && m_wild_match_p)
6398 {
6399 /* Since we are doing wild matching, this means that TEXT
6400 may represent an unqualified symbol name. We therefore must
6401 also compare TEXT against the unqualified name of the symbol. */
6402 sym_name = ada_unqualified_name (ada_decode (sym_name));
6403
6404 if (strncmp (sym_name, text, text_len) == 0)
6405 match = true;
6406 }
6407
6408 /* Finally: If we found a match, prepare the result to return. */
6409
6410 if (!match)
6411 return false;
6412
6413 if (comp_match != NULL)
6414 {
6415 std::string &match_str = comp_match->storage ();
6416
6417 if (!m_encoded_p)
6418 {
6419 match_str = ada_decode (sym_name);
6420 comp_match->set_match (match_str.c_str ());
6421 }
6422 else
6423 {
6424 if (m_verbatim_p)
6425 match_str = add_angle_brackets (sym_name);
6426 else
6427 match_str = sym_name;
6428
6429 comp_match->set_match (match_str.c_str ());
6430 }
6431 }
6432
6433 return true;
6434 }
6435
6436 /* Add the list of possible symbol names completing TEXT to TRACKER.
6437 WORD is the entire command on which completion is made. */
6438
6439 static void
6440 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6441 complete_symbol_mode mode,
6442 symbol_name_match_type name_match_type,
6443 const char *text, const char *word,
6444 enum type_code code)
6445 {
6446 struct symbol *sym;
6447 struct compunit_symtab *s;
6448 struct minimal_symbol *msymbol;
6449 struct objfile *objfile;
6450 const struct block *b, *surrounding_static_block = 0;
6451 int i;
6452 struct block_iterator iter;
6453 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6454
6455 gdb_assert (code == TYPE_CODE_UNDEF);
6456
6457 lookup_name_info lookup_name (text, name_match_type, true);
6458
6459 /* First, look at the partial symtab symbols. */
6460 expand_symtabs_matching (NULL,
6461 lookup_name,
6462 NULL,
6463 NULL,
6464 ALL_DOMAIN);
6465
6466 /* At this point scan through the misc symbol vectors and add each
6467 symbol you find to the list. Eventually we want to ignore
6468 anything that isn't a text symbol (everything else will be
6469 handled by the psymtab code above). */
6470
6471 ALL_MSYMBOLS (objfile, msymbol)
6472 {
6473 QUIT;
6474
6475 if (completion_skip_symbol (mode, msymbol))
6476 continue;
6477
6478 completion_list_add_name (tracker,
6479 MSYMBOL_LANGUAGE (msymbol),
6480 MSYMBOL_LINKAGE_NAME (msymbol),
6481 lookup_name, text, word);
6482 }
6483
6484 /* Search upwards from currently selected frame (so that we can
6485 complete on local vars. */
6486
6487 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6488 {
6489 if (!BLOCK_SUPERBLOCK (b))
6490 surrounding_static_block = b; /* For elmin of dups */
6491
6492 ALL_BLOCK_SYMBOLS (b, iter, sym)
6493 {
6494 if (completion_skip_symbol (mode, sym))
6495 continue;
6496
6497 completion_list_add_name (tracker,
6498 SYMBOL_LANGUAGE (sym),
6499 SYMBOL_LINKAGE_NAME (sym),
6500 lookup_name, text, word);
6501 }
6502 }
6503
6504 /* Go through the symtabs and check the externs and statics for
6505 symbols which match. */
6506
6507 ALL_COMPUNITS (objfile, s)
6508 {
6509 QUIT;
6510 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6511 ALL_BLOCK_SYMBOLS (b, iter, sym)
6512 {
6513 if (completion_skip_symbol (mode, sym))
6514 continue;
6515
6516 completion_list_add_name (tracker,
6517 SYMBOL_LANGUAGE (sym),
6518 SYMBOL_LINKAGE_NAME (sym),
6519 lookup_name, text, word);
6520 }
6521 }
6522
6523 ALL_COMPUNITS (objfile, s)
6524 {
6525 QUIT;
6526 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6527 /* Don't do this block twice. */
6528 if (b == surrounding_static_block)
6529 continue;
6530 ALL_BLOCK_SYMBOLS (b, iter, sym)
6531 {
6532 if (completion_skip_symbol (mode, sym))
6533 continue;
6534
6535 completion_list_add_name (tracker,
6536 SYMBOL_LANGUAGE (sym),
6537 SYMBOL_LINKAGE_NAME (sym),
6538 lookup_name, text, word);
6539 }
6540 }
6541
6542 do_cleanups (old_chain);
6543 }
6544
6545 /* Field Access */
6546
6547 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6548 for tagged types. */
6549
6550 static int
6551 ada_is_dispatch_table_ptr_type (struct type *type)
6552 {
6553 const char *name;
6554
6555 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6556 return 0;
6557
6558 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6559 if (name == NULL)
6560 return 0;
6561
6562 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6563 }
6564
6565 /* Return non-zero if TYPE is an interface tag. */
6566
6567 static int
6568 ada_is_interface_tag (struct type *type)
6569 {
6570 const char *name = TYPE_NAME (type);
6571
6572 if (name == NULL)
6573 return 0;
6574
6575 return (strcmp (name, "ada__tags__interface_tag") == 0);
6576 }
6577
6578 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6579 to be invisible to users. */
6580
6581 int
6582 ada_is_ignored_field (struct type *type, int field_num)
6583 {
6584 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6585 return 1;
6586
6587 /* Check the name of that field. */
6588 {
6589 const char *name = TYPE_FIELD_NAME (type, field_num);
6590
6591 /* Anonymous field names should not be printed.
6592 brobecker/2007-02-20: I don't think this can actually happen
6593 but we don't want to print the value of annonymous fields anyway. */
6594 if (name == NULL)
6595 return 1;
6596
6597 /* Normally, fields whose name start with an underscore ("_")
6598 are fields that have been internally generated by the compiler,
6599 and thus should not be printed. The "_parent" field is special,
6600 however: This is a field internally generated by the compiler
6601 for tagged types, and it contains the components inherited from
6602 the parent type. This field should not be printed as is, but
6603 should not be ignored either. */
6604 if (name[0] == '_' && !startswith (name, "_parent"))
6605 return 1;
6606 }
6607
6608 /* If this is the dispatch table of a tagged type or an interface tag,
6609 then ignore. */
6610 if (ada_is_tagged_type (type, 1)
6611 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6612 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6613 return 1;
6614
6615 /* Not a special field, so it should not be ignored. */
6616 return 0;
6617 }
6618
6619 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6620 pointer or reference type whose ultimate target has a tag field. */
6621
6622 int
6623 ada_is_tagged_type (struct type *type, int refok)
6624 {
6625 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6626 }
6627
6628 /* True iff TYPE represents the type of X'Tag */
6629
6630 int
6631 ada_is_tag_type (struct type *type)
6632 {
6633 type = ada_check_typedef (type);
6634
6635 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6636 return 0;
6637 else
6638 {
6639 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6640
6641 return (name != NULL
6642 && strcmp (name, "ada__tags__dispatch_table") == 0);
6643 }
6644 }
6645
6646 /* The type of the tag on VAL. */
6647
6648 struct type *
6649 ada_tag_type (struct value *val)
6650 {
6651 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6652 }
6653
6654 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6655 retired at Ada 05). */
6656
6657 static int
6658 is_ada95_tag (struct value *tag)
6659 {
6660 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6661 }
6662
6663 /* The value of the tag on VAL. */
6664
6665 struct value *
6666 ada_value_tag (struct value *val)
6667 {
6668 return ada_value_struct_elt (val, "_tag", 0);
6669 }
6670
6671 /* The value of the tag on the object of type TYPE whose contents are
6672 saved at VALADDR, if it is non-null, or is at memory address
6673 ADDRESS. */
6674
6675 static struct value *
6676 value_tag_from_contents_and_address (struct type *type,
6677 const gdb_byte *valaddr,
6678 CORE_ADDR address)
6679 {
6680 int tag_byte_offset;
6681 struct type *tag_type;
6682
6683 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6684 NULL, NULL, NULL))
6685 {
6686 const gdb_byte *valaddr1 = ((valaddr == NULL)
6687 ? NULL
6688 : valaddr + tag_byte_offset);
6689 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6690
6691 return value_from_contents_and_address (tag_type, valaddr1, address1);
6692 }
6693 return NULL;
6694 }
6695
6696 static struct type *
6697 type_from_tag (struct value *tag)
6698 {
6699 const char *type_name = ada_tag_name (tag);
6700
6701 if (type_name != NULL)
6702 return ada_find_any_type (ada_encode (type_name));
6703 return NULL;
6704 }
6705
6706 /* Given a value OBJ of a tagged type, return a value of this
6707 type at the base address of the object. The base address, as
6708 defined in Ada.Tags, it is the address of the primary tag of
6709 the object, and therefore where the field values of its full
6710 view can be fetched. */
6711
6712 struct value *
6713 ada_tag_value_at_base_address (struct value *obj)
6714 {
6715 struct value *val;
6716 LONGEST offset_to_top = 0;
6717 struct type *ptr_type, *obj_type;
6718 struct value *tag;
6719 CORE_ADDR base_address;
6720
6721 obj_type = value_type (obj);
6722
6723 /* It is the responsability of the caller to deref pointers. */
6724
6725 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6726 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6727 return obj;
6728
6729 tag = ada_value_tag (obj);
6730 if (!tag)
6731 return obj;
6732
6733 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6734
6735 if (is_ada95_tag (tag))
6736 return obj;
6737
6738 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6739 ptr_type = lookup_pointer_type (ptr_type);
6740 val = value_cast (ptr_type, tag);
6741 if (!val)
6742 return obj;
6743
6744 /* It is perfectly possible that an exception be raised while
6745 trying to determine the base address, just like for the tag;
6746 see ada_tag_name for more details. We do not print the error
6747 message for the same reason. */
6748
6749 TRY
6750 {
6751 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6752 }
6753
6754 CATCH (e, RETURN_MASK_ERROR)
6755 {
6756 return obj;
6757 }
6758 END_CATCH
6759
6760 /* If offset is null, nothing to do. */
6761
6762 if (offset_to_top == 0)
6763 return obj;
6764
6765 /* -1 is a special case in Ada.Tags; however, what should be done
6766 is not quite clear from the documentation. So do nothing for
6767 now. */
6768
6769 if (offset_to_top == -1)
6770 return obj;
6771
6772 base_address = value_address (obj) - offset_to_top;
6773 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6774
6775 /* Make sure that we have a proper tag at the new address.
6776 Otherwise, offset_to_top is bogus (which can happen when
6777 the object is not initialized yet). */
6778
6779 if (!tag)
6780 return obj;
6781
6782 obj_type = type_from_tag (tag);
6783
6784 if (!obj_type)
6785 return obj;
6786
6787 return value_from_contents_and_address (obj_type, NULL, base_address);
6788 }
6789
6790 /* Return the "ada__tags__type_specific_data" type. */
6791
6792 static struct type *
6793 ada_get_tsd_type (struct inferior *inf)
6794 {
6795 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6796
6797 if (data->tsd_type == 0)
6798 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6799 return data->tsd_type;
6800 }
6801
6802 /* Return the TSD (type-specific data) associated to the given TAG.
6803 TAG is assumed to be the tag of a tagged-type entity.
6804
6805 May return NULL if we are unable to get the TSD. */
6806
6807 static struct value *
6808 ada_get_tsd_from_tag (struct value *tag)
6809 {
6810 struct value *val;
6811 struct type *type;
6812
6813 /* First option: The TSD is simply stored as a field of our TAG.
6814 Only older versions of GNAT would use this format, but we have
6815 to test it first, because there are no visible markers for
6816 the current approach except the absence of that field. */
6817
6818 val = ada_value_struct_elt (tag, "tsd", 1);
6819 if (val)
6820 return val;
6821
6822 /* Try the second representation for the dispatch table (in which
6823 there is no explicit 'tsd' field in the referent of the tag pointer,
6824 and instead the tsd pointer is stored just before the dispatch
6825 table. */
6826
6827 type = ada_get_tsd_type (current_inferior());
6828 if (type == NULL)
6829 return NULL;
6830 type = lookup_pointer_type (lookup_pointer_type (type));
6831 val = value_cast (type, tag);
6832 if (val == NULL)
6833 return NULL;
6834 return value_ind (value_ptradd (val, -1));
6835 }
6836
6837 /* Given the TSD of a tag (type-specific data), return a string
6838 containing the name of the associated type.
6839
6840 The returned value is good until the next call. May return NULL
6841 if we are unable to determine the tag name. */
6842
6843 static char *
6844 ada_tag_name_from_tsd (struct value *tsd)
6845 {
6846 static char name[1024];
6847 char *p;
6848 struct value *val;
6849
6850 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6851 if (val == NULL)
6852 return NULL;
6853 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6854 for (p = name; *p != '\0'; p += 1)
6855 if (isalpha (*p))
6856 *p = tolower (*p);
6857 return name;
6858 }
6859
6860 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6861 a C string.
6862
6863 Return NULL if the TAG is not an Ada tag, or if we were unable to
6864 determine the name of that tag. The result is good until the next
6865 call. */
6866
6867 const char *
6868 ada_tag_name (struct value *tag)
6869 {
6870 char *name = NULL;
6871
6872 if (!ada_is_tag_type (value_type (tag)))
6873 return NULL;
6874
6875 /* It is perfectly possible that an exception be raised while trying
6876 to determine the TAG's name, even under normal circumstances:
6877 The associated variable may be uninitialized or corrupted, for
6878 instance. We do not let any exception propagate past this point.
6879 instead we return NULL.
6880
6881 We also do not print the error message either (which often is very
6882 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6883 the caller print a more meaningful message if necessary. */
6884 TRY
6885 {
6886 struct value *tsd = ada_get_tsd_from_tag (tag);
6887
6888 if (tsd != NULL)
6889 name = ada_tag_name_from_tsd (tsd);
6890 }
6891 CATCH (e, RETURN_MASK_ERROR)
6892 {
6893 }
6894 END_CATCH
6895
6896 return name;
6897 }
6898
6899 /* The parent type of TYPE, or NULL if none. */
6900
6901 struct type *
6902 ada_parent_type (struct type *type)
6903 {
6904 int i;
6905
6906 type = ada_check_typedef (type);
6907
6908 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6909 return NULL;
6910
6911 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6912 if (ada_is_parent_field (type, i))
6913 {
6914 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6915
6916 /* If the _parent field is a pointer, then dereference it. */
6917 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6918 parent_type = TYPE_TARGET_TYPE (parent_type);
6919 /* If there is a parallel XVS type, get the actual base type. */
6920 parent_type = ada_get_base_type (parent_type);
6921
6922 return ada_check_typedef (parent_type);
6923 }
6924
6925 return NULL;
6926 }
6927
6928 /* True iff field number FIELD_NUM of structure type TYPE contains the
6929 parent-type (inherited) fields of a derived type. Assumes TYPE is
6930 a structure type with at least FIELD_NUM+1 fields. */
6931
6932 int
6933 ada_is_parent_field (struct type *type, int field_num)
6934 {
6935 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6936
6937 return (name != NULL
6938 && (startswith (name, "PARENT")
6939 || startswith (name, "_parent")));
6940 }
6941
6942 /* True iff field number FIELD_NUM of structure type TYPE is a
6943 transparent wrapper field (which should be silently traversed when doing
6944 field selection and flattened when printing). Assumes TYPE is a
6945 structure type with at least FIELD_NUM+1 fields. Such fields are always
6946 structures. */
6947
6948 int
6949 ada_is_wrapper_field (struct type *type, int field_num)
6950 {
6951 const char *name = TYPE_FIELD_NAME (type, field_num);
6952
6953 if (name != NULL && strcmp (name, "RETVAL") == 0)
6954 {
6955 /* This happens in functions with "out" or "in out" parameters
6956 which are passed by copy. For such functions, GNAT describes
6957 the function's return type as being a struct where the return
6958 value is in a field called RETVAL, and where the other "out"
6959 or "in out" parameters are fields of that struct. This is not
6960 a wrapper. */
6961 return 0;
6962 }
6963
6964 return (name != NULL
6965 && (startswith (name, "PARENT")
6966 || strcmp (name, "REP") == 0
6967 || startswith (name, "_parent")
6968 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6969 }
6970
6971 /* True iff field number FIELD_NUM of structure or union type TYPE
6972 is a variant wrapper. Assumes TYPE is a structure type with at least
6973 FIELD_NUM+1 fields. */
6974
6975 int
6976 ada_is_variant_part (struct type *type, int field_num)
6977 {
6978 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6979
6980 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6981 || (is_dynamic_field (type, field_num)
6982 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6983 == TYPE_CODE_UNION)));
6984 }
6985
6986 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6987 whose discriminants are contained in the record type OUTER_TYPE,
6988 returns the type of the controlling discriminant for the variant.
6989 May return NULL if the type could not be found. */
6990
6991 struct type *
6992 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6993 {
6994 const char *name = ada_variant_discrim_name (var_type);
6995
6996 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6997 }
6998
6999 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7000 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7001 represents a 'when others' clause; otherwise 0. */
7002
7003 int
7004 ada_is_others_clause (struct type *type, int field_num)
7005 {
7006 const char *name = TYPE_FIELD_NAME (type, field_num);
7007
7008 return (name != NULL && name[0] == 'O');
7009 }
7010
7011 /* Assuming that TYPE0 is the type of the variant part of a record,
7012 returns the name of the discriminant controlling the variant.
7013 The value is valid until the next call to ada_variant_discrim_name. */
7014
7015 const char *
7016 ada_variant_discrim_name (struct type *type0)
7017 {
7018 static char *result = NULL;
7019 static size_t result_len = 0;
7020 struct type *type;
7021 const char *name;
7022 const char *discrim_end;
7023 const char *discrim_start;
7024
7025 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7026 type = TYPE_TARGET_TYPE (type0);
7027 else
7028 type = type0;
7029
7030 name = ada_type_name (type);
7031
7032 if (name == NULL || name[0] == '\000')
7033 return "";
7034
7035 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7036 discrim_end -= 1)
7037 {
7038 if (startswith (discrim_end, "___XVN"))
7039 break;
7040 }
7041 if (discrim_end == name)
7042 return "";
7043
7044 for (discrim_start = discrim_end; discrim_start != name + 3;
7045 discrim_start -= 1)
7046 {
7047 if (discrim_start == name + 1)
7048 return "";
7049 if ((discrim_start > name + 3
7050 && startswith (discrim_start - 3, "___"))
7051 || discrim_start[-1] == '.')
7052 break;
7053 }
7054
7055 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7056 strncpy (result, discrim_start, discrim_end - discrim_start);
7057 result[discrim_end - discrim_start] = '\0';
7058 return result;
7059 }
7060
7061 /* Scan STR for a subtype-encoded number, beginning at position K.
7062 Put the position of the character just past the number scanned in
7063 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7064 Return 1 if there was a valid number at the given position, and 0
7065 otherwise. A "subtype-encoded" number consists of the absolute value
7066 in decimal, followed by the letter 'm' to indicate a negative number.
7067 Assumes 0m does not occur. */
7068
7069 int
7070 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7071 {
7072 ULONGEST RU;
7073
7074 if (!isdigit (str[k]))
7075 return 0;
7076
7077 /* Do it the hard way so as not to make any assumption about
7078 the relationship of unsigned long (%lu scan format code) and
7079 LONGEST. */
7080 RU = 0;
7081 while (isdigit (str[k]))
7082 {
7083 RU = RU * 10 + (str[k] - '0');
7084 k += 1;
7085 }
7086
7087 if (str[k] == 'm')
7088 {
7089 if (R != NULL)
7090 *R = (-(LONGEST) (RU - 1)) - 1;
7091 k += 1;
7092 }
7093 else if (R != NULL)
7094 *R = (LONGEST) RU;
7095
7096 /* NOTE on the above: Technically, C does not say what the results of
7097 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7098 number representable as a LONGEST (although either would probably work
7099 in most implementations). When RU>0, the locution in the then branch
7100 above is always equivalent to the negative of RU. */
7101
7102 if (new_k != NULL)
7103 *new_k = k;
7104 return 1;
7105 }
7106
7107 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7108 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7109 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7110
7111 int
7112 ada_in_variant (LONGEST val, struct type *type, int field_num)
7113 {
7114 const char *name = TYPE_FIELD_NAME (type, field_num);
7115 int p;
7116
7117 p = 0;
7118 while (1)
7119 {
7120 switch (name[p])
7121 {
7122 case '\0':
7123 return 0;
7124 case 'S':
7125 {
7126 LONGEST W;
7127
7128 if (!ada_scan_number (name, p + 1, &W, &p))
7129 return 0;
7130 if (val == W)
7131 return 1;
7132 break;
7133 }
7134 case 'R':
7135 {
7136 LONGEST L, U;
7137
7138 if (!ada_scan_number (name, p + 1, &L, &p)
7139 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7140 return 0;
7141 if (val >= L && val <= U)
7142 return 1;
7143 break;
7144 }
7145 case 'O':
7146 return 1;
7147 default:
7148 return 0;
7149 }
7150 }
7151 }
7152
7153 /* FIXME: Lots of redundancy below. Try to consolidate. */
7154
7155 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7156 ARG_TYPE, extract and return the value of one of its (non-static)
7157 fields. FIELDNO says which field. Differs from value_primitive_field
7158 only in that it can handle packed values of arbitrary type. */
7159
7160 static struct value *
7161 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7162 struct type *arg_type)
7163 {
7164 struct type *type;
7165
7166 arg_type = ada_check_typedef (arg_type);
7167 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7168
7169 /* Handle packed fields. */
7170
7171 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7172 {
7173 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7174 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7175
7176 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7177 offset + bit_pos / 8,
7178 bit_pos % 8, bit_size, type);
7179 }
7180 else
7181 return value_primitive_field (arg1, offset, fieldno, arg_type);
7182 }
7183
7184 /* Find field with name NAME in object of type TYPE. If found,
7185 set the following for each argument that is non-null:
7186 - *FIELD_TYPE_P to the field's type;
7187 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7188 an object of that type;
7189 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7190 - *BIT_SIZE_P to its size in bits if the field is packed, and
7191 0 otherwise;
7192 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7193 fields up to but not including the desired field, or by the total
7194 number of fields if not found. A NULL value of NAME never
7195 matches; the function just counts visible fields in this case.
7196
7197 Returns 1 if found, 0 otherwise. */
7198
7199 static int
7200 find_struct_field (const char *name, struct type *type, int offset,
7201 struct type **field_type_p,
7202 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7203 int *index_p)
7204 {
7205 int i;
7206
7207 type = ada_check_typedef (type);
7208
7209 if (field_type_p != NULL)
7210 *field_type_p = NULL;
7211 if (byte_offset_p != NULL)
7212 *byte_offset_p = 0;
7213 if (bit_offset_p != NULL)
7214 *bit_offset_p = 0;
7215 if (bit_size_p != NULL)
7216 *bit_size_p = 0;
7217
7218 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7219 {
7220 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7221 int fld_offset = offset + bit_pos / 8;
7222 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7223
7224 if (t_field_name == NULL)
7225 continue;
7226
7227 else if (name != NULL && field_name_match (t_field_name, name))
7228 {
7229 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7230
7231 if (field_type_p != NULL)
7232 *field_type_p = TYPE_FIELD_TYPE (type, i);
7233 if (byte_offset_p != NULL)
7234 *byte_offset_p = fld_offset;
7235 if (bit_offset_p != NULL)
7236 *bit_offset_p = bit_pos % 8;
7237 if (bit_size_p != NULL)
7238 *bit_size_p = bit_size;
7239 return 1;
7240 }
7241 else if (ada_is_wrapper_field (type, i))
7242 {
7243 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7244 field_type_p, byte_offset_p, bit_offset_p,
7245 bit_size_p, index_p))
7246 return 1;
7247 }
7248 else if (ada_is_variant_part (type, i))
7249 {
7250 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7251 fixed type?? */
7252 int j;
7253 struct type *field_type
7254 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7255
7256 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7257 {
7258 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7259 fld_offset
7260 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7261 field_type_p, byte_offset_p,
7262 bit_offset_p, bit_size_p, index_p))
7263 return 1;
7264 }
7265 }
7266 else if (index_p != NULL)
7267 *index_p += 1;
7268 }
7269 return 0;
7270 }
7271
7272 /* Number of user-visible fields in record type TYPE. */
7273
7274 static int
7275 num_visible_fields (struct type *type)
7276 {
7277 int n;
7278
7279 n = 0;
7280 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7281 return n;
7282 }
7283
7284 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7285 and search in it assuming it has (class) type TYPE.
7286 If found, return value, else return NULL.
7287
7288 Searches recursively through wrapper fields (e.g., '_parent'). */
7289
7290 static struct value *
7291 ada_search_struct_field (const char *name, struct value *arg, int offset,
7292 struct type *type)
7293 {
7294 int i;
7295
7296 type = ada_check_typedef (type);
7297 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7298 {
7299 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7300
7301 if (t_field_name == NULL)
7302 continue;
7303
7304 else if (field_name_match (t_field_name, name))
7305 return ada_value_primitive_field (arg, offset, i, type);
7306
7307 else if (ada_is_wrapper_field (type, i))
7308 {
7309 struct value *v = /* Do not let indent join lines here. */
7310 ada_search_struct_field (name, arg,
7311 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7312 TYPE_FIELD_TYPE (type, i));
7313
7314 if (v != NULL)
7315 return v;
7316 }
7317
7318 else if (ada_is_variant_part (type, i))
7319 {
7320 /* PNH: Do we ever get here? See find_struct_field. */
7321 int j;
7322 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7323 i));
7324 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7325
7326 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7327 {
7328 struct value *v = ada_search_struct_field /* Force line
7329 break. */
7330 (name, arg,
7331 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7332 TYPE_FIELD_TYPE (field_type, j));
7333
7334 if (v != NULL)
7335 return v;
7336 }
7337 }
7338 }
7339 return NULL;
7340 }
7341
7342 static struct value *ada_index_struct_field_1 (int *, struct value *,
7343 int, struct type *);
7344
7345
7346 /* Return field #INDEX in ARG, where the index is that returned by
7347 * find_struct_field through its INDEX_P argument. Adjust the address
7348 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7349 * If found, return value, else return NULL. */
7350
7351 static struct value *
7352 ada_index_struct_field (int index, struct value *arg, int offset,
7353 struct type *type)
7354 {
7355 return ada_index_struct_field_1 (&index, arg, offset, type);
7356 }
7357
7358
7359 /* Auxiliary function for ada_index_struct_field. Like
7360 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7361 * *INDEX_P. */
7362
7363 static struct value *
7364 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7365 struct type *type)
7366 {
7367 int i;
7368 type = ada_check_typedef (type);
7369
7370 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7371 {
7372 if (TYPE_FIELD_NAME (type, i) == NULL)
7373 continue;
7374 else if (ada_is_wrapper_field (type, i))
7375 {
7376 struct value *v = /* Do not let indent join lines here. */
7377 ada_index_struct_field_1 (index_p, arg,
7378 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7379 TYPE_FIELD_TYPE (type, i));
7380
7381 if (v != NULL)
7382 return v;
7383 }
7384
7385 else if (ada_is_variant_part (type, i))
7386 {
7387 /* PNH: Do we ever get here? See ada_search_struct_field,
7388 find_struct_field. */
7389 error (_("Cannot assign this kind of variant record"));
7390 }
7391 else if (*index_p == 0)
7392 return ada_value_primitive_field (arg, offset, i, type);
7393 else
7394 *index_p -= 1;
7395 }
7396 return NULL;
7397 }
7398
7399 /* Given ARG, a value of type (pointer or reference to a)*
7400 structure/union, extract the component named NAME from the ultimate
7401 target structure/union and return it as a value with its
7402 appropriate type.
7403
7404 The routine searches for NAME among all members of the structure itself
7405 and (recursively) among all members of any wrapper members
7406 (e.g., '_parent').
7407
7408 If NO_ERR, then simply return NULL in case of error, rather than
7409 calling error. */
7410
7411 struct value *
7412 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7413 {
7414 struct type *t, *t1;
7415 struct value *v;
7416
7417 v = NULL;
7418 t1 = t = ada_check_typedef (value_type (arg));
7419 if (TYPE_CODE (t) == TYPE_CODE_REF)
7420 {
7421 t1 = TYPE_TARGET_TYPE (t);
7422 if (t1 == NULL)
7423 goto BadValue;
7424 t1 = ada_check_typedef (t1);
7425 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7426 {
7427 arg = coerce_ref (arg);
7428 t = t1;
7429 }
7430 }
7431
7432 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7433 {
7434 t1 = TYPE_TARGET_TYPE (t);
7435 if (t1 == NULL)
7436 goto BadValue;
7437 t1 = ada_check_typedef (t1);
7438 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7439 {
7440 arg = value_ind (arg);
7441 t = t1;
7442 }
7443 else
7444 break;
7445 }
7446
7447 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7448 goto BadValue;
7449
7450 if (t1 == t)
7451 v = ada_search_struct_field (name, arg, 0, t);
7452 else
7453 {
7454 int bit_offset, bit_size, byte_offset;
7455 struct type *field_type;
7456 CORE_ADDR address;
7457
7458 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7459 address = value_address (ada_value_ind (arg));
7460 else
7461 address = value_address (ada_coerce_ref (arg));
7462
7463 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7464 if (find_struct_field (name, t1, 0,
7465 &field_type, &byte_offset, &bit_offset,
7466 &bit_size, NULL))
7467 {
7468 if (bit_size != 0)
7469 {
7470 if (TYPE_CODE (t) == TYPE_CODE_REF)
7471 arg = ada_coerce_ref (arg);
7472 else
7473 arg = ada_value_ind (arg);
7474 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7475 bit_offset, bit_size,
7476 field_type);
7477 }
7478 else
7479 v = value_at_lazy (field_type, address + byte_offset);
7480 }
7481 }
7482
7483 if (v != NULL || no_err)
7484 return v;
7485 else
7486 error (_("There is no member named %s."), name);
7487
7488 BadValue:
7489 if (no_err)
7490 return NULL;
7491 else
7492 error (_("Attempt to extract a component of "
7493 "a value that is not a record."));
7494 }
7495
7496 /* Return a string representation of type TYPE. */
7497
7498 static std::string
7499 type_as_string (struct type *type)
7500 {
7501 string_file tmp_stream;
7502
7503 type_print (type, "", &tmp_stream, -1);
7504
7505 return std::move (tmp_stream.string ());
7506 }
7507
7508 /* Given a type TYPE, look up the type of the component of type named NAME.
7509 If DISPP is non-null, add its byte displacement from the beginning of a
7510 structure (pointed to by a value) of type TYPE to *DISPP (does not
7511 work for packed fields).
7512
7513 Matches any field whose name has NAME as a prefix, possibly
7514 followed by "___".
7515
7516 TYPE can be either a struct or union. If REFOK, TYPE may also
7517 be a (pointer or reference)+ to a struct or union, and the
7518 ultimate target type will be searched.
7519
7520 Looks recursively into variant clauses and parent types.
7521
7522 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7523 TYPE is not a type of the right kind. */
7524
7525 static struct type *
7526 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7527 int noerr)
7528 {
7529 int i;
7530
7531 if (name == NULL)
7532 goto BadName;
7533
7534 if (refok && type != NULL)
7535 while (1)
7536 {
7537 type = ada_check_typedef (type);
7538 if (TYPE_CODE (type) != TYPE_CODE_PTR
7539 && TYPE_CODE (type) != TYPE_CODE_REF)
7540 break;
7541 type = TYPE_TARGET_TYPE (type);
7542 }
7543
7544 if (type == NULL
7545 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7546 && TYPE_CODE (type) != TYPE_CODE_UNION))
7547 {
7548 if (noerr)
7549 return NULL;
7550
7551 error (_("Type %s is not a structure or union type"),
7552 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7553 }
7554
7555 type = to_static_fixed_type (type);
7556
7557 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7558 {
7559 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7560 struct type *t;
7561
7562 if (t_field_name == NULL)
7563 continue;
7564
7565 else if (field_name_match (t_field_name, name))
7566 return TYPE_FIELD_TYPE (type, i);
7567
7568 else if (ada_is_wrapper_field (type, i))
7569 {
7570 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7571 0, 1);
7572 if (t != NULL)
7573 return t;
7574 }
7575
7576 else if (ada_is_variant_part (type, i))
7577 {
7578 int j;
7579 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7580 i));
7581
7582 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7583 {
7584 /* FIXME pnh 2008/01/26: We check for a field that is
7585 NOT wrapped in a struct, since the compiler sometimes
7586 generates these for unchecked variant types. Revisit
7587 if the compiler changes this practice. */
7588 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7589
7590 if (v_field_name != NULL
7591 && field_name_match (v_field_name, name))
7592 t = TYPE_FIELD_TYPE (field_type, j);
7593 else
7594 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7595 j),
7596 name, 0, 1);
7597
7598 if (t != NULL)
7599 return t;
7600 }
7601 }
7602
7603 }
7604
7605 BadName:
7606 if (!noerr)
7607 {
7608 const char *name_str = name != NULL ? name : _("<null>");
7609
7610 error (_("Type %s has no component named %s"),
7611 type_as_string (type).c_str (), name_str);
7612 }
7613
7614 return NULL;
7615 }
7616
7617 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7618 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7619 represents an unchecked union (that is, the variant part of a
7620 record that is named in an Unchecked_Union pragma). */
7621
7622 static int
7623 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7624 {
7625 const char *discrim_name = ada_variant_discrim_name (var_type);
7626
7627 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7628 }
7629
7630
7631 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7632 within a value of type OUTER_TYPE that is stored in GDB at
7633 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7634 numbering from 0) is applicable. Returns -1 if none are. */
7635
7636 int
7637 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7638 const gdb_byte *outer_valaddr)
7639 {
7640 int others_clause;
7641 int i;
7642 const char *discrim_name = ada_variant_discrim_name (var_type);
7643 struct value *outer;
7644 struct value *discrim;
7645 LONGEST discrim_val;
7646
7647 /* Using plain value_from_contents_and_address here causes problems
7648 because we will end up trying to resolve a type that is currently
7649 being constructed. */
7650 outer = value_from_contents_and_address_unresolved (outer_type,
7651 outer_valaddr, 0);
7652 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7653 if (discrim == NULL)
7654 return -1;
7655 discrim_val = value_as_long (discrim);
7656
7657 others_clause = -1;
7658 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7659 {
7660 if (ada_is_others_clause (var_type, i))
7661 others_clause = i;
7662 else if (ada_in_variant (discrim_val, var_type, i))
7663 return i;
7664 }
7665
7666 return others_clause;
7667 }
7668 \f
7669
7670
7671 /* Dynamic-Sized Records */
7672
7673 /* Strategy: The type ostensibly attached to a value with dynamic size
7674 (i.e., a size that is not statically recorded in the debugging
7675 data) does not accurately reflect the size or layout of the value.
7676 Our strategy is to convert these values to values with accurate,
7677 conventional types that are constructed on the fly. */
7678
7679 /* There is a subtle and tricky problem here. In general, we cannot
7680 determine the size of dynamic records without its data. However,
7681 the 'struct value' data structure, which GDB uses to represent
7682 quantities in the inferior process (the target), requires the size
7683 of the type at the time of its allocation in order to reserve space
7684 for GDB's internal copy of the data. That's why the
7685 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7686 rather than struct value*s.
7687
7688 However, GDB's internal history variables ($1, $2, etc.) are
7689 struct value*s containing internal copies of the data that are not, in
7690 general, the same as the data at their corresponding addresses in
7691 the target. Fortunately, the types we give to these values are all
7692 conventional, fixed-size types (as per the strategy described
7693 above), so that we don't usually have to perform the
7694 'to_fixed_xxx_type' conversions to look at their values.
7695 Unfortunately, there is one exception: if one of the internal
7696 history variables is an array whose elements are unconstrained
7697 records, then we will need to create distinct fixed types for each
7698 element selected. */
7699
7700 /* The upshot of all of this is that many routines take a (type, host
7701 address, target address) triple as arguments to represent a value.
7702 The host address, if non-null, is supposed to contain an internal
7703 copy of the relevant data; otherwise, the program is to consult the
7704 target at the target address. */
7705
7706 /* Assuming that VAL0 represents a pointer value, the result of
7707 dereferencing it. Differs from value_ind in its treatment of
7708 dynamic-sized types. */
7709
7710 struct value *
7711 ada_value_ind (struct value *val0)
7712 {
7713 struct value *val = value_ind (val0);
7714
7715 if (ada_is_tagged_type (value_type (val), 0))
7716 val = ada_tag_value_at_base_address (val);
7717
7718 return ada_to_fixed_value (val);
7719 }
7720
7721 /* The value resulting from dereferencing any "reference to"
7722 qualifiers on VAL0. */
7723
7724 static struct value *
7725 ada_coerce_ref (struct value *val0)
7726 {
7727 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7728 {
7729 struct value *val = val0;
7730
7731 val = coerce_ref (val);
7732
7733 if (ada_is_tagged_type (value_type (val), 0))
7734 val = ada_tag_value_at_base_address (val);
7735
7736 return ada_to_fixed_value (val);
7737 }
7738 else
7739 return val0;
7740 }
7741
7742 /* Return OFF rounded upward if necessary to a multiple of
7743 ALIGNMENT (a power of 2). */
7744
7745 static unsigned int
7746 align_value (unsigned int off, unsigned int alignment)
7747 {
7748 return (off + alignment - 1) & ~(alignment - 1);
7749 }
7750
7751 /* Return the bit alignment required for field #F of template type TYPE. */
7752
7753 static unsigned int
7754 field_alignment (struct type *type, int f)
7755 {
7756 const char *name = TYPE_FIELD_NAME (type, f);
7757 int len;
7758 int align_offset;
7759
7760 /* The field name should never be null, unless the debugging information
7761 is somehow malformed. In this case, we assume the field does not
7762 require any alignment. */
7763 if (name == NULL)
7764 return 1;
7765
7766 len = strlen (name);
7767
7768 if (!isdigit (name[len - 1]))
7769 return 1;
7770
7771 if (isdigit (name[len - 2]))
7772 align_offset = len - 2;
7773 else
7774 align_offset = len - 1;
7775
7776 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7777 return TARGET_CHAR_BIT;
7778
7779 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7780 }
7781
7782 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7783
7784 static struct symbol *
7785 ada_find_any_type_symbol (const char *name)
7786 {
7787 struct symbol *sym;
7788
7789 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7790 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7791 return sym;
7792
7793 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7794 return sym;
7795 }
7796
7797 /* Find a type named NAME. Ignores ambiguity. This routine will look
7798 solely for types defined by debug info, it will not search the GDB
7799 primitive types. */
7800
7801 static struct type *
7802 ada_find_any_type (const char *name)
7803 {
7804 struct symbol *sym = ada_find_any_type_symbol (name);
7805
7806 if (sym != NULL)
7807 return SYMBOL_TYPE (sym);
7808
7809 return NULL;
7810 }
7811
7812 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7813 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7814 symbol, in which case it is returned. Otherwise, this looks for
7815 symbols whose name is that of NAME_SYM suffixed with "___XR".
7816 Return symbol if found, and NULL otherwise. */
7817
7818 struct symbol *
7819 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7820 {
7821 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7822 struct symbol *sym;
7823
7824 if (strstr (name, "___XR") != NULL)
7825 return name_sym;
7826
7827 sym = find_old_style_renaming_symbol (name, block);
7828
7829 if (sym != NULL)
7830 return sym;
7831
7832 /* Not right yet. FIXME pnh 7/20/2007. */
7833 sym = ada_find_any_type_symbol (name);
7834 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7835 return sym;
7836 else
7837 return NULL;
7838 }
7839
7840 static struct symbol *
7841 find_old_style_renaming_symbol (const char *name, const struct block *block)
7842 {
7843 const struct symbol *function_sym = block_linkage_function (block);
7844 char *rename;
7845
7846 if (function_sym != NULL)
7847 {
7848 /* If the symbol is defined inside a function, NAME is not fully
7849 qualified. This means we need to prepend the function name
7850 as well as adding the ``___XR'' suffix to build the name of
7851 the associated renaming symbol. */
7852 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7853 /* Function names sometimes contain suffixes used
7854 for instance to qualify nested subprograms. When building
7855 the XR type name, we need to make sure that this suffix is
7856 not included. So do not include any suffix in the function
7857 name length below. */
7858 int function_name_len = ada_name_prefix_len (function_name);
7859 const int rename_len = function_name_len + 2 /* "__" */
7860 + strlen (name) + 6 /* "___XR\0" */ ;
7861
7862 /* Strip the suffix if necessary. */
7863 ada_remove_trailing_digits (function_name, &function_name_len);
7864 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7865 ada_remove_Xbn_suffix (function_name, &function_name_len);
7866
7867 /* Library-level functions are a special case, as GNAT adds
7868 a ``_ada_'' prefix to the function name to avoid namespace
7869 pollution. However, the renaming symbols themselves do not
7870 have this prefix, so we need to skip this prefix if present. */
7871 if (function_name_len > 5 /* "_ada_" */
7872 && strstr (function_name, "_ada_") == function_name)
7873 {
7874 function_name += 5;
7875 function_name_len -= 5;
7876 }
7877
7878 rename = (char *) alloca (rename_len * sizeof (char));
7879 strncpy (rename, function_name, function_name_len);
7880 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7881 "__%s___XR", name);
7882 }
7883 else
7884 {
7885 const int rename_len = strlen (name) + 6;
7886
7887 rename = (char *) alloca (rename_len * sizeof (char));
7888 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7889 }
7890
7891 return ada_find_any_type_symbol (rename);
7892 }
7893
7894 /* Because of GNAT encoding conventions, several GDB symbols may match a
7895 given type name. If the type denoted by TYPE0 is to be preferred to
7896 that of TYPE1 for purposes of type printing, return non-zero;
7897 otherwise return 0. */
7898
7899 int
7900 ada_prefer_type (struct type *type0, struct type *type1)
7901 {
7902 if (type1 == NULL)
7903 return 1;
7904 else if (type0 == NULL)
7905 return 0;
7906 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7907 return 1;
7908 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7909 return 0;
7910 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7911 return 1;
7912 else if (ada_is_constrained_packed_array_type (type0))
7913 return 1;
7914 else if (ada_is_array_descriptor_type (type0)
7915 && !ada_is_array_descriptor_type (type1))
7916 return 1;
7917 else
7918 {
7919 const char *type0_name = type_name_no_tag (type0);
7920 const char *type1_name = type_name_no_tag (type1);
7921
7922 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7923 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7924 return 1;
7925 }
7926 return 0;
7927 }
7928
7929 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7930 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7931
7932 const char *
7933 ada_type_name (struct type *type)
7934 {
7935 if (type == NULL)
7936 return NULL;
7937 else if (TYPE_NAME (type) != NULL)
7938 return TYPE_NAME (type);
7939 else
7940 return TYPE_TAG_NAME (type);
7941 }
7942
7943 /* Search the list of "descriptive" types associated to TYPE for a type
7944 whose name is NAME. */
7945
7946 static struct type *
7947 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7948 {
7949 struct type *result, *tmp;
7950
7951 if (ada_ignore_descriptive_types_p)
7952 return NULL;
7953
7954 /* If there no descriptive-type info, then there is no parallel type
7955 to be found. */
7956 if (!HAVE_GNAT_AUX_INFO (type))
7957 return NULL;
7958
7959 result = TYPE_DESCRIPTIVE_TYPE (type);
7960 while (result != NULL)
7961 {
7962 const char *result_name = ada_type_name (result);
7963
7964 if (result_name == NULL)
7965 {
7966 warning (_("unexpected null name on descriptive type"));
7967 return NULL;
7968 }
7969
7970 /* If the names match, stop. */
7971 if (strcmp (result_name, name) == 0)
7972 break;
7973
7974 /* Otherwise, look at the next item on the list, if any. */
7975 if (HAVE_GNAT_AUX_INFO (result))
7976 tmp = TYPE_DESCRIPTIVE_TYPE (result);
7977 else
7978 tmp = NULL;
7979
7980 /* If not found either, try after having resolved the typedef. */
7981 if (tmp != NULL)
7982 result = tmp;
7983 else
7984 {
7985 result = check_typedef (result);
7986 if (HAVE_GNAT_AUX_INFO (result))
7987 result = TYPE_DESCRIPTIVE_TYPE (result);
7988 else
7989 result = NULL;
7990 }
7991 }
7992
7993 /* If we didn't find a match, see whether this is a packed array. With
7994 older compilers, the descriptive type information is either absent or
7995 irrelevant when it comes to packed arrays so the above lookup fails.
7996 Fall back to using a parallel lookup by name in this case. */
7997 if (result == NULL && ada_is_constrained_packed_array_type (type))
7998 return ada_find_any_type (name);
7999
8000 return result;
8001 }
8002
8003 /* Find a parallel type to TYPE with the specified NAME, using the
8004 descriptive type taken from the debugging information, if available,
8005 and otherwise using the (slower) name-based method. */
8006
8007 static struct type *
8008 ada_find_parallel_type_with_name (struct type *type, const char *name)
8009 {
8010 struct type *result = NULL;
8011
8012 if (HAVE_GNAT_AUX_INFO (type))
8013 result = find_parallel_type_by_descriptive_type (type, name);
8014 else
8015 result = ada_find_any_type (name);
8016
8017 return result;
8018 }
8019
8020 /* Same as above, but specify the name of the parallel type by appending
8021 SUFFIX to the name of TYPE. */
8022
8023 struct type *
8024 ada_find_parallel_type (struct type *type, const char *suffix)
8025 {
8026 char *name;
8027 const char *type_name = ada_type_name (type);
8028 int len;
8029
8030 if (type_name == NULL)
8031 return NULL;
8032
8033 len = strlen (type_name);
8034
8035 name = (char *) alloca (len + strlen (suffix) + 1);
8036
8037 strcpy (name, type_name);
8038 strcpy (name + len, suffix);
8039
8040 return ada_find_parallel_type_with_name (type, name);
8041 }
8042
8043 /* If TYPE is a variable-size record type, return the corresponding template
8044 type describing its fields. Otherwise, return NULL. */
8045
8046 static struct type *
8047 dynamic_template_type (struct type *type)
8048 {
8049 type = ada_check_typedef (type);
8050
8051 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8052 || ada_type_name (type) == NULL)
8053 return NULL;
8054 else
8055 {
8056 int len = strlen (ada_type_name (type));
8057
8058 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8059 return type;
8060 else
8061 return ada_find_parallel_type (type, "___XVE");
8062 }
8063 }
8064
8065 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8066 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8067
8068 static int
8069 is_dynamic_field (struct type *templ_type, int field_num)
8070 {
8071 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8072
8073 return name != NULL
8074 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8075 && strstr (name, "___XVL") != NULL;
8076 }
8077
8078 /* The index of the variant field of TYPE, or -1 if TYPE does not
8079 represent a variant record type. */
8080
8081 static int
8082 variant_field_index (struct type *type)
8083 {
8084 int f;
8085
8086 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8087 return -1;
8088
8089 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8090 {
8091 if (ada_is_variant_part (type, f))
8092 return f;
8093 }
8094 return -1;
8095 }
8096
8097 /* A record type with no fields. */
8098
8099 static struct type *
8100 empty_record (struct type *templ)
8101 {
8102 struct type *type = alloc_type_copy (templ);
8103
8104 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8105 TYPE_NFIELDS (type) = 0;
8106 TYPE_FIELDS (type) = NULL;
8107 INIT_CPLUS_SPECIFIC (type);
8108 TYPE_NAME (type) = "<empty>";
8109 TYPE_TAG_NAME (type) = NULL;
8110 TYPE_LENGTH (type) = 0;
8111 return type;
8112 }
8113
8114 /* An ordinary record type (with fixed-length fields) that describes
8115 the value of type TYPE at VALADDR or ADDRESS (see comments at
8116 the beginning of this section) VAL according to GNAT conventions.
8117 DVAL0 should describe the (portion of a) record that contains any
8118 necessary discriminants. It should be NULL if value_type (VAL) is
8119 an outer-level type (i.e., as opposed to a branch of a variant.) A
8120 variant field (unless unchecked) is replaced by a particular branch
8121 of the variant.
8122
8123 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8124 length are not statically known are discarded. As a consequence,
8125 VALADDR, ADDRESS and DVAL0 are ignored.
8126
8127 NOTE: Limitations: For now, we assume that dynamic fields and
8128 variants occupy whole numbers of bytes. However, they need not be
8129 byte-aligned. */
8130
8131 struct type *
8132 ada_template_to_fixed_record_type_1 (struct type *type,
8133 const gdb_byte *valaddr,
8134 CORE_ADDR address, struct value *dval0,
8135 int keep_dynamic_fields)
8136 {
8137 struct value *mark = value_mark ();
8138 struct value *dval;
8139 struct type *rtype;
8140 int nfields, bit_len;
8141 int variant_field;
8142 long off;
8143 int fld_bit_len;
8144 int f;
8145
8146 /* Compute the number of fields in this record type that are going
8147 to be processed: unless keep_dynamic_fields, this includes only
8148 fields whose position and length are static will be processed. */
8149 if (keep_dynamic_fields)
8150 nfields = TYPE_NFIELDS (type);
8151 else
8152 {
8153 nfields = 0;
8154 while (nfields < TYPE_NFIELDS (type)
8155 && !ada_is_variant_part (type, nfields)
8156 && !is_dynamic_field (type, nfields))
8157 nfields++;
8158 }
8159
8160 rtype = alloc_type_copy (type);
8161 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8162 INIT_CPLUS_SPECIFIC (rtype);
8163 TYPE_NFIELDS (rtype) = nfields;
8164 TYPE_FIELDS (rtype) = (struct field *)
8165 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8166 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8167 TYPE_NAME (rtype) = ada_type_name (type);
8168 TYPE_TAG_NAME (rtype) = NULL;
8169 TYPE_FIXED_INSTANCE (rtype) = 1;
8170
8171 off = 0;
8172 bit_len = 0;
8173 variant_field = -1;
8174
8175 for (f = 0; f < nfields; f += 1)
8176 {
8177 off = align_value (off, field_alignment (type, f))
8178 + TYPE_FIELD_BITPOS (type, f);
8179 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8180 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8181
8182 if (ada_is_variant_part (type, f))
8183 {
8184 variant_field = f;
8185 fld_bit_len = 0;
8186 }
8187 else if (is_dynamic_field (type, f))
8188 {
8189 const gdb_byte *field_valaddr = valaddr;
8190 CORE_ADDR field_address = address;
8191 struct type *field_type =
8192 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8193
8194 if (dval0 == NULL)
8195 {
8196 /* rtype's length is computed based on the run-time
8197 value of discriminants. If the discriminants are not
8198 initialized, the type size may be completely bogus and
8199 GDB may fail to allocate a value for it. So check the
8200 size first before creating the value. */
8201 ada_ensure_varsize_limit (rtype);
8202 /* Using plain value_from_contents_and_address here
8203 causes problems because we will end up trying to
8204 resolve a type that is currently being
8205 constructed. */
8206 dval = value_from_contents_and_address_unresolved (rtype,
8207 valaddr,
8208 address);
8209 rtype = value_type (dval);
8210 }
8211 else
8212 dval = dval0;
8213
8214 /* If the type referenced by this field is an aligner type, we need
8215 to unwrap that aligner type, because its size might not be set.
8216 Keeping the aligner type would cause us to compute the wrong
8217 size for this field, impacting the offset of the all the fields
8218 that follow this one. */
8219 if (ada_is_aligner_type (field_type))
8220 {
8221 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8222
8223 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8224 field_address = cond_offset_target (field_address, field_offset);
8225 field_type = ada_aligned_type (field_type);
8226 }
8227
8228 field_valaddr = cond_offset_host (field_valaddr,
8229 off / TARGET_CHAR_BIT);
8230 field_address = cond_offset_target (field_address,
8231 off / TARGET_CHAR_BIT);
8232
8233 /* Get the fixed type of the field. Note that, in this case,
8234 we do not want to get the real type out of the tag: if
8235 the current field is the parent part of a tagged record,
8236 we will get the tag of the object. Clearly wrong: the real
8237 type of the parent is not the real type of the child. We
8238 would end up in an infinite loop. */
8239 field_type = ada_get_base_type (field_type);
8240 field_type = ada_to_fixed_type (field_type, field_valaddr,
8241 field_address, dval, 0);
8242 /* If the field size is already larger than the maximum
8243 object size, then the record itself will necessarily
8244 be larger than the maximum object size. We need to make
8245 this check now, because the size might be so ridiculously
8246 large (due to an uninitialized variable in the inferior)
8247 that it would cause an overflow when adding it to the
8248 record size. */
8249 ada_ensure_varsize_limit (field_type);
8250
8251 TYPE_FIELD_TYPE (rtype, f) = field_type;
8252 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8253 /* The multiplication can potentially overflow. But because
8254 the field length has been size-checked just above, and
8255 assuming that the maximum size is a reasonable value,
8256 an overflow should not happen in practice. So rather than
8257 adding overflow recovery code to this already complex code,
8258 we just assume that it's not going to happen. */
8259 fld_bit_len =
8260 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8261 }
8262 else
8263 {
8264 /* Note: If this field's type is a typedef, it is important
8265 to preserve the typedef layer.
8266
8267 Otherwise, we might be transforming a typedef to a fat
8268 pointer (encoding a pointer to an unconstrained array),
8269 into a basic fat pointer (encoding an unconstrained
8270 array). As both types are implemented using the same
8271 structure, the typedef is the only clue which allows us
8272 to distinguish between the two options. Stripping it
8273 would prevent us from printing this field appropriately. */
8274 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8275 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8276 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8277 fld_bit_len =
8278 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8279 else
8280 {
8281 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8282
8283 /* We need to be careful of typedefs when computing
8284 the length of our field. If this is a typedef,
8285 get the length of the target type, not the length
8286 of the typedef. */
8287 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8288 field_type = ada_typedef_target_type (field_type);
8289
8290 fld_bit_len =
8291 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8292 }
8293 }
8294 if (off + fld_bit_len > bit_len)
8295 bit_len = off + fld_bit_len;
8296 off += fld_bit_len;
8297 TYPE_LENGTH (rtype) =
8298 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8299 }
8300
8301 /* We handle the variant part, if any, at the end because of certain
8302 odd cases in which it is re-ordered so as NOT to be the last field of
8303 the record. This can happen in the presence of representation
8304 clauses. */
8305 if (variant_field >= 0)
8306 {
8307 struct type *branch_type;
8308
8309 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8310
8311 if (dval0 == NULL)
8312 {
8313 /* Using plain value_from_contents_and_address here causes
8314 problems because we will end up trying to resolve a type
8315 that is currently being constructed. */
8316 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8317 address);
8318 rtype = value_type (dval);
8319 }
8320 else
8321 dval = dval0;
8322
8323 branch_type =
8324 to_fixed_variant_branch_type
8325 (TYPE_FIELD_TYPE (type, variant_field),
8326 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8327 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8328 if (branch_type == NULL)
8329 {
8330 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8331 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8332 TYPE_NFIELDS (rtype) -= 1;
8333 }
8334 else
8335 {
8336 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8337 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8338 fld_bit_len =
8339 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8340 TARGET_CHAR_BIT;
8341 if (off + fld_bit_len > bit_len)
8342 bit_len = off + fld_bit_len;
8343 TYPE_LENGTH (rtype) =
8344 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8345 }
8346 }
8347
8348 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8349 should contain the alignment of that record, which should be a strictly
8350 positive value. If null or negative, then something is wrong, most
8351 probably in the debug info. In that case, we don't round up the size
8352 of the resulting type. If this record is not part of another structure,
8353 the current RTYPE length might be good enough for our purposes. */
8354 if (TYPE_LENGTH (type) <= 0)
8355 {
8356 if (TYPE_NAME (rtype))
8357 warning (_("Invalid type size for `%s' detected: %d."),
8358 TYPE_NAME (rtype), TYPE_LENGTH (type));
8359 else
8360 warning (_("Invalid type size for <unnamed> detected: %d."),
8361 TYPE_LENGTH (type));
8362 }
8363 else
8364 {
8365 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8366 TYPE_LENGTH (type));
8367 }
8368
8369 value_free_to_mark (mark);
8370 if (TYPE_LENGTH (rtype) > varsize_limit)
8371 error (_("record type with dynamic size is larger than varsize-limit"));
8372 return rtype;
8373 }
8374
8375 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8376 of 1. */
8377
8378 static struct type *
8379 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8380 CORE_ADDR address, struct value *dval0)
8381 {
8382 return ada_template_to_fixed_record_type_1 (type, valaddr,
8383 address, dval0, 1);
8384 }
8385
8386 /* An ordinary record type in which ___XVL-convention fields and
8387 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8388 static approximations, containing all possible fields. Uses
8389 no runtime values. Useless for use in values, but that's OK,
8390 since the results are used only for type determinations. Works on both
8391 structs and unions. Representation note: to save space, we memorize
8392 the result of this function in the TYPE_TARGET_TYPE of the
8393 template type. */
8394
8395 static struct type *
8396 template_to_static_fixed_type (struct type *type0)
8397 {
8398 struct type *type;
8399 int nfields;
8400 int f;
8401
8402 /* No need no do anything if the input type is already fixed. */
8403 if (TYPE_FIXED_INSTANCE (type0))
8404 return type0;
8405
8406 /* Likewise if we already have computed the static approximation. */
8407 if (TYPE_TARGET_TYPE (type0) != NULL)
8408 return TYPE_TARGET_TYPE (type0);
8409
8410 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8411 type = type0;
8412 nfields = TYPE_NFIELDS (type0);
8413
8414 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8415 recompute all over next time. */
8416 TYPE_TARGET_TYPE (type0) = type;
8417
8418 for (f = 0; f < nfields; f += 1)
8419 {
8420 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8421 struct type *new_type;
8422
8423 if (is_dynamic_field (type0, f))
8424 {
8425 field_type = ada_check_typedef (field_type);
8426 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8427 }
8428 else
8429 new_type = static_unwrap_type (field_type);
8430
8431 if (new_type != field_type)
8432 {
8433 /* Clone TYPE0 only the first time we get a new field type. */
8434 if (type == type0)
8435 {
8436 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8437 TYPE_CODE (type) = TYPE_CODE (type0);
8438 INIT_CPLUS_SPECIFIC (type);
8439 TYPE_NFIELDS (type) = nfields;
8440 TYPE_FIELDS (type) = (struct field *)
8441 TYPE_ALLOC (type, nfields * sizeof (struct field));
8442 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8443 sizeof (struct field) * nfields);
8444 TYPE_NAME (type) = ada_type_name (type0);
8445 TYPE_TAG_NAME (type) = NULL;
8446 TYPE_FIXED_INSTANCE (type) = 1;
8447 TYPE_LENGTH (type) = 0;
8448 }
8449 TYPE_FIELD_TYPE (type, f) = new_type;
8450 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8451 }
8452 }
8453
8454 return type;
8455 }
8456
8457 /* Given an object of type TYPE whose contents are at VALADDR and
8458 whose address in memory is ADDRESS, returns a revision of TYPE,
8459 which should be a non-dynamic-sized record, in which the variant
8460 part, if any, is replaced with the appropriate branch. Looks
8461 for discriminant values in DVAL0, which can be NULL if the record
8462 contains the necessary discriminant values. */
8463
8464 static struct type *
8465 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8466 CORE_ADDR address, struct value *dval0)
8467 {
8468 struct value *mark = value_mark ();
8469 struct value *dval;
8470 struct type *rtype;
8471 struct type *branch_type;
8472 int nfields = TYPE_NFIELDS (type);
8473 int variant_field = variant_field_index (type);
8474
8475 if (variant_field == -1)
8476 return type;
8477
8478 if (dval0 == NULL)
8479 {
8480 dval = value_from_contents_and_address (type, valaddr, address);
8481 type = value_type (dval);
8482 }
8483 else
8484 dval = dval0;
8485
8486 rtype = alloc_type_copy (type);
8487 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8488 INIT_CPLUS_SPECIFIC (rtype);
8489 TYPE_NFIELDS (rtype) = nfields;
8490 TYPE_FIELDS (rtype) =
8491 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8492 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8493 sizeof (struct field) * nfields);
8494 TYPE_NAME (rtype) = ada_type_name (type);
8495 TYPE_TAG_NAME (rtype) = NULL;
8496 TYPE_FIXED_INSTANCE (rtype) = 1;
8497 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8498
8499 branch_type = to_fixed_variant_branch_type
8500 (TYPE_FIELD_TYPE (type, variant_field),
8501 cond_offset_host (valaddr,
8502 TYPE_FIELD_BITPOS (type, variant_field)
8503 / TARGET_CHAR_BIT),
8504 cond_offset_target (address,
8505 TYPE_FIELD_BITPOS (type, variant_field)
8506 / TARGET_CHAR_BIT), dval);
8507 if (branch_type == NULL)
8508 {
8509 int f;
8510
8511 for (f = variant_field + 1; f < nfields; f += 1)
8512 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8513 TYPE_NFIELDS (rtype) -= 1;
8514 }
8515 else
8516 {
8517 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8518 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8519 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8520 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8521 }
8522 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8523
8524 value_free_to_mark (mark);
8525 return rtype;
8526 }
8527
8528 /* An ordinary record type (with fixed-length fields) that describes
8529 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8530 beginning of this section]. Any necessary discriminants' values
8531 should be in DVAL, a record value; it may be NULL if the object
8532 at ADDR itself contains any necessary discriminant values.
8533 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8534 values from the record are needed. Except in the case that DVAL,
8535 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8536 unchecked) is replaced by a particular branch of the variant.
8537
8538 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8539 is questionable and may be removed. It can arise during the
8540 processing of an unconstrained-array-of-record type where all the
8541 variant branches have exactly the same size. This is because in
8542 such cases, the compiler does not bother to use the XVS convention
8543 when encoding the record. I am currently dubious of this
8544 shortcut and suspect the compiler should be altered. FIXME. */
8545
8546 static struct type *
8547 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8548 CORE_ADDR address, struct value *dval)
8549 {
8550 struct type *templ_type;
8551
8552 if (TYPE_FIXED_INSTANCE (type0))
8553 return type0;
8554
8555 templ_type = dynamic_template_type (type0);
8556
8557 if (templ_type != NULL)
8558 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8559 else if (variant_field_index (type0) >= 0)
8560 {
8561 if (dval == NULL && valaddr == NULL && address == 0)
8562 return type0;
8563 return to_record_with_fixed_variant_part (type0, valaddr, address,
8564 dval);
8565 }
8566 else
8567 {
8568 TYPE_FIXED_INSTANCE (type0) = 1;
8569 return type0;
8570 }
8571
8572 }
8573
8574 /* An ordinary record type (with fixed-length fields) that describes
8575 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8576 union type. Any necessary discriminants' values should be in DVAL,
8577 a record value. That is, this routine selects the appropriate
8578 branch of the union at ADDR according to the discriminant value
8579 indicated in the union's type name. Returns VAR_TYPE0 itself if
8580 it represents a variant subject to a pragma Unchecked_Union. */
8581
8582 static struct type *
8583 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8584 CORE_ADDR address, struct value *dval)
8585 {
8586 int which;
8587 struct type *templ_type;
8588 struct type *var_type;
8589
8590 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8591 var_type = TYPE_TARGET_TYPE (var_type0);
8592 else
8593 var_type = var_type0;
8594
8595 templ_type = ada_find_parallel_type (var_type, "___XVU");
8596
8597 if (templ_type != NULL)
8598 var_type = templ_type;
8599
8600 if (is_unchecked_variant (var_type, value_type (dval)))
8601 return var_type0;
8602 which =
8603 ada_which_variant_applies (var_type,
8604 value_type (dval), value_contents (dval));
8605
8606 if (which < 0)
8607 return empty_record (var_type);
8608 else if (is_dynamic_field (var_type, which))
8609 return to_fixed_record_type
8610 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8611 valaddr, address, dval);
8612 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8613 return
8614 to_fixed_record_type
8615 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8616 else
8617 return TYPE_FIELD_TYPE (var_type, which);
8618 }
8619
8620 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8621 ENCODING_TYPE, a type following the GNAT conventions for discrete
8622 type encodings, only carries redundant information. */
8623
8624 static int
8625 ada_is_redundant_range_encoding (struct type *range_type,
8626 struct type *encoding_type)
8627 {
8628 struct type *fixed_range_type;
8629 const char *bounds_str;
8630 int n;
8631 LONGEST lo, hi;
8632
8633 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8634
8635 if (TYPE_CODE (get_base_type (range_type))
8636 != TYPE_CODE (get_base_type (encoding_type)))
8637 {
8638 /* The compiler probably used a simple base type to describe
8639 the range type instead of the range's actual base type,
8640 expecting us to get the real base type from the encoding
8641 anyway. In this situation, the encoding cannot be ignored
8642 as redundant. */
8643 return 0;
8644 }
8645
8646 if (is_dynamic_type (range_type))
8647 return 0;
8648
8649 if (TYPE_NAME (encoding_type) == NULL)
8650 return 0;
8651
8652 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8653 if (bounds_str == NULL)
8654 return 0;
8655
8656 n = 8; /* Skip "___XDLU_". */
8657 if (!ada_scan_number (bounds_str, n, &lo, &n))
8658 return 0;
8659 if (TYPE_LOW_BOUND (range_type) != lo)
8660 return 0;
8661
8662 n += 2; /* Skip the "__" separator between the two bounds. */
8663 if (!ada_scan_number (bounds_str, n, &hi, &n))
8664 return 0;
8665 if (TYPE_HIGH_BOUND (range_type) != hi)
8666 return 0;
8667
8668 return 1;
8669 }
8670
8671 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8672 a type following the GNAT encoding for describing array type
8673 indices, only carries redundant information. */
8674
8675 static int
8676 ada_is_redundant_index_type_desc (struct type *array_type,
8677 struct type *desc_type)
8678 {
8679 struct type *this_layer = check_typedef (array_type);
8680 int i;
8681
8682 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8683 {
8684 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8685 TYPE_FIELD_TYPE (desc_type, i)))
8686 return 0;
8687 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8688 }
8689
8690 return 1;
8691 }
8692
8693 /* Assuming that TYPE0 is an array type describing the type of a value
8694 at ADDR, and that DVAL describes a record containing any
8695 discriminants used in TYPE0, returns a type for the value that
8696 contains no dynamic components (that is, no components whose sizes
8697 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8698 true, gives an error message if the resulting type's size is over
8699 varsize_limit. */
8700
8701 static struct type *
8702 to_fixed_array_type (struct type *type0, struct value *dval,
8703 int ignore_too_big)
8704 {
8705 struct type *index_type_desc;
8706 struct type *result;
8707 int constrained_packed_array_p;
8708 static const char *xa_suffix = "___XA";
8709
8710 type0 = ada_check_typedef (type0);
8711 if (TYPE_FIXED_INSTANCE (type0))
8712 return type0;
8713
8714 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8715 if (constrained_packed_array_p)
8716 type0 = decode_constrained_packed_array_type (type0);
8717
8718 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8719
8720 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8721 encoding suffixed with 'P' may still be generated. If so,
8722 it should be used to find the XA type. */
8723
8724 if (index_type_desc == NULL)
8725 {
8726 const char *type_name = ada_type_name (type0);
8727
8728 if (type_name != NULL)
8729 {
8730 const int len = strlen (type_name);
8731 char *name = (char *) alloca (len + strlen (xa_suffix));
8732
8733 if (type_name[len - 1] == 'P')
8734 {
8735 strcpy (name, type_name);
8736 strcpy (name + len - 1, xa_suffix);
8737 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8738 }
8739 }
8740 }
8741
8742 ada_fixup_array_indexes_type (index_type_desc);
8743 if (index_type_desc != NULL
8744 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8745 {
8746 /* Ignore this ___XA parallel type, as it does not bring any
8747 useful information. This allows us to avoid creating fixed
8748 versions of the array's index types, which would be identical
8749 to the original ones. This, in turn, can also help avoid
8750 the creation of fixed versions of the array itself. */
8751 index_type_desc = NULL;
8752 }
8753
8754 if (index_type_desc == NULL)
8755 {
8756 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8757
8758 /* NOTE: elt_type---the fixed version of elt_type0---should never
8759 depend on the contents of the array in properly constructed
8760 debugging data. */
8761 /* Create a fixed version of the array element type.
8762 We're not providing the address of an element here,
8763 and thus the actual object value cannot be inspected to do
8764 the conversion. This should not be a problem, since arrays of
8765 unconstrained objects are not allowed. In particular, all
8766 the elements of an array of a tagged type should all be of
8767 the same type specified in the debugging info. No need to
8768 consult the object tag. */
8769 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8770
8771 /* Make sure we always create a new array type when dealing with
8772 packed array types, since we're going to fix-up the array
8773 type length and element bitsize a little further down. */
8774 if (elt_type0 == elt_type && !constrained_packed_array_p)
8775 result = type0;
8776 else
8777 result = create_array_type (alloc_type_copy (type0),
8778 elt_type, TYPE_INDEX_TYPE (type0));
8779 }
8780 else
8781 {
8782 int i;
8783 struct type *elt_type0;
8784
8785 elt_type0 = type0;
8786 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8787 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8788
8789 /* NOTE: result---the fixed version of elt_type0---should never
8790 depend on the contents of the array in properly constructed
8791 debugging data. */
8792 /* Create a fixed version of the array element type.
8793 We're not providing the address of an element here,
8794 and thus the actual object value cannot be inspected to do
8795 the conversion. This should not be a problem, since arrays of
8796 unconstrained objects are not allowed. In particular, all
8797 the elements of an array of a tagged type should all be of
8798 the same type specified in the debugging info. No need to
8799 consult the object tag. */
8800 result =
8801 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8802
8803 elt_type0 = type0;
8804 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8805 {
8806 struct type *range_type =
8807 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8808
8809 result = create_array_type (alloc_type_copy (elt_type0),
8810 result, range_type);
8811 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8812 }
8813 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8814 error (_("array type with dynamic size is larger than varsize-limit"));
8815 }
8816
8817 /* We want to preserve the type name. This can be useful when
8818 trying to get the type name of a value that has already been
8819 printed (for instance, if the user did "print VAR; whatis $". */
8820 TYPE_NAME (result) = TYPE_NAME (type0);
8821
8822 if (constrained_packed_array_p)
8823 {
8824 /* So far, the resulting type has been created as if the original
8825 type was a regular (non-packed) array type. As a result, the
8826 bitsize of the array elements needs to be set again, and the array
8827 length needs to be recomputed based on that bitsize. */
8828 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8829 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8830
8831 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8832 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8833 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8834 TYPE_LENGTH (result)++;
8835 }
8836
8837 TYPE_FIXED_INSTANCE (result) = 1;
8838 return result;
8839 }
8840
8841
8842 /* A standard type (containing no dynamically sized components)
8843 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8844 DVAL describes a record containing any discriminants used in TYPE0,
8845 and may be NULL if there are none, or if the object of type TYPE at
8846 ADDRESS or in VALADDR contains these discriminants.
8847
8848 If CHECK_TAG is not null, in the case of tagged types, this function
8849 attempts to locate the object's tag and use it to compute the actual
8850 type. However, when ADDRESS is null, we cannot use it to determine the
8851 location of the tag, and therefore compute the tagged type's actual type.
8852 So we return the tagged type without consulting the tag. */
8853
8854 static struct type *
8855 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8856 CORE_ADDR address, struct value *dval, int check_tag)
8857 {
8858 type = ada_check_typedef (type);
8859 switch (TYPE_CODE (type))
8860 {
8861 default:
8862 return type;
8863 case TYPE_CODE_STRUCT:
8864 {
8865 struct type *static_type = to_static_fixed_type (type);
8866 struct type *fixed_record_type =
8867 to_fixed_record_type (type, valaddr, address, NULL);
8868
8869 /* If STATIC_TYPE is a tagged type and we know the object's address,
8870 then we can determine its tag, and compute the object's actual
8871 type from there. Note that we have to use the fixed record
8872 type (the parent part of the record may have dynamic fields
8873 and the way the location of _tag is expressed may depend on
8874 them). */
8875
8876 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8877 {
8878 struct value *tag =
8879 value_tag_from_contents_and_address
8880 (fixed_record_type,
8881 valaddr,
8882 address);
8883 struct type *real_type = type_from_tag (tag);
8884 struct value *obj =
8885 value_from_contents_and_address (fixed_record_type,
8886 valaddr,
8887 address);
8888 fixed_record_type = value_type (obj);
8889 if (real_type != NULL)
8890 return to_fixed_record_type
8891 (real_type, NULL,
8892 value_address (ada_tag_value_at_base_address (obj)), NULL);
8893 }
8894
8895 /* Check to see if there is a parallel ___XVZ variable.
8896 If there is, then it provides the actual size of our type. */
8897 else if (ada_type_name (fixed_record_type) != NULL)
8898 {
8899 const char *name = ada_type_name (fixed_record_type);
8900 char *xvz_name
8901 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8902 LONGEST size;
8903
8904 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8905 if (get_int_var_value (xvz_name, size)
8906 && TYPE_LENGTH (fixed_record_type) != size)
8907 {
8908 fixed_record_type = copy_type (fixed_record_type);
8909 TYPE_LENGTH (fixed_record_type) = size;
8910
8911 /* The FIXED_RECORD_TYPE may have be a stub. We have
8912 observed this when the debugging info is STABS, and
8913 apparently it is something that is hard to fix.
8914
8915 In practice, we don't need the actual type definition
8916 at all, because the presence of the XVZ variable allows us
8917 to assume that there must be a XVS type as well, which we
8918 should be able to use later, when we need the actual type
8919 definition.
8920
8921 In the meantime, pretend that the "fixed" type we are
8922 returning is NOT a stub, because this can cause trouble
8923 when using this type to create new types targeting it.
8924 Indeed, the associated creation routines often check
8925 whether the target type is a stub and will try to replace
8926 it, thus using a type with the wrong size. This, in turn,
8927 might cause the new type to have the wrong size too.
8928 Consider the case of an array, for instance, where the size
8929 of the array is computed from the number of elements in
8930 our array multiplied by the size of its element. */
8931 TYPE_STUB (fixed_record_type) = 0;
8932 }
8933 }
8934 return fixed_record_type;
8935 }
8936 case TYPE_CODE_ARRAY:
8937 return to_fixed_array_type (type, dval, 1);
8938 case TYPE_CODE_UNION:
8939 if (dval == NULL)
8940 return type;
8941 else
8942 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8943 }
8944 }
8945
8946 /* The same as ada_to_fixed_type_1, except that it preserves the type
8947 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8948
8949 The typedef layer needs be preserved in order to differentiate between
8950 arrays and array pointers when both types are implemented using the same
8951 fat pointer. In the array pointer case, the pointer is encoded as
8952 a typedef of the pointer type. For instance, considering:
8953
8954 type String_Access is access String;
8955 S1 : String_Access := null;
8956
8957 To the debugger, S1 is defined as a typedef of type String. But
8958 to the user, it is a pointer. So if the user tries to print S1,
8959 we should not dereference the array, but print the array address
8960 instead.
8961
8962 If we didn't preserve the typedef layer, we would lose the fact that
8963 the type is to be presented as a pointer (needs de-reference before
8964 being printed). And we would also use the source-level type name. */
8965
8966 struct type *
8967 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8968 CORE_ADDR address, struct value *dval, int check_tag)
8969
8970 {
8971 struct type *fixed_type =
8972 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8973
8974 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8975 then preserve the typedef layer.
8976
8977 Implementation note: We can only check the main-type portion of
8978 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8979 from TYPE now returns a type that has the same instance flags
8980 as TYPE. For instance, if TYPE is a "typedef const", and its
8981 target type is a "struct", then the typedef elimination will return
8982 a "const" version of the target type. See check_typedef for more
8983 details about how the typedef layer elimination is done.
8984
8985 brobecker/2010-11-19: It seems to me that the only case where it is
8986 useful to preserve the typedef layer is when dealing with fat pointers.
8987 Perhaps, we could add a check for that and preserve the typedef layer
8988 only in that situation. But this seems unecessary so far, probably
8989 because we call check_typedef/ada_check_typedef pretty much everywhere.
8990 */
8991 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8992 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8993 == TYPE_MAIN_TYPE (fixed_type)))
8994 return type;
8995
8996 return fixed_type;
8997 }
8998
8999 /* A standard (static-sized) type corresponding as well as possible to
9000 TYPE0, but based on no runtime data. */
9001
9002 static struct type *
9003 to_static_fixed_type (struct type *type0)
9004 {
9005 struct type *type;
9006
9007 if (type0 == NULL)
9008 return NULL;
9009
9010 if (TYPE_FIXED_INSTANCE (type0))
9011 return type0;
9012
9013 type0 = ada_check_typedef (type0);
9014
9015 switch (TYPE_CODE (type0))
9016 {
9017 default:
9018 return type0;
9019 case TYPE_CODE_STRUCT:
9020 type = dynamic_template_type (type0);
9021 if (type != NULL)
9022 return template_to_static_fixed_type (type);
9023 else
9024 return template_to_static_fixed_type (type0);
9025 case TYPE_CODE_UNION:
9026 type = ada_find_parallel_type (type0, "___XVU");
9027 if (type != NULL)
9028 return template_to_static_fixed_type (type);
9029 else
9030 return template_to_static_fixed_type (type0);
9031 }
9032 }
9033
9034 /* A static approximation of TYPE with all type wrappers removed. */
9035
9036 static struct type *
9037 static_unwrap_type (struct type *type)
9038 {
9039 if (ada_is_aligner_type (type))
9040 {
9041 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9042 if (ada_type_name (type1) == NULL)
9043 TYPE_NAME (type1) = ada_type_name (type);
9044
9045 return static_unwrap_type (type1);
9046 }
9047 else
9048 {
9049 struct type *raw_real_type = ada_get_base_type (type);
9050
9051 if (raw_real_type == type)
9052 return type;
9053 else
9054 return to_static_fixed_type (raw_real_type);
9055 }
9056 }
9057
9058 /* In some cases, incomplete and private types require
9059 cross-references that are not resolved as records (for example,
9060 type Foo;
9061 type FooP is access Foo;
9062 V: FooP;
9063 type Foo is array ...;
9064 ). In these cases, since there is no mechanism for producing
9065 cross-references to such types, we instead substitute for FooP a
9066 stub enumeration type that is nowhere resolved, and whose tag is
9067 the name of the actual type. Call these types "non-record stubs". */
9068
9069 /* A type equivalent to TYPE that is not a non-record stub, if one
9070 exists, otherwise TYPE. */
9071
9072 struct type *
9073 ada_check_typedef (struct type *type)
9074 {
9075 if (type == NULL)
9076 return NULL;
9077
9078 /* If our type is a typedef type of a fat pointer, then we're done.
9079 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9080 what allows us to distinguish between fat pointers that represent
9081 array types, and fat pointers that represent array access types
9082 (in both cases, the compiler implements them as fat pointers). */
9083 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9084 && is_thick_pntr (ada_typedef_target_type (type)))
9085 return type;
9086
9087 type = check_typedef (type);
9088 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9089 || !TYPE_STUB (type)
9090 || TYPE_TAG_NAME (type) == NULL)
9091 return type;
9092 else
9093 {
9094 const char *name = TYPE_TAG_NAME (type);
9095 struct type *type1 = ada_find_any_type (name);
9096
9097 if (type1 == NULL)
9098 return type;
9099
9100 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9101 stubs pointing to arrays, as we don't create symbols for array
9102 types, only for the typedef-to-array types). If that's the case,
9103 strip the typedef layer. */
9104 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9105 type1 = ada_check_typedef (type1);
9106
9107 return type1;
9108 }
9109 }
9110
9111 /* A value representing the data at VALADDR/ADDRESS as described by
9112 type TYPE0, but with a standard (static-sized) type that correctly
9113 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9114 type, then return VAL0 [this feature is simply to avoid redundant
9115 creation of struct values]. */
9116
9117 static struct value *
9118 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9119 struct value *val0)
9120 {
9121 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9122
9123 if (type == type0 && val0 != NULL)
9124 return val0;
9125 else
9126 return value_from_contents_and_address (type, 0, address);
9127 }
9128
9129 /* A value representing VAL, but with a standard (static-sized) type
9130 that correctly describes it. Does not necessarily create a new
9131 value. */
9132
9133 struct value *
9134 ada_to_fixed_value (struct value *val)
9135 {
9136 val = unwrap_value (val);
9137 val = ada_to_fixed_value_create (value_type (val),
9138 value_address (val),
9139 val);
9140 return val;
9141 }
9142 \f
9143
9144 /* Attributes */
9145
9146 /* Table mapping attribute numbers to names.
9147 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9148
9149 static const char *attribute_names[] = {
9150 "<?>",
9151
9152 "first",
9153 "last",
9154 "length",
9155 "image",
9156 "max",
9157 "min",
9158 "modulus",
9159 "pos",
9160 "size",
9161 "tag",
9162 "val",
9163 0
9164 };
9165
9166 const char *
9167 ada_attribute_name (enum exp_opcode n)
9168 {
9169 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9170 return attribute_names[n - OP_ATR_FIRST + 1];
9171 else
9172 return attribute_names[0];
9173 }
9174
9175 /* Evaluate the 'POS attribute applied to ARG. */
9176
9177 static LONGEST
9178 pos_atr (struct value *arg)
9179 {
9180 struct value *val = coerce_ref (arg);
9181 struct type *type = value_type (val);
9182 LONGEST result;
9183
9184 if (!discrete_type_p (type))
9185 error (_("'POS only defined on discrete types"));
9186
9187 if (!discrete_position (type, value_as_long (val), &result))
9188 error (_("enumeration value is invalid: can't find 'POS"));
9189
9190 return result;
9191 }
9192
9193 static struct value *
9194 value_pos_atr (struct type *type, struct value *arg)
9195 {
9196 return value_from_longest (type, pos_atr (arg));
9197 }
9198
9199 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9200
9201 static struct value *
9202 value_val_atr (struct type *type, struct value *arg)
9203 {
9204 if (!discrete_type_p (type))
9205 error (_("'VAL only defined on discrete types"));
9206 if (!integer_type_p (value_type (arg)))
9207 error (_("'VAL requires integral argument"));
9208
9209 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9210 {
9211 long pos = value_as_long (arg);
9212
9213 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9214 error (_("argument to 'VAL out of range"));
9215 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9216 }
9217 else
9218 return value_from_longest (type, value_as_long (arg));
9219 }
9220 \f
9221
9222 /* Evaluation */
9223
9224 /* True if TYPE appears to be an Ada character type.
9225 [At the moment, this is true only for Character and Wide_Character;
9226 It is a heuristic test that could stand improvement]. */
9227
9228 int
9229 ada_is_character_type (struct type *type)
9230 {
9231 const char *name;
9232
9233 /* If the type code says it's a character, then assume it really is,
9234 and don't check any further. */
9235 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9236 return 1;
9237
9238 /* Otherwise, assume it's a character type iff it is a discrete type
9239 with a known character type name. */
9240 name = ada_type_name (type);
9241 return (name != NULL
9242 && (TYPE_CODE (type) == TYPE_CODE_INT
9243 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9244 && (strcmp (name, "character") == 0
9245 || strcmp (name, "wide_character") == 0
9246 || strcmp (name, "wide_wide_character") == 0
9247 || strcmp (name, "unsigned char") == 0));
9248 }
9249
9250 /* True if TYPE appears to be an Ada string type. */
9251
9252 int
9253 ada_is_string_type (struct type *type)
9254 {
9255 type = ada_check_typedef (type);
9256 if (type != NULL
9257 && TYPE_CODE (type) != TYPE_CODE_PTR
9258 && (ada_is_simple_array_type (type)
9259 || ada_is_array_descriptor_type (type))
9260 && ada_array_arity (type) == 1)
9261 {
9262 struct type *elttype = ada_array_element_type (type, 1);
9263
9264 return ada_is_character_type (elttype);
9265 }
9266 else
9267 return 0;
9268 }
9269
9270 /* The compiler sometimes provides a parallel XVS type for a given
9271 PAD type. Normally, it is safe to follow the PAD type directly,
9272 but older versions of the compiler have a bug that causes the offset
9273 of its "F" field to be wrong. Following that field in that case
9274 would lead to incorrect results, but this can be worked around
9275 by ignoring the PAD type and using the associated XVS type instead.
9276
9277 Set to True if the debugger should trust the contents of PAD types.
9278 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9279 static int trust_pad_over_xvs = 1;
9280
9281 /* True if TYPE is a struct type introduced by the compiler to force the
9282 alignment of a value. Such types have a single field with a
9283 distinctive name. */
9284
9285 int
9286 ada_is_aligner_type (struct type *type)
9287 {
9288 type = ada_check_typedef (type);
9289
9290 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9291 return 0;
9292
9293 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9294 && TYPE_NFIELDS (type) == 1
9295 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9296 }
9297
9298 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9299 the parallel type. */
9300
9301 struct type *
9302 ada_get_base_type (struct type *raw_type)
9303 {
9304 struct type *real_type_namer;
9305 struct type *raw_real_type;
9306
9307 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9308 return raw_type;
9309
9310 if (ada_is_aligner_type (raw_type))
9311 /* The encoding specifies that we should always use the aligner type.
9312 So, even if this aligner type has an associated XVS type, we should
9313 simply ignore it.
9314
9315 According to the compiler gurus, an XVS type parallel to an aligner
9316 type may exist because of a stabs limitation. In stabs, aligner
9317 types are empty because the field has a variable-sized type, and
9318 thus cannot actually be used as an aligner type. As a result,
9319 we need the associated parallel XVS type to decode the type.
9320 Since the policy in the compiler is to not change the internal
9321 representation based on the debugging info format, we sometimes
9322 end up having a redundant XVS type parallel to the aligner type. */
9323 return raw_type;
9324
9325 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9326 if (real_type_namer == NULL
9327 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9328 || TYPE_NFIELDS (real_type_namer) != 1)
9329 return raw_type;
9330
9331 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9332 {
9333 /* This is an older encoding form where the base type needs to be
9334 looked up by name. We prefer the newer enconding because it is
9335 more efficient. */
9336 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9337 if (raw_real_type == NULL)
9338 return raw_type;
9339 else
9340 return raw_real_type;
9341 }
9342
9343 /* The field in our XVS type is a reference to the base type. */
9344 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9345 }
9346
9347 /* The type of value designated by TYPE, with all aligners removed. */
9348
9349 struct type *
9350 ada_aligned_type (struct type *type)
9351 {
9352 if (ada_is_aligner_type (type))
9353 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9354 else
9355 return ada_get_base_type (type);
9356 }
9357
9358
9359 /* The address of the aligned value in an object at address VALADDR
9360 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9361
9362 const gdb_byte *
9363 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9364 {
9365 if (ada_is_aligner_type (type))
9366 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9367 valaddr +
9368 TYPE_FIELD_BITPOS (type,
9369 0) / TARGET_CHAR_BIT);
9370 else
9371 return valaddr;
9372 }
9373
9374
9375
9376 /* The printed representation of an enumeration literal with encoded
9377 name NAME. The value is good to the next call of ada_enum_name. */
9378 const char *
9379 ada_enum_name (const char *name)
9380 {
9381 static char *result;
9382 static size_t result_len = 0;
9383 const char *tmp;
9384
9385 /* First, unqualify the enumeration name:
9386 1. Search for the last '.' character. If we find one, then skip
9387 all the preceding characters, the unqualified name starts
9388 right after that dot.
9389 2. Otherwise, we may be debugging on a target where the compiler
9390 translates dots into "__". Search forward for double underscores,
9391 but stop searching when we hit an overloading suffix, which is
9392 of the form "__" followed by digits. */
9393
9394 tmp = strrchr (name, '.');
9395 if (tmp != NULL)
9396 name = tmp + 1;
9397 else
9398 {
9399 while ((tmp = strstr (name, "__")) != NULL)
9400 {
9401 if (isdigit (tmp[2]))
9402 break;
9403 else
9404 name = tmp + 2;
9405 }
9406 }
9407
9408 if (name[0] == 'Q')
9409 {
9410 int v;
9411
9412 if (name[1] == 'U' || name[1] == 'W')
9413 {
9414 if (sscanf (name + 2, "%x", &v) != 1)
9415 return name;
9416 }
9417 else
9418 return name;
9419
9420 GROW_VECT (result, result_len, 16);
9421 if (isascii (v) && isprint (v))
9422 xsnprintf (result, result_len, "'%c'", v);
9423 else if (name[1] == 'U')
9424 xsnprintf (result, result_len, "[\"%02x\"]", v);
9425 else
9426 xsnprintf (result, result_len, "[\"%04x\"]", v);
9427
9428 return result;
9429 }
9430 else
9431 {
9432 tmp = strstr (name, "__");
9433 if (tmp == NULL)
9434 tmp = strstr (name, "$");
9435 if (tmp != NULL)
9436 {
9437 GROW_VECT (result, result_len, tmp - name + 1);
9438 strncpy (result, name, tmp - name);
9439 result[tmp - name] = '\0';
9440 return result;
9441 }
9442
9443 return name;
9444 }
9445 }
9446
9447 /* Evaluate the subexpression of EXP starting at *POS as for
9448 evaluate_type, updating *POS to point just past the evaluated
9449 expression. */
9450
9451 static struct value *
9452 evaluate_subexp_type (struct expression *exp, int *pos)
9453 {
9454 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9455 }
9456
9457 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9458 value it wraps. */
9459
9460 static struct value *
9461 unwrap_value (struct value *val)
9462 {
9463 struct type *type = ada_check_typedef (value_type (val));
9464
9465 if (ada_is_aligner_type (type))
9466 {
9467 struct value *v = ada_value_struct_elt (val, "F", 0);
9468 struct type *val_type = ada_check_typedef (value_type (v));
9469
9470 if (ada_type_name (val_type) == NULL)
9471 TYPE_NAME (val_type) = ada_type_name (type);
9472
9473 return unwrap_value (v);
9474 }
9475 else
9476 {
9477 struct type *raw_real_type =
9478 ada_check_typedef (ada_get_base_type (type));
9479
9480 /* If there is no parallel XVS or XVE type, then the value is
9481 already unwrapped. Return it without further modification. */
9482 if ((type == raw_real_type)
9483 && ada_find_parallel_type (type, "___XVE") == NULL)
9484 return val;
9485
9486 return
9487 coerce_unspec_val_to_type
9488 (val, ada_to_fixed_type (raw_real_type, 0,
9489 value_address (val),
9490 NULL, 1));
9491 }
9492 }
9493
9494 static struct value *
9495 cast_from_fixed (struct type *type, struct value *arg)
9496 {
9497 struct value *scale = ada_scaling_factor (value_type (arg));
9498 arg = value_cast (value_type (scale), arg);
9499
9500 arg = value_binop (arg, scale, BINOP_MUL);
9501 return value_cast (type, arg);
9502 }
9503
9504 static struct value *
9505 cast_to_fixed (struct type *type, struct value *arg)
9506 {
9507 if (type == value_type (arg))
9508 return arg;
9509
9510 struct value *scale = ada_scaling_factor (type);
9511 if (ada_is_fixed_point_type (value_type (arg)))
9512 arg = cast_from_fixed (value_type (scale), arg);
9513 else
9514 arg = value_cast (value_type (scale), arg);
9515
9516 arg = value_binop (arg, scale, BINOP_DIV);
9517 return value_cast (type, arg);
9518 }
9519
9520 /* Given two array types T1 and T2, return nonzero iff both arrays
9521 contain the same number of elements. */
9522
9523 static int
9524 ada_same_array_size_p (struct type *t1, struct type *t2)
9525 {
9526 LONGEST lo1, hi1, lo2, hi2;
9527
9528 /* Get the array bounds in order to verify that the size of
9529 the two arrays match. */
9530 if (!get_array_bounds (t1, &lo1, &hi1)
9531 || !get_array_bounds (t2, &lo2, &hi2))
9532 error (_("unable to determine array bounds"));
9533
9534 /* To make things easier for size comparison, normalize a bit
9535 the case of empty arrays by making sure that the difference
9536 between upper bound and lower bound is always -1. */
9537 if (lo1 > hi1)
9538 hi1 = lo1 - 1;
9539 if (lo2 > hi2)
9540 hi2 = lo2 - 1;
9541
9542 return (hi1 - lo1 == hi2 - lo2);
9543 }
9544
9545 /* Assuming that VAL is an array of integrals, and TYPE represents
9546 an array with the same number of elements, but with wider integral
9547 elements, return an array "casted" to TYPE. In practice, this
9548 means that the returned array is built by casting each element
9549 of the original array into TYPE's (wider) element type. */
9550
9551 static struct value *
9552 ada_promote_array_of_integrals (struct type *type, struct value *val)
9553 {
9554 struct type *elt_type = TYPE_TARGET_TYPE (type);
9555 LONGEST lo, hi;
9556 struct value *res;
9557 LONGEST i;
9558
9559 /* Verify that both val and type are arrays of scalars, and
9560 that the size of val's elements is smaller than the size
9561 of type's element. */
9562 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9563 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9564 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9565 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9566 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9567 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9568
9569 if (!get_array_bounds (type, &lo, &hi))
9570 error (_("unable to determine array bounds"));
9571
9572 res = allocate_value (type);
9573
9574 /* Promote each array element. */
9575 for (i = 0; i < hi - lo + 1; i++)
9576 {
9577 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9578
9579 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9580 value_contents_all (elt), TYPE_LENGTH (elt_type));
9581 }
9582
9583 return res;
9584 }
9585
9586 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9587 return the converted value. */
9588
9589 static struct value *
9590 coerce_for_assign (struct type *type, struct value *val)
9591 {
9592 struct type *type2 = value_type (val);
9593
9594 if (type == type2)
9595 return val;
9596
9597 type2 = ada_check_typedef (type2);
9598 type = ada_check_typedef (type);
9599
9600 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9601 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9602 {
9603 val = ada_value_ind (val);
9604 type2 = value_type (val);
9605 }
9606
9607 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9608 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9609 {
9610 if (!ada_same_array_size_p (type, type2))
9611 error (_("cannot assign arrays of different length"));
9612
9613 if (is_integral_type (TYPE_TARGET_TYPE (type))
9614 && is_integral_type (TYPE_TARGET_TYPE (type2))
9615 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9616 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9617 {
9618 /* Allow implicit promotion of the array elements to
9619 a wider type. */
9620 return ada_promote_array_of_integrals (type, val);
9621 }
9622
9623 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9624 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9625 error (_("Incompatible types in assignment"));
9626 deprecated_set_value_type (val, type);
9627 }
9628 return val;
9629 }
9630
9631 static struct value *
9632 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9633 {
9634 struct value *val;
9635 struct type *type1, *type2;
9636 LONGEST v, v1, v2;
9637
9638 arg1 = coerce_ref (arg1);
9639 arg2 = coerce_ref (arg2);
9640 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9641 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9642
9643 if (TYPE_CODE (type1) != TYPE_CODE_INT
9644 || TYPE_CODE (type2) != TYPE_CODE_INT)
9645 return value_binop (arg1, arg2, op);
9646
9647 switch (op)
9648 {
9649 case BINOP_MOD:
9650 case BINOP_DIV:
9651 case BINOP_REM:
9652 break;
9653 default:
9654 return value_binop (arg1, arg2, op);
9655 }
9656
9657 v2 = value_as_long (arg2);
9658 if (v2 == 0)
9659 error (_("second operand of %s must not be zero."), op_string (op));
9660
9661 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9662 return value_binop (arg1, arg2, op);
9663
9664 v1 = value_as_long (arg1);
9665 switch (op)
9666 {
9667 case BINOP_DIV:
9668 v = v1 / v2;
9669 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9670 v += v > 0 ? -1 : 1;
9671 break;
9672 case BINOP_REM:
9673 v = v1 % v2;
9674 if (v * v1 < 0)
9675 v -= v2;
9676 break;
9677 default:
9678 /* Should not reach this point. */
9679 v = 0;
9680 }
9681
9682 val = allocate_value (type1);
9683 store_unsigned_integer (value_contents_raw (val),
9684 TYPE_LENGTH (value_type (val)),
9685 gdbarch_byte_order (get_type_arch (type1)), v);
9686 return val;
9687 }
9688
9689 static int
9690 ada_value_equal (struct value *arg1, struct value *arg2)
9691 {
9692 if (ada_is_direct_array_type (value_type (arg1))
9693 || ada_is_direct_array_type (value_type (arg2)))
9694 {
9695 /* Automatically dereference any array reference before
9696 we attempt to perform the comparison. */
9697 arg1 = ada_coerce_ref (arg1);
9698 arg2 = ada_coerce_ref (arg2);
9699
9700 arg1 = ada_coerce_to_simple_array (arg1);
9701 arg2 = ada_coerce_to_simple_array (arg2);
9702 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9703 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9704 error (_("Attempt to compare array with non-array"));
9705 /* FIXME: The following works only for types whose
9706 representations use all bits (no padding or undefined bits)
9707 and do not have user-defined equality. */
9708 return
9709 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9710 && memcmp (value_contents (arg1), value_contents (arg2),
9711 TYPE_LENGTH (value_type (arg1))) == 0;
9712 }
9713 return value_equal (arg1, arg2);
9714 }
9715
9716 /* Total number of component associations in the aggregate starting at
9717 index PC in EXP. Assumes that index PC is the start of an
9718 OP_AGGREGATE. */
9719
9720 static int
9721 num_component_specs (struct expression *exp, int pc)
9722 {
9723 int n, m, i;
9724
9725 m = exp->elts[pc + 1].longconst;
9726 pc += 3;
9727 n = 0;
9728 for (i = 0; i < m; i += 1)
9729 {
9730 switch (exp->elts[pc].opcode)
9731 {
9732 default:
9733 n += 1;
9734 break;
9735 case OP_CHOICES:
9736 n += exp->elts[pc + 1].longconst;
9737 break;
9738 }
9739 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9740 }
9741 return n;
9742 }
9743
9744 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9745 component of LHS (a simple array or a record), updating *POS past
9746 the expression, assuming that LHS is contained in CONTAINER. Does
9747 not modify the inferior's memory, nor does it modify LHS (unless
9748 LHS == CONTAINER). */
9749
9750 static void
9751 assign_component (struct value *container, struct value *lhs, LONGEST index,
9752 struct expression *exp, int *pos)
9753 {
9754 struct value *mark = value_mark ();
9755 struct value *elt;
9756
9757 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9758 {
9759 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9760 struct value *index_val = value_from_longest (index_type, index);
9761
9762 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9763 }
9764 else
9765 {
9766 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9767 elt = ada_to_fixed_value (elt);
9768 }
9769
9770 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9771 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9772 else
9773 value_assign_to_component (container, elt,
9774 ada_evaluate_subexp (NULL, exp, pos,
9775 EVAL_NORMAL));
9776
9777 value_free_to_mark (mark);
9778 }
9779
9780 /* Assuming that LHS represents an lvalue having a record or array
9781 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9782 of that aggregate's value to LHS, advancing *POS past the
9783 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9784 lvalue containing LHS (possibly LHS itself). Does not modify
9785 the inferior's memory, nor does it modify the contents of
9786 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9787
9788 static struct value *
9789 assign_aggregate (struct value *container,
9790 struct value *lhs, struct expression *exp,
9791 int *pos, enum noside noside)
9792 {
9793 struct type *lhs_type;
9794 int n = exp->elts[*pos+1].longconst;
9795 LONGEST low_index, high_index;
9796 int num_specs;
9797 LONGEST *indices;
9798 int max_indices, num_indices;
9799 int i;
9800
9801 *pos += 3;
9802 if (noside != EVAL_NORMAL)
9803 {
9804 for (i = 0; i < n; i += 1)
9805 ada_evaluate_subexp (NULL, exp, pos, noside);
9806 return container;
9807 }
9808
9809 container = ada_coerce_ref (container);
9810 if (ada_is_direct_array_type (value_type (container)))
9811 container = ada_coerce_to_simple_array (container);
9812 lhs = ada_coerce_ref (lhs);
9813 if (!deprecated_value_modifiable (lhs))
9814 error (_("Left operand of assignment is not a modifiable lvalue."));
9815
9816 lhs_type = value_type (lhs);
9817 if (ada_is_direct_array_type (lhs_type))
9818 {
9819 lhs = ada_coerce_to_simple_array (lhs);
9820 lhs_type = value_type (lhs);
9821 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9822 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9823 }
9824 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9825 {
9826 low_index = 0;
9827 high_index = num_visible_fields (lhs_type) - 1;
9828 }
9829 else
9830 error (_("Left-hand side must be array or record."));
9831
9832 num_specs = num_component_specs (exp, *pos - 3);
9833 max_indices = 4 * num_specs + 4;
9834 indices = XALLOCAVEC (LONGEST, max_indices);
9835 indices[0] = indices[1] = low_index - 1;
9836 indices[2] = indices[3] = high_index + 1;
9837 num_indices = 4;
9838
9839 for (i = 0; i < n; i += 1)
9840 {
9841 switch (exp->elts[*pos].opcode)
9842 {
9843 case OP_CHOICES:
9844 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9845 &num_indices, max_indices,
9846 low_index, high_index);
9847 break;
9848 case OP_POSITIONAL:
9849 aggregate_assign_positional (container, lhs, exp, pos, indices,
9850 &num_indices, max_indices,
9851 low_index, high_index);
9852 break;
9853 case OP_OTHERS:
9854 if (i != n-1)
9855 error (_("Misplaced 'others' clause"));
9856 aggregate_assign_others (container, lhs, exp, pos, indices,
9857 num_indices, low_index, high_index);
9858 break;
9859 default:
9860 error (_("Internal error: bad aggregate clause"));
9861 }
9862 }
9863
9864 return container;
9865 }
9866
9867 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9868 construct at *POS, updating *POS past the construct, given that
9869 the positions are relative to lower bound LOW, where HIGH is the
9870 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9871 updating *NUM_INDICES as needed. CONTAINER is as for
9872 assign_aggregate. */
9873 static void
9874 aggregate_assign_positional (struct value *container,
9875 struct value *lhs, struct expression *exp,
9876 int *pos, LONGEST *indices, int *num_indices,
9877 int max_indices, LONGEST low, LONGEST high)
9878 {
9879 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9880
9881 if (ind - 1 == high)
9882 warning (_("Extra components in aggregate ignored."));
9883 if (ind <= high)
9884 {
9885 add_component_interval (ind, ind, indices, num_indices, max_indices);
9886 *pos += 3;
9887 assign_component (container, lhs, ind, exp, pos);
9888 }
9889 else
9890 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9891 }
9892
9893 /* Assign into the components of LHS indexed by the OP_CHOICES
9894 construct at *POS, updating *POS past the construct, given that
9895 the allowable indices are LOW..HIGH. Record the indices assigned
9896 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9897 needed. CONTAINER is as for assign_aggregate. */
9898 static void
9899 aggregate_assign_from_choices (struct value *container,
9900 struct value *lhs, struct expression *exp,
9901 int *pos, LONGEST *indices, int *num_indices,
9902 int max_indices, LONGEST low, LONGEST high)
9903 {
9904 int j;
9905 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9906 int choice_pos, expr_pc;
9907 int is_array = ada_is_direct_array_type (value_type (lhs));
9908
9909 choice_pos = *pos += 3;
9910
9911 for (j = 0; j < n_choices; j += 1)
9912 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9913 expr_pc = *pos;
9914 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9915
9916 for (j = 0; j < n_choices; j += 1)
9917 {
9918 LONGEST lower, upper;
9919 enum exp_opcode op = exp->elts[choice_pos].opcode;
9920
9921 if (op == OP_DISCRETE_RANGE)
9922 {
9923 choice_pos += 1;
9924 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9925 EVAL_NORMAL));
9926 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9927 EVAL_NORMAL));
9928 }
9929 else if (is_array)
9930 {
9931 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9932 EVAL_NORMAL));
9933 upper = lower;
9934 }
9935 else
9936 {
9937 int ind;
9938 const char *name;
9939
9940 switch (op)
9941 {
9942 case OP_NAME:
9943 name = &exp->elts[choice_pos + 2].string;
9944 break;
9945 case OP_VAR_VALUE:
9946 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9947 break;
9948 default:
9949 error (_("Invalid record component association."));
9950 }
9951 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9952 ind = 0;
9953 if (! find_struct_field (name, value_type (lhs), 0,
9954 NULL, NULL, NULL, NULL, &ind))
9955 error (_("Unknown component name: %s."), name);
9956 lower = upper = ind;
9957 }
9958
9959 if (lower <= upper && (lower < low || upper > high))
9960 error (_("Index in component association out of bounds."));
9961
9962 add_component_interval (lower, upper, indices, num_indices,
9963 max_indices);
9964 while (lower <= upper)
9965 {
9966 int pos1;
9967
9968 pos1 = expr_pc;
9969 assign_component (container, lhs, lower, exp, &pos1);
9970 lower += 1;
9971 }
9972 }
9973 }
9974
9975 /* Assign the value of the expression in the OP_OTHERS construct in
9976 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9977 have not been previously assigned. The index intervals already assigned
9978 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9979 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9980 static void
9981 aggregate_assign_others (struct value *container,
9982 struct value *lhs, struct expression *exp,
9983 int *pos, LONGEST *indices, int num_indices,
9984 LONGEST low, LONGEST high)
9985 {
9986 int i;
9987 int expr_pc = *pos + 1;
9988
9989 for (i = 0; i < num_indices - 2; i += 2)
9990 {
9991 LONGEST ind;
9992
9993 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9994 {
9995 int localpos;
9996
9997 localpos = expr_pc;
9998 assign_component (container, lhs, ind, exp, &localpos);
9999 }
10000 }
10001 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10002 }
10003
10004 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10005 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10006 modifying *SIZE as needed. It is an error if *SIZE exceeds
10007 MAX_SIZE. The resulting intervals do not overlap. */
10008 static void
10009 add_component_interval (LONGEST low, LONGEST high,
10010 LONGEST* indices, int *size, int max_size)
10011 {
10012 int i, j;
10013
10014 for (i = 0; i < *size; i += 2) {
10015 if (high >= indices[i] && low <= indices[i + 1])
10016 {
10017 int kh;
10018
10019 for (kh = i + 2; kh < *size; kh += 2)
10020 if (high < indices[kh])
10021 break;
10022 if (low < indices[i])
10023 indices[i] = low;
10024 indices[i + 1] = indices[kh - 1];
10025 if (high > indices[i + 1])
10026 indices[i + 1] = high;
10027 memcpy (indices + i + 2, indices + kh, *size - kh);
10028 *size -= kh - i - 2;
10029 return;
10030 }
10031 else if (high < indices[i])
10032 break;
10033 }
10034
10035 if (*size == max_size)
10036 error (_("Internal error: miscounted aggregate components."));
10037 *size += 2;
10038 for (j = *size-1; j >= i+2; j -= 1)
10039 indices[j] = indices[j - 2];
10040 indices[i] = low;
10041 indices[i + 1] = high;
10042 }
10043
10044 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10045 is different. */
10046
10047 static struct value *
10048 ada_value_cast (struct type *type, struct value *arg2)
10049 {
10050 if (type == ada_check_typedef (value_type (arg2)))
10051 return arg2;
10052
10053 if (ada_is_fixed_point_type (type))
10054 return (cast_to_fixed (type, arg2));
10055
10056 if (ada_is_fixed_point_type (value_type (arg2)))
10057 return cast_from_fixed (type, arg2);
10058
10059 return value_cast (type, arg2);
10060 }
10061
10062 /* Evaluating Ada expressions, and printing their result.
10063 ------------------------------------------------------
10064
10065 1. Introduction:
10066 ----------------
10067
10068 We usually evaluate an Ada expression in order to print its value.
10069 We also evaluate an expression in order to print its type, which
10070 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10071 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10072 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10073 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10074 similar.
10075
10076 Evaluating expressions is a little more complicated for Ada entities
10077 than it is for entities in languages such as C. The main reason for
10078 this is that Ada provides types whose definition might be dynamic.
10079 One example of such types is variant records. Or another example
10080 would be an array whose bounds can only be known at run time.
10081
10082 The following description is a general guide as to what should be
10083 done (and what should NOT be done) in order to evaluate an expression
10084 involving such types, and when. This does not cover how the semantic
10085 information is encoded by GNAT as this is covered separatly. For the
10086 document used as the reference for the GNAT encoding, see exp_dbug.ads
10087 in the GNAT sources.
10088
10089 Ideally, we should embed each part of this description next to its
10090 associated code. Unfortunately, the amount of code is so vast right
10091 now that it's hard to see whether the code handling a particular
10092 situation might be duplicated or not. One day, when the code is
10093 cleaned up, this guide might become redundant with the comments
10094 inserted in the code, and we might want to remove it.
10095
10096 2. ``Fixing'' an Entity, the Simple Case:
10097 -----------------------------------------
10098
10099 When evaluating Ada expressions, the tricky issue is that they may
10100 reference entities whose type contents and size are not statically
10101 known. Consider for instance a variant record:
10102
10103 type Rec (Empty : Boolean := True) is record
10104 case Empty is
10105 when True => null;
10106 when False => Value : Integer;
10107 end case;
10108 end record;
10109 Yes : Rec := (Empty => False, Value => 1);
10110 No : Rec := (empty => True);
10111
10112 The size and contents of that record depends on the value of the
10113 descriminant (Rec.Empty). At this point, neither the debugging
10114 information nor the associated type structure in GDB are able to
10115 express such dynamic types. So what the debugger does is to create
10116 "fixed" versions of the type that applies to the specific object.
10117 We also informally refer to this opperation as "fixing" an object,
10118 which means creating its associated fixed type.
10119
10120 Example: when printing the value of variable "Yes" above, its fixed
10121 type would look like this:
10122
10123 type Rec is record
10124 Empty : Boolean;
10125 Value : Integer;
10126 end record;
10127
10128 On the other hand, if we printed the value of "No", its fixed type
10129 would become:
10130
10131 type Rec is record
10132 Empty : Boolean;
10133 end record;
10134
10135 Things become a little more complicated when trying to fix an entity
10136 with a dynamic type that directly contains another dynamic type,
10137 such as an array of variant records, for instance. There are
10138 two possible cases: Arrays, and records.
10139
10140 3. ``Fixing'' Arrays:
10141 ---------------------
10142
10143 The type structure in GDB describes an array in terms of its bounds,
10144 and the type of its elements. By design, all elements in the array
10145 have the same type and we cannot represent an array of variant elements
10146 using the current type structure in GDB. When fixing an array,
10147 we cannot fix the array element, as we would potentially need one
10148 fixed type per element of the array. As a result, the best we can do
10149 when fixing an array is to produce an array whose bounds and size
10150 are correct (allowing us to read it from memory), but without having
10151 touched its element type. Fixing each element will be done later,
10152 when (if) necessary.
10153
10154 Arrays are a little simpler to handle than records, because the same
10155 amount of memory is allocated for each element of the array, even if
10156 the amount of space actually used by each element differs from element
10157 to element. Consider for instance the following array of type Rec:
10158
10159 type Rec_Array is array (1 .. 2) of Rec;
10160
10161 The actual amount of memory occupied by each element might be different
10162 from element to element, depending on the value of their discriminant.
10163 But the amount of space reserved for each element in the array remains
10164 fixed regardless. So we simply need to compute that size using
10165 the debugging information available, from which we can then determine
10166 the array size (we multiply the number of elements of the array by
10167 the size of each element).
10168
10169 The simplest case is when we have an array of a constrained element
10170 type. For instance, consider the following type declarations:
10171
10172 type Bounded_String (Max_Size : Integer) is
10173 Length : Integer;
10174 Buffer : String (1 .. Max_Size);
10175 end record;
10176 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10177
10178 In this case, the compiler describes the array as an array of
10179 variable-size elements (identified by its XVS suffix) for which
10180 the size can be read in the parallel XVZ variable.
10181
10182 In the case of an array of an unconstrained element type, the compiler
10183 wraps the array element inside a private PAD type. This type should not
10184 be shown to the user, and must be "unwrap"'ed before printing. Note
10185 that we also use the adjective "aligner" in our code to designate
10186 these wrapper types.
10187
10188 In some cases, the size allocated for each element is statically
10189 known. In that case, the PAD type already has the correct size,
10190 and the array element should remain unfixed.
10191
10192 But there are cases when this size is not statically known.
10193 For instance, assuming that "Five" is an integer variable:
10194
10195 type Dynamic is array (1 .. Five) of Integer;
10196 type Wrapper (Has_Length : Boolean := False) is record
10197 Data : Dynamic;
10198 case Has_Length is
10199 when True => Length : Integer;
10200 when False => null;
10201 end case;
10202 end record;
10203 type Wrapper_Array is array (1 .. 2) of Wrapper;
10204
10205 Hello : Wrapper_Array := (others => (Has_Length => True,
10206 Data => (others => 17),
10207 Length => 1));
10208
10209
10210 The debugging info would describe variable Hello as being an
10211 array of a PAD type. The size of that PAD type is not statically
10212 known, but can be determined using a parallel XVZ variable.
10213 In that case, a copy of the PAD type with the correct size should
10214 be used for the fixed array.
10215
10216 3. ``Fixing'' record type objects:
10217 ----------------------------------
10218
10219 Things are slightly different from arrays in the case of dynamic
10220 record types. In this case, in order to compute the associated
10221 fixed type, we need to determine the size and offset of each of
10222 its components. This, in turn, requires us to compute the fixed
10223 type of each of these components.
10224
10225 Consider for instance the example:
10226
10227 type Bounded_String (Max_Size : Natural) is record
10228 Str : String (1 .. Max_Size);
10229 Length : Natural;
10230 end record;
10231 My_String : Bounded_String (Max_Size => 10);
10232
10233 In that case, the position of field "Length" depends on the size
10234 of field Str, which itself depends on the value of the Max_Size
10235 discriminant. In order to fix the type of variable My_String,
10236 we need to fix the type of field Str. Therefore, fixing a variant
10237 record requires us to fix each of its components.
10238
10239 However, if a component does not have a dynamic size, the component
10240 should not be fixed. In particular, fields that use a PAD type
10241 should not fixed. Here is an example where this might happen
10242 (assuming type Rec above):
10243
10244 type Container (Big : Boolean) is record
10245 First : Rec;
10246 After : Integer;
10247 case Big is
10248 when True => Another : Integer;
10249 when False => null;
10250 end case;
10251 end record;
10252 My_Container : Container := (Big => False,
10253 First => (Empty => True),
10254 After => 42);
10255
10256 In that example, the compiler creates a PAD type for component First,
10257 whose size is constant, and then positions the component After just
10258 right after it. The offset of component After is therefore constant
10259 in this case.
10260
10261 The debugger computes the position of each field based on an algorithm
10262 that uses, among other things, the actual position and size of the field
10263 preceding it. Let's now imagine that the user is trying to print
10264 the value of My_Container. If the type fixing was recursive, we would
10265 end up computing the offset of field After based on the size of the
10266 fixed version of field First. And since in our example First has
10267 only one actual field, the size of the fixed type is actually smaller
10268 than the amount of space allocated to that field, and thus we would
10269 compute the wrong offset of field After.
10270
10271 To make things more complicated, we need to watch out for dynamic
10272 components of variant records (identified by the ___XVL suffix in
10273 the component name). Even if the target type is a PAD type, the size
10274 of that type might not be statically known. So the PAD type needs
10275 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10276 we might end up with the wrong size for our component. This can be
10277 observed with the following type declarations:
10278
10279 type Octal is new Integer range 0 .. 7;
10280 type Octal_Array is array (Positive range <>) of Octal;
10281 pragma Pack (Octal_Array);
10282
10283 type Octal_Buffer (Size : Positive) is record
10284 Buffer : Octal_Array (1 .. Size);
10285 Length : Integer;
10286 end record;
10287
10288 In that case, Buffer is a PAD type whose size is unset and needs
10289 to be computed by fixing the unwrapped type.
10290
10291 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10292 ----------------------------------------------------------
10293
10294 Lastly, when should the sub-elements of an entity that remained unfixed
10295 thus far, be actually fixed?
10296
10297 The answer is: Only when referencing that element. For instance
10298 when selecting one component of a record, this specific component
10299 should be fixed at that point in time. Or when printing the value
10300 of a record, each component should be fixed before its value gets
10301 printed. Similarly for arrays, the element of the array should be
10302 fixed when printing each element of the array, or when extracting
10303 one element out of that array. On the other hand, fixing should
10304 not be performed on the elements when taking a slice of an array!
10305
10306 Note that one of the side effects of miscomputing the offset and
10307 size of each field is that we end up also miscomputing the size
10308 of the containing type. This can have adverse results when computing
10309 the value of an entity. GDB fetches the value of an entity based
10310 on the size of its type, and thus a wrong size causes GDB to fetch
10311 the wrong amount of memory. In the case where the computed size is
10312 too small, GDB fetches too little data to print the value of our
10313 entity. Results in this case are unpredictable, as we usually read
10314 past the buffer containing the data =:-o. */
10315
10316 /* Implement the evaluate_exp routine in the exp_descriptor structure
10317 for the Ada language. */
10318
10319 static struct value *
10320 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10321 int *pos, enum noside noside)
10322 {
10323 enum exp_opcode op;
10324 int tem;
10325 int pc;
10326 int preeval_pos;
10327 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10328 struct type *type;
10329 int nargs, oplen;
10330 struct value **argvec;
10331
10332 pc = *pos;
10333 *pos += 1;
10334 op = exp->elts[pc].opcode;
10335
10336 switch (op)
10337 {
10338 default:
10339 *pos -= 1;
10340 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10341
10342 if (noside == EVAL_NORMAL)
10343 arg1 = unwrap_value (arg1);
10344
10345 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10346 then we need to perform the conversion manually, because
10347 evaluate_subexp_standard doesn't do it. This conversion is
10348 necessary in Ada because the different kinds of float/fixed
10349 types in Ada have different representations.
10350
10351 Similarly, we need to perform the conversion from OP_LONG
10352 ourselves. */
10353 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10354 arg1 = ada_value_cast (expect_type, arg1);
10355
10356 return arg1;
10357
10358 case OP_STRING:
10359 {
10360 struct value *result;
10361
10362 *pos -= 1;
10363 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10364 /* The result type will have code OP_STRING, bashed there from
10365 OP_ARRAY. Bash it back. */
10366 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10367 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10368 return result;
10369 }
10370
10371 case UNOP_CAST:
10372 (*pos) += 2;
10373 type = exp->elts[pc + 1].type;
10374 arg1 = evaluate_subexp (type, exp, pos, noside);
10375 if (noside == EVAL_SKIP)
10376 goto nosideret;
10377 arg1 = ada_value_cast (type, arg1);
10378 return arg1;
10379
10380 case UNOP_QUAL:
10381 (*pos) += 2;
10382 type = exp->elts[pc + 1].type;
10383 return ada_evaluate_subexp (type, exp, pos, noside);
10384
10385 case BINOP_ASSIGN:
10386 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10387 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10388 {
10389 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10390 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10391 return arg1;
10392 return ada_value_assign (arg1, arg1);
10393 }
10394 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10395 except if the lhs of our assignment is a convenience variable.
10396 In the case of assigning to a convenience variable, the lhs
10397 should be exactly the result of the evaluation of the rhs. */
10398 type = value_type (arg1);
10399 if (VALUE_LVAL (arg1) == lval_internalvar)
10400 type = NULL;
10401 arg2 = evaluate_subexp (type, exp, pos, noside);
10402 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10403 return arg1;
10404 if (ada_is_fixed_point_type (value_type (arg1)))
10405 arg2 = cast_to_fixed (value_type (arg1), arg2);
10406 else if (ada_is_fixed_point_type (value_type (arg2)))
10407 error
10408 (_("Fixed-point values must be assigned to fixed-point variables"));
10409 else
10410 arg2 = coerce_for_assign (value_type (arg1), arg2);
10411 return ada_value_assign (arg1, arg2);
10412
10413 case BINOP_ADD:
10414 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10415 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10416 if (noside == EVAL_SKIP)
10417 goto nosideret;
10418 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10419 return (value_from_longest
10420 (value_type (arg1),
10421 value_as_long (arg1) + value_as_long (arg2)));
10422 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10423 return (value_from_longest
10424 (value_type (arg2),
10425 value_as_long (arg1) + value_as_long (arg2)));
10426 if ((ada_is_fixed_point_type (value_type (arg1))
10427 || ada_is_fixed_point_type (value_type (arg2)))
10428 && value_type (arg1) != value_type (arg2))
10429 error (_("Operands of fixed-point addition must have the same type"));
10430 /* Do the addition, and cast the result to the type of the first
10431 argument. We cannot cast the result to a reference type, so if
10432 ARG1 is a reference type, find its underlying type. */
10433 type = value_type (arg1);
10434 while (TYPE_CODE (type) == TYPE_CODE_REF)
10435 type = TYPE_TARGET_TYPE (type);
10436 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10437 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10438
10439 case BINOP_SUB:
10440 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10441 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10442 if (noside == EVAL_SKIP)
10443 goto nosideret;
10444 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10445 return (value_from_longest
10446 (value_type (arg1),
10447 value_as_long (arg1) - value_as_long (arg2)));
10448 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10449 return (value_from_longest
10450 (value_type (arg2),
10451 value_as_long (arg1) - value_as_long (arg2)));
10452 if ((ada_is_fixed_point_type (value_type (arg1))
10453 || ada_is_fixed_point_type (value_type (arg2)))
10454 && value_type (arg1) != value_type (arg2))
10455 error (_("Operands of fixed-point subtraction "
10456 "must have the same type"));
10457 /* Do the substraction, and cast the result to the type of the first
10458 argument. We cannot cast the result to a reference type, so if
10459 ARG1 is a reference type, find its underlying type. */
10460 type = value_type (arg1);
10461 while (TYPE_CODE (type) == TYPE_CODE_REF)
10462 type = TYPE_TARGET_TYPE (type);
10463 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10464 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10465
10466 case BINOP_MUL:
10467 case BINOP_DIV:
10468 case BINOP_REM:
10469 case BINOP_MOD:
10470 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10471 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10472 if (noside == EVAL_SKIP)
10473 goto nosideret;
10474 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10475 {
10476 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10477 return value_zero (value_type (arg1), not_lval);
10478 }
10479 else
10480 {
10481 type = builtin_type (exp->gdbarch)->builtin_double;
10482 if (ada_is_fixed_point_type (value_type (arg1)))
10483 arg1 = cast_from_fixed (type, arg1);
10484 if (ada_is_fixed_point_type (value_type (arg2)))
10485 arg2 = cast_from_fixed (type, arg2);
10486 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10487 return ada_value_binop (arg1, arg2, op);
10488 }
10489
10490 case BINOP_EQUAL:
10491 case BINOP_NOTEQUAL:
10492 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10493 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10494 if (noside == EVAL_SKIP)
10495 goto nosideret;
10496 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10497 tem = 0;
10498 else
10499 {
10500 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10501 tem = ada_value_equal (arg1, arg2);
10502 }
10503 if (op == BINOP_NOTEQUAL)
10504 tem = !tem;
10505 type = language_bool_type (exp->language_defn, exp->gdbarch);
10506 return value_from_longest (type, (LONGEST) tem);
10507
10508 case UNOP_NEG:
10509 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10510 if (noside == EVAL_SKIP)
10511 goto nosideret;
10512 else if (ada_is_fixed_point_type (value_type (arg1)))
10513 return value_cast (value_type (arg1), value_neg (arg1));
10514 else
10515 {
10516 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10517 return value_neg (arg1);
10518 }
10519
10520 case BINOP_LOGICAL_AND:
10521 case BINOP_LOGICAL_OR:
10522 case UNOP_LOGICAL_NOT:
10523 {
10524 struct value *val;
10525
10526 *pos -= 1;
10527 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10528 type = language_bool_type (exp->language_defn, exp->gdbarch);
10529 return value_cast (type, val);
10530 }
10531
10532 case BINOP_BITWISE_AND:
10533 case BINOP_BITWISE_IOR:
10534 case BINOP_BITWISE_XOR:
10535 {
10536 struct value *val;
10537
10538 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10539 *pos = pc;
10540 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10541
10542 return value_cast (value_type (arg1), val);
10543 }
10544
10545 case OP_VAR_VALUE:
10546 *pos -= 1;
10547
10548 if (noside == EVAL_SKIP)
10549 {
10550 *pos += 4;
10551 goto nosideret;
10552 }
10553
10554 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10555 /* Only encountered when an unresolved symbol occurs in a
10556 context other than a function call, in which case, it is
10557 invalid. */
10558 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10559 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10560
10561 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10562 {
10563 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10564 /* Check to see if this is a tagged type. We also need to handle
10565 the case where the type is a reference to a tagged type, but
10566 we have to be careful to exclude pointers to tagged types.
10567 The latter should be shown as usual (as a pointer), whereas
10568 a reference should mostly be transparent to the user. */
10569 if (ada_is_tagged_type (type, 0)
10570 || (TYPE_CODE (type) == TYPE_CODE_REF
10571 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10572 {
10573 /* Tagged types are a little special in the fact that the real
10574 type is dynamic and can only be determined by inspecting the
10575 object's tag. This means that we need to get the object's
10576 value first (EVAL_NORMAL) and then extract the actual object
10577 type from its tag.
10578
10579 Note that we cannot skip the final step where we extract
10580 the object type from its tag, because the EVAL_NORMAL phase
10581 results in dynamic components being resolved into fixed ones.
10582 This can cause problems when trying to print the type
10583 description of tagged types whose parent has a dynamic size:
10584 We use the type name of the "_parent" component in order
10585 to print the name of the ancestor type in the type description.
10586 If that component had a dynamic size, the resolution into
10587 a fixed type would result in the loss of that type name,
10588 thus preventing us from printing the name of the ancestor
10589 type in the type description. */
10590 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10591
10592 if (TYPE_CODE (type) != TYPE_CODE_REF)
10593 {
10594 struct type *actual_type;
10595
10596 actual_type = type_from_tag (ada_value_tag (arg1));
10597 if (actual_type == NULL)
10598 /* If, for some reason, we were unable to determine
10599 the actual type from the tag, then use the static
10600 approximation that we just computed as a fallback.
10601 This can happen if the debugging information is
10602 incomplete, for instance. */
10603 actual_type = type;
10604 return value_zero (actual_type, not_lval);
10605 }
10606 else
10607 {
10608 /* In the case of a ref, ada_coerce_ref takes care
10609 of determining the actual type. But the evaluation
10610 should return a ref as it should be valid to ask
10611 for its address; so rebuild a ref after coerce. */
10612 arg1 = ada_coerce_ref (arg1);
10613 return value_ref (arg1, TYPE_CODE_REF);
10614 }
10615 }
10616
10617 /* Records and unions for which GNAT encodings have been
10618 generated need to be statically fixed as well.
10619 Otherwise, non-static fixing produces a type where
10620 all dynamic properties are removed, which prevents "ptype"
10621 from being able to completely describe the type.
10622 For instance, a case statement in a variant record would be
10623 replaced by the relevant components based on the actual
10624 value of the discriminants. */
10625 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10626 && dynamic_template_type (type) != NULL)
10627 || (TYPE_CODE (type) == TYPE_CODE_UNION
10628 && ada_find_parallel_type (type, "___XVU") != NULL))
10629 {
10630 *pos += 4;
10631 return value_zero (to_static_fixed_type (type), not_lval);
10632 }
10633 }
10634
10635 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10636 return ada_to_fixed_value (arg1);
10637
10638 case OP_FUNCALL:
10639 (*pos) += 2;
10640
10641 /* Allocate arg vector, including space for the function to be
10642 called in argvec[0] and a terminating NULL. */
10643 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10644 argvec = XALLOCAVEC (struct value *, nargs + 2);
10645
10646 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10647 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10648 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10649 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10650 else
10651 {
10652 for (tem = 0; tem <= nargs; tem += 1)
10653 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10654 argvec[tem] = 0;
10655
10656 if (noside == EVAL_SKIP)
10657 goto nosideret;
10658 }
10659
10660 if (ada_is_constrained_packed_array_type
10661 (desc_base_type (value_type (argvec[0]))))
10662 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10663 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10664 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10665 /* This is a packed array that has already been fixed, and
10666 therefore already coerced to a simple array. Nothing further
10667 to do. */
10668 ;
10669 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10670 {
10671 /* Make sure we dereference references so that all the code below
10672 feels like it's really handling the referenced value. Wrapping
10673 types (for alignment) may be there, so make sure we strip them as
10674 well. */
10675 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10676 }
10677 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10678 && VALUE_LVAL (argvec[0]) == lval_memory)
10679 argvec[0] = value_addr (argvec[0]);
10680
10681 type = ada_check_typedef (value_type (argvec[0]));
10682
10683 /* Ada allows us to implicitly dereference arrays when subscripting
10684 them. So, if this is an array typedef (encoding use for array
10685 access types encoded as fat pointers), strip it now. */
10686 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10687 type = ada_typedef_target_type (type);
10688
10689 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10690 {
10691 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10692 {
10693 case TYPE_CODE_FUNC:
10694 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10695 break;
10696 case TYPE_CODE_ARRAY:
10697 break;
10698 case TYPE_CODE_STRUCT:
10699 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10700 argvec[0] = ada_value_ind (argvec[0]);
10701 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10702 break;
10703 default:
10704 error (_("cannot subscript or call something of type `%s'"),
10705 ada_type_name (value_type (argvec[0])));
10706 break;
10707 }
10708 }
10709
10710 switch (TYPE_CODE (type))
10711 {
10712 case TYPE_CODE_FUNC:
10713 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10714 {
10715 if (TYPE_TARGET_TYPE (type) == NULL)
10716 error_call_unknown_return_type (NULL);
10717 return allocate_value (TYPE_TARGET_TYPE (type));
10718 }
10719 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10720 case TYPE_CODE_INTERNAL_FUNCTION:
10721 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10722 /* We don't know anything about what the internal
10723 function might return, but we have to return
10724 something. */
10725 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10726 not_lval);
10727 else
10728 return call_internal_function (exp->gdbarch, exp->language_defn,
10729 argvec[0], nargs, argvec + 1);
10730
10731 case TYPE_CODE_STRUCT:
10732 {
10733 int arity;
10734
10735 arity = ada_array_arity (type);
10736 type = ada_array_element_type (type, nargs);
10737 if (type == NULL)
10738 error (_("cannot subscript or call a record"));
10739 if (arity != nargs)
10740 error (_("wrong number of subscripts; expecting %d"), arity);
10741 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10742 return value_zero (ada_aligned_type (type), lval_memory);
10743 return
10744 unwrap_value (ada_value_subscript
10745 (argvec[0], nargs, argvec + 1));
10746 }
10747 case TYPE_CODE_ARRAY:
10748 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10749 {
10750 type = ada_array_element_type (type, nargs);
10751 if (type == NULL)
10752 error (_("element type of array unknown"));
10753 else
10754 return value_zero (ada_aligned_type (type), lval_memory);
10755 }
10756 return
10757 unwrap_value (ada_value_subscript
10758 (ada_coerce_to_simple_array (argvec[0]),
10759 nargs, argvec + 1));
10760 case TYPE_CODE_PTR: /* Pointer to array */
10761 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10762 {
10763 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10764 type = ada_array_element_type (type, nargs);
10765 if (type == NULL)
10766 error (_("element type of array unknown"));
10767 else
10768 return value_zero (ada_aligned_type (type), lval_memory);
10769 }
10770 return
10771 unwrap_value (ada_value_ptr_subscript (argvec[0],
10772 nargs, argvec + 1));
10773
10774 default:
10775 error (_("Attempt to index or call something other than an "
10776 "array or function"));
10777 }
10778
10779 case TERNOP_SLICE:
10780 {
10781 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10782 struct value *low_bound_val =
10783 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10784 struct value *high_bound_val =
10785 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10786 LONGEST low_bound;
10787 LONGEST high_bound;
10788
10789 low_bound_val = coerce_ref (low_bound_val);
10790 high_bound_val = coerce_ref (high_bound_val);
10791 low_bound = value_as_long (low_bound_val);
10792 high_bound = value_as_long (high_bound_val);
10793
10794 if (noside == EVAL_SKIP)
10795 goto nosideret;
10796
10797 /* If this is a reference to an aligner type, then remove all
10798 the aligners. */
10799 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10800 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10801 TYPE_TARGET_TYPE (value_type (array)) =
10802 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10803
10804 if (ada_is_constrained_packed_array_type (value_type (array)))
10805 error (_("cannot slice a packed array"));
10806
10807 /* If this is a reference to an array or an array lvalue,
10808 convert to a pointer. */
10809 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10810 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10811 && VALUE_LVAL (array) == lval_memory))
10812 array = value_addr (array);
10813
10814 if (noside == EVAL_AVOID_SIDE_EFFECTS
10815 && ada_is_array_descriptor_type (ada_check_typedef
10816 (value_type (array))))
10817 return empty_array (ada_type_of_array (array, 0), low_bound);
10818
10819 array = ada_coerce_to_simple_array_ptr (array);
10820
10821 /* If we have more than one level of pointer indirection,
10822 dereference the value until we get only one level. */
10823 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10824 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10825 == TYPE_CODE_PTR))
10826 array = value_ind (array);
10827
10828 /* Make sure we really do have an array type before going further,
10829 to avoid a SEGV when trying to get the index type or the target
10830 type later down the road if the debug info generated by
10831 the compiler is incorrect or incomplete. */
10832 if (!ada_is_simple_array_type (value_type (array)))
10833 error (_("cannot take slice of non-array"));
10834
10835 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10836 == TYPE_CODE_PTR)
10837 {
10838 struct type *type0 = ada_check_typedef (value_type (array));
10839
10840 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10841 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10842 else
10843 {
10844 struct type *arr_type0 =
10845 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10846
10847 return ada_value_slice_from_ptr (array, arr_type0,
10848 longest_to_int (low_bound),
10849 longest_to_int (high_bound));
10850 }
10851 }
10852 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10853 return array;
10854 else if (high_bound < low_bound)
10855 return empty_array (value_type (array), low_bound);
10856 else
10857 return ada_value_slice (array, longest_to_int (low_bound),
10858 longest_to_int (high_bound));
10859 }
10860
10861 case UNOP_IN_RANGE:
10862 (*pos) += 2;
10863 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10864 type = check_typedef (exp->elts[pc + 1].type);
10865
10866 if (noside == EVAL_SKIP)
10867 goto nosideret;
10868
10869 switch (TYPE_CODE (type))
10870 {
10871 default:
10872 lim_warning (_("Membership test incompletely implemented; "
10873 "always returns true"));
10874 type = language_bool_type (exp->language_defn, exp->gdbarch);
10875 return value_from_longest (type, (LONGEST) 1);
10876
10877 case TYPE_CODE_RANGE:
10878 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10879 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10880 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10881 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10882 type = language_bool_type (exp->language_defn, exp->gdbarch);
10883 return
10884 value_from_longest (type,
10885 (value_less (arg1, arg3)
10886 || value_equal (arg1, arg3))
10887 && (value_less (arg2, arg1)
10888 || value_equal (arg2, arg1)));
10889 }
10890
10891 case BINOP_IN_BOUNDS:
10892 (*pos) += 2;
10893 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10894 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10895
10896 if (noside == EVAL_SKIP)
10897 goto nosideret;
10898
10899 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10900 {
10901 type = language_bool_type (exp->language_defn, exp->gdbarch);
10902 return value_zero (type, not_lval);
10903 }
10904
10905 tem = longest_to_int (exp->elts[pc + 1].longconst);
10906
10907 type = ada_index_type (value_type (arg2), tem, "range");
10908 if (!type)
10909 type = value_type (arg1);
10910
10911 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10912 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10913
10914 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10915 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10916 type = language_bool_type (exp->language_defn, exp->gdbarch);
10917 return
10918 value_from_longest (type,
10919 (value_less (arg1, arg3)
10920 || value_equal (arg1, arg3))
10921 && (value_less (arg2, arg1)
10922 || value_equal (arg2, arg1)));
10923
10924 case TERNOP_IN_RANGE:
10925 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10926 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10927 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10928
10929 if (noside == EVAL_SKIP)
10930 goto nosideret;
10931
10932 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10933 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10934 type = language_bool_type (exp->language_defn, exp->gdbarch);
10935 return
10936 value_from_longest (type,
10937 (value_less (arg1, arg3)
10938 || value_equal (arg1, arg3))
10939 && (value_less (arg2, arg1)
10940 || value_equal (arg2, arg1)));
10941
10942 case OP_ATR_FIRST:
10943 case OP_ATR_LAST:
10944 case OP_ATR_LENGTH:
10945 {
10946 struct type *type_arg;
10947
10948 if (exp->elts[*pos].opcode == OP_TYPE)
10949 {
10950 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10951 arg1 = NULL;
10952 type_arg = check_typedef (exp->elts[pc + 2].type);
10953 }
10954 else
10955 {
10956 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10957 type_arg = NULL;
10958 }
10959
10960 if (exp->elts[*pos].opcode != OP_LONG)
10961 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10962 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10963 *pos += 4;
10964
10965 if (noside == EVAL_SKIP)
10966 goto nosideret;
10967
10968 if (type_arg == NULL)
10969 {
10970 arg1 = ada_coerce_ref (arg1);
10971
10972 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10973 arg1 = ada_coerce_to_simple_array (arg1);
10974
10975 if (op == OP_ATR_LENGTH)
10976 type = builtin_type (exp->gdbarch)->builtin_int;
10977 else
10978 {
10979 type = ada_index_type (value_type (arg1), tem,
10980 ada_attribute_name (op));
10981 if (type == NULL)
10982 type = builtin_type (exp->gdbarch)->builtin_int;
10983 }
10984
10985 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10986 return allocate_value (type);
10987
10988 switch (op)
10989 {
10990 default: /* Should never happen. */
10991 error (_("unexpected attribute encountered"));
10992 case OP_ATR_FIRST:
10993 return value_from_longest
10994 (type, ada_array_bound (arg1, tem, 0));
10995 case OP_ATR_LAST:
10996 return value_from_longest
10997 (type, ada_array_bound (arg1, tem, 1));
10998 case OP_ATR_LENGTH:
10999 return value_from_longest
11000 (type, ada_array_length (arg1, tem));
11001 }
11002 }
11003 else if (discrete_type_p (type_arg))
11004 {
11005 struct type *range_type;
11006 const char *name = ada_type_name (type_arg);
11007
11008 range_type = NULL;
11009 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11010 range_type = to_fixed_range_type (type_arg, NULL);
11011 if (range_type == NULL)
11012 range_type = type_arg;
11013 switch (op)
11014 {
11015 default:
11016 error (_("unexpected attribute encountered"));
11017 case OP_ATR_FIRST:
11018 return value_from_longest
11019 (range_type, ada_discrete_type_low_bound (range_type));
11020 case OP_ATR_LAST:
11021 return value_from_longest
11022 (range_type, ada_discrete_type_high_bound (range_type));
11023 case OP_ATR_LENGTH:
11024 error (_("the 'length attribute applies only to array types"));
11025 }
11026 }
11027 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11028 error (_("unimplemented type attribute"));
11029 else
11030 {
11031 LONGEST low, high;
11032
11033 if (ada_is_constrained_packed_array_type (type_arg))
11034 type_arg = decode_constrained_packed_array_type (type_arg);
11035
11036 if (op == OP_ATR_LENGTH)
11037 type = builtin_type (exp->gdbarch)->builtin_int;
11038 else
11039 {
11040 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11041 if (type == NULL)
11042 type = builtin_type (exp->gdbarch)->builtin_int;
11043 }
11044
11045 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11046 return allocate_value (type);
11047
11048 switch (op)
11049 {
11050 default:
11051 error (_("unexpected attribute encountered"));
11052 case OP_ATR_FIRST:
11053 low = ada_array_bound_from_type (type_arg, tem, 0);
11054 return value_from_longest (type, low);
11055 case OP_ATR_LAST:
11056 high = ada_array_bound_from_type (type_arg, tem, 1);
11057 return value_from_longest (type, high);
11058 case OP_ATR_LENGTH:
11059 low = ada_array_bound_from_type (type_arg, tem, 0);
11060 high = ada_array_bound_from_type (type_arg, tem, 1);
11061 return value_from_longest (type, high - low + 1);
11062 }
11063 }
11064 }
11065
11066 case OP_ATR_TAG:
11067 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11068 if (noside == EVAL_SKIP)
11069 goto nosideret;
11070
11071 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11072 return value_zero (ada_tag_type (arg1), not_lval);
11073
11074 return ada_value_tag (arg1);
11075
11076 case OP_ATR_MIN:
11077 case OP_ATR_MAX:
11078 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11079 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11080 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11081 if (noside == EVAL_SKIP)
11082 goto nosideret;
11083 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11084 return value_zero (value_type (arg1), not_lval);
11085 else
11086 {
11087 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11088 return value_binop (arg1, arg2,
11089 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11090 }
11091
11092 case OP_ATR_MODULUS:
11093 {
11094 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11095
11096 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11097 if (noside == EVAL_SKIP)
11098 goto nosideret;
11099
11100 if (!ada_is_modular_type (type_arg))
11101 error (_("'modulus must be applied to modular type"));
11102
11103 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11104 ada_modulus (type_arg));
11105 }
11106
11107
11108 case OP_ATR_POS:
11109 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11110 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11111 if (noside == EVAL_SKIP)
11112 goto nosideret;
11113 type = builtin_type (exp->gdbarch)->builtin_int;
11114 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11115 return value_zero (type, not_lval);
11116 else
11117 return value_pos_atr (type, arg1);
11118
11119 case OP_ATR_SIZE:
11120 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11121 type = value_type (arg1);
11122
11123 /* If the argument is a reference, then dereference its type, since
11124 the user is really asking for the size of the actual object,
11125 not the size of the pointer. */
11126 if (TYPE_CODE (type) == TYPE_CODE_REF)
11127 type = TYPE_TARGET_TYPE (type);
11128
11129 if (noside == EVAL_SKIP)
11130 goto nosideret;
11131 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11132 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11133 else
11134 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11135 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11136
11137 case OP_ATR_VAL:
11138 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11139 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11140 type = exp->elts[pc + 2].type;
11141 if (noside == EVAL_SKIP)
11142 goto nosideret;
11143 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11144 return value_zero (type, not_lval);
11145 else
11146 return value_val_atr (type, arg1);
11147
11148 case BINOP_EXP:
11149 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11150 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11151 if (noside == EVAL_SKIP)
11152 goto nosideret;
11153 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11154 return value_zero (value_type (arg1), not_lval);
11155 else
11156 {
11157 /* For integer exponentiation operations,
11158 only promote the first argument. */
11159 if (is_integral_type (value_type (arg2)))
11160 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11161 else
11162 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11163
11164 return value_binop (arg1, arg2, op);
11165 }
11166
11167 case UNOP_PLUS:
11168 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11169 if (noside == EVAL_SKIP)
11170 goto nosideret;
11171 else
11172 return arg1;
11173
11174 case UNOP_ABS:
11175 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11176 if (noside == EVAL_SKIP)
11177 goto nosideret;
11178 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11179 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11180 return value_neg (arg1);
11181 else
11182 return arg1;
11183
11184 case UNOP_IND:
11185 preeval_pos = *pos;
11186 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11187 if (noside == EVAL_SKIP)
11188 goto nosideret;
11189 type = ada_check_typedef (value_type (arg1));
11190 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11191 {
11192 if (ada_is_array_descriptor_type (type))
11193 /* GDB allows dereferencing GNAT array descriptors. */
11194 {
11195 struct type *arrType = ada_type_of_array (arg1, 0);
11196
11197 if (arrType == NULL)
11198 error (_("Attempt to dereference null array pointer."));
11199 return value_at_lazy (arrType, 0);
11200 }
11201 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11202 || TYPE_CODE (type) == TYPE_CODE_REF
11203 /* In C you can dereference an array to get the 1st elt. */
11204 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11205 {
11206 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11207 only be determined by inspecting the object's tag.
11208 This means that we need to evaluate completely the
11209 expression in order to get its type. */
11210
11211 if ((TYPE_CODE (type) == TYPE_CODE_REF
11212 || TYPE_CODE (type) == TYPE_CODE_PTR)
11213 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11214 {
11215 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11216 EVAL_NORMAL);
11217 type = value_type (ada_value_ind (arg1));
11218 }
11219 else
11220 {
11221 type = to_static_fixed_type
11222 (ada_aligned_type
11223 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11224 }
11225 ada_ensure_varsize_limit (type);
11226 return value_zero (type, lval_memory);
11227 }
11228 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11229 {
11230 /* GDB allows dereferencing an int. */
11231 if (expect_type == NULL)
11232 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11233 lval_memory);
11234 else
11235 {
11236 expect_type =
11237 to_static_fixed_type (ada_aligned_type (expect_type));
11238 return value_zero (expect_type, lval_memory);
11239 }
11240 }
11241 else
11242 error (_("Attempt to take contents of a non-pointer value."));
11243 }
11244 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11245 type = ada_check_typedef (value_type (arg1));
11246
11247 if (TYPE_CODE (type) == TYPE_CODE_INT)
11248 /* GDB allows dereferencing an int. If we were given
11249 the expect_type, then use that as the target type.
11250 Otherwise, assume that the target type is an int. */
11251 {
11252 if (expect_type != NULL)
11253 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11254 arg1));
11255 else
11256 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11257 (CORE_ADDR) value_as_address (arg1));
11258 }
11259
11260 if (ada_is_array_descriptor_type (type))
11261 /* GDB allows dereferencing GNAT array descriptors. */
11262 return ada_coerce_to_simple_array (arg1);
11263 else
11264 return ada_value_ind (arg1);
11265
11266 case STRUCTOP_STRUCT:
11267 tem = longest_to_int (exp->elts[pc + 1].longconst);
11268 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11269 preeval_pos = *pos;
11270 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11271 if (noside == EVAL_SKIP)
11272 goto nosideret;
11273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11274 {
11275 struct type *type1 = value_type (arg1);
11276
11277 if (ada_is_tagged_type (type1, 1))
11278 {
11279 type = ada_lookup_struct_elt_type (type1,
11280 &exp->elts[pc + 2].string,
11281 1, 1);
11282
11283 /* If the field is not found, check if it exists in the
11284 extension of this object's type. This means that we
11285 need to evaluate completely the expression. */
11286
11287 if (type == NULL)
11288 {
11289 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11290 EVAL_NORMAL);
11291 arg1 = ada_value_struct_elt (arg1,
11292 &exp->elts[pc + 2].string,
11293 0);
11294 arg1 = unwrap_value (arg1);
11295 type = value_type (ada_to_fixed_value (arg1));
11296 }
11297 }
11298 else
11299 type =
11300 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11301 0);
11302
11303 return value_zero (ada_aligned_type (type), lval_memory);
11304 }
11305 else
11306 {
11307 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11308 arg1 = unwrap_value (arg1);
11309 return ada_to_fixed_value (arg1);
11310 }
11311
11312 case OP_TYPE:
11313 /* The value is not supposed to be used. This is here to make it
11314 easier to accommodate expressions that contain types. */
11315 (*pos) += 2;
11316 if (noside == EVAL_SKIP)
11317 goto nosideret;
11318 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11319 return allocate_value (exp->elts[pc + 1].type);
11320 else
11321 error (_("Attempt to use a type name as an expression"));
11322
11323 case OP_AGGREGATE:
11324 case OP_CHOICES:
11325 case OP_OTHERS:
11326 case OP_DISCRETE_RANGE:
11327 case OP_POSITIONAL:
11328 case OP_NAME:
11329 if (noside == EVAL_NORMAL)
11330 switch (op)
11331 {
11332 case OP_NAME:
11333 error (_("Undefined name, ambiguous name, or renaming used in "
11334 "component association: %s."), &exp->elts[pc+2].string);
11335 case OP_AGGREGATE:
11336 error (_("Aggregates only allowed on the right of an assignment"));
11337 default:
11338 internal_error (__FILE__, __LINE__,
11339 _("aggregate apparently mangled"));
11340 }
11341
11342 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11343 *pos += oplen - 1;
11344 for (tem = 0; tem < nargs; tem += 1)
11345 ada_evaluate_subexp (NULL, exp, pos, noside);
11346 goto nosideret;
11347 }
11348
11349 nosideret:
11350 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11351 }
11352 \f
11353
11354 /* Fixed point */
11355
11356 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11357 type name that encodes the 'small and 'delta information.
11358 Otherwise, return NULL. */
11359
11360 static const char *
11361 fixed_type_info (struct type *type)
11362 {
11363 const char *name = ada_type_name (type);
11364 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11365
11366 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11367 {
11368 const char *tail = strstr (name, "___XF_");
11369
11370 if (tail == NULL)
11371 return NULL;
11372 else
11373 return tail + 5;
11374 }
11375 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11376 return fixed_type_info (TYPE_TARGET_TYPE (type));
11377 else
11378 return NULL;
11379 }
11380
11381 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11382
11383 int
11384 ada_is_fixed_point_type (struct type *type)
11385 {
11386 return fixed_type_info (type) != NULL;
11387 }
11388
11389 /* Return non-zero iff TYPE represents a System.Address type. */
11390
11391 int
11392 ada_is_system_address_type (struct type *type)
11393 {
11394 return (TYPE_NAME (type)
11395 && strcmp (TYPE_NAME (type), "system__address") == 0);
11396 }
11397
11398 /* Assuming that TYPE is the representation of an Ada fixed-point
11399 type, return the target floating-point type to be used to represent
11400 of this type during internal computation. */
11401
11402 static struct type *
11403 ada_scaling_type (struct type *type)
11404 {
11405 return builtin_type (get_type_arch (type))->builtin_long_double;
11406 }
11407
11408 /* Assuming that TYPE is the representation of an Ada fixed-point
11409 type, return its delta, or NULL if the type is malformed and the
11410 delta cannot be determined. */
11411
11412 struct value *
11413 ada_delta (struct type *type)
11414 {
11415 const char *encoding = fixed_type_info (type);
11416 struct type *scale_type = ada_scaling_type (type);
11417
11418 long long num, den;
11419
11420 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11421 return nullptr;
11422 else
11423 return value_binop (value_from_longest (scale_type, num),
11424 value_from_longest (scale_type, den), BINOP_DIV);
11425 }
11426
11427 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11428 factor ('SMALL value) associated with the type. */
11429
11430 struct value *
11431 ada_scaling_factor (struct type *type)
11432 {
11433 const char *encoding = fixed_type_info (type);
11434 struct type *scale_type = ada_scaling_type (type);
11435
11436 long long num0, den0, num1, den1;
11437 int n;
11438
11439 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11440 &num0, &den0, &num1, &den1);
11441
11442 if (n < 2)
11443 return value_from_longest (scale_type, 1);
11444 else if (n == 4)
11445 return value_binop (value_from_longest (scale_type, num1),
11446 value_from_longest (scale_type, den1), BINOP_DIV);
11447 else
11448 return value_binop (value_from_longest (scale_type, num0),
11449 value_from_longest (scale_type, den0), BINOP_DIV);
11450 }
11451
11452 \f
11453
11454 /* Range types */
11455
11456 /* Scan STR beginning at position K for a discriminant name, and
11457 return the value of that discriminant field of DVAL in *PX. If
11458 PNEW_K is not null, put the position of the character beyond the
11459 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11460 not alter *PX and *PNEW_K if unsuccessful. */
11461
11462 static int
11463 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11464 int *pnew_k)
11465 {
11466 static char *bound_buffer = NULL;
11467 static size_t bound_buffer_len = 0;
11468 const char *pstart, *pend, *bound;
11469 struct value *bound_val;
11470
11471 if (dval == NULL || str == NULL || str[k] == '\0')
11472 return 0;
11473
11474 pstart = str + k;
11475 pend = strstr (pstart, "__");
11476 if (pend == NULL)
11477 {
11478 bound = pstart;
11479 k += strlen (bound);
11480 }
11481 else
11482 {
11483 int len = pend - pstart;
11484
11485 /* Strip __ and beyond. */
11486 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11487 strncpy (bound_buffer, pstart, len);
11488 bound_buffer[len] = '\0';
11489
11490 bound = bound_buffer;
11491 k = pend - str;
11492 }
11493
11494 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11495 if (bound_val == NULL)
11496 return 0;
11497
11498 *px = value_as_long (bound_val);
11499 if (pnew_k != NULL)
11500 *pnew_k = k;
11501 return 1;
11502 }
11503
11504 /* Value of variable named NAME in the current environment. If
11505 no such variable found, then if ERR_MSG is null, returns 0, and
11506 otherwise causes an error with message ERR_MSG. */
11507
11508 static struct value *
11509 get_var_value (const char *name, const char *err_msg)
11510 {
11511 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11512
11513 struct block_symbol *syms;
11514 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11515 get_selected_block (0),
11516 VAR_DOMAIN, &syms, 1);
11517
11518 if (nsyms != 1)
11519 {
11520 if (err_msg == NULL)
11521 return 0;
11522 else
11523 error (("%s"), err_msg);
11524 }
11525
11526 return value_of_variable (syms[0].symbol, syms[0].block);
11527 }
11528
11529 /* Value of integer variable named NAME in the current environment.
11530 If no such variable is found, returns false. Otherwise, sets VALUE
11531 to the variable's value and returns true. */
11532
11533 bool
11534 get_int_var_value (const char *name, LONGEST &value)
11535 {
11536 struct value *var_val = get_var_value (name, 0);
11537
11538 if (var_val == 0)
11539 return false;
11540
11541 value = value_as_long (var_val);
11542 return true;
11543 }
11544
11545
11546 /* Return a range type whose base type is that of the range type named
11547 NAME in the current environment, and whose bounds are calculated
11548 from NAME according to the GNAT range encoding conventions.
11549 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11550 corresponding range type from debug information; fall back to using it
11551 if symbol lookup fails. If a new type must be created, allocate it
11552 like ORIG_TYPE was. The bounds information, in general, is encoded
11553 in NAME, the base type given in the named range type. */
11554
11555 static struct type *
11556 to_fixed_range_type (struct type *raw_type, struct value *dval)
11557 {
11558 const char *name;
11559 struct type *base_type;
11560 const char *subtype_info;
11561
11562 gdb_assert (raw_type != NULL);
11563 gdb_assert (TYPE_NAME (raw_type) != NULL);
11564
11565 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11566 base_type = TYPE_TARGET_TYPE (raw_type);
11567 else
11568 base_type = raw_type;
11569
11570 name = TYPE_NAME (raw_type);
11571 subtype_info = strstr (name, "___XD");
11572 if (subtype_info == NULL)
11573 {
11574 LONGEST L = ada_discrete_type_low_bound (raw_type);
11575 LONGEST U = ada_discrete_type_high_bound (raw_type);
11576
11577 if (L < INT_MIN || U > INT_MAX)
11578 return raw_type;
11579 else
11580 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11581 L, U);
11582 }
11583 else
11584 {
11585 static char *name_buf = NULL;
11586 static size_t name_len = 0;
11587 int prefix_len = subtype_info - name;
11588 LONGEST L, U;
11589 struct type *type;
11590 const char *bounds_str;
11591 int n;
11592
11593 GROW_VECT (name_buf, name_len, prefix_len + 5);
11594 strncpy (name_buf, name, prefix_len);
11595 name_buf[prefix_len] = '\0';
11596
11597 subtype_info += 5;
11598 bounds_str = strchr (subtype_info, '_');
11599 n = 1;
11600
11601 if (*subtype_info == 'L')
11602 {
11603 if (!ada_scan_number (bounds_str, n, &L, &n)
11604 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11605 return raw_type;
11606 if (bounds_str[n] == '_')
11607 n += 2;
11608 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11609 n += 1;
11610 subtype_info += 1;
11611 }
11612 else
11613 {
11614 strcpy (name_buf + prefix_len, "___L");
11615 if (!get_int_var_value (name_buf, L))
11616 {
11617 lim_warning (_("Unknown lower bound, using 1."));
11618 L = 1;
11619 }
11620 }
11621
11622 if (*subtype_info == 'U')
11623 {
11624 if (!ada_scan_number (bounds_str, n, &U, &n)
11625 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11626 return raw_type;
11627 }
11628 else
11629 {
11630 strcpy (name_buf + prefix_len, "___U");
11631 if (!get_int_var_value (name_buf, U))
11632 {
11633 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11634 U = L;
11635 }
11636 }
11637
11638 type = create_static_range_type (alloc_type_copy (raw_type),
11639 base_type, L, U);
11640 TYPE_NAME (type) = name;
11641 return type;
11642 }
11643 }
11644
11645 /* True iff NAME is the name of a range type. */
11646
11647 int
11648 ada_is_range_type_name (const char *name)
11649 {
11650 return (name != NULL && strstr (name, "___XD"));
11651 }
11652 \f
11653
11654 /* Modular types */
11655
11656 /* True iff TYPE is an Ada modular type. */
11657
11658 int
11659 ada_is_modular_type (struct type *type)
11660 {
11661 struct type *subranged_type = get_base_type (type);
11662
11663 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11664 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11665 && TYPE_UNSIGNED (subranged_type));
11666 }
11667
11668 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11669
11670 ULONGEST
11671 ada_modulus (struct type *type)
11672 {
11673 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11674 }
11675 \f
11676
11677 /* Ada exception catchpoint support:
11678 ---------------------------------
11679
11680 We support 3 kinds of exception catchpoints:
11681 . catchpoints on Ada exceptions
11682 . catchpoints on unhandled Ada exceptions
11683 . catchpoints on failed assertions
11684
11685 Exceptions raised during failed assertions, or unhandled exceptions
11686 could perfectly be caught with the general catchpoint on Ada exceptions.
11687 However, we can easily differentiate these two special cases, and having
11688 the option to distinguish these two cases from the rest can be useful
11689 to zero-in on certain situations.
11690
11691 Exception catchpoints are a specialized form of breakpoint,
11692 since they rely on inserting breakpoints inside known routines
11693 of the GNAT runtime. The implementation therefore uses a standard
11694 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11695 of breakpoint_ops.
11696
11697 Support in the runtime for exception catchpoints have been changed
11698 a few times already, and these changes affect the implementation
11699 of these catchpoints. In order to be able to support several
11700 variants of the runtime, we use a sniffer that will determine
11701 the runtime variant used by the program being debugged. */
11702
11703 /* Ada's standard exceptions.
11704
11705 The Ada 83 standard also defined Numeric_Error. But there so many
11706 situations where it was unclear from the Ada 83 Reference Manual
11707 (RM) whether Constraint_Error or Numeric_Error should be raised,
11708 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11709 Interpretation saying that anytime the RM says that Numeric_Error
11710 should be raised, the implementation may raise Constraint_Error.
11711 Ada 95 went one step further and pretty much removed Numeric_Error
11712 from the list of standard exceptions (it made it a renaming of
11713 Constraint_Error, to help preserve compatibility when compiling
11714 an Ada83 compiler). As such, we do not include Numeric_Error from
11715 this list of standard exceptions. */
11716
11717 static const char *standard_exc[] = {
11718 "constraint_error",
11719 "program_error",
11720 "storage_error",
11721 "tasking_error"
11722 };
11723
11724 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11725
11726 /* A structure that describes how to support exception catchpoints
11727 for a given executable. */
11728
11729 struct exception_support_info
11730 {
11731 /* The name of the symbol to break on in order to insert
11732 a catchpoint on exceptions. */
11733 const char *catch_exception_sym;
11734
11735 /* The name of the symbol to break on in order to insert
11736 a catchpoint on unhandled exceptions. */
11737 const char *catch_exception_unhandled_sym;
11738
11739 /* The name of the symbol to break on in order to insert
11740 a catchpoint on failed assertions. */
11741 const char *catch_assert_sym;
11742
11743 /* Assuming that the inferior just triggered an unhandled exception
11744 catchpoint, this function is responsible for returning the address
11745 in inferior memory where the name of that exception is stored.
11746 Return zero if the address could not be computed. */
11747 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11748 };
11749
11750 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11751 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11752
11753 /* The following exception support info structure describes how to
11754 implement exception catchpoints with the latest version of the
11755 Ada runtime (as of 2007-03-06). */
11756
11757 static const struct exception_support_info default_exception_support_info =
11758 {
11759 "__gnat_debug_raise_exception", /* catch_exception_sym */
11760 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11761 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11762 ada_unhandled_exception_name_addr
11763 };
11764
11765 /* The following exception support info structure describes how to
11766 implement exception catchpoints with a slightly older version
11767 of the Ada runtime. */
11768
11769 static const struct exception_support_info exception_support_info_fallback =
11770 {
11771 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11772 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11773 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11774 ada_unhandled_exception_name_addr_from_raise
11775 };
11776
11777 /* Return nonzero if we can detect the exception support routines
11778 described in EINFO.
11779
11780 This function errors out if an abnormal situation is detected
11781 (for instance, if we find the exception support routines, but
11782 that support is found to be incomplete). */
11783
11784 static int
11785 ada_has_this_exception_support (const struct exception_support_info *einfo)
11786 {
11787 struct symbol *sym;
11788
11789 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11790 that should be compiled with debugging information. As a result, we
11791 expect to find that symbol in the symtabs. */
11792
11793 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11794 if (sym == NULL)
11795 {
11796 /* Perhaps we did not find our symbol because the Ada runtime was
11797 compiled without debugging info, or simply stripped of it.
11798 It happens on some GNU/Linux distributions for instance, where
11799 users have to install a separate debug package in order to get
11800 the runtime's debugging info. In that situation, let the user
11801 know why we cannot insert an Ada exception catchpoint.
11802
11803 Note: Just for the purpose of inserting our Ada exception
11804 catchpoint, we could rely purely on the associated minimal symbol.
11805 But we would be operating in degraded mode anyway, since we are
11806 still lacking the debugging info needed later on to extract
11807 the name of the exception being raised (this name is printed in
11808 the catchpoint message, and is also used when trying to catch
11809 a specific exception). We do not handle this case for now. */
11810 struct bound_minimal_symbol msym
11811 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11812
11813 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11814 error (_("Your Ada runtime appears to be missing some debugging "
11815 "information.\nCannot insert Ada exception catchpoint "
11816 "in this configuration."));
11817
11818 return 0;
11819 }
11820
11821 /* Make sure that the symbol we found corresponds to a function. */
11822
11823 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11824 error (_("Symbol \"%s\" is not a function (class = %d)"),
11825 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11826
11827 return 1;
11828 }
11829
11830 /* Inspect the Ada runtime and determine which exception info structure
11831 should be used to provide support for exception catchpoints.
11832
11833 This function will always set the per-inferior exception_info,
11834 or raise an error. */
11835
11836 static void
11837 ada_exception_support_info_sniffer (void)
11838 {
11839 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11840
11841 /* If the exception info is already known, then no need to recompute it. */
11842 if (data->exception_info != NULL)
11843 return;
11844
11845 /* Check the latest (default) exception support info. */
11846 if (ada_has_this_exception_support (&default_exception_support_info))
11847 {
11848 data->exception_info = &default_exception_support_info;
11849 return;
11850 }
11851
11852 /* Try our fallback exception suport info. */
11853 if (ada_has_this_exception_support (&exception_support_info_fallback))
11854 {
11855 data->exception_info = &exception_support_info_fallback;
11856 return;
11857 }
11858
11859 /* Sometimes, it is normal for us to not be able to find the routine
11860 we are looking for. This happens when the program is linked with
11861 the shared version of the GNAT runtime, and the program has not been
11862 started yet. Inform the user of these two possible causes if
11863 applicable. */
11864
11865 if (ada_update_initial_language (language_unknown) != language_ada)
11866 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11867
11868 /* If the symbol does not exist, then check that the program is
11869 already started, to make sure that shared libraries have been
11870 loaded. If it is not started, this may mean that the symbol is
11871 in a shared library. */
11872
11873 if (ptid_get_pid (inferior_ptid) == 0)
11874 error (_("Unable to insert catchpoint. Try to start the program first."));
11875
11876 /* At this point, we know that we are debugging an Ada program and
11877 that the inferior has been started, but we still are not able to
11878 find the run-time symbols. That can mean that we are in
11879 configurable run time mode, or that a-except as been optimized
11880 out by the linker... In any case, at this point it is not worth
11881 supporting this feature. */
11882
11883 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11884 }
11885
11886 /* True iff FRAME is very likely to be that of a function that is
11887 part of the runtime system. This is all very heuristic, but is
11888 intended to be used as advice as to what frames are uninteresting
11889 to most users. */
11890
11891 static int
11892 is_known_support_routine (struct frame_info *frame)
11893 {
11894 enum language func_lang;
11895 int i;
11896 const char *fullname;
11897
11898 /* If this code does not have any debugging information (no symtab),
11899 This cannot be any user code. */
11900
11901 symtab_and_line sal = find_frame_sal (frame);
11902 if (sal.symtab == NULL)
11903 return 1;
11904
11905 /* If there is a symtab, but the associated source file cannot be
11906 located, then assume this is not user code: Selecting a frame
11907 for which we cannot display the code would not be very helpful
11908 for the user. This should also take care of case such as VxWorks
11909 where the kernel has some debugging info provided for a few units. */
11910
11911 fullname = symtab_to_fullname (sal.symtab);
11912 if (access (fullname, R_OK) != 0)
11913 return 1;
11914
11915 /* Check the unit filename againt the Ada runtime file naming.
11916 We also check the name of the objfile against the name of some
11917 known system libraries that sometimes come with debugging info
11918 too. */
11919
11920 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
11921 {
11922 re_comp (known_runtime_file_name_patterns[i]);
11923 if (re_exec (lbasename (sal.symtab->filename)))
11924 return 1;
11925 if (SYMTAB_OBJFILE (sal.symtab) != NULL
11926 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
11927 return 1;
11928 }
11929
11930 /* Check whether the function is a GNAT-generated entity. */
11931
11932 gdb::unique_xmalloc_ptr<char> func_name
11933 = find_frame_funname (frame, &func_lang, NULL);
11934 if (func_name == NULL)
11935 return 1;
11936
11937 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
11938 {
11939 re_comp (known_auxiliary_function_name_patterns[i]);
11940 if (re_exec (func_name.get ()))
11941 return 1;
11942 }
11943
11944 return 0;
11945 }
11946
11947 /* Find the first frame that contains debugging information and that is not
11948 part of the Ada run-time, starting from FI and moving upward. */
11949
11950 void
11951 ada_find_printable_frame (struct frame_info *fi)
11952 {
11953 for (; fi != NULL; fi = get_prev_frame (fi))
11954 {
11955 if (!is_known_support_routine (fi))
11956 {
11957 select_frame (fi);
11958 break;
11959 }
11960 }
11961
11962 }
11963
11964 /* Assuming that the inferior just triggered an unhandled exception
11965 catchpoint, return the address in inferior memory where the name
11966 of the exception is stored.
11967
11968 Return zero if the address could not be computed. */
11969
11970 static CORE_ADDR
11971 ada_unhandled_exception_name_addr (void)
11972 {
11973 return parse_and_eval_address ("e.full_name");
11974 }
11975
11976 /* Same as ada_unhandled_exception_name_addr, except that this function
11977 should be used when the inferior uses an older version of the runtime,
11978 where the exception name needs to be extracted from a specific frame
11979 several frames up in the callstack. */
11980
11981 static CORE_ADDR
11982 ada_unhandled_exception_name_addr_from_raise (void)
11983 {
11984 int frame_level;
11985 struct frame_info *fi;
11986 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11987
11988 /* To determine the name of this exception, we need to select
11989 the frame corresponding to RAISE_SYM_NAME. This frame is
11990 at least 3 levels up, so we simply skip the first 3 frames
11991 without checking the name of their associated function. */
11992 fi = get_current_frame ();
11993 for (frame_level = 0; frame_level < 3; frame_level += 1)
11994 if (fi != NULL)
11995 fi = get_prev_frame (fi);
11996
11997 while (fi != NULL)
11998 {
11999 enum language func_lang;
12000
12001 gdb::unique_xmalloc_ptr<char> func_name
12002 = find_frame_funname (fi, &func_lang, NULL);
12003 if (func_name != NULL)
12004 {
12005 if (strcmp (func_name.get (),
12006 data->exception_info->catch_exception_sym) == 0)
12007 break; /* We found the frame we were looking for... */
12008 fi = get_prev_frame (fi);
12009 }
12010 }
12011
12012 if (fi == NULL)
12013 return 0;
12014
12015 select_frame (fi);
12016 return parse_and_eval_address ("id.full_name");
12017 }
12018
12019 /* Assuming the inferior just triggered an Ada exception catchpoint
12020 (of any type), return the address in inferior memory where the name
12021 of the exception is stored, if applicable.
12022
12023 Assumes the selected frame is the current frame.
12024
12025 Return zero if the address could not be computed, or if not relevant. */
12026
12027 static CORE_ADDR
12028 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12029 struct breakpoint *b)
12030 {
12031 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12032
12033 switch (ex)
12034 {
12035 case ada_catch_exception:
12036 return (parse_and_eval_address ("e.full_name"));
12037 break;
12038
12039 case ada_catch_exception_unhandled:
12040 return data->exception_info->unhandled_exception_name_addr ();
12041 break;
12042
12043 case ada_catch_assert:
12044 return 0; /* Exception name is not relevant in this case. */
12045 break;
12046
12047 default:
12048 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12049 break;
12050 }
12051
12052 return 0; /* Should never be reached. */
12053 }
12054
12055 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12056 any error that ada_exception_name_addr_1 might cause to be thrown.
12057 When an error is intercepted, a warning with the error message is printed,
12058 and zero is returned. */
12059
12060 static CORE_ADDR
12061 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12062 struct breakpoint *b)
12063 {
12064 CORE_ADDR result = 0;
12065
12066 TRY
12067 {
12068 result = ada_exception_name_addr_1 (ex, b);
12069 }
12070
12071 CATCH (e, RETURN_MASK_ERROR)
12072 {
12073 warning (_("failed to get exception name: %s"), e.message);
12074 return 0;
12075 }
12076 END_CATCH
12077
12078 return result;
12079 }
12080
12081 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12082
12083 /* Ada catchpoints.
12084
12085 In the case of catchpoints on Ada exceptions, the catchpoint will
12086 stop the target on every exception the program throws. When a user
12087 specifies the name of a specific exception, we translate this
12088 request into a condition expression (in text form), and then parse
12089 it into an expression stored in each of the catchpoint's locations.
12090 We then use this condition to check whether the exception that was
12091 raised is the one the user is interested in. If not, then the
12092 target is resumed again. We store the name of the requested
12093 exception, in order to be able to re-set the condition expression
12094 when symbols change. */
12095
12096 /* An instance of this type is used to represent an Ada catchpoint
12097 breakpoint location. */
12098
12099 class ada_catchpoint_location : public bp_location
12100 {
12101 public:
12102 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12103 : bp_location (ops, owner)
12104 {}
12105
12106 /* The condition that checks whether the exception that was raised
12107 is the specific exception the user specified on catchpoint
12108 creation. */
12109 expression_up excep_cond_expr;
12110 };
12111
12112 /* Implement the DTOR method in the bp_location_ops structure for all
12113 Ada exception catchpoint kinds. */
12114
12115 static void
12116 ada_catchpoint_location_dtor (struct bp_location *bl)
12117 {
12118 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12119
12120 al->excep_cond_expr.reset ();
12121 }
12122
12123 /* The vtable to be used in Ada catchpoint locations. */
12124
12125 static const struct bp_location_ops ada_catchpoint_location_ops =
12126 {
12127 ada_catchpoint_location_dtor
12128 };
12129
12130 /* An instance of this type is used to represent an Ada catchpoint. */
12131
12132 struct ada_catchpoint : public breakpoint
12133 {
12134 ~ada_catchpoint () override;
12135
12136 /* The name of the specific exception the user specified. */
12137 char *excep_string;
12138 };
12139
12140 /* Parse the exception condition string in the context of each of the
12141 catchpoint's locations, and store them for later evaluation. */
12142
12143 static void
12144 create_excep_cond_exprs (struct ada_catchpoint *c)
12145 {
12146 struct cleanup *old_chain;
12147 struct bp_location *bl;
12148 char *cond_string;
12149
12150 /* Nothing to do if there's no specific exception to catch. */
12151 if (c->excep_string == NULL)
12152 return;
12153
12154 /* Same if there are no locations... */
12155 if (c->loc == NULL)
12156 return;
12157
12158 /* Compute the condition expression in text form, from the specific
12159 expection we want to catch. */
12160 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12161 old_chain = make_cleanup (xfree, cond_string);
12162
12163 /* Iterate over all the catchpoint's locations, and parse an
12164 expression for each. */
12165 for (bl = c->loc; bl != NULL; bl = bl->next)
12166 {
12167 struct ada_catchpoint_location *ada_loc
12168 = (struct ada_catchpoint_location *) bl;
12169 expression_up exp;
12170
12171 if (!bl->shlib_disabled)
12172 {
12173 const char *s;
12174
12175 s = cond_string;
12176 TRY
12177 {
12178 exp = parse_exp_1 (&s, bl->address,
12179 block_for_pc (bl->address),
12180 0);
12181 }
12182 CATCH (e, RETURN_MASK_ERROR)
12183 {
12184 warning (_("failed to reevaluate internal exception condition "
12185 "for catchpoint %d: %s"),
12186 c->number, e.message);
12187 }
12188 END_CATCH
12189 }
12190
12191 ada_loc->excep_cond_expr = std::move (exp);
12192 }
12193
12194 do_cleanups (old_chain);
12195 }
12196
12197 /* ada_catchpoint destructor. */
12198
12199 ada_catchpoint::~ada_catchpoint ()
12200 {
12201 xfree (this->excep_string);
12202 }
12203
12204 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12205 structure for all exception catchpoint kinds. */
12206
12207 static struct bp_location *
12208 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12209 struct breakpoint *self)
12210 {
12211 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12212 }
12213
12214 /* Implement the RE_SET method in the breakpoint_ops structure for all
12215 exception catchpoint kinds. */
12216
12217 static void
12218 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12219 {
12220 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12221
12222 /* Call the base class's method. This updates the catchpoint's
12223 locations. */
12224 bkpt_breakpoint_ops.re_set (b);
12225
12226 /* Reparse the exception conditional expressions. One for each
12227 location. */
12228 create_excep_cond_exprs (c);
12229 }
12230
12231 /* Returns true if we should stop for this breakpoint hit. If the
12232 user specified a specific exception, we only want to cause a stop
12233 if the program thrown that exception. */
12234
12235 static int
12236 should_stop_exception (const struct bp_location *bl)
12237 {
12238 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12239 const struct ada_catchpoint_location *ada_loc
12240 = (const struct ada_catchpoint_location *) bl;
12241 int stop;
12242
12243 /* With no specific exception, should always stop. */
12244 if (c->excep_string == NULL)
12245 return 1;
12246
12247 if (ada_loc->excep_cond_expr == NULL)
12248 {
12249 /* We will have a NULL expression if back when we were creating
12250 the expressions, this location's had failed to parse. */
12251 return 1;
12252 }
12253
12254 stop = 1;
12255 TRY
12256 {
12257 struct value *mark;
12258
12259 mark = value_mark ();
12260 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12261 value_free_to_mark (mark);
12262 }
12263 CATCH (ex, RETURN_MASK_ALL)
12264 {
12265 exception_fprintf (gdb_stderr, ex,
12266 _("Error in testing exception condition:\n"));
12267 }
12268 END_CATCH
12269
12270 return stop;
12271 }
12272
12273 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12274 for all exception catchpoint kinds. */
12275
12276 static void
12277 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12278 {
12279 bs->stop = should_stop_exception (bs->bp_location_at);
12280 }
12281
12282 /* Implement the PRINT_IT method in the breakpoint_ops structure
12283 for all exception catchpoint kinds. */
12284
12285 static enum print_stop_action
12286 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12287 {
12288 struct ui_out *uiout = current_uiout;
12289 struct breakpoint *b = bs->breakpoint_at;
12290
12291 annotate_catchpoint (b->number);
12292
12293 if (uiout->is_mi_like_p ())
12294 {
12295 uiout->field_string ("reason",
12296 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12297 uiout->field_string ("disp", bpdisp_text (b->disposition));
12298 }
12299
12300 uiout->text (b->disposition == disp_del
12301 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12302 uiout->field_int ("bkptno", b->number);
12303 uiout->text (", ");
12304
12305 /* ada_exception_name_addr relies on the selected frame being the
12306 current frame. Need to do this here because this function may be
12307 called more than once when printing a stop, and below, we'll
12308 select the first frame past the Ada run-time (see
12309 ada_find_printable_frame). */
12310 select_frame (get_current_frame ());
12311
12312 switch (ex)
12313 {
12314 case ada_catch_exception:
12315 case ada_catch_exception_unhandled:
12316 {
12317 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12318 char exception_name[256];
12319
12320 if (addr != 0)
12321 {
12322 read_memory (addr, (gdb_byte *) exception_name,
12323 sizeof (exception_name) - 1);
12324 exception_name [sizeof (exception_name) - 1] = '\0';
12325 }
12326 else
12327 {
12328 /* For some reason, we were unable to read the exception
12329 name. This could happen if the Runtime was compiled
12330 without debugging info, for instance. In that case,
12331 just replace the exception name by the generic string
12332 "exception" - it will read as "an exception" in the
12333 notification we are about to print. */
12334 memcpy (exception_name, "exception", sizeof ("exception"));
12335 }
12336 /* In the case of unhandled exception breakpoints, we print
12337 the exception name as "unhandled EXCEPTION_NAME", to make
12338 it clearer to the user which kind of catchpoint just got
12339 hit. We used ui_out_text to make sure that this extra
12340 info does not pollute the exception name in the MI case. */
12341 if (ex == ada_catch_exception_unhandled)
12342 uiout->text ("unhandled ");
12343 uiout->field_string ("exception-name", exception_name);
12344 }
12345 break;
12346 case ada_catch_assert:
12347 /* In this case, the name of the exception is not really
12348 important. Just print "failed assertion" to make it clearer
12349 that his program just hit an assertion-failure catchpoint.
12350 We used ui_out_text because this info does not belong in
12351 the MI output. */
12352 uiout->text ("failed assertion");
12353 break;
12354 }
12355 uiout->text (" at ");
12356 ada_find_printable_frame (get_current_frame ());
12357
12358 return PRINT_SRC_AND_LOC;
12359 }
12360
12361 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12362 for all exception catchpoint kinds. */
12363
12364 static void
12365 print_one_exception (enum ada_exception_catchpoint_kind ex,
12366 struct breakpoint *b, struct bp_location **last_loc)
12367 {
12368 struct ui_out *uiout = current_uiout;
12369 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12370 struct value_print_options opts;
12371
12372 get_user_print_options (&opts);
12373 if (opts.addressprint)
12374 {
12375 annotate_field (4);
12376 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12377 }
12378
12379 annotate_field (5);
12380 *last_loc = b->loc;
12381 switch (ex)
12382 {
12383 case ada_catch_exception:
12384 if (c->excep_string != NULL)
12385 {
12386 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12387
12388 uiout->field_string ("what", msg);
12389 xfree (msg);
12390 }
12391 else
12392 uiout->field_string ("what", "all Ada exceptions");
12393
12394 break;
12395
12396 case ada_catch_exception_unhandled:
12397 uiout->field_string ("what", "unhandled Ada exceptions");
12398 break;
12399
12400 case ada_catch_assert:
12401 uiout->field_string ("what", "failed Ada assertions");
12402 break;
12403
12404 default:
12405 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12406 break;
12407 }
12408 }
12409
12410 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12411 for all exception catchpoint kinds. */
12412
12413 static void
12414 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12415 struct breakpoint *b)
12416 {
12417 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12418 struct ui_out *uiout = current_uiout;
12419
12420 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12421 : _("Catchpoint "));
12422 uiout->field_int ("bkptno", b->number);
12423 uiout->text (": ");
12424
12425 switch (ex)
12426 {
12427 case ada_catch_exception:
12428 if (c->excep_string != NULL)
12429 {
12430 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12431 struct cleanup *old_chain = make_cleanup (xfree, info);
12432
12433 uiout->text (info);
12434 do_cleanups (old_chain);
12435 }
12436 else
12437 uiout->text (_("all Ada exceptions"));
12438 break;
12439
12440 case ada_catch_exception_unhandled:
12441 uiout->text (_("unhandled Ada exceptions"));
12442 break;
12443
12444 case ada_catch_assert:
12445 uiout->text (_("failed Ada assertions"));
12446 break;
12447
12448 default:
12449 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12450 break;
12451 }
12452 }
12453
12454 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12455 for all exception catchpoint kinds. */
12456
12457 static void
12458 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12459 struct breakpoint *b, struct ui_file *fp)
12460 {
12461 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12462
12463 switch (ex)
12464 {
12465 case ada_catch_exception:
12466 fprintf_filtered (fp, "catch exception");
12467 if (c->excep_string != NULL)
12468 fprintf_filtered (fp, " %s", c->excep_string);
12469 break;
12470
12471 case ada_catch_exception_unhandled:
12472 fprintf_filtered (fp, "catch exception unhandled");
12473 break;
12474
12475 case ada_catch_assert:
12476 fprintf_filtered (fp, "catch assert");
12477 break;
12478
12479 default:
12480 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12481 }
12482 print_recreate_thread (b, fp);
12483 }
12484
12485 /* Virtual table for "catch exception" breakpoints. */
12486
12487 static struct bp_location *
12488 allocate_location_catch_exception (struct breakpoint *self)
12489 {
12490 return allocate_location_exception (ada_catch_exception, self);
12491 }
12492
12493 static void
12494 re_set_catch_exception (struct breakpoint *b)
12495 {
12496 re_set_exception (ada_catch_exception, b);
12497 }
12498
12499 static void
12500 check_status_catch_exception (bpstat bs)
12501 {
12502 check_status_exception (ada_catch_exception, bs);
12503 }
12504
12505 static enum print_stop_action
12506 print_it_catch_exception (bpstat bs)
12507 {
12508 return print_it_exception (ada_catch_exception, bs);
12509 }
12510
12511 static void
12512 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12513 {
12514 print_one_exception (ada_catch_exception, b, last_loc);
12515 }
12516
12517 static void
12518 print_mention_catch_exception (struct breakpoint *b)
12519 {
12520 print_mention_exception (ada_catch_exception, b);
12521 }
12522
12523 static void
12524 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12525 {
12526 print_recreate_exception (ada_catch_exception, b, fp);
12527 }
12528
12529 static struct breakpoint_ops catch_exception_breakpoint_ops;
12530
12531 /* Virtual table for "catch exception unhandled" breakpoints. */
12532
12533 static struct bp_location *
12534 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12535 {
12536 return allocate_location_exception (ada_catch_exception_unhandled, self);
12537 }
12538
12539 static void
12540 re_set_catch_exception_unhandled (struct breakpoint *b)
12541 {
12542 re_set_exception (ada_catch_exception_unhandled, b);
12543 }
12544
12545 static void
12546 check_status_catch_exception_unhandled (bpstat bs)
12547 {
12548 check_status_exception (ada_catch_exception_unhandled, bs);
12549 }
12550
12551 static enum print_stop_action
12552 print_it_catch_exception_unhandled (bpstat bs)
12553 {
12554 return print_it_exception (ada_catch_exception_unhandled, bs);
12555 }
12556
12557 static void
12558 print_one_catch_exception_unhandled (struct breakpoint *b,
12559 struct bp_location **last_loc)
12560 {
12561 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12562 }
12563
12564 static void
12565 print_mention_catch_exception_unhandled (struct breakpoint *b)
12566 {
12567 print_mention_exception (ada_catch_exception_unhandled, b);
12568 }
12569
12570 static void
12571 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12572 struct ui_file *fp)
12573 {
12574 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12575 }
12576
12577 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12578
12579 /* Virtual table for "catch assert" breakpoints. */
12580
12581 static struct bp_location *
12582 allocate_location_catch_assert (struct breakpoint *self)
12583 {
12584 return allocate_location_exception (ada_catch_assert, self);
12585 }
12586
12587 static void
12588 re_set_catch_assert (struct breakpoint *b)
12589 {
12590 re_set_exception (ada_catch_assert, b);
12591 }
12592
12593 static void
12594 check_status_catch_assert (bpstat bs)
12595 {
12596 check_status_exception (ada_catch_assert, bs);
12597 }
12598
12599 static enum print_stop_action
12600 print_it_catch_assert (bpstat bs)
12601 {
12602 return print_it_exception (ada_catch_assert, bs);
12603 }
12604
12605 static void
12606 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12607 {
12608 print_one_exception (ada_catch_assert, b, last_loc);
12609 }
12610
12611 static void
12612 print_mention_catch_assert (struct breakpoint *b)
12613 {
12614 print_mention_exception (ada_catch_assert, b);
12615 }
12616
12617 static void
12618 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12619 {
12620 print_recreate_exception (ada_catch_assert, b, fp);
12621 }
12622
12623 static struct breakpoint_ops catch_assert_breakpoint_ops;
12624
12625 /* Return a newly allocated copy of the first space-separated token
12626 in ARGSP, and then adjust ARGSP to point immediately after that
12627 token.
12628
12629 Return NULL if ARGPS does not contain any more tokens. */
12630
12631 static char *
12632 ada_get_next_arg (const char **argsp)
12633 {
12634 const char *args = *argsp;
12635 const char *end;
12636 char *result;
12637
12638 args = skip_spaces (args);
12639 if (args[0] == '\0')
12640 return NULL; /* No more arguments. */
12641
12642 /* Find the end of the current argument. */
12643
12644 end = skip_to_space (args);
12645
12646 /* Adjust ARGSP to point to the start of the next argument. */
12647
12648 *argsp = end;
12649
12650 /* Make a copy of the current argument and return it. */
12651
12652 result = (char *) xmalloc (end - args + 1);
12653 strncpy (result, args, end - args);
12654 result[end - args] = '\0';
12655
12656 return result;
12657 }
12658
12659 /* Split the arguments specified in a "catch exception" command.
12660 Set EX to the appropriate catchpoint type.
12661 Set EXCEP_STRING to the name of the specific exception if
12662 specified by the user.
12663 If a condition is found at the end of the arguments, the condition
12664 expression is stored in COND_STRING (memory must be deallocated
12665 after use). Otherwise COND_STRING is set to NULL. */
12666
12667 static void
12668 catch_ada_exception_command_split (const char *args,
12669 enum ada_exception_catchpoint_kind *ex,
12670 char **excep_string,
12671 char **cond_string)
12672 {
12673 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12674 char *exception_name;
12675 char *cond = NULL;
12676
12677 exception_name = ada_get_next_arg (&args);
12678 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12679 {
12680 /* This is not an exception name; this is the start of a condition
12681 expression for a catchpoint on all exceptions. So, "un-get"
12682 this token, and set exception_name to NULL. */
12683 xfree (exception_name);
12684 exception_name = NULL;
12685 args -= 2;
12686 }
12687 make_cleanup (xfree, exception_name);
12688
12689 /* Check to see if we have a condition. */
12690
12691 args = skip_spaces (args);
12692 if (startswith (args, "if")
12693 && (isspace (args[2]) || args[2] == '\0'))
12694 {
12695 args += 2;
12696 args = skip_spaces (args);
12697
12698 if (args[0] == '\0')
12699 error (_("Condition missing after `if' keyword"));
12700 cond = xstrdup (args);
12701 make_cleanup (xfree, cond);
12702
12703 args += strlen (args);
12704 }
12705
12706 /* Check that we do not have any more arguments. Anything else
12707 is unexpected. */
12708
12709 if (args[0] != '\0')
12710 error (_("Junk at end of expression"));
12711
12712 discard_cleanups (old_chain);
12713
12714 if (exception_name == NULL)
12715 {
12716 /* Catch all exceptions. */
12717 *ex = ada_catch_exception;
12718 *excep_string = NULL;
12719 }
12720 else if (strcmp (exception_name, "unhandled") == 0)
12721 {
12722 /* Catch unhandled exceptions. */
12723 *ex = ada_catch_exception_unhandled;
12724 *excep_string = NULL;
12725 }
12726 else
12727 {
12728 /* Catch a specific exception. */
12729 *ex = ada_catch_exception;
12730 *excep_string = exception_name;
12731 }
12732 *cond_string = cond;
12733 }
12734
12735 /* Return the name of the symbol on which we should break in order to
12736 implement a catchpoint of the EX kind. */
12737
12738 static const char *
12739 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12740 {
12741 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12742
12743 gdb_assert (data->exception_info != NULL);
12744
12745 switch (ex)
12746 {
12747 case ada_catch_exception:
12748 return (data->exception_info->catch_exception_sym);
12749 break;
12750 case ada_catch_exception_unhandled:
12751 return (data->exception_info->catch_exception_unhandled_sym);
12752 break;
12753 case ada_catch_assert:
12754 return (data->exception_info->catch_assert_sym);
12755 break;
12756 default:
12757 internal_error (__FILE__, __LINE__,
12758 _("unexpected catchpoint kind (%d)"), ex);
12759 }
12760 }
12761
12762 /* Return the breakpoint ops "virtual table" used for catchpoints
12763 of the EX kind. */
12764
12765 static const struct breakpoint_ops *
12766 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12767 {
12768 switch (ex)
12769 {
12770 case ada_catch_exception:
12771 return (&catch_exception_breakpoint_ops);
12772 break;
12773 case ada_catch_exception_unhandled:
12774 return (&catch_exception_unhandled_breakpoint_ops);
12775 break;
12776 case ada_catch_assert:
12777 return (&catch_assert_breakpoint_ops);
12778 break;
12779 default:
12780 internal_error (__FILE__, __LINE__,
12781 _("unexpected catchpoint kind (%d)"), ex);
12782 }
12783 }
12784
12785 /* Return the condition that will be used to match the current exception
12786 being raised with the exception that the user wants to catch. This
12787 assumes that this condition is used when the inferior just triggered
12788 an exception catchpoint.
12789
12790 The string returned is a newly allocated string that needs to be
12791 deallocated later. */
12792
12793 static char *
12794 ada_exception_catchpoint_cond_string (const char *excep_string)
12795 {
12796 int i;
12797
12798 /* The standard exceptions are a special case. They are defined in
12799 runtime units that have been compiled without debugging info; if
12800 EXCEP_STRING is the not-fully-qualified name of a standard
12801 exception (e.g. "constraint_error") then, during the evaluation
12802 of the condition expression, the symbol lookup on this name would
12803 *not* return this standard exception. The catchpoint condition
12804 may then be set only on user-defined exceptions which have the
12805 same not-fully-qualified name (e.g. my_package.constraint_error).
12806
12807 To avoid this unexcepted behavior, these standard exceptions are
12808 systematically prefixed by "standard". This means that "catch
12809 exception constraint_error" is rewritten into "catch exception
12810 standard.constraint_error".
12811
12812 If an exception named contraint_error is defined in another package of
12813 the inferior program, then the only way to specify this exception as a
12814 breakpoint condition is to use its fully-qualified named:
12815 e.g. my_package.constraint_error. */
12816
12817 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12818 {
12819 if (strcmp (standard_exc [i], excep_string) == 0)
12820 {
12821 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12822 excep_string);
12823 }
12824 }
12825 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12826 }
12827
12828 /* Return the symtab_and_line that should be used to insert an exception
12829 catchpoint of the TYPE kind.
12830
12831 EXCEP_STRING should contain the name of a specific exception that
12832 the catchpoint should catch, or NULL otherwise.
12833
12834 ADDR_STRING returns the name of the function where the real
12835 breakpoint that implements the catchpoints is set, depending on the
12836 type of catchpoint we need to create. */
12837
12838 static struct symtab_and_line
12839 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12840 const char **addr_string, const struct breakpoint_ops **ops)
12841 {
12842 const char *sym_name;
12843 struct symbol *sym;
12844
12845 /* First, find out which exception support info to use. */
12846 ada_exception_support_info_sniffer ();
12847
12848 /* Then lookup the function on which we will break in order to catch
12849 the Ada exceptions requested by the user. */
12850 sym_name = ada_exception_sym_name (ex);
12851 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12852
12853 /* We can assume that SYM is not NULL at this stage. If the symbol
12854 did not exist, ada_exception_support_info_sniffer would have
12855 raised an exception.
12856
12857 Also, ada_exception_support_info_sniffer should have already
12858 verified that SYM is a function symbol. */
12859 gdb_assert (sym != NULL);
12860 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12861
12862 /* Set ADDR_STRING. */
12863 *addr_string = xstrdup (sym_name);
12864
12865 /* Set OPS. */
12866 *ops = ada_exception_breakpoint_ops (ex);
12867
12868 return find_function_start_sal (sym, 1);
12869 }
12870
12871 /* Create an Ada exception catchpoint.
12872
12873 EX_KIND is the kind of exception catchpoint to be created.
12874
12875 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12876 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12877 of the exception to which this catchpoint applies. When not NULL,
12878 the string must be allocated on the heap, and its deallocation
12879 is no longer the responsibility of the caller.
12880
12881 COND_STRING, if not NULL, is the catchpoint condition. This string
12882 must be allocated on the heap, and its deallocation is no longer
12883 the responsibility of the caller.
12884
12885 TEMPFLAG, if nonzero, means that the underlying breakpoint
12886 should be temporary.
12887
12888 FROM_TTY is the usual argument passed to all commands implementations. */
12889
12890 void
12891 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12892 enum ada_exception_catchpoint_kind ex_kind,
12893 char *excep_string,
12894 char *cond_string,
12895 int tempflag,
12896 int disabled,
12897 int from_tty)
12898 {
12899 const char *addr_string = NULL;
12900 const struct breakpoint_ops *ops = NULL;
12901 struct symtab_and_line sal
12902 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12903
12904 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
12905 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
12906 ops, tempflag, disabled, from_tty);
12907 c->excep_string = excep_string;
12908 create_excep_cond_exprs (c.get ());
12909 if (cond_string != NULL)
12910 set_breakpoint_condition (c.get (), cond_string, from_tty);
12911 install_breakpoint (0, std::move (c), 1);
12912 }
12913
12914 /* Implement the "catch exception" command. */
12915
12916 static void
12917 catch_ada_exception_command (const char *arg_entry, int from_tty,
12918 struct cmd_list_element *command)
12919 {
12920 const char *arg = arg_entry;
12921 struct gdbarch *gdbarch = get_current_arch ();
12922 int tempflag;
12923 enum ada_exception_catchpoint_kind ex_kind;
12924 char *excep_string = NULL;
12925 char *cond_string = NULL;
12926
12927 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12928
12929 if (!arg)
12930 arg = "";
12931 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
12932 &cond_string);
12933 create_ada_exception_catchpoint (gdbarch, ex_kind,
12934 excep_string, cond_string,
12935 tempflag, 1 /* enabled */,
12936 from_tty);
12937 }
12938
12939 /* Split the arguments specified in a "catch assert" command.
12940
12941 ARGS contains the command's arguments (or the empty string if
12942 no arguments were passed).
12943
12944 If ARGS contains a condition, set COND_STRING to that condition
12945 (the memory needs to be deallocated after use). */
12946
12947 static void
12948 catch_ada_assert_command_split (const char *args, char **cond_string)
12949 {
12950 args = skip_spaces (args);
12951
12952 /* Check whether a condition was provided. */
12953 if (startswith (args, "if")
12954 && (isspace (args[2]) || args[2] == '\0'))
12955 {
12956 args += 2;
12957 args = skip_spaces (args);
12958 if (args[0] == '\0')
12959 error (_("condition missing after `if' keyword"));
12960 *cond_string = xstrdup (args);
12961 }
12962
12963 /* Otherwise, there should be no other argument at the end of
12964 the command. */
12965 else if (args[0] != '\0')
12966 error (_("Junk at end of arguments."));
12967 }
12968
12969 /* Implement the "catch assert" command. */
12970
12971 static void
12972 catch_assert_command (const char *arg_entry, int from_tty,
12973 struct cmd_list_element *command)
12974 {
12975 const char *arg = arg_entry;
12976 struct gdbarch *gdbarch = get_current_arch ();
12977 int tempflag;
12978 char *cond_string = NULL;
12979
12980 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12981
12982 if (!arg)
12983 arg = "";
12984 catch_ada_assert_command_split (arg, &cond_string);
12985 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
12986 NULL, cond_string,
12987 tempflag, 1 /* enabled */,
12988 from_tty);
12989 }
12990
12991 /* Return non-zero if the symbol SYM is an Ada exception object. */
12992
12993 static int
12994 ada_is_exception_sym (struct symbol *sym)
12995 {
12996 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
12997
12998 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
12999 && SYMBOL_CLASS (sym) != LOC_BLOCK
13000 && SYMBOL_CLASS (sym) != LOC_CONST
13001 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13002 && type_name != NULL && strcmp (type_name, "exception") == 0);
13003 }
13004
13005 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13006 Ada exception object. This matches all exceptions except the ones
13007 defined by the Ada language. */
13008
13009 static int
13010 ada_is_non_standard_exception_sym (struct symbol *sym)
13011 {
13012 int i;
13013
13014 if (!ada_is_exception_sym (sym))
13015 return 0;
13016
13017 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13018 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13019 return 0; /* A standard exception. */
13020
13021 /* Numeric_Error is also a standard exception, so exclude it.
13022 See the STANDARD_EXC description for more details as to why
13023 this exception is not listed in that array. */
13024 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13025 return 0;
13026
13027 return 1;
13028 }
13029
13030 /* A helper function for std::sort, comparing two struct ada_exc_info
13031 objects.
13032
13033 The comparison is determined first by exception name, and then
13034 by exception address. */
13035
13036 bool
13037 ada_exc_info::operator< (const ada_exc_info &other) const
13038 {
13039 int result;
13040
13041 result = strcmp (name, other.name);
13042 if (result < 0)
13043 return true;
13044 if (result == 0 && addr < other.addr)
13045 return true;
13046 return false;
13047 }
13048
13049 bool
13050 ada_exc_info::operator== (const ada_exc_info &other) const
13051 {
13052 return addr == other.addr && strcmp (name, other.name) == 0;
13053 }
13054
13055 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13056 routine, but keeping the first SKIP elements untouched.
13057
13058 All duplicates are also removed. */
13059
13060 static void
13061 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13062 int skip)
13063 {
13064 std::sort (exceptions->begin () + skip, exceptions->end ());
13065 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13066 exceptions->end ());
13067 }
13068
13069 /* Add all exceptions defined by the Ada standard whose name match
13070 a regular expression.
13071
13072 If PREG is not NULL, then this regexp_t object is used to
13073 perform the symbol name matching. Otherwise, no name-based
13074 filtering is performed.
13075
13076 EXCEPTIONS is a vector of exceptions to which matching exceptions
13077 gets pushed. */
13078
13079 static void
13080 ada_add_standard_exceptions (compiled_regex *preg,
13081 std::vector<ada_exc_info> *exceptions)
13082 {
13083 int i;
13084
13085 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13086 {
13087 if (preg == NULL
13088 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13089 {
13090 struct bound_minimal_symbol msymbol
13091 = ada_lookup_simple_minsym (standard_exc[i]);
13092
13093 if (msymbol.minsym != NULL)
13094 {
13095 struct ada_exc_info info
13096 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13097
13098 exceptions->push_back (info);
13099 }
13100 }
13101 }
13102 }
13103
13104 /* Add all Ada exceptions defined locally and accessible from the given
13105 FRAME.
13106
13107 If PREG is not NULL, then this regexp_t object is used to
13108 perform the symbol name matching. Otherwise, no name-based
13109 filtering is performed.
13110
13111 EXCEPTIONS is a vector of exceptions to which matching exceptions
13112 gets pushed. */
13113
13114 static void
13115 ada_add_exceptions_from_frame (compiled_regex *preg,
13116 struct frame_info *frame,
13117 std::vector<ada_exc_info> *exceptions)
13118 {
13119 const struct block *block = get_frame_block (frame, 0);
13120
13121 while (block != 0)
13122 {
13123 struct block_iterator iter;
13124 struct symbol *sym;
13125
13126 ALL_BLOCK_SYMBOLS (block, iter, sym)
13127 {
13128 switch (SYMBOL_CLASS (sym))
13129 {
13130 case LOC_TYPEDEF:
13131 case LOC_BLOCK:
13132 case LOC_CONST:
13133 break;
13134 default:
13135 if (ada_is_exception_sym (sym))
13136 {
13137 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13138 SYMBOL_VALUE_ADDRESS (sym)};
13139
13140 exceptions->push_back (info);
13141 }
13142 }
13143 }
13144 if (BLOCK_FUNCTION (block) != NULL)
13145 break;
13146 block = BLOCK_SUPERBLOCK (block);
13147 }
13148 }
13149
13150 /* Return true if NAME matches PREG or if PREG is NULL. */
13151
13152 static bool
13153 name_matches_regex (const char *name, compiled_regex *preg)
13154 {
13155 return (preg == NULL
13156 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13157 }
13158
13159 /* Add all exceptions defined globally whose name name match
13160 a regular expression, excluding standard exceptions.
13161
13162 The reason we exclude standard exceptions is that they need
13163 to be handled separately: Standard exceptions are defined inside
13164 a runtime unit which is normally not compiled with debugging info,
13165 and thus usually do not show up in our symbol search. However,
13166 if the unit was in fact built with debugging info, we need to
13167 exclude them because they would duplicate the entry we found
13168 during the special loop that specifically searches for those
13169 standard exceptions.
13170
13171 If PREG is not NULL, then this regexp_t object is used to
13172 perform the symbol name matching. Otherwise, no name-based
13173 filtering is performed.
13174
13175 EXCEPTIONS is a vector of exceptions to which matching exceptions
13176 gets pushed. */
13177
13178 static void
13179 ada_add_global_exceptions (compiled_regex *preg,
13180 std::vector<ada_exc_info> *exceptions)
13181 {
13182 struct objfile *objfile;
13183 struct compunit_symtab *s;
13184
13185 /* In Ada, the symbol "search name" is a linkage name, whereas the
13186 regular expression used to do the matching refers to the natural
13187 name. So match against the decoded name. */
13188 expand_symtabs_matching (NULL,
13189 lookup_name_info::match_any (),
13190 [&] (const char *search_name)
13191 {
13192 const char *decoded = ada_decode (search_name);
13193 return name_matches_regex (decoded, preg);
13194 },
13195 NULL,
13196 VARIABLES_DOMAIN);
13197
13198 ALL_COMPUNITS (objfile, s)
13199 {
13200 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13201 int i;
13202
13203 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13204 {
13205 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13206 struct block_iterator iter;
13207 struct symbol *sym;
13208
13209 ALL_BLOCK_SYMBOLS (b, iter, sym)
13210 if (ada_is_non_standard_exception_sym (sym)
13211 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13212 {
13213 struct ada_exc_info info
13214 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13215
13216 exceptions->push_back (info);
13217 }
13218 }
13219 }
13220 }
13221
13222 /* Implements ada_exceptions_list with the regular expression passed
13223 as a regex_t, rather than a string.
13224
13225 If not NULL, PREG is used to filter out exceptions whose names
13226 do not match. Otherwise, all exceptions are listed. */
13227
13228 static std::vector<ada_exc_info>
13229 ada_exceptions_list_1 (compiled_regex *preg)
13230 {
13231 std::vector<ada_exc_info> result;
13232 int prev_len;
13233
13234 /* First, list the known standard exceptions. These exceptions
13235 need to be handled separately, as they are usually defined in
13236 runtime units that have been compiled without debugging info. */
13237
13238 ada_add_standard_exceptions (preg, &result);
13239
13240 /* Next, find all exceptions whose scope is local and accessible
13241 from the currently selected frame. */
13242
13243 if (has_stack_frames ())
13244 {
13245 prev_len = result.size ();
13246 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13247 &result);
13248 if (result.size () > prev_len)
13249 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13250 }
13251
13252 /* Add all exceptions whose scope is global. */
13253
13254 prev_len = result.size ();
13255 ada_add_global_exceptions (preg, &result);
13256 if (result.size () > prev_len)
13257 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13258
13259 return result;
13260 }
13261
13262 /* Return a vector of ada_exc_info.
13263
13264 If REGEXP is NULL, all exceptions are included in the result.
13265 Otherwise, it should contain a valid regular expression,
13266 and only the exceptions whose names match that regular expression
13267 are included in the result.
13268
13269 The exceptions are sorted in the following order:
13270 - Standard exceptions (defined by the Ada language), in
13271 alphabetical order;
13272 - Exceptions only visible from the current frame, in
13273 alphabetical order;
13274 - Exceptions whose scope is global, in alphabetical order. */
13275
13276 std::vector<ada_exc_info>
13277 ada_exceptions_list (const char *regexp)
13278 {
13279 if (regexp == NULL)
13280 return ada_exceptions_list_1 (NULL);
13281
13282 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13283 return ada_exceptions_list_1 (&reg);
13284 }
13285
13286 /* Implement the "info exceptions" command. */
13287
13288 static void
13289 info_exceptions_command (const char *regexp, int from_tty)
13290 {
13291 struct gdbarch *gdbarch = get_current_arch ();
13292
13293 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13294
13295 if (regexp != NULL)
13296 printf_filtered
13297 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13298 else
13299 printf_filtered (_("All defined Ada exceptions:\n"));
13300
13301 for (const ada_exc_info &info : exceptions)
13302 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13303 }
13304
13305 /* Operators */
13306 /* Information about operators given special treatment in functions
13307 below. */
13308 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13309
13310 #define ADA_OPERATORS \
13311 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13312 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13313 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13314 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13315 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13316 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13317 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13318 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13319 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13320 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13321 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13322 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13323 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13324 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13325 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13326 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13327 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13328 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13329 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13330
13331 static void
13332 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13333 int *argsp)
13334 {
13335 switch (exp->elts[pc - 1].opcode)
13336 {
13337 default:
13338 operator_length_standard (exp, pc, oplenp, argsp);
13339 break;
13340
13341 #define OP_DEFN(op, len, args, binop) \
13342 case op: *oplenp = len; *argsp = args; break;
13343 ADA_OPERATORS;
13344 #undef OP_DEFN
13345
13346 case OP_AGGREGATE:
13347 *oplenp = 3;
13348 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13349 break;
13350
13351 case OP_CHOICES:
13352 *oplenp = 3;
13353 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13354 break;
13355 }
13356 }
13357
13358 /* Implementation of the exp_descriptor method operator_check. */
13359
13360 static int
13361 ada_operator_check (struct expression *exp, int pos,
13362 int (*objfile_func) (struct objfile *objfile, void *data),
13363 void *data)
13364 {
13365 const union exp_element *const elts = exp->elts;
13366 struct type *type = NULL;
13367
13368 switch (elts[pos].opcode)
13369 {
13370 case UNOP_IN_RANGE:
13371 case UNOP_QUAL:
13372 type = elts[pos + 1].type;
13373 break;
13374
13375 default:
13376 return operator_check_standard (exp, pos, objfile_func, data);
13377 }
13378
13379 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13380
13381 if (type && TYPE_OBJFILE (type)
13382 && (*objfile_func) (TYPE_OBJFILE (type), data))
13383 return 1;
13384
13385 return 0;
13386 }
13387
13388 static const char *
13389 ada_op_name (enum exp_opcode opcode)
13390 {
13391 switch (opcode)
13392 {
13393 default:
13394 return op_name_standard (opcode);
13395
13396 #define OP_DEFN(op, len, args, binop) case op: return #op;
13397 ADA_OPERATORS;
13398 #undef OP_DEFN
13399
13400 case OP_AGGREGATE:
13401 return "OP_AGGREGATE";
13402 case OP_CHOICES:
13403 return "OP_CHOICES";
13404 case OP_NAME:
13405 return "OP_NAME";
13406 }
13407 }
13408
13409 /* As for operator_length, but assumes PC is pointing at the first
13410 element of the operator, and gives meaningful results only for the
13411 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13412
13413 static void
13414 ada_forward_operator_length (struct expression *exp, int pc,
13415 int *oplenp, int *argsp)
13416 {
13417 switch (exp->elts[pc].opcode)
13418 {
13419 default:
13420 *oplenp = *argsp = 0;
13421 break;
13422
13423 #define OP_DEFN(op, len, args, binop) \
13424 case op: *oplenp = len; *argsp = args; break;
13425 ADA_OPERATORS;
13426 #undef OP_DEFN
13427
13428 case OP_AGGREGATE:
13429 *oplenp = 3;
13430 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13431 break;
13432
13433 case OP_CHOICES:
13434 *oplenp = 3;
13435 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13436 break;
13437
13438 case OP_STRING:
13439 case OP_NAME:
13440 {
13441 int len = longest_to_int (exp->elts[pc + 1].longconst);
13442
13443 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13444 *argsp = 0;
13445 break;
13446 }
13447 }
13448 }
13449
13450 static int
13451 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13452 {
13453 enum exp_opcode op = exp->elts[elt].opcode;
13454 int oplen, nargs;
13455 int pc = elt;
13456 int i;
13457
13458 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13459
13460 switch (op)
13461 {
13462 /* Ada attributes ('Foo). */
13463 case OP_ATR_FIRST:
13464 case OP_ATR_LAST:
13465 case OP_ATR_LENGTH:
13466 case OP_ATR_IMAGE:
13467 case OP_ATR_MAX:
13468 case OP_ATR_MIN:
13469 case OP_ATR_MODULUS:
13470 case OP_ATR_POS:
13471 case OP_ATR_SIZE:
13472 case OP_ATR_TAG:
13473 case OP_ATR_VAL:
13474 break;
13475
13476 case UNOP_IN_RANGE:
13477 case UNOP_QUAL:
13478 /* XXX: gdb_sprint_host_address, type_sprint */
13479 fprintf_filtered (stream, _("Type @"));
13480 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13481 fprintf_filtered (stream, " (");
13482 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13483 fprintf_filtered (stream, ")");
13484 break;
13485 case BINOP_IN_BOUNDS:
13486 fprintf_filtered (stream, " (%d)",
13487 longest_to_int (exp->elts[pc + 2].longconst));
13488 break;
13489 case TERNOP_IN_RANGE:
13490 break;
13491
13492 case OP_AGGREGATE:
13493 case OP_OTHERS:
13494 case OP_DISCRETE_RANGE:
13495 case OP_POSITIONAL:
13496 case OP_CHOICES:
13497 break;
13498
13499 case OP_NAME:
13500 case OP_STRING:
13501 {
13502 char *name = &exp->elts[elt + 2].string;
13503 int len = longest_to_int (exp->elts[elt + 1].longconst);
13504
13505 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13506 break;
13507 }
13508
13509 default:
13510 return dump_subexp_body_standard (exp, stream, elt);
13511 }
13512
13513 elt += oplen;
13514 for (i = 0; i < nargs; i += 1)
13515 elt = dump_subexp (exp, stream, elt);
13516
13517 return elt;
13518 }
13519
13520 /* The Ada extension of print_subexp (q.v.). */
13521
13522 static void
13523 ada_print_subexp (struct expression *exp, int *pos,
13524 struct ui_file *stream, enum precedence prec)
13525 {
13526 int oplen, nargs, i;
13527 int pc = *pos;
13528 enum exp_opcode op = exp->elts[pc].opcode;
13529
13530 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13531
13532 *pos += oplen;
13533 switch (op)
13534 {
13535 default:
13536 *pos -= oplen;
13537 print_subexp_standard (exp, pos, stream, prec);
13538 return;
13539
13540 case OP_VAR_VALUE:
13541 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13542 return;
13543
13544 case BINOP_IN_BOUNDS:
13545 /* XXX: sprint_subexp */
13546 print_subexp (exp, pos, stream, PREC_SUFFIX);
13547 fputs_filtered (" in ", stream);
13548 print_subexp (exp, pos, stream, PREC_SUFFIX);
13549 fputs_filtered ("'range", stream);
13550 if (exp->elts[pc + 1].longconst > 1)
13551 fprintf_filtered (stream, "(%ld)",
13552 (long) exp->elts[pc + 1].longconst);
13553 return;
13554
13555 case TERNOP_IN_RANGE:
13556 if (prec >= PREC_EQUAL)
13557 fputs_filtered ("(", stream);
13558 /* XXX: sprint_subexp */
13559 print_subexp (exp, pos, stream, PREC_SUFFIX);
13560 fputs_filtered (" in ", stream);
13561 print_subexp (exp, pos, stream, PREC_EQUAL);
13562 fputs_filtered (" .. ", stream);
13563 print_subexp (exp, pos, stream, PREC_EQUAL);
13564 if (prec >= PREC_EQUAL)
13565 fputs_filtered (")", stream);
13566 return;
13567
13568 case OP_ATR_FIRST:
13569 case OP_ATR_LAST:
13570 case OP_ATR_LENGTH:
13571 case OP_ATR_IMAGE:
13572 case OP_ATR_MAX:
13573 case OP_ATR_MIN:
13574 case OP_ATR_MODULUS:
13575 case OP_ATR_POS:
13576 case OP_ATR_SIZE:
13577 case OP_ATR_TAG:
13578 case OP_ATR_VAL:
13579 if (exp->elts[*pos].opcode == OP_TYPE)
13580 {
13581 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13582 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13583 &type_print_raw_options);
13584 *pos += 3;
13585 }
13586 else
13587 print_subexp (exp, pos, stream, PREC_SUFFIX);
13588 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13589 if (nargs > 1)
13590 {
13591 int tem;
13592
13593 for (tem = 1; tem < nargs; tem += 1)
13594 {
13595 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13596 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13597 }
13598 fputs_filtered (")", stream);
13599 }
13600 return;
13601
13602 case UNOP_QUAL:
13603 type_print (exp->elts[pc + 1].type, "", stream, 0);
13604 fputs_filtered ("'(", stream);
13605 print_subexp (exp, pos, stream, PREC_PREFIX);
13606 fputs_filtered (")", stream);
13607 return;
13608
13609 case UNOP_IN_RANGE:
13610 /* XXX: sprint_subexp */
13611 print_subexp (exp, pos, stream, PREC_SUFFIX);
13612 fputs_filtered (" in ", stream);
13613 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13614 &type_print_raw_options);
13615 return;
13616
13617 case OP_DISCRETE_RANGE:
13618 print_subexp (exp, pos, stream, PREC_SUFFIX);
13619 fputs_filtered ("..", stream);
13620 print_subexp (exp, pos, stream, PREC_SUFFIX);
13621 return;
13622
13623 case OP_OTHERS:
13624 fputs_filtered ("others => ", stream);
13625 print_subexp (exp, pos, stream, PREC_SUFFIX);
13626 return;
13627
13628 case OP_CHOICES:
13629 for (i = 0; i < nargs-1; i += 1)
13630 {
13631 if (i > 0)
13632 fputs_filtered ("|", stream);
13633 print_subexp (exp, pos, stream, PREC_SUFFIX);
13634 }
13635 fputs_filtered (" => ", stream);
13636 print_subexp (exp, pos, stream, PREC_SUFFIX);
13637 return;
13638
13639 case OP_POSITIONAL:
13640 print_subexp (exp, pos, stream, PREC_SUFFIX);
13641 return;
13642
13643 case OP_AGGREGATE:
13644 fputs_filtered ("(", stream);
13645 for (i = 0; i < nargs; i += 1)
13646 {
13647 if (i > 0)
13648 fputs_filtered (", ", stream);
13649 print_subexp (exp, pos, stream, PREC_SUFFIX);
13650 }
13651 fputs_filtered (")", stream);
13652 return;
13653 }
13654 }
13655
13656 /* Table mapping opcodes into strings for printing operators
13657 and precedences of the operators. */
13658
13659 static const struct op_print ada_op_print_tab[] = {
13660 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13661 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13662 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13663 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13664 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13665 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13666 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13667 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13668 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13669 {">=", BINOP_GEQ, PREC_ORDER, 0},
13670 {">", BINOP_GTR, PREC_ORDER, 0},
13671 {"<", BINOP_LESS, PREC_ORDER, 0},
13672 {">>", BINOP_RSH, PREC_SHIFT, 0},
13673 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13674 {"+", BINOP_ADD, PREC_ADD, 0},
13675 {"-", BINOP_SUB, PREC_ADD, 0},
13676 {"&", BINOP_CONCAT, PREC_ADD, 0},
13677 {"*", BINOP_MUL, PREC_MUL, 0},
13678 {"/", BINOP_DIV, PREC_MUL, 0},
13679 {"rem", BINOP_REM, PREC_MUL, 0},
13680 {"mod", BINOP_MOD, PREC_MUL, 0},
13681 {"**", BINOP_EXP, PREC_REPEAT, 0},
13682 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13683 {"-", UNOP_NEG, PREC_PREFIX, 0},
13684 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13685 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13686 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13687 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13688 {".all", UNOP_IND, PREC_SUFFIX, 1},
13689 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13690 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13691 {NULL, OP_NULL, PREC_SUFFIX, 0}
13692 };
13693 \f
13694 enum ada_primitive_types {
13695 ada_primitive_type_int,
13696 ada_primitive_type_long,
13697 ada_primitive_type_short,
13698 ada_primitive_type_char,
13699 ada_primitive_type_float,
13700 ada_primitive_type_double,
13701 ada_primitive_type_void,
13702 ada_primitive_type_long_long,
13703 ada_primitive_type_long_double,
13704 ada_primitive_type_natural,
13705 ada_primitive_type_positive,
13706 ada_primitive_type_system_address,
13707 nr_ada_primitive_types
13708 };
13709
13710 static void
13711 ada_language_arch_info (struct gdbarch *gdbarch,
13712 struct language_arch_info *lai)
13713 {
13714 const struct builtin_type *builtin = builtin_type (gdbarch);
13715
13716 lai->primitive_type_vector
13717 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13718 struct type *);
13719
13720 lai->primitive_type_vector [ada_primitive_type_int]
13721 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13722 0, "integer");
13723 lai->primitive_type_vector [ada_primitive_type_long]
13724 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13725 0, "long_integer");
13726 lai->primitive_type_vector [ada_primitive_type_short]
13727 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13728 0, "short_integer");
13729 lai->string_char_type
13730 = lai->primitive_type_vector [ada_primitive_type_char]
13731 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13732 lai->primitive_type_vector [ada_primitive_type_float]
13733 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13734 "float", gdbarch_float_format (gdbarch));
13735 lai->primitive_type_vector [ada_primitive_type_double]
13736 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13737 "long_float", gdbarch_double_format (gdbarch));
13738 lai->primitive_type_vector [ada_primitive_type_long_long]
13739 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13740 0, "long_long_integer");
13741 lai->primitive_type_vector [ada_primitive_type_long_double]
13742 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13743 "long_long_float", gdbarch_long_double_format (gdbarch));
13744 lai->primitive_type_vector [ada_primitive_type_natural]
13745 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13746 0, "natural");
13747 lai->primitive_type_vector [ada_primitive_type_positive]
13748 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13749 0, "positive");
13750 lai->primitive_type_vector [ada_primitive_type_void]
13751 = builtin->builtin_void;
13752
13753 lai->primitive_type_vector [ada_primitive_type_system_address]
13754 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
13755 "void"));
13756 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13757 = "system__address";
13758
13759 lai->bool_type_symbol = NULL;
13760 lai->bool_type_default = builtin->builtin_bool;
13761 }
13762 \f
13763 /* Language vector */
13764
13765 /* Not really used, but needed in the ada_language_defn. */
13766
13767 static void
13768 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13769 {
13770 ada_emit_char (c, type, stream, quoter, 1);
13771 }
13772
13773 static int
13774 parse (struct parser_state *ps)
13775 {
13776 warnings_issued = 0;
13777 return ada_parse (ps);
13778 }
13779
13780 static const struct exp_descriptor ada_exp_descriptor = {
13781 ada_print_subexp,
13782 ada_operator_length,
13783 ada_operator_check,
13784 ada_op_name,
13785 ada_dump_subexp_body,
13786 ada_evaluate_subexp
13787 };
13788
13789 /* symbol_name_matcher_ftype adapter for wild_match. */
13790
13791 static bool
13792 do_wild_match (const char *symbol_search_name,
13793 const lookup_name_info &lookup_name,
13794 completion_match *match)
13795 {
13796 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
13797 }
13798
13799 /* symbol_name_matcher_ftype adapter for full_match. */
13800
13801 static bool
13802 do_full_match (const char *symbol_search_name,
13803 const lookup_name_info &lookup_name,
13804 completion_match *match)
13805 {
13806 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
13807 }
13808
13809 /* Build the Ada lookup name for LOOKUP_NAME. */
13810
13811 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
13812 {
13813 const std::string &user_name = lookup_name.name ();
13814
13815 if (user_name[0] == '<')
13816 {
13817 if (user_name.back () == '>')
13818 m_encoded_name = user_name.substr (1, user_name.size () - 2);
13819 else
13820 m_encoded_name = user_name.substr (1, user_name.size () - 1);
13821 m_encoded_p = true;
13822 m_verbatim_p = true;
13823 m_wild_match_p = false;
13824 m_standard_p = false;
13825 }
13826 else
13827 {
13828 m_verbatim_p = false;
13829
13830 m_encoded_p = user_name.find ("__") != std::string::npos;
13831
13832 if (!m_encoded_p)
13833 {
13834 const char *folded = ada_fold_name (user_name.c_str ());
13835 const char *encoded = ada_encode_1 (folded, false);
13836 if (encoded != NULL)
13837 m_encoded_name = encoded;
13838 else
13839 m_encoded_name = user_name;
13840 }
13841 else
13842 m_encoded_name = user_name;
13843
13844 /* Handle the 'package Standard' special case. See description
13845 of m_standard_p. */
13846 if (startswith (m_encoded_name.c_str (), "standard__"))
13847 {
13848 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
13849 m_standard_p = true;
13850 }
13851 else
13852 m_standard_p = false;
13853
13854 /* If the name contains a ".", then the user is entering a fully
13855 qualified entity name, and the match must not be done in wild
13856 mode. Similarly, if the user wants to complete what looks
13857 like an encoded name, the match must not be done in wild
13858 mode. Also, in the standard__ special case always do
13859 non-wild matching. */
13860 m_wild_match_p
13861 = (lookup_name.match_type () != symbol_name_match_type::FULL
13862 && !m_encoded_p
13863 && !m_standard_p
13864 && user_name.find ('.') == std::string::npos);
13865 }
13866 }
13867
13868 /* symbol_name_matcher_ftype method for Ada. This only handles
13869 completion mode. */
13870
13871 static bool
13872 ada_symbol_name_matches (const char *symbol_search_name,
13873 const lookup_name_info &lookup_name,
13874 completion_match *match)
13875 {
13876 return lookup_name.ada ().matches (symbol_search_name,
13877 lookup_name.match_type (),
13878 match);
13879 }
13880
13881 /* Implement the "la_get_symbol_name_matcher" language_defn method for
13882 Ada. */
13883
13884 static symbol_name_matcher_ftype *
13885 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
13886 {
13887 if (lookup_name.completion_mode ())
13888 return ada_symbol_name_matches;
13889 else
13890 {
13891 if (lookup_name.ada ().wild_match_p ())
13892 return do_wild_match;
13893 else
13894 return do_full_match;
13895 }
13896 }
13897
13898 /* Implement the "la_read_var_value" language_defn method for Ada. */
13899
13900 static struct value *
13901 ada_read_var_value (struct symbol *var, const struct block *var_block,
13902 struct frame_info *frame)
13903 {
13904 const struct block *frame_block = NULL;
13905 struct symbol *renaming_sym = NULL;
13906
13907 /* The only case where default_read_var_value is not sufficient
13908 is when VAR is a renaming... */
13909 if (frame)
13910 frame_block = get_frame_block (frame, NULL);
13911 if (frame_block)
13912 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13913 if (renaming_sym != NULL)
13914 return ada_read_renaming_var_value (renaming_sym, frame_block);
13915
13916 /* This is a typical case where we expect the default_read_var_value
13917 function to work. */
13918 return default_read_var_value (var, var_block, frame);
13919 }
13920
13921 static const char *ada_extensions[] =
13922 {
13923 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13924 };
13925
13926 extern const struct language_defn ada_language_defn = {
13927 "ada", /* Language name */
13928 "Ada",
13929 language_ada,
13930 range_check_off,
13931 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13932 that's not quite what this means. */
13933 array_row_major,
13934 macro_expansion_no,
13935 ada_extensions,
13936 &ada_exp_descriptor,
13937 parse,
13938 ada_yyerror,
13939 resolve,
13940 ada_printchar, /* Print a character constant */
13941 ada_printstr, /* Function to print string constant */
13942 emit_char, /* Function to print single char (not used) */
13943 ada_print_type, /* Print a type using appropriate syntax */
13944 ada_print_typedef, /* Print a typedef using appropriate syntax */
13945 ada_val_print, /* Print a value using appropriate syntax */
13946 ada_value_print, /* Print a top-level value */
13947 ada_read_var_value, /* la_read_var_value */
13948 NULL, /* Language specific skip_trampoline */
13949 NULL, /* name_of_this */
13950 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13951 basic_lookup_transparent_type, /* lookup_transparent_type */
13952 ada_la_decode, /* Language specific symbol demangler */
13953 ada_sniff_from_mangled_name,
13954 NULL, /* Language specific
13955 class_name_from_physname */
13956 ada_op_print_tab, /* expression operators for printing */
13957 0, /* c-style arrays */
13958 1, /* String lower bound */
13959 ada_get_gdb_completer_word_break_characters,
13960 ada_collect_symbol_completion_matches,
13961 ada_language_arch_info,
13962 ada_print_array_index,
13963 default_pass_by_reference,
13964 c_get_string,
13965 c_watch_location_expression,
13966 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
13967 ada_iterate_over_symbols,
13968 default_search_name_hash,
13969 &ada_varobj_ops,
13970 NULL,
13971 NULL,
13972 LANG_MAGIC
13973 };
13974
13975 /* Command-list for the "set/show ada" prefix command. */
13976 static struct cmd_list_element *set_ada_list;
13977 static struct cmd_list_element *show_ada_list;
13978
13979 /* Implement the "set ada" prefix command. */
13980
13981 static void
13982 set_ada_command (const char *arg, int from_tty)
13983 {
13984 printf_unfiltered (_(\
13985 "\"set ada\" must be followed by the name of a setting.\n"));
13986 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13987 }
13988
13989 /* Implement the "show ada" prefix command. */
13990
13991 static void
13992 show_ada_command (const char *args, int from_tty)
13993 {
13994 cmd_show_list (show_ada_list, from_tty, "");
13995 }
13996
13997 static void
13998 initialize_ada_catchpoint_ops (void)
13999 {
14000 struct breakpoint_ops *ops;
14001
14002 initialize_breakpoint_ops ();
14003
14004 ops = &catch_exception_breakpoint_ops;
14005 *ops = bkpt_breakpoint_ops;
14006 ops->allocate_location = allocate_location_catch_exception;
14007 ops->re_set = re_set_catch_exception;
14008 ops->check_status = check_status_catch_exception;
14009 ops->print_it = print_it_catch_exception;
14010 ops->print_one = print_one_catch_exception;
14011 ops->print_mention = print_mention_catch_exception;
14012 ops->print_recreate = print_recreate_catch_exception;
14013
14014 ops = &catch_exception_unhandled_breakpoint_ops;
14015 *ops = bkpt_breakpoint_ops;
14016 ops->allocate_location = allocate_location_catch_exception_unhandled;
14017 ops->re_set = re_set_catch_exception_unhandled;
14018 ops->check_status = check_status_catch_exception_unhandled;
14019 ops->print_it = print_it_catch_exception_unhandled;
14020 ops->print_one = print_one_catch_exception_unhandled;
14021 ops->print_mention = print_mention_catch_exception_unhandled;
14022 ops->print_recreate = print_recreate_catch_exception_unhandled;
14023
14024 ops = &catch_assert_breakpoint_ops;
14025 *ops = bkpt_breakpoint_ops;
14026 ops->allocate_location = allocate_location_catch_assert;
14027 ops->re_set = re_set_catch_assert;
14028 ops->check_status = check_status_catch_assert;
14029 ops->print_it = print_it_catch_assert;
14030 ops->print_one = print_one_catch_assert;
14031 ops->print_mention = print_mention_catch_assert;
14032 ops->print_recreate = print_recreate_catch_assert;
14033 }
14034
14035 /* This module's 'new_objfile' observer. */
14036
14037 static void
14038 ada_new_objfile_observer (struct objfile *objfile)
14039 {
14040 ada_clear_symbol_cache ();
14041 }
14042
14043 /* This module's 'free_objfile' observer. */
14044
14045 static void
14046 ada_free_objfile_observer (struct objfile *objfile)
14047 {
14048 ada_clear_symbol_cache ();
14049 }
14050
14051 void
14052 _initialize_ada_language (void)
14053 {
14054 initialize_ada_catchpoint_ops ();
14055
14056 add_prefix_cmd ("ada", no_class, set_ada_command,
14057 _("Prefix command for changing Ada-specfic settings"),
14058 &set_ada_list, "set ada ", 0, &setlist);
14059
14060 add_prefix_cmd ("ada", no_class, show_ada_command,
14061 _("Generic command for showing Ada-specific settings."),
14062 &show_ada_list, "show ada ", 0, &showlist);
14063
14064 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14065 &trust_pad_over_xvs, _("\
14066 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14067 Show whether an optimization trusting PAD types over XVS types is activated"),
14068 _("\
14069 This is related to the encoding used by the GNAT compiler. The debugger\n\
14070 should normally trust the contents of PAD types, but certain older versions\n\
14071 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14072 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14073 work around this bug. It is always safe to turn this option \"off\", but\n\
14074 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14075 this option to \"off\" unless necessary."),
14076 NULL, NULL, &set_ada_list, &show_ada_list);
14077
14078 add_setshow_boolean_cmd ("print-signatures", class_vars,
14079 &print_signatures, _("\
14080 Enable or disable the output of formal and return types for functions in the \
14081 overloads selection menu"), _("\
14082 Show whether the output of formal and return types for functions in the \
14083 overloads selection menu is activated"),
14084 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14085
14086 add_catch_command ("exception", _("\
14087 Catch Ada exceptions, when raised.\n\
14088 With an argument, catch only exceptions with the given name."),
14089 catch_ada_exception_command,
14090 NULL,
14091 CATCH_PERMANENT,
14092 CATCH_TEMPORARY);
14093 add_catch_command ("assert", _("\
14094 Catch failed Ada assertions, when raised.\n\
14095 With an argument, catch only exceptions with the given name."),
14096 catch_assert_command,
14097 NULL,
14098 CATCH_PERMANENT,
14099 CATCH_TEMPORARY);
14100
14101 varsize_limit = 65536;
14102
14103 add_info ("exceptions", info_exceptions_command,
14104 _("\
14105 List all Ada exception names.\n\
14106 If a regular expression is passed as an argument, only those matching\n\
14107 the regular expression are listed."));
14108
14109 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14110 _("Set Ada maintenance-related variables."),
14111 &maint_set_ada_cmdlist, "maintenance set ada ",
14112 0/*allow-unknown*/, &maintenance_set_cmdlist);
14113
14114 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14115 _("Show Ada maintenance-related variables"),
14116 &maint_show_ada_cmdlist, "maintenance show ada ",
14117 0/*allow-unknown*/, &maintenance_show_cmdlist);
14118
14119 add_setshow_boolean_cmd
14120 ("ignore-descriptive-types", class_maintenance,
14121 &ada_ignore_descriptive_types_p,
14122 _("Set whether descriptive types generated by GNAT should be ignored."),
14123 _("Show whether descriptive types generated by GNAT should be ignored."),
14124 _("\
14125 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14126 DWARF attribute."),
14127 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14128
14129 obstack_init (&symbol_list_obstack);
14130
14131 decoded_names_store = htab_create_alloc
14132 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14133 NULL, xcalloc, xfree);
14134
14135 /* The ada-lang observers. */
14136 observer_attach_new_objfile (ada_new_objfile_observer);
14137 observer_attach_free_objfile (ada_free_objfile_observer);
14138 observer_attach_inferior_exit (ada_inferior_exit);
14139
14140 /* Setup various context-specific data. */
14141 ada_inferior_data
14142 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14143 ada_pspace_data_handle
14144 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14145 }