]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
Remove cleanups from find_frame_funname
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65
66 /* Define whether or not the C operator '/' truncates towards zero for
67 differently signed operands (truncation direction is undefined in C).
68 Copied from valarith.c. */
69
70 #ifndef TRUNCATION_TOWARDS_ZERO
71 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 #endif
73
74 static struct type *desc_base_type (struct type *);
75
76 static struct type *desc_bounds_type (struct type *);
77
78 static struct value *desc_bounds (struct value *);
79
80 static int fat_pntr_bounds_bitpos (struct type *);
81
82 static int fat_pntr_bounds_bitsize (struct type *);
83
84 static struct type *desc_data_target_type (struct type *);
85
86 static struct value *desc_data (struct value *);
87
88 static int fat_pntr_data_bitpos (struct type *);
89
90 static int fat_pntr_data_bitsize (struct type *);
91
92 static struct value *desc_one_bound (struct value *, int, int);
93
94 static int desc_bound_bitpos (struct type *, int, int);
95
96 static int desc_bound_bitsize (struct type *, int, int);
97
98 static struct type *desc_index_type (struct type *, int);
99
100 static int desc_arity (struct type *);
101
102 static int ada_type_match (struct type *, struct type *, int);
103
104 static int ada_args_match (struct symbol *, struct value **, int);
105
106 static int full_match (const char *, const char *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *, const char *,
112 domain_enum, struct objfile *, int);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const char *, domain_enum, int, int *);
116
117 static int is_nonfunction (struct block_symbol *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 const struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct block_symbol *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static const char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
155 int, int);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static int lesseq_defined_than (struct symbol *, struct symbol *);
198
199 static int equiv_types (struct type *, struct type *);
200
201 static int is_name_suffix (const char *);
202
203 static int advance_wild_match (const char **, const char *, int);
204
205 static int wild_match (const char *, const char *);
206
207 static struct value *ada_coerce_ref (struct value *);
208
209 static LONGEST pos_atr (struct value *);
210
211 static struct value *value_pos_atr (struct type *, struct value *);
212
213 static struct value *value_val_atr (struct type *, struct value *);
214
215 static struct symbol *standard_lookup (const char *, const struct block *,
216 domain_enum);
217
218 static struct value *ada_search_struct_field (const char *, struct value *, int,
219 struct type *);
220
221 static struct value *ada_value_primitive_field (struct value *, int, int,
222 struct type *);
223
224 static int find_struct_field (const char *, struct type *, int,
225 struct type **, int *, int *, int *, int *);
226
227 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
228 struct value *);
229
230 static int ada_resolve_function (struct block_symbol *, int,
231 struct value **, int, const char *,
232 struct type *);
233
234 static int ada_is_direct_array_type (struct type *);
235
236 static void ada_language_arch_info (struct gdbarch *,
237 struct language_arch_info *);
238
239 static struct value *ada_index_struct_field (int, struct value *, int,
240 struct type *);
241
242 static struct value *assign_aggregate (struct value *, struct value *,
243 struct expression *,
244 int *, enum noside);
245
246 static void aggregate_assign_from_choices (struct value *, struct value *,
247 struct expression *,
248 int *, LONGEST *, int *,
249 int, LONGEST, LONGEST);
250
251 static void aggregate_assign_positional (struct value *, struct value *,
252 struct expression *,
253 int *, LONGEST *, int *, int,
254 LONGEST, LONGEST);
255
256
257 static void aggregate_assign_others (struct value *, struct value *,
258 struct expression *,
259 int *, LONGEST *, int, LONGEST, LONGEST);
260
261
262 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
263
264
265 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
266 int *, enum noside);
267
268 static void ada_forward_operator_length (struct expression *, int, int *,
269 int *);
270
271 static struct type *ada_find_any_type (const char *name);
272 \f
273
274 /* The result of a symbol lookup to be stored in our symbol cache. */
275
276 struct cache_entry
277 {
278 /* The name used to perform the lookup. */
279 const char *name;
280 /* The namespace used during the lookup. */
281 domain_enum domain;
282 /* The symbol returned by the lookup, or NULL if no matching symbol
283 was found. */
284 struct symbol *sym;
285 /* The block where the symbol was found, or NULL if no matching
286 symbol was found. */
287 const struct block *block;
288 /* A pointer to the next entry with the same hash. */
289 struct cache_entry *next;
290 };
291
292 /* The Ada symbol cache, used to store the result of Ada-mode symbol
293 lookups in the course of executing the user's commands.
294
295 The cache is implemented using a simple, fixed-sized hash.
296 The size is fixed on the grounds that there are not likely to be
297 all that many symbols looked up during any given session, regardless
298 of the size of the symbol table. If we decide to go to a resizable
299 table, let's just use the stuff from libiberty instead. */
300
301 #define HASH_SIZE 1009
302
303 struct ada_symbol_cache
304 {
305 /* An obstack used to store the entries in our cache. */
306 struct obstack cache_space;
307
308 /* The root of the hash table used to implement our symbol cache. */
309 struct cache_entry *root[HASH_SIZE];
310 };
311
312 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
313
314 /* Maximum-sized dynamic type. */
315 static unsigned int varsize_limit;
316
317 static const char ada_completer_word_break_characters[] =
318 #ifdef VMS
319 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
320 #else
321 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
322 #endif
323
324 /* The name of the symbol to use to get the name of the main subprogram. */
325 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
326 = "__gnat_ada_main_program_name";
327
328 /* Limit on the number of warnings to raise per expression evaluation. */
329 static int warning_limit = 2;
330
331 /* Number of warning messages issued; reset to 0 by cleanups after
332 expression evaluation. */
333 static int warnings_issued = 0;
334
335 static const char *known_runtime_file_name_patterns[] = {
336 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
337 };
338
339 static const char *known_auxiliary_function_name_patterns[] = {
340 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
341 };
342
343 /* Space for allocating results of ada_lookup_symbol_list. */
344 static struct obstack symbol_list_obstack;
345
346 /* Maintenance-related settings for this module. */
347
348 static struct cmd_list_element *maint_set_ada_cmdlist;
349 static struct cmd_list_element *maint_show_ada_cmdlist;
350
351 /* Implement the "maintenance set ada" (prefix) command. */
352
353 static void
354 maint_set_ada_cmd (char *args, int from_tty)
355 {
356 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
357 gdb_stdout);
358 }
359
360 /* Implement the "maintenance show ada" (prefix) command. */
361
362 static void
363 maint_show_ada_cmd (char *args, int from_tty)
364 {
365 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
366 }
367
368 /* The "maintenance ada set/show ignore-descriptive-type" value. */
369
370 static int ada_ignore_descriptive_types_p = 0;
371
372 /* Inferior-specific data. */
373
374 /* Per-inferior data for this module. */
375
376 struct ada_inferior_data
377 {
378 /* The ada__tags__type_specific_data type, which is used when decoding
379 tagged types. With older versions of GNAT, this type was directly
380 accessible through a component ("tsd") in the object tag. But this
381 is no longer the case, so we cache it for each inferior. */
382 struct type *tsd_type;
383
384 /* The exception_support_info data. This data is used to determine
385 how to implement support for Ada exception catchpoints in a given
386 inferior. */
387 const struct exception_support_info *exception_info;
388 };
389
390 /* Our key to this module's inferior data. */
391 static const struct inferior_data *ada_inferior_data;
392
393 /* A cleanup routine for our inferior data. */
394 static void
395 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
396 {
397 struct ada_inferior_data *data;
398
399 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
400 if (data != NULL)
401 xfree (data);
402 }
403
404 /* Return our inferior data for the given inferior (INF).
405
406 This function always returns a valid pointer to an allocated
407 ada_inferior_data structure. If INF's inferior data has not
408 been previously set, this functions creates a new one with all
409 fields set to zero, sets INF's inferior to it, and then returns
410 a pointer to that newly allocated ada_inferior_data. */
411
412 static struct ada_inferior_data *
413 get_ada_inferior_data (struct inferior *inf)
414 {
415 struct ada_inferior_data *data;
416
417 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
418 if (data == NULL)
419 {
420 data = XCNEW (struct ada_inferior_data);
421 set_inferior_data (inf, ada_inferior_data, data);
422 }
423
424 return data;
425 }
426
427 /* Perform all necessary cleanups regarding our module's inferior data
428 that is required after the inferior INF just exited. */
429
430 static void
431 ada_inferior_exit (struct inferior *inf)
432 {
433 ada_inferior_data_cleanup (inf, NULL);
434 set_inferior_data (inf, ada_inferior_data, NULL);
435 }
436
437
438 /* program-space-specific data. */
439
440 /* This module's per-program-space data. */
441 struct ada_pspace_data
442 {
443 /* The Ada symbol cache. */
444 struct ada_symbol_cache *sym_cache;
445 };
446
447 /* Key to our per-program-space data. */
448 static const struct program_space_data *ada_pspace_data_handle;
449
450 /* Return this module's data for the given program space (PSPACE).
451 If not is found, add a zero'ed one now.
452
453 This function always returns a valid object. */
454
455 static struct ada_pspace_data *
456 get_ada_pspace_data (struct program_space *pspace)
457 {
458 struct ada_pspace_data *data;
459
460 data = ((struct ada_pspace_data *)
461 program_space_data (pspace, ada_pspace_data_handle));
462 if (data == NULL)
463 {
464 data = XCNEW (struct ada_pspace_data);
465 set_program_space_data (pspace, ada_pspace_data_handle, data);
466 }
467
468 return data;
469 }
470
471 /* The cleanup callback for this module's per-program-space data. */
472
473 static void
474 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
475 {
476 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
477
478 if (pspace_data->sym_cache != NULL)
479 ada_free_symbol_cache (pspace_data->sym_cache);
480 xfree (pspace_data);
481 }
482
483 /* Utilities */
484
485 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
486 all typedef layers have been peeled. Otherwise, return TYPE.
487
488 Normally, we really expect a typedef type to only have 1 typedef layer.
489 In other words, we really expect the target type of a typedef type to be
490 a non-typedef type. This is particularly true for Ada units, because
491 the language does not have a typedef vs not-typedef distinction.
492 In that respect, the Ada compiler has been trying to eliminate as many
493 typedef definitions in the debugging information, since they generally
494 do not bring any extra information (we still use typedef under certain
495 circumstances related mostly to the GNAT encoding).
496
497 Unfortunately, we have seen situations where the debugging information
498 generated by the compiler leads to such multiple typedef layers. For
499 instance, consider the following example with stabs:
500
501 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
502 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
503
504 This is an error in the debugging information which causes type
505 pck__float_array___XUP to be defined twice, and the second time,
506 it is defined as a typedef of a typedef.
507
508 This is on the fringe of legality as far as debugging information is
509 concerned, and certainly unexpected. But it is easy to handle these
510 situations correctly, so we can afford to be lenient in this case. */
511
512 static struct type *
513 ada_typedef_target_type (struct type *type)
514 {
515 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
516 type = TYPE_TARGET_TYPE (type);
517 return type;
518 }
519
520 /* Given DECODED_NAME a string holding a symbol name in its
521 decoded form (ie using the Ada dotted notation), returns
522 its unqualified name. */
523
524 static const char *
525 ada_unqualified_name (const char *decoded_name)
526 {
527 const char *result;
528
529 /* If the decoded name starts with '<', it means that the encoded
530 name does not follow standard naming conventions, and thus that
531 it is not your typical Ada symbol name. Trying to unqualify it
532 is therefore pointless and possibly erroneous. */
533 if (decoded_name[0] == '<')
534 return decoded_name;
535
536 result = strrchr (decoded_name, '.');
537 if (result != NULL)
538 result++; /* Skip the dot... */
539 else
540 result = decoded_name;
541
542 return result;
543 }
544
545 /* Return a string starting with '<', followed by STR, and '>'.
546 The result is good until the next call. */
547
548 static char *
549 add_angle_brackets (const char *str)
550 {
551 static char *result = NULL;
552
553 xfree (result);
554 result = xstrprintf ("<%s>", str);
555 return result;
556 }
557
558 static const char *
559 ada_get_gdb_completer_word_break_characters (void)
560 {
561 return ada_completer_word_break_characters;
562 }
563
564 /* Print an array element index using the Ada syntax. */
565
566 static void
567 ada_print_array_index (struct value *index_value, struct ui_file *stream,
568 const struct value_print_options *options)
569 {
570 LA_VALUE_PRINT (index_value, stream, options);
571 fprintf_filtered (stream, " => ");
572 }
573
574 /* Assuming VECT points to an array of *SIZE objects of size
575 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
576 updating *SIZE as necessary and returning the (new) array. */
577
578 void *
579 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
580 {
581 if (*size < min_size)
582 {
583 *size *= 2;
584 if (*size < min_size)
585 *size = min_size;
586 vect = xrealloc (vect, *size * element_size);
587 }
588 return vect;
589 }
590
591 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
592 suffix of FIELD_NAME beginning "___". */
593
594 static int
595 field_name_match (const char *field_name, const char *target)
596 {
597 int len = strlen (target);
598
599 return
600 (strncmp (field_name, target, len) == 0
601 && (field_name[len] == '\0'
602 || (startswith (field_name + len, "___")
603 && strcmp (field_name + strlen (field_name) - 6,
604 "___XVN") != 0)));
605 }
606
607
608 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
609 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
610 and return its index. This function also handles fields whose name
611 have ___ suffixes because the compiler sometimes alters their name
612 by adding such a suffix to represent fields with certain constraints.
613 If the field could not be found, return a negative number if
614 MAYBE_MISSING is set. Otherwise raise an error. */
615
616 int
617 ada_get_field_index (const struct type *type, const char *field_name,
618 int maybe_missing)
619 {
620 int fieldno;
621 struct type *struct_type = check_typedef ((struct type *) type);
622
623 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
624 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
625 return fieldno;
626
627 if (!maybe_missing)
628 error (_("Unable to find field %s in struct %s. Aborting"),
629 field_name, TYPE_NAME (struct_type));
630
631 return -1;
632 }
633
634 /* The length of the prefix of NAME prior to any "___" suffix. */
635
636 int
637 ada_name_prefix_len (const char *name)
638 {
639 if (name == NULL)
640 return 0;
641 else
642 {
643 const char *p = strstr (name, "___");
644
645 if (p == NULL)
646 return strlen (name);
647 else
648 return p - name;
649 }
650 }
651
652 /* Return non-zero if SUFFIX is a suffix of STR.
653 Return zero if STR is null. */
654
655 static int
656 is_suffix (const char *str, const char *suffix)
657 {
658 int len1, len2;
659
660 if (str == NULL)
661 return 0;
662 len1 = strlen (str);
663 len2 = strlen (suffix);
664 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
665 }
666
667 /* The contents of value VAL, treated as a value of type TYPE. The
668 result is an lval in memory if VAL is. */
669
670 static struct value *
671 coerce_unspec_val_to_type (struct value *val, struct type *type)
672 {
673 type = ada_check_typedef (type);
674 if (value_type (val) == type)
675 return val;
676 else
677 {
678 struct value *result;
679
680 /* Make sure that the object size is not unreasonable before
681 trying to allocate some memory for it. */
682 ada_ensure_varsize_limit (type);
683
684 if (value_lazy (val)
685 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
686 result = allocate_value_lazy (type);
687 else
688 {
689 result = allocate_value (type);
690 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
691 }
692 set_value_component_location (result, val);
693 set_value_bitsize (result, value_bitsize (val));
694 set_value_bitpos (result, value_bitpos (val));
695 set_value_address (result, value_address (val));
696 return result;
697 }
698 }
699
700 static const gdb_byte *
701 cond_offset_host (const gdb_byte *valaddr, long offset)
702 {
703 if (valaddr == NULL)
704 return NULL;
705 else
706 return valaddr + offset;
707 }
708
709 static CORE_ADDR
710 cond_offset_target (CORE_ADDR address, long offset)
711 {
712 if (address == 0)
713 return 0;
714 else
715 return address + offset;
716 }
717
718 /* Issue a warning (as for the definition of warning in utils.c, but
719 with exactly one argument rather than ...), unless the limit on the
720 number of warnings has passed during the evaluation of the current
721 expression. */
722
723 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
724 provided by "complaint". */
725 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
726
727 static void
728 lim_warning (const char *format, ...)
729 {
730 va_list args;
731
732 va_start (args, format);
733 warnings_issued += 1;
734 if (warnings_issued <= warning_limit)
735 vwarning (format, args);
736
737 va_end (args);
738 }
739
740 /* Issue an error if the size of an object of type T is unreasonable,
741 i.e. if it would be a bad idea to allocate a value of this type in
742 GDB. */
743
744 void
745 ada_ensure_varsize_limit (const struct type *type)
746 {
747 if (TYPE_LENGTH (type) > varsize_limit)
748 error (_("object size is larger than varsize-limit"));
749 }
750
751 /* Maximum value of a SIZE-byte signed integer type. */
752 static LONGEST
753 max_of_size (int size)
754 {
755 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
756
757 return top_bit | (top_bit - 1);
758 }
759
760 /* Minimum value of a SIZE-byte signed integer type. */
761 static LONGEST
762 min_of_size (int size)
763 {
764 return -max_of_size (size) - 1;
765 }
766
767 /* Maximum value of a SIZE-byte unsigned integer type. */
768 static ULONGEST
769 umax_of_size (int size)
770 {
771 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
772
773 return top_bit | (top_bit - 1);
774 }
775
776 /* Maximum value of integral type T, as a signed quantity. */
777 static LONGEST
778 max_of_type (struct type *t)
779 {
780 if (TYPE_UNSIGNED (t))
781 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
782 else
783 return max_of_size (TYPE_LENGTH (t));
784 }
785
786 /* Minimum value of integral type T, as a signed quantity. */
787 static LONGEST
788 min_of_type (struct type *t)
789 {
790 if (TYPE_UNSIGNED (t))
791 return 0;
792 else
793 return min_of_size (TYPE_LENGTH (t));
794 }
795
796 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
797 LONGEST
798 ada_discrete_type_high_bound (struct type *type)
799 {
800 type = resolve_dynamic_type (type, NULL, 0);
801 switch (TYPE_CODE (type))
802 {
803 case TYPE_CODE_RANGE:
804 return TYPE_HIGH_BOUND (type);
805 case TYPE_CODE_ENUM:
806 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
807 case TYPE_CODE_BOOL:
808 return 1;
809 case TYPE_CODE_CHAR:
810 case TYPE_CODE_INT:
811 return max_of_type (type);
812 default:
813 error (_("Unexpected type in ada_discrete_type_high_bound."));
814 }
815 }
816
817 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
818 LONGEST
819 ada_discrete_type_low_bound (struct type *type)
820 {
821 type = resolve_dynamic_type (type, NULL, 0);
822 switch (TYPE_CODE (type))
823 {
824 case TYPE_CODE_RANGE:
825 return TYPE_LOW_BOUND (type);
826 case TYPE_CODE_ENUM:
827 return TYPE_FIELD_ENUMVAL (type, 0);
828 case TYPE_CODE_BOOL:
829 return 0;
830 case TYPE_CODE_CHAR:
831 case TYPE_CODE_INT:
832 return min_of_type (type);
833 default:
834 error (_("Unexpected type in ada_discrete_type_low_bound."));
835 }
836 }
837
838 /* The identity on non-range types. For range types, the underlying
839 non-range scalar type. */
840
841 static struct type *
842 get_base_type (struct type *type)
843 {
844 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
845 {
846 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
847 return type;
848 type = TYPE_TARGET_TYPE (type);
849 }
850 return type;
851 }
852
853 /* Return a decoded version of the given VALUE. This means returning
854 a value whose type is obtained by applying all the GNAT-specific
855 encondings, making the resulting type a static but standard description
856 of the initial type. */
857
858 struct value *
859 ada_get_decoded_value (struct value *value)
860 {
861 struct type *type = ada_check_typedef (value_type (value));
862
863 if (ada_is_array_descriptor_type (type)
864 || (ada_is_constrained_packed_array_type (type)
865 && TYPE_CODE (type) != TYPE_CODE_PTR))
866 {
867 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
868 value = ada_coerce_to_simple_array_ptr (value);
869 else
870 value = ada_coerce_to_simple_array (value);
871 }
872 else
873 value = ada_to_fixed_value (value);
874
875 return value;
876 }
877
878 /* Same as ada_get_decoded_value, but with the given TYPE.
879 Because there is no associated actual value for this type,
880 the resulting type might be a best-effort approximation in
881 the case of dynamic types. */
882
883 struct type *
884 ada_get_decoded_type (struct type *type)
885 {
886 type = to_static_fixed_type (type);
887 if (ada_is_constrained_packed_array_type (type))
888 type = ada_coerce_to_simple_array_type (type);
889 return type;
890 }
891
892 \f
893
894 /* Language Selection */
895
896 /* If the main program is in Ada, return language_ada, otherwise return LANG
897 (the main program is in Ada iif the adainit symbol is found). */
898
899 enum language
900 ada_update_initial_language (enum language lang)
901 {
902 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
903 (struct objfile *) NULL).minsym != NULL)
904 return language_ada;
905
906 return lang;
907 }
908
909 /* If the main procedure is written in Ada, then return its name.
910 The result is good until the next call. Return NULL if the main
911 procedure doesn't appear to be in Ada. */
912
913 char *
914 ada_main_name (void)
915 {
916 struct bound_minimal_symbol msym;
917 static char *main_program_name = NULL;
918
919 /* For Ada, the name of the main procedure is stored in a specific
920 string constant, generated by the binder. Look for that symbol,
921 extract its address, and then read that string. If we didn't find
922 that string, then most probably the main procedure is not written
923 in Ada. */
924 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
925
926 if (msym.minsym != NULL)
927 {
928 CORE_ADDR main_program_name_addr;
929 int err_code;
930
931 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
932 if (main_program_name_addr == 0)
933 error (_("Invalid address for Ada main program name."));
934
935 xfree (main_program_name);
936 target_read_string (main_program_name_addr, &main_program_name,
937 1024, &err_code);
938
939 if (err_code != 0)
940 return NULL;
941 return main_program_name;
942 }
943
944 /* The main procedure doesn't seem to be in Ada. */
945 return NULL;
946 }
947 \f
948 /* Symbols */
949
950 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
951 of NULLs. */
952
953 const struct ada_opname_map ada_opname_table[] = {
954 {"Oadd", "\"+\"", BINOP_ADD},
955 {"Osubtract", "\"-\"", BINOP_SUB},
956 {"Omultiply", "\"*\"", BINOP_MUL},
957 {"Odivide", "\"/\"", BINOP_DIV},
958 {"Omod", "\"mod\"", BINOP_MOD},
959 {"Orem", "\"rem\"", BINOP_REM},
960 {"Oexpon", "\"**\"", BINOP_EXP},
961 {"Olt", "\"<\"", BINOP_LESS},
962 {"Ole", "\"<=\"", BINOP_LEQ},
963 {"Ogt", "\">\"", BINOP_GTR},
964 {"Oge", "\">=\"", BINOP_GEQ},
965 {"Oeq", "\"=\"", BINOP_EQUAL},
966 {"One", "\"/=\"", BINOP_NOTEQUAL},
967 {"Oand", "\"and\"", BINOP_BITWISE_AND},
968 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
969 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
970 {"Oconcat", "\"&\"", BINOP_CONCAT},
971 {"Oabs", "\"abs\"", UNOP_ABS},
972 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
973 {"Oadd", "\"+\"", UNOP_PLUS},
974 {"Osubtract", "\"-\"", UNOP_NEG},
975 {NULL, NULL}
976 };
977
978 /* The "encoded" form of DECODED, according to GNAT conventions.
979 The result is valid until the next call to ada_encode. */
980
981 char *
982 ada_encode (const char *decoded)
983 {
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
986 const char *p;
987 int k;
988
989 if (decoded == NULL)
990 return NULL;
991
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
994
995 k = 0;
996 for (p = decoded; *p != '\0'; p += 1)
997 {
998 if (*p == '.')
999 {
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1001 k += 2;
1002 }
1003 else if (*p == '"')
1004 {
1005 const struct ada_opname_map *mapping;
1006
1007 for (mapping = ada_opname_table;
1008 mapping->encoded != NULL
1009 && !startswith (p, mapping->decoded); mapping += 1)
1010 ;
1011 if (mapping->encoded == NULL)
1012 error (_("invalid Ada operator name: %s"), p);
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1015 break;
1016 }
1017 else
1018 {
1019 encoding_buffer[k] = *p;
1020 k += 1;
1021 }
1022 }
1023
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
1026 }
1027
1028 /* Return NAME folded to lower case, or, if surrounded by single
1029 quotes, unfolded, but with the quotes stripped away. Result good
1030 to next call. */
1031
1032 char *
1033 ada_fold_name (const char *name)
1034 {
1035 static char *fold_buffer = NULL;
1036 static size_t fold_buffer_size = 0;
1037
1038 int len = strlen (name);
1039 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1040
1041 if (name[0] == '\'')
1042 {
1043 strncpy (fold_buffer, name + 1, len - 2);
1044 fold_buffer[len - 2] = '\000';
1045 }
1046 else
1047 {
1048 int i;
1049
1050 for (i = 0; i <= len; i += 1)
1051 fold_buffer[i] = tolower (name[i]);
1052 }
1053
1054 return fold_buffer;
1055 }
1056
1057 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1058
1059 static int
1060 is_lower_alphanum (const char c)
1061 {
1062 return (isdigit (c) || (isalpha (c) && islower (c)));
1063 }
1064
1065 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1066 This function saves in LEN the length of that same symbol name but
1067 without either of these suffixes:
1068 . .{DIGIT}+
1069 . ${DIGIT}+
1070 . ___{DIGIT}+
1071 . __{DIGIT}+.
1072
1073 These are suffixes introduced by the compiler for entities such as
1074 nested subprogram for instance, in order to avoid name clashes.
1075 They do not serve any purpose for the debugger. */
1076
1077 static void
1078 ada_remove_trailing_digits (const char *encoded, int *len)
1079 {
1080 if (*len > 1 && isdigit (encoded[*len - 1]))
1081 {
1082 int i = *len - 2;
1083
1084 while (i > 0 && isdigit (encoded[i]))
1085 i--;
1086 if (i >= 0 && encoded[i] == '.')
1087 *len = i;
1088 else if (i >= 0 && encoded[i] == '$')
1089 *len = i;
1090 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1091 *len = i - 2;
1092 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1093 *len = i - 1;
1094 }
1095 }
1096
1097 /* Remove the suffix introduced by the compiler for protected object
1098 subprograms. */
1099
1100 static void
1101 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1102 {
1103 /* Remove trailing N. */
1104
1105 /* Protected entry subprograms are broken into two
1106 separate subprograms: The first one is unprotected, and has
1107 a 'N' suffix; the second is the protected version, and has
1108 the 'P' suffix. The second calls the first one after handling
1109 the protection. Since the P subprograms are internally generated,
1110 we leave these names undecoded, giving the user a clue that this
1111 entity is internal. */
1112
1113 if (*len > 1
1114 && encoded[*len - 1] == 'N'
1115 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1116 *len = *len - 1;
1117 }
1118
1119 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1120
1121 static void
1122 ada_remove_Xbn_suffix (const char *encoded, int *len)
1123 {
1124 int i = *len - 1;
1125
1126 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1127 i--;
1128
1129 if (encoded[i] != 'X')
1130 return;
1131
1132 if (i == 0)
1133 return;
1134
1135 if (isalnum (encoded[i-1]))
1136 *len = i;
1137 }
1138
1139 /* If ENCODED follows the GNAT entity encoding conventions, then return
1140 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1141 replaced by ENCODED.
1142
1143 The resulting string is valid until the next call of ada_decode.
1144 If the string is unchanged by decoding, the original string pointer
1145 is returned. */
1146
1147 const char *
1148 ada_decode (const char *encoded)
1149 {
1150 int i, j;
1151 int len0;
1152 const char *p;
1153 char *decoded;
1154 int at_start_name;
1155 static char *decoding_buffer = NULL;
1156 static size_t decoding_buffer_size = 0;
1157
1158 /* The name of the Ada main procedure starts with "_ada_".
1159 This prefix is not part of the decoded name, so skip this part
1160 if we see this prefix. */
1161 if (startswith (encoded, "_ada_"))
1162 encoded += 5;
1163
1164 /* If the name starts with '_', then it is not a properly encoded
1165 name, so do not attempt to decode it. Similarly, if the name
1166 starts with '<', the name should not be decoded. */
1167 if (encoded[0] == '_' || encoded[0] == '<')
1168 goto Suppress;
1169
1170 len0 = strlen (encoded);
1171
1172 ada_remove_trailing_digits (encoded, &len0);
1173 ada_remove_po_subprogram_suffix (encoded, &len0);
1174
1175 /* Remove the ___X.* suffix if present. Do not forget to verify that
1176 the suffix is located before the current "end" of ENCODED. We want
1177 to avoid re-matching parts of ENCODED that have previously been
1178 marked as discarded (by decrementing LEN0). */
1179 p = strstr (encoded, "___");
1180 if (p != NULL && p - encoded < len0 - 3)
1181 {
1182 if (p[3] == 'X')
1183 len0 = p - encoded;
1184 else
1185 goto Suppress;
1186 }
1187
1188 /* Remove any trailing TKB suffix. It tells us that this symbol
1189 is for the body of a task, but that information does not actually
1190 appear in the decoded name. */
1191
1192 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1193 len0 -= 3;
1194
1195 /* Remove any trailing TB suffix. The TB suffix is slightly different
1196 from the TKB suffix because it is used for non-anonymous task
1197 bodies. */
1198
1199 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1200 len0 -= 2;
1201
1202 /* Remove trailing "B" suffixes. */
1203 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1204
1205 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1206 len0 -= 1;
1207
1208 /* Make decoded big enough for possible expansion by operator name. */
1209
1210 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1211 decoded = decoding_buffer;
1212
1213 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1214
1215 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1216 {
1217 i = len0 - 2;
1218 while ((i >= 0 && isdigit (encoded[i]))
1219 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1220 i -= 1;
1221 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1222 len0 = i - 1;
1223 else if (encoded[i] == '$')
1224 len0 = i;
1225 }
1226
1227 /* The first few characters that are not alphabetic are not part
1228 of any encoding we use, so we can copy them over verbatim. */
1229
1230 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1231 decoded[j] = encoded[i];
1232
1233 at_start_name = 1;
1234 while (i < len0)
1235 {
1236 /* Is this a symbol function? */
1237 if (at_start_name && encoded[i] == 'O')
1238 {
1239 int k;
1240
1241 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1242 {
1243 int op_len = strlen (ada_opname_table[k].encoded);
1244 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1245 op_len - 1) == 0)
1246 && !isalnum (encoded[i + op_len]))
1247 {
1248 strcpy (decoded + j, ada_opname_table[k].decoded);
1249 at_start_name = 0;
1250 i += op_len;
1251 j += strlen (ada_opname_table[k].decoded);
1252 break;
1253 }
1254 }
1255 if (ada_opname_table[k].encoded != NULL)
1256 continue;
1257 }
1258 at_start_name = 0;
1259
1260 /* Replace "TK__" with "__", which will eventually be translated
1261 into "." (just below). */
1262
1263 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1264 i += 2;
1265
1266 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1267 be translated into "." (just below). These are internal names
1268 generated for anonymous blocks inside which our symbol is nested. */
1269
1270 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1271 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1272 && isdigit (encoded [i+4]))
1273 {
1274 int k = i + 5;
1275
1276 while (k < len0 && isdigit (encoded[k]))
1277 k++; /* Skip any extra digit. */
1278
1279 /* Double-check that the "__B_{DIGITS}+" sequence we found
1280 is indeed followed by "__". */
1281 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1282 i = k;
1283 }
1284
1285 /* Remove _E{DIGITS}+[sb] */
1286
1287 /* Just as for protected object subprograms, there are 2 categories
1288 of subprograms created by the compiler for each entry. The first
1289 one implements the actual entry code, and has a suffix following
1290 the convention above; the second one implements the barrier and
1291 uses the same convention as above, except that the 'E' is replaced
1292 by a 'B'.
1293
1294 Just as above, we do not decode the name of barrier functions
1295 to give the user a clue that the code he is debugging has been
1296 internally generated. */
1297
1298 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1299 && isdigit (encoded[i+2]))
1300 {
1301 int k = i + 3;
1302
1303 while (k < len0 && isdigit (encoded[k]))
1304 k++;
1305
1306 if (k < len0
1307 && (encoded[k] == 'b' || encoded[k] == 's'))
1308 {
1309 k++;
1310 /* Just as an extra precaution, make sure that if this
1311 suffix is followed by anything else, it is a '_'.
1312 Otherwise, we matched this sequence by accident. */
1313 if (k == len0
1314 || (k < len0 && encoded[k] == '_'))
1315 i = k;
1316 }
1317 }
1318
1319 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1320 the GNAT front-end in protected object subprograms. */
1321
1322 if (i < len0 + 3
1323 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1324 {
1325 /* Backtrack a bit up until we reach either the begining of
1326 the encoded name, or "__". Make sure that we only find
1327 digits or lowercase characters. */
1328 const char *ptr = encoded + i - 1;
1329
1330 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1331 ptr--;
1332 if (ptr < encoded
1333 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1334 i++;
1335 }
1336
1337 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1338 {
1339 /* This is a X[bn]* sequence not separated from the previous
1340 part of the name with a non-alpha-numeric character (in other
1341 words, immediately following an alpha-numeric character), then
1342 verify that it is placed at the end of the encoded name. If
1343 not, then the encoding is not valid and we should abort the
1344 decoding. Otherwise, just skip it, it is used in body-nested
1345 package names. */
1346 do
1347 i += 1;
1348 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1349 if (i < len0)
1350 goto Suppress;
1351 }
1352 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1353 {
1354 /* Replace '__' by '.'. */
1355 decoded[j] = '.';
1356 at_start_name = 1;
1357 i += 2;
1358 j += 1;
1359 }
1360 else
1361 {
1362 /* It's a character part of the decoded name, so just copy it
1363 over. */
1364 decoded[j] = encoded[i];
1365 i += 1;
1366 j += 1;
1367 }
1368 }
1369 decoded[j] = '\000';
1370
1371 /* Decoded names should never contain any uppercase character.
1372 Double-check this, and abort the decoding if we find one. */
1373
1374 for (i = 0; decoded[i] != '\0'; i += 1)
1375 if (isupper (decoded[i]) || decoded[i] == ' ')
1376 goto Suppress;
1377
1378 if (strcmp (decoded, encoded) == 0)
1379 return encoded;
1380 else
1381 return decoded;
1382
1383 Suppress:
1384 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1385 decoded = decoding_buffer;
1386 if (encoded[0] == '<')
1387 strcpy (decoded, encoded);
1388 else
1389 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1390 return decoded;
1391
1392 }
1393
1394 /* Table for keeping permanent unique copies of decoded names. Once
1395 allocated, names in this table are never released. While this is a
1396 storage leak, it should not be significant unless there are massive
1397 changes in the set of decoded names in successive versions of a
1398 symbol table loaded during a single session. */
1399 static struct htab *decoded_names_store;
1400
1401 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1402 in the language-specific part of GSYMBOL, if it has not been
1403 previously computed. Tries to save the decoded name in the same
1404 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1405 in any case, the decoded symbol has a lifetime at least that of
1406 GSYMBOL).
1407 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1408 const, but nevertheless modified to a semantically equivalent form
1409 when a decoded name is cached in it. */
1410
1411 const char *
1412 ada_decode_symbol (const struct general_symbol_info *arg)
1413 {
1414 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1415 const char **resultp =
1416 &gsymbol->language_specific.demangled_name;
1417
1418 if (!gsymbol->ada_mangled)
1419 {
1420 const char *decoded = ada_decode (gsymbol->name);
1421 struct obstack *obstack = gsymbol->language_specific.obstack;
1422
1423 gsymbol->ada_mangled = 1;
1424
1425 if (obstack != NULL)
1426 *resultp
1427 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1428 else
1429 {
1430 /* Sometimes, we can't find a corresponding objfile, in
1431 which case, we put the result on the heap. Since we only
1432 decode when needed, we hope this usually does not cause a
1433 significant memory leak (FIXME). */
1434
1435 char **slot = (char **) htab_find_slot (decoded_names_store,
1436 decoded, INSERT);
1437
1438 if (*slot == NULL)
1439 *slot = xstrdup (decoded);
1440 *resultp = *slot;
1441 }
1442 }
1443
1444 return *resultp;
1445 }
1446
1447 static char *
1448 ada_la_decode (const char *encoded, int options)
1449 {
1450 return xstrdup (ada_decode (encoded));
1451 }
1452
1453 /* Implement la_sniff_from_mangled_name for Ada. */
1454
1455 static int
1456 ada_sniff_from_mangled_name (const char *mangled, char **out)
1457 {
1458 const char *demangled = ada_decode (mangled);
1459
1460 *out = NULL;
1461
1462 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1463 {
1464 /* Set the gsymbol language to Ada, but still return 0.
1465 Two reasons for that:
1466
1467 1. For Ada, we prefer computing the symbol's decoded name
1468 on the fly rather than pre-compute it, in order to save
1469 memory (Ada projects are typically very large).
1470
1471 2. There are some areas in the definition of the GNAT
1472 encoding where, with a bit of bad luck, we might be able
1473 to decode a non-Ada symbol, generating an incorrect
1474 demangled name (Eg: names ending with "TB" for instance
1475 are identified as task bodies and so stripped from
1476 the decoded name returned).
1477
1478 Returning 1, here, but not setting *DEMANGLED, helps us get a
1479 little bit of the best of both worlds. Because we're last,
1480 we should not affect any of the other languages that were
1481 able to demangle the symbol before us; we get to correctly
1482 tag Ada symbols as such; and even if we incorrectly tagged a
1483 non-Ada symbol, which should be rare, any routing through the
1484 Ada language should be transparent (Ada tries to behave much
1485 like C/C++ with non-Ada symbols). */
1486 return 1;
1487 }
1488
1489 return 0;
1490 }
1491
1492 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1493 suffixes that encode debugging information or leading _ada_ on
1494 SYM_NAME (see is_name_suffix commentary for the debugging
1495 information that is ignored). If WILD, then NAME need only match a
1496 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1497 either argument is NULL. */
1498
1499 static int
1500 match_name (const char *sym_name, const char *name, int wild)
1501 {
1502 if (sym_name == NULL || name == NULL)
1503 return 0;
1504 else if (wild)
1505 return wild_match (sym_name, name) == 0;
1506 else
1507 {
1508 int len_name = strlen (name);
1509
1510 return (strncmp (sym_name, name, len_name) == 0
1511 && is_name_suffix (sym_name + len_name))
1512 || (startswith (sym_name, "_ada_")
1513 && strncmp (sym_name + 5, name, len_name) == 0
1514 && is_name_suffix (sym_name + len_name + 5));
1515 }
1516 }
1517 \f
1518
1519 /* Arrays */
1520
1521 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1522 generated by the GNAT compiler to describe the index type used
1523 for each dimension of an array, check whether it follows the latest
1524 known encoding. If not, fix it up to conform to the latest encoding.
1525 Otherwise, do nothing. This function also does nothing if
1526 INDEX_DESC_TYPE is NULL.
1527
1528 The GNAT encoding used to describle the array index type evolved a bit.
1529 Initially, the information would be provided through the name of each
1530 field of the structure type only, while the type of these fields was
1531 described as unspecified and irrelevant. The debugger was then expected
1532 to perform a global type lookup using the name of that field in order
1533 to get access to the full index type description. Because these global
1534 lookups can be very expensive, the encoding was later enhanced to make
1535 the global lookup unnecessary by defining the field type as being
1536 the full index type description.
1537
1538 The purpose of this routine is to allow us to support older versions
1539 of the compiler by detecting the use of the older encoding, and by
1540 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1541 we essentially replace each field's meaningless type by the associated
1542 index subtype). */
1543
1544 void
1545 ada_fixup_array_indexes_type (struct type *index_desc_type)
1546 {
1547 int i;
1548
1549 if (index_desc_type == NULL)
1550 return;
1551 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1552
1553 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1554 to check one field only, no need to check them all). If not, return
1555 now.
1556
1557 If our INDEX_DESC_TYPE was generated using the older encoding,
1558 the field type should be a meaningless integer type whose name
1559 is not equal to the field name. */
1560 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1561 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1562 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1563 return;
1564
1565 /* Fixup each field of INDEX_DESC_TYPE. */
1566 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1567 {
1568 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1569 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1570
1571 if (raw_type)
1572 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1573 }
1574 }
1575
1576 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1577
1578 static const char *bound_name[] = {
1579 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1580 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1581 };
1582
1583 /* Maximum number of array dimensions we are prepared to handle. */
1584
1585 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1586
1587
1588 /* The desc_* routines return primitive portions of array descriptors
1589 (fat pointers). */
1590
1591 /* The descriptor or array type, if any, indicated by TYPE; removes
1592 level of indirection, if needed. */
1593
1594 static struct type *
1595 desc_base_type (struct type *type)
1596 {
1597 if (type == NULL)
1598 return NULL;
1599 type = ada_check_typedef (type);
1600 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1601 type = ada_typedef_target_type (type);
1602
1603 if (type != NULL
1604 && (TYPE_CODE (type) == TYPE_CODE_PTR
1605 || TYPE_CODE (type) == TYPE_CODE_REF))
1606 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1607 else
1608 return type;
1609 }
1610
1611 /* True iff TYPE indicates a "thin" array pointer type. */
1612
1613 static int
1614 is_thin_pntr (struct type *type)
1615 {
1616 return
1617 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1618 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1619 }
1620
1621 /* The descriptor type for thin pointer type TYPE. */
1622
1623 static struct type *
1624 thin_descriptor_type (struct type *type)
1625 {
1626 struct type *base_type = desc_base_type (type);
1627
1628 if (base_type == NULL)
1629 return NULL;
1630 if (is_suffix (ada_type_name (base_type), "___XVE"))
1631 return base_type;
1632 else
1633 {
1634 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1635
1636 if (alt_type == NULL)
1637 return base_type;
1638 else
1639 return alt_type;
1640 }
1641 }
1642
1643 /* A pointer to the array data for thin-pointer value VAL. */
1644
1645 static struct value *
1646 thin_data_pntr (struct value *val)
1647 {
1648 struct type *type = ada_check_typedef (value_type (val));
1649 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1650
1651 data_type = lookup_pointer_type (data_type);
1652
1653 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1654 return value_cast (data_type, value_copy (val));
1655 else
1656 return value_from_longest (data_type, value_address (val));
1657 }
1658
1659 /* True iff TYPE indicates a "thick" array pointer type. */
1660
1661 static int
1662 is_thick_pntr (struct type *type)
1663 {
1664 type = desc_base_type (type);
1665 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1666 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1667 }
1668
1669 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1670 pointer to one, the type of its bounds data; otherwise, NULL. */
1671
1672 static struct type *
1673 desc_bounds_type (struct type *type)
1674 {
1675 struct type *r;
1676
1677 type = desc_base_type (type);
1678
1679 if (type == NULL)
1680 return NULL;
1681 else if (is_thin_pntr (type))
1682 {
1683 type = thin_descriptor_type (type);
1684 if (type == NULL)
1685 return NULL;
1686 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1687 if (r != NULL)
1688 return ada_check_typedef (r);
1689 }
1690 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1691 {
1692 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1693 if (r != NULL)
1694 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1695 }
1696 return NULL;
1697 }
1698
1699 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1700 one, a pointer to its bounds data. Otherwise NULL. */
1701
1702 static struct value *
1703 desc_bounds (struct value *arr)
1704 {
1705 struct type *type = ada_check_typedef (value_type (arr));
1706
1707 if (is_thin_pntr (type))
1708 {
1709 struct type *bounds_type =
1710 desc_bounds_type (thin_descriptor_type (type));
1711 LONGEST addr;
1712
1713 if (bounds_type == NULL)
1714 error (_("Bad GNAT array descriptor"));
1715
1716 /* NOTE: The following calculation is not really kosher, but
1717 since desc_type is an XVE-encoded type (and shouldn't be),
1718 the correct calculation is a real pain. FIXME (and fix GCC). */
1719 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1720 addr = value_as_long (arr);
1721 else
1722 addr = value_address (arr);
1723
1724 return
1725 value_from_longest (lookup_pointer_type (bounds_type),
1726 addr - TYPE_LENGTH (bounds_type));
1727 }
1728
1729 else if (is_thick_pntr (type))
1730 {
1731 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1732 _("Bad GNAT array descriptor"));
1733 struct type *p_bounds_type = value_type (p_bounds);
1734
1735 if (p_bounds_type
1736 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1737 {
1738 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1739
1740 if (TYPE_STUB (target_type))
1741 p_bounds = value_cast (lookup_pointer_type
1742 (ada_check_typedef (target_type)),
1743 p_bounds);
1744 }
1745 else
1746 error (_("Bad GNAT array descriptor"));
1747
1748 return p_bounds;
1749 }
1750 else
1751 return NULL;
1752 }
1753
1754 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1755 position of the field containing the address of the bounds data. */
1756
1757 static int
1758 fat_pntr_bounds_bitpos (struct type *type)
1759 {
1760 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1761 }
1762
1763 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1764 size of the field containing the address of the bounds data. */
1765
1766 static int
1767 fat_pntr_bounds_bitsize (struct type *type)
1768 {
1769 type = desc_base_type (type);
1770
1771 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1772 return TYPE_FIELD_BITSIZE (type, 1);
1773 else
1774 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1775 }
1776
1777 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1778 pointer to one, the type of its array data (a array-with-no-bounds type);
1779 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1780 data. */
1781
1782 static struct type *
1783 desc_data_target_type (struct type *type)
1784 {
1785 type = desc_base_type (type);
1786
1787 /* NOTE: The following is bogus; see comment in desc_bounds. */
1788 if (is_thin_pntr (type))
1789 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1790 else if (is_thick_pntr (type))
1791 {
1792 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1793
1794 if (data_type
1795 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1796 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1797 }
1798
1799 return NULL;
1800 }
1801
1802 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1803 its array data. */
1804
1805 static struct value *
1806 desc_data (struct value *arr)
1807 {
1808 struct type *type = value_type (arr);
1809
1810 if (is_thin_pntr (type))
1811 return thin_data_pntr (arr);
1812 else if (is_thick_pntr (type))
1813 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1814 _("Bad GNAT array descriptor"));
1815 else
1816 return NULL;
1817 }
1818
1819
1820 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1821 position of the field containing the address of the data. */
1822
1823 static int
1824 fat_pntr_data_bitpos (struct type *type)
1825 {
1826 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1827 }
1828
1829 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1830 size of the field containing the address of the data. */
1831
1832 static int
1833 fat_pntr_data_bitsize (struct type *type)
1834 {
1835 type = desc_base_type (type);
1836
1837 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1838 return TYPE_FIELD_BITSIZE (type, 0);
1839 else
1840 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1841 }
1842
1843 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1844 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
1847 static struct value *
1848 desc_one_bound (struct value *bounds, int i, int which)
1849 {
1850 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1851 _("Bad GNAT array descriptor bounds"));
1852 }
1853
1854 /* If BOUNDS is an array-bounds structure type, return the bit position
1855 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1856 bound, if WHICH is 1. The first bound is I=1. */
1857
1858 static int
1859 desc_bound_bitpos (struct type *type, int i, int which)
1860 {
1861 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1862 }
1863
1864 /* If BOUNDS is an array-bounds structure type, return the bit field size
1865 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1866 bound, if WHICH is 1. The first bound is I=1. */
1867
1868 static int
1869 desc_bound_bitsize (struct type *type, int i, int which)
1870 {
1871 type = desc_base_type (type);
1872
1873 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1874 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1875 else
1876 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1877 }
1878
1879 /* If TYPE is the type of an array-bounds structure, the type of its
1880 Ith bound (numbering from 1). Otherwise, NULL. */
1881
1882 static struct type *
1883 desc_index_type (struct type *type, int i)
1884 {
1885 type = desc_base_type (type);
1886
1887 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1888 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1889 else
1890 return NULL;
1891 }
1892
1893 /* The number of index positions in the array-bounds type TYPE.
1894 Return 0 if TYPE is NULL. */
1895
1896 static int
1897 desc_arity (struct type *type)
1898 {
1899 type = desc_base_type (type);
1900
1901 if (type != NULL)
1902 return TYPE_NFIELDS (type) / 2;
1903 return 0;
1904 }
1905
1906 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1907 an array descriptor type (representing an unconstrained array
1908 type). */
1909
1910 static int
1911 ada_is_direct_array_type (struct type *type)
1912 {
1913 if (type == NULL)
1914 return 0;
1915 type = ada_check_typedef (type);
1916 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1917 || ada_is_array_descriptor_type (type));
1918 }
1919
1920 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1921 * to one. */
1922
1923 static int
1924 ada_is_array_type (struct type *type)
1925 {
1926 while (type != NULL
1927 && (TYPE_CODE (type) == TYPE_CODE_PTR
1928 || TYPE_CODE (type) == TYPE_CODE_REF))
1929 type = TYPE_TARGET_TYPE (type);
1930 return ada_is_direct_array_type (type);
1931 }
1932
1933 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1934
1935 int
1936 ada_is_simple_array_type (struct type *type)
1937 {
1938 if (type == NULL)
1939 return 0;
1940 type = ada_check_typedef (type);
1941 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1942 || (TYPE_CODE (type) == TYPE_CODE_PTR
1943 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1944 == TYPE_CODE_ARRAY));
1945 }
1946
1947 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1948
1949 int
1950 ada_is_array_descriptor_type (struct type *type)
1951 {
1952 struct type *data_type = desc_data_target_type (type);
1953
1954 if (type == NULL)
1955 return 0;
1956 type = ada_check_typedef (type);
1957 return (data_type != NULL
1958 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1959 && desc_arity (desc_bounds_type (type)) > 0);
1960 }
1961
1962 /* Non-zero iff type is a partially mal-formed GNAT array
1963 descriptor. FIXME: This is to compensate for some problems with
1964 debugging output from GNAT. Re-examine periodically to see if it
1965 is still needed. */
1966
1967 int
1968 ada_is_bogus_array_descriptor (struct type *type)
1969 {
1970 return
1971 type != NULL
1972 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1973 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1974 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1975 && !ada_is_array_descriptor_type (type);
1976 }
1977
1978
1979 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1980 (fat pointer) returns the type of the array data described---specifically,
1981 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1982 in from the descriptor; otherwise, they are left unspecified. If
1983 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1984 returns NULL. The result is simply the type of ARR if ARR is not
1985 a descriptor. */
1986 struct type *
1987 ada_type_of_array (struct value *arr, int bounds)
1988 {
1989 if (ada_is_constrained_packed_array_type (value_type (arr)))
1990 return decode_constrained_packed_array_type (value_type (arr));
1991
1992 if (!ada_is_array_descriptor_type (value_type (arr)))
1993 return value_type (arr);
1994
1995 if (!bounds)
1996 {
1997 struct type *array_type =
1998 ada_check_typedef (desc_data_target_type (value_type (arr)));
1999
2000 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2001 TYPE_FIELD_BITSIZE (array_type, 0) =
2002 decode_packed_array_bitsize (value_type (arr));
2003
2004 return array_type;
2005 }
2006 else
2007 {
2008 struct type *elt_type;
2009 int arity;
2010 struct value *descriptor;
2011
2012 elt_type = ada_array_element_type (value_type (arr), -1);
2013 arity = ada_array_arity (value_type (arr));
2014
2015 if (elt_type == NULL || arity == 0)
2016 return ada_check_typedef (value_type (arr));
2017
2018 descriptor = desc_bounds (arr);
2019 if (value_as_long (descriptor) == 0)
2020 return NULL;
2021 while (arity > 0)
2022 {
2023 struct type *range_type = alloc_type_copy (value_type (arr));
2024 struct type *array_type = alloc_type_copy (value_type (arr));
2025 struct value *low = desc_one_bound (descriptor, arity, 0);
2026 struct value *high = desc_one_bound (descriptor, arity, 1);
2027
2028 arity -= 1;
2029 create_static_range_type (range_type, value_type (low),
2030 longest_to_int (value_as_long (low)),
2031 longest_to_int (value_as_long (high)));
2032 elt_type = create_array_type (array_type, elt_type, range_type);
2033
2034 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2035 {
2036 /* We need to store the element packed bitsize, as well as
2037 recompute the array size, because it was previously
2038 computed based on the unpacked element size. */
2039 LONGEST lo = value_as_long (low);
2040 LONGEST hi = value_as_long (high);
2041
2042 TYPE_FIELD_BITSIZE (elt_type, 0) =
2043 decode_packed_array_bitsize (value_type (arr));
2044 /* If the array has no element, then the size is already
2045 zero, and does not need to be recomputed. */
2046 if (lo < hi)
2047 {
2048 int array_bitsize =
2049 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2050
2051 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2052 }
2053 }
2054 }
2055
2056 return lookup_pointer_type (elt_type);
2057 }
2058 }
2059
2060 /* If ARR does not represent an array, returns ARR unchanged.
2061 Otherwise, returns either a standard GDB array with bounds set
2062 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2063 GDB array. Returns NULL if ARR is a null fat pointer. */
2064
2065 struct value *
2066 ada_coerce_to_simple_array_ptr (struct value *arr)
2067 {
2068 if (ada_is_array_descriptor_type (value_type (arr)))
2069 {
2070 struct type *arrType = ada_type_of_array (arr, 1);
2071
2072 if (arrType == NULL)
2073 return NULL;
2074 return value_cast (arrType, value_copy (desc_data (arr)));
2075 }
2076 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2077 return decode_constrained_packed_array (arr);
2078 else
2079 return arr;
2080 }
2081
2082 /* If ARR does not represent an array, returns ARR unchanged.
2083 Otherwise, returns a standard GDB array describing ARR (which may
2084 be ARR itself if it already is in the proper form). */
2085
2086 struct value *
2087 ada_coerce_to_simple_array (struct value *arr)
2088 {
2089 if (ada_is_array_descriptor_type (value_type (arr)))
2090 {
2091 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2092
2093 if (arrVal == NULL)
2094 error (_("Bounds unavailable for null array pointer."));
2095 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2096 return value_ind (arrVal);
2097 }
2098 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2099 return decode_constrained_packed_array (arr);
2100 else
2101 return arr;
2102 }
2103
2104 /* If TYPE represents a GNAT array type, return it translated to an
2105 ordinary GDB array type (possibly with BITSIZE fields indicating
2106 packing). For other types, is the identity. */
2107
2108 struct type *
2109 ada_coerce_to_simple_array_type (struct type *type)
2110 {
2111 if (ada_is_constrained_packed_array_type (type))
2112 return decode_constrained_packed_array_type (type);
2113
2114 if (ada_is_array_descriptor_type (type))
2115 return ada_check_typedef (desc_data_target_type (type));
2116
2117 return type;
2118 }
2119
2120 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2121
2122 static int
2123 ada_is_packed_array_type (struct type *type)
2124 {
2125 if (type == NULL)
2126 return 0;
2127 type = desc_base_type (type);
2128 type = ada_check_typedef (type);
2129 return
2130 ada_type_name (type) != NULL
2131 && strstr (ada_type_name (type), "___XP") != NULL;
2132 }
2133
2134 /* Non-zero iff TYPE represents a standard GNAT constrained
2135 packed-array type. */
2136
2137 int
2138 ada_is_constrained_packed_array_type (struct type *type)
2139 {
2140 return ada_is_packed_array_type (type)
2141 && !ada_is_array_descriptor_type (type);
2142 }
2143
2144 /* Non-zero iff TYPE represents an array descriptor for a
2145 unconstrained packed-array type. */
2146
2147 static int
2148 ada_is_unconstrained_packed_array_type (struct type *type)
2149 {
2150 return ada_is_packed_array_type (type)
2151 && ada_is_array_descriptor_type (type);
2152 }
2153
2154 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2155 return the size of its elements in bits. */
2156
2157 static long
2158 decode_packed_array_bitsize (struct type *type)
2159 {
2160 const char *raw_name;
2161 const char *tail;
2162 long bits;
2163
2164 /* Access to arrays implemented as fat pointers are encoded as a typedef
2165 of the fat pointer type. We need the name of the fat pointer type
2166 to do the decoding, so strip the typedef layer. */
2167 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2168 type = ada_typedef_target_type (type);
2169
2170 raw_name = ada_type_name (ada_check_typedef (type));
2171 if (!raw_name)
2172 raw_name = ada_type_name (desc_base_type (type));
2173
2174 if (!raw_name)
2175 return 0;
2176
2177 tail = strstr (raw_name, "___XP");
2178 gdb_assert (tail != NULL);
2179
2180 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2181 {
2182 lim_warning
2183 (_("could not understand bit size information on packed array"));
2184 return 0;
2185 }
2186
2187 return bits;
2188 }
2189
2190 /* Given that TYPE is a standard GDB array type with all bounds filled
2191 in, and that the element size of its ultimate scalar constituents
2192 (that is, either its elements, or, if it is an array of arrays, its
2193 elements' elements, etc.) is *ELT_BITS, return an identical type,
2194 but with the bit sizes of its elements (and those of any
2195 constituent arrays) recorded in the BITSIZE components of its
2196 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2197 in bits.
2198
2199 Note that, for arrays whose index type has an XA encoding where
2200 a bound references a record discriminant, getting that discriminant,
2201 and therefore the actual value of that bound, is not possible
2202 because none of the given parameters gives us access to the record.
2203 This function assumes that it is OK in the context where it is being
2204 used to return an array whose bounds are still dynamic and where
2205 the length is arbitrary. */
2206
2207 static struct type *
2208 constrained_packed_array_type (struct type *type, long *elt_bits)
2209 {
2210 struct type *new_elt_type;
2211 struct type *new_type;
2212 struct type *index_type_desc;
2213 struct type *index_type;
2214 LONGEST low_bound, high_bound;
2215
2216 type = ada_check_typedef (type);
2217 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2218 return type;
2219
2220 index_type_desc = ada_find_parallel_type (type, "___XA");
2221 if (index_type_desc)
2222 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2223 NULL);
2224 else
2225 index_type = TYPE_INDEX_TYPE (type);
2226
2227 new_type = alloc_type_copy (type);
2228 new_elt_type =
2229 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2230 elt_bits);
2231 create_array_type (new_type, new_elt_type, index_type);
2232 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2233 TYPE_NAME (new_type) = ada_type_name (type);
2234
2235 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2236 && is_dynamic_type (check_typedef (index_type)))
2237 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2238 low_bound = high_bound = 0;
2239 if (high_bound < low_bound)
2240 *elt_bits = TYPE_LENGTH (new_type) = 0;
2241 else
2242 {
2243 *elt_bits *= (high_bound - low_bound + 1);
2244 TYPE_LENGTH (new_type) =
2245 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2246 }
2247
2248 TYPE_FIXED_INSTANCE (new_type) = 1;
2249 return new_type;
2250 }
2251
2252 /* The array type encoded by TYPE, where
2253 ada_is_constrained_packed_array_type (TYPE). */
2254
2255 static struct type *
2256 decode_constrained_packed_array_type (struct type *type)
2257 {
2258 const char *raw_name = ada_type_name (ada_check_typedef (type));
2259 char *name;
2260 const char *tail;
2261 struct type *shadow_type;
2262 long bits;
2263
2264 if (!raw_name)
2265 raw_name = ada_type_name (desc_base_type (type));
2266
2267 if (!raw_name)
2268 return NULL;
2269
2270 name = (char *) alloca (strlen (raw_name) + 1);
2271 tail = strstr (raw_name, "___XP");
2272 type = desc_base_type (type);
2273
2274 memcpy (name, raw_name, tail - raw_name);
2275 name[tail - raw_name] = '\000';
2276
2277 shadow_type = ada_find_parallel_type_with_name (type, name);
2278
2279 if (shadow_type == NULL)
2280 {
2281 lim_warning (_("could not find bounds information on packed array"));
2282 return NULL;
2283 }
2284 shadow_type = check_typedef (shadow_type);
2285
2286 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2287 {
2288 lim_warning (_("could not understand bounds "
2289 "information on packed array"));
2290 return NULL;
2291 }
2292
2293 bits = decode_packed_array_bitsize (type);
2294 return constrained_packed_array_type (shadow_type, &bits);
2295 }
2296
2297 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2298 array, returns a simple array that denotes that array. Its type is a
2299 standard GDB array type except that the BITSIZEs of the array
2300 target types are set to the number of bits in each element, and the
2301 type length is set appropriately. */
2302
2303 static struct value *
2304 decode_constrained_packed_array (struct value *arr)
2305 {
2306 struct type *type;
2307
2308 /* If our value is a pointer, then dereference it. Likewise if
2309 the value is a reference. Make sure that this operation does not
2310 cause the target type to be fixed, as this would indirectly cause
2311 this array to be decoded. The rest of the routine assumes that
2312 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2313 and "value_ind" routines to perform the dereferencing, as opposed
2314 to using "ada_coerce_ref" or "ada_value_ind". */
2315 arr = coerce_ref (arr);
2316 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2317 arr = value_ind (arr);
2318
2319 type = decode_constrained_packed_array_type (value_type (arr));
2320 if (type == NULL)
2321 {
2322 error (_("can't unpack array"));
2323 return NULL;
2324 }
2325
2326 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2327 && ada_is_modular_type (value_type (arr)))
2328 {
2329 /* This is a (right-justified) modular type representing a packed
2330 array with no wrapper. In order to interpret the value through
2331 the (left-justified) packed array type we just built, we must
2332 first left-justify it. */
2333 int bit_size, bit_pos;
2334 ULONGEST mod;
2335
2336 mod = ada_modulus (value_type (arr)) - 1;
2337 bit_size = 0;
2338 while (mod > 0)
2339 {
2340 bit_size += 1;
2341 mod >>= 1;
2342 }
2343 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2344 arr = ada_value_primitive_packed_val (arr, NULL,
2345 bit_pos / HOST_CHAR_BIT,
2346 bit_pos % HOST_CHAR_BIT,
2347 bit_size,
2348 type);
2349 }
2350
2351 return coerce_unspec_val_to_type (arr, type);
2352 }
2353
2354
2355 /* The value of the element of packed array ARR at the ARITY indices
2356 given in IND. ARR must be a simple array. */
2357
2358 static struct value *
2359 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2360 {
2361 int i;
2362 int bits, elt_off, bit_off;
2363 long elt_total_bit_offset;
2364 struct type *elt_type;
2365 struct value *v;
2366
2367 bits = 0;
2368 elt_total_bit_offset = 0;
2369 elt_type = ada_check_typedef (value_type (arr));
2370 for (i = 0; i < arity; i += 1)
2371 {
2372 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2373 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2374 error
2375 (_("attempt to do packed indexing of "
2376 "something other than a packed array"));
2377 else
2378 {
2379 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2380 LONGEST lowerbound, upperbound;
2381 LONGEST idx;
2382
2383 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2384 {
2385 lim_warning (_("don't know bounds of array"));
2386 lowerbound = upperbound = 0;
2387 }
2388
2389 idx = pos_atr (ind[i]);
2390 if (idx < lowerbound || idx > upperbound)
2391 lim_warning (_("packed array index %ld out of bounds"),
2392 (long) idx);
2393 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2394 elt_total_bit_offset += (idx - lowerbound) * bits;
2395 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2396 }
2397 }
2398 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2399 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2400
2401 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2402 bits, elt_type);
2403 return v;
2404 }
2405
2406 /* Non-zero iff TYPE includes negative integer values. */
2407
2408 static int
2409 has_negatives (struct type *type)
2410 {
2411 switch (TYPE_CODE (type))
2412 {
2413 default:
2414 return 0;
2415 case TYPE_CODE_INT:
2416 return !TYPE_UNSIGNED (type);
2417 case TYPE_CODE_RANGE:
2418 return TYPE_LOW_BOUND (type) < 0;
2419 }
2420 }
2421
2422 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2423 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2424 the unpacked buffer.
2425
2426 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2427 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2428
2429 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2430 zero otherwise.
2431
2432 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2433
2434 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2435
2436 static void
2437 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2438 gdb_byte *unpacked, int unpacked_len,
2439 int is_big_endian, int is_signed_type,
2440 int is_scalar)
2441 {
2442 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2443 int src_idx; /* Index into the source area */
2444 int src_bytes_left; /* Number of source bytes left to process. */
2445 int srcBitsLeft; /* Number of source bits left to move */
2446 int unusedLS; /* Number of bits in next significant
2447 byte of source that are unused */
2448
2449 int unpacked_idx; /* Index into the unpacked buffer */
2450 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2451
2452 unsigned long accum; /* Staging area for bits being transferred */
2453 int accumSize; /* Number of meaningful bits in accum */
2454 unsigned char sign;
2455
2456 /* Transmit bytes from least to most significant; delta is the direction
2457 the indices move. */
2458 int delta = is_big_endian ? -1 : 1;
2459
2460 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2461 bits from SRC. .*/
2462 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2463 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2464 bit_size, unpacked_len);
2465
2466 srcBitsLeft = bit_size;
2467 src_bytes_left = src_len;
2468 unpacked_bytes_left = unpacked_len;
2469 sign = 0;
2470
2471 if (is_big_endian)
2472 {
2473 src_idx = src_len - 1;
2474 if (is_signed_type
2475 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2476 sign = ~0;
2477
2478 unusedLS =
2479 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2480 % HOST_CHAR_BIT;
2481
2482 if (is_scalar)
2483 {
2484 accumSize = 0;
2485 unpacked_idx = unpacked_len - 1;
2486 }
2487 else
2488 {
2489 /* Non-scalar values must be aligned at a byte boundary... */
2490 accumSize =
2491 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2492 /* ... And are placed at the beginning (most-significant) bytes
2493 of the target. */
2494 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2495 unpacked_bytes_left = unpacked_idx + 1;
2496 }
2497 }
2498 else
2499 {
2500 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2501
2502 src_idx = unpacked_idx = 0;
2503 unusedLS = bit_offset;
2504 accumSize = 0;
2505
2506 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2507 sign = ~0;
2508 }
2509
2510 accum = 0;
2511 while (src_bytes_left > 0)
2512 {
2513 /* Mask for removing bits of the next source byte that are not
2514 part of the value. */
2515 unsigned int unusedMSMask =
2516 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2517 1;
2518 /* Sign-extend bits for this byte. */
2519 unsigned int signMask = sign & ~unusedMSMask;
2520
2521 accum |=
2522 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2523 accumSize += HOST_CHAR_BIT - unusedLS;
2524 if (accumSize >= HOST_CHAR_BIT)
2525 {
2526 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2527 accumSize -= HOST_CHAR_BIT;
2528 accum >>= HOST_CHAR_BIT;
2529 unpacked_bytes_left -= 1;
2530 unpacked_idx += delta;
2531 }
2532 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2533 unusedLS = 0;
2534 src_bytes_left -= 1;
2535 src_idx += delta;
2536 }
2537 while (unpacked_bytes_left > 0)
2538 {
2539 accum |= sign << accumSize;
2540 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2541 accumSize -= HOST_CHAR_BIT;
2542 if (accumSize < 0)
2543 accumSize = 0;
2544 accum >>= HOST_CHAR_BIT;
2545 unpacked_bytes_left -= 1;
2546 unpacked_idx += delta;
2547 }
2548 }
2549
2550 /* Create a new value of type TYPE from the contents of OBJ starting
2551 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2552 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2553 assigning through the result will set the field fetched from.
2554 VALADDR is ignored unless OBJ is NULL, in which case,
2555 VALADDR+OFFSET must address the start of storage containing the
2556 packed value. The value returned in this case is never an lval.
2557 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2558
2559 struct value *
2560 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2561 long offset, int bit_offset, int bit_size,
2562 struct type *type)
2563 {
2564 struct value *v;
2565 const gdb_byte *src; /* First byte containing data to unpack */
2566 gdb_byte *unpacked;
2567 const int is_scalar = is_scalar_type (type);
2568 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2569 gdb::byte_vector staging;
2570
2571 type = ada_check_typedef (type);
2572
2573 if (obj == NULL)
2574 src = valaddr + offset;
2575 else
2576 src = value_contents (obj) + offset;
2577
2578 if (is_dynamic_type (type))
2579 {
2580 /* The length of TYPE might by dynamic, so we need to resolve
2581 TYPE in order to know its actual size, which we then use
2582 to create the contents buffer of the value we return.
2583 The difficulty is that the data containing our object is
2584 packed, and therefore maybe not at a byte boundary. So, what
2585 we do, is unpack the data into a byte-aligned buffer, and then
2586 use that buffer as our object's value for resolving the type. */
2587 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2588 staging.resize (staging_len);
2589
2590 ada_unpack_from_contents (src, bit_offset, bit_size,
2591 staging.data (), staging.size (),
2592 is_big_endian, has_negatives (type),
2593 is_scalar);
2594 type = resolve_dynamic_type (type, staging.data (), 0);
2595 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2596 {
2597 /* This happens when the length of the object is dynamic,
2598 and is actually smaller than the space reserved for it.
2599 For instance, in an array of variant records, the bit_size
2600 we're given is the array stride, which is constant and
2601 normally equal to the maximum size of its element.
2602 But, in reality, each element only actually spans a portion
2603 of that stride. */
2604 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2605 }
2606 }
2607
2608 if (obj == NULL)
2609 {
2610 v = allocate_value (type);
2611 src = valaddr + offset;
2612 }
2613 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2614 {
2615 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2616 gdb_byte *buf;
2617
2618 v = value_at (type, value_address (obj) + offset);
2619 buf = (gdb_byte *) alloca (src_len);
2620 read_memory (value_address (v), buf, src_len);
2621 src = buf;
2622 }
2623 else
2624 {
2625 v = allocate_value (type);
2626 src = value_contents (obj) + offset;
2627 }
2628
2629 if (obj != NULL)
2630 {
2631 long new_offset = offset;
2632
2633 set_value_component_location (v, obj);
2634 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2635 set_value_bitsize (v, bit_size);
2636 if (value_bitpos (v) >= HOST_CHAR_BIT)
2637 {
2638 ++new_offset;
2639 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2640 }
2641 set_value_offset (v, new_offset);
2642
2643 /* Also set the parent value. This is needed when trying to
2644 assign a new value (in inferior memory). */
2645 set_value_parent (v, obj);
2646 }
2647 else
2648 set_value_bitsize (v, bit_size);
2649 unpacked = value_contents_writeable (v);
2650
2651 if (bit_size == 0)
2652 {
2653 memset (unpacked, 0, TYPE_LENGTH (type));
2654 return v;
2655 }
2656
2657 if (staging.size () == TYPE_LENGTH (type))
2658 {
2659 /* Small short-cut: If we've unpacked the data into a buffer
2660 of the same size as TYPE's length, then we can reuse that,
2661 instead of doing the unpacking again. */
2662 memcpy (unpacked, staging.data (), staging.size ());
2663 }
2664 else
2665 ada_unpack_from_contents (src, bit_offset, bit_size,
2666 unpacked, TYPE_LENGTH (type),
2667 is_big_endian, has_negatives (type), is_scalar);
2668
2669 return v;
2670 }
2671
2672 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2673 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2674 not overlap. */
2675 static void
2676 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2677 int src_offset, int n, int bits_big_endian_p)
2678 {
2679 unsigned int accum, mask;
2680 int accum_bits, chunk_size;
2681
2682 target += targ_offset / HOST_CHAR_BIT;
2683 targ_offset %= HOST_CHAR_BIT;
2684 source += src_offset / HOST_CHAR_BIT;
2685 src_offset %= HOST_CHAR_BIT;
2686 if (bits_big_endian_p)
2687 {
2688 accum = (unsigned char) *source;
2689 source += 1;
2690 accum_bits = HOST_CHAR_BIT - src_offset;
2691
2692 while (n > 0)
2693 {
2694 int unused_right;
2695
2696 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2697 accum_bits += HOST_CHAR_BIT;
2698 source += 1;
2699 chunk_size = HOST_CHAR_BIT - targ_offset;
2700 if (chunk_size > n)
2701 chunk_size = n;
2702 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2703 mask = ((1 << chunk_size) - 1) << unused_right;
2704 *target =
2705 (*target & ~mask)
2706 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2707 n -= chunk_size;
2708 accum_bits -= chunk_size;
2709 target += 1;
2710 targ_offset = 0;
2711 }
2712 }
2713 else
2714 {
2715 accum = (unsigned char) *source >> src_offset;
2716 source += 1;
2717 accum_bits = HOST_CHAR_BIT - src_offset;
2718
2719 while (n > 0)
2720 {
2721 accum = accum + ((unsigned char) *source << accum_bits);
2722 accum_bits += HOST_CHAR_BIT;
2723 source += 1;
2724 chunk_size = HOST_CHAR_BIT - targ_offset;
2725 if (chunk_size > n)
2726 chunk_size = n;
2727 mask = ((1 << chunk_size) - 1) << targ_offset;
2728 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2729 n -= chunk_size;
2730 accum_bits -= chunk_size;
2731 accum >>= chunk_size;
2732 target += 1;
2733 targ_offset = 0;
2734 }
2735 }
2736 }
2737
2738 /* Store the contents of FROMVAL into the location of TOVAL.
2739 Return a new value with the location of TOVAL and contents of
2740 FROMVAL. Handles assignment into packed fields that have
2741 floating-point or non-scalar types. */
2742
2743 static struct value *
2744 ada_value_assign (struct value *toval, struct value *fromval)
2745 {
2746 struct type *type = value_type (toval);
2747 int bits = value_bitsize (toval);
2748
2749 toval = ada_coerce_ref (toval);
2750 fromval = ada_coerce_ref (fromval);
2751
2752 if (ada_is_direct_array_type (value_type (toval)))
2753 toval = ada_coerce_to_simple_array (toval);
2754 if (ada_is_direct_array_type (value_type (fromval)))
2755 fromval = ada_coerce_to_simple_array (fromval);
2756
2757 if (!deprecated_value_modifiable (toval))
2758 error (_("Left operand of assignment is not a modifiable lvalue."));
2759
2760 if (VALUE_LVAL (toval) == lval_memory
2761 && bits > 0
2762 && (TYPE_CODE (type) == TYPE_CODE_FLT
2763 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2764 {
2765 int len = (value_bitpos (toval)
2766 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2767 int from_size;
2768 gdb_byte *buffer = (gdb_byte *) alloca (len);
2769 struct value *val;
2770 CORE_ADDR to_addr = value_address (toval);
2771
2772 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2773 fromval = value_cast (type, fromval);
2774
2775 read_memory (to_addr, buffer, len);
2776 from_size = value_bitsize (fromval);
2777 if (from_size == 0)
2778 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2779 if (gdbarch_bits_big_endian (get_type_arch (type)))
2780 move_bits (buffer, value_bitpos (toval),
2781 value_contents (fromval), from_size - bits, bits, 1);
2782 else
2783 move_bits (buffer, value_bitpos (toval),
2784 value_contents (fromval), 0, bits, 0);
2785 write_memory_with_notification (to_addr, buffer, len);
2786
2787 val = value_copy (toval);
2788 memcpy (value_contents_raw (val), value_contents (fromval),
2789 TYPE_LENGTH (type));
2790 deprecated_set_value_type (val, type);
2791
2792 return val;
2793 }
2794
2795 return value_assign (toval, fromval);
2796 }
2797
2798
2799 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2800 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2801 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2802 COMPONENT, and not the inferior's memory. The current contents
2803 of COMPONENT are ignored.
2804
2805 Although not part of the initial design, this function also works
2806 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2807 had a null address, and COMPONENT had an address which is equal to
2808 its offset inside CONTAINER. */
2809
2810 static void
2811 value_assign_to_component (struct value *container, struct value *component,
2812 struct value *val)
2813 {
2814 LONGEST offset_in_container =
2815 (LONGEST) (value_address (component) - value_address (container));
2816 int bit_offset_in_container =
2817 value_bitpos (component) - value_bitpos (container);
2818 int bits;
2819
2820 val = value_cast (value_type (component), val);
2821
2822 if (value_bitsize (component) == 0)
2823 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2824 else
2825 bits = value_bitsize (component);
2826
2827 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2828 move_bits (value_contents_writeable (container) + offset_in_container,
2829 value_bitpos (container) + bit_offset_in_container,
2830 value_contents (val),
2831 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2832 bits, 1);
2833 else
2834 move_bits (value_contents_writeable (container) + offset_in_container,
2835 value_bitpos (container) + bit_offset_in_container,
2836 value_contents (val), 0, bits, 0);
2837 }
2838
2839 /* The value of the element of array ARR at the ARITY indices given in IND.
2840 ARR may be either a simple array, GNAT array descriptor, or pointer
2841 thereto. */
2842
2843 struct value *
2844 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2845 {
2846 int k;
2847 struct value *elt;
2848 struct type *elt_type;
2849
2850 elt = ada_coerce_to_simple_array (arr);
2851
2852 elt_type = ada_check_typedef (value_type (elt));
2853 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2854 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2855 return value_subscript_packed (elt, arity, ind);
2856
2857 for (k = 0; k < arity; k += 1)
2858 {
2859 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2860 error (_("too many subscripts (%d expected)"), k);
2861 elt = value_subscript (elt, pos_atr (ind[k]));
2862 }
2863 return elt;
2864 }
2865
2866 /* Assuming ARR is a pointer to a GDB array, the value of the element
2867 of *ARR at the ARITY indices given in IND.
2868 Does not read the entire array into memory.
2869
2870 Note: Unlike what one would expect, this function is used instead of
2871 ada_value_subscript for basically all non-packed array types. The reason
2872 for this is that a side effect of doing our own pointer arithmetics instead
2873 of relying on value_subscript is that there is no implicit typedef peeling.
2874 This is important for arrays of array accesses, where it allows us to
2875 preserve the fact that the array's element is an array access, where the
2876 access part os encoded in a typedef layer. */
2877
2878 static struct value *
2879 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2880 {
2881 int k;
2882 struct value *array_ind = ada_value_ind (arr);
2883 struct type *type
2884 = check_typedef (value_enclosing_type (array_ind));
2885
2886 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2887 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2888 return value_subscript_packed (array_ind, arity, ind);
2889
2890 for (k = 0; k < arity; k += 1)
2891 {
2892 LONGEST lwb, upb;
2893 struct value *lwb_value;
2894
2895 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2896 error (_("too many subscripts (%d expected)"), k);
2897 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2898 value_copy (arr));
2899 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2900 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2901 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2902 type = TYPE_TARGET_TYPE (type);
2903 }
2904
2905 return value_ind (arr);
2906 }
2907
2908 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2909 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2910 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2911 this array is LOW, as per Ada rules. */
2912 static struct value *
2913 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2914 int low, int high)
2915 {
2916 struct type *type0 = ada_check_typedef (type);
2917 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2918 struct type *index_type
2919 = create_static_range_type (NULL, base_index_type, low, high);
2920 struct type *slice_type =
2921 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2922 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2923 LONGEST base_low_pos, low_pos;
2924 CORE_ADDR base;
2925
2926 if (!discrete_position (base_index_type, low, &low_pos)
2927 || !discrete_position (base_index_type, base_low, &base_low_pos))
2928 {
2929 warning (_("unable to get positions in slice, use bounds instead"));
2930 low_pos = low;
2931 base_low_pos = base_low;
2932 }
2933
2934 base = value_as_address (array_ptr)
2935 + ((low_pos - base_low_pos)
2936 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2937 return value_at_lazy (slice_type, base);
2938 }
2939
2940
2941 static struct value *
2942 ada_value_slice (struct value *array, int low, int high)
2943 {
2944 struct type *type = ada_check_typedef (value_type (array));
2945 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2946 struct type *index_type
2947 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2948 struct type *slice_type =
2949 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2950 LONGEST low_pos, high_pos;
2951
2952 if (!discrete_position (base_index_type, low, &low_pos)
2953 || !discrete_position (base_index_type, high, &high_pos))
2954 {
2955 warning (_("unable to get positions in slice, use bounds instead"));
2956 low_pos = low;
2957 high_pos = high;
2958 }
2959
2960 return value_cast (slice_type,
2961 value_slice (array, low, high_pos - low_pos + 1));
2962 }
2963
2964 /* If type is a record type in the form of a standard GNAT array
2965 descriptor, returns the number of dimensions for type. If arr is a
2966 simple array, returns the number of "array of"s that prefix its
2967 type designation. Otherwise, returns 0. */
2968
2969 int
2970 ada_array_arity (struct type *type)
2971 {
2972 int arity;
2973
2974 if (type == NULL)
2975 return 0;
2976
2977 type = desc_base_type (type);
2978
2979 arity = 0;
2980 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2981 return desc_arity (desc_bounds_type (type));
2982 else
2983 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2984 {
2985 arity += 1;
2986 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2987 }
2988
2989 return arity;
2990 }
2991
2992 /* If TYPE is a record type in the form of a standard GNAT array
2993 descriptor or a simple array type, returns the element type for
2994 TYPE after indexing by NINDICES indices, or by all indices if
2995 NINDICES is -1. Otherwise, returns NULL. */
2996
2997 struct type *
2998 ada_array_element_type (struct type *type, int nindices)
2999 {
3000 type = desc_base_type (type);
3001
3002 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3003 {
3004 int k;
3005 struct type *p_array_type;
3006
3007 p_array_type = desc_data_target_type (type);
3008
3009 k = ada_array_arity (type);
3010 if (k == 0)
3011 return NULL;
3012
3013 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3014 if (nindices >= 0 && k > nindices)
3015 k = nindices;
3016 while (k > 0 && p_array_type != NULL)
3017 {
3018 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3019 k -= 1;
3020 }
3021 return p_array_type;
3022 }
3023 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3024 {
3025 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3026 {
3027 type = TYPE_TARGET_TYPE (type);
3028 nindices -= 1;
3029 }
3030 return type;
3031 }
3032
3033 return NULL;
3034 }
3035
3036 /* The type of nth index in arrays of given type (n numbering from 1).
3037 Does not examine memory. Throws an error if N is invalid or TYPE
3038 is not an array type. NAME is the name of the Ada attribute being
3039 evaluated ('range, 'first, 'last, or 'length); it is used in building
3040 the error message. */
3041
3042 static struct type *
3043 ada_index_type (struct type *type, int n, const char *name)
3044 {
3045 struct type *result_type;
3046
3047 type = desc_base_type (type);
3048
3049 if (n < 0 || n > ada_array_arity (type))
3050 error (_("invalid dimension number to '%s"), name);
3051
3052 if (ada_is_simple_array_type (type))
3053 {
3054 int i;
3055
3056 for (i = 1; i < n; i += 1)
3057 type = TYPE_TARGET_TYPE (type);
3058 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3059 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3060 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3061 perhaps stabsread.c would make more sense. */
3062 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3063 result_type = NULL;
3064 }
3065 else
3066 {
3067 result_type = desc_index_type (desc_bounds_type (type), n);
3068 if (result_type == NULL)
3069 error (_("attempt to take bound of something that is not an array"));
3070 }
3071
3072 return result_type;
3073 }
3074
3075 /* Given that arr is an array type, returns the lower bound of the
3076 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3077 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3078 array-descriptor type. It works for other arrays with bounds supplied
3079 by run-time quantities other than discriminants. */
3080
3081 static LONGEST
3082 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3083 {
3084 struct type *type, *index_type_desc, *index_type;
3085 int i;
3086
3087 gdb_assert (which == 0 || which == 1);
3088
3089 if (ada_is_constrained_packed_array_type (arr_type))
3090 arr_type = decode_constrained_packed_array_type (arr_type);
3091
3092 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3093 return (LONGEST) - which;
3094
3095 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3096 type = TYPE_TARGET_TYPE (arr_type);
3097 else
3098 type = arr_type;
3099
3100 if (TYPE_FIXED_INSTANCE (type))
3101 {
3102 /* The array has already been fixed, so we do not need to
3103 check the parallel ___XA type again. That encoding has
3104 already been applied, so ignore it now. */
3105 index_type_desc = NULL;
3106 }
3107 else
3108 {
3109 index_type_desc = ada_find_parallel_type (type, "___XA");
3110 ada_fixup_array_indexes_type (index_type_desc);
3111 }
3112
3113 if (index_type_desc != NULL)
3114 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3115 NULL);
3116 else
3117 {
3118 struct type *elt_type = check_typedef (type);
3119
3120 for (i = 1; i < n; i++)
3121 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3122
3123 index_type = TYPE_INDEX_TYPE (elt_type);
3124 }
3125
3126 return
3127 (LONGEST) (which == 0
3128 ? ada_discrete_type_low_bound (index_type)
3129 : ada_discrete_type_high_bound (index_type));
3130 }
3131
3132 /* Given that arr is an array value, returns the lower bound of the
3133 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3134 WHICH is 1. This routine will also work for arrays with bounds
3135 supplied by run-time quantities other than discriminants. */
3136
3137 static LONGEST
3138 ada_array_bound (struct value *arr, int n, int which)
3139 {
3140 struct type *arr_type;
3141
3142 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3143 arr = value_ind (arr);
3144 arr_type = value_enclosing_type (arr);
3145
3146 if (ada_is_constrained_packed_array_type (arr_type))
3147 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3148 else if (ada_is_simple_array_type (arr_type))
3149 return ada_array_bound_from_type (arr_type, n, which);
3150 else
3151 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3152 }
3153
3154 /* Given that arr is an array value, returns the length of the
3155 nth index. This routine will also work for arrays with bounds
3156 supplied by run-time quantities other than discriminants.
3157 Does not work for arrays indexed by enumeration types with representation
3158 clauses at the moment. */
3159
3160 static LONGEST
3161 ada_array_length (struct value *arr, int n)
3162 {
3163 struct type *arr_type, *index_type;
3164 int low, high;
3165
3166 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3167 arr = value_ind (arr);
3168 arr_type = value_enclosing_type (arr);
3169
3170 if (ada_is_constrained_packed_array_type (arr_type))
3171 return ada_array_length (decode_constrained_packed_array (arr), n);
3172
3173 if (ada_is_simple_array_type (arr_type))
3174 {
3175 low = ada_array_bound_from_type (arr_type, n, 0);
3176 high = ada_array_bound_from_type (arr_type, n, 1);
3177 }
3178 else
3179 {
3180 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3181 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3182 }
3183
3184 arr_type = check_typedef (arr_type);
3185 index_type = TYPE_INDEX_TYPE (arr_type);
3186 if (index_type != NULL)
3187 {
3188 struct type *base_type;
3189 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3190 base_type = TYPE_TARGET_TYPE (index_type);
3191 else
3192 base_type = index_type;
3193
3194 low = pos_atr (value_from_longest (base_type, low));
3195 high = pos_atr (value_from_longest (base_type, high));
3196 }
3197 return high - low + 1;
3198 }
3199
3200 /* An empty array whose type is that of ARR_TYPE (an array type),
3201 with bounds LOW to LOW-1. */
3202
3203 static struct value *
3204 empty_array (struct type *arr_type, int low)
3205 {
3206 struct type *arr_type0 = ada_check_typedef (arr_type);
3207 struct type *index_type
3208 = create_static_range_type
3209 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3210 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3211
3212 return allocate_value (create_array_type (NULL, elt_type, index_type));
3213 }
3214 \f
3215
3216 /* Name resolution */
3217
3218 /* The "decoded" name for the user-definable Ada operator corresponding
3219 to OP. */
3220
3221 static const char *
3222 ada_decoded_op_name (enum exp_opcode op)
3223 {
3224 int i;
3225
3226 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3227 {
3228 if (ada_opname_table[i].op == op)
3229 return ada_opname_table[i].decoded;
3230 }
3231 error (_("Could not find operator name for opcode"));
3232 }
3233
3234
3235 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3236 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3237 undefined namespace) and converts operators that are
3238 user-defined into appropriate function calls. If CONTEXT_TYPE is
3239 non-null, it provides a preferred result type [at the moment, only
3240 type void has any effect---causing procedures to be preferred over
3241 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3242 return type is preferred. May change (expand) *EXP. */
3243
3244 static void
3245 resolve (struct expression **expp, int void_context_p)
3246 {
3247 struct type *context_type = NULL;
3248 int pc = 0;
3249
3250 if (void_context_p)
3251 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3252
3253 resolve_subexp (expp, &pc, 1, context_type);
3254 }
3255
3256 /* Resolve the operator of the subexpression beginning at
3257 position *POS of *EXPP. "Resolving" consists of replacing
3258 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3259 with their resolutions, replacing built-in operators with
3260 function calls to user-defined operators, where appropriate, and,
3261 when DEPROCEDURE_P is non-zero, converting function-valued variables
3262 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3263 are as in ada_resolve, above. */
3264
3265 static struct value *
3266 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3267 struct type *context_type)
3268 {
3269 int pc = *pos;
3270 int i;
3271 struct expression *exp; /* Convenience: == *expp. */
3272 enum exp_opcode op = (*expp)->elts[pc].opcode;
3273 struct value **argvec; /* Vector of operand types (alloca'ed). */
3274 int nargs; /* Number of operands. */
3275 int oplen;
3276
3277 argvec = NULL;
3278 nargs = 0;
3279 exp = *expp;
3280
3281 /* Pass one: resolve operands, saving their types and updating *pos,
3282 if needed. */
3283 switch (op)
3284 {
3285 case OP_FUNCALL:
3286 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3287 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3288 *pos += 7;
3289 else
3290 {
3291 *pos += 3;
3292 resolve_subexp (expp, pos, 0, NULL);
3293 }
3294 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3295 break;
3296
3297 case UNOP_ADDR:
3298 *pos += 1;
3299 resolve_subexp (expp, pos, 0, NULL);
3300 break;
3301
3302 case UNOP_QUAL:
3303 *pos += 3;
3304 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3305 break;
3306
3307 case OP_ATR_MODULUS:
3308 case OP_ATR_SIZE:
3309 case OP_ATR_TAG:
3310 case OP_ATR_FIRST:
3311 case OP_ATR_LAST:
3312 case OP_ATR_LENGTH:
3313 case OP_ATR_POS:
3314 case OP_ATR_VAL:
3315 case OP_ATR_MIN:
3316 case OP_ATR_MAX:
3317 case TERNOP_IN_RANGE:
3318 case BINOP_IN_BOUNDS:
3319 case UNOP_IN_RANGE:
3320 case OP_AGGREGATE:
3321 case OP_OTHERS:
3322 case OP_CHOICES:
3323 case OP_POSITIONAL:
3324 case OP_DISCRETE_RANGE:
3325 case OP_NAME:
3326 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3327 *pos += oplen;
3328 break;
3329
3330 case BINOP_ASSIGN:
3331 {
3332 struct value *arg1;
3333
3334 *pos += 1;
3335 arg1 = resolve_subexp (expp, pos, 0, NULL);
3336 if (arg1 == NULL)
3337 resolve_subexp (expp, pos, 1, NULL);
3338 else
3339 resolve_subexp (expp, pos, 1, value_type (arg1));
3340 break;
3341 }
3342
3343 case UNOP_CAST:
3344 *pos += 3;
3345 nargs = 1;
3346 break;
3347
3348 case BINOP_ADD:
3349 case BINOP_SUB:
3350 case BINOP_MUL:
3351 case BINOP_DIV:
3352 case BINOP_REM:
3353 case BINOP_MOD:
3354 case BINOP_EXP:
3355 case BINOP_CONCAT:
3356 case BINOP_LOGICAL_AND:
3357 case BINOP_LOGICAL_OR:
3358 case BINOP_BITWISE_AND:
3359 case BINOP_BITWISE_IOR:
3360 case BINOP_BITWISE_XOR:
3361
3362 case BINOP_EQUAL:
3363 case BINOP_NOTEQUAL:
3364 case BINOP_LESS:
3365 case BINOP_GTR:
3366 case BINOP_LEQ:
3367 case BINOP_GEQ:
3368
3369 case BINOP_REPEAT:
3370 case BINOP_SUBSCRIPT:
3371 case BINOP_COMMA:
3372 *pos += 1;
3373 nargs = 2;
3374 break;
3375
3376 case UNOP_NEG:
3377 case UNOP_PLUS:
3378 case UNOP_LOGICAL_NOT:
3379 case UNOP_ABS:
3380 case UNOP_IND:
3381 *pos += 1;
3382 nargs = 1;
3383 break;
3384
3385 case OP_LONG:
3386 case OP_DOUBLE:
3387 case OP_VAR_VALUE:
3388 case OP_VAR_MSYM_VALUE:
3389 *pos += 4;
3390 break;
3391
3392 case OP_TYPE:
3393 case OP_BOOL:
3394 case OP_LAST:
3395 case OP_INTERNALVAR:
3396 *pos += 3;
3397 break;
3398
3399 case UNOP_MEMVAL:
3400 *pos += 3;
3401 nargs = 1;
3402 break;
3403
3404 case OP_REGISTER:
3405 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3406 break;
3407
3408 case STRUCTOP_STRUCT:
3409 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3410 nargs = 1;
3411 break;
3412
3413 case TERNOP_SLICE:
3414 *pos += 1;
3415 nargs = 3;
3416 break;
3417
3418 case OP_STRING:
3419 break;
3420
3421 default:
3422 error (_("Unexpected operator during name resolution"));
3423 }
3424
3425 argvec = XALLOCAVEC (struct value *, nargs + 1);
3426 for (i = 0; i < nargs; i += 1)
3427 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3428 argvec[i] = NULL;
3429 exp = *expp;
3430
3431 /* Pass two: perform any resolution on principal operator. */
3432 switch (op)
3433 {
3434 default:
3435 break;
3436
3437 case OP_VAR_VALUE:
3438 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3439 {
3440 struct block_symbol *candidates;
3441 int n_candidates;
3442
3443 n_candidates =
3444 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3445 (exp->elts[pc + 2].symbol),
3446 exp->elts[pc + 1].block, VAR_DOMAIN,
3447 &candidates);
3448
3449 if (n_candidates > 1)
3450 {
3451 /* Types tend to get re-introduced locally, so if there
3452 are any local symbols that are not types, first filter
3453 out all types. */
3454 int j;
3455 for (j = 0; j < n_candidates; j += 1)
3456 switch (SYMBOL_CLASS (candidates[j].symbol))
3457 {
3458 case LOC_REGISTER:
3459 case LOC_ARG:
3460 case LOC_REF_ARG:
3461 case LOC_REGPARM_ADDR:
3462 case LOC_LOCAL:
3463 case LOC_COMPUTED:
3464 goto FoundNonType;
3465 default:
3466 break;
3467 }
3468 FoundNonType:
3469 if (j < n_candidates)
3470 {
3471 j = 0;
3472 while (j < n_candidates)
3473 {
3474 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3475 {
3476 candidates[j] = candidates[n_candidates - 1];
3477 n_candidates -= 1;
3478 }
3479 else
3480 j += 1;
3481 }
3482 }
3483 }
3484
3485 if (n_candidates == 0)
3486 error (_("No definition found for %s"),
3487 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3488 else if (n_candidates == 1)
3489 i = 0;
3490 else if (deprocedure_p
3491 && !is_nonfunction (candidates, n_candidates))
3492 {
3493 i = ada_resolve_function
3494 (candidates, n_candidates, NULL, 0,
3495 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3496 context_type);
3497 if (i < 0)
3498 error (_("Could not find a match for %s"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 }
3501 else
3502 {
3503 printf_filtered (_("Multiple matches for %s\n"),
3504 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3505 user_select_syms (candidates, n_candidates, 1);
3506 i = 0;
3507 }
3508
3509 exp->elts[pc + 1].block = candidates[i].block;
3510 exp->elts[pc + 2].symbol = candidates[i].symbol;
3511 if (innermost_block == NULL
3512 || contained_in (candidates[i].block, innermost_block))
3513 innermost_block = candidates[i].block;
3514 }
3515
3516 if (deprocedure_p
3517 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3518 == TYPE_CODE_FUNC))
3519 {
3520 replace_operator_with_call (expp, pc, 0, 0,
3521 exp->elts[pc + 2].symbol,
3522 exp->elts[pc + 1].block);
3523 exp = *expp;
3524 }
3525 break;
3526
3527 case OP_FUNCALL:
3528 {
3529 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3530 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3531 {
3532 struct block_symbol *candidates;
3533 int n_candidates;
3534
3535 n_candidates =
3536 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3537 (exp->elts[pc + 5].symbol),
3538 exp->elts[pc + 4].block, VAR_DOMAIN,
3539 &candidates);
3540 if (n_candidates == 1)
3541 i = 0;
3542 else
3543 {
3544 i = ada_resolve_function
3545 (candidates, n_candidates,
3546 argvec, nargs,
3547 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3548 context_type);
3549 if (i < 0)
3550 error (_("Could not find a match for %s"),
3551 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3552 }
3553
3554 exp->elts[pc + 4].block = candidates[i].block;
3555 exp->elts[pc + 5].symbol = candidates[i].symbol;
3556 if (innermost_block == NULL
3557 || contained_in (candidates[i].block, innermost_block))
3558 innermost_block = candidates[i].block;
3559 }
3560 }
3561 break;
3562 case BINOP_ADD:
3563 case BINOP_SUB:
3564 case BINOP_MUL:
3565 case BINOP_DIV:
3566 case BINOP_REM:
3567 case BINOP_MOD:
3568 case BINOP_CONCAT:
3569 case BINOP_BITWISE_AND:
3570 case BINOP_BITWISE_IOR:
3571 case BINOP_BITWISE_XOR:
3572 case BINOP_EQUAL:
3573 case BINOP_NOTEQUAL:
3574 case BINOP_LESS:
3575 case BINOP_GTR:
3576 case BINOP_LEQ:
3577 case BINOP_GEQ:
3578 case BINOP_EXP:
3579 case UNOP_NEG:
3580 case UNOP_PLUS:
3581 case UNOP_LOGICAL_NOT:
3582 case UNOP_ABS:
3583 if (possible_user_operator_p (op, argvec))
3584 {
3585 struct block_symbol *candidates;
3586 int n_candidates;
3587
3588 n_candidates =
3589 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3590 (struct block *) NULL, VAR_DOMAIN,
3591 &candidates);
3592 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3593 ada_decoded_op_name (op), NULL);
3594 if (i < 0)
3595 break;
3596
3597 replace_operator_with_call (expp, pc, nargs, 1,
3598 candidates[i].symbol,
3599 candidates[i].block);
3600 exp = *expp;
3601 }
3602 break;
3603
3604 case OP_TYPE:
3605 case OP_REGISTER:
3606 return NULL;
3607 }
3608
3609 *pos = pc;
3610 return evaluate_subexp_type (exp, pos);
3611 }
3612
3613 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3614 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3615 a non-pointer. */
3616 /* The term "match" here is rather loose. The match is heuristic and
3617 liberal. */
3618
3619 static int
3620 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3621 {
3622 ftype = ada_check_typedef (ftype);
3623 atype = ada_check_typedef (atype);
3624
3625 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3626 ftype = TYPE_TARGET_TYPE (ftype);
3627 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3628 atype = TYPE_TARGET_TYPE (atype);
3629
3630 switch (TYPE_CODE (ftype))
3631 {
3632 default:
3633 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3634 case TYPE_CODE_PTR:
3635 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3636 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3637 TYPE_TARGET_TYPE (atype), 0);
3638 else
3639 return (may_deref
3640 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3641 case TYPE_CODE_INT:
3642 case TYPE_CODE_ENUM:
3643 case TYPE_CODE_RANGE:
3644 switch (TYPE_CODE (atype))
3645 {
3646 case TYPE_CODE_INT:
3647 case TYPE_CODE_ENUM:
3648 case TYPE_CODE_RANGE:
3649 return 1;
3650 default:
3651 return 0;
3652 }
3653
3654 case TYPE_CODE_ARRAY:
3655 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3656 || ada_is_array_descriptor_type (atype));
3657
3658 case TYPE_CODE_STRUCT:
3659 if (ada_is_array_descriptor_type (ftype))
3660 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3661 || ada_is_array_descriptor_type (atype));
3662 else
3663 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3664 && !ada_is_array_descriptor_type (atype));
3665
3666 case TYPE_CODE_UNION:
3667 case TYPE_CODE_FLT:
3668 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3669 }
3670 }
3671
3672 /* Return non-zero if the formals of FUNC "sufficiently match" the
3673 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3674 may also be an enumeral, in which case it is treated as a 0-
3675 argument function. */
3676
3677 static int
3678 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3679 {
3680 int i;
3681 struct type *func_type = SYMBOL_TYPE (func);
3682
3683 if (SYMBOL_CLASS (func) == LOC_CONST
3684 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3685 return (n_actuals == 0);
3686 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3687 return 0;
3688
3689 if (TYPE_NFIELDS (func_type) != n_actuals)
3690 return 0;
3691
3692 for (i = 0; i < n_actuals; i += 1)
3693 {
3694 if (actuals[i] == NULL)
3695 return 0;
3696 else
3697 {
3698 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3699 i));
3700 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3701
3702 if (!ada_type_match (ftype, atype, 1))
3703 return 0;
3704 }
3705 }
3706 return 1;
3707 }
3708
3709 /* False iff function type FUNC_TYPE definitely does not produce a value
3710 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3711 FUNC_TYPE is not a valid function type with a non-null return type
3712 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3713
3714 static int
3715 return_match (struct type *func_type, struct type *context_type)
3716 {
3717 struct type *return_type;
3718
3719 if (func_type == NULL)
3720 return 1;
3721
3722 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3723 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3724 else
3725 return_type = get_base_type (func_type);
3726 if (return_type == NULL)
3727 return 1;
3728
3729 context_type = get_base_type (context_type);
3730
3731 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3732 return context_type == NULL || return_type == context_type;
3733 else if (context_type == NULL)
3734 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3735 else
3736 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3737 }
3738
3739
3740 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3741 function (if any) that matches the types of the NARGS arguments in
3742 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3743 that returns that type, then eliminate matches that don't. If
3744 CONTEXT_TYPE is void and there is at least one match that does not
3745 return void, eliminate all matches that do.
3746
3747 Asks the user if there is more than one match remaining. Returns -1
3748 if there is no such symbol or none is selected. NAME is used
3749 solely for messages. May re-arrange and modify SYMS in
3750 the process; the index returned is for the modified vector. */
3751
3752 static int
3753 ada_resolve_function (struct block_symbol syms[],
3754 int nsyms, struct value **args, int nargs,
3755 const char *name, struct type *context_type)
3756 {
3757 int fallback;
3758 int k;
3759 int m; /* Number of hits */
3760
3761 m = 0;
3762 /* In the first pass of the loop, we only accept functions matching
3763 context_type. If none are found, we add a second pass of the loop
3764 where every function is accepted. */
3765 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3766 {
3767 for (k = 0; k < nsyms; k += 1)
3768 {
3769 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3770
3771 if (ada_args_match (syms[k].symbol, args, nargs)
3772 && (fallback || return_match (type, context_type)))
3773 {
3774 syms[m] = syms[k];
3775 m += 1;
3776 }
3777 }
3778 }
3779
3780 /* If we got multiple matches, ask the user which one to use. Don't do this
3781 interactive thing during completion, though, as the purpose of the
3782 completion is providing a list of all possible matches. Prompting the
3783 user to filter it down would be completely unexpected in this case. */
3784 if (m == 0)
3785 return -1;
3786 else if (m > 1 && !parse_completion)
3787 {
3788 printf_filtered (_("Multiple matches for %s\n"), name);
3789 user_select_syms (syms, m, 1);
3790 return 0;
3791 }
3792 return 0;
3793 }
3794
3795 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3796 in a listing of choices during disambiguation (see sort_choices, below).
3797 The idea is that overloadings of a subprogram name from the
3798 same package should sort in their source order. We settle for ordering
3799 such symbols by their trailing number (__N or $N). */
3800
3801 static int
3802 encoded_ordered_before (const char *N0, const char *N1)
3803 {
3804 if (N1 == NULL)
3805 return 0;
3806 else if (N0 == NULL)
3807 return 1;
3808 else
3809 {
3810 int k0, k1;
3811
3812 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3813 ;
3814 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3815 ;
3816 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3817 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3818 {
3819 int n0, n1;
3820
3821 n0 = k0;
3822 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3823 n0 -= 1;
3824 n1 = k1;
3825 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3826 n1 -= 1;
3827 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3828 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3829 }
3830 return (strcmp (N0, N1) < 0);
3831 }
3832 }
3833
3834 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3835 encoded names. */
3836
3837 static void
3838 sort_choices (struct block_symbol syms[], int nsyms)
3839 {
3840 int i;
3841
3842 for (i = 1; i < nsyms; i += 1)
3843 {
3844 struct block_symbol sym = syms[i];
3845 int j;
3846
3847 for (j = i - 1; j >= 0; j -= 1)
3848 {
3849 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3850 SYMBOL_LINKAGE_NAME (sym.symbol)))
3851 break;
3852 syms[j + 1] = syms[j];
3853 }
3854 syms[j + 1] = sym;
3855 }
3856 }
3857
3858 /* Whether GDB should display formals and return types for functions in the
3859 overloads selection menu. */
3860 static int print_signatures = 1;
3861
3862 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3863 all but functions, the signature is just the name of the symbol. For
3864 functions, this is the name of the function, the list of types for formals
3865 and the return type (if any). */
3866
3867 static void
3868 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3869 const struct type_print_options *flags)
3870 {
3871 struct type *type = SYMBOL_TYPE (sym);
3872
3873 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3874 if (!print_signatures
3875 || type == NULL
3876 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3877 return;
3878
3879 if (TYPE_NFIELDS (type) > 0)
3880 {
3881 int i;
3882
3883 fprintf_filtered (stream, " (");
3884 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3885 {
3886 if (i > 0)
3887 fprintf_filtered (stream, "; ");
3888 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3889 flags);
3890 }
3891 fprintf_filtered (stream, ")");
3892 }
3893 if (TYPE_TARGET_TYPE (type) != NULL
3894 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3895 {
3896 fprintf_filtered (stream, " return ");
3897 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3898 }
3899 }
3900
3901 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3902 by asking the user (if necessary), returning the number selected,
3903 and setting the first elements of SYMS items. Error if no symbols
3904 selected. */
3905
3906 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3907 to be re-integrated one of these days. */
3908
3909 int
3910 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3911 {
3912 int i;
3913 int *chosen = XALLOCAVEC (int , nsyms);
3914 int n_chosen;
3915 int first_choice = (max_results == 1) ? 1 : 2;
3916 const char *select_mode = multiple_symbols_select_mode ();
3917
3918 if (max_results < 1)
3919 error (_("Request to select 0 symbols!"));
3920 if (nsyms <= 1)
3921 return nsyms;
3922
3923 if (select_mode == multiple_symbols_cancel)
3924 error (_("\
3925 canceled because the command is ambiguous\n\
3926 See set/show multiple-symbol."));
3927
3928 /* If select_mode is "all", then return all possible symbols.
3929 Only do that if more than one symbol can be selected, of course.
3930 Otherwise, display the menu as usual. */
3931 if (select_mode == multiple_symbols_all && max_results > 1)
3932 return nsyms;
3933
3934 printf_unfiltered (_("[0] cancel\n"));
3935 if (max_results > 1)
3936 printf_unfiltered (_("[1] all\n"));
3937
3938 sort_choices (syms, nsyms);
3939
3940 for (i = 0; i < nsyms; i += 1)
3941 {
3942 if (syms[i].symbol == NULL)
3943 continue;
3944
3945 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3946 {
3947 struct symtab_and_line sal =
3948 find_function_start_sal (syms[i].symbol, 1);
3949
3950 printf_unfiltered ("[%d] ", i + first_choice);
3951 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3952 &type_print_raw_options);
3953 if (sal.symtab == NULL)
3954 printf_unfiltered (_(" at <no source file available>:%d\n"),
3955 sal.line);
3956 else
3957 printf_unfiltered (_(" at %s:%d\n"),
3958 symtab_to_filename_for_display (sal.symtab),
3959 sal.line);
3960 continue;
3961 }
3962 else
3963 {
3964 int is_enumeral =
3965 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3966 && SYMBOL_TYPE (syms[i].symbol) != NULL
3967 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3968 struct symtab *symtab = NULL;
3969
3970 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3971 symtab = symbol_symtab (syms[i].symbol);
3972
3973 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3974 {
3975 printf_unfiltered ("[%d] ", i + first_choice);
3976 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3977 &type_print_raw_options);
3978 printf_unfiltered (_(" at %s:%d\n"),
3979 symtab_to_filename_for_display (symtab),
3980 SYMBOL_LINE (syms[i].symbol));
3981 }
3982 else if (is_enumeral
3983 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3984 {
3985 printf_unfiltered (("[%d] "), i + first_choice);
3986 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3987 gdb_stdout, -1, 0, &type_print_raw_options);
3988 printf_unfiltered (_("'(%s) (enumeral)\n"),
3989 SYMBOL_PRINT_NAME (syms[i].symbol));
3990 }
3991 else
3992 {
3993 printf_unfiltered ("[%d] ", i + first_choice);
3994 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3995 &type_print_raw_options);
3996
3997 if (symtab != NULL)
3998 printf_unfiltered (is_enumeral
3999 ? _(" in %s (enumeral)\n")
4000 : _(" at %s:?\n"),
4001 symtab_to_filename_for_display (symtab));
4002 else
4003 printf_unfiltered (is_enumeral
4004 ? _(" (enumeral)\n")
4005 : _(" at ?\n"));
4006 }
4007 }
4008 }
4009
4010 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4011 "overload-choice");
4012
4013 for (i = 0; i < n_chosen; i += 1)
4014 syms[i] = syms[chosen[i]];
4015
4016 return n_chosen;
4017 }
4018
4019 /* Read and validate a set of numeric choices from the user in the
4020 range 0 .. N_CHOICES-1. Place the results in increasing
4021 order in CHOICES[0 .. N-1], and return N.
4022
4023 The user types choices as a sequence of numbers on one line
4024 separated by blanks, encoding them as follows:
4025
4026 + A choice of 0 means to cancel the selection, throwing an error.
4027 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4028 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4029
4030 The user is not allowed to choose more than MAX_RESULTS values.
4031
4032 ANNOTATION_SUFFIX, if present, is used to annotate the input
4033 prompts (for use with the -f switch). */
4034
4035 int
4036 get_selections (int *choices, int n_choices, int max_results,
4037 int is_all_choice, const char *annotation_suffix)
4038 {
4039 char *args;
4040 const char *prompt;
4041 int n_chosen;
4042 int first_choice = is_all_choice ? 2 : 1;
4043
4044 prompt = getenv ("PS2");
4045 if (prompt == NULL)
4046 prompt = "> ";
4047
4048 args = command_line_input (prompt, 0, annotation_suffix);
4049
4050 if (args == NULL)
4051 error_no_arg (_("one or more choice numbers"));
4052
4053 n_chosen = 0;
4054
4055 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4056 order, as given in args. Choices are validated. */
4057 while (1)
4058 {
4059 char *args2;
4060 int choice, j;
4061
4062 args = skip_spaces (args);
4063 if (*args == '\0' && n_chosen == 0)
4064 error_no_arg (_("one or more choice numbers"));
4065 else if (*args == '\0')
4066 break;
4067
4068 choice = strtol (args, &args2, 10);
4069 if (args == args2 || choice < 0
4070 || choice > n_choices + first_choice - 1)
4071 error (_("Argument must be choice number"));
4072 args = args2;
4073
4074 if (choice == 0)
4075 error (_("cancelled"));
4076
4077 if (choice < first_choice)
4078 {
4079 n_chosen = n_choices;
4080 for (j = 0; j < n_choices; j += 1)
4081 choices[j] = j;
4082 break;
4083 }
4084 choice -= first_choice;
4085
4086 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4087 {
4088 }
4089
4090 if (j < 0 || choice != choices[j])
4091 {
4092 int k;
4093
4094 for (k = n_chosen - 1; k > j; k -= 1)
4095 choices[k + 1] = choices[k];
4096 choices[j + 1] = choice;
4097 n_chosen += 1;
4098 }
4099 }
4100
4101 if (n_chosen > max_results)
4102 error (_("Select no more than %d of the above"), max_results);
4103
4104 return n_chosen;
4105 }
4106
4107 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4108 on the function identified by SYM and BLOCK, and taking NARGS
4109 arguments. Update *EXPP as needed to hold more space. */
4110
4111 static void
4112 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4113 int oplen, struct symbol *sym,
4114 const struct block *block)
4115 {
4116 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4117 symbol, -oplen for operator being replaced). */
4118 struct expression *newexp = (struct expression *)
4119 xzalloc (sizeof (struct expression)
4120 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4121 struct expression *exp = *expp;
4122
4123 newexp->nelts = exp->nelts + 7 - oplen;
4124 newexp->language_defn = exp->language_defn;
4125 newexp->gdbarch = exp->gdbarch;
4126 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4127 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4128 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4129
4130 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4131 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4132
4133 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4134 newexp->elts[pc + 4].block = block;
4135 newexp->elts[pc + 5].symbol = sym;
4136
4137 *expp = newexp;
4138 xfree (exp);
4139 }
4140
4141 /* Type-class predicates */
4142
4143 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4144 or FLOAT). */
4145
4146 static int
4147 numeric_type_p (struct type *type)
4148 {
4149 if (type == NULL)
4150 return 0;
4151 else
4152 {
4153 switch (TYPE_CODE (type))
4154 {
4155 case TYPE_CODE_INT:
4156 case TYPE_CODE_FLT:
4157 return 1;
4158 case TYPE_CODE_RANGE:
4159 return (type == TYPE_TARGET_TYPE (type)
4160 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4161 default:
4162 return 0;
4163 }
4164 }
4165 }
4166
4167 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4168
4169 static int
4170 integer_type_p (struct type *type)
4171 {
4172 if (type == NULL)
4173 return 0;
4174 else
4175 {
4176 switch (TYPE_CODE (type))
4177 {
4178 case TYPE_CODE_INT:
4179 return 1;
4180 case TYPE_CODE_RANGE:
4181 return (type == TYPE_TARGET_TYPE (type)
4182 || integer_type_p (TYPE_TARGET_TYPE (type)));
4183 default:
4184 return 0;
4185 }
4186 }
4187 }
4188
4189 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4190
4191 static int
4192 scalar_type_p (struct type *type)
4193 {
4194 if (type == NULL)
4195 return 0;
4196 else
4197 {
4198 switch (TYPE_CODE (type))
4199 {
4200 case TYPE_CODE_INT:
4201 case TYPE_CODE_RANGE:
4202 case TYPE_CODE_ENUM:
4203 case TYPE_CODE_FLT:
4204 return 1;
4205 default:
4206 return 0;
4207 }
4208 }
4209 }
4210
4211 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4212
4213 static int
4214 discrete_type_p (struct type *type)
4215 {
4216 if (type == NULL)
4217 return 0;
4218 else
4219 {
4220 switch (TYPE_CODE (type))
4221 {
4222 case TYPE_CODE_INT:
4223 case TYPE_CODE_RANGE:
4224 case TYPE_CODE_ENUM:
4225 case TYPE_CODE_BOOL:
4226 return 1;
4227 default:
4228 return 0;
4229 }
4230 }
4231 }
4232
4233 /* Returns non-zero if OP with operands in the vector ARGS could be
4234 a user-defined function. Errs on the side of pre-defined operators
4235 (i.e., result 0). */
4236
4237 static int
4238 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4239 {
4240 struct type *type0 =
4241 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4242 struct type *type1 =
4243 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4244
4245 if (type0 == NULL)
4246 return 0;
4247
4248 switch (op)
4249 {
4250 default:
4251 return 0;
4252
4253 case BINOP_ADD:
4254 case BINOP_SUB:
4255 case BINOP_MUL:
4256 case BINOP_DIV:
4257 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4258
4259 case BINOP_REM:
4260 case BINOP_MOD:
4261 case BINOP_BITWISE_AND:
4262 case BINOP_BITWISE_IOR:
4263 case BINOP_BITWISE_XOR:
4264 return (!(integer_type_p (type0) && integer_type_p (type1)));
4265
4266 case BINOP_EQUAL:
4267 case BINOP_NOTEQUAL:
4268 case BINOP_LESS:
4269 case BINOP_GTR:
4270 case BINOP_LEQ:
4271 case BINOP_GEQ:
4272 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4273
4274 case BINOP_CONCAT:
4275 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4276
4277 case BINOP_EXP:
4278 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4279
4280 case UNOP_NEG:
4281 case UNOP_PLUS:
4282 case UNOP_LOGICAL_NOT:
4283 case UNOP_ABS:
4284 return (!numeric_type_p (type0));
4285
4286 }
4287 }
4288 \f
4289 /* Renaming */
4290
4291 /* NOTES:
4292
4293 1. In the following, we assume that a renaming type's name may
4294 have an ___XD suffix. It would be nice if this went away at some
4295 point.
4296 2. We handle both the (old) purely type-based representation of
4297 renamings and the (new) variable-based encoding. At some point,
4298 it is devoutly to be hoped that the former goes away
4299 (FIXME: hilfinger-2007-07-09).
4300 3. Subprogram renamings are not implemented, although the XRS
4301 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4302
4303 /* If SYM encodes a renaming,
4304
4305 <renaming> renames <renamed entity>,
4306
4307 sets *LEN to the length of the renamed entity's name,
4308 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4309 the string describing the subcomponent selected from the renamed
4310 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4311 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4312 are undefined). Otherwise, returns a value indicating the category
4313 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4314 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4315 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4316 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4317 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4318 may be NULL, in which case they are not assigned.
4319
4320 [Currently, however, GCC does not generate subprogram renamings.] */
4321
4322 enum ada_renaming_category
4323 ada_parse_renaming (struct symbol *sym,
4324 const char **renamed_entity, int *len,
4325 const char **renaming_expr)
4326 {
4327 enum ada_renaming_category kind;
4328 const char *info;
4329 const char *suffix;
4330
4331 if (sym == NULL)
4332 return ADA_NOT_RENAMING;
4333 switch (SYMBOL_CLASS (sym))
4334 {
4335 default:
4336 return ADA_NOT_RENAMING;
4337 case LOC_TYPEDEF:
4338 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4339 renamed_entity, len, renaming_expr);
4340 case LOC_LOCAL:
4341 case LOC_STATIC:
4342 case LOC_COMPUTED:
4343 case LOC_OPTIMIZED_OUT:
4344 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4345 if (info == NULL)
4346 return ADA_NOT_RENAMING;
4347 switch (info[5])
4348 {
4349 case '_':
4350 kind = ADA_OBJECT_RENAMING;
4351 info += 6;
4352 break;
4353 case 'E':
4354 kind = ADA_EXCEPTION_RENAMING;
4355 info += 7;
4356 break;
4357 case 'P':
4358 kind = ADA_PACKAGE_RENAMING;
4359 info += 7;
4360 break;
4361 case 'S':
4362 kind = ADA_SUBPROGRAM_RENAMING;
4363 info += 7;
4364 break;
4365 default:
4366 return ADA_NOT_RENAMING;
4367 }
4368 }
4369
4370 if (renamed_entity != NULL)
4371 *renamed_entity = info;
4372 suffix = strstr (info, "___XE");
4373 if (suffix == NULL || suffix == info)
4374 return ADA_NOT_RENAMING;
4375 if (len != NULL)
4376 *len = strlen (info) - strlen (suffix);
4377 suffix += 5;
4378 if (renaming_expr != NULL)
4379 *renaming_expr = suffix;
4380 return kind;
4381 }
4382
4383 /* Assuming TYPE encodes a renaming according to the old encoding in
4384 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4385 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4386 ADA_NOT_RENAMING otherwise. */
4387 static enum ada_renaming_category
4388 parse_old_style_renaming (struct type *type,
4389 const char **renamed_entity, int *len,
4390 const char **renaming_expr)
4391 {
4392 enum ada_renaming_category kind;
4393 const char *name;
4394 const char *info;
4395 const char *suffix;
4396
4397 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4398 || TYPE_NFIELDS (type) != 1)
4399 return ADA_NOT_RENAMING;
4400
4401 name = type_name_no_tag (type);
4402 if (name == NULL)
4403 return ADA_NOT_RENAMING;
4404
4405 name = strstr (name, "___XR");
4406 if (name == NULL)
4407 return ADA_NOT_RENAMING;
4408 switch (name[5])
4409 {
4410 case '\0':
4411 case '_':
4412 kind = ADA_OBJECT_RENAMING;
4413 break;
4414 case 'E':
4415 kind = ADA_EXCEPTION_RENAMING;
4416 break;
4417 case 'P':
4418 kind = ADA_PACKAGE_RENAMING;
4419 break;
4420 case 'S':
4421 kind = ADA_SUBPROGRAM_RENAMING;
4422 break;
4423 default:
4424 return ADA_NOT_RENAMING;
4425 }
4426
4427 info = TYPE_FIELD_NAME (type, 0);
4428 if (info == NULL)
4429 return ADA_NOT_RENAMING;
4430 if (renamed_entity != NULL)
4431 *renamed_entity = info;
4432 suffix = strstr (info, "___XE");
4433 if (renaming_expr != NULL)
4434 *renaming_expr = suffix + 5;
4435 if (suffix == NULL || suffix == info)
4436 return ADA_NOT_RENAMING;
4437 if (len != NULL)
4438 *len = suffix - info;
4439 return kind;
4440 }
4441
4442 /* Compute the value of the given RENAMING_SYM, which is expected to
4443 be a symbol encoding a renaming expression. BLOCK is the block
4444 used to evaluate the renaming. */
4445
4446 static struct value *
4447 ada_read_renaming_var_value (struct symbol *renaming_sym,
4448 const struct block *block)
4449 {
4450 const char *sym_name;
4451
4452 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4453 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4454 return evaluate_expression (expr.get ());
4455 }
4456 \f
4457
4458 /* Evaluation: Function Calls */
4459
4460 /* Return an lvalue containing the value VAL. This is the identity on
4461 lvalues, and otherwise has the side-effect of allocating memory
4462 in the inferior where a copy of the value contents is copied. */
4463
4464 static struct value *
4465 ensure_lval (struct value *val)
4466 {
4467 if (VALUE_LVAL (val) == not_lval
4468 || VALUE_LVAL (val) == lval_internalvar)
4469 {
4470 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4471 const CORE_ADDR addr =
4472 value_as_long (value_allocate_space_in_inferior (len));
4473
4474 VALUE_LVAL (val) = lval_memory;
4475 set_value_address (val, addr);
4476 write_memory (addr, value_contents (val), len);
4477 }
4478
4479 return val;
4480 }
4481
4482 /* Return the value ACTUAL, converted to be an appropriate value for a
4483 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4484 allocating any necessary descriptors (fat pointers), or copies of
4485 values not residing in memory, updating it as needed. */
4486
4487 struct value *
4488 ada_convert_actual (struct value *actual, struct type *formal_type0)
4489 {
4490 struct type *actual_type = ada_check_typedef (value_type (actual));
4491 struct type *formal_type = ada_check_typedef (formal_type0);
4492 struct type *formal_target =
4493 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4494 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4495 struct type *actual_target =
4496 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4497 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4498
4499 if (ada_is_array_descriptor_type (formal_target)
4500 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4501 return make_array_descriptor (formal_type, actual);
4502 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4503 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4504 {
4505 struct value *result;
4506
4507 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4508 && ada_is_array_descriptor_type (actual_target))
4509 result = desc_data (actual);
4510 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4511 {
4512 if (VALUE_LVAL (actual) != lval_memory)
4513 {
4514 struct value *val;
4515
4516 actual_type = ada_check_typedef (value_type (actual));
4517 val = allocate_value (actual_type);
4518 memcpy ((char *) value_contents_raw (val),
4519 (char *) value_contents (actual),
4520 TYPE_LENGTH (actual_type));
4521 actual = ensure_lval (val);
4522 }
4523 result = value_addr (actual);
4524 }
4525 else
4526 return actual;
4527 return value_cast_pointers (formal_type, result, 0);
4528 }
4529 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4530 return ada_value_ind (actual);
4531 else if (ada_is_aligner_type (formal_type))
4532 {
4533 /* We need to turn this parameter into an aligner type
4534 as well. */
4535 struct value *aligner = allocate_value (formal_type);
4536 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4537
4538 value_assign_to_component (aligner, component, actual);
4539 return aligner;
4540 }
4541
4542 return actual;
4543 }
4544
4545 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4546 type TYPE. This is usually an inefficient no-op except on some targets
4547 (such as AVR) where the representation of a pointer and an address
4548 differs. */
4549
4550 static CORE_ADDR
4551 value_pointer (struct value *value, struct type *type)
4552 {
4553 struct gdbarch *gdbarch = get_type_arch (type);
4554 unsigned len = TYPE_LENGTH (type);
4555 gdb_byte *buf = (gdb_byte *) alloca (len);
4556 CORE_ADDR addr;
4557
4558 addr = value_address (value);
4559 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4560 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4561 return addr;
4562 }
4563
4564
4565 /* Push a descriptor of type TYPE for array value ARR on the stack at
4566 *SP, updating *SP to reflect the new descriptor. Return either
4567 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4568 to-descriptor type rather than a descriptor type), a struct value *
4569 representing a pointer to this descriptor. */
4570
4571 static struct value *
4572 make_array_descriptor (struct type *type, struct value *arr)
4573 {
4574 struct type *bounds_type = desc_bounds_type (type);
4575 struct type *desc_type = desc_base_type (type);
4576 struct value *descriptor = allocate_value (desc_type);
4577 struct value *bounds = allocate_value (bounds_type);
4578 int i;
4579
4580 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4581 i > 0; i -= 1)
4582 {
4583 modify_field (value_type (bounds), value_contents_writeable (bounds),
4584 ada_array_bound (arr, i, 0),
4585 desc_bound_bitpos (bounds_type, i, 0),
4586 desc_bound_bitsize (bounds_type, i, 0));
4587 modify_field (value_type (bounds), value_contents_writeable (bounds),
4588 ada_array_bound (arr, i, 1),
4589 desc_bound_bitpos (bounds_type, i, 1),
4590 desc_bound_bitsize (bounds_type, i, 1));
4591 }
4592
4593 bounds = ensure_lval (bounds);
4594
4595 modify_field (value_type (descriptor),
4596 value_contents_writeable (descriptor),
4597 value_pointer (ensure_lval (arr),
4598 TYPE_FIELD_TYPE (desc_type, 0)),
4599 fat_pntr_data_bitpos (desc_type),
4600 fat_pntr_data_bitsize (desc_type));
4601
4602 modify_field (value_type (descriptor),
4603 value_contents_writeable (descriptor),
4604 value_pointer (bounds,
4605 TYPE_FIELD_TYPE (desc_type, 1)),
4606 fat_pntr_bounds_bitpos (desc_type),
4607 fat_pntr_bounds_bitsize (desc_type));
4608
4609 descriptor = ensure_lval (descriptor);
4610
4611 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4612 return value_addr (descriptor);
4613 else
4614 return descriptor;
4615 }
4616 \f
4617 /* Symbol Cache Module */
4618
4619 /* Performance measurements made as of 2010-01-15 indicate that
4620 this cache does bring some noticeable improvements. Depending
4621 on the type of entity being printed, the cache can make it as much
4622 as an order of magnitude faster than without it.
4623
4624 The descriptive type DWARF extension has significantly reduced
4625 the need for this cache, at least when DWARF is being used. However,
4626 even in this case, some expensive name-based symbol searches are still
4627 sometimes necessary - to find an XVZ variable, mostly. */
4628
4629 /* Initialize the contents of SYM_CACHE. */
4630
4631 static void
4632 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4633 {
4634 obstack_init (&sym_cache->cache_space);
4635 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4636 }
4637
4638 /* Free the memory used by SYM_CACHE. */
4639
4640 static void
4641 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4642 {
4643 obstack_free (&sym_cache->cache_space, NULL);
4644 xfree (sym_cache);
4645 }
4646
4647 /* Return the symbol cache associated to the given program space PSPACE.
4648 If not allocated for this PSPACE yet, allocate and initialize one. */
4649
4650 static struct ada_symbol_cache *
4651 ada_get_symbol_cache (struct program_space *pspace)
4652 {
4653 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4654
4655 if (pspace_data->sym_cache == NULL)
4656 {
4657 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4658 ada_init_symbol_cache (pspace_data->sym_cache);
4659 }
4660
4661 return pspace_data->sym_cache;
4662 }
4663
4664 /* Clear all entries from the symbol cache. */
4665
4666 static void
4667 ada_clear_symbol_cache (void)
4668 {
4669 struct ada_symbol_cache *sym_cache
4670 = ada_get_symbol_cache (current_program_space);
4671
4672 obstack_free (&sym_cache->cache_space, NULL);
4673 ada_init_symbol_cache (sym_cache);
4674 }
4675
4676 /* Search our cache for an entry matching NAME and DOMAIN.
4677 Return it if found, or NULL otherwise. */
4678
4679 static struct cache_entry **
4680 find_entry (const char *name, domain_enum domain)
4681 {
4682 struct ada_symbol_cache *sym_cache
4683 = ada_get_symbol_cache (current_program_space);
4684 int h = msymbol_hash (name) % HASH_SIZE;
4685 struct cache_entry **e;
4686
4687 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4688 {
4689 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4690 return e;
4691 }
4692 return NULL;
4693 }
4694
4695 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4696 Return 1 if found, 0 otherwise.
4697
4698 If an entry was found and SYM is not NULL, set *SYM to the entry's
4699 SYM. Same principle for BLOCK if not NULL. */
4700
4701 static int
4702 lookup_cached_symbol (const char *name, domain_enum domain,
4703 struct symbol **sym, const struct block **block)
4704 {
4705 struct cache_entry **e = find_entry (name, domain);
4706
4707 if (e == NULL)
4708 return 0;
4709 if (sym != NULL)
4710 *sym = (*e)->sym;
4711 if (block != NULL)
4712 *block = (*e)->block;
4713 return 1;
4714 }
4715
4716 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4717 in domain DOMAIN, save this result in our symbol cache. */
4718
4719 static void
4720 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4721 const struct block *block)
4722 {
4723 struct ada_symbol_cache *sym_cache
4724 = ada_get_symbol_cache (current_program_space);
4725 int h;
4726 char *copy;
4727 struct cache_entry *e;
4728
4729 /* Symbols for builtin types don't have a block.
4730 For now don't cache such symbols. */
4731 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4732 return;
4733
4734 /* If the symbol is a local symbol, then do not cache it, as a search
4735 for that symbol depends on the context. To determine whether
4736 the symbol is local or not, we check the block where we found it
4737 against the global and static blocks of its associated symtab. */
4738 if (sym
4739 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4740 GLOBAL_BLOCK) != block
4741 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4742 STATIC_BLOCK) != block)
4743 return;
4744
4745 h = msymbol_hash (name) % HASH_SIZE;
4746 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4747 sizeof (*e));
4748 e->next = sym_cache->root[h];
4749 sym_cache->root[h] = e;
4750 e->name = copy
4751 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4752 strcpy (copy, name);
4753 e->sym = sym;
4754 e->domain = domain;
4755 e->block = block;
4756 }
4757 \f
4758 /* Symbol Lookup */
4759
4760 /* Return nonzero if wild matching should be used when searching for
4761 all symbols matching LOOKUP_NAME.
4762
4763 LOOKUP_NAME is expected to be a symbol name after transformation
4764 for Ada lookups (see ada_name_for_lookup). */
4765
4766 static int
4767 should_use_wild_match (const char *lookup_name)
4768 {
4769 return (strstr (lookup_name, "__") == NULL);
4770 }
4771
4772 /* Return the result of a standard (literal, C-like) lookup of NAME in
4773 given DOMAIN, visible from lexical block BLOCK. */
4774
4775 static struct symbol *
4776 standard_lookup (const char *name, const struct block *block,
4777 domain_enum domain)
4778 {
4779 /* Initialize it just to avoid a GCC false warning. */
4780 struct block_symbol sym = {NULL, NULL};
4781
4782 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4783 return sym.symbol;
4784 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4785 cache_symbol (name, domain, sym.symbol, sym.block);
4786 return sym.symbol;
4787 }
4788
4789
4790 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4791 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4792 since they contend in overloading in the same way. */
4793 static int
4794 is_nonfunction (struct block_symbol syms[], int n)
4795 {
4796 int i;
4797
4798 for (i = 0; i < n; i += 1)
4799 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4800 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4801 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4802 return 1;
4803
4804 return 0;
4805 }
4806
4807 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4808 struct types. Otherwise, they may not. */
4809
4810 static int
4811 equiv_types (struct type *type0, struct type *type1)
4812 {
4813 if (type0 == type1)
4814 return 1;
4815 if (type0 == NULL || type1 == NULL
4816 || TYPE_CODE (type0) != TYPE_CODE (type1))
4817 return 0;
4818 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4819 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4820 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4821 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4822 return 1;
4823
4824 return 0;
4825 }
4826
4827 /* True iff SYM0 represents the same entity as SYM1, or one that is
4828 no more defined than that of SYM1. */
4829
4830 static int
4831 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4832 {
4833 if (sym0 == sym1)
4834 return 1;
4835 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4836 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4837 return 0;
4838
4839 switch (SYMBOL_CLASS (sym0))
4840 {
4841 case LOC_UNDEF:
4842 return 1;
4843 case LOC_TYPEDEF:
4844 {
4845 struct type *type0 = SYMBOL_TYPE (sym0);
4846 struct type *type1 = SYMBOL_TYPE (sym1);
4847 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4848 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4849 int len0 = strlen (name0);
4850
4851 return
4852 TYPE_CODE (type0) == TYPE_CODE (type1)
4853 && (equiv_types (type0, type1)
4854 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4855 && startswith (name1 + len0, "___XV")));
4856 }
4857 case LOC_CONST:
4858 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4859 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4860 default:
4861 return 0;
4862 }
4863 }
4864
4865 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4866 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4867
4868 static void
4869 add_defn_to_vec (struct obstack *obstackp,
4870 struct symbol *sym,
4871 const struct block *block)
4872 {
4873 int i;
4874 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4875
4876 /* Do not try to complete stub types, as the debugger is probably
4877 already scanning all symbols matching a certain name at the
4878 time when this function is called. Trying to replace the stub
4879 type by its associated full type will cause us to restart a scan
4880 which may lead to an infinite recursion. Instead, the client
4881 collecting the matching symbols will end up collecting several
4882 matches, with at least one of them complete. It can then filter
4883 out the stub ones if needed. */
4884
4885 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4886 {
4887 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4888 return;
4889 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4890 {
4891 prevDefns[i].symbol = sym;
4892 prevDefns[i].block = block;
4893 return;
4894 }
4895 }
4896
4897 {
4898 struct block_symbol info;
4899
4900 info.symbol = sym;
4901 info.block = block;
4902 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4903 }
4904 }
4905
4906 /* Number of block_symbol structures currently collected in current vector in
4907 OBSTACKP. */
4908
4909 static int
4910 num_defns_collected (struct obstack *obstackp)
4911 {
4912 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4913 }
4914
4915 /* Vector of block_symbol structures currently collected in current vector in
4916 OBSTACKP. If FINISH, close off the vector and return its final address. */
4917
4918 static struct block_symbol *
4919 defns_collected (struct obstack *obstackp, int finish)
4920 {
4921 if (finish)
4922 return (struct block_symbol *) obstack_finish (obstackp);
4923 else
4924 return (struct block_symbol *) obstack_base (obstackp);
4925 }
4926
4927 /* Return a bound minimal symbol matching NAME according to Ada
4928 decoding rules. Returns an invalid symbol if there is no such
4929 minimal symbol. Names prefixed with "standard__" are handled
4930 specially: "standard__" is first stripped off, and only static and
4931 global symbols are searched. */
4932
4933 struct bound_minimal_symbol
4934 ada_lookup_simple_minsym (const char *name)
4935 {
4936 struct bound_minimal_symbol result;
4937 struct objfile *objfile;
4938 struct minimal_symbol *msymbol;
4939 const int wild_match_p = should_use_wild_match (name);
4940
4941 memset (&result, 0, sizeof (result));
4942
4943 /* Special case: If the user specifies a symbol name inside package
4944 Standard, do a non-wild matching of the symbol name without
4945 the "standard__" prefix. This was primarily introduced in order
4946 to allow the user to specifically access the standard exceptions
4947 using, for instance, Standard.Constraint_Error when Constraint_Error
4948 is ambiguous (due to the user defining its own Constraint_Error
4949 entity inside its program). */
4950 if (startswith (name, "standard__"))
4951 name += sizeof ("standard__") - 1;
4952
4953 ALL_MSYMBOLS (objfile, msymbol)
4954 {
4955 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4956 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4957 {
4958 result.minsym = msymbol;
4959 result.objfile = objfile;
4960 break;
4961 }
4962 }
4963
4964 return result;
4965 }
4966
4967 /* For all subprograms that statically enclose the subprogram of the
4968 selected frame, add symbols matching identifier NAME in DOMAIN
4969 and their blocks to the list of data in OBSTACKP, as for
4970 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4971 with a wildcard prefix. */
4972
4973 static void
4974 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4975 const char *name, domain_enum domain,
4976 int wild_match_p)
4977 {
4978 }
4979
4980 /* True if TYPE is definitely an artificial type supplied to a symbol
4981 for which no debugging information was given in the symbol file. */
4982
4983 static int
4984 is_nondebugging_type (struct type *type)
4985 {
4986 const char *name = ada_type_name (type);
4987
4988 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4989 }
4990
4991 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4992 that are deemed "identical" for practical purposes.
4993
4994 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4995 types and that their number of enumerals is identical (in other
4996 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4997
4998 static int
4999 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5000 {
5001 int i;
5002
5003 /* The heuristic we use here is fairly conservative. We consider
5004 that 2 enumerate types are identical if they have the same
5005 number of enumerals and that all enumerals have the same
5006 underlying value and name. */
5007
5008 /* All enums in the type should have an identical underlying value. */
5009 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5010 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5011 return 0;
5012
5013 /* All enumerals should also have the same name (modulo any numerical
5014 suffix). */
5015 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5016 {
5017 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5018 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5019 int len_1 = strlen (name_1);
5020 int len_2 = strlen (name_2);
5021
5022 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5023 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5024 if (len_1 != len_2
5025 || strncmp (TYPE_FIELD_NAME (type1, i),
5026 TYPE_FIELD_NAME (type2, i),
5027 len_1) != 0)
5028 return 0;
5029 }
5030
5031 return 1;
5032 }
5033
5034 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5035 that are deemed "identical" for practical purposes. Sometimes,
5036 enumerals are not strictly identical, but their types are so similar
5037 that they can be considered identical.
5038
5039 For instance, consider the following code:
5040
5041 type Color is (Black, Red, Green, Blue, White);
5042 type RGB_Color is new Color range Red .. Blue;
5043
5044 Type RGB_Color is a subrange of an implicit type which is a copy
5045 of type Color. If we call that implicit type RGB_ColorB ("B" is
5046 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5047 As a result, when an expression references any of the enumeral
5048 by name (Eg. "print green"), the expression is technically
5049 ambiguous and the user should be asked to disambiguate. But
5050 doing so would only hinder the user, since it wouldn't matter
5051 what choice he makes, the outcome would always be the same.
5052 So, for practical purposes, we consider them as the same. */
5053
5054 static int
5055 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5056 {
5057 int i;
5058
5059 /* Before performing a thorough comparison check of each type,
5060 we perform a series of inexpensive checks. We expect that these
5061 checks will quickly fail in the vast majority of cases, and thus
5062 help prevent the unnecessary use of a more expensive comparison.
5063 Said comparison also expects us to make some of these checks
5064 (see ada_identical_enum_types_p). */
5065
5066 /* Quick check: All symbols should have an enum type. */
5067 for (i = 0; i < nsyms; i++)
5068 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5069 return 0;
5070
5071 /* Quick check: They should all have the same value. */
5072 for (i = 1; i < nsyms; i++)
5073 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5074 return 0;
5075
5076 /* Quick check: They should all have the same number of enumerals. */
5077 for (i = 1; i < nsyms; i++)
5078 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5079 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5080 return 0;
5081
5082 /* All the sanity checks passed, so we might have a set of
5083 identical enumeration types. Perform a more complete
5084 comparison of the type of each symbol. */
5085 for (i = 1; i < nsyms; i++)
5086 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5087 SYMBOL_TYPE (syms[0].symbol)))
5088 return 0;
5089
5090 return 1;
5091 }
5092
5093 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5094 duplicate other symbols in the list (The only case I know of where
5095 this happens is when object files containing stabs-in-ecoff are
5096 linked with files containing ordinary ecoff debugging symbols (or no
5097 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5098 Returns the number of items in the modified list. */
5099
5100 static int
5101 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5102 {
5103 int i, j;
5104
5105 /* We should never be called with less than 2 symbols, as there
5106 cannot be any extra symbol in that case. But it's easy to
5107 handle, since we have nothing to do in that case. */
5108 if (nsyms < 2)
5109 return nsyms;
5110
5111 i = 0;
5112 while (i < nsyms)
5113 {
5114 int remove_p = 0;
5115
5116 /* If two symbols have the same name and one of them is a stub type,
5117 the get rid of the stub. */
5118
5119 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5120 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5121 {
5122 for (j = 0; j < nsyms; j++)
5123 {
5124 if (j != i
5125 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5126 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5127 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5128 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5129 remove_p = 1;
5130 }
5131 }
5132
5133 /* Two symbols with the same name, same class and same address
5134 should be identical. */
5135
5136 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5137 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5138 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5139 {
5140 for (j = 0; j < nsyms; j += 1)
5141 {
5142 if (i != j
5143 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5144 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5145 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5146 && SYMBOL_CLASS (syms[i].symbol)
5147 == SYMBOL_CLASS (syms[j].symbol)
5148 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5149 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5150 remove_p = 1;
5151 }
5152 }
5153
5154 if (remove_p)
5155 {
5156 for (j = i + 1; j < nsyms; j += 1)
5157 syms[j - 1] = syms[j];
5158 nsyms -= 1;
5159 }
5160
5161 i += 1;
5162 }
5163
5164 /* If all the remaining symbols are identical enumerals, then
5165 just keep the first one and discard the rest.
5166
5167 Unlike what we did previously, we do not discard any entry
5168 unless they are ALL identical. This is because the symbol
5169 comparison is not a strict comparison, but rather a practical
5170 comparison. If all symbols are considered identical, then
5171 we can just go ahead and use the first one and discard the rest.
5172 But if we cannot reduce the list to a single element, we have
5173 to ask the user to disambiguate anyways. And if we have to
5174 present a multiple-choice menu, it's less confusing if the list
5175 isn't missing some choices that were identical and yet distinct. */
5176 if (symbols_are_identical_enums (syms, nsyms))
5177 nsyms = 1;
5178
5179 return nsyms;
5180 }
5181
5182 /* Given a type that corresponds to a renaming entity, use the type name
5183 to extract the scope (package name or function name, fully qualified,
5184 and following the GNAT encoding convention) where this renaming has been
5185 defined. The string returned needs to be deallocated after use. */
5186
5187 static char *
5188 xget_renaming_scope (struct type *renaming_type)
5189 {
5190 /* The renaming types adhere to the following convention:
5191 <scope>__<rename>___<XR extension>.
5192 So, to extract the scope, we search for the "___XR" extension,
5193 and then backtrack until we find the first "__". */
5194
5195 const char *name = type_name_no_tag (renaming_type);
5196 const char *suffix = strstr (name, "___XR");
5197 const char *last;
5198 int scope_len;
5199 char *scope;
5200
5201 /* Now, backtrack a bit until we find the first "__". Start looking
5202 at suffix - 3, as the <rename> part is at least one character long. */
5203
5204 for (last = suffix - 3; last > name; last--)
5205 if (last[0] == '_' && last[1] == '_')
5206 break;
5207
5208 /* Make a copy of scope and return it. */
5209
5210 scope_len = last - name;
5211 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5212
5213 strncpy (scope, name, scope_len);
5214 scope[scope_len] = '\0';
5215
5216 return scope;
5217 }
5218
5219 /* Return nonzero if NAME corresponds to a package name. */
5220
5221 static int
5222 is_package_name (const char *name)
5223 {
5224 /* Here, We take advantage of the fact that no symbols are generated
5225 for packages, while symbols are generated for each function.
5226 So the condition for NAME represent a package becomes equivalent
5227 to NAME not existing in our list of symbols. There is only one
5228 small complication with library-level functions (see below). */
5229
5230 char *fun_name;
5231
5232 /* If it is a function that has not been defined at library level,
5233 then we should be able to look it up in the symbols. */
5234 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5235 return 0;
5236
5237 /* Library-level function names start with "_ada_". See if function
5238 "_ada_" followed by NAME can be found. */
5239
5240 /* Do a quick check that NAME does not contain "__", since library-level
5241 functions names cannot contain "__" in them. */
5242 if (strstr (name, "__") != NULL)
5243 return 0;
5244
5245 fun_name = xstrprintf ("_ada_%s", name);
5246
5247 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5248 }
5249
5250 /* Return nonzero if SYM corresponds to a renaming entity that is
5251 not visible from FUNCTION_NAME. */
5252
5253 static int
5254 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5255 {
5256 char *scope;
5257 struct cleanup *old_chain;
5258
5259 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5260 return 0;
5261
5262 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5263 old_chain = make_cleanup (xfree, scope);
5264
5265 /* If the rename has been defined in a package, then it is visible. */
5266 if (is_package_name (scope))
5267 {
5268 do_cleanups (old_chain);
5269 return 0;
5270 }
5271
5272 /* Check that the rename is in the current function scope by checking
5273 that its name starts with SCOPE. */
5274
5275 /* If the function name starts with "_ada_", it means that it is
5276 a library-level function. Strip this prefix before doing the
5277 comparison, as the encoding for the renaming does not contain
5278 this prefix. */
5279 if (startswith (function_name, "_ada_"))
5280 function_name += 5;
5281
5282 {
5283 int is_invisible = !startswith (function_name, scope);
5284
5285 do_cleanups (old_chain);
5286 return is_invisible;
5287 }
5288 }
5289
5290 /* Remove entries from SYMS that corresponds to a renaming entity that
5291 is not visible from the function associated with CURRENT_BLOCK or
5292 that is superfluous due to the presence of more specific renaming
5293 information. Places surviving symbols in the initial entries of
5294 SYMS and returns the number of surviving symbols.
5295
5296 Rationale:
5297 First, in cases where an object renaming is implemented as a
5298 reference variable, GNAT may produce both the actual reference
5299 variable and the renaming encoding. In this case, we discard the
5300 latter.
5301
5302 Second, GNAT emits a type following a specified encoding for each renaming
5303 entity. Unfortunately, STABS currently does not support the definition
5304 of types that are local to a given lexical block, so all renamings types
5305 are emitted at library level. As a consequence, if an application
5306 contains two renaming entities using the same name, and a user tries to
5307 print the value of one of these entities, the result of the ada symbol
5308 lookup will also contain the wrong renaming type.
5309
5310 This function partially covers for this limitation by attempting to
5311 remove from the SYMS list renaming symbols that should be visible
5312 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5313 method with the current information available. The implementation
5314 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5315
5316 - When the user tries to print a rename in a function while there
5317 is another rename entity defined in a package: Normally, the
5318 rename in the function has precedence over the rename in the
5319 package, so the latter should be removed from the list. This is
5320 currently not the case.
5321
5322 - This function will incorrectly remove valid renames if
5323 the CURRENT_BLOCK corresponds to a function which symbol name
5324 has been changed by an "Export" pragma. As a consequence,
5325 the user will be unable to print such rename entities. */
5326
5327 static int
5328 remove_irrelevant_renamings (struct block_symbol *syms,
5329 int nsyms, const struct block *current_block)
5330 {
5331 struct symbol *current_function;
5332 const char *current_function_name;
5333 int i;
5334 int is_new_style_renaming;
5335
5336 /* If there is both a renaming foo___XR... encoded as a variable and
5337 a simple variable foo in the same block, discard the latter.
5338 First, zero out such symbols, then compress. */
5339 is_new_style_renaming = 0;
5340 for (i = 0; i < nsyms; i += 1)
5341 {
5342 struct symbol *sym = syms[i].symbol;
5343 const struct block *block = syms[i].block;
5344 const char *name;
5345 const char *suffix;
5346
5347 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5348 continue;
5349 name = SYMBOL_LINKAGE_NAME (sym);
5350 suffix = strstr (name, "___XR");
5351
5352 if (suffix != NULL)
5353 {
5354 int name_len = suffix - name;
5355 int j;
5356
5357 is_new_style_renaming = 1;
5358 for (j = 0; j < nsyms; j += 1)
5359 if (i != j && syms[j].symbol != NULL
5360 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5361 name_len) == 0
5362 && block == syms[j].block)
5363 syms[j].symbol = NULL;
5364 }
5365 }
5366 if (is_new_style_renaming)
5367 {
5368 int j, k;
5369
5370 for (j = k = 0; j < nsyms; j += 1)
5371 if (syms[j].symbol != NULL)
5372 {
5373 syms[k] = syms[j];
5374 k += 1;
5375 }
5376 return k;
5377 }
5378
5379 /* Extract the function name associated to CURRENT_BLOCK.
5380 Abort if unable to do so. */
5381
5382 if (current_block == NULL)
5383 return nsyms;
5384
5385 current_function = block_linkage_function (current_block);
5386 if (current_function == NULL)
5387 return nsyms;
5388
5389 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5390 if (current_function_name == NULL)
5391 return nsyms;
5392
5393 /* Check each of the symbols, and remove it from the list if it is
5394 a type corresponding to a renaming that is out of the scope of
5395 the current block. */
5396
5397 i = 0;
5398 while (i < nsyms)
5399 {
5400 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5401 == ADA_OBJECT_RENAMING
5402 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5403 {
5404 int j;
5405
5406 for (j = i + 1; j < nsyms; j += 1)
5407 syms[j - 1] = syms[j];
5408 nsyms -= 1;
5409 }
5410 else
5411 i += 1;
5412 }
5413
5414 return nsyms;
5415 }
5416
5417 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5418 whose name and domain match NAME and DOMAIN respectively.
5419 If no match was found, then extend the search to "enclosing"
5420 routines (in other words, if we're inside a nested function,
5421 search the symbols defined inside the enclosing functions).
5422 If WILD_MATCH_P is nonzero, perform the naming matching in
5423 "wild" mode (see function "wild_match" for more info).
5424
5425 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5426
5427 static void
5428 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5429 const struct block *block, domain_enum domain,
5430 int wild_match_p)
5431 {
5432 int block_depth = 0;
5433
5434 while (block != NULL)
5435 {
5436 block_depth += 1;
5437 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5438 wild_match_p);
5439
5440 /* If we found a non-function match, assume that's the one. */
5441 if (is_nonfunction (defns_collected (obstackp, 0),
5442 num_defns_collected (obstackp)))
5443 return;
5444
5445 block = BLOCK_SUPERBLOCK (block);
5446 }
5447
5448 /* If no luck so far, try to find NAME as a local symbol in some lexically
5449 enclosing subprogram. */
5450 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5451 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5452 }
5453
5454 /* An object of this type is used as the user_data argument when
5455 calling the map_matching_symbols method. */
5456
5457 struct match_data
5458 {
5459 struct objfile *objfile;
5460 struct obstack *obstackp;
5461 struct symbol *arg_sym;
5462 int found_sym;
5463 };
5464
5465 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5466 to a list of symbols. DATA0 is a pointer to a struct match_data *
5467 containing the obstack that collects the symbol list, the file that SYM
5468 must come from, a flag indicating whether a non-argument symbol has
5469 been found in the current block, and the last argument symbol
5470 passed in SYM within the current block (if any). When SYM is null,
5471 marking the end of a block, the argument symbol is added if no
5472 other has been found. */
5473
5474 static int
5475 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5476 {
5477 struct match_data *data = (struct match_data *) data0;
5478
5479 if (sym == NULL)
5480 {
5481 if (!data->found_sym && data->arg_sym != NULL)
5482 add_defn_to_vec (data->obstackp,
5483 fixup_symbol_section (data->arg_sym, data->objfile),
5484 block);
5485 data->found_sym = 0;
5486 data->arg_sym = NULL;
5487 }
5488 else
5489 {
5490 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5491 return 0;
5492 else if (SYMBOL_IS_ARGUMENT (sym))
5493 data->arg_sym = sym;
5494 else
5495 {
5496 data->found_sym = 1;
5497 add_defn_to_vec (data->obstackp,
5498 fixup_symbol_section (sym, data->objfile),
5499 block);
5500 }
5501 }
5502 return 0;
5503 }
5504
5505 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5506 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5507 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5508 function "wild_match" for more information). Return whether we found such
5509 symbols. */
5510
5511 static int
5512 ada_add_block_renamings (struct obstack *obstackp,
5513 const struct block *block,
5514 const char *name,
5515 domain_enum domain,
5516 int wild_match_p)
5517 {
5518 struct using_direct *renaming;
5519 int defns_mark = num_defns_collected (obstackp);
5520
5521 for (renaming = block_using (block);
5522 renaming != NULL;
5523 renaming = renaming->next)
5524 {
5525 const char *r_name;
5526 int name_match;
5527
5528 /* Avoid infinite recursions: skip this renaming if we are actually
5529 already traversing it.
5530
5531 Currently, symbol lookup in Ada don't use the namespace machinery from
5532 C++/Fortran support: skip namespace imports that use them. */
5533 if (renaming->searched
5534 || (renaming->import_src != NULL
5535 && renaming->import_src[0] != '\0')
5536 || (renaming->import_dest != NULL
5537 && renaming->import_dest[0] != '\0'))
5538 continue;
5539 renaming->searched = 1;
5540
5541 /* TODO: here, we perform another name-based symbol lookup, which can
5542 pull its own multiple overloads. In theory, we should be able to do
5543 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5544 not a simple name. But in order to do this, we would need to enhance
5545 the DWARF reader to associate a symbol to this renaming, instead of a
5546 name. So, for now, we do something simpler: re-use the C++/Fortran
5547 namespace machinery. */
5548 r_name = (renaming->alias != NULL
5549 ? renaming->alias
5550 : renaming->declaration);
5551 name_match
5552 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5553 if (name_match == 0)
5554 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5555 1, NULL);
5556 renaming->searched = 0;
5557 }
5558 return num_defns_collected (obstackp) != defns_mark;
5559 }
5560
5561 /* Implements compare_names, but only applying the comparision using
5562 the given CASING. */
5563
5564 static int
5565 compare_names_with_case (const char *string1, const char *string2,
5566 enum case_sensitivity casing)
5567 {
5568 while (*string1 != '\0' && *string2 != '\0')
5569 {
5570 char c1, c2;
5571
5572 if (isspace (*string1) || isspace (*string2))
5573 return strcmp_iw_ordered (string1, string2);
5574
5575 if (casing == case_sensitive_off)
5576 {
5577 c1 = tolower (*string1);
5578 c2 = tolower (*string2);
5579 }
5580 else
5581 {
5582 c1 = *string1;
5583 c2 = *string2;
5584 }
5585 if (c1 != c2)
5586 break;
5587
5588 string1 += 1;
5589 string2 += 1;
5590 }
5591
5592 switch (*string1)
5593 {
5594 case '(':
5595 return strcmp_iw_ordered (string1, string2);
5596 case '_':
5597 if (*string2 == '\0')
5598 {
5599 if (is_name_suffix (string1))
5600 return 0;
5601 else
5602 return 1;
5603 }
5604 /* FALLTHROUGH */
5605 default:
5606 if (*string2 == '(')
5607 return strcmp_iw_ordered (string1, string2);
5608 else
5609 {
5610 if (casing == case_sensitive_off)
5611 return tolower (*string1) - tolower (*string2);
5612 else
5613 return *string1 - *string2;
5614 }
5615 }
5616 }
5617
5618 /* Compare STRING1 to STRING2, with results as for strcmp.
5619 Compatible with strcmp_iw_ordered in that...
5620
5621 strcmp_iw_ordered (STRING1, STRING2) <= 0
5622
5623 ... implies...
5624
5625 compare_names (STRING1, STRING2) <= 0
5626
5627 (they may differ as to what symbols compare equal). */
5628
5629 static int
5630 compare_names (const char *string1, const char *string2)
5631 {
5632 int result;
5633
5634 /* Similar to what strcmp_iw_ordered does, we need to perform
5635 a case-insensitive comparison first, and only resort to
5636 a second, case-sensitive, comparison if the first one was
5637 not sufficient to differentiate the two strings. */
5638
5639 result = compare_names_with_case (string1, string2, case_sensitive_off);
5640 if (result == 0)
5641 result = compare_names_with_case (string1, string2, case_sensitive_on);
5642
5643 return result;
5644 }
5645
5646 /* Add to OBSTACKP all non-local symbols whose name and domain match
5647 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5648 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5649
5650 static void
5651 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5652 domain_enum domain, int global,
5653 int is_wild_match)
5654 {
5655 struct objfile *objfile;
5656 struct compunit_symtab *cu;
5657 struct match_data data;
5658
5659 memset (&data, 0, sizeof data);
5660 data.obstackp = obstackp;
5661
5662 ALL_OBJFILES (objfile)
5663 {
5664 data.objfile = objfile;
5665
5666 if (is_wild_match)
5667 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5668 aux_add_nonlocal_symbols, &data,
5669 wild_match, NULL);
5670 else
5671 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5672 aux_add_nonlocal_symbols, &data,
5673 full_match, compare_names);
5674
5675 ALL_OBJFILE_COMPUNITS (objfile, cu)
5676 {
5677 const struct block *global_block
5678 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5679
5680 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5681 is_wild_match))
5682 data.found_sym = 1;
5683 }
5684 }
5685
5686 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5687 {
5688 ALL_OBJFILES (objfile)
5689 {
5690 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5691 strcpy (name1, "_ada_");
5692 strcpy (name1 + sizeof ("_ada_") - 1, name);
5693 data.objfile = objfile;
5694 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5695 global,
5696 aux_add_nonlocal_symbols,
5697 &data,
5698 full_match, compare_names);
5699 }
5700 }
5701 }
5702
5703 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5704 non-zero, enclosing scope and in global scopes, returning the number of
5705 matches. Add these to OBSTACKP.
5706
5707 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5708 symbol match within the nest of blocks whose innermost member is BLOCK,
5709 is the one match returned (no other matches in that or
5710 enclosing blocks is returned). If there are any matches in or
5711 surrounding BLOCK, then these alone are returned.
5712
5713 Names prefixed with "standard__" are handled specially: "standard__"
5714 is first stripped off, and only static and global symbols are searched.
5715
5716 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5717 to lookup global symbols. */
5718
5719 static void
5720 ada_add_all_symbols (struct obstack *obstackp,
5721 const struct block *block,
5722 const char *name,
5723 domain_enum domain,
5724 int full_search,
5725 int *made_global_lookup_p)
5726 {
5727 struct symbol *sym;
5728 const int wild_match_p = should_use_wild_match (name);
5729
5730 if (made_global_lookup_p)
5731 *made_global_lookup_p = 0;
5732
5733 /* Special case: If the user specifies a symbol name inside package
5734 Standard, do a non-wild matching of the symbol name without
5735 the "standard__" prefix. This was primarily introduced in order
5736 to allow the user to specifically access the standard exceptions
5737 using, for instance, Standard.Constraint_Error when Constraint_Error
5738 is ambiguous (due to the user defining its own Constraint_Error
5739 entity inside its program). */
5740 if (startswith (name, "standard__"))
5741 {
5742 block = NULL;
5743 name = name + sizeof ("standard__") - 1;
5744 }
5745
5746 /* Check the non-global symbols. If we have ANY match, then we're done. */
5747
5748 if (block != NULL)
5749 {
5750 if (full_search)
5751 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5752 else
5753 {
5754 /* In the !full_search case we're are being called by
5755 ada_iterate_over_symbols, and we don't want to search
5756 superblocks. */
5757 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5758 wild_match_p);
5759 }
5760 if (num_defns_collected (obstackp) > 0 || !full_search)
5761 return;
5762 }
5763
5764 /* No non-global symbols found. Check our cache to see if we have
5765 already performed this search before. If we have, then return
5766 the same result. */
5767
5768 if (lookup_cached_symbol (name, domain, &sym, &block))
5769 {
5770 if (sym != NULL)
5771 add_defn_to_vec (obstackp, sym, block);
5772 return;
5773 }
5774
5775 if (made_global_lookup_p)
5776 *made_global_lookup_p = 1;
5777
5778 /* Search symbols from all global blocks. */
5779
5780 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5781
5782 /* Now add symbols from all per-file blocks if we've gotten no hits
5783 (not strictly correct, but perhaps better than an error). */
5784
5785 if (num_defns_collected (obstackp) == 0)
5786 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5787 }
5788
5789 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5790 non-zero, enclosing scope and in global scopes, returning the number of
5791 matches.
5792 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5793 indicating the symbols found and the blocks and symbol tables (if
5794 any) in which they were found. This vector is transient---good only to
5795 the next call of ada_lookup_symbol_list.
5796
5797 When full_search is non-zero, any non-function/non-enumeral
5798 symbol match within the nest of blocks whose innermost member is BLOCK,
5799 is the one match returned (no other matches in that or
5800 enclosing blocks is returned). If there are any matches in or
5801 surrounding BLOCK, then these alone are returned.
5802
5803 Names prefixed with "standard__" are handled specially: "standard__"
5804 is first stripped off, and only static and global symbols are searched. */
5805
5806 static int
5807 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5808 domain_enum domain,
5809 struct block_symbol **results,
5810 int full_search)
5811 {
5812 const int wild_match_p = should_use_wild_match (name);
5813 int syms_from_global_search;
5814 int ndefns;
5815
5816 obstack_free (&symbol_list_obstack, NULL);
5817 obstack_init (&symbol_list_obstack);
5818 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5819 full_search, &syms_from_global_search);
5820
5821 ndefns = num_defns_collected (&symbol_list_obstack);
5822 *results = defns_collected (&symbol_list_obstack, 1);
5823
5824 ndefns = remove_extra_symbols (*results, ndefns);
5825
5826 if (ndefns == 0 && full_search && syms_from_global_search)
5827 cache_symbol (name, domain, NULL, NULL);
5828
5829 if (ndefns == 1 && full_search && syms_from_global_search)
5830 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5831
5832 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5833 return ndefns;
5834 }
5835
5836 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5837 in global scopes, returning the number of matches, and setting *RESULTS
5838 to a vector of (SYM,BLOCK) tuples.
5839 See ada_lookup_symbol_list_worker for further details. */
5840
5841 int
5842 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5843 domain_enum domain, struct block_symbol **results)
5844 {
5845 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5846 }
5847
5848 /* Implementation of the la_iterate_over_symbols method. */
5849
5850 static void
5851 ada_iterate_over_symbols
5852 (const struct block *block, const char *name, domain_enum domain,
5853 gdb::function_view<symbol_found_callback_ftype> callback)
5854 {
5855 int ndefs, i;
5856 struct block_symbol *results;
5857
5858 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5859 for (i = 0; i < ndefs; ++i)
5860 {
5861 if (!callback (results[i].symbol))
5862 break;
5863 }
5864 }
5865
5866 /* If NAME is the name of an entity, return a string that should
5867 be used to look that entity up in Ada units.
5868
5869 NAME can have any form that the "break" or "print" commands might
5870 recognize. In other words, it does not have to be the "natural"
5871 name, or the "encoded" name. */
5872
5873 std::string
5874 ada_name_for_lookup (const char *name)
5875 {
5876 int nlen = strlen (name);
5877
5878 if (name[0] == '<' && name[nlen - 1] == '>')
5879 return std::string (name + 1, nlen - 2);
5880 else
5881 return ada_encode (ada_fold_name (name));
5882 }
5883
5884 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5885 to 1, but choosing the first symbol found if there are multiple
5886 choices.
5887
5888 The result is stored in *INFO, which must be non-NULL.
5889 If no match is found, INFO->SYM is set to NULL. */
5890
5891 void
5892 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5893 domain_enum domain,
5894 struct block_symbol *info)
5895 {
5896 struct block_symbol *candidates;
5897 int n_candidates;
5898
5899 gdb_assert (info != NULL);
5900 memset (info, 0, sizeof (struct block_symbol));
5901
5902 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5903 if (n_candidates == 0)
5904 return;
5905
5906 *info = candidates[0];
5907 info->symbol = fixup_symbol_section (info->symbol, NULL);
5908 }
5909
5910 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5911 scope and in global scopes, or NULL if none. NAME is folded and
5912 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5913 choosing the first symbol if there are multiple choices.
5914 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5915
5916 struct block_symbol
5917 ada_lookup_symbol (const char *name, const struct block *block0,
5918 domain_enum domain, int *is_a_field_of_this)
5919 {
5920 struct block_symbol info;
5921
5922 if (is_a_field_of_this != NULL)
5923 *is_a_field_of_this = 0;
5924
5925 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5926 block0, domain, &info);
5927 return info;
5928 }
5929
5930 static struct block_symbol
5931 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5932 const char *name,
5933 const struct block *block,
5934 const domain_enum domain)
5935 {
5936 struct block_symbol sym;
5937
5938 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5939 if (sym.symbol != NULL)
5940 return sym;
5941
5942 /* If we haven't found a match at this point, try the primitive
5943 types. In other languages, this search is performed before
5944 searching for global symbols in order to short-circuit that
5945 global-symbol search if it happens that the name corresponds
5946 to a primitive type. But we cannot do the same in Ada, because
5947 it is perfectly legitimate for a program to declare a type which
5948 has the same name as a standard type. If looking up a type in
5949 that situation, we have traditionally ignored the primitive type
5950 in favor of user-defined types. This is why, unlike most other
5951 languages, we search the primitive types this late and only after
5952 having searched the global symbols without success. */
5953
5954 if (domain == VAR_DOMAIN)
5955 {
5956 struct gdbarch *gdbarch;
5957
5958 if (block == NULL)
5959 gdbarch = target_gdbarch ();
5960 else
5961 gdbarch = block_gdbarch (block);
5962 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5963 if (sym.symbol != NULL)
5964 return sym;
5965 }
5966
5967 return (struct block_symbol) {NULL, NULL};
5968 }
5969
5970
5971 /* True iff STR is a possible encoded suffix of a normal Ada name
5972 that is to be ignored for matching purposes. Suffixes of parallel
5973 names (e.g., XVE) are not included here. Currently, the possible suffixes
5974 are given by any of the regular expressions:
5975
5976 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5977 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5978 TKB [subprogram suffix for task bodies]
5979 _E[0-9]+[bs]$ [protected object entry suffixes]
5980 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5981
5982 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5983 match is performed. This sequence is used to differentiate homonyms,
5984 is an optional part of a valid name suffix. */
5985
5986 static int
5987 is_name_suffix (const char *str)
5988 {
5989 int k;
5990 const char *matching;
5991 const int len = strlen (str);
5992
5993 /* Skip optional leading __[0-9]+. */
5994
5995 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5996 {
5997 str += 3;
5998 while (isdigit (str[0]))
5999 str += 1;
6000 }
6001
6002 /* [.$][0-9]+ */
6003
6004 if (str[0] == '.' || str[0] == '$')
6005 {
6006 matching = str + 1;
6007 while (isdigit (matching[0]))
6008 matching += 1;
6009 if (matching[0] == '\0')
6010 return 1;
6011 }
6012
6013 /* ___[0-9]+ */
6014
6015 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6016 {
6017 matching = str + 3;
6018 while (isdigit (matching[0]))
6019 matching += 1;
6020 if (matching[0] == '\0')
6021 return 1;
6022 }
6023
6024 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6025
6026 if (strcmp (str, "TKB") == 0)
6027 return 1;
6028
6029 #if 0
6030 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6031 with a N at the end. Unfortunately, the compiler uses the same
6032 convention for other internal types it creates. So treating
6033 all entity names that end with an "N" as a name suffix causes
6034 some regressions. For instance, consider the case of an enumerated
6035 type. To support the 'Image attribute, it creates an array whose
6036 name ends with N.
6037 Having a single character like this as a suffix carrying some
6038 information is a bit risky. Perhaps we should change the encoding
6039 to be something like "_N" instead. In the meantime, do not do
6040 the following check. */
6041 /* Protected Object Subprograms */
6042 if (len == 1 && str [0] == 'N')
6043 return 1;
6044 #endif
6045
6046 /* _E[0-9]+[bs]$ */
6047 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6048 {
6049 matching = str + 3;
6050 while (isdigit (matching[0]))
6051 matching += 1;
6052 if ((matching[0] == 'b' || matching[0] == 's')
6053 && matching [1] == '\0')
6054 return 1;
6055 }
6056
6057 /* ??? We should not modify STR directly, as we are doing below. This
6058 is fine in this case, but may become problematic later if we find
6059 that this alternative did not work, and want to try matching
6060 another one from the begining of STR. Since we modified it, we
6061 won't be able to find the begining of the string anymore! */
6062 if (str[0] == 'X')
6063 {
6064 str += 1;
6065 while (str[0] != '_' && str[0] != '\0')
6066 {
6067 if (str[0] != 'n' && str[0] != 'b')
6068 return 0;
6069 str += 1;
6070 }
6071 }
6072
6073 if (str[0] == '\000')
6074 return 1;
6075
6076 if (str[0] == '_')
6077 {
6078 if (str[1] != '_' || str[2] == '\000')
6079 return 0;
6080 if (str[2] == '_')
6081 {
6082 if (strcmp (str + 3, "JM") == 0)
6083 return 1;
6084 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6085 the LJM suffix in favor of the JM one. But we will
6086 still accept LJM as a valid suffix for a reasonable
6087 amount of time, just to allow ourselves to debug programs
6088 compiled using an older version of GNAT. */
6089 if (strcmp (str + 3, "LJM") == 0)
6090 return 1;
6091 if (str[3] != 'X')
6092 return 0;
6093 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6094 || str[4] == 'U' || str[4] == 'P')
6095 return 1;
6096 if (str[4] == 'R' && str[5] != 'T')
6097 return 1;
6098 return 0;
6099 }
6100 if (!isdigit (str[2]))
6101 return 0;
6102 for (k = 3; str[k] != '\0'; k += 1)
6103 if (!isdigit (str[k]) && str[k] != '_')
6104 return 0;
6105 return 1;
6106 }
6107 if (str[0] == '$' && isdigit (str[1]))
6108 {
6109 for (k = 2; str[k] != '\0'; k += 1)
6110 if (!isdigit (str[k]) && str[k] != '_')
6111 return 0;
6112 return 1;
6113 }
6114 return 0;
6115 }
6116
6117 /* Return non-zero if the string starting at NAME and ending before
6118 NAME_END contains no capital letters. */
6119
6120 static int
6121 is_valid_name_for_wild_match (const char *name0)
6122 {
6123 const char *decoded_name = ada_decode (name0);
6124 int i;
6125
6126 /* If the decoded name starts with an angle bracket, it means that
6127 NAME0 does not follow the GNAT encoding format. It should then
6128 not be allowed as a possible wild match. */
6129 if (decoded_name[0] == '<')
6130 return 0;
6131
6132 for (i=0; decoded_name[i] != '\0'; i++)
6133 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6134 return 0;
6135
6136 return 1;
6137 }
6138
6139 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6140 that could start a simple name. Assumes that *NAMEP points into
6141 the string beginning at NAME0. */
6142
6143 static int
6144 advance_wild_match (const char **namep, const char *name0, int target0)
6145 {
6146 const char *name = *namep;
6147
6148 while (1)
6149 {
6150 int t0, t1;
6151
6152 t0 = *name;
6153 if (t0 == '_')
6154 {
6155 t1 = name[1];
6156 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6157 {
6158 name += 1;
6159 if (name == name0 + 5 && startswith (name0, "_ada"))
6160 break;
6161 else
6162 name += 1;
6163 }
6164 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6165 || name[2] == target0))
6166 {
6167 name += 2;
6168 break;
6169 }
6170 else
6171 return 0;
6172 }
6173 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6174 name += 1;
6175 else
6176 return 0;
6177 }
6178
6179 *namep = name;
6180 return 1;
6181 }
6182
6183 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6184 informational suffixes of NAME (i.e., for which is_name_suffix is
6185 true). Assumes that PATN is a lower-cased Ada simple name. */
6186
6187 static int
6188 wild_match (const char *name, const char *patn)
6189 {
6190 const char *p;
6191 const char *name0 = name;
6192
6193 while (1)
6194 {
6195 const char *match = name;
6196
6197 if (*name == *patn)
6198 {
6199 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6200 if (*p != *name)
6201 break;
6202 if (*p == '\0' && is_name_suffix (name))
6203 return match != name0 && !is_valid_name_for_wild_match (name0);
6204
6205 if (name[-1] == '_')
6206 name -= 1;
6207 }
6208 if (!advance_wild_match (&name, name0, *patn))
6209 return 1;
6210 }
6211 }
6212
6213 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6214 informational suffix. */
6215
6216 static int
6217 full_match (const char *sym_name, const char *search_name)
6218 {
6219 return !match_name (sym_name, search_name, 0);
6220 }
6221
6222
6223 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6224 vector *defn_symbols, updating the list of symbols in OBSTACKP
6225 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6226 OBJFILE is the section containing BLOCK. */
6227
6228 static void
6229 ada_add_block_symbols (struct obstack *obstackp,
6230 const struct block *block, const char *name,
6231 domain_enum domain, struct objfile *objfile,
6232 int wild)
6233 {
6234 struct block_iterator iter;
6235 int name_len = strlen (name);
6236 /* A matching argument symbol, if any. */
6237 struct symbol *arg_sym;
6238 /* Set true when we find a matching non-argument symbol. */
6239 int found_sym;
6240 struct symbol *sym;
6241
6242 arg_sym = NULL;
6243 found_sym = 0;
6244 if (wild)
6245 {
6246 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6247 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6248 {
6249 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6250 SYMBOL_DOMAIN (sym), domain)
6251 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6252 {
6253 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6254 continue;
6255 else if (SYMBOL_IS_ARGUMENT (sym))
6256 arg_sym = sym;
6257 else
6258 {
6259 found_sym = 1;
6260 add_defn_to_vec (obstackp,
6261 fixup_symbol_section (sym, objfile),
6262 block);
6263 }
6264 }
6265 }
6266 }
6267 else
6268 {
6269 for (sym = block_iter_match_first (block, name, full_match, &iter);
6270 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6271 {
6272 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6273 SYMBOL_DOMAIN (sym), domain))
6274 {
6275 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6276 {
6277 if (SYMBOL_IS_ARGUMENT (sym))
6278 arg_sym = sym;
6279 else
6280 {
6281 found_sym = 1;
6282 add_defn_to_vec (obstackp,
6283 fixup_symbol_section (sym, objfile),
6284 block);
6285 }
6286 }
6287 }
6288 }
6289 }
6290
6291 /* Handle renamings. */
6292
6293 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6294 found_sym = 1;
6295
6296 if (!found_sym && arg_sym != NULL)
6297 {
6298 add_defn_to_vec (obstackp,
6299 fixup_symbol_section (arg_sym, objfile),
6300 block);
6301 }
6302
6303 if (!wild)
6304 {
6305 arg_sym = NULL;
6306 found_sym = 0;
6307
6308 ALL_BLOCK_SYMBOLS (block, iter, sym)
6309 {
6310 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6311 SYMBOL_DOMAIN (sym), domain))
6312 {
6313 int cmp;
6314
6315 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6316 if (cmp == 0)
6317 {
6318 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6319 if (cmp == 0)
6320 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6321 name_len);
6322 }
6323
6324 if (cmp == 0
6325 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6326 {
6327 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6328 {
6329 if (SYMBOL_IS_ARGUMENT (sym))
6330 arg_sym = sym;
6331 else
6332 {
6333 found_sym = 1;
6334 add_defn_to_vec (obstackp,
6335 fixup_symbol_section (sym, objfile),
6336 block);
6337 }
6338 }
6339 }
6340 }
6341 }
6342
6343 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6344 They aren't parameters, right? */
6345 if (!found_sym && arg_sym != NULL)
6346 {
6347 add_defn_to_vec (obstackp,
6348 fixup_symbol_section (arg_sym, objfile),
6349 block);
6350 }
6351 }
6352 }
6353 \f
6354
6355 /* Symbol Completion */
6356
6357 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6358 name in a form that's appropriate for the completion. The result
6359 does not need to be deallocated, but is only good until the next call.
6360
6361 TEXT_LEN is equal to the length of TEXT.
6362 Perform a wild match if WILD_MATCH_P is set.
6363 ENCODED_P should be set if TEXT represents the start of a symbol name
6364 in its encoded form. */
6365
6366 static const char *
6367 symbol_completion_match (const char *sym_name,
6368 const char *text, int text_len,
6369 int wild_match_p, int encoded_p)
6370 {
6371 const int verbatim_match = (text[0] == '<');
6372 int match = 0;
6373
6374 if (verbatim_match)
6375 {
6376 /* Strip the leading angle bracket. */
6377 text = text + 1;
6378 text_len--;
6379 }
6380
6381 /* First, test against the fully qualified name of the symbol. */
6382
6383 if (strncmp (sym_name, text, text_len) == 0)
6384 match = 1;
6385
6386 if (match && !encoded_p)
6387 {
6388 /* One needed check before declaring a positive match is to verify
6389 that iff we are doing a verbatim match, the decoded version
6390 of the symbol name starts with '<'. Otherwise, this symbol name
6391 is not a suitable completion. */
6392 const char *sym_name_copy = sym_name;
6393 int has_angle_bracket;
6394
6395 sym_name = ada_decode (sym_name);
6396 has_angle_bracket = (sym_name[0] == '<');
6397 match = (has_angle_bracket == verbatim_match);
6398 sym_name = sym_name_copy;
6399 }
6400
6401 if (match && !verbatim_match)
6402 {
6403 /* When doing non-verbatim match, another check that needs to
6404 be done is to verify that the potentially matching symbol name
6405 does not include capital letters, because the ada-mode would
6406 not be able to understand these symbol names without the
6407 angle bracket notation. */
6408 const char *tmp;
6409
6410 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6411 if (*tmp != '\0')
6412 match = 0;
6413 }
6414
6415 /* Second: Try wild matching... */
6416
6417 if (!match && wild_match_p)
6418 {
6419 /* Since we are doing wild matching, this means that TEXT
6420 may represent an unqualified symbol name. We therefore must
6421 also compare TEXT against the unqualified name of the symbol. */
6422 sym_name = ada_unqualified_name (ada_decode (sym_name));
6423
6424 if (strncmp (sym_name, text, text_len) == 0)
6425 match = 1;
6426 }
6427
6428 /* Finally: If we found a mach, prepare the result to return. */
6429
6430 if (!match)
6431 return NULL;
6432
6433 if (verbatim_match)
6434 sym_name = add_angle_brackets (sym_name);
6435
6436 if (!encoded_p)
6437 sym_name = ada_decode (sym_name);
6438
6439 return sym_name;
6440 }
6441
6442 /* A companion function to ada_collect_symbol_completion_matches().
6443 Check if SYM_NAME represents a symbol which name would be suitable
6444 to complete TEXT (TEXT_LEN is the length of TEXT), in which case it
6445 is added as a completion match to TRACKER.
6446
6447 ORIG_TEXT is the string original string from the user command
6448 that needs to be completed. WORD is the entire command on which
6449 completion should be performed. These two parameters are used to
6450 determine which part of the symbol name should be added to the
6451 completion vector.
6452 if WILD_MATCH_P is set, then wild matching is performed.
6453 ENCODED_P should be set if TEXT represents a symbol name in its
6454 encoded formed (in which case the completion should also be
6455 encoded). */
6456
6457 static void
6458 symbol_completion_add (completion_tracker &tracker,
6459 const char *sym_name,
6460 const char *text, int text_len,
6461 const char *orig_text, const char *word,
6462 int wild_match_p, int encoded_p)
6463 {
6464 const char *match = symbol_completion_match (sym_name, text, text_len,
6465 wild_match_p, encoded_p);
6466 char *completion;
6467
6468 if (match == NULL)
6469 return;
6470
6471 /* We found a match, so add the appropriate completion to the given
6472 string vector. */
6473
6474 if (word == orig_text)
6475 {
6476 completion = (char *) xmalloc (strlen (match) + 5);
6477 strcpy (completion, match);
6478 }
6479 else if (word > orig_text)
6480 {
6481 /* Return some portion of sym_name. */
6482 completion = (char *) xmalloc (strlen (match) + 5);
6483 strcpy (completion, match + (word - orig_text));
6484 }
6485 else
6486 {
6487 /* Return some of ORIG_TEXT plus sym_name. */
6488 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6489 strncpy (completion, word, orig_text - word);
6490 completion[orig_text - word] = '\0';
6491 strcat (completion, match);
6492 }
6493
6494 tracker.add_completion (gdb::unique_xmalloc_ptr<char> (completion));
6495 }
6496
6497 /* Add the list of possible symbol names completing TEXT0 to TRACKER.
6498 WORD is the entire command on which completion is made. */
6499
6500 static void
6501 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6502 complete_symbol_mode mode,
6503 const char *text0, const char *word,
6504 enum type_code code)
6505 {
6506 char *text;
6507 int text_len;
6508 int wild_match_p;
6509 int encoded_p;
6510 struct symbol *sym;
6511 struct compunit_symtab *s;
6512 struct minimal_symbol *msymbol;
6513 struct objfile *objfile;
6514 const struct block *b, *surrounding_static_block = 0;
6515 int i;
6516 struct block_iterator iter;
6517 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6518
6519 gdb_assert (code == TYPE_CODE_UNDEF);
6520
6521 if (text0[0] == '<')
6522 {
6523 text = xstrdup (text0);
6524 make_cleanup (xfree, text);
6525 text_len = strlen (text);
6526 wild_match_p = 0;
6527 encoded_p = 1;
6528 }
6529 else
6530 {
6531 text = xstrdup (ada_encode (text0));
6532 make_cleanup (xfree, text);
6533 text_len = strlen (text);
6534 for (i = 0; i < text_len; i++)
6535 text[i] = tolower (text[i]);
6536
6537 encoded_p = (strstr (text0, "__") != NULL);
6538 /* If the name contains a ".", then the user is entering a fully
6539 qualified entity name, and the match must not be done in wild
6540 mode. Similarly, if the user wants to complete what looks like
6541 an encoded name, the match must not be done in wild mode. */
6542 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6543 }
6544
6545 /* First, look at the partial symtab symbols. */
6546 expand_symtabs_matching (NULL,
6547 [&] (const char *symname)
6548 {
6549 return symbol_completion_match (symname,
6550 text, text_len,
6551 wild_match_p,
6552 encoded_p);
6553 },
6554 NULL,
6555 ALL_DOMAIN);
6556
6557 /* At this point scan through the misc symbol vectors and add each
6558 symbol you find to the list. Eventually we want to ignore
6559 anything that isn't a text symbol (everything else will be
6560 handled by the psymtab code above). */
6561
6562 ALL_MSYMBOLS (objfile, msymbol)
6563 {
6564 QUIT;
6565 symbol_completion_add (tracker, MSYMBOL_LINKAGE_NAME (msymbol),
6566 text, text_len, text0, word, wild_match_p,
6567 encoded_p);
6568 }
6569
6570 /* Search upwards from currently selected frame (so that we can
6571 complete on local vars. */
6572
6573 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6574 {
6575 if (!BLOCK_SUPERBLOCK (b))
6576 surrounding_static_block = b; /* For elmin of dups */
6577
6578 ALL_BLOCK_SYMBOLS (b, iter, sym)
6579 {
6580 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6581 text, text_len, text0, word,
6582 wild_match_p, encoded_p);
6583 }
6584 }
6585
6586 /* Go through the symtabs and check the externs and statics for
6587 symbols which match. */
6588
6589 ALL_COMPUNITS (objfile, s)
6590 {
6591 QUIT;
6592 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6593 ALL_BLOCK_SYMBOLS (b, iter, sym)
6594 {
6595 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6596 text, text_len, text0, word,
6597 wild_match_p, encoded_p);
6598 }
6599 }
6600
6601 ALL_COMPUNITS (objfile, s)
6602 {
6603 QUIT;
6604 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6605 /* Don't do this block twice. */
6606 if (b == surrounding_static_block)
6607 continue;
6608 ALL_BLOCK_SYMBOLS (b, iter, sym)
6609 {
6610 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6611 text, text_len, text0, word,
6612 wild_match_p, encoded_p);
6613 }
6614 }
6615
6616 do_cleanups (old_chain);
6617 }
6618
6619 /* Field Access */
6620
6621 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6622 for tagged types. */
6623
6624 static int
6625 ada_is_dispatch_table_ptr_type (struct type *type)
6626 {
6627 const char *name;
6628
6629 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6630 return 0;
6631
6632 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6633 if (name == NULL)
6634 return 0;
6635
6636 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6637 }
6638
6639 /* Return non-zero if TYPE is an interface tag. */
6640
6641 static int
6642 ada_is_interface_tag (struct type *type)
6643 {
6644 const char *name = TYPE_NAME (type);
6645
6646 if (name == NULL)
6647 return 0;
6648
6649 return (strcmp (name, "ada__tags__interface_tag") == 0);
6650 }
6651
6652 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6653 to be invisible to users. */
6654
6655 int
6656 ada_is_ignored_field (struct type *type, int field_num)
6657 {
6658 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6659 return 1;
6660
6661 /* Check the name of that field. */
6662 {
6663 const char *name = TYPE_FIELD_NAME (type, field_num);
6664
6665 /* Anonymous field names should not be printed.
6666 brobecker/2007-02-20: I don't think this can actually happen
6667 but we don't want to print the value of annonymous fields anyway. */
6668 if (name == NULL)
6669 return 1;
6670
6671 /* Normally, fields whose name start with an underscore ("_")
6672 are fields that have been internally generated by the compiler,
6673 and thus should not be printed. The "_parent" field is special,
6674 however: This is a field internally generated by the compiler
6675 for tagged types, and it contains the components inherited from
6676 the parent type. This field should not be printed as is, but
6677 should not be ignored either. */
6678 if (name[0] == '_' && !startswith (name, "_parent"))
6679 return 1;
6680 }
6681
6682 /* If this is the dispatch table of a tagged type or an interface tag,
6683 then ignore. */
6684 if (ada_is_tagged_type (type, 1)
6685 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6686 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6687 return 1;
6688
6689 /* Not a special field, so it should not be ignored. */
6690 return 0;
6691 }
6692
6693 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6694 pointer or reference type whose ultimate target has a tag field. */
6695
6696 int
6697 ada_is_tagged_type (struct type *type, int refok)
6698 {
6699 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6700 }
6701
6702 /* True iff TYPE represents the type of X'Tag */
6703
6704 int
6705 ada_is_tag_type (struct type *type)
6706 {
6707 type = ada_check_typedef (type);
6708
6709 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6710 return 0;
6711 else
6712 {
6713 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6714
6715 return (name != NULL
6716 && strcmp (name, "ada__tags__dispatch_table") == 0);
6717 }
6718 }
6719
6720 /* The type of the tag on VAL. */
6721
6722 struct type *
6723 ada_tag_type (struct value *val)
6724 {
6725 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6726 }
6727
6728 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6729 retired at Ada 05). */
6730
6731 static int
6732 is_ada95_tag (struct value *tag)
6733 {
6734 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6735 }
6736
6737 /* The value of the tag on VAL. */
6738
6739 struct value *
6740 ada_value_tag (struct value *val)
6741 {
6742 return ada_value_struct_elt (val, "_tag", 0);
6743 }
6744
6745 /* The value of the tag on the object of type TYPE whose contents are
6746 saved at VALADDR, if it is non-null, or is at memory address
6747 ADDRESS. */
6748
6749 static struct value *
6750 value_tag_from_contents_and_address (struct type *type,
6751 const gdb_byte *valaddr,
6752 CORE_ADDR address)
6753 {
6754 int tag_byte_offset;
6755 struct type *tag_type;
6756
6757 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6758 NULL, NULL, NULL))
6759 {
6760 const gdb_byte *valaddr1 = ((valaddr == NULL)
6761 ? NULL
6762 : valaddr + tag_byte_offset);
6763 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6764
6765 return value_from_contents_and_address (tag_type, valaddr1, address1);
6766 }
6767 return NULL;
6768 }
6769
6770 static struct type *
6771 type_from_tag (struct value *tag)
6772 {
6773 const char *type_name = ada_tag_name (tag);
6774
6775 if (type_name != NULL)
6776 return ada_find_any_type (ada_encode (type_name));
6777 return NULL;
6778 }
6779
6780 /* Given a value OBJ of a tagged type, return a value of this
6781 type at the base address of the object. The base address, as
6782 defined in Ada.Tags, it is the address of the primary tag of
6783 the object, and therefore where the field values of its full
6784 view can be fetched. */
6785
6786 struct value *
6787 ada_tag_value_at_base_address (struct value *obj)
6788 {
6789 struct value *val;
6790 LONGEST offset_to_top = 0;
6791 struct type *ptr_type, *obj_type;
6792 struct value *tag;
6793 CORE_ADDR base_address;
6794
6795 obj_type = value_type (obj);
6796
6797 /* It is the responsability of the caller to deref pointers. */
6798
6799 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6800 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6801 return obj;
6802
6803 tag = ada_value_tag (obj);
6804 if (!tag)
6805 return obj;
6806
6807 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6808
6809 if (is_ada95_tag (tag))
6810 return obj;
6811
6812 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6813 ptr_type = lookup_pointer_type (ptr_type);
6814 val = value_cast (ptr_type, tag);
6815 if (!val)
6816 return obj;
6817
6818 /* It is perfectly possible that an exception be raised while
6819 trying to determine the base address, just like for the tag;
6820 see ada_tag_name for more details. We do not print the error
6821 message for the same reason. */
6822
6823 TRY
6824 {
6825 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6826 }
6827
6828 CATCH (e, RETURN_MASK_ERROR)
6829 {
6830 return obj;
6831 }
6832 END_CATCH
6833
6834 /* If offset is null, nothing to do. */
6835
6836 if (offset_to_top == 0)
6837 return obj;
6838
6839 /* -1 is a special case in Ada.Tags; however, what should be done
6840 is not quite clear from the documentation. So do nothing for
6841 now. */
6842
6843 if (offset_to_top == -1)
6844 return obj;
6845
6846 base_address = value_address (obj) - offset_to_top;
6847 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6848
6849 /* Make sure that we have a proper tag at the new address.
6850 Otherwise, offset_to_top is bogus (which can happen when
6851 the object is not initialized yet). */
6852
6853 if (!tag)
6854 return obj;
6855
6856 obj_type = type_from_tag (tag);
6857
6858 if (!obj_type)
6859 return obj;
6860
6861 return value_from_contents_and_address (obj_type, NULL, base_address);
6862 }
6863
6864 /* Return the "ada__tags__type_specific_data" type. */
6865
6866 static struct type *
6867 ada_get_tsd_type (struct inferior *inf)
6868 {
6869 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6870
6871 if (data->tsd_type == 0)
6872 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6873 return data->tsd_type;
6874 }
6875
6876 /* Return the TSD (type-specific data) associated to the given TAG.
6877 TAG is assumed to be the tag of a tagged-type entity.
6878
6879 May return NULL if we are unable to get the TSD. */
6880
6881 static struct value *
6882 ada_get_tsd_from_tag (struct value *tag)
6883 {
6884 struct value *val;
6885 struct type *type;
6886
6887 /* First option: The TSD is simply stored as a field of our TAG.
6888 Only older versions of GNAT would use this format, but we have
6889 to test it first, because there are no visible markers for
6890 the current approach except the absence of that field. */
6891
6892 val = ada_value_struct_elt (tag, "tsd", 1);
6893 if (val)
6894 return val;
6895
6896 /* Try the second representation for the dispatch table (in which
6897 there is no explicit 'tsd' field in the referent of the tag pointer,
6898 and instead the tsd pointer is stored just before the dispatch
6899 table. */
6900
6901 type = ada_get_tsd_type (current_inferior());
6902 if (type == NULL)
6903 return NULL;
6904 type = lookup_pointer_type (lookup_pointer_type (type));
6905 val = value_cast (type, tag);
6906 if (val == NULL)
6907 return NULL;
6908 return value_ind (value_ptradd (val, -1));
6909 }
6910
6911 /* Given the TSD of a tag (type-specific data), return a string
6912 containing the name of the associated type.
6913
6914 The returned value is good until the next call. May return NULL
6915 if we are unable to determine the tag name. */
6916
6917 static char *
6918 ada_tag_name_from_tsd (struct value *tsd)
6919 {
6920 static char name[1024];
6921 char *p;
6922 struct value *val;
6923
6924 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6925 if (val == NULL)
6926 return NULL;
6927 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6928 for (p = name; *p != '\0'; p += 1)
6929 if (isalpha (*p))
6930 *p = tolower (*p);
6931 return name;
6932 }
6933
6934 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6935 a C string.
6936
6937 Return NULL if the TAG is not an Ada tag, or if we were unable to
6938 determine the name of that tag. The result is good until the next
6939 call. */
6940
6941 const char *
6942 ada_tag_name (struct value *tag)
6943 {
6944 char *name = NULL;
6945
6946 if (!ada_is_tag_type (value_type (tag)))
6947 return NULL;
6948
6949 /* It is perfectly possible that an exception be raised while trying
6950 to determine the TAG's name, even under normal circumstances:
6951 The associated variable may be uninitialized or corrupted, for
6952 instance. We do not let any exception propagate past this point.
6953 instead we return NULL.
6954
6955 We also do not print the error message either (which often is very
6956 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6957 the caller print a more meaningful message if necessary. */
6958 TRY
6959 {
6960 struct value *tsd = ada_get_tsd_from_tag (tag);
6961
6962 if (tsd != NULL)
6963 name = ada_tag_name_from_tsd (tsd);
6964 }
6965 CATCH (e, RETURN_MASK_ERROR)
6966 {
6967 }
6968 END_CATCH
6969
6970 return name;
6971 }
6972
6973 /* The parent type of TYPE, or NULL if none. */
6974
6975 struct type *
6976 ada_parent_type (struct type *type)
6977 {
6978 int i;
6979
6980 type = ada_check_typedef (type);
6981
6982 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6983 return NULL;
6984
6985 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6986 if (ada_is_parent_field (type, i))
6987 {
6988 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6989
6990 /* If the _parent field is a pointer, then dereference it. */
6991 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6992 parent_type = TYPE_TARGET_TYPE (parent_type);
6993 /* If there is a parallel XVS type, get the actual base type. */
6994 parent_type = ada_get_base_type (parent_type);
6995
6996 return ada_check_typedef (parent_type);
6997 }
6998
6999 return NULL;
7000 }
7001
7002 /* True iff field number FIELD_NUM of structure type TYPE contains the
7003 parent-type (inherited) fields of a derived type. Assumes TYPE is
7004 a structure type with at least FIELD_NUM+1 fields. */
7005
7006 int
7007 ada_is_parent_field (struct type *type, int field_num)
7008 {
7009 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7010
7011 return (name != NULL
7012 && (startswith (name, "PARENT")
7013 || startswith (name, "_parent")));
7014 }
7015
7016 /* True iff field number FIELD_NUM of structure type TYPE is a
7017 transparent wrapper field (which should be silently traversed when doing
7018 field selection and flattened when printing). Assumes TYPE is a
7019 structure type with at least FIELD_NUM+1 fields. Such fields are always
7020 structures. */
7021
7022 int
7023 ada_is_wrapper_field (struct type *type, int field_num)
7024 {
7025 const char *name = TYPE_FIELD_NAME (type, field_num);
7026
7027 if (name != NULL && strcmp (name, "RETVAL") == 0)
7028 {
7029 /* This happens in functions with "out" or "in out" parameters
7030 which are passed by copy. For such functions, GNAT describes
7031 the function's return type as being a struct where the return
7032 value is in a field called RETVAL, and where the other "out"
7033 or "in out" parameters are fields of that struct. This is not
7034 a wrapper. */
7035 return 0;
7036 }
7037
7038 return (name != NULL
7039 && (startswith (name, "PARENT")
7040 || strcmp (name, "REP") == 0
7041 || startswith (name, "_parent")
7042 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7043 }
7044
7045 /* True iff field number FIELD_NUM of structure or union type TYPE
7046 is a variant wrapper. Assumes TYPE is a structure type with at least
7047 FIELD_NUM+1 fields. */
7048
7049 int
7050 ada_is_variant_part (struct type *type, int field_num)
7051 {
7052 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7053
7054 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7055 || (is_dynamic_field (type, field_num)
7056 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7057 == TYPE_CODE_UNION)));
7058 }
7059
7060 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7061 whose discriminants are contained in the record type OUTER_TYPE,
7062 returns the type of the controlling discriminant for the variant.
7063 May return NULL if the type could not be found. */
7064
7065 struct type *
7066 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7067 {
7068 const char *name = ada_variant_discrim_name (var_type);
7069
7070 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7071 }
7072
7073 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7074 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7075 represents a 'when others' clause; otherwise 0. */
7076
7077 int
7078 ada_is_others_clause (struct type *type, int field_num)
7079 {
7080 const char *name = TYPE_FIELD_NAME (type, field_num);
7081
7082 return (name != NULL && name[0] == 'O');
7083 }
7084
7085 /* Assuming that TYPE0 is the type of the variant part of a record,
7086 returns the name of the discriminant controlling the variant.
7087 The value is valid until the next call to ada_variant_discrim_name. */
7088
7089 const char *
7090 ada_variant_discrim_name (struct type *type0)
7091 {
7092 static char *result = NULL;
7093 static size_t result_len = 0;
7094 struct type *type;
7095 const char *name;
7096 const char *discrim_end;
7097 const char *discrim_start;
7098
7099 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7100 type = TYPE_TARGET_TYPE (type0);
7101 else
7102 type = type0;
7103
7104 name = ada_type_name (type);
7105
7106 if (name == NULL || name[0] == '\000')
7107 return "";
7108
7109 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7110 discrim_end -= 1)
7111 {
7112 if (startswith (discrim_end, "___XVN"))
7113 break;
7114 }
7115 if (discrim_end == name)
7116 return "";
7117
7118 for (discrim_start = discrim_end; discrim_start != name + 3;
7119 discrim_start -= 1)
7120 {
7121 if (discrim_start == name + 1)
7122 return "";
7123 if ((discrim_start > name + 3
7124 && startswith (discrim_start - 3, "___"))
7125 || discrim_start[-1] == '.')
7126 break;
7127 }
7128
7129 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7130 strncpy (result, discrim_start, discrim_end - discrim_start);
7131 result[discrim_end - discrim_start] = '\0';
7132 return result;
7133 }
7134
7135 /* Scan STR for a subtype-encoded number, beginning at position K.
7136 Put the position of the character just past the number scanned in
7137 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7138 Return 1 if there was a valid number at the given position, and 0
7139 otherwise. A "subtype-encoded" number consists of the absolute value
7140 in decimal, followed by the letter 'm' to indicate a negative number.
7141 Assumes 0m does not occur. */
7142
7143 int
7144 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7145 {
7146 ULONGEST RU;
7147
7148 if (!isdigit (str[k]))
7149 return 0;
7150
7151 /* Do it the hard way so as not to make any assumption about
7152 the relationship of unsigned long (%lu scan format code) and
7153 LONGEST. */
7154 RU = 0;
7155 while (isdigit (str[k]))
7156 {
7157 RU = RU * 10 + (str[k] - '0');
7158 k += 1;
7159 }
7160
7161 if (str[k] == 'm')
7162 {
7163 if (R != NULL)
7164 *R = (-(LONGEST) (RU - 1)) - 1;
7165 k += 1;
7166 }
7167 else if (R != NULL)
7168 *R = (LONGEST) RU;
7169
7170 /* NOTE on the above: Technically, C does not say what the results of
7171 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7172 number representable as a LONGEST (although either would probably work
7173 in most implementations). When RU>0, the locution in the then branch
7174 above is always equivalent to the negative of RU. */
7175
7176 if (new_k != NULL)
7177 *new_k = k;
7178 return 1;
7179 }
7180
7181 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7182 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7183 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7184
7185 int
7186 ada_in_variant (LONGEST val, struct type *type, int field_num)
7187 {
7188 const char *name = TYPE_FIELD_NAME (type, field_num);
7189 int p;
7190
7191 p = 0;
7192 while (1)
7193 {
7194 switch (name[p])
7195 {
7196 case '\0':
7197 return 0;
7198 case 'S':
7199 {
7200 LONGEST W;
7201
7202 if (!ada_scan_number (name, p + 1, &W, &p))
7203 return 0;
7204 if (val == W)
7205 return 1;
7206 break;
7207 }
7208 case 'R':
7209 {
7210 LONGEST L, U;
7211
7212 if (!ada_scan_number (name, p + 1, &L, &p)
7213 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7214 return 0;
7215 if (val >= L && val <= U)
7216 return 1;
7217 break;
7218 }
7219 case 'O':
7220 return 1;
7221 default:
7222 return 0;
7223 }
7224 }
7225 }
7226
7227 /* FIXME: Lots of redundancy below. Try to consolidate. */
7228
7229 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7230 ARG_TYPE, extract and return the value of one of its (non-static)
7231 fields. FIELDNO says which field. Differs from value_primitive_field
7232 only in that it can handle packed values of arbitrary type. */
7233
7234 static struct value *
7235 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7236 struct type *arg_type)
7237 {
7238 struct type *type;
7239
7240 arg_type = ada_check_typedef (arg_type);
7241 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7242
7243 /* Handle packed fields. */
7244
7245 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7246 {
7247 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7248 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7249
7250 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7251 offset + bit_pos / 8,
7252 bit_pos % 8, bit_size, type);
7253 }
7254 else
7255 return value_primitive_field (arg1, offset, fieldno, arg_type);
7256 }
7257
7258 /* Find field with name NAME in object of type TYPE. If found,
7259 set the following for each argument that is non-null:
7260 - *FIELD_TYPE_P to the field's type;
7261 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7262 an object of that type;
7263 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7264 - *BIT_SIZE_P to its size in bits if the field is packed, and
7265 0 otherwise;
7266 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7267 fields up to but not including the desired field, or by the total
7268 number of fields if not found. A NULL value of NAME never
7269 matches; the function just counts visible fields in this case.
7270
7271 Returns 1 if found, 0 otherwise. */
7272
7273 static int
7274 find_struct_field (const char *name, struct type *type, int offset,
7275 struct type **field_type_p,
7276 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7277 int *index_p)
7278 {
7279 int i;
7280
7281 type = ada_check_typedef (type);
7282
7283 if (field_type_p != NULL)
7284 *field_type_p = NULL;
7285 if (byte_offset_p != NULL)
7286 *byte_offset_p = 0;
7287 if (bit_offset_p != NULL)
7288 *bit_offset_p = 0;
7289 if (bit_size_p != NULL)
7290 *bit_size_p = 0;
7291
7292 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7293 {
7294 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7295 int fld_offset = offset + bit_pos / 8;
7296 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7297
7298 if (t_field_name == NULL)
7299 continue;
7300
7301 else if (name != NULL && field_name_match (t_field_name, name))
7302 {
7303 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7304
7305 if (field_type_p != NULL)
7306 *field_type_p = TYPE_FIELD_TYPE (type, i);
7307 if (byte_offset_p != NULL)
7308 *byte_offset_p = fld_offset;
7309 if (bit_offset_p != NULL)
7310 *bit_offset_p = bit_pos % 8;
7311 if (bit_size_p != NULL)
7312 *bit_size_p = bit_size;
7313 return 1;
7314 }
7315 else if (ada_is_wrapper_field (type, i))
7316 {
7317 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7318 field_type_p, byte_offset_p, bit_offset_p,
7319 bit_size_p, index_p))
7320 return 1;
7321 }
7322 else if (ada_is_variant_part (type, i))
7323 {
7324 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7325 fixed type?? */
7326 int j;
7327 struct type *field_type
7328 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7329
7330 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7331 {
7332 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7333 fld_offset
7334 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7335 field_type_p, byte_offset_p,
7336 bit_offset_p, bit_size_p, index_p))
7337 return 1;
7338 }
7339 }
7340 else if (index_p != NULL)
7341 *index_p += 1;
7342 }
7343 return 0;
7344 }
7345
7346 /* Number of user-visible fields in record type TYPE. */
7347
7348 static int
7349 num_visible_fields (struct type *type)
7350 {
7351 int n;
7352
7353 n = 0;
7354 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7355 return n;
7356 }
7357
7358 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7359 and search in it assuming it has (class) type TYPE.
7360 If found, return value, else return NULL.
7361
7362 Searches recursively through wrapper fields (e.g., '_parent'). */
7363
7364 static struct value *
7365 ada_search_struct_field (const char *name, struct value *arg, int offset,
7366 struct type *type)
7367 {
7368 int i;
7369
7370 type = ada_check_typedef (type);
7371 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7372 {
7373 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7374
7375 if (t_field_name == NULL)
7376 continue;
7377
7378 else if (field_name_match (t_field_name, name))
7379 return ada_value_primitive_field (arg, offset, i, type);
7380
7381 else if (ada_is_wrapper_field (type, i))
7382 {
7383 struct value *v = /* Do not let indent join lines here. */
7384 ada_search_struct_field (name, arg,
7385 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7386 TYPE_FIELD_TYPE (type, i));
7387
7388 if (v != NULL)
7389 return v;
7390 }
7391
7392 else if (ada_is_variant_part (type, i))
7393 {
7394 /* PNH: Do we ever get here? See find_struct_field. */
7395 int j;
7396 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7397 i));
7398 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7399
7400 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7401 {
7402 struct value *v = ada_search_struct_field /* Force line
7403 break. */
7404 (name, arg,
7405 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7406 TYPE_FIELD_TYPE (field_type, j));
7407
7408 if (v != NULL)
7409 return v;
7410 }
7411 }
7412 }
7413 return NULL;
7414 }
7415
7416 static struct value *ada_index_struct_field_1 (int *, struct value *,
7417 int, struct type *);
7418
7419
7420 /* Return field #INDEX in ARG, where the index is that returned by
7421 * find_struct_field through its INDEX_P argument. Adjust the address
7422 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7423 * If found, return value, else return NULL. */
7424
7425 static struct value *
7426 ada_index_struct_field (int index, struct value *arg, int offset,
7427 struct type *type)
7428 {
7429 return ada_index_struct_field_1 (&index, arg, offset, type);
7430 }
7431
7432
7433 /* Auxiliary function for ada_index_struct_field. Like
7434 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7435 * *INDEX_P. */
7436
7437 static struct value *
7438 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7439 struct type *type)
7440 {
7441 int i;
7442 type = ada_check_typedef (type);
7443
7444 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7445 {
7446 if (TYPE_FIELD_NAME (type, i) == NULL)
7447 continue;
7448 else if (ada_is_wrapper_field (type, i))
7449 {
7450 struct value *v = /* Do not let indent join lines here. */
7451 ada_index_struct_field_1 (index_p, arg,
7452 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7453 TYPE_FIELD_TYPE (type, i));
7454
7455 if (v != NULL)
7456 return v;
7457 }
7458
7459 else if (ada_is_variant_part (type, i))
7460 {
7461 /* PNH: Do we ever get here? See ada_search_struct_field,
7462 find_struct_field. */
7463 error (_("Cannot assign this kind of variant record"));
7464 }
7465 else if (*index_p == 0)
7466 return ada_value_primitive_field (arg, offset, i, type);
7467 else
7468 *index_p -= 1;
7469 }
7470 return NULL;
7471 }
7472
7473 /* Given ARG, a value of type (pointer or reference to a)*
7474 structure/union, extract the component named NAME from the ultimate
7475 target structure/union and return it as a value with its
7476 appropriate type.
7477
7478 The routine searches for NAME among all members of the structure itself
7479 and (recursively) among all members of any wrapper members
7480 (e.g., '_parent').
7481
7482 If NO_ERR, then simply return NULL in case of error, rather than
7483 calling error. */
7484
7485 struct value *
7486 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7487 {
7488 struct type *t, *t1;
7489 struct value *v;
7490
7491 v = NULL;
7492 t1 = t = ada_check_typedef (value_type (arg));
7493 if (TYPE_CODE (t) == TYPE_CODE_REF)
7494 {
7495 t1 = TYPE_TARGET_TYPE (t);
7496 if (t1 == NULL)
7497 goto BadValue;
7498 t1 = ada_check_typedef (t1);
7499 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7500 {
7501 arg = coerce_ref (arg);
7502 t = t1;
7503 }
7504 }
7505
7506 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7507 {
7508 t1 = TYPE_TARGET_TYPE (t);
7509 if (t1 == NULL)
7510 goto BadValue;
7511 t1 = ada_check_typedef (t1);
7512 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7513 {
7514 arg = value_ind (arg);
7515 t = t1;
7516 }
7517 else
7518 break;
7519 }
7520
7521 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7522 goto BadValue;
7523
7524 if (t1 == t)
7525 v = ada_search_struct_field (name, arg, 0, t);
7526 else
7527 {
7528 int bit_offset, bit_size, byte_offset;
7529 struct type *field_type;
7530 CORE_ADDR address;
7531
7532 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7533 address = value_address (ada_value_ind (arg));
7534 else
7535 address = value_address (ada_coerce_ref (arg));
7536
7537 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7538 if (find_struct_field (name, t1, 0,
7539 &field_type, &byte_offset, &bit_offset,
7540 &bit_size, NULL))
7541 {
7542 if (bit_size != 0)
7543 {
7544 if (TYPE_CODE (t) == TYPE_CODE_REF)
7545 arg = ada_coerce_ref (arg);
7546 else
7547 arg = ada_value_ind (arg);
7548 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7549 bit_offset, bit_size,
7550 field_type);
7551 }
7552 else
7553 v = value_at_lazy (field_type, address + byte_offset);
7554 }
7555 }
7556
7557 if (v != NULL || no_err)
7558 return v;
7559 else
7560 error (_("There is no member named %s."), name);
7561
7562 BadValue:
7563 if (no_err)
7564 return NULL;
7565 else
7566 error (_("Attempt to extract a component of "
7567 "a value that is not a record."));
7568 }
7569
7570 /* Return a string representation of type TYPE. */
7571
7572 static std::string
7573 type_as_string (struct type *type)
7574 {
7575 string_file tmp_stream;
7576
7577 type_print (type, "", &tmp_stream, -1);
7578
7579 return std::move (tmp_stream.string ());
7580 }
7581
7582 /* Given a type TYPE, look up the type of the component of type named NAME.
7583 If DISPP is non-null, add its byte displacement from the beginning of a
7584 structure (pointed to by a value) of type TYPE to *DISPP (does not
7585 work for packed fields).
7586
7587 Matches any field whose name has NAME as a prefix, possibly
7588 followed by "___".
7589
7590 TYPE can be either a struct or union. If REFOK, TYPE may also
7591 be a (pointer or reference)+ to a struct or union, and the
7592 ultimate target type will be searched.
7593
7594 Looks recursively into variant clauses and parent types.
7595
7596 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7597 TYPE is not a type of the right kind. */
7598
7599 static struct type *
7600 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7601 int noerr)
7602 {
7603 int i;
7604
7605 if (name == NULL)
7606 goto BadName;
7607
7608 if (refok && type != NULL)
7609 while (1)
7610 {
7611 type = ada_check_typedef (type);
7612 if (TYPE_CODE (type) != TYPE_CODE_PTR
7613 && TYPE_CODE (type) != TYPE_CODE_REF)
7614 break;
7615 type = TYPE_TARGET_TYPE (type);
7616 }
7617
7618 if (type == NULL
7619 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7620 && TYPE_CODE (type) != TYPE_CODE_UNION))
7621 {
7622 if (noerr)
7623 return NULL;
7624
7625 error (_("Type %s is not a structure or union type"),
7626 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7627 }
7628
7629 type = to_static_fixed_type (type);
7630
7631 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7632 {
7633 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7634 struct type *t;
7635
7636 if (t_field_name == NULL)
7637 continue;
7638
7639 else if (field_name_match (t_field_name, name))
7640 return TYPE_FIELD_TYPE (type, i);
7641
7642 else if (ada_is_wrapper_field (type, i))
7643 {
7644 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7645 0, 1);
7646 if (t != NULL)
7647 return t;
7648 }
7649
7650 else if (ada_is_variant_part (type, i))
7651 {
7652 int j;
7653 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7654 i));
7655
7656 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7657 {
7658 /* FIXME pnh 2008/01/26: We check for a field that is
7659 NOT wrapped in a struct, since the compiler sometimes
7660 generates these for unchecked variant types. Revisit
7661 if the compiler changes this practice. */
7662 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7663
7664 if (v_field_name != NULL
7665 && field_name_match (v_field_name, name))
7666 t = TYPE_FIELD_TYPE (field_type, j);
7667 else
7668 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7669 j),
7670 name, 0, 1);
7671
7672 if (t != NULL)
7673 return t;
7674 }
7675 }
7676
7677 }
7678
7679 BadName:
7680 if (!noerr)
7681 {
7682 const char *name_str = name != NULL ? name : _("<null>");
7683
7684 error (_("Type %s has no component named %s"),
7685 type_as_string (type).c_str (), name_str);
7686 }
7687
7688 return NULL;
7689 }
7690
7691 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7692 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7693 represents an unchecked union (that is, the variant part of a
7694 record that is named in an Unchecked_Union pragma). */
7695
7696 static int
7697 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7698 {
7699 const char *discrim_name = ada_variant_discrim_name (var_type);
7700
7701 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7702 }
7703
7704
7705 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7706 within a value of type OUTER_TYPE that is stored in GDB at
7707 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7708 numbering from 0) is applicable. Returns -1 if none are. */
7709
7710 int
7711 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7712 const gdb_byte *outer_valaddr)
7713 {
7714 int others_clause;
7715 int i;
7716 const char *discrim_name = ada_variant_discrim_name (var_type);
7717 struct value *outer;
7718 struct value *discrim;
7719 LONGEST discrim_val;
7720
7721 /* Using plain value_from_contents_and_address here causes problems
7722 because we will end up trying to resolve a type that is currently
7723 being constructed. */
7724 outer = value_from_contents_and_address_unresolved (outer_type,
7725 outer_valaddr, 0);
7726 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7727 if (discrim == NULL)
7728 return -1;
7729 discrim_val = value_as_long (discrim);
7730
7731 others_clause = -1;
7732 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7733 {
7734 if (ada_is_others_clause (var_type, i))
7735 others_clause = i;
7736 else if (ada_in_variant (discrim_val, var_type, i))
7737 return i;
7738 }
7739
7740 return others_clause;
7741 }
7742 \f
7743
7744
7745 /* Dynamic-Sized Records */
7746
7747 /* Strategy: The type ostensibly attached to a value with dynamic size
7748 (i.e., a size that is not statically recorded in the debugging
7749 data) does not accurately reflect the size or layout of the value.
7750 Our strategy is to convert these values to values with accurate,
7751 conventional types that are constructed on the fly. */
7752
7753 /* There is a subtle and tricky problem here. In general, we cannot
7754 determine the size of dynamic records without its data. However,
7755 the 'struct value' data structure, which GDB uses to represent
7756 quantities in the inferior process (the target), requires the size
7757 of the type at the time of its allocation in order to reserve space
7758 for GDB's internal copy of the data. That's why the
7759 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7760 rather than struct value*s.
7761
7762 However, GDB's internal history variables ($1, $2, etc.) are
7763 struct value*s containing internal copies of the data that are not, in
7764 general, the same as the data at their corresponding addresses in
7765 the target. Fortunately, the types we give to these values are all
7766 conventional, fixed-size types (as per the strategy described
7767 above), so that we don't usually have to perform the
7768 'to_fixed_xxx_type' conversions to look at their values.
7769 Unfortunately, there is one exception: if one of the internal
7770 history variables is an array whose elements are unconstrained
7771 records, then we will need to create distinct fixed types for each
7772 element selected. */
7773
7774 /* The upshot of all of this is that many routines take a (type, host
7775 address, target address) triple as arguments to represent a value.
7776 The host address, if non-null, is supposed to contain an internal
7777 copy of the relevant data; otherwise, the program is to consult the
7778 target at the target address. */
7779
7780 /* Assuming that VAL0 represents a pointer value, the result of
7781 dereferencing it. Differs from value_ind in its treatment of
7782 dynamic-sized types. */
7783
7784 struct value *
7785 ada_value_ind (struct value *val0)
7786 {
7787 struct value *val = value_ind (val0);
7788
7789 if (ada_is_tagged_type (value_type (val), 0))
7790 val = ada_tag_value_at_base_address (val);
7791
7792 return ada_to_fixed_value (val);
7793 }
7794
7795 /* The value resulting from dereferencing any "reference to"
7796 qualifiers on VAL0. */
7797
7798 static struct value *
7799 ada_coerce_ref (struct value *val0)
7800 {
7801 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7802 {
7803 struct value *val = val0;
7804
7805 val = coerce_ref (val);
7806
7807 if (ada_is_tagged_type (value_type (val), 0))
7808 val = ada_tag_value_at_base_address (val);
7809
7810 return ada_to_fixed_value (val);
7811 }
7812 else
7813 return val0;
7814 }
7815
7816 /* Return OFF rounded upward if necessary to a multiple of
7817 ALIGNMENT (a power of 2). */
7818
7819 static unsigned int
7820 align_value (unsigned int off, unsigned int alignment)
7821 {
7822 return (off + alignment - 1) & ~(alignment - 1);
7823 }
7824
7825 /* Return the bit alignment required for field #F of template type TYPE. */
7826
7827 static unsigned int
7828 field_alignment (struct type *type, int f)
7829 {
7830 const char *name = TYPE_FIELD_NAME (type, f);
7831 int len;
7832 int align_offset;
7833
7834 /* The field name should never be null, unless the debugging information
7835 is somehow malformed. In this case, we assume the field does not
7836 require any alignment. */
7837 if (name == NULL)
7838 return 1;
7839
7840 len = strlen (name);
7841
7842 if (!isdigit (name[len - 1]))
7843 return 1;
7844
7845 if (isdigit (name[len - 2]))
7846 align_offset = len - 2;
7847 else
7848 align_offset = len - 1;
7849
7850 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7851 return TARGET_CHAR_BIT;
7852
7853 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7854 }
7855
7856 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7857
7858 static struct symbol *
7859 ada_find_any_type_symbol (const char *name)
7860 {
7861 struct symbol *sym;
7862
7863 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7864 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7865 return sym;
7866
7867 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7868 return sym;
7869 }
7870
7871 /* Find a type named NAME. Ignores ambiguity. This routine will look
7872 solely for types defined by debug info, it will not search the GDB
7873 primitive types. */
7874
7875 static struct type *
7876 ada_find_any_type (const char *name)
7877 {
7878 struct symbol *sym = ada_find_any_type_symbol (name);
7879
7880 if (sym != NULL)
7881 return SYMBOL_TYPE (sym);
7882
7883 return NULL;
7884 }
7885
7886 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7887 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7888 symbol, in which case it is returned. Otherwise, this looks for
7889 symbols whose name is that of NAME_SYM suffixed with "___XR".
7890 Return symbol if found, and NULL otherwise. */
7891
7892 struct symbol *
7893 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7894 {
7895 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7896 struct symbol *sym;
7897
7898 if (strstr (name, "___XR") != NULL)
7899 return name_sym;
7900
7901 sym = find_old_style_renaming_symbol (name, block);
7902
7903 if (sym != NULL)
7904 return sym;
7905
7906 /* Not right yet. FIXME pnh 7/20/2007. */
7907 sym = ada_find_any_type_symbol (name);
7908 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7909 return sym;
7910 else
7911 return NULL;
7912 }
7913
7914 static struct symbol *
7915 find_old_style_renaming_symbol (const char *name, const struct block *block)
7916 {
7917 const struct symbol *function_sym = block_linkage_function (block);
7918 char *rename;
7919
7920 if (function_sym != NULL)
7921 {
7922 /* If the symbol is defined inside a function, NAME is not fully
7923 qualified. This means we need to prepend the function name
7924 as well as adding the ``___XR'' suffix to build the name of
7925 the associated renaming symbol. */
7926 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7927 /* Function names sometimes contain suffixes used
7928 for instance to qualify nested subprograms. When building
7929 the XR type name, we need to make sure that this suffix is
7930 not included. So do not include any suffix in the function
7931 name length below. */
7932 int function_name_len = ada_name_prefix_len (function_name);
7933 const int rename_len = function_name_len + 2 /* "__" */
7934 + strlen (name) + 6 /* "___XR\0" */ ;
7935
7936 /* Strip the suffix if necessary. */
7937 ada_remove_trailing_digits (function_name, &function_name_len);
7938 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7939 ada_remove_Xbn_suffix (function_name, &function_name_len);
7940
7941 /* Library-level functions are a special case, as GNAT adds
7942 a ``_ada_'' prefix to the function name to avoid namespace
7943 pollution. However, the renaming symbols themselves do not
7944 have this prefix, so we need to skip this prefix if present. */
7945 if (function_name_len > 5 /* "_ada_" */
7946 && strstr (function_name, "_ada_") == function_name)
7947 {
7948 function_name += 5;
7949 function_name_len -= 5;
7950 }
7951
7952 rename = (char *) alloca (rename_len * sizeof (char));
7953 strncpy (rename, function_name, function_name_len);
7954 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7955 "__%s___XR", name);
7956 }
7957 else
7958 {
7959 const int rename_len = strlen (name) + 6;
7960
7961 rename = (char *) alloca (rename_len * sizeof (char));
7962 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7963 }
7964
7965 return ada_find_any_type_symbol (rename);
7966 }
7967
7968 /* Because of GNAT encoding conventions, several GDB symbols may match a
7969 given type name. If the type denoted by TYPE0 is to be preferred to
7970 that of TYPE1 for purposes of type printing, return non-zero;
7971 otherwise return 0. */
7972
7973 int
7974 ada_prefer_type (struct type *type0, struct type *type1)
7975 {
7976 if (type1 == NULL)
7977 return 1;
7978 else if (type0 == NULL)
7979 return 0;
7980 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7981 return 1;
7982 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7983 return 0;
7984 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7985 return 1;
7986 else if (ada_is_constrained_packed_array_type (type0))
7987 return 1;
7988 else if (ada_is_array_descriptor_type (type0)
7989 && !ada_is_array_descriptor_type (type1))
7990 return 1;
7991 else
7992 {
7993 const char *type0_name = type_name_no_tag (type0);
7994 const char *type1_name = type_name_no_tag (type1);
7995
7996 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7997 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7998 return 1;
7999 }
8000 return 0;
8001 }
8002
8003 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8004 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8005
8006 const char *
8007 ada_type_name (struct type *type)
8008 {
8009 if (type == NULL)
8010 return NULL;
8011 else if (TYPE_NAME (type) != NULL)
8012 return TYPE_NAME (type);
8013 else
8014 return TYPE_TAG_NAME (type);
8015 }
8016
8017 /* Search the list of "descriptive" types associated to TYPE for a type
8018 whose name is NAME. */
8019
8020 static struct type *
8021 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8022 {
8023 struct type *result, *tmp;
8024
8025 if (ada_ignore_descriptive_types_p)
8026 return NULL;
8027
8028 /* If there no descriptive-type info, then there is no parallel type
8029 to be found. */
8030 if (!HAVE_GNAT_AUX_INFO (type))
8031 return NULL;
8032
8033 result = TYPE_DESCRIPTIVE_TYPE (type);
8034 while (result != NULL)
8035 {
8036 const char *result_name = ada_type_name (result);
8037
8038 if (result_name == NULL)
8039 {
8040 warning (_("unexpected null name on descriptive type"));
8041 return NULL;
8042 }
8043
8044 /* If the names match, stop. */
8045 if (strcmp (result_name, name) == 0)
8046 break;
8047
8048 /* Otherwise, look at the next item on the list, if any. */
8049 if (HAVE_GNAT_AUX_INFO (result))
8050 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8051 else
8052 tmp = NULL;
8053
8054 /* If not found either, try after having resolved the typedef. */
8055 if (tmp != NULL)
8056 result = tmp;
8057 else
8058 {
8059 result = check_typedef (result);
8060 if (HAVE_GNAT_AUX_INFO (result))
8061 result = TYPE_DESCRIPTIVE_TYPE (result);
8062 else
8063 result = NULL;
8064 }
8065 }
8066
8067 /* If we didn't find a match, see whether this is a packed array. With
8068 older compilers, the descriptive type information is either absent or
8069 irrelevant when it comes to packed arrays so the above lookup fails.
8070 Fall back to using a parallel lookup by name in this case. */
8071 if (result == NULL && ada_is_constrained_packed_array_type (type))
8072 return ada_find_any_type (name);
8073
8074 return result;
8075 }
8076
8077 /* Find a parallel type to TYPE with the specified NAME, using the
8078 descriptive type taken from the debugging information, if available,
8079 and otherwise using the (slower) name-based method. */
8080
8081 static struct type *
8082 ada_find_parallel_type_with_name (struct type *type, const char *name)
8083 {
8084 struct type *result = NULL;
8085
8086 if (HAVE_GNAT_AUX_INFO (type))
8087 result = find_parallel_type_by_descriptive_type (type, name);
8088 else
8089 result = ada_find_any_type (name);
8090
8091 return result;
8092 }
8093
8094 /* Same as above, but specify the name of the parallel type by appending
8095 SUFFIX to the name of TYPE. */
8096
8097 struct type *
8098 ada_find_parallel_type (struct type *type, const char *suffix)
8099 {
8100 char *name;
8101 const char *type_name = ada_type_name (type);
8102 int len;
8103
8104 if (type_name == NULL)
8105 return NULL;
8106
8107 len = strlen (type_name);
8108
8109 name = (char *) alloca (len + strlen (suffix) + 1);
8110
8111 strcpy (name, type_name);
8112 strcpy (name + len, suffix);
8113
8114 return ada_find_parallel_type_with_name (type, name);
8115 }
8116
8117 /* If TYPE is a variable-size record type, return the corresponding template
8118 type describing its fields. Otherwise, return NULL. */
8119
8120 static struct type *
8121 dynamic_template_type (struct type *type)
8122 {
8123 type = ada_check_typedef (type);
8124
8125 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8126 || ada_type_name (type) == NULL)
8127 return NULL;
8128 else
8129 {
8130 int len = strlen (ada_type_name (type));
8131
8132 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8133 return type;
8134 else
8135 return ada_find_parallel_type (type, "___XVE");
8136 }
8137 }
8138
8139 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8140 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8141
8142 static int
8143 is_dynamic_field (struct type *templ_type, int field_num)
8144 {
8145 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8146
8147 return name != NULL
8148 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8149 && strstr (name, "___XVL") != NULL;
8150 }
8151
8152 /* The index of the variant field of TYPE, or -1 if TYPE does not
8153 represent a variant record type. */
8154
8155 static int
8156 variant_field_index (struct type *type)
8157 {
8158 int f;
8159
8160 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8161 return -1;
8162
8163 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8164 {
8165 if (ada_is_variant_part (type, f))
8166 return f;
8167 }
8168 return -1;
8169 }
8170
8171 /* A record type with no fields. */
8172
8173 static struct type *
8174 empty_record (struct type *templ)
8175 {
8176 struct type *type = alloc_type_copy (templ);
8177
8178 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8179 TYPE_NFIELDS (type) = 0;
8180 TYPE_FIELDS (type) = NULL;
8181 INIT_CPLUS_SPECIFIC (type);
8182 TYPE_NAME (type) = "<empty>";
8183 TYPE_TAG_NAME (type) = NULL;
8184 TYPE_LENGTH (type) = 0;
8185 return type;
8186 }
8187
8188 /* An ordinary record type (with fixed-length fields) that describes
8189 the value of type TYPE at VALADDR or ADDRESS (see comments at
8190 the beginning of this section) VAL according to GNAT conventions.
8191 DVAL0 should describe the (portion of a) record that contains any
8192 necessary discriminants. It should be NULL if value_type (VAL) is
8193 an outer-level type (i.e., as opposed to a branch of a variant.) A
8194 variant field (unless unchecked) is replaced by a particular branch
8195 of the variant.
8196
8197 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8198 length are not statically known are discarded. As a consequence,
8199 VALADDR, ADDRESS and DVAL0 are ignored.
8200
8201 NOTE: Limitations: For now, we assume that dynamic fields and
8202 variants occupy whole numbers of bytes. However, they need not be
8203 byte-aligned. */
8204
8205 struct type *
8206 ada_template_to_fixed_record_type_1 (struct type *type,
8207 const gdb_byte *valaddr,
8208 CORE_ADDR address, struct value *dval0,
8209 int keep_dynamic_fields)
8210 {
8211 struct value *mark = value_mark ();
8212 struct value *dval;
8213 struct type *rtype;
8214 int nfields, bit_len;
8215 int variant_field;
8216 long off;
8217 int fld_bit_len;
8218 int f;
8219
8220 /* Compute the number of fields in this record type that are going
8221 to be processed: unless keep_dynamic_fields, this includes only
8222 fields whose position and length are static will be processed. */
8223 if (keep_dynamic_fields)
8224 nfields = TYPE_NFIELDS (type);
8225 else
8226 {
8227 nfields = 0;
8228 while (nfields < TYPE_NFIELDS (type)
8229 && !ada_is_variant_part (type, nfields)
8230 && !is_dynamic_field (type, nfields))
8231 nfields++;
8232 }
8233
8234 rtype = alloc_type_copy (type);
8235 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8236 INIT_CPLUS_SPECIFIC (rtype);
8237 TYPE_NFIELDS (rtype) = nfields;
8238 TYPE_FIELDS (rtype) = (struct field *)
8239 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8240 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8241 TYPE_NAME (rtype) = ada_type_name (type);
8242 TYPE_TAG_NAME (rtype) = NULL;
8243 TYPE_FIXED_INSTANCE (rtype) = 1;
8244
8245 off = 0;
8246 bit_len = 0;
8247 variant_field = -1;
8248
8249 for (f = 0; f < nfields; f += 1)
8250 {
8251 off = align_value (off, field_alignment (type, f))
8252 + TYPE_FIELD_BITPOS (type, f);
8253 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8254 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8255
8256 if (ada_is_variant_part (type, f))
8257 {
8258 variant_field = f;
8259 fld_bit_len = 0;
8260 }
8261 else if (is_dynamic_field (type, f))
8262 {
8263 const gdb_byte *field_valaddr = valaddr;
8264 CORE_ADDR field_address = address;
8265 struct type *field_type =
8266 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8267
8268 if (dval0 == NULL)
8269 {
8270 /* rtype's length is computed based on the run-time
8271 value of discriminants. If the discriminants are not
8272 initialized, the type size may be completely bogus and
8273 GDB may fail to allocate a value for it. So check the
8274 size first before creating the value. */
8275 ada_ensure_varsize_limit (rtype);
8276 /* Using plain value_from_contents_and_address here
8277 causes problems because we will end up trying to
8278 resolve a type that is currently being
8279 constructed. */
8280 dval = value_from_contents_and_address_unresolved (rtype,
8281 valaddr,
8282 address);
8283 rtype = value_type (dval);
8284 }
8285 else
8286 dval = dval0;
8287
8288 /* If the type referenced by this field is an aligner type, we need
8289 to unwrap that aligner type, because its size might not be set.
8290 Keeping the aligner type would cause us to compute the wrong
8291 size for this field, impacting the offset of the all the fields
8292 that follow this one. */
8293 if (ada_is_aligner_type (field_type))
8294 {
8295 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8296
8297 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8298 field_address = cond_offset_target (field_address, field_offset);
8299 field_type = ada_aligned_type (field_type);
8300 }
8301
8302 field_valaddr = cond_offset_host (field_valaddr,
8303 off / TARGET_CHAR_BIT);
8304 field_address = cond_offset_target (field_address,
8305 off / TARGET_CHAR_BIT);
8306
8307 /* Get the fixed type of the field. Note that, in this case,
8308 we do not want to get the real type out of the tag: if
8309 the current field is the parent part of a tagged record,
8310 we will get the tag of the object. Clearly wrong: the real
8311 type of the parent is not the real type of the child. We
8312 would end up in an infinite loop. */
8313 field_type = ada_get_base_type (field_type);
8314 field_type = ada_to_fixed_type (field_type, field_valaddr,
8315 field_address, dval, 0);
8316 /* If the field size is already larger than the maximum
8317 object size, then the record itself will necessarily
8318 be larger than the maximum object size. We need to make
8319 this check now, because the size might be so ridiculously
8320 large (due to an uninitialized variable in the inferior)
8321 that it would cause an overflow when adding it to the
8322 record size. */
8323 ada_ensure_varsize_limit (field_type);
8324
8325 TYPE_FIELD_TYPE (rtype, f) = field_type;
8326 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8327 /* The multiplication can potentially overflow. But because
8328 the field length has been size-checked just above, and
8329 assuming that the maximum size is a reasonable value,
8330 an overflow should not happen in practice. So rather than
8331 adding overflow recovery code to this already complex code,
8332 we just assume that it's not going to happen. */
8333 fld_bit_len =
8334 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8335 }
8336 else
8337 {
8338 /* Note: If this field's type is a typedef, it is important
8339 to preserve the typedef layer.
8340
8341 Otherwise, we might be transforming a typedef to a fat
8342 pointer (encoding a pointer to an unconstrained array),
8343 into a basic fat pointer (encoding an unconstrained
8344 array). As both types are implemented using the same
8345 structure, the typedef is the only clue which allows us
8346 to distinguish between the two options. Stripping it
8347 would prevent us from printing this field appropriately. */
8348 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8349 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8350 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8351 fld_bit_len =
8352 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8353 else
8354 {
8355 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8356
8357 /* We need to be careful of typedefs when computing
8358 the length of our field. If this is a typedef,
8359 get the length of the target type, not the length
8360 of the typedef. */
8361 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8362 field_type = ada_typedef_target_type (field_type);
8363
8364 fld_bit_len =
8365 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8366 }
8367 }
8368 if (off + fld_bit_len > bit_len)
8369 bit_len = off + fld_bit_len;
8370 off += fld_bit_len;
8371 TYPE_LENGTH (rtype) =
8372 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8373 }
8374
8375 /* We handle the variant part, if any, at the end because of certain
8376 odd cases in which it is re-ordered so as NOT to be the last field of
8377 the record. This can happen in the presence of representation
8378 clauses. */
8379 if (variant_field >= 0)
8380 {
8381 struct type *branch_type;
8382
8383 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8384
8385 if (dval0 == NULL)
8386 {
8387 /* Using plain value_from_contents_and_address here causes
8388 problems because we will end up trying to resolve a type
8389 that is currently being constructed. */
8390 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8391 address);
8392 rtype = value_type (dval);
8393 }
8394 else
8395 dval = dval0;
8396
8397 branch_type =
8398 to_fixed_variant_branch_type
8399 (TYPE_FIELD_TYPE (type, variant_field),
8400 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8401 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8402 if (branch_type == NULL)
8403 {
8404 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8405 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8406 TYPE_NFIELDS (rtype) -= 1;
8407 }
8408 else
8409 {
8410 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8411 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8412 fld_bit_len =
8413 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8414 TARGET_CHAR_BIT;
8415 if (off + fld_bit_len > bit_len)
8416 bit_len = off + fld_bit_len;
8417 TYPE_LENGTH (rtype) =
8418 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8419 }
8420 }
8421
8422 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8423 should contain the alignment of that record, which should be a strictly
8424 positive value. If null or negative, then something is wrong, most
8425 probably in the debug info. In that case, we don't round up the size
8426 of the resulting type. If this record is not part of another structure,
8427 the current RTYPE length might be good enough for our purposes. */
8428 if (TYPE_LENGTH (type) <= 0)
8429 {
8430 if (TYPE_NAME (rtype))
8431 warning (_("Invalid type size for `%s' detected: %d."),
8432 TYPE_NAME (rtype), TYPE_LENGTH (type));
8433 else
8434 warning (_("Invalid type size for <unnamed> detected: %d."),
8435 TYPE_LENGTH (type));
8436 }
8437 else
8438 {
8439 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8440 TYPE_LENGTH (type));
8441 }
8442
8443 value_free_to_mark (mark);
8444 if (TYPE_LENGTH (rtype) > varsize_limit)
8445 error (_("record type with dynamic size is larger than varsize-limit"));
8446 return rtype;
8447 }
8448
8449 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8450 of 1. */
8451
8452 static struct type *
8453 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8454 CORE_ADDR address, struct value *dval0)
8455 {
8456 return ada_template_to_fixed_record_type_1 (type, valaddr,
8457 address, dval0, 1);
8458 }
8459
8460 /* An ordinary record type in which ___XVL-convention fields and
8461 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8462 static approximations, containing all possible fields. Uses
8463 no runtime values. Useless for use in values, but that's OK,
8464 since the results are used only for type determinations. Works on both
8465 structs and unions. Representation note: to save space, we memorize
8466 the result of this function in the TYPE_TARGET_TYPE of the
8467 template type. */
8468
8469 static struct type *
8470 template_to_static_fixed_type (struct type *type0)
8471 {
8472 struct type *type;
8473 int nfields;
8474 int f;
8475
8476 /* No need no do anything if the input type is already fixed. */
8477 if (TYPE_FIXED_INSTANCE (type0))
8478 return type0;
8479
8480 /* Likewise if we already have computed the static approximation. */
8481 if (TYPE_TARGET_TYPE (type0) != NULL)
8482 return TYPE_TARGET_TYPE (type0);
8483
8484 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8485 type = type0;
8486 nfields = TYPE_NFIELDS (type0);
8487
8488 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8489 recompute all over next time. */
8490 TYPE_TARGET_TYPE (type0) = type;
8491
8492 for (f = 0; f < nfields; f += 1)
8493 {
8494 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8495 struct type *new_type;
8496
8497 if (is_dynamic_field (type0, f))
8498 {
8499 field_type = ada_check_typedef (field_type);
8500 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8501 }
8502 else
8503 new_type = static_unwrap_type (field_type);
8504
8505 if (new_type != field_type)
8506 {
8507 /* Clone TYPE0 only the first time we get a new field type. */
8508 if (type == type0)
8509 {
8510 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8511 TYPE_CODE (type) = TYPE_CODE (type0);
8512 INIT_CPLUS_SPECIFIC (type);
8513 TYPE_NFIELDS (type) = nfields;
8514 TYPE_FIELDS (type) = (struct field *)
8515 TYPE_ALLOC (type, nfields * sizeof (struct field));
8516 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8517 sizeof (struct field) * nfields);
8518 TYPE_NAME (type) = ada_type_name (type0);
8519 TYPE_TAG_NAME (type) = NULL;
8520 TYPE_FIXED_INSTANCE (type) = 1;
8521 TYPE_LENGTH (type) = 0;
8522 }
8523 TYPE_FIELD_TYPE (type, f) = new_type;
8524 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8525 }
8526 }
8527
8528 return type;
8529 }
8530
8531 /* Given an object of type TYPE whose contents are at VALADDR and
8532 whose address in memory is ADDRESS, returns a revision of TYPE,
8533 which should be a non-dynamic-sized record, in which the variant
8534 part, if any, is replaced with the appropriate branch. Looks
8535 for discriminant values in DVAL0, which can be NULL if the record
8536 contains the necessary discriminant values. */
8537
8538 static struct type *
8539 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8540 CORE_ADDR address, struct value *dval0)
8541 {
8542 struct value *mark = value_mark ();
8543 struct value *dval;
8544 struct type *rtype;
8545 struct type *branch_type;
8546 int nfields = TYPE_NFIELDS (type);
8547 int variant_field = variant_field_index (type);
8548
8549 if (variant_field == -1)
8550 return type;
8551
8552 if (dval0 == NULL)
8553 {
8554 dval = value_from_contents_and_address (type, valaddr, address);
8555 type = value_type (dval);
8556 }
8557 else
8558 dval = dval0;
8559
8560 rtype = alloc_type_copy (type);
8561 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8562 INIT_CPLUS_SPECIFIC (rtype);
8563 TYPE_NFIELDS (rtype) = nfields;
8564 TYPE_FIELDS (rtype) =
8565 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8566 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8567 sizeof (struct field) * nfields);
8568 TYPE_NAME (rtype) = ada_type_name (type);
8569 TYPE_TAG_NAME (rtype) = NULL;
8570 TYPE_FIXED_INSTANCE (rtype) = 1;
8571 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8572
8573 branch_type = to_fixed_variant_branch_type
8574 (TYPE_FIELD_TYPE (type, variant_field),
8575 cond_offset_host (valaddr,
8576 TYPE_FIELD_BITPOS (type, variant_field)
8577 / TARGET_CHAR_BIT),
8578 cond_offset_target (address,
8579 TYPE_FIELD_BITPOS (type, variant_field)
8580 / TARGET_CHAR_BIT), dval);
8581 if (branch_type == NULL)
8582 {
8583 int f;
8584
8585 for (f = variant_field + 1; f < nfields; f += 1)
8586 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8587 TYPE_NFIELDS (rtype) -= 1;
8588 }
8589 else
8590 {
8591 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8592 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8593 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8594 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8595 }
8596 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8597
8598 value_free_to_mark (mark);
8599 return rtype;
8600 }
8601
8602 /* An ordinary record type (with fixed-length fields) that describes
8603 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8604 beginning of this section]. Any necessary discriminants' values
8605 should be in DVAL, a record value; it may be NULL if the object
8606 at ADDR itself contains any necessary discriminant values.
8607 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8608 values from the record are needed. Except in the case that DVAL,
8609 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8610 unchecked) is replaced by a particular branch of the variant.
8611
8612 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8613 is questionable and may be removed. It can arise during the
8614 processing of an unconstrained-array-of-record type where all the
8615 variant branches have exactly the same size. This is because in
8616 such cases, the compiler does not bother to use the XVS convention
8617 when encoding the record. I am currently dubious of this
8618 shortcut and suspect the compiler should be altered. FIXME. */
8619
8620 static struct type *
8621 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8622 CORE_ADDR address, struct value *dval)
8623 {
8624 struct type *templ_type;
8625
8626 if (TYPE_FIXED_INSTANCE (type0))
8627 return type0;
8628
8629 templ_type = dynamic_template_type (type0);
8630
8631 if (templ_type != NULL)
8632 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8633 else if (variant_field_index (type0) >= 0)
8634 {
8635 if (dval == NULL && valaddr == NULL && address == 0)
8636 return type0;
8637 return to_record_with_fixed_variant_part (type0, valaddr, address,
8638 dval);
8639 }
8640 else
8641 {
8642 TYPE_FIXED_INSTANCE (type0) = 1;
8643 return type0;
8644 }
8645
8646 }
8647
8648 /* An ordinary record type (with fixed-length fields) that describes
8649 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8650 union type. Any necessary discriminants' values should be in DVAL,
8651 a record value. That is, this routine selects the appropriate
8652 branch of the union at ADDR according to the discriminant value
8653 indicated in the union's type name. Returns VAR_TYPE0 itself if
8654 it represents a variant subject to a pragma Unchecked_Union. */
8655
8656 static struct type *
8657 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8658 CORE_ADDR address, struct value *dval)
8659 {
8660 int which;
8661 struct type *templ_type;
8662 struct type *var_type;
8663
8664 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8665 var_type = TYPE_TARGET_TYPE (var_type0);
8666 else
8667 var_type = var_type0;
8668
8669 templ_type = ada_find_parallel_type (var_type, "___XVU");
8670
8671 if (templ_type != NULL)
8672 var_type = templ_type;
8673
8674 if (is_unchecked_variant (var_type, value_type (dval)))
8675 return var_type0;
8676 which =
8677 ada_which_variant_applies (var_type,
8678 value_type (dval), value_contents (dval));
8679
8680 if (which < 0)
8681 return empty_record (var_type);
8682 else if (is_dynamic_field (var_type, which))
8683 return to_fixed_record_type
8684 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8685 valaddr, address, dval);
8686 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8687 return
8688 to_fixed_record_type
8689 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8690 else
8691 return TYPE_FIELD_TYPE (var_type, which);
8692 }
8693
8694 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8695 ENCODING_TYPE, a type following the GNAT conventions for discrete
8696 type encodings, only carries redundant information. */
8697
8698 static int
8699 ada_is_redundant_range_encoding (struct type *range_type,
8700 struct type *encoding_type)
8701 {
8702 struct type *fixed_range_type;
8703 const char *bounds_str;
8704 int n;
8705 LONGEST lo, hi;
8706
8707 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8708
8709 if (TYPE_CODE (get_base_type (range_type))
8710 != TYPE_CODE (get_base_type (encoding_type)))
8711 {
8712 /* The compiler probably used a simple base type to describe
8713 the range type instead of the range's actual base type,
8714 expecting us to get the real base type from the encoding
8715 anyway. In this situation, the encoding cannot be ignored
8716 as redundant. */
8717 return 0;
8718 }
8719
8720 if (is_dynamic_type (range_type))
8721 return 0;
8722
8723 if (TYPE_NAME (encoding_type) == NULL)
8724 return 0;
8725
8726 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8727 if (bounds_str == NULL)
8728 return 0;
8729
8730 n = 8; /* Skip "___XDLU_". */
8731 if (!ada_scan_number (bounds_str, n, &lo, &n))
8732 return 0;
8733 if (TYPE_LOW_BOUND (range_type) != lo)
8734 return 0;
8735
8736 n += 2; /* Skip the "__" separator between the two bounds. */
8737 if (!ada_scan_number (bounds_str, n, &hi, &n))
8738 return 0;
8739 if (TYPE_HIGH_BOUND (range_type) != hi)
8740 return 0;
8741
8742 return 1;
8743 }
8744
8745 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8746 a type following the GNAT encoding for describing array type
8747 indices, only carries redundant information. */
8748
8749 static int
8750 ada_is_redundant_index_type_desc (struct type *array_type,
8751 struct type *desc_type)
8752 {
8753 struct type *this_layer = check_typedef (array_type);
8754 int i;
8755
8756 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8757 {
8758 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8759 TYPE_FIELD_TYPE (desc_type, i)))
8760 return 0;
8761 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8762 }
8763
8764 return 1;
8765 }
8766
8767 /* Assuming that TYPE0 is an array type describing the type of a value
8768 at ADDR, and that DVAL describes a record containing any
8769 discriminants used in TYPE0, returns a type for the value that
8770 contains no dynamic components (that is, no components whose sizes
8771 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8772 true, gives an error message if the resulting type's size is over
8773 varsize_limit. */
8774
8775 static struct type *
8776 to_fixed_array_type (struct type *type0, struct value *dval,
8777 int ignore_too_big)
8778 {
8779 struct type *index_type_desc;
8780 struct type *result;
8781 int constrained_packed_array_p;
8782 static const char *xa_suffix = "___XA";
8783
8784 type0 = ada_check_typedef (type0);
8785 if (TYPE_FIXED_INSTANCE (type0))
8786 return type0;
8787
8788 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8789 if (constrained_packed_array_p)
8790 type0 = decode_constrained_packed_array_type (type0);
8791
8792 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8793
8794 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8795 encoding suffixed with 'P' may still be generated. If so,
8796 it should be used to find the XA type. */
8797
8798 if (index_type_desc == NULL)
8799 {
8800 const char *type_name = ada_type_name (type0);
8801
8802 if (type_name != NULL)
8803 {
8804 const int len = strlen (type_name);
8805 char *name = (char *) alloca (len + strlen (xa_suffix));
8806
8807 if (type_name[len - 1] == 'P')
8808 {
8809 strcpy (name, type_name);
8810 strcpy (name + len - 1, xa_suffix);
8811 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8812 }
8813 }
8814 }
8815
8816 ada_fixup_array_indexes_type (index_type_desc);
8817 if (index_type_desc != NULL
8818 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8819 {
8820 /* Ignore this ___XA parallel type, as it does not bring any
8821 useful information. This allows us to avoid creating fixed
8822 versions of the array's index types, which would be identical
8823 to the original ones. This, in turn, can also help avoid
8824 the creation of fixed versions of the array itself. */
8825 index_type_desc = NULL;
8826 }
8827
8828 if (index_type_desc == NULL)
8829 {
8830 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8831
8832 /* NOTE: elt_type---the fixed version of elt_type0---should never
8833 depend on the contents of the array in properly constructed
8834 debugging data. */
8835 /* Create a fixed version of the array element type.
8836 We're not providing the address of an element here,
8837 and thus the actual object value cannot be inspected to do
8838 the conversion. This should not be a problem, since arrays of
8839 unconstrained objects are not allowed. In particular, all
8840 the elements of an array of a tagged type should all be of
8841 the same type specified in the debugging info. No need to
8842 consult the object tag. */
8843 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8844
8845 /* Make sure we always create a new array type when dealing with
8846 packed array types, since we're going to fix-up the array
8847 type length and element bitsize a little further down. */
8848 if (elt_type0 == elt_type && !constrained_packed_array_p)
8849 result = type0;
8850 else
8851 result = create_array_type (alloc_type_copy (type0),
8852 elt_type, TYPE_INDEX_TYPE (type0));
8853 }
8854 else
8855 {
8856 int i;
8857 struct type *elt_type0;
8858
8859 elt_type0 = type0;
8860 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8861 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8862
8863 /* NOTE: result---the fixed version of elt_type0---should never
8864 depend on the contents of the array in properly constructed
8865 debugging data. */
8866 /* Create a fixed version of the array element type.
8867 We're not providing the address of an element here,
8868 and thus the actual object value cannot be inspected to do
8869 the conversion. This should not be a problem, since arrays of
8870 unconstrained objects are not allowed. In particular, all
8871 the elements of an array of a tagged type should all be of
8872 the same type specified in the debugging info. No need to
8873 consult the object tag. */
8874 result =
8875 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8876
8877 elt_type0 = type0;
8878 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8879 {
8880 struct type *range_type =
8881 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8882
8883 result = create_array_type (alloc_type_copy (elt_type0),
8884 result, range_type);
8885 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8886 }
8887 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8888 error (_("array type with dynamic size is larger than varsize-limit"));
8889 }
8890
8891 /* We want to preserve the type name. This can be useful when
8892 trying to get the type name of a value that has already been
8893 printed (for instance, if the user did "print VAR; whatis $". */
8894 TYPE_NAME (result) = TYPE_NAME (type0);
8895
8896 if (constrained_packed_array_p)
8897 {
8898 /* So far, the resulting type has been created as if the original
8899 type was a regular (non-packed) array type. As a result, the
8900 bitsize of the array elements needs to be set again, and the array
8901 length needs to be recomputed based on that bitsize. */
8902 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8903 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8904
8905 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8906 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8907 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8908 TYPE_LENGTH (result)++;
8909 }
8910
8911 TYPE_FIXED_INSTANCE (result) = 1;
8912 return result;
8913 }
8914
8915
8916 /* A standard type (containing no dynamically sized components)
8917 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8918 DVAL describes a record containing any discriminants used in TYPE0,
8919 and may be NULL if there are none, or if the object of type TYPE at
8920 ADDRESS or in VALADDR contains these discriminants.
8921
8922 If CHECK_TAG is not null, in the case of tagged types, this function
8923 attempts to locate the object's tag and use it to compute the actual
8924 type. However, when ADDRESS is null, we cannot use it to determine the
8925 location of the tag, and therefore compute the tagged type's actual type.
8926 So we return the tagged type without consulting the tag. */
8927
8928 static struct type *
8929 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8930 CORE_ADDR address, struct value *dval, int check_tag)
8931 {
8932 type = ada_check_typedef (type);
8933 switch (TYPE_CODE (type))
8934 {
8935 default:
8936 return type;
8937 case TYPE_CODE_STRUCT:
8938 {
8939 struct type *static_type = to_static_fixed_type (type);
8940 struct type *fixed_record_type =
8941 to_fixed_record_type (type, valaddr, address, NULL);
8942
8943 /* If STATIC_TYPE is a tagged type and we know the object's address,
8944 then we can determine its tag, and compute the object's actual
8945 type from there. Note that we have to use the fixed record
8946 type (the parent part of the record may have dynamic fields
8947 and the way the location of _tag is expressed may depend on
8948 them). */
8949
8950 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8951 {
8952 struct value *tag =
8953 value_tag_from_contents_and_address
8954 (fixed_record_type,
8955 valaddr,
8956 address);
8957 struct type *real_type = type_from_tag (tag);
8958 struct value *obj =
8959 value_from_contents_and_address (fixed_record_type,
8960 valaddr,
8961 address);
8962 fixed_record_type = value_type (obj);
8963 if (real_type != NULL)
8964 return to_fixed_record_type
8965 (real_type, NULL,
8966 value_address (ada_tag_value_at_base_address (obj)), NULL);
8967 }
8968
8969 /* Check to see if there is a parallel ___XVZ variable.
8970 If there is, then it provides the actual size of our type. */
8971 else if (ada_type_name (fixed_record_type) != NULL)
8972 {
8973 const char *name = ada_type_name (fixed_record_type);
8974 char *xvz_name
8975 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8976 LONGEST size;
8977
8978 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8979 if (get_int_var_value (xvz_name, size)
8980 && TYPE_LENGTH (fixed_record_type) != size)
8981 {
8982 fixed_record_type = copy_type (fixed_record_type);
8983 TYPE_LENGTH (fixed_record_type) = size;
8984
8985 /* The FIXED_RECORD_TYPE may have be a stub. We have
8986 observed this when the debugging info is STABS, and
8987 apparently it is something that is hard to fix.
8988
8989 In practice, we don't need the actual type definition
8990 at all, because the presence of the XVZ variable allows us
8991 to assume that there must be a XVS type as well, which we
8992 should be able to use later, when we need the actual type
8993 definition.
8994
8995 In the meantime, pretend that the "fixed" type we are
8996 returning is NOT a stub, because this can cause trouble
8997 when using this type to create new types targeting it.
8998 Indeed, the associated creation routines often check
8999 whether the target type is a stub and will try to replace
9000 it, thus using a type with the wrong size. This, in turn,
9001 might cause the new type to have the wrong size too.
9002 Consider the case of an array, for instance, where the size
9003 of the array is computed from the number of elements in
9004 our array multiplied by the size of its element. */
9005 TYPE_STUB (fixed_record_type) = 0;
9006 }
9007 }
9008 return fixed_record_type;
9009 }
9010 case TYPE_CODE_ARRAY:
9011 return to_fixed_array_type (type, dval, 1);
9012 case TYPE_CODE_UNION:
9013 if (dval == NULL)
9014 return type;
9015 else
9016 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9017 }
9018 }
9019
9020 /* The same as ada_to_fixed_type_1, except that it preserves the type
9021 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9022
9023 The typedef layer needs be preserved in order to differentiate between
9024 arrays and array pointers when both types are implemented using the same
9025 fat pointer. In the array pointer case, the pointer is encoded as
9026 a typedef of the pointer type. For instance, considering:
9027
9028 type String_Access is access String;
9029 S1 : String_Access := null;
9030
9031 To the debugger, S1 is defined as a typedef of type String. But
9032 to the user, it is a pointer. So if the user tries to print S1,
9033 we should not dereference the array, but print the array address
9034 instead.
9035
9036 If we didn't preserve the typedef layer, we would lose the fact that
9037 the type is to be presented as a pointer (needs de-reference before
9038 being printed). And we would also use the source-level type name. */
9039
9040 struct type *
9041 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9042 CORE_ADDR address, struct value *dval, int check_tag)
9043
9044 {
9045 struct type *fixed_type =
9046 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9047
9048 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9049 then preserve the typedef layer.
9050
9051 Implementation note: We can only check the main-type portion of
9052 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9053 from TYPE now returns a type that has the same instance flags
9054 as TYPE. For instance, if TYPE is a "typedef const", and its
9055 target type is a "struct", then the typedef elimination will return
9056 a "const" version of the target type. See check_typedef for more
9057 details about how the typedef layer elimination is done.
9058
9059 brobecker/2010-11-19: It seems to me that the only case where it is
9060 useful to preserve the typedef layer is when dealing with fat pointers.
9061 Perhaps, we could add a check for that and preserve the typedef layer
9062 only in that situation. But this seems unecessary so far, probably
9063 because we call check_typedef/ada_check_typedef pretty much everywhere.
9064 */
9065 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9066 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9067 == TYPE_MAIN_TYPE (fixed_type)))
9068 return type;
9069
9070 return fixed_type;
9071 }
9072
9073 /* A standard (static-sized) type corresponding as well as possible to
9074 TYPE0, but based on no runtime data. */
9075
9076 static struct type *
9077 to_static_fixed_type (struct type *type0)
9078 {
9079 struct type *type;
9080
9081 if (type0 == NULL)
9082 return NULL;
9083
9084 if (TYPE_FIXED_INSTANCE (type0))
9085 return type0;
9086
9087 type0 = ada_check_typedef (type0);
9088
9089 switch (TYPE_CODE (type0))
9090 {
9091 default:
9092 return type0;
9093 case TYPE_CODE_STRUCT:
9094 type = dynamic_template_type (type0);
9095 if (type != NULL)
9096 return template_to_static_fixed_type (type);
9097 else
9098 return template_to_static_fixed_type (type0);
9099 case TYPE_CODE_UNION:
9100 type = ada_find_parallel_type (type0, "___XVU");
9101 if (type != NULL)
9102 return template_to_static_fixed_type (type);
9103 else
9104 return template_to_static_fixed_type (type0);
9105 }
9106 }
9107
9108 /* A static approximation of TYPE with all type wrappers removed. */
9109
9110 static struct type *
9111 static_unwrap_type (struct type *type)
9112 {
9113 if (ada_is_aligner_type (type))
9114 {
9115 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9116 if (ada_type_name (type1) == NULL)
9117 TYPE_NAME (type1) = ada_type_name (type);
9118
9119 return static_unwrap_type (type1);
9120 }
9121 else
9122 {
9123 struct type *raw_real_type = ada_get_base_type (type);
9124
9125 if (raw_real_type == type)
9126 return type;
9127 else
9128 return to_static_fixed_type (raw_real_type);
9129 }
9130 }
9131
9132 /* In some cases, incomplete and private types require
9133 cross-references that are not resolved as records (for example,
9134 type Foo;
9135 type FooP is access Foo;
9136 V: FooP;
9137 type Foo is array ...;
9138 ). In these cases, since there is no mechanism for producing
9139 cross-references to such types, we instead substitute for FooP a
9140 stub enumeration type that is nowhere resolved, and whose tag is
9141 the name of the actual type. Call these types "non-record stubs". */
9142
9143 /* A type equivalent to TYPE that is not a non-record stub, if one
9144 exists, otherwise TYPE. */
9145
9146 struct type *
9147 ada_check_typedef (struct type *type)
9148 {
9149 if (type == NULL)
9150 return NULL;
9151
9152 /* If our type is a typedef type of a fat pointer, then we're done.
9153 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9154 what allows us to distinguish between fat pointers that represent
9155 array types, and fat pointers that represent array access types
9156 (in both cases, the compiler implements them as fat pointers). */
9157 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9158 && is_thick_pntr (ada_typedef_target_type (type)))
9159 return type;
9160
9161 type = check_typedef (type);
9162 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9163 || !TYPE_STUB (type)
9164 || TYPE_TAG_NAME (type) == NULL)
9165 return type;
9166 else
9167 {
9168 const char *name = TYPE_TAG_NAME (type);
9169 struct type *type1 = ada_find_any_type (name);
9170
9171 if (type1 == NULL)
9172 return type;
9173
9174 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9175 stubs pointing to arrays, as we don't create symbols for array
9176 types, only for the typedef-to-array types). If that's the case,
9177 strip the typedef layer. */
9178 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9179 type1 = ada_check_typedef (type1);
9180
9181 return type1;
9182 }
9183 }
9184
9185 /* A value representing the data at VALADDR/ADDRESS as described by
9186 type TYPE0, but with a standard (static-sized) type that correctly
9187 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9188 type, then return VAL0 [this feature is simply to avoid redundant
9189 creation of struct values]. */
9190
9191 static struct value *
9192 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9193 struct value *val0)
9194 {
9195 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9196
9197 if (type == type0 && val0 != NULL)
9198 return val0;
9199 else
9200 return value_from_contents_and_address (type, 0, address);
9201 }
9202
9203 /* A value representing VAL, but with a standard (static-sized) type
9204 that correctly describes it. Does not necessarily create a new
9205 value. */
9206
9207 struct value *
9208 ada_to_fixed_value (struct value *val)
9209 {
9210 val = unwrap_value (val);
9211 val = ada_to_fixed_value_create (value_type (val),
9212 value_address (val),
9213 val);
9214 return val;
9215 }
9216 \f
9217
9218 /* Attributes */
9219
9220 /* Table mapping attribute numbers to names.
9221 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9222
9223 static const char *attribute_names[] = {
9224 "<?>",
9225
9226 "first",
9227 "last",
9228 "length",
9229 "image",
9230 "max",
9231 "min",
9232 "modulus",
9233 "pos",
9234 "size",
9235 "tag",
9236 "val",
9237 0
9238 };
9239
9240 const char *
9241 ada_attribute_name (enum exp_opcode n)
9242 {
9243 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9244 return attribute_names[n - OP_ATR_FIRST + 1];
9245 else
9246 return attribute_names[0];
9247 }
9248
9249 /* Evaluate the 'POS attribute applied to ARG. */
9250
9251 static LONGEST
9252 pos_atr (struct value *arg)
9253 {
9254 struct value *val = coerce_ref (arg);
9255 struct type *type = value_type (val);
9256 LONGEST result;
9257
9258 if (!discrete_type_p (type))
9259 error (_("'POS only defined on discrete types"));
9260
9261 if (!discrete_position (type, value_as_long (val), &result))
9262 error (_("enumeration value is invalid: can't find 'POS"));
9263
9264 return result;
9265 }
9266
9267 static struct value *
9268 value_pos_atr (struct type *type, struct value *arg)
9269 {
9270 return value_from_longest (type, pos_atr (arg));
9271 }
9272
9273 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9274
9275 static struct value *
9276 value_val_atr (struct type *type, struct value *arg)
9277 {
9278 if (!discrete_type_p (type))
9279 error (_("'VAL only defined on discrete types"));
9280 if (!integer_type_p (value_type (arg)))
9281 error (_("'VAL requires integral argument"));
9282
9283 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9284 {
9285 long pos = value_as_long (arg);
9286
9287 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9288 error (_("argument to 'VAL out of range"));
9289 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9290 }
9291 else
9292 return value_from_longest (type, value_as_long (arg));
9293 }
9294 \f
9295
9296 /* Evaluation */
9297
9298 /* True if TYPE appears to be an Ada character type.
9299 [At the moment, this is true only for Character and Wide_Character;
9300 It is a heuristic test that could stand improvement]. */
9301
9302 int
9303 ada_is_character_type (struct type *type)
9304 {
9305 const char *name;
9306
9307 /* If the type code says it's a character, then assume it really is,
9308 and don't check any further. */
9309 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9310 return 1;
9311
9312 /* Otherwise, assume it's a character type iff it is a discrete type
9313 with a known character type name. */
9314 name = ada_type_name (type);
9315 return (name != NULL
9316 && (TYPE_CODE (type) == TYPE_CODE_INT
9317 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9318 && (strcmp (name, "character") == 0
9319 || strcmp (name, "wide_character") == 0
9320 || strcmp (name, "wide_wide_character") == 0
9321 || strcmp (name, "unsigned char") == 0));
9322 }
9323
9324 /* True if TYPE appears to be an Ada string type. */
9325
9326 int
9327 ada_is_string_type (struct type *type)
9328 {
9329 type = ada_check_typedef (type);
9330 if (type != NULL
9331 && TYPE_CODE (type) != TYPE_CODE_PTR
9332 && (ada_is_simple_array_type (type)
9333 || ada_is_array_descriptor_type (type))
9334 && ada_array_arity (type) == 1)
9335 {
9336 struct type *elttype = ada_array_element_type (type, 1);
9337
9338 return ada_is_character_type (elttype);
9339 }
9340 else
9341 return 0;
9342 }
9343
9344 /* The compiler sometimes provides a parallel XVS type for a given
9345 PAD type. Normally, it is safe to follow the PAD type directly,
9346 but older versions of the compiler have a bug that causes the offset
9347 of its "F" field to be wrong. Following that field in that case
9348 would lead to incorrect results, but this can be worked around
9349 by ignoring the PAD type and using the associated XVS type instead.
9350
9351 Set to True if the debugger should trust the contents of PAD types.
9352 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9353 static int trust_pad_over_xvs = 1;
9354
9355 /* True if TYPE is a struct type introduced by the compiler to force the
9356 alignment of a value. Such types have a single field with a
9357 distinctive name. */
9358
9359 int
9360 ada_is_aligner_type (struct type *type)
9361 {
9362 type = ada_check_typedef (type);
9363
9364 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9365 return 0;
9366
9367 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9368 && TYPE_NFIELDS (type) == 1
9369 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9370 }
9371
9372 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9373 the parallel type. */
9374
9375 struct type *
9376 ada_get_base_type (struct type *raw_type)
9377 {
9378 struct type *real_type_namer;
9379 struct type *raw_real_type;
9380
9381 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9382 return raw_type;
9383
9384 if (ada_is_aligner_type (raw_type))
9385 /* The encoding specifies that we should always use the aligner type.
9386 So, even if this aligner type has an associated XVS type, we should
9387 simply ignore it.
9388
9389 According to the compiler gurus, an XVS type parallel to an aligner
9390 type may exist because of a stabs limitation. In stabs, aligner
9391 types are empty because the field has a variable-sized type, and
9392 thus cannot actually be used as an aligner type. As a result,
9393 we need the associated parallel XVS type to decode the type.
9394 Since the policy in the compiler is to not change the internal
9395 representation based on the debugging info format, we sometimes
9396 end up having a redundant XVS type parallel to the aligner type. */
9397 return raw_type;
9398
9399 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9400 if (real_type_namer == NULL
9401 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9402 || TYPE_NFIELDS (real_type_namer) != 1)
9403 return raw_type;
9404
9405 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9406 {
9407 /* This is an older encoding form where the base type needs to be
9408 looked up by name. We prefer the newer enconding because it is
9409 more efficient. */
9410 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9411 if (raw_real_type == NULL)
9412 return raw_type;
9413 else
9414 return raw_real_type;
9415 }
9416
9417 /* The field in our XVS type is a reference to the base type. */
9418 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9419 }
9420
9421 /* The type of value designated by TYPE, with all aligners removed. */
9422
9423 struct type *
9424 ada_aligned_type (struct type *type)
9425 {
9426 if (ada_is_aligner_type (type))
9427 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9428 else
9429 return ada_get_base_type (type);
9430 }
9431
9432
9433 /* The address of the aligned value in an object at address VALADDR
9434 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9435
9436 const gdb_byte *
9437 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9438 {
9439 if (ada_is_aligner_type (type))
9440 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9441 valaddr +
9442 TYPE_FIELD_BITPOS (type,
9443 0) / TARGET_CHAR_BIT);
9444 else
9445 return valaddr;
9446 }
9447
9448
9449
9450 /* The printed representation of an enumeration literal with encoded
9451 name NAME. The value is good to the next call of ada_enum_name. */
9452 const char *
9453 ada_enum_name (const char *name)
9454 {
9455 static char *result;
9456 static size_t result_len = 0;
9457 const char *tmp;
9458
9459 /* First, unqualify the enumeration name:
9460 1. Search for the last '.' character. If we find one, then skip
9461 all the preceding characters, the unqualified name starts
9462 right after that dot.
9463 2. Otherwise, we may be debugging on a target where the compiler
9464 translates dots into "__". Search forward for double underscores,
9465 but stop searching when we hit an overloading suffix, which is
9466 of the form "__" followed by digits. */
9467
9468 tmp = strrchr (name, '.');
9469 if (tmp != NULL)
9470 name = tmp + 1;
9471 else
9472 {
9473 while ((tmp = strstr (name, "__")) != NULL)
9474 {
9475 if (isdigit (tmp[2]))
9476 break;
9477 else
9478 name = tmp + 2;
9479 }
9480 }
9481
9482 if (name[0] == 'Q')
9483 {
9484 int v;
9485
9486 if (name[1] == 'U' || name[1] == 'W')
9487 {
9488 if (sscanf (name + 2, "%x", &v) != 1)
9489 return name;
9490 }
9491 else
9492 return name;
9493
9494 GROW_VECT (result, result_len, 16);
9495 if (isascii (v) && isprint (v))
9496 xsnprintf (result, result_len, "'%c'", v);
9497 else if (name[1] == 'U')
9498 xsnprintf (result, result_len, "[\"%02x\"]", v);
9499 else
9500 xsnprintf (result, result_len, "[\"%04x\"]", v);
9501
9502 return result;
9503 }
9504 else
9505 {
9506 tmp = strstr (name, "__");
9507 if (tmp == NULL)
9508 tmp = strstr (name, "$");
9509 if (tmp != NULL)
9510 {
9511 GROW_VECT (result, result_len, tmp - name + 1);
9512 strncpy (result, name, tmp - name);
9513 result[tmp - name] = '\0';
9514 return result;
9515 }
9516
9517 return name;
9518 }
9519 }
9520
9521 /* Evaluate the subexpression of EXP starting at *POS as for
9522 evaluate_type, updating *POS to point just past the evaluated
9523 expression. */
9524
9525 static struct value *
9526 evaluate_subexp_type (struct expression *exp, int *pos)
9527 {
9528 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9529 }
9530
9531 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9532 value it wraps. */
9533
9534 static struct value *
9535 unwrap_value (struct value *val)
9536 {
9537 struct type *type = ada_check_typedef (value_type (val));
9538
9539 if (ada_is_aligner_type (type))
9540 {
9541 struct value *v = ada_value_struct_elt (val, "F", 0);
9542 struct type *val_type = ada_check_typedef (value_type (v));
9543
9544 if (ada_type_name (val_type) == NULL)
9545 TYPE_NAME (val_type) = ada_type_name (type);
9546
9547 return unwrap_value (v);
9548 }
9549 else
9550 {
9551 struct type *raw_real_type =
9552 ada_check_typedef (ada_get_base_type (type));
9553
9554 /* If there is no parallel XVS or XVE type, then the value is
9555 already unwrapped. Return it without further modification. */
9556 if ((type == raw_real_type)
9557 && ada_find_parallel_type (type, "___XVE") == NULL)
9558 return val;
9559
9560 return
9561 coerce_unspec_val_to_type
9562 (val, ada_to_fixed_type (raw_real_type, 0,
9563 value_address (val),
9564 NULL, 1));
9565 }
9566 }
9567
9568 static struct value *
9569 cast_to_fixed (struct type *type, struct value *arg)
9570 {
9571 LONGEST val;
9572
9573 if (type == value_type (arg))
9574 return arg;
9575 else if (ada_is_fixed_point_type (value_type (arg)))
9576 val = ada_float_to_fixed (type,
9577 ada_fixed_to_float (value_type (arg),
9578 value_as_long (arg)));
9579 else
9580 {
9581 DOUBLEST argd = value_as_double (arg);
9582
9583 val = ada_float_to_fixed (type, argd);
9584 }
9585
9586 return value_from_longest (type, val);
9587 }
9588
9589 static struct value *
9590 cast_from_fixed (struct type *type, struct value *arg)
9591 {
9592 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9593 value_as_long (arg));
9594
9595 return value_from_double (type, val);
9596 }
9597
9598 /* Given two array types T1 and T2, return nonzero iff both arrays
9599 contain the same number of elements. */
9600
9601 static int
9602 ada_same_array_size_p (struct type *t1, struct type *t2)
9603 {
9604 LONGEST lo1, hi1, lo2, hi2;
9605
9606 /* Get the array bounds in order to verify that the size of
9607 the two arrays match. */
9608 if (!get_array_bounds (t1, &lo1, &hi1)
9609 || !get_array_bounds (t2, &lo2, &hi2))
9610 error (_("unable to determine array bounds"));
9611
9612 /* To make things easier for size comparison, normalize a bit
9613 the case of empty arrays by making sure that the difference
9614 between upper bound and lower bound is always -1. */
9615 if (lo1 > hi1)
9616 hi1 = lo1 - 1;
9617 if (lo2 > hi2)
9618 hi2 = lo2 - 1;
9619
9620 return (hi1 - lo1 == hi2 - lo2);
9621 }
9622
9623 /* Assuming that VAL is an array of integrals, and TYPE represents
9624 an array with the same number of elements, but with wider integral
9625 elements, return an array "casted" to TYPE. In practice, this
9626 means that the returned array is built by casting each element
9627 of the original array into TYPE's (wider) element type. */
9628
9629 static struct value *
9630 ada_promote_array_of_integrals (struct type *type, struct value *val)
9631 {
9632 struct type *elt_type = TYPE_TARGET_TYPE (type);
9633 LONGEST lo, hi;
9634 struct value *res;
9635 LONGEST i;
9636
9637 /* Verify that both val and type are arrays of scalars, and
9638 that the size of val's elements is smaller than the size
9639 of type's element. */
9640 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9641 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9642 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9643 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9644 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9645 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9646
9647 if (!get_array_bounds (type, &lo, &hi))
9648 error (_("unable to determine array bounds"));
9649
9650 res = allocate_value (type);
9651
9652 /* Promote each array element. */
9653 for (i = 0; i < hi - lo + 1; i++)
9654 {
9655 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9656
9657 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9658 value_contents_all (elt), TYPE_LENGTH (elt_type));
9659 }
9660
9661 return res;
9662 }
9663
9664 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9665 return the converted value. */
9666
9667 static struct value *
9668 coerce_for_assign (struct type *type, struct value *val)
9669 {
9670 struct type *type2 = value_type (val);
9671
9672 if (type == type2)
9673 return val;
9674
9675 type2 = ada_check_typedef (type2);
9676 type = ada_check_typedef (type);
9677
9678 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9679 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9680 {
9681 val = ada_value_ind (val);
9682 type2 = value_type (val);
9683 }
9684
9685 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9686 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9687 {
9688 if (!ada_same_array_size_p (type, type2))
9689 error (_("cannot assign arrays of different length"));
9690
9691 if (is_integral_type (TYPE_TARGET_TYPE (type))
9692 && is_integral_type (TYPE_TARGET_TYPE (type2))
9693 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9694 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9695 {
9696 /* Allow implicit promotion of the array elements to
9697 a wider type. */
9698 return ada_promote_array_of_integrals (type, val);
9699 }
9700
9701 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9702 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9703 error (_("Incompatible types in assignment"));
9704 deprecated_set_value_type (val, type);
9705 }
9706 return val;
9707 }
9708
9709 static struct value *
9710 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9711 {
9712 struct value *val;
9713 struct type *type1, *type2;
9714 LONGEST v, v1, v2;
9715
9716 arg1 = coerce_ref (arg1);
9717 arg2 = coerce_ref (arg2);
9718 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9719 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9720
9721 if (TYPE_CODE (type1) != TYPE_CODE_INT
9722 || TYPE_CODE (type2) != TYPE_CODE_INT)
9723 return value_binop (arg1, arg2, op);
9724
9725 switch (op)
9726 {
9727 case BINOP_MOD:
9728 case BINOP_DIV:
9729 case BINOP_REM:
9730 break;
9731 default:
9732 return value_binop (arg1, arg2, op);
9733 }
9734
9735 v2 = value_as_long (arg2);
9736 if (v2 == 0)
9737 error (_("second operand of %s must not be zero."), op_string (op));
9738
9739 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9740 return value_binop (arg1, arg2, op);
9741
9742 v1 = value_as_long (arg1);
9743 switch (op)
9744 {
9745 case BINOP_DIV:
9746 v = v1 / v2;
9747 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9748 v += v > 0 ? -1 : 1;
9749 break;
9750 case BINOP_REM:
9751 v = v1 % v2;
9752 if (v * v1 < 0)
9753 v -= v2;
9754 break;
9755 default:
9756 /* Should not reach this point. */
9757 v = 0;
9758 }
9759
9760 val = allocate_value (type1);
9761 store_unsigned_integer (value_contents_raw (val),
9762 TYPE_LENGTH (value_type (val)),
9763 gdbarch_byte_order (get_type_arch (type1)), v);
9764 return val;
9765 }
9766
9767 static int
9768 ada_value_equal (struct value *arg1, struct value *arg2)
9769 {
9770 if (ada_is_direct_array_type (value_type (arg1))
9771 || ada_is_direct_array_type (value_type (arg2)))
9772 {
9773 /* Automatically dereference any array reference before
9774 we attempt to perform the comparison. */
9775 arg1 = ada_coerce_ref (arg1);
9776 arg2 = ada_coerce_ref (arg2);
9777
9778 arg1 = ada_coerce_to_simple_array (arg1);
9779 arg2 = ada_coerce_to_simple_array (arg2);
9780 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9781 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9782 error (_("Attempt to compare array with non-array"));
9783 /* FIXME: The following works only for types whose
9784 representations use all bits (no padding or undefined bits)
9785 and do not have user-defined equality. */
9786 return
9787 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9788 && memcmp (value_contents (arg1), value_contents (arg2),
9789 TYPE_LENGTH (value_type (arg1))) == 0;
9790 }
9791 return value_equal (arg1, arg2);
9792 }
9793
9794 /* Total number of component associations in the aggregate starting at
9795 index PC in EXP. Assumes that index PC is the start of an
9796 OP_AGGREGATE. */
9797
9798 static int
9799 num_component_specs (struct expression *exp, int pc)
9800 {
9801 int n, m, i;
9802
9803 m = exp->elts[pc + 1].longconst;
9804 pc += 3;
9805 n = 0;
9806 for (i = 0; i < m; i += 1)
9807 {
9808 switch (exp->elts[pc].opcode)
9809 {
9810 default:
9811 n += 1;
9812 break;
9813 case OP_CHOICES:
9814 n += exp->elts[pc + 1].longconst;
9815 break;
9816 }
9817 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9818 }
9819 return n;
9820 }
9821
9822 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9823 component of LHS (a simple array or a record), updating *POS past
9824 the expression, assuming that LHS is contained in CONTAINER. Does
9825 not modify the inferior's memory, nor does it modify LHS (unless
9826 LHS == CONTAINER). */
9827
9828 static void
9829 assign_component (struct value *container, struct value *lhs, LONGEST index,
9830 struct expression *exp, int *pos)
9831 {
9832 struct value *mark = value_mark ();
9833 struct value *elt;
9834
9835 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9836 {
9837 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9838 struct value *index_val = value_from_longest (index_type, index);
9839
9840 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9841 }
9842 else
9843 {
9844 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9845 elt = ada_to_fixed_value (elt);
9846 }
9847
9848 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9849 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9850 else
9851 value_assign_to_component (container, elt,
9852 ada_evaluate_subexp (NULL, exp, pos,
9853 EVAL_NORMAL));
9854
9855 value_free_to_mark (mark);
9856 }
9857
9858 /* Assuming that LHS represents an lvalue having a record or array
9859 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9860 of that aggregate's value to LHS, advancing *POS past the
9861 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9862 lvalue containing LHS (possibly LHS itself). Does not modify
9863 the inferior's memory, nor does it modify the contents of
9864 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9865
9866 static struct value *
9867 assign_aggregate (struct value *container,
9868 struct value *lhs, struct expression *exp,
9869 int *pos, enum noside noside)
9870 {
9871 struct type *lhs_type;
9872 int n = exp->elts[*pos+1].longconst;
9873 LONGEST low_index, high_index;
9874 int num_specs;
9875 LONGEST *indices;
9876 int max_indices, num_indices;
9877 int i;
9878
9879 *pos += 3;
9880 if (noside != EVAL_NORMAL)
9881 {
9882 for (i = 0; i < n; i += 1)
9883 ada_evaluate_subexp (NULL, exp, pos, noside);
9884 return container;
9885 }
9886
9887 container = ada_coerce_ref (container);
9888 if (ada_is_direct_array_type (value_type (container)))
9889 container = ada_coerce_to_simple_array (container);
9890 lhs = ada_coerce_ref (lhs);
9891 if (!deprecated_value_modifiable (lhs))
9892 error (_("Left operand of assignment is not a modifiable lvalue."));
9893
9894 lhs_type = value_type (lhs);
9895 if (ada_is_direct_array_type (lhs_type))
9896 {
9897 lhs = ada_coerce_to_simple_array (lhs);
9898 lhs_type = value_type (lhs);
9899 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9900 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9901 }
9902 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9903 {
9904 low_index = 0;
9905 high_index = num_visible_fields (lhs_type) - 1;
9906 }
9907 else
9908 error (_("Left-hand side must be array or record."));
9909
9910 num_specs = num_component_specs (exp, *pos - 3);
9911 max_indices = 4 * num_specs + 4;
9912 indices = XALLOCAVEC (LONGEST, max_indices);
9913 indices[0] = indices[1] = low_index - 1;
9914 indices[2] = indices[3] = high_index + 1;
9915 num_indices = 4;
9916
9917 for (i = 0; i < n; i += 1)
9918 {
9919 switch (exp->elts[*pos].opcode)
9920 {
9921 case OP_CHOICES:
9922 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9923 &num_indices, max_indices,
9924 low_index, high_index);
9925 break;
9926 case OP_POSITIONAL:
9927 aggregate_assign_positional (container, lhs, exp, pos, indices,
9928 &num_indices, max_indices,
9929 low_index, high_index);
9930 break;
9931 case OP_OTHERS:
9932 if (i != n-1)
9933 error (_("Misplaced 'others' clause"));
9934 aggregate_assign_others (container, lhs, exp, pos, indices,
9935 num_indices, low_index, high_index);
9936 break;
9937 default:
9938 error (_("Internal error: bad aggregate clause"));
9939 }
9940 }
9941
9942 return container;
9943 }
9944
9945 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9946 construct at *POS, updating *POS past the construct, given that
9947 the positions are relative to lower bound LOW, where HIGH is the
9948 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9949 updating *NUM_INDICES as needed. CONTAINER is as for
9950 assign_aggregate. */
9951 static void
9952 aggregate_assign_positional (struct value *container,
9953 struct value *lhs, struct expression *exp,
9954 int *pos, LONGEST *indices, int *num_indices,
9955 int max_indices, LONGEST low, LONGEST high)
9956 {
9957 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9958
9959 if (ind - 1 == high)
9960 warning (_("Extra components in aggregate ignored."));
9961 if (ind <= high)
9962 {
9963 add_component_interval (ind, ind, indices, num_indices, max_indices);
9964 *pos += 3;
9965 assign_component (container, lhs, ind, exp, pos);
9966 }
9967 else
9968 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9969 }
9970
9971 /* Assign into the components of LHS indexed by the OP_CHOICES
9972 construct at *POS, updating *POS past the construct, given that
9973 the allowable indices are LOW..HIGH. Record the indices assigned
9974 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9975 needed. CONTAINER is as for assign_aggregate. */
9976 static void
9977 aggregate_assign_from_choices (struct value *container,
9978 struct value *lhs, struct expression *exp,
9979 int *pos, LONGEST *indices, int *num_indices,
9980 int max_indices, LONGEST low, LONGEST high)
9981 {
9982 int j;
9983 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9984 int choice_pos, expr_pc;
9985 int is_array = ada_is_direct_array_type (value_type (lhs));
9986
9987 choice_pos = *pos += 3;
9988
9989 for (j = 0; j < n_choices; j += 1)
9990 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9991 expr_pc = *pos;
9992 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9993
9994 for (j = 0; j < n_choices; j += 1)
9995 {
9996 LONGEST lower, upper;
9997 enum exp_opcode op = exp->elts[choice_pos].opcode;
9998
9999 if (op == OP_DISCRETE_RANGE)
10000 {
10001 choice_pos += 1;
10002 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10003 EVAL_NORMAL));
10004 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10005 EVAL_NORMAL));
10006 }
10007 else if (is_array)
10008 {
10009 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10010 EVAL_NORMAL));
10011 upper = lower;
10012 }
10013 else
10014 {
10015 int ind;
10016 const char *name;
10017
10018 switch (op)
10019 {
10020 case OP_NAME:
10021 name = &exp->elts[choice_pos + 2].string;
10022 break;
10023 case OP_VAR_VALUE:
10024 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10025 break;
10026 default:
10027 error (_("Invalid record component association."));
10028 }
10029 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10030 ind = 0;
10031 if (! find_struct_field (name, value_type (lhs), 0,
10032 NULL, NULL, NULL, NULL, &ind))
10033 error (_("Unknown component name: %s."), name);
10034 lower = upper = ind;
10035 }
10036
10037 if (lower <= upper && (lower < low || upper > high))
10038 error (_("Index in component association out of bounds."));
10039
10040 add_component_interval (lower, upper, indices, num_indices,
10041 max_indices);
10042 while (lower <= upper)
10043 {
10044 int pos1;
10045
10046 pos1 = expr_pc;
10047 assign_component (container, lhs, lower, exp, &pos1);
10048 lower += 1;
10049 }
10050 }
10051 }
10052
10053 /* Assign the value of the expression in the OP_OTHERS construct in
10054 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10055 have not been previously assigned. The index intervals already assigned
10056 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10057 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10058 static void
10059 aggregate_assign_others (struct value *container,
10060 struct value *lhs, struct expression *exp,
10061 int *pos, LONGEST *indices, int num_indices,
10062 LONGEST low, LONGEST high)
10063 {
10064 int i;
10065 int expr_pc = *pos + 1;
10066
10067 for (i = 0; i < num_indices - 2; i += 2)
10068 {
10069 LONGEST ind;
10070
10071 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10072 {
10073 int localpos;
10074
10075 localpos = expr_pc;
10076 assign_component (container, lhs, ind, exp, &localpos);
10077 }
10078 }
10079 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10080 }
10081
10082 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10083 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10084 modifying *SIZE as needed. It is an error if *SIZE exceeds
10085 MAX_SIZE. The resulting intervals do not overlap. */
10086 static void
10087 add_component_interval (LONGEST low, LONGEST high,
10088 LONGEST* indices, int *size, int max_size)
10089 {
10090 int i, j;
10091
10092 for (i = 0; i < *size; i += 2) {
10093 if (high >= indices[i] && low <= indices[i + 1])
10094 {
10095 int kh;
10096
10097 for (kh = i + 2; kh < *size; kh += 2)
10098 if (high < indices[kh])
10099 break;
10100 if (low < indices[i])
10101 indices[i] = low;
10102 indices[i + 1] = indices[kh - 1];
10103 if (high > indices[i + 1])
10104 indices[i + 1] = high;
10105 memcpy (indices + i + 2, indices + kh, *size - kh);
10106 *size -= kh - i - 2;
10107 return;
10108 }
10109 else if (high < indices[i])
10110 break;
10111 }
10112
10113 if (*size == max_size)
10114 error (_("Internal error: miscounted aggregate components."));
10115 *size += 2;
10116 for (j = *size-1; j >= i+2; j -= 1)
10117 indices[j] = indices[j - 2];
10118 indices[i] = low;
10119 indices[i + 1] = high;
10120 }
10121
10122 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10123 is different. */
10124
10125 static struct value *
10126 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10127 {
10128 if (type == ada_check_typedef (value_type (arg2)))
10129 return arg2;
10130
10131 if (ada_is_fixed_point_type (type))
10132 return (cast_to_fixed (type, arg2));
10133
10134 if (ada_is_fixed_point_type (value_type (arg2)))
10135 return cast_from_fixed (type, arg2);
10136
10137 return value_cast (type, arg2);
10138 }
10139
10140 /* Evaluating Ada expressions, and printing their result.
10141 ------------------------------------------------------
10142
10143 1. Introduction:
10144 ----------------
10145
10146 We usually evaluate an Ada expression in order to print its value.
10147 We also evaluate an expression in order to print its type, which
10148 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10149 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10150 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10151 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10152 similar.
10153
10154 Evaluating expressions is a little more complicated for Ada entities
10155 than it is for entities in languages such as C. The main reason for
10156 this is that Ada provides types whose definition might be dynamic.
10157 One example of such types is variant records. Or another example
10158 would be an array whose bounds can only be known at run time.
10159
10160 The following description is a general guide as to what should be
10161 done (and what should NOT be done) in order to evaluate an expression
10162 involving such types, and when. This does not cover how the semantic
10163 information is encoded by GNAT as this is covered separatly. For the
10164 document used as the reference for the GNAT encoding, see exp_dbug.ads
10165 in the GNAT sources.
10166
10167 Ideally, we should embed each part of this description next to its
10168 associated code. Unfortunately, the amount of code is so vast right
10169 now that it's hard to see whether the code handling a particular
10170 situation might be duplicated or not. One day, when the code is
10171 cleaned up, this guide might become redundant with the comments
10172 inserted in the code, and we might want to remove it.
10173
10174 2. ``Fixing'' an Entity, the Simple Case:
10175 -----------------------------------------
10176
10177 When evaluating Ada expressions, the tricky issue is that they may
10178 reference entities whose type contents and size are not statically
10179 known. Consider for instance a variant record:
10180
10181 type Rec (Empty : Boolean := True) is record
10182 case Empty is
10183 when True => null;
10184 when False => Value : Integer;
10185 end case;
10186 end record;
10187 Yes : Rec := (Empty => False, Value => 1);
10188 No : Rec := (empty => True);
10189
10190 The size and contents of that record depends on the value of the
10191 descriminant (Rec.Empty). At this point, neither the debugging
10192 information nor the associated type structure in GDB are able to
10193 express such dynamic types. So what the debugger does is to create
10194 "fixed" versions of the type that applies to the specific object.
10195 We also informally refer to this opperation as "fixing" an object,
10196 which means creating its associated fixed type.
10197
10198 Example: when printing the value of variable "Yes" above, its fixed
10199 type would look like this:
10200
10201 type Rec is record
10202 Empty : Boolean;
10203 Value : Integer;
10204 end record;
10205
10206 On the other hand, if we printed the value of "No", its fixed type
10207 would become:
10208
10209 type Rec is record
10210 Empty : Boolean;
10211 end record;
10212
10213 Things become a little more complicated when trying to fix an entity
10214 with a dynamic type that directly contains another dynamic type,
10215 such as an array of variant records, for instance. There are
10216 two possible cases: Arrays, and records.
10217
10218 3. ``Fixing'' Arrays:
10219 ---------------------
10220
10221 The type structure in GDB describes an array in terms of its bounds,
10222 and the type of its elements. By design, all elements in the array
10223 have the same type and we cannot represent an array of variant elements
10224 using the current type structure in GDB. When fixing an array,
10225 we cannot fix the array element, as we would potentially need one
10226 fixed type per element of the array. As a result, the best we can do
10227 when fixing an array is to produce an array whose bounds and size
10228 are correct (allowing us to read it from memory), but without having
10229 touched its element type. Fixing each element will be done later,
10230 when (if) necessary.
10231
10232 Arrays are a little simpler to handle than records, because the same
10233 amount of memory is allocated for each element of the array, even if
10234 the amount of space actually used by each element differs from element
10235 to element. Consider for instance the following array of type Rec:
10236
10237 type Rec_Array is array (1 .. 2) of Rec;
10238
10239 The actual amount of memory occupied by each element might be different
10240 from element to element, depending on the value of their discriminant.
10241 But the amount of space reserved for each element in the array remains
10242 fixed regardless. So we simply need to compute that size using
10243 the debugging information available, from which we can then determine
10244 the array size (we multiply the number of elements of the array by
10245 the size of each element).
10246
10247 The simplest case is when we have an array of a constrained element
10248 type. For instance, consider the following type declarations:
10249
10250 type Bounded_String (Max_Size : Integer) is
10251 Length : Integer;
10252 Buffer : String (1 .. Max_Size);
10253 end record;
10254 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10255
10256 In this case, the compiler describes the array as an array of
10257 variable-size elements (identified by its XVS suffix) for which
10258 the size can be read in the parallel XVZ variable.
10259
10260 In the case of an array of an unconstrained element type, the compiler
10261 wraps the array element inside a private PAD type. This type should not
10262 be shown to the user, and must be "unwrap"'ed before printing. Note
10263 that we also use the adjective "aligner" in our code to designate
10264 these wrapper types.
10265
10266 In some cases, the size allocated for each element is statically
10267 known. In that case, the PAD type already has the correct size,
10268 and the array element should remain unfixed.
10269
10270 But there are cases when this size is not statically known.
10271 For instance, assuming that "Five" is an integer variable:
10272
10273 type Dynamic is array (1 .. Five) of Integer;
10274 type Wrapper (Has_Length : Boolean := False) is record
10275 Data : Dynamic;
10276 case Has_Length is
10277 when True => Length : Integer;
10278 when False => null;
10279 end case;
10280 end record;
10281 type Wrapper_Array is array (1 .. 2) of Wrapper;
10282
10283 Hello : Wrapper_Array := (others => (Has_Length => True,
10284 Data => (others => 17),
10285 Length => 1));
10286
10287
10288 The debugging info would describe variable Hello as being an
10289 array of a PAD type. The size of that PAD type is not statically
10290 known, but can be determined using a parallel XVZ variable.
10291 In that case, a copy of the PAD type with the correct size should
10292 be used for the fixed array.
10293
10294 3. ``Fixing'' record type objects:
10295 ----------------------------------
10296
10297 Things are slightly different from arrays in the case of dynamic
10298 record types. In this case, in order to compute the associated
10299 fixed type, we need to determine the size and offset of each of
10300 its components. This, in turn, requires us to compute the fixed
10301 type of each of these components.
10302
10303 Consider for instance the example:
10304
10305 type Bounded_String (Max_Size : Natural) is record
10306 Str : String (1 .. Max_Size);
10307 Length : Natural;
10308 end record;
10309 My_String : Bounded_String (Max_Size => 10);
10310
10311 In that case, the position of field "Length" depends on the size
10312 of field Str, which itself depends on the value of the Max_Size
10313 discriminant. In order to fix the type of variable My_String,
10314 we need to fix the type of field Str. Therefore, fixing a variant
10315 record requires us to fix each of its components.
10316
10317 However, if a component does not have a dynamic size, the component
10318 should not be fixed. In particular, fields that use a PAD type
10319 should not fixed. Here is an example where this might happen
10320 (assuming type Rec above):
10321
10322 type Container (Big : Boolean) is record
10323 First : Rec;
10324 After : Integer;
10325 case Big is
10326 when True => Another : Integer;
10327 when False => null;
10328 end case;
10329 end record;
10330 My_Container : Container := (Big => False,
10331 First => (Empty => True),
10332 After => 42);
10333
10334 In that example, the compiler creates a PAD type for component First,
10335 whose size is constant, and then positions the component After just
10336 right after it. The offset of component After is therefore constant
10337 in this case.
10338
10339 The debugger computes the position of each field based on an algorithm
10340 that uses, among other things, the actual position and size of the field
10341 preceding it. Let's now imagine that the user is trying to print
10342 the value of My_Container. If the type fixing was recursive, we would
10343 end up computing the offset of field After based on the size of the
10344 fixed version of field First. And since in our example First has
10345 only one actual field, the size of the fixed type is actually smaller
10346 than the amount of space allocated to that field, and thus we would
10347 compute the wrong offset of field After.
10348
10349 To make things more complicated, we need to watch out for dynamic
10350 components of variant records (identified by the ___XVL suffix in
10351 the component name). Even if the target type is a PAD type, the size
10352 of that type might not be statically known. So the PAD type needs
10353 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10354 we might end up with the wrong size for our component. This can be
10355 observed with the following type declarations:
10356
10357 type Octal is new Integer range 0 .. 7;
10358 type Octal_Array is array (Positive range <>) of Octal;
10359 pragma Pack (Octal_Array);
10360
10361 type Octal_Buffer (Size : Positive) is record
10362 Buffer : Octal_Array (1 .. Size);
10363 Length : Integer;
10364 end record;
10365
10366 In that case, Buffer is a PAD type whose size is unset and needs
10367 to be computed by fixing the unwrapped type.
10368
10369 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10370 ----------------------------------------------------------
10371
10372 Lastly, when should the sub-elements of an entity that remained unfixed
10373 thus far, be actually fixed?
10374
10375 The answer is: Only when referencing that element. For instance
10376 when selecting one component of a record, this specific component
10377 should be fixed at that point in time. Or when printing the value
10378 of a record, each component should be fixed before its value gets
10379 printed. Similarly for arrays, the element of the array should be
10380 fixed when printing each element of the array, or when extracting
10381 one element out of that array. On the other hand, fixing should
10382 not be performed on the elements when taking a slice of an array!
10383
10384 Note that one of the side-effects of miscomputing the offset and
10385 size of each field is that we end up also miscomputing the size
10386 of the containing type. This can have adverse results when computing
10387 the value of an entity. GDB fetches the value of an entity based
10388 on the size of its type, and thus a wrong size causes GDB to fetch
10389 the wrong amount of memory. In the case where the computed size is
10390 too small, GDB fetches too little data to print the value of our
10391 entiry. Results in this case as unpredicatble, as we usually read
10392 past the buffer containing the data =:-o. */
10393
10394 /* Implement the evaluate_exp routine in the exp_descriptor structure
10395 for the Ada language. */
10396
10397 static struct value *
10398 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10399 int *pos, enum noside noside)
10400 {
10401 enum exp_opcode op;
10402 int tem;
10403 int pc;
10404 int preeval_pos;
10405 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10406 struct type *type;
10407 int nargs, oplen;
10408 struct value **argvec;
10409
10410 pc = *pos;
10411 *pos += 1;
10412 op = exp->elts[pc].opcode;
10413
10414 switch (op)
10415 {
10416 default:
10417 *pos -= 1;
10418 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10419
10420 if (noside == EVAL_NORMAL)
10421 arg1 = unwrap_value (arg1);
10422
10423 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10424 then we need to perform the conversion manually, because
10425 evaluate_subexp_standard doesn't do it. This conversion is
10426 necessary in Ada because the different kinds of float/fixed
10427 types in Ada have different representations.
10428
10429 Similarly, we need to perform the conversion from OP_LONG
10430 ourselves. */
10431 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10432 arg1 = ada_value_cast (expect_type, arg1, noside);
10433
10434 return arg1;
10435
10436 case OP_STRING:
10437 {
10438 struct value *result;
10439
10440 *pos -= 1;
10441 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10442 /* The result type will have code OP_STRING, bashed there from
10443 OP_ARRAY. Bash it back. */
10444 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10445 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10446 return result;
10447 }
10448
10449 case UNOP_CAST:
10450 (*pos) += 2;
10451 type = exp->elts[pc + 1].type;
10452 arg1 = evaluate_subexp (type, exp, pos, noside);
10453 if (noside == EVAL_SKIP)
10454 goto nosideret;
10455 arg1 = ada_value_cast (type, arg1, noside);
10456 return arg1;
10457
10458 case UNOP_QUAL:
10459 (*pos) += 2;
10460 type = exp->elts[pc + 1].type;
10461 return ada_evaluate_subexp (type, exp, pos, noside);
10462
10463 case BINOP_ASSIGN:
10464 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10465 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10466 {
10467 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10468 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10469 return arg1;
10470 return ada_value_assign (arg1, arg1);
10471 }
10472 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10473 except if the lhs of our assignment is a convenience variable.
10474 In the case of assigning to a convenience variable, the lhs
10475 should be exactly the result of the evaluation of the rhs. */
10476 type = value_type (arg1);
10477 if (VALUE_LVAL (arg1) == lval_internalvar)
10478 type = NULL;
10479 arg2 = evaluate_subexp (type, exp, pos, noside);
10480 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10481 return arg1;
10482 if (ada_is_fixed_point_type (value_type (arg1)))
10483 arg2 = cast_to_fixed (value_type (arg1), arg2);
10484 else if (ada_is_fixed_point_type (value_type (arg2)))
10485 error
10486 (_("Fixed-point values must be assigned to fixed-point variables"));
10487 else
10488 arg2 = coerce_for_assign (value_type (arg1), arg2);
10489 return ada_value_assign (arg1, arg2);
10490
10491 case BINOP_ADD:
10492 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10493 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10494 if (noside == EVAL_SKIP)
10495 goto nosideret;
10496 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10497 return (value_from_longest
10498 (value_type (arg1),
10499 value_as_long (arg1) + value_as_long (arg2)));
10500 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10501 return (value_from_longest
10502 (value_type (arg2),
10503 value_as_long (arg1) + value_as_long (arg2)));
10504 if ((ada_is_fixed_point_type (value_type (arg1))
10505 || ada_is_fixed_point_type (value_type (arg2)))
10506 && value_type (arg1) != value_type (arg2))
10507 error (_("Operands of fixed-point addition must have the same type"));
10508 /* Do the addition, and cast the result to the type of the first
10509 argument. We cannot cast the result to a reference type, so if
10510 ARG1 is a reference type, find its underlying type. */
10511 type = value_type (arg1);
10512 while (TYPE_CODE (type) == TYPE_CODE_REF)
10513 type = TYPE_TARGET_TYPE (type);
10514 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10515 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10516
10517 case BINOP_SUB:
10518 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10519 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10520 if (noside == EVAL_SKIP)
10521 goto nosideret;
10522 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10523 return (value_from_longest
10524 (value_type (arg1),
10525 value_as_long (arg1) - value_as_long (arg2)));
10526 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10527 return (value_from_longest
10528 (value_type (arg2),
10529 value_as_long (arg1) - value_as_long (arg2)));
10530 if ((ada_is_fixed_point_type (value_type (arg1))
10531 || ada_is_fixed_point_type (value_type (arg2)))
10532 && value_type (arg1) != value_type (arg2))
10533 error (_("Operands of fixed-point subtraction "
10534 "must have the same type"));
10535 /* Do the substraction, and cast the result to the type of the first
10536 argument. We cannot cast the result to a reference type, so if
10537 ARG1 is a reference type, find its underlying type. */
10538 type = value_type (arg1);
10539 while (TYPE_CODE (type) == TYPE_CODE_REF)
10540 type = TYPE_TARGET_TYPE (type);
10541 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10542 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10543
10544 case BINOP_MUL:
10545 case BINOP_DIV:
10546 case BINOP_REM:
10547 case BINOP_MOD:
10548 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10549 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10550 if (noside == EVAL_SKIP)
10551 goto nosideret;
10552 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10553 {
10554 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10555 return value_zero (value_type (arg1), not_lval);
10556 }
10557 else
10558 {
10559 type = builtin_type (exp->gdbarch)->builtin_double;
10560 if (ada_is_fixed_point_type (value_type (arg1)))
10561 arg1 = cast_from_fixed (type, arg1);
10562 if (ada_is_fixed_point_type (value_type (arg2)))
10563 arg2 = cast_from_fixed (type, arg2);
10564 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10565 return ada_value_binop (arg1, arg2, op);
10566 }
10567
10568 case BINOP_EQUAL:
10569 case BINOP_NOTEQUAL:
10570 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10571 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10572 if (noside == EVAL_SKIP)
10573 goto nosideret;
10574 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10575 tem = 0;
10576 else
10577 {
10578 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10579 tem = ada_value_equal (arg1, arg2);
10580 }
10581 if (op == BINOP_NOTEQUAL)
10582 tem = !tem;
10583 type = language_bool_type (exp->language_defn, exp->gdbarch);
10584 return value_from_longest (type, (LONGEST) tem);
10585
10586 case UNOP_NEG:
10587 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10588 if (noside == EVAL_SKIP)
10589 goto nosideret;
10590 else if (ada_is_fixed_point_type (value_type (arg1)))
10591 return value_cast (value_type (arg1), value_neg (arg1));
10592 else
10593 {
10594 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10595 return value_neg (arg1);
10596 }
10597
10598 case BINOP_LOGICAL_AND:
10599 case BINOP_LOGICAL_OR:
10600 case UNOP_LOGICAL_NOT:
10601 {
10602 struct value *val;
10603
10604 *pos -= 1;
10605 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10606 type = language_bool_type (exp->language_defn, exp->gdbarch);
10607 return value_cast (type, val);
10608 }
10609
10610 case BINOP_BITWISE_AND:
10611 case BINOP_BITWISE_IOR:
10612 case BINOP_BITWISE_XOR:
10613 {
10614 struct value *val;
10615
10616 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10617 *pos = pc;
10618 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10619
10620 return value_cast (value_type (arg1), val);
10621 }
10622
10623 case OP_VAR_VALUE:
10624 *pos -= 1;
10625
10626 if (noside == EVAL_SKIP)
10627 {
10628 *pos += 4;
10629 goto nosideret;
10630 }
10631
10632 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10633 /* Only encountered when an unresolved symbol occurs in a
10634 context other than a function call, in which case, it is
10635 invalid. */
10636 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10637 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10638
10639 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10640 {
10641 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10642 /* Check to see if this is a tagged type. We also need to handle
10643 the case where the type is a reference to a tagged type, but
10644 we have to be careful to exclude pointers to tagged types.
10645 The latter should be shown as usual (as a pointer), whereas
10646 a reference should mostly be transparent to the user. */
10647 if (ada_is_tagged_type (type, 0)
10648 || (TYPE_CODE (type) == TYPE_CODE_REF
10649 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10650 {
10651 /* Tagged types are a little special in the fact that the real
10652 type is dynamic and can only be determined by inspecting the
10653 object's tag. This means that we need to get the object's
10654 value first (EVAL_NORMAL) and then extract the actual object
10655 type from its tag.
10656
10657 Note that we cannot skip the final step where we extract
10658 the object type from its tag, because the EVAL_NORMAL phase
10659 results in dynamic components being resolved into fixed ones.
10660 This can cause problems when trying to print the type
10661 description of tagged types whose parent has a dynamic size:
10662 We use the type name of the "_parent" component in order
10663 to print the name of the ancestor type in the type description.
10664 If that component had a dynamic size, the resolution into
10665 a fixed type would result in the loss of that type name,
10666 thus preventing us from printing the name of the ancestor
10667 type in the type description. */
10668 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10669
10670 if (TYPE_CODE (type) != TYPE_CODE_REF)
10671 {
10672 struct type *actual_type;
10673
10674 actual_type = type_from_tag (ada_value_tag (arg1));
10675 if (actual_type == NULL)
10676 /* If, for some reason, we were unable to determine
10677 the actual type from the tag, then use the static
10678 approximation that we just computed as a fallback.
10679 This can happen if the debugging information is
10680 incomplete, for instance. */
10681 actual_type = type;
10682 return value_zero (actual_type, not_lval);
10683 }
10684 else
10685 {
10686 /* In the case of a ref, ada_coerce_ref takes care
10687 of determining the actual type. But the evaluation
10688 should return a ref as it should be valid to ask
10689 for its address; so rebuild a ref after coerce. */
10690 arg1 = ada_coerce_ref (arg1);
10691 return value_ref (arg1, TYPE_CODE_REF);
10692 }
10693 }
10694
10695 /* Records and unions for which GNAT encodings have been
10696 generated need to be statically fixed as well.
10697 Otherwise, non-static fixing produces a type where
10698 all dynamic properties are removed, which prevents "ptype"
10699 from being able to completely describe the type.
10700 For instance, a case statement in a variant record would be
10701 replaced by the relevant components based on the actual
10702 value of the discriminants. */
10703 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10704 && dynamic_template_type (type) != NULL)
10705 || (TYPE_CODE (type) == TYPE_CODE_UNION
10706 && ada_find_parallel_type (type, "___XVU") != NULL))
10707 {
10708 *pos += 4;
10709 return value_zero (to_static_fixed_type (type), not_lval);
10710 }
10711 }
10712
10713 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10714 return ada_to_fixed_value (arg1);
10715
10716 case OP_FUNCALL:
10717 (*pos) += 2;
10718
10719 /* Allocate arg vector, including space for the function to be
10720 called in argvec[0] and a terminating NULL. */
10721 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10722 argvec = XALLOCAVEC (struct value *, nargs + 2);
10723
10724 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10725 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10726 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10727 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10728 else
10729 {
10730 for (tem = 0; tem <= nargs; tem += 1)
10731 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10732 argvec[tem] = 0;
10733
10734 if (noside == EVAL_SKIP)
10735 goto nosideret;
10736 }
10737
10738 if (ada_is_constrained_packed_array_type
10739 (desc_base_type (value_type (argvec[0]))))
10740 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10741 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10742 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10743 /* This is a packed array that has already been fixed, and
10744 therefore already coerced to a simple array. Nothing further
10745 to do. */
10746 ;
10747 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10748 {
10749 /* Make sure we dereference references so that all the code below
10750 feels like it's really handling the referenced value. Wrapping
10751 types (for alignment) may be there, so make sure we strip them as
10752 well. */
10753 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10754 }
10755 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10756 && VALUE_LVAL (argvec[0]) == lval_memory)
10757 argvec[0] = value_addr (argvec[0]);
10758
10759 type = ada_check_typedef (value_type (argvec[0]));
10760
10761 /* Ada allows us to implicitly dereference arrays when subscripting
10762 them. So, if this is an array typedef (encoding use for array
10763 access types encoded as fat pointers), strip it now. */
10764 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10765 type = ada_typedef_target_type (type);
10766
10767 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10768 {
10769 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10770 {
10771 case TYPE_CODE_FUNC:
10772 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10773 break;
10774 case TYPE_CODE_ARRAY:
10775 break;
10776 case TYPE_CODE_STRUCT:
10777 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10778 argvec[0] = ada_value_ind (argvec[0]);
10779 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10780 break;
10781 default:
10782 error (_("cannot subscript or call something of type `%s'"),
10783 ada_type_name (value_type (argvec[0])));
10784 break;
10785 }
10786 }
10787
10788 switch (TYPE_CODE (type))
10789 {
10790 case TYPE_CODE_FUNC:
10791 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10792 {
10793 if (TYPE_TARGET_TYPE (type) == NULL)
10794 error_call_unknown_return_type (NULL);
10795 return allocate_value (TYPE_TARGET_TYPE (type));
10796 }
10797 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10798 case TYPE_CODE_INTERNAL_FUNCTION:
10799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10800 /* We don't know anything about what the internal
10801 function might return, but we have to return
10802 something. */
10803 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10804 not_lval);
10805 else
10806 return call_internal_function (exp->gdbarch, exp->language_defn,
10807 argvec[0], nargs, argvec + 1);
10808
10809 case TYPE_CODE_STRUCT:
10810 {
10811 int arity;
10812
10813 arity = ada_array_arity (type);
10814 type = ada_array_element_type (type, nargs);
10815 if (type == NULL)
10816 error (_("cannot subscript or call a record"));
10817 if (arity != nargs)
10818 error (_("wrong number of subscripts; expecting %d"), arity);
10819 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10820 return value_zero (ada_aligned_type (type), lval_memory);
10821 return
10822 unwrap_value (ada_value_subscript
10823 (argvec[0], nargs, argvec + 1));
10824 }
10825 case TYPE_CODE_ARRAY:
10826 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10827 {
10828 type = ada_array_element_type (type, nargs);
10829 if (type == NULL)
10830 error (_("element type of array unknown"));
10831 else
10832 return value_zero (ada_aligned_type (type), lval_memory);
10833 }
10834 return
10835 unwrap_value (ada_value_subscript
10836 (ada_coerce_to_simple_array (argvec[0]),
10837 nargs, argvec + 1));
10838 case TYPE_CODE_PTR: /* Pointer to array */
10839 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10840 {
10841 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10842 type = ada_array_element_type (type, nargs);
10843 if (type == NULL)
10844 error (_("element type of array unknown"));
10845 else
10846 return value_zero (ada_aligned_type (type), lval_memory);
10847 }
10848 return
10849 unwrap_value (ada_value_ptr_subscript (argvec[0],
10850 nargs, argvec + 1));
10851
10852 default:
10853 error (_("Attempt to index or call something other than an "
10854 "array or function"));
10855 }
10856
10857 case TERNOP_SLICE:
10858 {
10859 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10860 struct value *low_bound_val =
10861 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10862 struct value *high_bound_val =
10863 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10864 LONGEST low_bound;
10865 LONGEST high_bound;
10866
10867 low_bound_val = coerce_ref (low_bound_val);
10868 high_bound_val = coerce_ref (high_bound_val);
10869 low_bound = value_as_long (low_bound_val);
10870 high_bound = value_as_long (high_bound_val);
10871
10872 if (noside == EVAL_SKIP)
10873 goto nosideret;
10874
10875 /* If this is a reference to an aligner type, then remove all
10876 the aligners. */
10877 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10878 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10879 TYPE_TARGET_TYPE (value_type (array)) =
10880 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10881
10882 if (ada_is_constrained_packed_array_type (value_type (array)))
10883 error (_("cannot slice a packed array"));
10884
10885 /* If this is a reference to an array or an array lvalue,
10886 convert to a pointer. */
10887 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10888 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10889 && VALUE_LVAL (array) == lval_memory))
10890 array = value_addr (array);
10891
10892 if (noside == EVAL_AVOID_SIDE_EFFECTS
10893 && ada_is_array_descriptor_type (ada_check_typedef
10894 (value_type (array))))
10895 return empty_array (ada_type_of_array (array, 0), low_bound);
10896
10897 array = ada_coerce_to_simple_array_ptr (array);
10898
10899 /* If we have more than one level of pointer indirection,
10900 dereference the value until we get only one level. */
10901 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10902 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10903 == TYPE_CODE_PTR))
10904 array = value_ind (array);
10905
10906 /* Make sure we really do have an array type before going further,
10907 to avoid a SEGV when trying to get the index type or the target
10908 type later down the road if the debug info generated by
10909 the compiler is incorrect or incomplete. */
10910 if (!ada_is_simple_array_type (value_type (array)))
10911 error (_("cannot take slice of non-array"));
10912
10913 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10914 == TYPE_CODE_PTR)
10915 {
10916 struct type *type0 = ada_check_typedef (value_type (array));
10917
10918 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10919 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10920 else
10921 {
10922 struct type *arr_type0 =
10923 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10924
10925 return ada_value_slice_from_ptr (array, arr_type0,
10926 longest_to_int (low_bound),
10927 longest_to_int (high_bound));
10928 }
10929 }
10930 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10931 return array;
10932 else if (high_bound < low_bound)
10933 return empty_array (value_type (array), low_bound);
10934 else
10935 return ada_value_slice (array, longest_to_int (low_bound),
10936 longest_to_int (high_bound));
10937 }
10938
10939 case UNOP_IN_RANGE:
10940 (*pos) += 2;
10941 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10942 type = check_typedef (exp->elts[pc + 1].type);
10943
10944 if (noside == EVAL_SKIP)
10945 goto nosideret;
10946
10947 switch (TYPE_CODE (type))
10948 {
10949 default:
10950 lim_warning (_("Membership test incompletely implemented; "
10951 "always returns true"));
10952 type = language_bool_type (exp->language_defn, exp->gdbarch);
10953 return value_from_longest (type, (LONGEST) 1);
10954
10955 case TYPE_CODE_RANGE:
10956 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10957 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10958 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10959 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10960 type = language_bool_type (exp->language_defn, exp->gdbarch);
10961 return
10962 value_from_longest (type,
10963 (value_less (arg1, arg3)
10964 || value_equal (arg1, arg3))
10965 && (value_less (arg2, arg1)
10966 || value_equal (arg2, arg1)));
10967 }
10968
10969 case BINOP_IN_BOUNDS:
10970 (*pos) += 2;
10971 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10972 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10973
10974 if (noside == EVAL_SKIP)
10975 goto nosideret;
10976
10977 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10978 {
10979 type = language_bool_type (exp->language_defn, exp->gdbarch);
10980 return value_zero (type, not_lval);
10981 }
10982
10983 tem = longest_to_int (exp->elts[pc + 1].longconst);
10984
10985 type = ada_index_type (value_type (arg2), tem, "range");
10986 if (!type)
10987 type = value_type (arg1);
10988
10989 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
10990 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
10991
10992 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10993 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10994 type = language_bool_type (exp->language_defn, exp->gdbarch);
10995 return
10996 value_from_longest (type,
10997 (value_less (arg1, arg3)
10998 || value_equal (arg1, arg3))
10999 && (value_less (arg2, arg1)
11000 || value_equal (arg2, arg1)));
11001
11002 case TERNOP_IN_RANGE:
11003 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11004 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11005 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11006
11007 if (noside == EVAL_SKIP)
11008 goto nosideret;
11009
11010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11012 type = language_bool_type (exp->language_defn, exp->gdbarch);
11013 return
11014 value_from_longest (type,
11015 (value_less (arg1, arg3)
11016 || value_equal (arg1, arg3))
11017 && (value_less (arg2, arg1)
11018 || value_equal (arg2, arg1)));
11019
11020 case OP_ATR_FIRST:
11021 case OP_ATR_LAST:
11022 case OP_ATR_LENGTH:
11023 {
11024 struct type *type_arg;
11025
11026 if (exp->elts[*pos].opcode == OP_TYPE)
11027 {
11028 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11029 arg1 = NULL;
11030 type_arg = check_typedef (exp->elts[pc + 2].type);
11031 }
11032 else
11033 {
11034 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11035 type_arg = NULL;
11036 }
11037
11038 if (exp->elts[*pos].opcode != OP_LONG)
11039 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11040 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11041 *pos += 4;
11042
11043 if (noside == EVAL_SKIP)
11044 goto nosideret;
11045
11046 if (type_arg == NULL)
11047 {
11048 arg1 = ada_coerce_ref (arg1);
11049
11050 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11051 arg1 = ada_coerce_to_simple_array (arg1);
11052
11053 if (op == OP_ATR_LENGTH)
11054 type = builtin_type (exp->gdbarch)->builtin_int;
11055 else
11056 {
11057 type = ada_index_type (value_type (arg1), tem,
11058 ada_attribute_name (op));
11059 if (type == NULL)
11060 type = builtin_type (exp->gdbarch)->builtin_int;
11061 }
11062
11063 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11064 return allocate_value (type);
11065
11066 switch (op)
11067 {
11068 default: /* Should never happen. */
11069 error (_("unexpected attribute encountered"));
11070 case OP_ATR_FIRST:
11071 return value_from_longest
11072 (type, ada_array_bound (arg1, tem, 0));
11073 case OP_ATR_LAST:
11074 return value_from_longest
11075 (type, ada_array_bound (arg1, tem, 1));
11076 case OP_ATR_LENGTH:
11077 return value_from_longest
11078 (type, ada_array_length (arg1, tem));
11079 }
11080 }
11081 else if (discrete_type_p (type_arg))
11082 {
11083 struct type *range_type;
11084 const char *name = ada_type_name (type_arg);
11085
11086 range_type = NULL;
11087 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11088 range_type = to_fixed_range_type (type_arg, NULL);
11089 if (range_type == NULL)
11090 range_type = type_arg;
11091 switch (op)
11092 {
11093 default:
11094 error (_("unexpected attribute encountered"));
11095 case OP_ATR_FIRST:
11096 return value_from_longest
11097 (range_type, ada_discrete_type_low_bound (range_type));
11098 case OP_ATR_LAST:
11099 return value_from_longest
11100 (range_type, ada_discrete_type_high_bound (range_type));
11101 case OP_ATR_LENGTH:
11102 error (_("the 'length attribute applies only to array types"));
11103 }
11104 }
11105 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11106 error (_("unimplemented type attribute"));
11107 else
11108 {
11109 LONGEST low, high;
11110
11111 if (ada_is_constrained_packed_array_type (type_arg))
11112 type_arg = decode_constrained_packed_array_type (type_arg);
11113
11114 if (op == OP_ATR_LENGTH)
11115 type = builtin_type (exp->gdbarch)->builtin_int;
11116 else
11117 {
11118 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11119 if (type == NULL)
11120 type = builtin_type (exp->gdbarch)->builtin_int;
11121 }
11122
11123 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11124 return allocate_value (type);
11125
11126 switch (op)
11127 {
11128 default:
11129 error (_("unexpected attribute encountered"));
11130 case OP_ATR_FIRST:
11131 low = ada_array_bound_from_type (type_arg, tem, 0);
11132 return value_from_longest (type, low);
11133 case OP_ATR_LAST:
11134 high = ada_array_bound_from_type (type_arg, tem, 1);
11135 return value_from_longest (type, high);
11136 case OP_ATR_LENGTH:
11137 low = ada_array_bound_from_type (type_arg, tem, 0);
11138 high = ada_array_bound_from_type (type_arg, tem, 1);
11139 return value_from_longest (type, high - low + 1);
11140 }
11141 }
11142 }
11143
11144 case OP_ATR_TAG:
11145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11146 if (noside == EVAL_SKIP)
11147 goto nosideret;
11148
11149 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11150 return value_zero (ada_tag_type (arg1), not_lval);
11151
11152 return ada_value_tag (arg1);
11153
11154 case OP_ATR_MIN:
11155 case OP_ATR_MAX:
11156 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11157 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11158 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11159 if (noside == EVAL_SKIP)
11160 goto nosideret;
11161 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11162 return value_zero (value_type (arg1), not_lval);
11163 else
11164 {
11165 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11166 return value_binop (arg1, arg2,
11167 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11168 }
11169
11170 case OP_ATR_MODULUS:
11171 {
11172 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11173
11174 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11175 if (noside == EVAL_SKIP)
11176 goto nosideret;
11177
11178 if (!ada_is_modular_type (type_arg))
11179 error (_("'modulus must be applied to modular type"));
11180
11181 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11182 ada_modulus (type_arg));
11183 }
11184
11185
11186 case OP_ATR_POS:
11187 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11188 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11189 if (noside == EVAL_SKIP)
11190 goto nosideret;
11191 type = builtin_type (exp->gdbarch)->builtin_int;
11192 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11193 return value_zero (type, not_lval);
11194 else
11195 return value_pos_atr (type, arg1);
11196
11197 case OP_ATR_SIZE:
11198 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11199 type = value_type (arg1);
11200
11201 /* If the argument is a reference, then dereference its type, since
11202 the user is really asking for the size of the actual object,
11203 not the size of the pointer. */
11204 if (TYPE_CODE (type) == TYPE_CODE_REF)
11205 type = TYPE_TARGET_TYPE (type);
11206
11207 if (noside == EVAL_SKIP)
11208 goto nosideret;
11209 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11210 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11211 else
11212 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11213 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11214
11215 case OP_ATR_VAL:
11216 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11217 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11218 type = exp->elts[pc + 2].type;
11219 if (noside == EVAL_SKIP)
11220 goto nosideret;
11221 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11222 return value_zero (type, not_lval);
11223 else
11224 return value_val_atr (type, arg1);
11225
11226 case BINOP_EXP:
11227 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11228 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11229 if (noside == EVAL_SKIP)
11230 goto nosideret;
11231 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11232 return value_zero (value_type (arg1), not_lval);
11233 else
11234 {
11235 /* For integer exponentiation operations,
11236 only promote the first argument. */
11237 if (is_integral_type (value_type (arg2)))
11238 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11239 else
11240 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11241
11242 return value_binop (arg1, arg2, op);
11243 }
11244
11245 case UNOP_PLUS:
11246 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 if (noside == EVAL_SKIP)
11248 goto nosideret;
11249 else
11250 return arg1;
11251
11252 case UNOP_ABS:
11253 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11254 if (noside == EVAL_SKIP)
11255 goto nosideret;
11256 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11257 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11258 return value_neg (arg1);
11259 else
11260 return arg1;
11261
11262 case UNOP_IND:
11263 preeval_pos = *pos;
11264 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11265 if (noside == EVAL_SKIP)
11266 goto nosideret;
11267 type = ada_check_typedef (value_type (arg1));
11268 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11269 {
11270 if (ada_is_array_descriptor_type (type))
11271 /* GDB allows dereferencing GNAT array descriptors. */
11272 {
11273 struct type *arrType = ada_type_of_array (arg1, 0);
11274
11275 if (arrType == NULL)
11276 error (_("Attempt to dereference null array pointer."));
11277 return value_at_lazy (arrType, 0);
11278 }
11279 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11280 || TYPE_CODE (type) == TYPE_CODE_REF
11281 /* In C you can dereference an array to get the 1st elt. */
11282 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11283 {
11284 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11285 only be determined by inspecting the object's tag.
11286 This means that we need to evaluate completely the
11287 expression in order to get its type. */
11288
11289 if ((TYPE_CODE (type) == TYPE_CODE_REF
11290 || TYPE_CODE (type) == TYPE_CODE_PTR)
11291 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11292 {
11293 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11294 EVAL_NORMAL);
11295 type = value_type (ada_value_ind (arg1));
11296 }
11297 else
11298 {
11299 type = to_static_fixed_type
11300 (ada_aligned_type
11301 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11302 }
11303 ada_ensure_varsize_limit (type);
11304 return value_zero (type, lval_memory);
11305 }
11306 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11307 {
11308 /* GDB allows dereferencing an int. */
11309 if (expect_type == NULL)
11310 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11311 lval_memory);
11312 else
11313 {
11314 expect_type =
11315 to_static_fixed_type (ada_aligned_type (expect_type));
11316 return value_zero (expect_type, lval_memory);
11317 }
11318 }
11319 else
11320 error (_("Attempt to take contents of a non-pointer value."));
11321 }
11322 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11323 type = ada_check_typedef (value_type (arg1));
11324
11325 if (TYPE_CODE (type) == TYPE_CODE_INT)
11326 /* GDB allows dereferencing an int. If we were given
11327 the expect_type, then use that as the target type.
11328 Otherwise, assume that the target type is an int. */
11329 {
11330 if (expect_type != NULL)
11331 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11332 arg1));
11333 else
11334 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11335 (CORE_ADDR) value_as_address (arg1));
11336 }
11337
11338 if (ada_is_array_descriptor_type (type))
11339 /* GDB allows dereferencing GNAT array descriptors. */
11340 return ada_coerce_to_simple_array (arg1);
11341 else
11342 return ada_value_ind (arg1);
11343
11344 case STRUCTOP_STRUCT:
11345 tem = longest_to_int (exp->elts[pc + 1].longconst);
11346 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11347 preeval_pos = *pos;
11348 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11349 if (noside == EVAL_SKIP)
11350 goto nosideret;
11351 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11352 {
11353 struct type *type1 = value_type (arg1);
11354
11355 if (ada_is_tagged_type (type1, 1))
11356 {
11357 type = ada_lookup_struct_elt_type (type1,
11358 &exp->elts[pc + 2].string,
11359 1, 1);
11360
11361 /* If the field is not found, check if it exists in the
11362 extension of this object's type. This means that we
11363 need to evaluate completely the expression. */
11364
11365 if (type == NULL)
11366 {
11367 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11368 EVAL_NORMAL);
11369 arg1 = ada_value_struct_elt (arg1,
11370 &exp->elts[pc + 2].string,
11371 0);
11372 arg1 = unwrap_value (arg1);
11373 type = value_type (ada_to_fixed_value (arg1));
11374 }
11375 }
11376 else
11377 type =
11378 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11379 0);
11380
11381 return value_zero (ada_aligned_type (type), lval_memory);
11382 }
11383 else
11384 {
11385 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11386 arg1 = unwrap_value (arg1);
11387 return ada_to_fixed_value (arg1);
11388 }
11389
11390 case OP_TYPE:
11391 /* The value is not supposed to be used. This is here to make it
11392 easier to accommodate expressions that contain types. */
11393 (*pos) += 2;
11394 if (noside == EVAL_SKIP)
11395 goto nosideret;
11396 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11397 return allocate_value (exp->elts[pc + 1].type);
11398 else
11399 error (_("Attempt to use a type name as an expression"));
11400
11401 case OP_AGGREGATE:
11402 case OP_CHOICES:
11403 case OP_OTHERS:
11404 case OP_DISCRETE_RANGE:
11405 case OP_POSITIONAL:
11406 case OP_NAME:
11407 if (noside == EVAL_NORMAL)
11408 switch (op)
11409 {
11410 case OP_NAME:
11411 error (_("Undefined name, ambiguous name, or renaming used in "
11412 "component association: %s."), &exp->elts[pc+2].string);
11413 case OP_AGGREGATE:
11414 error (_("Aggregates only allowed on the right of an assignment"));
11415 default:
11416 internal_error (__FILE__, __LINE__,
11417 _("aggregate apparently mangled"));
11418 }
11419
11420 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11421 *pos += oplen - 1;
11422 for (tem = 0; tem < nargs; tem += 1)
11423 ada_evaluate_subexp (NULL, exp, pos, noside);
11424 goto nosideret;
11425 }
11426
11427 nosideret:
11428 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11429 }
11430 \f
11431
11432 /* Fixed point */
11433
11434 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11435 type name that encodes the 'small and 'delta information.
11436 Otherwise, return NULL. */
11437
11438 static const char *
11439 fixed_type_info (struct type *type)
11440 {
11441 const char *name = ada_type_name (type);
11442 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11443
11444 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11445 {
11446 const char *tail = strstr (name, "___XF_");
11447
11448 if (tail == NULL)
11449 return NULL;
11450 else
11451 return tail + 5;
11452 }
11453 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11454 return fixed_type_info (TYPE_TARGET_TYPE (type));
11455 else
11456 return NULL;
11457 }
11458
11459 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11460
11461 int
11462 ada_is_fixed_point_type (struct type *type)
11463 {
11464 return fixed_type_info (type) != NULL;
11465 }
11466
11467 /* Return non-zero iff TYPE represents a System.Address type. */
11468
11469 int
11470 ada_is_system_address_type (struct type *type)
11471 {
11472 return (TYPE_NAME (type)
11473 && strcmp (TYPE_NAME (type), "system__address") == 0);
11474 }
11475
11476 /* Assuming that TYPE is the representation of an Ada fixed-point
11477 type, return its delta, or -1 if the type is malformed and the
11478 delta cannot be determined. */
11479
11480 DOUBLEST
11481 ada_delta (struct type *type)
11482 {
11483 const char *encoding = fixed_type_info (type);
11484 DOUBLEST num, den;
11485
11486 /* Strictly speaking, num and den are encoded as integer. However,
11487 they may not fit into a long, and they will have to be converted
11488 to DOUBLEST anyway. So scan them as DOUBLEST. */
11489 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11490 &num, &den) < 2)
11491 return -1.0;
11492 else
11493 return num / den;
11494 }
11495
11496 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11497 factor ('SMALL value) associated with the type. */
11498
11499 static DOUBLEST
11500 scaling_factor (struct type *type)
11501 {
11502 const char *encoding = fixed_type_info (type);
11503 DOUBLEST num0, den0, num1, den1;
11504 int n;
11505
11506 /* Strictly speaking, num's and den's are encoded as integer. However,
11507 they may not fit into a long, and they will have to be converted
11508 to DOUBLEST anyway. So scan them as DOUBLEST. */
11509 n = sscanf (encoding,
11510 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11511 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11512 &num0, &den0, &num1, &den1);
11513
11514 if (n < 2)
11515 return 1.0;
11516 else if (n == 4)
11517 return num1 / den1;
11518 else
11519 return num0 / den0;
11520 }
11521
11522
11523 /* Assuming that X is the representation of a value of fixed-point
11524 type TYPE, return its floating-point equivalent. */
11525
11526 DOUBLEST
11527 ada_fixed_to_float (struct type *type, LONGEST x)
11528 {
11529 return (DOUBLEST) x *scaling_factor (type);
11530 }
11531
11532 /* The representation of a fixed-point value of type TYPE
11533 corresponding to the value X. */
11534
11535 LONGEST
11536 ada_float_to_fixed (struct type *type, DOUBLEST x)
11537 {
11538 return (LONGEST) (x / scaling_factor (type) + 0.5);
11539 }
11540
11541 \f
11542
11543 /* Range types */
11544
11545 /* Scan STR beginning at position K for a discriminant name, and
11546 return the value of that discriminant field of DVAL in *PX. If
11547 PNEW_K is not null, put the position of the character beyond the
11548 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11549 not alter *PX and *PNEW_K if unsuccessful. */
11550
11551 static int
11552 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11553 int *pnew_k)
11554 {
11555 static char *bound_buffer = NULL;
11556 static size_t bound_buffer_len = 0;
11557 const char *pstart, *pend, *bound;
11558 struct value *bound_val;
11559
11560 if (dval == NULL || str == NULL || str[k] == '\0')
11561 return 0;
11562
11563 pstart = str + k;
11564 pend = strstr (pstart, "__");
11565 if (pend == NULL)
11566 {
11567 bound = pstart;
11568 k += strlen (bound);
11569 }
11570 else
11571 {
11572 int len = pend - pstart;
11573
11574 /* Strip __ and beyond. */
11575 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11576 strncpy (bound_buffer, pstart, len);
11577 bound_buffer[len] = '\0';
11578
11579 bound = bound_buffer;
11580 k = pend - str;
11581 }
11582
11583 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11584 if (bound_val == NULL)
11585 return 0;
11586
11587 *px = value_as_long (bound_val);
11588 if (pnew_k != NULL)
11589 *pnew_k = k;
11590 return 1;
11591 }
11592
11593 /* Value of variable named NAME in the current environment. If
11594 no such variable found, then if ERR_MSG is null, returns 0, and
11595 otherwise causes an error with message ERR_MSG. */
11596
11597 static struct value *
11598 get_var_value (const char *name, const char *err_msg)
11599 {
11600 struct block_symbol *syms;
11601 int nsyms;
11602
11603 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11604 &syms);
11605
11606 if (nsyms != 1)
11607 {
11608 if (err_msg == NULL)
11609 return 0;
11610 else
11611 error (("%s"), err_msg);
11612 }
11613
11614 return value_of_variable (syms[0].symbol, syms[0].block);
11615 }
11616
11617 /* Value of integer variable named NAME in the current environment.
11618 If no such variable is found, returns false. Otherwise, sets VALUE
11619 to the variable's value and returns true. */
11620
11621 bool
11622 get_int_var_value (const char *name, LONGEST &value)
11623 {
11624 struct value *var_val = get_var_value (name, 0);
11625
11626 if (var_val == 0)
11627 return false;
11628
11629 value = value_as_long (var_val);
11630 return true;
11631 }
11632
11633
11634 /* Return a range type whose base type is that of the range type named
11635 NAME in the current environment, and whose bounds are calculated
11636 from NAME according to the GNAT range encoding conventions.
11637 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11638 corresponding range type from debug information; fall back to using it
11639 if symbol lookup fails. If a new type must be created, allocate it
11640 like ORIG_TYPE was. The bounds information, in general, is encoded
11641 in NAME, the base type given in the named range type. */
11642
11643 static struct type *
11644 to_fixed_range_type (struct type *raw_type, struct value *dval)
11645 {
11646 const char *name;
11647 struct type *base_type;
11648 const char *subtype_info;
11649
11650 gdb_assert (raw_type != NULL);
11651 gdb_assert (TYPE_NAME (raw_type) != NULL);
11652
11653 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11654 base_type = TYPE_TARGET_TYPE (raw_type);
11655 else
11656 base_type = raw_type;
11657
11658 name = TYPE_NAME (raw_type);
11659 subtype_info = strstr (name, "___XD");
11660 if (subtype_info == NULL)
11661 {
11662 LONGEST L = ada_discrete_type_low_bound (raw_type);
11663 LONGEST U = ada_discrete_type_high_bound (raw_type);
11664
11665 if (L < INT_MIN || U > INT_MAX)
11666 return raw_type;
11667 else
11668 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11669 L, U);
11670 }
11671 else
11672 {
11673 static char *name_buf = NULL;
11674 static size_t name_len = 0;
11675 int prefix_len = subtype_info - name;
11676 LONGEST L, U;
11677 struct type *type;
11678 const char *bounds_str;
11679 int n;
11680
11681 GROW_VECT (name_buf, name_len, prefix_len + 5);
11682 strncpy (name_buf, name, prefix_len);
11683 name_buf[prefix_len] = '\0';
11684
11685 subtype_info += 5;
11686 bounds_str = strchr (subtype_info, '_');
11687 n = 1;
11688
11689 if (*subtype_info == 'L')
11690 {
11691 if (!ada_scan_number (bounds_str, n, &L, &n)
11692 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11693 return raw_type;
11694 if (bounds_str[n] == '_')
11695 n += 2;
11696 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11697 n += 1;
11698 subtype_info += 1;
11699 }
11700 else
11701 {
11702 strcpy (name_buf + prefix_len, "___L");
11703 if (!get_int_var_value (name_buf, L))
11704 {
11705 lim_warning (_("Unknown lower bound, using 1."));
11706 L = 1;
11707 }
11708 }
11709
11710 if (*subtype_info == 'U')
11711 {
11712 if (!ada_scan_number (bounds_str, n, &U, &n)
11713 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11714 return raw_type;
11715 }
11716 else
11717 {
11718 strcpy (name_buf + prefix_len, "___U");
11719 if (!get_int_var_value (name_buf, U))
11720 {
11721 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11722 U = L;
11723 }
11724 }
11725
11726 type = create_static_range_type (alloc_type_copy (raw_type),
11727 base_type, L, U);
11728 TYPE_NAME (type) = name;
11729 return type;
11730 }
11731 }
11732
11733 /* True iff NAME is the name of a range type. */
11734
11735 int
11736 ada_is_range_type_name (const char *name)
11737 {
11738 return (name != NULL && strstr (name, "___XD"));
11739 }
11740 \f
11741
11742 /* Modular types */
11743
11744 /* True iff TYPE is an Ada modular type. */
11745
11746 int
11747 ada_is_modular_type (struct type *type)
11748 {
11749 struct type *subranged_type = get_base_type (type);
11750
11751 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11752 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11753 && TYPE_UNSIGNED (subranged_type));
11754 }
11755
11756 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11757
11758 ULONGEST
11759 ada_modulus (struct type *type)
11760 {
11761 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11762 }
11763 \f
11764
11765 /* Ada exception catchpoint support:
11766 ---------------------------------
11767
11768 We support 3 kinds of exception catchpoints:
11769 . catchpoints on Ada exceptions
11770 . catchpoints on unhandled Ada exceptions
11771 . catchpoints on failed assertions
11772
11773 Exceptions raised during failed assertions, or unhandled exceptions
11774 could perfectly be caught with the general catchpoint on Ada exceptions.
11775 However, we can easily differentiate these two special cases, and having
11776 the option to distinguish these two cases from the rest can be useful
11777 to zero-in on certain situations.
11778
11779 Exception catchpoints are a specialized form of breakpoint,
11780 since they rely on inserting breakpoints inside known routines
11781 of the GNAT runtime. The implementation therefore uses a standard
11782 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11783 of breakpoint_ops.
11784
11785 Support in the runtime for exception catchpoints have been changed
11786 a few times already, and these changes affect the implementation
11787 of these catchpoints. In order to be able to support several
11788 variants of the runtime, we use a sniffer that will determine
11789 the runtime variant used by the program being debugged. */
11790
11791 /* Ada's standard exceptions.
11792
11793 The Ada 83 standard also defined Numeric_Error. But there so many
11794 situations where it was unclear from the Ada 83 Reference Manual
11795 (RM) whether Constraint_Error or Numeric_Error should be raised,
11796 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11797 Interpretation saying that anytime the RM says that Numeric_Error
11798 should be raised, the implementation may raise Constraint_Error.
11799 Ada 95 went one step further and pretty much removed Numeric_Error
11800 from the list of standard exceptions (it made it a renaming of
11801 Constraint_Error, to help preserve compatibility when compiling
11802 an Ada83 compiler). As such, we do not include Numeric_Error from
11803 this list of standard exceptions. */
11804
11805 static const char *standard_exc[] = {
11806 "constraint_error",
11807 "program_error",
11808 "storage_error",
11809 "tasking_error"
11810 };
11811
11812 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11813
11814 /* A structure that describes how to support exception catchpoints
11815 for a given executable. */
11816
11817 struct exception_support_info
11818 {
11819 /* The name of the symbol to break on in order to insert
11820 a catchpoint on exceptions. */
11821 const char *catch_exception_sym;
11822
11823 /* The name of the symbol to break on in order to insert
11824 a catchpoint on unhandled exceptions. */
11825 const char *catch_exception_unhandled_sym;
11826
11827 /* The name of the symbol to break on in order to insert
11828 a catchpoint on failed assertions. */
11829 const char *catch_assert_sym;
11830
11831 /* Assuming that the inferior just triggered an unhandled exception
11832 catchpoint, this function is responsible for returning the address
11833 in inferior memory where the name of that exception is stored.
11834 Return zero if the address could not be computed. */
11835 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11836 };
11837
11838 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11839 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11840
11841 /* The following exception support info structure describes how to
11842 implement exception catchpoints with the latest version of the
11843 Ada runtime (as of 2007-03-06). */
11844
11845 static const struct exception_support_info default_exception_support_info =
11846 {
11847 "__gnat_debug_raise_exception", /* catch_exception_sym */
11848 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11849 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11850 ada_unhandled_exception_name_addr
11851 };
11852
11853 /* The following exception support info structure describes how to
11854 implement exception catchpoints with a slightly older version
11855 of the Ada runtime. */
11856
11857 static const struct exception_support_info exception_support_info_fallback =
11858 {
11859 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11860 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11861 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11862 ada_unhandled_exception_name_addr_from_raise
11863 };
11864
11865 /* Return nonzero if we can detect the exception support routines
11866 described in EINFO.
11867
11868 This function errors out if an abnormal situation is detected
11869 (for instance, if we find the exception support routines, but
11870 that support is found to be incomplete). */
11871
11872 static int
11873 ada_has_this_exception_support (const struct exception_support_info *einfo)
11874 {
11875 struct symbol *sym;
11876
11877 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11878 that should be compiled with debugging information. As a result, we
11879 expect to find that symbol in the symtabs. */
11880
11881 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11882 if (sym == NULL)
11883 {
11884 /* Perhaps we did not find our symbol because the Ada runtime was
11885 compiled without debugging info, or simply stripped of it.
11886 It happens on some GNU/Linux distributions for instance, where
11887 users have to install a separate debug package in order to get
11888 the runtime's debugging info. In that situation, let the user
11889 know why we cannot insert an Ada exception catchpoint.
11890
11891 Note: Just for the purpose of inserting our Ada exception
11892 catchpoint, we could rely purely on the associated minimal symbol.
11893 But we would be operating in degraded mode anyway, since we are
11894 still lacking the debugging info needed later on to extract
11895 the name of the exception being raised (this name is printed in
11896 the catchpoint message, and is also used when trying to catch
11897 a specific exception). We do not handle this case for now. */
11898 struct bound_minimal_symbol msym
11899 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11900
11901 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11902 error (_("Your Ada runtime appears to be missing some debugging "
11903 "information.\nCannot insert Ada exception catchpoint "
11904 "in this configuration."));
11905
11906 return 0;
11907 }
11908
11909 /* Make sure that the symbol we found corresponds to a function. */
11910
11911 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11912 error (_("Symbol \"%s\" is not a function (class = %d)"),
11913 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11914
11915 return 1;
11916 }
11917
11918 /* Inspect the Ada runtime and determine which exception info structure
11919 should be used to provide support for exception catchpoints.
11920
11921 This function will always set the per-inferior exception_info,
11922 or raise an error. */
11923
11924 static void
11925 ada_exception_support_info_sniffer (void)
11926 {
11927 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11928
11929 /* If the exception info is already known, then no need to recompute it. */
11930 if (data->exception_info != NULL)
11931 return;
11932
11933 /* Check the latest (default) exception support info. */
11934 if (ada_has_this_exception_support (&default_exception_support_info))
11935 {
11936 data->exception_info = &default_exception_support_info;
11937 return;
11938 }
11939
11940 /* Try our fallback exception suport info. */
11941 if (ada_has_this_exception_support (&exception_support_info_fallback))
11942 {
11943 data->exception_info = &exception_support_info_fallback;
11944 return;
11945 }
11946
11947 /* Sometimes, it is normal for us to not be able to find the routine
11948 we are looking for. This happens when the program is linked with
11949 the shared version of the GNAT runtime, and the program has not been
11950 started yet. Inform the user of these two possible causes if
11951 applicable. */
11952
11953 if (ada_update_initial_language (language_unknown) != language_ada)
11954 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11955
11956 /* If the symbol does not exist, then check that the program is
11957 already started, to make sure that shared libraries have been
11958 loaded. If it is not started, this may mean that the symbol is
11959 in a shared library. */
11960
11961 if (ptid_get_pid (inferior_ptid) == 0)
11962 error (_("Unable to insert catchpoint. Try to start the program first."));
11963
11964 /* At this point, we know that we are debugging an Ada program and
11965 that the inferior has been started, but we still are not able to
11966 find the run-time symbols. That can mean that we are in
11967 configurable run time mode, or that a-except as been optimized
11968 out by the linker... In any case, at this point it is not worth
11969 supporting this feature. */
11970
11971 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11972 }
11973
11974 /* True iff FRAME is very likely to be that of a function that is
11975 part of the runtime system. This is all very heuristic, but is
11976 intended to be used as advice as to what frames are uninteresting
11977 to most users. */
11978
11979 static int
11980 is_known_support_routine (struct frame_info *frame)
11981 {
11982 enum language func_lang;
11983 int i;
11984 const char *fullname;
11985
11986 /* If this code does not have any debugging information (no symtab),
11987 This cannot be any user code. */
11988
11989 symtab_and_line sal = find_frame_sal (frame);
11990 if (sal.symtab == NULL)
11991 return 1;
11992
11993 /* If there is a symtab, but the associated source file cannot be
11994 located, then assume this is not user code: Selecting a frame
11995 for which we cannot display the code would not be very helpful
11996 for the user. This should also take care of case such as VxWorks
11997 where the kernel has some debugging info provided for a few units. */
11998
11999 fullname = symtab_to_fullname (sal.symtab);
12000 if (access (fullname, R_OK) != 0)
12001 return 1;
12002
12003 /* Check the unit filename againt the Ada runtime file naming.
12004 We also check the name of the objfile against the name of some
12005 known system libraries that sometimes come with debugging info
12006 too. */
12007
12008 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12009 {
12010 re_comp (known_runtime_file_name_patterns[i]);
12011 if (re_exec (lbasename (sal.symtab->filename)))
12012 return 1;
12013 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12014 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12015 return 1;
12016 }
12017
12018 /* Check whether the function is a GNAT-generated entity. */
12019
12020 gdb::unique_xmalloc_ptr<char> func_name
12021 = find_frame_funname (frame, &func_lang, NULL);
12022 if (func_name == NULL)
12023 return 1;
12024
12025 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12026 {
12027 re_comp (known_auxiliary_function_name_patterns[i]);
12028 if (re_exec (func_name.get ()))
12029 return 1;
12030 }
12031
12032 return 0;
12033 }
12034
12035 /* Find the first frame that contains debugging information and that is not
12036 part of the Ada run-time, starting from FI and moving upward. */
12037
12038 void
12039 ada_find_printable_frame (struct frame_info *fi)
12040 {
12041 for (; fi != NULL; fi = get_prev_frame (fi))
12042 {
12043 if (!is_known_support_routine (fi))
12044 {
12045 select_frame (fi);
12046 break;
12047 }
12048 }
12049
12050 }
12051
12052 /* Assuming that the inferior just triggered an unhandled exception
12053 catchpoint, return the address in inferior memory where the name
12054 of the exception is stored.
12055
12056 Return zero if the address could not be computed. */
12057
12058 static CORE_ADDR
12059 ada_unhandled_exception_name_addr (void)
12060 {
12061 return parse_and_eval_address ("e.full_name");
12062 }
12063
12064 /* Same as ada_unhandled_exception_name_addr, except that this function
12065 should be used when the inferior uses an older version of the runtime,
12066 where the exception name needs to be extracted from a specific frame
12067 several frames up in the callstack. */
12068
12069 static CORE_ADDR
12070 ada_unhandled_exception_name_addr_from_raise (void)
12071 {
12072 int frame_level;
12073 struct frame_info *fi;
12074 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12075
12076 /* To determine the name of this exception, we need to select
12077 the frame corresponding to RAISE_SYM_NAME. This frame is
12078 at least 3 levels up, so we simply skip the first 3 frames
12079 without checking the name of their associated function. */
12080 fi = get_current_frame ();
12081 for (frame_level = 0; frame_level < 3; frame_level += 1)
12082 if (fi != NULL)
12083 fi = get_prev_frame (fi);
12084
12085 while (fi != NULL)
12086 {
12087 enum language func_lang;
12088
12089 gdb::unique_xmalloc_ptr<char> func_name
12090 = find_frame_funname (fi, &func_lang, NULL);
12091 if (func_name != NULL)
12092 {
12093 if (strcmp (func_name.get (),
12094 data->exception_info->catch_exception_sym) == 0)
12095 break; /* We found the frame we were looking for... */
12096 fi = get_prev_frame (fi);
12097 }
12098 }
12099
12100 if (fi == NULL)
12101 return 0;
12102
12103 select_frame (fi);
12104 return parse_and_eval_address ("id.full_name");
12105 }
12106
12107 /* Assuming the inferior just triggered an Ada exception catchpoint
12108 (of any type), return the address in inferior memory where the name
12109 of the exception is stored, if applicable.
12110
12111 Assumes the selected frame is the current frame.
12112
12113 Return zero if the address could not be computed, or if not relevant. */
12114
12115 static CORE_ADDR
12116 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12117 struct breakpoint *b)
12118 {
12119 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12120
12121 switch (ex)
12122 {
12123 case ada_catch_exception:
12124 return (parse_and_eval_address ("e.full_name"));
12125 break;
12126
12127 case ada_catch_exception_unhandled:
12128 return data->exception_info->unhandled_exception_name_addr ();
12129 break;
12130
12131 case ada_catch_assert:
12132 return 0; /* Exception name is not relevant in this case. */
12133 break;
12134
12135 default:
12136 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12137 break;
12138 }
12139
12140 return 0; /* Should never be reached. */
12141 }
12142
12143 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12144 any error that ada_exception_name_addr_1 might cause to be thrown.
12145 When an error is intercepted, a warning with the error message is printed,
12146 and zero is returned. */
12147
12148 static CORE_ADDR
12149 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12150 struct breakpoint *b)
12151 {
12152 CORE_ADDR result = 0;
12153
12154 TRY
12155 {
12156 result = ada_exception_name_addr_1 (ex, b);
12157 }
12158
12159 CATCH (e, RETURN_MASK_ERROR)
12160 {
12161 warning (_("failed to get exception name: %s"), e.message);
12162 return 0;
12163 }
12164 END_CATCH
12165
12166 return result;
12167 }
12168
12169 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12170
12171 /* Ada catchpoints.
12172
12173 In the case of catchpoints on Ada exceptions, the catchpoint will
12174 stop the target on every exception the program throws. When a user
12175 specifies the name of a specific exception, we translate this
12176 request into a condition expression (in text form), and then parse
12177 it into an expression stored in each of the catchpoint's locations.
12178 We then use this condition to check whether the exception that was
12179 raised is the one the user is interested in. If not, then the
12180 target is resumed again. We store the name of the requested
12181 exception, in order to be able to re-set the condition expression
12182 when symbols change. */
12183
12184 /* An instance of this type is used to represent an Ada catchpoint
12185 breakpoint location. */
12186
12187 class ada_catchpoint_location : public bp_location
12188 {
12189 public:
12190 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12191 : bp_location (ops, owner)
12192 {}
12193
12194 /* The condition that checks whether the exception that was raised
12195 is the specific exception the user specified on catchpoint
12196 creation. */
12197 expression_up excep_cond_expr;
12198 };
12199
12200 /* Implement the DTOR method in the bp_location_ops structure for all
12201 Ada exception catchpoint kinds. */
12202
12203 static void
12204 ada_catchpoint_location_dtor (struct bp_location *bl)
12205 {
12206 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12207
12208 al->excep_cond_expr.reset ();
12209 }
12210
12211 /* The vtable to be used in Ada catchpoint locations. */
12212
12213 static const struct bp_location_ops ada_catchpoint_location_ops =
12214 {
12215 ada_catchpoint_location_dtor
12216 };
12217
12218 /* An instance of this type is used to represent an Ada catchpoint. */
12219
12220 struct ada_catchpoint : public breakpoint
12221 {
12222 ~ada_catchpoint () override;
12223
12224 /* The name of the specific exception the user specified. */
12225 char *excep_string;
12226 };
12227
12228 /* Parse the exception condition string in the context of each of the
12229 catchpoint's locations, and store them for later evaluation. */
12230
12231 static void
12232 create_excep_cond_exprs (struct ada_catchpoint *c)
12233 {
12234 struct cleanup *old_chain;
12235 struct bp_location *bl;
12236 char *cond_string;
12237
12238 /* Nothing to do if there's no specific exception to catch. */
12239 if (c->excep_string == NULL)
12240 return;
12241
12242 /* Same if there are no locations... */
12243 if (c->loc == NULL)
12244 return;
12245
12246 /* Compute the condition expression in text form, from the specific
12247 expection we want to catch. */
12248 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12249 old_chain = make_cleanup (xfree, cond_string);
12250
12251 /* Iterate over all the catchpoint's locations, and parse an
12252 expression for each. */
12253 for (bl = c->loc; bl != NULL; bl = bl->next)
12254 {
12255 struct ada_catchpoint_location *ada_loc
12256 = (struct ada_catchpoint_location *) bl;
12257 expression_up exp;
12258
12259 if (!bl->shlib_disabled)
12260 {
12261 const char *s;
12262
12263 s = cond_string;
12264 TRY
12265 {
12266 exp = parse_exp_1 (&s, bl->address,
12267 block_for_pc (bl->address),
12268 0);
12269 }
12270 CATCH (e, RETURN_MASK_ERROR)
12271 {
12272 warning (_("failed to reevaluate internal exception condition "
12273 "for catchpoint %d: %s"),
12274 c->number, e.message);
12275 }
12276 END_CATCH
12277 }
12278
12279 ada_loc->excep_cond_expr = std::move (exp);
12280 }
12281
12282 do_cleanups (old_chain);
12283 }
12284
12285 /* ada_catchpoint destructor. */
12286
12287 ada_catchpoint::~ada_catchpoint ()
12288 {
12289 xfree (this->excep_string);
12290 }
12291
12292 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12293 structure for all exception catchpoint kinds. */
12294
12295 static struct bp_location *
12296 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12297 struct breakpoint *self)
12298 {
12299 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12300 }
12301
12302 /* Implement the RE_SET method in the breakpoint_ops structure for all
12303 exception catchpoint kinds. */
12304
12305 static void
12306 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12307 {
12308 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12309
12310 /* Call the base class's method. This updates the catchpoint's
12311 locations. */
12312 bkpt_breakpoint_ops.re_set (b);
12313
12314 /* Reparse the exception conditional expressions. One for each
12315 location. */
12316 create_excep_cond_exprs (c);
12317 }
12318
12319 /* Returns true if we should stop for this breakpoint hit. If the
12320 user specified a specific exception, we only want to cause a stop
12321 if the program thrown that exception. */
12322
12323 static int
12324 should_stop_exception (const struct bp_location *bl)
12325 {
12326 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12327 const struct ada_catchpoint_location *ada_loc
12328 = (const struct ada_catchpoint_location *) bl;
12329 int stop;
12330
12331 /* With no specific exception, should always stop. */
12332 if (c->excep_string == NULL)
12333 return 1;
12334
12335 if (ada_loc->excep_cond_expr == NULL)
12336 {
12337 /* We will have a NULL expression if back when we were creating
12338 the expressions, this location's had failed to parse. */
12339 return 1;
12340 }
12341
12342 stop = 1;
12343 TRY
12344 {
12345 struct value *mark;
12346
12347 mark = value_mark ();
12348 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12349 value_free_to_mark (mark);
12350 }
12351 CATCH (ex, RETURN_MASK_ALL)
12352 {
12353 exception_fprintf (gdb_stderr, ex,
12354 _("Error in testing exception condition:\n"));
12355 }
12356 END_CATCH
12357
12358 return stop;
12359 }
12360
12361 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12362 for all exception catchpoint kinds. */
12363
12364 static void
12365 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12366 {
12367 bs->stop = should_stop_exception (bs->bp_location_at);
12368 }
12369
12370 /* Implement the PRINT_IT method in the breakpoint_ops structure
12371 for all exception catchpoint kinds. */
12372
12373 static enum print_stop_action
12374 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12375 {
12376 struct ui_out *uiout = current_uiout;
12377 struct breakpoint *b = bs->breakpoint_at;
12378
12379 annotate_catchpoint (b->number);
12380
12381 if (uiout->is_mi_like_p ())
12382 {
12383 uiout->field_string ("reason",
12384 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12385 uiout->field_string ("disp", bpdisp_text (b->disposition));
12386 }
12387
12388 uiout->text (b->disposition == disp_del
12389 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12390 uiout->field_int ("bkptno", b->number);
12391 uiout->text (", ");
12392
12393 /* ada_exception_name_addr relies on the selected frame being the
12394 current frame. Need to do this here because this function may be
12395 called more than once when printing a stop, and below, we'll
12396 select the first frame past the Ada run-time (see
12397 ada_find_printable_frame). */
12398 select_frame (get_current_frame ());
12399
12400 switch (ex)
12401 {
12402 case ada_catch_exception:
12403 case ada_catch_exception_unhandled:
12404 {
12405 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12406 char exception_name[256];
12407
12408 if (addr != 0)
12409 {
12410 read_memory (addr, (gdb_byte *) exception_name,
12411 sizeof (exception_name) - 1);
12412 exception_name [sizeof (exception_name) - 1] = '\0';
12413 }
12414 else
12415 {
12416 /* For some reason, we were unable to read the exception
12417 name. This could happen if the Runtime was compiled
12418 without debugging info, for instance. In that case,
12419 just replace the exception name by the generic string
12420 "exception" - it will read as "an exception" in the
12421 notification we are about to print. */
12422 memcpy (exception_name, "exception", sizeof ("exception"));
12423 }
12424 /* In the case of unhandled exception breakpoints, we print
12425 the exception name as "unhandled EXCEPTION_NAME", to make
12426 it clearer to the user which kind of catchpoint just got
12427 hit. We used ui_out_text to make sure that this extra
12428 info does not pollute the exception name in the MI case. */
12429 if (ex == ada_catch_exception_unhandled)
12430 uiout->text ("unhandled ");
12431 uiout->field_string ("exception-name", exception_name);
12432 }
12433 break;
12434 case ada_catch_assert:
12435 /* In this case, the name of the exception is not really
12436 important. Just print "failed assertion" to make it clearer
12437 that his program just hit an assertion-failure catchpoint.
12438 We used ui_out_text because this info does not belong in
12439 the MI output. */
12440 uiout->text ("failed assertion");
12441 break;
12442 }
12443 uiout->text (" at ");
12444 ada_find_printable_frame (get_current_frame ());
12445
12446 return PRINT_SRC_AND_LOC;
12447 }
12448
12449 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12450 for all exception catchpoint kinds. */
12451
12452 static void
12453 print_one_exception (enum ada_exception_catchpoint_kind ex,
12454 struct breakpoint *b, struct bp_location **last_loc)
12455 {
12456 struct ui_out *uiout = current_uiout;
12457 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12458 struct value_print_options opts;
12459
12460 get_user_print_options (&opts);
12461 if (opts.addressprint)
12462 {
12463 annotate_field (4);
12464 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12465 }
12466
12467 annotate_field (5);
12468 *last_loc = b->loc;
12469 switch (ex)
12470 {
12471 case ada_catch_exception:
12472 if (c->excep_string != NULL)
12473 {
12474 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12475
12476 uiout->field_string ("what", msg);
12477 xfree (msg);
12478 }
12479 else
12480 uiout->field_string ("what", "all Ada exceptions");
12481
12482 break;
12483
12484 case ada_catch_exception_unhandled:
12485 uiout->field_string ("what", "unhandled Ada exceptions");
12486 break;
12487
12488 case ada_catch_assert:
12489 uiout->field_string ("what", "failed Ada assertions");
12490 break;
12491
12492 default:
12493 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12494 break;
12495 }
12496 }
12497
12498 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12499 for all exception catchpoint kinds. */
12500
12501 static void
12502 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12503 struct breakpoint *b)
12504 {
12505 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12506 struct ui_out *uiout = current_uiout;
12507
12508 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12509 : _("Catchpoint "));
12510 uiout->field_int ("bkptno", b->number);
12511 uiout->text (": ");
12512
12513 switch (ex)
12514 {
12515 case ada_catch_exception:
12516 if (c->excep_string != NULL)
12517 {
12518 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12519 struct cleanup *old_chain = make_cleanup (xfree, info);
12520
12521 uiout->text (info);
12522 do_cleanups (old_chain);
12523 }
12524 else
12525 uiout->text (_("all Ada exceptions"));
12526 break;
12527
12528 case ada_catch_exception_unhandled:
12529 uiout->text (_("unhandled Ada exceptions"));
12530 break;
12531
12532 case ada_catch_assert:
12533 uiout->text (_("failed Ada assertions"));
12534 break;
12535
12536 default:
12537 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12538 break;
12539 }
12540 }
12541
12542 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12543 for all exception catchpoint kinds. */
12544
12545 static void
12546 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12547 struct breakpoint *b, struct ui_file *fp)
12548 {
12549 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12550
12551 switch (ex)
12552 {
12553 case ada_catch_exception:
12554 fprintf_filtered (fp, "catch exception");
12555 if (c->excep_string != NULL)
12556 fprintf_filtered (fp, " %s", c->excep_string);
12557 break;
12558
12559 case ada_catch_exception_unhandled:
12560 fprintf_filtered (fp, "catch exception unhandled");
12561 break;
12562
12563 case ada_catch_assert:
12564 fprintf_filtered (fp, "catch assert");
12565 break;
12566
12567 default:
12568 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12569 }
12570 print_recreate_thread (b, fp);
12571 }
12572
12573 /* Virtual table for "catch exception" breakpoints. */
12574
12575 static struct bp_location *
12576 allocate_location_catch_exception (struct breakpoint *self)
12577 {
12578 return allocate_location_exception (ada_catch_exception, self);
12579 }
12580
12581 static void
12582 re_set_catch_exception (struct breakpoint *b)
12583 {
12584 re_set_exception (ada_catch_exception, b);
12585 }
12586
12587 static void
12588 check_status_catch_exception (bpstat bs)
12589 {
12590 check_status_exception (ada_catch_exception, bs);
12591 }
12592
12593 static enum print_stop_action
12594 print_it_catch_exception (bpstat bs)
12595 {
12596 return print_it_exception (ada_catch_exception, bs);
12597 }
12598
12599 static void
12600 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12601 {
12602 print_one_exception (ada_catch_exception, b, last_loc);
12603 }
12604
12605 static void
12606 print_mention_catch_exception (struct breakpoint *b)
12607 {
12608 print_mention_exception (ada_catch_exception, b);
12609 }
12610
12611 static void
12612 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12613 {
12614 print_recreate_exception (ada_catch_exception, b, fp);
12615 }
12616
12617 static struct breakpoint_ops catch_exception_breakpoint_ops;
12618
12619 /* Virtual table for "catch exception unhandled" breakpoints. */
12620
12621 static struct bp_location *
12622 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12623 {
12624 return allocate_location_exception (ada_catch_exception_unhandled, self);
12625 }
12626
12627 static void
12628 re_set_catch_exception_unhandled (struct breakpoint *b)
12629 {
12630 re_set_exception (ada_catch_exception_unhandled, b);
12631 }
12632
12633 static void
12634 check_status_catch_exception_unhandled (bpstat bs)
12635 {
12636 check_status_exception (ada_catch_exception_unhandled, bs);
12637 }
12638
12639 static enum print_stop_action
12640 print_it_catch_exception_unhandled (bpstat bs)
12641 {
12642 return print_it_exception (ada_catch_exception_unhandled, bs);
12643 }
12644
12645 static void
12646 print_one_catch_exception_unhandled (struct breakpoint *b,
12647 struct bp_location **last_loc)
12648 {
12649 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12650 }
12651
12652 static void
12653 print_mention_catch_exception_unhandled (struct breakpoint *b)
12654 {
12655 print_mention_exception (ada_catch_exception_unhandled, b);
12656 }
12657
12658 static void
12659 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12660 struct ui_file *fp)
12661 {
12662 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12663 }
12664
12665 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12666
12667 /* Virtual table for "catch assert" breakpoints. */
12668
12669 static struct bp_location *
12670 allocate_location_catch_assert (struct breakpoint *self)
12671 {
12672 return allocate_location_exception (ada_catch_assert, self);
12673 }
12674
12675 static void
12676 re_set_catch_assert (struct breakpoint *b)
12677 {
12678 re_set_exception (ada_catch_assert, b);
12679 }
12680
12681 static void
12682 check_status_catch_assert (bpstat bs)
12683 {
12684 check_status_exception (ada_catch_assert, bs);
12685 }
12686
12687 static enum print_stop_action
12688 print_it_catch_assert (bpstat bs)
12689 {
12690 return print_it_exception (ada_catch_assert, bs);
12691 }
12692
12693 static void
12694 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12695 {
12696 print_one_exception (ada_catch_assert, b, last_loc);
12697 }
12698
12699 static void
12700 print_mention_catch_assert (struct breakpoint *b)
12701 {
12702 print_mention_exception (ada_catch_assert, b);
12703 }
12704
12705 static void
12706 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12707 {
12708 print_recreate_exception (ada_catch_assert, b, fp);
12709 }
12710
12711 static struct breakpoint_ops catch_assert_breakpoint_ops;
12712
12713 /* Return a newly allocated copy of the first space-separated token
12714 in ARGSP, and then adjust ARGSP to point immediately after that
12715 token.
12716
12717 Return NULL if ARGPS does not contain any more tokens. */
12718
12719 static char *
12720 ada_get_next_arg (const char **argsp)
12721 {
12722 const char *args = *argsp;
12723 const char *end;
12724 char *result;
12725
12726 args = skip_spaces (args);
12727 if (args[0] == '\0')
12728 return NULL; /* No more arguments. */
12729
12730 /* Find the end of the current argument. */
12731
12732 end = skip_to_space (args);
12733
12734 /* Adjust ARGSP to point to the start of the next argument. */
12735
12736 *argsp = end;
12737
12738 /* Make a copy of the current argument and return it. */
12739
12740 result = (char *) xmalloc (end - args + 1);
12741 strncpy (result, args, end - args);
12742 result[end - args] = '\0';
12743
12744 return result;
12745 }
12746
12747 /* Split the arguments specified in a "catch exception" command.
12748 Set EX to the appropriate catchpoint type.
12749 Set EXCEP_STRING to the name of the specific exception if
12750 specified by the user.
12751 If a condition is found at the end of the arguments, the condition
12752 expression is stored in COND_STRING (memory must be deallocated
12753 after use). Otherwise COND_STRING is set to NULL. */
12754
12755 static void
12756 catch_ada_exception_command_split (const char *args,
12757 enum ada_exception_catchpoint_kind *ex,
12758 char **excep_string,
12759 char **cond_string)
12760 {
12761 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12762 char *exception_name;
12763 char *cond = NULL;
12764
12765 exception_name = ada_get_next_arg (&args);
12766 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12767 {
12768 /* This is not an exception name; this is the start of a condition
12769 expression for a catchpoint on all exceptions. So, "un-get"
12770 this token, and set exception_name to NULL. */
12771 xfree (exception_name);
12772 exception_name = NULL;
12773 args -= 2;
12774 }
12775 make_cleanup (xfree, exception_name);
12776
12777 /* Check to see if we have a condition. */
12778
12779 args = skip_spaces (args);
12780 if (startswith (args, "if")
12781 && (isspace (args[2]) || args[2] == '\0'))
12782 {
12783 args += 2;
12784 args = skip_spaces (args);
12785
12786 if (args[0] == '\0')
12787 error (_("Condition missing after `if' keyword"));
12788 cond = xstrdup (args);
12789 make_cleanup (xfree, cond);
12790
12791 args += strlen (args);
12792 }
12793
12794 /* Check that we do not have any more arguments. Anything else
12795 is unexpected. */
12796
12797 if (args[0] != '\0')
12798 error (_("Junk at end of expression"));
12799
12800 discard_cleanups (old_chain);
12801
12802 if (exception_name == NULL)
12803 {
12804 /* Catch all exceptions. */
12805 *ex = ada_catch_exception;
12806 *excep_string = NULL;
12807 }
12808 else if (strcmp (exception_name, "unhandled") == 0)
12809 {
12810 /* Catch unhandled exceptions. */
12811 *ex = ada_catch_exception_unhandled;
12812 *excep_string = NULL;
12813 }
12814 else
12815 {
12816 /* Catch a specific exception. */
12817 *ex = ada_catch_exception;
12818 *excep_string = exception_name;
12819 }
12820 *cond_string = cond;
12821 }
12822
12823 /* Return the name of the symbol on which we should break in order to
12824 implement a catchpoint of the EX kind. */
12825
12826 static const char *
12827 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12828 {
12829 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12830
12831 gdb_assert (data->exception_info != NULL);
12832
12833 switch (ex)
12834 {
12835 case ada_catch_exception:
12836 return (data->exception_info->catch_exception_sym);
12837 break;
12838 case ada_catch_exception_unhandled:
12839 return (data->exception_info->catch_exception_unhandled_sym);
12840 break;
12841 case ada_catch_assert:
12842 return (data->exception_info->catch_assert_sym);
12843 break;
12844 default:
12845 internal_error (__FILE__, __LINE__,
12846 _("unexpected catchpoint kind (%d)"), ex);
12847 }
12848 }
12849
12850 /* Return the breakpoint ops "virtual table" used for catchpoints
12851 of the EX kind. */
12852
12853 static const struct breakpoint_ops *
12854 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12855 {
12856 switch (ex)
12857 {
12858 case ada_catch_exception:
12859 return (&catch_exception_breakpoint_ops);
12860 break;
12861 case ada_catch_exception_unhandled:
12862 return (&catch_exception_unhandled_breakpoint_ops);
12863 break;
12864 case ada_catch_assert:
12865 return (&catch_assert_breakpoint_ops);
12866 break;
12867 default:
12868 internal_error (__FILE__, __LINE__,
12869 _("unexpected catchpoint kind (%d)"), ex);
12870 }
12871 }
12872
12873 /* Return the condition that will be used to match the current exception
12874 being raised with the exception that the user wants to catch. This
12875 assumes that this condition is used when the inferior just triggered
12876 an exception catchpoint.
12877
12878 The string returned is a newly allocated string that needs to be
12879 deallocated later. */
12880
12881 static char *
12882 ada_exception_catchpoint_cond_string (const char *excep_string)
12883 {
12884 int i;
12885
12886 /* The standard exceptions are a special case. They are defined in
12887 runtime units that have been compiled without debugging info; if
12888 EXCEP_STRING is the not-fully-qualified name of a standard
12889 exception (e.g. "constraint_error") then, during the evaluation
12890 of the condition expression, the symbol lookup on this name would
12891 *not* return this standard exception. The catchpoint condition
12892 may then be set only on user-defined exceptions which have the
12893 same not-fully-qualified name (e.g. my_package.constraint_error).
12894
12895 To avoid this unexcepted behavior, these standard exceptions are
12896 systematically prefixed by "standard". This means that "catch
12897 exception constraint_error" is rewritten into "catch exception
12898 standard.constraint_error".
12899
12900 If an exception named contraint_error is defined in another package of
12901 the inferior program, then the only way to specify this exception as a
12902 breakpoint condition is to use its fully-qualified named:
12903 e.g. my_package.constraint_error. */
12904
12905 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12906 {
12907 if (strcmp (standard_exc [i], excep_string) == 0)
12908 {
12909 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12910 excep_string);
12911 }
12912 }
12913 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12914 }
12915
12916 /* Return the symtab_and_line that should be used to insert an exception
12917 catchpoint of the TYPE kind.
12918
12919 EXCEP_STRING should contain the name of a specific exception that
12920 the catchpoint should catch, or NULL otherwise.
12921
12922 ADDR_STRING returns the name of the function where the real
12923 breakpoint that implements the catchpoints is set, depending on the
12924 type of catchpoint we need to create. */
12925
12926 static struct symtab_and_line
12927 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12928 char **addr_string, const struct breakpoint_ops **ops)
12929 {
12930 const char *sym_name;
12931 struct symbol *sym;
12932
12933 /* First, find out which exception support info to use. */
12934 ada_exception_support_info_sniffer ();
12935
12936 /* Then lookup the function on which we will break in order to catch
12937 the Ada exceptions requested by the user. */
12938 sym_name = ada_exception_sym_name (ex);
12939 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12940
12941 /* We can assume that SYM is not NULL at this stage. If the symbol
12942 did not exist, ada_exception_support_info_sniffer would have
12943 raised an exception.
12944
12945 Also, ada_exception_support_info_sniffer should have already
12946 verified that SYM is a function symbol. */
12947 gdb_assert (sym != NULL);
12948 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12949
12950 /* Set ADDR_STRING. */
12951 *addr_string = xstrdup (sym_name);
12952
12953 /* Set OPS. */
12954 *ops = ada_exception_breakpoint_ops (ex);
12955
12956 return find_function_start_sal (sym, 1);
12957 }
12958
12959 /* Create an Ada exception catchpoint.
12960
12961 EX_KIND is the kind of exception catchpoint to be created.
12962
12963 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
12964 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12965 of the exception to which this catchpoint applies. When not NULL,
12966 the string must be allocated on the heap, and its deallocation
12967 is no longer the responsibility of the caller.
12968
12969 COND_STRING, if not NULL, is the catchpoint condition. This string
12970 must be allocated on the heap, and its deallocation is no longer
12971 the responsibility of the caller.
12972
12973 TEMPFLAG, if nonzero, means that the underlying breakpoint
12974 should be temporary.
12975
12976 FROM_TTY is the usual argument passed to all commands implementations. */
12977
12978 void
12979 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
12980 enum ada_exception_catchpoint_kind ex_kind,
12981 char *excep_string,
12982 char *cond_string,
12983 int tempflag,
12984 int disabled,
12985 int from_tty)
12986 {
12987 char *addr_string = NULL;
12988 const struct breakpoint_ops *ops = NULL;
12989 struct symtab_and_line sal
12990 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
12991
12992 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
12993 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
12994 ops, tempflag, disabled, from_tty);
12995 c->excep_string = excep_string;
12996 create_excep_cond_exprs (c.get ());
12997 if (cond_string != NULL)
12998 set_breakpoint_condition (c.get (), cond_string, from_tty);
12999 install_breakpoint (0, std::move (c), 1);
13000 }
13001
13002 /* Implement the "catch exception" command. */
13003
13004 static void
13005 catch_ada_exception_command (char *arg_entry, int from_tty,
13006 struct cmd_list_element *command)
13007 {
13008 const char *arg = arg_entry;
13009 struct gdbarch *gdbarch = get_current_arch ();
13010 int tempflag;
13011 enum ada_exception_catchpoint_kind ex_kind;
13012 char *excep_string = NULL;
13013 char *cond_string = NULL;
13014
13015 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13016
13017 if (!arg)
13018 arg = "";
13019 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13020 &cond_string);
13021 create_ada_exception_catchpoint (gdbarch, ex_kind,
13022 excep_string, cond_string,
13023 tempflag, 1 /* enabled */,
13024 from_tty);
13025 }
13026
13027 /* Split the arguments specified in a "catch assert" command.
13028
13029 ARGS contains the command's arguments (or the empty string if
13030 no arguments were passed).
13031
13032 If ARGS contains a condition, set COND_STRING to that condition
13033 (the memory needs to be deallocated after use). */
13034
13035 static void
13036 catch_ada_assert_command_split (const char *args, char **cond_string)
13037 {
13038 args = skip_spaces (args);
13039
13040 /* Check whether a condition was provided. */
13041 if (startswith (args, "if")
13042 && (isspace (args[2]) || args[2] == '\0'))
13043 {
13044 args += 2;
13045 args = skip_spaces (args);
13046 if (args[0] == '\0')
13047 error (_("condition missing after `if' keyword"));
13048 *cond_string = xstrdup (args);
13049 }
13050
13051 /* Otherwise, there should be no other argument at the end of
13052 the command. */
13053 else if (args[0] != '\0')
13054 error (_("Junk at end of arguments."));
13055 }
13056
13057 /* Implement the "catch assert" command. */
13058
13059 static void
13060 catch_assert_command (char *arg_entry, int from_tty,
13061 struct cmd_list_element *command)
13062 {
13063 const char *arg = arg_entry;
13064 struct gdbarch *gdbarch = get_current_arch ();
13065 int tempflag;
13066 char *cond_string = NULL;
13067
13068 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13069
13070 if (!arg)
13071 arg = "";
13072 catch_ada_assert_command_split (arg, &cond_string);
13073 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13074 NULL, cond_string,
13075 tempflag, 1 /* enabled */,
13076 from_tty);
13077 }
13078
13079 /* Return non-zero if the symbol SYM is an Ada exception object. */
13080
13081 static int
13082 ada_is_exception_sym (struct symbol *sym)
13083 {
13084 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13085
13086 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13087 && SYMBOL_CLASS (sym) != LOC_BLOCK
13088 && SYMBOL_CLASS (sym) != LOC_CONST
13089 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13090 && type_name != NULL && strcmp (type_name, "exception") == 0);
13091 }
13092
13093 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13094 Ada exception object. This matches all exceptions except the ones
13095 defined by the Ada language. */
13096
13097 static int
13098 ada_is_non_standard_exception_sym (struct symbol *sym)
13099 {
13100 int i;
13101
13102 if (!ada_is_exception_sym (sym))
13103 return 0;
13104
13105 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13106 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13107 return 0; /* A standard exception. */
13108
13109 /* Numeric_Error is also a standard exception, so exclude it.
13110 See the STANDARD_EXC description for more details as to why
13111 this exception is not listed in that array. */
13112 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13113 return 0;
13114
13115 return 1;
13116 }
13117
13118 /* A helper function for qsort, comparing two struct ada_exc_info
13119 objects.
13120
13121 The comparison is determined first by exception name, and then
13122 by exception address. */
13123
13124 static int
13125 compare_ada_exception_info (const void *a, const void *b)
13126 {
13127 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13128 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13129 int result;
13130
13131 result = strcmp (exc_a->name, exc_b->name);
13132 if (result != 0)
13133 return result;
13134
13135 if (exc_a->addr < exc_b->addr)
13136 return -1;
13137 if (exc_a->addr > exc_b->addr)
13138 return 1;
13139
13140 return 0;
13141 }
13142
13143 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13144 routine, but keeping the first SKIP elements untouched.
13145
13146 All duplicates are also removed. */
13147
13148 static void
13149 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13150 int skip)
13151 {
13152 struct ada_exc_info *to_sort
13153 = VEC_address (ada_exc_info, *exceptions) + skip;
13154 int to_sort_len
13155 = VEC_length (ada_exc_info, *exceptions) - skip;
13156 int i, j;
13157
13158 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13159 compare_ada_exception_info);
13160
13161 for (i = 1, j = 1; i < to_sort_len; i++)
13162 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13163 to_sort[j++] = to_sort[i];
13164 to_sort_len = j;
13165 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13166 }
13167
13168 /* Add all exceptions defined by the Ada standard whose name match
13169 a regular expression.
13170
13171 If PREG is not NULL, then this regexp_t object is used to
13172 perform the symbol name matching. Otherwise, no name-based
13173 filtering is performed.
13174
13175 EXCEPTIONS is a vector of exceptions to which matching exceptions
13176 gets pushed. */
13177
13178 static void
13179 ada_add_standard_exceptions (compiled_regex *preg,
13180 VEC(ada_exc_info) **exceptions)
13181 {
13182 int i;
13183
13184 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13185 {
13186 if (preg == NULL
13187 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13188 {
13189 struct bound_minimal_symbol msymbol
13190 = ada_lookup_simple_minsym (standard_exc[i]);
13191
13192 if (msymbol.minsym != NULL)
13193 {
13194 struct ada_exc_info info
13195 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13196
13197 VEC_safe_push (ada_exc_info, *exceptions, &info);
13198 }
13199 }
13200 }
13201 }
13202
13203 /* Add all Ada exceptions defined locally and accessible from the given
13204 FRAME.
13205
13206 If PREG is not NULL, then this regexp_t object is used to
13207 perform the symbol name matching. Otherwise, no name-based
13208 filtering is performed.
13209
13210 EXCEPTIONS is a vector of exceptions to which matching exceptions
13211 gets pushed. */
13212
13213 static void
13214 ada_add_exceptions_from_frame (compiled_regex *preg,
13215 struct frame_info *frame,
13216 VEC(ada_exc_info) **exceptions)
13217 {
13218 const struct block *block = get_frame_block (frame, 0);
13219
13220 while (block != 0)
13221 {
13222 struct block_iterator iter;
13223 struct symbol *sym;
13224
13225 ALL_BLOCK_SYMBOLS (block, iter, sym)
13226 {
13227 switch (SYMBOL_CLASS (sym))
13228 {
13229 case LOC_TYPEDEF:
13230 case LOC_BLOCK:
13231 case LOC_CONST:
13232 break;
13233 default:
13234 if (ada_is_exception_sym (sym))
13235 {
13236 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13237 SYMBOL_VALUE_ADDRESS (sym)};
13238
13239 VEC_safe_push (ada_exc_info, *exceptions, &info);
13240 }
13241 }
13242 }
13243 if (BLOCK_FUNCTION (block) != NULL)
13244 break;
13245 block = BLOCK_SUPERBLOCK (block);
13246 }
13247 }
13248
13249 /* Return true if NAME matches PREG or if PREG is NULL. */
13250
13251 static bool
13252 name_matches_regex (const char *name, compiled_regex *preg)
13253 {
13254 return (preg == NULL
13255 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13256 }
13257
13258 /* Add all exceptions defined globally whose name name match
13259 a regular expression, excluding standard exceptions.
13260
13261 The reason we exclude standard exceptions is that they need
13262 to be handled separately: Standard exceptions are defined inside
13263 a runtime unit which is normally not compiled with debugging info,
13264 and thus usually do not show up in our symbol search. However,
13265 if the unit was in fact built with debugging info, we need to
13266 exclude them because they would duplicate the entry we found
13267 during the special loop that specifically searches for those
13268 standard exceptions.
13269
13270 If PREG is not NULL, then this regexp_t object is used to
13271 perform the symbol name matching. Otherwise, no name-based
13272 filtering is performed.
13273
13274 EXCEPTIONS is a vector of exceptions to which matching exceptions
13275 gets pushed. */
13276
13277 static void
13278 ada_add_global_exceptions (compiled_regex *preg,
13279 VEC(ada_exc_info) **exceptions)
13280 {
13281 struct objfile *objfile;
13282 struct compunit_symtab *s;
13283
13284 /* In Ada, the symbol "search name" is a linkage name, whereas the
13285 regular expression used to do the matching refers to the natural
13286 name. So match against the decoded name. */
13287 expand_symtabs_matching (NULL,
13288 [&] (const char *search_name)
13289 {
13290 const char *decoded = ada_decode (search_name);
13291 return name_matches_regex (decoded, preg);
13292 },
13293 NULL,
13294 VARIABLES_DOMAIN);
13295
13296 ALL_COMPUNITS (objfile, s)
13297 {
13298 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13299 int i;
13300
13301 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13302 {
13303 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13304 struct block_iterator iter;
13305 struct symbol *sym;
13306
13307 ALL_BLOCK_SYMBOLS (b, iter, sym)
13308 if (ada_is_non_standard_exception_sym (sym)
13309 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13310 {
13311 struct ada_exc_info info
13312 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13313
13314 VEC_safe_push (ada_exc_info, *exceptions, &info);
13315 }
13316 }
13317 }
13318 }
13319
13320 /* Implements ada_exceptions_list with the regular expression passed
13321 as a regex_t, rather than a string.
13322
13323 If not NULL, PREG is used to filter out exceptions whose names
13324 do not match. Otherwise, all exceptions are listed. */
13325
13326 static VEC(ada_exc_info) *
13327 ada_exceptions_list_1 (compiled_regex *preg)
13328 {
13329 VEC(ada_exc_info) *result = NULL;
13330 struct cleanup *old_chain
13331 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13332 int prev_len;
13333
13334 /* First, list the known standard exceptions. These exceptions
13335 need to be handled separately, as they are usually defined in
13336 runtime units that have been compiled without debugging info. */
13337
13338 ada_add_standard_exceptions (preg, &result);
13339
13340 /* Next, find all exceptions whose scope is local and accessible
13341 from the currently selected frame. */
13342
13343 if (has_stack_frames ())
13344 {
13345 prev_len = VEC_length (ada_exc_info, result);
13346 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13347 &result);
13348 if (VEC_length (ada_exc_info, result) > prev_len)
13349 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13350 }
13351
13352 /* Add all exceptions whose scope is global. */
13353
13354 prev_len = VEC_length (ada_exc_info, result);
13355 ada_add_global_exceptions (preg, &result);
13356 if (VEC_length (ada_exc_info, result) > prev_len)
13357 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13358
13359 discard_cleanups (old_chain);
13360 return result;
13361 }
13362
13363 /* Return a vector of ada_exc_info.
13364
13365 If REGEXP is NULL, all exceptions are included in the result.
13366 Otherwise, it should contain a valid regular expression,
13367 and only the exceptions whose names match that regular expression
13368 are included in the result.
13369
13370 The exceptions are sorted in the following order:
13371 - Standard exceptions (defined by the Ada language), in
13372 alphabetical order;
13373 - Exceptions only visible from the current frame, in
13374 alphabetical order;
13375 - Exceptions whose scope is global, in alphabetical order. */
13376
13377 VEC(ada_exc_info) *
13378 ada_exceptions_list (const char *regexp)
13379 {
13380 if (regexp == NULL)
13381 return ada_exceptions_list_1 (NULL);
13382
13383 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13384 return ada_exceptions_list_1 (&reg);
13385 }
13386
13387 /* Implement the "info exceptions" command. */
13388
13389 static void
13390 info_exceptions_command (char *regexp, int from_tty)
13391 {
13392 VEC(ada_exc_info) *exceptions;
13393 struct cleanup *cleanup;
13394 struct gdbarch *gdbarch = get_current_arch ();
13395 int ix;
13396 struct ada_exc_info *info;
13397
13398 exceptions = ada_exceptions_list (regexp);
13399 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13400
13401 if (regexp != NULL)
13402 printf_filtered
13403 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13404 else
13405 printf_filtered (_("All defined Ada exceptions:\n"));
13406
13407 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13408 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13409
13410 do_cleanups (cleanup);
13411 }
13412
13413 /* Operators */
13414 /* Information about operators given special treatment in functions
13415 below. */
13416 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13417
13418 #define ADA_OPERATORS \
13419 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13420 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13421 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13422 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13423 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13424 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13425 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13426 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13427 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13428 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13429 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13430 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13431 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13432 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13433 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13434 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13435 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13436 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13437 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13438
13439 static void
13440 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13441 int *argsp)
13442 {
13443 switch (exp->elts[pc - 1].opcode)
13444 {
13445 default:
13446 operator_length_standard (exp, pc, oplenp, argsp);
13447 break;
13448
13449 #define OP_DEFN(op, len, args, binop) \
13450 case op: *oplenp = len; *argsp = args; break;
13451 ADA_OPERATORS;
13452 #undef OP_DEFN
13453
13454 case OP_AGGREGATE:
13455 *oplenp = 3;
13456 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13457 break;
13458
13459 case OP_CHOICES:
13460 *oplenp = 3;
13461 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13462 break;
13463 }
13464 }
13465
13466 /* Implementation of the exp_descriptor method operator_check. */
13467
13468 static int
13469 ada_operator_check (struct expression *exp, int pos,
13470 int (*objfile_func) (struct objfile *objfile, void *data),
13471 void *data)
13472 {
13473 const union exp_element *const elts = exp->elts;
13474 struct type *type = NULL;
13475
13476 switch (elts[pos].opcode)
13477 {
13478 case UNOP_IN_RANGE:
13479 case UNOP_QUAL:
13480 type = elts[pos + 1].type;
13481 break;
13482
13483 default:
13484 return operator_check_standard (exp, pos, objfile_func, data);
13485 }
13486
13487 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13488
13489 if (type && TYPE_OBJFILE (type)
13490 && (*objfile_func) (TYPE_OBJFILE (type), data))
13491 return 1;
13492
13493 return 0;
13494 }
13495
13496 static const char *
13497 ada_op_name (enum exp_opcode opcode)
13498 {
13499 switch (opcode)
13500 {
13501 default:
13502 return op_name_standard (opcode);
13503
13504 #define OP_DEFN(op, len, args, binop) case op: return #op;
13505 ADA_OPERATORS;
13506 #undef OP_DEFN
13507
13508 case OP_AGGREGATE:
13509 return "OP_AGGREGATE";
13510 case OP_CHOICES:
13511 return "OP_CHOICES";
13512 case OP_NAME:
13513 return "OP_NAME";
13514 }
13515 }
13516
13517 /* As for operator_length, but assumes PC is pointing at the first
13518 element of the operator, and gives meaningful results only for the
13519 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13520
13521 static void
13522 ada_forward_operator_length (struct expression *exp, int pc,
13523 int *oplenp, int *argsp)
13524 {
13525 switch (exp->elts[pc].opcode)
13526 {
13527 default:
13528 *oplenp = *argsp = 0;
13529 break;
13530
13531 #define OP_DEFN(op, len, args, binop) \
13532 case op: *oplenp = len; *argsp = args; break;
13533 ADA_OPERATORS;
13534 #undef OP_DEFN
13535
13536 case OP_AGGREGATE:
13537 *oplenp = 3;
13538 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13539 break;
13540
13541 case OP_CHOICES:
13542 *oplenp = 3;
13543 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13544 break;
13545
13546 case OP_STRING:
13547 case OP_NAME:
13548 {
13549 int len = longest_to_int (exp->elts[pc + 1].longconst);
13550
13551 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13552 *argsp = 0;
13553 break;
13554 }
13555 }
13556 }
13557
13558 static int
13559 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13560 {
13561 enum exp_opcode op = exp->elts[elt].opcode;
13562 int oplen, nargs;
13563 int pc = elt;
13564 int i;
13565
13566 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13567
13568 switch (op)
13569 {
13570 /* Ada attributes ('Foo). */
13571 case OP_ATR_FIRST:
13572 case OP_ATR_LAST:
13573 case OP_ATR_LENGTH:
13574 case OP_ATR_IMAGE:
13575 case OP_ATR_MAX:
13576 case OP_ATR_MIN:
13577 case OP_ATR_MODULUS:
13578 case OP_ATR_POS:
13579 case OP_ATR_SIZE:
13580 case OP_ATR_TAG:
13581 case OP_ATR_VAL:
13582 break;
13583
13584 case UNOP_IN_RANGE:
13585 case UNOP_QUAL:
13586 /* XXX: gdb_sprint_host_address, type_sprint */
13587 fprintf_filtered (stream, _("Type @"));
13588 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13589 fprintf_filtered (stream, " (");
13590 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13591 fprintf_filtered (stream, ")");
13592 break;
13593 case BINOP_IN_BOUNDS:
13594 fprintf_filtered (stream, " (%d)",
13595 longest_to_int (exp->elts[pc + 2].longconst));
13596 break;
13597 case TERNOP_IN_RANGE:
13598 break;
13599
13600 case OP_AGGREGATE:
13601 case OP_OTHERS:
13602 case OP_DISCRETE_RANGE:
13603 case OP_POSITIONAL:
13604 case OP_CHOICES:
13605 break;
13606
13607 case OP_NAME:
13608 case OP_STRING:
13609 {
13610 char *name = &exp->elts[elt + 2].string;
13611 int len = longest_to_int (exp->elts[elt + 1].longconst);
13612
13613 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13614 break;
13615 }
13616
13617 default:
13618 return dump_subexp_body_standard (exp, stream, elt);
13619 }
13620
13621 elt += oplen;
13622 for (i = 0; i < nargs; i += 1)
13623 elt = dump_subexp (exp, stream, elt);
13624
13625 return elt;
13626 }
13627
13628 /* The Ada extension of print_subexp (q.v.). */
13629
13630 static void
13631 ada_print_subexp (struct expression *exp, int *pos,
13632 struct ui_file *stream, enum precedence prec)
13633 {
13634 int oplen, nargs, i;
13635 int pc = *pos;
13636 enum exp_opcode op = exp->elts[pc].opcode;
13637
13638 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13639
13640 *pos += oplen;
13641 switch (op)
13642 {
13643 default:
13644 *pos -= oplen;
13645 print_subexp_standard (exp, pos, stream, prec);
13646 return;
13647
13648 case OP_VAR_VALUE:
13649 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13650 return;
13651
13652 case BINOP_IN_BOUNDS:
13653 /* XXX: sprint_subexp */
13654 print_subexp (exp, pos, stream, PREC_SUFFIX);
13655 fputs_filtered (" in ", stream);
13656 print_subexp (exp, pos, stream, PREC_SUFFIX);
13657 fputs_filtered ("'range", stream);
13658 if (exp->elts[pc + 1].longconst > 1)
13659 fprintf_filtered (stream, "(%ld)",
13660 (long) exp->elts[pc + 1].longconst);
13661 return;
13662
13663 case TERNOP_IN_RANGE:
13664 if (prec >= PREC_EQUAL)
13665 fputs_filtered ("(", stream);
13666 /* XXX: sprint_subexp */
13667 print_subexp (exp, pos, stream, PREC_SUFFIX);
13668 fputs_filtered (" in ", stream);
13669 print_subexp (exp, pos, stream, PREC_EQUAL);
13670 fputs_filtered (" .. ", stream);
13671 print_subexp (exp, pos, stream, PREC_EQUAL);
13672 if (prec >= PREC_EQUAL)
13673 fputs_filtered (")", stream);
13674 return;
13675
13676 case OP_ATR_FIRST:
13677 case OP_ATR_LAST:
13678 case OP_ATR_LENGTH:
13679 case OP_ATR_IMAGE:
13680 case OP_ATR_MAX:
13681 case OP_ATR_MIN:
13682 case OP_ATR_MODULUS:
13683 case OP_ATR_POS:
13684 case OP_ATR_SIZE:
13685 case OP_ATR_TAG:
13686 case OP_ATR_VAL:
13687 if (exp->elts[*pos].opcode == OP_TYPE)
13688 {
13689 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13690 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13691 &type_print_raw_options);
13692 *pos += 3;
13693 }
13694 else
13695 print_subexp (exp, pos, stream, PREC_SUFFIX);
13696 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13697 if (nargs > 1)
13698 {
13699 int tem;
13700
13701 for (tem = 1; tem < nargs; tem += 1)
13702 {
13703 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13704 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13705 }
13706 fputs_filtered (")", stream);
13707 }
13708 return;
13709
13710 case UNOP_QUAL:
13711 type_print (exp->elts[pc + 1].type, "", stream, 0);
13712 fputs_filtered ("'(", stream);
13713 print_subexp (exp, pos, stream, PREC_PREFIX);
13714 fputs_filtered (")", stream);
13715 return;
13716
13717 case UNOP_IN_RANGE:
13718 /* XXX: sprint_subexp */
13719 print_subexp (exp, pos, stream, PREC_SUFFIX);
13720 fputs_filtered (" in ", stream);
13721 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13722 &type_print_raw_options);
13723 return;
13724
13725 case OP_DISCRETE_RANGE:
13726 print_subexp (exp, pos, stream, PREC_SUFFIX);
13727 fputs_filtered ("..", stream);
13728 print_subexp (exp, pos, stream, PREC_SUFFIX);
13729 return;
13730
13731 case OP_OTHERS:
13732 fputs_filtered ("others => ", stream);
13733 print_subexp (exp, pos, stream, PREC_SUFFIX);
13734 return;
13735
13736 case OP_CHOICES:
13737 for (i = 0; i < nargs-1; i += 1)
13738 {
13739 if (i > 0)
13740 fputs_filtered ("|", stream);
13741 print_subexp (exp, pos, stream, PREC_SUFFIX);
13742 }
13743 fputs_filtered (" => ", stream);
13744 print_subexp (exp, pos, stream, PREC_SUFFIX);
13745 return;
13746
13747 case OP_POSITIONAL:
13748 print_subexp (exp, pos, stream, PREC_SUFFIX);
13749 return;
13750
13751 case OP_AGGREGATE:
13752 fputs_filtered ("(", stream);
13753 for (i = 0; i < nargs; i += 1)
13754 {
13755 if (i > 0)
13756 fputs_filtered (", ", stream);
13757 print_subexp (exp, pos, stream, PREC_SUFFIX);
13758 }
13759 fputs_filtered (")", stream);
13760 return;
13761 }
13762 }
13763
13764 /* Table mapping opcodes into strings for printing operators
13765 and precedences of the operators. */
13766
13767 static const struct op_print ada_op_print_tab[] = {
13768 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13769 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13770 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13771 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13772 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13773 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13774 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13775 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13776 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13777 {">=", BINOP_GEQ, PREC_ORDER, 0},
13778 {">", BINOP_GTR, PREC_ORDER, 0},
13779 {"<", BINOP_LESS, PREC_ORDER, 0},
13780 {">>", BINOP_RSH, PREC_SHIFT, 0},
13781 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13782 {"+", BINOP_ADD, PREC_ADD, 0},
13783 {"-", BINOP_SUB, PREC_ADD, 0},
13784 {"&", BINOP_CONCAT, PREC_ADD, 0},
13785 {"*", BINOP_MUL, PREC_MUL, 0},
13786 {"/", BINOP_DIV, PREC_MUL, 0},
13787 {"rem", BINOP_REM, PREC_MUL, 0},
13788 {"mod", BINOP_MOD, PREC_MUL, 0},
13789 {"**", BINOP_EXP, PREC_REPEAT, 0},
13790 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13791 {"-", UNOP_NEG, PREC_PREFIX, 0},
13792 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13793 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13794 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13795 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13796 {".all", UNOP_IND, PREC_SUFFIX, 1},
13797 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13798 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13799 {NULL, OP_NULL, PREC_SUFFIX, 0}
13800 };
13801 \f
13802 enum ada_primitive_types {
13803 ada_primitive_type_int,
13804 ada_primitive_type_long,
13805 ada_primitive_type_short,
13806 ada_primitive_type_char,
13807 ada_primitive_type_float,
13808 ada_primitive_type_double,
13809 ada_primitive_type_void,
13810 ada_primitive_type_long_long,
13811 ada_primitive_type_long_double,
13812 ada_primitive_type_natural,
13813 ada_primitive_type_positive,
13814 ada_primitive_type_system_address,
13815 nr_ada_primitive_types
13816 };
13817
13818 static void
13819 ada_language_arch_info (struct gdbarch *gdbarch,
13820 struct language_arch_info *lai)
13821 {
13822 const struct builtin_type *builtin = builtin_type (gdbarch);
13823
13824 lai->primitive_type_vector
13825 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13826 struct type *);
13827
13828 lai->primitive_type_vector [ada_primitive_type_int]
13829 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13830 0, "integer");
13831 lai->primitive_type_vector [ada_primitive_type_long]
13832 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13833 0, "long_integer");
13834 lai->primitive_type_vector [ada_primitive_type_short]
13835 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13836 0, "short_integer");
13837 lai->string_char_type
13838 = lai->primitive_type_vector [ada_primitive_type_char]
13839 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13840 lai->primitive_type_vector [ada_primitive_type_float]
13841 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13842 "float", gdbarch_float_format (gdbarch));
13843 lai->primitive_type_vector [ada_primitive_type_double]
13844 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13845 "long_float", gdbarch_double_format (gdbarch));
13846 lai->primitive_type_vector [ada_primitive_type_long_long]
13847 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13848 0, "long_long_integer");
13849 lai->primitive_type_vector [ada_primitive_type_long_double]
13850 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13851 "long_long_float", gdbarch_long_double_format (gdbarch));
13852 lai->primitive_type_vector [ada_primitive_type_natural]
13853 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13854 0, "natural");
13855 lai->primitive_type_vector [ada_primitive_type_positive]
13856 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13857 0, "positive");
13858 lai->primitive_type_vector [ada_primitive_type_void]
13859 = builtin->builtin_void;
13860
13861 lai->primitive_type_vector [ada_primitive_type_system_address]
13862 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13863 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13864 = "system__address";
13865
13866 lai->bool_type_symbol = NULL;
13867 lai->bool_type_default = builtin->builtin_bool;
13868 }
13869 \f
13870 /* Language vector */
13871
13872 /* Not really used, but needed in the ada_language_defn. */
13873
13874 static void
13875 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13876 {
13877 ada_emit_char (c, type, stream, quoter, 1);
13878 }
13879
13880 static int
13881 parse (struct parser_state *ps)
13882 {
13883 warnings_issued = 0;
13884 return ada_parse (ps);
13885 }
13886
13887 static const struct exp_descriptor ada_exp_descriptor = {
13888 ada_print_subexp,
13889 ada_operator_length,
13890 ada_operator_check,
13891 ada_op_name,
13892 ada_dump_subexp_body,
13893 ada_evaluate_subexp
13894 };
13895
13896 /* Implement the "la_get_symbol_name_cmp" language_defn method
13897 for Ada. */
13898
13899 static symbol_name_cmp_ftype
13900 ada_get_symbol_name_cmp (const char *lookup_name)
13901 {
13902 if (should_use_wild_match (lookup_name))
13903 return wild_match;
13904 else
13905 return compare_names;
13906 }
13907
13908 /* Implement the "la_read_var_value" language_defn method for Ada. */
13909
13910 static struct value *
13911 ada_read_var_value (struct symbol *var, const struct block *var_block,
13912 struct frame_info *frame)
13913 {
13914 const struct block *frame_block = NULL;
13915 struct symbol *renaming_sym = NULL;
13916
13917 /* The only case where default_read_var_value is not sufficient
13918 is when VAR is a renaming... */
13919 if (frame)
13920 frame_block = get_frame_block (frame, NULL);
13921 if (frame_block)
13922 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13923 if (renaming_sym != NULL)
13924 return ada_read_renaming_var_value (renaming_sym, frame_block);
13925
13926 /* This is a typical case where we expect the default_read_var_value
13927 function to work. */
13928 return default_read_var_value (var, var_block, frame);
13929 }
13930
13931 static const char *ada_extensions[] =
13932 {
13933 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13934 };
13935
13936 extern const struct language_defn ada_language_defn = {
13937 "ada", /* Language name */
13938 "Ada",
13939 language_ada,
13940 range_check_off,
13941 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13942 that's not quite what this means. */
13943 array_row_major,
13944 macro_expansion_no,
13945 ada_extensions,
13946 &ada_exp_descriptor,
13947 parse,
13948 ada_yyerror,
13949 resolve,
13950 ada_printchar, /* Print a character constant */
13951 ada_printstr, /* Function to print string constant */
13952 emit_char, /* Function to print single char (not used) */
13953 ada_print_type, /* Print a type using appropriate syntax */
13954 ada_print_typedef, /* Print a typedef using appropriate syntax */
13955 ada_val_print, /* Print a value using appropriate syntax */
13956 ada_value_print, /* Print a top-level value */
13957 ada_read_var_value, /* la_read_var_value */
13958 NULL, /* Language specific skip_trampoline */
13959 NULL, /* name_of_this */
13960 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
13961 basic_lookup_transparent_type, /* lookup_transparent_type */
13962 ada_la_decode, /* Language specific symbol demangler */
13963 ada_sniff_from_mangled_name,
13964 NULL, /* Language specific
13965 class_name_from_physname */
13966 ada_op_print_tab, /* expression operators for printing */
13967 0, /* c-style arrays */
13968 1, /* String lower bound */
13969 ada_get_gdb_completer_word_break_characters,
13970 ada_collect_symbol_completion_matches,
13971 ada_language_arch_info,
13972 ada_print_array_index,
13973 default_pass_by_reference,
13974 c_get_string,
13975 c_watch_location_expression,
13976 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
13977 ada_iterate_over_symbols,
13978 &ada_varobj_ops,
13979 NULL,
13980 NULL,
13981 LANG_MAGIC
13982 };
13983
13984 /* Command-list for the "set/show ada" prefix command. */
13985 static struct cmd_list_element *set_ada_list;
13986 static struct cmd_list_element *show_ada_list;
13987
13988 /* Implement the "set ada" prefix command. */
13989
13990 static void
13991 set_ada_command (char *arg, int from_tty)
13992 {
13993 printf_unfiltered (_(\
13994 "\"set ada\" must be followed by the name of a setting.\n"));
13995 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
13996 }
13997
13998 /* Implement the "show ada" prefix command. */
13999
14000 static void
14001 show_ada_command (char *args, int from_tty)
14002 {
14003 cmd_show_list (show_ada_list, from_tty, "");
14004 }
14005
14006 static void
14007 initialize_ada_catchpoint_ops (void)
14008 {
14009 struct breakpoint_ops *ops;
14010
14011 initialize_breakpoint_ops ();
14012
14013 ops = &catch_exception_breakpoint_ops;
14014 *ops = bkpt_breakpoint_ops;
14015 ops->allocate_location = allocate_location_catch_exception;
14016 ops->re_set = re_set_catch_exception;
14017 ops->check_status = check_status_catch_exception;
14018 ops->print_it = print_it_catch_exception;
14019 ops->print_one = print_one_catch_exception;
14020 ops->print_mention = print_mention_catch_exception;
14021 ops->print_recreate = print_recreate_catch_exception;
14022
14023 ops = &catch_exception_unhandled_breakpoint_ops;
14024 *ops = bkpt_breakpoint_ops;
14025 ops->allocate_location = allocate_location_catch_exception_unhandled;
14026 ops->re_set = re_set_catch_exception_unhandled;
14027 ops->check_status = check_status_catch_exception_unhandled;
14028 ops->print_it = print_it_catch_exception_unhandled;
14029 ops->print_one = print_one_catch_exception_unhandled;
14030 ops->print_mention = print_mention_catch_exception_unhandled;
14031 ops->print_recreate = print_recreate_catch_exception_unhandled;
14032
14033 ops = &catch_assert_breakpoint_ops;
14034 *ops = bkpt_breakpoint_ops;
14035 ops->allocate_location = allocate_location_catch_assert;
14036 ops->re_set = re_set_catch_assert;
14037 ops->check_status = check_status_catch_assert;
14038 ops->print_it = print_it_catch_assert;
14039 ops->print_one = print_one_catch_assert;
14040 ops->print_mention = print_mention_catch_assert;
14041 ops->print_recreate = print_recreate_catch_assert;
14042 }
14043
14044 /* This module's 'new_objfile' observer. */
14045
14046 static void
14047 ada_new_objfile_observer (struct objfile *objfile)
14048 {
14049 ada_clear_symbol_cache ();
14050 }
14051
14052 /* This module's 'free_objfile' observer. */
14053
14054 static void
14055 ada_free_objfile_observer (struct objfile *objfile)
14056 {
14057 ada_clear_symbol_cache ();
14058 }
14059
14060 void
14061 _initialize_ada_language (void)
14062 {
14063 initialize_ada_catchpoint_ops ();
14064
14065 add_prefix_cmd ("ada", no_class, set_ada_command,
14066 _("Prefix command for changing Ada-specfic settings"),
14067 &set_ada_list, "set ada ", 0, &setlist);
14068
14069 add_prefix_cmd ("ada", no_class, show_ada_command,
14070 _("Generic command for showing Ada-specific settings."),
14071 &show_ada_list, "show ada ", 0, &showlist);
14072
14073 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14074 &trust_pad_over_xvs, _("\
14075 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14076 Show whether an optimization trusting PAD types over XVS types is activated"),
14077 _("\
14078 This is related to the encoding used by the GNAT compiler. The debugger\n\
14079 should normally trust the contents of PAD types, but certain older versions\n\
14080 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14081 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14082 work around this bug. It is always safe to turn this option \"off\", but\n\
14083 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14084 this option to \"off\" unless necessary."),
14085 NULL, NULL, &set_ada_list, &show_ada_list);
14086
14087 add_setshow_boolean_cmd ("print-signatures", class_vars,
14088 &print_signatures, _("\
14089 Enable or disable the output of formal and return types for functions in the \
14090 overloads selection menu"), _("\
14091 Show whether the output of formal and return types for functions in the \
14092 overloads selection menu is activated"),
14093 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14094
14095 add_catch_command ("exception", _("\
14096 Catch Ada exceptions, when raised.\n\
14097 With an argument, catch only exceptions with the given name."),
14098 catch_ada_exception_command,
14099 NULL,
14100 CATCH_PERMANENT,
14101 CATCH_TEMPORARY);
14102 add_catch_command ("assert", _("\
14103 Catch failed Ada assertions, when raised.\n\
14104 With an argument, catch only exceptions with the given name."),
14105 catch_assert_command,
14106 NULL,
14107 CATCH_PERMANENT,
14108 CATCH_TEMPORARY);
14109
14110 varsize_limit = 65536;
14111
14112 add_info ("exceptions", info_exceptions_command,
14113 _("\
14114 List all Ada exception names.\n\
14115 If a regular expression is passed as an argument, only those matching\n\
14116 the regular expression are listed."));
14117
14118 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14119 _("Set Ada maintenance-related variables."),
14120 &maint_set_ada_cmdlist, "maintenance set ada ",
14121 0/*allow-unknown*/, &maintenance_set_cmdlist);
14122
14123 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14124 _("Show Ada maintenance-related variables"),
14125 &maint_show_ada_cmdlist, "maintenance show ada ",
14126 0/*allow-unknown*/, &maintenance_show_cmdlist);
14127
14128 add_setshow_boolean_cmd
14129 ("ignore-descriptive-types", class_maintenance,
14130 &ada_ignore_descriptive_types_p,
14131 _("Set whether descriptive types generated by GNAT should be ignored."),
14132 _("Show whether descriptive types generated by GNAT should be ignored."),
14133 _("\
14134 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14135 DWARF attribute."),
14136 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14137
14138 obstack_init (&symbol_list_obstack);
14139
14140 decoded_names_store = htab_create_alloc
14141 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14142 NULL, xcalloc, xfree);
14143
14144 /* The ada-lang observers. */
14145 observer_attach_new_objfile (ada_new_objfile_observer);
14146 observer_attach_free_objfile (ada_free_objfile_observer);
14147 observer_attach_inferior_exit (ada_inferior_exit);
14148
14149 /* Setup various context-specific data. */
14150 ada_inferior_data
14151 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14152 ada_pspace_data_handle
14153 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14154 }