]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
Introduce class completion_tracker & rewrite completion<->readline interaction
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observer.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65
66 /* Define whether or not the C operator '/' truncates towards zero for
67 differently signed operands (truncation direction is undefined in C).
68 Copied from valarith.c. */
69
70 #ifndef TRUNCATION_TOWARDS_ZERO
71 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
72 #endif
73
74 static struct type *desc_base_type (struct type *);
75
76 static struct type *desc_bounds_type (struct type *);
77
78 static struct value *desc_bounds (struct value *);
79
80 static int fat_pntr_bounds_bitpos (struct type *);
81
82 static int fat_pntr_bounds_bitsize (struct type *);
83
84 static struct type *desc_data_target_type (struct type *);
85
86 static struct value *desc_data (struct value *);
87
88 static int fat_pntr_data_bitpos (struct type *);
89
90 static int fat_pntr_data_bitsize (struct type *);
91
92 static struct value *desc_one_bound (struct value *, int, int);
93
94 static int desc_bound_bitpos (struct type *, int, int);
95
96 static int desc_bound_bitsize (struct type *, int, int);
97
98 static struct type *desc_index_type (struct type *, int);
99
100 static int desc_arity (struct type *);
101
102 static int ada_type_match (struct type *, struct type *, int);
103
104 static int ada_args_match (struct symbol *, struct value **, int);
105
106 static int full_match (const char *, const char *);
107
108 static struct value *make_array_descriptor (struct type *, struct value *);
109
110 static void ada_add_block_symbols (struct obstack *,
111 const struct block *, const char *,
112 domain_enum, struct objfile *, int);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const char *, domain_enum, int, int *);
116
117 static int is_nonfunction (struct block_symbol *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 const struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct block_symbol *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, const struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static const char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 const struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (const char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct block_symbol *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static struct value *ada_index_struct_field (int, struct value *, int,
242 struct type *);
243
244 static struct value *assign_aggregate (struct value *, struct value *,
245 struct expression *,
246 int *, enum noside);
247
248 static void aggregate_assign_from_choices (struct value *, struct value *,
249 struct expression *,
250 int *, LONGEST *, int *,
251 int, LONGEST, LONGEST);
252
253 static void aggregate_assign_positional (struct value *, struct value *,
254 struct expression *,
255 int *, LONGEST *, int *, int,
256 LONGEST, LONGEST);
257
258
259 static void aggregate_assign_others (struct value *, struct value *,
260 struct expression *,
261 int *, LONGEST *, int, LONGEST, LONGEST);
262
263
264 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
265
266
267 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
268 int *, enum noside);
269
270 static void ada_forward_operator_length (struct expression *, int, int *,
271 int *);
272
273 static struct type *ada_find_any_type (const char *name);
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Space for allocating results of ada_lookup_symbol_list. */
346 static struct obstack symbol_list_obstack;
347
348 /* Maintenance-related settings for this module. */
349
350 static struct cmd_list_element *maint_set_ada_cmdlist;
351 static struct cmd_list_element *maint_show_ada_cmdlist;
352
353 /* Implement the "maintenance set ada" (prefix) command. */
354
355 static void
356 maint_set_ada_cmd (char *args, int from_tty)
357 {
358 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
359 gdb_stdout);
360 }
361
362 /* Implement the "maintenance show ada" (prefix) command. */
363
364 static void
365 maint_show_ada_cmd (char *args, int from_tty)
366 {
367 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
368 }
369
370 /* The "maintenance ada set/show ignore-descriptive-type" value. */
371
372 static int ada_ignore_descriptive_types_p = 0;
373
374 /* Inferior-specific data. */
375
376 /* Per-inferior data for this module. */
377
378 struct ada_inferior_data
379 {
380 /* The ada__tags__type_specific_data type, which is used when decoding
381 tagged types. With older versions of GNAT, this type was directly
382 accessible through a component ("tsd") in the object tag. But this
383 is no longer the case, so we cache it for each inferior. */
384 struct type *tsd_type;
385
386 /* The exception_support_info data. This data is used to determine
387 how to implement support for Ada exception catchpoints in a given
388 inferior. */
389 const struct exception_support_info *exception_info;
390 };
391
392 /* Our key to this module's inferior data. */
393 static const struct inferior_data *ada_inferior_data;
394
395 /* A cleanup routine for our inferior data. */
396 static void
397 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
398 {
399 struct ada_inferior_data *data;
400
401 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
402 if (data != NULL)
403 xfree (data);
404 }
405
406 /* Return our inferior data for the given inferior (INF).
407
408 This function always returns a valid pointer to an allocated
409 ada_inferior_data structure. If INF's inferior data has not
410 been previously set, this functions creates a new one with all
411 fields set to zero, sets INF's inferior to it, and then returns
412 a pointer to that newly allocated ada_inferior_data. */
413
414 static struct ada_inferior_data *
415 get_ada_inferior_data (struct inferior *inf)
416 {
417 struct ada_inferior_data *data;
418
419 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
420 if (data == NULL)
421 {
422 data = XCNEW (struct ada_inferior_data);
423 set_inferior_data (inf, ada_inferior_data, data);
424 }
425
426 return data;
427 }
428
429 /* Perform all necessary cleanups regarding our module's inferior data
430 that is required after the inferior INF just exited. */
431
432 static void
433 ada_inferior_exit (struct inferior *inf)
434 {
435 ada_inferior_data_cleanup (inf, NULL);
436 set_inferior_data (inf, ada_inferior_data, NULL);
437 }
438
439
440 /* program-space-specific data. */
441
442 /* This module's per-program-space data. */
443 struct ada_pspace_data
444 {
445 /* The Ada symbol cache. */
446 struct ada_symbol_cache *sym_cache;
447 };
448
449 /* Key to our per-program-space data. */
450 static const struct program_space_data *ada_pspace_data_handle;
451
452 /* Return this module's data for the given program space (PSPACE).
453 If not is found, add a zero'ed one now.
454
455 This function always returns a valid object. */
456
457 static struct ada_pspace_data *
458 get_ada_pspace_data (struct program_space *pspace)
459 {
460 struct ada_pspace_data *data;
461
462 data = ((struct ada_pspace_data *)
463 program_space_data (pspace, ada_pspace_data_handle));
464 if (data == NULL)
465 {
466 data = XCNEW (struct ada_pspace_data);
467 set_program_space_data (pspace, ada_pspace_data_handle, data);
468 }
469
470 return data;
471 }
472
473 /* The cleanup callback for this module's per-program-space data. */
474
475 static void
476 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
477 {
478 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
479
480 if (pspace_data->sym_cache != NULL)
481 ada_free_symbol_cache (pspace_data->sym_cache);
482 xfree (pspace_data);
483 }
484
485 /* Utilities */
486
487 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
488 all typedef layers have been peeled. Otherwise, return TYPE.
489
490 Normally, we really expect a typedef type to only have 1 typedef layer.
491 In other words, we really expect the target type of a typedef type to be
492 a non-typedef type. This is particularly true for Ada units, because
493 the language does not have a typedef vs not-typedef distinction.
494 In that respect, the Ada compiler has been trying to eliminate as many
495 typedef definitions in the debugging information, since they generally
496 do not bring any extra information (we still use typedef under certain
497 circumstances related mostly to the GNAT encoding).
498
499 Unfortunately, we have seen situations where the debugging information
500 generated by the compiler leads to such multiple typedef layers. For
501 instance, consider the following example with stabs:
502
503 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
504 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
505
506 This is an error in the debugging information which causes type
507 pck__float_array___XUP to be defined twice, and the second time,
508 it is defined as a typedef of a typedef.
509
510 This is on the fringe of legality as far as debugging information is
511 concerned, and certainly unexpected. But it is easy to handle these
512 situations correctly, so we can afford to be lenient in this case. */
513
514 static struct type *
515 ada_typedef_target_type (struct type *type)
516 {
517 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
518 type = TYPE_TARGET_TYPE (type);
519 return type;
520 }
521
522 /* Given DECODED_NAME a string holding a symbol name in its
523 decoded form (ie using the Ada dotted notation), returns
524 its unqualified name. */
525
526 static const char *
527 ada_unqualified_name (const char *decoded_name)
528 {
529 const char *result;
530
531 /* If the decoded name starts with '<', it means that the encoded
532 name does not follow standard naming conventions, and thus that
533 it is not your typical Ada symbol name. Trying to unqualify it
534 is therefore pointless and possibly erroneous. */
535 if (decoded_name[0] == '<')
536 return decoded_name;
537
538 result = strrchr (decoded_name, '.');
539 if (result != NULL)
540 result++; /* Skip the dot... */
541 else
542 result = decoded_name;
543
544 return result;
545 }
546
547 /* Return a string starting with '<', followed by STR, and '>'.
548 The result is good until the next call. */
549
550 static char *
551 add_angle_brackets (const char *str)
552 {
553 static char *result = NULL;
554
555 xfree (result);
556 result = xstrprintf ("<%s>", str);
557 return result;
558 }
559
560 static const char *
561 ada_get_gdb_completer_word_break_characters (void)
562 {
563 return ada_completer_word_break_characters;
564 }
565
566 /* Print an array element index using the Ada syntax. */
567
568 static void
569 ada_print_array_index (struct value *index_value, struct ui_file *stream,
570 const struct value_print_options *options)
571 {
572 LA_VALUE_PRINT (index_value, stream, options);
573 fprintf_filtered (stream, " => ");
574 }
575
576 /* Assuming VECT points to an array of *SIZE objects of size
577 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
578 updating *SIZE as necessary and returning the (new) array. */
579
580 void *
581 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
582 {
583 if (*size < min_size)
584 {
585 *size *= 2;
586 if (*size < min_size)
587 *size = min_size;
588 vect = xrealloc (vect, *size * element_size);
589 }
590 return vect;
591 }
592
593 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
594 suffix of FIELD_NAME beginning "___". */
595
596 static int
597 field_name_match (const char *field_name, const char *target)
598 {
599 int len = strlen (target);
600
601 return
602 (strncmp (field_name, target, len) == 0
603 && (field_name[len] == '\0'
604 || (startswith (field_name + len, "___")
605 && strcmp (field_name + strlen (field_name) - 6,
606 "___XVN") != 0)));
607 }
608
609
610 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
611 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
612 and return its index. This function also handles fields whose name
613 have ___ suffixes because the compiler sometimes alters their name
614 by adding such a suffix to represent fields with certain constraints.
615 If the field could not be found, return a negative number if
616 MAYBE_MISSING is set. Otherwise raise an error. */
617
618 int
619 ada_get_field_index (const struct type *type, const char *field_name,
620 int maybe_missing)
621 {
622 int fieldno;
623 struct type *struct_type = check_typedef ((struct type *) type);
624
625 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
626 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
627 return fieldno;
628
629 if (!maybe_missing)
630 error (_("Unable to find field %s in struct %s. Aborting"),
631 field_name, TYPE_NAME (struct_type));
632
633 return -1;
634 }
635
636 /* The length of the prefix of NAME prior to any "___" suffix. */
637
638 int
639 ada_name_prefix_len (const char *name)
640 {
641 if (name == NULL)
642 return 0;
643 else
644 {
645 const char *p = strstr (name, "___");
646
647 if (p == NULL)
648 return strlen (name);
649 else
650 return p - name;
651 }
652 }
653
654 /* Return non-zero if SUFFIX is a suffix of STR.
655 Return zero if STR is null. */
656
657 static int
658 is_suffix (const char *str, const char *suffix)
659 {
660 int len1, len2;
661
662 if (str == NULL)
663 return 0;
664 len1 = strlen (str);
665 len2 = strlen (suffix);
666 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
667 }
668
669 /* The contents of value VAL, treated as a value of type TYPE. The
670 result is an lval in memory if VAL is. */
671
672 static struct value *
673 coerce_unspec_val_to_type (struct value *val, struct type *type)
674 {
675 type = ada_check_typedef (type);
676 if (value_type (val) == type)
677 return val;
678 else
679 {
680 struct value *result;
681
682 /* Make sure that the object size is not unreasonable before
683 trying to allocate some memory for it. */
684 ada_ensure_varsize_limit (type);
685
686 if (value_lazy (val)
687 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
688 result = allocate_value_lazy (type);
689 else
690 {
691 result = allocate_value (type);
692 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
693 }
694 set_value_component_location (result, val);
695 set_value_bitsize (result, value_bitsize (val));
696 set_value_bitpos (result, value_bitpos (val));
697 set_value_address (result, value_address (val));
698 return result;
699 }
700 }
701
702 static const gdb_byte *
703 cond_offset_host (const gdb_byte *valaddr, long offset)
704 {
705 if (valaddr == NULL)
706 return NULL;
707 else
708 return valaddr + offset;
709 }
710
711 static CORE_ADDR
712 cond_offset_target (CORE_ADDR address, long offset)
713 {
714 if (address == 0)
715 return 0;
716 else
717 return address + offset;
718 }
719
720 /* Issue a warning (as for the definition of warning in utils.c, but
721 with exactly one argument rather than ...), unless the limit on the
722 number of warnings has passed during the evaluation of the current
723 expression. */
724
725 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
726 provided by "complaint". */
727 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
728
729 static void
730 lim_warning (const char *format, ...)
731 {
732 va_list args;
733
734 va_start (args, format);
735 warnings_issued += 1;
736 if (warnings_issued <= warning_limit)
737 vwarning (format, args);
738
739 va_end (args);
740 }
741
742 /* Issue an error if the size of an object of type T is unreasonable,
743 i.e. if it would be a bad idea to allocate a value of this type in
744 GDB. */
745
746 void
747 ada_ensure_varsize_limit (const struct type *type)
748 {
749 if (TYPE_LENGTH (type) > varsize_limit)
750 error (_("object size is larger than varsize-limit"));
751 }
752
753 /* Maximum value of a SIZE-byte signed integer type. */
754 static LONGEST
755 max_of_size (int size)
756 {
757 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
758
759 return top_bit | (top_bit - 1);
760 }
761
762 /* Minimum value of a SIZE-byte signed integer type. */
763 static LONGEST
764 min_of_size (int size)
765 {
766 return -max_of_size (size) - 1;
767 }
768
769 /* Maximum value of a SIZE-byte unsigned integer type. */
770 static ULONGEST
771 umax_of_size (int size)
772 {
773 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
774
775 return top_bit | (top_bit - 1);
776 }
777
778 /* Maximum value of integral type T, as a signed quantity. */
779 static LONGEST
780 max_of_type (struct type *t)
781 {
782 if (TYPE_UNSIGNED (t))
783 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
784 else
785 return max_of_size (TYPE_LENGTH (t));
786 }
787
788 /* Minimum value of integral type T, as a signed quantity. */
789 static LONGEST
790 min_of_type (struct type *t)
791 {
792 if (TYPE_UNSIGNED (t))
793 return 0;
794 else
795 return min_of_size (TYPE_LENGTH (t));
796 }
797
798 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
799 LONGEST
800 ada_discrete_type_high_bound (struct type *type)
801 {
802 type = resolve_dynamic_type (type, NULL, 0);
803 switch (TYPE_CODE (type))
804 {
805 case TYPE_CODE_RANGE:
806 return TYPE_HIGH_BOUND (type);
807 case TYPE_CODE_ENUM:
808 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
809 case TYPE_CODE_BOOL:
810 return 1;
811 case TYPE_CODE_CHAR:
812 case TYPE_CODE_INT:
813 return max_of_type (type);
814 default:
815 error (_("Unexpected type in ada_discrete_type_high_bound."));
816 }
817 }
818
819 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
820 LONGEST
821 ada_discrete_type_low_bound (struct type *type)
822 {
823 type = resolve_dynamic_type (type, NULL, 0);
824 switch (TYPE_CODE (type))
825 {
826 case TYPE_CODE_RANGE:
827 return TYPE_LOW_BOUND (type);
828 case TYPE_CODE_ENUM:
829 return TYPE_FIELD_ENUMVAL (type, 0);
830 case TYPE_CODE_BOOL:
831 return 0;
832 case TYPE_CODE_CHAR:
833 case TYPE_CODE_INT:
834 return min_of_type (type);
835 default:
836 error (_("Unexpected type in ada_discrete_type_low_bound."));
837 }
838 }
839
840 /* The identity on non-range types. For range types, the underlying
841 non-range scalar type. */
842
843 static struct type *
844 get_base_type (struct type *type)
845 {
846 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
847 {
848 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
849 return type;
850 type = TYPE_TARGET_TYPE (type);
851 }
852 return type;
853 }
854
855 /* Return a decoded version of the given VALUE. This means returning
856 a value whose type is obtained by applying all the GNAT-specific
857 encondings, making the resulting type a static but standard description
858 of the initial type. */
859
860 struct value *
861 ada_get_decoded_value (struct value *value)
862 {
863 struct type *type = ada_check_typedef (value_type (value));
864
865 if (ada_is_array_descriptor_type (type)
866 || (ada_is_constrained_packed_array_type (type)
867 && TYPE_CODE (type) != TYPE_CODE_PTR))
868 {
869 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
870 value = ada_coerce_to_simple_array_ptr (value);
871 else
872 value = ada_coerce_to_simple_array (value);
873 }
874 else
875 value = ada_to_fixed_value (value);
876
877 return value;
878 }
879
880 /* Same as ada_get_decoded_value, but with the given TYPE.
881 Because there is no associated actual value for this type,
882 the resulting type might be a best-effort approximation in
883 the case of dynamic types. */
884
885 struct type *
886 ada_get_decoded_type (struct type *type)
887 {
888 type = to_static_fixed_type (type);
889 if (ada_is_constrained_packed_array_type (type))
890 type = ada_coerce_to_simple_array_type (type);
891 return type;
892 }
893
894 \f
895
896 /* Language Selection */
897
898 /* If the main program is in Ada, return language_ada, otherwise return LANG
899 (the main program is in Ada iif the adainit symbol is found). */
900
901 enum language
902 ada_update_initial_language (enum language lang)
903 {
904 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
905 (struct objfile *) NULL).minsym != NULL)
906 return language_ada;
907
908 return lang;
909 }
910
911 /* If the main procedure is written in Ada, then return its name.
912 The result is good until the next call. Return NULL if the main
913 procedure doesn't appear to be in Ada. */
914
915 char *
916 ada_main_name (void)
917 {
918 struct bound_minimal_symbol msym;
919 static char *main_program_name = NULL;
920
921 /* For Ada, the name of the main procedure is stored in a specific
922 string constant, generated by the binder. Look for that symbol,
923 extract its address, and then read that string. If we didn't find
924 that string, then most probably the main procedure is not written
925 in Ada. */
926 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
927
928 if (msym.minsym != NULL)
929 {
930 CORE_ADDR main_program_name_addr;
931 int err_code;
932
933 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
934 if (main_program_name_addr == 0)
935 error (_("Invalid address for Ada main program name."));
936
937 xfree (main_program_name);
938 target_read_string (main_program_name_addr, &main_program_name,
939 1024, &err_code);
940
941 if (err_code != 0)
942 return NULL;
943 return main_program_name;
944 }
945
946 /* The main procedure doesn't seem to be in Ada. */
947 return NULL;
948 }
949 \f
950 /* Symbols */
951
952 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
953 of NULLs. */
954
955 const struct ada_opname_map ada_opname_table[] = {
956 {"Oadd", "\"+\"", BINOP_ADD},
957 {"Osubtract", "\"-\"", BINOP_SUB},
958 {"Omultiply", "\"*\"", BINOP_MUL},
959 {"Odivide", "\"/\"", BINOP_DIV},
960 {"Omod", "\"mod\"", BINOP_MOD},
961 {"Orem", "\"rem\"", BINOP_REM},
962 {"Oexpon", "\"**\"", BINOP_EXP},
963 {"Olt", "\"<\"", BINOP_LESS},
964 {"Ole", "\"<=\"", BINOP_LEQ},
965 {"Ogt", "\">\"", BINOP_GTR},
966 {"Oge", "\">=\"", BINOP_GEQ},
967 {"Oeq", "\"=\"", BINOP_EQUAL},
968 {"One", "\"/=\"", BINOP_NOTEQUAL},
969 {"Oand", "\"and\"", BINOP_BITWISE_AND},
970 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
971 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
972 {"Oconcat", "\"&\"", BINOP_CONCAT},
973 {"Oabs", "\"abs\"", UNOP_ABS},
974 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
975 {"Oadd", "\"+\"", UNOP_PLUS},
976 {"Osubtract", "\"-\"", UNOP_NEG},
977 {NULL, NULL}
978 };
979
980 /* The "encoded" form of DECODED, according to GNAT conventions.
981 The result is valid until the next call to ada_encode. */
982
983 char *
984 ada_encode (const char *decoded)
985 {
986 static char *encoding_buffer = NULL;
987 static size_t encoding_buffer_size = 0;
988 const char *p;
989 int k;
990
991 if (decoded == NULL)
992 return NULL;
993
994 GROW_VECT (encoding_buffer, encoding_buffer_size,
995 2 * strlen (decoded) + 10);
996
997 k = 0;
998 for (p = decoded; *p != '\0'; p += 1)
999 {
1000 if (*p == '.')
1001 {
1002 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1003 k += 2;
1004 }
1005 else if (*p == '"')
1006 {
1007 const struct ada_opname_map *mapping;
1008
1009 for (mapping = ada_opname_table;
1010 mapping->encoded != NULL
1011 && !startswith (p, mapping->decoded); mapping += 1)
1012 ;
1013 if (mapping->encoded == NULL)
1014 error (_("invalid Ada operator name: %s"), p);
1015 strcpy (encoding_buffer + k, mapping->encoded);
1016 k += strlen (mapping->encoded);
1017 break;
1018 }
1019 else
1020 {
1021 encoding_buffer[k] = *p;
1022 k += 1;
1023 }
1024 }
1025
1026 encoding_buffer[k] = '\0';
1027 return encoding_buffer;
1028 }
1029
1030 /* Return NAME folded to lower case, or, if surrounded by single
1031 quotes, unfolded, but with the quotes stripped away. Result good
1032 to next call. */
1033
1034 char *
1035 ada_fold_name (const char *name)
1036 {
1037 static char *fold_buffer = NULL;
1038 static size_t fold_buffer_size = 0;
1039
1040 int len = strlen (name);
1041 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1042
1043 if (name[0] == '\'')
1044 {
1045 strncpy (fold_buffer, name + 1, len - 2);
1046 fold_buffer[len - 2] = '\000';
1047 }
1048 else
1049 {
1050 int i;
1051
1052 for (i = 0; i <= len; i += 1)
1053 fold_buffer[i] = tolower (name[i]);
1054 }
1055
1056 return fold_buffer;
1057 }
1058
1059 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1060
1061 static int
1062 is_lower_alphanum (const char c)
1063 {
1064 return (isdigit (c) || (isalpha (c) && islower (c)));
1065 }
1066
1067 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1068 This function saves in LEN the length of that same symbol name but
1069 without either of these suffixes:
1070 . .{DIGIT}+
1071 . ${DIGIT}+
1072 . ___{DIGIT}+
1073 . __{DIGIT}+.
1074
1075 These are suffixes introduced by the compiler for entities such as
1076 nested subprogram for instance, in order to avoid name clashes.
1077 They do not serve any purpose for the debugger. */
1078
1079 static void
1080 ada_remove_trailing_digits (const char *encoded, int *len)
1081 {
1082 if (*len > 1 && isdigit (encoded[*len - 1]))
1083 {
1084 int i = *len - 2;
1085
1086 while (i > 0 && isdigit (encoded[i]))
1087 i--;
1088 if (i >= 0 && encoded[i] == '.')
1089 *len = i;
1090 else if (i >= 0 && encoded[i] == '$')
1091 *len = i;
1092 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1093 *len = i - 2;
1094 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1095 *len = i - 1;
1096 }
1097 }
1098
1099 /* Remove the suffix introduced by the compiler for protected object
1100 subprograms. */
1101
1102 static void
1103 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1104 {
1105 /* Remove trailing N. */
1106
1107 /* Protected entry subprograms are broken into two
1108 separate subprograms: The first one is unprotected, and has
1109 a 'N' suffix; the second is the protected version, and has
1110 the 'P' suffix. The second calls the first one after handling
1111 the protection. Since the P subprograms are internally generated,
1112 we leave these names undecoded, giving the user a clue that this
1113 entity is internal. */
1114
1115 if (*len > 1
1116 && encoded[*len - 1] == 'N'
1117 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1118 *len = *len - 1;
1119 }
1120
1121 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1122
1123 static void
1124 ada_remove_Xbn_suffix (const char *encoded, int *len)
1125 {
1126 int i = *len - 1;
1127
1128 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1129 i--;
1130
1131 if (encoded[i] != 'X')
1132 return;
1133
1134 if (i == 0)
1135 return;
1136
1137 if (isalnum (encoded[i-1]))
1138 *len = i;
1139 }
1140
1141 /* If ENCODED follows the GNAT entity encoding conventions, then return
1142 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1143 replaced by ENCODED.
1144
1145 The resulting string is valid until the next call of ada_decode.
1146 If the string is unchanged by decoding, the original string pointer
1147 is returned. */
1148
1149 const char *
1150 ada_decode (const char *encoded)
1151 {
1152 int i, j;
1153 int len0;
1154 const char *p;
1155 char *decoded;
1156 int at_start_name;
1157 static char *decoding_buffer = NULL;
1158 static size_t decoding_buffer_size = 0;
1159
1160 /* The name of the Ada main procedure starts with "_ada_".
1161 This prefix is not part of the decoded name, so skip this part
1162 if we see this prefix. */
1163 if (startswith (encoded, "_ada_"))
1164 encoded += 5;
1165
1166 /* If the name starts with '_', then it is not a properly encoded
1167 name, so do not attempt to decode it. Similarly, if the name
1168 starts with '<', the name should not be decoded. */
1169 if (encoded[0] == '_' || encoded[0] == '<')
1170 goto Suppress;
1171
1172 len0 = strlen (encoded);
1173
1174 ada_remove_trailing_digits (encoded, &len0);
1175 ada_remove_po_subprogram_suffix (encoded, &len0);
1176
1177 /* Remove the ___X.* suffix if present. Do not forget to verify that
1178 the suffix is located before the current "end" of ENCODED. We want
1179 to avoid re-matching parts of ENCODED that have previously been
1180 marked as discarded (by decrementing LEN0). */
1181 p = strstr (encoded, "___");
1182 if (p != NULL && p - encoded < len0 - 3)
1183 {
1184 if (p[3] == 'X')
1185 len0 = p - encoded;
1186 else
1187 goto Suppress;
1188 }
1189
1190 /* Remove any trailing TKB suffix. It tells us that this symbol
1191 is for the body of a task, but that information does not actually
1192 appear in the decoded name. */
1193
1194 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1195 len0 -= 3;
1196
1197 /* Remove any trailing TB suffix. The TB suffix is slightly different
1198 from the TKB suffix because it is used for non-anonymous task
1199 bodies. */
1200
1201 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1202 len0 -= 2;
1203
1204 /* Remove trailing "B" suffixes. */
1205 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1206
1207 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1208 len0 -= 1;
1209
1210 /* Make decoded big enough for possible expansion by operator name. */
1211
1212 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1213 decoded = decoding_buffer;
1214
1215 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1216
1217 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1218 {
1219 i = len0 - 2;
1220 while ((i >= 0 && isdigit (encoded[i]))
1221 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1222 i -= 1;
1223 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1224 len0 = i - 1;
1225 else if (encoded[i] == '$')
1226 len0 = i;
1227 }
1228
1229 /* The first few characters that are not alphabetic are not part
1230 of any encoding we use, so we can copy them over verbatim. */
1231
1232 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1233 decoded[j] = encoded[i];
1234
1235 at_start_name = 1;
1236 while (i < len0)
1237 {
1238 /* Is this a symbol function? */
1239 if (at_start_name && encoded[i] == 'O')
1240 {
1241 int k;
1242
1243 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1244 {
1245 int op_len = strlen (ada_opname_table[k].encoded);
1246 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1247 op_len - 1) == 0)
1248 && !isalnum (encoded[i + op_len]))
1249 {
1250 strcpy (decoded + j, ada_opname_table[k].decoded);
1251 at_start_name = 0;
1252 i += op_len;
1253 j += strlen (ada_opname_table[k].decoded);
1254 break;
1255 }
1256 }
1257 if (ada_opname_table[k].encoded != NULL)
1258 continue;
1259 }
1260 at_start_name = 0;
1261
1262 /* Replace "TK__" with "__", which will eventually be translated
1263 into "." (just below). */
1264
1265 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1266 i += 2;
1267
1268 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1269 be translated into "." (just below). These are internal names
1270 generated for anonymous blocks inside which our symbol is nested. */
1271
1272 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1273 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1274 && isdigit (encoded [i+4]))
1275 {
1276 int k = i + 5;
1277
1278 while (k < len0 && isdigit (encoded[k]))
1279 k++; /* Skip any extra digit. */
1280
1281 /* Double-check that the "__B_{DIGITS}+" sequence we found
1282 is indeed followed by "__". */
1283 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1284 i = k;
1285 }
1286
1287 /* Remove _E{DIGITS}+[sb] */
1288
1289 /* Just as for protected object subprograms, there are 2 categories
1290 of subprograms created by the compiler for each entry. The first
1291 one implements the actual entry code, and has a suffix following
1292 the convention above; the second one implements the barrier and
1293 uses the same convention as above, except that the 'E' is replaced
1294 by a 'B'.
1295
1296 Just as above, we do not decode the name of barrier functions
1297 to give the user a clue that the code he is debugging has been
1298 internally generated. */
1299
1300 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1301 && isdigit (encoded[i+2]))
1302 {
1303 int k = i + 3;
1304
1305 while (k < len0 && isdigit (encoded[k]))
1306 k++;
1307
1308 if (k < len0
1309 && (encoded[k] == 'b' || encoded[k] == 's'))
1310 {
1311 k++;
1312 /* Just as an extra precaution, make sure that if this
1313 suffix is followed by anything else, it is a '_'.
1314 Otherwise, we matched this sequence by accident. */
1315 if (k == len0
1316 || (k < len0 && encoded[k] == '_'))
1317 i = k;
1318 }
1319 }
1320
1321 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1322 the GNAT front-end in protected object subprograms. */
1323
1324 if (i < len0 + 3
1325 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1326 {
1327 /* Backtrack a bit up until we reach either the begining of
1328 the encoded name, or "__". Make sure that we only find
1329 digits or lowercase characters. */
1330 const char *ptr = encoded + i - 1;
1331
1332 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1333 ptr--;
1334 if (ptr < encoded
1335 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1336 i++;
1337 }
1338
1339 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1340 {
1341 /* This is a X[bn]* sequence not separated from the previous
1342 part of the name with a non-alpha-numeric character (in other
1343 words, immediately following an alpha-numeric character), then
1344 verify that it is placed at the end of the encoded name. If
1345 not, then the encoding is not valid and we should abort the
1346 decoding. Otherwise, just skip it, it is used in body-nested
1347 package names. */
1348 do
1349 i += 1;
1350 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1351 if (i < len0)
1352 goto Suppress;
1353 }
1354 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1355 {
1356 /* Replace '__' by '.'. */
1357 decoded[j] = '.';
1358 at_start_name = 1;
1359 i += 2;
1360 j += 1;
1361 }
1362 else
1363 {
1364 /* It's a character part of the decoded name, so just copy it
1365 over. */
1366 decoded[j] = encoded[i];
1367 i += 1;
1368 j += 1;
1369 }
1370 }
1371 decoded[j] = '\000';
1372
1373 /* Decoded names should never contain any uppercase character.
1374 Double-check this, and abort the decoding if we find one. */
1375
1376 for (i = 0; decoded[i] != '\0'; i += 1)
1377 if (isupper (decoded[i]) || decoded[i] == ' ')
1378 goto Suppress;
1379
1380 if (strcmp (decoded, encoded) == 0)
1381 return encoded;
1382 else
1383 return decoded;
1384
1385 Suppress:
1386 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1387 decoded = decoding_buffer;
1388 if (encoded[0] == '<')
1389 strcpy (decoded, encoded);
1390 else
1391 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1392 return decoded;
1393
1394 }
1395
1396 /* Table for keeping permanent unique copies of decoded names. Once
1397 allocated, names in this table are never released. While this is a
1398 storage leak, it should not be significant unless there are massive
1399 changes in the set of decoded names in successive versions of a
1400 symbol table loaded during a single session. */
1401 static struct htab *decoded_names_store;
1402
1403 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1404 in the language-specific part of GSYMBOL, if it has not been
1405 previously computed. Tries to save the decoded name in the same
1406 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1407 in any case, the decoded symbol has a lifetime at least that of
1408 GSYMBOL).
1409 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1410 const, but nevertheless modified to a semantically equivalent form
1411 when a decoded name is cached in it. */
1412
1413 const char *
1414 ada_decode_symbol (const struct general_symbol_info *arg)
1415 {
1416 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1417 const char **resultp =
1418 &gsymbol->language_specific.demangled_name;
1419
1420 if (!gsymbol->ada_mangled)
1421 {
1422 const char *decoded = ada_decode (gsymbol->name);
1423 struct obstack *obstack = gsymbol->language_specific.obstack;
1424
1425 gsymbol->ada_mangled = 1;
1426
1427 if (obstack != NULL)
1428 *resultp
1429 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1430 else
1431 {
1432 /* Sometimes, we can't find a corresponding objfile, in
1433 which case, we put the result on the heap. Since we only
1434 decode when needed, we hope this usually does not cause a
1435 significant memory leak (FIXME). */
1436
1437 char **slot = (char **) htab_find_slot (decoded_names_store,
1438 decoded, INSERT);
1439
1440 if (*slot == NULL)
1441 *slot = xstrdup (decoded);
1442 *resultp = *slot;
1443 }
1444 }
1445
1446 return *resultp;
1447 }
1448
1449 static char *
1450 ada_la_decode (const char *encoded, int options)
1451 {
1452 return xstrdup (ada_decode (encoded));
1453 }
1454
1455 /* Implement la_sniff_from_mangled_name for Ada. */
1456
1457 static int
1458 ada_sniff_from_mangled_name (const char *mangled, char **out)
1459 {
1460 const char *demangled = ada_decode (mangled);
1461
1462 *out = NULL;
1463
1464 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1465 {
1466 /* Set the gsymbol language to Ada, but still return 0.
1467 Two reasons for that:
1468
1469 1. For Ada, we prefer computing the symbol's decoded name
1470 on the fly rather than pre-compute it, in order to save
1471 memory (Ada projects are typically very large).
1472
1473 2. There are some areas in the definition of the GNAT
1474 encoding where, with a bit of bad luck, we might be able
1475 to decode a non-Ada symbol, generating an incorrect
1476 demangled name (Eg: names ending with "TB" for instance
1477 are identified as task bodies and so stripped from
1478 the decoded name returned).
1479
1480 Returning 1, here, but not setting *DEMANGLED, helps us get a
1481 little bit of the best of both worlds. Because we're last,
1482 we should not affect any of the other languages that were
1483 able to demangle the symbol before us; we get to correctly
1484 tag Ada symbols as such; and even if we incorrectly tagged a
1485 non-Ada symbol, which should be rare, any routing through the
1486 Ada language should be transparent (Ada tries to behave much
1487 like C/C++ with non-Ada symbols). */
1488 return 1;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1495 suffixes that encode debugging information or leading _ada_ on
1496 SYM_NAME (see is_name_suffix commentary for the debugging
1497 information that is ignored). If WILD, then NAME need only match a
1498 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1499 either argument is NULL. */
1500
1501 static int
1502 match_name (const char *sym_name, const char *name, int wild)
1503 {
1504 if (sym_name == NULL || name == NULL)
1505 return 0;
1506 else if (wild)
1507 return wild_match (sym_name, name) == 0;
1508 else
1509 {
1510 int len_name = strlen (name);
1511
1512 return (strncmp (sym_name, name, len_name) == 0
1513 && is_name_suffix (sym_name + len_name))
1514 || (startswith (sym_name, "_ada_")
1515 && strncmp (sym_name + 5, name, len_name) == 0
1516 && is_name_suffix (sym_name + len_name + 5));
1517 }
1518 }
1519 \f
1520
1521 /* Arrays */
1522
1523 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1524 generated by the GNAT compiler to describe the index type used
1525 for each dimension of an array, check whether it follows the latest
1526 known encoding. If not, fix it up to conform to the latest encoding.
1527 Otherwise, do nothing. This function also does nothing if
1528 INDEX_DESC_TYPE is NULL.
1529
1530 The GNAT encoding used to describle the array index type evolved a bit.
1531 Initially, the information would be provided through the name of each
1532 field of the structure type only, while the type of these fields was
1533 described as unspecified and irrelevant. The debugger was then expected
1534 to perform a global type lookup using the name of that field in order
1535 to get access to the full index type description. Because these global
1536 lookups can be very expensive, the encoding was later enhanced to make
1537 the global lookup unnecessary by defining the field type as being
1538 the full index type description.
1539
1540 The purpose of this routine is to allow us to support older versions
1541 of the compiler by detecting the use of the older encoding, and by
1542 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1543 we essentially replace each field's meaningless type by the associated
1544 index subtype). */
1545
1546 void
1547 ada_fixup_array_indexes_type (struct type *index_desc_type)
1548 {
1549 int i;
1550
1551 if (index_desc_type == NULL)
1552 return;
1553 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1554
1555 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1556 to check one field only, no need to check them all). If not, return
1557 now.
1558
1559 If our INDEX_DESC_TYPE was generated using the older encoding,
1560 the field type should be a meaningless integer type whose name
1561 is not equal to the field name. */
1562 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1563 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1564 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1565 return;
1566
1567 /* Fixup each field of INDEX_DESC_TYPE. */
1568 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1569 {
1570 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1571 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1572
1573 if (raw_type)
1574 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1575 }
1576 }
1577
1578 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1579
1580 static const char *bound_name[] = {
1581 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1582 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1583 };
1584
1585 /* Maximum number of array dimensions we are prepared to handle. */
1586
1587 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1588
1589
1590 /* The desc_* routines return primitive portions of array descriptors
1591 (fat pointers). */
1592
1593 /* The descriptor or array type, if any, indicated by TYPE; removes
1594 level of indirection, if needed. */
1595
1596 static struct type *
1597 desc_base_type (struct type *type)
1598 {
1599 if (type == NULL)
1600 return NULL;
1601 type = ada_check_typedef (type);
1602 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1603 type = ada_typedef_target_type (type);
1604
1605 if (type != NULL
1606 && (TYPE_CODE (type) == TYPE_CODE_PTR
1607 || TYPE_CODE (type) == TYPE_CODE_REF))
1608 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1609 else
1610 return type;
1611 }
1612
1613 /* True iff TYPE indicates a "thin" array pointer type. */
1614
1615 static int
1616 is_thin_pntr (struct type *type)
1617 {
1618 return
1619 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1620 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1621 }
1622
1623 /* The descriptor type for thin pointer type TYPE. */
1624
1625 static struct type *
1626 thin_descriptor_type (struct type *type)
1627 {
1628 struct type *base_type = desc_base_type (type);
1629
1630 if (base_type == NULL)
1631 return NULL;
1632 if (is_suffix (ada_type_name (base_type), "___XVE"))
1633 return base_type;
1634 else
1635 {
1636 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1637
1638 if (alt_type == NULL)
1639 return base_type;
1640 else
1641 return alt_type;
1642 }
1643 }
1644
1645 /* A pointer to the array data for thin-pointer value VAL. */
1646
1647 static struct value *
1648 thin_data_pntr (struct value *val)
1649 {
1650 struct type *type = ada_check_typedef (value_type (val));
1651 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1652
1653 data_type = lookup_pointer_type (data_type);
1654
1655 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1656 return value_cast (data_type, value_copy (val));
1657 else
1658 return value_from_longest (data_type, value_address (val));
1659 }
1660
1661 /* True iff TYPE indicates a "thick" array pointer type. */
1662
1663 static int
1664 is_thick_pntr (struct type *type)
1665 {
1666 type = desc_base_type (type);
1667 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1669 }
1670
1671 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1672 pointer to one, the type of its bounds data; otherwise, NULL. */
1673
1674 static struct type *
1675 desc_bounds_type (struct type *type)
1676 {
1677 struct type *r;
1678
1679 type = desc_base_type (type);
1680
1681 if (type == NULL)
1682 return NULL;
1683 else if (is_thin_pntr (type))
1684 {
1685 type = thin_descriptor_type (type);
1686 if (type == NULL)
1687 return NULL;
1688 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1689 if (r != NULL)
1690 return ada_check_typedef (r);
1691 }
1692 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 {
1694 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1695 if (r != NULL)
1696 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1697 }
1698 return NULL;
1699 }
1700
1701 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1702 one, a pointer to its bounds data. Otherwise NULL. */
1703
1704 static struct value *
1705 desc_bounds (struct value *arr)
1706 {
1707 struct type *type = ada_check_typedef (value_type (arr));
1708
1709 if (is_thin_pntr (type))
1710 {
1711 struct type *bounds_type =
1712 desc_bounds_type (thin_descriptor_type (type));
1713 LONGEST addr;
1714
1715 if (bounds_type == NULL)
1716 error (_("Bad GNAT array descriptor"));
1717
1718 /* NOTE: The following calculation is not really kosher, but
1719 since desc_type is an XVE-encoded type (and shouldn't be),
1720 the correct calculation is a real pain. FIXME (and fix GCC). */
1721 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1722 addr = value_as_long (arr);
1723 else
1724 addr = value_address (arr);
1725
1726 return
1727 value_from_longest (lookup_pointer_type (bounds_type),
1728 addr - TYPE_LENGTH (bounds_type));
1729 }
1730
1731 else if (is_thick_pntr (type))
1732 {
1733 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1734 _("Bad GNAT array descriptor"));
1735 struct type *p_bounds_type = value_type (p_bounds);
1736
1737 if (p_bounds_type
1738 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1739 {
1740 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1741
1742 if (TYPE_STUB (target_type))
1743 p_bounds = value_cast (lookup_pointer_type
1744 (ada_check_typedef (target_type)),
1745 p_bounds);
1746 }
1747 else
1748 error (_("Bad GNAT array descriptor"));
1749
1750 return p_bounds;
1751 }
1752 else
1753 return NULL;
1754 }
1755
1756 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1757 position of the field containing the address of the bounds data. */
1758
1759 static int
1760 fat_pntr_bounds_bitpos (struct type *type)
1761 {
1762 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1763 }
1764
1765 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1766 size of the field containing the address of the bounds data. */
1767
1768 static int
1769 fat_pntr_bounds_bitsize (struct type *type)
1770 {
1771 type = desc_base_type (type);
1772
1773 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1774 return TYPE_FIELD_BITSIZE (type, 1);
1775 else
1776 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1777 }
1778
1779 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1780 pointer to one, the type of its array data (a array-with-no-bounds type);
1781 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1782 data. */
1783
1784 static struct type *
1785 desc_data_target_type (struct type *type)
1786 {
1787 type = desc_base_type (type);
1788
1789 /* NOTE: The following is bogus; see comment in desc_bounds. */
1790 if (is_thin_pntr (type))
1791 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1792 else if (is_thick_pntr (type))
1793 {
1794 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1795
1796 if (data_type
1797 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1798 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1799 }
1800
1801 return NULL;
1802 }
1803
1804 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1805 its array data. */
1806
1807 static struct value *
1808 desc_data (struct value *arr)
1809 {
1810 struct type *type = value_type (arr);
1811
1812 if (is_thin_pntr (type))
1813 return thin_data_pntr (arr);
1814 else if (is_thick_pntr (type))
1815 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1816 _("Bad GNAT array descriptor"));
1817 else
1818 return NULL;
1819 }
1820
1821
1822 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1823 position of the field containing the address of the data. */
1824
1825 static int
1826 fat_pntr_data_bitpos (struct type *type)
1827 {
1828 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1829 }
1830
1831 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1832 size of the field containing the address of the data. */
1833
1834 static int
1835 fat_pntr_data_bitsize (struct type *type)
1836 {
1837 type = desc_base_type (type);
1838
1839 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1840 return TYPE_FIELD_BITSIZE (type, 0);
1841 else
1842 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1843 }
1844
1845 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1846 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1847 bound, if WHICH is 1. The first bound is I=1. */
1848
1849 static struct value *
1850 desc_one_bound (struct value *bounds, int i, int which)
1851 {
1852 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1853 _("Bad GNAT array descriptor bounds"));
1854 }
1855
1856 /* If BOUNDS is an array-bounds structure type, return the bit position
1857 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1858 bound, if WHICH is 1. The first bound is I=1. */
1859
1860 static int
1861 desc_bound_bitpos (struct type *type, int i, int which)
1862 {
1863 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1864 }
1865
1866 /* If BOUNDS is an array-bounds structure type, return the bit field size
1867 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1868 bound, if WHICH is 1. The first bound is I=1. */
1869
1870 static int
1871 desc_bound_bitsize (struct type *type, int i, int which)
1872 {
1873 type = desc_base_type (type);
1874
1875 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1876 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1877 else
1878 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1879 }
1880
1881 /* If TYPE is the type of an array-bounds structure, the type of its
1882 Ith bound (numbering from 1). Otherwise, NULL. */
1883
1884 static struct type *
1885 desc_index_type (struct type *type, int i)
1886 {
1887 type = desc_base_type (type);
1888
1889 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1890 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1891 else
1892 return NULL;
1893 }
1894
1895 /* The number of index positions in the array-bounds type TYPE.
1896 Return 0 if TYPE is NULL. */
1897
1898 static int
1899 desc_arity (struct type *type)
1900 {
1901 type = desc_base_type (type);
1902
1903 if (type != NULL)
1904 return TYPE_NFIELDS (type) / 2;
1905 return 0;
1906 }
1907
1908 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1909 an array descriptor type (representing an unconstrained array
1910 type). */
1911
1912 static int
1913 ada_is_direct_array_type (struct type *type)
1914 {
1915 if (type == NULL)
1916 return 0;
1917 type = ada_check_typedef (type);
1918 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1919 || ada_is_array_descriptor_type (type));
1920 }
1921
1922 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1923 * to one. */
1924
1925 static int
1926 ada_is_array_type (struct type *type)
1927 {
1928 while (type != NULL
1929 && (TYPE_CODE (type) == TYPE_CODE_PTR
1930 || TYPE_CODE (type) == TYPE_CODE_REF))
1931 type = TYPE_TARGET_TYPE (type);
1932 return ada_is_direct_array_type (type);
1933 }
1934
1935 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1936
1937 int
1938 ada_is_simple_array_type (struct type *type)
1939 {
1940 if (type == NULL)
1941 return 0;
1942 type = ada_check_typedef (type);
1943 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1944 || (TYPE_CODE (type) == TYPE_CODE_PTR
1945 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1946 == TYPE_CODE_ARRAY));
1947 }
1948
1949 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1950
1951 int
1952 ada_is_array_descriptor_type (struct type *type)
1953 {
1954 struct type *data_type = desc_data_target_type (type);
1955
1956 if (type == NULL)
1957 return 0;
1958 type = ada_check_typedef (type);
1959 return (data_type != NULL
1960 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1961 && desc_arity (desc_bounds_type (type)) > 0);
1962 }
1963
1964 /* Non-zero iff type is a partially mal-formed GNAT array
1965 descriptor. FIXME: This is to compensate for some problems with
1966 debugging output from GNAT. Re-examine periodically to see if it
1967 is still needed. */
1968
1969 int
1970 ada_is_bogus_array_descriptor (struct type *type)
1971 {
1972 return
1973 type != NULL
1974 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1975 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1976 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1977 && !ada_is_array_descriptor_type (type);
1978 }
1979
1980
1981 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1982 (fat pointer) returns the type of the array data described---specifically,
1983 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1984 in from the descriptor; otherwise, they are left unspecified. If
1985 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1986 returns NULL. The result is simply the type of ARR if ARR is not
1987 a descriptor. */
1988 struct type *
1989 ada_type_of_array (struct value *arr, int bounds)
1990 {
1991 if (ada_is_constrained_packed_array_type (value_type (arr)))
1992 return decode_constrained_packed_array_type (value_type (arr));
1993
1994 if (!ada_is_array_descriptor_type (value_type (arr)))
1995 return value_type (arr);
1996
1997 if (!bounds)
1998 {
1999 struct type *array_type =
2000 ada_check_typedef (desc_data_target_type (value_type (arr)));
2001
2002 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2003 TYPE_FIELD_BITSIZE (array_type, 0) =
2004 decode_packed_array_bitsize (value_type (arr));
2005
2006 return array_type;
2007 }
2008 else
2009 {
2010 struct type *elt_type;
2011 int arity;
2012 struct value *descriptor;
2013
2014 elt_type = ada_array_element_type (value_type (arr), -1);
2015 arity = ada_array_arity (value_type (arr));
2016
2017 if (elt_type == NULL || arity == 0)
2018 return ada_check_typedef (value_type (arr));
2019
2020 descriptor = desc_bounds (arr);
2021 if (value_as_long (descriptor) == 0)
2022 return NULL;
2023 while (arity > 0)
2024 {
2025 struct type *range_type = alloc_type_copy (value_type (arr));
2026 struct type *array_type = alloc_type_copy (value_type (arr));
2027 struct value *low = desc_one_bound (descriptor, arity, 0);
2028 struct value *high = desc_one_bound (descriptor, arity, 1);
2029
2030 arity -= 1;
2031 create_static_range_type (range_type, value_type (low),
2032 longest_to_int (value_as_long (low)),
2033 longest_to_int (value_as_long (high)));
2034 elt_type = create_array_type (array_type, elt_type, range_type);
2035
2036 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2037 {
2038 /* We need to store the element packed bitsize, as well as
2039 recompute the array size, because it was previously
2040 computed based on the unpacked element size. */
2041 LONGEST lo = value_as_long (low);
2042 LONGEST hi = value_as_long (high);
2043
2044 TYPE_FIELD_BITSIZE (elt_type, 0) =
2045 decode_packed_array_bitsize (value_type (arr));
2046 /* If the array has no element, then the size is already
2047 zero, and does not need to be recomputed. */
2048 if (lo < hi)
2049 {
2050 int array_bitsize =
2051 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2052
2053 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2054 }
2055 }
2056 }
2057
2058 return lookup_pointer_type (elt_type);
2059 }
2060 }
2061
2062 /* If ARR does not represent an array, returns ARR unchanged.
2063 Otherwise, returns either a standard GDB array with bounds set
2064 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2065 GDB array. Returns NULL if ARR is a null fat pointer. */
2066
2067 struct value *
2068 ada_coerce_to_simple_array_ptr (struct value *arr)
2069 {
2070 if (ada_is_array_descriptor_type (value_type (arr)))
2071 {
2072 struct type *arrType = ada_type_of_array (arr, 1);
2073
2074 if (arrType == NULL)
2075 return NULL;
2076 return value_cast (arrType, value_copy (desc_data (arr)));
2077 }
2078 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2079 return decode_constrained_packed_array (arr);
2080 else
2081 return arr;
2082 }
2083
2084 /* If ARR does not represent an array, returns ARR unchanged.
2085 Otherwise, returns a standard GDB array describing ARR (which may
2086 be ARR itself if it already is in the proper form). */
2087
2088 struct value *
2089 ada_coerce_to_simple_array (struct value *arr)
2090 {
2091 if (ada_is_array_descriptor_type (value_type (arr)))
2092 {
2093 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2094
2095 if (arrVal == NULL)
2096 error (_("Bounds unavailable for null array pointer."));
2097 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2098 return value_ind (arrVal);
2099 }
2100 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2101 return decode_constrained_packed_array (arr);
2102 else
2103 return arr;
2104 }
2105
2106 /* If TYPE represents a GNAT array type, return it translated to an
2107 ordinary GDB array type (possibly with BITSIZE fields indicating
2108 packing). For other types, is the identity. */
2109
2110 struct type *
2111 ada_coerce_to_simple_array_type (struct type *type)
2112 {
2113 if (ada_is_constrained_packed_array_type (type))
2114 return decode_constrained_packed_array_type (type);
2115
2116 if (ada_is_array_descriptor_type (type))
2117 return ada_check_typedef (desc_data_target_type (type));
2118
2119 return type;
2120 }
2121
2122 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2123
2124 static int
2125 ada_is_packed_array_type (struct type *type)
2126 {
2127 if (type == NULL)
2128 return 0;
2129 type = desc_base_type (type);
2130 type = ada_check_typedef (type);
2131 return
2132 ada_type_name (type) != NULL
2133 && strstr (ada_type_name (type), "___XP") != NULL;
2134 }
2135
2136 /* Non-zero iff TYPE represents a standard GNAT constrained
2137 packed-array type. */
2138
2139 int
2140 ada_is_constrained_packed_array_type (struct type *type)
2141 {
2142 return ada_is_packed_array_type (type)
2143 && !ada_is_array_descriptor_type (type);
2144 }
2145
2146 /* Non-zero iff TYPE represents an array descriptor for a
2147 unconstrained packed-array type. */
2148
2149 static int
2150 ada_is_unconstrained_packed_array_type (struct type *type)
2151 {
2152 return ada_is_packed_array_type (type)
2153 && ada_is_array_descriptor_type (type);
2154 }
2155
2156 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2157 return the size of its elements in bits. */
2158
2159 static long
2160 decode_packed_array_bitsize (struct type *type)
2161 {
2162 const char *raw_name;
2163 const char *tail;
2164 long bits;
2165
2166 /* Access to arrays implemented as fat pointers are encoded as a typedef
2167 of the fat pointer type. We need the name of the fat pointer type
2168 to do the decoding, so strip the typedef layer. */
2169 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2170 type = ada_typedef_target_type (type);
2171
2172 raw_name = ada_type_name (ada_check_typedef (type));
2173 if (!raw_name)
2174 raw_name = ada_type_name (desc_base_type (type));
2175
2176 if (!raw_name)
2177 return 0;
2178
2179 tail = strstr (raw_name, "___XP");
2180 gdb_assert (tail != NULL);
2181
2182 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2183 {
2184 lim_warning
2185 (_("could not understand bit size information on packed array"));
2186 return 0;
2187 }
2188
2189 return bits;
2190 }
2191
2192 /* Given that TYPE is a standard GDB array type with all bounds filled
2193 in, and that the element size of its ultimate scalar constituents
2194 (that is, either its elements, or, if it is an array of arrays, its
2195 elements' elements, etc.) is *ELT_BITS, return an identical type,
2196 but with the bit sizes of its elements (and those of any
2197 constituent arrays) recorded in the BITSIZE components of its
2198 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2199 in bits.
2200
2201 Note that, for arrays whose index type has an XA encoding where
2202 a bound references a record discriminant, getting that discriminant,
2203 and therefore the actual value of that bound, is not possible
2204 because none of the given parameters gives us access to the record.
2205 This function assumes that it is OK in the context where it is being
2206 used to return an array whose bounds are still dynamic and where
2207 the length is arbitrary. */
2208
2209 static struct type *
2210 constrained_packed_array_type (struct type *type, long *elt_bits)
2211 {
2212 struct type *new_elt_type;
2213 struct type *new_type;
2214 struct type *index_type_desc;
2215 struct type *index_type;
2216 LONGEST low_bound, high_bound;
2217
2218 type = ada_check_typedef (type);
2219 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2220 return type;
2221
2222 index_type_desc = ada_find_parallel_type (type, "___XA");
2223 if (index_type_desc)
2224 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2225 NULL);
2226 else
2227 index_type = TYPE_INDEX_TYPE (type);
2228
2229 new_type = alloc_type_copy (type);
2230 new_elt_type =
2231 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2232 elt_bits);
2233 create_array_type (new_type, new_elt_type, index_type);
2234 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2235 TYPE_NAME (new_type) = ada_type_name (type);
2236
2237 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2238 && is_dynamic_type (check_typedef (index_type)))
2239 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2240 low_bound = high_bound = 0;
2241 if (high_bound < low_bound)
2242 *elt_bits = TYPE_LENGTH (new_type) = 0;
2243 else
2244 {
2245 *elt_bits *= (high_bound - low_bound + 1);
2246 TYPE_LENGTH (new_type) =
2247 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2248 }
2249
2250 TYPE_FIXED_INSTANCE (new_type) = 1;
2251 return new_type;
2252 }
2253
2254 /* The array type encoded by TYPE, where
2255 ada_is_constrained_packed_array_type (TYPE). */
2256
2257 static struct type *
2258 decode_constrained_packed_array_type (struct type *type)
2259 {
2260 const char *raw_name = ada_type_name (ada_check_typedef (type));
2261 char *name;
2262 const char *tail;
2263 struct type *shadow_type;
2264 long bits;
2265
2266 if (!raw_name)
2267 raw_name = ada_type_name (desc_base_type (type));
2268
2269 if (!raw_name)
2270 return NULL;
2271
2272 name = (char *) alloca (strlen (raw_name) + 1);
2273 tail = strstr (raw_name, "___XP");
2274 type = desc_base_type (type);
2275
2276 memcpy (name, raw_name, tail - raw_name);
2277 name[tail - raw_name] = '\000';
2278
2279 shadow_type = ada_find_parallel_type_with_name (type, name);
2280
2281 if (shadow_type == NULL)
2282 {
2283 lim_warning (_("could not find bounds information on packed array"));
2284 return NULL;
2285 }
2286 shadow_type = check_typedef (shadow_type);
2287
2288 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2289 {
2290 lim_warning (_("could not understand bounds "
2291 "information on packed array"));
2292 return NULL;
2293 }
2294
2295 bits = decode_packed_array_bitsize (type);
2296 return constrained_packed_array_type (shadow_type, &bits);
2297 }
2298
2299 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2300 array, returns a simple array that denotes that array. Its type is a
2301 standard GDB array type except that the BITSIZEs of the array
2302 target types are set to the number of bits in each element, and the
2303 type length is set appropriately. */
2304
2305 static struct value *
2306 decode_constrained_packed_array (struct value *arr)
2307 {
2308 struct type *type;
2309
2310 /* If our value is a pointer, then dereference it. Likewise if
2311 the value is a reference. Make sure that this operation does not
2312 cause the target type to be fixed, as this would indirectly cause
2313 this array to be decoded. The rest of the routine assumes that
2314 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2315 and "value_ind" routines to perform the dereferencing, as opposed
2316 to using "ada_coerce_ref" or "ada_value_ind". */
2317 arr = coerce_ref (arr);
2318 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2319 arr = value_ind (arr);
2320
2321 type = decode_constrained_packed_array_type (value_type (arr));
2322 if (type == NULL)
2323 {
2324 error (_("can't unpack array"));
2325 return NULL;
2326 }
2327
2328 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2329 && ada_is_modular_type (value_type (arr)))
2330 {
2331 /* This is a (right-justified) modular type representing a packed
2332 array with no wrapper. In order to interpret the value through
2333 the (left-justified) packed array type we just built, we must
2334 first left-justify it. */
2335 int bit_size, bit_pos;
2336 ULONGEST mod;
2337
2338 mod = ada_modulus (value_type (arr)) - 1;
2339 bit_size = 0;
2340 while (mod > 0)
2341 {
2342 bit_size += 1;
2343 mod >>= 1;
2344 }
2345 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2346 arr = ada_value_primitive_packed_val (arr, NULL,
2347 bit_pos / HOST_CHAR_BIT,
2348 bit_pos % HOST_CHAR_BIT,
2349 bit_size,
2350 type);
2351 }
2352
2353 return coerce_unspec_val_to_type (arr, type);
2354 }
2355
2356
2357 /* The value of the element of packed array ARR at the ARITY indices
2358 given in IND. ARR must be a simple array. */
2359
2360 static struct value *
2361 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2362 {
2363 int i;
2364 int bits, elt_off, bit_off;
2365 long elt_total_bit_offset;
2366 struct type *elt_type;
2367 struct value *v;
2368
2369 bits = 0;
2370 elt_total_bit_offset = 0;
2371 elt_type = ada_check_typedef (value_type (arr));
2372 for (i = 0; i < arity; i += 1)
2373 {
2374 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2375 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2376 error
2377 (_("attempt to do packed indexing of "
2378 "something other than a packed array"));
2379 else
2380 {
2381 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2382 LONGEST lowerbound, upperbound;
2383 LONGEST idx;
2384
2385 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2386 {
2387 lim_warning (_("don't know bounds of array"));
2388 lowerbound = upperbound = 0;
2389 }
2390
2391 idx = pos_atr (ind[i]);
2392 if (idx < lowerbound || idx > upperbound)
2393 lim_warning (_("packed array index %ld out of bounds"),
2394 (long) idx);
2395 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2396 elt_total_bit_offset += (idx - lowerbound) * bits;
2397 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2398 }
2399 }
2400 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2401 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2402
2403 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2404 bits, elt_type);
2405 return v;
2406 }
2407
2408 /* Non-zero iff TYPE includes negative integer values. */
2409
2410 static int
2411 has_negatives (struct type *type)
2412 {
2413 switch (TYPE_CODE (type))
2414 {
2415 default:
2416 return 0;
2417 case TYPE_CODE_INT:
2418 return !TYPE_UNSIGNED (type);
2419 case TYPE_CODE_RANGE:
2420 return TYPE_LOW_BOUND (type) < 0;
2421 }
2422 }
2423
2424 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2425 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2426 the unpacked buffer.
2427
2428 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2429 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2430
2431 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2432 zero otherwise.
2433
2434 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2435
2436 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2437
2438 static void
2439 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2440 gdb_byte *unpacked, int unpacked_len,
2441 int is_big_endian, int is_signed_type,
2442 int is_scalar)
2443 {
2444 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2445 int src_idx; /* Index into the source area */
2446 int src_bytes_left; /* Number of source bytes left to process. */
2447 int srcBitsLeft; /* Number of source bits left to move */
2448 int unusedLS; /* Number of bits in next significant
2449 byte of source that are unused */
2450
2451 int unpacked_idx; /* Index into the unpacked buffer */
2452 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2453
2454 unsigned long accum; /* Staging area for bits being transferred */
2455 int accumSize; /* Number of meaningful bits in accum */
2456 unsigned char sign;
2457
2458 /* Transmit bytes from least to most significant; delta is the direction
2459 the indices move. */
2460 int delta = is_big_endian ? -1 : 1;
2461
2462 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2463 bits from SRC. .*/
2464 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2465 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2466 bit_size, unpacked_len);
2467
2468 srcBitsLeft = bit_size;
2469 src_bytes_left = src_len;
2470 unpacked_bytes_left = unpacked_len;
2471 sign = 0;
2472
2473 if (is_big_endian)
2474 {
2475 src_idx = src_len - 1;
2476 if (is_signed_type
2477 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2478 sign = ~0;
2479
2480 unusedLS =
2481 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2482 % HOST_CHAR_BIT;
2483
2484 if (is_scalar)
2485 {
2486 accumSize = 0;
2487 unpacked_idx = unpacked_len - 1;
2488 }
2489 else
2490 {
2491 /* Non-scalar values must be aligned at a byte boundary... */
2492 accumSize =
2493 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2494 /* ... And are placed at the beginning (most-significant) bytes
2495 of the target. */
2496 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2497 unpacked_bytes_left = unpacked_idx + 1;
2498 }
2499 }
2500 else
2501 {
2502 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2503
2504 src_idx = unpacked_idx = 0;
2505 unusedLS = bit_offset;
2506 accumSize = 0;
2507
2508 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2509 sign = ~0;
2510 }
2511
2512 accum = 0;
2513 while (src_bytes_left > 0)
2514 {
2515 /* Mask for removing bits of the next source byte that are not
2516 part of the value. */
2517 unsigned int unusedMSMask =
2518 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2519 1;
2520 /* Sign-extend bits for this byte. */
2521 unsigned int signMask = sign & ~unusedMSMask;
2522
2523 accum |=
2524 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2525 accumSize += HOST_CHAR_BIT - unusedLS;
2526 if (accumSize >= HOST_CHAR_BIT)
2527 {
2528 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2529 accumSize -= HOST_CHAR_BIT;
2530 accum >>= HOST_CHAR_BIT;
2531 unpacked_bytes_left -= 1;
2532 unpacked_idx += delta;
2533 }
2534 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2535 unusedLS = 0;
2536 src_bytes_left -= 1;
2537 src_idx += delta;
2538 }
2539 while (unpacked_bytes_left > 0)
2540 {
2541 accum |= sign << accumSize;
2542 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2543 accumSize -= HOST_CHAR_BIT;
2544 if (accumSize < 0)
2545 accumSize = 0;
2546 accum >>= HOST_CHAR_BIT;
2547 unpacked_bytes_left -= 1;
2548 unpacked_idx += delta;
2549 }
2550 }
2551
2552 /* Create a new value of type TYPE from the contents of OBJ starting
2553 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2554 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2555 assigning through the result will set the field fetched from.
2556 VALADDR is ignored unless OBJ is NULL, in which case,
2557 VALADDR+OFFSET must address the start of storage containing the
2558 packed value. The value returned in this case is never an lval.
2559 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2560
2561 struct value *
2562 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2563 long offset, int bit_offset, int bit_size,
2564 struct type *type)
2565 {
2566 struct value *v;
2567 const gdb_byte *src; /* First byte containing data to unpack */
2568 gdb_byte *unpacked;
2569 const int is_scalar = is_scalar_type (type);
2570 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2571 gdb::byte_vector staging;
2572
2573 type = ada_check_typedef (type);
2574
2575 if (obj == NULL)
2576 src = valaddr + offset;
2577 else
2578 src = value_contents (obj) + offset;
2579
2580 if (is_dynamic_type (type))
2581 {
2582 /* The length of TYPE might by dynamic, so we need to resolve
2583 TYPE in order to know its actual size, which we then use
2584 to create the contents buffer of the value we return.
2585 The difficulty is that the data containing our object is
2586 packed, and therefore maybe not at a byte boundary. So, what
2587 we do, is unpack the data into a byte-aligned buffer, and then
2588 use that buffer as our object's value for resolving the type. */
2589 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2590 staging.resize (staging_len);
2591
2592 ada_unpack_from_contents (src, bit_offset, bit_size,
2593 staging.data (), staging.size (),
2594 is_big_endian, has_negatives (type),
2595 is_scalar);
2596 type = resolve_dynamic_type (type, staging.data (), 0);
2597 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2598 {
2599 /* This happens when the length of the object is dynamic,
2600 and is actually smaller than the space reserved for it.
2601 For instance, in an array of variant records, the bit_size
2602 we're given is the array stride, which is constant and
2603 normally equal to the maximum size of its element.
2604 But, in reality, each element only actually spans a portion
2605 of that stride. */
2606 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2607 }
2608 }
2609
2610 if (obj == NULL)
2611 {
2612 v = allocate_value (type);
2613 src = valaddr + offset;
2614 }
2615 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2616 {
2617 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2618 gdb_byte *buf;
2619
2620 v = value_at (type, value_address (obj) + offset);
2621 buf = (gdb_byte *) alloca (src_len);
2622 read_memory (value_address (v), buf, src_len);
2623 src = buf;
2624 }
2625 else
2626 {
2627 v = allocate_value (type);
2628 src = value_contents (obj) + offset;
2629 }
2630
2631 if (obj != NULL)
2632 {
2633 long new_offset = offset;
2634
2635 set_value_component_location (v, obj);
2636 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2637 set_value_bitsize (v, bit_size);
2638 if (value_bitpos (v) >= HOST_CHAR_BIT)
2639 {
2640 ++new_offset;
2641 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2642 }
2643 set_value_offset (v, new_offset);
2644
2645 /* Also set the parent value. This is needed when trying to
2646 assign a new value (in inferior memory). */
2647 set_value_parent (v, obj);
2648 }
2649 else
2650 set_value_bitsize (v, bit_size);
2651 unpacked = value_contents_writeable (v);
2652
2653 if (bit_size == 0)
2654 {
2655 memset (unpacked, 0, TYPE_LENGTH (type));
2656 return v;
2657 }
2658
2659 if (staging.size () == TYPE_LENGTH (type))
2660 {
2661 /* Small short-cut: If we've unpacked the data into a buffer
2662 of the same size as TYPE's length, then we can reuse that,
2663 instead of doing the unpacking again. */
2664 memcpy (unpacked, staging.data (), staging.size ());
2665 }
2666 else
2667 ada_unpack_from_contents (src, bit_offset, bit_size,
2668 unpacked, TYPE_LENGTH (type),
2669 is_big_endian, has_negatives (type), is_scalar);
2670
2671 return v;
2672 }
2673
2674 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2675 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2676 not overlap. */
2677 static void
2678 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2679 int src_offset, int n, int bits_big_endian_p)
2680 {
2681 unsigned int accum, mask;
2682 int accum_bits, chunk_size;
2683
2684 target += targ_offset / HOST_CHAR_BIT;
2685 targ_offset %= HOST_CHAR_BIT;
2686 source += src_offset / HOST_CHAR_BIT;
2687 src_offset %= HOST_CHAR_BIT;
2688 if (bits_big_endian_p)
2689 {
2690 accum = (unsigned char) *source;
2691 source += 1;
2692 accum_bits = HOST_CHAR_BIT - src_offset;
2693
2694 while (n > 0)
2695 {
2696 int unused_right;
2697
2698 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2699 accum_bits += HOST_CHAR_BIT;
2700 source += 1;
2701 chunk_size = HOST_CHAR_BIT - targ_offset;
2702 if (chunk_size > n)
2703 chunk_size = n;
2704 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2705 mask = ((1 << chunk_size) - 1) << unused_right;
2706 *target =
2707 (*target & ~mask)
2708 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2709 n -= chunk_size;
2710 accum_bits -= chunk_size;
2711 target += 1;
2712 targ_offset = 0;
2713 }
2714 }
2715 else
2716 {
2717 accum = (unsigned char) *source >> src_offset;
2718 source += 1;
2719 accum_bits = HOST_CHAR_BIT - src_offset;
2720
2721 while (n > 0)
2722 {
2723 accum = accum + ((unsigned char) *source << accum_bits);
2724 accum_bits += HOST_CHAR_BIT;
2725 source += 1;
2726 chunk_size = HOST_CHAR_BIT - targ_offset;
2727 if (chunk_size > n)
2728 chunk_size = n;
2729 mask = ((1 << chunk_size) - 1) << targ_offset;
2730 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2731 n -= chunk_size;
2732 accum_bits -= chunk_size;
2733 accum >>= chunk_size;
2734 target += 1;
2735 targ_offset = 0;
2736 }
2737 }
2738 }
2739
2740 /* Store the contents of FROMVAL into the location of TOVAL.
2741 Return a new value with the location of TOVAL and contents of
2742 FROMVAL. Handles assignment into packed fields that have
2743 floating-point or non-scalar types. */
2744
2745 static struct value *
2746 ada_value_assign (struct value *toval, struct value *fromval)
2747 {
2748 struct type *type = value_type (toval);
2749 int bits = value_bitsize (toval);
2750
2751 toval = ada_coerce_ref (toval);
2752 fromval = ada_coerce_ref (fromval);
2753
2754 if (ada_is_direct_array_type (value_type (toval)))
2755 toval = ada_coerce_to_simple_array (toval);
2756 if (ada_is_direct_array_type (value_type (fromval)))
2757 fromval = ada_coerce_to_simple_array (fromval);
2758
2759 if (!deprecated_value_modifiable (toval))
2760 error (_("Left operand of assignment is not a modifiable lvalue."));
2761
2762 if (VALUE_LVAL (toval) == lval_memory
2763 && bits > 0
2764 && (TYPE_CODE (type) == TYPE_CODE_FLT
2765 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2766 {
2767 int len = (value_bitpos (toval)
2768 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2769 int from_size;
2770 gdb_byte *buffer = (gdb_byte *) alloca (len);
2771 struct value *val;
2772 CORE_ADDR to_addr = value_address (toval);
2773
2774 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2775 fromval = value_cast (type, fromval);
2776
2777 read_memory (to_addr, buffer, len);
2778 from_size = value_bitsize (fromval);
2779 if (from_size == 0)
2780 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2781 if (gdbarch_bits_big_endian (get_type_arch (type)))
2782 move_bits (buffer, value_bitpos (toval),
2783 value_contents (fromval), from_size - bits, bits, 1);
2784 else
2785 move_bits (buffer, value_bitpos (toval),
2786 value_contents (fromval), 0, bits, 0);
2787 write_memory_with_notification (to_addr, buffer, len);
2788
2789 val = value_copy (toval);
2790 memcpy (value_contents_raw (val), value_contents (fromval),
2791 TYPE_LENGTH (type));
2792 deprecated_set_value_type (val, type);
2793
2794 return val;
2795 }
2796
2797 return value_assign (toval, fromval);
2798 }
2799
2800
2801 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2802 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2803 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2804 COMPONENT, and not the inferior's memory. The current contents
2805 of COMPONENT are ignored.
2806
2807 Although not part of the initial design, this function also works
2808 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2809 had a null address, and COMPONENT had an address which is equal to
2810 its offset inside CONTAINER. */
2811
2812 static void
2813 value_assign_to_component (struct value *container, struct value *component,
2814 struct value *val)
2815 {
2816 LONGEST offset_in_container =
2817 (LONGEST) (value_address (component) - value_address (container));
2818 int bit_offset_in_container =
2819 value_bitpos (component) - value_bitpos (container);
2820 int bits;
2821
2822 val = value_cast (value_type (component), val);
2823
2824 if (value_bitsize (component) == 0)
2825 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2826 else
2827 bits = value_bitsize (component);
2828
2829 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2830 move_bits (value_contents_writeable (container) + offset_in_container,
2831 value_bitpos (container) + bit_offset_in_container,
2832 value_contents (val),
2833 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2834 bits, 1);
2835 else
2836 move_bits (value_contents_writeable (container) + offset_in_container,
2837 value_bitpos (container) + bit_offset_in_container,
2838 value_contents (val), 0, bits, 0);
2839 }
2840
2841 /* The value of the element of array ARR at the ARITY indices given in IND.
2842 ARR may be either a simple array, GNAT array descriptor, or pointer
2843 thereto. */
2844
2845 struct value *
2846 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2847 {
2848 int k;
2849 struct value *elt;
2850 struct type *elt_type;
2851
2852 elt = ada_coerce_to_simple_array (arr);
2853
2854 elt_type = ada_check_typedef (value_type (elt));
2855 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2856 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2857 return value_subscript_packed (elt, arity, ind);
2858
2859 for (k = 0; k < arity; k += 1)
2860 {
2861 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2862 error (_("too many subscripts (%d expected)"), k);
2863 elt = value_subscript (elt, pos_atr (ind[k]));
2864 }
2865 return elt;
2866 }
2867
2868 /* Assuming ARR is a pointer to a GDB array, the value of the element
2869 of *ARR at the ARITY indices given in IND.
2870 Does not read the entire array into memory.
2871
2872 Note: Unlike what one would expect, this function is used instead of
2873 ada_value_subscript for basically all non-packed array types. The reason
2874 for this is that a side effect of doing our own pointer arithmetics instead
2875 of relying on value_subscript is that there is no implicit typedef peeling.
2876 This is important for arrays of array accesses, where it allows us to
2877 preserve the fact that the array's element is an array access, where the
2878 access part os encoded in a typedef layer. */
2879
2880 static struct value *
2881 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2882 {
2883 int k;
2884 struct value *array_ind = ada_value_ind (arr);
2885 struct type *type
2886 = check_typedef (value_enclosing_type (array_ind));
2887
2888 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2889 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2890 return value_subscript_packed (array_ind, arity, ind);
2891
2892 for (k = 0; k < arity; k += 1)
2893 {
2894 LONGEST lwb, upb;
2895 struct value *lwb_value;
2896
2897 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2898 error (_("too many subscripts (%d expected)"), k);
2899 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2900 value_copy (arr));
2901 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2902 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2903 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2904 type = TYPE_TARGET_TYPE (type);
2905 }
2906
2907 return value_ind (arr);
2908 }
2909
2910 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2911 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2912 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2913 this array is LOW, as per Ada rules. */
2914 static struct value *
2915 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2916 int low, int high)
2917 {
2918 struct type *type0 = ada_check_typedef (type);
2919 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2920 struct type *index_type
2921 = create_static_range_type (NULL, base_index_type, low, high);
2922 struct type *slice_type =
2923 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2924 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2925 LONGEST base_low_pos, low_pos;
2926 CORE_ADDR base;
2927
2928 if (!discrete_position (base_index_type, low, &low_pos)
2929 || !discrete_position (base_index_type, base_low, &base_low_pos))
2930 {
2931 warning (_("unable to get positions in slice, use bounds instead"));
2932 low_pos = low;
2933 base_low_pos = base_low;
2934 }
2935
2936 base = value_as_address (array_ptr)
2937 + ((low_pos - base_low_pos)
2938 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2939 return value_at_lazy (slice_type, base);
2940 }
2941
2942
2943 static struct value *
2944 ada_value_slice (struct value *array, int low, int high)
2945 {
2946 struct type *type = ada_check_typedef (value_type (array));
2947 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2948 struct type *index_type
2949 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2950 struct type *slice_type =
2951 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2952 LONGEST low_pos, high_pos;
2953
2954 if (!discrete_position (base_index_type, low, &low_pos)
2955 || !discrete_position (base_index_type, high, &high_pos))
2956 {
2957 warning (_("unable to get positions in slice, use bounds instead"));
2958 low_pos = low;
2959 high_pos = high;
2960 }
2961
2962 return value_cast (slice_type,
2963 value_slice (array, low, high_pos - low_pos + 1));
2964 }
2965
2966 /* If type is a record type in the form of a standard GNAT array
2967 descriptor, returns the number of dimensions for type. If arr is a
2968 simple array, returns the number of "array of"s that prefix its
2969 type designation. Otherwise, returns 0. */
2970
2971 int
2972 ada_array_arity (struct type *type)
2973 {
2974 int arity;
2975
2976 if (type == NULL)
2977 return 0;
2978
2979 type = desc_base_type (type);
2980
2981 arity = 0;
2982 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2983 return desc_arity (desc_bounds_type (type));
2984 else
2985 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2986 {
2987 arity += 1;
2988 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2989 }
2990
2991 return arity;
2992 }
2993
2994 /* If TYPE is a record type in the form of a standard GNAT array
2995 descriptor or a simple array type, returns the element type for
2996 TYPE after indexing by NINDICES indices, or by all indices if
2997 NINDICES is -1. Otherwise, returns NULL. */
2998
2999 struct type *
3000 ada_array_element_type (struct type *type, int nindices)
3001 {
3002 type = desc_base_type (type);
3003
3004 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
3005 {
3006 int k;
3007 struct type *p_array_type;
3008
3009 p_array_type = desc_data_target_type (type);
3010
3011 k = ada_array_arity (type);
3012 if (k == 0)
3013 return NULL;
3014
3015 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3016 if (nindices >= 0 && k > nindices)
3017 k = nindices;
3018 while (k > 0 && p_array_type != NULL)
3019 {
3020 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3021 k -= 1;
3022 }
3023 return p_array_type;
3024 }
3025 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3026 {
3027 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3028 {
3029 type = TYPE_TARGET_TYPE (type);
3030 nindices -= 1;
3031 }
3032 return type;
3033 }
3034
3035 return NULL;
3036 }
3037
3038 /* The type of nth index in arrays of given type (n numbering from 1).
3039 Does not examine memory. Throws an error if N is invalid or TYPE
3040 is not an array type. NAME is the name of the Ada attribute being
3041 evaluated ('range, 'first, 'last, or 'length); it is used in building
3042 the error message. */
3043
3044 static struct type *
3045 ada_index_type (struct type *type, int n, const char *name)
3046 {
3047 struct type *result_type;
3048
3049 type = desc_base_type (type);
3050
3051 if (n < 0 || n > ada_array_arity (type))
3052 error (_("invalid dimension number to '%s"), name);
3053
3054 if (ada_is_simple_array_type (type))
3055 {
3056 int i;
3057
3058 for (i = 1; i < n; i += 1)
3059 type = TYPE_TARGET_TYPE (type);
3060 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3061 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3062 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3063 perhaps stabsread.c would make more sense. */
3064 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3065 result_type = NULL;
3066 }
3067 else
3068 {
3069 result_type = desc_index_type (desc_bounds_type (type), n);
3070 if (result_type == NULL)
3071 error (_("attempt to take bound of something that is not an array"));
3072 }
3073
3074 return result_type;
3075 }
3076
3077 /* Given that arr is an array type, returns the lower bound of the
3078 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3079 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3080 array-descriptor type. It works for other arrays with bounds supplied
3081 by run-time quantities other than discriminants. */
3082
3083 static LONGEST
3084 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3085 {
3086 struct type *type, *index_type_desc, *index_type;
3087 int i;
3088
3089 gdb_assert (which == 0 || which == 1);
3090
3091 if (ada_is_constrained_packed_array_type (arr_type))
3092 arr_type = decode_constrained_packed_array_type (arr_type);
3093
3094 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3095 return (LONGEST) - which;
3096
3097 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3098 type = TYPE_TARGET_TYPE (arr_type);
3099 else
3100 type = arr_type;
3101
3102 if (TYPE_FIXED_INSTANCE (type))
3103 {
3104 /* The array has already been fixed, so we do not need to
3105 check the parallel ___XA type again. That encoding has
3106 already been applied, so ignore it now. */
3107 index_type_desc = NULL;
3108 }
3109 else
3110 {
3111 index_type_desc = ada_find_parallel_type (type, "___XA");
3112 ada_fixup_array_indexes_type (index_type_desc);
3113 }
3114
3115 if (index_type_desc != NULL)
3116 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3117 NULL);
3118 else
3119 {
3120 struct type *elt_type = check_typedef (type);
3121
3122 for (i = 1; i < n; i++)
3123 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3124
3125 index_type = TYPE_INDEX_TYPE (elt_type);
3126 }
3127
3128 return
3129 (LONGEST) (which == 0
3130 ? ada_discrete_type_low_bound (index_type)
3131 : ada_discrete_type_high_bound (index_type));
3132 }
3133
3134 /* Given that arr is an array value, returns the lower bound of the
3135 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3136 WHICH is 1. This routine will also work for arrays with bounds
3137 supplied by run-time quantities other than discriminants. */
3138
3139 static LONGEST
3140 ada_array_bound (struct value *arr, int n, int which)
3141 {
3142 struct type *arr_type;
3143
3144 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3145 arr = value_ind (arr);
3146 arr_type = value_enclosing_type (arr);
3147
3148 if (ada_is_constrained_packed_array_type (arr_type))
3149 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3150 else if (ada_is_simple_array_type (arr_type))
3151 return ada_array_bound_from_type (arr_type, n, which);
3152 else
3153 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3154 }
3155
3156 /* Given that arr is an array value, returns the length of the
3157 nth index. This routine will also work for arrays with bounds
3158 supplied by run-time quantities other than discriminants.
3159 Does not work for arrays indexed by enumeration types with representation
3160 clauses at the moment. */
3161
3162 static LONGEST
3163 ada_array_length (struct value *arr, int n)
3164 {
3165 struct type *arr_type, *index_type;
3166 int low, high;
3167
3168 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3169 arr = value_ind (arr);
3170 arr_type = value_enclosing_type (arr);
3171
3172 if (ada_is_constrained_packed_array_type (arr_type))
3173 return ada_array_length (decode_constrained_packed_array (arr), n);
3174
3175 if (ada_is_simple_array_type (arr_type))
3176 {
3177 low = ada_array_bound_from_type (arr_type, n, 0);
3178 high = ada_array_bound_from_type (arr_type, n, 1);
3179 }
3180 else
3181 {
3182 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3183 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3184 }
3185
3186 arr_type = check_typedef (arr_type);
3187 index_type = TYPE_INDEX_TYPE (arr_type);
3188 if (index_type != NULL)
3189 {
3190 struct type *base_type;
3191 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3192 base_type = TYPE_TARGET_TYPE (index_type);
3193 else
3194 base_type = index_type;
3195
3196 low = pos_atr (value_from_longest (base_type, low));
3197 high = pos_atr (value_from_longest (base_type, high));
3198 }
3199 return high - low + 1;
3200 }
3201
3202 /* An empty array whose type is that of ARR_TYPE (an array type),
3203 with bounds LOW to LOW-1. */
3204
3205 static struct value *
3206 empty_array (struct type *arr_type, int low)
3207 {
3208 struct type *arr_type0 = ada_check_typedef (arr_type);
3209 struct type *index_type
3210 = create_static_range_type
3211 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3212 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3213
3214 return allocate_value (create_array_type (NULL, elt_type, index_type));
3215 }
3216 \f
3217
3218 /* Name resolution */
3219
3220 /* The "decoded" name for the user-definable Ada operator corresponding
3221 to OP. */
3222
3223 static const char *
3224 ada_decoded_op_name (enum exp_opcode op)
3225 {
3226 int i;
3227
3228 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3229 {
3230 if (ada_opname_table[i].op == op)
3231 return ada_opname_table[i].decoded;
3232 }
3233 error (_("Could not find operator name for opcode"));
3234 }
3235
3236
3237 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3238 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3239 undefined namespace) and converts operators that are
3240 user-defined into appropriate function calls. If CONTEXT_TYPE is
3241 non-null, it provides a preferred result type [at the moment, only
3242 type void has any effect---causing procedures to be preferred over
3243 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3244 return type is preferred. May change (expand) *EXP. */
3245
3246 static void
3247 resolve (struct expression **expp, int void_context_p)
3248 {
3249 struct type *context_type = NULL;
3250 int pc = 0;
3251
3252 if (void_context_p)
3253 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3254
3255 resolve_subexp (expp, &pc, 1, context_type);
3256 }
3257
3258 /* Resolve the operator of the subexpression beginning at
3259 position *POS of *EXPP. "Resolving" consists of replacing
3260 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3261 with their resolutions, replacing built-in operators with
3262 function calls to user-defined operators, where appropriate, and,
3263 when DEPROCEDURE_P is non-zero, converting function-valued variables
3264 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3265 are as in ada_resolve, above. */
3266
3267 static struct value *
3268 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
3269 struct type *context_type)
3270 {
3271 int pc = *pos;
3272 int i;
3273 struct expression *exp; /* Convenience: == *expp. */
3274 enum exp_opcode op = (*expp)->elts[pc].opcode;
3275 struct value **argvec; /* Vector of operand types (alloca'ed). */
3276 int nargs; /* Number of operands. */
3277 int oplen;
3278
3279 argvec = NULL;
3280 nargs = 0;
3281 exp = *expp;
3282
3283 /* Pass one: resolve operands, saving their types and updating *pos,
3284 if needed. */
3285 switch (op)
3286 {
3287 case OP_FUNCALL:
3288 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3289 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3290 *pos += 7;
3291 else
3292 {
3293 *pos += 3;
3294 resolve_subexp (expp, pos, 0, NULL);
3295 }
3296 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3297 break;
3298
3299 case UNOP_ADDR:
3300 *pos += 1;
3301 resolve_subexp (expp, pos, 0, NULL);
3302 break;
3303
3304 case UNOP_QUAL:
3305 *pos += 3;
3306 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3307 break;
3308
3309 case OP_ATR_MODULUS:
3310 case OP_ATR_SIZE:
3311 case OP_ATR_TAG:
3312 case OP_ATR_FIRST:
3313 case OP_ATR_LAST:
3314 case OP_ATR_LENGTH:
3315 case OP_ATR_POS:
3316 case OP_ATR_VAL:
3317 case OP_ATR_MIN:
3318 case OP_ATR_MAX:
3319 case TERNOP_IN_RANGE:
3320 case BINOP_IN_BOUNDS:
3321 case UNOP_IN_RANGE:
3322 case OP_AGGREGATE:
3323 case OP_OTHERS:
3324 case OP_CHOICES:
3325 case OP_POSITIONAL:
3326 case OP_DISCRETE_RANGE:
3327 case OP_NAME:
3328 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3329 *pos += oplen;
3330 break;
3331
3332 case BINOP_ASSIGN:
3333 {
3334 struct value *arg1;
3335
3336 *pos += 1;
3337 arg1 = resolve_subexp (expp, pos, 0, NULL);
3338 if (arg1 == NULL)
3339 resolve_subexp (expp, pos, 1, NULL);
3340 else
3341 resolve_subexp (expp, pos, 1, value_type (arg1));
3342 break;
3343 }
3344
3345 case UNOP_CAST:
3346 *pos += 3;
3347 nargs = 1;
3348 break;
3349
3350 case BINOP_ADD:
3351 case BINOP_SUB:
3352 case BINOP_MUL:
3353 case BINOP_DIV:
3354 case BINOP_REM:
3355 case BINOP_MOD:
3356 case BINOP_EXP:
3357 case BINOP_CONCAT:
3358 case BINOP_LOGICAL_AND:
3359 case BINOP_LOGICAL_OR:
3360 case BINOP_BITWISE_AND:
3361 case BINOP_BITWISE_IOR:
3362 case BINOP_BITWISE_XOR:
3363
3364 case BINOP_EQUAL:
3365 case BINOP_NOTEQUAL:
3366 case BINOP_LESS:
3367 case BINOP_GTR:
3368 case BINOP_LEQ:
3369 case BINOP_GEQ:
3370
3371 case BINOP_REPEAT:
3372 case BINOP_SUBSCRIPT:
3373 case BINOP_COMMA:
3374 *pos += 1;
3375 nargs = 2;
3376 break;
3377
3378 case UNOP_NEG:
3379 case UNOP_PLUS:
3380 case UNOP_LOGICAL_NOT:
3381 case UNOP_ABS:
3382 case UNOP_IND:
3383 *pos += 1;
3384 nargs = 1;
3385 break;
3386
3387 case OP_LONG:
3388 case OP_DOUBLE:
3389 case OP_VAR_VALUE:
3390 *pos += 4;
3391 break;
3392
3393 case OP_TYPE:
3394 case OP_BOOL:
3395 case OP_LAST:
3396 case OP_INTERNALVAR:
3397 *pos += 3;
3398 break;
3399
3400 case UNOP_MEMVAL:
3401 *pos += 3;
3402 nargs = 1;
3403 break;
3404
3405 case OP_REGISTER:
3406 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3407 break;
3408
3409 case STRUCTOP_STRUCT:
3410 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3411 nargs = 1;
3412 break;
3413
3414 case TERNOP_SLICE:
3415 *pos += 1;
3416 nargs = 3;
3417 break;
3418
3419 case OP_STRING:
3420 break;
3421
3422 default:
3423 error (_("Unexpected operator during name resolution"));
3424 }
3425
3426 argvec = XALLOCAVEC (struct value *, nargs + 1);
3427 for (i = 0; i < nargs; i += 1)
3428 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3429 argvec[i] = NULL;
3430 exp = *expp;
3431
3432 /* Pass two: perform any resolution on principal operator. */
3433 switch (op)
3434 {
3435 default:
3436 break;
3437
3438 case OP_VAR_VALUE:
3439 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3440 {
3441 struct block_symbol *candidates;
3442 int n_candidates;
3443
3444 n_candidates =
3445 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3446 (exp->elts[pc + 2].symbol),
3447 exp->elts[pc + 1].block, VAR_DOMAIN,
3448 &candidates);
3449
3450 if (n_candidates > 1)
3451 {
3452 /* Types tend to get re-introduced locally, so if there
3453 are any local symbols that are not types, first filter
3454 out all types. */
3455 int j;
3456 for (j = 0; j < n_candidates; j += 1)
3457 switch (SYMBOL_CLASS (candidates[j].symbol))
3458 {
3459 case LOC_REGISTER:
3460 case LOC_ARG:
3461 case LOC_REF_ARG:
3462 case LOC_REGPARM_ADDR:
3463 case LOC_LOCAL:
3464 case LOC_COMPUTED:
3465 goto FoundNonType;
3466 default:
3467 break;
3468 }
3469 FoundNonType:
3470 if (j < n_candidates)
3471 {
3472 j = 0;
3473 while (j < n_candidates)
3474 {
3475 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3476 {
3477 candidates[j] = candidates[n_candidates - 1];
3478 n_candidates -= 1;
3479 }
3480 else
3481 j += 1;
3482 }
3483 }
3484 }
3485
3486 if (n_candidates == 0)
3487 error (_("No definition found for %s"),
3488 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3489 else if (n_candidates == 1)
3490 i = 0;
3491 else if (deprocedure_p
3492 && !is_nonfunction (candidates, n_candidates))
3493 {
3494 i = ada_resolve_function
3495 (candidates, n_candidates, NULL, 0,
3496 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3497 context_type);
3498 if (i < 0)
3499 error (_("Could not find a match for %s"),
3500 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3501 }
3502 else
3503 {
3504 printf_filtered (_("Multiple matches for %s\n"),
3505 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3506 user_select_syms (candidates, n_candidates, 1);
3507 i = 0;
3508 }
3509
3510 exp->elts[pc + 1].block = candidates[i].block;
3511 exp->elts[pc + 2].symbol = candidates[i].symbol;
3512 if (innermost_block == NULL
3513 || contained_in (candidates[i].block, innermost_block))
3514 innermost_block = candidates[i].block;
3515 }
3516
3517 if (deprocedure_p
3518 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3519 == TYPE_CODE_FUNC))
3520 {
3521 replace_operator_with_call (expp, pc, 0, 0,
3522 exp->elts[pc + 2].symbol,
3523 exp->elts[pc + 1].block);
3524 exp = *expp;
3525 }
3526 break;
3527
3528 case OP_FUNCALL:
3529 {
3530 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3531 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3532 {
3533 struct block_symbol *candidates;
3534 int n_candidates;
3535
3536 n_candidates =
3537 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3538 (exp->elts[pc + 5].symbol),
3539 exp->elts[pc + 4].block, VAR_DOMAIN,
3540 &candidates);
3541 if (n_candidates == 1)
3542 i = 0;
3543 else
3544 {
3545 i = ada_resolve_function
3546 (candidates, n_candidates,
3547 argvec, nargs,
3548 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3549 context_type);
3550 if (i < 0)
3551 error (_("Could not find a match for %s"),
3552 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3553 }
3554
3555 exp->elts[pc + 4].block = candidates[i].block;
3556 exp->elts[pc + 5].symbol = candidates[i].symbol;
3557 if (innermost_block == NULL
3558 || contained_in (candidates[i].block, innermost_block))
3559 innermost_block = candidates[i].block;
3560 }
3561 }
3562 break;
3563 case BINOP_ADD:
3564 case BINOP_SUB:
3565 case BINOP_MUL:
3566 case BINOP_DIV:
3567 case BINOP_REM:
3568 case BINOP_MOD:
3569 case BINOP_CONCAT:
3570 case BINOP_BITWISE_AND:
3571 case BINOP_BITWISE_IOR:
3572 case BINOP_BITWISE_XOR:
3573 case BINOP_EQUAL:
3574 case BINOP_NOTEQUAL:
3575 case BINOP_LESS:
3576 case BINOP_GTR:
3577 case BINOP_LEQ:
3578 case BINOP_GEQ:
3579 case BINOP_EXP:
3580 case UNOP_NEG:
3581 case UNOP_PLUS:
3582 case UNOP_LOGICAL_NOT:
3583 case UNOP_ABS:
3584 if (possible_user_operator_p (op, argvec))
3585 {
3586 struct block_symbol *candidates;
3587 int n_candidates;
3588
3589 n_candidates =
3590 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3591 (struct block *) NULL, VAR_DOMAIN,
3592 &candidates);
3593 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3594 ada_decoded_op_name (op), NULL);
3595 if (i < 0)
3596 break;
3597
3598 replace_operator_with_call (expp, pc, nargs, 1,
3599 candidates[i].symbol,
3600 candidates[i].block);
3601 exp = *expp;
3602 }
3603 break;
3604
3605 case OP_TYPE:
3606 case OP_REGISTER:
3607 return NULL;
3608 }
3609
3610 *pos = pc;
3611 return evaluate_subexp_type (exp, pos);
3612 }
3613
3614 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3615 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3616 a non-pointer. */
3617 /* The term "match" here is rather loose. The match is heuristic and
3618 liberal. */
3619
3620 static int
3621 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3622 {
3623 ftype = ada_check_typedef (ftype);
3624 atype = ada_check_typedef (atype);
3625
3626 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3627 ftype = TYPE_TARGET_TYPE (ftype);
3628 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3629 atype = TYPE_TARGET_TYPE (atype);
3630
3631 switch (TYPE_CODE (ftype))
3632 {
3633 default:
3634 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3635 case TYPE_CODE_PTR:
3636 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3637 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3638 TYPE_TARGET_TYPE (atype), 0);
3639 else
3640 return (may_deref
3641 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3642 case TYPE_CODE_INT:
3643 case TYPE_CODE_ENUM:
3644 case TYPE_CODE_RANGE:
3645 switch (TYPE_CODE (atype))
3646 {
3647 case TYPE_CODE_INT:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_RANGE:
3650 return 1;
3651 default:
3652 return 0;
3653 }
3654
3655 case TYPE_CODE_ARRAY:
3656 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3657 || ada_is_array_descriptor_type (atype));
3658
3659 case TYPE_CODE_STRUCT:
3660 if (ada_is_array_descriptor_type (ftype))
3661 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3662 || ada_is_array_descriptor_type (atype));
3663 else
3664 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3665 && !ada_is_array_descriptor_type (atype));
3666
3667 case TYPE_CODE_UNION:
3668 case TYPE_CODE_FLT:
3669 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3670 }
3671 }
3672
3673 /* Return non-zero if the formals of FUNC "sufficiently match" the
3674 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3675 may also be an enumeral, in which case it is treated as a 0-
3676 argument function. */
3677
3678 static int
3679 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3680 {
3681 int i;
3682 struct type *func_type = SYMBOL_TYPE (func);
3683
3684 if (SYMBOL_CLASS (func) == LOC_CONST
3685 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3686 return (n_actuals == 0);
3687 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3688 return 0;
3689
3690 if (TYPE_NFIELDS (func_type) != n_actuals)
3691 return 0;
3692
3693 for (i = 0; i < n_actuals; i += 1)
3694 {
3695 if (actuals[i] == NULL)
3696 return 0;
3697 else
3698 {
3699 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3700 i));
3701 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3702
3703 if (!ada_type_match (ftype, atype, 1))
3704 return 0;
3705 }
3706 }
3707 return 1;
3708 }
3709
3710 /* False iff function type FUNC_TYPE definitely does not produce a value
3711 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3712 FUNC_TYPE is not a valid function type with a non-null return type
3713 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3714
3715 static int
3716 return_match (struct type *func_type, struct type *context_type)
3717 {
3718 struct type *return_type;
3719
3720 if (func_type == NULL)
3721 return 1;
3722
3723 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3724 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3725 else
3726 return_type = get_base_type (func_type);
3727 if (return_type == NULL)
3728 return 1;
3729
3730 context_type = get_base_type (context_type);
3731
3732 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3733 return context_type == NULL || return_type == context_type;
3734 else if (context_type == NULL)
3735 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3736 else
3737 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3738 }
3739
3740
3741 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3742 function (if any) that matches the types of the NARGS arguments in
3743 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3744 that returns that type, then eliminate matches that don't. If
3745 CONTEXT_TYPE is void and there is at least one match that does not
3746 return void, eliminate all matches that do.
3747
3748 Asks the user if there is more than one match remaining. Returns -1
3749 if there is no such symbol or none is selected. NAME is used
3750 solely for messages. May re-arrange and modify SYMS in
3751 the process; the index returned is for the modified vector. */
3752
3753 static int
3754 ada_resolve_function (struct block_symbol syms[],
3755 int nsyms, struct value **args, int nargs,
3756 const char *name, struct type *context_type)
3757 {
3758 int fallback;
3759 int k;
3760 int m; /* Number of hits */
3761
3762 m = 0;
3763 /* In the first pass of the loop, we only accept functions matching
3764 context_type. If none are found, we add a second pass of the loop
3765 where every function is accepted. */
3766 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3767 {
3768 for (k = 0; k < nsyms; k += 1)
3769 {
3770 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3771
3772 if (ada_args_match (syms[k].symbol, args, nargs)
3773 && (fallback || return_match (type, context_type)))
3774 {
3775 syms[m] = syms[k];
3776 m += 1;
3777 }
3778 }
3779 }
3780
3781 /* If we got multiple matches, ask the user which one to use. Don't do this
3782 interactive thing during completion, though, as the purpose of the
3783 completion is providing a list of all possible matches. Prompting the
3784 user to filter it down would be completely unexpected in this case. */
3785 if (m == 0)
3786 return -1;
3787 else if (m > 1 && !parse_completion)
3788 {
3789 printf_filtered (_("Multiple matches for %s\n"), name);
3790 user_select_syms (syms, m, 1);
3791 return 0;
3792 }
3793 return 0;
3794 }
3795
3796 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3797 in a listing of choices during disambiguation (see sort_choices, below).
3798 The idea is that overloadings of a subprogram name from the
3799 same package should sort in their source order. We settle for ordering
3800 such symbols by their trailing number (__N or $N). */
3801
3802 static int
3803 encoded_ordered_before (const char *N0, const char *N1)
3804 {
3805 if (N1 == NULL)
3806 return 0;
3807 else if (N0 == NULL)
3808 return 1;
3809 else
3810 {
3811 int k0, k1;
3812
3813 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3814 ;
3815 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3816 ;
3817 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3818 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3819 {
3820 int n0, n1;
3821
3822 n0 = k0;
3823 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3824 n0 -= 1;
3825 n1 = k1;
3826 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3827 n1 -= 1;
3828 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3829 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3830 }
3831 return (strcmp (N0, N1) < 0);
3832 }
3833 }
3834
3835 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3836 encoded names. */
3837
3838 static void
3839 sort_choices (struct block_symbol syms[], int nsyms)
3840 {
3841 int i;
3842
3843 for (i = 1; i < nsyms; i += 1)
3844 {
3845 struct block_symbol sym = syms[i];
3846 int j;
3847
3848 for (j = i - 1; j >= 0; j -= 1)
3849 {
3850 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3851 SYMBOL_LINKAGE_NAME (sym.symbol)))
3852 break;
3853 syms[j + 1] = syms[j];
3854 }
3855 syms[j + 1] = sym;
3856 }
3857 }
3858
3859 /* Whether GDB should display formals and return types for functions in the
3860 overloads selection menu. */
3861 static int print_signatures = 1;
3862
3863 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3864 all but functions, the signature is just the name of the symbol. For
3865 functions, this is the name of the function, the list of types for formals
3866 and the return type (if any). */
3867
3868 static void
3869 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3870 const struct type_print_options *flags)
3871 {
3872 struct type *type = SYMBOL_TYPE (sym);
3873
3874 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3875 if (!print_signatures
3876 || type == NULL
3877 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3878 return;
3879
3880 if (TYPE_NFIELDS (type) > 0)
3881 {
3882 int i;
3883
3884 fprintf_filtered (stream, " (");
3885 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3886 {
3887 if (i > 0)
3888 fprintf_filtered (stream, "; ");
3889 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3890 flags);
3891 }
3892 fprintf_filtered (stream, ")");
3893 }
3894 if (TYPE_TARGET_TYPE (type) != NULL
3895 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3896 {
3897 fprintf_filtered (stream, " return ");
3898 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3899 }
3900 }
3901
3902 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3903 by asking the user (if necessary), returning the number selected,
3904 and setting the first elements of SYMS items. Error if no symbols
3905 selected. */
3906
3907 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3908 to be re-integrated one of these days. */
3909
3910 int
3911 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3912 {
3913 int i;
3914 int *chosen = XALLOCAVEC (int , nsyms);
3915 int n_chosen;
3916 int first_choice = (max_results == 1) ? 1 : 2;
3917 const char *select_mode = multiple_symbols_select_mode ();
3918
3919 if (max_results < 1)
3920 error (_("Request to select 0 symbols!"));
3921 if (nsyms <= 1)
3922 return nsyms;
3923
3924 if (select_mode == multiple_symbols_cancel)
3925 error (_("\
3926 canceled because the command is ambiguous\n\
3927 See set/show multiple-symbol."));
3928
3929 /* If select_mode is "all", then return all possible symbols.
3930 Only do that if more than one symbol can be selected, of course.
3931 Otherwise, display the menu as usual. */
3932 if (select_mode == multiple_symbols_all && max_results > 1)
3933 return nsyms;
3934
3935 printf_unfiltered (_("[0] cancel\n"));
3936 if (max_results > 1)
3937 printf_unfiltered (_("[1] all\n"));
3938
3939 sort_choices (syms, nsyms);
3940
3941 for (i = 0; i < nsyms; i += 1)
3942 {
3943 if (syms[i].symbol == NULL)
3944 continue;
3945
3946 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3947 {
3948 struct symtab_and_line sal =
3949 find_function_start_sal (syms[i].symbol, 1);
3950
3951 printf_unfiltered ("[%d] ", i + first_choice);
3952 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3953 &type_print_raw_options);
3954 if (sal.symtab == NULL)
3955 printf_unfiltered (_(" at <no source file available>:%d\n"),
3956 sal.line);
3957 else
3958 printf_unfiltered (_(" at %s:%d\n"),
3959 symtab_to_filename_for_display (sal.symtab),
3960 sal.line);
3961 continue;
3962 }
3963 else
3964 {
3965 int is_enumeral =
3966 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3967 && SYMBOL_TYPE (syms[i].symbol) != NULL
3968 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3969 struct symtab *symtab = NULL;
3970
3971 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3972 symtab = symbol_symtab (syms[i].symbol);
3973
3974 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3975 {
3976 printf_unfiltered ("[%d] ", i + first_choice);
3977 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3978 &type_print_raw_options);
3979 printf_unfiltered (_(" at %s:%d\n"),
3980 symtab_to_filename_for_display (symtab),
3981 SYMBOL_LINE (syms[i].symbol));
3982 }
3983 else if (is_enumeral
3984 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3985 {
3986 printf_unfiltered (("[%d] "), i + first_choice);
3987 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3988 gdb_stdout, -1, 0, &type_print_raw_options);
3989 printf_unfiltered (_("'(%s) (enumeral)\n"),
3990 SYMBOL_PRINT_NAME (syms[i].symbol));
3991 }
3992 else
3993 {
3994 printf_unfiltered ("[%d] ", i + first_choice);
3995 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3996 &type_print_raw_options);
3997
3998 if (symtab != NULL)
3999 printf_unfiltered (is_enumeral
4000 ? _(" in %s (enumeral)\n")
4001 : _(" at %s:?\n"),
4002 symtab_to_filename_for_display (symtab));
4003 else
4004 printf_unfiltered (is_enumeral
4005 ? _(" (enumeral)\n")
4006 : _(" at ?\n"));
4007 }
4008 }
4009 }
4010
4011 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4012 "overload-choice");
4013
4014 for (i = 0; i < n_chosen; i += 1)
4015 syms[i] = syms[chosen[i]];
4016
4017 return n_chosen;
4018 }
4019
4020 /* Read and validate a set of numeric choices from the user in the
4021 range 0 .. N_CHOICES-1. Place the results in increasing
4022 order in CHOICES[0 .. N-1], and return N.
4023
4024 The user types choices as a sequence of numbers on one line
4025 separated by blanks, encoding them as follows:
4026
4027 + A choice of 0 means to cancel the selection, throwing an error.
4028 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4029 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4030
4031 The user is not allowed to choose more than MAX_RESULTS values.
4032
4033 ANNOTATION_SUFFIX, if present, is used to annotate the input
4034 prompts (for use with the -f switch). */
4035
4036 int
4037 get_selections (int *choices, int n_choices, int max_results,
4038 int is_all_choice, const char *annotation_suffix)
4039 {
4040 char *args;
4041 const char *prompt;
4042 int n_chosen;
4043 int first_choice = is_all_choice ? 2 : 1;
4044
4045 prompt = getenv ("PS2");
4046 if (prompt == NULL)
4047 prompt = "> ";
4048
4049 args = command_line_input (prompt, 0, annotation_suffix);
4050
4051 if (args == NULL)
4052 error_no_arg (_("one or more choice numbers"));
4053
4054 n_chosen = 0;
4055
4056 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4057 order, as given in args. Choices are validated. */
4058 while (1)
4059 {
4060 char *args2;
4061 int choice, j;
4062
4063 args = skip_spaces (args);
4064 if (*args == '\0' && n_chosen == 0)
4065 error_no_arg (_("one or more choice numbers"));
4066 else if (*args == '\0')
4067 break;
4068
4069 choice = strtol (args, &args2, 10);
4070 if (args == args2 || choice < 0
4071 || choice > n_choices + first_choice - 1)
4072 error (_("Argument must be choice number"));
4073 args = args2;
4074
4075 if (choice == 0)
4076 error (_("cancelled"));
4077
4078 if (choice < first_choice)
4079 {
4080 n_chosen = n_choices;
4081 for (j = 0; j < n_choices; j += 1)
4082 choices[j] = j;
4083 break;
4084 }
4085 choice -= first_choice;
4086
4087 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4088 {
4089 }
4090
4091 if (j < 0 || choice != choices[j])
4092 {
4093 int k;
4094
4095 for (k = n_chosen - 1; k > j; k -= 1)
4096 choices[k + 1] = choices[k];
4097 choices[j + 1] = choice;
4098 n_chosen += 1;
4099 }
4100 }
4101
4102 if (n_chosen > max_results)
4103 error (_("Select no more than %d of the above"), max_results);
4104
4105 return n_chosen;
4106 }
4107
4108 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4109 on the function identified by SYM and BLOCK, and taking NARGS
4110 arguments. Update *EXPP as needed to hold more space. */
4111
4112 static void
4113 replace_operator_with_call (struct expression **expp, int pc, int nargs,
4114 int oplen, struct symbol *sym,
4115 const struct block *block)
4116 {
4117 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4118 symbol, -oplen for operator being replaced). */
4119 struct expression *newexp = (struct expression *)
4120 xzalloc (sizeof (struct expression)
4121 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4122 struct expression *exp = *expp;
4123
4124 newexp->nelts = exp->nelts + 7 - oplen;
4125 newexp->language_defn = exp->language_defn;
4126 newexp->gdbarch = exp->gdbarch;
4127 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4128 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4129 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4130
4131 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4132 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4133
4134 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4135 newexp->elts[pc + 4].block = block;
4136 newexp->elts[pc + 5].symbol = sym;
4137
4138 *expp = newexp;
4139 xfree (exp);
4140 }
4141
4142 /* Type-class predicates */
4143
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
4146
4147 static int
4148 numeric_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
4165 }
4166 }
4167
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4169
4170 static int
4171 integer_type_p (struct type *type)
4172 {
4173 if (type == NULL)
4174 return 0;
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
4187 }
4188 }
4189
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4191
4192 static int
4193 scalar_type_p (struct type *type)
4194 {
4195 if (type == NULL)
4196 return 0;
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
4209 }
4210 }
4211
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4213
4214 static int
4215 discrete_type_p (struct type *type)
4216 {
4217 if (type == NULL)
4218 return 0;
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4227 return 1;
4228 default:
4229 return 0;
4230 }
4231 }
4232 }
4233
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4237
4238 static int
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4240 {
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4245
4246 if (type0 == NULL)
4247 return 0;
4248
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4274
4275 case BINOP_CONCAT:
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4277
4278 case BINOP_EXP:
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
4286
4287 }
4288 }
4289 \f
4290 /* Renaming */
4291
4292 /* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304 /* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327 {
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4335 {
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
4369 }
4370
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382 }
4383
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392 {
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
4397
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4401
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
4427
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
4441 }
4442
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4446
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4450 {
4451 const char *sym_name;
4452
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4456 }
4457 \f
4458
4459 /* Evaluation: Function Calls */
4460
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4464
4465 static struct value *
4466 ensure_lval (struct value *val)
4467 {
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4470 {
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4474
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4478 }
4479
4480 return val;
4481 }
4482
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4487
4488 struct value *
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4490 {
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4499
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4505 {
4506 struct value *result;
4507
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
4516
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4523 }
4524 result = value_addr (actual);
4525 }
4526 else
4527 return actual;
4528 return value_cast_pointers (formal_type, result, 0);
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
4542
4543 return actual;
4544 }
4545
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551 static CORE_ADDR
4552 value_pointer (struct value *value, struct type *type)
4553 {
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563 }
4564
4565
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4571
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4574 {
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4579 int i;
4580
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
4583 {
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4592 }
4593
4594 bounds = ensure_lval (bounds);
4595
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4609
4610 descriptor = ensure_lval (descriptor);
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616 }
4617 \f
4618 /* Symbol Cache Module */
4619
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
4630 /* Initialize the contents of SYM_CACHE. */
4631
4632 static void
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634 {
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637 }
4638
4639 /* Free the memory used by SYM_CACHE. */
4640
4641 static void
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4643 {
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646 }
4647
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4650
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4653 {
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4655
4656 if (pspace_data->sym_cache == NULL)
4657 {
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4660 }
4661
4662 return pspace_data->sym_cache;
4663 }
4664
4665 /* Clear all entries from the symbol cache. */
4666
4667 static void
4668 ada_clear_symbol_cache (void)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4675 }
4676
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4679
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4682 {
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4689 {
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4691 return e;
4692 }
4693 return NULL;
4694 }
4695
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4701
4702 static int
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4705 {
4706 struct cache_entry **e = find_entry (name, domain);
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
4715 }
4716
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4719
4720 static void
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4723 {
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748 sizeof (*e));
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4753 strcpy (copy, name);
4754 e->sym = sym;
4755 e->domain = domain;
4756 e->block = block;
4757 }
4758 \f
4759 /* Symbol Lookup */
4760
4761 /* Return nonzero if wild matching should be used when searching for
4762 all symbols matching LOOKUP_NAME.
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups (see ada_name_for_lookup). */
4766
4767 static int
4768 should_use_wild_match (const char *lookup_name)
4769 {
4770 return (strstr (lookup_name, "__") == NULL);
4771 }
4772
4773 /* Return the result of a standard (literal, C-like) lookup of NAME in
4774 given DOMAIN, visible from lexical block BLOCK. */
4775
4776 static struct symbol *
4777 standard_lookup (const char *name, const struct block *block,
4778 domain_enum domain)
4779 {
4780 /* Initialize it just to avoid a GCC false warning. */
4781 struct block_symbol sym = {NULL, NULL};
4782
4783 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4784 return sym.symbol;
4785 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4786 cache_symbol (name, domain, sym.symbol, sym.block);
4787 return sym.symbol;
4788 }
4789
4790
4791 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4792 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4793 since they contend in overloading in the same way. */
4794 static int
4795 is_nonfunction (struct block_symbol syms[], int n)
4796 {
4797 int i;
4798
4799 for (i = 0; i < n; i += 1)
4800 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4801 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4802 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4803 return 1;
4804
4805 return 0;
4806 }
4807
4808 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4809 struct types. Otherwise, they may not. */
4810
4811 static int
4812 equiv_types (struct type *type0, struct type *type1)
4813 {
4814 if (type0 == type1)
4815 return 1;
4816 if (type0 == NULL || type1 == NULL
4817 || TYPE_CODE (type0) != TYPE_CODE (type1))
4818 return 0;
4819 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4820 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4821 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4822 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4823 return 1;
4824
4825 return 0;
4826 }
4827
4828 /* True iff SYM0 represents the same entity as SYM1, or one that is
4829 no more defined than that of SYM1. */
4830
4831 static int
4832 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4833 {
4834 if (sym0 == sym1)
4835 return 1;
4836 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4837 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4838 return 0;
4839
4840 switch (SYMBOL_CLASS (sym0))
4841 {
4842 case LOC_UNDEF:
4843 return 1;
4844 case LOC_TYPEDEF:
4845 {
4846 struct type *type0 = SYMBOL_TYPE (sym0);
4847 struct type *type1 = SYMBOL_TYPE (sym1);
4848 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4849 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4850 int len0 = strlen (name0);
4851
4852 return
4853 TYPE_CODE (type0) == TYPE_CODE (type1)
4854 && (equiv_types (type0, type1)
4855 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4856 && startswith (name1 + len0, "___XV")));
4857 }
4858 case LOC_CONST:
4859 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4860 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4861 default:
4862 return 0;
4863 }
4864 }
4865
4866 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4867 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4868
4869 static void
4870 add_defn_to_vec (struct obstack *obstackp,
4871 struct symbol *sym,
4872 const struct block *block)
4873 {
4874 int i;
4875 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4876
4877 /* Do not try to complete stub types, as the debugger is probably
4878 already scanning all symbols matching a certain name at the
4879 time when this function is called. Trying to replace the stub
4880 type by its associated full type will cause us to restart a scan
4881 which may lead to an infinite recursion. Instead, the client
4882 collecting the matching symbols will end up collecting several
4883 matches, with at least one of them complete. It can then filter
4884 out the stub ones if needed. */
4885
4886 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4887 {
4888 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4889 return;
4890 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4891 {
4892 prevDefns[i].symbol = sym;
4893 prevDefns[i].block = block;
4894 return;
4895 }
4896 }
4897
4898 {
4899 struct block_symbol info;
4900
4901 info.symbol = sym;
4902 info.block = block;
4903 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4904 }
4905 }
4906
4907 /* Number of block_symbol structures currently collected in current vector in
4908 OBSTACKP. */
4909
4910 static int
4911 num_defns_collected (struct obstack *obstackp)
4912 {
4913 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4914 }
4915
4916 /* Vector of block_symbol structures currently collected in current vector in
4917 OBSTACKP. If FINISH, close off the vector and return its final address. */
4918
4919 static struct block_symbol *
4920 defns_collected (struct obstack *obstackp, int finish)
4921 {
4922 if (finish)
4923 return (struct block_symbol *) obstack_finish (obstackp);
4924 else
4925 return (struct block_symbol *) obstack_base (obstackp);
4926 }
4927
4928 /* Return a bound minimal symbol matching NAME according to Ada
4929 decoding rules. Returns an invalid symbol if there is no such
4930 minimal symbol. Names prefixed with "standard__" are handled
4931 specially: "standard__" is first stripped off, and only static and
4932 global symbols are searched. */
4933
4934 struct bound_minimal_symbol
4935 ada_lookup_simple_minsym (const char *name)
4936 {
4937 struct bound_minimal_symbol result;
4938 struct objfile *objfile;
4939 struct minimal_symbol *msymbol;
4940 const int wild_match_p = should_use_wild_match (name);
4941
4942 memset (&result, 0, sizeof (result));
4943
4944 /* Special case: If the user specifies a symbol name inside package
4945 Standard, do a non-wild matching of the symbol name without
4946 the "standard__" prefix. This was primarily introduced in order
4947 to allow the user to specifically access the standard exceptions
4948 using, for instance, Standard.Constraint_Error when Constraint_Error
4949 is ambiguous (due to the user defining its own Constraint_Error
4950 entity inside its program). */
4951 if (startswith (name, "standard__"))
4952 name += sizeof ("standard__") - 1;
4953
4954 ALL_MSYMBOLS (objfile, msymbol)
4955 {
4956 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4957 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4958 {
4959 result.minsym = msymbol;
4960 result.objfile = objfile;
4961 break;
4962 }
4963 }
4964
4965 return result;
4966 }
4967
4968 /* For all subprograms that statically enclose the subprogram of the
4969 selected frame, add symbols matching identifier NAME in DOMAIN
4970 and their blocks to the list of data in OBSTACKP, as for
4971 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4972 with a wildcard prefix. */
4973
4974 static void
4975 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4976 const char *name, domain_enum domain,
4977 int wild_match_p)
4978 {
4979 }
4980
4981 /* True if TYPE is definitely an artificial type supplied to a symbol
4982 for which no debugging information was given in the symbol file. */
4983
4984 static int
4985 is_nondebugging_type (struct type *type)
4986 {
4987 const char *name = ada_type_name (type);
4988
4989 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4990 }
4991
4992 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4993 that are deemed "identical" for practical purposes.
4994
4995 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4996 types and that their number of enumerals is identical (in other
4997 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4998
4999 static int
5000 ada_identical_enum_types_p (struct type *type1, struct type *type2)
5001 {
5002 int i;
5003
5004 /* The heuristic we use here is fairly conservative. We consider
5005 that 2 enumerate types are identical if they have the same
5006 number of enumerals and that all enumerals have the same
5007 underlying value and name. */
5008
5009 /* All enums in the type should have an identical underlying value. */
5010 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5011 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5012 return 0;
5013
5014 /* All enumerals should also have the same name (modulo any numerical
5015 suffix). */
5016 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5017 {
5018 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5019 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5020 int len_1 = strlen (name_1);
5021 int len_2 = strlen (name_2);
5022
5023 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5024 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5025 if (len_1 != len_2
5026 || strncmp (TYPE_FIELD_NAME (type1, i),
5027 TYPE_FIELD_NAME (type2, i),
5028 len_1) != 0)
5029 return 0;
5030 }
5031
5032 return 1;
5033 }
5034
5035 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5036 that are deemed "identical" for practical purposes. Sometimes,
5037 enumerals are not strictly identical, but their types are so similar
5038 that they can be considered identical.
5039
5040 For instance, consider the following code:
5041
5042 type Color is (Black, Red, Green, Blue, White);
5043 type RGB_Color is new Color range Red .. Blue;
5044
5045 Type RGB_Color is a subrange of an implicit type which is a copy
5046 of type Color. If we call that implicit type RGB_ColorB ("B" is
5047 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5048 As a result, when an expression references any of the enumeral
5049 by name (Eg. "print green"), the expression is technically
5050 ambiguous and the user should be asked to disambiguate. But
5051 doing so would only hinder the user, since it wouldn't matter
5052 what choice he makes, the outcome would always be the same.
5053 So, for practical purposes, we consider them as the same. */
5054
5055 static int
5056 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5057 {
5058 int i;
5059
5060 /* Before performing a thorough comparison check of each type,
5061 we perform a series of inexpensive checks. We expect that these
5062 checks will quickly fail in the vast majority of cases, and thus
5063 help prevent the unnecessary use of a more expensive comparison.
5064 Said comparison also expects us to make some of these checks
5065 (see ada_identical_enum_types_p). */
5066
5067 /* Quick check: All symbols should have an enum type. */
5068 for (i = 0; i < nsyms; i++)
5069 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5070 return 0;
5071
5072 /* Quick check: They should all have the same value. */
5073 for (i = 1; i < nsyms; i++)
5074 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5075 return 0;
5076
5077 /* Quick check: They should all have the same number of enumerals. */
5078 for (i = 1; i < nsyms; i++)
5079 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5080 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5081 return 0;
5082
5083 /* All the sanity checks passed, so we might have a set of
5084 identical enumeration types. Perform a more complete
5085 comparison of the type of each symbol. */
5086 for (i = 1; i < nsyms; i++)
5087 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5088 SYMBOL_TYPE (syms[0].symbol)))
5089 return 0;
5090
5091 return 1;
5092 }
5093
5094 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5095 duplicate other symbols in the list (The only case I know of where
5096 this happens is when object files containing stabs-in-ecoff are
5097 linked with files containing ordinary ecoff debugging symbols (or no
5098 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5099 Returns the number of items in the modified list. */
5100
5101 static int
5102 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5103 {
5104 int i, j;
5105
5106 /* We should never be called with less than 2 symbols, as there
5107 cannot be any extra symbol in that case. But it's easy to
5108 handle, since we have nothing to do in that case. */
5109 if (nsyms < 2)
5110 return nsyms;
5111
5112 i = 0;
5113 while (i < nsyms)
5114 {
5115 int remove_p = 0;
5116
5117 /* If two symbols have the same name and one of them is a stub type,
5118 the get rid of the stub. */
5119
5120 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5121 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5122 {
5123 for (j = 0; j < nsyms; j++)
5124 {
5125 if (j != i
5126 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5127 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5128 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5129 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5130 remove_p = 1;
5131 }
5132 }
5133
5134 /* Two symbols with the same name, same class and same address
5135 should be identical. */
5136
5137 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5138 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5139 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5140 {
5141 for (j = 0; j < nsyms; j += 1)
5142 {
5143 if (i != j
5144 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5145 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5146 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5147 && SYMBOL_CLASS (syms[i].symbol)
5148 == SYMBOL_CLASS (syms[j].symbol)
5149 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5150 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5151 remove_p = 1;
5152 }
5153 }
5154
5155 if (remove_p)
5156 {
5157 for (j = i + 1; j < nsyms; j += 1)
5158 syms[j - 1] = syms[j];
5159 nsyms -= 1;
5160 }
5161
5162 i += 1;
5163 }
5164
5165 /* If all the remaining symbols are identical enumerals, then
5166 just keep the first one and discard the rest.
5167
5168 Unlike what we did previously, we do not discard any entry
5169 unless they are ALL identical. This is because the symbol
5170 comparison is not a strict comparison, but rather a practical
5171 comparison. If all symbols are considered identical, then
5172 we can just go ahead and use the first one and discard the rest.
5173 But if we cannot reduce the list to a single element, we have
5174 to ask the user to disambiguate anyways. And if we have to
5175 present a multiple-choice menu, it's less confusing if the list
5176 isn't missing some choices that were identical and yet distinct. */
5177 if (symbols_are_identical_enums (syms, nsyms))
5178 nsyms = 1;
5179
5180 return nsyms;
5181 }
5182
5183 /* Given a type that corresponds to a renaming entity, use the type name
5184 to extract the scope (package name or function name, fully qualified,
5185 and following the GNAT encoding convention) where this renaming has been
5186 defined. The string returned needs to be deallocated after use. */
5187
5188 static char *
5189 xget_renaming_scope (struct type *renaming_type)
5190 {
5191 /* The renaming types adhere to the following convention:
5192 <scope>__<rename>___<XR extension>.
5193 So, to extract the scope, we search for the "___XR" extension,
5194 and then backtrack until we find the first "__". */
5195
5196 const char *name = type_name_no_tag (renaming_type);
5197 const char *suffix = strstr (name, "___XR");
5198 const char *last;
5199 int scope_len;
5200 char *scope;
5201
5202 /* Now, backtrack a bit until we find the first "__". Start looking
5203 at suffix - 3, as the <rename> part is at least one character long. */
5204
5205 for (last = suffix - 3; last > name; last--)
5206 if (last[0] == '_' && last[1] == '_')
5207 break;
5208
5209 /* Make a copy of scope and return it. */
5210
5211 scope_len = last - name;
5212 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5213
5214 strncpy (scope, name, scope_len);
5215 scope[scope_len] = '\0';
5216
5217 return scope;
5218 }
5219
5220 /* Return nonzero if NAME corresponds to a package name. */
5221
5222 static int
5223 is_package_name (const char *name)
5224 {
5225 /* Here, We take advantage of the fact that no symbols are generated
5226 for packages, while symbols are generated for each function.
5227 So the condition for NAME represent a package becomes equivalent
5228 to NAME not existing in our list of symbols. There is only one
5229 small complication with library-level functions (see below). */
5230
5231 char *fun_name;
5232
5233 /* If it is a function that has not been defined at library level,
5234 then we should be able to look it up in the symbols. */
5235 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5236 return 0;
5237
5238 /* Library-level function names start with "_ada_". See if function
5239 "_ada_" followed by NAME can be found. */
5240
5241 /* Do a quick check that NAME does not contain "__", since library-level
5242 functions names cannot contain "__" in them. */
5243 if (strstr (name, "__") != NULL)
5244 return 0;
5245
5246 fun_name = xstrprintf ("_ada_%s", name);
5247
5248 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5249 }
5250
5251 /* Return nonzero if SYM corresponds to a renaming entity that is
5252 not visible from FUNCTION_NAME. */
5253
5254 static int
5255 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5256 {
5257 char *scope;
5258 struct cleanup *old_chain;
5259
5260 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5261 return 0;
5262
5263 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5264 old_chain = make_cleanup (xfree, scope);
5265
5266 /* If the rename has been defined in a package, then it is visible. */
5267 if (is_package_name (scope))
5268 {
5269 do_cleanups (old_chain);
5270 return 0;
5271 }
5272
5273 /* Check that the rename is in the current function scope by checking
5274 that its name starts with SCOPE. */
5275
5276 /* If the function name starts with "_ada_", it means that it is
5277 a library-level function. Strip this prefix before doing the
5278 comparison, as the encoding for the renaming does not contain
5279 this prefix. */
5280 if (startswith (function_name, "_ada_"))
5281 function_name += 5;
5282
5283 {
5284 int is_invisible = !startswith (function_name, scope);
5285
5286 do_cleanups (old_chain);
5287 return is_invisible;
5288 }
5289 }
5290
5291 /* Remove entries from SYMS that corresponds to a renaming entity that
5292 is not visible from the function associated with CURRENT_BLOCK or
5293 that is superfluous due to the presence of more specific renaming
5294 information. Places surviving symbols in the initial entries of
5295 SYMS and returns the number of surviving symbols.
5296
5297 Rationale:
5298 First, in cases where an object renaming is implemented as a
5299 reference variable, GNAT may produce both the actual reference
5300 variable and the renaming encoding. In this case, we discard the
5301 latter.
5302
5303 Second, GNAT emits a type following a specified encoding for each renaming
5304 entity. Unfortunately, STABS currently does not support the definition
5305 of types that are local to a given lexical block, so all renamings types
5306 are emitted at library level. As a consequence, if an application
5307 contains two renaming entities using the same name, and a user tries to
5308 print the value of one of these entities, the result of the ada symbol
5309 lookup will also contain the wrong renaming type.
5310
5311 This function partially covers for this limitation by attempting to
5312 remove from the SYMS list renaming symbols that should be visible
5313 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5314 method with the current information available. The implementation
5315 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5316
5317 - When the user tries to print a rename in a function while there
5318 is another rename entity defined in a package: Normally, the
5319 rename in the function has precedence over the rename in the
5320 package, so the latter should be removed from the list. This is
5321 currently not the case.
5322
5323 - This function will incorrectly remove valid renames if
5324 the CURRENT_BLOCK corresponds to a function which symbol name
5325 has been changed by an "Export" pragma. As a consequence,
5326 the user will be unable to print such rename entities. */
5327
5328 static int
5329 remove_irrelevant_renamings (struct block_symbol *syms,
5330 int nsyms, const struct block *current_block)
5331 {
5332 struct symbol *current_function;
5333 const char *current_function_name;
5334 int i;
5335 int is_new_style_renaming;
5336
5337 /* If there is both a renaming foo___XR... encoded as a variable and
5338 a simple variable foo in the same block, discard the latter.
5339 First, zero out such symbols, then compress. */
5340 is_new_style_renaming = 0;
5341 for (i = 0; i < nsyms; i += 1)
5342 {
5343 struct symbol *sym = syms[i].symbol;
5344 const struct block *block = syms[i].block;
5345 const char *name;
5346 const char *suffix;
5347
5348 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5349 continue;
5350 name = SYMBOL_LINKAGE_NAME (sym);
5351 suffix = strstr (name, "___XR");
5352
5353 if (suffix != NULL)
5354 {
5355 int name_len = suffix - name;
5356 int j;
5357
5358 is_new_style_renaming = 1;
5359 for (j = 0; j < nsyms; j += 1)
5360 if (i != j && syms[j].symbol != NULL
5361 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5362 name_len) == 0
5363 && block == syms[j].block)
5364 syms[j].symbol = NULL;
5365 }
5366 }
5367 if (is_new_style_renaming)
5368 {
5369 int j, k;
5370
5371 for (j = k = 0; j < nsyms; j += 1)
5372 if (syms[j].symbol != NULL)
5373 {
5374 syms[k] = syms[j];
5375 k += 1;
5376 }
5377 return k;
5378 }
5379
5380 /* Extract the function name associated to CURRENT_BLOCK.
5381 Abort if unable to do so. */
5382
5383 if (current_block == NULL)
5384 return nsyms;
5385
5386 current_function = block_linkage_function (current_block);
5387 if (current_function == NULL)
5388 return nsyms;
5389
5390 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5391 if (current_function_name == NULL)
5392 return nsyms;
5393
5394 /* Check each of the symbols, and remove it from the list if it is
5395 a type corresponding to a renaming that is out of the scope of
5396 the current block. */
5397
5398 i = 0;
5399 while (i < nsyms)
5400 {
5401 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5402 == ADA_OBJECT_RENAMING
5403 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5404 {
5405 int j;
5406
5407 for (j = i + 1; j < nsyms; j += 1)
5408 syms[j - 1] = syms[j];
5409 nsyms -= 1;
5410 }
5411 else
5412 i += 1;
5413 }
5414
5415 return nsyms;
5416 }
5417
5418 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5419 whose name and domain match NAME and DOMAIN respectively.
5420 If no match was found, then extend the search to "enclosing"
5421 routines (in other words, if we're inside a nested function,
5422 search the symbols defined inside the enclosing functions).
5423 If WILD_MATCH_P is nonzero, perform the naming matching in
5424 "wild" mode (see function "wild_match" for more info).
5425
5426 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5427
5428 static void
5429 ada_add_local_symbols (struct obstack *obstackp, const char *name,
5430 const struct block *block, domain_enum domain,
5431 int wild_match_p)
5432 {
5433 int block_depth = 0;
5434
5435 while (block != NULL)
5436 {
5437 block_depth += 1;
5438 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5439 wild_match_p);
5440
5441 /* If we found a non-function match, assume that's the one. */
5442 if (is_nonfunction (defns_collected (obstackp, 0),
5443 num_defns_collected (obstackp)))
5444 return;
5445
5446 block = BLOCK_SUPERBLOCK (block);
5447 }
5448
5449 /* If no luck so far, try to find NAME as a local symbol in some lexically
5450 enclosing subprogram. */
5451 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5452 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
5453 }
5454
5455 /* An object of this type is used as the user_data argument when
5456 calling the map_matching_symbols method. */
5457
5458 struct match_data
5459 {
5460 struct objfile *objfile;
5461 struct obstack *obstackp;
5462 struct symbol *arg_sym;
5463 int found_sym;
5464 };
5465
5466 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5467 to a list of symbols. DATA0 is a pointer to a struct match_data *
5468 containing the obstack that collects the symbol list, the file that SYM
5469 must come from, a flag indicating whether a non-argument symbol has
5470 been found in the current block, and the last argument symbol
5471 passed in SYM within the current block (if any). When SYM is null,
5472 marking the end of a block, the argument symbol is added if no
5473 other has been found. */
5474
5475 static int
5476 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5477 {
5478 struct match_data *data = (struct match_data *) data0;
5479
5480 if (sym == NULL)
5481 {
5482 if (!data->found_sym && data->arg_sym != NULL)
5483 add_defn_to_vec (data->obstackp,
5484 fixup_symbol_section (data->arg_sym, data->objfile),
5485 block);
5486 data->found_sym = 0;
5487 data->arg_sym = NULL;
5488 }
5489 else
5490 {
5491 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5492 return 0;
5493 else if (SYMBOL_IS_ARGUMENT (sym))
5494 data->arg_sym = sym;
5495 else
5496 {
5497 data->found_sym = 1;
5498 add_defn_to_vec (data->obstackp,
5499 fixup_symbol_section (sym, data->objfile),
5500 block);
5501 }
5502 }
5503 return 0;
5504 }
5505
5506 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are targetted
5507 by renamings matching NAME in BLOCK. Add these symbols to OBSTACKP. If
5508 WILD_MATCH_P is nonzero, perform the naming matching in "wild" mode (see
5509 function "wild_match" for more information). Return whether we found such
5510 symbols. */
5511
5512 static int
5513 ada_add_block_renamings (struct obstack *obstackp,
5514 const struct block *block,
5515 const char *name,
5516 domain_enum domain,
5517 int wild_match_p)
5518 {
5519 struct using_direct *renaming;
5520 int defns_mark = num_defns_collected (obstackp);
5521
5522 for (renaming = block_using (block);
5523 renaming != NULL;
5524 renaming = renaming->next)
5525 {
5526 const char *r_name;
5527 int name_match;
5528
5529 /* Avoid infinite recursions: skip this renaming if we are actually
5530 already traversing it.
5531
5532 Currently, symbol lookup in Ada don't use the namespace machinery from
5533 C++/Fortran support: skip namespace imports that use them. */
5534 if (renaming->searched
5535 || (renaming->import_src != NULL
5536 && renaming->import_src[0] != '\0')
5537 || (renaming->import_dest != NULL
5538 && renaming->import_dest[0] != '\0'))
5539 continue;
5540 renaming->searched = 1;
5541
5542 /* TODO: here, we perform another name-based symbol lookup, which can
5543 pull its own multiple overloads. In theory, we should be able to do
5544 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5545 not a simple name. But in order to do this, we would need to enhance
5546 the DWARF reader to associate a symbol to this renaming, instead of a
5547 name. So, for now, we do something simpler: re-use the C++/Fortran
5548 namespace machinery. */
5549 r_name = (renaming->alias != NULL
5550 ? renaming->alias
5551 : renaming->declaration);
5552 name_match
5553 = wild_match_p ? wild_match (r_name, name) : strcmp (r_name, name);
5554 if (name_match == 0)
5555 ada_add_all_symbols (obstackp, block, renaming->declaration, domain,
5556 1, NULL);
5557 renaming->searched = 0;
5558 }
5559 return num_defns_collected (obstackp) != defns_mark;
5560 }
5561
5562 /* Implements compare_names, but only applying the comparision using
5563 the given CASING. */
5564
5565 static int
5566 compare_names_with_case (const char *string1, const char *string2,
5567 enum case_sensitivity casing)
5568 {
5569 while (*string1 != '\0' && *string2 != '\0')
5570 {
5571 char c1, c2;
5572
5573 if (isspace (*string1) || isspace (*string2))
5574 return strcmp_iw_ordered (string1, string2);
5575
5576 if (casing == case_sensitive_off)
5577 {
5578 c1 = tolower (*string1);
5579 c2 = tolower (*string2);
5580 }
5581 else
5582 {
5583 c1 = *string1;
5584 c2 = *string2;
5585 }
5586 if (c1 != c2)
5587 break;
5588
5589 string1 += 1;
5590 string2 += 1;
5591 }
5592
5593 switch (*string1)
5594 {
5595 case '(':
5596 return strcmp_iw_ordered (string1, string2);
5597 case '_':
5598 if (*string2 == '\0')
5599 {
5600 if (is_name_suffix (string1))
5601 return 0;
5602 else
5603 return 1;
5604 }
5605 /* FALLTHROUGH */
5606 default:
5607 if (*string2 == '(')
5608 return strcmp_iw_ordered (string1, string2);
5609 else
5610 {
5611 if (casing == case_sensitive_off)
5612 return tolower (*string1) - tolower (*string2);
5613 else
5614 return *string1 - *string2;
5615 }
5616 }
5617 }
5618
5619 /* Compare STRING1 to STRING2, with results as for strcmp.
5620 Compatible with strcmp_iw_ordered in that...
5621
5622 strcmp_iw_ordered (STRING1, STRING2) <= 0
5623
5624 ... implies...
5625
5626 compare_names (STRING1, STRING2) <= 0
5627
5628 (they may differ as to what symbols compare equal). */
5629
5630 static int
5631 compare_names (const char *string1, const char *string2)
5632 {
5633 int result;
5634
5635 /* Similar to what strcmp_iw_ordered does, we need to perform
5636 a case-insensitive comparison first, and only resort to
5637 a second, case-sensitive, comparison if the first one was
5638 not sufficient to differentiate the two strings. */
5639
5640 result = compare_names_with_case (string1, string2, case_sensitive_off);
5641 if (result == 0)
5642 result = compare_names_with_case (string1, string2, case_sensitive_on);
5643
5644 return result;
5645 }
5646
5647 /* Add to OBSTACKP all non-local symbols whose name and domain match
5648 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5649 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5650
5651 static void
5652 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5653 domain_enum domain, int global,
5654 int is_wild_match)
5655 {
5656 struct objfile *objfile;
5657 struct compunit_symtab *cu;
5658 struct match_data data;
5659
5660 memset (&data, 0, sizeof data);
5661 data.obstackp = obstackp;
5662
5663 ALL_OBJFILES (objfile)
5664 {
5665 data.objfile = objfile;
5666
5667 if (is_wild_match)
5668 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5669 aux_add_nonlocal_symbols, &data,
5670 wild_match, NULL);
5671 else
5672 objfile->sf->qf->map_matching_symbols (objfile, name, domain, global,
5673 aux_add_nonlocal_symbols, &data,
5674 full_match, compare_names);
5675
5676 ALL_OBJFILE_COMPUNITS (objfile, cu)
5677 {
5678 const struct block *global_block
5679 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5680
5681 if (ada_add_block_renamings (obstackp, global_block , name, domain,
5682 is_wild_match))
5683 data.found_sym = 1;
5684 }
5685 }
5686
5687 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5688 {
5689 ALL_OBJFILES (objfile)
5690 {
5691 char *name1 = (char *) alloca (strlen (name) + sizeof ("_ada_"));
5692 strcpy (name1, "_ada_");
5693 strcpy (name1 + sizeof ("_ada_") - 1, name);
5694 data.objfile = objfile;
5695 objfile->sf->qf->map_matching_symbols (objfile, name1, domain,
5696 global,
5697 aux_add_nonlocal_symbols,
5698 &data,
5699 full_match, compare_names);
5700 }
5701 }
5702 }
5703
5704 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if FULL_SEARCH is
5705 non-zero, enclosing scope and in global scopes, returning the number of
5706 matches. Add these to OBSTACKP.
5707
5708 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5709 symbol match within the nest of blocks whose innermost member is BLOCK,
5710 is the one match returned (no other matches in that or
5711 enclosing blocks is returned). If there are any matches in or
5712 surrounding BLOCK, then these alone are returned.
5713
5714 Names prefixed with "standard__" are handled specially: "standard__"
5715 is first stripped off, and only static and global symbols are searched.
5716
5717 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5718 to lookup global symbols. */
5719
5720 static void
5721 ada_add_all_symbols (struct obstack *obstackp,
5722 const struct block *block,
5723 const char *name,
5724 domain_enum domain,
5725 int full_search,
5726 int *made_global_lookup_p)
5727 {
5728 struct symbol *sym;
5729 const int wild_match_p = should_use_wild_match (name);
5730
5731 if (made_global_lookup_p)
5732 *made_global_lookup_p = 0;
5733
5734 /* Special case: If the user specifies a symbol name inside package
5735 Standard, do a non-wild matching of the symbol name without
5736 the "standard__" prefix. This was primarily introduced in order
5737 to allow the user to specifically access the standard exceptions
5738 using, for instance, Standard.Constraint_Error when Constraint_Error
5739 is ambiguous (due to the user defining its own Constraint_Error
5740 entity inside its program). */
5741 if (startswith (name, "standard__"))
5742 {
5743 block = NULL;
5744 name = name + sizeof ("standard__") - 1;
5745 }
5746
5747 /* Check the non-global symbols. If we have ANY match, then we're done. */
5748
5749 if (block != NULL)
5750 {
5751 if (full_search)
5752 ada_add_local_symbols (obstackp, name, block, domain, wild_match_p);
5753 else
5754 {
5755 /* In the !full_search case we're are being called by
5756 ada_iterate_over_symbols, and we don't want to search
5757 superblocks. */
5758 ada_add_block_symbols (obstackp, block, name, domain, NULL,
5759 wild_match_p);
5760 }
5761 if (num_defns_collected (obstackp) > 0 || !full_search)
5762 return;
5763 }
5764
5765 /* No non-global symbols found. Check our cache to see if we have
5766 already performed this search before. If we have, then return
5767 the same result. */
5768
5769 if (lookup_cached_symbol (name, domain, &sym, &block))
5770 {
5771 if (sym != NULL)
5772 add_defn_to_vec (obstackp, sym, block);
5773 return;
5774 }
5775
5776 if (made_global_lookup_p)
5777 *made_global_lookup_p = 1;
5778
5779 /* Search symbols from all global blocks. */
5780
5781 add_nonlocal_symbols (obstackp, name, domain, 1, wild_match_p);
5782
5783 /* Now add symbols from all per-file blocks if we've gotten no hits
5784 (not strictly correct, but perhaps better than an error). */
5785
5786 if (num_defns_collected (obstackp) == 0)
5787 add_nonlocal_symbols (obstackp, name, domain, 0, wild_match_p);
5788 }
5789
5790 /* Find symbols in DOMAIN matching NAME, in BLOCK and, if full_search is
5791 non-zero, enclosing scope and in global scopes, returning the number of
5792 matches.
5793 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5794 indicating the symbols found and the blocks and symbol tables (if
5795 any) in which they were found. This vector is transient---good only to
5796 the next call of ada_lookup_symbol_list.
5797
5798 When full_search is non-zero, any non-function/non-enumeral
5799 symbol match within the nest of blocks whose innermost member is BLOCK,
5800 is the one match returned (no other matches in that or
5801 enclosing blocks is returned). If there are any matches in or
5802 surrounding BLOCK, then these alone are returned.
5803
5804 Names prefixed with "standard__" are handled specially: "standard__"
5805 is first stripped off, and only static and global symbols are searched. */
5806
5807 static int
5808 ada_lookup_symbol_list_worker (const char *name, const struct block *block,
5809 domain_enum domain,
5810 struct block_symbol **results,
5811 int full_search)
5812 {
5813 const int wild_match_p = should_use_wild_match (name);
5814 int syms_from_global_search;
5815 int ndefns;
5816
5817 obstack_free (&symbol_list_obstack, NULL);
5818 obstack_init (&symbol_list_obstack);
5819 ada_add_all_symbols (&symbol_list_obstack, block, name, domain,
5820 full_search, &syms_from_global_search);
5821
5822 ndefns = num_defns_collected (&symbol_list_obstack);
5823 *results = defns_collected (&symbol_list_obstack, 1);
5824
5825 ndefns = remove_extra_symbols (*results, ndefns);
5826
5827 if (ndefns == 0 && full_search && syms_from_global_search)
5828 cache_symbol (name, domain, NULL, NULL);
5829
5830 if (ndefns == 1 && full_search && syms_from_global_search)
5831 cache_symbol (name, domain, (*results)[0].symbol, (*results)[0].block);
5832
5833 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5834 return ndefns;
5835 }
5836
5837 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing scope and
5838 in global scopes, returning the number of matches, and setting *RESULTS
5839 to a vector of (SYM,BLOCK) tuples.
5840 See ada_lookup_symbol_list_worker for further details. */
5841
5842 int
5843 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5844 domain_enum domain, struct block_symbol **results)
5845 {
5846 return ada_lookup_symbol_list_worker (name0, block0, domain, results, 1);
5847 }
5848
5849 /* Implementation of the la_iterate_over_symbols method. */
5850
5851 static void
5852 ada_iterate_over_symbols
5853 (const struct block *block, const char *name, domain_enum domain,
5854 gdb::function_view<symbol_found_callback_ftype> callback)
5855 {
5856 int ndefs, i;
5857 struct block_symbol *results;
5858
5859 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5860 for (i = 0; i < ndefs; ++i)
5861 {
5862 if (!callback (results[i].symbol))
5863 break;
5864 }
5865 }
5866
5867 /* If NAME is the name of an entity, return a string that should
5868 be used to look that entity up in Ada units.
5869
5870 NAME can have any form that the "break" or "print" commands might
5871 recognize. In other words, it does not have to be the "natural"
5872 name, or the "encoded" name. */
5873
5874 std::string
5875 ada_name_for_lookup (const char *name)
5876 {
5877 int nlen = strlen (name);
5878
5879 if (name[0] == '<' && name[nlen - 1] == '>')
5880 return std::string (name + 1, nlen - 2);
5881 else
5882 return ada_encode (ada_fold_name (name));
5883 }
5884
5885 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5886 to 1, but choosing the first symbol found if there are multiple
5887 choices.
5888
5889 The result is stored in *INFO, which must be non-NULL.
5890 If no match is found, INFO->SYM is set to NULL. */
5891
5892 void
5893 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5894 domain_enum domain,
5895 struct block_symbol *info)
5896 {
5897 struct block_symbol *candidates;
5898 int n_candidates;
5899
5900 gdb_assert (info != NULL);
5901 memset (info, 0, sizeof (struct block_symbol));
5902
5903 n_candidates = ada_lookup_symbol_list (name, block, domain, &candidates);
5904 if (n_candidates == 0)
5905 return;
5906
5907 *info = candidates[0];
5908 info->symbol = fixup_symbol_section (info->symbol, NULL);
5909 }
5910
5911 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5912 scope and in global scopes, or NULL if none. NAME is folded and
5913 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5914 choosing the first symbol if there are multiple choices.
5915 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5916
5917 struct block_symbol
5918 ada_lookup_symbol (const char *name, const struct block *block0,
5919 domain_enum domain, int *is_a_field_of_this)
5920 {
5921 struct block_symbol info;
5922
5923 if (is_a_field_of_this != NULL)
5924 *is_a_field_of_this = 0;
5925
5926 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5927 block0, domain, &info);
5928 return info;
5929 }
5930
5931 static struct block_symbol
5932 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5933 const char *name,
5934 const struct block *block,
5935 const domain_enum domain)
5936 {
5937 struct block_symbol sym;
5938
5939 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5940 if (sym.symbol != NULL)
5941 return sym;
5942
5943 /* If we haven't found a match at this point, try the primitive
5944 types. In other languages, this search is performed before
5945 searching for global symbols in order to short-circuit that
5946 global-symbol search if it happens that the name corresponds
5947 to a primitive type. But we cannot do the same in Ada, because
5948 it is perfectly legitimate for a program to declare a type which
5949 has the same name as a standard type. If looking up a type in
5950 that situation, we have traditionally ignored the primitive type
5951 in favor of user-defined types. This is why, unlike most other
5952 languages, we search the primitive types this late and only after
5953 having searched the global symbols without success. */
5954
5955 if (domain == VAR_DOMAIN)
5956 {
5957 struct gdbarch *gdbarch;
5958
5959 if (block == NULL)
5960 gdbarch = target_gdbarch ();
5961 else
5962 gdbarch = block_gdbarch (block);
5963 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5964 if (sym.symbol != NULL)
5965 return sym;
5966 }
5967
5968 return (struct block_symbol) {NULL, NULL};
5969 }
5970
5971
5972 /* True iff STR is a possible encoded suffix of a normal Ada name
5973 that is to be ignored for matching purposes. Suffixes of parallel
5974 names (e.g., XVE) are not included here. Currently, the possible suffixes
5975 are given by any of the regular expressions:
5976
5977 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5978 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5979 TKB [subprogram suffix for task bodies]
5980 _E[0-9]+[bs]$ [protected object entry suffixes]
5981 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5982
5983 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5984 match is performed. This sequence is used to differentiate homonyms,
5985 is an optional part of a valid name suffix. */
5986
5987 static int
5988 is_name_suffix (const char *str)
5989 {
5990 int k;
5991 const char *matching;
5992 const int len = strlen (str);
5993
5994 /* Skip optional leading __[0-9]+. */
5995
5996 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5997 {
5998 str += 3;
5999 while (isdigit (str[0]))
6000 str += 1;
6001 }
6002
6003 /* [.$][0-9]+ */
6004
6005 if (str[0] == '.' || str[0] == '$')
6006 {
6007 matching = str + 1;
6008 while (isdigit (matching[0]))
6009 matching += 1;
6010 if (matching[0] == '\0')
6011 return 1;
6012 }
6013
6014 /* ___[0-9]+ */
6015
6016 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6017 {
6018 matching = str + 3;
6019 while (isdigit (matching[0]))
6020 matching += 1;
6021 if (matching[0] == '\0')
6022 return 1;
6023 }
6024
6025 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6026
6027 if (strcmp (str, "TKB") == 0)
6028 return 1;
6029
6030 #if 0
6031 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6032 with a N at the end. Unfortunately, the compiler uses the same
6033 convention for other internal types it creates. So treating
6034 all entity names that end with an "N" as a name suffix causes
6035 some regressions. For instance, consider the case of an enumerated
6036 type. To support the 'Image attribute, it creates an array whose
6037 name ends with N.
6038 Having a single character like this as a suffix carrying some
6039 information is a bit risky. Perhaps we should change the encoding
6040 to be something like "_N" instead. In the meantime, do not do
6041 the following check. */
6042 /* Protected Object Subprograms */
6043 if (len == 1 && str [0] == 'N')
6044 return 1;
6045 #endif
6046
6047 /* _E[0-9]+[bs]$ */
6048 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6049 {
6050 matching = str + 3;
6051 while (isdigit (matching[0]))
6052 matching += 1;
6053 if ((matching[0] == 'b' || matching[0] == 's')
6054 && matching [1] == '\0')
6055 return 1;
6056 }
6057
6058 /* ??? We should not modify STR directly, as we are doing below. This
6059 is fine in this case, but may become problematic later if we find
6060 that this alternative did not work, and want to try matching
6061 another one from the begining of STR. Since we modified it, we
6062 won't be able to find the begining of the string anymore! */
6063 if (str[0] == 'X')
6064 {
6065 str += 1;
6066 while (str[0] != '_' && str[0] != '\0')
6067 {
6068 if (str[0] != 'n' && str[0] != 'b')
6069 return 0;
6070 str += 1;
6071 }
6072 }
6073
6074 if (str[0] == '\000')
6075 return 1;
6076
6077 if (str[0] == '_')
6078 {
6079 if (str[1] != '_' || str[2] == '\000')
6080 return 0;
6081 if (str[2] == '_')
6082 {
6083 if (strcmp (str + 3, "JM") == 0)
6084 return 1;
6085 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6086 the LJM suffix in favor of the JM one. But we will
6087 still accept LJM as a valid suffix for a reasonable
6088 amount of time, just to allow ourselves to debug programs
6089 compiled using an older version of GNAT. */
6090 if (strcmp (str + 3, "LJM") == 0)
6091 return 1;
6092 if (str[3] != 'X')
6093 return 0;
6094 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6095 || str[4] == 'U' || str[4] == 'P')
6096 return 1;
6097 if (str[4] == 'R' && str[5] != 'T')
6098 return 1;
6099 return 0;
6100 }
6101 if (!isdigit (str[2]))
6102 return 0;
6103 for (k = 3; str[k] != '\0'; k += 1)
6104 if (!isdigit (str[k]) && str[k] != '_')
6105 return 0;
6106 return 1;
6107 }
6108 if (str[0] == '$' && isdigit (str[1]))
6109 {
6110 for (k = 2; str[k] != '\0'; k += 1)
6111 if (!isdigit (str[k]) && str[k] != '_')
6112 return 0;
6113 return 1;
6114 }
6115 return 0;
6116 }
6117
6118 /* Return non-zero if the string starting at NAME and ending before
6119 NAME_END contains no capital letters. */
6120
6121 static int
6122 is_valid_name_for_wild_match (const char *name0)
6123 {
6124 const char *decoded_name = ada_decode (name0);
6125 int i;
6126
6127 /* If the decoded name starts with an angle bracket, it means that
6128 NAME0 does not follow the GNAT encoding format. It should then
6129 not be allowed as a possible wild match. */
6130 if (decoded_name[0] == '<')
6131 return 0;
6132
6133 for (i=0; decoded_name[i] != '\0'; i++)
6134 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6135 return 0;
6136
6137 return 1;
6138 }
6139
6140 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6141 that could start a simple name. Assumes that *NAMEP points into
6142 the string beginning at NAME0. */
6143
6144 static int
6145 advance_wild_match (const char **namep, const char *name0, int target0)
6146 {
6147 const char *name = *namep;
6148
6149 while (1)
6150 {
6151 int t0, t1;
6152
6153 t0 = *name;
6154 if (t0 == '_')
6155 {
6156 t1 = name[1];
6157 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6158 {
6159 name += 1;
6160 if (name == name0 + 5 && startswith (name0, "_ada"))
6161 break;
6162 else
6163 name += 1;
6164 }
6165 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6166 || name[2] == target0))
6167 {
6168 name += 2;
6169 break;
6170 }
6171 else
6172 return 0;
6173 }
6174 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6175 name += 1;
6176 else
6177 return 0;
6178 }
6179
6180 *namep = name;
6181 return 1;
6182 }
6183
6184 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
6185 informational suffixes of NAME (i.e., for which is_name_suffix is
6186 true). Assumes that PATN is a lower-cased Ada simple name. */
6187
6188 static int
6189 wild_match (const char *name, const char *patn)
6190 {
6191 const char *p;
6192 const char *name0 = name;
6193
6194 while (1)
6195 {
6196 const char *match = name;
6197
6198 if (*name == *patn)
6199 {
6200 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6201 if (*p != *name)
6202 break;
6203 if (*p == '\0' && is_name_suffix (name))
6204 return match != name0 && !is_valid_name_for_wild_match (name0);
6205
6206 if (name[-1] == '_')
6207 name -= 1;
6208 }
6209 if (!advance_wild_match (&name, name0, *patn))
6210 return 1;
6211 }
6212 }
6213
6214 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
6215 informational suffix. */
6216
6217 static int
6218 full_match (const char *sym_name, const char *search_name)
6219 {
6220 return !match_name (sym_name, search_name, 0);
6221 }
6222
6223
6224 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
6225 vector *defn_symbols, updating the list of symbols in OBSTACKP
6226 (if necessary). If WILD, treat as NAME with a wildcard prefix.
6227 OBJFILE is the section containing BLOCK. */
6228
6229 static void
6230 ada_add_block_symbols (struct obstack *obstackp,
6231 const struct block *block, const char *name,
6232 domain_enum domain, struct objfile *objfile,
6233 int wild)
6234 {
6235 struct block_iterator iter;
6236 int name_len = strlen (name);
6237 /* A matching argument symbol, if any. */
6238 struct symbol *arg_sym;
6239 /* Set true when we find a matching non-argument symbol. */
6240 int found_sym;
6241 struct symbol *sym;
6242
6243 arg_sym = NULL;
6244 found_sym = 0;
6245 if (wild)
6246 {
6247 for (sym = block_iter_match_first (block, name, wild_match, &iter);
6248 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
6249 {
6250 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6251 SYMBOL_DOMAIN (sym), domain)
6252 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
6253 {
6254 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
6255 continue;
6256 else if (SYMBOL_IS_ARGUMENT (sym))
6257 arg_sym = sym;
6258 else
6259 {
6260 found_sym = 1;
6261 add_defn_to_vec (obstackp,
6262 fixup_symbol_section (sym, objfile),
6263 block);
6264 }
6265 }
6266 }
6267 }
6268 else
6269 {
6270 for (sym = block_iter_match_first (block, name, full_match, &iter);
6271 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
6272 {
6273 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6274 SYMBOL_DOMAIN (sym), domain))
6275 {
6276 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6277 {
6278 if (SYMBOL_IS_ARGUMENT (sym))
6279 arg_sym = sym;
6280 else
6281 {
6282 found_sym = 1;
6283 add_defn_to_vec (obstackp,
6284 fixup_symbol_section (sym, objfile),
6285 block);
6286 }
6287 }
6288 }
6289 }
6290 }
6291
6292 /* Handle renamings. */
6293
6294 if (ada_add_block_renamings (obstackp, block, name, domain, wild))
6295 found_sym = 1;
6296
6297 if (!found_sym && arg_sym != NULL)
6298 {
6299 add_defn_to_vec (obstackp,
6300 fixup_symbol_section (arg_sym, objfile),
6301 block);
6302 }
6303
6304 if (!wild)
6305 {
6306 arg_sym = NULL;
6307 found_sym = 0;
6308
6309 ALL_BLOCK_SYMBOLS (block, iter, sym)
6310 {
6311 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6312 SYMBOL_DOMAIN (sym), domain))
6313 {
6314 int cmp;
6315
6316 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6317 if (cmp == 0)
6318 {
6319 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6320 if (cmp == 0)
6321 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6322 name_len);
6323 }
6324
6325 if (cmp == 0
6326 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6327 {
6328 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6329 {
6330 if (SYMBOL_IS_ARGUMENT (sym))
6331 arg_sym = sym;
6332 else
6333 {
6334 found_sym = 1;
6335 add_defn_to_vec (obstackp,
6336 fixup_symbol_section (sym, objfile),
6337 block);
6338 }
6339 }
6340 }
6341 }
6342 }
6343
6344 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6345 They aren't parameters, right? */
6346 if (!found_sym && arg_sym != NULL)
6347 {
6348 add_defn_to_vec (obstackp,
6349 fixup_symbol_section (arg_sym, objfile),
6350 block);
6351 }
6352 }
6353 }
6354 \f
6355
6356 /* Symbol Completion */
6357
6358 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
6359 name in a form that's appropriate for the completion. The result
6360 does not need to be deallocated, but is only good until the next call.
6361
6362 TEXT_LEN is equal to the length of TEXT.
6363 Perform a wild match if WILD_MATCH_P is set.
6364 ENCODED_P should be set if TEXT represents the start of a symbol name
6365 in its encoded form. */
6366
6367 static const char *
6368 symbol_completion_match (const char *sym_name,
6369 const char *text, int text_len,
6370 int wild_match_p, int encoded_p)
6371 {
6372 const int verbatim_match = (text[0] == '<');
6373 int match = 0;
6374
6375 if (verbatim_match)
6376 {
6377 /* Strip the leading angle bracket. */
6378 text = text + 1;
6379 text_len--;
6380 }
6381
6382 /* First, test against the fully qualified name of the symbol. */
6383
6384 if (strncmp (sym_name, text, text_len) == 0)
6385 match = 1;
6386
6387 if (match && !encoded_p)
6388 {
6389 /* One needed check before declaring a positive match is to verify
6390 that iff we are doing a verbatim match, the decoded version
6391 of the symbol name starts with '<'. Otherwise, this symbol name
6392 is not a suitable completion. */
6393 const char *sym_name_copy = sym_name;
6394 int has_angle_bracket;
6395
6396 sym_name = ada_decode (sym_name);
6397 has_angle_bracket = (sym_name[0] == '<');
6398 match = (has_angle_bracket == verbatim_match);
6399 sym_name = sym_name_copy;
6400 }
6401
6402 if (match && !verbatim_match)
6403 {
6404 /* When doing non-verbatim match, another check that needs to
6405 be done is to verify that the potentially matching symbol name
6406 does not include capital letters, because the ada-mode would
6407 not be able to understand these symbol names without the
6408 angle bracket notation. */
6409 const char *tmp;
6410
6411 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6412 if (*tmp != '\0')
6413 match = 0;
6414 }
6415
6416 /* Second: Try wild matching... */
6417
6418 if (!match && wild_match_p)
6419 {
6420 /* Since we are doing wild matching, this means that TEXT
6421 may represent an unqualified symbol name. We therefore must
6422 also compare TEXT against the unqualified name of the symbol. */
6423 sym_name = ada_unqualified_name (ada_decode (sym_name));
6424
6425 if (strncmp (sym_name, text, text_len) == 0)
6426 match = 1;
6427 }
6428
6429 /* Finally: If we found a mach, prepare the result to return. */
6430
6431 if (!match)
6432 return NULL;
6433
6434 if (verbatim_match)
6435 sym_name = add_angle_brackets (sym_name);
6436
6437 if (!encoded_p)
6438 sym_name = ada_decode (sym_name);
6439
6440 return sym_name;
6441 }
6442
6443 /* A companion function to ada_collect_symbol_completion_matches().
6444 Check if SYM_NAME represents a symbol which name would be suitable
6445 to complete TEXT (TEXT_LEN is the length of TEXT), in which case it
6446 is added as a completion match to TRACKER.
6447
6448 ORIG_TEXT is the string original string from the user command
6449 that needs to be completed. WORD is the entire command on which
6450 completion should be performed. These two parameters are used to
6451 determine which part of the symbol name should be added to the
6452 completion vector.
6453 if WILD_MATCH_P is set, then wild matching is performed.
6454 ENCODED_P should be set if TEXT represents a symbol name in its
6455 encoded formed (in which case the completion should also be
6456 encoded). */
6457
6458 static void
6459 symbol_completion_add (completion_tracker &tracker,
6460 const char *sym_name,
6461 const char *text, int text_len,
6462 const char *orig_text, const char *word,
6463 int wild_match_p, int encoded_p)
6464 {
6465 const char *match = symbol_completion_match (sym_name, text, text_len,
6466 wild_match_p, encoded_p);
6467 char *completion;
6468
6469 if (match == NULL)
6470 return;
6471
6472 /* We found a match, so add the appropriate completion to the given
6473 string vector. */
6474
6475 if (word == orig_text)
6476 {
6477 completion = (char *) xmalloc (strlen (match) + 5);
6478 strcpy (completion, match);
6479 }
6480 else if (word > orig_text)
6481 {
6482 /* Return some portion of sym_name. */
6483 completion = (char *) xmalloc (strlen (match) + 5);
6484 strcpy (completion, match + (word - orig_text));
6485 }
6486 else
6487 {
6488 /* Return some of ORIG_TEXT plus sym_name. */
6489 completion = (char *) xmalloc (strlen (match) + (orig_text - word) + 5);
6490 strncpy (completion, word, orig_text - word);
6491 completion[orig_text - word] = '\0';
6492 strcat (completion, match);
6493 }
6494
6495 tracker.add_completion (gdb::unique_xmalloc_ptr<char> (completion));
6496 }
6497
6498 /* Add the list of possible symbol names completing TEXT0 to TRACKER.
6499 WORD is the entire command on which completion is made. */
6500
6501 static void
6502 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6503 const char *text0, const char *word,
6504 enum type_code code)
6505 {
6506 char *text;
6507 int text_len;
6508 int wild_match_p;
6509 int encoded_p;
6510 struct symbol *sym;
6511 struct compunit_symtab *s;
6512 struct minimal_symbol *msymbol;
6513 struct objfile *objfile;
6514 const struct block *b, *surrounding_static_block = 0;
6515 int i;
6516 struct block_iterator iter;
6517 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6518
6519 gdb_assert (code == TYPE_CODE_UNDEF);
6520
6521 if (text0[0] == '<')
6522 {
6523 text = xstrdup (text0);
6524 make_cleanup (xfree, text);
6525 text_len = strlen (text);
6526 wild_match_p = 0;
6527 encoded_p = 1;
6528 }
6529 else
6530 {
6531 text = xstrdup (ada_encode (text0));
6532 make_cleanup (xfree, text);
6533 text_len = strlen (text);
6534 for (i = 0; i < text_len; i++)
6535 text[i] = tolower (text[i]);
6536
6537 encoded_p = (strstr (text0, "__") != NULL);
6538 /* If the name contains a ".", then the user is entering a fully
6539 qualified entity name, and the match must not be done in wild
6540 mode. Similarly, if the user wants to complete what looks like
6541 an encoded name, the match must not be done in wild mode. */
6542 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
6543 }
6544
6545 /* First, look at the partial symtab symbols. */
6546 expand_symtabs_matching (NULL,
6547 [&] (const char *symname)
6548 {
6549 return symbol_completion_match (symname,
6550 text, text_len,
6551 wild_match_p,
6552 encoded_p);
6553 },
6554 NULL,
6555 ALL_DOMAIN);
6556
6557 /* At this point scan through the misc symbol vectors and add each
6558 symbol you find to the list. Eventually we want to ignore
6559 anything that isn't a text symbol (everything else will be
6560 handled by the psymtab code above). */
6561
6562 ALL_MSYMBOLS (objfile, msymbol)
6563 {
6564 QUIT;
6565 symbol_completion_add (tracker, MSYMBOL_LINKAGE_NAME (msymbol),
6566 text, text_len, text0, word, wild_match_p,
6567 encoded_p);
6568 }
6569
6570 /* Search upwards from currently selected frame (so that we can
6571 complete on local vars. */
6572
6573 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6574 {
6575 if (!BLOCK_SUPERBLOCK (b))
6576 surrounding_static_block = b; /* For elmin of dups */
6577
6578 ALL_BLOCK_SYMBOLS (b, iter, sym)
6579 {
6580 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6581 text, text_len, text0, word,
6582 wild_match_p, encoded_p);
6583 }
6584 }
6585
6586 /* Go through the symtabs and check the externs and statics for
6587 symbols which match. */
6588
6589 ALL_COMPUNITS (objfile, s)
6590 {
6591 QUIT;
6592 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6593 ALL_BLOCK_SYMBOLS (b, iter, sym)
6594 {
6595 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6596 text, text_len, text0, word,
6597 wild_match_p, encoded_p);
6598 }
6599 }
6600
6601 ALL_COMPUNITS (objfile, s)
6602 {
6603 QUIT;
6604 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6605 /* Don't do this block twice. */
6606 if (b == surrounding_static_block)
6607 continue;
6608 ALL_BLOCK_SYMBOLS (b, iter, sym)
6609 {
6610 symbol_completion_add (tracker, SYMBOL_LINKAGE_NAME (sym),
6611 text, text_len, text0, word,
6612 wild_match_p, encoded_p);
6613 }
6614 }
6615
6616 do_cleanups (old_chain);
6617 }
6618
6619 /* Field Access */
6620
6621 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6622 for tagged types. */
6623
6624 static int
6625 ada_is_dispatch_table_ptr_type (struct type *type)
6626 {
6627 const char *name;
6628
6629 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6630 return 0;
6631
6632 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6633 if (name == NULL)
6634 return 0;
6635
6636 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6637 }
6638
6639 /* Return non-zero if TYPE is an interface tag. */
6640
6641 static int
6642 ada_is_interface_tag (struct type *type)
6643 {
6644 const char *name = TYPE_NAME (type);
6645
6646 if (name == NULL)
6647 return 0;
6648
6649 return (strcmp (name, "ada__tags__interface_tag") == 0);
6650 }
6651
6652 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6653 to be invisible to users. */
6654
6655 int
6656 ada_is_ignored_field (struct type *type, int field_num)
6657 {
6658 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6659 return 1;
6660
6661 /* Check the name of that field. */
6662 {
6663 const char *name = TYPE_FIELD_NAME (type, field_num);
6664
6665 /* Anonymous field names should not be printed.
6666 brobecker/2007-02-20: I don't think this can actually happen
6667 but we don't want to print the value of annonymous fields anyway. */
6668 if (name == NULL)
6669 return 1;
6670
6671 /* Normally, fields whose name start with an underscore ("_")
6672 are fields that have been internally generated by the compiler,
6673 and thus should not be printed. The "_parent" field is special,
6674 however: This is a field internally generated by the compiler
6675 for tagged types, and it contains the components inherited from
6676 the parent type. This field should not be printed as is, but
6677 should not be ignored either. */
6678 if (name[0] == '_' && !startswith (name, "_parent"))
6679 return 1;
6680 }
6681
6682 /* If this is the dispatch table of a tagged type or an interface tag,
6683 then ignore. */
6684 if (ada_is_tagged_type (type, 1)
6685 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6686 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6687 return 1;
6688
6689 /* Not a special field, so it should not be ignored. */
6690 return 0;
6691 }
6692
6693 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6694 pointer or reference type whose ultimate target has a tag field. */
6695
6696 int
6697 ada_is_tagged_type (struct type *type, int refok)
6698 {
6699 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
6700 }
6701
6702 /* True iff TYPE represents the type of X'Tag */
6703
6704 int
6705 ada_is_tag_type (struct type *type)
6706 {
6707 type = ada_check_typedef (type);
6708
6709 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6710 return 0;
6711 else
6712 {
6713 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6714
6715 return (name != NULL
6716 && strcmp (name, "ada__tags__dispatch_table") == 0);
6717 }
6718 }
6719
6720 /* The type of the tag on VAL. */
6721
6722 struct type *
6723 ada_tag_type (struct value *val)
6724 {
6725 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6726 }
6727
6728 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6729 retired at Ada 05). */
6730
6731 static int
6732 is_ada95_tag (struct value *tag)
6733 {
6734 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6735 }
6736
6737 /* The value of the tag on VAL. */
6738
6739 struct value *
6740 ada_value_tag (struct value *val)
6741 {
6742 return ada_value_struct_elt (val, "_tag", 0);
6743 }
6744
6745 /* The value of the tag on the object of type TYPE whose contents are
6746 saved at VALADDR, if it is non-null, or is at memory address
6747 ADDRESS. */
6748
6749 static struct value *
6750 value_tag_from_contents_and_address (struct type *type,
6751 const gdb_byte *valaddr,
6752 CORE_ADDR address)
6753 {
6754 int tag_byte_offset;
6755 struct type *tag_type;
6756
6757 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6758 NULL, NULL, NULL))
6759 {
6760 const gdb_byte *valaddr1 = ((valaddr == NULL)
6761 ? NULL
6762 : valaddr + tag_byte_offset);
6763 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6764
6765 return value_from_contents_and_address (tag_type, valaddr1, address1);
6766 }
6767 return NULL;
6768 }
6769
6770 static struct type *
6771 type_from_tag (struct value *tag)
6772 {
6773 const char *type_name = ada_tag_name (tag);
6774
6775 if (type_name != NULL)
6776 return ada_find_any_type (ada_encode (type_name));
6777 return NULL;
6778 }
6779
6780 /* Given a value OBJ of a tagged type, return a value of this
6781 type at the base address of the object. The base address, as
6782 defined in Ada.Tags, it is the address of the primary tag of
6783 the object, and therefore where the field values of its full
6784 view can be fetched. */
6785
6786 struct value *
6787 ada_tag_value_at_base_address (struct value *obj)
6788 {
6789 struct value *val;
6790 LONGEST offset_to_top = 0;
6791 struct type *ptr_type, *obj_type;
6792 struct value *tag;
6793 CORE_ADDR base_address;
6794
6795 obj_type = value_type (obj);
6796
6797 /* It is the responsability of the caller to deref pointers. */
6798
6799 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6800 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6801 return obj;
6802
6803 tag = ada_value_tag (obj);
6804 if (!tag)
6805 return obj;
6806
6807 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6808
6809 if (is_ada95_tag (tag))
6810 return obj;
6811
6812 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
6813 ptr_type = lookup_pointer_type (ptr_type);
6814 val = value_cast (ptr_type, tag);
6815 if (!val)
6816 return obj;
6817
6818 /* It is perfectly possible that an exception be raised while
6819 trying to determine the base address, just like for the tag;
6820 see ada_tag_name for more details. We do not print the error
6821 message for the same reason. */
6822
6823 TRY
6824 {
6825 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6826 }
6827
6828 CATCH (e, RETURN_MASK_ERROR)
6829 {
6830 return obj;
6831 }
6832 END_CATCH
6833
6834 /* If offset is null, nothing to do. */
6835
6836 if (offset_to_top == 0)
6837 return obj;
6838
6839 /* -1 is a special case in Ada.Tags; however, what should be done
6840 is not quite clear from the documentation. So do nothing for
6841 now. */
6842
6843 if (offset_to_top == -1)
6844 return obj;
6845
6846 base_address = value_address (obj) - offset_to_top;
6847 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6848
6849 /* Make sure that we have a proper tag at the new address.
6850 Otherwise, offset_to_top is bogus (which can happen when
6851 the object is not initialized yet). */
6852
6853 if (!tag)
6854 return obj;
6855
6856 obj_type = type_from_tag (tag);
6857
6858 if (!obj_type)
6859 return obj;
6860
6861 return value_from_contents_and_address (obj_type, NULL, base_address);
6862 }
6863
6864 /* Return the "ada__tags__type_specific_data" type. */
6865
6866 static struct type *
6867 ada_get_tsd_type (struct inferior *inf)
6868 {
6869 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6870
6871 if (data->tsd_type == 0)
6872 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6873 return data->tsd_type;
6874 }
6875
6876 /* Return the TSD (type-specific data) associated to the given TAG.
6877 TAG is assumed to be the tag of a tagged-type entity.
6878
6879 May return NULL if we are unable to get the TSD. */
6880
6881 static struct value *
6882 ada_get_tsd_from_tag (struct value *tag)
6883 {
6884 struct value *val;
6885 struct type *type;
6886
6887 /* First option: The TSD is simply stored as a field of our TAG.
6888 Only older versions of GNAT would use this format, but we have
6889 to test it first, because there are no visible markers for
6890 the current approach except the absence of that field. */
6891
6892 val = ada_value_struct_elt (tag, "tsd", 1);
6893 if (val)
6894 return val;
6895
6896 /* Try the second representation for the dispatch table (in which
6897 there is no explicit 'tsd' field in the referent of the tag pointer,
6898 and instead the tsd pointer is stored just before the dispatch
6899 table. */
6900
6901 type = ada_get_tsd_type (current_inferior());
6902 if (type == NULL)
6903 return NULL;
6904 type = lookup_pointer_type (lookup_pointer_type (type));
6905 val = value_cast (type, tag);
6906 if (val == NULL)
6907 return NULL;
6908 return value_ind (value_ptradd (val, -1));
6909 }
6910
6911 /* Given the TSD of a tag (type-specific data), return a string
6912 containing the name of the associated type.
6913
6914 The returned value is good until the next call. May return NULL
6915 if we are unable to determine the tag name. */
6916
6917 static char *
6918 ada_tag_name_from_tsd (struct value *tsd)
6919 {
6920 static char name[1024];
6921 char *p;
6922 struct value *val;
6923
6924 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6925 if (val == NULL)
6926 return NULL;
6927 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6928 for (p = name; *p != '\0'; p += 1)
6929 if (isalpha (*p))
6930 *p = tolower (*p);
6931 return name;
6932 }
6933
6934 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6935 a C string.
6936
6937 Return NULL if the TAG is not an Ada tag, or if we were unable to
6938 determine the name of that tag. The result is good until the next
6939 call. */
6940
6941 const char *
6942 ada_tag_name (struct value *tag)
6943 {
6944 char *name = NULL;
6945
6946 if (!ada_is_tag_type (value_type (tag)))
6947 return NULL;
6948
6949 /* It is perfectly possible that an exception be raised while trying
6950 to determine the TAG's name, even under normal circumstances:
6951 The associated variable may be uninitialized or corrupted, for
6952 instance. We do not let any exception propagate past this point.
6953 instead we return NULL.
6954
6955 We also do not print the error message either (which often is very
6956 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6957 the caller print a more meaningful message if necessary. */
6958 TRY
6959 {
6960 struct value *tsd = ada_get_tsd_from_tag (tag);
6961
6962 if (tsd != NULL)
6963 name = ada_tag_name_from_tsd (tsd);
6964 }
6965 CATCH (e, RETURN_MASK_ERROR)
6966 {
6967 }
6968 END_CATCH
6969
6970 return name;
6971 }
6972
6973 /* The parent type of TYPE, or NULL if none. */
6974
6975 struct type *
6976 ada_parent_type (struct type *type)
6977 {
6978 int i;
6979
6980 type = ada_check_typedef (type);
6981
6982 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6983 return NULL;
6984
6985 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6986 if (ada_is_parent_field (type, i))
6987 {
6988 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6989
6990 /* If the _parent field is a pointer, then dereference it. */
6991 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6992 parent_type = TYPE_TARGET_TYPE (parent_type);
6993 /* If there is a parallel XVS type, get the actual base type. */
6994 parent_type = ada_get_base_type (parent_type);
6995
6996 return ada_check_typedef (parent_type);
6997 }
6998
6999 return NULL;
7000 }
7001
7002 /* True iff field number FIELD_NUM of structure type TYPE contains the
7003 parent-type (inherited) fields of a derived type. Assumes TYPE is
7004 a structure type with at least FIELD_NUM+1 fields. */
7005
7006 int
7007 ada_is_parent_field (struct type *type, int field_num)
7008 {
7009 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
7010
7011 return (name != NULL
7012 && (startswith (name, "PARENT")
7013 || startswith (name, "_parent")));
7014 }
7015
7016 /* True iff field number FIELD_NUM of structure type TYPE is a
7017 transparent wrapper field (which should be silently traversed when doing
7018 field selection and flattened when printing). Assumes TYPE is a
7019 structure type with at least FIELD_NUM+1 fields. Such fields are always
7020 structures. */
7021
7022 int
7023 ada_is_wrapper_field (struct type *type, int field_num)
7024 {
7025 const char *name = TYPE_FIELD_NAME (type, field_num);
7026
7027 if (name != NULL && strcmp (name, "RETVAL") == 0)
7028 {
7029 /* This happens in functions with "out" or "in out" parameters
7030 which are passed by copy. For such functions, GNAT describes
7031 the function's return type as being a struct where the return
7032 value is in a field called RETVAL, and where the other "out"
7033 or "in out" parameters are fields of that struct. This is not
7034 a wrapper. */
7035 return 0;
7036 }
7037
7038 return (name != NULL
7039 && (startswith (name, "PARENT")
7040 || strcmp (name, "REP") == 0
7041 || startswith (name, "_parent")
7042 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7043 }
7044
7045 /* True iff field number FIELD_NUM of structure or union type TYPE
7046 is a variant wrapper. Assumes TYPE is a structure type with at least
7047 FIELD_NUM+1 fields. */
7048
7049 int
7050 ada_is_variant_part (struct type *type, int field_num)
7051 {
7052 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7053
7054 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7055 || (is_dynamic_field (type, field_num)
7056 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7057 == TYPE_CODE_UNION)));
7058 }
7059
7060 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7061 whose discriminants are contained in the record type OUTER_TYPE,
7062 returns the type of the controlling discriminant for the variant.
7063 May return NULL if the type could not be found. */
7064
7065 struct type *
7066 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7067 {
7068 const char *name = ada_variant_discrim_name (var_type);
7069
7070 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
7071 }
7072
7073 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7074 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7075 represents a 'when others' clause; otherwise 0. */
7076
7077 int
7078 ada_is_others_clause (struct type *type, int field_num)
7079 {
7080 const char *name = TYPE_FIELD_NAME (type, field_num);
7081
7082 return (name != NULL && name[0] == 'O');
7083 }
7084
7085 /* Assuming that TYPE0 is the type of the variant part of a record,
7086 returns the name of the discriminant controlling the variant.
7087 The value is valid until the next call to ada_variant_discrim_name. */
7088
7089 const char *
7090 ada_variant_discrim_name (struct type *type0)
7091 {
7092 static char *result = NULL;
7093 static size_t result_len = 0;
7094 struct type *type;
7095 const char *name;
7096 const char *discrim_end;
7097 const char *discrim_start;
7098
7099 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7100 type = TYPE_TARGET_TYPE (type0);
7101 else
7102 type = type0;
7103
7104 name = ada_type_name (type);
7105
7106 if (name == NULL || name[0] == '\000')
7107 return "";
7108
7109 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7110 discrim_end -= 1)
7111 {
7112 if (startswith (discrim_end, "___XVN"))
7113 break;
7114 }
7115 if (discrim_end == name)
7116 return "";
7117
7118 for (discrim_start = discrim_end; discrim_start != name + 3;
7119 discrim_start -= 1)
7120 {
7121 if (discrim_start == name + 1)
7122 return "";
7123 if ((discrim_start > name + 3
7124 && startswith (discrim_start - 3, "___"))
7125 || discrim_start[-1] == '.')
7126 break;
7127 }
7128
7129 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7130 strncpy (result, discrim_start, discrim_end - discrim_start);
7131 result[discrim_end - discrim_start] = '\0';
7132 return result;
7133 }
7134
7135 /* Scan STR for a subtype-encoded number, beginning at position K.
7136 Put the position of the character just past the number scanned in
7137 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7138 Return 1 if there was a valid number at the given position, and 0
7139 otherwise. A "subtype-encoded" number consists of the absolute value
7140 in decimal, followed by the letter 'm' to indicate a negative number.
7141 Assumes 0m does not occur. */
7142
7143 int
7144 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7145 {
7146 ULONGEST RU;
7147
7148 if (!isdigit (str[k]))
7149 return 0;
7150
7151 /* Do it the hard way so as not to make any assumption about
7152 the relationship of unsigned long (%lu scan format code) and
7153 LONGEST. */
7154 RU = 0;
7155 while (isdigit (str[k]))
7156 {
7157 RU = RU * 10 + (str[k] - '0');
7158 k += 1;
7159 }
7160
7161 if (str[k] == 'm')
7162 {
7163 if (R != NULL)
7164 *R = (-(LONGEST) (RU - 1)) - 1;
7165 k += 1;
7166 }
7167 else if (R != NULL)
7168 *R = (LONGEST) RU;
7169
7170 /* NOTE on the above: Technically, C does not say what the results of
7171 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7172 number representable as a LONGEST (although either would probably work
7173 in most implementations). When RU>0, the locution in the then branch
7174 above is always equivalent to the negative of RU. */
7175
7176 if (new_k != NULL)
7177 *new_k = k;
7178 return 1;
7179 }
7180
7181 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7182 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7183 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7184
7185 int
7186 ada_in_variant (LONGEST val, struct type *type, int field_num)
7187 {
7188 const char *name = TYPE_FIELD_NAME (type, field_num);
7189 int p;
7190
7191 p = 0;
7192 while (1)
7193 {
7194 switch (name[p])
7195 {
7196 case '\0':
7197 return 0;
7198 case 'S':
7199 {
7200 LONGEST W;
7201
7202 if (!ada_scan_number (name, p + 1, &W, &p))
7203 return 0;
7204 if (val == W)
7205 return 1;
7206 break;
7207 }
7208 case 'R':
7209 {
7210 LONGEST L, U;
7211
7212 if (!ada_scan_number (name, p + 1, &L, &p)
7213 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7214 return 0;
7215 if (val >= L && val <= U)
7216 return 1;
7217 break;
7218 }
7219 case 'O':
7220 return 1;
7221 default:
7222 return 0;
7223 }
7224 }
7225 }
7226
7227 /* FIXME: Lots of redundancy below. Try to consolidate. */
7228
7229 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7230 ARG_TYPE, extract and return the value of one of its (non-static)
7231 fields. FIELDNO says which field. Differs from value_primitive_field
7232 only in that it can handle packed values of arbitrary type. */
7233
7234 static struct value *
7235 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7236 struct type *arg_type)
7237 {
7238 struct type *type;
7239
7240 arg_type = ada_check_typedef (arg_type);
7241 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7242
7243 /* Handle packed fields. */
7244
7245 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7246 {
7247 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7248 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7249
7250 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7251 offset + bit_pos / 8,
7252 bit_pos % 8, bit_size, type);
7253 }
7254 else
7255 return value_primitive_field (arg1, offset, fieldno, arg_type);
7256 }
7257
7258 /* Find field with name NAME in object of type TYPE. If found,
7259 set the following for each argument that is non-null:
7260 - *FIELD_TYPE_P to the field's type;
7261 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7262 an object of that type;
7263 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7264 - *BIT_SIZE_P to its size in bits if the field is packed, and
7265 0 otherwise;
7266 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7267 fields up to but not including the desired field, or by the total
7268 number of fields if not found. A NULL value of NAME never
7269 matches; the function just counts visible fields in this case.
7270
7271 Returns 1 if found, 0 otherwise. */
7272
7273 static int
7274 find_struct_field (const char *name, struct type *type, int offset,
7275 struct type **field_type_p,
7276 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7277 int *index_p)
7278 {
7279 int i;
7280
7281 type = ada_check_typedef (type);
7282
7283 if (field_type_p != NULL)
7284 *field_type_p = NULL;
7285 if (byte_offset_p != NULL)
7286 *byte_offset_p = 0;
7287 if (bit_offset_p != NULL)
7288 *bit_offset_p = 0;
7289 if (bit_size_p != NULL)
7290 *bit_size_p = 0;
7291
7292 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7293 {
7294 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7295 int fld_offset = offset + bit_pos / 8;
7296 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7297
7298 if (t_field_name == NULL)
7299 continue;
7300
7301 else if (name != NULL && field_name_match (t_field_name, name))
7302 {
7303 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7304
7305 if (field_type_p != NULL)
7306 *field_type_p = TYPE_FIELD_TYPE (type, i);
7307 if (byte_offset_p != NULL)
7308 *byte_offset_p = fld_offset;
7309 if (bit_offset_p != NULL)
7310 *bit_offset_p = bit_pos % 8;
7311 if (bit_size_p != NULL)
7312 *bit_size_p = bit_size;
7313 return 1;
7314 }
7315 else if (ada_is_wrapper_field (type, i))
7316 {
7317 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7318 field_type_p, byte_offset_p, bit_offset_p,
7319 bit_size_p, index_p))
7320 return 1;
7321 }
7322 else if (ada_is_variant_part (type, i))
7323 {
7324 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7325 fixed type?? */
7326 int j;
7327 struct type *field_type
7328 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7329
7330 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7331 {
7332 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7333 fld_offset
7334 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7335 field_type_p, byte_offset_p,
7336 bit_offset_p, bit_size_p, index_p))
7337 return 1;
7338 }
7339 }
7340 else if (index_p != NULL)
7341 *index_p += 1;
7342 }
7343 return 0;
7344 }
7345
7346 /* Number of user-visible fields in record type TYPE. */
7347
7348 static int
7349 num_visible_fields (struct type *type)
7350 {
7351 int n;
7352
7353 n = 0;
7354 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7355 return n;
7356 }
7357
7358 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7359 and search in it assuming it has (class) type TYPE.
7360 If found, return value, else return NULL.
7361
7362 Searches recursively through wrapper fields (e.g., '_parent'). */
7363
7364 static struct value *
7365 ada_search_struct_field (const char *name, struct value *arg, int offset,
7366 struct type *type)
7367 {
7368 int i;
7369
7370 type = ada_check_typedef (type);
7371 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7372 {
7373 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7374
7375 if (t_field_name == NULL)
7376 continue;
7377
7378 else if (field_name_match (t_field_name, name))
7379 return ada_value_primitive_field (arg, offset, i, type);
7380
7381 else if (ada_is_wrapper_field (type, i))
7382 {
7383 struct value *v = /* Do not let indent join lines here. */
7384 ada_search_struct_field (name, arg,
7385 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7386 TYPE_FIELD_TYPE (type, i));
7387
7388 if (v != NULL)
7389 return v;
7390 }
7391
7392 else if (ada_is_variant_part (type, i))
7393 {
7394 /* PNH: Do we ever get here? See find_struct_field. */
7395 int j;
7396 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7397 i));
7398 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7399
7400 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7401 {
7402 struct value *v = ada_search_struct_field /* Force line
7403 break. */
7404 (name, arg,
7405 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7406 TYPE_FIELD_TYPE (field_type, j));
7407
7408 if (v != NULL)
7409 return v;
7410 }
7411 }
7412 }
7413 return NULL;
7414 }
7415
7416 static struct value *ada_index_struct_field_1 (int *, struct value *,
7417 int, struct type *);
7418
7419
7420 /* Return field #INDEX in ARG, where the index is that returned by
7421 * find_struct_field through its INDEX_P argument. Adjust the address
7422 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7423 * If found, return value, else return NULL. */
7424
7425 static struct value *
7426 ada_index_struct_field (int index, struct value *arg, int offset,
7427 struct type *type)
7428 {
7429 return ada_index_struct_field_1 (&index, arg, offset, type);
7430 }
7431
7432
7433 /* Auxiliary function for ada_index_struct_field. Like
7434 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7435 * *INDEX_P. */
7436
7437 static struct value *
7438 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7439 struct type *type)
7440 {
7441 int i;
7442 type = ada_check_typedef (type);
7443
7444 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7445 {
7446 if (TYPE_FIELD_NAME (type, i) == NULL)
7447 continue;
7448 else if (ada_is_wrapper_field (type, i))
7449 {
7450 struct value *v = /* Do not let indent join lines here. */
7451 ada_index_struct_field_1 (index_p, arg,
7452 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7453 TYPE_FIELD_TYPE (type, i));
7454
7455 if (v != NULL)
7456 return v;
7457 }
7458
7459 else if (ada_is_variant_part (type, i))
7460 {
7461 /* PNH: Do we ever get here? See ada_search_struct_field,
7462 find_struct_field. */
7463 error (_("Cannot assign this kind of variant record"));
7464 }
7465 else if (*index_p == 0)
7466 return ada_value_primitive_field (arg, offset, i, type);
7467 else
7468 *index_p -= 1;
7469 }
7470 return NULL;
7471 }
7472
7473 /* Given ARG, a value of type (pointer or reference to a)*
7474 structure/union, extract the component named NAME from the ultimate
7475 target structure/union and return it as a value with its
7476 appropriate type.
7477
7478 The routine searches for NAME among all members of the structure itself
7479 and (recursively) among all members of any wrapper members
7480 (e.g., '_parent').
7481
7482 If NO_ERR, then simply return NULL in case of error, rather than
7483 calling error. */
7484
7485 struct value *
7486 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7487 {
7488 struct type *t, *t1;
7489 struct value *v;
7490
7491 v = NULL;
7492 t1 = t = ada_check_typedef (value_type (arg));
7493 if (TYPE_CODE (t) == TYPE_CODE_REF)
7494 {
7495 t1 = TYPE_TARGET_TYPE (t);
7496 if (t1 == NULL)
7497 goto BadValue;
7498 t1 = ada_check_typedef (t1);
7499 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7500 {
7501 arg = coerce_ref (arg);
7502 t = t1;
7503 }
7504 }
7505
7506 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7507 {
7508 t1 = TYPE_TARGET_TYPE (t);
7509 if (t1 == NULL)
7510 goto BadValue;
7511 t1 = ada_check_typedef (t1);
7512 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7513 {
7514 arg = value_ind (arg);
7515 t = t1;
7516 }
7517 else
7518 break;
7519 }
7520
7521 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7522 goto BadValue;
7523
7524 if (t1 == t)
7525 v = ada_search_struct_field (name, arg, 0, t);
7526 else
7527 {
7528 int bit_offset, bit_size, byte_offset;
7529 struct type *field_type;
7530 CORE_ADDR address;
7531
7532 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7533 address = value_address (ada_value_ind (arg));
7534 else
7535 address = value_address (ada_coerce_ref (arg));
7536
7537 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
7538 if (find_struct_field (name, t1, 0,
7539 &field_type, &byte_offset, &bit_offset,
7540 &bit_size, NULL))
7541 {
7542 if (bit_size != 0)
7543 {
7544 if (TYPE_CODE (t) == TYPE_CODE_REF)
7545 arg = ada_coerce_ref (arg);
7546 else
7547 arg = ada_value_ind (arg);
7548 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7549 bit_offset, bit_size,
7550 field_type);
7551 }
7552 else
7553 v = value_at_lazy (field_type, address + byte_offset);
7554 }
7555 }
7556
7557 if (v != NULL || no_err)
7558 return v;
7559 else
7560 error (_("There is no member named %s."), name);
7561
7562 BadValue:
7563 if (no_err)
7564 return NULL;
7565 else
7566 error (_("Attempt to extract a component of "
7567 "a value that is not a record."));
7568 }
7569
7570 /* Return a string representation of type TYPE. */
7571
7572 static std::string
7573 type_as_string (struct type *type)
7574 {
7575 string_file tmp_stream;
7576
7577 type_print (type, "", &tmp_stream, -1);
7578
7579 return std::move (tmp_stream.string ());
7580 }
7581
7582 /* Given a type TYPE, look up the type of the component of type named NAME.
7583 If DISPP is non-null, add its byte displacement from the beginning of a
7584 structure (pointed to by a value) of type TYPE to *DISPP (does not
7585 work for packed fields).
7586
7587 Matches any field whose name has NAME as a prefix, possibly
7588 followed by "___".
7589
7590 TYPE can be either a struct or union. If REFOK, TYPE may also
7591 be a (pointer or reference)+ to a struct or union, and the
7592 ultimate target type will be searched.
7593
7594 Looks recursively into variant clauses and parent types.
7595
7596 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7597 TYPE is not a type of the right kind. */
7598
7599 static struct type *
7600 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7601 int noerr, int *dispp)
7602 {
7603 int i;
7604
7605 if (name == NULL)
7606 goto BadName;
7607
7608 if (refok && type != NULL)
7609 while (1)
7610 {
7611 type = ada_check_typedef (type);
7612 if (TYPE_CODE (type) != TYPE_CODE_PTR
7613 && TYPE_CODE (type) != TYPE_CODE_REF)
7614 break;
7615 type = TYPE_TARGET_TYPE (type);
7616 }
7617
7618 if (type == NULL
7619 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7620 && TYPE_CODE (type) != TYPE_CODE_UNION))
7621 {
7622 if (noerr)
7623 return NULL;
7624
7625 error (_("Type %s is not a structure or union type"),
7626 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7627 }
7628
7629 type = to_static_fixed_type (type);
7630
7631 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7632 {
7633 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7634 struct type *t;
7635 int disp;
7636
7637 if (t_field_name == NULL)
7638 continue;
7639
7640 else if (field_name_match (t_field_name, name))
7641 {
7642 if (dispp != NULL)
7643 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
7644 return TYPE_FIELD_TYPE (type, i);
7645 }
7646
7647 else if (ada_is_wrapper_field (type, i))
7648 {
7649 disp = 0;
7650 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7651 0, 1, &disp);
7652 if (t != NULL)
7653 {
7654 if (dispp != NULL)
7655 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7656 return t;
7657 }
7658 }
7659
7660 else if (ada_is_variant_part (type, i))
7661 {
7662 int j;
7663 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7664 i));
7665
7666 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7667 {
7668 /* FIXME pnh 2008/01/26: We check for a field that is
7669 NOT wrapped in a struct, since the compiler sometimes
7670 generates these for unchecked variant types. Revisit
7671 if the compiler changes this practice. */
7672 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7673 disp = 0;
7674 if (v_field_name != NULL
7675 && field_name_match (v_field_name, name))
7676 t = TYPE_FIELD_TYPE (field_type, j);
7677 else
7678 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7679 j),
7680 name, 0, 1, &disp);
7681
7682 if (t != NULL)
7683 {
7684 if (dispp != NULL)
7685 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
7686 return t;
7687 }
7688 }
7689 }
7690
7691 }
7692
7693 BadName:
7694 if (!noerr)
7695 {
7696 const char *name_str = name != NULL ? name : _("<null>");
7697
7698 error (_("Type %s has no component named %s"),
7699 type_as_string (type).c_str (), name_str);
7700 }
7701
7702 return NULL;
7703 }
7704
7705 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7706 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7707 represents an unchecked union (that is, the variant part of a
7708 record that is named in an Unchecked_Union pragma). */
7709
7710 static int
7711 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7712 {
7713 const char *discrim_name = ada_variant_discrim_name (var_type);
7714
7715 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
7716 == NULL);
7717 }
7718
7719
7720 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7721 within a value of type OUTER_TYPE that is stored in GDB at
7722 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7723 numbering from 0) is applicable. Returns -1 if none are. */
7724
7725 int
7726 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7727 const gdb_byte *outer_valaddr)
7728 {
7729 int others_clause;
7730 int i;
7731 const char *discrim_name = ada_variant_discrim_name (var_type);
7732 struct value *outer;
7733 struct value *discrim;
7734 LONGEST discrim_val;
7735
7736 /* Using plain value_from_contents_and_address here causes problems
7737 because we will end up trying to resolve a type that is currently
7738 being constructed. */
7739 outer = value_from_contents_and_address_unresolved (outer_type,
7740 outer_valaddr, 0);
7741 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7742 if (discrim == NULL)
7743 return -1;
7744 discrim_val = value_as_long (discrim);
7745
7746 others_clause = -1;
7747 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7748 {
7749 if (ada_is_others_clause (var_type, i))
7750 others_clause = i;
7751 else if (ada_in_variant (discrim_val, var_type, i))
7752 return i;
7753 }
7754
7755 return others_clause;
7756 }
7757 \f
7758
7759
7760 /* Dynamic-Sized Records */
7761
7762 /* Strategy: The type ostensibly attached to a value with dynamic size
7763 (i.e., a size that is not statically recorded in the debugging
7764 data) does not accurately reflect the size or layout of the value.
7765 Our strategy is to convert these values to values with accurate,
7766 conventional types that are constructed on the fly. */
7767
7768 /* There is a subtle and tricky problem here. In general, we cannot
7769 determine the size of dynamic records without its data. However,
7770 the 'struct value' data structure, which GDB uses to represent
7771 quantities in the inferior process (the target), requires the size
7772 of the type at the time of its allocation in order to reserve space
7773 for GDB's internal copy of the data. That's why the
7774 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7775 rather than struct value*s.
7776
7777 However, GDB's internal history variables ($1, $2, etc.) are
7778 struct value*s containing internal copies of the data that are not, in
7779 general, the same as the data at their corresponding addresses in
7780 the target. Fortunately, the types we give to these values are all
7781 conventional, fixed-size types (as per the strategy described
7782 above), so that we don't usually have to perform the
7783 'to_fixed_xxx_type' conversions to look at their values.
7784 Unfortunately, there is one exception: if one of the internal
7785 history variables is an array whose elements are unconstrained
7786 records, then we will need to create distinct fixed types for each
7787 element selected. */
7788
7789 /* The upshot of all of this is that many routines take a (type, host
7790 address, target address) triple as arguments to represent a value.
7791 The host address, if non-null, is supposed to contain an internal
7792 copy of the relevant data; otherwise, the program is to consult the
7793 target at the target address. */
7794
7795 /* Assuming that VAL0 represents a pointer value, the result of
7796 dereferencing it. Differs from value_ind in its treatment of
7797 dynamic-sized types. */
7798
7799 struct value *
7800 ada_value_ind (struct value *val0)
7801 {
7802 struct value *val = value_ind (val0);
7803
7804 if (ada_is_tagged_type (value_type (val), 0))
7805 val = ada_tag_value_at_base_address (val);
7806
7807 return ada_to_fixed_value (val);
7808 }
7809
7810 /* The value resulting from dereferencing any "reference to"
7811 qualifiers on VAL0. */
7812
7813 static struct value *
7814 ada_coerce_ref (struct value *val0)
7815 {
7816 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7817 {
7818 struct value *val = val0;
7819
7820 val = coerce_ref (val);
7821
7822 if (ada_is_tagged_type (value_type (val), 0))
7823 val = ada_tag_value_at_base_address (val);
7824
7825 return ada_to_fixed_value (val);
7826 }
7827 else
7828 return val0;
7829 }
7830
7831 /* Return OFF rounded upward if necessary to a multiple of
7832 ALIGNMENT (a power of 2). */
7833
7834 static unsigned int
7835 align_value (unsigned int off, unsigned int alignment)
7836 {
7837 return (off + alignment - 1) & ~(alignment - 1);
7838 }
7839
7840 /* Return the bit alignment required for field #F of template type TYPE. */
7841
7842 static unsigned int
7843 field_alignment (struct type *type, int f)
7844 {
7845 const char *name = TYPE_FIELD_NAME (type, f);
7846 int len;
7847 int align_offset;
7848
7849 /* The field name should never be null, unless the debugging information
7850 is somehow malformed. In this case, we assume the field does not
7851 require any alignment. */
7852 if (name == NULL)
7853 return 1;
7854
7855 len = strlen (name);
7856
7857 if (!isdigit (name[len - 1]))
7858 return 1;
7859
7860 if (isdigit (name[len - 2]))
7861 align_offset = len - 2;
7862 else
7863 align_offset = len - 1;
7864
7865 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7866 return TARGET_CHAR_BIT;
7867
7868 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7869 }
7870
7871 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7872
7873 static struct symbol *
7874 ada_find_any_type_symbol (const char *name)
7875 {
7876 struct symbol *sym;
7877
7878 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7879 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7880 return sym;
7881
7882 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7883 return sym;
7884 }
7885
7886 /* Find a type named NAME. Ignores ambiguity. This routine will look
7887 solely for types defined by debug info, it will not search the GDB
7888 primitive types. */
7889
7890 static struct type *
7891 ada_find_any_type (const char *name)
7892 {
7893 struct symbol *sym = ada_find_any_type_symbol (name);
7894
7895 if (sym != NULL)
7896 return SYMBOL_TYPE (sym);
7897
7898 return NULL;
7899 }
7900
7901 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7902 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7903 symbol, in which case it is returned. Otherwise, this looks for
7904 symbols whose name is that of NAME_SYM suffixed with "___XR".
7905 Return symbol if found, and NULL otherwise. */
7906
7907 struct symbol *
7908 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7909 {
7910 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7911 struct symbol *sym;
7912
7913 if (strstr (name, "___XR") != NULL)
7914 return name_sym;
7915
7916 sym = find_old_style_renaming_symbol (name, block);
7917
7918 if (sym != NULL)
7919 return sym;
7920
7921 /* Not right yet. FIXME pnh 7/20/2007. */
7922 sym = ada_find_any_type_symbol (name);
7923 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7924 return sym;
7925 else
7926 return NULL;
7927 }
7928
7929 static struct symbol *
7930 find_old_style_renaming_symbol (const char *name, const struct block *block)
7931 {
7932 const struct symbol *function_sym = block_linkage_function (block);
7933 char *rename;
7934
7935 if (function_sym != NULL)
7936 {
7937 /* If the symbol is defined inside a function, NAME is not fully
7938 qualified. This means we need to prepend the function name
7939 as well as adding the ``___XR'' suffix to build the name of
7940 the associated renaming symbol. */
7941 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7942 /* Function names sometimes contain suffixes used
7943 for instance to qualify nested subprograms. When building
7944 the XR type name, we need to make sure that this suffix is
7945 not included. So do not include any suffix in the function
7946 name length below. */
7947 int function_name_len = ada_name_prefix_len (function_name);
7948 const int rename_len = function_name_len + 2 /* "__" */
7949 + strlen (name) + 6 /* "___XR\0" */ ;
7950
7951 /* Strip the suffix if necessary. */
7952 ada_remove_trailing_digits (function_name, &function_name_len);
7953 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7954 ada_remove_Xbn_suffix (function_name, &function_name_len);
7955
7956 /* Library-level functions are a special case, as GNAT adds
7957 a ``_ada_'' prefix to the function name to avoid namespace
7958 pollution. However, the renaming symbols themselves do not
7959 have this prefix, so we need to skip this prefix if present. */
7960 if (function_name_len > 5 /* "_ada_" */
7961 && strstr (function_name, "_ada_") == function_name)
7962 {
7963 function_name += 5;
7964 function_name_len -= 5;
7965 }
7966
7967 rename = (char *) alloca (rename_len * sizeof (char));
7968 strncpy (rename, function_name, function_name_len);
7969 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7970 "__%s___XR", name);
7971 }
7972 else
7973 {
7974 const int rename_len = strlen (name) + 6;
7975
7976 rename = (char *) alloca (rename_len * sizeof (char));
7977 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7978 }
7979
7980 return ada_find_any_type_symbol (rename);
7981 }
7982
7983 /* Because of GNAT encoding conventions, several GDB symbols may match a
7984 given type name. If the type denoted by TYPE0 is to be preferred to
7985 that of TYPE1 for purposes of type printing, return non-zero;
7986 otherwise return 0. */
7987
7988 int
7989 ada_prefer_type (struct type *type0, struct type *type1)
7990 {
7991 if (type1 == NULL)
7992 return 1;
7993 else if (type0 == NULL)
7994 return 0;
7995 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7996 return 1;
7997 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7998 return 0;
7999 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8000 return 1;
8001 else if (ada_is_constrained_packed_array_type (type0))
8002 return 1;
8003 else if (ada_is_array_descriptor_type (type0)
8004 && !ada_is_array_descriptor_type (type1))
8005 return 1;
8006 else
8007 {
8008 const char *type0_name = type_name_no_tag (type0);
8009 const char *type1_name = type_name_no_tag (type1);
8010
8011 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8012 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8013 return 1;
8014 }
8015 return 0;
8016 }
8017
8018 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8019 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8020
8021 const char *
8022 ada_type_name (struct type *type)
8023 {
8024 if (type == NULL)
8025 return NULL;
8026 else if (TYPE_NAME (type) != NULL)
8027 return TYPE_NAME (type);
8028 else
8029 return TYPE_TAG_NAME (type);
8030 }
8031
8032 /* Search the list of "descriptive" types associated to TYPE for a type
8033 whose name is NAME. */
8034
8035 static struct type *
8036 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8037 {
8038 struct type *result, *tmp;
8039
8040 if (ada_ignore_descriptive_types_p)
8041 return NULL;
8042
8043 /* If there no descriptive-type info, then there is no parallel type
8044 to be found. */
8045 if (!HAVE_GNAT_AUX_INFO (type))
8046 return NULL;
8047
8048 result = TYPE_DESCRIPTIVE_TYPE (type);
8049 while (result != NULL)
8050 {
8051 const char *result_name = ada_type_name (result);
8052
8053 if (result_name == NULL)
8054 {
8055 warning (_("unexpected null name on descriptive type"));
8056 return NULL;
8057 }
8058
8059 /* If the names match, stop. */
8060 if (strcmp (result_name, name) == 0)
8061 break;
8062
8063 /* Otherwise, look at the next item on the list, if any. */
8064 if (HAVE_GNAT_AUX_INFO (result))
8065 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8066 else
8067 tmp = NULL;
8068
8069 /* If not found either, try after having resolved the typedef. */
8070 if (tmp != NULL)
8071 result = tmp;
8072 else
8073 {
8074 result = check_typedef (result);
8075 if (HAVE_GNAT_AUX_INFO (result))
8076 result = TYPE_DESCRIPTIVE_TYPE (result);
8077 else
8078 result = NULL;
8079 }
8080 }
8081
8082 /* If we didn't find a match, see whether this is a packed array. With
8083 older compilers, the descriptive type information is either absent or
8084 irrelevant when it comes to packed arrays so the above lookup fails.
8085 Fall back to using a parallel lookup by name in this case. */
8086 if (result == NULL && ada_is_constrained_packed_array_type (type))
8087 return ada_find_any_type (name);
8088
8089 return result;
8090 }
8091
8092 /* Find a parallel type to TYPE with the specified NAME, using the
8093 descriptive type taken from the debugging information, if available,
8094 and otherwise using the (slower) name-based method. */
8095
8096 static struct type *
8097 ada_find_parallel_type_with_name (struct type *type, const char *name)
8098 {
8099 struct type *result = NULL;
8100
8101 if (HAVE_GNAT_AUX_INFO (type))
8102 result = find_parallel_type_by_descriptive_type (type, name);
8103 else
8104 result = ada_find_any_type (name);
8105
8106 return result;
8107 }
8108
8109 /* Same as above, but specify the name of the parallel type by appending
8110 SUFFIX to the name of TYPE. */
8111
8112 struct type *
8113 ada_find_parallel_type (struct type *type, const char *suffix)
8114 {
8115 char *name;
8116 const char *type_name = ada_type_name (type);
8117 int len;
8118
8119 if (type_name == NULL)
8120 return NULL;
8121
8122 len = strlen (type_name);
8123
8124 name = (char *) alloca (len + strlen (suffix) + 1);
8125
8126 strcpy (name, type_name);
8127 strcpy (name + len, suffix);
8128
8129 return ada_find_parallel_type_with_name (type, name);
8130 }
8131
8132 /* If TYPE is a variable-size record type, return the corresponding template
8133 type describing its fields. Otherwise, return NULL. */
8134
8135 static struct type *
8136 dynamic_template_type (struct type *type)
8137 {
8138 type = ada_check_typedef (type);
8139
8140 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8141 || ada_type_name (type) == NULL)
8142 return NULL;
8143 else
8144 {
8145 int len = strlen (ada_type_name (type));
8146
8147 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8148 return type;
8149 else
8150 return ada_find_parallel_type (type, "___XVE");
8151 }
8152 }
8153
8154 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8155 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8156
8157 static int
8158 is_dynamic_field (struct type *templ_type, int field_num)
8159 {
8160 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8161
8162 return name != NULL
8163 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8164 && strstr (name, "___XVL") != NULL;
8165 }
8166
8167 /* The index of the variant field of TYPE, or -1 if TYPE does not
8168 represent a variant record type. */
8169
8170 static int
8171 variant_field_index (struct type *type)
8172 {
8173 int f;
8174
8175 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8176 return -1;
8177
8178 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8179 {
8180 if (ada_is_variant_part (type, f))
8181 return f;
8182 }
8183 return -1;
8184 }
8185
8186 /* A record type with no fields. */
8187
8188 static struct type *
8189 empty_record (struct type *templ)
8190 {
8191 struct type *type = alloc_type_copy (templ);
8192
8193 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8194 TYPE_NFIELDS (type) = 0;
8195 TYPE_FIELDS (type) = NULL;
8196 INIT_CPLUS_SPECIFIC (type);
8197 TYPE_NAME (type) = "<empty>";
8198 TYPE_TAG_NAME (type) = NULL;
8199 TYPE_LENGTH (type) = 0;
8200 return type;
8201 }
8202
8203 /* An ordinary record type (with fixed-length fields) that describes
8204 the value of type TYPE at VALADDR or ADDRESS (see comments at
8205 the beginning of this section) VAL according to GNAT conventions.
8206 DVAL0 should describe the (portion of a) record that contains any
8207 necessary discriminants. It should be NULL if value_type (VAL) is
8208 an outer-level type (i.e., as opposed to a branch of a variant.) A
8209 variant field (unless unchecked) is replaced by a particular branch
8210 of the variant.
8211
8212 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8213 length are not statically known are discarded. As a consequence,
8214 VALADDR, ADDRESS and DVAL0 are ignored.
8215
8216 NOTE: Limitations: For now, we assume that dynamic fields and
8217 variants occupy whole numbers of bytes. However, they need not be
8218 byte-aligned. */
8219
8220 struct type *
8221 ada_template_to_fixed_record_type_1 (struct type *type,
8222 const gdb_byte *valaddr,
8223 CORE_ADDR address, struct value *dval0,
8224 int keep_dynamic_fields)
8225 {
8226 struct value *mark = value_mark ();
8227 struct value *dval;
8228 struct type *rtype;
8229 int nfields, bit_len;
8230 int variant_field;
8231 long off;
8232 int fld_bit_len;
8233 int f;
8234
8235 /* Compute the number of fields in this record type that are going
8236 to be processed: unless keep_dynamic_fields, this includes only
8237 fields whose position and length are static will be processed. */
8238 if (keep_dynamic_fields)
8239 nfields = TYPE_NFIELDS (type);
8240 else
8241 {
8242 nfields = 0;
8243 while (nfields < TYPE_NFIELDS (type)
8244 && !ada_is_variant_part (type, nfields)
8245 && !is_dynamic_field (type, nfields))
8246 nfields++;
8247 }
8248
8249 rtype = alloc_type_copy (type);
8250 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8251 INIT_CPLUS_SPECIFIC (rtype);
8252 TYPE_NFIELDS (rtype) = nfields;
8253 TYPE_FIELDS (rtype) = (struct field *)
8254 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8255 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8256 TYPE_NAME (rtype) = ada_type_name (type);
8257 TYPE_TAG_NAME (rtype) = NULL;
8258 TYPE_FIXED_INSTANCE (rtype) = 1;
8259
8260 off = 0;
8261 bit_len = 0;
8262 variant_field = -1;
8263
8264 for (f = 0; f < nfields; f += 1)
8265 {
8266 off = align_value (off, field_alignment (type, f))
8267 + TYPE_FIELD_BITPOS (type, f);
8268 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8269 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8270
8271 if (ada_is_variant_part (type, f))
8272 {
8273 variant_field = f;
8274 fld_bit_len = 0;
8275 }
8276 else if (is_dynamic_field (type, f))
8277 {
8278 const gdb_byte *field_valaddr = valaddr;
8279 CORE_ADDR field_address = address;
8280 struct type *field_type =
8281 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8282
8283 if (dval0 == NULL)
8284 {
8285 /* rtype's length is computed based on the run-time
8286 value of discriminants. If the discriminants are not
8287 initialized, the type size may be completely bogus and
8288 GDB may fail to allocate a value for it. So check the
8289 size first before creating the value. */
8290 ada_ensure_varsize_limit (rtype);
8291 /* Using plain value_from_contents_and_address here
8292 causes problems because we will end up trying to
8293 resolve a type that is currently being
8294 constructed. */
8295 dval = value_from_contents_and_address_unresolved (rtype,
8296 valaddr,
8297 address);
8298 rtype = value_type (dval);
8299 }
8300 else
8301 dval = dval0;
8302
8303 /* If the type referenced by this field is an aligner type, we need
8304 to unwrap that aligner type, because its size might not be set.
8305 Keeping the aligner type would cause us to compute the wrong
8306 size for this field, impacting the offset of the all the fields
8307 that follow this one. */
8308 if (ada_is_aligner_type (field_type))
8309 {
8310 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8311
8312 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8313 field_address = cond_offset_target (field_address, field_offset);
8314 field_type = ada_aligned_type (field_type);
8315 }
8316
8317 field_valaddr = cond_offset_host (field_valaddr,
8318 off / TARGET_CHAR_BIT);
8319 field_address = cond_offset_target (field_address,
8320 off / TARGET_CHAR_BIT);
8321
8322 /* Get the fixed type of the field. Note that, in this case,
8323 we do not want to get the real type out of the tag: if
8324 the current field is the parent part of a tagged record,
8325 we will get the tag of the object. Clearly wrong: the real
8326 type of the parent is not the real type of the child. We
8327 would end up in an infinite loop. */
8328 field_type = ada_get_base_type (field_type);
8329 field_type = ada_to_fixed_type (field_type, field_valaddr,
8330 field_address, dval, 0);
8331 /* If the field size is already larger than the maximum
8332 object size, then the record itself will necessarily
8333 be larger than the maximum object size. We need to make
8334 this check now, because the size might be so ridiculously
8335 large (due to an uninitialized variable in the inferior)
8336 that it would cause an overflow when adding it to the
8337 record size. */
8338 ada_ensure_varsize_limit (field_type);
8339
8340 TYPE_FIELD_TYPE (rtype, f) = field_type;
8341 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8342 /* The multiplication can potentially overflow. But because
8343 the field length has been size-checked just above, and
8344 assuming that the maximum size is a reasonable value,
8345 an overflow should not happen in practice. So rather than
8346 adding overflow recovery code to this already complex code,
8347 we just assume that it's not going to happen. */
8348 fld_bit_len =
8349 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8350 }
8351 else
8352 {
8353 /* Note: If this field's type is a typedef, it is important
8354 to preserve the typedef layer.
8355
8356 Otherwise, we might be transforming a typedef to a fat
8357 pointer (encoding a pointer to an unconstrained array),
8358 into a basic fat pointer (encoding an unconstrained
8359 array). As both types are implemented using the same
8360 structure, the typedef is the only clue which allows us
8361 to distinguish between the two options. Stripping it
8362 would prevent us from printing this field appropriately. */
8363 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8364 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8365 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8366 fld_bit_len =
8367 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8368 else
8369 {
8370 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8371
8372 /* We need to be careful of typedefs when computing
8373 the length of our field. If this is a typedef,
8374 get the length of the target type, not the length
8375 of the typedef. */
8376 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8377 field_type = ada_typedef_target_type (field_type);
8378
8379 fld_bit_len =
8380 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8381 }
8382 }
8383 if (off + fld_bit_len > bit_len)
8384 bit_len = off + fld_bit_len;
8385 off += fld_bit_len;
8386 TYPE_LENGTH (rtype) =
8387 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8388 }
8389
8390 /* We handle the variant part, if any, at the end because of certain
8391 odd cases in which it is re-ordered so as NOT to be the last field of
8392 the record. This can happen in the presence of representation
8393 clauses. */
8394 if (variant_field >= 0)
8395 {
8396 struct type *branch_type;
8397
8398 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8399
8400 if (dval0 == NULL)
8401 {
8402 /* Using plain value_from_contents_and_address here causes
8403 problems because we will end up trying to resolve a type
8404 that is currently being constructed. */
8405 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8406 address);
8407 rtype = value_type (dval);
8408 }
8409 else
8410 dval = dval0;
8411
8412 branch_type =
8413 to_fixed_variant_branch_type
8414 (TYPE_FIELD_TYPE (type, variant_field),
8415 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8416 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8417 if (branch_type == NULL)
8418 {
8419 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8420 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8421 TYPE_NFIELDS (rtype) -= 1;
8422 }
8423 else
8424 {
8425 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8426 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8427 fld_bit_len =
8428 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8429 TARGET_CHAR_BIT;
8430 if (off + fld_bit_len > bit_len)
8431 bit_len = off + fld_bit_len;
8432 TYPE_LENGTH (rtype) =
8433 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8434 }
8435 }
8436
8437 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8438 should contain the alignment of that record, which should be a strictly
8439 positive value. If null or negative, then something is wrong, most
8440 probably in the debug info. In that case, we don't round up the size
8441 of the resulting type. If this record is not part of another structure,
8442 the current RTYPE length might be good enough for our purposes. */
8443 if (TYPE_LENGTH (type) <= 0)
8444 {
8445 if (TYPE_NAME (rtype))
8446 warning (_("Invalid type size for `%s' detected: %d."),
8447 TYPE_NAME (rtype), TYPE_LENGTH (type));
8448 else
8449 warning (_("Invalid type size for <unnamed> detected: %d."),
8450 TYPE_LENGTH (type));
8451 }
8452 else
8453 {
8454 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8455 TYPE_LENGTH (type));
8456 }
8457
8458 value_free_to_mark (mark);
8459 if (TYPE_LENGTH (rtype) > varsize_limit)
8460 error (_("record type with dynamic size is larger than varsize-limit"));
8461 return rtype;
8462 }
8463
8464 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8465 of 1. */
8466
8467 static struct type *
8468 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8469 CORE_ADDR address, struct value *dval0)
8470 {
8471 return ada_template_to_fixed_record_type_1 (type, valaddr,
8472 address, dval0, 1);
8473 }
8474
8475 /* An ordinary record type in which ___XVL-convention fields and
8476 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8477 static approximations, containing all possible fields. Uses
8478 no runtime values. Useless for use in values, but that's OK,
8479 since the results are used only for type determinations. Works on both
8480 structs and unions. Representation note: to save space, we memorize
8481 the result of this function in the TYPE_TARGET_TYPE of the
8482 template type. */
8483
8484 static struct type *
8485 template_to_static_fixed_type (struct type *type0)
8486 {
8487 struct type *type;
8488 int nfields;
8489 int f;
8490
8491 /* No need no do anything if the input type is already fixed. */
8492 if (TYPE_FIXED_INSTANCE (type0))
8493 return type0;
8494
8495 /* Likewise if we already have computed the static approximation. */
8496 if (TYPE_TARGET_TYPE (type0) != NULL)
8497 return TYPE_TARGET_TYPE (type0);
8498
8499 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8500 type = type0;
8501 nfields = TYPE_NFIELDS (type0);
8502
8503 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8504 recompute all over next time. */
8505 TYPE_TARGET_TYPE (type0) = type;
8506
8507 for (f = 0; f < nfields; f += 1)
8508 {
8509 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8510 struct type *new_type;
8511
8512 if (is_dynamic_field (type0, f))
8513 {
8514 field_type = ada_check_typedef (field_type);
8515 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8516 }
8517 else
8518 new_type = static_unwrap_type (field_type);
8519
8520 if (new_type != field_type)
8521 {
8522 /* Clone TYPE0 only the first time we get a new field type. */
8523 if (type == type0)
8524 {
8525 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8526 TYPE_CODE (type) = TYPE_CODE (type0);
8527 INIT_CPLUS_SPECIFIC (type);
8528 TYPE_NFIELDS (type) = nfields;
8529 TYPE_FIELDS (type) = (struct field *)
8530 TYPE_ALLOC (type, nfields * sizeof (struct field));
8531 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8532 sizeof (struct field) * nfields);
8533 TYPE_NAME (type) = ada_type_name (type0);
8534 TYPE_TAG_NAME (type) = NULL;
8535 TYPE_FIXED_INSTANCE (type) = 1;
8536 TYPE_LENGTH (type) = 0;
8537 }
8538 TYPE_FIELD_TYPE (type, f) = new_type;
8539 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8540 }
8541 }
8542
8543 return type;
8544 }
8545
8546 /* Given an object of type TYPE whose contents are at VALADDR and
8547 whose address in memory is ADDRESS, returns a revision of TYPE,
8548 which should be a non-dynamic-sized record, in which the variant
8549 part, if any, is replaced with the appropriate branch. Looks
8550 for discriminant values in DVAL0, which can be NULL if the record
8551 contains the necessary discriminant values. */
8552
8553 static struct type *
8554 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8555 CORE_ADDR address, struct value *dval0)
8556 {
8557 struct value *mark = value_mark ();
8558 struct value *dval;
8559 struct type *rtype;
8560 struct type *branch_type;
8561 int nfields = TYPE_NFIELDS (type);
8562 int variant_field = variant_field_index (type);
8563
8564 if (variant_field == -1)
8565 return type;
8566
8567 if (dval0 == NULL)
8568 {
8569 dval = value_from_contents_and_address (type, valaddr, address);
8570 type = value_type (dval);
8571 }
8572 else
8573 dval = dval0;
8574
8575 rtype = alloc_type_copy (type);
8576 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8577 INIT_CPLUS_SPECIFIC (rtype);
8578 TYPE_NFIELDS (rtype) = nfields;
8579 TYPE_FIELDS (rtype) =
8580 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8581 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8582 sizeof (struct field) * nfields);
8583 TYPE_NAME (rtype) = ada_type_name (type);
8584 TYPE_TAG_NAME (rtype) = NULL;
8585 TYPE_FIXED_INSTANCE (rtype) = 1;
8586 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8587
8588 branch_type = to_fixed_variant_branch_type
8589 (TYPE_FIELD_TYPE (type, variant_field),
8590 cond_offset_host (valaddr,
8591 TYPE_FIELD_BITPOS (type, variant_field)
8592 / TARGET_CHAR_BIT),
8593 cond_offset_target (address,
8594 TYPE_FIELD_BITPOS (type, variant_field)
8595 / TARGET_CHAR_BIT), dval);
8596 if (branch_type == NULL)
8597 {
8598 int f;
8599
8600 for (f = variant_field + 1; f < nfields; f += 1)
8601 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8602 TYPE_NFIELDS (rtype) -= 1;
8603 }
8604 else
8605 {
8606 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8607 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8608 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8609 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8610 }
8611 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8612
8613 value_free_to_mark (mark);
8614 return rtype;
8615 }
8616
8617 /* An ordinary record type (with fixed-length fields) that describes
8618 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8619 beginning of this section]. Any necessary discriminants' values
8620 should be in DVAL, a record value; it may be NULL if the object
8621 at ADDR itself contains any necessary discriminant values.
8622 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8623 values from the record are needed. Except in the case that DVAL,
8624 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8625 unchecked) is replaced by a particular branch of the variant.
8626
8627 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8628 is questionable and may be removed. It can arise during the
8629 processing of an unconstrained-array-of-record type where all the
8630 variant branches have exactly the same size. This is because in
8631 such cases, the compiler does not bother to use the XVS convention
8632 when encoding the record. I am currently dubious of this
8633 shortcut and suspect the compiler should be altered. FIXME. */
8634
8635 static struct type *
8636 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8637 CORE_ADDR address, struct value *dval)
8638 {
8639 struct type *templ_type;
8640
8641 if (TYPE_FIXED_INSTANCE (type0))
8642 return type0;
8643
8644 templ_type = dynamic_template_type (type0);
8645
8646 if (templ_type != NULL)
8647 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8648 else if (variant_field_index (type0) >= 0)
8649 {
8650 if (dval == NULL && valaddr == NULL && address == 0)
8651 return type0;
8652 return to_record_with_fixed_variant_part (type0, valaddr, address,
8653 dval);
8654 }
8655 else
8656 {
8657 TYPE_FIXED_INSTANCE (type0) = 1;
8658 return type0;
8659 }
8660
8661 }
8662
8663 /* An ordinary record type (with fixed-length fields) that describes
8664 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8665 union type. Any necessary discriminants' values should be in DVAL,
8666 a record value. That is, this routine selects the appropriate
8667 branch of the union at ADDR according to the discriminant value
8668 indicated in the union's type name. Returns VAR_TYPE0 itself if
8669 it represents a variant subject to a pragma Unchecked_Union. */
8670
8671 static struct type *
8672 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8673 CORE_ADDR address, struct value *dval)
8674 {
8675 int which;
8676 struct type *templ_type;
8677 struct type *var_type;
8678
8679 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8680 var_type = TYPE_TARGET_TYPE (var_type0);
8681 else
8682 var_type = var_type0;
8683
8684 templ_type = ada_find_parallel_type (var_type, "___XVU");
8685
8686 if (templ_type != NULL)
8687 var_type = templ_type;
8688
8689 if (is_unchecked_variant (var_type, value_type (dval)))
8690 return var_type0;
8691 which =
8692 ada_which_variant_applies (var_type,
8693 value_type (dval), value_contents (dval));
8694
8695 if (which < 0)
8696 return empty_record (var_type);
8697 else if (is_dynamic_field (var_type, which))
8698 return to_fixed_record_type
8699 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8700 valaddr, address, dval);
8701 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8702 return
8703 to_fixed_record_type
8704 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8705 else
8706 return TYPE_FIELD_TYPE (var_type, which);
8707 }
8708
8709 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8710 ENCODING_TYPE, a type following the GNAT conventions for discrete
8711 type encodings, only carries redundant information. */
8712
8713 static int
8714 ada_is_redundant_range_encoding (struct type *range_type,
8715 struct type *encoding_type)
8716 {
8717 struct type *fixed_range_type;
8718 const char *bounds_str;
8719 int n;
8720 LONGEST lo, hi;
8721
8722 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8723
8724 if (TYPE_CODE (get_base_type (range_type))
8725 != TYPE_CODE (get_base_type (encoding_type)))
8726 {
8727 /* The compiler probably used a simple base type to describe
8728 the range type instead of the range's actual base type,
8729 expecting us to get the real base type from the encoding
8730 anyway. In this situation, the encoding cannot be ignored
8731 as redundant. */
8732 return 0;
8733 }
8734
8735 if (is_dynamic_type (range_type))
8736 return 0;
8737
8738 if (TYPE_NAME (encoding_type) == NULL)
8739 return 0;
8740
8741 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8742 if (bounds_str == NULL)
8743 return 0;
8744
8745 n = 8; /* Skip "___XDLU_". */
8746 if (!ada_scan_number (bounds_str, n, &lo, &n))
8747 return 0;
8748 if (TYPE_LOW_BOUND (range_type) != lo)
8749 return 0;
8750
8751 n += 2; /* Skip the "__" separator between the two bounds. */
8752 if (!ada_scan_number (bounds_str, n, &hi, &n))
8753 return 0;
8754 if (TYPE_HIGH_BOUND (range_type) != hi)
8755 return 0;
8756
8757 return 1;
8758 }
8759
8760 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8761 a type following the GNAT encoding for describing array type
8762 indices, only carries redundant information. */
8763
8764 static int
8765 ada_is_redundant_index_type_desc (struct type *array_type,
8766 struct type *desc_type)
8767 {
8768 struct type *this_layer = check_typedef (array_type);
8769 int i;
8770
8771 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8772 {
8773 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8774 TYPE_FIELD_TYPE (desc_type, i)))
8775 return 0;
8776 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8777 }
8778
8779 return 1;
8780 }
8781
8782 /* Assuming that TYPE0 is an array type describing the type of a value
8783 at ADDR, and that DVAL describes a record containing any
8784 discriminants used in TYPE0, returns a type for the value that
8785 contains no dynamic components (that is, no components whose sizes
8786 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8787 true, gives an error message if the resulting type's size is over
8788 varsize_limit. */
8789
8790 static struct type *
8791 to_fixed_array_type (struct type *type0, struct value *dval,
8792 int ignore_too_big)
8793 {
8794 struct type *index_type_desc;
8795 struct type *result;
8796 int constrained_packed_array_p;
8797 static const char *xa_suffix = "___XA";
8798
8799 type0 = ada_check_typedef (type0);
8800 if (TYPE_FIXED_INSTANCE (type0))
8801 return type0;
8802
8803 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8804 if (constrained_packed_array_p)
8805 type0 = decode_constrained_packed_array_type (type0);
8806
8807 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8808
8809 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8810 encoding suffixed with 'P' may still be generated. If so,
8811 it should be used to find the XA type. */
8812
8813 if (index_type_desc == NULL)
8814 {
8815 const char *type_name = ada_type_name (type0);
8816
8817 if (type_name != NULL)
8818 {
8819 const int len = strlen (type_name);
8820 char *name = (char *) alloca (len + strlen (xa_suffix));
8821
8822 if (type_name[len - 1] == 'P')
8823 {
8824 strcpy (name, type_name);
8825 strcpy (name + len - 1, xa_suffix);
8826 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8827 }
8828 }
8829 }
8830
8831 ada_fixup_array_indexes_type (index_type_desc);
8832 if (index_type_desc != NULL
8833 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8834 {
8835 /* Ignore this ___XA parallel type, as it does not bring any
8836 useful information. This allows us to avoid creating fixed
8837 versions of the array's index types, which would be identical
8838 to the original ones. This, in turn, can also help avoid
8839 the creation of fixed versions of the array itself. */
8840 index_type_desc = NULL;
8841 }
8842
8843 if (index_type_desc == NULL)
8844 {
8845 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8846
8847 /* NOTE: elt_type---the fixed version of elt_type0---should never
8848 depend on the contents of the array in properly constructed
8849 debugging data. */
8850 /* Create a fixed version of the array element type.
8851 We're not providing the address of an element here,
8852 and thus the actual object value cannot be inspected to do
8853 the conversion. This should not be a problem, since arrays of
8854 unconstrained objects are not allowed. In particular, all
8855 the elements of an array of a tagged type should all be of
8856 the same type specified in the debugging info. No need to
8857 consult the object tag. */
8858 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8859
8860 /* Make sure we always create a new array type when dealing with
8861 packed array types, since we're going to fix-up the array
8862 type length and element bitsize a little further down. */
8863 if (elt_type0 == elt_type && !constrained_packed_array_p)
8864 result = type0;
8865 else
8866 result = create_array_type (alloc_type_copy (type0),
8867 elt_type, TYPE_INDEX_TYPE (type0));
8868 }
8869 else
8870 {
8871 int i;
8872 struct type *elt_type0;
8873
8874 elt_type0 = type0;
8875 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8876 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8877
8878 /* NOTE: result---the fixed version of elt_type0---should never
8879 depend on the contents of the array in properly constructed
8880 debugging data. */
8881 /* Create a fixed version of the array element type.
8882 We're not providing the address of an element here,
8883 and thus the actual object value cannot be inspected to do
8884 the conversion. This should not be a problem, since arrays of
8885 unconstrained objects are not allowed. In particular, all
8886 the elements of an array of a tagged type should all be of
8887 the same type specified in the debugging info. No need to
8888 consult the object tag. */
8889 result =
8890 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8891
8892 elt_type0 = type0;
8893 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8894 {
8895 struct type *range_type =
8896 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8897
8898 result = create_array_type (alloc_type_copy (elt_type0),
8899 result, range_type);
8900 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8901 }
8902 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8903 error (_("array type with dynamic size is larger than varsize-limit"));
8904 }
8905
8906 /* We want to preserve the type name. This can be useful when
8907 trying to get the type name of a value that has already been
8908 printed (for instance, if the user did "print VAR; whatis $". */
8909 TYPE_NAME (result) = TYPE_NAME (type0);
8910
8911 if (constrained_packed_array_p)
8912 {
8913 /* So far, the resulting type has been created as if the original
8914 type was a regular (non-packed) array type. As a result, the
8915 bitsize of the array elements needs to be set again, and the array
8916 length needs to be recomputed based on that bitsize. */
8917 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8918 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8919
8920 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8921 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8922 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8923 TYPE_LENGTH (result)++;
8924 }
8925
8926 TYPE_FIXED_INSTANCE (result) = 1;
8927 return result;
8928 }
8929
8930
8931 /* A standard type (containing no dynamically sized components)
8932 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8933 DVAL describes a record containing any discriminants used in TYPE0,
8934 and may be NULL if there are none, or if the object of type TYPE at
8935 ADDRESS or in VALADDR contains these discriminants.
8936
8937 If CHECK_TAG is not null, in the case of tagged types, this function
8938 attempts to locate the object's tag and use it to compute the actual
8939 type. However, when ADDRESS is null, we cannot use it to determine the
8940 location of the tag, and therefore compute the tagged type's actual type.
8941 So we return the tagged type without consulting the tag. */
8942
8943 static struct type *
8944 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8945 CORE_ADDR address, struct value *dval, int check_tag)
8946 {
8947 type = ada_check_typedef (type);
8948 switch (TYPE_CODE (type))
8949 {
8950 default:
8951 return type;
8952 case TYPE_CODE_STRUCT:
8953 {
8954 struct type *static_type = to_static_fixed_type (type);
8955 struct type *fixed_record_type =
8956 to_fixed_record_type (type, valaddr, address, NULL);
8957
8958 /* If STATIC_TYPE is a tagged type and we know the object's address,
8959 then we can determine its tag, and compute the object's actual
8960 type from there. Note that we have to use the fixed record
8961 type (the parent part of the record may have dynamic fields
8962 and the way the location of _tag is expressed may depend on
8963 them). */
8964
8965 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
8966 {
8967 struct value *tag =
8968 value_tag_from_contents_and_address
8969 (fixed_record_type,
8970 valaddr,
8971 address);
8972 struct type *real_type = type_from_tag (tag);
8973 struct value *obj =
8974 value_from_contents_and_address (fixed_record_type,
8975 valaddr,
8976 address);
8977 fixed_record_type = value_type (obj);
8978 if (real_type != NULL)
8979 return to_fixed_record_type
8980 (real_type, NULL,
8981 value_address (ada_tag_value_at_base_address (obj)), NULL);
8982 }
8983
8984 /* Check to see if there is a parallel ___XVZ variable.
8985 If there is, then it provides the actual size of our type. */
8986 else if (ada_type_name (fixed_record_type) != NULL)
8987 {
8988 const char *name = ada_type_name (fixed_record_type);
8989 char *xvz_name
8990 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
8991 int xvz_found = 0;
8992 LONGEST size;
8993
8994 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8995 size = get_int_var_value (xvz_name, &xvz_found);
8996 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8997 {
8998 fixed_record_type = copy_type (fixed_record_type);
8999 TYPE_LENGTH (fixed_record_type) = size;
9000
9001 /* The FIXED_RECORD_TYPE may have be a stub. We have
9002 observed this when the debugging info is STABS, and
9003 apparently it is something that is hard to fix.
9004
9005 In practice, we don't need the actual type definition
9006 at all, because the presence of the XVZ variable allows us
9007 to assume that there must be a XVS type as well, which we
9008 should be able to use later, when we need the actual type
9009 definition.
9010
9011 In the meantime, pretend that the "fixed" type we are
9012 returning is NOT a stub, because this can cause trouble
9013 when using this type to create new types targeting it.
9014 Indeed, the associated creation routines often check
9015 whether the target type is a stub and will try to replace
9016 it, thus using a type with the wrong size. This, in turn,
9017 might cause the new type to have the wrong size too.
9018 Consider the case of an array, for instance, where the size
9019 of the array is computed from the number of elements in
9020 our array multiplied by the size of its element. */
9021 TYPE_STUB (fixed_record_type) = 0;
9022 }
9023 }
9024 return fixed_record_type;
9025 }
9026 case TYPE_CODE_ARRAY:
9027 return to_fixed_array_type (type, dval, 1);
9028 case TYPE_CODE_UNION:
9029 if (dval == NULL)
9030 return type;
9031 else
9032 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9033 }
9034 }
9035
9036 /* The same as ada_to_fixed_type_1, except that it preserves the type
9037 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9038
9039 The typedef layer needs be preserved in order to differentiate between
9040 arrays and array pointers when both types are implemented using the same
9041 fat pointer. In the array pointer case, the pointer is encoded as
9042 a typedef of the pointer type. For instance, considering:
9043
9044 type String_Access is access String;
9045 S1 : String_Access := null;
9046
9047 To the debugger, S1 is defined as a typedef of type String. But
9048 to the user, it is a pointer. So if the user tries to print S1,
9049 we should not dereference the array, but print the array address
9050 instead.
9051
9052 If we didn't preserve the typedef layer, we would lose the fact that
9053 the type is to be presented as a pointer (needs de-reference before
9054 being printed). And we would also use the source-level type name. */
9055
9056 struct type *
9057 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9058 CORE_ADDR address, struct value *dval, int check_tag)
9059
9060 {
9061 struct type *fixed_type =
9062 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9063
9064 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9065 then preserve the typedef layer.
9066
9067 Implementation note: We can only check the main-type portion of
9068 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9069 from TYPE now returns a type that has the same instance flags
9070 as TYPE. For instance, if TYPE is a "typedef const", and its
9071 target type is a "struct", then the typedef elimination will return
9072 a "const" version of the target type. See check_typedef for more
9073 details about how the typedef layer elimination is done.
9074
9075 brobecker/2010-11-19: It seems to me that the only case where it is
9076 useful to preserve the typedef layer is when dealing with fat pointers.
9077 Perhaps, we could add a check for that and preserve the typedef layer
9078 only in that situation. But this seems unecessary so far, probably
9079 because we call check_typedef/ada_check_typedef pretty much everywhere.
9080 */
9081 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9082 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9083 == TYPE_MAIN_TYPE (fixed_type)))
9084 return type;
9085
9086 return fixed_type;
9087 }
9088
9089 /* A standard (static-sized) type corresponding as well as possible to
9090 TYPE0, but based on no runtime data. */
9091
9092 static struct type *
9093 to_static_fixed_type (struct type *type0)
9094 {
9095 struct type *type;
9096
9097 if (type0 == NULL)
9098 return NULL;
9099
9100 if (TYPE_FIXED_INSTANCE (type0))
9101 return type0;
9102
9103 type0 = ada_check_typedef (type0);
9104
9105 switch (TYPE_CODE (type0))
9106 {
9107 default:
9108 return type0;
9109 case TYPE_CODE_STRUCT:
9110 type = dynamic_template_type (type0);
9111 if (type != NULL)
9112 return template_to_static_fixed_type (type);
9113 else
9114 return template_to_static_fixed_type (type0);
9115 case TYPE_CODE_UNION:
9116 type = ada_find_parallel_type (type0, "___XVU");
9117 if (type != NULL)
9118 return template_to_static_fixed_type (type);
9119 else
9120 return template_to_static_fixed_type (type0);
9121 }
9122 }
9123
9124 /* A static approximation of TYPE with all type wrappers removed. */
9125
9126 static struct type *
9127 static_unwrap_type (struct type *type)
9128 {
9129 if (ada_is_aligner_type (type))
9130 {
9131 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9132 if (ada_type_name (type1) == NULL)
9133 TYPE_NAME (type1) = ada_type_name (type);
9134
9135 return static_unwrap_type (type1);
9136 }
9137 else
9138 {
9139 struct type *raw_real_type = ada_get_base_type (type);
9140
9141 if (raw_real_type == type)
9142 return type;
9143 else
9144 return to_static_fixed_type (raw_real_type);
9145 }
9146 }
9147
9148 /* In some cases, incomplete and private types require
9149 cross-references that are not resolved as records (for example,
9150 type Foo;
9151 type FooP is access Foo;
9152 V: FooP;
9153 type Foo is array ...;
9154 ). In these cases, since there is no mechanism for producing
9155 cross-references to such types, we instead substitute for FooP a
9156 stub enumeration type that is nowhere resolved, and whose tag is
9157 the name of the actual type. Call these types "non-record stubs". */
9158
9159 /* A type equivalent to TYPE that is not a non-record stub, if one
9160 exists, otherwise TYPE. */
9161
9162 struct type *
9163 ada_check_typedef (struct type *type)
9164 {
9165 if (type == NULL)
9166 return NULL;
9167
9168 /* If our type is a typedef type of a fat pointer, then we're done.
9169 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9170 what allows us to distinguish between fat pointers that represent
9171 array types, and fat pointers that represent array access types
9172 (in both cases, the compiler implements them as fat pointers). */
9173 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9174 && is_thick_pntr (ada_typedef_target_type (type)))
9175 return type;
9176
9177 type = check_typedef (type);
9178 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9179 || !TYPE_STUB (type)
9180 || TYPE_TAG_NAME (type) == NULL)
9181 return type;
9182 else
9183 {
9184 const char *name = TYPE_TAG_NAME (type);
9185 struct type *type1 = ada_find_any_type (name);
9186
9187 if (type1 == NULL)
9188 return type;
9189
9190 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9191 stubs pointing to arrays, as we don't create symbols for array
9192 types, only for the typedef-to-array types). If that's the case,
9193 strip the typedef layer. */
9194 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9195 type1 = ada_check_typedef (type1);
9196
9197 return type1;
9198 }
9199 }
9200
9201 /* A value representing the data at VALADDR/ADDRESS as described by
9202 type TYPE0, but with a standard (static-sized) type that correctly
9203 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9204 type, then return VAL0 [this feature is simply to avoid redundant
9205 creation of struct values]. */
9206
9207 static struct value *
9208 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9209 struct value *val0)
9210 {
9211 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9212
9213 if (type == type0 && val0 != NULL)
9214 return val0;
9215 else
9216 return value_from_contents_and_address (type, 0, address);
9217 }
9218
9219 /* A value representing VAL, but with a standard (static-sized) type
9220 that correctly describes it. Does not necessarily create a new
9221 value. */
9222
9223 struct value *
9224 ada_to_fixed_value (struct value *val)
9225 {
9226 val = unwrap_value (val);
9227 val = ada_to_fixed_value_create (value_type (val),
9228 value_address (val),
9229 val);
9230 return val;
9231 }
9232 \f
9233
9234 /* Attributes */
9235
9236 /* Table mapping attribute numbers to names.
9237 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9238
9239 static const char *attribute_names[] = {
9240 "<?>",
9241
9242 "first",
9243 "last",
9244 "length",
9245 "image",
9246 "max",
9247 "min",
9248 "modulus",
9249 "pos",
9250 "size",
9251 "tag",
9252 "val",
9253 0
9254 };
9255
9256 const char *
9257 ada_attribute_name (enum exp_opcode n)
9258 {
9259 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9260 return attribute_names[n - OP_ATR_FIRST + 1];
9261 else
9262 return attribute_names[0];
9263 }
9264
9265 /* Evaluate the 'POS attribute applied to ARG. */
9266
9267 static LONGEST
9268 pos_atr (struct value *arg)
9269 {
9270 struct value *val = coerce_ref (arg);
9271 struct type *type = value_type (val);
9272 LONGEST result;
9273
9274 if (!discrete_type_p (type))
9275 error (_("'POS only defined on discrete types"));
9276
9277 if (!discrete_position (type, value_as_long (val), &result))
9278 error (_("enumeration value is invalid: can't find 'POS"));
9279
9280 return result;
9281 }
9282
9283 static struct value *
9284 value_pos_atr (struct type *type, struct value *arg)
9285 {
9286 return value_from_longest (type, pos_atr (arg));
9287 }
9288
9289 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9290
9291 static struct value *
9292 value_val_atr (struct type *type, struct value *arg)
9293 {
9294 if (!discrete_type_p (type))
9295 error (_("'VAL only defined on discrete types"));
9296 if (!integer_type_p (value_type (arg)))
9297 error (_("'VAL requires integral argument"));
9298
9299 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9300 {
9301 long pos = value_as_long (arg);
9302
9303 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9304 error (_("argument to 'VAL out of range"));
9305 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9306 }
9307 else
9308 return value_from_longest (type, value_as_long (arg));
9309 }
9310 \f
9311
9312 /* Evaluation */
9313
9314 /* True if TYPE appears to be an Ada character type.
9315 [At the moment, this is true only for Character and Wide_Character;
9316 It is a heuristic test that could stand improvement]. */
9317
9318 int
9319 ada_is_character_type (struct type *type)
9320 {
9321 const char *name;
9322
9323 /* If the type code says it's a character, then assume it really is,
9324 and don't check any further. */
9325 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9326 return 1;
9327
9328 /* Otherwise, assume it's a character type iff it is a discrete type
9329 with a known character type name. */
9330 name = ada_type_name (type);
9331 return (name != NULL
9332 && (TYPE_CODE (type) == TYPE_CODE_INT
9333 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9334 && (strcmp (name, "character") == 0
9335 || strcmp (name, "wide_character") == 0
9336 || strcmp (name, "wide_wide_character") == 0
9337 || strcmp (name, "unsigned char") == 0));
9338 }
9339
9340 /* True if TYPE appears to be an Ada string type. */
9341
9342 int
9343 ada_is_string_type (struct type *type)
9344 {
9345 type = ada_check_typedef (type);
9346 if (type != NULL
9347 && TYPE_CODE (type) != TYPE_CODE_PTR
9348 && (ada_is_simple_array_type (type)
9349 || ada_is_array_descriptor_type (type))
9350 && ada_array_arity (type) == 1)
9351 {
9352 struct type *elttype = ada_array_element_type (type, 1);
9353
9354 return ada_is_character_type (elttype);
9355 }
9356 else
9357 return 0;
9358 }
9359
9360 /* The compiler sometimes provides a parallel XVS type for a given
9361 PAD type. Normally, it is safe to follow the PAD type directly,
9362 but older versions of the compiler have a bug that causes the offset
9363 of its "F" field to be wrong. Following that field in that case
9364 would lead to incorrect results, but this can be worked around
9365 by ignoring the PAD type and using the associated XVS type instead.
9366
9367 Set to True if the debugger should trust the contents of PAD types.
9368 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9369 static int trust_pad_over_xvs = 1;
9370
9371 /* True if TYPE is a struct type introduced by the compiler to force the
9372 alignment of a value. Such types have a single field with a
9373 distinctive name. */
9374
9375 int
9376 ada_is_aligner_type (struct type *type)
9377 {
9378 type = ada_check_typedef (type);
9379
9380 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9381 return 0;
9382
9383 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9384 && TYPE_NFIELDS (type) == 1
9385 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9386 }
9387
9388 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9389 the parallel type. */
9390
9391 struct type *
9392 ada_get_base_type (struct type *raw_type)
9393 {
9394 struct type *real_type_namer;
9395 struct type *raw_real_type;
9396
9397 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9398 return raw_type;
9399
9400 if (ada_is_aligner_type (raw_type))
9401 /* The encoding specifies that we should always use the aligner type.
9402 So, even if this aligner type has an associated XVS type, we should
9403 simply ignore it.
9404
9405 According to the compiler gurus, an XVS type parallel to an aligner
9406 type may exist because of a stabs limitation. In stabs, aligner
9407 types are empty because the field has a variable-sized type, and
9408 thus cannot actually be used as an aligner type. As a result,
9409 we need the associated parallel XVS type to decode the type.
9410 Since the policy in the compiler is to not change the internal
9411 representation based on the debugging info format, we sometimes
9412 end up having a redundant XVS type parallel to the aligner type. */
9413 return raw_type;
9414
9415 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9416 if (real_type_namer == NULL
9417 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9418 || TYPE_NFIELDS (real_type_namer) != 1)
9419 return raw_type;
9420
9421 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9422 {
9423 /* This is an older encoding form where the base type needs to be
9424 looked up by name. We prefer the newer enconding because it is
9425 more efficient. */
9426 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9427 if (raw_real_type == NULL)
9428 return raw_type;
9429 else
9430 return raw_real_type;
9431 }
9432
9433 /* The field in our XVS type is a reference to the base type. */
9434 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9435 }
9436
9437 /* The type of value designated by TYPE, with all aligners removed. */
9438
9439 struct type *
9440 ada_aligned_type (struct type *type)
9441 {
9442 if (ada_is_aligner_type (type))
9443 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9444 else
9445 return ada_get_base_type (type);
9446 }
9447
9448
9449 /* The address of the aligned value in an object at address VALADDR
9450 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9451
9452 const gdb_byte *
9453 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9454 {
9455 if (ada_is_aligner_type (type))
9456 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9457 valaddr +
9458 TYPE_FIELD_BITPOS (type,
9459 0) / TARGET_CHAR_BIT);
9460 else
9461 return valaddr;
9462 }
9463
9464
9465
9466 /* The printed representation of an enumeration literal with encoded
9467 name NAME. The value is good to the next call of ada_enum_name. */
9468 const char *
9469 ada_enum_name (const char *name)
9470 {
9471 static char *result;
9472 static size_t result_len = 0;
9473 const char *tmp;
9474
9475 /* First, unqualify the enumeration name:
9476 1. Search for the last '.' character. If we find one, then skip
9477 all the preceding characters, the unqualified name starts
9478 right after that dot.
9479 2. Otherwise, we may be debugging on a target where the compiler
9480 translates dots into "__". Search forward for double underscores,
9481 but stop searching when we hit an overloading suffix, which is
9482 of the form "__" followed by digits. */
9483
9484 tmp = strrchr (name, '.');
9485 if (tmp != NULL)
9486 name = tmp + 1;
9487 else
9488 {
9489 while ((tmp = strstr (name, "__")) != NULL)
9490 {
9491 if (isdigit (tmp[2]))
9492 break;
9493 else
9494 name = tmp + 2;
9495 }
9496 }
9497
9498 if (name[0] == 'Q')
9499 {
9500 int v;
9501
9502 if (name[1] == 'U' || name[1] == 'W')
9503 {
9504 if (sscanf (name + 2, "%x", &v) != 1)
9505 return name;
9506 }
9507 else
9508 return name;
9509
9510 GROW_VECT (result, result_len, 16);
9511 if (isascii (v) && isprint (v))
9512 xsnprintf (result, result_len, "'%c'", v);
9513 else if (name[1] == 'U')
9514 xsnprintf (result, result_len, "[\"%02x\"]", v);
9515 else
9516 xsnprintf (result, result_len, "[\"%04x\"]", v);
9517
9518 return result;
9519 }
9520 else
9521 {
9522 tmp = strstr (name, "__");
9523 if (tmp == NULL)
9524 tmp = strstr (name, "$");
9525 if (tmp != NULL)
9526 {
9527 GROW_VECT (result, result_len, tmp - name + 1);
9528 strncpy (result, name, tmp - name);
9529 result[tmp - name] = '\0';
9530 return result;
9531 }
9532
9533 return name;
9534 }
9535 }
9536
9537 /* Evaluate the subexpression of EXP starting at *POS as for
9538 evaluate_type, updating *POS to point just past the evaluated
9539 expression. */
9540
9541 static struct value *
9542 evaluate_subexp_type (struct expression *exp, int *pos)
9543 {
9544 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9545 }
9546
9547 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9548 value it wraps. */
9549
9550 static struct value *
9551 unwrap_value (struct value *val)
9552 {
9553 struct type *type = ada_check_typedef (value_type (val));
9554
9555 if (ada_is_aligner_type (type))
9556 {
9557 struct value *v = ada_value_struct_elt (val, "F", 0);
9558 struct type *val_type = ada_check_typedef (value_type (v));
9559
9560 if (ada_type_name (val_type) == NULL)
9561 TYPE_NAME (val_type) = ada_type_name (type);
9562
9563 return unwrap_value (v);
9564 }
9565 else
9566 {
9567 struct type *raw_real_type =
9568 ada_check_typedef (ada_get_base_type (type));
9569
9570 /* If there is no parallel XVS or XVE type, then the value is
9571 already unwrapped. Return it without further modification. */
9572 if ((type == raw_real_type)
9573 && ada_find_parallel_type (type, "___XVE") == NULL)
9574 return val;
9575
9576 return
9577 coerce_unspec_val_to_type
9578 (val, ada_to_fixed_type (raw_real_type, 0,
9579 value_address (val),
9580 NULL, 1));
9581 }
9582 }
9583
9584 static struct value *
9585 cast_to_fixed (struct type *type, struct value *arg)
9586 {
9587 LONGEST val;
9588
9589 if (type == value_type (arg))
9590 return arg;
9591 else if (ada_is_fixed_point_type (value_type (arg)))
9592 val = ada_float_to_fixed (type,
9593 ada_fixed_to_float (value_type (arg),
9594 value_as_long (arg)));
9595 else
9596 {
9597 DOUBLEST argd = value_as_double (arg);
9598
9599 val = ada_float_to_fixed (type, argd);
9600 }
9601
9602 return value_from_longest (type, val);
9603 }
9604
9605 static struct value *
9606 cast_from_fixed (struct type *type, struct value *arg)
9607 {
9608 DOUBLEST val = ada_fixed_to_float (value_type (arg),
9609 value_as_long (arg));
9610
9611 return value_from_double (type, val);
9612 }
9613
9614 /* Given two array types T1 and T2, return nonzero iff both arrays
9615 contain the same number of elements. */
9616
9617 static int
9618 ada_same_array_size_p (struct type *t1, struct type *t2)
9619 {
9620 LONGEST lo1, hi1, lo2, hi2;
9621
9622 /* Get the array bounds in order to verify that the size of
9623 the two arrays match. */
9624 if (!get_array_bounds (t1, &lo1, &hi1)
9625 || !get_array_bounds (t2, &lo2, &hi2))
9626 error (_("unable to determine array bounds"));
9627
9628 /* To make things easier for size comparison, normalize a bit
9629 the case of empty arrays by making sure that the difference
9630 between upper bound and lower bound is always -1. */
9631 if (lo1 > hi1)
9632 hi1 = lo1 - 1;
9633 if (lo2 > hi2)
9634 hi2 = lo2 - 1;
9635
9636 return (hi1 - lo1 == hi2 - lo2);
9637 }
9638
9639 /* Assuming that VAL is an array of integrals, and TYPE represents
9640 an array with the same number of elements, but with wider integral
9641 elements, return an array "casted" to TYPE. In practice, this
9642 means that the returned array is built by casting each element
9643 of the original array into TYPE's (wider) element type. */
9644
9645 static struct value *
9646 ada_promote_array_of_integrals (struct type *type, struct value *val)
9647 {
9648 struct type *elt_type = TYPE_TARGET_TYPE (type);
9649 LONGEST lo, hi;
9650 struct value *res;
9651 LONGEST i;
9652
9653 /* Verify that both val and type are arrays of scalars, and
9654 that the size of val's elements is smaller than the size
9655 of type's element. */
9656 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9657 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9658 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9659 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9660 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9661 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9662
9663 if (!get_array_bounds (type, &lo, &hi))
9664 error (_("unable to determine array bounds"));
9665
9666 res = allocate_value (type);
9667
9668 /* Promote each array element. */
9669 for (i = 0; i < hi - lo + 1; i++)
9670 {
9671 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9672
9673 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9674 value_contents_all (elt), TYPE_LENGTH (elt_type));
9675 }
9676
9677 return res;
9678 }
9679
9680 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9681 return the converted value. */
9682
9683 static struct value *
9684 coerce_for_assign (struct type *type, struct value *val)
9685 {
9686 struct type *type2 = value_type (val);
9687
9688 if (type == type2)
9689 return val;
9690
9691 type2 = ada_check_typedef (type2);
9692 type = ada_check_typedef (type);
9693
9694 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9695 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9696 {
9697 val = ada_value_ind (val);
9698 type2 = value_type (val);
9699 }
9700
9701 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9702 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9703 {
9704 if (!ada_same_array_size_p (type, type2))
9705 error (_("cannot assign arrays of different length"));
9706
9707 if (is_integral_type (TYPE_TARGET_TYPE (type))
9708 && is_integral_type (TYPE_TARGET_TYPE (type2))
9709 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9710 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9711 {
9712 /* Allow implicit promotion of the array elements to
9713 a wider type. */
9714 return ada_promote_array_of_integrals (type, val);
9715 }
9716
9717 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9718 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9719 error (_("Incompatible types in assignment"));
9720 deprecated_set_value_type (val, type);
9721 }
9722 return val;
9723 }
9724
9725 static struct value *
9726 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9727 {
9728 struct value *val;
9729 struct type *type1, *type2;
9730 LONGEST v, v1, v2;
9731
9732 arg1 = coerce_ref (arg1);
9733 arg2 = coerce_ref (arg2);
9734 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9735 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9736
9737 if (TYPE_CODE (type1) != TYPE_CODE_INT
9738 || TYPE_CODE (type2) != TYPE_CODE_INT)
9739 return value_binop (arg1, arg2, op);
9740
9741 switch (op)
9742 {
9743 case BINOP_MOD:
9744 case BINOP_DIV:
9745 case BINOP_REM:
9746 break;
9747 default:
9748 return value_binop (arg1, arg2, op);
9749 }
9750
9751 v2 = value_as_long (arg2);
9752 if (v2 == 0)
9753 error (_("second operand of %s must not be zero."), op_string (op));
9754
9755 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9756 return value_binop (arg1, arg2, op);
9757
9758 v1 = value_as_long (arg1);
9759 switch (op)
9760 {
9761 case BINOP_DIV:
9762 v = v1 / v2;
9763 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9764 v += v > 0 ? -1 : 1;
9765 break;
9766 case BINOP_REM:
9767 v = v1 % v2;
9768 if (v * v1 < 0)
9769 v -= v2;
9770 break;
9771 default:
9772 /* Should not reach this point. */
9773 v = 0;
9774 }
9775
9776 val = allocate_value (type1);
9777 store_unsigned_integer (value_contents_raw (val),
9778 TYPE_LENGTH (value_type (val)),
9779 gdbarch_byte_order (get_type_arch (type1)), v);
9780 return val;
9781 }
9782
9783 static int
9784 ada_value_equal (struct value *arg1, struct value *arg2)
9785 {
9786 if (ada_is_direct_array_type (value_type (arg1))
9787 || ada_is_direct_array_type (value_type (arg2)))
9788 {
9789 /* Automatically dereference any array reference before
9790 we attempt to perform the comparison. */
9791 arg1 = ada_coerce_ref (arg1);
9792 arg2 = ada_coerce_ref (arg2);
9793
9794 arg1 = ada_coerce_to_simple_array (arg1);
9795 arg2 = ada_coerce_to_simple_array (arg2);
9796 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
9797 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
9798 error (_("Attempt to compare array with non-array"));
9799 /* FIXME: The following works only for types whose
9800 representations use all bits (no padding or undefined bits)
9801 and do not have user-defined equality. */
9802 return
9803 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
9804 && memcmp (value_contents (arg1), value_contents (arg2),
9805 TYPE_LENGTH (value_type (arg1))) == 0;
9806 }
9807 return value_equal (arg1, arg2);
9808 }
9809
9810 /* Total number of component associations in the aggregate starting at
9811 index PC in EXP. Assumes that index PC is the start of an
9812 OP_AGGREGATE. */
9813
9814 static int
9815 num_component_specs (struct expression *exp, int pc)
9816 {
9817 int n, m, i;
9818
9819 m = exp->elts[pc + 1].longconst;
9820 pc += 3;
9821 n = 0;
9822 for (i = 0; i < m; i += 1)
9823 {
9824 switch (exp->elts[pc].opcode)
9825 {
9826 default:
9827 n += 1;
9828 break;
9829 case OP_CHOICES:
9830 n += exp->elts[pc + 1].longconst;
9831 break;
9832 }
9833 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9834 }
9835 return n;
9836 }
9837
9838 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9839 component of LHS (a simple array or a record), updating *POS past
9840 the expression, assuming that LHS is contained in CONTAINER. Does
9841 not modify the inferior's memory, nor does it modify LHS (unless
9842 LHS == CONTAINER). */
9843
9844 static void
9845 assign_component (struct value *container, struct value *lhs, LONGEST index,
9846 struct expression *exp, int *pos)
9847 {
9848 struct value *mark = value_mark ();
9849 struct value *elt;
9850
9851 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
9852 {
9853 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9854 struct value *index_val = value_from_longest (index_type, index);
9855
9856 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9857 }
9858 else
9859 {
9860 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9861 elt = ada_to_fixed_value (elt);
9862 }
9863
9864 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9865 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9866 else
9867 value_assign_to_component (container, elt,
9868 ada_evaluate_subexp (NULL, exp, pos,
9869 EVAL_NORMAL));
9870
9871 value_free_to_mark (mark);
9872 }
9873
9874 /* Assuming that LHS represents an lvalue having a record or array
9875 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9876 of that aggregate's value to LHS, advancing *POS past the
9877 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9878 lvalue containing LHS (possibly LHS itself). Does not modify
9879 the inferior's memory, nor does it modify the contents of
9880 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9881
9882 static struct value *
9883 assign_aggregate (struct value *container,
9884 struct value *lhs, struct expression *exp,
9885 int *pos, enum noside noside)
9886 {
9887 struct type *lhs_type;
9888 int n = exp->elts[*pos+1].longconst;
9889 LONGEST low_index, high_index;
9890 int num_specs;
9891 LONGEST *indices;
9892 int max_indices, num_indices;
9893 int i;
9894
9895 *pos += 3;
9896 if (noside != EVAL_NORMAL)
9897 {
9898 for (i = 0; i < n; i += 1)
9899 ada_evaluate_subexp (NULL, exp, pos, noside);
9900 return container;
9901 }
9902
9903 container = ada_coerce_ref (container);
9904 if (ada_is_direct_array_type (value_type (container)))
9905 container = ada_coerce_to_simple_array (container);
9906 lhs = ada_coerce_ref (lhs);
9907 if (!deprecated_value_modifiable (lhs))
9908 error (_("Left operand of assignment is not a modifiable lvalue."));
9909
9910 lhs_type = value_type (lhs);
9911 if (ada_is_direct_array_type (lhs_type))
9912 {
9913 lhs = ada_coerce_to_simple_array (lhs);
9914 lhs_type = value_type (lhs);
9915 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9916 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9917 }
9918 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9919 {
9920 low_index = 0;
9921 high_index = num_visible_fields (lhs_type) - 1;
9922 }
9923 else
9924 error (_("Left-hand side must be array or record."));
9925
9926 num_specs = num_component_specs (exp, *pos - 3);
9927 max_indices = 4 * num_specs + 4;
9928 indices = XALLOCAVEC (LONGEST, max_indices);
9929 indices[0] = indices[1] = low_index - 1;
9930 indices[2] = indices[3] = high_index + 1;
9931 num_indices = 4;
9932
9933 for (i = 0; i < n; i += 1)
9934 {
9935 switch (exp->elts[*pos].opcode)
9936 {
9937 case OP_CHOICES:
9938 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
9939 &num_indices, max_indices,
9940 low_index, high_index);
9941 break;
9942 case OP_POSITIONAL:
9943 aggregate_assign_positional (container, lhs, exp, pos, indices,
9944 &num_indices, max_indices,
9945 low_index, high_index);
9946 break;
9947 case OP_OTHERS:
9948 if (i != n-1)
9949 error (_("Misplaced 'others' clause"));
9950 aggregate_assign_others (container, lhs, exp, pos, indices,
9951 num_indices, low_index, high_index);
9952 break;
9953 default:
9954 error (_("Internal error: bad aggregate clause"));
9955 }
9956 }
9957
9958 return container;
9959 }
9960
9961 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9962 construct at *POS, updating *POS past the construct, given that
9963 the positions are relative to lower bound LOW, where HIGH is the
9964 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9965 updating *NUM_INDICES as needed. CONTAINER is as for
9966 assign_aggregate. */
9967 static void
9968 aggregate_assign_positional (struct value *container,
9969 struct value *lhs, struct expression *exp,
9970 int *pos, LONGEST *indices, int *num_indices,
9971 int max_indices, LONGEST low, LONGEST high)
9972 {
9973 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
9974
9975 if (ind - 1 == high)
9976 warning (_("Extra components in aggregate ignored."));
9977 if (ind <= high)
9978 {
9979 add_component_interval (ind, ind, indices, num_indices, max_indices);
9980 *pos += 3;
9981 assign_component (container, lhs, ind, exp, pos);
9982 }
9983 else
9984 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9985 }
9986
9987 /* Assign into the components of LHS indexed by the OP_CHOICES
9988 construct at *POS, updating *POS past the construct, given that
9989 the allowable indices are LOW..HIGH. Record the indices assigned
9990 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9991 needed. CONTAINER is as for assign_aggregate. */
9992 static void
9993 aggregate_assign_from_choices (struct value *container,
9994 struct value *lhs, struct expression *exp,
9995 int *pos, LONGEST *indices, int *num_indices,
9996 int max_indices, LONGEST low, LONGEST high)
9997 {
9998 int j;
9999 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10000 int choice_pos, expr_pc;
10001 int is_array = ada_is_direct_array_type (value_type (lhs));
10002
10003 choice_pos = *pos += 3;
10004
10005 for (j = 0; j < n_choices; j += 1)
10006 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10007 expr_pc = *pos;
10008 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10009
10010 for (j = 0; j < n_choices; j += 1)
10011 {
10012 LONGEST lower, upper;
10013 enum exp_opcode op = exp->elts[choice_pos].opcode;
10014
10015 if (op == OP_DISCRETE_RANGE)
10016 {
10017 choice_pos += 1;
10018 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10019 EVAL_NORMAL));
10020 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10021 EVAL_NORMAL));
10022 }
10023 else if (is_array)
10024 {
10025 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10026 EVAL_NORMAL));
10027 upper = lower;
10028 }
10029 else
10030 {
10031 int ind;
10032 const char *name;
10033
10034 switch (op)
10035 {
10036 case OP_NAME:
10037 name = &exp->elts[choice_pos + 2].string;
10038 break;
10039 case OP_VAR_VALUE:
10040 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10041 break;
10042 default:
10043 error (_("Invalid record component association."));
10044 }
10045 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10046 ind = 0;
10047 if (! find_struct_field (name, value_type (lhs), 0,
10048 NULL, NULL, NULL, NULL, &ind))
10049 error (_("Unknown component name: %s."), name);
10050 lower = upper = ind;
10051 }
10052
10053 if (lower <= upper && (lower < low || upper > high))
10054 error (_("Index in component association out of bounds."));
10055
10056 add_component_interval (lower, upper, indices, num_indices,
10057 max_indices);
10058 while (lower <= upper)
10059 {
10060 int pos1;
10061
10062 pos1 = expr_pc;
10063 assign_component (container, lhs, lower, exp, &pos1);
10064 lower += 1;
10065 }
10066 }
10067 }
10068
10069 /* Assign the value of the expression in the OP_OTHERS construct in
10070 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10071 have not been previously assigned. The index intervals already assigned
10072 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10073 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10074 static void
10075 aggregate_assign_others (struct value *container,
10076 struct value *lhs, struct expression *exp,
10077 int *pos, LONGEST *indices, int num_indices,
10078 LONGEST low, LONGEST high)
10079 {
10080 int i;
10081 int expr_pc = *pos + 1;
10082
10083 for (i = 0; i < num_indices - 2; i += 2)
10084 {
10085 LONGEST ind;
10086
10087 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10088 {
10089 int localpos;
10090
10091 localpos = expr_pc;
10092 assign_component (container, lhs, ind, exp, &localpos);
10093 }
10094 }
10095 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10096 }
10097
10098 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10099 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10100 modifying *SIZE as needed. It is an error if *SIZE exceeds
10101 MAX_SIZE. The resulting intervals do not overlap. */
10102 static void
10103 add_component_interval (LONGEST low, LONGEST high,
10104 LONGEST* indices, int *size, int max_size)
10105 {
10106 int i, j;
10107
10108 for (i = 0; i < *size; i += 2) {
10109 if (high >= indices[i] && low <= indices[i + 1])
10110 {
10111 int kh;
10112
10113 for (kh = i + 2; kh < *size; kh += 2)
10114 if (high < indices[kh])
10115 break;
10116 if (low < indices[i])
10117 indices[i] = low;
10118 indices[i + 1] = indices[kh - 1];
10119 if (high > indices[i + 1])
10120 indices[i + 1] = high;
10121 memcpy (indices + i + 2, indices + kh, *size - kh);
10122 *size -= kh - i - 2;
10123 return;
10124 }
10125 else if (high < indices[i])
10126 break;
10127 }
10128
10129 if (*size == max_size)
10130 error (_("Internal error: miscounted aggregate components."));
10131 *size += 2;
10132 for (j = *size-1; j >= i+2; j -= 1)
10133 indices[j] = indices[j - 2];
10134 indices[i] = low;
10135 indices[i + 1] = high;
10136 }
10137
10138 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10139 is different. */
10140
10141 static struct value *
10142 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
10143 {
10144 if (type == ada_check_typedef (value_type (arg2)))
10145 return arg2;
10146
10147 if (ada_is_fixed_point_type (type))
10148 return (cast_to_fixed (type, arg2));
10149
10150 if (ada_is_fixed_point_type (value_type (arg2)))
10151 return cast_from_fixed (type, arg2);
10152
10153 return value_cast (type, arg2);
10154 }
10155
10156 /* Evaluating Ada expressions, and printing their result.
10157 ------------------------------------------------------
10158
10159 1. Introduction:
10160 ----------------
10161
10162 We usually evaluate an Ada expression in order to print its value.
10163 We also evaluate an expression in order to print its type, which
10164 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10165 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10166 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10167 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10168 similar.
10169
10170 Evaluating expressions is a little more complicated for Ada entities
10171 than it is for entities in languages such as C. The main reason for
10172 this is that Ada provides types whose definition might be dynamic.
10173 One example of such types is variant records. Or another example
10174 would be an array whose bounds can only be known at run time.
10175
10176 The following description is a general guide as to what should be
10177 done (and what should NOT be done) in order to evaluate an expression
10178 involving such types, and when. This does not cover how the semantic
10179 information is encoded by GNAT as this is covered separatly. For the
10180 document used as the reference for the GNAT encoding, see exp_dbug.ads
10181 in the GNAT sources.
10182
10183 Ideally, we should embed each part of this description next to its
10184 associated code. Unfortunately, the amount of code is so vast right
10185 now that it's hard to see whether the code handling a particular
10186 situation might be duplicated or not. One day, when the code is
10187 cleaned up, this guide might become redundant with the comments
10188 inserted in the code, and we might want to remove it.
10189
10190 2. ``Fixing'' an Entity, the Simple Case:
10191 -----------------------------------------
10192
10193 When evaluating Ada expressions, the tricky issue is that they may
10194 reference entities whose type contents and size are not statically
10195 known. Consider for instance a variant record:
10196
10197 type Rec (Empty : Boolean := True) is record
10198 case Empty is
10199 when True => null;
10200 when False => Value : Integer;
10201 end case;
10202 end record;
10203 Yes : Rec := (Empty => False, Value => 1);
10204 No : Rec := (empty => True);
10205
10206 The size and contents of that record depends on the value of the
10207 descriminant (Rec.Empty). At this point, neither the debugging
10208 information nor the associated type structure in GDB are able to
10209 express such dynamic types. So what the debugger does is to create
10210 "fixed" versions of the type that applies to the specific object.
10211 We also informally refer to this opperation as "fixing" an object,
10212 which means creating its associated fixed type.
10213
10214 Example: when printing the value of variable "Yes" above, its fixed
10215 type would look like this:
10216
10217 type Rec is record
10218 Empty : Boolean;
10219 Value : Integer;
10220 end record;
10221
10222 On the other hand, if we printed the value of "No", its fixed type
10223 would become:
10224
10225 type Rec is record
10226 Empty : Boolean;
10227 end record;
10228
10229 Things become a little more complicated when trying to fix an entity
10230 with a dynamic type that directly contains another dynamic type,
10231 such as an array of variant records, for instance. There are
10232 two possible cases: Arrays, and records.
10233
10234 3. ``Fixing'' Arrays:
10235 ---------------------
10236
10237 The type structure in GDB describes an array in terms of its bounds,
10238 and the type of its elements. By design, all elements in the array
10239 have the same type and we cannot represent an array of variant elements
10240 using the current type structure in GDB. When fixing an array,
10241 we cannot fix the array element, as we would potentially need one
10242 fixed type per element of the array. As a result, the best we can do
10243 when fixing an array is to produce an array whose bounds and size
10244 are correct (allowing us to read it from memory), but without having
10245 touched its element type. Fixing each element will be done later,
10246 when (if) necessary.
10247
10248 Arrays are a little simpler to handle than records, because the same
10249 amount of memory is allocated for each element of the array, even if
10250 the amount of space actually used by each element differs from element
10251 to element. Consider for instance the following array of type Rec:
10252
10253 type Rec_Array is array (1 .. 2) of Rec;
10254
10255 The actual amount of memory occupied by each element might be different
10256 from element to element, depending on the value of their discriminant.
10257 But the amount of space reserved for each element in the array remains
10258 fixed regardless. So we simply need to compute that size using
10259 the debugging information available, from which we can then determine
10260 the array size (we multiply the number of elements of the array by
10261 the size of each element).
10262
10263 The simplest case is when we have an array of a constrained element
10264 type. For instance, consider the following type declarations:
10265
10266 type Bounded_String (Max_Size : Integer) is
10267 Length : Integer;
10268 Buffer : String (1 .. Max_Size);
10269 end record;
10270 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10271
10272 In this case, the compiler describes the array as an array of
10273 variable-size elements (identified by its XVS suffix) for which
10274 the size can be read in the parallel XVZ variable.
10275
10276 In the case of an array of an unconstrained element type, the compiler
10277 wraps the array element inside a private PAD type. This type should not
10278 be shown to the user, and must be "unwrap"'ed before printing. Note
10279 that we also use the adjective "aligner" in our code to designate
10280 these wrapper types.
10281
10282 In some cases, the size allocated for each element is statically
10283 known. In that case, the PAD type already has the correct size,
10284 and the array element should remain unfixed.
10285
10286 But there are cases when this size is not statically known.
10287 For instance, assuming that "Five" is an integer variable:
10288
10289 type Dynamic is array (1 .. Five) of Integer;
10290 type Wrapper (Has_Length : Boolean := False) is record
10291 Data : Dynamic;
10292 case Has_Length is
10293 when True => Length : Integer;
10294 when False => null;
10295 end case;
10296 end record;
10297 type Wrapper_Array is array (1 .. 2) of Wrapper;
10298
10299 Hello : Wrapper_Array := (others => (Has_Length => True,
10300 Data => (others => 17),
10301 Length => 1));
10302
10303
10304 The debugging info would describe variable Hello as being an
10305 array of a PAD type. The size of that PAD type is not statically
10306 known, but can be determined using a parallel XVZ variable.
10307 In that case, a copy of the PAD type with the correct size should
10308 be used for the fixed array.
10309
10310 3. ``Fixing'' record type objects:
10311 ----------------------------------
10312
10313 Things are slightly different from arrays in the case of dynamic
10314 record types. In this case, in order to compute the associated
10315 fixed type, we need to determine the size and offset of each of
10316 its components. This, in turn, requires us to compute the fixed
10317 type of each of these components.
10318
10319 Consider for instance the example:
10320
10321 type Bounded_String (Max_Size : Natural) is record
10322 Str : String (1 .. Max_Size);
10323 Length : Natural;
10324 end record;
10325 My_String : Bounded_String (Max_Size => 10);
10326
10327 In that case, the position of field "Length" depends on the size
10328 of field Str, which itself depends on the value of the Max_Size
10329 discriminant. In order to fix the type of variable My_String,
10330 we need to fix the type of field Str. Therefore, fixing a variant
10331 record requires us to fix each of its components.
10332
10333 However, if a component does not have a dynamic size, the component
10334 should not be fixed. In particular, fields that use a PAD type
10335 should not fixed. Here is an example where this might happen
10336 (assuming type Rec above):
10337
10338 type Container (Big : Boolean) is record
10339 First : Rec;
10340 After : Integer;
10341 case Big is
10342 when True => Another : Integer;
10343 when False => null;
10344 end case;
10345 end record;
10346 My_Container : Container := (Big => False,
10347 First => (Empty => True),
10348 After => 42);
10349
10350 In that example, the compiler creates a PAD type for component First,
10351 whose size is constant, and then positions the component After just
10352 right after it. The offset of component After is therefore constant
10353 in this case.
10354
10355 The debugger computes the position of each field based on an algorithm
10356 that uses, among other things, the actual position and size of the field
10357 preceding it. Let's now imagine that the user is trying to print
10358 the value of My_Container. If the type fixing was recursive, we would
10359 end up computing the offset of field After based on the size of the
10360 fixed version of field First. And since in our example First has
10361 only one actual field, the size of the fixed type is actually smaller
10362 than the amount of space allocated to that field, and thus we would
10363 compute the wrong offset of field After.
10364
10365 To make things more complicated, we need to watch out for dynamic
10366 components of variant records (identified by the ___XVL suffix in
10367 the component name). Even if the target type is a PAD type, the size
10368 of that type might not be statically known. So the PAD type needs
10369 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10370 we might end up with the wrong size for our component. This can be
10371 observed with the following type declarations:
10372
10373 type Octal is new Integer range 0 .. 7;
10374 type Octal_Array is array (Positive range <>) of Octal;
10375 pragma Pack (Octal_Array);
10376
10377 type Octal_Buffer (Size : Positive) is record
10378 Buffer : Octal_Array (1 .. Size);
10379 Length : Integer;
10380 end record;
10381
10382 In that case, Buffer is a PAD type whose size is unset and needs
10383 to be computed by fixing the unwrapped type.
10384
10385 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10386 ----------------------------------------------------------
10387
10388 Lastly, when should the sub-elements of an entity that remained unfixed
10389 thus far, be actually fixed?
10390
10391 The answer is: Only when referencing that element. For instance
10392 when selecting one component of a record, this specific component
10393 should be fixed at that point in time. Or when printing the value
10394 of a record, each component should be fixed before its value gets
10395 printed. Similarly for arrays, the element of the array should be
10396 fixed when printing each element of the array, or when extracting
10397 one element out of that array. On the other hand, fixing should
10398 not be performed on the elements when taking a slice of an array!
10399
10400 Note that one of the side-effects of miscomputing the offset and
10401 size of each field is that we end up also miscomputing the size
10402 of the containing type. This can have adverse results when computing
10403 the value of an entity. GDB fetches the value of an entity based
10404 on the size of its type, and thus a wrong size causes GDB to fetch
10405 the wrong amount of memory. In the case where the computed size is
10406 too small, GDB fetches too little data to print the value of our
10407 entiry. Results in this case as unpredicatble, as we usually read
10408 past the buffer containing the data =:-o. */
10409
10410 /* Implement the evaluate_exp routine in the exp_descriptor structure
10411 for the Ada language. */
10412
10413 static struct value *
10414 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10415 int *pos, enum noside noside)
10416 {
10417 enum exp_opcode op;
10418 int tem;
10419 int pc;
10420 int preeval_pos;
10421 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10422 struct type *type;
10423 int nargs, oplen;
10424 struct value **argvec;
10425
10426 pc = *pos;
10427 *pos += 1;
10428 op = exp->elts[pc].opcode;
10429
10430 switch (op)
10431 {
10432 default:
10433 *pos -= 1;
10434 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10435
10436 if (noside == EVAL_NORMAL)
10437 arg1 = unwrap_value (arg1);
10438
10439 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
10440 then we need to perform the conversion manually, because
10441 evaluate_subexp_standard doesn't do it. This conversion is
10442 necessary in Ada because the different kinds of float/fixed
10443 types in Ada have different representations.
10444
10445 Similarly, we need to perform the conversion from OP_LONG
10446 ourselves. */
10447 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
10448 arg1 = ada_value_cast (expect_type, arg1, noside);
10449
10450 return arg1;
10451
10452 case OP_STRING:
10453 {
10454 struct value *result;
10455
10456 *pos -= 1;
10457 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10458 /* The result type will have code OP_STRING, bashed there from
10459 OP_ARRAY. Bash it back. */
10460 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10461 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10462 return result;
10463 }
10464
10465 case UNOP_CAST:
10466 (*pos) += 2;
10467 type = exp->elts[pc + 1].type;
10468 arg1 = evaluate_subexp (type, exp, pos, noside);
10469 if (noside == EVAL_SKIP)
10470 goto nosideret;
10471 arg1 = ada_value_cast (type, arg1, noside);
10472 return arg1;
10473
10474 case UNOP_QUAL:
10475 (*pos) += 2;
10476 type = exp->elts[pc + 1].type;
10477 return ada_evaluate_subexp (type, exp, pos, noside);
10478
10479 case BINOP_ASSIGN:
10480 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10481 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10482 {
10483 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10484 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10485 return arg1;
10486 return ada_value_assign (arg1, arg1);
10487 }
10488 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10489 except if the lhs of our assignment is a convenience variable.
10490 In the case of assigning to a convenience variable, the lhs
10491 should be exactly the result of the evaluation of the rhs. */
10492 type = value_type (arg1);
10493 if (VALUE_LVAL (arg1) == lval_internalvar)
10494 type = NULL;
10495 arg2 = evaluate_subexp (type, exp, pos, noside);
10496 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10497 return arg1;
10498 if (ada_is_fixed_point_type (value_type (arg1)))
10499 arg2 = cast_to_fixed (value_type (arg1), arg2);
10500 else if (ada_is_fixed_point_type (value_type (arg2)))
10501 error
10502 (_("Fixed-point values must be assigned to fixed-point variables"));
10503 else
10504 arg2 = coerce_for_assign (value_type (arg1), arg2);
10505 return ada_value_assign (arg1, arg2);
10506
10507 case BINOP_ADD:
10508 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10509 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10510 if (noside == EVAL_SKIP)
10511 goto nosideret;
10512 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10513 return (value_from_longest
10514 (value_type (arg1),
10515 value_as_long (arg1) + value_as_long (arg2)));
10516 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10517 return (value_from_longest
10518 (value_type (arg2),
10519 value_as_long (arg1) + value_as_long (arg2)));
10520 if ((ada_is_fixed_point_type (value_type (arg1))
10521 || ada_is_fixed_point_type (value_type (arg2)))
10522 && value_type (arg1) != value_type (arg2))
10523 error (_("Operands of fixed-point addition must have the same type"));
10524 /* Do the addition, and cast the result to the type of the first
10525 argument. We cannot cast the result to a reference type, so if
10526 ARG1 is a reference type, find its underlying type. */
10527 type = value_type (arg1);
10528 while (TYPE_CODE (type) == TYPE_CODE_REF)
10529 type = TYPE_TARGET_TYPE (type);
10530 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10531 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10532
10533 case BINOP_SUB:
10534 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10535 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10536 if (noside == EVAL_SKIP)
10537 goto nosideret;
10538 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10539 return (value_from_longest
10540 (value_type (arg1),
10541 value_as_long (arg1) - value_as_long (arg2)));
10542 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10543 return (value_from_longest
10544 (value_type (arg2),
10545 value_as_long (arg1) - value_as_long (arg2)));
10546 if ((ada_is_fixed_point_type (value_type (arg1))
10547 || ada_is_fixed_point_type (value_type (arg2)))
10548 && value_type (arg1) != value_type (arg2))
10549 error (_("Operands of fixed-point subtraction "
10550 "must have the same type"));
10551 /* Do the substraction, and cast the result to the type of the first
10552 argument. We cannot cast the result to a reference type, so if
10553 ARG1 is a reference type, find its underlying type. */
10554 type = value_type (arg1);
10555 while (TYPE_CODE (type) == TYPE_CODE_REF)
10556 type = TYPE_TARGET_TYPE (type);
10557 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10558 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10559
10560 case BINOP_MUL:
10561 case BINOP_DIV:
10562 case BINOP_REM:
10563 case BINOP_MOD:
10564 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10565 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10566 if (noside == EVAL_SKIP)
10567 goto nosideret;
10568 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10569 {
10570 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10571 return value_zero (value_type (arg1), not_lval);
10572 }
10573 else
10574 {
10575 type = builtin_type (exp->gdbarch)->builtin_double;
10576 if (ada_is_fixed_point_type (value_type (arg1)))
10577 arg1 = cast_from_fixed (type, arg1);
10578 if (ada_is_fixed_point_type (value_type (arg2)))
10579 arg2 = cast_from_fixed (type, arg2);
10580 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10581 return ada_value_binop (arg1, arg2, op);
10582 }
10583
10584 case BINOP_EQUAL:
10585 case BINOP_NOTEQUAL:
10586 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10587 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10588 if (noside == EVAL_SKIP)
10589 goto nosideret;
10590 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10591 tem = 0;
10592 else
10593 {
10594 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10595 tem = ada_value_equal (arg1, arg2);
10596 }
10597 if (op == BINOP_NOTEQUAL)
10598 tem = !tem;
10599 type = language_bool_type (exp->language_defn, exp->gdbarch);
10600 return value_from_longest (type, (LONGEST) tem);
10601
10602 case UNOP_NEG:
10603 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10604 if (noside == EVAL_SKIP)
10605 goto nosideret;
10606 else if (ada_is_fixed_point_type (value_type (arg1)))
10607 return value_cast (value_type (arg1), value_neg (arg1));
10608 else
10609 {
10610 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10611 return value_neg (arg1);
10612 }
10613
10614 case BINOP_LOGICAL_AND:
10615 case BINOP_LOGICAL_OR:
10616 case UNOP_LOGICAL_NOT:
10617 {
10618 struct value *val;
10619
10620 *pos -= 1;
10621 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10622 type = language_bool_type (exp->language_defn, exp->gdbarch);
10623 return value_cast (type, val);
10624 }
10625
10626 case BINOP_BITWISE_AND:
10627 case BINOP_BITWISE_IOR:
10628 case BINOP_BITWISE_XOR:
10629 {
10630 struct value *val;
10631
10632 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10633 *pos = pc;
10634 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10635
10636 return value_cast (value_type (arg1), val);
10637 }
10638
10639 case OP_VAR_VALUE:
10640 *pos -= 1;
10641
10642 if (noside == EVAL_SKIP)
10643 {
10644 *pos += 4;
10645 goto nosideret;
10646 }
10647
10648 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10649 /* Only encountered when an unresolved symbol occurs in a
10650 context other than a function call, in which case, it is
10651 invalid. */
10652 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10653 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10654
10655 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10656 {
10657 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10658 /* Check to see if this is a tagged type. We also need to handle
10659 the case where the type is a reference to a tagged type, but
10660 we have to be careful to exclude pointers to tagged types.
10661 The latter should be shown as usual (as a pointer), whereas
10662 a reference should mostly be transparent to the user. */
10663 if (ada_is_tagged_type (type, 0)
10664 || (TYPE_CODE (type) == TYPE_CODE_REF
10665 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10666 {
10667 /* Tagged types are a little special in the fact that the real
10668 type is dynamic and can only be determined by inspecting the
10669 object's tag. This means that we need to get the object's
10670 value first (EVAL_NORMAL) and then extract the actual object
10671 type from its tag.
10672
10673 Note that we cannot skip the final step where we extract
10674 the object type from its tag, because the EVAL_NORMAL phase
10675 results in dynamic components being resolved into fixed ones.
10676 This can cause problems when trying to print the type
10677 description of tagged types whose parent has a dynamic size:
10678 We use the type name of the "_parent" component in order
10679 to print the name of the ancestor type in the type description.
10680 If that component had a dynamic size, the resolution into
10681 a fixed type would result in the loss of that type name,
10682 thus preventing us from printing the name of the ancestor
10683 type in the type description. */
10684 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10685
10686 if (TYPE_CODE (type) != TYPE_CODE_REF)
10687 {
10688 struct type *actual_type;
10689
10690 actual_type = type_from_tag (ada_value_tag (arg1));
10691 if (actual_type == NULL)
10692 /* If, for some reason, we were unable to determine
10693 the actual type from the tag, then use the static
10694 approximation that we just computed as a fallback.
10695 This can happen if the debugging information is
10696 incomplete, for instance. */
10697 actual_type = type;
10698 return value_zero (actual_type, not_lval);
10699 }
10700 else
10701 {
10702 /* In the case of a ref, ada_coerce_ref takes care
10703 of determining the actual type. But the evaluation
10704 should return a ref as it should be valid to ask
10705 for its address; so rebuild a ref after coerce. */
10706 arg1 = ada_coerce_ref (arg1);
10707 return value_ref (arg1, TYPE_CODE_REF);
10708 }
10709 }
10710
10711 /* Records and unions for which GNAT encodings have been
10712 generated need to be statically fixed as well.
10713 Otherwise, non-static fixing produces a type where
10714 all dynamic properties are removed, which prevents "ptype"
10715 from being able to completely describe the type.
10716 For instance, a case statement in a variant record would be
10717 replaced by the relevant components based on the actual
10718 value of the discriminants. */
10719 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10720 && dynamic_template_type (type) != NULL)
10721 || (TYPE_CODE (type) == TYPE_CODE_UNION
10722 && ada_find_parallel_type (type, "___XVU") != NULL))
10723 {
10724 *pos += 4;
10725 return value_zero (to_static_fixed_type (type), not_lval);
10726 }
10727 }
10728
10729 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10730 return ada_to_fixed_value (arg1);
10731
10732 case OP_FUNCALL:
10733 (*pos) += 2;
10734
10735 /* Allocate arg vector, including space for the function to be
10736 called in argvec[0] and a terminating NULL. */
10737 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10738 argvec = XALLOCAVEC (struct value *, nargs + 2);
10739
10740 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10741 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10742 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10743 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10744 else
10745 {
10746 for (tem = 0; tem <= nargs; tem += 1)
10747 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10748 argvec[tem] = 0;
10749
10750 if (noside == EVAL_SKIP)
10751 goto nosideret;
10752 }
10753
10754 if (ada_is_constrained_packed_array_type
10755 (desc_base_type (value_type (argvec[0]))))
10756 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10757 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10758 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10759 /* This is a packed array that has already been fixed, and
10760 therefore already coerced to a simple array. Nothing further
10761 to do. */
10762 ;
10763 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10764 {
10765 /* Make sure we dereference references so that all the code below
10766 feels like it's really handling the referenced value. Wrapping
10767 types (for alignment) may be there, so make sure we strip them as
10768 well. */
10769 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10770 }
10771 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10772 && VALUE_LVAL (argvec[0]) == lval_memory)
10773 argvec[0] = value_addr (argvec[0]);
10774
10775 type = ada_check_typedef (value_type (argvec[0]));
10776
10777 /* Ada allows us to implicitly dereference arrays when subscripting
10778 them. So, if this is an array typedef (encoding use for array
10779 access types encoded as fat pointers), strip it now. */
10780 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10781 type = ada_typedef_target_type (type);
10782
10783 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10784 {
10785 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10786 {
10787 case TYPE_CODE_FUNC:
10788 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10789 break;
10790 case TYPE_CODE_ARRAY:
10791 break;
10792 case TYPE_CODE_STRUCT:
10793 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10794 argvec[0] = ada_value_ind (argvec[0]);
10795 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10796 break;
10797 default:
10798 error (_("cannot subscript or call something of type `%s'"),
10799 ada_type_name (value_type (argvec[0])));
10800 break;
10801 }
10802 }
10803
10804 switch (TYPE_CODE (type))
10805 {
10806 case TYPE_CODE_FUNC:
10807 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10808 {
10809 struct type *rtype = TYPE_TARGET_TYPE (type);
10810
10811 if (TYPE_GNU_IFUNC (type))
10812 return allocate_value (TYPE_TARGET_TYPE (rtype));
10813 return allocate_value (rtype);
10814 }
10815 return call_function_by_hand (argvec[0], nargs, argvec + 1);
10816 case TYPE_CODE_INTERNAL_FUNCTION:
10817 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10818 /* We don't know anything about what the internal
10819 function might return, but we have to return
10820 something. */
10821 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10822 not_lval);
10823 else
10824 return call_internal_function (exp->gdbarch, exp->language_defn,
10825 argvec[0], nargs, argvec + 1);
10826
10827 case TYPE_CODE_STRUCT:
10828 {
10829 int arity;
10830
10831 arity = ada_array_arity (type);
10832 type = ada_array_element_type (type, nargs);
10833 if (type == NULL)
10834 error (_("cannot subscript or call a record"));
10835 if (arity != nargs)
10836 error (_("wrong number of subscripts; expecting %d"), arity);
10837 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10838 return value_zero (ada_aligned_type (type), lval_memory);
10839 return
10840 unwrap_value (ada_value_subscript
10841 (argvec[0], nargs, argvec + 1));
10842 }
10843 case TYPE_CODE_ARRAY:
10844 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10845 {
10846 type = ada_array_element_type (type, nargs);
10847 if (type == NULL)
10848 error (_("element type of array unknown"));
10849 else
10850 return value_zero (ada_aligned_type (type), lval_memory);
10851 }
10852 return
10853 unwrap_value (ada_value_subscript
10854 (ada_coerce_to_simple_array (argvec[0]),
10855 nargs, argvec + 1));
10856 case TYPE_CODE_PTR: /* Pointer to array */
10857 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10858 {
10859 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10860 type = ada_array_element_type (type, nargs);
10861 if (type == NULL)
10862 error (_("element type of array unknown"));
10863 else
10864 return value_zero (ada_aligned_type (type), lval_memory);
10865 }
10866 return
10867 unwrap_value (ada_value_ptr_subscript (argvec[0],
10868 nargs, argvec + 1));
10869
10870 default:
10871 error (_("Attempt to index or call something other than an "
10872 "array or function"));
10873 }
10874
10875 case TERNOP_SLICE:
10876 {
10877 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10878 struct value *low_bound_val =
10879 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10880 struct value *high_bound_val =
10881 evaluate_subexp (NULL_TYPE, exp, pos, noside);
10882 LONGEST low_bound;
10883 LONGEST high_bound;
10884
10885 low_bound_val = coerce_ref (low_bound_val);
10886 high_bound_val = coerce_ref (high_bound_val);
10887 low_bound = value_as_long (low_bound_val);
10888 high_bound = value_as_long (high_bound_val);
10889
10890 if (noside == EVAL_SKIP)
10891 goto nosideret;
10892
10893 /* If this is a reference to an aligner type, then remove all
10894 the aligners. */
10895 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10896 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
10897 TYPE_TARGET_TYPE (value_type (array)) =
10898 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
10899
10900 if (ada_is_constrained_packed_array_type (value_type (array)))
10901 error (_("cannot slice a packed array"));
10902
10903 /* If this is a reference to an array or an array lvalue,
10904 convert to a pointer. */
10905 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
10906 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
10907 && VALUE_LVAL (array) == lval_memory))
10908 array = value_addr (array);
10909
10910 if (noside == EVAL_AVOID_SIDE_EFFECTS
10911 && ada_is_array_descriptor_type (ada_check_typedef
10912 (value_type (array))))
10913 return empty_array (ada_type_of_array (array, 0), low_bound);
10914
10915 array = ada_coerce_to_simple_array_ptr (array);
10916
10917 /* If we have more than one level of pointer indirection,
10918 dereference the value until we get only one level. */
10919 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
10920 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
10921 == TYPE_CODE_PTR))
10922 array = value_ind (array);
10923
10924 /* Make sure we really do have an array type before going further,
10925 to avoid a SEGV when trying to get the index type or the target
10926 type later down the road if the debug info generated by
10927 the compiler is incorrect or incomplete. */
10928 if (!ada_is_simple_array_type (value_type (array)))
10929 error (_("cannot take slice of non-array"));
10930
10931 if (TYPE_CODE (ada_check_typedef (value_type (array)))
10932 == TYPE_CODE_PTR)
10933 {
10934 struct type *type0 = ada_check_typedef (value_type (array));
10935
10936 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
10937 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
10938 else
10939 {
10940 struct type *arr_type0 =
10941 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
10942
10943 return ada_value_slice_from_ptr (array, arr_type0,
10944 longest_to_int (low_bound),
10945 longest_to_int (high_bound));
10946 }
10947 }
10948 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10949 return array;
10950 else if (high_bound < low_bound)
10951 return empty_array (value_type (array), low_bound);
10952 else
10953 return ada_value_slice (array, longest_to_int (low_bound),
10954 longest_to_int (high_bound));
10955 }
10956
10957 case UNOP_IN_RANGE:
10958 (*pos) += 2;
10959 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10960 type = check_typedef (exp->elts[pc + 1].type);
10961
10962 if (noside == EVAL_SKIP)
10963 goto nosideret;
10964
10965 switch (TYPE_CODE (type))
10966 {
10967 default:
10968 lim_warning (_("Membership test incompletely implemented; "
10969 "always returns true"));
10970 type = language_bool_type (exp->language_defn, exp->gdbarch);
10971 return value_from_longest (type, (LONGEST) 1);
10972
10973 case TYPE_CODE_RANGE:
10974 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
10975 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
10976 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10977 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10978 type = language_bool_type (exp->language_defn, exp->gdbarch);
10979 return
10980 value_from_longest (type,
10981 (value_less (arg1, arg3)
10982 || value_equal (arg1, arg3))
10983 && (value_less (arg2, arg1)
10984 || value_equal (arg2, arg1)));
10985 }
10986
10987 case BINOP_IN_BOUNDS:
10988 (*pos) += 2;
10989 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10990 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10991
10992 if (noside == EVAL_SKIP)
10993 goto nosideret;
10994
10995 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10996 {
10997 type = language_bool_type (exp->language_defn, exp->gdbarch);
10998 return value_zero (type, not_lval);
10999 }
11000
11001 tem = longest_to_int (exp->elts[pc + 1].longconst);
11002
11003 type = ada_index_type (value_type (arg2), tem, "range");
11004 if (!type)
11005 type = value_type (arg1);
11006
11007 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11008 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11009
11010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11011 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11012 type = language_bool_type (exp->language_defn, exp->gdbarch);
11013 return
11014 value_from_longest (type,
11015 (value_less (arg1, arg3)
11016 || value_equal (arg1, arg3))
11017 && (value_less (arg2, arg1)
11018 || value_equal (arg2, arg1)));
11019
11020 case TERNOP_IN_RANGE:
11021 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11022 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11023 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11024
11025 if (noside == EVAL_SKIP)
11026 goto nosideret;
11027
11028 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11029 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11030 type = language_bool_type (exp->language_defn, exp->gdbarch);
11031 return
11032 value_from_longest (type,
11033 (value_less (arg1, arg3)
11034 || value_equal (arg1, arg3))
11035 && (value_less (arg2, arg1)
11036 || value_equal (arg2, arg1)));
11037
11038 case OP_ATR_FIRST:
11039 case OP_ATR_LAST:
11040 case OP_ATR_LENGTH:
11041 {
11042 struct type *type_arg;
11043
11044 if (exp->elts[*pos].opcode == OP_TYPE)
11045 {
11046 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11047 arg1 = NULL;
11048 type_arg = check_typedef (exp->elts[pc + 2].type);
11049 }
11050 else
11051 {
11052 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11053 type_arg = NULL;
11054 }
11055
11056 if (exp->elts[*pos].opcode != OP_LONG)
11057 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11058 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11059 *pos += 4;
11060
11061 if (noside == EVAL_SKIP)
11062 goto nosideret;
11063
11064 if (type_arg == NULL)
11065 {
11066 arg1 = ada_coerce_ref (arg1);
11067
11068 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11069 arg1 = ada_coerce_to_simple_array (arg1);
11070
11071 if (op == OP_ATR_LENGTH)
11072 type = builtin_type (exp->gdbarch)->builtin_int;
11073 else
11074 {
11075 type = ada_index_type (value_type (arg1), tem,
11076 ada_attribute_name (op));
11077 if (type == NULL)
11078 type = builtin_type (exp->gdbarch)->builtin_int;
11079 }
11080
11081 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11082 return allocate_value (type);
11083
11084 switch (op)
11085 {
11086 default: /* Should never happen. */
11087 error (_("unexpected attribute encountered"));
11088 case OP_ATR_FIRST:
11089 return value_from_longest
11090 (type, ada_array_bound (arg1, tem, 0));
11091 case OP_ATR_LAST:
11092 return value_from_longest
11093 (type, ada_array_bound (arg1, tem, 1));
11094 case OP_ATR_LENGTH:
11095 return value_from_longest
11096 (type, ada_array_length (arg1, tem));
11097 }
11098 }
11099 else if (discrete_type_p (type_arg))
11100 {
11101 struct type *range_type;
11102 const char *name = ada_type_name (type_arg);
11103
11104 range_type = NULL;
11105 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11106 range_type = to_fixed_range_type (type_arg, NULL);
11107 if (range_type == NULL)
11108 range_type = type_arg;
11109 switch (op)
11110 {
11111 default:
11112 error (_("unexpected attribute encountered"));
11113 case OP_ATR_FIRST:
11114 return value_from_longest
11115 (range_type, ada_discrete_type_low_bound (range_type));
11116 case OP_ATR_LAST:
11117 return value_from_longest
11118 (range_type, ada_discrete_type_high_bound (range_type));
11119 case OP_ATR_LENGTH:
11120 error (_("the 'length attribute applies only to array types"));
11121 }
11122 }
11123 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11124 error (_("unimplemented type attribute"));
11125 else
11126 {
11127 LONGEST low, high;
11128
11129 if (ada_is_constrained_packed_array_type (type_arg))
11130 type_arg = decode_constrained_packed_array_type (type_arg);
11131
11132 if (op == OP_ATR_LENGTH)
11133 type = builtin_type (exp->gdbarch)->builtin_int;
11134 else
11135 {
11136 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11137 if (type == NULL)
11138 type = builtin_type (exp->gdbarch)->builtin_int;
11139 }
11140
11141 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11142 return allocate_value (type);
11143
11144 switch (op)
11145 {
11146 default:
11147 error (_("unexpected attribute encountered"));
11148 case OP_ATR_FIRST:
11149 low = ada_array_bound_from_type (type_arg, tem, 0);
11150 return value_from_longest (type, low);
11151 case OP_ATR_LAST:
11152 high = ada_array_bound_from_type (type_arg, tem, 1);
11153 return value_from_longest (type, high);
11154 case OP_ATR_LENGTH:
11155 low = ada_array_bound_from_type (type_arg, tem, 0);
11156 high = ada_array_bound_from_type (type_arg, tem, 1);
11157 return value_from_longest (type, high - low + 1);
11158 }
11159 }
11160 }
11161
11162 case OP_ATR_TAG:
11163 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11164 if (noside == EVAL_SKIP)
11165 goto nosideret;
11166
11167 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11168 return value_zero (ada_tag_type (arg1), not_lval);
11169
11170 return ada_value_tag (arg1);
11171
11172 case OP_ATR_MIN:
11173 case OP_ATR_MAX:
11174 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11175 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11176 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11177 if (noside == EVAL_SKIP)
11178 goto nosideret;
11179 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11180 return value_zero (value_type (arg1), not_lval);
11181 else
11182 {
11183 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11184 return value_binop (arg1, arg2,
11185 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11186 }
11187
11188 case OP_ATR_MODULUS:
11189 {
11190 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11191
11192 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11193 if (noside == EVAL_SKIP)
11194 goto nosideret;
11195
11196 if (!ada_is_modular_type (type_arg))
11197 error (_("'modulus must be applied to modular type"));
11198
11199 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11200 ada_modulus (type_arg));
11201 }
11202
11203
11204 case OP_ATR_POS:
11205 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11206 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11207 if (noside == EVAL_SKIP)
11208 goto nosideret;
11209 type = builtin_type (exp->gdbarch)->builtin_int;
11210 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11211 return value_zero (type, not_lval);
11212 else
11213 return value_pos_atr (type, arg1);
11214
11215 case OP_ATR_SIZE:
11216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11217 type = value_type (arg1);
11218
11219 /* If the argument is a reference, then dereference its type, since
11220 the user is really asking for the size of the actual object,
11221 not the size of the pointer. */
11222 if (TYPE_CODE (type) == TYPE_CODE_REF)
11223 type = TYPE_TARGET_TYPE (type);
11224
11225 if (noside == EVAL_SKIP)
11226 goto nosideret;
11227 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11228 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11229 else
11230 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11231 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11232
11233 case OP_ATR_VAL:
11234 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11236 type = exp->elts[pc + 2].type;
11237 if (noside == EVAL_SKIP)
11238 goto nosideret;
11239 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11240 return value_zero (type, not_lval);
11241 else
11242 return value_val_atr (type, arg1);
11243
11244 case BINOP_EXP:
11245 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11246 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11247 if (noside == EVAL_SKIP)
11248 goto nosideret;
11249 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11250 return value_zero (value_type (arg1), not_lval);
11251 else
11252 {
11253 /* For integer exponentiation operations,
11254 only promote the first argument. */
11255 if (is_integral_type (value_type (arg2)))
11256 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11257 else
11258 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11259
11260 return value_binop (arg1, arg2, op);
11261 }
11262
11263 case UNOP_PLUS:
11264 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11265 if (noside == EVAL_SKIP)
11266 goto nosideret;
11267 else
11268 return arg1;
11269
11270 case UNOP_ABS:
11271 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11272 if (noside == EVAL_SKIP)
11273 goto nosideret;
11274 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11275 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11276 return value_neg (arg1);
11277 else
11278 return arg1;
11279
11280 case UNOP_IND:
11281 preeval_pos = *pos;
11282 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11283 if (noside == EVAL_SKIP)
11284 goto nosideret;
11285 type = ada_check_typedef (value_type (arg1));
11286 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11287 {
11288 if (ada_is_array_descriptor_type (type))
11289 /* GDB allows dereferencing GNAT array descriptors. */
11290 {
11291 struct type *arrType = ada_type_of_array (arg1, 0);
11292
11293 if (arrType == NULL)
11294 error (_("Attempt to dereference null array pointer."));
11295 return value_at_lazy (arrType, 0);
11296 }
11297 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11298 || TYPE_CODE (type) == TYPE_CODE_REF
11299 /* In C you can dereference an array to get the 1st elt. */
11300 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11301 {
11302 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11303 only be determined by inspecting the object's tag.
11304 This means that we need to evaluate completely the
11305 expression in order to get its type. */
11306
11307 if ((TYPE_CODE (type) == TYPE_CODE_REF
11308 || TYPE_CODE (type) == TYPE_CODE_PTR)
11309 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11310 {
11311 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11312 EVAL_NORMAL);
11313 type = value_type (ada_value_ind (arg1));
11314 }
11315 else
11316 {
11317 type = to_static_fixed_type
11318 (ada_aligned_type
11319 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11320 }
11321 ada_ensure_varsize_limit (type);
11322 return value_zero (type, lval_memory);
11323 }
11324 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11325 {
11326 /* GDB allows dereferencing an int. */
11327 if (expect_type == NULL)
11328 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11329 lval_memory);
11330 else
11331 {
11332 expect_type =
11333 to_static_fixed_type (ada_aligned_type (expect_type));
11334 return value_zero (expect_type, lval_memory);
11335 }
11336 }
11337 else
11338 error (_("Attempt to take contents of a non-pointer value."));
11339 }
11340 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11341 type = ada_check_typedef (value_type (arg1));
11342
11343 if (TYPE_CODE (type) == TYPE_CODE_INT)
11344 /* GDB allows dereferencing an int. If we were given
11345 the expect_type, then use that as the target type.
11346 Otherwise, assume that the target type is an int. */
11347 {
11348 if (expect_type != NULL)
11349 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11350 arg1));
11351 else
11352 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11353 (CORE_ADDR) value_as_address (arg1));
11354 }
11355
11356 if (ada_is_array_descriptor_type (type))
11357 /* GDB allows dereferencing GNAT array descriptors. */
11358 return ada_coerce_to_simple_array (arg1);
11359 else
11360 return ada_value_ind (arg1);
11361
11362 case STRUCTOP_STRUCT:
11363 tem = longest_to_int (exp->elts[pc + 1].longconst);
11364 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11365 preeval_pos = *pos;
11366 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11367 if (noside == EVAL_SKIP)
11368 goto nosideret;
11369 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11370 {
11371 struct type *type1 = value_type (arg1);
11372
11373 if (ada_is_tagged_type (type1, 1))
11374 {
11375 type = ada_lookup_struct_elt_type (type1,
11376 &exp->elts[pc + 2].string,
11377 1, 1, NULL);
11378
11379 /* If the field is not found, check if it exists in the
11380 extension of this object's type. This means that we
11381 need to evaluate completely the expression. */
11382
11383 if (type == NULL)
11384 {
11385 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11386 EVAL_NORMAL);
11387 arg1 = ada_value_struct_elt (arg1,
11388 &exp->elts[pc + 2].string,
11389 0);
11390 arg1 = unwrap_value (arg1);
11391 type = value_type (ada_to_fixed_value (arg1));
11392 }
11393 }
11394 else
11395 type =
11396 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11397 0, NULL);
11398
11399 return value_zero (ada_aligned_type (type), lval_memory);
11400 }
11401 else
11402 {
11403 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11404 arg1 = unwrap_value (arg1);
11405 return ada_to_fixed_value (arg1);
11406 }
11407
11408 case OP_TYPE:
11409 /* The value is not supposed to be used. This is here to make it
11410 easier to accommodate expressions that contain types. */
11411 (*pos) += 2;
11412 if (noside == EVAL_SKIP)
11413 goto nosideret;
11414 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11415 return allocate_value (exp->elts[pc + 1].type);
11416 else
11417 error (_("Attempt to use a type name as an expression"));
11418
11419 case OP_AGGREGATE:
11420 case OP_CHOICES:
11421 case OP_OTHERS:
11422 case OP_DISCRETE_RANGE:
11423 case OP_POSITIONAL:
11424 case OP_NAME:
11425 if (noside == EVAL_NORMAL)
11426 switch (op)
11427 {
11428 case OP_NAME:
11429 error (_("Undefined name, ambiguous name, or renaming used in "
11430 "component association: %s."), &exp->elts[pc+2].string);
11431 case OP_AGGREGATE:
11432 error (_("Aggregates only allowed on the right of an assignment"));
11433 default:
11434 internal_error (__FILE__, __LINE__,
11435 _("aggregate apparently mangled"));
11436 }
11437
11438 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11439 *pos += oplen - 1;
11440 for (tem = 0; tem < nargs; tem += 1)
11441 ada_evaluate_subexp (NULL, exp, pos, noside);
11442 goto nosideret;
11443 }
11444
11445 nosideret:
11446 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
11447 }
11448 \f
11449
11450 /* Fixed point */
11451
11452 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11453 type name that encodes the 'small and 'delta information.
11454 Otherwise, return NULL. */
11455
11456 static const char *
11457 fixed_type_info (struct type *type)
11458 {
11459 const char *name = ada_type_name (type);
11460 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11461
11462 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11463 {
11464 const char *tail = strstr (name, "___XF_");
11465
11466 if (tail == NULL)
11467 return NULL;
11468 else
11469 return tail + 5;
11470 }
11471 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11472 return fixed_type_info (TYPE_TARGET_TYPE (type));
11473 else
11474 return NULL;
11475 }
11476
11477 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11478
11479 int
11480 ada_is_fixed_point_type (struct type *type)
11481 {
11482 return fixed_type_info (type) != NULL;
11483 }
11484
11485 /* Return non-zero iff TYPE represents a System.Address type. */
11486
11487 int
11488 ada_is_system_address_type (struct type *type)
11489 {
11490 return (TYPE_NAME (type)
11491 && strcmp (TYPE_NAME (type), "system__address") == 0);
11492 }
11493
11494 /* Assuming that TYPE is the representation of an Ada fixed-point
11495 type, return its delta, or -1 if the type is malformed and the
11496 delta cannot be determined. */
11497
11498 DOUBLEST
11499 ada_delta (struct type *type)
11500 {
11501 const char *encoding = fixed_type_info (type);
11502 DOUBLEST num, den;
11503
11504 /* Strictly speaking, num and den are encoded as integer. However,
11505 they may not fit into a long, and they will have to be converted
11506 to DOUBLEST anyway. So scan them as DOUBLEST. */
11507 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11508 &num, &den) < 2)
11509 return -1.0;
11510 else
11511 return num / den;
11512 }
11513
11514 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11515 factor ('SMALL value) associated with the type. */
11516
11517 static DOUBLEST
11518 scaling_factor (struct type *type)
11519 {
11520 const char *encoding = fixed_type_info (type);
11521 DOUBLEST num0, den0, num1, den1;
11522 int n;
11523
11524 /* Strictly speaking, num's and den's are encoded as integer. However,
11525 they may not fit into a long, and they will have to be converted
11526 to DOUBLEST anyway. So scan them as DOUBLEST. */
11527 n = sscanf (encoding,
11528 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
11529 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
11530 &num0, &den0, &num1, &den1);
11531
11532 if (n < 2)
11533 return 1.0;
11534 else if (n == 4)
11535 return num1 / den1;
11536 else
11537 return num0 / den0;
11538 }
11539
11540
11541 /* Assuming that X is the representation of a value of fixed-point
11542 type TYPE, return its floating-point equivalent. */
11543
11544 DOUBLEST
11545 ada_fixed_to_float (struct type *type, LONGEST x)
11546 {
11547 return (DOUBLEST) x *scaling_factor (type);
11548 }
11549
11550 /* The representation of a fixed-point value of type TYPE
11551 corresponding to the value X. */
11552
11553 LONGEST
11554 ada_float_to_fixed (struct type *type, DOUBLEST x)
11555 {
11556 return (LONGEST) (x / scaling_factor (type) + 0.5);
11557 }
11558
11559 \f
11560
11561 /* Range types */
11562
11563 /* Scan STR beginning at position K for a discriminant name, and
11564 return the value of that discriminant field of DVAL in *PX. If
11565 PNEW_K is not null, put the position of the character beyond the
11566 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11567 not alter *PX and *PNEW_K if unsuccessful. */
11568
11569 static int
11570 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11571 int *pnew_k)
11572 {
11573 static char *bound_buffer = NULL;
11574 static size_t bound_buffer_len = 0;
11575 const char *pstart, *pend, *bound;
11576 struct value *bound_val;
11577
11578 if (dval == NULL || str == NULL || str[k] == '\0')
11579 return 0;
11580
11581 pstart = str + k;
11582 pend = strstr (pstart, "__");
11583 if (pend == NULL)
11584 {
11585 bound = pstart;
11586 k += strlen (bound);
11587 }
11588 else
11589 {
11590 int len = pend - pstart;
11591
11592 /* Strip __ and beyond. */
11593 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11594 strncpy (bound_buffer, pstart, len);
11595 bound_buffer[len] = '\0';
11596
11597 bound = bound_buffer;
11598 k = pend - str;
11599 }
11600
11601 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11602 if (bound_val == NULL)
11603 return 0;
11604
11605 *px = value_as_long (bound_val);
11606 if (pnew_k != NULL)
11607 *pnew_k = k;
11608 return 1;
11609 }
11610
11611 /* Value of variable named NAME in the current environment. If
11612 no such variable found, then if ERR_MSG is null, returns 0, and
11613 otherwise causes an error with message ERR_MSG. */
11614
11615 static struct value *
11616 get_var_value (char *name, char *err_msg)
11617 {
11618 struct block_symbol *syms;
11619 int nsyms;
11620
11621 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
11622 &syms);
11623
11624 if (nsyms != 1)
11625 {
11626 if (err_msg == NULL)
11627 return 0;
11628 else
11629 error (("%s"), err_msg);
11630 }
11631
11632 return value_of_variable (syms[0].symbol, syms[0].block);
11633 }
11634
11635 /* Value of integer variable named NAME in the current environment. If
11636 no such variable found, returns 0, and sets *FLAG to 0. If
11637 successful, sets *FLAG to 1. */
11638
11639 LONGEST
11640 get_int_var_value (char *name, int *flag)
11641 {
11642 struct value *var_val = get_var_value (name, 0);
11643
11644 if (var_val == 0)
11645 {
11646 if (flag != NULL)
11647 *flag = 0;
11648 return 0;
11649 }
11650 else
11651 {
11652 if (flag != NULL)
11653 *flag = 1;
11654 return value_as_long (var_val);
11655 }
11656 }
11657
11658
11659 /* Return a range type whose base type is that of the range type named
11660 NAME in the current environment, and whose bounds are calculated
11661 from NAME according to the GNAT range encoding conventions.
11662 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11663 corresponding range type from debug information; fall back to using it
11664 if symbol lookup fails. If a new type must be created, allocate it
11665 like ORIG_TYPE was. The bounds information, in general, is encoded
11666 in NAME, the base type given in the named range type. */
11667
11668 static struct type *
11669 to_fixed_range_type (struct type *raw_type, struct value *dval)
11670 {
11671 const char *name;
11672 struct type *base_type;
11673 const char *subtype_info;
11674
11675 gdb_assert (raw_type != NULL);
11676 gdb_assert (TYPE_NAME (raw_type) != NULL);
11677
11678 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11679 base_type = TYPE_TARGET_TYPE (raw_type);
11680 else
11681 base_type = raw_type;
11682
11683 name = TYPE_NAME (raw_type);
11684 subtype_info = strstr (name, "___XD");
11685 if (subtype_info == NULL)
11686 {
11687 LONGEST L = ada_discrete_type_low_bound (raw_type);
11688 LONGEST U = ada_discrete_type_high_bound (raw_type);
11689
11690 if (L < INT_MIN || U > INT_MAX)
11691 return raw_type;
11692 else
11693 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11694 L, U);
11695 }
11696 else
11697 {
11698 static char *name_buf = NULL;
11699 static size_t name_len = 0;
11700 int prefix_len = subtype_info - name;
11701 LONGEST L, U;
11702 struct type *type;
11703 const char *bounds_str;
11704 int n;
11705
11706 GROW_VECT (name_buf, name_len, prefix_len + 5);
11707 strncpy (name_buf, name, prefix_len);
11708 name_buf[prefix_len] = '\0';
11709
11710 subtype_info += 5;
11711 bounds_str = strchr (subtype_info, '_');
11712 n = 1;
11713
11714 if (*subtype_info == 'L')
11715 {
11716 if (!ada_scan_number (bounds_str, n, &L, &n)
11717 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11718 return raw_type;
11719 if (bounds_str[n] == '_')
11720 n += 2;
11721 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11722 n += 1;
11723 subtype_info += 1;
11724 }
11725 else
11726 {
11727 int ok;
11728
11729 strcpy (name_buf + prefix_len, "___L");
11730 L = get_int_var_value (name_buf, &ok);
11731 if (!ok)
11732 {
11733 lim_warning (_("Unknown lower bound, using 1."));
11734 L = 1;
11735 }
11736 }
11737
11738 if (*subtype_info == 'U')
11739 {
11740 if (!ada_scan_number (bounds_str, n, &U, &n)
11741 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11742 return raw_type;
11743 }
11744 else
11745 {
11746 int ok;
11747
11748 strcpy (name_buf + prefix_len, "___U");
11749 U = get_int_var_value (name_buf, &ok);
11750 if (!ok)
11751 {
11752 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11753 U = L;
11754 }
11755 }
11756
11757 type = create_static_range_type (alloc_type_copy (raw_type),
11758 base_type, L, U);
11759 TYPE_NAME (type) = name;
11760 return type;
11761 }
11762 }
11763
11764 /* True iff NAME is the name of a range type. */
11765
11766 int
11767 ada_is_range_type_name (const char *name)
11768 {
11769 return (name != NULL && strstr (name, "___XD"));
11770 }
11771 \f
11772
11773 /* Modular types */
11774
11775 /* True iff TYPE is an Ada modular type. */
11776
11777 int
11778 ada_is_modular_type (struct type *type)
11779 {
11780 struct type *subranged_type = get_base_type (type);
11781
11782 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11783 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11784 && TYPE_UNSIGNED (subranged_type));
11785 }
11786
11787 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11788
11789 ULONGEST
11790 ada_modulus (struct type *type)
11791 {
11792 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11793 }
11794 \f
11795
11796 /* Ada exception catchpoint support:
11797 ---------------------------------
11798
11799 We support 3 kinds of exception catchpoints:
11800 . catchpoints on Ada exceptions
11801 . catchpoints on unhandled Ada exceptions
11802 . catchpoints on failed assertions
11803
11804 Exceptions raised during failed assertions, or unhandled exceptions
11805 could perfectly be caught with the general catchpoint on Ada exceptions.
11806 However, we can easily differentiate these two special cases, and having
11807 the option to distinguish these two cases from the rest can be useful
11808 to zero-in on certain situations.
11809
11810 Exception catchpoints are a specialized form of breakpoint,
11811 since they rely on inserting breakpoints inside known routines
11812 of the GNAT runtime. The implementation therefore uses a standard
11813 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11814 of breakpoint_ops.
11815
11816 Support in the runtime for exception catchpoints have been changed
11817 a few times already, and these changes affect the implementation
11818 of these catchpoints. In order to be able to support several
11819 variants of the runtime, we use a sniffer that will determine
11820 the runtime variant used by the program being debugged. */
11821
11822 /* Ada's standard exceptions.
11823
11824 The Ada 83 standard also defined Numeric_Error. But there so many
11825 situations where it was unclear from the Ada 83 Reference Manual
11826 (RM) whether Constraint_Error or Numeric_Error should be raised,
11827 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11828 Interpretation saying that anytime the RM says that Numeric_Error
11829 should be raised, the implementation may raise Constraint_Error.
11830 Ada 95 went one step further and pretty much removed Numeric_Error
11831 from the list of standard exceptions (it made it a renaming of
11832 Constraint_Error, to help preserve compatibility when compiling
11833 an Ada83 compiler). As such, we do not include Numeric_Error from
11834 this list of standard exceptions. */
11835
11836 static const char *standard_exc[] = {
11837 "constraint_error",
11838 "program_error",
11839 "storage_error",
11840 "tasking_error"
11841 };
11842
11843 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11844
11845 /* A structure that describes how to support exception catchpoints
11846 for a given executable. */
11847
11848 struct exception_support_info
11849 {
11850 /* The name of the symbol to break on in order to insert
11851 a catchpoint on exceptions. */
11852 const char *catch_exception_sym;
11853
11854 /* The name of the symbol to break on in order to insert
11855 a catchpoint on unhandled exceptions. */
11856 const char *catch_exception_unhandled_sym;
11857
11858 /* The name of the symbol to break on in order to insert
11859 a catchpoint on failed assertions. */
11860 const char *catch_assert_sym;
11861
11862 /* Assuming that the inferior just triggered an unhandled exception
11863 catchpoint, this function is responsible for returning the address
11864 in inferior memory where the name of that exception is stored.
11865 Return zero if the address could not be computed. */
11866 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11867 };
11868
11869 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11870 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11871
11872 /* The following exception support info structure describes how to
11873 implement exception catchpoints with the latest version of the
11874 Ada runtime (as of 2007-03-06). */
11875
11876 static const struct exception_support_info default_exception_support_info =
11877 {
11878 "__gnat_debug_raise_exception", /* catch_exception_sym */
11879 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11880 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11881 ada_unhandled_exception_name_addr
11882 };
11883
11884 /* The following exception support info structure describes how to
11885 implement exception catchpoints with a slightly older version
11886 of the Ada runtime. */
11887
11888 static const struct exception_support_info exception_support_info_fallback =
11889 {
11890 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11891 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11892 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11893 ada_unhandled_exception_name_addr_from_raise
11894 };
11895
11896 /* Return nonzero if we can detect the exception support routines
11897 described in EINFO.
11898
11899 This function errors out if an abnormal situation is detected
11900 (for instance, if we find the exception support routines, but
11901 that support is found to be incomplete). */
11902
11903 static int
11904 ada_has_this_exception_support (const struct exception_support_info *einfo)
11905 {
11906 struct symbol *sym;
11907
11908 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11909 that should be compiled with debugging information. As a result, we
11910 expect to find that symbol in the symtabs. */
11911
11912 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
11913 if (sym == NULL)
11914 {
11915 /* Perhaps we did not find our symbol because the Ada runtime was
11916 compiled without debugging info, or simply stripped of it.
11917 It happens on some GNU/Linux distributions for instance, where
11918 users have to install a separate debug package in order to get
11919 the runtime's debugging info. In that situation, let the user
11920 know why we cannot insert an Ada exception catchpoint.
11921
11922 Note: Just for the purpose of inserting our Ada exception
11923 catchpoint, we could rely purely on the associated minimal symbol.
11924 But we would be operating in degraded mode anyway, since we are
11925 still lacking the debugging info needed later on to extract
11926 the name of the exception being raised (this name is printed in
11927 the catchpoint message, and is also used when trying to catch
11928 a specific exception). We do not handle this case for now. */
11929 struct bound_minimal_symbol msym
11930 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
11931
11932 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
11933 error (_("Your Ada runtime appears to be missing some debugging "
11934 "information.\nCannot insert Ada exception catchpoint "
11935 "in this configuration."));
11936
11937 return 0;
11938 }
11939
11940 /* Make sure that the symbol we found corresponds to a function. */
11941
11942 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
11943 error (_("Symbol \"%s\" is not a function (class = %d)"),
11944 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
11945
11946 return 1;
11947 }
11948
11949 /* Inspect the Ada runtime and determine which exception info structure
11950 should be used to provide support for exception catchpoints.
11951
11952 This function will always set the per-inferior exception_info,
11953 or raise an error. */
11954
11955 static void
11956 ada_exception_support_info_sniffer (void)
11957 {
11958 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11959
11960 /* If the exception info is already known, then no need to recompute it. */
11961 if (data->exception_info != NULL)
11962 return;
11963
11964 /* Check the latest (default) exception support info. */
11965 if (ada_has_this_exception_support (&default_exception_support_info))
11966 {
11967 data->exception_info = &default_exception_support_info;
11968 return;
11969 }
11970
11971 /* Try our fallback exception suport info. */
11972 if (ada_has_this_exception_support (&exception_support_info_fallback))
11973 {
11974 data->exception_info = &exception_support_info_fallback;
11975 return;
11976 }
11977
11978 /* Sometimes, it is normal for us to not be able to find the routine
11979 we are looking for. This happens when the program is linked with
11980 the shared version of the GNAT runtime, and the program has not been
11981 started yet. Inform the user of these two possible causes if
11982 applicable. */
11983
11984 if (ada_update_initial_language (language_unknown) != language_ada)
11985 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11986
11987 /* If the symbol does not exist, then check that the program is
11988 already started, to make sure that shared libraries have been
11989 loaded. If it is not started, this may mean that the symbol is
11990 in a shared library. */
11991
11992 if (ptid_get_pid (inferior_ptid) == 0)
11993 error (_("Unable to insert catchpoint. Try to start the program first."));
11994
11995 /* At this point, we know that we are debugging an Ada program and
11996 that the inferior has been started, but we still are not able to
11997 find the run-time symbols. That can mean that we are in
11998 configurable run time mode, or that a-except as been optimized
11999 out by the linker... In any case, at this point it is not worth
12000 supporting this feature. */
12001
12002 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12003 }
12004
12005 /* True iff FRAME is very likely to be that of a function that is
12006 part of the runtime system. This is all very heuristic, but is
12007 intended to be used as advice as to what frames are uninteresting
12008 to most users. */
12009
12010 static int
12011 is_known_support_routine (struct frame_info *frame)
12012 {
12013 struct symtab_and_line sal;
12014 char *func_name;
12015 enum language func_lang;
12016 int i;
12017 const char *fullname;
12018
12019 /* If this code does not have any debugging information (no symtab),
12020 This cannot be any user code. */
12021
12022 find_frame_sal (frame, &sal);
12023 if (sal.symtab == NULL)
12024 return 1;
12025
12026 /* If there is a symtab, but the associated source file cannot be
12027 located, then assume this is not user code: Selecting a frame
12028 for which we cannot display the code would not be very helpful
12029 for the user. This should also take care of case such as VxWorks
12030 where the kernel has some debugging info provided for a few units. */
12031
12032 fullname = symtab_to_fullname (sal.symtab);
12033 if (access (fullname, R_OK) != 0)
12034 return 1;
12035
12036 /* Check the unit filename againt the Ada runtime file naming.
12037 We also check the name of the objfile against the name of some
12038 known system libraries that sometimes come with debugging info
12039 too. */
12040
12041 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12042 {
12043 re_comp (known_runtime_file_name_patterns[i]);
12044 if (re_exec (lbasename (sal.symtab->filename)))
12045 return 1;
12046 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12047 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12048 return 1;
12049 }
12050
12051 /* Check whether the function is a GNAT-generated entity. */
12052
12053 find_frame_funname (frame, &func_name, &func_lang, NULL);
12054 if (func_name == NULL)
12055 return 1;
12056
12057 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12058 {
12059 re_comp (known_auxiliary_function_name_patterns[i]);
12060 if (re_exec (func_name))
12061 {
12062 xfree (func_name);
12063 return 1;
12064 }
12065 }
12066
12067 xfree (func_name);
12068 return 0;
12069 }
12070
12071 /* Find the first frame that contains debugging information and that is not
12072 part of the Ada run-time, starting from FI and moving upward. */
12073
12074 void
12075 ada_find_printable_frame (struct frame_info *fi)
12076 {
12077 for (; fi != NULL; fi = get_prev_frame (fi))
12078 {
12079 if (!is_known_support_routine (fi))
12080 {
12081 select_frame (fi);
12082 break;
12083 }
12084 }
12085
12086 }
12087
12088 /* Assuming that the inferior just triggered an unhandled exception
12089 catchpoint, return the address in inferior memory where the name
12090 of the exception is stored.
12091
12092 Return zero if the address could not be computed. */
12093
12094 static CORE_ADDR
12095 ada_unhandled_exception_name_addr (void)
12096 {
12097 return parse_and_eval_address ("e.full_name");
12098 }
12099
12100 /* Same as ada_unhandled_exception_name_addr, except that this function
12101 should be used when the inferior uses an older version of the runtime,
12102 where the exception name needs to be extracted from a specific frame
12103 several frames up in the callstack. */
12104
12105 static CORE_ADDR
12106 ada_unhandled_exception_name_addr_from_raise (void)
12107 {
12108 int frame_level;
12109 struct frame_info *fi;
12110 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12111 struct cleanup *old_chain;
12112
12113 /* To determine the name of this exception, we need to select
12114 the frame corresponding to RAISE_SYM_NAME. This frame is
12115 at least 3 levels up, so we simply skip the first 3 frames
12116 without checking the name of their associated function. */
12117 fi = get_current_frame ();
12118 for (frame_level = 0; frame_level < 3; frame_level += 1)
12119 if (fi != NULL)
12120 fi = get_prev_frame (fi);
12121
12122 old_chain = make_cleanup (null_cleanup, NULL);
12123 while (fi != NULL)
12124 {
12125 char *func_name;
12126 enum language func_lang;
12127
12128 find_frame_funname (fi, &func_name, &func_lang, NULL);
12129 if (func_name != NULL)
12130 {
12131 make_cleanup (xfree, func_name);
12132
12133 if (strcmp (func_name,
12134 data->exception_info->catch_exception_sym) == 0)
12135 break; /* We found the frame we were looking for... */
12136 fi = get_prev_frame (fi);
12137 }
12138 }
12139 do_cleanups (old_chain);
12140
12141 if (fi == NULL)
12142 return 0;
12143
12144 select_frame (fi);
12145 return parse_and_eval_address ("id.full_name");
12146 }
12147
12148 /* Assuming the inferior just triggered an Ada exception catchpoint
12149 (of any type), return the address in inferior memory where the name
12150 of the exception is stored, if applicable.
12151
12152 Assumes the selected frame is the current frame.
12153
12154 Return zero if the address could not be computed, or if not relevant. */
12155
12156 static CORE_ADDR
12157 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12158 struct breakpoint *b)
12159 {
12160 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12161
12162 switch (ex)
12163 {
12164 case ada_catch_exception:
12165 return (parse_and_eval_address ("e.full_name"));
12166 break;
12167
12168 case ada_catch_exception_unhandled:
12169 return data->exception_info->unhandled_exception_name_addr ();
12170 break;
12171
12172 case ada_catch_assert:
12173 return 0; /* Exception name is not relevant in this case. */
12174 break;
12175
12176 default:
12177 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12178 break;
12179 }
12180
12181 return 0; /* Should never be reached. */
12182 }
12183
12184 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12185 any error that ada_exception_name_addr_1 might cause to be thrown.
12186 When an error is intercepted, a warning with the error message is printed,
12187 and zero is returned. */
12188
12189 static CORE_ADDR
12190 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12191 struct breakpoint *b)
12192 {
12193 CORE_ADDR result = 0;
12194
12195 TRY
12196 {
12197 result = ada_exception_name_addr_1 (ex, b);
12198 }
12199
12200 CATCH (e, RETURN_MASK_ERROR)
12201 {
12202 warning (_("failed to get exception name: %s"), e.message);
12203 return 0;
12204 }
12205 END_CATCH
12206
12207 return result;
12208 }
12209
12210 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
12211
12212 /* Ada catchpoints.
12213
12214 In the case of catchpoints on Ada exceptions, the catchpoint will
12215 stop the target on every exception the program throws. When a user
12216 specifies the name of a specific exception, we translate this
12217 request into a condition expression (in text form), and then parse
12218 it into an expression stored in each of the catchpoint's locations.
12219 We then use this condition to check whether the exception that was
12220 raised is the one the user is interested in. If not, then the
12221 target is resumed again. We store the name of the requested
12222 exception, in order to be able to re-set the condition expression
12223 when symbols change. */
12224
12225 /* An instance of this type is used to represent an Ada catchpoint
12226 breakpoint location. */
12227
12228 class ada_catchpoint_location : public bp_location
12229 {
12230 public:
12231 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12232 : bp_location (ops, owner)
12233 {}
12234
12235 /* The condition that checks whether the exception that was raised
12236 is the specific exception the user specified on catchpoint
12237 creation. */
12238 expression_up excep_cond_expr;
12239 };
12240
12241 /* Implement the DTOR method in the bp_location_ops structure for all
12242 Ada exception catchpoint kinds. */
12243
12244 static void
12245 ada_catchpoint_location_dtor (struct bp_location *bl)
12246 {
12247 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12248
12249 al->excep_cond_expr.reset ();
12250 }
12251
12252 /* The vtable to be used in Ada catchpoint locations. */
12253
12254 static const struct bp_location_ops ada_catchpoint_location_ops =
12255 {
12256 ada_catchpoint_location_dtor
12257 };
12258
12259 /* An instance of this type is used to represent an Ada catchpoint. */
12260
12261 struct ada_catchpoint : public breakpoint
12262 {
12263 ~ada_catchpoint () override;
12264
12265 /* The name of the specific exception the user specified. */
12266 char *excep_string;
12267 };
12268
12269 /* Parse the exception condition string in the context of each of the
12270 catchpoint's locations, and store them for later evaluation. */
12271
12272 static void
12273 create_excep_cond_exprs (struct ada_catchpoint *c)
12274 {
12275 struct cleanup *old_chain;
12276 struct bp_location *bl;
12277 char *cond_string;
12278
12279 /* Nothing to do if there's no specific exception to catch. */
12280 if (c->excep_string == NULL)
12281 return;
12282
12283 /* Same if there are no locations... */
12284 if (c->loc == NULL)
12285 return;
12286
12287 /* Compute the condition expression in text form, from the specific
12288 expection we want to catch. */
12289 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
12290 old_chain = make_cleanup (xfree, cond_string);
12291
12292 /* Iterate over all the catchpoint's locations, and parse an
12293 expression for each. */
12294 for (bl = c->loc; bl != NULL; bl = bl->next)
12295 {
12296 struct ada_catchpoint_location *ada_loc
12297 = (struct ada_catchpoint_location *) bl;
12298 expression_up exp;
12299
12300 if (!bl->shlib_disabled)
12301 {
12302 const char *s;
12303
12304 s = cond_string;
12305 TRY
12306 {
12307 exp = parse_exp_1 (&s, bl->address,
12308 block_for_pc (bl->address),
12309 0);
12310 }
12311 CATCH (e, RETURN_MASK_ERROR)
12312 {
12313 warning (_("failed to reevaluate internal exception condition "
12314 "for catchpoint %d: %s"),
12315 c->number, e.message);
12316 }
12317 END_CATCH
12318 }
12319
12320 ada_loc->excep_cond_expr = std::move (exp);
12321 }
12322
12323 do_cleanups (old_chain);
12324 }
12325
12326 /* ada_catchpoint destructor. */
12327
12328 ada_catchpoint::~ada_catchpoint ()
12329 {
12330 xfree (this->excep_string);
12331 }
12332
12333 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12334 structure for all exception catchpoint kinds. */
12335
12336 static struct bp_location *
12337 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12338 struct breakpoint *self)
12339 {
12340 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12341 }
12342
12343 /* Implement the RE_SET method in the breakpoint_ops structure for all
12344 exception catchpoint kinds. */
12345
12346 static void
12347 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12348 {
12349 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12350
12351 /* Call the base class's method. This updates the catchpoint's
12352 locations. */
12353 bkpt_breakpoint_ops.re_set (b);
12354
12355 /* Reparse the exception conditional expressions. One for each
12356 location. */
12357 create_excep_cond_exprs (c);
12358 }
12359
12360 /* Returns true if we should stop for this breakpoint hit. If the
12361 user specified a specific exception, we only want to cause a stop
12362 if the program thrown that exception. */
12363
12364 static int
12365 should_stop_exception (const struct bp_location *bl)
12366 {
12367 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12368 const struct ada_catchpoint_location *ada_loc
12369 = (const struct ada_catchpoint_location *) bl;
12370 int stop;
12371
12372 /* With no specific exception, should always stop. */
12373 if (c->excep_string == NULL)
12374 return 1;
12375
12376 if (ada_loc->excep_cond_expr == NULL)
12377 {
12378 /* We will have a NULL expression if back when we were creating
12379 the expressions, this location's had failed to parse. */
12380 return 1;
12381 }
12382
12383 stop = 1;
12384 TRY
12385 {
12386 struct value *mark;
12387
12388 mark = value_mark ();
12389 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12390 value_free_to_mark (mark);
12391 }
12392 CATCH (ex, RETURN_MASK_ALL)
12393 {
12394 exception_fprintf (gdb_stderr, ex,
12395 _("Error in testing exception condition:\n"));
12396 }
12397 END_CATCH
12398
12399 return stop;
12400 }
12401
12402 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12403 for all exception catchpoint kinds. */
12404
12405 static void
12406 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12407 {
12408 bs->stop = should_stop_exception (bs->bp_location_at);
12409 }
12410
12411 /* Implement the PRINT_IT method in the breakpoint_ops structure
12412 for all exception catchpoint kinds. */
12413
12414 static enum print_stop_action
12415 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12416 {
12417 struct ui_out *uiout = current_uiout;
12418 struct breakpoint *b = bs->breakpoint_at;
12419
12420 annotate_catchpoint (b->number);
12421
12422 if (uiout->is_mi_like_p ())
12423 {
12424 uiout->field_string ("reason",
12425 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12426 uiout->field_string ("disp", bpdisp_text (b->disposition));
12427 }
12428
12429 uiout->text (b->disposition == disp_del
12430 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12431 uiout->field_int ("bkptno", b->number);
12432 uiout->text (", ");
12433
12434 /* ada_exception_name_addr relies on the selected frame being the
12435 current frame. Need to do this here because this function may be
12436 called more than once when printing a stop, and below, we'll
12437 select the first frame past the Ada run-time (see
12438 ada_find_printable_frame). */
12439 select_frame (get_current_frame ());
12440
12441 switch (ex)
12442 {
12443 case ada_catch_exception:
12444 case ada_catch_exception_unhandled:
12445 {
12446 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12447 char exception_name[256];
12448
12449 if (addr != 0)
12450 {
12451 read_memory (addr, (gdb_byte *) exception_name,
12452 sizeof (exception_name) - 1);
12453 exception_name [sizeof (exception_name) - 1] = '\0';
12454 }
12455 else
12456 {
12457 /* For some reason, we were unable to read the exception
12458 name. This could happen if the Runtime was compiled
12459 without debugging info, for instance. In that case,
12460 just replace the exception name by the generic string
12461 "exception" - it will read as "an exception" in the
12462 notification we are about to print. */
12463 memcpy (exception_name, "exception", sizeof ("exception"));
12464 }
12465 /* In the case of unhandled exception breakpoints, we print
12466 the exception name as "unhandled EXCEPTION_NAME", to make
12467 it clearer to the user which kind of catchpoint just got
12468 hit. We used ui_out_text to make sure that this extra
12469 info does not pollute the exception name in the MI case. */
12470 if (ex == ada_catch_exception_unhandled)
12471 uiout->text ("unhandled ");
12472 uiout->field_string ("exception-name", exception_name);
12473 }
12474 break;
12475 case ada_catch_assert:
12476 /* In this case, the name of the exception is not really
12477 important. Just print "failed assertion" to make it clearer
12478 that his program just hit an assertion-failure catchpoint.
12479 We used ui_out_text because this info does not belong in
12480 the MI output. */
12481 uiout->text ("failed assertion");
12482 break;
12483 }
12484 uiout->text (" at ");
12485 ada_find_printable_frame (get_current_frame ());
12486
12487 return PRINT_SRC_AND_LOC;
12488 }
12489
12490 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12491 for all exception catchpoint kinds. */
12492
12493 static void
12494 print_one_exception (enum ada_exception_catchpoint_kind ex,
12495 struct breakpoint *b, struct bp_location **last_loc)
12496 {
12497 struct ui_out *uiout = current_uiout;
12498 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12499 struct value_print_options opts;
12500
12501 get_user_print_options (&opts);
12502 if (opts.addressprint)
12503 {
12504 annotate_field (4);
12505 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12506 }
12507
12508 annotate_field (5);
12509 *last_loc = b->loc;
12510 switch (ex)
12511 {
12512 case ada_catch_exception:
12513 if (c->excep_string != NULL)
12514 {
12515 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12516
12517 uiout->field_string ("what", msg);
12518 xfree (msg);
12519 }
12520 else
12521 uiout->field_string ("what", "all Ada exceptions");
12522
12523 break;
12524
12525 case ada_catch_exception_unhandled:
12526 uiout->field_string ("what", "unhandled Ada exceptions");
12527 break;
12528
12529 case ada_catch_assert:
12530 uiout->field_string ("what", "failed Ada assertions");
12531 break;
12532
12533 default:
12534 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12535 break;
12536 }
12537 }
12538
12539 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12540 for all exception catchpoint kinds. */
12541
12542 static void
12543 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12544 struct breakpoint *b)
12545 {
12546 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12547 struct ui_out *uiout = current_uiout;
12548
12549 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12550 : _("Catchpoint "));
12551 uiout->field_int ("bkptno", b->number);
12552 uiout->text (": ");
12553
12554 switch (ex)
12555 {
12556 case ada_catch_exception:
12557 if (c->excep_string != NULL)
12558 {
12559 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12560 struct cleanup *old_chain = make_cleanup (xfree, info);
12561
12562 uiout->text (info);
12563 do_cleanups (old_chain);
12564 }
12565 else
12566 uiout->text (_("all Ada exceptions"));
12567 break;
12568
12569 case ada_catch_exception_unhandled:
12570 uiout->text (_("unhandled Ada exceptions"));
12571 break;
12572
12573 case ada_catch_assert:
12574 uiout->text (_("failed Ada assertions"));
12575 break;
12576
12577 default:
12578 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12579 break;
12580 }
12581 }
12582
12583 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12584 for all exception catchpoint kinds. */
12585
12586 static void
12587 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12588 struct breakpoint *b, struct ui_file *fp)
12589 {
12590 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12591
12592 switch (ex)
12593 {
12594 case ada_catch_exception:
12595 fprintf_filtered (fp, "catch exception");
12596 if (c->excep_string != NULL)
12597 fprintf_filtered (fp, " %s", c->excep_string);
12598 break;
12599
12600 case ada_catch_exception_unhandled:
12601 fprintf_filtered (fp, "catch exception unhandled");
12602 break;
12603
12604 case ada_catch_assert:
12605 fprintf_filtered (fp, "catch assert");
12606 break;
12607
12608 default:
12609 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12610 }
12611 print_recreate_thread (b, fp);
12612 }
12613
12614 /* Virtual table for "catch exception" breakpoints. */
12615
12616 static struct bp_location *
12617 allocate_location_catch_exception (struct breakpoint *self)
12618 {
12619 return allocate_location_exception (ada_catch_exception, self);
12620 }
12621
12622 static void
12623 re_set_catch_exception (struct breakpoint *b)
12624 {
12625 re_set_exception (ada_catch_exception, b);
12626 }
12627
12628 static void
12629 check_status_catch_exception (bpstat bs)
12630 {
12631 check_status_exception (ada_catch_exception, bs);
12632 }
12633
12634 static enum print_stop_action
12635 print_it_catch_exception (bpstat bs)
12636 {
12637 return print_it_exception (ada_catch_exception, bs);
12638 }
12639
12640 static void
12641 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12642 {
12643 print_one_exception (ada_catch_exception, b, last_loc);
12644 }
12645
12646 static void
12647 print_mention_catch_exception (struct breakpoint *b)
12648 {
12649 print_mention_exception (ada_catch_exception, b);
12650 }
12651
12652 static void
12653 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12654 {
12655 print_recreate_exception (ada_catch_exception, b, fp);
12656 }
12657
12658 static struct breakpoint_ops catch_exception_breakpoint_ops;
12659
12660 /* Virtual table for "catch exception unhandled" breakpoints. */
12661
12662 static struct bp_location *
12663 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12664 {
12665 return allocate_location_exception (ada_catch_exception_unhandled, self);
12666 }
12667
12668 static void
12669 re_set_catch_exception_unhandled (struct breakpoint *b)
12670 {
12671 re_set_exception (ada_catch_exception_unhandled, b);
12672 }
12673
12674 static void
12675 check_status_catch_exception_unhandled (bpstat bs)
12676 {
12677 check_status_exception (ada_catch_exception_unhandled, bs);
12678 }
12679
12680 static enum print_stop_action
12681 print_it_catch_exception_unhandled (bpstat bs)
12682 {
12683 return print_it_exception (ada_catch_exception_unhandled, bs);
12684 }
12685
12686 static void
12687 print_one_catch_exception_unhandled (struct breakpoint *b,
12688 struct bp_location **last_loc)
12689 {
12690 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12691 }
12692
12693 static void
12694 print_mention_catch_exception_unhandled (struct breakpoint *b)
12695 {
12696 print_mention_exception (ada_catch_exception_unhandled, b);
12697 }
12698
12699 static void
12700 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12701 struct ui_file *fp)
12702 {
12703 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12704 }
12705
12706 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12707
12708 /* Virtual table for "catch assert" breakpoints. */
12709
12710 static struct bp_location *
12711 allocate_location_catch_assert (struct breakpoint *self)
12712 {
12713 return allocate_location_exception (ada_catch_assert, self);
12714 }
12715
12716 static void
12717 re_set_catch_assert (struct breakpoint *b)
12718 {
12719 re_set_exception (ada_catch_assert, b);
12720 }
12721
12722 static void
12723 check_status_catch_assert (bpstat bs)
12724 {
12725 check_status_exception (ada_catch_assert, bs);
12726 }
12727
12728 static enum print_stop_action
12729 print_it_catch_assert (bpstat bs)
12730 {
12731 return print_it_exception (ada_catch_assert, bs);
12732 }
12733
12734 static void
12735 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12736 {
12737 print_one_exception (ada_catch_assert, b, last_loc);
12738 }
12739
12740 static void
12741 print_mention_catch_assert (struct breakpoint *b)
12742 {
12743 print_mention_exception (ada_catch_assert, b);
12744 }
12745
12746 static void
12747 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12748 {
12749 print_recreate_exception (ada_catch_assert, b, fp);
12750 }
12751
12752 static struct breakpoint_ops catch_assert_breakpoint_ops;
12753
12754 /* Return a newly allocated copy of the first space-separated token
12755 in ARGSP, and then adjust ARGSP to point immediately after that
12756 token.
12757
12758 Return NULL if ARGPS does not contain any more tokens. */
12759
12760 static char *
12761 ada_get_next_arg (const char **argsp)
12762 {
12763 const char *args = *argsp;
12764 const char *end;
12765 char *result;
12766
12767 args = skip_spaces_const (args);
12768 if (args[0] == '\0')
12769 return NULL; /* No more arguments. */
12770
12771 /* Find the end of the current argument. */
12772
12773 end = skip_to_space_const (args);
12774
12775 /* Adjust ARGSP to point to the start of the next argument. */
12776
12777 *argsp = end;
12778
12779 /* Make a copy of the current argument and return it. */
12780
12781 result = (char *) xmalloc (end - args + 1);
12782 strncpy (result, args, end - args);
12783 result[end - args] = '\0';
12784
12785 return result;
12786 }
12787
12788 /* Split the arguments specified in a "catch exception" command.
12789 Set EX to the appropriate catchpoint type.
12790 Set EXCEP_STRING to the name of the specific exception if
12791 specified by the user.
12792 If a condition is found at the end of the arguments, the condition
12793 expression is stored in COND_STRING (memory must be deallocated
12794 after use). Otherwise COND_STRING is set to NULL. */
12795
12796 static void
12797 catch_ada_exception_command_split (const char *args,
12798 enum ada_exception_catchpoint_kind *ex,
12799 char **excep_string,
12800 char **cond_string)
12801 {
12802 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
12803 char *exception_name;
12804 char *cond = NULL;
12805
12806 exception_name = ada_get_next_arg (&args);
12807 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
12808 {
12809 /* This is not an exception name; this is the start of a condition
12810 expression for a catchpoint on all exceptions. So, "un-get"
12811 this token, and set exception_name to NULL. */
12812 xfree (exception_name);
12813 exception_name = NULL;
12814 args -= 2;
12815 }
12816 make_cleanup (xfree, exception_name);
12817
12818 /* Check to see if we have a condition. */
12819
12820 args = skip_spaces_const (args);
12821 if (startswith (args, "if")
12822 && (isspace (args[2]) || args[2] == '\0'))
12823 {
12824 args += 2;
12825 args = skip_spaces_const (args);
12826
12827 if (args[0] == '\0')
12828 error (_("Condition missing after `if' keyword"));
12829 cond = xstrdup (args);
12830 make_cleanup (xfree, cond);
12831
12832 args += strlen (args);
12833 }
12834
12835 /* Check that we do not have any more arguments. Anything else
12836 is unexpected. */
12837
12838 if (args[0] != '\0')
12839 error (_("Junk at end of expression"));
12840
12841 discard_cleanups (old_chain);
12842
12843 if (exception_name == NULL)
12844 {
12845 /* Catch all exceptions. */
12846 *ex = ada_catch_exception;
12847 *excep_string = NULL;
12848 }
12849 else if (strcmp (exception_name, "unhandled") == 0)
12850 {
12851 /* Catch unhandled exceptions. */
12852 *ex = ada_catch_exception_unhandled;
12853 *excep_string = NULL;
12854 }
12855 else
12856 {
12857 /* Catch a specific exception. */
12858 *ex = ada_catch_exception;
12859 *excep_string = exception_name;
12860 }
12861 *cond_string = cond;
12862 }
12863
12864 /* Return the name of the symbol on which we should break in order to
12865 implement a catchpoint of the EX kind. */
12866
12867 static const char *
12868 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
12869 {
12870 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12871
12872 gdb_assert (data->exception_info != NULL);
12873
12874 switch (ex)
12875 {
12876 case ada_catch_exception:
12877 return (data->exception_info->catch_exception_sym);
12878 break;
12879 case ada_catch_exception_unhandled:
12880 return (data->exception_info->catch_exception_unhandled_sym);
12881 break;
12882 case ada_catch_assert:
12883 return (data->exception_info->catch_assert_sym);
12884 break;
12885 default:
12886 internal_error (__FILE__, __LINE__,
12887 _("unexpected catchpoint kind (%d)"), ex);
12888 }
12889 }
12890
12891 /* Return the breakpoint ops "virtual table" used for catchpoints
12892 of the EX kind. */
12893
12894 static const struct breakpoint_ops *
12895 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
12896 {
12897 switch (ex)
12898 {
12899 case ada_catch_exception:
12900 return (&catch_exception_breakpoint_ops);
12901 break;
12902 case ada_catch_exception_unhandled:
12903 return (&catch_exception_unhandled_breakpoint_ops);
12904 break;
12905 case ada_catch_assert:
12906 return (&catch_assert_breakpoint_ops);
12907 break;
12908 default:
12909 internal_error (__FILE__, __LINE__,
12910 _("unexpected catchpoint kind (%d)"), ex);
12911 }
12912 }
12913
12914 /* Return the condition that will be used to match the current exception
12915 being raised with the exception that the user wants to catch. This
12916 assumes that this condition is used when the inferior just triggered
12917 an exception catchpoint.
12918
12919 The string returned is a newly allocated string that needs to be
12920 deallocated later. */
12921
12922 static char *
12923 ada_exception_catchpoint_cond_string (const char *excep_string)
12924 {
12925 int i;
12926
12927 /* The standard exceptions are a special case. They are defined in
12928 runtime units that have been compiled without debugging info; if
12929 EXCEP_STRING is the not-fully-qualified name of a standard
12930 exception (e.g. "constraint_error") then, during the evaluation
12931 of the condition expression, the symbol lookup on this name would
12932 *not* return this standard exception. The catchpoint condition
12933 may then be set only on user-defined exceptions which have the
12934 same not-fully-qualified name (e.g. my_package.constraint_error).
12935
12936 To avoid this unexcepted behavior, these standard exceptions are
12937 systematically prefixed by "standard". This means that "catch
12938 exception constraint_error" is rewritten into "catch exception
12939 standard.constraint_error".
12940
12941 If an exception named contraint_error is defined in another package of
12942 the inferior program, then the only way to specify this exception as a
12943 breakpoint condition is to use its fully-qualified named:
12944 e.g. my_package.constraint_error. */
12945
12946 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
12947 {
12948 if (strcmp (standard_exc [i], excep_string) == 0)
12949 {
12950 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
12951 excep_string);
12952 }
12953 }
12954 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
12955 }
12956
12957 /* Return the symtab_and_line that should be used to insert an exception
12958 catchpoint of the TYPE kind.
12959
12960 EXCEP_STRING should contain the name of a specific exception that
12961 the catchpoint should catch, or NULL otherwise.
12962
12963 ADDR_STRING returns the name of the function where the real
12964 breakpoint that implements the catchpoints is set, depending on the
12965 type of catchpoint we need to create. */
12966
12967 static struct symtab_and_line
12968 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
12969 char **addr_string, const struct breakpoint_ops **ops)
12970 {
12971 const char *sym_name;
12972 struct symbol *sym;
12973
12974 /* First, find out which exception support info to use. */
12975 ada_exception_support_info_sniffer ();
12976
12977 /* Then lookup the function on which we will break in order to catch
12978 the Ada exceptions requested by the user. */
12979 sym_name = ada_exception_sym_name (ex);
12980 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
12981
12982 /* We can assume that SYM is not NULL at this stage. If the symbol
12983 did not exist, ada_exception_support_info_sniffer would have
12984 raised an exception.
12985
12986 Also, ada_exception_support_info_sniffer should have already
12987 verified that SYM is a function symbol. */
12988 gdb_assert (sym != NULL);
12989 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
12990
12991 /* Set ADDR_STRING. */
12992 *addr_string = xstrdup (sym_name);
12993
12994 /* Set OPS. */
12995 *ops = ada_exception_breakpoint_ops (ex);
12996
12997 return find_function_start_sal (sym, 1);
12998 }
12999
13000 /* Create an Ada exception catchpoint.
13001
13002 EX_KIND is the kind of exception catchpoint to be created.
13003
13004 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13005 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13006 of the exception to which this catchpoint applies. When not NULL,
13007 the string must be allocated on the heap, and its deallocation
13008 is no longer the responsibility of the caller.
13009
13010 COND_STRING, if not NULL, is the catchpoint condition. This string
13011 must be allocated on the heap, and its deallocation is no longer
13012 the responsibility of the caller.
13013
13014 TEMPFLAG, if nonzero, means that the underlying breakpoint
13015 should be temporary.
13016
13017 FROM_TTY is the usual argument passed to all commands implementations. */
13018
13019 void
13020 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13021 enum ada_exception_catchpoint_kind ex_kind,
13022 char *excep_string,
13023 char *cond_string,
13024 int tempflag,
13025 int disabled,
13026 int from_tty)
13027 {
13028 struct ada_catchpoint *c;
13029 char *addr_string = NULL;
13030 const struct breakpoint_ops *ops = NULL;
13031 struct symtab_and_line sal
13032 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13033
13034 c = new ada_catchpoint ();
13035 init_ada_exception_breakpoint (c, gdbarch, sal, addr_string,
13036 ops, tempflag, disabled, from_tty);
13037 c->excep_string = excep_string;
13038 create_excep_cond_exprs (c);
13039 if (cond_string != NULL)
13040 set_breakpoint_condition (c, cond_string, from_tty);
13041 install_breakpoint (0, c, 1);
13042 }
13043
13044 /* Implement the "catch exception" command. */
13045
13046 static void
13047 catch_ada_exception_command (char *arg_entry, int from_tty,
13048 struct cmd_list_element *command)
13049 {
13050 const char *arg = arg_entry;
13051 struct gdbarch *gdbarch = get_current_arch ();
13052 int tempflag;
13053 enum ada_exception_catchpoint_kind ex_kind;
13054 char *excep_string = NULL;
13055 char *cond_string = NULL;
13056
13057 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13058
13059 if (!arg)
13060 arg = "";
13061 catch_ada_exception_command_split (arg, &ex_kind, &excep_string,
13062 &cond_string);
13063 create_ada_exception_catchpoint (gdbarch, ex_kind,
13064 excep_string, cond_string,
13065 tempflag, 1 /* enabled */,
13066 from_tty);
13067 }
13068
13069 /* Split the arguments specified in a "catch assert" command.
13070
13071 ARGS contains the command's arguments (or the empty string if
13072 no arguments were passed).
13073
13074 If ARGS contains a condition, set COND_STRING to that condition
13075 (the memory needs to be deallocated after use). */
13076
13077 static void
13078 catch_ada_assert_command_split (const char *args, char **cond_string)
13079 {
13080 args = skip_spaces_const (args);
13081
13082 /* Check whether a condition was provided. */
13083 if (startswith (args, "if")
13084 && (isspace (args[2]) || args[2] == '\0'))
13085 {
13086 args += 2;
13087 args = skip_spaces_const (args);
13088 if (args[0] == '\0')
13089 error (_("condition missing after `if' keyword"));
13090 *cond_string = xstrdup (args);
13091 }
13092
13093 /* Otherwise, there should be no other argument at the end of
13094 the command. */
13095 else if (args[0] != '\0')
13096 error (_("Junk at end of arguments."));
13097 }
13098
13099 /* Implement the "catch assert" command. */
13100
13101 static void
13102 catch_assert_command (char *arg_entry, int from_tty,
13103 struct cmd_list_element *command)
13104 {
13105 const char *arg = arg_entry;
13106 struct gdbarch *gdbarch = get_current_arch ();
13107 int tempflag;
13108 char *cond_string = NULL;
13109
13110 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13111
13112 if (!arg)
13113 arg = "";
13114 catch_ada_assert_command_split (arg, &cond_string);
13115 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13116 NULL, cond_string,
13117 tempflag, 1 /* enabled */,
13118 from_tty);
13119 }
13120
13121 /* Return non-zero if the symbol SYM is an Ada exception object. */
13122
13123 static int
13124 ada_is_exception_sym (struct symbol *sym)
13125 {
13126 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13127
13128 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13129 && SYMBOL_CLASS (sym) != LOC_BLOCK
13130 && SYMBOL_CLASS (sym) != LOC_CONST
13131 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13132 && type_name != NULL && strcmp (type_name, "exception") == 0);
13133 }
13134
13135 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13136 Ada exception object. This matches all exceptions except the ones
13137 defined by the Ada language. */
13138
13139 static int
13140 ada_is_non_standard_exception_sym (struct symbol *sym)
13141 {
13142 int i;
13143
13144 if (!ada_is_exception_sym (sym))
13145 return 0;
13146
13147 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13148 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13149 return 0; /* A standard exception. */
13150
13151 /* Numeric_Error is also a standard exception, so exclude it.
13152 See the STANDARD_EXC description for more details as to why
13153 this exception is not listed in that array. */
13154 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13155 return 0;
13156
13157 return 1;
13158 }
13159
13160 /* A helper function for qsort, comparing two struct ada_exc_info
13161 objects.
13162
13163 The comparison is determined first by exception name, and then
13164 by exception address. */
13165
13166 static int
13167 compare_ada_exception_info (const void *a, const void *b)
13168 {
13169 const struct ada_exc_info *exc_a = (struct ada_exc_info *) a;
13170 const struct ada_exc_info *exc_b = (struct ada_exc_info *) b;
13171 int result;
13172
13173 result = strcmp (exc_a->name, exc_b->name);
13174 if (result != 0)
13175 return result;
13176
13177 if (exc_a->addr < exc_b->addr)
13178 return -1;
13179 if (exc_a->addr > exc_b->addr)
13180 return 1;
13181
13182 return 0;
13183 }
13184
13185 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13186 routine, but keeping the first SKIP elements untouched.
13187
13188 All duplicates are also removed. */
13189
13190 static void
13191 sort_remove_dups_ada_exceptions_list (VEC(ada_exc_info) **exceptions,
13192 int skip)
13193 {
13194 struct ada_exc_info *to_sort
13195 = VEC_address (ada_exc_info, *exceptions) + skip;
13196 int to_sort_len
13197 = VEC_length (ada_exc_info, *exceptions) - skip;
13198 int i, j;
13199
13200 qsort (to_sort, to_sort_len, sizeof (struct ada_exc_info),
13201 compare_ada_exception_info);
13202
13203 for (i = 1, j = 1; i < to_sort_len; i++)
13204 if (compare_ada_exception_info (&to_sort[i], &to_sort[j - 1]) != 0)
13205 to_sort[j++] = to_sort[i];
13206 to_sort_len = j;
13207 VEC_truncate(ada_exc_info, *exceptions, skip + to_sort_len);
13208 }
13209
13210 /* Add all exceptions defined by the Ada standard whose name match
13211 a regular expression.
13212
13213 If PREG is not NULL, then this regexp_t object is used to
13214 perform the symbol name matching. Otherwise, no name-based
13215 filtering is performed.
13216
13217 EXCEPTIONS is a vector of exceptions to which matching exceptions
13218 gets pushed. */
13219
13220 static void
13221 ada_add_standard_exceptions (compiled_regex *preg,
13222 VEC(ada_exc_info) **exceptions)
13223 {
13224 int i;
13225
13226 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13227 {
13228 if (preg == NULL
13229 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13230 {
13231 struct bound_minimal_symbol msymbol
13232 = ada_lookup_simple_minsym (standard_exc[i]);
13233
13234 if (msymbol.minsym != NULL)
13235 {
13236 struct ada_exc_info info
13237 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13238
13239 VEC_safe_push (ada_exc_info, *exceptions, &info);
13240 }
13241 }
13242 }
13243 }
13244
13245 /* Add all Ada exceptions defined locally and accessible from the given
13246 FRAME.
13247
13248 If PREG is not NULL, then this regexp_t object is used to
13249 perform the symbol name matching. Otherwise, no name-based
13250 filtering is performed.
13251
13252 EXCEPTIONS is a vector of exceptions to which matching exceptions
13253 gets pushed. */
13254
13255 static void
13256 ada_add_exceptions_from_frame (compiled_regex *preg,
13257 struct frame_info *frame,
13258 VEC(ada_exc_info) **exceptions)
13259 {
13260 const struct block *block = get_frame_block (frame, 0);
13261
13262 while (block != 0)
13263 {
13264 struct block_iterator iter;
13265 struct symbol *sym;
13266
13267 ALL_BLOCK_SYMBOLS (block, iter, sym)
13268 {
13269 switch (SYMBOL_CLASS (sym))
13270 {
13271 case LOC_TYPEDEF:
13272 case LOC_BLOCK:
13273 case LOC_CONST:
13274 break;
13275 default:
13276 if (ada_is_exception_sym (sym))
13277 {
13278 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13279 SYMBOL_VALUE_ADDRESS (sym)};
13280
13281 VEC_safe_push (ada_exc_info, *exceptions, &info);
13282 }
13283 }
13284 }
13285 if (BLOCK_FUNCTION (block) != NULL)
13286 break;
13287 block = BLOCK_SUPERBLOCK (block);
13288 }
13289 }
13290
13291 /* Return true if NAME matches PREG or if PREG is NULL. */
13292
13293 static bool
13294 name_matches_regex (const char *name, compiled_regex *preg)
13295 {
13296 return (preg == NULL
13297 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13298 }
13299
13300 /* Add all exceptions defined globally whose name name match
13301 a regular expression, excluding standard exceptions.
13302
13303 The reason we exclude standard exceptions is that they need
13304 to be handled separately: Standard exceptions are defined inside
13305 a runtime unit which is normally not compiled with debugging info,
13306 and thus usually do not show up in our symbol search. However,
13307 if the unit was in fact built with debugging info, we need to
13308 exclude them because they would duplicate the entry we found
13309 during the special loop that specifically searches for those
13310 standard exceptions.
13311
13312 If PREG is not NULL, then this regexp_t object is used to
13313 perform the symbol name matching. Otherwise, no name-based
13314 filtering is performed.
13315
13316 EXCEPTIONS is a vector of exceptions to which matching exceptions
13317 gets pushed. */
13318
13319 static void
13320 ada_add_global_exceptions (compiled_regex *preg,
13321 VEC(ada_exc_info) **exceptions)
13322 {
13323 struct objfile *objfile;
13324 struct compunit_symtab *s;
13325
13326 /* In Ada, the symbol "search name" is a linkage name, whereas the
13327 regular expression used to do the matching refers to the natural
13328 name. So match against the decoded name. */
13329 expand_symtabs_matching (NULL,
13330 [&] (const char *search_name)
13331 {
13332 const char *decoded = ada_decode (search_name);
13333 return name_matches_regex (decoded, preg);
13334 },
13335 NULL,
13336 VARIABLES_DOMAIN);
13337
13338 ALL_COMPUNITS (objfile, s)
13339 {
13340 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13341 int i;
13342
13343 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13344 {
13345 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13346 struct block_iterator iter;
13347 struct symbol *sym;
13348
13349 ALL_BLOCK_SYMBOLS (b, iter, sym)
13350 if (ada_is_non_standard_exception_sym (sym)
13351 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13352 {
13353 struct ada_exc_info info
13354 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13355
13356 VEC_safe_push (ada_exc_info, *exceptions, &info);
13357 }
13358 }
13359 }
13360 }
13361
13362 /* Implements ada_exceptions_list with the regular expression passed
13363 as a regex_t, rather than a string.
13364
13365 If not NULL, PREG is used to filter out exceptions whose names
13366 do not match. Otherwise, all exceptions are listed. */
13367
13368 static VEC(ada_exc_info) *
13369 ada_exceptions_list_1 (compiled_regex *preg)
13370 {
13371 VEC(ada_exc_info) *result = NULL;
13372 struct cleanup *old_chain
13373 = make_cleanup (VEC_cleanup (ada_exc_info), &result);
13374 int prev_len;
13375
13376 /* First, list the known standard exceptions. These exceptions
13377 need to be handled separately, as they are usually defined in
13378 runtime units that have been compiled without debugging info. */
13379
13380 ada_add_standard_exceptions (preg, &result);
13381
13382 /* Next, find all exceptions whose scope is local and accessible
13383 from the currently selected frame. */
13384
13385 if (has_stack_frames ())
13386 {
13387 prev_len = VEC_length (ada_exc_info, result);
13388 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13389 &result);
13390 if (VEC_length (ada_exc_info, result) > prev_len)
13391 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13392 }
13393
13394 /* Add all exceptions whose scope is global. */
13395
13396 prev_len = VEC_length (ada_exc_info, result);
13397 ada_add_global_exceptions (preg, &result);
13398 if (VEC_length (ada_exc_info, result) > prev_len)
13399 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13400
13401 discard_cleanups (old_chain);
13402 return result;
13403 }
13404
13405 /* Return a vector of ada_exc_info.
13406
13407 If REGEXP is NULL, all exceptions are included in the result.
13408 Otherwise, it should contain a valid regular expression,
13409 and only the exceptions whose names match that regular expression
13410 are included in the result.
13411
13412 The exceptions are sorted in the following order:
13413 - Standard exceptions (defined by the Ada language), in
13414 alphabetical order;
13415 - Exceptions only visible from the current frame, in
13416 alphabetical order;
13417 - Exceptions whose scope is global, in alphabetical order. */
13418
13419 VEC(ada_exc_info) *
13420 ada_exceptions_list (const char *regexp)
13421 {
13422 if (regexp == NULL)
13423 return ada_exceptions_list_1 (NULL);
13424
13425 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13426 return ada_exceptions_list_1 (&reg);
13427 }
13428
13429 /* Implement the "info exceptions" command. */
13430
13431 static void
13432 info_exceptions_command (char *regexp, int from_tty)
13433 {
13434 VEC(ada_exc_info) *exceptions;
13435 struct cleanup *cleanup;
13436 struct gdbarch *gdbarch = get_current_arch ();
13437 int ix;
13438 struct ada_exc_info *info;
13439
13440 exceptions = ada_exceptions_list (regexp);
13441 cleanup = make_cleanup (VEC_cleanup (ada_exc_info), &exceptions);
13442
13443 if (regexp != NULL)
13444 printf_filtered
13445 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13446 else
13447 printf_filtered (_("All defined Ada exceptions:\n"));
13448
13449 for (ix = 0; VEC_iterate(ada_exc_info, exceptions, ix, info); ix++)
13450 printf_filtered ("%s: %s\n", info->name, paddress (gdbarch, info->addr));
13451
13452 do_cleanups (cleanup);
13453 }
13454
13455 /* Operators */
13456 /* Information about operators given special treatment in functions
13457 below. */
13458 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13459
13460 #define ADA_OPERATORS \
13461 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13462 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13463 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13464 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13465 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13466 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13467 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13468 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13469 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13470 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13471 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13472 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13473 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13474 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13475 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13476 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13477 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13478 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13479 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13480
13481 static void
13482 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13483 int *argsp)
13484 {
13485 switch (exp->elts[pc - 1].opcode)
13486 {
13487 default:
13488 operator_length_standard (exp, pc, oplenp, argsp);
13489 break;
13490
13491 #define OP_DEFN(op, len, args, binop) \
13492 case op: *oplenp = len; *argsp = args; break;
13493 ADA_OPERATORS;
13494 #undef OP_DEFN
13495
13496 case OP_AGGREGATE:
13497 *oplenp = 3;
13498 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13499 break;
13500
13501 case OP_CHOICES:
13502 *oplenp = 3;
13503 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13504 break;
13505 }
13506 }
13507
13508 /* Implementation of the exp_descriptor method operator_check. */
13509
13510 static int
13511 ada_operator_check (struct expression *exp, int pos,
13512 int (*objfile_func) (struct objfile *objfile, void *data),
13513 void *data)
13514 {
13515 const union exp_element *const elts = exp->elts;
13516 struct type *type = NULL;
13517
13518 switch (elts[pos].opcode)
13519 {
13520 case UNOP_IN_RANGE:
13521 case UNOP_QUAL:
13522 type = elts[pos + 1].type;
13523 break;
13524
13525 default:
13526 return operator_check_standard (exp, pos, objfile_func, data);
13527 }
13528
13529 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13530
13531 if (type && TYPE_OBJFILE (type)
13532 && (*objfile_func) (TYPE_OBJFILE (type), data))
13533 return 1;
13534
13535 return 0;
13536 }
13537
13538 static const char *
13539 ada_op_name (enum exp_opcode opcode)
13540 {
13541 switch (opcode)
13542 {
13543 default:
13544 return op_name_standard (opcode);
13545
13546 #define OP_DEFN(op, len, args, binop) case op: return #op;
13547 ADA_OPERATORS;
13548 #undef OP_DEFN
13549
13550 case OP_AGGREGATE:
13551 return "OP_AGGREGATE";
13552 case OP_CHOICES:
13553 return "OP_CHOICES";
13554 case OP_NAME:
13555 return "OP_NAME";
13556 }
13557 }
13558
13559 /* As for operator_length, but assumes PC is pointing at the first
13560 element of the operator, and gives meaningful results only for the
13561 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13562
13563 static void
13564 ada_forward_operator_length (struct expression *exp, int pc,
13565 int *oplenp, int *argsp)
13566 {
13567 switch (exp->elts[pc].opcode)
13568 {
13569 default:
13570 *oplenp = *argsp = 0;
13571 break;
13572
13573 #define OP_DEFN(op, len, args, binop) \
13574 case op: *oplenp = len; *argsp = args; break;
13575 ADA_OPERATORS;
13576 #undef OP_DEFN
13577
13578 case OP_AGGREGATE:
13579 *oplenp = 3;
13580 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13581 break;
13582
13583 case OP_CHOICES:
13584 *oplenp = 3;
13585 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13586 break;
13587
13588 case OP_STRING:
13589 case OP_NAME:
13590 {
13591 int len = longest_to_int (exp->elts[pc + 1].longconst);
13592
13593 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13594 *argsp = 0;
13595 break;
13596 }
13597 }
13598 }
13599
13600 static int
13601 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13602 {
13603 enum exp_opcode op = exp->elts[elt].opcode;
13604 int oplen, nargs;
13605 int pc = elt;
13606 int i;
13607
13608 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13609
13610 switch (op)
13611 {
13612 /* Ada attributes ('Foo). */
13613 case OP_ATR_FIRST:
13614 case OP_ATR_LAST:
13615 case OP_ATR_LENGTH:
13616 case OP_ATR_IMAGE:
13617 case OP_ATR_MAX:
13618 case OP_ATR_MIN:
13619 case OP_ATR_MODULUS:
13620 case OP_ATR_POS:
13621 case OP_ATR_SIZE:
13622 case OP_ATR_TAG:
13623 case OP_ATR_VAL:
13624 break;
13625
13626 case UNOP_IN_RANGE:
13627 case UNOP_QUAL:
13628 /* XXX: gdb_sprint_host_address, type_sprint */
13629 fprintf_filtered (stream, _("Type @"));
13630 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13631 fprintf_filtered (stream, " (");
13632 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13633 fprintf_filtered (stream, ")");
13634 break;
13635 case BINOP_IN_BOUNDS:
13636 fprintf_filtered (stream, " (%d)",
13637 longest_to_int (exp->elts[pc + 2].longconst));
13638 break;
13639 case TERNOP_IN_RANGE:
13640 break;
13641
13642 case OP_AGGREGATE:
13643 case OP_OTHERS:
13644 case OP_DISCRETE_RANGE:
13645 case OP_POSITIONAL:
13646 case OP_CHOICES:
13647 break;
13648
13649 case OP_NAME:
13650 case OP_STRING:
13651 {
13652 char *name = &exp->elts[elt + 2].string;
13653 int len = longest_to_int (exp->elts[elt + 1].longconst);
13654
13655 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13656 break;
13657 }
13658
13659 default:
13660 return dump_subexp_body_standard (exp, stream, elt);
13661 }
13662
13663 elt += oplen;
13664 for (i = 0; i < nargs; i += 1)
13665 elt = dump_subexp (exp, stream, elt);
13666
13667 return elt;
13668 }
13669
13670 /* The Ada extension of print_subexp (q.v.). */
13671
13672 static void
13673 ada_print_subexp (struct expression *exp, int *pos,
13674 struct ui_file *stream, enum precedence prec)
13675 {
13676 int oplen, nargs, i;
13677 int pc = *pos;
13678 enum exp_opcode op = exp->elts[pc].opcode;
13679
13680 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13681
13682 *pos += oplen;
13683 switch (op)
13684 {
13685 default:
13686 *pos -= oplen;
13687 print_subexp_standard (exp, pos, stream, prec);
13688 return;
13689
13690 case OP_VAR_VALUE:
13691 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13692 return;
13693
13694 case BINOP_IN_BOUNDS:
13695 /* XXX: sprint_subexp */
13696 print_subexp (exp, pos, stream, PREC_SUFFIX);
13697 fputs_filtered (" in ", stream);
13698 print_subexp (exp, pos, stream, PREC_SUFFIX);
13699 fputs_filtered ("'range", stream);
13700 if (exp->elts[pc + 1].longconst > 1)
13701 fprintf_filtered (stream, "(%ld)",
13702 (long) exp->elts[pc + 1].longconst);
13703 return;
13704
13705 case TERNOP_IN_RANGE:
13706 if (prec >= PREC_EQUAL)
13707 fputs_filtered ("(", stream);
13708 /* XXX: sprint_subexp */
13709 print_subexp (exp, pos, stream, PREC_SUFFIX);
13710 fputs_filtered (" in ", stream);
13711 print_subexp (exp, pos, stream, PREC_EQUAL);
13712 fputs_filtered (" .. ", stream);
13713 print_subexp (exp, pos, stream, PREC_EQUAL);
13714 if (prec >= PREC_EQUAL)
13715 fputs_filtered (")", stream);
13716 return;
13717
13718 case OP_ATR_FIRST:
13719 case OP_ATR_LAST:
13720 case OP_ATR_LENGTH:
13721 case OP_ATR_IMAGE:
13722 case OP_ATR_MAX:
13723 case OP_ATR_MIN:
13724 case OP_ATR_MODULUS:
13725 case OP_ATR_POS:
13726 case OP_ATR_SIZE:
13727 case OP_ATR_TAG:
13728 case OP_ATR_VAL:
13729 if (exp->elts[*pos].opcode == OP_TYPE)
13730 {
13731 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13732 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13733 &type_print_raw_options);
13734 *pos += 3;
13735 }
13736 else
13737 print_subexp (exp, pos, stream, PREC_SUFFIX);
13738 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13739 if (nargs > 1)
13740 {
13741 int tem;
13742
13743 for (tem = 1; tem < nargs; tem += 1)
13744 {
13745 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13746 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13747 }
13748 fputs_filtered (")", stream);
13749 }
13750 return;
13751
13752 case UNOP_QUAL:
13753 type_print (exp->elts[pc + 1].type, "", stream, 0);
13754 fputs_filtered ("'(", stream);
13755 print_subexp (exp, pos, stream, PREC_PREFIX);
13756 fputs_filtered (")", stream);
13757 return;
13758
13759 case UNOP_IN_RANGE:
13760 /* XXX: sprint_subexp */
13761 print_subexp (exp, pos, stream, PREC_SUFFIX);
13762 fputs_filtered (" in ", stream);
13763 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13764 &type_print_raw_options);
13765 return;
13766
13767 case OP_DISCRETE_RANGE:
13768 print_subexp (exp, pos, stream, PREC_SUFFIX);
13769 fputs_filtered ("..", stream);
13770 print_subexp (exp, pos, stream, PREC_SUFFIX);
13771 return;
13772
13773 case OP_OTHERS:
13774 fputs_filtered ("others => ", stream);
13775 print_subexp (exp, pos, stream, PREC_SUFFIX);
13776 return;
13777
13778 case OP_CHOICES:
13779 for (i = 0; i < nargs-1; i += 1)
13780 {
13781 if (i > 0)
13782 fputs_filtered ("|", stream);
13783 print_subexp (exp, pos, stream, PREC_SUFFIX);
13784 }
13785 fputs_filtered (" => ", stream);
13786 print_subexp (exp, pos, stream, PREC_SUFFIX);
13787 return;
13788
13789 case OP_POSITIONAL:
13790 print_subexp (exp, pos, stream, PREC_SUFFIX);
13791 return;
13792
13793 case OP_AGGREGATE:
13794 fputs_filtered ("(", stream);
13795 for (i = 0; i < nargs; i += 1)
13796 {
13797 if (i > 0)
13798 fputs_filtered (", ", stream);
13799 print_subexp (exp, pos, stream, PREC_SUFFIX);
13800 }
13801 fputs_filtered (")", stream);
13802 return;
13803 }
13804 }
13805
13806 /* Table mapping opcodes into strings for printing operators
13807 and precedences of the operators. */
13808
13809 static const struct op_print ada_op_print_tab[] = {
13810 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
13811 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
13812 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
13813 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
13814 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
13815 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
13816 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
13817 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
13818 {"<=", BINOP_LEQ, PREC_ORDER, 0},
13819 {">=", BINOP_GEQ, PREC_ORDER, 0},
13820 {">", BINOP_GTR, PREC_ORDER, 0},
13821 {"<", BINOP_LESS, PREC_ORDER, 0},
13822 {">>", BINOP_RSH, PREC_SHIFT, 0},
13823 {"<<", BINOP_LSH, PREC_SHIFT, 0},
13824 {"+", BINOP_ADD, PREC_ADD, 0},
13825 {"-", BINOP_SUB, PREC_ADD, 0},
13826 {"&", BINOP_CONCAT, PREC_ADD, 0},
13827 {"*", BINOP_MUL, PREC_MUL, 0},
13828 {"/", BINOP_DIV, PREC_MUL, 0},
13829 {"rem", BINOP_REM, PREC_MUL, 0},
13830 {"mod", BINOP_MOD, PREC_MUL, 0},
13831 {"**", BINOP_EXP, PREC_REPEAT, 0},
13832 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
13833 {"-", UNOP_NEG, PREC_PREFIX, 0},
13834 {"+", UNOP_PLUS, PREC_PREFIX, 0},
13835 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
13836 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
13837 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
13838 {".all", UNOP_IND, PREC_SUFFIX, 1},
13839 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
13840 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
13841 {NULL, OP_NULL, PREC_SUFFIX, 0}
13842 };
13843 \f
13844 enum ada_primitive_types {
13845 ada_primitive_type_int,
13846 ada_primitive_type_long,
13847 ada_primitive_type_short,
13848 ada_primitive_type_char,
13849 ada_primitive_type_float,
13850 ada_primitive_type_double,
13851 ada_primitive_type_void,
13852 ada_primitive_type_long_long,
13853 ada_primitive_type_long_double,
13854 ada_primitive_type_natural,
13855 ada_primitive_type_positive,
13856 ada_primitive_type_system_address,
13857 nr_ada_primitive_types
13858 };
13859
13860 static void
13861 ada_language_arch_info (struct gdbarch *gdbarch,
13862 struct language_arch_info *lai)
13863 {
13864 const struct builtin_type *builtin = builtin_type (gdbarch);
13865
13866 lai->primitive_type_vector
13867 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
13868 struct type *);
13869
13870 lai->primitive_type_vector [ada_primitive_type_int]
13871 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13872 0, "integer");
13873 lai->primitive_type_vector [ada_primitive_type_long]
13874 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
13875 0, "long_integer");
13876 lai->primitive_type_vector [ada_primitive_type_short]
13877 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
13878 0, "short_integer");
13879 lai->string_char_type
13880 = lai->primitive_type_vector [ada_primitive_type_char]
13881 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
13882 lai->primitive_type_vector [ada_primitive_type_float]
13883 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
13884 "float", gdbarch_float_format (gdbarch));
13885 lai->primitive_type_vector [ada_primitive_type_double]
13886 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
13887 "long_float", gdbarch_double_format (gdbarch));
13888 lai->primitive_type_vector [ada_primitive_type_long_long]
13889 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
13890 0, "long_long_integer");
13891 lai->primitive_type_vector [ada_primitive_type_long_double]
13892 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
13893 "long_long_float", gdbarch_long_double_format (gdbarch));
13894 lai->primitive_type_vector [ada_primitive_type_natural]
13895 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13896 0, "natural");
13897 lai->primitive_type_vector [ada_primitive_type_positive]
13898 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
13899 0, "positive");
13900 lai->primitive_type_vector [ada_primitive_type_void]
13901 = builtin->builtin_void;
13902
13903 lai->primitive_type_vector [ada_primitive_type_system_address]
13904 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
13905 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
13906 = "system__address";
13907
13908 lai->bool_type_symbol = NULL;
13909 lai->bool_type_default = builtin->builtin_bool;
13910 }
13911 \f
13912 /* Language vector */
13913
13914 /* Not really used, but needed in the ada_language_defn. */
13915
13916 static void
13917 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
13918 {
13919 ada_emit_char (c, type, stream, quoter, 1);
13920 }
13921
13922 static int
13923 parse (struct parser_state *ps)
13924 {
13925 warnings_issued = 0;
13926 return ada_parse (ps);
13927 }
13928
13929 static const struct exp_descriptor ada_exp_descriptor = {
13930 ada_print_subexp,
13931 ada_operator_length,
13932 ada_operator_check,
13933 ada_op_name,
13934 ada_dump_subexp_body,
13935 ada_evaluate_subexp
13936 };
13937
13938 /* Implement the "la_get_symbol_name_cmp" language_defn method
13939 for Ada. */
13940
13941 static symbol_name_cmp_ftype
13942 ada_get_symbol_name_cmp (const char *lookup_name)
13943 {
13944 if (should_use_wild_match (lookup_name))
13945 return wild_match;
13946 else
13947 return compare_names;
13948 }
13949
13950 /* Implement the "la_read_var_value" language_defn method for Ada. */
13951
13952 static struct value *
13953 ada_read_var_value (struct symbol *var, const struct block *var_block,
13954 struct frame_info *frame)
13955 {
13956 const struct block *frame_block = NULL;
13957 struct symbol *renaming_sym = NULL;
13958
13959 /* The only case where default_read_var_value is not sufficient
13960 is when VAR is a renaming... */
13961 if (frame)
13962 frame_block = get_frame_block (frame, NULL);
13963 if (frame_block)
13964 renaming_sym = ada_find_renaming_symbol (var, frame_block);
13965 if (renaming_sym != NULL)
13966 return ada_read_renaming_var_value (renaming_sym, frame_block);
13967
13968 /* This is a typical case where we expect the default_read_var_value
13969 function to work. */
13970 return default_read_var_value (var, var_block, frame);
13971 }
13972
13973 static const char *ada_extensions[] =
13974 {
13975 ".adb", ".ads", ".a", ".ada", ".dg", NULL
13976 };
13977
13978 const struct language_defn ada_language_defn = {
13979 "ada", /* Language name */
13980 "Ada",
13981 language_ada,
13982 range_check_off,
13983 case_sensitive_on, /* Yes, Ada is case-insensitive, but
13984 that's not quite what this means. */
13985 array_row_major,
13986 macro_expansion_no,
13987 ada_extensions,
13988 &ada_exp_descriptor,
13989 parse,
13990 ada_yyerror,
13991 resolve,
13992 ada_printchar, /* Print a character constant */
13993 ada_printstr, /* Function to print string constant */
13994 emit_char, /* Function to print single char (not used) */
13995 ada_print_type, /* Print a type using appropriate syntax */
13996 ada_print_typedef, /* Print a typedef using appropriate syntax */
13997 ada_val_print, /* Print a value using appropriate syntax */
13998 ada_value_print, /* Print a top-level value */
13999 ada_read_var_value, /* la_read_var_value */
14000 NULL, /* Language specific skip_trampoline */
14001 NULL, /* name_of_this */
14002 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14003 basic_lookup_transparent_type, /* lookup_transparent_type */
14004 ada_la_decode, /* Language specific symbol demangler */
14005 ada_sniff_from_mangled_name,
14006 NULL, /* Language specific
14007 class_name_from_physname */
14008 ada_op_print_tab, /* expression operators for printing */
14009 0, /* c-style arrays */
14010 1, /* String lower bound */
14011 ada_get_gdb_completer_word_break_characters,
14012 ada_collect_symbol_completion_matches,
14013 ada_language_arch_info,
14014 ada_print_array_index,
14015 default_pass_by_reference,
14016 c_get_string,
14017 c_watch_location_expression,
14018 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
14019 ada_iterate_over_symbols,
14020 &ada_varobj_ops,
14021 NULL,
14022 NULL,
14023 LANG_MAGIC
14024 };
14025
14026 /* Provide a prototype to silence -Wmissing-prototypes. */
14027 extern initialize_file_ftype _initialize_ada_language;
14028
14029 /* Command-list for the "set/show ada" prefix command. */
14030 static struct cmd_list_element *set_ada_list;
14031 static struct cmd_list_element *show_ada_list;
14032
14033 /* Implement the "set ada" prefix command. */
14034
14035 static void
14036 set_ada_command (char *arg, int from_tty)
14037 {
14038 printf_unfiltered (_(\
14039 "\"set ada\" must be followed by the name of a setting.\n"));
14040 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14041 }
14042
14043 /* Implement the "show ada" prefix command. */
14044
14045 static void
14046 show_ada_command (char *args, int from_tty)
14047 {
14048 cmd_show_list (show_ada_list, from_tty, "");
14049 }
14050
14051 static void
14052 initialize_ada_catchpoint_ops (void)
14053 {
14054 struct breakpoint_ops *ops;
14055
14056 initialize_breakpoint_ops ();
14057
14058 ops = &catch_exception_breakpoint_ops;
14059 *ops = bkpt_breakpoint_ops;
14060 ops->allocate_location = allocate_location_catch_exception;
14061 ops->re_set = re_set_catch_exception;
14062 ops->check_status = check_status_catch_exception;
14063 ops->print_it = print_it_catch_exception;
14064 ops->print_one = print_one_catch_exception;
14065 ops->print_mention = print_mention_catch_exception;
14066 ops->print_recreate = print_recreate_catch_exception;
14067
14068 ops = &catch_exception_unhandled_breakpoint_ops;
14069 *ops = bkpt_breakpoint_ops;
14070 ops->allocate_location = allocate_location_catch_exception_unhandled;
14071 ops->re_set = re_set_catch_exception_unhandled;
14072 ops->check_status = check_status_catch_exception_unhandled;
14073 ops->print_it = print_it_catch_exception_unhandled;
14074 ops->print_one = print_one_catch_exception_unhandled;
14075 ops->print_mention = print_mention_catch_exception_unhandled;
14076 ops->print_recreate = print_recreate_catch_exception_unhandled;
14077
14078 ops = &catch_assert_breakpoint_ops;
14079 *ops = bkpt_breakpoint_ops;
14080 ops->allocate_location = allocate_location_catch_assert;
14081 ops->re_set = re_set_catch_assert;
14082 ops->check_status = check_status_catch_assert;
14083 ops->print_it = print_it_catch_assert;
14084 ops->print_one = print_one_catch_assert;
14085 ops->print_mention = print_mention_catch_assert;
14086 ops->print_recreate = print_recreate_catch_assert;
14087 }
14088
14089 /* This module's 'new_objfile' observer. */
14090
14091 static void
14092 ada_new_objfile_observer (struct objfile *objfile)
14093 {
14094 ada_clear_symbol_cache ();
14095 }
14096
14097 /* This module's 'free_objfile' observer. */
14098
14099 static void
14100 ada_free_objfile_observer (struct objfile *objfile)
14101 {
14102 ada_clear_symbol_cache ();
14103 }
14104
14105 void
14106 _initialize_ada_language (void)
14107 {
14108 add_language (&ada_language_defn);
14109
14110 initialize_ada_catchpoint_ops ();
14111
14112 add_prefix_cmd ("ada", no_class, set_ada_command,
14113 _("Prefix command for changing Ada-specfic settings"),
14114 &set_ada_list, "set ada ", 0, &setlist);
14115
14116 add_prefix_cmd ("ada", no_class, show_ada_command,
14117 _("Generic command for showing Ada-specific settings."),
14118 &show_ada_list, "show ada ", 0, &showlist);
14119
14120 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14121 &trust_pad_over_xvs, _("\
14122 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14123 Show whether an optimization trusting PAD types over XVS types is activated"),
14124 _("\
14125 This is related to the encoding used by the GNAT compiler. The debugger\n\
14126 should normally trust the contents of PAD types, but certain older versions\n\
14127 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14128 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14129 work around this bug. It is always safe to turn this option \"off\", but\n\
14130 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14131 this option to \"off\" unless necessary."),
14132 NULL, NULL, &set_ada_list, &show_ada_list);
14133
14134 add_setshow_boolean_cmd ("print-signatures", class_vars,
14135 &print_signatures, _("\
14136 Enable or disable the output of formal and return types for functions in the \
14137 overloads selection menu"), _("\
14138 Show whether the output of formal and return types for functions in the \
14139 overloads selection menu is activated"),
14140 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14141
14142 add_catch_command ("exception", _("\
14143 Catch Ada exceptions, when raised.\n\
14144 With an argument, catch only exceptions with the given name."),
14145 catch_ada_exception_command,
14146 NULL,
14147 CATCH_PERMANENT,
14148 CATCH_TEMPORARY);
14149 add_catch_command ("assert", _("\
14150 Catch failed Ada assertions, when raised.\n\
14151 With an argument, catch only exceptions with the given name."),
14152 catch_assert_command,
14153 NULL,
14154 CATCH_PERMANENT,
14155 CATCH_TEMPORARY);
14156
14157 varsize_limit = 65536;
14158
14159 add_info ("exceptions", info_exceptions_command,
14160 _("\
14161 List all Ada exception names.\n\
14162 If a regular expression is passed as an argument, only those matching\n\
14163 the regular expression are listed."));
14164
14165 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14166 _("Set Ada maintenance-related variables."),
14167 &maint_set_ada_cmdlist, "maintenance set ada ",
14168 0/*allow-unknown*/, &maintenance_set_cmdlist);
14169
14170 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14171 _("Show Ada maintenance-related variables"),
14172 &maint_show_ada_cmdlist, "maintenance show ada ",
14173 0/*allow-unknown*/, &maintenance_show_cmdlist);
14174
14175 add_setshow_boolean_cmd
14176 ("ignore-descriptive-types", class_maintenance,
14177 &ada_ignore_descriptive_types_p,
14178 _("Set whether descriptive types generated by GNAT should be ignored."),
14179 _("Show whether descriptive types generated by GNAT should be ignored."),
14180 _("\
14181 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14182 DWARF attribute."),
14183 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14184
14185 obstack_init (&symbol_list_obstack);
14186
14187 decoded_names_store = htab_create_alloc
14188 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14189 NULL, xcalloc, xfree);
14190
14191 /* The ada-lang observers. */
14192 observer_attach_new_objfile (ada_new_objfile_observer);
14193 observer_attach_free_objfile (ada_free_objfile_observer);
14194 observer_attach_inferior_exit (ada_inferior_exit);
14195
14196 /* Setup various context-specific data. */
14197 ada_inferior_data
14198 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14199 ada_pspace_data_handle
14200 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14201 }