]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
[Ada] use lbasename when testing if file is part of Ada runtime.
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274
275 static struct type *ada_find_any_type (const char *name);
276 \f
277
278
279 /* Maximum-sized dynamic type. */
280 static unsigned int varsize_limit;
281
282 /* FIXME: brobecker/2003-09-17: No longer a const because it is
283 returned by a function that does not return a const char *. */
284 static char *ada_completer_word_break_characters =
285 #ifdef VMS
286 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
287 #else
288 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
289 #endif
290
291 /* The name of the symbol to use to get the name of the main subprogram. */
292 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
293 = "__gnat_ada_main_program_name";
294
295 /* Limit on the number of warnings to raise per expression evaluation. */
296 static int warning_limit = 2;
297
298 /* Number of warning messages issued; reset to 0 by cleanups after
299 expression evaluation. */
300 static int warnings_issued = 0;
301
302 static const char *known_runtime_file_name_patterns[] = {
303 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
304 };
305
306 static const char *known_auxiliary_function_name_patterns[] = {
307 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
308 };
309
310 /* Space for allocating results of ada_lookup_symbol_list. */
311 static struct obstack symbol_list_obstack;
312
313 /* Inferior-specific data. */
314
315 /* Per-inferior data for this module. */
316
317 struct ada_inferior_data
318 {
319 /* The ada__tags__type_specific_data type, which is used when decoding
320 tagged types. With older versions of GNAT, this type was directly
321 accessible through a component ("tsd") in the object tag. But this
322 is no longer the case, so we cache it for each inferior. */
323 struct type *tsd_type;
324
325 /* The exception_support_info data. This data is used to determine
326 how to implement support for Ada exception catchpoints in a given
327 inferior. */
328 const struct exception_support_info *exception_info;
329 };
330
331 /* Our key to this module's inferior data. */
332 static const struct inferior_data *ada_inferior_data;
333
334 /* A cleanup routine for our inferior data. */
335 static void
336 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
337 {
338 struct ada_inferior_data *data;
339
340 data = inferior_data (inf, ada_inferior_data);
341 if (data != NULL)
342 xfree (data);
343 }
344
345 /* Return our inferior data for the given inferior (INF).
346
347 This function always returns a valid pointer to an allocated
348 ada_inferior_data structure. If INF's inferior data has not
349 been previously set, this functions creates a new one with all
350 fields set to zero, sets INF's inferior to it, and then returns
351 a pointer to that newly allocated ada_inferior_data. */
352
353 static struct ada_inferior_data *
354 get_ada_inferior_data (struct inferior *inf)
355 {
356 struct ada_inferior_data *data;
357
358 data = inferior_data (inf, ada_inferior_data);
359 if (data == NULL)
360 {
361 data = XZALLOC (struct ada_inferior_data);
362 set_inferior_data (inf, ada_inferior_data, data);
363 }
364
365 return data;
366 }
367
368 /* Perform all necessary cleanups regarding our module's inferior data
369 that is required after the inferior INF just exited. */
370
371 static void
372 ada_inferior_exit (struct inferior *inf)
373 {
374 ada_inferior_data_cleanup (inf, NULL);
375 set_inferior_data (inf, ada_inferior_data, NULL);
376 }
377
378 /* Utilities */
379
380 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
381 all typedef layers have been peeled. Otherwise, return TYPE.
382
383 Normally, we really expect a typedef type to only have 1 typedef layer.
384 In other words, we really expect the target type of a typedef type to be
385 a non-typedef type. This is particularly true for Ada units, because
386 the language does not have a typedef vs not-typedef distinction.
387 In that respect, the Ada compiler has been trying to eliminate as many
388 typedef definitions in the debugging information, since they generally
389 do not bring any extra information (we still use typedef under certain
390 circumstances related mostly to the GNAT encoding).
391
392 Unfortunately, we have seen situations where the debugging information
393 generated by the compiler leads to such multiple typedef layers. For
394 instance, consider the following example with stabs:
395
396 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
397 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
398
399 This is an error in the debugging information which causes type
400 pck__float_array___XUP to be defined twice, and the second time,
401 it is defined as a typedef of a typedef.
402
403 This is on the fringe of legality as far as debugging information is
404 concerned, and certainly unexpected. But it is easy to handle these
405 situations correctly, so we can afford to be lenient in this case. */
406
407 static struct type *
408 ada_typedef_target_type (struct type *type)
409 {
410 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
411 type = TYPE_TARGET_TYPE (type);
412 return type;
413 }
414
415 /* Given DECODED_NAME a string holding a symbol name in its
416 decoded form (ie using the Ada dotted notation), returns
417 its unqualified name. */
418
419 static const char *
420 ada_unqualified_name (const char *decoded_name)
421 {
422 const char *result = strrchr (decoded_name, '.');
423
424 if (result != NULL)
425 result++; /* Skip the dot... */
426 else
427 result = decoded_name;
428
429 return result;
430 }
431
432 /* Return a string starting with '<', followed by STR, and '>'.
433 The result is good until the next call. */
434
435 static char *
436 add_angle_brackets (const char *str)
437 {
438 static char *result = NULL;
439
440 xfree (result);
441 result = xstrprintf ("<%s>", str);
442 return result;
443 }
444
445 static char *
446 ada_get_gdb_completer_word_break_characters (void)
447 {
448 return ada_completer_word_break_characters;
449 }
450
451 /* Print an array element index using the Ada syntax. */
452
453 static void
454 ada_print_array_index (struct value *index_value, struct ui_file *stream,
455 const struct value_print_options *options)
456 {
457 LA_VALUE_PRINT (index_value, stream, options);
458 fprintf_filtered (stream, " => ");
459 }
460
461 /* Assuming VECT points to an array of *SIZE objects of size
462 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
463 updating *SIZE as necessary and returning the (new) array. */
464
465 void *
466 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
467 {
468 if (*size < min_size)
469 {
470 *size *= 2;
471 if (*size < min_size)
472 *size = min_size;
473 vect = xrealloc (vect, *size * element_size);
474 }
475 return vect;
476 }
477
478 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
479 suffix of FIELD_NAME beginning "___". */
480
481 static int
482 field_name_match (const char *field_name, const char *target)
483 {
484 int len = strlen (target);
485
486 return
487 (strncmp (field_name, target, len) == 0
488 && (field_name[len] == '\0'
489 || (strncmp (field_name + len, "___", 3) == 0
490 && strcmp (field_name + strlen (field_name) - 6,
491 "___XVN") != 0)));
492 }
493
494
495 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
496 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
497 and return its index. This function also handles fields whose name
498 have ___ suffixes because the compiler sometimes alters their name
499 by adding such a suffix to represent fields with certain constraints.
500 If the field could not be found, return a negative number if
501 MAYBE_MISSING is set. Otherwise raise an error. */
502
503 int
504 ada_get_field_index (const struct type *type, const char *field_name,
505 int maybe_missing)
506 {
507 int fieldno;
508 struct type *struct_type = check_typedef ((struct type *) type);
509
510 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
511 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
512 return fieldno;
513
514 if (!maybe_missing)
515 error (_("Unable to find field %s in struct %s. Aborting"),
516 field_name, TYPE_NAME (struct_type));
517
518 return -1;
519 }
520
521 /* The length of the prefix of NAME prior to any "___" suffix. */
522
523 int
524 ada_name_prefix_len (const char *name)
525 {
526 if (name == NULL)
527 return 0;
528 else
529 {
530 const char *p = strstr (name, "___");
531
532 if (p == NULL)
533 return strlen (name);
534 else
535 return p - name;
536 }
537 }
538
539 /* Return non-zero if SUFFIX is a suffix of STR.
540 Return zero if STR is null. */
541
542 static int
543 is_suffix (const char *str, const char *suffix)
544 {
545 int len1, len2;
546
547 if (str == NULL)
548 return 0;
549 len1 = strlen (str);
550 len2 = strlen (suffix);
551 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
552 }
553
554 /* The contents of value VAL, treated as a value of type TYPE. The
555 result is an lval in memory if VAL is. */
556
557 static struct value *
558 coerce_unspec_val_to_type (struct value *val, struct type *type)
559 {
560 type = ada_check_typedef (type);
561 if (value_type (val) == type)
562 return val;
563 else
564 {
565 struct value *result;
566
567 /* Make sure that the object size is not unreasonable before
568 trying to allocate some memory for it. */
569 check_size (type);
570
571 if (value_lazy (val)
572 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
573 result = allocate_value_lazy (type);
574 else
575 {
576 result = allocate_value (type);
577 memcpy (value_contents_raw (result), value_contents (val),
578 TYPE_LENGTH (type));
579 }
580 set_value_component_location (result, val);
581 set_value_bitsize (result, value_bitsize (val));
582 set_value_bitpos (result, value_bitpos (val));
583 set_value_address (result, value_address (val));
584 set_value_optimized_out (result, value_optimized_out (val));
585 return result;
586 }
587 }
588
589 static const gdb_byte *
590 cond_offset_host (const gdb_byte *valaddr, long offset)
591 {
592 if (valaddr == NULL)
593 return NULL;
594 else
595 return valaddr + offset;
596 }
597
598 static CORE_ADDR
599 cond_offset_target (CORE_ADDR address, long offset)
600 {
601 if (address == 0)
602 return 0;
603 else
604 return address + offset;
605 }
606
607 /* Issue a warning (as for the definition of warning in utils.c, but
608 with exactly one argument rather than ...), unless the limit on the
609 number of warnings has passed during the evaluation of the current
610 expression. */
611
612 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
613 provided by "complaint". */
614 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
615
616 static void
617 lim_warning (const char *format, ...)
618 {
619 va_list args;
620
621 va_start (args, format);
622 warnings_issued += 1;
623 if (warnings_issued <= warning_limit)
624 vwarning (format, args);
625
626 va_end (args);
627 }
628
629 /* Issue an error if the size of an object of type T is unreasonable,
630 i.e. if it would be a bad idea to allocate a value of this type in
631 GDB. */
632
633 static void
634 check_size (const struct type *type)
635 {
636 if (TYPE_LENGTH (type) > varsize_limit)
637 error (_("object size is larger than varsize-limit"));
638 }
639
640 /* Maximum value of a SIZE-byte signed integer type. */
641 static LONGEST
642 max_of_size (int size)
643 {
644 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
645
646 return top_bit | (top_bit - 1);
647 }
648
649 /* Minimum value of a SIZE-byte signed integer type. */
650 static LONGEST
651 min_of_size (int size)
652 {
653 return -max_of_size (size) - 1;
654 }
655
656 /* Maximum value of a SIZE-byte unsigned integer type. */
657 static ULONGEST
658 umax_of_size (int size)
659 {
660 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
661
662 return top_bit | (top_bit - 1);
663 }
664
665 /* Maximum value of integral type T, as a signed quantity. */
666 static LONGEST
667 max_of_type (struct type *t)
668 {
669 if (TYPE_UNSIGNED (t))
670 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
671 else
672 return max_of_size (TYPE_LENGTH (t));
673 }
674
675 /* Minimum value of integral type T, as a signed quantity. */
676 static LONGEST
677 min_of_type (struct type *t)
678 {
679 if (TYPE_UNSIGNED (t))
680 return 0;
681 else
682 return min_of_size (TYPE_LENGTH (t));
683 }
684
685 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
686 LONGEST
687 ada_discrete_type_high_bound (struct type *type)
688 {
689 switch (TYPE_CODE (type))
690 {
691 case TYPE_CODE_RANGE:
692 return TYPE_HIGH_BOUND (type);
693 case TYPE_CODE_ENUM:
694 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
695 case TYPE_CODE_BOOL:
696 return 1;
697 case TYPE_CODE_CHAR:
698 case TYPE_CODE_INT:
699 return max_of_type (type);
700 default:
701 error (_("Unexpected type in ada_discrete_type_high_bound."));
702 }
703 }
704
705 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
706 LONGEST
707 ada_discrete_type_low_bound (struct type *type)
708 {
709 switch (TYPE_CODE (type))
710 {
711 case TYPE_CODE_RANGE:
712 return TYPE_LOW_BOUND (type);
713 case TYPE_CODE_ENUM:
714 return TYPE_FIELD_ENUMVAL (type, 0);
715 case TYPE_CODE_BOOL:
716 return 0;
717 case TYPE_CODE_CHAR:
718 case TYPE_CODE_INT:
719 return min_of_type (type);
720 default:
721 error (_("Unexpected type in ada_discrete_type_low_bound."));
722 }
723 }
724
725 /* The identity on non-range types. For range types, the underlying
726 non-range scalar type. */
727
728 static struct type *
729 get_base_type (struct type *type)
730 {
731 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
732 {
733 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
734 return type;
735 type = TYPE_TARGET_TYPE (type);
736 }
737 return type;
738 }
739
740 /* Return a decoded version of the given VALUE. This means returning
741 a value whose type is obtained by applying all the GNAT-specific
742 encondings, making the resulting type a static but standard description
743 of the initial type. */
744
745 struct value *
746 ada_get_decoded_value (struct value *value)
747 {
748 struct type *type = ada_check_typedef (value_type (value));
749
750 if (ada_is_array_descriptor_type (type)
751 || (ada_is_constrained_packed_array_type (type)
752 && TYPE_CODE (type) != TYPE_CODE_PTR))
753 {
754 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
755 value = ada_coerce_to_simple_array_ptr (value);
756 else
757 value = ada_coerce_to_simple_array (value);
758 }
759 else
760 value = ada_to_fixed_value (value);
761
762 return value;
763 }
764
765 /* Same as ada_get_decoded_value, but with the given TYPE.
766 Because there is no associated actual value for this type,
767 the resulting type might be a best-effort approximation in
768 the case of dynamic types. */
769
770 struct type *
771 ada_get_decoded_type (struct type *type)
772 {
773 type = to_static_fixed_type (type);
774 if (ada_is_constrained_packed_array_type (type))
775 type = ada_coerce_to_simple_array_type (type);
776 return type;
777 }
778
779 \f
780
781 /* Language Selection */
782
783 /* If the main program is in Ada, return language_ada, otherwise return LANG
784 (the main program is in Ada iif the adainit symbol is found). */
785
786 enum language
787 ada_update_initial_language (enum language lang)
788 {
789 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
790 (struct objfile *) NULL) != NULL)
791 return language_ada;
792
793 return lang;
794 }
795
796 /* If the main procedure is written in Ada, then return its name.
797 The result is good until the next call. Return NULL if the main
798 procedure doesn't appear to be in Ada. */
799
800 char *
801 ada_main_name (void)
802 {
803 struct minimal_symbol *msym;
804 static char *main_program_name = NULL;
805
806 /* For Ada, the name of the main procedure is stored in a specific
807 string constant, generated by the binder. Look for that symbol,
808 extract its address, and then read that string. If we didn't find
809 that string, then most probably the main procedure is not written
810 in Ada. */
811 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
812
813 if (msym != NULL)
814 {
815 CORE_ADDR main_program_name_addr;
816 int err_code;
817
818 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
819 if (main_program_name_addr == 0)
820 error (_("Invalid address for Ada main program name."));
821
822 xfree (main_program_name);
823 target_read_string (main_program_name_addr, &main_program_name,
824 1024, &err_code);
825
826 if (err_code != 0)
827 return NULL;
828 return main_program_name;
829 }
830
831 /* The main procedure doesn't seem to be in Ada. */
832 return NULL;
833 }
834 \f
835 /* Symbols */
836
837 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
838 of NULLs. */
839
840 const struct ada_opname_map ada_opname_table[] = {
841 {"Oadd", "\"+\"", BINOP_ADD},
842 {"Osubtract", "\"-\"", BINOP_SUB},
843 {"Omultiply", "\"*\"", BINOP_MUL},
844 {"Odivide", "\"/\"", BINOP_DIV},
845 {"Omod", "\"mod\"", BINOP_MOD},
846 {"Orem", "\"rem\"", BINOP_REM},
847 {"Oexpon", "\"**\"", BINOP_EXP},
848 {"Olt", "\"<\"", BINOP_LESS},
849 {"Ole", "\"<=\"", BINOP_LEQ},
850 {"Ogt", "\">\"", BINOP_GTR},
851 {"Oge", "\">=\"", BINOP_GEQ},
852 {"Oeq", "\"=\"", BINOP_EQUAL},
853 {"One", "\"/=\"", BINOP_NOTEQUAL},
854 {"Oand", "\"and\"", BINOP_BITWISE_AND},
855 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
856 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
857 {"Oconcat", "\"&\"", BINOP_CONCAT},
858 {"Oabs", "\"abs\"", UNOP_ABS},
859 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
860 {"Oadd", "\"+\"", UNOP_PLUS},
861 {"Osubtract", "\"-\"", UNOP_NEG},
862 {NULL, NULL}
863 };
864
865 /* The "encoded" form of DECODED, according to GNAT conventions.
866 The result is valid until the next call to ada_encode. */
867
868 char *
869 ada_encode (const char *decoded)
870 {
871 static char *encoding_buffer = NULL;
872 static size_t encoding_buffer_size = 0;
873 const char *p;
874 int k;
875
876 if (decoded == NULL)
877 return NULL;
878
879 GROW_VECT (encoding_buffer, encoding_buffer_size,
880 2 * strlen (decoded) + 10);
881
882 k = 0;
883 for (p = decoded; *p != '\0'; p += 1)
884 {
885 if (*p == '.')
886 {
887 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
888 k += 2;
889 }
890 else if (*p == '"')
891 {
892 const struct ada_opname_map *mapping;
893
894 for (mapping = ada_opname_table;
895 mapping->encoded != NULL
896 && strncmp (mapping->decoded, p,
897 strlen (mapping->decoded)) != 0; mapping += 1)
898 ;
899 if (mapping->encoded == NULL)
900 error (_("invalid Ada operator name: %s"), p);
901 strcpy (encoding_buffer + k, mapping->encoded);
902 k += strlen (mapping->encoded);
903 break;
904 }
905 else
906 {
907 encoding_buffer[k] = *p;
908 k += 1;
909 }
910 }
911
912 encoding_buffer[k] = '\0';
913 return encoding_buffer;
914 }
915
916 /* Return NAME folded to lower case, or, if surrounded by single
917 quotes, unfolded, but with the quotes stripped away. Result good
918 to next call. */
919
920 char *
921 ada_fold_name (const char *name)
922 {
923 static char *fold_buffer = NULL;
924 static size_t fold_buffer_size = 0;
925
926 int len = strlen (name);
927 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
928
929 if (name[0] == '\'')
930 {
931 strncpy (fold_buffer, name + 1, len - 2);
932 fold_buffer[len - 2] = '\000';
933 }
934 else
935 {
936 int i;
937
938 for (i = 0; i <= len; i += 1)
939 fold_buffer[i] = tolower (name[i]);
940 }
941
942 return fold_buffer;
943 }
944
945 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
946
947 static int
948 is_lower_alphanum (const char c)
949 {
950 return (isdigit (c) || (isalpha (c) && islower (c)));
951 }
952
953 /* ENCODED is the linkage name of a symbol and LEN contains its length.
954 This function saves in LEN the length of that same symbol name but
955 without either of these suffixes:
956 . .{DIGIT}+
957 . ${DIGIT}+
958 . ___{DIGIT}+
959 . __{DIGIT}+.
960
961 These are suffixes introduced by the compiler for entities such as
962 nested subprogram for instance, in order to avoid name clashes.
963 They do not serve any purpose for the debugger. */
964
965 static void
966 ada_remove_trailing_digits (const char *encoded, int *len)
967 {
968 if (*len > 1 && isdigit (encoded[*len - 1]))
969 {
970 int i = *len - 2;
971
972 while (i > 0 && isdigit (encoded[i]))
973 i--;
974 if (i >= 0 && encoded[i] == '.')
975 *len = i;
976 else if (i >= 0 && encoded[i] == '$')
977 *len = i;
978 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
979 *len = i - 2;
980 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
981 *len = i - 1;
982 }
983 }
984
985 /* Remove the suffix introduced by the compiler for protected object
986 subprograms. */
987
988 static void
989 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
990 {
991 /* Remove trailing N. */
992
993 /* Protected entry subprograms are broken into two
994 separate subprograms: The first one is unprotected, and has
995 a 'N' suffix; the second is the protected version, and has
996 the 'P' suffix. The second calls the first one after handling
997 the protection. Since the P subprograms are internally generated,
998 we leave these names undecoded, giving the user a clue that this
999 entity is internal. */
1000
1001 if (*len > 1
1002 && encoded[*len - 1] == 'N'
1003 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1004 *len = *len - 1;
1005 }
1006
1007 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1008
1009 static void
1010 ada_remove_Xbn_suffix (const char *encoded, int *len)
1011 {
1012 int i = *len - 1;
1013
1014 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1015 i--;
1016
1017 if (encoded[i] != 'X')
1018 return;
1019
1020 if (i == 0)
1021 return;
1022
1023 if (isalnum (encoded[i-1]))
1024 *len = i;
1025 }
1026
1027 /* If ENCODED follows the GNAT entity encoding conventions, then return
1028 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1029 replaced by ENCODED.
1030
1031 The resulting string is valid until the next call of ada_decode.
1032 If the string is unchanged by decoding, the original string pointer
1033 is returned. */
1034
1035 const char *
1036 ada_decode (const char *encoded)
1037 {
1038 int i, j;
1039 int len0;
1040 const char *p;
1041 char *decoded;
1042 int at_start_name;
1043 static char *decoding_buffer = NULL;
1044 static size_t decoding_buffer_size = 0;
1045
1046 /* The name of the Ada main procedure starts with "_ada_".
1047 This prefix is not part of the decoded name, so skip this part
1048 if we see this prefix. */
1049 if (strncmp (encoded, "_ada_", 5) == 0)
1050 encoded += 5;
1051
1052 /* If the name starts with '_', then it is not a properly encoded
1053 name, so do not attempt to decode it. Similarly, if the name
1054 starts with '<', the name should not be decoded. */
1055 if (encoded[0] == '_' || encoded[0] == '<')
1056 goto Suppress;
1057
1058 len0 = strlen (encoded);
1059
1060 ada_remove_trailing_digits (encoded, &len0);
1061 ada_remove_po_subprogram_suffix (encoded, &len0);
1062
1063 /* Remove the ___X.* suffix if present. Do not forget to verify that
1064 the suffix is located before the current "end" of ENCODED. We want
1065 to avoid re-matching parts of ENCODED that have previously been
1066 marked as discarded (by decrementing LEN0). */
1067 p = strstr (encoded, "___");
1068 if (p != NULL && p - encoded < len0 - 3)
1069 {
1070 if (p[3] == 'X')
1071 len0 = p - encoded;
1072 else
1073 goto Suppress;
1074 }
1075
1076 /* Remove any trailing TKB suffix. It tells us that this symbol
1077 is for the body of a task, but that information does not actually
1078 appear in the decoded name. */
1079
1080 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1081 len0 -= 3;
1082
1083 /* Remove any trailing TB suffix. The TB suffix is slightly different
1084 from the TKB suffix because it is used for non-anonymous task
1085 bodies. */
1086
1087 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1088 len0 -= 2;
1089
1090 /* Remove trailing "B" suffixes. */
1091 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1092
1093 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1094 len0 -= 1;
1095
1096 /* Make decoded big enough for possible expansion by operator name. */
1097
1098 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1099 decoded = decoding_buffer;
1100
1101 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1102
1103 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1104 {
1105 i = len0 - 2;
1106 while ((i >= 0 && isdigit (encoded[i]))
1107 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1108 i -= 1;
1109 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1110 len0 = i - 1;
1111 else if (encoded[i] == '$')
1112 len0 = i;
1113 }
1114
1115 /* The first few characters that are not alphabetic are not part
1116 of any encoding we use, so we can copy them over verbatim. */
1117
1118 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1119 decoded[j] = encoded[i];
1120
1121 at_start_name = 1;
1122 while (i < len0)
1123 {
1124 /* Is this a symbol function? */
1125 if (at_start_name && encoded[i] == 'O')
1126 {
1127 int k;
1128
1129 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1130 {
1131 int op_len = strlen (ada_opname_table[k].encoded);
1132 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1133 op_len - 1) == 0)
1134 && !isalnum (encoded[i + op_len]))
1135 {
1136 strcpy (decoded + j, ada_opname_table[k].decoded);
1137 at_start_name = 0;
1138 i += op_len;
1139 j += strlen (ada_opname_table[k].decoded);
1140 break;
1141 }
1142 }
1143 if (ada_opname_table[k].encoded != NULL)
1144 continue;
1145 }
1146 at_start_name = 0;
1147
1148 /* Replace "TK__" with "__", which will eventually be translated
1149 into "." (just below). */
1150
1151 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1152 i += 2;
1153
1154 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1155 be translated into "." (just below). These are internal names
1156 generated for anonymous blocks inside which our symbol is nested. */
1157
1158 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1159 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1160 && isdigit (encoded [i+4]))
1161 {
1162 int k = i + 5;
1163
1164 while (k < len0 && isdigit (encoded[k]))
1165 k++; /* Skip any extra digit. */
1166
1167 /* Double-check that the "__B_{DIGITS}+" sequence we found
1168 is indeed followed by "__". */
1169 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1170 i = k;
1171 }
1172
1173 /* Remove _E{DIGITS}+[sb] */
1174
1175 /* Just as for protected object subprograms, there are 2 categories
1176 of subprograms created by the compiler for each entry. The first
1177 one implements the actual entry code, and has a suffix following
1178 the convention above; the second one implements the barrier and
1179 uses the same convention as above, except that the 'E' is replaced
1180 by a 'B'.
1181
1182 Just as above, we do not decode the name of barrier functions
1183 to give the user a clue that the code he is debugging has been
1184 internally generated. */
1185
1186 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1187 && isdigit (encoded[i+2]))
1188 {
1189 int k = i + 3;
1190
1191 while (k < len0 && isdigit (encoded[k]))
1192 k++;
1193
1194 if (k < len0
1195 && (encoded[k] == 'b' || encoded[k] == 's'))
1196 {
1197 k++;
1198 /* Just as an extra precaution, make sure that if this
1199 suffix is followed by anything else, it is a '_'.
1200 Otherwise, we matched this sequence by accident. */
1201 if (k == len0
1202 || (k < len0 && encoded[k] == '_'))
1203 i = k;
1204 }
1205 }
1206
1207 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1208 the GNAT front-end in protected object subprograms. */
1209
1210 if (i < len0 + 3
1211 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1212 {
1213 /* Backtrack a bit up until we reach either the begining of
1214 the encoded name, or "__". Make sure that we only find
1215 digits or lowercase characters. */
1216 const char *ptr = encoded + i - 1;
1217
1218 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1219 ptr--;
1220 if (ptr < encoded
1221 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1222 i++;
1223 }
1224
1225 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1226 {
1227 /* This is a X[bn]* sequence not separated from the previous
1228 part of the name with a non-alpha-numeric character (in other
1229 words, immediately following an alpha-numeric character), then
1230 verify that it is placed at the end of the encoded name. If
1231 not, then the encoding is not valid and we should abort the
1232 decoding. Otherwise, just skip it, it is used in body-nested
1233 package names. */
1234 do
1235 i += 1;
1236 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1237 if (i < len0)
1238 goto Suppress;
1239 }
1240 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1241 {
1242 /* Replace '__' by '.'. */
1243 decoded[j] = '.';
1244 at_start_name = 1;
1245 i += 2;
1246 j += 1;
1247 }
1248 else
1249 {
1250 /* It's a character part of the decoded name, so just copy it
1251 over. */
1252 decoded[j] = encoded[i];
1253 i += 1;
1254 j += 1;
1255 }
1256 }
1257 decoded[j] = '\000';
1258
1259 /* Decoded names should never contain any uppercase character.
1260 Double-check this, and abort the decoding if we find one. */
1261
1262 for (i = 0; decoded[i] != '\0'; i += 1)
1263 if (isupper (decoded[i]) || decoded[i] == ' ')
1264 goto Suppress;
1265
1266 if (strcmp (decoded, encoded) == 0)
1267 return encoded;
1268 else
1269 return decoded;
1270
1271 Suppress:
1272 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1273 decoded = decoding_buffer;
1274 if (encoded[0] == '<')
1275 strcpy (decoded, encoded);
1276 else
1277 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1278 return decoded;
1279
1280 }
1281
1282 /* Table for keeping permanent unique copies of decoded names. Once
1283 allocated, names in this table are never released. While this is a
1284 storage leak, it should not be significant unless there are massive
1285 changes in the set of decoded names in successive versions of a
1286 symbol table loaded during a single session. */
1287 static struct htab *decoded_names_store;
1288
1289 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1290 in the language-specific part of GSYMBOL, if it has not been
1291 previously computed. Tries to save the decoded name in the same
1292 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1293 in any case, the decoded symbol has a lifetime at least that of
1294 GSYMBOL).
1295 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1296 const, but nevertheless modified to a semantically equivalent form
1297 when a decoded name is cached in it. */
1298
1299 char *
1300 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1301 {
1302 char **resultp =
1303 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1304
1305 if (*resultp == NULL)
1306 {
1307 const char *decoded = ada_decode (gsymbol->name);
1308
1309 if (gsymbol->obj_section != NULL)
1310 {
1311 struct objfile *objf = gsymbol->obj_section->objfile;
1312
1313 *resultp = obsavestring (decoded, strlen (decoded),
1314 &objf->objfile_obstack);
1315 }
1316 /* Sometimes, we can't find a corresponding objfile, in which
1317 case, we put the result on the heap. Since we only decode
1318 when needed, we hope this usually does not cause a
1319 significant memory leak (FIXME). */
1320 if (*resultp == NULL)
1321 {
1322 char **slot = (char **) htab_find_slot (decoded_names_store,
1323 decoded, INSERT);
1324
1325 if (*slot == NULL)
1326 *slot = xstrdup (decoded);
1327 *resultp = *slot;
1328 }
1329 }
1330
1331 return *resultp;
1332 }
1333
1334 static char *
1335 ada_la_decode (const char *encoded, int options)
1336 {
1337 return xstrdup (ada_decode (encoded));
1338 }
1339
1340 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1341 suffixes that encode debugging information or leading _ada_ on
1342 SYM_NAME (see is_name_suffix commentary for the debugging
1343 information that is ignored). If WILD, then NAME need only match a
1344 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1345 either argument is NULL. */
1346
1347 static int
1348 match_name (const char *sym_name, const char *name, int wild)
1349 {
1350 if (sym_name == NULL || name == NULL)
1351 return 0;
1352 else if (wild)
1353 return wild_match (sym_name, name) == 0;
1354 else
1355 {
1356 int len_name = strlen (name);
1357
1358 return (strncmp (sym_name, name, len_name) == 0
1359 && is_name_suffix (sym_name + len_name))
1360 || (strncmp (sym_name, "_ada_", 5) == 0
1361 && strncmp (sym_name + 5, name, len_name) == 0
1362 && is_name_suffix (sym_name + len_name + 5));
1363 }
1364 }
1365 \f
1366
1367 /* Arrays */
1368
1369 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1370 generated by the GNAT compiler to describe the index type used
1371 for each dimension of an array, check whether it follows the latest
1372 known encoding. If not, fix it up to conform to the latest encoding.
1373 Otherwise, do nothing. This function also does nothing if
1374 INDEX_DESC_TYPE is NULL.
1375
1376 The GNAT encoding used to describle the array index type evolved a bit.
1377 Initially, the information would be provided through the name of each
1378 field of the structure type only, while the type of these fields was
1379 described as unspecified and irrelevant. The debugger was then expected
1380 to perform a global type lookup using the name of that field in order
1381 to get access to the full index type description. Because these global
1382 lookups can be very expensive, the encoding was later enhanced to make
1383 the global lookup unnecessary by defining the field type as being
1384 the full index type description.
1385
1386 The purpose of this routine is to allow us to support older versions
1387 of the compiler by detecting the use of the older encoding, and by
1388 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1389 we essentially replace each field's meaningless type by the associated
1390 index subtype). */
1391
1392 void
1393 ada_fixup_array_indexes_type (struct type *index_desc_type)
1394 {
1395 int i;
1396
1397 if (index_desc_type == NULL)
1398 return;
1399 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1400
1401 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1402 to check one field only, no need to check them all). If not, return
1403 now.
1404
1405 If our INDEX_DESC_TYPE was generated using the older encoding,
1406 the field type should be a meaningless integer type whose name
1407 is not equal to the field name. */
1408 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1409 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1410 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1411 return;
1412
1413 /* Fixup each field of INDEX_DESC_TYPE. */
1414 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1415 {
1416 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1417 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1418
1419 if (raw_type)
1420 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1421 }
1422 }
1423
1424 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1425
1426 static char *bound_name[] = {
1427 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1428 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1429 };
1430
1431 /* Maximum number of array dimensions we are prepared to handle. */
1432
1433 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1434
1435
1436 /* The desc_* routines return primitive portions of array descriptors
1437 (fat pointers). */
1438
1439 /* The descriptor or array type, if any, indicated by TYPE; removes
1440 level of indirection, if needed. */
1441
1442 static struct type *
1443 desc_base_type (struct type *type)
1444 {
1445 if (type == NULL)
1446 return NULL;
1447 type = ada_check_typedef (type);
1448 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1449 type = ada_typedef_target_type (type);
1450
1451 if (type != NULL
1452 && (TYPE_CODE (type) == TYPE_CODE_PTR
1453 || TYPE_CODE (type) == TYPE_CODE_REF))
1454 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1455 else
1456 return type;
1457 }
1458
1459 /* True iff TYPE indicates a "thin" array pointer type. */
1460
1461 static int
1462 is_thin_pntr (struct type *type)
1463 {
1464 return
1465 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1466 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1467 }
1468
1469 /* The descriptor type for thin pointer type TYPE. */
1470
1471 static struct type *
1472 thin_descriptor_type (struct type *type)
1473 {
1474 struct type *base_type = desc_base_type (type);
1475
1476 if (base_type == NULL)
1477 return NULL;
1478 if (is_suffix (ada_type_name (base_type), "___XVE"))
1479 return base_type;
1480 else
1481 {
1482 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1483
1484 if (alt_type == NULL)
1485 return base_type;
1486 else
1487 return alt_type;
1488 }
1489 }
1490
1491 /* A pointer to the array data for thin-pointer value VAL. */
1492
1493 static struct value *
1494 thin_data_pntr (struct value *val)
1495 {
1496 struct type *type = ada_check_typedef (value_type (val));
1497 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1498
1499 data_type = lookup_pointer_type (data_type);
1500
1501 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1502 return value_cast (data_type, value_copy (val));
1503 else
1504 return value_from_longest (data_type, value_address (val));
1505 }
1506
1507 /* True iff TYPE indicates a "thick" array pointer type. */
1508
1509 static int
1510 is_thick_pntr (struct type *type)
1511 {
1512 type = desc_base_type (type);
1513 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1514 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1515 }
1516
1517 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1518 pointer to one, the type of its bounds data; otherwise, NULL. */
1519
1520 static struct type *
1521 desc_bounds_type (struct type *type)
1522 {
1523 struct type *r;
1524
1525 type = desc_base_type (type);
1526
1527 if (type == NULL)
1528 return NULL;
1529 else if (is_thin_pntr (type))
1530 {
1531 type = thin_descriptor_type (type);
1532 if (type == NULL)
1533 return NULL;
1534 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1535 if (r != NULL)
1536 return ada_check_typedef (r);
1537 }
1538 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1539 {
1540 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1541 if (r != NULL)
1542 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1543 }
1544 return NULL;
1545 }
1546
1547 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1548 one, a pointer to its bounds data. Otherwise NULL. */
1549
1550 static struct value *
1551 desc_bounds (struct value *arr)
1552 {
1553 struct type *type = ada_check_typedef (value_type (arr));
1554
1555 if (is_thin_pntr (type))
1556 {
1557 struct type *bounds_type =
1558 desc_bounds_type (thin_descriptor_type (type));
1559 LONGEST addr;
1560
1561 if (bounds_type == NULL)
1562 error (_("Bad GNAT array descriptor"));
1563
1564 /* NOTE: The following calculation is not really kosher, but
1565 since desc_type is an XVE-encoded type (and shouldn't be),
1566 the correct calculation is a real pain. FIXME (and fix GCC). */
1567 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1568 addr = value_as_long (arr);
1569 else
1570 addr = value_address (arr);
1571
1572 return
1573 value_from_longest (lookup_pointer_type (bounds_type),
1574 addr - TYPE_LENGTH (bounds_type));
1575 }
1576
1577 else if (is_thick_pntr (type))
1578 {
1579 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1580 _("Bad GNAT array descriptor"));
1581 struct type *p_bounds_type = value_type (p_bounds);
1582
1583 if (p_bounds_type
1584 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1585 {
1586 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1587
1588 if (TYPE_STUB (target_type))
1589 p_bounds = value_cast (lookup_pointer_type
1590 (ada_check_typedef (target_type)),
1591 p_bounds);
1592 }
1593 else
1594 error (_("Bad GNAT array descriptor"));
1595
1596 return p_bounds;
1597 }
1598 else
1599 return NULL;
1600 }
1601
1602 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1603 position of the field containing the address of the bounds data. */
1604
1605 static int
1606 fat_pntr_bounds_bitpos (struct type *type)
1607 {
1608 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1609 }
1610
1611 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1612 size of the field containing the address of the bounds data. */
1613
1614 static int
1615 fat_pntr_bounds_bitsize (struct type *type)
1616 {
1617 type = desc_base_type (type);
1618
1619 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1620 return TYPE_FIELD_BITSIZE (type, 1);
1621 else
1622 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1623 }
1624
1625 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1626 pointer to one, the type of its array data (a array-with-no-bounds type);
1627 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1628 data. */
1629
1630 static struct type *
1631 desc_data_target_type (struct type *type)
1632 {
1633 type = desc_base_type (type);
1634
1635 /* NOTE: The following is bogus; see comment in desc_bounds. */
1636 if (is_thin_pntr (type))
1637 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1638 else if (is_thick_pntr (type))
1639 {
1640 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1641
1642 if (data_type
1643 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1644 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1645 }
1646
1647 return NULL;
1648 }
1649
1650 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1651 its array data. */
1652
1653 static struct value *
1654 desc_data (struct value *arr)
1655 {
1656 struct type *type = value_type (arr);
1657
1658 if (is_thin_pntr (type))
1659 return thin_data_pntr (arr);
1660 else if (is_thick_pntr (type))
1661 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1662 _("Bad GNAT array descriptor"));
1663 else
1664 return NULL;
1665 }
1666
1667
1668 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1669 position of the field containing the address of the data. */
1670
1671 static int
1672 fat_pntr_data_bitpos (struct type *type)
1673 {
1674 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1675 }
1676
1677 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1678 size of the field containing the address of the data. */
1679
1680 static int
1681 fat_pntr_data_bitsize (struct type *type)
1682 {
1683 type = desc_base_type (type);
1684
1685 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1686 return TYPE_FIELD_BITSIZE (type, 0);
1687 else
1688 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1689 }
1690
1691 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1692 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1693 bound, if WHICH is 1. The first bound is I=1. */
1694
1695 static struct value *
1696 desc_one_bound (struct value *bounds, int i, int which)
1697 {
1698 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1699 _("Bad GNAT array descriptor bounds"));
1700 }
1701
1702 /* If BOUNDS is an array-bounds structure type, return the bit position
1703 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1704 bound, if WHICH is 1. The first bound is I=1. */
1705
1706 static int
1707 desc_bound_bitpos (struct type *type, int i, int which)
1708 {
1709 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1710 }
1711
1712 /* If BOUNDS is an array-bounds structure type, return the bit field size
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1715
1716 static int
1717 desc_bound_bitsize (struct type *type, int i, int which)
1718 {
1719 type = desc_base_type (type);
1720
1721 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1722 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1723 else
1724 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1725 }
1726
1727 /* If TYPE is the type of an array-bounds structure, the type of its
1728 Ith bound (numbering from 1). Otherwise, NULL. */
1729
1730 static struct type *
1731 desc_index_type (struct type *type, int i)
1732 {
1733 type = desc_base_type (type);
1734
1735 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1736 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1737 else
1738 return NULL;
1739 }
1740
1741 /* The number of index positions in the array-bounds type TYPE.
1742 Return 0 if TYPE is NULL. */
1743
1744 static int
1745 desc_arity (struct type *type)
1746 {
1747 type = desc_base_type (type);
1748
1749 if (type != NULL)
1750 return TYPE_NFIELDS (type) / 2;
1751 return 0;
1752 }
1753
1754 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1755 an array descriptor type (representing an unconstrained array
1756 type). */
1757
1758 static int
1759 ada_is_direct_array_type (struct type *type)
1760 {
1761 if (type == NULL)
1762 return 0;
1763 type = ada_check_typedef (type);
1764 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1765 || ada_is_array_descriptor_type (type));
1766 }
1767
1768 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1769 * to one. */
1770
1771 static int
1772 ada_is_array_type (struct type *type)
1773 {
1774 while (type != NULL
1775 && (TYPE_CODE (type) == TYPE_CODE_PTR
1776 || TYPE_CODE (type) == TYPE_CODE_REF))
1777 type = TYPE_TARGET_TYPE (type);
1778 return ada_is_direct_array_type (type);
1779 }
1780
1781 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1782
1783 int
1784 ada_is_simple_array_type (struct type *type)
1785 {
1786 if (type == NULL)
1787 return 0;
1788 type = ada_check_typedef (type);
1789 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1790 || (TYPE_CODE (type) == TYPE_CODE_PTR
1791 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1792 == TYPE_CODE_ARRAY));
1793 }
1794
1795 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1796
1797 int
1798 ada_is_array_descriptor_type (struct type *type)
1799 {
1800 struct type *data_type = desc_data_target_type (type);
1801
1802 if (type == NULL)
1803 return 0;
1804 type = ada_check_typedef (type);
1805 return (data_type != NULL
1806 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1807 && desc_arity (desc_bounds_type (type)) > 0);
1808 }
1809
1810 /* Non-zero iff type is a partially mal-formed GNAT array
1811 descriptor. FIXME: This is to compensate for some problems with
1812 debugging output from GNAT. Re-examine periodically to see if it
1813 is still needed. */
1814
1815 int
1816 ada_is_bogus_array_descriptor (struct type *type)
1817 {
1818 return
1819 type != NULL
1820 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1821 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1822 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1823 && !ada_is_array_descriptor_type (type);
1824 }
1825
1826
1827 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1828 (fat pointer) returns the type of the array data described---specifically,
1829 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1830 in from the descriptor; otherwise, they are left unspecified. If
1831 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1832 returns NULL. The result is simply the type of ARR if ARR is not
1833 a descriptor. */
1834 struct type *
1835 ada_type_of_array (struct value *arr, int bounds)
1836 {
1837 if (ada_is_constrained_packed_array_type (value_type (arr)))
1838 return decode_constrained_packed_array_type (value_type (arr));
1839
1840 if (!ada_is_array_descriptor_type (value_type (arr)))
1841 return value_type (arr);
1842
1843 if (!bounds)
1844 {
1845 struct type *array_type =
1846 ada_check_typedef (desc_data_target_type (value_type (arr)));
1847
1848 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1849 TYPE_FIELD_BITSIZE (array_type, 0) =
1850 decode_packed_array_bitsize (value_type (arr));
1851
1852 return array_type;
1853 }
1854 else
1855 {
1856 struct type *elt_type;
1857 int arity;
1858 struct value *descriptor;
1859
1860 elt_type = ada_array_element_type (value_type (arr), -1);
1861 arity = ada_array_arity (value_type (arr));
1862
1863 if (elt_type == NULL || arity == 0)
1864 return ada_check_typedef (value_type (arr));
1865
1866 descriptor = desc_bounds (arr);
1867 if (value_as_long (descriptor) == 0)
1868 return NULL;
1869 while (arity > 0)
1870 {
1871 struct type *range_type = alloc_type_copy (value_type (arr));
1872 struct type *array_type = alloc_type_copy (value_type (arr));
1873 struct value *low = desc_one_bound (descriptor, arity, 0);
1874 struct value *high = desc_one_bound (descriptor, arity, 1);
1875
1876 arity -= 1;
1877 create_range_type (range_type, value_type (low),
1878 longest_to_int (value_as_long (low)),
1879 longest_to_int (value_as_long (high)));
1880 elt_type = create_array_type (array_type, elt_type, range_type);
1881
1882 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1883 {
1884 /* We need to store the element packed bitsize, as well as
1885 recompute the array size, because it was previously
1886 computed based on the unpacked element size. */
1887 LONGEST lo = value_as_long (low);
1888 LONGEST hi = value_as_long (high);
1889
1890 TYPE_FIELD_BITSIZE (elt_type, 0) =
1891 decode_packed_array_bitsize (value_type (arr));
1892 /* If the array has no element, then the size is already
1893 zero, and does not need to be recomputed. */
1894 if (lo < hi)
1895 {
1896 int array_bitsize =
1897 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1898
1899 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1900 }
1901 }
1902 }
1903
1904 return lookup_pointer_type (elt_type);
1905 }
1906 }
1907
1908 /* If ARR does not represent an array, returns ARR unchanged.
1909 Otherwise, returns either a standard GDB array with bounds set
1910 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1911 GDB array. Returns NULL if ARR is a null fat pointer. */
1912
1913 struct value *
1914 ada_coerce_to_simple_array_ptr (struct value *arr)
1915 {
1916 if (ada_is_array_descriptor_type (value_type (arr)))
1917 {
1918 struct type *arrType = ada_type_of_array (arr, 1);
1919
1920 if (arrType == NULL)
1921 return NULL;
1922 return value_cast (arrType, value_copy (desc_data (arr)));
1923 }
1924 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1925 return decode_constrained_packed_array (arr);
1926 else
1927 return arr;
1928 }
1929
1930 /* If ARR does not represent an array, returns ARR unchanged.
1931 Otherwise, returns a standard GDB array describing ARR (which may
1932 be ARR itself if it already is in the proper form). */
1933
1934 struct value *
1935 ada_coerce_to_simple_array (struct value *arr)
1936 {
1937 if (ada_is_array_descriptor_type (value_type (arr)))
1938 {
1939 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1940
1941 if (arrVal == NULL)
1942 error (_("Bounds unavailable for null array pointer."));
1943 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1944 return value_ind (arrVal);
1945 }
1946 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1947 return decode_constrained_packed_array (arr);
1948 else
1949 return arr;
1950 }
1951
1952 /* If TYPE represents a GNAT array type, return it translated to an
1953 ordinary GDB array type (possibly with BITSIZE fields indicating
1954 packing). For other types, is the identity. */
1955
1956 struct type *
1957 ada_coerce_to_simple_array_type (struct type *type)
1958 {
1959 if (ada_is_constrained_packed_array_type (type))
1960 return decode_constrained_packed_array_type (type);
1961
1962 if (ada_is_array_descriptor_type (type))
1963 return ada_check_typedef (desc_data_target_type (type));
1964
1965 return type;
1966 }
1967
1968 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1969
1970 static int
1971 ada_is_packed_array_type (struct type *type)
1972 {
1973 if (type == NULL)
1974 return 0;
1975 type = desc_base_type (type);
1976 type = ada_check_typedef (type);
1977 return
1978 ada_type_name (type) != NULL
1979 && strstr (ada_type_name (type), "___XP") != NULL;
1980 }
1981
1982 /* Non-zero iff TYPE represents a standard GNAT constrained
1983 packed-array type. */
1984
1985 int
1986 ada_is_constrained_packed_array_type (struct type *type)
1987 {
1988 return ada_is_packed_array_type (type)
1989 && !ada_is_array_descriptor_type (type);
1990 }
1991
1992 /* Non-zero iff TYPE represents an array descriptor for a
1993 unconstrained packed-array type. */
1994
1995 static int
1996 ada_is_unconstrained_packed_array_type (struct type *type)
1997 {
1998 return ada_is_packed_array_type (type)
1999 && ada_is_array_descriptor_type (type);
2000 }
2001
2002 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2003 return the size of its elements in bits. */
2004
2005 static long
2006 decode_packed_array_bitsize (struct type *type)
2007 {
2008 const char *raw_name;
2009 const char *tail;
2010 long bits;
2011
2012 /* Access to arrays implemented as fat pointers are encoded as a typedef
2013 of the fat pointer type. We need the name of the fat pointer type
2014 to do the decoding, so strip the typedef layer. */
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 type = ada_typedef_target_type (type);
2017
2018 raw_name = ada_type_name (ada_check_typedef (type));
2019 if (!raw_name)
2020 raw_name = ada_type_name (desc_base_type (type));
2021
2022 if (!raw_name)
2023 return 0;
2024
2025 tail = strstr (raw_name, "___XP");
2026 gdb_assert (tail != NULL);
2027
2028 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2029 {
2030 lim_warning
2031 (_("could not understand bit size information on packed array"));
2032 return 0;
2033 }
2034
2035 return bits;
2036 }
2037
2038 /* Given that TYPE is a standard GDB array type with all bounds filled
2039 in, and that the element size of its ultimate scalar constituents
2040 (that is, either its elements, or, if it is an array of arrays, its
2041 elements' elements, etc.) is *ELT_BITS, return an identical type,
2042 but with the bit sizes of its elements (and those of any
2043 constituent arrays) recorded in the BITSIZE components of its
2044 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2045 in bits. */
2046
2047 static struct type *
2048 constrained_packed_array_type (struct type *type, long *elt_bits)
2049 {
2050 struct type *new_elt_type;
2051 struct type *new_type;
2052 struct type *index_type_desc;
2053 struct type *index_type;
2054 LONGEST low_bound, high_bound;
2055
2056 type = ada_check_typedef (type);
2057 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2058 return type;
2059
2060 index_type_desc = ada_find_parallel_type (type, "___XA");
2061 if (index_type_desc)
2062 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2063 NULL);
2064 else
2065 index_type = TYPE_INDEX_TYPE (type);
2066
2067 new_type = alloc_type_copy (type);
2068 new_elt_type =
2069 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2070 elt_bits);
2071 create_array_type (new_type, new_elt_type, index_type);
2072 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2073 TYPE_NAME (new_type) = ada_type_name (type);
2074
2075 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2076 low_bound = high_bound = 0;
2077 if (high_bound < low_bound)
2078 *elt_bits = TYPE_LENGTH (new_type) = 0;
2079 else
2080 {
2081 *elt_bits *= (high_bound - low_bound + 1);
2082 TYPE_LENGTH (new_type) =
2083 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2084 }
2085
2086 TYPE_FIXED_INSTANCE (new_type) = 1;
2087 return new_type;
2088 }
2089
2090 /* The array type encoded by TYPE, where
2091 ada_is_constrained_packed_array_type (TYPE). */
2092
2093 static struct type *
2094 decode_constrained_packed_array_type (struct type *type)
2095 {
2096 const char *raw_name = ada_type_name (ada_check_typedef (type));
2097 char *name;
2098 const char *tail;
2099 struct type *shadow_type;
2100 long bits;
2101
2102 if (!raw_name)
2103 raw_name = ada_type_name (desc_base_type (type));
2104
2105 if (!raw_name)
2106 return NULL;
2107
2108 name = (char *) alloca (strlen (raw_name) + 1);
2109 tail = strstr (raw_name, "___XP");
2110 type = desc_base_type (type);
2111
2112 memcpy (name, raw_name, tail - raw_name);
2113 name[tail - raw_name] = '\000';
2114
2115 shadow_type = ada_find_parallel_type_with_name (type, name);
2116
2117 if (shadow_type == NULL)
2118 {
2119 lim_warning (_("could not find bounds information on packed array"));
2120 return NULL;
2121 }
2122 CHECK_TYPEDEF (shadow_type);
2123
2124 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2125 {
2126 lim_warning (_("could not understand bounds "
2127 "information on packed array"));
2128 return NULL;
2129 }
2130
2131 bits = decode_packed_array_bitsize (type);
2132 return constrained_packed_array_type (shadow_type, &bits);
2133 }
2134
2135 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2136 array, returns a simple array that denotes that array. Its type is a
2137 standard GDB array type except that the BITSIZEs of the array
2138 target types are set to the number of bits in each element, and the
2139 type length is set appropriately. */
2140
2141 static struct value *
2142 decode_constrained_packed_array (struct value *arr)
2143 {
2144 struct type *type;
2145
2146 arr = ada_coerce_ref (arr);
2147
2148 /* If our value is a pointer, then dererence it. Make sure that
2149 this operation does not cause the target type to be fixed, as
2150 this would indirectly cause this array to be decoded. The rest
2151 of the routine assumes that the array hasn't been decoded yet,
2152 so we use the basic "value_ind" routine to perform the dereferencing,
2153 as opposed to using "ada_value_ind". */
2154 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2155 arr = value_ind (arr);
2156
2157 type = decode_constrained_packed_array_type (value_type (arr));
2158 if (type == NULL)
2159 {
2160 error (_("can't unpack array"));
2161 return NULL;
2162 }
2163
2164 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2165 && ada_is_modular_type (value_type (arr)))
2166 {
2167 /* This is a (right-justified) modular type representing a packed
2168 array with no wrapper. In order to interpret the value through
2169 the (left-justified) packed array type we just built, we must
2170 first left-justify it. */
2171 int bit_size, bit_pos;
2172 ULONGEST mod;
2173
2174 mod = ada_modulus (value_type (arr)) - 1;
2175 bit_size = 0;
2176 while (mod > 0)
2177 {
2178 bit_size += 1;
2179 mod >>= 1;
2180 }
2181 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2182 arr = ada_value_primitive_packed_val (arr, NULL,
2183 bit_pos / HOST_CHAR_BIT,
2184 bit_pos % HOST_CHAR_BIT,
2185 bit_size,
2186 type);
2187 }
2188
2189 return coerce_unspec_val_to_type (arr, type);
2190 }
2191
2192
2193 /* The value of the element of packed array ARR at the ARITY indices
2194 given in IND. ARR must be a simple array. */
2195
2196 static struct value *
2197 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2198 {
2199 int i;
2200 int bits, elt_off, bit_off;
2201 long elt_total_bit_offset;
2202 struct type *elt_type;
2203 struct value *v;
2204
2205 bits = 0;
2206 elt_total_bit_offset = 0;
2207 elt_type = ada_check_typedef (value_type (arr));
2208 for (i = 0; i < arity; i += 1)
2209 {
2210 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2211 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2212 error
2213 (_("attempt to do packed indexing of "
2214 "something other than a packed array"));
2215 else
2216 {
2217 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2218 LONGEST lowerbound, upperbound;
2219 LONGEST idx;
2220
2221 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2222 {
2223 lim_warning (_("don't know bounds of array"));
2224 lowerbound = upperbound = 0;
2225 }
2226
2227 idx = pos_atr (ind[i]);
2228 if (idx < lowerbound || idx > upperbound)
2229 lim_warning (_("packed array index %ld out of bounds"),
2230 (long) idx);
2231 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2232 elt_total_bit_offset += (idx - lowerbound) * bits;
2233 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2234 }
2235 }
2236 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2237 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2238
2239 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2240 bits, elt_type);
2241 return v;
2242 }
2243
2244 /* Non-zero iff TYPE includes negative integer values. */
2245
2246 static int
2247 has_negatives (struct type *type)
2248 {
2249 switch (TYPE_CODE (type))
2250 {
2251 default:
2252 return 0;
2253 case TYPE_CODE_INT:
2254 return !TYPE_UNSIGNED (type);
2255 case TYPE_CODE_RANGE:
2256 return TYPE_LOW_BOUND (type) < 0;
2257 }
2258 }
2259
2260
2261 /* Create a new value of type TYPE from the contents of OBJ starting
2262 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2263 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2264 assigning through the result will set the field fetched from.
2265 VALADDR is ignored unless OBJ is NULL, in which case,
2266 VALADDR+OFFSET must address the start of storage containing the
2267 packed value. The value returned in this case is never an lval.
2268 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2269
2270 struct value *
2271 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2272 long offset, int bit_offset, int bit_size,
2273 struct type *type)
2274 {
2275 struct value *v;
2276 int src, /* Index into the source area */
2277 targ, /* Index into the target area */
2278 srcBitsLeft, /* Number of source bits left to move */
2279 nsrc, ntarg, /* Number of source and target bytes */
2280 unusedLS, /* Number of bits in next significant
2281 byte of source that are unused */
2282 accumSize; /* Number of meaningful bits in accum */
2283 unsigned char *bytes; /* First byte containing data to unpack */
2284 unsigned char *unpacked;
2285 unsigned long accum; /* Staging area for bits being transferred */
2286 unsigned char sign;
2287 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2288 /* Transmit bytes from least to most significant; delta is the direction
2289 the indices move. */
2290 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2291
2292 type = ada_check_typedef (type);
2293
2294 if (obj == NULL)
2295 {
2296 v = allocate_value (type);
2297 bytes = (unsigned char *) (valaddr + offset);
2298 }
2299 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2300 {
2301 v = value_at (type, value_address (obj));
2302 bytes = (unsigned char *) alloca (len);
2303 read_memory (value_address (v) + offset, bytes, len);
2304 }
2305 else
2306 {
2307 v = allocate_value (type);
2308 bytes = (unsigned char *) value_contents (obj) + offset;
2309 }
2310
2311 if (obj != NULL)
2312 {
2313 long new_offset = offset;
2314
2315 set_value_component_location (v, obj);
2316 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2317 set_value_bitsize (v, bit_size);
2318 if (value_bitpos (v) >= HOST_CHAR_BIT)
2319 {
2320 ++new_offset;
2321 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2322 }
2323 set_value_offset (v, new_offset);
2324
2325 /* Also set the parent value. This is needed when trying to
2326 assign a new value (in inferior memory). */
2327 set_value_parent (v, obj);
2328 value_incref (obj);
2329 }
2330 else
2331 set_value_bitsize (v, bit_size);
2332 unpacked = (unsigned char *) value_contents (v);
2333
2334 srcBitsLeft = bit_size;
2335 nsrc = len;
2336 ntarg = TYPE_LENGTH (type);
2337 sign = 0;
2338 if (bit_size == 0)
2339 {
2340 memset (unpacked, 0, TYPE_LENGTH (type));
2341 return v;
2342 }
2343 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2344 {
2345 src = len - 1;
2346 if (has_negatives (type)
2347 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2348 sign = ~0;
2349
2350 unusedLS =
2351 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2352 % HOST_CHAR_BIT;
2353
2354 switch (TYPE_CODE (type))
2355 {
2356 case TYPE_CODE_ARRAY:
2357 case TYPE_CODE_UNION:
2358 case TYPE_CODE_STRUCT:
2359 /* Non-scalar values must be aligned at a byte boundary... */
2360 accumSize =
2361 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2362 /* ... And are placed at the beginning (most-significant) bytes
2363 of the target. */
2364 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2365 ntarg = targ + 1;
2366 break;
2367 default:
2368 accumSize = 0;
2369 targ = TYPE_LENGTH (type) - 1;
2370 break;
2371 }
2372 }
2373 else
2374 {
2375 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2376
2377 src = targ = 0;
2378 unusedLS = bit_offset;
2379 accumSize = 0;
2380
2381 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2382 sign = ~0;
2383 }
2384
2385 accum = 0;
2386 while (nsrc > 0)
2387 {
2388 /* Mask for removing bits of the next source byte that are not
2389 part of the value. */
2390 unsigned int unusedMSMask =
2391 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2392 1;
2393 /* Sign-extend bits for this byte. */
2394 unsigned int signMask = sign & ~unusedMSMask;
2395
2396 accum |=
2397 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2398 accumSize += HOST_CHAR_BIT - unusedLS;
2399 if (accumSize >= HOST_CHAR_BIT)
2400 {
2401 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2402 accumSize -= HOST_CHAR_BIT;
2403 accum >>= HOST_CHAR_BIT;
2404 ntarg -= 1;
2405 targ += delta;
2406 }
2407 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2408 unusedLS = 0;
2409 nsrc -= 1;
2410 src += delta;
2411 }
2412 while (ntarg > 0)
2413 {
2414 accum |= sign << accumSize;
2415 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2416 accumSize -= HOST_CHAR_BIT;
2417 accum >>= HOST_CHAR_BIT;
2418 ntarg -= 1;
2419 targ += delta;
2420 }
2421
2422 return v;
2423 }
2424
2425 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2426 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2427 not overlap. */
2428 static void
2429 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2430 int src_offset, int n, int bits_big_endian_p)
2431 {
2432 unsigned int accum, mask;
2433 int accum_bits, chunk_size;
2434
2435 target += targ_offset / HOST_CHAR_BIT;
2436 targ_offset %= HOST_CHAR_BIT;
2437 source += src_offset / HOST_CHAR_BIT;
2438 src_offset %= HOST_CHAR_BIT;
2439 if (bits_big_endian_p)
2440 {
2441 accum = (unsigned char) *source;
2442 source += 1;
2443 accum_bits = HOST_CHAR_BIT - src_offset;
2444
2445 while (n > 0)
2446 {
2447 int unused_right;
2448
2449 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2450 accum_bits += HOST_CHAR_BIT;
2451 source += 1;
2452 chunk_size = HOST_CHAR_BIT - targ_offset;
2453 if (chunk_size > n)
2454 chunk_size = n;
2455 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2456 mask = ((1 << chunk_size) - 1) << unused_right;
2457 *target =
2458 (*target & ~mask)
2459 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2460 n -= chunk_size;
2461 accum_bits -= chunk_size;
2462 target += 1;
2463 targ_offset = 0;
2464 }
2465 }
2466 else
2467 {
2468 accum = (unsigned char) *source >> src_offset;
2469 source += 1;
2470 accum_bits = HOST_CHAR_BIT - src_offset;
2471
2472 while (n > 0)
2473 {
2474 accum = accum + ((unsigned char) *source << accum_bits);
2475 accum_bits += HOST_CHAR_BIT;
2476 source += 1;
2477 chunk_size = HOST_CHAR_BIT - targ_offset;
2478 if (chunk_size > n)
2479 chunk_size = n;
2480 mask = ((1 << chunk_size) - 1) << targ_offset;
2481 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2482 n -= chunk_size;
2483 accum_bits -= chunk_size;
2484 accum >>= chunk_size;
2485 target += 1;
2486 targ_offset = 0;
2487 }
2488 }
2489 }
2490
2491 /* Store the contents of FROMVAL into the location of TOVAL.
2492 Return a new value with the location of TOVAL and contents of
2493 FROMVAL. Handles assignment into packed fields that have
2494 floating-point or non-scalar types. */
2495
2496 static struct value *
2497 ada_value_assign (struct value *toval, struct value *fromval)
2498 {
2499 struct type *type = value_type (toval);
2500 int bits = value_bitsize (toval);
2501
2502 toval = ada_coerce_ref (toval);
2503 fromval = ada_coerce_ref (fromval);
2504
2505 if (ada_is_direct_array_type (value_type (toval)))
2506 toval = ada_coerce_to_simple_array (toval);
2507 if (ada_is_direct_array_type (value_type (fromval)))
2508 fromval = ada_coerce_to_simple_array (fromval);
2509
2510 if (!deprecated_value_modifiable (toval))
2511 error (_("Left operand of assignment is not a modifiable lvalue."));
2512
2513 if (VALUE_LVAL (toval) == lval_memory
2514 && bits > 0
2515 && (TYPE_CODE (type) == TYPE_CODE_FLT
2516 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2517 {
2518 int len = (value_bitpos (toval)
2519 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2520 int from_size;
2521 char *buffer = (char *) alloca (len);
2522 struct value *val;
2523 CORE_ADDR to_addr = value_address (toval);
2524
2525 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2526 fromval = value_cast (type, fromval);
2527
2528 read_memory (to_addr, buffer, len);
2529 from_size = value_bitsize (fromval);
2530 if (from_size == 0)
2531 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2532 if (gdbarch_bits_big_endian (get_type_arch (type)))
2533 move_bits (buffer, value_bitpos (toval),
2534 value_contents (fromval), from_size - bits, bits, 1);
2535 else
2536 move_bits (buffer, value_bitpos (toval),
2537 value_contents (fromval), 0, bits, 0);
2538 write_memory_with_notification (to_addr, buffer, len);
2539
2540 val = value_copy (toval);
2541 memcpy (value_contents_raw (val), value_contents (fromval),
2542 TYPE_LENGTH (type));
2543 deprecated_set_value_type (val, type);
2544
2545 return val;
2546 }
2547
2548 return value_assign (toval, fromval);
2549 }
2550
2551
2552 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2553 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2554 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2555 * COMPONENT, and not the inferior's memory. The current contents
2556 * of COMPONENT are ignored. */
2557 static void
2558 value_assign_to_component (struct value *container, struct value *component,
2559 struct value *val)
2560 {
2561 LONGEST offset_in_container =
2562 (LONGEST) (value_address (component) - value_address (container));
2563 int bit_offset_in_container =
2564 value_bitpos (component) - value_bitpos (container);
2565 int bits;
2566
2567 val = value_cast (value_type (component), val);
2568
2569 if (value_bitsize (component) == 0)
2570 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2571 else
2572 bits = value_bitsize (component);
2573
2574 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2575 move_bits (value_contents_writeable (container) + offset_in_container,
2576 value_bitpos (container) + bit_offset_in_container,
2577 value_contents (val),
2578 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2579 bits, 1);
2580 else
2581 move_bits (value_contents_writeable (container) + offset_in_container,
2582 value_bitpos (container) + bit_offset_in_container,
2583 value_contents (val), 0, bits, 0);
2584 }
2585
2586 /* The value of the element of array ARR at the ARITY indices given in IND.
2587 ARR may be either a simple array, GNAT array descriptor, or pointer
2588 thereto. */
2589
2590 struct value *
2591 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2592 {
2593 int k;
2594 struct value *elt;
2595 struct type *elt_type;
2596
2597 elt = ada_coerce_to_simple_array (arr);
2598
2599 elt_type = ada_check_typedef (value_type (elt));
2600 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2601 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2602 return value_subscript_packed (elt, arity, ind);
2603
2604 for (k = 0; k < arity; k += 1)
2605 {
2606 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2607 error (_("too many subscripts (%d expected)"), k);
2608 elt = value_subscript (elt, pos_atr (ind[k]));
2609 }
2610 return elt;
2611 }
2612
2613 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2614 value of the element of *ARR at the ARITY indices given in
2615 IND. Does not read the entire array into memory. */
2616
2617 static struct value *
2618 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2619 struct value **ind)
2620 {
2621 int k;
2622
2623 for (k = 0; k < arity; k += 1)
2624 {
2625 LONGEST lwb, upb;
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2628 error (_("too many subscripts (%d expected)"), k);
2629 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2630 value_copy (arr));
2631 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2632 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2633 type = TYPE_TARGET_TYPE (type);
2634 }
2635
2636 return value_ind (arr);
2637 }
2638
2639 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2640 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2641 elements starting at index LOW. The lower bound of this array is LOW, as
2642 per Ada rules. */
2643 static struct value *
2644 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2645 int low, int high)
2646 {
2647 struct type *type0 = ada_check_typedef (type);
2648 CORE_ADDR base = value_as_address (array_ptr)
2649 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2650 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2651 struct type *index_type =
2652 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2653 low, high);
2654 struct type *slice_type =
2655 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2656
2657 return value_at_lazy (slice_type, base);
2658 }
2659
2660
2661 static struct value *
2662 ada_value_slice (struct value *array, int low, int high)
2663 {
2664 struct type *type = ada_check_typedef (value_type (array));
2665 struct type *index_type =
2666 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2667 struct type *slice_type =
2668 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2669
2670 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2671 }
2672
2673 /* If type is a record type in the form of a standard GNAT array
2674 descriptor, returns the number of dimensions for type. If arr is a
2675 simple array, returns the number of "array of"s that prefix its
2676 type designation. Otherwise, returns 0. */
2677
2678 int
2679 ada_array_arity (struct type *type)
2680 {
2681 int arity;
2682
2683 if (type == NULL)
2684 return 0;
2685
2686 type = desc_base_type (type);
2687
2688 arity = 0;
2689 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2690 return desc_arity (desc_bounds_type (type));
2691 else
2692 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2693 {
2694 arity += 1;
2695 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2696 }
2697
2698 return arity;
2699 }
2700
2701 /* If TYPE is a record type in the form of a standard GNAT array
2702 descriptor or a simple array type, returns the element type for
2703 TYPE after indexing by NINDICES indices, or by all indices if
2704 NINDICES is -1. Otherwise, returns NULL. */
2705
2706 struct type *
2707 ada_array_element_type (struct type *type, int nindices)
2708 {
2709 type = desc_base_type (type);
2710
2711 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2712 {
2713 int k;
2714 struct type *p_array_type;
2715
2716 p_array_type = desc_data_target_type (type);
2717
2718 k = ada_array_arity (type);
2719 if (k == 0)
2720 return NULL;
2721
2722 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2723 if (nindices >= 0 && k > nindices)
2724 k = nindices;
2725 while (k > 0 && p_array_type != NULL)
2726 {
2727 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2728 k -= 1;
2729 }
2730 return p_array_type;
2731 }
2732 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2733 {
2734 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2735 {
2736 type = TYPE_TARGET_TYPE (type);
2737 nindices -= 1;
2738 }
2739 return type;
2740 }
2741
2742 return NULL;
2743 }
2744
2745 /* The type of nth index in arrays of given type (n numbering from 1).
2746 Does not examine memory. Throws an error if N is invalid or TYPE
2747 is not an array type. NAME is the name of the Ada attribute being
2748 evaluated ('range, 'first, 'last, or 'length); it is used in building
2749 the error message. */
2750
2751 static struct type *
2752 ada_index_type (struct type *type, int n, const char *name)
2753 {
2754 struct type *result_type;
2755
2756 type = desc_base_type (type);
2757
2758 if (n < 0 || n > ada_array_arity (type))
2759 error (_("invalid dimension number to '%s"), name);
2760
2761 if (ada_is_simple_array_type (type))
2762 {
2763 int i;
2764
2765 for (i = 1; i < n; i += 1)
2766 type = TYPE_TARGET_TYPE (type);
2767 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2768 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2769 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2770 perhaps stabsread.c would make more sense. */
2771 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2772 result_type = NULL;
2773 }
2774 else
2775 {
2776 result_type = desc_index_type (desc_bounds_type (type), n);
2777 if (result_type == NULL)
2778 error (_("attempt to take bound of something that is not an array"));
2779 }
2780
2781 return result_type;
2782 }
2783
2784 /* Given that arr is an array type, returns the lower bound of the
2785 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2786 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2787 array-descriptor type. It works for other arrays with bounds supplied
2788 by run-time quantities other than discriminants. */
2789
2790 static LONGEST
2791 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2792 {
2793 struct type *type, *elt_type, *index_type_desc, *index_type;
2794 int i;
2795
2796 gdb_assert (which == 0 || which == 1);
2797
2798 if (ada_is_constrained_packed_array_type (arr_type))
2799 arr_type = decode_constrained_packed_array_type (arr_type);
2800
2801 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2802 return (LONGEST) - which;
2803
2804 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2805 type = TYPE_TARGET_TYPE (arr_type);
2806 else
2807 type = arr_type;
2808
2809 elt_type = type;
2810 for (i = n; i > 1; i--)
2811 elt_type = TYPE_TARGET_TYPE (type);
2812
2813 index_type_desc = ada_find_parallel_type (type, "___XA");
2814 ada_fixup_array_indexes_type (index_type_desc);
2815 if (index_type_desc != NULL)
2816 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2817 NULL);
2818 else
2819 index_type = TYPE_INDEX_TYPE (elt_type);
2820
2821 return
2822 (LONGEST) (which == 0
2823 ? ada_discrete_type_low_bound (index_type)
2824 : ada_discrete_type_high_bound (index_type));
2825 }
2826
2827 /* Given that arr is an array value, returns the lower bound of the
2828 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2829 WHICH is 1. This routine will also work for arrays with bounds
2830 supplied by run-time quantities other than discriminants. */
2831
2832 static LONGEST
2833 ada_array_bound (struct value *arr, int n, int which)
2834 {
2835 struct type *arr_type = value_type (arr);
2836
2837 if (ada_is_constrained_packed_array_type (arr_type))
2838 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2839 else if (ada_is_simple_array_type (arr_type))
2840 return ada_array_bound_from_type (arr_type, n, which);
2841 else
2842 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2843 }
2844
2845 /* Given that arr is an array value, returns the length of the
2846 nth index. This routine will also work for arrays with bounds
2847 supplied by run-time quantities other than discriminants.
2848 Does not work for arrays indexed by enumeration types with representation
2849 clauses at the moment. */
2850
2851 static LONGEST
2852 ada_array_length (struct value *arr, int n)
2853 {
2854 struct type *arr_type = ada_check_typedef (value_type (arr));
2855
2856 if (ada_is_constrained_packed_array_type (arr_type))
2857 return ada_array_length (decode_constrained_packed_array (arr), n);
2858
2859 if (ada_is_simple_array_type (arr_type))
2860 return (ada_array_bound_from_type (arr_type, n, 1)
2861 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2862 else
2863 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2864 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2865 }
2866
2867 /* An empty array whose type is that of ARR_TYPE (an array type),
2868 with bounds LOW to LOW-1. */
2869
2870 static struct value *
2871 empty_array (struct type *arr_type, int low)
2872 {
2873 struct type *arr_type0 = ada_check_typedef (arr_type);
2874 struct type *index_type =
2875 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2876 low, low - 1);
2877 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2878
2879 return allocate_value (create_array_type (NULL, elt_type, index_type));
2880 }
2881 \f
2882
2883 /* Name resolution */
2884
2885 /* The "decoded" name for the user-definable Ada operator corresponding
2886 to OP. */
2887
2888 static const char *
2889 ada_decoded_op_name (enum exp_opcode op)
2890 {
2891 int i;
2892
2893 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2894 {
2895 if (ada_opname_table[i].op == op)
2896 return ada_opname_table[i].decoded;
2897 }
2898 error (_("Could not find operator name for opcode"));
2899 }
2900
2901
2902 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2903 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2904 undefined namespace) and converts operators that are
2905 user-defined into appropriate function calls. If CONTEXT_TYPE is
2906 non-null, it provides a preferred result type [at the moment, only
2907 type void has any effect---causing procedures to be preferred over
2908 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2909 return type is preferred. May change (expand) *EXP. */
2910
2911 static void
2912 resolve (struct expression **expp, int void_context_p)
2913 {
2914 struct type *context_type = NULL;
2915 int pc = 0;
2916
2917 if (void_context_p)
2918 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2919
2920 resolve_subexp (expp, &pc, 1, context_type);
2921 }
2922
2923 /* Resolve the operator of the subexpression beginning at
2924 position *POS of *EXPP. "Resolving" consists of replacing
2925 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2926 with their resolutions, replacing built-in operators with
2927 function calls to user-defined operators, where appropriate, and,
2928 when DEPROCEDURE_P is non-zero, converting function-valued variables
2929 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2930 are as in ada_resolve, above. */
2931
2932 static struct value *
2933 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2934 struct type *context_type)
2935 {
2936 int pc = *pos;
2937 int i;
2938 struct expression *exp; /* Convenience: == *expp. */
2939 enum exp_opcode op = (*expp)->elts[pc].opcode;
2940 struct value **argvec; /* Vector of operand types (alloca'ed). */
2941 int nargs; /* Number of operands. */
2942 int oplen;
2943
2944 argvec = NULL;
2945 nargs = 0;
2946 exp = *expp;
2947
2948 /* Pass one: resolve operands, saving their types and updating *pos,
2949 if needed. */
2950 switch (op)
2951 {
2952 case OP_FUNCALL:
2953 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2954 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2955 *pos += 7;
2956 else
2957 {
2958 *pos += 3;
2959 resolve_subexp (expp, pos, 0, NULL);
2960 }
2961 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2962 break;
2963
2964 case UNOP_ADDR:
2965 *pos += 1;
2966 resolve_subexp (expp, pos, 0, NULL);
2967 break;
2968
2969 case UNOP_QUAL:
2970 *pos += 3;
2971 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2972 break;
2973
2974 case OP_ATR_MODULUS:
2975 case OP_ATR_SIZE:
2976 case OP_ATR_TAG:
2977 case OP_ATR_FIRST:
2978 case OP_ATR_LAST:
2979 case OP_ATR_LENGTH:
2980 case OP_ATR_POS:
2981 case OP_ATR_VAL:
2982 case OP_ATR_MIN:
2983 case OP_ATR_MAX:
2984 case TERNOP_IN_RANGE:
2985 case BINOP_IN_BOUNDS:
2986 case UNOP_IN_RANGE:
2987 case OP_AGGREGATE:
2988 case OP_OTHERS:
2989 case OP_CHOICES:
2990 case OP_POSITIONAL:
2991 case OP_DISCRETE_RANGE:
2992 case OP_NAME:
2993 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2994 *pos += oplen;
2995 break;
2996
2997 case BINOP_ASSIGN:
2998 {
2999 struct value *arg1;
3000
3001 *pos += 1;
3002 arg1 = resolve_subexp (expp, pos, 0, NULL);
3003 if (arg1 == NULL)
3004 resolve_subexp (expp, pos, 1, NULL);
3005 else
3006 resolve_subexp (expp, pos, 1, value_type (arg1));
3007 break;
3008 }
3009
3010 case UNOP_CAST:
3011 *pos += 3;
3012 nargs = 1;
3013 break;
3014
3015 case BINOP_ADD:
3016 case BINOP_SUB:
3017 case BINOP_MUL:
3018 case BINOP_DIV:
3019 case BINOP_REM:
3020 case BINOP_MOD:
3021 case BINOP_EXP:
3022 case BINOP_CONCAT:
3023 case BINOP_LOGICAL_AND:
3024 case BINOP_LOGICAL_OR:
3025 case BINOP_BITWISE_AND:
3026 case BINOP_BITWISE_IOR:
3027 case BINOP_BITWISE_XOR:
3028
3029 case BINOP_EQUAL:
3030 case BINOP_NOTEQUAL:
3031 case BINOP_LESS:
3032 case BINOP_GTR:
3033 case BINOP_LEQ:
3034 case BINOP_GEQ:
3035
3036 case BINOP_REPEAT:
3037 case BINOP_SUBSCRIPT:
3038 case BINOP_COMMA:
3039 *pos += 1;
3040 nargs = 2;
3041 break;
3042
3043 case UNOP_NEG:
3044 case UNOP_PLUS:
3045 case UNOP_LOGICAL_NOT:
3046 case UNOP_ABS:
3047 case UNOP_IND:
3048 *pos += 1;
3049 nargs = 1;
3050 break;
3051
3052 case OP_LONG:
3053 case OP_DOUBLE:
3054 case OP_VAR_VALUE:
3055 *pos += 4;
3056 break;
3057
3058 case OP_TYPE:
3059 case OP_BOOL:
3060 case OP_LAST:
3061 case OP_INTERNALVAR:
3062 *pos += 3;
3063 break;
3064
3065 case UNOP_MEMVAL:
3066 *pos += 3;
3067 nargs = 1;
3068 break;
3069
3070 case OP_REGISTER:
3071 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3072 break;
3073
3074 case STRUCTOP_STRUCT:
3075 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3076 nargs = 1;
3077 break;
3078
3079 case TERNOP_SLICE:
3080 *pos += 1;
3081 nargs = 3;
3082 break;
3083
3084 case OP_STRING:
3085 break;
3086
3087 default:
3088 error (_("Unexpected operator during name resolution"));
3089 }
3090
3091 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3092 for (i = 0; i < nargs; i += 1)
3093 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3094 argvec[i] = NULL;
3095 exp = *expp;
3096
3097 /* Pass two: perform any resolution on principal operator. */
3098 switch (op)
3099 {
3100 default:
3101 break;
3102
3103 case OP_VAR_VALUE:
3104 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3105 {
3106 struct ada_symbol_info *candidates;
3107 int n_candidates;
3108
3109 n_candidates =
3110 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3111 (exp->elts[pc + 2].symbol),
3112 exp->elts[pc + 1].block, VAR_DOMAIN,
3113 &candidates, 1);
3114
3115 if (n_candidates > 1)
3116 {
3117 /* Types tend to get re-introduced locally, so if there
3118 are any local symbols that are not types, first filter
3119 out all types. */
3120 int j;
3121 for (j = 0; j < n_candidates; j += 1)
3122 switch (SYMBOL_CLASS (candidates[j].sym))
3123 {
3124 case LOC_REGISTER:
3125 case LOC_ARG:
3126 case LOC_REF_ARG:
3127 case LOC_REGPARM_ADDR:
3128 case LOC_LOCAL:
3129 case LOC_COMPUTED:
3130 goto FoundNonType;
3131 default:
3132 break;
3133 }
3134 FoundNonType:
3135 if (j < n_candidates)
3136 {
3137 j = 0;
3138 while (j < n_candidates)
3139 {
3140 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3141 {
3142 candidates[j] = candidates[n_candidates - 1];
3143 n_candidates -= 1;
3144 }
3145 else
3146 j += 1;
3147 }
3148 }
3149 }
3150
3151 if (n_candidates == 0)
3152 error (_("No definition found for %s"),
3153 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3154 else if (n_candidates == 1)
3155 i = 0;
3156 else if (deprocedure_p
3157 && !is_nonfunction (candidates, n_candidates))
3158 {
3159 i = ada_resolve_function
3160 (candidates, n_candidates, NULL, 0,
3161 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3162 context_type);
3163 if (i < 0)
3164 error (_("Could not find a match for %s"),
3165 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3166 }
3167 else
3168 {
3169 printf_filtered (_("Multiple matches for %s\n"),
3170 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3171 user_select_syms (candidates, n_candidates, 1);
3172 i = 0;
3173 }
3174
3175 exp->elts[pc + 1].block = candidates[i].block;
3176 exp->elts[pc + 2].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181
3182 if (deprocedure_p
3183 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3184 == TYPE_CODE_FUNC))
3185 {
3186 replace_operator_with_call (expp, pc, 0, 0,
3187 exp->elts[pc + 2].symbol,
3188 exp->elts[pc + 1].block);
3189 exp = *expp;
3190 }
3191 break;
3192
3193 case OP_FUNCALL:
3194 {
3195 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3196 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3197 {
3198 struct ada_symbol_info *candidates;
3199 int n_candidates;
3200
3201 n_candidates =
3202 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3203 (exp->elts[pc + 5].symbol),
3204 exp->elts[pc + 4].block, VAR_DOMAIN,
3205 &candidates, 1);
3206 if (n_candidates == 1)
3207 i = 0;
3208 else
3209 {
3210 i = ada_resolve_function
3211 (candidates, n_candidates,
3212 argvec, nargs,
3213 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3214 context_type);
3215 if (i < 0)
3216 error (_("Could not find a match for %s"),
3217 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3218 }
3219
3220 exp->elts[pc + 4].block = candidates[i].block;
3221 exp->elts[pc + 5].symbol = candidates[i].sym;
3222 if (innermost_block == NULL
3223 || contained_in (candidates[i].block, innermost_block))
3224 innermost_block = candidates[i].block;
3225 }
3226 }
3227 break;
3228 case BINOP_ADD:
3229 case BINOP_SUB:
3230 case BINOP_MUL:
3231 case BINOP_DIV:
3232 case BINOP_REM:
3233 case BINOP_MOD:
3234 case BINOP_CONCAT:
3235 case BINOP_BITWISE_AND:
3236 case BINOP_BITWISE_IOR:
3237 case BINOP_BITWISE_XOR:
3238 case BINOP_EQUAL:
3239 case BINOP_NOTEQUAL:
3240 case BINOP_LESS:
3241 case BINOP_GTR:
3242 case BINOP_LEQ:
3243 case BINOP_GEQ:
3244 case BINOP_EXP:
3245 case UNOP_NEG:
3246 case UNOP_PLUS:
3247 case UNOP_LOGICAL_NOT:
3248 case UNOP_ABS:
3249 if (possible_user_operator_p (op, argvec))
3250 {
3251 struct ada_symbol_info *candidates;
3252 int n_candidates;
3253
3254 n_candidates =
3255 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3256 (struct block *) NULL, VAR_DOMAIN,
3257 &candidates, 1);
3258 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3259 ada_decoded_op_name (op), NULL);
3260 if (i < 0)
3261 break;
3262
3263 replace_operator_with_call (expp, pc, nargs, 1,
3264 candidates[i].sym, candidates[i].block);
3265 exp = *expp;
3266 }
3267 break;
3268
3269 case OP_TYPE:
3270 case OP_REGISTER:
3271 return NULL;
3272 }
3273
3274 *pos = pc;
3275 return evaluate_subexp_type (exp, pos);
3276 }
3277
3278 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3279 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3280 a non-pointer. */
3281 /* The term "match" here is rather loose. The match is heuristic and
3282 liberal. */
3283
3284 static int
3285 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3286 {
3287 ftype = ada_check_typedef (ftype);
3288 atype = ada_check_typedef (atype);
3289
3290 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3291 ftype = TYPE_TARGET_TYPE (ftype);
3292 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3293 atype = TYPE_TARGET_TYPE (atype);
3294
3295 switch (TYPE_CODE (ftype))
3296 {
3297 default:
3298 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3299 case TYPE_CODE_PTR:
3300 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3301 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3302 TYPE_TARGET_TYPE (atype), 0);
3303 else
3304 return (may_deref
3305 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3306 case TYPE_CODE_INT:
3307 case TYPE_CODE_ENUM:
3308 case TYPE_CODE_RANGE:
3309 switch (TYPE_CODE (atype))
3310 {
3311 case TYPE_CODE_INT:
3312 case TYPE_CODE_ENUM:
3313 case TYPE_CODE_RANGE:
3314 return 1;
3315 default:
3316 return 0;
3317 }
3318
3319 case TYPE_CODE_ARRAY:
3320 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3321 || ada_is_array_descriptor_type (atype));
3322
3323 case TYPE_CODE_STRUCT:
3324 if (ada_is_array_descriptor_type (ftype))
3325 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3326 || ada_is_array_descriptor_type (atype));
3327 else
3328 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3329 && !ada_is_array_descriptor_type (atype));
3330
3331 case TYPE_CODE_UNION:
3332 case TYPE_CODE_FLT:
3333 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3334 }
3335 }
3336
3337 /* Return non-zero if the formals of FUNC "sufficiently match" the
3338 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3339 may also be an enumeral, in which case it is treated as a 0-
3340 argument function. */
3341
3342 static int
3343 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3344 {
3345 int i;
3346 struct type *func_type = SYMBOL_TYPE (func);
3347
3348 if (SYMBOL_CLASS (func) == LOC_CONST
3349 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3350 return (n_actuals == 0);
3351 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3352 return 0;
3353
3354 if (TYPE_NFIELDS (func_type) != n_actuals)
3355 return 0;
3356
3357 for (i = 0; i < n_actuals; i += 1)
3358 {
3359 if (actuals[i] == NULL)
3360 return 0;
3361 else
3362 {
3363 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3364 i));
3365 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3366
3367 if (!ada_type_match (ftype, atype, 1))
3368 return 0;
3369 }
3370 }
3371 return 1;
3372 }
3373
3374 /* False iff function type FUNC_TYPE definitely does not produce a value
3375 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3376 FUNC_TYPE is not a valid function type with a non-null return type
3377 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3378
3379 static int
3380 return_match (struct type *func_type, struct type *context_type)
3381 {
3382 struct type *return_type;
3383
3384 if (func_type == NULL)
3385 return 1;
3386
3387 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3388 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3389 else
3390 return_type = get_base_type (func_type);
3391 if (return_type == NULL)
3392 return 1;
3393
3394 context_type = get_base_type (context_type);
3395
3396 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3397 return context_type == NULL || return_type == context_type;
3398 else if (context_type == NULL)
3399 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3400 else
3401 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3402 }
3403
3404
3405 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3406 function (if any) that matches the types of the NARGS arguments in
3407 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3408 that returns that type, then eliminate matches that don't. If
3409 CONTEXT_TYPE is void and there is at least one match that does not
3410 return void, eliminate all matches that do.
3411
3412 Asks the user if there is more than one match remaining. Returns -1
3413 if there is no such symbol or none is selected. NAME is used
3414 solely for messages. May re-arrange and modify SYMS in
3415 the process; the index returned is for the modified vector. */
3416
3417 static int
3418 ada_resolve_function (struct ada_symbol_info syms[],
3419 int nsyms, struct value **args, int nargs,
3420 const char *name, struct type *context_type)
3421 {
3422 int fallback;
3423 int k;
3424 int m; /* Number of hits */
3425
3426 m = 0;
3427 /* In the first pass of the loop, we only accept functions matching
3428 context_type. If none are found, we add a second pass of the loop
3429 where every function is accepted. */
3430 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3431 {
3432 for (k = 0; k < nsyms; k += 1)
3433 {
3434 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3435
3436 if (ada_args_match (syms[k].sym, args, nargs)
3437 && (fallback || return_match (type, context_type)))
3438 {
3439 syms[m] = syms[k];
3440 m += 1;
3441 }
3442 }
3443 }
3444
3445 if (m == 0)
3446 return -1;
3447 else if (m > 1)
3448 {
3449 printf_filtered (_("Multiple matches for %s\n"), name);
3450 user_select_syms (syms, m, 1);
3451 return 0;
3452 }
3453 return 0;
3454 }
3455
3456 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3457 in a listing of choices during disambiguation (see sort_choices, below).
3458 The idea is that overloadings of a subprogram name from the
3459 same package should sort in their source order. We settle for ordering
3460 such symbols by their trailing number (__N or $N). */
3461
3462 static int
3463 encoded_ordered_before (const char *N0, const char *N1)
3464 {
3465 if (N1 == NULL)
3466 return 0;
3467 else if (N0 == NULL)
3468 return 1;
3469 else
3470 {
3471 int k0, k1;
3472
3473 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3474 ;
3475 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3476 ;
3477 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3478 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3479 {
3480 int n0, n1;
3481
3482 n0 = k0;
3483 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3484 n0 -= 1;
3485 n1 = k1;
3486 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3487 n1 -= 1;
3488 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3489 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3490 }
3491 return (strcmp (N0, N1) < 0);
3492 }
3493 }
3494
3495 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3496 encoded names. */
3497
3498 static void
3499 sort_choices (struct ada_symbol_info syms[], int nsyms)
3500 {
3501 int i;
3502
3503 for (i = 1; i < nsyms; i += 1)
3504 {
3505 struct ada_symbol_info sym = syms[i];
3506 int j;
3507
3508 for (j = i - 1; j >= 0; j -= 1)
3509 {
3510 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3511 SYMBOL_LINKAGE_NAME (sym.sym)))
3512 break;
3513 syms[j + 1] = syms[j];
3514 }
3515 syms[j + 1] = sym;
3516 }
3517 }
3518
3519 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3520 by asking the user (if necessary), returning the number selected,
3521 and setting the first elements of SYMS items. Error if no symbols
3522 selected. */
3523
3524 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3525 to be re-integrated one of these days. */
3526
3527 int
3528 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3529 {
3530 int i;
3531 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3532 int n_chosen;
3533 int first_choice = (max_results == 1) ? 1 : 2;
3534 const char *select_mode = multiple_symbols_select_mode ();
3535
3536 if (max_results < 1)
3537 error (_("Request to select 0 symbols!"));
3538 if (nsyms <= 1)
3539 return nsyms;
3540
3541 if (select_mode == multiple_symbols_cancel)
3542 error (_("\
3543 canceled because the command is ambiguous\n\
3544 See set/show multiple-symbol."));
3545
3546 /* If select_mode is "all", then return all possible symbols.
3547 Only do that if more than one symbol can be selected, of course.
3548 Otherwise, display the menu as usual. */
3549 if (select_mode == multiple_symbols_all && max_results > 1)
3550 return nsyms;
3551
3552 printf_unfiltered (_("[0] cancel\n"));
3553 if (max_results > 1)
3554 printf_unfiltered (_("[1] all\n"));
3555
3556 sort_choices (syms, nsyms);
3557
3558 for (i = 0; i < nsyms; i += 1)
3559 {
3560 if (syms[i].sym == NULL)
3561 continue;
3562
3563 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3564 {
3565 struct symtab_and_line sal =
3566 find_function_start_sal (syms[i].sym, 1);
3567
3568 if (sal.symtab == NULL)
3569 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3570 i + first_choice,
3571 SYMBOL_PRINT_NAME (syms[i].sym),
3572 sal.line);
3573 else
3574 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3575 SYMBOL_PRINT_NAME (syms[i].sym),
3576 sal.symtab->filename, sal.line);
3577 continue;
3578 }
3579 else
3580 {
3581 int is_enumeral =
3582 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3583 && SYMBOL_TYPE (syms[i].sym) != NULL
3584 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3585 struct symtab *symtab = syms[i].sym->symtab;
3586
3587 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3588 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3589 i + first_choice,
3590 SYMBOL_PRINT_NAME (syms[i].sym),
3591 symtab->filename, SYMBOL_LINE (syms[i].sym));
3592 else if (is_enumeral
3593 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3594 {
3595 printf_unfiltered (("[%d] "), i + first_choice);
3596 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3597 gdb_stdout, -1, 0);
3598 printf_unfiltered (_("'(%s) (enumeral)\n"),
3599 SYMBOL_PRINT_NAME (syms[i].sym));
3600 }
3601 else if (symtab != NULL)
3602 printf_unfiltered (is_enumeral
3603 ? _("[%d] %s in %s (enumeral)\n")
3604 : _("[%d] %s at %s:?\n"),
3605 i + first_choice,
3606 SYMBOL_PRINT_NAME (syms[i].sym),
3607 symtab->filename);
3608 else
3609 printf_unfiltered (is_enumeral
3610 ? _("[%d] %s (enumeral)\n")
3611 : _("[%d] %s at ?\n"),
3612 i + first_choice,
3613 SYMBOL_PRINT_NAME (syms[i].sym));
3614 }
3615 }
3616
3617 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3618 "overload-choice");
3619
3620 for (i = 0; i < n_chosen; i += 1)
3621 syms[i] = syms[chosen[i]];
3622
3623 return n_chosen;
3624 }
3625
3626 /* Read and validate a set of numeric choices from the user in the
3627 range 0 .. N_CHOICES-1. Place the results in increasing
3628 order in CHOICES[0 .. N-1], and return N.
3629
3630 The user types choices as a sequence of numbers on one line
3631 separated by blanks, encoding them as follows:
3632
3633 + A choice of 0 means to cancel the selection, throwing an error.
3634 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3635 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3636
3637 The user is not allowed to choose more than MAX_RESULTS values.
3638
3639 ANNOTATION_SUFFIX, if present, is used to annotate the input
3640 prompts (for use with the -f switch). */
3641
3642 int
3643 get_selections (int *choices, int n_choices, int max_results,
3644 int is_all_choice, char *annotation_suffix)
3645 {
3646 char *args;
3647 char *prompt;
3648 int n_chosen;
3649 int first_choice = is_all_choice ? 2 : 1;
3650
3651 prompt = getenv ("PS2");
3652 if (prompt == NULL)
3653 prompt = "> ";
3654
3655 args = command_line_input (prompt, 0, annotation_suffix);
3656
3657 if (args == NULL)
3658 error_no_arg (_("one or more choice numbers"));
3659
3660 n_chosen = 0;
3661
3662 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3663 order, as given in args. Choices are validated. */
3664 while (1)
3665 {
3666 char *args2;
3667 int choice, j;
3668
3669 args = skip_spaces (args);
3670 if (*args == '\0' && n_chosen == 0)
3671 error_no_arg (_("one or more choice numbers"));
3672 else if (*args == '\0')
3673 break;
3674
3675 choice = strtol (args, &args2, 10);
3676 if (args == args2 || choice < 0
3677 || choice > n_choices + first_choice - 1)
3678 error (_("Argument must be choice number"));
3679 args = args2;
3680
3681 if (choice == 0)
3682 error (_("cancelled"));
3683
3684 if (choice < first_choice)
3685 {
3686 n_chosen = n_choices;
3687 for (j = 0; j < n_choices; j += 1)
3688 choices[j] = j;
3689 break;
3690 }
3691 choice -= first_choice;
3692
3693 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3694 {
3695 }
3696
3697 if (j < 0 || choice != choices[j])
3698 {
3699 int k;
3700
3701 for (k = n_chosen - 1; k > j; k -= 1)
3702 choices[k + 1] = choices[k];
3703 choices[j + 1] = choice;
3704 n_chosen += 1;
3705 }
3706 }
3707
3708 if (n_chosen > max_results)
3709 error (_("Select no more than %d of the above"), max_results);
3710
3711 return n_chosen;
3712 }
3713
3714 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3715 on the function identified by SYM and BLOCK, and taking NARGS
3716 arguments. Update *EXPP as needed to hold more space. */
3717
3718 static void
3719 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3720 int oplen, struct symbol *sym,
3721 struct block *block)
3722 {
3723 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3724 symbol, -oplen for operator being replaced). */
3725 struct expression *newexp = (struct expression *)
3726 xzalloc (sizeof (struct expression)
3727 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3728 struct expression *exp = *expp;
3729
3730 newexp->nelts = exp->nelts + 7 - oplen;
3731 newexp->language_defn = exp->language_defn;
3732 newexp->gdbarch = exp->gdbarch;
3733 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3734 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3735 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3736
3737 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3738 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3739
3740 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3741 newexp->elts[pc + 4].block = block;
3742 newexp->elts[pc + 5].symbol = sym;
3743
3744 *expp = newexp;
3745 xfree (exp);
3746 }
3747
3748 /* Type-class predicates */
3749
3750 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3751 or FLOAT). */
3752
3753 static int
3754 numeric_type_p (struct type *type)
3755 {
3756 if (type == NULL)
3757 return 0;
3758 else
3759 {
3760 switch (TYPE_CODE (type))
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_FLT:
3764 return 1;
3765 case TYPE_CODE_RANGE:
3766 return (type == TYPE_TARGET_TYPE (type)
3767 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3768 default:
3769 return 0;
3770 }
3771 }
3772 }
3773
3774 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3775
3776 static int
3777 integer_type_p (struct type *type)
3778 {
3779 if (type == NULL)
3780 return 0;
3781 else
3782 {
3783 switch (TYPE_CODE (type))
3784 {
3785 case TYPE_CODE_INT:
3786 return 1;
3787 case TYPE_CODE_RANGE:
3788 return (type == TYPE_TARGET_TYPE (type)
3789 || integer_type_p (TYPE_TARGET_TYPE (type)));
3790 default:
3791 return 0;
3792 }
3793 }
3794 }
3795
3796 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3797
3798 static int
3799 scalar_type_p (struct type *type)
3800 {
3801 if (type == NULL)
3802 return 0;
3803 else
3804 {
3805 switch (TYPE_CODE (type))
3806 {
3807 case TYPE_CODE_INT:
3808 case TYPE_CODE_RANGE:
3809 case TYPE_CODE_ENUM:
3810 case TYPE_CODE_FLT:
3811 return 1;
3812 default:
3813 return 0;
3814 }
3815 }
3816 }
3817
3818 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3819
3820 static int
3821 discrete_type_p (struct type *type)
3822 {
3823 if (type == NULL)
3824 return 0;
3825 else
3826 {
3827 switch (TYPE_CODE (type))
3828 {
3829 case TYPE_CODE_INT:
3830 case TYPE_CODE_RANGE:
3831 case TYPE_CODE_ENUM:
3832 case TYPE_CODE_BOOL:
3833 return 1;
3834 default:
3835 return 0;
3836 }
3837 }
3838 }
3839
3840 /* Returns non-zero if OP with operands in the vector ARGS could be
3841 a user-defined function. Errs on the side of pre-defined operators
3842 (i.e., result 0). */
3843
3844 static int
3845 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3846 {
3847 struct type *type0 =
3848 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3849 struct type *type1 =
3850 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3851
3852 if (type0 == NULL)
3853 return 0;
3854
3855 switch (op)
3856 {
3857 default:
3858 return 0;
3859
3860 case BINOP_ADD:
3861 case BINOP_SUB:
3862 case BINOP_MUL:
3863 case BINOP_DIV:
3864 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3865
3866 case BINOP_REM:
3867 case BINOP_MOD:
3868 case BINOP_BITWISE_AND:
3869 case BINOP_BITWISE_IOR:
3870 case BINOP_BITWISE_XOR:
3871 return (!(integer_type_p (type0) && integer_type_p (type1)));
3872
3873 case BINOP_EQUAL:
3874 case BINOP_NOTEQUAL:
3875 case BINOP_LESS:
3876 case BINOP_GTR:
3877 case BINOP_LEQ:
3878 case BINOP_GEQ:
3879 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3880
3881 case BINOP_CONCAT:
3882 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3883
3884 case BINOP_EXP:
3885 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3886
3887 case UNOP_NEG:
3888 case UNOP_PLUS:
3889 case UNOP_LOGICAL_NOT:
3890 case UNOP_ABS:
3891 return (!numeric_type_p (type0));
3892
3893 }
3894 }
3895 \f
3896 /* Renaming */
3897
3898 /* NOTES:
3899
3900 1. In the following, we assume that a renaming type's name may
3901 have an ___XD suffix. It would be nice if this went away at some
3902 point.
3903 2. We handle both the (old) purely type-based representation of
3904 renamings and the (new) variable-based encoding. At some point,
3905 it is devoutly to be hoped that the former goes away
3906 (FIXME: hilfinger-2007-07-09).
3907 3. Subprogram renamings are not implemented, although the XRS
3908 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3909
3910 /* If SYM encodes a renaming,
3911
3912 <renaming> renames <renamed entity>,
3913
3914 sets *LEN to the length of the renamed entity's name,
3915 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3916 the string describing the subcomponent selected from the renamed
3917 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3918 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3919 are undefined). Otherwise, returns a value indicating the category
3920 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3921 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3922 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3923 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3924 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3925 may be NULL, in which case they are not assigned.
3926
3927 [Currently, however, GCC does not generate subprogram renamings.] */
3928
3929 enum ada_renaming_category
3930 ada_parse_renaming (struct symbol *sym,
3931 const char **renamed_entity, int *len,
3932 const char **renaming_expr)
3933 {
3934 enum ada_renaming_category kind;
3935 const char *info;
3936 const char *suffix;
3937
3938 if (sym == NULL)
3939 return ADA_NOT_RENAMING;
3940 switch (SYMBOL_CLASS (sym))
3941 {
3942 default:
3943 return ADA_NOT_RENAMING;
3944 case LOC_TYPEDEF:
3945 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3946 renamed_entity, len, renaming_expr);
3947 case LOC_LOCAL:
3948 case LOC_STATIC:
3949 case LOC_COMPUTED:
3950 case LOC_OPTIMIZED_OUT:
3951 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3952 if (info == NULL)
3953 return ADA_NOT_RENAMING;
3954 switch (info[5])
3955 {
3956 case '_':
3957 kind = ADA_OBJECT_RENAMING;
3958 info += 6;
3959 break;
3960 case 'E':
3961 kind = ADA_EXCEPTION_RENAMING;
3962 info += 7;
3963 break;
3964 case 'P':
3965 kind = ADA_PACKAGE_RENAMING;
3966 info += 7;
3967 break;
3968 case 'S':
3969 kind = ADA_SUBPROGRAM_RENAMING;
3970 info += 7;
3971 break;
3972 default:
3973 return ADA_NOT_RENAMING;
3974 }
3975 }
3976
3977 if (renamed_entity != NULL)
3978 *renamed_entity = info;
3979 suffix = strstr (info, "___XE");
3980 if (suffix == NULL || suffix == info)
3981 return ADA_NOT_RENAMING;
3982 if (len != NULL)
3983 *len = strlen (info) - strlen (suffix);
3984 suffix += 5;
3985 if (renaming_expr != NULL)
3986 *renaming_expr = suffix;
3987 return kind;
3988 }
3989
3990 /* Assuming TYPE encodes a renaming according to the old encoding in
3991 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3992 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3993 ADA_NOT_RENAMING otherwise. */
3994 static enum ada_renaming_category
3995 parse_old_style_renaming (struct type *type,
3996 const char **renamed_entity, int *len,
3997 const char **renaming_expr)
3998 {
3999 enum ada_renaming_category kind;
4000 const char *name;
4001 const char *info;
4002 const char *suffix;
4003
4004 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4005 || TYPE_NFIELDS (type) != 1)
4006 return ADA_NOT_RENAMING;
4007
4008 name = type_name_no_tag (type);
4009 if (name == NULL)
4010 return ADA_NOT_RENAMING;
4011
4012 name = strstr (name, "___XR");
4013 if (name == NULL)
4014 return ADA_NOT_RENAMING;
4015 switch (name[5])
4016 {
4017 case '\0':
4018 case '_':
4019 kind = ADA_OBJECT_RENAMING;
4020 break;
4021 case 'E':
4022 kind = ADA_EXCEPTION_RENAMING;
4023 break;
4024 case 'P':
4025 kind = ADA_PACKAGE_RENAMING;
4026 break;
4027 case 'S':
4028 kind = ADA_SUBPROGRAM_RENAMING;
4029 break;
4030 default:
4031 return ADA_NOT_RENAMING;
4032 }
4033
4034 info = TYPE_FIELD_NAME (type, 0);
4035 if (info == NULL)
4036 return ADA_NOT_RENAMING;
4037 if (renamed_entity != NULL)
4038 *renamed_entity = info;
4039 suffix = strstr (info, "___XE");
4040 if (renaming_expr != NULL)
4041 *renaming_expr = suffix + 5;
4042 if (suffix == NULL || suffix == info)
4043 return ADA_NOT_RENAMING;
4044 if (len != NULL)
4045 *len = suffix - info;
4046 return kind;
4047 }
4048
4049 /* Compute the value of the given RENAMING_SYM, which is expected to
4050 be a symbol encoding a renaming expression. BLOCK is the block
4051 used to evaluate the renaming. */
4052
4053 static struct value *
4054 ada_read_renaming_var_value (struct symbol *renaming_sym,
4055 struct block *block)
4056 {
4057 char *sym_name;
4058 struct expression *expr;
4059 struct value *value;
4060 struct cleanup *old_chain = NULL;
4061
4062 sym_name = xstrdup (SYMBOL_LINKAGE_NAME (renaming_sym));
4063 old_chain = make_cleanup (xfree, sym_name);
4064 expr = parse_exp_1 (&sym_name, 0, block, 0);
4065 make_cleanup (free_current_contents, &expr);
4066 value = evaluate_expression (expr);
4067
4068 do_cleanups (old_chain);
4069 return value;
4070 }
4071 \f
4072
4073 /* Evaluation: Function Calls */
4074
4075 /* Return an lvalue containing the value VAL. This is the identity on
4076 lvalues, and otherwise has the side-effect of allocating memory
4077 in the inferior where a copy of the value contents is copied. */
4078
4079 static struct value *
4080 ensure_lval (struct value *val)
4081 {
4082 if (VALUE_LVAL (val) == not_lval
4083 || VALUE_LVAL (val) == lval_internalvar)
4084 {
4085 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4086 const CORE_ADDR addr =
4087 value_as_long (value_allocate_space_in_inferior (len));
4088
4089 set_value_address (val, addr);
4090 VALUE_LVAL (val) = lval_memory;
4091 write_memory (addr, value_contents (val), len);
4092 }
4093
4094 return val;
4095 }
4096
4097 /* Return the value ACTUAL, converted to be an appropriate value for a
4098 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4099 allocating any necessary descriptors (fat pointers), or copies of
4100 values not residing in memory, updating it as needed. */
4101
4102 struct value *
4103 ada_convert_actual (struct value *actual, struct type *formal_type0)
4104 {
4105 struct type *actual_type = ada_check_typedef (value_type (actual));
4106 struct type *formal_type = ada_check_typedef (formal_type0);
4107 struct type *formal_target =
4108 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4109 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4110 struct type *actual_target =
4111 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4112 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4113
4114 if (ada_is_array_descriptor_type (formal_target)
4115 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4116 return make_array_descriptor (formal_type, actual);
4117 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4118 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4119 {
4120 struct value *result;
4121
4122 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4123 && ada_is_array_descriptor_type (actual_target))
4124 result = desc_data (actual);
4125 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4126 {
4127 if (VALUE_LVAL (actual) != lval_memory)
4128 {
4129 struct value *val;
4130
4131 actual_type = ada_check_typedef (value_type (actual));
4132 val = allocate_value (actual_type);
4133 memcpy ((char *) value_contents_raw (val),
4134 (char *) value_contents (actual),
4135 TYPE_LENGTH (actual_type));
4136 actual = ensure_lval (val);
4137 }
4138 result = value_addr (actual);
4139 }
4140 else
4141 return actual;
4142 return value_cast_pointers (formal_type, result, 0);
4143 }
4144 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4145 return ada_value_ind (actual);
4146
4147 return actual;
4148 }
4149
4150 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4151 type TYPE. This is usually an inefficient no-op except on some targets
4152 (such as AVR) where the representation of a pointer and an address
4153 differs. */
4154
4155 static CORE_ADDR
4156 value_pointer (struct value *value, struct type *type)
4157 {
4158 struct gdbarch *gdbarch = get_type_arch (type);
4159 unsigned len = TYPE_LENGTH (type);
4160 gdb_byte *buf = alloca (len);
4161 CORE_ADDR addr;
4162
4163 addr = value_address (value);
4164 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4165 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4166 return addr;
4167 }
4168
4169
4170 /* Push a descriptor of type TYPE for array value ARR on the stack at
4171 *SP, updating *SP to reflect the new descriptor. Return either
4172 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4173 to-descriptor type rather than a descriptor type), a struct value *
4174 representing a pointer to this descriptor. */
4175
4176 static struct value *
4177 make_array_descriptor (struct type *type, struct value *arr)
4178 {
4179 struct type *bounds_type = desc_bounds_type (type);
4180 struct type *desc_type = desc_base_type (type);
4181 struct value *descriptor = allocate_value (desc_type);
4182 struct value *bounds = allocate_value (bounds_type);
4183 int i;
4184
4185 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4186 i > 0; i -= 1)
4187 {
4188 modify_field (value_type (bounds), value_contents_writeable (bounds),
4189 ada_array_bound (arr, i, 0),
4190 desc_bound_bitpos (bounds_type, i, 0),
4191 desc_bound_bitsize (bounds_type, i, 0));
4192 modify_field (value_type (bounds), value_contents_writeable (bounds),
4193 ada_array_bound (arr, i, 1),
4194 desc_bound_bitpos (bounds_type, i, 1),
4195 desc_bound_bitsize (bounds_type, i, 1));
4196 }
4197
4198 bounds = ensure_lval (bounds);
4199
4200 modify_field (value_type (descriptor),
4201 value_contents_writeable (descriptor),
4202 value_pointer (ensure_lval (arr),
4203 TYPE_FIELD_TYPE (desc_type, 0)),
4204 fat_pntr_data_bitpos (desc_type),
4205 fat_pntr_data_bitsize (desc_type));
4206
4207 modify_field (value_type (descriptor),
4208 value_contents_writeable (descriptor),
4209 value_pointer (bounds,
4210 TYPE_FIELD_TYPE (desc_type, 1)),
4211 fat_pntr_bounds_bitpos (desc_type),
4212 fat_pntr_bounds_bitsize (desc_type));
4213
4214 descriptor = ensure_lval (descriptor);
4215
4216 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4217 return value_addr (descriptor);
4218 else
4219 return descriptor;
4220 }
4221 \f
4222 /* Dummy definitions for an experimental caching module that is not
4223 * used in the public sources. */
4224
4225 static int
4226 lookup_cached_symbol (const char *name, domain_enum namespace,
4227 struct symbol **sym, struct block **block)
4228 {
4229 return 0;
4230 }
4231
4232 static void
4233 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4234 struct block *block)
4235 {
4236 }
4237 \f
4238 /* Symbol Lookup */
4239
4240 /* Return nonzero if wild matching should be used when searching for
4241 all symbols matching LOOKUP_NAME.
4242
4243 LOOKUP_NAME is expected to be a symbol name after transformation
4244 for Ada lookups (see ada_name_for_lookup). */
4245
4246 static int
4247 should_use_wild_match (const char *lookup_name)
4248 {
4249 return (strstr (lookup_name, "__") == NULL);
4250 }
4251
4252 /* Return the result of a standard (literal, C-like) lookup of NAME in
4253 given DOMAIN, visible from lexical block BLOCK. */
4254
4255 static struct symbol *
4256 standard_lookup (const char *name, const struct block *block,
4257 domain_enum domain)
4258 {
4259 /* Initialize it just to avoid a GCC false warning. */
4260 struct symbol *sym = NULL;
4261
4262 if (lookup_cached_symbol (name, domain, &sym, NULL))
4263 return sym;
4264 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4265 cache_symbol (name, domain, sym, block_found);
4266 return sym;
4267 }
4268
4269
4270 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4271 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4272 since they contend in overloading in the same way. */
4273 static int
4274 is_nonfunction (struct ada_symbol_info syms[], int n)
4275 {
4276 int i;
4277
4278 for (i = 0; i < n; i += 1)
4279 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4280 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4281 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4282 return 1;
4283
4284 return 0;
4285 }
4286
4287 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4288 struct types. Otherwise, they may not. */
4289
4290 static int
4291 equiv_types (struct type *type0, struct type *type1)
4292 {
4293 if (type0 == type1)
4294 return 1;
4295 if (type0 == NULL || type1 == NULL
4296 || TYPE_CODE (type0) != TYPE_CODE (type1))
4297 return 0;
4298 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4299 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4300 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4301 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4302 return 1;
4303
4304 return 0;
4305 }
4306
4307 /* True iff SYM0 represents the same entity as SYM1, or one that is
4308 no more defined than that of SYM1. */
4309
4310 static int
4311 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4312 {
4313 if (sym0 == sym1)
4314 return 1;
4315 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4316 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4317 return 0;
4318
4319 switch (SYMBOL_CLASS (sym0))
4320 {
4321 case LOC_UNDEF:
4322 return 1;
4323 case LOC_TYPEDEF:
4324 {
4325 struct type *type0 = SYMBOL_TYPE (sym0);
4326 struct type *type1 = SYMBOL_TYPE (sym1);
4327 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4328 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4329 int len0 = strlen (name0);
4330
4331 return
4332 TYPE_CODE (type0) == TYPE_CODE (type1)
4333 && (equiv_types (type0, type1)
4334 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4335 && strncmp (name1 + len0, "___XV", 5) == 0));
4336 }
4337 case LOC_CONST:
4338 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4339 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4340 default:
4341 return 0;
4342 }
4343 }
4344
4345 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4346 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4347
4348 static void
4349 add_defn_to_vec (struct obstack *obstackp,
4350 struct symbol *sym,
4351 struct block *block)
4352 {
4353 int i;
4354 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4355
4356 /* Do not try to complete stub types, as the debugger is probably
4357 already scanning all symbols matching a certain name at the
4358 time when this function is called. Trying to replace the stub
4359 type by its associated full type will cause us to restart a scan
4360 which may lead to an infinite recursion. Instead, the client
4361 collecting the matching symbols will end up collecting several
4362 matches, with at least one of them complete. It can then filter
4363 out the stub ones if needed. */
4364
4365 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4366 {
4367 if (lesseq_defined_than (sym, prevDefns[i].sym))
4368 return;
4369 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4370 {
4371 prevDefns[i].sym = sym;
4372 prevDefns[i].block = block;
4373 return;
4374 }
4375 }
4376
4377 {
4378 struct ada_symbol_info info;
4379
4380 info.sym = sym;
4381 info.block = block;
4382 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4383 }
4384 }
4385
4386 /* Number of ada_symbol_info structures currently collected in
4387 current vector in *OBSTACKP. */
4388
4389 static int
4390 num_defns_collected (struct obstack *obstackp)
4391 {
4392 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4393 }
4394
4395 /* Vector of ada_symbol_info structures currently collected in current
4396 vector in *OBSTACKP. If FINISH, close off the vector and return
4397 its final address. */
4398
4399 static struct ada_symbol_info *
4400 defns_collected (struct obstack *obstackp, int finish)
4401 {
4402 if (finish)
4403 return obstack_finish (obstackp);
4404 else
4405 return (struct ada_symbol_info *) obstack_base (obstackp);
4406 }
4407
4408 /* Return a minimal symbol matching NAME according to Ada decoding
4409 rules. Returns NULL if there is no such minimal symbol. Names
4410 prefixed with "standard__" are handled specially: "standard__" is
4411 first stripped off, and only static and global symbols are searched. */
4412
4413 struct minimal_symbol *
4414 ada_lookup_simple_minsym (const char *name)
4415 {
4416 struct objfile *objfile;
4417 struct minimal_symbol *msymbol;
4418 const int wild_match_p = should_use_wild_match (name);
4419
4420 /* Special case: If the user specifies a symbol name inside package
4421 Standard, do a non-wild matching of the symbol name without
4422 the "standard__" prefix. This was primarily introduced in order
4423 to allow the user to specifically access the standard exceptions
4424 using, for instance, Standard.Constraint_Error when Constraint_Error
4425 is ambiguous (due to the user defining its own Constraint_Error
4426 entity inside its program). */
4427 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4428 name += sizeof ("standard__") - 1;
4429
4430 ALL_MSYMBOLS (objfile, msymbol)
4431 {
4432 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match_p)
4433 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4434 return msymbol;
4435 }
4436
4437 return NULL;
4438 }
4439
4440 /* For all subprograms that statically enclose the subprogram of the
4441 selected frame, add symbols matching identifier NAME in DOMAIN
4442 and their blocks to the list of data in OBSTACKP, as for
4443 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4444 with a wildcard prefix. */
4445
4446 static void
4447 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4448 const char *name, domain_enum namespace,
4449 int wild_match_p)
4450 {
4451 }
4452
4453 /* True if TYPE is definitely an artificial type supplied to a symbol
4454 for which no debugging information was given in the symbol file. */
4455
4456 static int
4457 is_nondebugging_type (struct type *type)
4458 {
4459 const char *name = ada_type_name (type);
4460
4461 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4462 }
4463
4464 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4465 that are deemed "identical" for practical purposes.
4466
4467 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4468 types and that their number of enumerals is identical (in other
4469 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4470
4471 static int
4472 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4473 {
4474 int i;
4475
4476 /* The heuristic we use here is fairly conservative. We consider
4477 that 2 enumerate types are identical if they have the same
4478 number of enumerals and that all enumerals have the same
4479 underlying value and name. */
4480
4481 /* All enums in the type should have an identical underlying value. */
4482 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4483 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4484 return 0;
4485
4486 /* All enumerals should also have the same name (modulo any numerical
4487 suffix). */
4488 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4489 {
4490 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4491 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4492 int len_1 = strlen (name_1);
4493 int len_2 = strlen (name_2);
4494
4495 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4496 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4497 if (len_1 != len_2
4498 || strncmp (TYPE_FIELD_NAME (type1, i),
4499 TYPE_FIELD_NAME (type2, i),
4500 len_1) != 0)
4501 return 0;
4502 }
4503
4504 return 1;
4505 }
4506
4507 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4508 that are deemed "identical" for practical purposes. Sometimes,
4509 enumerals are not strictly identical, but their types are so similar
4510 that they can be considered identical.
4511
4512 For instance, consider the following code:
4513
4514 type Color is (Black, Red, Green, Blue, White);
4515 type RGB_Color is new Color range Red .. Blue;
4516
4517 Type RGB_Color is a subrange of an implicit type which is a copy
4518 of type Color. If we call that implicit type RGB_ColorB ("B" is
4519 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4520 As a result, when an expression references any of the enumeral
4521 by name (Eg. "print green"), the expression is technically
4522 ambiguous and the user should be asked to disambiguate. But
4523 doing so would only hinder the user, since it wouldn't matter
4524 what choice he makes, the outcome would always be the same.
4525 So, for practical purposes, we consider them as the same. */
4526
4527 static int
4528 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4529 {
4530 int i;
4531
4532 /* Before performing a thorough comparison check of each type,
4533 we perform a series of inexpensive checks. We expect that these
4534 checks will quickly fail in the vast majority of cases, and thus
4535 help prevent the unnecessary use of a more expensive comparison.
4536 Said comparison also expects us to make some of these checks
4537 (see ada_identical_enum_types_p). */
4538
4539 /* Quick check: All symbols should have an enum type. */
4540 for (i = 0; i < nsyms; i++)
4541 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4542 return 0;
4543
4544 /* Quick check: They should all have the same value. */
4545 for (i = 1; i < nsyms; i++)
4546 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4547 return 0;
4548
4549 /* Quick check: They should all have the same number of enumerals. */
4550 for (i = 1; i < nsyms; i++)
4551 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4552 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4553 return 0;
4554
4555 /* All the sanity checks passed, so we might have a set of
4556 identical enumeration types. Perform a more complete
4557 comparison of the type of each symbol. */
4558 for (i = 1; i < nsyms; i++)
4559 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4560 SYMBOL_TYPE (syms[0].sym)))
4561 return 0;
4562
4563 return 1;
4564 }
4565
4566 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4567 duplicate other symbols in the list (The only case I know of where
4568 this happens is when object files containing stabs-in-ecoff are
4569 linked with files containing ordinary ecoff debugging symbols (or no
4570 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4571 Returns the number of items in the modified list. */
4572
4573 static int
4574 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4575 {
4576 int i, j;
4577
4578 /* We should never be called with less than 2 symbols, as there
4579 cannot be any extra symbol in that case. But it's easy to
4580 handle, since we have nothing to do in that case. */
4581 if (nsyms < 2)
4582 return nsyms;
4583
4584 i = 0;
4585 while (i < nsyms)
4586 {
4587 int remove_p = 0;
4588
4589 /* If two symbols have the same name and one of them is a stub type,
4590 the get rid of the stub. */
4591
4592 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4593 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4594 {
4595 for (j = 0; j < nsyms; j++)
4596 {
4597 if (j != i
4598 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4599 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4600 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4601 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4602 remove_p = 1;
4603 }
4604 }
4605
4606 /* Two symbols with the same name, same class and same address
4607 should be identical. */
4608
4609 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4610 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4611 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4612 {
4613 for (j = 0; j < nsyms; j += 1)
4614 {
4615 if (i != j
4616 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4617 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4618 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4619 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4620 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4621 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4622 remove_p = 1;
4623 }
4624 }
4625
4626 if (remove_p)
4627 {
4628 for (j = i + 1; j < nsyms; j += 1)
4629 syms[j - 1] = syms[j];
4630 nsyms -= 1;
4631 }
4632
4633 i += 1;
4634 }
4635
4636 /* If all the remaining symbols are identical enumerals, then
4637 just keep the first one and discard the rest.
4638
4639 Unlike what we did previously, we do not discard any entry
4640 unless they are ALL identical. This is because the symbol
4641 comparison is not a strict comparison, but rather a practical
4642 comparison. If all symbols are considered identical, then
4643 we can just go ahead and use the first one and discard the rest.
4644 But if we cannot reduce the list to a single element, we have
4645 to ask the user to disambiguate anyways. And if we have to
4646 present a multiple-choice menu, it's less confusing if the list
4647 isn't missing some choices that were identical and yet distinct. */
4648 if (symbols_are_identical_enums (syms, nsyms))
4649 nsyms = 1;
4650
4651 return nsyms;
4652 }
4653
4654 /* Given a type that corresponds to a renaming entity, use the type name
4655 to extract the scope (package name or function name, fully qualified,
4656 and following the GNAT encoding convention) where this renaming has been
4657 defined. The string returned needs to be deallocated after use. */
4658
4659 static char *
4660 xget_renaming_scope (struct type *renaming_type)
4661 {
4662 /* The renaming types adhere to the following convention:
4663 <scope>__<rename>___<XR extension>.
4664 So, to extract the scope, we search for the "___XR" extension,
4665 and then backtrack until we find the first "__". */
4666
4667 const char *name = type_name_no_tag (renaming_type);
4668 char *suffix = strstr (name, "___XR");
4669 char *last;
4670 int scope_len;
4671 char *scope;
4672
4673 /* Now, backtrack a bit until we find the first "__". Start looking
4674 at suffix - 3, as the <rename> part is at least one character long. */
4675
4676 for (last = suffix - 3; last > name; last--)
4677 if (last[0] == '_' && last[1] == '_')
4678 break;
4679
4680 /* Make a copy of scope and return it. */
4681
4682 scope_len = last - name;
4683 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4684
4685 strncpy (scope, name, scope_len);
4686 scope[scope_len] = '\0';
4687
4688 return scope;
4689 }
4690
4691 /* Return nonzero if NAME corresponds to a package name. */
4692
4693 static int
4694 is_package_name (const char *name)
4695 {
4696 /* Here, We take advantage of the fact that no symbols are generated
4697 for packages, while symbols are generated for each function.
4698 So the condition for NAME represent a package becomes equivalent
4699 to NAME not existing in our list of symbols. There is only one
4700 small complication with library-level functions (see below). */
4701
4702 char *fun_name;
4703
4704 /* If it is a function that has not been defined at library level,
4705 then we should be able to look it up in the symbols. */
4706 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4707 return 0;
4708
4709 /* Library-level function names start with "_ada_". See if function
4710 "_ada_" followed by NAME can be found. */
4711
4712 /* Do a quick check that NAME does not contain "__", since library-level
4713 functions names cannot contain "__" in them. */
4714 if (strstr (name, "__") != NULL)
4715 return 0;
4716
4717 fun_name = xstrprintf ("_ada_%s", name);
4718
4719 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4720 }
4721
4722 /* Return nonzero if SYM corresponds to a renaming entity that is
4723 not visible from FUNCTION_NAME. */
4724
4725 static int
4726 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4727 {
4728 char *scope;
4729
4730 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4731 return 0;
4732
4733 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4734
4735 make_cleanup (xfree, scope);
4736
4737 /* If the rename has been defined in a package, then it is visible. */
4738 if (is_package_name (scope))
4739 return 0;
4740
4741 /* Check that the rename is in the current function scope by checking
4742 that its name starts with SCOPE. */
4743
4744 /* If the function name starts with "_ada_", it means that it is
4745 a library-level function. Strip this prefix before doing the
4746 comparison, as the encoding for the renaming does not contain
4747 this prefix. */
4748 if (strncmp (function_name, "_ada_", 5) == 0)
4749 function_name += 5;
4750
4751 return (strncmp (function_name, scope, strlen (scope)) != 0);
4752 }
4753
4754 /* Remove entries from SYMS that corresponds to a renaming entity that
4755 is not visible from the function associated with CURRENT_BLOCK or
4756 that is superfluous due to the presence of more specific renaming
4757 information. Places surviving symbols in the initial entries of
4758 SYMS and returns the number of surviving symbols.
4759
4760 Rationale:
4761 First, in cases where an object renaming is implemented as a
4762 reference variable, GNAT may produce both the actual reference
4763 variable and the renaming encoding. In this case, we discard the
4764 latter.
4765
4766 Second, GNAT emits a type following a specified encoding for each renaming
4767 entity. Unfortunately, STABS currently does not support the definition
4768 of types that are local to a given lexical block, so all renamings types
4769 are emitted at library level. As a consequence, if an application
4770 contains two renaming entities using the same name, and a user tries to
4771 print the value of one of these entities, the result of the ada symbol
4772 lookup will also contain the wrong renaming type.
4773
4774 This function partially covers for this limitation by attempting to
4775 remove from the SYMS list renaming symbols that should be visible
4776 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4777 method with the current information available. The implementation
4778 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4779
4780 - When the user tries to print a rename in a function while there
4781 is another rename entity defined in a package: Normally, the
4782 rename in the function has precedence over the rename in the
4783 package, so the latter should be removed from the list. This is
4784 currently not the case.
4785
4786 - This function will incorrectly remove valid renames if
4787 the CURRENT_BLOCK corresponds to a function which symbol name
4788 has been changed by an "Export" pragma. As a consequence,
4789 the user will be unable to print such rename entities. */
4790
4791 static int
4792 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4793 int nsyms, const struct block *current_block)
4794 {
4795 struct symbol *current_function;
4796 const char *current_function_name;
4797 int i;
4798 int is_new_style_renaming;
4799
4800 /* If there is both a renaming foo___XR... encoded as a variable and
4801 a simple variable foo in the same block, discard the latter.
4802 First, zero out such symbols, then compress. */
4803 is_new_style_renaming = 0;
4804 for (i = 0; i < nsyms; i += 1)
4805 {
4806 struct symbol *sym = syms[i].sym;
4807 struct block *block = syms[i].block;
4808 const char *name;
4809 const char *suffix;
4810
4811 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4812 continue;
4813 name = SYMBOL_LINKAGE_NAME (sym);
4814 suffix = strstr (name, "___XR");
4815
4816 if (suffix != NULL)
4817 {
4818 int name_len = suffix - name;
4819 int j;
4820
4821 is_new_style_renaming = 1;
4822 for (j = 0; j < nsyms; j += 1)
4823 if (i != j && syms[j].sym != NULL
4824 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4825 name_len) == 0
4826 && block == syms[j].block)
4827 syms[j].sym = NULL;
4828 }
4829 }
4830 if (is_new_style_renaming)
4831 {
4832 int j, k;
4833
4834 for (j = k = 0; j < nsyms; j += 1)
4835 if (syms[j].sym != NULL)
4836 {
4837 syms[k] = syms[j];
4838 k += 1;
4839 }
4840 return k;
4841 }
4842
4843 /* Extract the function name associated to CURRENT_BLOCK.
4844 Abort if unable to do so. */
4845
4846 if (current_block == NULL)
4847 return nsyms;
4848
4849 current_function = block_linkage_function (current_block);
4850 if (current_function == NULL)
4851 return nsyms;
4852
4853 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4854 if (current_function_name == NULL)
4855 return nsyms;
4856
4857 /* Check each of the symbols, and remove it from the list if it is
4858 a type corresponding to a renaming that is out of the scope of
4859 the current block. */
4860
4861 i = 0;
4862 while (i < nsyms)
4863 {
4864 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4865 == ADA_OBJECT_RENAMING
4866 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4867 {
4868 int j;
4869
4870 for (j = i + 1; j < nsyms; j += 1)
4871 syms[j - 1] = syms[j];
4872 nsyms -= 1;
4873 }
4874 else
4875 i += 1;
4876 }
4877
4878 return nsyms;
4879 }
4880
4881 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4882 whose name and domain match NAME and DOMAIN respectively.
4883 If no match was found, then extend the search to "enclosing"
4884 routines (in other words, if we're inside a nested function,
4885 search the symbols defined inside the enclosing functions).
4886 If WILD_MATCH_P is nonzero, perform the naming matching in
4887 "wild" mode (see function "wild_match" for more info).
4888
4889 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4890
4891 static void
4892 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4893 struct block *block, domain_enum domain,
4894 int wild_match_p)
4895 {
4896 int block_depth = 0;
4897
4898 while (block != NULL)
4899 {
4900 block_depth += 1;
4901 ada_add_block_symbols (obstackp, block, name, domain, NULL,
4902 wild_match_p);
4903
4904 /* If we found a non-function match, assume that's the one. */
4905 if (is_nonfunction (defns_collected (obstackp, 0),
4906 num_defns_collected (obstackp)))
4907 return;
4908
4909 block = BLOCK_SUPERBLOCK (block);
4910 }
4911
4912 /* If no luck so far, try to find NAME as a local symbol in some lexically
4913 enclosing subprogram. */
4914 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4915 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match_p);
4916 }
4917
4918 /* An object of this type is used as the user_data argument when
4919 calling the map_matching_symbols method. */
4920
4921 struct match_data
4922 {
4923 struct objfile *objfile;
4924 struct obstack *obstackp;
4925 struct symbol *arg_sym;
4926 int found_sym;
4927 };
4928
4929 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4930 to a list of symbols. DATA0 is a pointer to a struct match_data *
4931 containing the obstack that collects the symbol list, the file that SYM
4932 must come from, a flag indicating whether a non-argument symbol has
4933 been found in the current block, and the last argument symbol
4934 passed in SYM within the current block (if any). When SYM is null,
4935 marking the end of a block, the argument symbol is added if no
4936 other has been found. */
4937
4938 static int
4939 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4940 {
4941 struct match_data *data = (struct match_data *) data0;
4942
4943 if (sym == NULL)
4944 {
4945 if (!data->found_sym && data->arg_sym != NULL)
4946 add_defn_to_vec (data->obstackp,
4947 fixup_symbol_section (data->arg_sym, data->objfile),
4948 block);
4949 data->found_sym = 0;
4950 data->arg_sym = NULL;
4951 }
4952 else
4953 {
4954 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4955 return 0;
4956 else if (SYMBOL_IS_ARGUMENT (sym))
4957 data->arg_sym = sym;
4958 else
4959 {
4960 data->found_sym = 1;
4961 add_defn_to_vec (data->obstackp,
4962 fixup_symbol_section (sym, data->objfile),
4963 block);
4964 }
4965 }
4966 return 0;
4967 }
4968
4969 /* Compare STRING1 to STRING2, with results as for strcmp.
4970 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4971 implies compare_names (STRING1, STRING2) (they may differ as to
4972 what symbols compare equal). */
4973
4974 static int
4975 compare_names (const char *string1, const char *string2)
4976 {
4977 while (*string1 != '\0' && *string2 != '\0')
4978 {
4979 if (isspace (*string1) || isspace (*string2))
4980 return strcmp_iw_ordered (string1, string2);
4981 if (*string1 != *string2)
4982 break;
4983 string1 += 1;
4984 string2 += 1;
4985 }
4986 switch (*string1)
4987 {
4988 case '(':
4989 return strcmp_iw_ordered (string1, string2);
4990 case '_':
4991 if (*string2 == '\0')
4992 {
4993 if (is_name_suffix (string1))
4994 return 0;
4995 else
4996 return 1;
4997 }
4998 /* FALLTHROUGH */
4999 default:
5000 if (*string2 == '(')
5001 return strcmp_iw_ordered (string1, string2);
5002 else
5003 return *string1 - *string2;
5004 }
5005 }
5006
5007 /* Add to OBSTACKP all non-local symbols whose name and domain match
5008 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
5009 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
5010
5011 static void
5012 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
5013 domain_enum domain, int global,
5014 int is_wild_match)
5015 {
5016 struct objfile *objfile;
5017 struct match_data data;
5018
5019 memset (&data, 0, sizeof data);
5020 data.obstackp = obstackp;
5021
5022 ALL_OBJFILES (objfile)
5023 {
5024 data.objfile = objfile;
5025
5026 if (is_wild_match)
5027 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5028 aux_add_nonlocal_symbols, &data,
5029 wild_match, NULL);
5030 else
5031 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
5032 aux_add_nonlocal_symbols, &data,
5033 full_match, compare_names);
5034 }
5035
5036 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5037 {
5038 ALL_OBJFILES (objfile)
5039 {
5040 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
5041 strcpy (name1, "_ada_");
5042 strcpy (name1 + sizeof ("_ada_") - 1, name);
5043 data.objfile = objfile;
5044 objfile->sf->qf->map_matching_symbols (name1, domain,
5045 objfile, global,
5046 aux_add_nonlocal_symbols,
5047 &data,
5048 full_match, compare_names);
5049 }
5050 }
5051 }
5052
5053 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
5054 scope and in global scopes, returning the number of matches.
5055 Sets *RESULTS to point to a vector of (SYM,BLOCK) tuples,
5056 indicating the symbols found and the blocks and symbol tables (if
5057 any) in which they were found. This vector are transient---good only to
5058 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
5059 symbol match within the nest of blocks whose innermost member is BLOCK0,
5060 is the one match returned (no other matches in that or
5061 enclosing blocks is returned). If there are any matches in or
5062 surrounding BLOCK0, then these alone are returned. Otherwise, if
5063 FULL_SEARCH is non-zero, then the search extends to global and
5064 file-scope (static) symbol tables.
5065 Names prefixed with "standard__" are handled specially: "standard__"
5066 is first stripped off, and only static and global symbols are searched. */
5067
5068 int
5069 ada_lookup_symbol_list (const char *name0, const struct block *block0,
5070 domain_enum namespace,
5071 struct ada_symbol_info **results,
5072 int full_search)
5073 {
5074 struct symbol *sym;
5075 struct block *block;
5076 const char *name;
5077 const int wild_match_p = should_use_wild_match (name0);
5078 int cacheIfUnique;
5079 int ndefns;
5080
5081 obstack_free (&symbol_list_obstack, NULL);
5082 obstack_init (&symbol_list_obstack);
5083
5084 cacheIfUnique = 0;
5085
5086 /* Search specified block and its superiors. */
5087
5088 name = name0;
5089 block = (struct block *) block0; /* FIXME: No cast ought to be
5090 needed, but adding const will
5091 have a cascade effect. */
5092
5093 /* Special case: If the user specifies a symbol name inside package
5094 Standard, do a non-wild matching of the symbol name without
5095 the "standard__" prefix. This was primarily introduced in order
5096 to allow the user to specifically access the standard exceptions
5097 using, for instance, Standard.Constraint_Error when Constraint_Error
5098 is ambiguous (due to the user defining its own Constraint_Error
5099 entity inside its program). */
5100 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5101 {
5102 block = NULL;
5103 name = name0 + sizeof ("standard__") - 1;
5104 }
5105
5106 /* Check the non-global symbols. If we have ANY match, then we're done. */
5107
5108 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5109 wild_match_p);
5110 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5111 goto done;
5112
5113 /* No non-global symbols found. Check our cache to see if we have
5114 already performed this search before. If we have, then return
5115 the same result. */
5116
5117 cacheIfUnique = 1;
5118 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5119 {
5120 if (sym != NULL)
5121 add_defn_to_vec (&symbol_list_obstack, sym, block);
5122 goto done;
5123 }
5124
5125 /* Search symbols from all global blocks. */
5126
5127 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5128 wild_match_p);
5129
5130 /* Now add symbols from all per-file blocks if we've gotten no hits
5131 (not strictly correct, but perhaps better than an error). */
5132
5133 if (num_defns_collected (&symbol_list_obstack) == 0)
5134 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5135 wild_match_p);
5136
5137 done:
5138 ndefns = num_defns_collected (&symbol_list_obstack);
5139 *results = defns_collected (&symbol_list_obstack, 1);
5140
5141 ndefns = remove_extra_symbols (*results, ndefns);
5142
5143 if (ndefns == 0 && full_search)
5144 cache_symbol (name0, namespace, NULL, NULL);
5145
5146 if (ndefns == 1 && full_search && cacheIfUnique)
5147 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5148
5149 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5150
5151 return ndefns;
5152 }
5153
5154 /* If NAME is the name of an entity, return a string that should
5155 be used to look that entity up in Ada units. This string should
5156 be deallocated after use using xfree.
5157
5158 NAME can have any form that the "break" or "print" commands might
5159 recognize. In other words, it does not have to be the "natural"
5160 name, or the "encoded" name. */
5161
5162 char *
5163 ada_name_for_lookup (const char *name)
5164 {
5165 char *canon;
5166 int nlen = strlen (name);
5167
5168 if (name[0] == '<' && name[nlen - 1] == '>')
5169 {
5170 canon = xmalloc (nlen - 1);
5171 memcpy (canon, name + 1, nlen - 2);
5172 canon[nlen - 2] = '\0';
5173 }
5174 else
5175 canon = xstrdup (ada_encode (ada_fold_name (name)));
5176 return canon;
5177 }
5178
5179 /* Implementation of the la_iterate_over_symbols method. */
5180
5181 static void
5182 ada_iterate_over_symbols (const struct block *block,
5183 const char *name, domain_enum domain,
5184 symbol_found_callback_ftype *callback,
5185 void *data)
5186 {
5187 int ndefs, i;
5188 struct ada_symbol_info *results;
5189
5190 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5191 for (i = 0; i < ndefs; ++i)
5192 {
5193 if (! (*callback) (results[i].sym, data))
5194 break;
5195 }
5196 }
5197
5198 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5199 to 1, but choosing the first symbol found if there are multiple
5200 choices.
5201
5202 The result is stored in *INFO, which must be non-NULL.
5203 If no match is found, INFO->SYM is set to NULL. */
5204
5205 void
5206 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5207 domain_enum namespace,
5208 struct ada_symbol_info *info)
5209 {
5210 struct ada_symbol_info *candidates;
5211 int n_candidates;
5212
5213 gdb_assert (info != NULL);
5214 memset (info, 0, sizeof (struct ada_symbol_info));
5215
5216 n_candidates = ada_lookup_symbol_list (name, block, namespace, &candidates,
5217 1);
5218
5219 if (n_candidates == 0)
5220 return;
5221
5222 *info = candidates[0];
5223 info->sym = fixup_symbol_section (info->sym, NULL);
5224 }
5225
5226 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5227 scope and in global scopes, or NULL if none. NAME is folded and
5228 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5229 choosing the first symbol if there are multiple choices.
5230 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5231
5232 struct symbol *
5233 ada_lookup_symbol (const char *name, const struct block *block0,
5234 domain_enum namespace, int *is_a_field_of_this)
5235 {
5236 struct ada_symbol_info info;
5237
5238 if (is_a_field_of_this != NULL)
5239 *is_a_field_of_this = 0;
5240
5241 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5242 block0, namespace, &info);
5243 return info.sym;
5244 }
5245
5246 static struct symbol *
5247 ada_lookup_symbol_nonlocal (const char *name,
5248 const struct block *block,
5249 const domain_enum domain)
5250 {
5251 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5252 }
5253
5254
5255 /* True iff STR is a possible encoded suffix of a normal Ada name
5256 that is to be ignored for matching purposes. Suffixes of parallel
5257 names (e.g., XVE) are not included here. Currently, the possible suffixes
5258 are given by any of the regular expressions:
5259
5260 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5261 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5262 TKB [subprogram suffix for task bodies]
5263 _E[0-9]+[bs]$ [protected object entry suffixes]
5264 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5265
5266 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5267 match is performed. This sequence is used to differentiate homonyms,
5268 is an optional part of a valid name suffix. */
5269
5270 static int
5271 is_name_suffix (const char *str)
5272 {
5273 int k;
5274 const char *matching;
5275 const int len = strlen (str);
5276
5277 /* Skip optional leading __[0-9]+. */
5278
5279 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5280 {
5281 str += 3;
5282 while (isdigit (str[0]))
5283 str += 1;
5284 }
5285
5286 /* [.$][0-9]+ */
5287
5288 if (str[0] == '.' || str[0] == '$')
5289 {
5290 matching = str + 1;
5291 while (isdigit (matching[0]))
5292 matching += 1;
5293 if (matching[0] == '\0')
5294 return 1;
5295 }
5296
5297 /* ___[0-9]+ */
5298
5299 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5300 {
5301 matching = str + 3;
5302 while (isdigit (matching[0]))
5303 matching += 1;
5304 if (matching[0] == '\0')
5305 return 1;
5306 }
5307
5308 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5309
5310 if (strcmp (str, "TKB") == 0)
5311 return 1;
5312
5313 #if 0
5314 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5315 with a N at the end. Unfortunately, the compiler uses the same
5316 convention for other internal types it creates. So treating
5317 all entity names that end with an "N" as a name suffix causes
5318 some regressions. For instance, consider the case of an enumerated
5319 type. To support the 'Image attribute, it creates an array whose
5320 name ends with N.
5321 Having a single character like this as a suffix carrying some
5322 information is a bit risky. Perhaps we should change the encoding
5323 to be something like "_N" instead. In the meantime, do not do
5324 the following check. */
5325 /* Protected Object Subprograms */
5326 if (len == 1 && str [0] == 'N')
5327 return 1;
5328 #endif
5329
5330 /* _E[0-9]+[bs]$ */
5331 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5332 {
5333 matching = str + 3;
5334 while (isdigit (matching[0]))
5335 matching += 1;
5336 if ((matching[0] == 'b' || matching[0] == 's')
5337 && matching [1] == '\0')
5338 return 1;
5339 }
5340
5341 /* ??? We should not modify STR directly, as we are doing below. This
5342 is fine in this case, but may become problematic later if we find
5343 that this alternative did not work, and want to try matching
5344 another one from the begining of STR. Since we modified it, we
5345 won't be able to find the begining of the string anymore! */
5346 if (str[0] == 'X')
5347 {
5348 str += 1;
5349 while (str[0] != '_' && str[0] != '\0')
5350 {
5351 if (str[0] != 'n' && str[0] != 'b')
5352 return 0;
5353 str += 1;
5354 }
5355 }
5356
5357 if (str[0] == '\000')
5358 return 1;
5359
5360 if (str[0] == '_')
5361 {
5362 if (str[1] != '_' || str[2] == '\000')
5363 return 0;
5364 if (str[2] == '_')
5365 {
5366 if (strcmp (str + 3, "JM") == 0)
5367 return 1;
5368 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5369 the LJM suffix in favor of the JM one. But we will
5370 still accept LJM as a valid suffix for a reasonable
5371 amount of time, just to allow ourselves to debug programs
5372 compiled using an older version of GNAT. */
5373 if (strcmp (str + 3, "LJM") == 0)
5374 return 1;
5375 if (str[3] != 'X')
5376 return 0;
5377 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5378 || str[4] == 'U' || str[4] == 'P')
5379 return 1;
5380 if (str[4] == 'R' && str[5] != 'T')
5381 return 1;
5382 return 0;
5383 }
5384 if (!isdigit (str[2]))
5385 return 0;
5386 for (k = 3; str[k] != '\0'; k += 1)
5387 if (!isdigit (str[k]) && str[k] != '_')
5388 return 0;
5389 return 1;
5390 }
5391 if (str[0] == '$' && isdigit (str[1]))
5392 {
5393 for (k = 2; str[k] != '\0'; k += 1)
5394 if (!isdigit (str[k]) && str[k] != '_')
5395 return 0;
5396 return 1;
5397 }
5398 return 0;
5399 }
5400
5401 /* Return non-zero if the string starting at NAME and ending before
5402 NAME_END contains no capital letters. */
5403
5404 static int
5405 is_valid_name_for_wild_match (const char *name0)
5406 {
5407 const char *decoded_name = ada_decode (name0);
5408 int i;
5409
5410 /* If the decoded name starts with an angle bracket, it means that
5411 NAME0 does not follow the GNAT encoding format. It should then
5412 not be allowed as a possible wild match. */
5413 if (decoded_name[0] == '<')
5414 return 0;
5415
5416 for (i=0; decoded_name[i] != '\0'; i++)
5417 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5418 return 0;
5419
5420 return 1;
5421 }
5422
5423 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5424 that could start a simple name. Assumes that *NAMEP points into
5425 the string beginning at NAME0. */
5426
5427 static int
5428 advance_wild_match (const char **namep, const char *name0, int target0)
5429 {
5430 const char *name = *namep;
5431
5432 while (1)
5433 {
5434 int t0, t1;
5435
5436 t0 = *name;
5437 if (t0 == '_')
5438 {
5439 t1 = name[1];
5440 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5441 {
5442 name += 1;
5443 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5444 break;
5445 else
5446 name += 1;
5447 }
5448 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5449 || name[2] == target0))
5450 {
5451 name += 2;
5452 break;
5453 }
5454 else
5455 return 0;
5456 }
5457 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5458 name += 1;
5459 else
5460 return 0;
5461 }
5462
5463 *namep = name;
5464 return 1;
5465 }
5466
5467 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5468 informational suffixes of NAME (i.e., for which is_name_suffix is
5469 true). Assumes that PATN is a lower-cased Ada simple name. */
5470
5471 static int
5472 wild_match (const char *name, const char *patn)
5473 {
5474 const char *p;
5475 const char *name0 = name;
5476
5477 while (1)
5478 {
5479 const char *match = name;
5480
5481 if (*name == *patn)
5482 {
5483 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5484 if (*p != *name)
5485 break;
5486 if (*p == '\0' && is_name_suffix (name))
5487 return match != name0 && !is_valid_name_for_wild_match (name0);
5488
5489 if (name[-1] == '_')
5490 name -= 1;
5491 }
5492 if (!advance_wild_match (&name, name0, *patn))
5493 return 1;
5494 }
5495 }
5496
5497 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5498 informational suffix. */
5499
5500 static int
5501 full_match (const char *sym_name, const char *search_name)
5502 {
5503 return !match_name (sym_name, search_name, 0);
5504 }
5505
5506
5507 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5508 vector *defn_symbols, updating the list of symbols in OBSTACKP
5509 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5510 OBJFILE is the section containing BLOCK.
5511 SYMTAB is recorded with each symbol added. */
5512
5513 static void
5514 ada_add_block_symbols (struct obstack *obstackp,
5515 struct block *block, const char *name,
5516 domain_enum domain, struct objfile *objfile,
5517 int wild)
5518 {
5519 struct block_iterator iter;
5520 int name_len = strlen (name);
5521 /* A matching argument symbol, if any. */
5522 struct symbol *arg_sym;
5523 /* Set true when we find a matching non-argument symbol. */
5524 int found_sym;
5525 struct symbol *sym;
5526
5527 arg_sym = NULL;
5528 found_sym = 0;
5529 if (wild)
5530 {
5531 for (sym = block_iter_match_first (block, name, wild_match, &iter);
5532 sym != NULL; sym = block_iter_match_next (name, wild_match, &iter))
5533 {
5534 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5535 SYMBOL_DOMAIN (sym), domain)
5536 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5537 {
5538 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5539 continue;
5540 else if (SYMBOL_IS_ARGUMENT (sym))
5541 arg_sym = sym;
5542 else
5543 {
5544 found_sym = 1;
5545 add_defn_to_vec (obstackp,
5546 fixup_symbol_section (sym, objfile),
5547 block);
5548 }
5549 }
5550 }
5551 }
5552 else
5553 {
5554 for (sym = block_iter_match_first (block, name, full_match, &iter);
5555 sym != NULL; sym = block_iter_match_next (name, full_match, &iter))
5556 {
5557 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5558 SYMBOL_DOMAIN (sym), domain))
5559 {
5560 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5561 {
5562 if (SYMBOL_IS_ARGUMENT (sym))
5563 arg_sym = sym;
5564 else
5565 {
5566 found_sym = 1;
5567 add_defn_to_vec (obstackp,
5568 fixup_symbol_section (sym, objfile),
5569 block);
5570 }
5571 }
5572 }
5573 }
5574 }
5575
5576 if (!found_sym && arg_sym != NULL)
5577 {
5578 add_defn_to_vec (obstackp,
5579 fixup_symbol_section (arg_sym, objfile),
5580 block);
5581 }
5582
5583 if (!wild)
5584 {
5585 arg_sym = NULL;
5586 found_sym = 0;
5587
5588 ALL_BLOCK_SYMBOLS (block, iter, sym)
5589 {
5590 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5591 SYMBOL_DOMAIN (sym), domain))
5592 {
5593 int cmp;
5594
5595 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5596 if (cmp == 0)
5597 {
5598 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5599 if (cmp == 0)
5600 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5601 name_len);
5602 }
5603
5604 if (cmp == 0
5605 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5606 {
5607 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5608 {
5609 if (SYMBOL_IS_ARGUMENT (sym))
5610 arg_sym = sym;
5611 else
5612 {
5613 found_sym = 1;
5614 add_defn_to_vec (obstackp,
5615 fixup_symbol_section (sym, objfile),
5616 block);
5617 }
5618 }
5619 }
5620 }
5621 }
5622
5623 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5624 They aren't parameters, right? */
5625 if (!found_sym && arg_sym != NULL)
5626 {
5627 add_defn_to_vec (obstackp,
5628 fixup_symbol_section (arg_sym, objfile),
5629 block);
5630 }
5631 }
5632 }
5633 \f
5634
5635 /* Symbol Completion */
5636
5637 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5638 name in a form that's appropriate for the completion. The result
5639 does not need to be deallocated, but is only good until the next call.
5640
5641 TEXT_LEN is equal to the length of TEXT.
5642 Perform a wild match if WILD_MATCH_P is set.
5643 ENCODED_P should be set if TEXT represents the start of a symbol name
5644 in its encoded form. */
5645
5646 static const char *
5647 symbol_completion_match (const char *sym_name,
5648 const char *text, int text_len,
5649 int wild_match_p, int encoded_p)
5650 {
5651 const int verbatim_match = (text[0] == '<');
5652 int match = 0;
5653
5654 if (verbatim_match)
5655 {
5656 /* Strip the leading angle bracket. */
5657 text = text + 1;
5658 text_len--;
5659 }
5660
5661 /* First, test against the fully qualified name of the symbol. */
5662
5663 if (strncmp (sym_name, text, text_len) == 0)
5664 match = 1;
5665
5666 if (match && !encoded_p)
5667 {
5668 /* One needed check before declaring a positive match is to verify
5669 that iff we are doing a verbatim match, the decoded version
5670 of the symbol name starts with '<'. Otherwise, this symbol name
5671 is not a suitable completion. */
5672 const char *sym_name_copy = sym_name;
5673 int has_angle_bracket;
5674
5675 sym_name = ada_decode (sym_name);
5676 has_angle_bracket = (sym_name[0] == '<');
5677 match = (has_angle_bracket == verbatim_match);
5678 sym_name = sym_name_copy;
5679 }
5680
5681 if (match && !verbatim_match)
5682 {
5683 /* When doing non-verbatim match, another check that needs to
5684 be done is to verify that the potentially matching symbol name
5685 does not include capital letters, because the ada-mode would
5686 not be able to understand these symbol names without the
5687 angle bracket notation. */
5688 const char *tmp;
5689
5690 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5691 if (*tmp != '\0')
5692 match = 0;
5693 }
5694
5695 /* Second: Try wild matching... */
5696
5697 if (!match && wild_match_p)
5698 {
5699 /* Since we are doing wild matching, this means that TEXT
5700 may represent an unqualified symbol name. We therefore must
5701 also compare TEXT against the unqualified name of the symbol. */
5702 sym_name = ada_unqualified_name (ada_decode (sym_name));
5703
5704 if (strncmp (sym_name, text, text_len) == 0)
5705 match = 1;
5706 }
5707
5708 /* Finally: If we found a mach, prepare the result to return. */
5709
5710 if (!match)
5711 return NULL;
5712
5713 if (verbatim_match)
5714 sym_name = add_angle_brackets (sym_name);
5715
5716 if (!encoded_p)
5717 sym_name = ada_decode (sym_name);
5718
5719 return sym_name;
5720 }
5721
5722 /* A companion function to ada_make_symbol_completion_list().
5723 Check if SYM_NAME represents a symbol which name would be suitable
5724 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5725 it is appended at the end of the given string vector SV.
5726
5727 ORIG_TEXT is the string original string from the user command
5728 that needs to be completed. WORD is the entire command on which
5729 completion should be performed. These two parameters are used to
5730 determine which part of the symbol name should be added to the
5731 completion vector.
5732 if WILD_MATCH_P is set, then wild matching is performed.
5733 ENCODED_P should be set if TEXT represents a symbol name in its
5734 encoded formed (in which case the completion should also be
5735 encoded). */
5736
5737 static void
5738 symbol_completion_add (VEC(char_ptr) **sv,
5739 const char *sym_name,
5740 const char *text, int text_len,
5741 const char *orig_text, const char *word,
5742 int wild_match_p, int encoded_p)
5743 {
5744 const char *match = symbol_completion_match (sym_name, text, text_len,
5745 wild_match_p, encoded_p);
5746 char *completion;
5747
5748 if (match == NULL)
5749 return;
5750
5751 /* We found a match, so add the appropriate completion to the given
5752 string vector. */
5753
5754 if (word == orig_text)
5755 {
5756 completion = xmalloc (strlen (match) + 5);
5757 strcpy (completion, match);
5758 }
5759 else if (word > orig_text)
5760 {
5761 /* Return some portion of sym_name. */
5762 completion = xmalloc (strlen (match) + 5);
5763 strcpy (completion, match + (word - orig_text));
5764 }
5765 else
5766 {
5767 /* Return some of ORIG_TEXT plus sym_name. */
5768 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5769 strncpy (completion, word, orig_text - word);
5770 completion[orig_text - word] = '\0';
5771 strcat (completion, match);
5772 }
5773
5774 VEC_safe_push (char_ptr, *sv, completion);
5775 }
5776
5777 /* An object of this type is passed as the user_data argument to the
5778 expand_partial_symbol_names method. */
5779 struct add_partial_datum
5780 {
5781 VEC(char_ptr) **completions;
5782 char *text;
5783 int text_len;
5784 char *text0;
5785 char *word;
5786 int wild_match;
5787 int encoded;
5788 };
5789
5790 /* A callback for expand_partial_symbol_names. */
5791 static int
5792 ada_expand_partial_symbol_name (const char *name, void *user_data)
5793 {
5794 struct add_partial_datum *data = user_data;
5795
5796 return symbol_completion_match (name, data->text, data->text_len,
5797 data->wild_match, data->encoded) != NULL;
5798 }
5799
5800 /* Return a list of possible symbol names completing TEXT0. WORD is
5801 the entire command on which completion is made. */
5802
5803 static VEC (char_ptr) *
5804 ada_make_symbol_completion_list (char *text0, char *word)
5805 {
5806 char *text;
5807 int text_len;
5808 int wild_match_p;
5809 int encoded_p;
5810 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5811 struct symbol *sym;
5812 struct symtab *s;
5813 struct minimal_symbol *msymbol;
5814 struct objfile *objfile;
5815 struct block *b, *surrounding_static_block = 0;
5816 int i;
5817 struct block_iterator iter;
5818
5819 if (text0[0] == '<')
5820 {
5821 text = xstrdup (text0);
5822 make_cleanup (xfree, text);
5823 text_len = strlen (text);
5824 wild_match_p = 0;
5825 encoded_p = 1;
5826 }
5827 else
5828 {
5829 text = xstrdup (ada_encode (text0));
5830 make_cleanup (xfree, text);
5831 text_len = strlen (text);
5832 for (i = 0; i < text_len; i++)
5833 text[i] = tolower (text[i]);
5834
5835 encoded_p = (strstr (text0, "__") != NULL);
5836 /* If the name contains a ".", then the user is entering a fully
5837 qualified entity name, and the match must not be done in wild
5838 mode. Similarly, if the user wants to complete what looks like
5839 an encoded name, the match must not be done in wild mode. */
5840 wild_match_p = (strchr (text0, '.') == NULL && !encoded_p);
5841 }
5842
5843 /* First, look at the partial symtab symbols. */
5844 {
5845 struct add_partial_datum data;
5846
5847 data.completions = &completions;
5848 data.text = text;
5849 data.text_len = text_len;
5850 data.text0 = text0;
5851 data.word = word;
5852 data.wild_match = wild_match_p;
5853 data.encoded = encoded_p;
5854 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5855 }
5856
5857 /* At this point scan through the misc symbol vectors and add each
5858 symbol you find to the list. Eventually we want to ignore
5859 anything that isn't a text symbol (everything else will be
5860 handled by the psymtab code above). */
5861
5862 ALL_MSYMBOLS (objfile, msymbol)
5863 {
5864 QUIT;
5865 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5866 text, text_len, text0, word, wild_match_p,
5867 encoded_p);
5868 }
5869
5870 /* Search upwards from currently selected frame (so that we can
5871 complete on local vars. */
5872
5873 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5874 {
5875 if (!BLOCK_SUPERBLOCK (b))
5876 surrounding_static_block = b; /* For elmin of dups */
5877
5878 ALL_BLOCK_SYMBOLS (b, iter, sym)
5879 {
5880 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5881 text, text_len, text0, word,
5882 wild_match_p, encoded_p);
5883 }
5884 }
5885
5886 /* Go through the symtabs and check the externs and statics for
5887 symbols which match. */
5888
5889 ALL_SYMTABS (objfile, s)
5890 {
5891 QUIT;
5892 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5893 ALL_BLOCK_SYMBOLS (b, iter, sym)
5894 {
5895 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5896 text, text_len, text0, word,
5897 wild_match_p, encoded_p);
5898 }
5899 }
5900
5901 ALL_SYMTABS (objfile, s)
5902 {
5903 QUIT;
5904 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5905 /* Don't do this block twice. */
5906 if (b == surrounding_static_block)
5907 continue;
5908 ALL_BLOCK_SYMBOLS (b, iter, sym)
5909 {
5910 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5911 text, text_len, text0, word,
5912 wild_match_p, encoded_p);
5913 }
5914 }
5915
5916 return completions;
5917 }
5918
5919 /* Field Access */
5920
5921 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5922 for tagged types. */
5923
5924 static int
5925 ada_is_dispatch_table_ptr_type (struct type *type)
5926 {
5927 const char *name;
5928
5929 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5930 return 0;
5931
5932 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5933 if (name == NULL)
5934 return 0;
5935
5936 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5937 }
5938
5939 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5940 to be invisible to users. */
5941
5942 int
5943 ada_is_ignored_field (struct type *type, int field_num)
5944 {
5945 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5946 return 1;
5947
5948 /* Check the name of that field. */
5949 {
5950 const char *name = TYPE_FIELD_NAME (type, field_num);
5951
5952 /* Anonymous field names should not be printed.
5953 brobecker/2007-02-20: I don't think this can actually happen
5954 but we don't want to print the value of annonymous fields anyway. */
5955 if (name == NULL)
5956 return 1;
5957
5958 /* Normally, fields whose name start with an underscore ("_")
5959 are fields that have been internally generated by the compiler,
5960 and thus should not be printed. The "_parent" field is special,
5961 however: This is a field internally generated by the compiler
5962 for tagged types, and it contains the components inherited from
5963 the parent type. This field should not be printed as is, but
5964 should not be ignored either. */
5965 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5966 return 1;
5967 }
5968
5969 /* If this is the dispatch table of a tagged type, then ignore. */
5970 if (ada_is_tagged_type (type, 1)
5971 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5972 return 1;
5973
5974 /* Not a special field, so it should not be ignored. */
5975 return 0;
5976 }
5977
5978 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5979 pointer or reference type whose ultimate target has a tag field. */
5980
5981 int
5982 ada_is_tagged_type (struct type *type, int refok)
5983 {
5984 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5985 }
5986
5987 /* True iff TYPE represents the type of X'Tag */
5988
5989 int
5990 ada_is_tag_type (struct type *type)
5991 {
5992 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5993 return 0;
5994 else
5995 {
5996 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5997
5998 return (name != NULL
5999 && strcmp (name, "ada__tags__dispatch_table") == 0);
6000 }
6001 }
6002
6003 /* The type of the tag on VAL. */
6004
6005 struct type *
6006 ada_tag_type (struct value *val)
6007 {
6008 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
6009 }
6010
6011 /* The value of the tag on VAL. */
6012
6013 struct value *
6014 ada_value_tag (struct value *val)
6015 {
6016 return ada_value_struct_elt (val, "_tag", 0);
6017 }
6018
6019 /* The value of the tag on the object of type TYPE whose contents are
6020 saved at VALADDR, if it is non-null, or is at memory address
6021 ADDRESS. */
6022
6023 static struct value *
6024 value_tag_from_contents_and_address (struct type *type,
6025 const gdb_byte *valaddr,
6026 CORE_ADDR address)
6027 {
6028 int tag_byte_offset;
6029 struct type *tag_type;
6030
6031 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6032 NULL, NULL, NULL))
6033 {
6034 const gdb_byte *valaddr1 = ((valaddr == NULL)
6035 ? NULL
6036 : valaddr + tag_byte_offset);
6037 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6038
6039 return value_from_contents_and_address (tag_type, valaddr1, address1);
6040 }
6041 return NULL;
6042 }
6043
6044 static struct type *
6045 type_from_tag (struct value *tag)
6046 {
6047 const char *type_name = ada_tag_name (tag);
6048
6049 if (type_name != NULL)
6050 return ada_find_any_type (ada_encode (type_name));
6051 return NULL;
6052 }
6053
6054 /* Return the "ada__tags__type_specific_data" type. */
6055
6056 static struct type *
6057 ada_get_tsd_type (struct inferior *inf)
6058 {
6059 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6060
6061 if (data->tsd_type == 0)
6062 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6063 return data->tsd_type;
6064 }
6065
6066 /* Return the TSD (type-specific data) associated to the given TAG.
6067 TAG is assumed to be the tag of a tagged-type entity.
6068
6069 May return NULL if we are unable to get the TSD. */
6070
6071 static struct value *
6072 ada_get_tsd_from_tag (struct value *tag)
6073 {
6074 struct value *val;
6075 struct type *type;
6076
6077 /* First option: The TSD is simply stored as a field of our TAG.
6078 Only older versions of GNAT would use this format, but we have
6079 to test it first, because there are no visible markers for
6080 the current approach except the absence of that field. */
6081
6082 val = ada_value_struct_elt (tag, "tsd", 1);
6083 if (val)
6084 return val;
6085
6086 /* Try the second representation for the dispatch table (in which
6087 there is no explicit 'tsd' field in the referent of the tag pointer,
6088 and instead the tsd pointer is stored just before the dispatch
6089 table. */
6090
6091 type = ada_get_tsd_type (current_inferior());
6092 if (type == NULL)
6093 return NULL;
6094 type = lookup_pointer_type (lookup_pointer_type (type));
6095 val = value_cast (type, tag);
6096 if (val == NULL)
6097 return NULL;
6098 return value_ind (value_ptradd (val, -1));
6099 }
6100
6101 /* Given the TSD of a tag (type-specific data), return a string
6102 containing the name of the associated type.
6103
6104 The returned value is good until the next call. May return NULL
6105 if we are unable to determine the tag name. */
6106
6107 static char *
6108 ada_tag_name_from_tsd (struct value *tsd)
6109 {
6110 static char name[1024];
6111 char *p;
6112 struct value *val;
6113
6114 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6115 if (val == NULL)
6116 return NULL;
6117 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6118 for (p = name; *p != '\0'; p += 1)
6119 if (isalpha (*p))
6120 *p = tolower (*p);
6121 return name;
6122 }
6123
6124 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6125 a C string.
6126
6127 Return NULL if the TAG is not an Ada tag, or if we were unable to
6128 determine the name of that tag. The result is good until the next
6129 call. */
6130
6131 const char *
6132 ada_tag_name (struct value *tag)
6133 {
6134 volatile struct gdb_exception e;
6135 char *name = NULL;
6136
6137 if (!ada_is_tag_type (value_type (tag)))
6138 return NULL;
6139
6140 /* It is perfectly possible that an exception be raised while trying
6141 to determine the TAG's name, even under normal circumstances:
6142 The associated variable may be uninitialized or corrupted, for
6143 instance. We do not let any exception propagate past this point.
6144 instead we return NULL.
6145
6146 We also do not print the error message either (which often is very
6147 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6148 the caller print a more meaningful message if necessary. */
6149 TRY_CATCH (e, RETURN_MASK_ERROR)
6150 {
6151 struct value *tsd = ada_get_tsd_from_tag (tag);
6152
6153 if (tsd != NULL)
6154 name = ada_tag_name_from_tsd (tsd);
6155 }
6156
6157 return name;
6158 }
6159
6160 /* The parent type of TYPE, or NULL if none. */
6161
6162 struct type *
6163 ada_parent_type (struct type *type)
6164 {
6165 int i;
6166
6167 type = ada_check_typedef (type);
6168
6169 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6170 return NULL;
6171
6172 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6173 if (ada_is_parent_field (type, i))
6174 {
6175 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6176
6177 /* If the _parent field is a pointer, then dereference it. */
6178 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6179 parent_type = TYPE_TARGET_TYPE (parent_type);
6180 /* If there is a parallel XVS type, get the actual base type. */
6181 parent_type = ada_get_base_type (parent_type);
6182
6183 return ada_check_typedef (parent_type);
6184 }
6185
6186 return NULL;
6187 }
6188
6189 /* True iff field number FIELD_NUM of structure type TYPE contains the
6190 parent-type (inherited) fields of a derived type. Assumes TYPE is
6191 a structure type with at least FIELD_NUM+1 fields. */
6192
6193 int
6194 ada_is_parent_field (struct type *type, int field_num)
6195 {
6196 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6197
6198 return (name != NULL
6199 && (strncmp (name, "PARENT", 6) == 0
6200 || strncmp (name, "_parent", 7) == 0));
6201 }
6202
6203 /* True iff field number FIELD_NUM of structure type TYPE is a
6204 transparent wrapper field (which should be silently traversed when doing
6205 field selection and flattened when printing). Assumes TYPE is a
6206 structure type with at least FIELD_NUM+1 fields. Such fields are always
6207 structures. */
6208
6209 int
6210 ada_is_wrapper_field (struct type *type, int field_num)
6211 {
6212 const char *name = TYPE_FIELD_NAME (type, field_num);
6213
6214 return (name != NULL
6215 && (strncmp (name, "PARENT", 6) == 0
6216 || strcmp (name, "REP") == 0
6217 || strncmp (name, "_parent", 7) == 0
6218 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6219 }
6220
6221 /* True iff field number FIELD_NUM of structure or union type TYPE
6222 is a variant wrapper. Assumes TYPE is a structure type with at least
6223 FIELD_NUM+1 fields. */
6224
6225 int
6226 ada_is_variant_part (struct type *type, int field_num)
6227 {
6228 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6229
6230 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6231 || (is_dynamic_field (type, field_num)
6232 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6233 == TYPE_CODE_UNION)));
6234 }
6235
6236 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6237 whose discriminants are contained in the record type OUTER_TYPE,
6238 returns the type of the controlling discriminant for the variant.
6239 May return NULL if the type could not be found. */
6240
6241 struct type *
6242 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6243 {
6244 char *name = ada_variant_discrim_name (var_type);
6245
6246 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6247 }
6248
6249 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6250 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6251 represents a 'when others' clause; otherwise 0. */
6252
6253 int
6254 ada_is_others_clause (struct type *type, int field_num)
6255 {
6256 const char *name = TYPE_FIELD_NAME (type, field_num);
6257
6258 return (name != NULL && name[0] == 'O');
6259 }
6260
6261 /* Assuming that TYPE0 is the type of the variant part of a record,
6262 returns the name of the discriminant controlling the variant.
6263 The value is valid until the next call to ada_variant_discrim_name. */
6264
6265 char *
6266 ada_variant_discrim_name (struct type *type0)
6267 {
6268 static char *result = NULL;
6269 static size_t result_len = 0;
6270 struct type *type;
6271 const char *name;
6272 const char *discrim_end;
6273 const char *discrim_start;
6274
6275 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6276 type = TYPE_TARGET_TYPE (type0);
6277 else
6278 type = type0;
6279
6280 name = ada_type_name (type);
6281
6282 if (name == NULL || name[0] == '\000')
6283 return "";
6284
6285 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6286 discrim_end -= 1)
6287 {
6288 if (strncmp (discrim_end, "___XVN", 6) == 0)
6289 break;
6290 }
6291 if (discrim_end == name)
6292 return "";
6293
6294 for (discrim_start = discrim_end; discrim_start != name + 3;
6295 discrim_start -= 1)
6296 {
6297 if (discrim_start == name + 1)
6298 return "";
6299 if ((discrim_start > name + 3
6300 && strncmp (discrim_start - 3, "___", 3) == 0)
6301 || discrim_start[-1] == '.')
6302 break;
6303 }
6304
6305 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6306 strncpy (result, discrim_start, discrim_end - discrim_start);
6307 result[discrim_end - discrim_start] = '\0';
6308 return result;
6309 }
6310
6311 /* Scan STR for a subtype-encoded number, beginning at position K.
6312 Put the position of the character just past the number scanned in
6313 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6314 Return 1 if there was a valid number at the given position, and 0
6315 otherwise. A "subtype-encoded" number consists of the absolute value
6316 in decimal, followed by the letter 'm' to indicate a negative number.
6317 Assumes 0m does not occur. */
6318
6319 int
6320 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6321 {
6322 ULONGEST RU;
6323
6324 if (!isdigit (str[k]))
6325 return 0;
6326
6327 /* Do it the hard way so as not to make any assumption about
6328 the relationship of unsigned long (%lu scan format code) and
6329 LONGEST. */
6330 RU = 0;
6331 while (isdigit (str[k]))
6332 {
6333 RU = RU * 10 + (str[k] - '0');
6334 k += 1;
6335 }
6336
6337 if (str[k] == 'm')
6338 {
6339 if (R != NULL)
6340 *R = (-(LONGEST) (RU - 1)) - 1;
6341 k += 1;
6342 }
6343 else if (R != NULL)
6344 *R = (LONGEST) RU;
6345
6346 /* NOTE on the above: Technically, C does not say what the results of
6347 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6348 number representable as a LONGEST (although either would probably work
6349 in most implementations). When RU>0, the locution in the then branch
6350 above is always equivalent to the negative of RU. */
6351
6352 if (new_k != NULL)
6353 *new_k = k;
6354 return 1;
6355 }
6356
6357 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6358 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6359 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6360
6361 int
6362 ada_in_variant (LONGEST val, struct type *type, int field_num)
6363 {
6364 const char *name = TYPE_FIELD_NAME (type, field_num);
6365 int p;
6366
6367 p = 0;
6368 while (1)
6369 {
6370 switch (name[p])
6371 {
6372 case '\0':
6373 return 0;
6374 case 'S':
6375 {
6376 LONGEST W;
6377
6378 if (!ada_scan_number (name, p + 1, &W, &p))
6379 return 0;
6380 if (val == W)
6381 return 1;
6382 break;
6383 }
6384 case 'R':
6385 {
6386 LONGEST L, U;
6387
6388 if (!ada_scan_number (name, p + 1, &L, &p)
6389 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6390 return 0;
6391 if (val >= L && val <= U)
6392 return 1;
6393 break;
6394 }
6395 case 'O':
6396 return 1;
6397 default:
6398 return 0;
6399 }
6400 }
6401 }
6402
6403 /* FIXME: Lots of redundancy below. Try to consolidate. */
6404
6405 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6406 ARG_TYPE, extract and return the value of one of its (non-static)
6407 fields. FIELDNO says which field. Differs from value_primitive_field
6408 only in that it can handle packed values of arbitrary type. */
6409
6410 static struct value *
6411 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6412 struct type *arg_type)
6413 {
6414 struct type *type;
6415
6416 arg_type = ada_check_typedef (arg_type);
6417 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6418
6419 /* Handle packed fields. */
6420
6421 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6422 {
6423 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6424 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6425
6426 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6427 offset + bit_pos / 8,
6428 bit_pos % 8, bit_size, type);
6429 }
6430 else
6431 return value_primitive_field (arg1, offset, fieldno, arg_type);
6432 }
6433
6434 /* Find field with name NAME in object of type TYPE. If found,
6435 set the following for each argument that is non-null:
6436 - *FIELD_TYPE_P to the field's type;
6437 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6438 an object of that type;
6439 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6440 - *BIT_SIZE_P to its size in bits if the field is packed, and
6441 0 otherwise;
6442 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6443 fields up to but not including the desired field, or by the total
6444 number of fields if not found. A NULL value of NAME never
6445 matches; the function just counts visible fields in this case.
6446
6447 Returns 1 if found, 0 otherwise. */
6448
6449 static int
6450 find_struct_field (const char *name, struct type *type, int offset,
6451 struct type **field_type_p,
6452 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6453 int *index_p)
6454 {
6455 int i;
6456
6457 type = ada_check_typedef (type);
6458
6459 if (field_type_p != NULL)
6460 *field_type_p = NULL;
6461 if (byte_offset_p != NULL)
6462 *byte_offset_p = 0;
6463 if (bit_offset_p != NULL)
6464 *bit_offset_p = 0;
6465 if (bit_size_p != NULL)
6466 *bit_size_p = 0;
6467
6468 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6469 {
6470 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6471 int fld_offset = offset + bit_pos / 8;
6472 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6473
6474 if (t_field_name == NULL)
6475 continue;
6476
6477 else if (name != NULL && field_name_match (t_field_name, name))
6478 {
6479 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6480
6481 if (field_type_p != NULL)
6482 *field_type_p = TYPE_FIELD_TYPE (type, i);
6483 if (byte_offset_p != NULL)
6484 *byte_offset_p = fld_offset;
6485 if (bit_offset_p != NULL)
6486 *bit_offset_p = bit_pos % 8;
6487 if (bit_size_p != NULL)
6488 *bit_size_p = bit_size;
6489 return 1;
6490 }
6491 else if (ada_is_wrapper_field (type, i))
6492 {
6493 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6494 field_type_p, byte_offset_p, bit_offset_p,
6495 bit_size_p, index_p))
6496 return 1;
6497 }
6498 else if (ada_is_variant_part (type, i))
6499 {
6500 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6501 fixed type?? */
6502 int j;
6503 struct type *field_type
6504 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6505
6506 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6507 {
6508 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6509 fld_offset
6510 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6511 field_type_p, byte_offset_p,
6512 bit_offset_p, bit_size_p, index_p))
6513 return 1;
6514 }
6515 }
6516 else if (index_p != NULL)
6517 *index_p += 1;
6518 }
6519 return 0;
6520 }
6521
6522 /* Number of user-visible fields in record type TYPE. */
6523
6524 static int
6525 num_visible_fields (struct type *type)
6526 {
6527 int n;
6528
6529 n = 0;
6530 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6531 return n;
6532 }
6533
6534 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6535 and search in it assuming it has (class) type TYPE.
6536 If found, return value, else return NULL.
6537
6538 Searches recursively through wrapper fields (e.g., '_parent'). */
6539
6540 static struct value *
6541 ada_search_struct_field (char *name, struct value *arg, int offset,
6542 struct type *type)
6543 {
6544 int i;
6545
6546 type = ada_check_typedef (type);
6547 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6548 {
6549 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6550
6551 if (t_field_name == NULL)
6552 continue;
6553
6554 else if (field_name_match (t_field_name, name))
6555 return ada_value_primitive_field (arg, offset, i, type);
6556
6557 else if (ada_is_wrapper_field (type, i))
6558 {
6559 struct value *v = /* Do not let indent join lines here. */
6560 ada_search_struct_field (name, arg,
6561 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6562 TYPE_FIELD_TYPE (type, i));
6563
6564 if (v != NULL)
6565 return v;
6566 }
6567
6568 else if (ada_is_variant_part (type, i))
6569 {
6570 /* PNH: Do we ever get here? See find_struct_field. */
6571 int j;
6572 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6573 i));
6574 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6575
6576 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6577 {
6578 struct value *v = ada_search_struct_field /* Force line
6579 break. */
6580 (name, arg,
6581 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6582 TYPE_FIELD_TYPE (field_type, j));
6583
6584 if (v != NULL)
6585 return v;
6586 }
6587 }
6588 }
6589 return NULL;
6590 }
6591
6592 static struct value *ada_index_struct_field_1 (int *, struct value *,
6593 int, struct type *);
6594
6595
6596 /* Return field #INDEX in ARG, where the index is that returned by
6597 * find_struct_field through its INDEX_P argument. Adjust the address
6598 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6599 * If found, return value, else return NULL. */
6600
6601 static struct value *
6602 ada_index_struct_field (int index, struct value *arg, int offset,
6603 struct type *type)
6604 {
6605 return ada_index_struct_field_1 (&index, arg, offset, type);
6606 }
6607
6608
6609 /* Auxiliary function for ada_index_struct_field. Like
6610 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6611 * *INDEX_P. */
6612
6613 static struct value *
6614 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6615 struct type *type)
6616 {
6617 int i;
6618 type = ada_check_typedef (type);
6619
6620 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6621 {
6622 if (TYPE_FIELD_NAME (type, i) == NULL)
6623 continue;
6624 else if (ada_is_wrapper_field (type, i))
6625 {
6626 struct value *v = /* Do not let indent join lines here. */
6627 ada_index_struct_field_1 (index_p, arg,
6628 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6629 TYPE_FIELD_TYPE (type, i));
6630
6631 if (v != NULL)
6632 return v;
6633 }
6634
6635 else if (ada_is_variant_part (type, i))
6636 {
6637 /* PNH: Do we ever get here? See ada_search_struct_field,
6638 find_struct_field. */
6639 error (_("Cannot assign this kind of variant record"));
6640 }
6641 else if (*index_p == 0)
6642 return ada_value_primitive_field (arg, offset, i, type);
6643 else
6644 *index_p -= 1;
6645 }
6646 return NULL;
6647 }
6648
6649 /* Given ARG, a value of type (pointer or reference to a)*
6650 structure/union, extract the component named NAME from the ultimate
6651 target structure/union and return it as a value with its
6652 appropriate type.
6653
6654 The routine searches for NAME among all members of the structure itself
6655 and (recursively) among all members of any wrapper members
6656 (e.g., '_parent').
6657
6658 If NO_ERR, then simply return NULL in case of error, rather than
6659 calling error. */
6660
6661 struct value *
6662 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6663 {
6664 struct type *t, *t1;
6665 struct value *v;
6666
6667 v = NULL;
6668 t1 = t = ada_check_typedef (value_type (arg));
6669 if (TYPE_CODE (t) == TYPE_CODE_REF)
6670 {
6671 t1 = TYPE_TARGET_TYPE (t);
6672 if (t1 == NULL)
6673 goto BadValue;
6674 t1 = ada_check_typedef (t1);
6675 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6676 {
6677 arg = coerce_ref (arg);
6678 t = t1;
6679 }
6680 }
6681
6682 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6683 {
6684 t1 = TYPE_TARGET_TYPE (t);
6685 if (t1 == NULL)
6686 goto BadValue;
6687 t1 = ada_check_typedef (t1);
6688 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6689 {
6690 arg = value_ind (arg);
6691 t = t1;
6692 }
6693 else
6694 break;
6695 }
6696
6697 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6698 goto BadValue;
6699
6700 if (t1 == t)
6701 v = ada_search_struct_field (name, arg, 0, t);
6702 else
6703 {
6704 int bit_offset, bit_size, byte_offset;
6705 struct type *field_type;
6706 CORE_ADDR address;
6707
6708 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6709 address = value_as_address (arg);
6710 else
6711 address = unpack_pointer (t, value_contents (arg));
6712
6713 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6714 if (find_struct_field (name, t1, 0,
6715 &field_type, &byte_offset, &bit_offset,
6716 &bit_size, NULL))
6717 {
6718 if (bit_size != 0)
6719 {
6720 if (TYPE_CODE (t) == TYPE_CODE_REF)
6721 arg = ada_coerce_ref (arg);
6722 else
6723 arg = ada_value_ind (arg);
6724 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6725 bit_offset, bit_size,
6726 field_type);
6727 }
6728 else
6729 v = value_at_lazy (field_type, address + byte_offset);
6730 }
6731 }
6732
6733 if (v != NULL || no_err)
6734 return v;
6735 else
6736 error (_("There is no member named %s."), name);
6737
6738 BadValue:
6739 if (no_err)
6740 return NULL;
6741 else
6742 error (_("Attempt to extract a component of "
6743 "a value that is not a record."));
6744 }
6745
6746 /* Given a type TYPE, look up the type of the component of type named NAME.
6747 If DISPP is non-null, add its byte displacement from the beginning of a
6748 structure (pointed to by a value) of type TYPE to *DISPP (does not
6749 work for packed fields).
6750
6751 Matches any field whose name has NAME as a prefix, possibly
6752 followed by "___".
6753
6754 TYPE can be either a struct or union. If REFOK, TYPE may also
6755 be a (pointer or reference)+ to a struct or union, and the
6756 ultimate target type will be searched.
6757
6758 Looks recursively into variant clauses and parent types.
6759
6760 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6761 TYPE is not a type of the right kind. */
6762
6763 static struct type *
6764 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6765 int noerr, int *dispp)
6766 {
6767 int i;
6768
6769 if (name == NULL)
6770 goto BadName;
6771
6772 if (refok && type != NULL)
6773 while (1)
6774 {
6775 type = ada_check_typedef (type);
6776 if (TYPE_CODE (type) != TYPE_CODE_PTR
6777 && TYPE_CODE (type) != TYPE_CODE_REF)
6778 break;
6779 type = TYPE_TARGET_TYPE (type);
6780 }
6781
6782 if (type == NULL
6783 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6784 && TYPE_CODE (type) != TYPE_CODE_UNION))
6785 {
6786 if (noerr)
6787 return NULL;
6788 else
6789 {
6790 target_terminal_ours ();
6791 gdb_flush (gdb_stdout);
6792 if (type == NULL)
6793 error (_("Type (null) is not a structure or union type"));
6794 else
6795 {
6796 /* XXX: type_sprint */
6797 fprintf_unfiltered (gdb_stderr, _("Type "));
6798 type_print (type, "", gdb_stderr, -1);
6799 error (_(" is not a structure or union type"));
6800 }
6801 }
6802 }
6803
6804 type = to_static_fixed_type (type);
6805
6806 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6807 {
6808 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6809 struct type *t;
6810 int disp;
6811
6812 if (t_field_name == NULL)
6813 continue;
6814
6815 else if (field_name_match (t_field_name, name))
6816 {
6817 if (dispp != NULL)
6818 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6819 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6820 }
6821
6822 else if (ada_is_wrapper_field (type, i))
6823 {
6824 disp = 0;
6825 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6826 0, 1, &disp);
6827 if (t != NULL)
6828 {
6829 if (dispp != NULL)
6830 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6831 return t;
6832 }
6833 }
6834
6835 else if (ada_is_variant_part (type, i))
6836 {
6837 int j;
6838 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6839 i));
6840
6841 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6842 {
6843 /* FIXME pnh 2008/01/26: We check for a field that is
6844 NOT wrapped in a struct, since the compiler sometimes
6845 generates these for unchecked variant types. Revisit
6846 if the compiler changes this practice. */
6847 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6848 disp = 0;
6849 if (v_field_name != NULL
6850 && field_name_match (v_field_name, name))
6851 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6852 else
6853 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6854 j),
6855 name, 0, 1, &disp);
6856
6857 if (t != NULL)
6858 {
6859 if (dispp != NULL)
6860 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6861 return t;
6862 }
6863 }
6864 }
6865
6866 }
6867
6868 BadName:
6869 if (!noerr)
6870 {
6871 target_terminal_ours ();
6872 gdb_flush (gdb_stdout);
6873 if (name == NULL)
6874 {
6875 /* XXX: type_sprint */
6876 fprintf_unfiltered (gdb_stderr, _("Type "));
6877 type_print (type, "", gdb_stderr, -1);
6878 error (_(" has no component named <null>"));
6879 }
6880 else
6881 {
6882 /* XXX: type_sprint */
6883 fprintf_unfiltered (gdb_stderr, _("Type "));
6884 type_print (type, "", gdb_stderr, -1);
6885 error (_(" has no component named %s"), name);
6886 }
6887 }
6888
6889 return NULL;
6890 }
6891
6892 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6893 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6894 represents an unchecked union (that is, the variant part of a
6895 record that is named in an Unchecked_Union pragma). */
6896
6897 static int
6898 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6899 {
6900 char *discrim_name = ada_variant_discrim_name (var_type);
6901
6902 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6903 == NULL);
6904 }
6905
6906
6907 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6908 within a value of type OUTER_TYPE that is stored in GDB at
6909 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6910 numbering from 0) is applicable. Returns -1 if none are. */
6911
6912 int
6913 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6914 const gdb_byte *outer_valaddr)
6915 {
6916 int others_clause;
6917 int i;
6918 char *discrim_name = ada_variant_discrim_name (var_type);
6919 struct value *outer;
6920 struct value *discrim;
6921 LONGEST discrim_val;
6922
6923 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6924 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6925 if (discrim == NULL)
6926 return -1;
6927 discrim_val = value_as_long (discrim);
6928
6929 others_clause = -1;
6930 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6931 {
6932 if (ada_is_others_clause (var_type, i))
6933 others_clause = i;
6934 else if (ada_in_variant (discrim_val, var_type, i))
6935 return i;
6936 }
6937
6938 return others_clause;
6939 }
6940 \f
6941
6942
6943 /* Dynamic-Sized Records */
6944
6945 /* Strategy: The type ostensibly attached to a value with dynamic size
6946 (i.e., a size that is not statically recorded in the debugging
6947 data) does not accurately reflect the size or layout of the value.
6948 Our strategy is to convert these values to values with accurate,
6949 conventional types that are constructed on the fly. */
6950
6951 /* There is a subtle and tricky problem here. In general, we cannot
6952 determine the size of dynamic records without its data. However,
6953 the 'struct value' data structure, which GDB uses to represent
6954 quantities in the inferior process (the target), requires the size
6955 of the type at the time of its allocation in order to reserve space
6956 for GDB's internal copy of the data. That's why the
6957 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6958 rather than struct value*s.
6959
6960 However, GDB's internal history variables ($1, $2, etc.) are
6961 struct value*s containing internal copies of the data that are not, in
6962 general, the same as the data at their corresponding addresses in
6963 the target. Fortunately, the types we give to these values are all
6964 conventional, fixed-size types (as per the strategy described
6965 above), so that we don't usually have to perform the
6966 'to_fixed_xxx_type' conversions to look at their values.
6967 Unfortunately, there is one exception: if one of the internal
6968 history variables is an array whose elements are unconstrained
6969 records, then we will need to create distinct fixed types for each
6970 element selected. */
6971
6972 /* The upshot of all of this is that many routines take a (type, host
6973 address, target address) triple as arguments to represent a value.
6974 The host address, if non-null, is supposed to contain an internal
6975 copy of the relevant data; otherwise, the program is to consult the
6976 target at the target address. */
6977
6978 /* Assuming that VAL0 represents a pointer value, the result of
6979 dereferencing it. Differs from value_ind in its treatment of
6980 dynamic-sized types. */
6981
6982 struct value *
6983 ada_value_ind (struct value *val0)
6984 {
6985 struct value *val = value_ind (val0);
6986
6987 return ada_to_fixed_value (val);
6988 }
6989
6990 /* The value resulting from dereferencing any "reference to"
6991 qualifiers on VAL0. */
6992
6993 static struct value *
6994 ada_coerce_ref (struct value *val0)
6995 {
6996 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6997 {
6998 struct value *val = val0;
6999
7000 val = coerce_ref (val);
7001 return ada_to_fixed_value (val);
7002 }
7003 else
7004 return val0;
7005 }
7006
7007 /* Return OFF rounded upward if necessary to a multiple of
7008 ALIGNMENT (a power of 2). */
7009
7010 static unsigned int
7011 align_value (unsigned int off, unsigned int alignment)
7012 {
7013 return (off + alignment - 1) & ~(alignment - 1);
7014 }
7015
7016 /* Return the bit alignment required for field #F of template type TYPE. */
7017
7018 static unsigned int
7019 field_alignment (struct type *type, int f)
7020 {
7021 const char *name = TYPE_FIELD_NAME (type, f);
7022 int len;
7023 int align_offset;
7024
7025 /* The field name should never be null, unless the debugging information
7026 is somehow malformed. In this case, we assume the field does not
7027 require any alignment. */
7028 if (name == NULL)
7029 return 1;
7030
7031 len = strlen (name);
7032
7033 if (!isdigit (name[len - 1]))
7034 return 1;
7035
7036 if (isdigit (name[len - 2]))
7037 align_offset = len - 2;
7038 else
7039 align_offset = len - 1;
7040
7041 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
7042 return TARGET_CHAR_BIT;
7043
7044 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7045 }
7046
7047 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7048
7049 static struct symbol *
7050 ada_find_any_type_symbol (const char *name)
7051 {
7052 struct symbol *sym;
7053
7054 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7055 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7056 return sym;
7057
7058 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7059 return sym;
7060 }
7061
7062 /* Find a type named NAME. Ignores ambiguity. This routine will look
7063 solely for types defined by debug info, it will not search the GDB
7064 primitive types. */
7065
7066 static struct type *
7067 ada_find_any_type (const char *name)
7068 {
7069 struct symbol *sym = ada_find_any_type_symbol (name);
7070
7071 if (sym != NULL)
7072 return SYMBOL_TYPE (sym);
7073
7074 return NULL;
7075 }
7076
7077 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7078 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7079 symbol, in which case it is returned. Otherwise, this looks for
7080 symbols whose name is that of NAME_SYM suffixed with "___XR".
7081 Return symbol if found, and NULL otherwise. */
7082
7083 struct symbol *
7084 ada_find_renaming_symbol (struct symbol *name_sym, struct block *block)
7085 {
7086 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7087 struct symbol *sym;
7088
7089 if (strstr (name, "___XR") != NULL)
7090 return name_sym;
7091
7092 sym = find_old_style_renaming_symbol (name, block);
7093
7094 if (sym != NULL)
7095 return sym;
7096
7097 /* Not right yet. FIXME pnh 7/20/2007. */
7098 sym = ada_find_any_type_symbol (name);
7099 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7100 return sym;
7101 else
7102 return NULL;
7103 }
7104
7105 static struct symbol *
7106 find_old_style_renaming_symbol (const char *name, struct block *block)
7107 {
7108 const struct symbol *function_sym = block_linkage_function (block);
7109 char *rename;
7110
7111 if (function_sym != NULL)
7112 {
7113 /* If the symbol is defined inside a function, NAME is not fully
7114 qualified. This means we need to prepend the function name
7115 as well as adding the ``___XR'' suffix to build the name of
7116 the associated renaming symbol. */
7117 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7118 /* Function names sometimes contain suffixes used
7119 for instance to qualify nested subprograms. When building
7120 the XR type name, we need to make sure that this suffix is
7121 not included. So do not include any suffix in the function
7122 name length below. */
7123 int function_name_len = ada_name_prefix_len (function_name);
7124 const int rename_len = function_name_len + 2 /* "__" */
7125 + strlen (name) + 6 /* "___XR\0" */ ;
7126
7127 /* Strip the suffix if necessary. */
7128 ada_remove_trailing_digits (function_name, &function_name_len);
7129 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7130 ada_remove_Xbn_suffix (function_name, &function_name_len);
7131
7132 /* Library-level functions are a special case, as GNAT adds
7133 a ``_ada_'' prefix to the function name to avoid namespace
7134 pollution. However, the renaming symbols themselves do not
7135 have this prefix, so we need to skip this prefix if present. */
7136 if (function_name_len > 5 /* "_ada_" */
7137 && strstr (function_name, "_ada_") == function_name)
7138 {
7139 function_name += 5;
7140 function_name_len -= 5;
7141 }
7142
7143 rename = (char *) alloca (rename_len * sizeof (char));
7144 strncpy (rename, function_name, function_name_len);
7145 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7146 "__%s___XR", name);
7147 }
7148 else
7149 {
7150 const int rename_len = strlen (name) + 6;
7151
7152 rename = (char *) alloca (rename_len * sizeof (char));
7153 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7154 }
7155
7156 return ada_find_any_type_symbol (rename);
7157 }
7158
7159 /* Because of GNAT encoding conventions, several GDB symbols may match a
7160 given type name. If the type denoted by TYPE0 is to be preferred to
7161 that of TYPE1 for purposes of type printing, return non-zero;
7162 otherwise return 0. */
7163
7164 int
7165 ada_prefer_type (struct type *type0, struct type *type1)
7166 {
7167 if (type1 == NULL)
7168 return 1;
7169 else if (type0 == NULL)
7170 return 0;
7171 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7172 return 1;
7173 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7174 return 0;
7175 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7176 return 1;
7177 else if (ada_is_constrained_packed_array_type (type0))
7178 return 1;
7179 else if (ada_is_array_descriptor_type (type0)
7180 && !ada_is_array_descriptor_type (type1))
7181 return 1;
7182 else
7183 {
7184 const char *type0_name = type_name_no_tag (type0);
7185 const char *type1_name = type_name_no_tag (type1);
7186
7187 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7188 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7189 return 1;
7190 }
7191 return 0;
7192 }
7193
7194 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7195 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7196
7197 const char *
7198 ada_type_name (struct type *type)
7199 {
7200 if (type == NULL)
7201 return NULL;
7202 else if (TYPE_NAME (type) != NULL)
7203 return TYPE_NAME (type);
7204 else
7205 return TYPE_TAG_NAME (type);
7206 }
7207
7208 /* Search the list of "descriptive" types associated to TYPE for a type
7209 whose name is NAME. */
7210
7211 static struct type *
7212 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7213 {
7214 struct type *result;
7215
7216 /* If there no descriptive-type info, then there is no parallel type
7217 to be found. */
7218 if (!HAVE_GNAT_AUX_INFO (type))
7219 return NULL;
7220
7221 result = TYPE_DESCRIPTIVE_TYPE (type);
7222 while (result != NULL)
7223 {
7224 const char *result_name = ada_type_name (result);
7225
7226 if (result_name == NULL)
7227 {
7228 warning (_("unexpected null name on descriptive type"));
7229 return NULL;
7230 }
7231
7232 /* If the names match, stop. */
7233 if (strcmp (result_name, name) == 0)
7234 break;
7235
7236 /* Otherwise, look at the next item on the list, if any. */
7237 if (HAVE_GNAT_AUX_INFO (result))
7238 result = TYPE_DESCRIPTIVE_TYPE (result);
7239 else
7240 result = NULL;
7241 }
7242
7243 /* If we didn't find a match, see whether this is a packed array. With
7244 older compilers, the descriptive type information is either absent or
7245 irrelevant when it comes to packed arrays so the above lookup fails.
7246 Fall back to using a parallel lookup by name in this case. */
7247 if (result == NULL && ada_is_constrained_packed_array_type (type))
7248 return ada_find_any_type (name);
7249
7250 return result;
7251 }
7252
7253 /* Find a parallel type to TYPE with the specified NAME, using the
7254 descriptive type taken from the debugging information, if available,
7255 and otherwise using the (slower) name-based method. */
7256
7257 static struct type *
7258 ada_find_parallel_type_with_name (struct type *type, const char *name)
7259 {
7260 struct type *result = NULL;
7261
7262 if (HAVE_GNAT_AUX_INFO (type))
7263 result = find_parallel_type_by_descriptive_type (type, name);
7264 else
7265 result = ada_find_any_type (name);
7266
7267 return result;
7268 }
7269
7270 /* Same as above, but specify the name of the parallel type by appending
7271 SUFFIX to the name of TYPE. */
7272
7273 struct type *
7274 ada_find_parallel_type (struct type *type, const char *suffix)
7275 {
7276 char *name;
7277 const char *typename = ada_type_name (type);
7278 int len;
7279
7280 if (typename == NULL)
7281 return NULL;
7282
7283 len = strlen (typename);
7284
7285 name = (char *) alloca (len + strlen (suffix) + 1);
7286
7287 strcpy (name, typename);
7288 strcpy (name + len, suffix);
7289
7290 return ada_find_parallel_type_with_name (type, name);
7291 }
7292
7293 /* If TYPE is a variable-size record type, return the corresponding template
7294 type describing its fields. Otherwise, return NULL. */
7295
7296 static struct type *
7297 dynamic_template_type (struct type *type)
7298 {
7299 type = ada_check_typedef (type);
7300
7301 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7302 || ada_type_name (type) == NULL)
7303 return NULL;
7304 else
7305 {
7306 int len = strlen (ada_type_name (type));
7307
7308 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7309 return type;
7310 else
7311 return ada_find_parallel_type (type, "___XVE");
7312 }
7313 }
7314
7315 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7316 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7317
7318 static int
7319 is_dynamic_field (struct type *templ_type, int field_num)
7320 {
7321 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7322
7323 return name != NULL
7324 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7325 && strstr (name, "___XVL") != NULL;
7326 }
7327
7328 /* The index of the variant field of TYPE, or -1 if TYPE does not
7329 represent a variant record type. */
7330
7331 static int
7332 variant_field_index (struct type *type)
7333 {
7334 int f;
7335
7336 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7337 return -1;
7338
7339 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7340 {
7341 if (ada_is_variant_part (type, f))
7342 return f;
7343 }
7344 return -1;
7345 }
7346
7347 /* A record type with no fields. */
7348
7349 static struct type *
7350 empty_record (struct type *template)
7351 {
7352 struct type *type = alloc_type_copy (template);
7353
7354 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7355 TYPE_NFIELDS (type) = 0;
7356 TYPE_FIELDS (type) = NULL;
7357 INIT_CPLUS_SPECIFIC (type);
7358 TYPE_NAME (type) = "<empty>";
7359 TYPE_TAG_NAME (type) = NULL;
7360 TYPE_LENGTH (type) = 0;
7361 return type;
7362 }
7363
7364 /* An ordinary record type (with fixed-length fields) that describes
7365 the value of type TYPE at VALADDR or ADDRESS (see comments at
7366 the beginning of this section) VAL according to GNAT conventions.
7367 DVAL0 should describe the (portion of a) record that contains any
7368 necessary discriminants. It should be NULL if value_type (VAL) is
7369 an outer-level type (i.e., as opposed to a branch of a variant.) A
7370 variant field (unless unchecked) is replaced by a particular branch
7371 of the variant.
7372
7373 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7374 length are not statically known are discarded. As a consequence,
7375 VALADDR, ADDRESS and DVAL0 are ignored.
7376
7377 NOTE: Limitations: For now, we assume that dynamic fields and
7378 variants occupy whole numbers of bytes. However, they need not be
7379 byte-aligned. */
7380
7381 struct type *
7382 ada_template_to_fixed_record_type_1 (struct type *type,
7383 const gdb_byte *valaddr,
7384 CORE_ADDR address, struct value *dval0,
7385 int keep_dynamic_fields)
7386 {
7387 struct value *mark = value_mark ();
7388 struct value *dval;
7389 struct type *rtype;
7390 int nfields, bit_len;
7391 int variant_field;
7392 long off;
7393 int fld_bit_len;
7394 int f;
7395
7396 /* Compute the number of fields in this record type that are going
7397 to be processed: unless keep_dynamic_fields, this includes only
7398 fields whose position and length are static will be processed. */
7399 if (keep_dynamic_fields)
7400 nfields = TYPE_NFIELDS (type);
7401 else
7402 {
7403 nfields = 0;
7404 while (nfields < TYPE_NFIELDS (type)
7405 && !ada_is_variant_part (type, nfields)
7406 && !is_dynamic_field (type, nfields))
7407 nfields++;
7408 }
7409
7410 rtype = alloc_type_copy (type);
7411 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7412 INIT_CPLUS_SPECIFIC (rtype);
7413 TYPE_NFIELDS (rtype) = nfields;
7414 TYPE_FIELDS (rtype) = (struct field *)
7415 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7416 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7417 TYPE_NAME (rtype) = ada_type_name (type);
7418 TYPE_TAG_NAME (rtype) = NULL;
7419 TYPE_FIXED_INSTANCE (rtype) = 1;
7420
7421 off = 0;
7422 bit_len = 0;
7423 variant_field = -1;
7424
7425 for (f = 0; f < nfields; f += 1)
7426 {
7427 off = align_value (off, field_alignment (type, f))
7428 + TYPE_FIELD_BITPOS (type, f);
7429 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
7430 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7431
7432 if (ada_is_variant_part (type, f))
7433 {
7434 variant_field = f;
7435 fld_bit_len = 0;
7436 }
7437 else if (is_dynamic_field (type, f))
7438 {
7439 const gdb_byte *field_valaddr = valaddr;
7440 CORE_ADDR field_address = address;
7441 struct type *field_type =
7442 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7443
7444 if (dval0 == NULL)
7445 {
7446 /* rtype's length is computed based on the run-time
7447 value of discriminants. If the discriminants are not
7448 initialized, the type size may be completely bogus and
7449 GDB may fail to allocate a value for it. So check the
7450 size first before creating the value. */
7451 check_size (rtype);
7452 dval = value_from_contents_and_address (rtype, valaddr, address);
7453 }
7454 else
7455 dval = dval0;
7456
7457 /* If the type referenced by this field is an aligner type, we need
7458 to unwrap that aligner type, because its size might not be set.
7459 Keeping the aligner type would cause us to compute the wrong
7460 size for this field, impacting the offset of the all the fields
7461 that follow this one. */
7462 if (ada_is_aligner_type (field_type))
7463 {
7464 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7465
7466 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7467 field_address = cond_offset_target (field_address, field_offset);
7468 field_type = ada_aligned_type (field_type);
7469 }
7470
7471 field_valaddr = cond_offset_host (field_valaddr,
7472 off / TARGET_CHAR_BIT);
7473 field_address = cond_offset_target (field_address,
7474 off / TARGET_CHAR_BIT);
7475
7476 /* Get the fixed type of the field. Note that, in this case,
7477 we do not want to get the real type out of the tag: if
7478 the current field is the parent part of a tagged record,
7479 we will get the tag of the object. Clearly wrong: the real
7480 type of the parent is not the real type of the child. We
7481 would end up in an infinite loop. */
7482 field_type = ada_get_base_type (field_type);
7483 field_type = ada_to_fixed_type (field_type, field_valaddr,
7484 field_address, dval, 0);
7485 /* If the field size is already larger than the maximum
7486 object size, then the record itself will necessarily
7487 be larger than the maximum object size. We need to make
7488 this check now, because the size might be so ridiculously
7489 large (due to an uninitialized variable in the inferior)
7490 that it would cause an overflow when adding it to the
7491 record size. */
7492 check_size (field_type);
7493
7494 TYPE_FIELD_TYPE (rtype, f) = field_type;
7495 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7496 /* The multiplication can potentially overflow. But because
7497 the field length has been size-checked just above, and
7498 assuming that the maximum size is a reasonable value,
7499 an overflow should not happen in practice. So rather than
7500 adding overflow recovery code to this already complex code,
7501 we just assume that it's not going to happen. */
7502 fld_bit_len =
7503 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7504 }
7505 else
7506 {
7507 /* Note: If this field's type is a typedef, it is important
7508 to preserve the typedef layer.
7509
7510 Otherwise, we might be transforming a typedef to a fat
7511 pointer (encoding a pointer to an unconstrained array),
7512 into a basic fat pointer (encoding an unconstrained
7513 array). As both types are implemented using the same
7514 structure, the typedef is the only clue which allows us
7515 to distinguish between the two options. Stripping it
7516 would prevent us from printing this field appropriately. */
7517 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
7518 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7519 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7520 fld_bit_len =
7521 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7522 else
7523 {
7524 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7525
7526 /* We need to be careful of typedefs when computing
7527 the length of our field. If this is a typedef,
7528 get the length of the target type, not the length
7529 of the typedef. */
7530 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7531 field_type = ada_typedef_target_type (field_type);
7532
7533 fld_bit_len =
7534 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7535 }
7536 }
7537 if (off + fld_bit_len > bit_len)
7538 bit_len = off + fld_bit_len;
7539 off += fld_bit_len;
7540 TYPE_LENGTH (rtype) =
7541 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7542 }
7543
7544 /* We handle the variant part, if any, at the end because of certain
7545 odd cases in which it is re-ordered so as NOT to be the last field of
7546 the record. This can happen in the presence of representation
7547 clauses. */
7548 if (variant_field >= 0)
7549 {
7550 struct type *branch_type;
7551
7552 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7553
7554 if (dval0 == NULL)
7555 dval = value_from_contents_and_address (rtype, valaddr, address);
7556 else
7557 dval = dval0;
7558
7559 branch_type =
7560 to_fixed_variant_branch_type
7561 (TYPE_FIELD_TYPE (type, variant_field),
7562 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7563 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7564 if (branch_type == NULL)
7565 {
7566 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7567 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7568 TYPE_NFIELDS (rtype) -= 1;
7569 }
7570 else
7571 {
7572 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7573 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7574 fld_bit_len =
7575 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7576 TARGET_CHAR_BIT;
7577 if (off + fld_bit_len > bit_len)
7578 bit_len = off + fld_bit_len;
7579 TYPE_LENGTH (rtype) =
7580 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7581 }
7582 }
7583
7584 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7585 should contain the alignment of that record, which should be a strictly
7586 positive value. If null or negative, then something is wrong, most
7587 probably in the debug info. In that case, we don't round up the size
7588 of the resulting type. If this record is not part of another structure,
7589 the current RTYPE length might be good enough for our purposes. */
7590 if (TYPE_LENGTH (type) <= 0)
7591 {
7592 if (TYPE_NAME (rtype))
7593 warning (_("Invalid type size for `%s' detected: %d."),
7594 TYPE_NAME (rtype), TYPE_LENGTH (type));
7595 else
7596 warning (_("Invalid type size for <unnamed> detected: %d."),
7597 TYPE_LENGTH (type));
7598 }
7599 else
7600 {
7601 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7602 TYPE_LENGTH (type));
7603 }
7604
7605 value_free_to_mark (mark);
7606 if (TYPE_LENGTH (rtype) > varsize_limit)
7607 error (_("record type with dynamic size is larger than varsize-limit"));
7608 return rtype;
7609 }
7610
7611 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7612 of 1. */
7613
7614 static struct type *
7615 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7616 CORE_ADDR address, struct value *dval0)
7617 {
7618 return ada_template_to_fixed_record_type_1 (type, valaddr,
7619 address, dval0, 1);
7620 }
7621
7622 /* An ordinary record type in which ___XVL-convention fields and
7623 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7624 static approximations, containing all possible fields. Uses
7625 no runtime values. Useless for use in values, but that's OK,
7626 since the results are used only for type determinations. Works on both
7627 structs and unions. Representation note: to save space, we memorize
7628 the result of this function in the TYPE_TARGET_TYPE of the
7629 template type. */
7630
7631 static struct type *
7632 template_to_static_fixed_type (struct type *type0)
7633 {
7634 struct type *type;
7635 int nfields;
7636 int f;
7637
7638 if (TYPE_TARGET_TYPE (type0) != NULL)
7639 return TYPE_TARGET_TYPE (type0);
7640
7641 nfields = TYPE_NFIELDS (type0);
7642 type = type0;
7643
7644 for (f = 0; f < nfields; f += 1)
7645 {
7646 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7647 struct type *new_type;
7648
7649 if (is_dynamic_field (type0, f))
7650 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7651 else
7652 new_type = static_unwrap_type (field_type);
7653 if (type == type0 && new_type != field_type)
7654 {
7655 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7656 TYPE_CODE (type) = TYPE_CODE (type0);
7657 INIT_CPLUS_SPECIFIC (type);
7658 TYPE_NFIELDS (type) = nfields;
7659 TYPE_FIELDS (type) = (struct field *)
7660 TYPE_ALLOC (type, nfields * sizeof (struct field));
7661 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7662 sizeof (struct field) * nfields);
7663 TYPE_NAME (type) = ada_type_name (type0);
7664 TYPE_TAG_NAME (type) = NULL;
7665 TYPE_FIXED_INSTANCE (type) = 1;
7666 TYPE_LENGTH (type) = 0;
7667 }
7668 TYPE_FIELD_TYPE (type, f) = new_type;
7669 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7670 }
7671 return type;
7672 }
7673
7674 /* Given an object of type TYPE whose contents are at VALADDR and
7675 whose address in memory is ADDRESS, returns a revision of TYPE,
7676 which should be a non-dynamic-sized record, in which the variant
7677 part, if any, is replaced with the appropriate branch. Looks
7678 for discriminant values in DVAL0, which can be NULL if the record
7679 contains the necessary discriminant values. */
7680
7681 static struct type *
7682 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7683 CORE_ADDR address, struct value *dval0)
7684 {
7685 struct value *mark = value_mark ();
7686 struct value *dval;
7687 struct type *rtype;
7688 struct type *branch_type;
7689 int nfields = TYPE_NFIELDS (type);
7690 int variant_field = variant_field_index (type);
7691
7692 if (variant_field == -1)
7693 return type;
7694
7695 if (dval0 == NULL)
7696 dval = value_from_contents_and_address (type, valaddr, address);
7697 else
7698 dval = dval0;
7699
7700 rtype = alloc_type_copy (type);
7701 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7702 INIT_CPLUS_SPECIFIC (rtype);
7703 TYPE_NFIELDS (rtype) = nfields;
7704 TYPE_FIELDS (rtype) =
7705 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7706 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7707 sizeof (struct field) * nfields);
7708 TYPE_NAME (rtype) = ada_type_name (type);
7709 TYPE_TAG_NAME (rtype) = NULL;
7710 TYPE_FIXED_INSTANCE (rtype) = 1;
7711 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7712
7713 branch_type = to_fixed_variant_branch_type
7714 (TYPE_FIELD_TYPE (type, variant_field),
7715 cond_offset_host (valaddr,
7716 TYPE_FIELD_BITPOS (type, variant_field)
7717 / TARGET_CHAR_BIT),
7718 cond_offset_target (address,
7719 TYPE_FIELD_BITPOS (type, variant_field)
7720 / TARGET_CHAR_BIT), dval);
7721 if (branch_type == NULL)
7722 {
7723 int f;
7724
7725 for (f = variant_field + 1; f < nfields; f += 1)
7726 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7727 TYPE_NFIELDS (rtype) -= 1;
7728 }
7729 else
7730 {
7731 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7732 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7733 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7734 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7735 }
7736 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7737
7738 value_free_to_mark (mark);
7739 return rtype;
7740 }
7741
7742 /* An ordinary record type (with fixed-length fields) that describes
7743 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7744 beginning of this section]. Any necessary discriminants' values
7745 should be in DVAL, a record value; it may be NULL if the object
7746 at ADDR itself contains any necessary discriminant values.
7747 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7748 values from the record are needed. Except in the case that DVAL,
7749 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7750 unchecked) is replaced by a particular branch of the variant.
7751
7752 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7753 is questionable and may be removed. It can arise during the
7754 processing of an unconstrained-array-of-record type where all the
7755 variant branches have exactly the same size. This is because in
7756 such cases, the compiler does not bother to use the XVS convention
7757 when encoding the record. I am currently dubious of this
7758 shortcut and suspect the compiler should be altered. FIXME. */
7759
7760 static struct type *
7761 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7762 CORE_ADDR address, struct value *dval)
7763 {
7764 struct type *templ_type;
7765
7766 if (TYPE_FIXED_INSTANCE (type0))
7767 return type0;
7768
7769 templ_type = dynamic_template_type (type0);
7770
7771 if (templ_type != NULL)
7772 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7773 else if (variant_field_index (type0) >= 0)
7774 {
7775 if (dval == NULL && valaddr == NULL && address == 0)
7776 return type0;
7777 return to_record_with_fixed_variant_part (type0, valaddr, address,
7778 dval);
7779 }
7780 else
7781 {
7782 TYPE_FIXED_INSTANCE (type0) = 1;
7783 return type0;
7784 }
7785
7786 }
7787
7788 /* An ordinary record type (with fixed-length fields) that describes
7789 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7790 union type. Any necessary discriminants' values should be in DVAL,
7791 a record value. That is, this routine selects the appropriate
7792 branch of the union at ADDR according to the discriminant value
7793 indicated in the union's type name. Returns VAR_TYPE0 itself if
7794 it represents a variant subject to a pragma Unchecked_Union. */
7795
7796 static struct type *
7797 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7798 CORE_ADDR address, struct value *dval)
7799 {
7800 int which;
7801 struct type *templ_type;
7802 struct type *var_type;
7803
7804 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7805 var_type = TYPE_TARGET_TYPE (var_type0);
7806 else
7807 var_type = var_type0;
7808
7809 templ_type = ada_find_parallel_type (var_type, "___XVU");
7810
7811 if (templ_type != NULL)
7812 var_type = templ_type;
7813
7814 if (is_unchecked_variant (var_type, value_type (dval)))
7815 return var_type0;
7816 which =
7817 ada_which_variant_applies (var_type,
7818 value_type (dval), value_contents (dval));
7819
7820 if (which < 0)
7821 return empty_record (var_type);
7822 else if (is_dynamic_field (var_type, which))
7823 return to_fixed_record_type
7824 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7825 valaddr, address, dval);
7826 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7827 return
7828 to_fixed_record_type
7829 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7830 else
7831 return TYPE_FIELD_TYPE (var_type, which);
7832 }
7833
7834 /* Assuming that TYPE0 is an array type describing the type of a value
7835 at ADDR, and that DVAL describes a record containing any
7836 discriminants used in TYPE0, returns a type for the value that
7837 contains no dynamic components (that is, no components whose sizes
7838 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7839 true, gives an error message if the resulting type's size is over
7840 varsize_limit. */
7841
7842 static struct type *
7843 to_fixed_array_type (struct type *type0, struct value *dval,
7844 int ignore_too_big)
7845 {
7846 struct type *index_type_desc;
7847 struct type *result;
7848 int constrained_packed_array_p;
7849
7850 type0 = ada_check_typedef (type0);
7851 if (TYPE_FIXED_INSTANCE (type0))
7852 return type0;
7853
7854 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7855 if (constrained_packed_array_p)
7856 type0 = decode_constrained_packed_array_type (type0);
7857
7858 index_type_desc = ada_find_parallel_type (type0, "___XA");
7859 ada_fixup_array_indexes_type (index_type_desc);
7860 if (index_type_desc == NULL)
7861 {
7862 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7863
7864 /* NOTE: elt_type---the fixed version of elt_type0---should never
7865 depend on the contents of the array in properly constructed
7866 debugging data. */
7867 /* Create a fixed version of the array element type.
7868 We're not providing the address of an element here,
7869 and thus the actual object value cannot be inspected to do
7870 the conversion. This should not be a problem, since arrays of
7871 unconstrained objects are not allowed. In particular, all
7872 the elements of an array of a tagged type should all be of
7873 the same type specified in the debugging info. No need to
7874 consult the object tag. */
7875 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7876
7877 /* Make sure we always create a new array type when dealing with
7878 packed array types, since we're going to fix-up the array
7879 type length and element bitsize a little further down. */
7880 if (elt_type0 == elt_type && !constrained_packed_array_p)
7881 result = type0;
7882 else
7883 result = create_array_type (alloc_type_copy (type0),
7884 elt_type, TYPE_INDEX_TYPE (type0));
7885 }
7886 else
7887 {
7888 int i;
7889 struct type *elt_type0;
7890
7891 elt_type0 = type0;
7892 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7893 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7894
7895 /* NOTE: result---the fixed version of elt_type0---should never
7896 depend on the contents of the array in properly constructed
7897 debugging data. */
7898 /* Create a fixed version of the array element type.
7899 We're not providing the address of an element here,
7900 and thus the actual object value cannot be inspected to do
7901 the conversion. This should not be a problem, since arrays of
7902 unconstrained objects are not allowed. In particular, all
7903 the elements of an array of a tagged type should all be of
7904 the same type specified in the debugging info. No need to
7905 consult the object tag. */
7906 result =
7907 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7908
7909 elt_type0 = type0;
7910 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7911 {
7912 struct type *range_type =
7913 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7914
7915 result = create_array_type (alloc_type_copy (elt_type0),
7916 result, range_type);
7917 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7918 }
7919 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7920 error (_("array type with dynamic size is larger than varsize-limit"));
7921 }
7922
7923 /* We want to preserve the type name. This can be useful when
7924 trying to get the type name of a value that has already been
7925 printed (for instance, if the user did "print VAR; whatis $". */
7926 TYPE_NAME (result) = TYPE_NAME (type0);
7927
7928 if (constrained_packed_array_p)
7929 {
7930 /* So far, the resulting type has been created as if the original
7931 type was a regular (non-packed) array type. As a result, the
7932 bitsize of the array elements needs to be set again, and the array
7933 length needs to be recomputed based on that bitsize. */
7934 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7935 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7936
7937 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7938 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7939 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7940 TYPE_LENGTH (result)++;
7941 }
7942
7943 TYPE_FIXED_INSTANCE (result) = 1;
7944 return result;
7945 }
7946
7947
7948 /* A standard type (containing no dynamically sized components)
7949 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7950 DVAL describes a record containing any discriminants used in TYPE0,
7951 and may be NULL if there are none, or if the object of type TYPE at
7952 ADDRESS or in VALADDR contains these discriminants.
7953
7954 If CHECK_TAG is not null, in the case of tagged types, this function
7955 attempts to locate the object's tag and use it to compute the actual
7956 type. However, when ADDRESS is null, we cannot use it to determine the
7957 location of the tag, and therefore compute the tagged type's actual type.
7958 So we return the tagged type without consulting the tag. */
7959
7960 static struct type *
7961 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7962 CORE_ADDR address, struct value *dval, int check_tag)
7963 {
7964 type = ada_check_typedef (type);
7965 switch (TYPE_CODE (type))
7966 {
7967 default:
7968 return type;
7969 case TYPE_CODE_STRUCT:
7970 {
7971 struct type *static_type = to_static_fixed_type (type);
7972 struct type *fixed_record_type =
7973 to_fixed_record_type (type, valaddr, address, NULL);
7974
7975 /* If STATIC_TYPE is a tagged type and we know the object's address,
7976 then we can determine its tag, and compute the object's actual
7977 type from there. Note that we have to use the fixed record
7978 type (the parent part of the record may have dynamic fields
7979 and the way the location of _tag is expressed may depend on
7980 them). */
7981
7982 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7983 {
7984 struct type *real_type =
7985 type_from_tag (value_tag_from_contents_and_address
7986 (fixed_record_type,
7987 valaddr,
7988 address));
7989
7990 if (real_type != NULL)
7991 return to_fixed_record_type (real_type, valaddr, address, NULL);
7992 }
7993
7994 /* Check to see if there is a parallel ___XVZ variable.
7995 If there is, then it provides the actual size of our type. */
7996 else if (ada_type_name (fixed_record_type) != NULL)
7997 {
7998 const char *name = ada_type_name (fixed_record_type);
7999 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
8000 int xvz_found = 0;
8001 LONGEST size;
8002
8003 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
8004 size = get_int_var_value (xvz_name, &xvz_found);
8005 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
8006 {
8007 fixed_record_type = copy_type (fixed_record_type);
8008 TYPE_LENGTH (fixed_record_type) = size;
8009
8010 /* The FIXED_RECORD_TYPE may have be a stub. We have
8011 observed this when the debugging info is STABS, and
8012 apparently it is something that is hard to fix.
8013
8014 In practice, we don't need the actual type definition
8015 at all, because the presence of the XVZ variable allows us
8016 to assume that there must be a XVS type as well, which we
8017 should be able to use later, when we need the actual type
8018 definition.
8019
8020 In the meantime, pretend that the "fixed" type we are
8021 returning is NOT a stub, because this can cause trouble
8022 when using this type to create new types targeting it.
8023 Indeed, the associated creation routines often check
8024 whether the target type is a stub and will try to replace
8025 it, thus using a type with the wrong size. This, in turn,
8026 might cause the new type to have the wrong size too.
8027 Consider the case of an array, for instance, where the size
8028 of the array is computed from the number of elements in
8029 our array multiplied by the size of its element. */
8030 TYPE_STUB (fixed_record_type) = 0;
8031 }
8032 }
8033 return fixed_record_type;
8034 }
8035 case TYPE_CODE_ARRAY:
8036 return to_fixed_array_type (type, dval, 1);
8037 case TYPE_CODE_UNION:
8038 if (dval == NULL)
8039 return type;
8040 else
8041 return to_fixed_variant_branch_type (type, valaddr, address, dval);
8042 }
8043 }
8044
8045 /* The same as ada_to_fixed_type_1, except that it preserves the type
8046 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8047
8048 The typedef layer needs be preserved in order to differentiate between
8049 arrays and array pointers when both types are implemented using the same
8050 fat pointer. In the array pointer case, the pointer is encoded as
8051 a typedef of the pointer type. For instance, considering:
8052
8053 type String_Access is access String;
8054 S1 : String_Access := null;
8055
8056 To the debugger, S1 is defined as a typedef of type String. But
8057 to the user, it is a pointer. So if the user tries to print S1,
8058 we should not dereference the array, but print the array address
8059 instead.
8060
8061 If we didn't preserve the typedef layer, we would lose the fact that
8062 the type is to be presented as a pointer (needs de-reference before
8063 being printed). And we would also use the source-level type name. */
8064
8065 struct type *
8066 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
8067 CORE_ADDR address, struct value *dval, int check_tag)
8068
8069 {
8070 struct type *fixed_type =
8071 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
8072
8073 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8074 then preserve the typedef layer.
8075
8076 Implementation note: We can only check the main-type portion of
8077 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8078 from TYPE now returns a type that has the same instance flags
8079 as TYPE. For instance, if TYPE is a "typedef const", and its
8080 target type is a "struct", then the typedef elimination will return
8081 a "const" version of the target type. See check_typedef for more
8082 details about how the typedef layer elimination is done.
8083
8084 brobecker/2010-11-19: It seems to me that the only case where it is
8085 useful to preserve the typedef layer is when dealing with fat pointers.
8086 Perhaps, we could add a check for that and preserve the typedef layer
8087 only in that situation. But this seems unecessary so far, probably
8088 because we call check_typedef/ada_check_typedef pretty much everywhere.
8089 */
8090 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8091 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8092 == TYPE_MAIN_TYPE (fixed_type)))
8093 return type;
8094
8095 return fixed_type;
8096 }
8097
8098 /* A standard (static-sized) type corresponding as well as possible to
8099 TYPE0, but based on no runtime data. */
8100
8101 static struct type *
8102 to_static_fixed_type (struct type *type0)
8103 {
8104 struct type *type;
8105
8106 if (type0 == NULL)
8107 return NULL;
8108
8109 if (TYPE_FIXED_INSTANCE (type0))
8110 return type0;
8111
8112 type0 = ada_check_typedef (type0);
8113
8114 switch (TYPE_CODE (type0))
8115 {
8116 default:
8117 return type0;
8118 case TYPE_CODE_STRUCT:
8119 type = dynamic_template_type (type0);
8120 if (type != NULL)
8121 return template_to_static_fixed_type (type);
8122 else
8123 return template_to_static_fixed_type (type0);
8124 case TYPE_CODE_UNION:
8125 type = ada_find_parallel_type (type0, "___XVU");
8126 if (type != NULL)
8127 return template_to_static_fixed_type (type);
8128 else
8129 return template_to_static_fixed_type (type0);
8130 }
8131 }
8132
8133 /* A static approximation of TYPE with all type wrappers removed. */
8134
8135 static struct type *
8136 static_unwrap_type (struct type *type)
8137 {
8138 if (ada_is_aligner_type (type))
8139 {
8140 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8141 if (ada_type_name (type1) == NULL)
8142 TYPE_NAME (type1) = ada_type_name (type);
8143
8144 return static_unwrap_type (type1);
8145 }
8146 else
8147 {
8148 struct type *raw_real_type = ada_get_base_type (type);
8149
8150 if (raw_real_type == type)
8151 return type;
8152 else
8153 return to_static_fixed_type (raw_real_type);
8154 }
8155 }
8156
8157 /* In some cases, incomplete and private types require
8158 cross-references that are not resolved as records (for example,
8159 type Foo;
8160 type FooP is access Foo;
8161 V: FooP;
8162 type Foo is array ...;
8163 ). In these cases, since there is no mechanism for producing
8164 cross-references to such types, we instead substitute for FooP a
8165 stub enumeration type that is nowhere resolved, and whose tag is
8166 the name of the actual type. Call these types "non-record stubs". */
8167
8168 /* A type equivalent to TYPE that is not a non-record stub, if one
8169 exists, otherwise TYPE. */
8170
8171 struct type *
8172 ada_check_typedef (struct type *type)
8173 {
8174 if (type == NULL)
8175 return NULL;
8176
8177 /* If our type is a typedef type of a fat pointer, then we're done.
8178 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8179 what allows us to distinguish between fat pointers that represent
8180 array types, and fat pointers that represent array access types
8181 (in both cases, the compiler implements them as fat pointers). */
8182 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8183 && is_thick_pntr (ada_typedef_target_type (type)))
8184 return type;
8185
8186 CHECK_TYPEDEF (type);
8187 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8188 || !TYPE_STUB (type)
8189 || TYPE_TAG_NAME (type) == NULL)
8190 return type;
8191 else
8192 {
8193 const char *name = TYPE_TAG_NAME (type);
8194 struct type *type1 = ada_find_any_type (name);
8195
8196 if (type1 == NULL)
8197 return type;
8198
8199 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8200 stubs pointing to arrays, as we don't create symbols for array
8201 types, only for the typedef-to-array types). If that's the case,
8202 strip the typedef layer. */
8203 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8204 type1 = ada_check_typedef (type1);
8205
8206 return type1;
8207 }
8208 }
8209
8210 /* A value representing the data at VALADDR/ADDRESS as described by
8211 type TYPE0, but with a standard (static-sized) type that correctly
8212 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8213 type, then return VAL0 [this feature is simply to avoid redundant
8214 creation of struct values]. */
8215
8216 static struct value *
8217 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8218 struct value *val0)
8219 {
8220 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8221
8222 if (type == type0 && val0 != NULL)
8223 return val0;
8224 else
8225 return value_from_contents_and_address (type, 0, address);
8226 }
8227
8228 /* A value representing VAL, but with a standard (static-sized) type
8229 that correctly describes it. Does not necessarily create a new
8230 value. */
8231
8232 struct value *
8233 ada_to_fixed_value (struct value *val)
8234 {
8235 val = unwrap_value (val);
8236 val = ada_to_fixed_value_create (value_type (val),
8237 value_address (val),
8238 val);
8239 return val;
8240 }
8241 \f
8242
8243 /* Attributes */
8244
8245 /* Table mapping attribute numbers to names.
8246 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8247
8248 static const char *attribute_names[] = {
8249 "<?>",
8250
8251 "first",
8252 "last",
8253 "length",
8254 "image",
8255 "max",
8256 "min",
8257 "modulus",
8258 "pos",
8259 "size",
8260 "tag",
8261 "val",
8262 0
8263 };
8264
8265 const char *
8266 ada_attribute_name (enum exp_opcode n)
8267 {
8268 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8269 return attribute_names[n - OP_ATR_FIRST + 1];
8270 else
8271 return attribute_names[0];
8272 }
8273
8274 /* Evaluate the 'POS attribute applied to ARG. */
8275
8276 static LONGEST
8277 pos_atr (struct value *arg)
8278 {
8279 struct value *val = coerce_ref (arg);
8280 struct type *type = value_type (val);
8281
8282 if (!discrete_type_p (type))
8283 error (_("'POS only defined on discrete types"));
8284
8285 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8286 {
8287 int i;
8288 LONGEST v = value_as_long (val);
8289
8290 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8291 {
8292 if (v == TYPE_FIELD_ENUMVAL (type, i))
8293 return i;
8294 }
8295 error (_("enumeration value is invalid: can't find 'POS"));
8296 }
8297 else
8298 return value_as_long (val);
8299 }
8300
8301 static struct value *
8302 value_pos_atr (struct type *type, struct value *arg)
8303 {
8304 return value_from_longest (type, pos_atr (arg));
8305 }
8306
8307 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8308
8309 static struct value *
8310 value_val_atr (struct type *type, struct value *arg)
8311 {
8312 if (!discrete_type_p (type))
8313 error (_("'VAL only defined on discrete types"));
8314 if (!integer_type_p (value_type (arg)))
8315 error (_("'VAL requires integral argument"));
8316
8317 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8318 {
8319 long pos = value_as_long (arg);
8320
8321 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8322 error (_("argument to 'VAL out of range"));
8323 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
8324 }
8325 else
8326 return value_from_longest (type, value_as_long (arg));
8327 }
8328 \f
8329
8330 /* Evaluation */
8331
8332 /* True if TYPE appears to be an Ada character type.
8333 [At the moment, this is true only for Character and Wide_Character;
8334 It is a heuristic test that could stand improvement]. */
8335
8336 int
8337 ada_is_character_type (struct type *type)
8338 {
8339 const char *name;
8340
8341 /* If the type code says it's a character, then assume it really is,
8342 and don't check any further. */
8343 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8344 return 1;
8345
8346 /* Otherwise, assume it's a character type iff it is a discrete type
8347 with a known character type name. */
8348 name = ada_type_name (type);
8349 return (name != NULL
8350 && (TYPE_CODE (type) == TYPE_CODE_INT
8351 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8352 && (strcmp (name, "character") == 0
8353 || strcmp (name, "wide_character") == 0
8354 || strcmp (name, "wide_wide_character") == 0
8355 || strcmp (name, "unsigned char") == 0));
8356 }
8357
8358 /* True if TYPE appears to be an Ada string type. */
8359
8360 int
8361 ada_is_string_type (struct type *type)
8362 {
8363 type = ada_check_typedef (type);
8364 if (type != NULL
8365 && TYPE_CODE (type) != TYPE_CODE_PTR
8366 && (ada_is_simple_array_type (type)
8367 || ada_is_array_descriptor_type (type))
8368 && ada_array_arity (type) == 1)
8369 {
8370 struct type *elttype = ada_array_element_type (type, 1);
8371
8372 return ada_is_character_type (elttype);
8373 }
8374 else
8375 return 0;
8376 }
8377
8378 /* The compiler sometimes provides a parallel XVS type for a given
8379 PAD type. Normally, it is safe to follow the PAD type directly,
8380 but older versions of the compiler have a bug that causes the offset
8381 of its "F" field to be wrong. Following that field in that case
8382 would lead to incorrect results, but this can be worked around
8383 by ignoring the PAD type and using the associated XVS type instead.
8384
8385 Set to True if the debugger should trust the contents of PAD types.
8386 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8387 static int trust_pad_over_xvs = 1;
8388
8389 /* True if TYPE is a struct type introduced by the compiler to force the
8390 alignment of a value. Such types have a single field with a
8391 distinctive name. */
8392
8393 int
8394 ada_is_aligner_type (struct type *type)
8395 {
8396 type = ada_check_typedef (type);
8397
8398 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8399 return 0;
8400
8401 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8402 && TYPE_NFIELDS (type) == 1
8403 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8404 }
8405
8406 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8407 the parallel type. */
8408
8409 struct type *
8410 ada_get_base_type (struct type *raw_type)
8411 {
8412 struct type *real_type_namer;
8413 struct type *raw_real_type;
8414
8415 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8416 return raw_type;
8417
8418 if (ada_is_aligner_type (raw_type))
8419 /* The encoding specifies that we should always use the aligner type.
8420 So, even if this aligner type has an associated XVS type, we should
8421 simply ignore it.
8422
8423 According to the compiler gurus, an XVS type parallel to an aligner
8424 type may exist because of a stabs limitation. In stabs, aligner
8425 types are empty because the field has a variable-sized type, and
8426 thus cannot actually be used as an aligner type. As a result,
8427 we need the associated parallel XVS type to decode the type.
8428 Since the policy in the compiler is to not change the internal
8429 representation based on the debugging info format, we sometimes
8430 end up having a redundant XVS type parallel to the aligner type. */
8431 return raw_type;
8432
8433 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8434 if (real_type_namer == NULL
8435 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8436 || TYPE_NFIELDS (real_type_namer) != 1)
8437 return raw_type;
8438
8439 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8440 {
8441 /* This is an older encoding form where the base type needs to be
8442 looked up by name. We prefer the newer enconding because it is
8443 more efficient. */
8444 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8445 if (raw_real_type == NULL)
8446 return raw_type;
8447 else
8448 return raw_real_type;
8449 }
8450
8451 /* The field in our XVS type is a reference to the base type. */
8452 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8453 }
8454
8455 /* The type of value designated by TYPE, with all aligners removed. */
8456
8457 struct type *
8458 ada_aligned_type (struct type *type)
8459 {
8460 if (ada_is_aligner_type (type))
8461 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8462 else
8463 return ada_get_base_type (type);
8464 }
8465
8466
8467 /* The address of the aligned value in an object at address VALADDR
8468 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8469
8470 const gdb_byte *
8471 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8472 {
8473 if (ada_is_aligner_type (type))
8474 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8475 valaddr +
8476 TYPE_FIELD_BITPOS (type,
8477 0) / TARGET_CHAR_BIT);
8478 else
8479 return valaddr;
8480 }
8481
8482
8483
8484 /* The printed representation of an enumeration literal with encoded
8485 name NAME. The value is good to the next call of ada_enum_name. */
8486 const char *
8487 ada_enum_name (const char *name)
8488 {
8489 static char *result;
8490 static size_t result_len = 0;
8491 char *tmp;
8492
8493 /* First, unqualify the enumeration name:
8494 1. Search for the last '.' character. If we find one, then skip
8495 all the preceding characters, the unqualified name starts
8496 right after that dot.
8497 2. Otherwise, we may be debugging on a target where the compiler
8498 translates dots into "__". Search forward for double underscores,
8499 but stop searching when we hit an overloading suffix, which is
8500 of the form "__" followed by digits. */
8501
8502 tmp = strrchr (name, '.');
8503 if (tmp != NULL)
8504 name = tmp + 1;
8505 else
8506 {
8507 while ((tmp = strstr (name, "__")) != NULL)
8508 {
8509 if (isdigit (tmp[2]))
8510 break;
8511 else
8512 name = tmp + 2;
8513 }
8514 }
8515
8516 if (name[0] == 'Q')
8517 {
8518 int v;
8519
8520 if (name[1] == 'U' || name[1] == 'W')
8521 {
8522 if (sscanf (name + 2, "%x", &v) != 1)
8523 return name;
8524 }
8525 else
8526 return name;
8527
8528 GROW_VECT (result, result_len, 16);
8529 if (isascii (v) && isprint (v))
8530 xsnprintf (result, result_len, "'%c'", v);
8531 else if (name[1] == 'U')
8532 xsnprintf (result, result_len, "[\"%02x\"]", v);
8533 else
8534 xsnprintf (result, result_len, "[\"%04x\"]", v);
8535
8536 return result;
8537 }
8538 else
8539 {
8540 tmp = strstr (name, "__");
8541 if (tmp == NULL)
8542 tmp = strstr (name, "$");
8543 if (tmp != NULL)
8544 {
8545 GROW_VECT (result, result_len, tmp - name + 1);
8546 strncpy (result, name, tmp - name);
8547 result[tmp - name] = '\0';
8548 return result;
8549 }
8550
8551 return name;
8552 }
8553 }
8554
8555 /* Evaluate the subexpression of EXP starting at *POS as for
8556 evaluate_type, updating *POS to point just past the evaluated
8557 expression. */
8558
8559 static struct value *
8560 evaluate_subexp_type (struct expression *exp, int *pos)
8561 {
8562 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8563 }
8564
8565 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8566 value it wraps. */
8567
8568 static struct value *
8569 unwrap_value (struct value *val)
8570 {
8571 struct type *type = ada_check_typedef (value_type (val));
8572
8573 if (ada_is_aligner_type (type))
8574 {
8575 struct value *v = ada_value_struct_elt (val, "F", 0);
8576 struct type *val_type = ada_check_typedef (value_type (v));
8577
8578 if (ada_type_name (val_type) == NULL)
8579 TYPE_NAME (val_type) = ada_type_name (type);
8580
8581 return unwrap_value (v);
8582 }
8583 else
8584 {
8585 struct type *raw_real_type =
8586 ada_check_typedef (ada_get_base_type (type));
8587
8588 /* If there is no parallel XVS or XVE type, then the value is
8589 already unwrapped. Return it without further modification. */
8590 if ((type == raw_real_type)
8591 && ada_find_parallel_type (type, "___XVE") == NULL)
8592 return val;
8593
8594 return
8595 coerce_unspec_val_to_type
8596 (val, ada_to_fixed_type (raw_real_type, 0,
8597 value_address (val),
8598 NULL, 1));
8599 }
8600 }
8601
8602 static struct value *
8603 cast_to_fixed (struct type *type, struct value *arg)
8604 {
8605 LONGEST val;
8606
8607 if (type == value_type (arg))
8608 return arg;
8609 else if (ada_is_fixed_point_type (value_type (arg)))
8610 val = ada_float_to_fixed (type,
8611 ada_fixed_to_float (value_type (arg),
8612 value_as_long (arg)));
8613 else
8614 {
8615 DOUBLEST argd = value_as_double (arg);
8616
8617 val = ada_float_to_fixed (type, argd);
8618 }
8619
8620 return value_from_longest (type, val);
8621 }
8622
8623 static struct value *
8624 cast_from_fixed (struct type *type, struct value *arg)
8625 {
8626 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8627 value_as_long (arg));
8628
8629 return value_from_double (type, val);
8630 }
8631
8632 /* Given two array types T1 and T2, return nonzero iff both arrays
8633 contain the same number of elements. */
8634
8635 static int
8636 ada_same_array_size_p (struct type *t1, struct type *t2)
8637 {
8638 LONGEST lo1, hi1, lo2, hi2;
8639
8640 /* Get the array bounds in order to verify that the size of
8641 the two arrays match. */
8642 if (!get_array_bounds (t1, &lo1, &hi1)
8643 || !get_array_bounds (t2, &lo2, &hi2))
8644 error (_("unable to determine array bounds"));
8645
8646 /* To make things easier for size comparison, normalize a bit
8647 the case of empty arrays by making sure that the difference
8648 between upper bound and lower bound is always -1. */
8649 if (lo1 > hi1)
8650 hi1 = lo1 - 1;
8651 if (lo2 > hi2)
8652 hi2 = lo2 - 1;
8653
8654 return (hi1 - lo1 == hi2 - lo2);
8655 }
8656
8657 /* Assuming that VAL is an array of integrals, and TYPE represents
8658 an array with the same number of elements, but with wider integral
8659 elements, return an array "casted" to TYPE. In practice, this
8660 means that the returned array is built by casting each element
8661 of the original array into TYPE's (wider) element type. */
8662
8663 static struct value *
8664 ada_promote_array_of_integrals (struct type *type, struct value *val)
8665 {
8666 struct type *elt_type = TYPE_TARGET_TYPE (type);
8667 LONGEST lo, hi;
8668 struct value *res;
8669 LONGEST i;
8670
8671 /* Verify that both val and type are arrays of scalars, and
8672 that the size of val's elements is smaller than the size
8673 of type's element. */
8674 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
8675 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
8676 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
8677 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
8678 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
8679 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
8680
8681 if (!get_array_bounds (type, &lo, &hi))
8682 error (_("unable to determine array bounds"));
8683
8684 res = allocate_value (type);
8685
8686 /* Promote each array element. */
8687 for (i = 0; i < hi - lo + 1; i++)
8688 {
8689 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
8690
8691 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
8692 value_contents_all (elt), TYPE_LENGTH (elt_type));
8693 }
8694
8695 return res;
8696 }
8697
8698 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8699 return the converted value. */
8700
8701 static struct value *
8702 coerce_for_assign (struct type *type, struct value *val)
8703 {
8704 struct type *type2 = value_type (val);
8705
8706 if (type == type2)
8707 return val;
8708
8709 type2 = ada_check_typedef (type2);
8710 type = ada_check_typedef (type);
8711
8712 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8713 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8714 {
8715 val = ada_value_ind (val);
8716 type2 = value_type (val);
8717 }
8718
8719 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8720 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8721 {
8722 if (!ada_same_array_size_p (type, type2))
8723 error (_("cannot assign arrays of different length"));
8724
8725 if (is_integral_type (TYPE_TARGET_TYPE (type))
8726 && is_integral_type (TYPE_TARGET_TYPE (type2))
8727 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8728 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8729 {
8730 /* Allow implicit promotion of the array elements to
8731 a wider type. */
8732 return ada_promote_array_of_integrals (type, val);
8733 }
8734
8735 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8736 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
8737 error (_("Incompatible types in assignment"));
8738 deprecated_set_value_type (val, type);
8739 }
8740 return val;
8741 }
8742
8743 static struct value *
8744 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8745 {
8746 struct value *val;
8747 struct type *type1, *type2;
8748 LONGEST v, v1, v2;
8749
8750 arg1 = coerce_ref (arg1);
8751 arg2 = coerce_ref (arg2);
8752 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8753 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8754
8755 if (TYPE_CODE (type1) != TYPE_CODE_INT
8756 || TYPE_CODE (type2) != TYPE_CODE_INT)
8757 return value_binop (arg1, arg2, op);
8758
8759 switch (op)
8760 {
8761 case BINOP_MOD:
8762 case BINOP_DIV:
8763 case BINOP_REM:
8764 break;
8765 default:
8766 return value_binop (arg1, arg2, op);
8767 }
8768
8769 v2 = value_as_long (arg2);
8770 if (v2 == 0)
8771 error (_("second operand of %s must not be zero."), op_string (op));
8772
8773 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8774 return value_binop (arg1, arg2, op);
8775
8776 v1 = value_as_long (arg1);
8777 switch (op)
8778 {
8779 case BINOP_DIV:
8780 v = v1 / v2;
8781 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8782 v += v > 0 ? -1 : 1;
8783 break;
8784 case BINOP_REM:
8785 v = v1 % v2;
8786 if (v * v1 < 0)
8787 v -= v2;
8788 break;
8789 default:
8790 /* Should not reach this point. */
8791 v = 0;
8792 }
8793
8794 val = allocate_value (type1);
8795 store_unsigned_integer (value_contents_raw (val),
8796 TYPE_LENGTH (value_type (val)),
8797 gdbarch_byte_order (get_type_arch (type1)), v);
8798 return val;
8799 }
8800
8801 static int
8802 ada_value_equal (struct value *arg1, struct value *arg2)
8803 {
8804 if (ada_is_direct_array_type (value_type (arg1))
8805 || ada_is_direct_array_type (value_type (arg2)))
8806 {
8807 /* Automatically dereference any array reference before
8808 we attempt to perform the comparison. */
8809 arg1 = ada_coerce_ref (arg1);
8810 arg2 = ada_coerce_ref (arg2);
8811
8812 arg1 = ada_coerce_to_simple_array (arg1);
8813 arg2 = ada_coerce_to_simple_array (arg2);
8814 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8815 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8816 error (_("Attempt to compare array with non-array"));
8817 /* FIXME: The following works only for types whose
8818 representations use all bits (no padding or undefined bits)
8819 and do not have user-defined equality. */
8820 return
8821 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8822 && memcmp (value_contents (arg1), value_contents (arg2),
8823 TYPE_LENGTH (value_type (arg1))) == 0;
8824 }
8825 return value_equal (arg1, arg2);
8826 }
8827
8828 /* Total number of component associations in the aggregate starting at
8829 index PC in EXP. Assumes that index PC is the start of an
8830 OP_AGGREGATE. */
8831
8832 static int
8833 num_component_specs (struct expression *exp, int pc)
8834 {
8835 int n, m, i;
8836
8837 m = exp->elts[pc + 1].longconst;
8838 pc += 3;
8839 n = 0;
8840 for (i = 0; i < m; i += 1)
8841 {
8842 switch (exp->elts[pc].opcode)
8843 {
8844 default:
8845 n += 1;
8846 break;
8847 case OP_CHOICES:
8848 n += exp->elts[pc + 1].longconst;
8849 break;
8850 }
8851 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8852 }
8853 return n;
8854 }
8855
8856 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8857 component of LHS (a simple array or a record), updating *POS past
8858 the expression, assuming that LHS is contained in CONTAINER. Does
8859 not modify the inferior's memory, nor does it modify LHS (unless
8860 LHS == CONTAINER). */
8861
8862 static void
8863 assign_component (struct value *container, struct value *lhs, LONGEST index,
8864 struct expression *exp, int *pos)
8865 {
8866 struct value *mark = value_mark ();
8867 struct value *elt;
8868
8869 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8870 {
8871 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8872 struct value *index_val = value_from_longest (index_type, index);
8873
8874 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8875 }
8876 else
8877 {
8878 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8879 elt = ada_to_fixed_value (elt);
8880 }
8881
8882 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8883 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8884 else
8885 value_assign_to_component (container, elt,
8886 ada_evaluate_subexp (NULL, exp, pos,
8887 EVAL_NORMAL));
8888
8889 value_free_to_mark (mark);
8890 }
8891
8892 /* Assuming that LHS represents an lvalue having a record or array
8893 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8894 of that aggregate's value to LHS, advancing *POS past the
8895 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8896 lvalue containing LHS (possibly LHS itself). Does not modify
8897 the inferior's memory, nor does it modify the contents of
8898 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8899
8900 static struct value *
8901 assign_aggregate (struct value *container,
8902 struct value *lhs, struct expression *exp,
8903 int *pos, enum noside noside)
8904 {
8905 struct type *lhs_type;
8906 int n = exp->elts[*pos+1].longconst;
8907 LONGEST low_index, high_index;
8908 int num_specs;
8909 LONGEST *indices;
8910 int max_indices, num_indices;
8911 int is_array_aggregate;
8912 int i;
8913
8914 *pos += 3;
8915 if (noside != EVAL_NORMAL)
8916 {
8917 for (i = 0; i < n; i += 1)
8918 ada_evaluate_subexp (NULL, exp, pos, noside);
8919 return container;
8920 }
8921
8922 container = ada_coerce_ref (container);
8923 if (ada_is_direct_array_type (value_type (container)))
8924 container = ada_coerce_to_simple_array (container);
8925 lhs = ada_coerce_ref (lhs);
8926 if (!deprecated_value_modifiable (lhs))
8927 error (_("Left operand of assignment is not a modifiable lvalue."));
8928
8929 lhs_type = value_type (lhs);
8930 if (ada_is_direct_array_type (lhs_type))
8931 {
8932 lhs = ada_coerce_to_simple_array (lhs);
8933 lhs_type = value_type (lhs);
8934 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8935 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8936 is_array_aggregate = 1;
8937 }
8938 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8939 {
8940 low_index = 0;
8941 high_index = num_visible_fields (lhs_type) - 1;
8942 is_array_aggregate = 0;
8943 }
8944 else
8945 error (_("Left-hand side must be array or record."));
8946
8947 num_specs = num_component_specs (exp, *pos - 3);
8948 max_indices = 4 * num_specs + 4;
8949 indices = alloca (max_indices * sizeof (indices[0]));
8950 indices[0] = indices[1] = low_index - 1;
8951 indices[2] = indices[3] = high_index + 1;
8952 num_indices = 4;
8953
8954 for (i = 0; i < n; i += 1)
8955 {
8956 switch (exp->elts[*pos].opcode)
8957 {
8958 case OP_CHOICES:
8959 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8960 &num_indices, max_indices,
8961 low_index, high_index);
8962 break;
8963 case OP_POSITIONAL:
8964 aggregate_assign_positional (container, lhs, exp, pos, indices,
8965 &num_indices, max_indices,
8966 low_index, high_index);
8967 break;
8968 case OP_OTHERS:
8969 if (i != n-1)
8970 error (_("Misplaced 'others' clause"));
8971 aggregate_assign_others (container, lhs, exp, pos, indices,
8972 num_indices, low_index, high_index);
8973 break;
8974 default:
8975 error (_("Internal error: bad aggregate clause"));
8976 }
8977 }
8978
8979 return container;
8980 }
8981
8982 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8983 construct at *POS, updating *POS past the construct, given that
8984 the positions are relative to lower bound LOW, where HIGH is the
8985 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8986 updating *NUM_INDICES as needed. CONTAINER is as for
8987 assign_aggregate. */
8988 static void
8989 aggregate_assign_positional (struct value *container,
8990 struct value *lhs, struct expression *exp,
8991 int *pos, LONGEST *indices, int *num_indices,
8992 int max_indices, LONGEST low, LONGEST high)
8993 {
8994 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8995
8996 if (ind - 1 == high)
8997 warning (_("Extra components in aggregate ignored."));
8998 if (ind <= high)
8999 {
9000 add_component_interval (ind, ind, indices, num_indices, max_indices);
9001 *pos += 3;
9002 assign_component (container, lhs, ind, exp, pos);
9003 }
9004 else
9005 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9006 }
9007
9008 /* Assign into the components of LHS indexed by the OP_CHOICES
9009 construct at *POS, updating *POS past the construct, given that
9010 the allowable indices are LOW..HIGH. Record the indices assigned
9011 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9012 needed. CONTAINER is as for assign_aggregate. */
9013 static void
9014 aggregate_assign_from_choices (struct value *container,
9015 struct value *lhs, struct expression *exp,
9016 int *pos, LONGEST *indices, int *num_indices,
9017 int max_indices, LONGEST low, LONGEST high)
9018 {
9019 int j;
9020 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
9021 int choice_pos, expr_pc;
9022 int is_array = ada_is_direct_array_type (value_type (lhs));
9023
9024 choice_pos = *pos += 3;
9025
9026 for (j = 0; j < n_choices; j += 1)
9027 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9028 expr_pc = *pos;
9029 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9030
9031 for (j = 0; j < n_choices; j += 1)
9032 {
9033 LONGEST lower, upper;
9034 enum exp_opcode op = exp->elts[choice_pos].opcode;
9035
9036 if (op == OP_DISCRETE_RANGE)
9037 {
9038 choice_pos += 1;
9039 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9040 EVAL_NORMAL));
9041 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
9042 EVAL_NORMAL));
9043 }
9044 else if (is_array)
9045 {
9046 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
9047 EVAL_NORMAL));
9048 upper = lower;
9049 }
9050 else
9051 {
9052 int ind;
9053 const char *name;
9054
9055 switch (op)
9056 {
9057 case OP_NAME:
9058 name = &exp->elts[choice_pos + 2].string;
9059 break;
9060 case OP_VAR_VALUE:
9061 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
9062 break;
9063 default:
9064 error (_("Invalid record component association."));
9065 }
9066 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
9067 ind = 0;
9068 if (! find_struct_field (name, value_type (lhs), 0,
9069 NULL, NULL, NULL, NULL, &ind))
9070 error (_("Unknown component name: %s."), name);
9071 lower = upper = ind;
9072 }
9073
9074 if (lower <= upper && (lower < low || upper > high))
9075 error (_("Index in component association out of bounds."));
9076
9077 add_component_interval (lower, upper, indices, num_indices,
9078 max_indices);
9079 while (lower <= upper)
9080 {
9081 int pos1;
9082
9083 pos1 = expr_pc;
9084 assign_component (container, lhs, lower, exp, &pos1);
9085 lower += 1;
9086 }
9087 }
9088 }
9089
9090 /* Assign the value of the expression in the OP_OTHERS construct in
9091 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9092 have not been previously assigned. The index intervals already assigned
9093 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9094 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9095 static void
9096 aggregate_assign_others (struct value *container,
9097 struct value *lhs, struct expression *exp,
9098 int *pos, LONGEST *indices, int num_indices,
9099 LONGEST low, LONGEST high)
9100 {
9101 int i;
9102 int expr_pc = *pos + 1;
9103
9104 for (i = 0; i < num_indices - 2; i += 2)
9105 {
9106 LONGEST ind;
9107
9108 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
9109 {
9110 int localpos;
9111
9112 localpos = expr_pc;
9113 assign_component (container, lhs, ind, exp, &localpos);
9114 }
9115 }
9116 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
9117 }
9118
9119 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9120 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9121 modifying *SIZE as needed. It is an error if *SIZE exceeds
9122 MAX_SIZE. The resulting intervals do not overlap. */
9123 static void
9124 add_component_interval (LONGEST low, LONGEST high,
9125 LONGEST* indices, int *size, int max_size)
9126 {
9127 int i, j;
9128
9129 for (i = 0; i < *size; i += 2) {
9130 if (high >= indices[i] && low <= indices[i + 1])
9131 {
9132 int kh;
9133
9134 for (kh = i + 2; kh < *size; kh += 2)
9135 if (high < indices[kh])
9136 break;
9137 if (low < indices[i])
9138 indices[i] = low;
9139 indices[i + 1] = indices[kh - 1];
9140 if (high > indices[i + 1])
9141 indices[i + 1] = high;
9142 memcpy (indices + i + 2, indices + kh, *size - kh);
9143 *size -= kh - i - 2;
9144 return;
9145 }
9146 else if (high < indices[i])
9147 break;
9148 }
9149
9150 if (*size == max_size)
9151 error (_("Internal error: miscounted aggregate components."));
9152 *size += 2;
9153 for (j = *size-1; j >= i+2; j -= 1)
9154 indices[j] = indices[j - 2];
9155 indices[i] = low;
9156 indices[i + 1] = high;
9157 }
9158
9159 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9160 is different. */
9161
9162 static struct value *
9163 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9164 {
9165 if (type == ada_check_typedef (value_type (arg2)))
9166 return arg2;
9167
9168 if (ada_is_fixed_point_type (type))
9169 return (cast_to_fixed (type, arg2));
9170
9171 if (ada_is_fixed_point_type (value_type (arg2)))
9172 return cast_from_fixed (type, arg2);
9173
9174 return value_cast (type, arg2);
9175 }
9176
9177 /* Evaluating Ada expressions, and printing their result.
9178 ------------------------------------------------------
9179
9180 1. Introduction:
9181 ----------------
9182
9183 We usually evaluate an Ada expression in order to print its value.
9184 We also evaluate an expression in order to print its type, which
9185 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9186 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9187 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9188 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9189 similar.
9190
9191 Evaluating expressions is a little more complicated for Ada entities
9192 than it is for entities in languages such as C. The main reason for
9193 this is that Ada provides types whose definition might be dynamic.
9194 One example of such types is variant records. Or another example
9195 would be an array whose bounds can only be known at run time.
9196
9197 The following description is a general guide as to what should be
9198 done (and what should NOT be done) in order to evaluate an expression
9199 involving such types, and when. This does not cover how the semantic
9200 information is encoded by GNAT as this is covered separatly. For the
9201 document used as the reference for the GNAT encoding, see exp_dbug.ads
9202 in the GNAT sources.
9203
9204 Ideally, we should embed each part of this description next to its
9205 associated code. Unfortunately, the amount of code is so vast right
9206 now that it's hard to see whether the code handling a particular
9207 situation might be duplicated or not. One day, when the code is
9208 cleaned up, this guide might become redundant with the comments
9209 inserted in the code, and we might want to remove it.
9210
9211 2. ``Fixing'' an Entity, the Simple Case:
9212 -----------------------------------------
9213
9214 When evaluating Ada expressions, the tricky issue is that they may
9215 reference entities whose type contents and size are not statically
9216 known. Consider for instance a variant record:
9217
9218 type Rec (Empty : Boolean := True) is record
9219 case Empty is
9220 when True => null;
9221 when False => Value : Integer;
9222 end case;
9223 end record;
9224 Yes : Rec := (Empty => False, Value => 1);
9225 No : Rec := (empty => True);
9226
9227 The size and contents of that record depends on the value of the
9228 descriminant (Rec.Empty). At this point, neither the debugging
9229 information nor the associated type structure in GDB are able to
9230 express such dynamic types. So what the debugger does is to create
9231 "fixed" versions of the type that applies to the specific object.
9232 We also informally refer to this opperation as "fixing" an object,
9233 which means creating its associated fixed type.
9234
9235 Example: when printing the value of variable "Yes" above, its fixed
9236 type would look like this:
9237
9238 type Rec is record
9239 Empty : Boolean;
9240 Value : Integer;
9241 end record;
9242
9243 On the other hand, if we printed the value of "No", its fixed type
9244 would become:
9245
9246 type Rec is record
9247 Empty : Boolean;
9248 end record;
9249
9250 Things become a little more complicated when trying to fix an entity
9251 with a dynamic type that directly contains another dynamic type,
9252 such as an array of variant records, for instance. There are
9253 two possible cases: Arrays, and records.
9254
9255 3. ``Fixing'' Arrays:
9256 ---------------------
9257
9258 The type structure in GDB describes an array in terms of its bounds,
9259 and the type of its elements. By design, all elements in the array
9260 have the same type and we cannot represent an array of variant elements
9261 using the current type structure in GDB. When fixing an array,
9262 we cannot fix the array element, as we would potentially need one
9263 fixed type per element of the array. As a result, the best we can do
9264 when fixing an array is to produce an array whose bounds and size
9265 are correct (allowing us to read it from memory), but without having
9266 touched its element type. Fixing each element will be done later,
9267 when (if) necessary.
9268
9269 Arrays are a little simpler to handle than records, because the same
9270 amount of memory is allocated for each element of the array, even if
9271 the amount of space actually used by each element differs from element
9272 to element. Consider for instance the following array of type Rec:
9273
9274 type Rec_Array is array (1 .. 2) of Rec;
9275
9276 The actual amount of memory occupied by each element might be different
9277 from element to element, depending on the value of their discriminant.
9278 But the amount of space reserved for each element in the array remains
9279 fixed regardless. So we simply need to compute that size using
9280 the debugging information available, from which we can then determine
9281 the array size (we multiply the number of elements of the array by
9282 the size of each element).
9283
9284 The simplest case is when we have an array of a constrained element
9285 type. For instance, consider the following type declarations:
9286
9287 type Bounded_String (Max_Size : Integer) is
9288 Length : Integer;
9289 Buffer : String (1 .. Max_Size);
9290 end record;
9291 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9292
9293 In this case, the compiler describes the array as an array of
9294 variable-size elements (identified by its XVS suffix) for which
9295 the size can be read in the parallel XVZ variable.
9296
9297 In the case of an array of an unconstrained element type, the compiler
9298 wraps the array element inside a private PAD type. This type should not
9299 be shown to the user, and must be "unwrap"'ed before printing. Note
9300 that we also use the adjective "aligner" in our code to designate
9301 these wrapper types.
9302
9303 In some cases, the size allocated for each element is statically
9304 known. In that case, the PAD type already has the correct size,
9305 and the array element should remain unfixed.
9306
9307 But there are cases when this size is not statically known.
9308 For instance, assuming that "Five" is an integer variable:
9309
9310 type Dynamic is array (1 .. Five) of Integer;
9311 type Wrapper (Has_Length : Boolean := False) is record
9312 Data : Dynamic;
9313 case Has_Length is
9314 when True => Length : Integer;
9315 when False => null;
9316 end case;
9317 end record;
9318 type Wrapper_Array is array (1 .. 2) of Wrapper;
9319
9320 Hello : Wrapper_Array := (others => (Has_Length => True,
9321 Data => (others => 17),
9322 Length => 1));
9323
9324
9325 The debugging info would describe variable Hello as being an
9326 array of a PAD type. The size of that PAD type is not statically
9327 known, but can be determined using a parallel XVZ variable.
9328 In that case, a copy of the PAD type with the correct size should
9329 be used for the fixed array.
9330
9331 3. ``Fixing'' record type objects:
9332 ----------------------------------
9333
9334 Things are slightly different from arrays in the case of dynamic
9335 record types. In this case, in order to compute the associated
9336 fixed type, we need to determine the size and offset of each of
9337 its components. This, in turn, requires us to compute the fixed
9338 type of each of these components.
9339
9340 Consider for instance the example:
9341
9342 type Bounded_String (Max_Size : Natural) is record
9343 Str : String (1 .. Max_Size);
9344 Length : Natural;
9345 end record;
9346 My_String : Bounded_String (Max_Size => 10);
9347
9348 In that case, the position of field "Length" depends on the size
9349 of field Str, which itself depends on the value of the Max_Size
9350 discriminant. In order to fix the type of variable My_String,
9351 we need to fix the type of field Str. Therefore, fixing a variant
9352 record requires us to fix each of its components.
9353
9354 However, if a component does not have a dynamic size, the component
9355 should not be fixed. In particular, fields that use a PAD type
9356 should not fixed. Here is an example where this might happen
9357 (assuming type Rec above):
9358
9359 type Container (Big : Boolean) is record
9360 First : Rec;
9361 After : Integer;
9362 case Big is
9363 when True => Another : Integer;
9364 when False => null;
9365 end case;
9366 end record;
9367 My_Container : Container := (Big => False,
9368 First => (Empty => True),
9369 After => 42);
9370
9371 In that example, the compiler creates a PAD type for component First,
9372 whose size is constant, and then positions the component After just
9373 right after it. The offset of component After is therefore constant
9374 in this case.
9375
9376 The debugger computes the position of each field based on an algorithm
9377 that uses, among other things, the actual position and size of the field
9378 preceding it. Let's now imagine that the user is trying to print
9379 the value of My_Container. If the type fixing was recursive, we would
9380 end up computing the offset of field After based on the size of the
9381 fixed version of field First. And since in our example First has
9382 only one actual field, the size of the fixed type is actually smaller
9383 than the amount of space allocated to that field, and thus we would
9384 compute the wrong offset of field After.
9385
9386 To make things more complicated, we need to watch out for dynamic
9387 components of variant records (identified by the ___XVL suffix in
9388 the component name). Even if the target type is a PAD type, the size
9389 of that type might not be statically known. So the PAD type needs
9390 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9391 we might end up with the wrong size for our component. This can be
9392 observed with the following type declarations:
9393
9394 type Octal is new Integer range 0 .. 7;
9395 type Octal_Array is array (Positive range <>) of Octal;
9396 pragma Pack (Octal_Array);
9397
9398 type Octal_Buffer (Size : Positive) is record
9399 Buffer : Octal_Array (1 .. Size);
9400 Length : Integer;
9401 end record;
9402
9403 In that case, Buffer is a PAD type whose size is unset and needs
9404 to be computed by fixing the unwrapped type.
9405
9406 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9407 ----------------------------------------------------------
9408
9409 Lastly, when should the sub-elements of an entity that remained unfixed
9410 thus far, be actually fixed?
9411
9412 The answer is: Only when referencing that element. For instance
9413 when selecting one component of a record, this specific component
9414 should be fixed at that point in time. Or when printing the value
9415 of a record, each component should be fixed before its value gets
9416 printed. Similarly for arrays, the element of the array should be
9417 fixed when printing each element of the array, or when extracting
9418 one element out of that array. On the other hand, fixing should
9419 not be performed on the elements when taking a slice of an array!
9420
9421 Note that one of the side-effects of miscomputing the offset and
9422 size of each field is that we end up also miscomputing the size
9423 of the containing type. This can have adverse results when computing
9424 the value of an entity. GDB fetches the value of an entity based
9425 on the size of its type, and thus a wrong size causes GDB to fetch
9426 the wrong amount of memory. In the case where the computed size is
9427 too small, GDB fetches too little data to print the value of our
9428 entiry. Results in this case as unpredicatble, as we usually read
9429 past the buffer containing the data =:-o. */
9430
9431 /* Implement the evaluate_exp routine in the exp_descriptor structure
9432 for the Ada language. */
9433
9434 static struct value *
9435 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9436 int *pos, enum noside noside)
9437 {
9438 enum exp_opcode op;
9439 int tem;
9440 int pc;
9441 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9442 struct type *type;
9443 int nargs, oplen;
9444 struct value **argvec;
9445
9446 pc = *pos;
9447 *pos += 1;
9448 op = exp->elts[pc].opcode;
9449
9450 switch (op)
9451 {
9452 default:
9453 *pos -= 1;
9454 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9455 arg1 = unwrap_value (arg1);
9456
9457 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9458 then we need to perform the conversion manually, because
9459 evaluate_subexp_standard doesn't do it. This conversion is
9460 necessary in Ada because the different kinds of float/fixed
9461 types in Ada have different representations.
9462
9463 Similarly, we need to perform the conversion from OP_LONG
9464 ourselves. */
9465 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9466 arg1 = ada_value_cast (expect_type, arg1, noside);
9467
9468 return arg1;
9469
9470 case OP_STRING:
9471 {
9472 struct value *result;
9473
9474 *pos -= 1;
9475 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9476 /* The result type will have code OP_STRING, bashed there from
9477 OP_ARRAY. Bash it back. */
9478 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9479 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9480 return result;
9481 }
9482
9483 case UNOP_CAST:
9484 (*pos) += 2;
9485 type = exp->elts[pc + 1].type;
9486 arg1 = evaluate_subexp (type, exp, pos, noside);
9487 if (noside == EVAL_SKIP)
9488 goto nosideret;
9489 arg1 = ada_value_cast (type, arg1, noside);
9490 return arg1;
9491
9492 case UNOP_QUAL:
9493 (*pos) += 2;
9494 type = exp->elts[pc + 1].type;
9495 return ada_evaluate_subexp (type, exp, pos, noside);
9496
9497 case BINOP_ASSIGN:
9498 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9499 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9500 {
9501 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9502 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9503 return arg1;
9504 return ada_value_assign (arg1, arg1);
9505 }
9506 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9507 except if the lhs of our assignment is a convenience variable.
9508 In the case of assigning to a convenience variable, the lhs
9509 should be exactly the result of the evaluation of the rhs. */
9510 type = value_type (arg1);
9511 if (VALUE_LVAL (arg1) == lval_internalvar)
9512 type = NULL;
9513 arg2 = evaluate_subexp (type, exp, pos, noside);
9514 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9515 return arg1;
9516 if (ada_is_fixed_point_type (value_type (arg1)))
9517 arg2 = cast_to_fixed (value_type (arg1), arg2);
9518 else if (ada_is_fixed_point_type (value_type (arg2)))
9519 error
9520 (_("Fixed-point values must be assigned to fixed-point variables"));
9521 else
9522 arg2 = coerce_for_assign (value_type (arg1), arg2);
9523 return ada_value_assign (arg1, arg2);
9524
9525 case BINOP_ADD:
9526 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9527 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9528 if (noside == EVAL_SKIP)
9529 goto nosideret;
9530 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9531 return (value_from_longest
9532 (value_type (arg1),
9533 value_as_long (arg1) + value_as_long (arg2)));
9534 if ((ada_is_fixed_point_type (value_type (arg1))
9535 || ada_is_fixed_point_type (value_type (arg2)))
9536 && value_type (arg1) != value_type (arg2))
9537 error (_("Operands of fixed-point addition must have the same type"));
9538 /* Do the addition, and cast the result to the type of the first
9539 argument. We cannot cast the result to a reference type, so if
9540 ARG1 is a reference type, find its underlying type. */
9541 type = value_type (arg1);
9542 while (TYPE_CODE (type) == TYPE_CODE_REF)
9543 type = TYPE_TARGET_TYPE (type);
9544 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9545 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9546
9547 case BINOP_SUB:
9548 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9549 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9550 if (noside == EVAL_SKIP)
9551 goto nosideret;
9552 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9553 return (value_from_longest
9554 (value_type (arg1),
9555 value_as_long (arg1) - value_as_long (arg2)));
9556 if ((ada_is_fixed_point_type (value_type (arg1))
9557 || ada_is_fixed_point_type (value_type (arg2)))
9558 && value_type (arg1) != value_type (arg2))
9559 error (_("Operands of fixed-point subtraction "
9560 "must have the same type"));
9561 /* Do the substraction, and cast the result to the type of the first
9562 argument. We cannot cast the result to a reference type, so if
9563 ARG1 is a reference type, find its underlying type. */
9564 type = value_type (arg1);
9565 while (TYPE_CODE (type) == TYPE_CODE_REF)
9566 type = TYPE_TARGET_TYPE (type);
9567 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9568 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9569
9570 case BINOP_MUL:
9571 case BINOP_DIV:
9572 case BINOP_REM:
9573 case BINOP_MOD:
9574 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9575 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9576 if (noside == EVAL_SKIP)
9577 goto nosideret;
9578 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9579 {
9580 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9581 return value_zero (value_type (arg1), not_lval);
9582 }
9583 else
9584 {
9585 type = builtin_type (exp->gdbarch)->builtin_double;
9586 if (ada_is_fixed_point_type (value_type (arg1)))
9587 arg1 = cast_from_fixed (type, arg1);
9588 if (ada_is_fixed_point_type (value_type (arg2)))
9589 arg2 = cast_from_fixed (type, arg2);
9590 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9591 return ada_value_binop (arg1, arg2, op);
9592 }
9593
9594 case BINOP_EQUAL:
9595 case BINOP_NOTEQUAL:
9596 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9597 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9598 if (noside == EVAL_SKIP)
9599 goto nosideret;
9600 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9601 tem = 0;
9602 else
9603 {
9604 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9605 tem = ada_value_equal (arg1, arg2);
9606 }
9607 if (op == BINOP_NOTEQUAL)
9608 tem = !tem;
9609 type = language_bool_type (exp->language_defn, exp->gdbarch);
9610 return value_from_longest (type, (LONGEST) tem);
9611
9612 case UNOP_NEG:
9613 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9614 if (noside == EVAL_SKIP)
9615 goto nosideret;
9616 else if (ada_is_fixed_point_type (value_type (arg1)))
9617 return value_cast (value_type (arg1), value_neg (arg1));
9618 else
9619 {
9620 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9621 return value_neg (arg1);
9622 }
9623
9624 case BINOP_LOGICAL_AND:
9625 case BINOP_LOGICAL_OR:
9626 case UNOP_LOGICAL_NOT:
9627 {
9628 struct value *val;
9629
9630 *pos -= 1;
9631 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9632 type = language_bool_type (exp->language_defn, exp->gdbarch);
9633 return value_cast (type, val);
9634 }
9635
9636 case BINOP_BITWISE_AND:
9637 case BINOP_BITWISE_IOR:
9638 case BINOP_BITWISE_XOR:
9639 {
9640 struct value *val;
9641
9642 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9643 *pos = pc;
9644 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9645
9646 return value_cast (value_type (arg1), val);
9647 }
9648
9649 case OP_VAR_VALUE:
9650 *pos -= 1;
9651
9652 if (noside == EVAL_SKIP)
9653 {
9654 *pos += 4;
9655 goto nosideret;
9656 }
9657 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9658 /* Only encountered when an unresolved symbol occurs in a
9659 context other than a function call, in which case, it is
9660 invalid. */
9661 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9662 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9663 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9664 {
9665 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9666 /* Check to see if this is a tagged type. We also need to handle
9667 the case where the type is a reference to a tagged type, but
9668 we have to be careful to exclude pointers to tagged types.
9669 The latter should be shown as usual (as a pointer), whereas
9670 a reference should mostly be transparent to the user. */
9671 if (ada_is_tagged_type (type, 0)
9672 || (TYPE_CODE(type) == TYPE_CODE_REF
9673 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9674 {
9675 /* Tagged types are a little special in the fact that the real
9676 type is dynamic and can only be determined by inspecting the
9677 object's tag. This means that we need to get the object's
9678 value first (EVAL_NORMAL) and then extract the actual object
9679 type from its tag.
9680
9681 Note that we cannot skip the final step where we extract
9682 the object type from its tag, because the EVAL_NORMAL phase
9683 results in dynamic components being resolved into fixed ones.
9684 This can cause problems when trying to print the type
9685 description of tagged types whose parent has a dynamic size:
9686 We use the type name of the "_parent" component in order
9687 to print the name of the ancestor type in the type description.
9688 If that component had a dynamic size, the resolution into
9689 a fixed type would result in the loss of that type name,
9690 thus preventing us from printing the name of the ancestor
9691 type in the type description. */
9692 struct type *actual_type;
9693
9694 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9695 actual_type = type_from_tag (ada_value_tag (arg1));
9696 if (actual_type == NULL)
9697 /* If, for some reason, we were unable to determine
9698 the actual type from the tag, then use the static
9699 approximation that we just computed as a fallback.
9700 This can happen if the debugging information is
9701 incomplete, for instance. */
9702 actual_type = type;
9703
9704 return value_zero (actual_type, not_lval);
9705 }
9706
9707 *pos += 4;
9708 return value_zero
9709 (to_static_fixed_type
9710 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9711 not_lval);
9712 }
9713 else
9714 {
9715 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9716 return ada_to_fixed_value (arg1);
9717 }
9718
9719 case OP_FUNCALL:
9720 (*pos) += 2;
9721
9722 /* Allocate arg vector, including space for the function to be
9723 called in argvec[0] and a terminating NULL. */
9724 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9725 argvec =
9726 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9727
9728 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9729 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9730 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9731 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9732 else
9733 {
9734 for (tem = 0; tem <= nargs; tem += 1)
9735 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9736 argvec[tem] = 0;
9737
9738 if (noside == EVAL_SKIP)
9739 goto nosideret;
9740 }
9741
9742 if (ada_is_constrained_packed_array_type
9743 (desc_base_type (value_type (argvec[0]))))
9744 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9745 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9746 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9747 /* This is a packed array that has already been fixed, and
9748 therefore already coerced to a simple array. Nothing further
9749 to do. */
9750 ;
9751 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9752 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9753 && VALUE_LVAL (argvec[0]) == lval_memory))
9754 argvec[0] = value_addr (argvec[0]);
9755
9756 type = ada_check_typedef (value_type (argvec[0]));
9757
9758 /* Ada allows us to implicitly dereference arrays when subscripting
9759 them. So, if this is an array typedef (encoding use for array
9760 access types encoded as fat pointers), strip it now. */
9761 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9762 type = ada_typedef_target_type (type);
9763
9764 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9765 {
9766 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9767 {
9768 case TYPE_CODE_FUNC:
9769 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9770 break;
9771 case TYPE_CODE_ARRAY:
9772 break;
9773 case TYPE_CODE_STRUCT:
9774 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9775 argvec[0] = ada_value_ind (argvec[0]);
9776 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9777 break;
9778 default:
9779 error (_("cannot subscript or call something of type `%s'"),
9780 ada_type_name (value_type (argvec[0])));
9781 break;
9782 }
9783 }
9784
9785 switch (TYPE_CODE (type))
9786 {
9787 case TYPE_CODE_FUNC:
9788 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9789 {
9790 struct type *rtype = TYPE_TARGET_TYPE (type);
9791
9792 if (TYPE_GNU_IFUNC (type))
9793 return allocate_value (TYPE_TARGET_TYPE (rtype));
9794 return allocate_value (rtype);
9795 }
9796 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9797 case TYPE_CODE_INTERNAL_FUNCTION:
9798 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9799 /* We don't know anything about what the internal
9800 function might return, but we have to return
9801 something. */
9802 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
9803 not_lval);
9804 else
9805 return call_internal_function (exp->gdbarch, exp->language_defn,
9806 argvec[0], nargs, argvec + 1);
9807
9808 case TYPE_CODE_STRUCT:
9809 {
9810 int arity;
9811
9812 arity = ada_array_arity (type);
9813 type = ada_array_element_type (type, nargs);
9814 if (type == NULL)
9815 error (_("cannot subscript or call a record"));
9816 if (arity != nargs)
9817 error (_("wrong number of subscripts; expecting %d"), arity);
9818 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9819 return value_zero (ada_aligned_type (type), lval_memory);
9820 return
9821 unwrap_value (ada_value_subscript
9822 (argvec[0], nargs, argvec + 1));
9823 }
9824 case TYPE_CODE_ARRAY:
9825 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9826 {
9827 type = ada_array_element_type (type, nargs);
9828 if (type == NULL)
9829 error (_("element type of array unknown"));
9830 else
9831 return value_zero (ada_aligned_type (type), lval_memory);
9832 }
9833 return
9834 unwrap_value (ada_value_subscript
9835 (ada_coerce_to_simple_array (argvec[0]),
9836 nargs, argvec + 1));
9837 case TYPE_CODE_PTR: /* Pointer to array */
9838 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9839 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9840 {
9841 type = ada_array_element_type (type, nargs);
9842 if (type == NULL)
9843 error (_("element type of array unknown"));
9844 else
9845 return value_zero (ada_aligned_type (type), lval_memory);
9846 }
9847 return
9848 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9849 nargs, argvec + 1));
9850
9851 default:
9852 error (_("Attempt to index or call something other than an "
9853 "array or function"));
9854 }
9855
9856 case TERNOP_SLICE:
9857 {
9858 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9859 struct value *low_bound_val =
9860 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9861 struct value *high_bound_val =
9862 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9863 LONGEST low_bound;
9864 LONGEST high_bound;
9865
9866 low_bound_val = coerce_ref (low_bound_val);
9867 high_bound_val = coerce_ref (high_bound_val);
9868 low_bound = pos_atr (low_bound_val);
9869 high_bound = pos_atr (high_bound_val);
9870
9871 if (noside == EVAL_SKIP)
9872 goto nosideret;
9873
9874 /* If this is a reference to an aligner type, then remove all
9875 the aligners. */
9876 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9877 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9878 TYPE_TARGET_TYPE (value_type (array)) =
9879 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9880
9881 if (ada_is_constrained_packed_array_type (value_type (array)))
9882 error (_("cannot slice a packed array"));
9883
9884 /* If this is a reference to an array or an array lvalue,
9885 convert to a pointer. */
9886 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9887 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9888 && VALUE_LVAL (array) == lval_memory))
9889 array = value_addr (array);
9890
9891 if (noside == EVAL_AVOID_SIDE_EFFECTS
9892 && ada_is_array_descriptor_type (ada_check_typedef
9893 (value_type (array))))
9894 return empty_array (ada_type_of_array (array, 0), low_bound);
9895
9896 array = ada_coerce_to_simple_array_ptr (array);
9897
9898 /* If we have more than one level of pointer indirection,
9899 dereference the value until we get only one level. */
9900 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9901 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9902 == TYPE_CODE_PTR))
9903 array = value_ind (array);
9904
9905 /* Make sure we really do have an array type before going further,
9906 to avoid a SEGV when trying to get the index type or the target
9907 type later down the road if the debug info generated by
9908 the compiler is incorrect or incomplete. */
9909 if (!ada_is_simple_array_type (value_type (array)))
9910 error (_("cannot take slice of non-array"));
9911
9912 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9913 == TYPE_CODE_PTR)
9914 {
9915 struct type *type0 = ada_check_typedef (value_type (array));
9916
9917 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9918 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9919 else
9920 {
9921 struct type *arr_type0 =
9922 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9923
9924 return ada_value_slice_from_ptr (array, arr_type0,
9925 longest_to_int (low_bound),
9926 longest_to_int (high_bound));
9927 }
9928 }
9929 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9930 return array;
9931 else if (high_bound < low_bound)
9932 return empty_array (value_type (array), low_bound);
9933 else
9934 return ada_value_slice (array, longest_to_int (low_bound),
9935 longest_to_int (high_bound));
9936 }
9937
9938 case UNOP_IN_RANGE:
9939 (*pos) += 2;
9940 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9941 type = check_typedef (exp->elts[pc + 1].type);
9942
9943 if (noside == EVAL_SKIP)
9944 goto nosideret;
9945
9946 switch (TYPE_CODE (type))
9947 {
9948 default:
9949 lim_warning (_("Membership test incompletely implemented; "
9950 "always returns true"));
9951 type = language_bool_type (exp->language_defn, exp->gdbarch);
9952 return value_from_longest (type, (LONGEST) 1);
9953
9954 case TYPE_CODE_RANGE:
9955 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9956 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9957 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9958 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9959 type = language_bool_type (exp->language_defn, exp->gdbarch);
9960 return
9961 value_from_longest (type,
9962 (value_less (arg1, arg3)
9963 || value_equal (arg1, arg3))
9964 && (value_less (arg2, arg1)
9965 || value_equal (arg2, arg1)));
9966 }
9967
9968 case BINOP_IN_BOUNDS:
9969 (*pos) += 2;
9970 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9971 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9972
9973 if (noside == EVAL_SKIP)
9974 goto nosideret;
9975
9976 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9977 {
9978 type = language_bool_type (exp->language_defn, exp->gdbarch);
9979 return value_zero (type, not_lval);
9980 }
9981
9982 tem = longest_to_int (exp->elts[pc + 1].longconst);
9983
9984 type = ada_index_type (value_type (arg2), tem, "range");
9985 if (!type)
9986 type = value_type (arg1);
9987
9988 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9989 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9990
9991 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9992 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9993 type = language_bool_type (exp->language_defn, exp->gdbarch);
9994 return
9995 value_from_longest (type,
9996 (value_less (arg1, arg3)
9997 || value_equal (arg1, arg3))
9998 && (value_less (arg2, arg1)
9999 || value_equal (arg2, arg1)));
10000
10001 case TERNOP_IN_RANGE:
10002 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10003 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10004 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10005
10006 if (noside == EVAL_SKIP)
10007 goto nosideret;
10008
10009 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10010 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
10011 type = language_bool_type (exp->language_defn, exp->gdbarch);
10012 return
10013 value_from_longest (type,
10014 (value_less (arg1, arg3)
10015 || value_equal (arg1, arg3))
10016 && (value_less (arg2, arg1)
10017 || value_equal (arg2, arg1)));
10018
10019 case OP_ATR_FIRST:
10020 case OP_ATR_LAST:
10021 case OP_ATR_LENGTH:
10022 {
10023 struct type *type_arg;
10024
10025 if (exp->elts[*pos].opcode == OP_TYPE)
10026 {
10027 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10028 arg1 = NULL;
10029 type_arg = check_typedef (exp->elts[pc + 2].type);
10030 }
10031 else
10032 {
10033 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10034 type_arg = NULL;
10035 }
10036
10037 if (exp->elts[*pos].opcode != OP_LONG)
10038 error (_("Invalid operand to '%s"), ada_attribute_name (op));
10039 tem = longest_to_int (exp->elts[*pos + 2].longconst);
10040 *pos += 4;
10041
10042 if (noside == EVAL_SKIP)
10043 goto nosideret;
10044
10045 if (type_arg == NULL)
10046 {
10047 arg1 = ada_coerce_ref (arg1);
10048
10049 if (ada_is_constrained_packed_array_type (value_type (arg1)))
10050 arg1 = ada_coerce_to_simple_array (arg1);
10051
10052 type = ada_index_type (value_type (arg1), tem,
10053 ada_attribute_name (op));
10054 if (type == NULL)
10055 type = builtin_type (exp->gdbarch)->builtin_int;
10056
10057 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10058 return allocate_value (type);
10059
10060 switch (op)
10061 {
10062 default: /* Should never happen. */
10063 error (_("unexpected attribute encountered"));
10064 case OP_ATR_FIRST:
10065 return value_from_longest
10066 (type, ada_array_bound (arg1, tem, 0));
10067 case OP_ATR_LAST:
10068 return value_from_longest
10069 (type, ada_array_bound (arg1, tem, 1));
10070 case OP_ATR_LENGTH:
10071 return value_from_longest
10072 (type, ada_array_length (arg1, tem));
10073 }
10074 }
10075 else if (discrete_type_p (type_arg))
10076 {
10077 struct type *range_type;
10078 const char *name = ada_type_name (type_arg);
10079
10080 range_type = NULL;
10081 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
10082 range_type = to_fixed_range_type (type_arg, NULL);
10083 if (range_type == NULL)
10084 range_type = type_arg;
10085 switch (op)
10086 {
10087 default:
10088 error (_("unexpected attribute encountered"));
10089 case OP_ATR_FIRST:
10090 return value_from_longest
10091 (range_type, ada_discrete_type_low_bound (range_type));
10092 case OP_ATR_LAST:
10093 return value_from_longest
10094 (range_type, ada_discrete_type_high_bound (range_type));
10095 case OP_ATR_LENGTH:
10096 error (_("the 'length attribute applies only to array types"));
10097 }
10098 }
10099 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
10100 error (_("unimplemented type attribute"));
10101 else
10102 {
10103 LONGEST low, high;
10104
10105 if (ada_is_constrained_packed_array_type (type_arg))
10106 type_arg = decode_constrained_packed_array_type (type_arg);
10107
10108 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
10109 if (type == NULL)
10110 type = builtin_type (exp->gdbarch)->builtin_int;
10111
10112 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10113 return allocate_value (type);
10114
10115 switch (op)
10116 {
10117 default:
10118 error (_("unexpected attribute encountered"));
10119 case OP_ATR_FIRST:
10120 low = ada_array_bound_from_type (type_arg, tem, 0);
10121 return value_from_longest (type, low);
10122 case OP_ATR_LAST:
10123 high = ada_array_bound_from_type (type_arg, tem, 1);
10124 return value_from_longest (type, high);
10125 case OP_ATR_LENGTH:
10126 low = ada_array_bound_from_type (type_arg, tem, 0);
10127 high = ada_array_bound_from_type (type_arg, tem, 1);
10128 return value_from_longest (type, high - low + 1);
10129 }
10130 }
10131 }
10132
10133 case OP_ATR_TAG:
10134 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10135 if (noside == EVAL_SKIP)
10136 goto nosideret;
10137
10138 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10139 return value_zero (ada_tag_type (arg1), not_lval);
10140
10141 return ada_value_tag (arg1);
10142
10143 case OP_ATR_MIN:
10144 case OP_ATR_MAX:
10145 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10146 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10147 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10148 if (noside == EVAL_SKIP)
10149 goto nosideret;
10150 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10151 return value_zero (value_type (arg1), not_lval);
10152 else
10153 {
10154 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10155 return value_binop (arg1, arg2,
10156 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
10157 }
10158
10159 case OP_ATR_MODULUS:
10160 {
10161 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
10162
10163 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10164 if (noside == EVAL_SKIP)
10165 goto nosideret;
10166
10167 if (!ada_is_modular_type (type_arg))
10168 error (_("'modulus must be applied to modular type"));
10169
10170 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
10171 ada_modulus (type_arg));
10172 }
10173
10174
10175 case OP_ATR_POS:
10176 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10177 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10178 if (noside == EVAL_SKIP)
10179 goto nosideret;
10180 type = builtin_type (exp->gdbarch)->builtin_int;
10181 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10182 return value_zero (type, not_lval);
10183 else
10184 return value_pos_atr (type, arg1);
10185
10186 case OP_ATR_SIZE:
10187 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10188 type = value_type (arg1);
10189
10190 /* If the argument is a reference, then dereference its type, since
10191 the user is really asking for the size of the actual object,
10192 not the size of the pointer. */
10193 if (TYPE_CODE (type) == TYPE_CODE_REF)
10194 type = TYPE_TARGET_TYPE (type);
10195
10196 if (noside == EVAL_SKIP)
10197 goto nosideret;
10198 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10199 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10200 else
10201 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10202 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10203
10204 case OP_ATR_VAL:
10205 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10206 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10207 type = exp->elts[pc + 2].type;
10208 if (noside == EVAL_SKIP)
10209 goto nosideret;
10210 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10211 return value_zero (type, not_lval);
10212 else
10213 return value_val_atr (type, arg1);
10214
10215 case BINOP_EXP:
10216 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10217 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10218 if (noside == EVAL_SKIP)
10219 goto nosideret;
10220 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10221 return value_zero (value_type (arg1), not_lval);
10222 else
10223 {
10224 /* For integer exponentiation operations,
10225 only promote the first argument. */
10226 if (is_integral_type (value_type (arg2)))
10227 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10228 else
10229 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10230
10231 return value_binop (arg1, arg2, op);
10232 }
10233
10234 case UNOP_PLUS:
10235 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10236 if (noside == EVAL_SKIP)
10237 goto nosideret;
10238 else
10239 return arg1;
10240
10241 case UNOP_ABS:
10242 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10243 if (noside == EVAL_SKIP)
10244 goto nosideret;
10245 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10246 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10247 return value_neg (arg1);
10248 else
10249 return arg1;
10250
10251 case UNOP_IND:
10252 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10253 if (noside == EVAL_SKIP)
10254 goto nosideret;
10255 type = ada_check_typedef (value_type (arg1));
10256 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10257 {
10258 if (ada_is_array_descriptor_type (type))
10259 /* GDB allows dereferencing GNAT array descriptors. */
10260 {
10261 struct type *arrType = ada_type_of_array (arg1, 0);
10262
10263 if (arrType == NULL)
10264 error (_("Attempt to dereference null array pointer."));
10265 return value_at_lazy (arrType, 0);
10266 }
10267 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10268 || TYPE_CODE (type) == TYPE_CODE_REF
10269 /* In C you can dereference an array to get the 1st elt. */
10270 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10271 {
10272 type = to_static_fixed_type
10273 (ada_aligned_type
10274 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10275 check_size (type);
10276 return value_zero (type, lval_memory);
10277 }
10278 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10279 {
10280 /* GDB allows dereferencing an int. */
10281 if (expect_type == NULL)
10282 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10283 lval_memory);
10284 else
10285 {
10286 expect_type =
10287 to_static_fixed_type (ada_aligned_type (expect_type));
10288 return value_zero (expect_type, lval_memory);
10289 }
10290 }
10291 else
10292 error (_("Attempt to take contents of a non-pointer value."));
10293 }
10294 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10295 type = ada_check_typedef (value_type (arg1));
10296
10297 if (TYPE_CODE (type) == TYPE_CODE_INT)
10298 /* GDB allows dereferencing an int. If we were given
10299 the expect_type, then use that as the target type.
10300 Otherwise, assume that the target type is an int. */
10301 {
10302 if (expect_type != NULL)
10303 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10304 arg1));
10305 else
10306 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10307 (CORE_ADDR) value_as_address (arg1));
10308 }
10309
10310 if (ada_is_array_descriptor_type (type))
10311 /* GDB allows dereferencing GNAT array descriptors. */
10312 return ada_coerce_to_simple_array (arg1);
10313 else
10314 return ada_value_ind (arg1);
10315
10316 case STRUCTOP_STRUCT:
10317 tem = longest_to_int (exp->elts[pc + 1].longconst);
10318 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10319 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10320 if (noside == EVAL_SKIP)
10321 goto nosideret;
10322 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10323 {
10324 struct type *type1 = value_type (arg1);
10325
10326 if (ada_is_tagged_type (type1, 1))
10327 {
10328 type = ada_lookup_struct_elt_type (type1,
10329 &exp->elts[pc + 2].string,
10330 1, 1, NULL);
10331 if (type == NULL)
10332 /* In this case, we assume that the field COULD exist
10333 in some extension of the type. Return an object of
10334 "type" void, which will match any formal
10335 (see ada_type_match). */
10336 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10337 lval_memory);
10338 }
10339 else
10340 type =
10341 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10342 0, NULL);
10343
10344 return value_zero (ada_aligned_type (type), lval_memory);
10345 }
10346 else
10347 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10348 arg1 = unwrap_value (arg1);
10349 return ada_to_fixed_value (arg1);
10350
10351 case OP_TYPE:
10352 /* The value is not supposed to be used. This is here to make it
10353 easier to accommodate expressions that contain types. */
10354 (*pos) += 2;
10355 if (noside == EVAL_SKIP)
10356 goto nosideret;
10357 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10358 return allocate_value (exp->elts[pc + 1].type);
10359 else
10360 error (_("Attempt to use a type name as an expression"));
10361
10362 case OP_AGGREGATE:
10363 case OP_CHOICES:
10364 case OP_OTHERS:
10365 case OP_DISCRETE_RANGE:
10366 case OP_POSITIONAL:
10367 case OP_NAME:
10368 if (noside == EVAL_NORMAL)
10369 switch (op)
10370 {
10371 case OP_NAME:
10372 error (_("Undefined name, ambiguous name, or renaming used in "
10373 "component association: %s."), &exp->elts[pc+2].string);
10374 case OP_AGGREGATE:
10375 error (_("Aggregates only allowed on the right of an assignment"));
10376 default:
10377 internal_error (__FILE__, __LINE__,
10378 _("aggregate apparently mangled"));
10379 }
10380
10381 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10382 *pos += oplen - 1;
10383 for (tem = 0; tem < nargs; tem += 1)
10384 ada_evaluate_subexp (NULL, exp, pos, noside);
10385 goto nosideret;
10386 }
10387
10388 nosideret:
10389 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10390 }
10391 \f
10392
10393 /* Fixed point */
10394
10395 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10396 type name that encodes the 'small and 'delta information.
10397 Otherwise, return NULL. */
10398
10399 static const char *
10400 fixed_type_info (struct type *type)
10401 {
10402 const char *name = ada_type_name (type);
10403 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10404
10405 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10406 {
10407 const char *tail = strstr (name, "___XF_");
10408
10409 if (tail == NULL)
10410 return NULL;
10411 else
10412 return tail + 5;
10413 }
10414 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10415 return fixed_type_info (TYPE_TARGET_TYPE (type));
10416 else
10417 return NULL;
10418 }
10419
10420 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10421
10422 int
10423 ada_is_fixed_point_type (struct type *type)
10424 {
10425 return fixed_type_info (type) != NULL;
10426 }
10427
10428 /* Return non-zero iff TYPE represents a System.Address type. */
10429
10430 int
10431 ada_is_system_address_type (struct type *type)
10432 {
10433 return (TYPE_NAME (type)
10434 && strcmp (TYPE_NAME (type), "system__address") == 0);
10435 }
10436
10437 /* Assuming that TYPE is the representation of an Ada fixed-point
10438 type, return its delta, or -1 if the type is malformed and the
10439 delta cannot be determined. */
10440
10441 DOUBLEST
10442 ada_delta (struct type *type)
10443 {
10444 const char *encoding = fixed_type_info (type);
10445 DOUBLEST num, den;
10446
10447 /* Strictly speaking, num and den are encoded as integer. However,
10448 they may not fit into a long, and they will have to be converted
10449 to DOUBLEST anyway. So scan them as DOUBLEST. */
10450 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10451 &num, &den) < 2)
10452 return -1.0;
10453 else
10454 return num / den;
10455 }
10456
10457 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10458 factor ('SMALL value) associated with the type. */
10459
10460 static DOUBLEST
10461 scaling_factor (struct type *type)
10462 {
10463 const char *encoding = fixed_type_info (type);
10464 DOUBLEST num0, den0, num1, den1;
10465 int n;
10466
10467 /* Strictly speaking, num's and den's are encoded as integer. However,
10468 they may not fit into a long, and they will have to be converted
10469 to DOUBLEST anyway. So scan them as DOUBLEST. */
10470 n = sscanf (encoding,
10471 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10472 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10473 &num0, &den0, &num1, &den1);
10474
10475 if (n < 2)
10476 return 1.0;
10477 else if (n == 4)
10478 return num1 / den1;
10479 else
10480 return num0 / den0;
10481 }
10482
10483
10484 /* Assuming that X is the representation of a value of fixed-point
10485 type TYPE, return its floating-point equivalent. */
10486
10487 DOUBLEST
10488 ada_fixed_to_float (struct type *type, LONGEST x)
10489 {
10490 return (DOUBLEST) x *scaling_factor (type);
10491 }
10492
10493 /* The representation of a fixed-point value of type TYPE
10494 corresponding to the value X. */
10495
10496 LONGEST
10497 ada_float_to_fixed (struct type *type, DOUBLEST x)
10498 {
10499 return (LONGEST) (x / scaling_factor (type) + 0.5);
10500 }
10501
10502 \f
10503
10504 /* Range types */
10505
10506 /* Scan STR beginning at position K for a discriminant name, and
10507 return the value of that discriminant field of DVAL in *PX. If
10508 PNEW_K is not null, put the position of the character beyond the
10509 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10510 not alter *PX and *PNEW_K if unsuccessful. */
10511
10512 static int
10513 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10514 int *pnew_k)
10515 {
10516 static char *bound_buffer = NULL;
10517 static size_t bound_buffer_len = 0;
10518 char *bound;
10519 char *pend;
10520 struct value *bound_val;
10521
10522 if (dval == NULL || str == NULL || str[k] == '\0')
10523 return 0;
10524
10525 pend = strstr (str + k, "__");
10526 if (pend == NULL)
10527 {
10528 bound = str + k;
10529 k += strlen (bound);
10530 }
10531 else
10532 {
10533 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10534 bound = bound_buffer;
10535 strncpy (bound_buffer, str + k, pend - (str + k));
10536 bound[pend - (str + k)] = '\0';
10537 k = pend - str;
10538 }
10539
10540 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10541 if (bound_val == NULL)
10542 return 0;
10543
10544 *px = value_as_long (bound_val);
10545 if (pnew_k != NULL)
10546 *pnew_k = k;
10547 return 1;
10548 }
10549
10550 /* Value of variable named NAME in the current environment. If
10551 no such variable found, then if ERR_MSG is null, returns 0, and
10552 otherwise causes an error with message ERR_MSG. */
10553
10554 static struct value *
10555 get_var_value (char *name, char *err_msg)
10556 {
10557 struct ada_symbol_info *syms;
10558 int nsyms;
10559
10560 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10561 &syms, 1);
10562
10563 if (nsyms != 1)
10564 {
10565 if (err_msg == NULL)
10566 return 0;
10567 else
10568 error (("%s"), err_msg);
10569 }
10570
10571 return value_of_variable (syms[0].sym, syms[0].block);
10572 }
10573
10574 /* Value of integer variable named NAME in the current environment. If
10575 no such variable found, returns 0, and sets *FLAG to 0. If
10576 successful, sets *FLAG to 1. */
10577
10578 LONGEST
10579 get_int_var_value (char *name, int *flag)
10580 {
10581 struct value *var_val = get_var_value (name, 0);
10582
10583 if (var_val == 0)
10584 {
10585 if (flag != NULL)
10586 *flag = 0;
10587 return 0;
10588 }
10589 else
10590 {
10591 if (flag != NULL)
10592 *flag = 1;
10593 return value_as_long (var_val);
10594 }
10595 }
10596
10597
10598 /* Return a range type whose base type is that of the range type named
10599 NAME in the current environment, and whose bounds are calculated
10600 from NAME according to the GNAT range encoding conventions.
10601 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10602 corresponding range type from debug information; fall back to using it
10603 if symbol lookup fails. If a new type must be created, allocate it
10604 like ORIG_TYPE was. The bounds information, in general, is encoded
10605 in NAME, the base type given in the named range type. */
10606
10607 static struct type *
10608 to_fixed_range_type (struct type *raw_type, struct value *dval)
10609 {
10610 const char *name;
10611 struct type *base_type;
10612 char *subtype_info;
10613
10614 gdb_assert (raw_type != NULL);
10615 gdb_assert (TYPE_NAME (raw_type) != NULL);
10616
10617 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10618 base_type = TYPE_TARGET_TYPE (raw_type);
10619 else
10620 base_type = raw_type;
10621
10622 name = TYPE_NAME (raw_type);
10623 subtype_info = strstr (name, "___XD");
10624 if (subtype_info == NULL)
10625 {
10626 LONGEST L = ada_discrete_type_low_bound (raw_type);
10627 LONGEST U = ada_discrete_type_high_bound (raw_type);
10628
10629 if (L < INT_MIN || U > INT_MAX)
10630 return raw_type;
10631 else
10632 return create_range_type (alloc_type_copy (raw_type), raw_type,
10633 ada_discrete_type_low_bound (raw_type),
10634 ada_discrete_type_high_bound (raw_type));
10635 }
10636 else
10637 {
10638 static char *name_buf = NULL;
10639 static size_t name_len = 0;
10640 int prefix_len = subtype_info - name;
10641 LONGEST L, U;
10642 struct type *type;
10643 char *bounds_str;
10644 int n;
10645
10646 GROW_VECT (name_buf, name_len, prefix_len + 5);
10647 strncpy (name_buf, name, prefix_len);
10648 name_buf[prefix_len] = '\0';
10649
10650 subtype_info += 5;
10651 bounds_str = strchr (subtype_info, '_');
10652 n = 1;
10653
10654 if (*subtype_info == 'L')
10655 {
10656 if (!ada_scan_number (bounds_str, n, &L, &n)
10657 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10658 return raw_type;
10659 if (bounds_str[n] == '_')
10660 n += 2;
10661 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10662 n += 1;
10663 subtype_info += 1;
10664 }
10665 else
10666 {
10667 int ok;
10668
10669 strcpy (name_buf + prefix_len, "___L");
10670 L = get_int_var_value (name_buf, &ok);
10671 if (!ok)
10672 {
10673 lim_warning (_("Unknown lower bound, using 1."));
10674 L = 1;
10675 }
10676 }
10677
10678 if (*subtype_info == 'U')
10679 {
10680 if (!ada_scan_number (bounds_str, n, &U, &n)
10681 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10682 return raw_type;
10683 }
10684 else
10685 {
10686 int ok;
10687
10688 strcpy (name_buf + prefix_len, "___U");
10689 U = get_int_var_value (name_buf, &ok);
10690 if (!ok)
10691 {
10692 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10693 U = L;
10694 }
10695 }
10696
10697 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10698 TYPE_NAME (type) = name;
10699 return type;
10700 }
10701 }
10702
10703 /* True iff NAME is the name of a range type. */
10704
10705 int
10706 ada_is_range_type_name (const char *name)
10707 {
10708 return (name != NULL && strstr (name, "___XD"));
10709 }
10710 \f
10711
10712 /* Modular types */
10713
10714 /* True iff TYPE is an Ada modular type. */
10715
10716 int
10717 ada_is_modular_type (struct type *type)
10718 {
10719 struct type *subranged_type = get_base_type (type);
10720
10721 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10722 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10723 && TYPE_UNSIGNED (subranged_type));
10724 }
10725
10726 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10727
10728 ULONGEST
10729 ada_modulus (struct type *type)
10730 {
10731 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10732 }
10733 \f
10734
10735 /* Ada exception catchpoint support:
10736 ---------------------------------
10737
10738 We support 3 kinds of exception catchpoints:
10739 . catchpoints on Ada exceptions
10740 . catchpoints on unhandled Ada exceptions
10741 . catchpoints on failed assertions
10742
10743 Exceptions raised during failed assertions, or unhandled exceptions
10744 could perfectly be caught with the general catchpoint on Ada exceptions.
10745 However, we can easily differentiate these two special cases, and having
10746 the option to distinguish these two cases from the rest can be useful
10747 to zero-in on certain situations.
10748
10749 Exception catchpoints are a specialized form of breakpoint,
10750 since they rely on inserting breakpoints inside known routines
10751 of the GNAT runtime. The implementation therefore uses a standard
10752 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10753 of breakpoint_ops.
10754
10755 Support in the runtime for exception catchpoints have been changed
10756 a few times already, and these changes affect the implementation
10757 of these catchpoints. In order to be able to support several
10758 variants of the runtime, we use a sniffer that will determine
10759 the runtime variant used by the program being debugged. */
10760
10761 /* The different types of catchpoints that we introduced for catching
10762 Ada exceptions. */
10763
10764 enum exception_catchpoint_kind
10765 {
10766 ex_catch_exception,
10767 ex_catch_exception_unhandled,
10768 ex_catch_assert
10769 };
10770
10771 /* Ada's standard exceptions. */
10772
10773 static char *standard_exc[] = {
10774 "constraint_error",
10775 "program_error",
10776 "storage_error",
10777 "tasking_error"
10778 };
10779
10780 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10781
10782 /* A structure that describes how to support exception catchpoints
10783 for a given executable. */
10784
10785 struct exception_support_info
10786 {
10787 /* The name of the symbol to break on in order to insert
10788 a catchpoint on exceptions. */
10789 const char *catch_exception_sym;
10790
10791 /* The name of the symbol to break on in order to insert
10792 a catchpoint on unhandled exceptions. */
10793 const char *catch_exception_unhandled_sym;
10794
10795 /* The name of the symbol to break on in order to insert
10796 a catchpoint on failed assertions. */
10797 const char *catch_assert_sym;
10798
10799 /* Assuming that the inferior just triggered an unhandled exception
10800 catchpoint, this function is responsible for returning the address
10801 in inferior memory where the name of that exception is stored.
10802 Return zero if the address could not be computed. */
10803 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10804 };
10805
10806 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10807 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10808
10809 /* The following exception support info structure describes how to
10810 implement exception catchpoints with the latest version of the
10811 Ada runtime (as of 2007-03-06). */
10812
10813 static const struct exception_support_info default_exception_support_info =
10814 {
10815 "__gnat_debug_raise_exception", /* catch_exception_sym */
10816 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10817 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10818 ada_unhandled_exception_name_addr
10819 };
10820
10821 /* The following exception support info structure describes how to
10822 implement exception catchpoints with a slightly older version
10823 of the Ada runtime. */
10824
10825 static const struct exception_support_info exception_support_info_fallback =
10826 {
10827 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10828 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10829 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10830 ada_unhandled_exception_name_addr_from_raise
10831 };
10832
10833 /* Return nonzero if we can detect the exception support routines
10834 described in EINFO.
10835
10836 This function errors out if an abnormal situation is detected
10837 (for instance, if we find the exception support routines, but
10838 that support is found to be incomplete). */
10839
10840 static int
10841 ada_has_this_exception_support (const struct exception_support_info *einfo)
10842 {
10843 struct symbol *sym;
10844
10845 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10846 that should be compiled with debugging information. As a result, we
10847 expect to find that symbol in the symtabs. */
10848
10849 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10850 if (sym == NULL)
10851 {
10852 /* Perhaps we did not find our symbol because the Ada runtime was
10853 compiled without debugging info, or simply stripped of it.
10854 It happens on some GNU/Linux distributions for instance, where
10855 users have to install a separate debug package in order to get
10856 the runtime's debugging info. In that situation, let the user
10857 know why we cannot insert an Ada exception catchpoint.
10858
10859 Note: Just for the purpose of inserting our Ada exception
10860 catchpoint, we could rely purely on the associated minimal symbol.
10861 But we would be operating in degraded mode anyway, since we are
10862 still lacking the debugging info needed later on to extract
10863 the name of the exception being raised (this name is printed in
10864 the catchpoint message, and is also used when trying to catch
10865 a specific exception). We do not handle this case for now. */
10866 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10867 error (_("Your Ada runtime appears to be missing some debugging "
10868 "information.\nCannot insert Ada exception catchpoint "
10869 "in this configuration."));
10870
10871 return 0;
10872 }
10873
10874 /* Make sure that the symbol we found corresponds to a function. */
10875
10876 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10877 error (_("Symbol \"%s\" is not a function (class = %d)"),
10878 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10879
10880 return 1;
10881 }
10882
10883 /* Inspect the Ada runtime and determine which exception info structure
10884 should be used to provide support for exception catchpoints.
10885
10886 This function will always set the per-inferior exception_info,
10887 or raise an error. */
10888
10889 static void
10890 ada_exception_support_info_sniffer (void)
10891 {
10892 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10893
10894 /* If the exception info is already known, then no need to recompute it. */
10895 if (data->exception_info != NULL)
10896 return;
10897
10898 /* Check the latest (default) exception support info. */
10899 if (ada_has_this_exception_support (&default_exception_support_info))
10900 {
10901 data->exception_info = &default_exception_support_info;
10902 return;
10903 }
10904
10905 /* Try our fallback exception suport info. */
10906 if (ada_has_this_exception_support (&exception_support_info_fallback))
10907 {
10908 data->exception_info = &exception_support_info_fallback;
10909 return;
10910 }
10911
10912 /* Sometimes, it is normal for us to not be able to find the routine
10913 we are looking for. This happens when the program is linked with
10914 the shared version of the GNAT runtime, and the program has not been
10915 started yet. Inform the user of these two possible causes if
10916 applicable. */
10917
10918 if (ada_update_initial_language (language_unknown) != language_ada)
10919 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10920
10921 /* If the symbol does not exist, then check that the program is
10922 already started, to make sure that shared libraries have been
10923 loaded. If it is not started, this may mean that the symbol is
10924 in a shared library. */
10925
10926 if (ptid_get_pid (inferior_ptid) == 0)
10927 error (_("Unable to insert catchpoint. Try to start the program first."));
10928
10929 /* At this point, we know that we are debugging an Ada program and
10930 that the inferior has been started, but we still are not able to
10931 find the run-time symbols. That can mean that we are in
10932 configurable run time mode, or that a-except as been optimized
10933 out by the linker... In any case, at this point it is not worth
10934 supporting this feature. */
10935
10936 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10937 }
10938
10939 /* True iff FRAME is very likely to be that of a function that is
10940 part of the runtime system. This is all very heuristic, but is
10941 intended to be used as advice as to what frames are uninteresting
10942 to most users. */
10943
10944 static int
10945 is_known_support_routine (struct frame_info *frame)
10946 {
10947 struct symtab_and_line sal;
10948 const char *func_name;
10949 enum language func_lang;
10950 int i;
10951
10952 /* If this code does not have any debugging information (no symtab),
10953 This cannot be any user code. */
10954
10955 find_frame_sal (frame, &sal);
10956 if (sal.symtab == NULL)
10957 return 1;
10958
10959 /* If there is a symtab, but the associated source file cannot be
10960 located, then assume this is not user code: Selecting a frame
10961 for which we cannot display the code would not be very helpful
10962 for the user. This should also take care of case such as VxWorks
10963 where the kernel has some debugging info provided for a few units. */
10964
10965 if (symtab_to_fullname (sal.symtab) == NULL)
10966 return 1;
10967
10968 /* Check the unit filename againt the Ada runtime file naming.
10969 We also check the name of the objfile against the name of some
10970 known system libraries that sometimes come with debugging info
10971 too. */
10972
10973 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10974 {
10975 re_comp (known_runtime_file_name_patterns[i]);
10976 if (re_exec (lbasename (sal.symtab->filename)))
10977 return 1;
10978 if (sal.symtab->objfile != NULL
10979 && re_exec (sal.symtab->objfile->name))
10980 return 1;
10981 }
10982
10983 /* Check whether the function is a GNAT-generated entity. */
10984
10985 find_frame_funname (frame, &func_name, &func_lang, NULL);
10986 if (func_name == NULL)
10987 return 1;
10988
10989 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10990 {
10991 re_comp (known_auxiliary_function_name_patterns[i]);
10992 if (re_exec (func_name))
10993 return 1;
10994 }
10995
10996 return 0;
10997 }
10998
10999 /* Find the first frame that contains debugging information and that is not
11000 part of the Ada run-time, starting from FI and moving upward. */
11001
11002 void
11003 ada_find_printable_frame (struct frame_info *fi)
11004 {
11005 for (; fi != NULL; fi = get_prev_frame (fi))
11006 {
11007 if (!is_known_support_routine (fi))
11008 {
11009 select_frame (fi);
11010 break;
11011 }
11012 }
11013
11014 }
11015
11016 /* Assuming that the inferior just triggered an unhandled exception
11017 catchpoint, return the address in inferior memory where the name
11018 of the exception is stored.
11019
11020 Return zero if the address could not be computed. */
11021
11022 static CORE_ADDR
11023 ada_unhandled_exception_name_addr (void)
11024 {
11025 return parse_and_eval_address ("e.full_name");
11026 }
11027
11028 /* Same as ada_unhandled_exception_name_addr, except that this function
11029 should be used when the inferior uses an older version of the runtime,
11030 where the exception name needs to be extracted from a specific frame
11031 several frames up in the callstack. */
11032
11033 static CORE_ADDR
11034 ada_unhandled_exception_name_addr_from_raise (void)
11035 {
11036 int frame_level;
11037 struct frame_info *fi;
11038 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11039
11040 /* To determine the name of this exception, we need to select
11041 the frame corresponding to RAISE_SYM_NAME. This frame is
11042 at least 3 levels up, so we simply skip the first 3 frames
11043 without checking the name of their associated function. */
11044 fi = get_current_frame ();
11045 for (frame_level = 0; frame_level < 3; frame_level += 1)
11046 if (fi != NULL)
11047 fi = get_prev_frame (fi);
11048
11049 while (fi != NULL)
11050 {
11051 const char *func_name;
11052 enum language func_lang;
11053
11054 find_frame_funname (fi, &func_name, &func_lang, NULL);
11055 if (func_name != NULL
11056 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
11057 break; /* We found the frame we were looking for... */
11058 fi = get_prev_frame (fi);
11059 }
11060
11061 if (fi == NULL)
11062 return 0;
11063
11064 select_frame (fi);
11065 return parse_and_eval_address ("id.full_name");
11066 }
11067
11068 /* Assuming the inferior just triggered an Ada exception catchpoint
11069 (of any type), return the address in inferior memory where the name
11070 of the exception is stored, if applicable.
11071
11072 Return zero if the address could not be computed, or if not relevant. */
11073
11074 static CORE_ADDR
11075 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
11076 struct breakpoint *b)
11077 {
11078 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11079
11080 switch (ex)
11081 {
11082 case ex_catch_exception:
11083 return (parse_and_eval_address ("e.full_name"));
11084 break;
11085
11086 case ex_catch_exception_unhandled:
11087 return data->exception_info->unhandled_exception_name_addr ();
11088 break;
11089
11090 case ex_catch_assert:
11091 return 0; /* Exception name is not relevant in this case. */
11092 break;
11093
11094 default:
11095 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11096 break;
11097 }
11098
11099 return 0; /* Should never be reached. */
11100 }
11101
11102 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11103 any error that ada_exception_name_addr_1 might cause to be thrown.
11104 When an error is intercepted, a warning with the error message is printed,
11105 and zero is returned. */
11106
11107 static CORE_ADDR
11108 ada_exception_name_addr (enum exception_catchpoint_kind ex,
11109 struct breakpoint *b)
11110 {
11111 volatile struct gdb_exception e;
11112 CORE_ADDR result = 0;
11113
11114 TRY_CATCH (e, RETURN_MASK_ERROR)
11115 {
11116 result = ada_exception_name_addr_1 (ex, b);
11117 }
11118
11119 if (e.reason < 0)
11120 {
11121 warning (_("failed to get exception name: %s"), e.message);
11122 return 0;
11123 }
11124
11125 return result;
11126 }
11127
11128 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
11129 char *, char **,
11130 const struct breakpoint_ops **);
11131 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
11132
11133 /* Ada catchpoints.
11134
11135 In the case of catchpoints on Ada exceptions, the catchpoint will
11136 stop the target on every exception the program throws. When a user
11137 specifies the name of a specific exception, we translate this
11138 request into a condition expression (in text form), and then parse
11139 it into an expression stored in each of the catchpoint's locations.
11140 We then use this condition to check whether the exception that was
11141 raised is the one the user is interested in. If not, then the
11142 target is resumed again. We store the name of the requested
11143 exception, in order to be able to re-set the condition expression
11144 when symbols change. */
11145
11146 /* An instance of this type is used to represent an Ada catchpoint
11147 breakpoint location. It includes a "struct bp_location" as a kind
11148 of base class; users downcast to "struct bp_location *" when
11149 needed. */
11150
11151 struct ada_catchpoint_location
11152 {
11153 /* The base class. */
11154 struct bp_location base;
11155
11156 /* The condition that checks whether the exception that was raised
11157 is the specific exception the user specified on catchpoint
11158 creation. */
11159 struct expression *excep_cond_expr;
11160 };
11161
11162 /* Implement the DTOR method in the bp_location_ops structure for all
11163 Ada exception catchpoint kinds. */
11164
11165 static void
11166 ada_catchpoint_location_dtor (struct bp_location *bl)
11167 {
11168 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11169
11170 xfree (al->excep_cond_expr);
11171 }
11172
11173 /* The vtable to be used in Ada catchpoint locations. */
11174
11175 static const struct bp_location_ops ada_catchpoint_location_ops =
11176 {
11177 ada_catchpoint_location_dtor
11178 };
11179
11180 /* An instance of this type is used to represent an Ada catchpoint.
11181 It includes a "struct breakpoint" as a kind of base class; users
11182 downcast to "struct breakpoint *" when needed. */
11183
11184 struct ada_catchpoint
11185 {
11186 /* The base class. */
11187 struct breakpoint base;
11188
11189 /* The name of the specific exception the user specified. */
11190 char *excep_string;
11191 };
11192
11193 /* Parse the exception condition string in the context of each of the
11194 catchpoint's locations, and store them for later evaluation. */
11195
11196 static void
11197 create_excep_cond_exprs (struct ada_catchpoint *c)
11198 {
11199 struct cleanup *old_chain;
11200 struct bp_location *bl;
11201 char *cond_string;
11202
11203 /* Nothing to do if there's no specific exception to catch. */
11204 if (c->excep_string == NULL)
11205 return;
11206
11207 /* Same if there are no locations... */
11208 if (c->base.loc == NULL)
11209 return;
11210
11211 /* Compute the condition expression in text form, from the specific
11212 expection we want to catch. */
11213 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11214 old_chain = make_cleanup (xfree, cond_string);
11215
11216 /* Iterate over all the catchpoint's locations, and parse an
11217 expression for each. */
11218 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11219 {
11220 struct ada_catchpoint_location *ada_loc
11221 = (struct ada_catchpoint_location *) bl;
11222 struct expression *exp = NULL;
11223
11224 if (!bl->shlib_disabled)
11225 {
11226 volatile struct gdb_exception e;
11227 char *s;
11228
11229 s = cond_string;
11230 TRY_CATCH (e, RETURN_MASK_ERROR)
11231 {
11232 exp = parse_exp_1 (&s, bl->address,
11233 block_for_pc (bl->address), 0);
11234 }
11235 if (e.reason < 0)
11236 warning (_("failed to reevaluate internal exception condition "
11237 "for catchpoint %d: %s"),
11238 c->base.number, e.message);
11239 }
11240
11241 ada_loc->excep_cond_expr = exp;
11242 }
11243
11244 do_cleanups (old_chain);
11245 }
11246
11247 /* Implement the DTOR method in the breakpoint_ops structure for all
11248 exception catchpoint kinds. */
11249
11250 static void
11251 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11252 {
11253 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11254
11255 xfree (c->excep_string);
11256
11257 bkpt_breakpoint_ops.dtor (b);
11258 }
11259
11260 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11261 structure for all exception catchpoint kinds. */
11262
11263 static struct bp_location *
11264 allocate_location_exception (enum exception_catchpoint_kind ex,
11265 struct breakpoint *self)
11266 {
11267 struct ada_catchpoint_location *loc;
11268
11269 loc = XNEW (struct ada_catchpoint_location);
11270 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11271 loc->excep_cond_expr = NULL;
11272 return &loc->base;
11273 }
11274
11275 /* Implement the RE_SET method in the breakpoint_ops structure for all
11276 exception catchpoint kinds. */
11277
11278 static void
11279 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11280 {
11281 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11282
11283 /* Call the base class's method. This updates the catchpoint's
11284 locations. */
11285 bkpt_breakpoint_ops.re_set (b);
11286
11287 /* Reparse the exception conditional expressions. One for each
11288 location. */
11289 create_excep_cond_exprs (c);
11290 }
11291
11292 /* Returns true if we should stop for this breakpoint hit. If the
11293 user specified a specific exception, we only want to cause a stop
11294 if the program thrown that exception. */
11295
11296 static int
11297 should_stop_exception (const struct bp_location *bl)
11298 {
11299 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11300 const struct ada_catchpoint_location *ada_loc
11301 = (const struct ada_catchpoint_location *) bl;
11302 volatile struct gdb_exception ex;
11303 int stop;
11304
11305 /* With no specific exception, should always stop. */
11306 if (c->excep_string == NULL)
11307 return 1;
11308
11309 if (ada_loc->excep_cond_expr == NULL)
11310 {
11311 /* We will have a NULL expression if back when we were creating
11312 the expressions, this location's had failed to parse. */
11313 return 1;
11314 }
11315
11316 stop = 1;
11317 TRY_CATCH (ex, RETURN_MASK_ALL)
11318 {
11319 struct value *mark;
11320
11321 mark = value_mark ();
11322 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11323 value_free_to_mark (mark);
11324 }
11325 if (ex.reason < 0)
11326 exception_fprintf (gdb_stderr, ex,
11327 _("Error in testing exception condition:\n"));
11328 return stop;
11329 }
11330
11331 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11332 for all exception catchpoint kinds. */
11333
11334 static void
11335 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11336 {
11337 bs->stop = should_stop_exception (bs->bp_location_at);
11338 }
11339
11340 /* Implement the PRINT_IT method in the breakpoint_ops structure
11341 for all exception catchpoint kinds. */
11342
11343 static enum print_stop_action
11344 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11345 {
11346 struct ui_out *uiout = current_uiout;
11347 struct breakpoint *b = bs->breakpoint_at;
11348
11349 annotate_catchpoint (b->number);
11350
11351 if (ui_out_is_mi_like_p (uiout))
11352 {
11353 ui_out_field_string (uiout, "reason",
11354 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11355 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11356 }
11357
11358 ui_out_text (uiout,
11359 b->disposition == disp_del ? "\nTemporary catchpoint "
11360 : "\nCatchpoint ");
11361 ui_out_field_int (uiout, "bkptno", b->number);
11362 ui_out_text (uiout, ", ");
11363
11364 switch (ex)
11365 {
11366 case ex_catch_exception:
11367 case ex_catch_exception_unhandled:
11368 {
11369 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11370 char exception_name[256];
11371
11372 if (addr != 0)
11373 {
11374 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11375 exception_name [sizeof (exception_name) - 1] = '\0';
11376 }
11377 else
11378 {
11379 /* For some reason, we were unable to read the exception
11380 name. This could happen if the Runtime was compiled
11381 without debugging info, for instance. In that case,
11382 just replace the exception name by the generic string
11383 "exception" - it will read as "an exception" in the
11384 notification we are about to print. */
11385 memcpy (exception_name, "exception", sizeof ("exception"));
11386 }
11387 /* In the case of unhandled exception breakpoints, we print
11388 the exception name as "unhandled EXCEPTION_NAME", to make
11389 it clearer to the user which kind of catchpoint just got
11390 hit. We used ui_out_text to make sure that this extra
11391 info does not pollute the exception name in the MI case. */
11392 if (ex == ex_catch_exception_unhandled)
11393 ui_out_text (uiout, "unhandled ");
11394 ui_out_field_string (uiout, "exception-name", exception_name);
11395 }
11396 break;
11397 case ex_catch_assert:
11398 /* In this case, the name of the exception is not really
11399 important. Just print "failed assertion" to make it clearer
11400 that his program just hit an assertion-failure catchpoint.
11401 We used ui_out_text because this info does not belong in
11402 the MI output. */
11403 ui_out_text (uiout, "failed assertion");
11404 break;
11405 }
11406 ui_out_text (uiout, " at ");
11407 ada_find_printable_frame (get_current_frame ());
11408
11409 return PRINT_SRC_AND_LOC;
11410 }
11411
11412 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11413 for all exception catchpoint kinds. */
11414
11415 static void
11416 print_one_exception (enum exception_catchpoint_kind ex,
11417 struct breakpoint *b, struct bp_location **last_loc)
11418 {
11419 struct ui_out *uiout = current_uiout;
11420 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11421 struct value_print_options opts;
11422
11423 get_user_print_options (&opts);
11424 if (opts.addressprint)
11425 {
11426 annotate_field (4);
11427 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11428 }
11429
11430 annotate_field (5);
11431 *last_loc = b->loc;
11432 switch (ex)
11433 {
11434 case ex_catch_exception:
11435 if (c->excep_string != NULL)
11436 {
11437 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11438
11439 ui_out_field_string (uiout, "what", msg);
11440 xfree (msg);
11441 }
11442 else
11443 ui_out_field_string (uiout, "what", "all Ada exceptions");
11444
11445 break;
11446
11447 case ex_catch_exception_unhandled:
11448 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11449 break;
11450
11451 case ex_catch_assert:
11452 ui_out_field_string (uiout, "what", "failed Ada assertions");
11453 break;
11454
11455 default:
11456 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11457 break;
11458 }
11459 }
11460
11461 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11462 for all exception catchpoint kinds. */
11463
11464 static void
11465 print_mention_exception (enum exception_catchpoint_kind ex,
11466 struct breakpoint *b)
11467 {
11468 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11469 struct ui_out *uiout = current_uiout;
11470
11471 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11472 : _("Catchpoint "));
11473 ui_out_field_int (uiout, "bkptno", b->number);
11474 ui_out_text (uiout, ": ");
11475
11476 switch (ex)
11477 {
11478 case ex_catch_exception:
11479 if (c->excep_string != NULL)
11480 {
11481 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11482 struct cleanup *old_chain = make_cleanup (xfree, info);
11483
11484 ui_out_text (uiout, info);
11485 do_cleanups (old_chain);
11486 }
11487 else
11488 ui_out_text (uiout, _("all Ada exceptions"));
11489 break;
11490
11491 case ex_catch_exception_unhandled:
11492 ui_out_text (uiout, _("unhandled Ada exceptions"));
11493 break;
11494
11495 case ex_catch_assert:
11496 ui_out_text (uiout, _("failed Ada assertions"));
11497 break;
11498
11499 default:
11500 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11501 break;
11502 }
11503 }
11504
11505 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11506 for all exception catchpoint kinds. */
11507
11508 static void
11509 print_recreate_exception (enum exception_catchpoint_kind ex,
11510 struct breakpoint *b, struct ui_file *fp)
11511 {
11512 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11513
11514 switch (ex)
11515 {
11516 case ex_catch_exception:
11517 fprintf_filtered (fp, "catch exception");
11518 if (c->excep_string != NULL)
11519 fprintf_filtered (fp, " %s", c->excep_string);
11520 break;
11521
11522 case ex_catch_exception_unhandled:
11523 fprintf_filtered (fp, "catch exception unhandled");
11524 break;
11525
11526 case ex_catch_assert:
11527 fprintf_filtered (fp, "catch assert");
11528 break;
11529
11530 default:
11531 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11532 }
11533 print_recreate_thread (b, fp);
11534 }
11535
11536 /* Virtual table for "catch exception" breakpoints. */
11537
11538 static void
11539 dtor_catch_exception (struct breakpoint *b)
11540 {
11541 dtor_exception (ex_catch_exception, b);
11542 }
11543
11544 static struct bp_location *
11545 allocate_location_catch_exception (struct breakpoint *self)
11546 {
11547 return allocate_location_exception (ex_catch_exception, self);
11548 }
11549
11550 static void
11551 re_set_catch_exception (struct breakpoint *b)
11552 {
11553 re_set_exception (ex_catch_exception, b);
11554 }
11555
11556 static void
11557 check_status_catch_exception (bpstat bs)
11558 {
11559 check_status_exception (ex_catch_exception, bs);
11560 }
11561
11562 static enum print_stop_action
11563 print_it_catch_exception (bpstat bs)
11564 {
11565 return print_it_exception (ex_catch_exception, bs);
11566 }
11567
11568 static void
11569 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11570 {
11571 print_one_exception (ex_catch_exception, b, last_loc);
11572 }
11573
11574 static void
11575 print_mention_catch_exception (struct breakpoint *b)
11576 {
11577 print_mention_exception (ex_catch_exception, b);
11578 }
11579
11580 static void
11581 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11582 {
11583 print_recreate_exception (ex_catch_exception, b, fp);
11584 }
11585
11586 static struct breakpoint_ops catch_exception_breakpoint_ops;
11587
11588 /* Virtual table for "catch exception unhandled" breakpoints. */
11589
11590 static void
11591 dtor_catch_exception_unhandled (struct breakpoint *b)
11592 {
11593 dtor_exception (ex_catch_exception_unhandled, b);
11594 }
11595
11596 static struct bp_location *
11597 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11598 {
11599 return allocate_location_exception (ex_catch_exception_unhandled, self);
11600 }
11601
11602 static void
11603 re_set_catch_exception_unhandled (struct breakpoint *b)
11604 {
11605 re_set_exception (ex_catch_exception_unhandled, b);
11606 }
11607
11608 static void
11609 check_status_catch_exception_unhandled (bpstat bs)
11610 {
11611 check_status_exception (ex_catch_exception_unhandled, bs);
11612 }
11613
11614 static enum print_stop_action
11615 print_it_catch_exception_unhandled (bpstat bs)
11616 {
11617 return print_it_exception (ex_catch_exception_unhandled, bs);
11618 }
11619
11620 static void
11621 print_one_catch_exception_unhandled (struct breakpoint *b,
11622 struct bp_location **last_loc)
11623 {
11624 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11625 }
11626
11627 static void
11628 print_mention_catch_exception_unhandled (struct breakpoint *b)
11629 {
11630 print_mention_exception (ex_catch_exception_unhandled, b);
11631 }
11632
11633 static void
11634 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11635 struct ui_file *fp)
11636 {
11637 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11638 }
11639
11640 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11641
11642 /* Virtual table for "catch assert" breakpoints. */
11643
11644 static void
11645 dtor_catch_assert (struct breakpoint *b)
11646 {
11647 dtor_exception (ex_catch_assert, b);
11648 }
11649
11650 static struct bp_location *
11651 allocate_location_catch_assert (struct breakpoint *self)
11652 {
11653 return allocate_location_exception (ex_catch_assert, self);
11654 }
11655
11656 static void
11657 re_set_catch_assert (struct breakpoint *b)
11658 {
11659 return re_set_exception (ex_catch_assert, b);
11660 }
11661
11662 static void
11663 check_status_catch_assert (bpstat bs)
11664 {
11665 check_status_exception (ex_catch_assert, bs);
11666 }
11667
11668 static enum print_stop_action
11669 print_it_catch_assert (bpstat bs)
11670 {
11671 return print_it_exception (ex_catch_assert, bs);
11672 }
11673
11674 static void
11675 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11676 {
11677 print_one_exception (ex_catch_assert, b, last_loc);
11678 }
11679
11680 static void
11681 print_mention_catch_assert (struct breakpoint *b)
11682 {
11683 print_mention_exception (ex_catch_assert, b);
11684 }
11685
11686 static void
11687 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11688 {
11689 print_recreate_exception (ex_catch_assert, b, fp);
11690 }
11691
11692 static struct breakpoint_ops catch_assert_breakpoint_ops;
11693
11694 /* Return a newly allocated copy of the first space-separated token
11695 in ARGSP, and then adjust ARGSP to point immediately after that
11696 token.
11697
11698 Return NULL if ARGPS does not contain any more tokens. */
11699
11700 static char *
11701 ada_get_next_arg (char **argsp)
11702 {
11703 char *args = *argsp;
11704 char *end;
11705 char *result;
11706
11707 args = skip_spaces (args);
11708 if (args[0] == '\0')
11709 return NULL; /* No more arguments. */
11710
11711 /* Find the end of the current argument. */
11712
11713 end = skip_to_space (args);
11714
11715 /* Adjust ARGSP to point to the start of the next argument. */
11716
11717 *argsp = end;
11718
11719 /* Make a copy of the current argument and return it. */
11720
11721 result = xmalloc (end - args + 1);
11722 strncpy (result, args, end - args);
11723 result[end - args] = '\0';
11724
11725 return result;
11726 }
11727
11728 /* Split the arguments specified in a "catch exception" command.
11729 Set EX to the appropriate catchpoint type.
11730 Set EXCEP_STRING to the name of the specific exception if
11731 specified by the user.
11732 If a condition is found at the end of the arguments, the condition
11733 expression is stored in COND_STRING (memory must be deallocated
11734 after use). Otherwise COND_STRING is set to NULL. */
11735
11736 static void
11737 catch_ada_exception_command_split (char *args,
11738 enum exception_catchpoint_kind *ex,
11739 char **excep_string,
11740 char **cond_string)
11741 {
11742 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11743 char *exception_name;
11744 char *cond = NULL;
11745
11746 exception_name = ada_get_next_arg (&args);
11747 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11748 {
11749 /* This is not an exception name; this is the start of a condition
11750 expression for a catchpoint on all exceptions. So, "un-get"
11751 this token, and set exception_name to NULL. */
11752 xfree (exception_name);
11753 exception_name = NULL;
11754 args -= 2;
11755 }
11756 make_cleanup (xfree, exception_name);
11757
11758 /* Check to see if we have a condition. */
11759
11760 args = skip_spaces (args);
11761 if (strncmp (args, "if", 2) == 0
11762 && (isspace (args[2]) || args[2] == '\0'))
11763 {
11764 args += 2;
11765 args = skip_spaces (args);
11766
11767 if (args[0] == '\0')
11768 error (_("Condition missing after `if' keyword"));
11769 cond = xstrdup (args);
11770 make_cleanup (xfree, cond);
11771
11772 args += strlen (args);
11773 }
11774
11775 /* Check that we do not have any more arguments. Anything else
11776 is unexpected. */
11777
11778 if (args[0] != '\0')
11779 error (_("Junk at end of expression"));
11780
11781 discard_cleanups (old_chain);
11782
11783 if (exception_name == NULL)
11784 {
11785 /* Catch all exceptions. */
11786 *ex = ex_catch_exception;
11787 *excep_string = NULL;
11788 }
11789 else if (strcmp (exception_name, "unhandled") == 0)
11790 {
11791 /* Catch unhandled exceptions. */
11792 *ex = ex_catch_exception_unhandled;
11793 *excep_string = NULL;
11794 }
11795 else
11796 {
11797 /* Catch a specific exception. */
11798 *ex = ex_catch_exception;
11799 *excep_string = exception_name;
11800 }
11801 *cond_string = cond;
11802 }
11803
11804 /* Return the name of the symbol on which we should break in order to
11805 implement a catchpoint of the EX kind. */
11806
11807 static const char *
11808 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11809 {
11810 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11811
11812 gdb_assert (data->exception_info != NULL);
11813
11814 switch (ex)
11815 {
11816 case ex_catch_exception:
11817 return (data->exception_info->catch_exception_sym);
11818 break;
11819 case ex_catch_exception_unhandled:
11820 return (data->exception_info->catch_exception_unhandled_sym);
11821 break;
11822 case ex_catch_assert:
11823 return (data->exception_info->catch_assert_sym);
11824 break;
11825 default:
11826 internal_error (__FILE__, __LINE__,
11827 _("unexpected catchpoint kind (%d)"), ex);
11828 }
11829 }
11830
11831 /* Return the breakpoint ops "virtual table" used for catchpoints
11832 of the EX kind. */
11833
11834 static const struct breakpoint_ops *
11835 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11836 {
11837 switch (ex)
11838 {
11839 case ex_catch_exception:
11840 return (&catch_exception_breakpoint_ops);
11841 break;
11842 case ex_catch_exception_unhandled:
11843 return (&catch_exception_unhandled_breakpoint_ops);
11844 break;
11845 case ex_catch_assert:
11846 return (&catch_assert_breakpoint_ops);
11847 break;
11848 default:
11849 internal_error (__FILE__, __LINE__,
11850 _("unexpected catchpoint kind (%d)"), ex);
11851 }
11852 }
11853
11854 /* Return the condition that will be used to match the current exception
11855 being raised with the exception that the user wants to catch. This
11856 assumes that this condition is used when the inferior just triggered
11857 an exception catchpoint.
11858
11859 The string returned is a newly allocated string that needs to be
11860 deallocated later. */
11861
11862 static char *
11863 ada_exception_catchpoint_cond_string (const char *excep_string)
11864 {
11865 int i;
11866
11867 /* The standard exceptions are a special case. They are defined in
11868 runtime units that have been compiled without debugging info; if
11869 EXCEP_STRING is the not-fully-qualified name of a standard
11870 exception (e.g. "constraint_error") then, during the evaluation
11871 of the condition expression, the symbol lookup on this name would
11872 *not* return this standard exception. The catchpoint condition
11873 may then be set only on user-defined exceptions which have the
11874 same not-fully-qualified name (e.g. my_package.constraint_error).
11875
11876 To avoid this unexcepted behavior, these standard exceptions are
11877 systematically prefixed by "standard". This means that "catch
11878 exception constraint_error" is rewritten into "catch exception
11879 standard.constraint_error".
11880
11881 If an exception named contraint_error is defined in another package of
11882 the inferior program, then the only way to specify this exception as a
11883 breakpoint condition is to use its fully-qualified named:
11884 e.g. my_package.constraint_error. */
11885
11886 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11887 {
11888 if (strcmp (standard_exc [i], excep_string) == 0)
11889 {
11890 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11891 excep_string);
11892 }
11893 }
11894 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11895 }
11896
11897 /* Return the symtab_and_line that should be used to insert an exception
11898 catchpoint of the TYPE kind.
11899
11900 EXCEP_STRING should contain the name of a specific exception that
11901 the catchpoint should catch, or NULL otherwise.
11902
11903 ADDR_STRING returns the name of the function where the real
11904 breakpoint that implements the catchpoints is set, depending on the
11905 type of catchpoint we need to create. */
11906
11907 static struct symtab_and_line
11908 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11909 char **addr_string, const struct breakpoint_ops **ops)
11910 {
11911 const char *sym_name;
11912 struct symbol *sym;
11913
11914 /* First, find out which exception support info to use. */
11915 ada_exception_support_info_sniffer ();
11916
11917 /* Then lookup the function on which we will break in order to catch
11918 the Ada exceptions requested by the user. */
11919 sym_name = ada_exception_sym_name (ex);
11920 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11921
11922 /* We can assume that SYM is not NULL at this stage. If the symbol
11923 did not exist, ada_exception_support_info_sniffer would have
11924 raised an exception.
11925
11926 Also, ada_exception_support_info_sniffer should have already
11927 verified that SYM is a function symbol. */
11928 gdb_assert (sym != NULL);
11929 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11930
11931 /* Set ADDR_STRING. */
11932 *addr_string = xstrdup (sym_name);
11933
11934 /* Set OPS. */
11935 *ops = ada_exception_breakpoint_ops (ex);
11936
11937 return find_function_start_sal (sym, 1);
11938 }
11939
11940 /* Parse the arguments (ARGS) of the "catch exception" command.
11941
11942 If the user asked the catchpoint to catch only a specific
11943 exception, then save the exception name in ADDR_STRING.
11944
11945 If the user provided a condition, then set COND_STRING to
11946 that condition expression (the memory must be deallocated
11947 after use). Otherwise, set COND_STRING to NULL.
11948
11949 See ada_exception_sal for a description of all the remaining
11950 function arguments of this function. */
11951
11952 static struct symtab_and_line
11953 ada_decode_exception_location (char *args, char **addr_string,
11954 char **excep_string,
11955 char **cond_string,
11956 const struct breakpoint_ops **ops)
11957 {
11958 enum exception_catchpoint_kind ex;
11959
11960 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11961 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11962 }
11963
11964 /* Create an Ada exception catchpoint. */
11965
11966 static void
11967 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11968 struct symtab_and_line sal,
11969 char *addr_string,
11970 char *excep_string,
11971 char *cond_string,
11972 const struct breakpoint_ops *ops,
11973 int tempflag,
11974 int from_tty)
11975 {
11976 struct ada_catchpoint *c;
11977
11978 c = XNEW (struct ada_catchpoint);
11979 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11980 ops, tempflag, from_tty);
11981 c->excep_string = excep_string;
11982 create_excep_cond_exprs (c);
11983 if (cond_string != NULL)
11984 set_breakpoint_condition (&c->base, cond_string, from_tty);
11985 install_breakpoint (0, &c->base, 1);
11986 }
11987
11988 /* Implement the "catch exception" command. */
11989
11990 static void
11991 catch_ada_exception_command (char *arg, int from_tty,
11992 struct cmd_list_element *command)
11993 {
11994 struct gdbarch *gdbarch = get_current_arch ();
11995 int tempflag;
11996 struct symtab_and_line sal;
11997 char *addr_string = NULL;
11998 char *excep_string = NULL;
11999 char *cond_string = NULL;
12000 const struct breakpoint_ops *ops = NULL;
12001
12002 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12003
12004 if (!arg)
12005 arg = "";
12006 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
12007 &cond_string, &ops);
12008 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12009 excep_string, cond_string, ops,
12010 tempflag, from_tty);
12011 }
12012
12013 /* Assuming that ARGS contains the arguments of a "catch assert"
12014 command, parse those arguments and return a symtab_and_line object
12015 for a failed assertion catchpoint.
12016
12017 Set ADDR_STRING to the name of the function where the real
12018 breakpoint that implements the catchpoint is set.
12019
12020 If ARGS contains a condition, set COND_STRING to that condition
12021 (the memory needs to be deallocated after use). Otherwise, set
12022 COND_STRING to NULL. */
12023
12024 static struct symtab_and_line
12025 ada_decode_assert_location (char *args, char **addr_string,
12026 char **cond_string,
12027 const struct breakpoint_ops **ops)
12028 {
12029 args = skip_spaces (args);
12030
12031 /* Check whether a condition was provided. */
12032 if (strncmp (args, "if", 2) == 0
12033 && (isspace (args[2]) || args[2] == '\0'))
12034 {
12035 args += 2;
12036 args = skip_spaces (args);
12037 if (args[0] == '\0')
12038 error (_("condition missing after `if' keyword"));
12039 *cond_string = xstrdup (args);
12040 }
12041
12042 /* Otherwise, there should be no other argument at the end of
12043 the command. */
12044 else if (args[0] != '\0')
12045 error (_("Junk at end of arguments."));
12046
12047 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
12048 }
12049
12050 /* Implement the "catch assert" command. */
12051
12052 static void
12053 catch_assert_command (char *arg, int from_tty,
12054 struct cmd_list_element *command)
12055 {
12056 struct gdbarch *gdbarch = get_current_arch ();
12057 int tempflag;
12058 struct symtab_and_line sal;
12059 char *addr_string = NULL;
12060 char *cond_string = NULL;
12061 const struct breakpoint_ops *ops = NULL;
12062
12063 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
12064
12065 if (!arg)
12066 arg = "";
12067 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
12068 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
12069 NULL, cond_string, ops, tempflag,
12070 from_tty);
12071 }
12072 /* Operators */
12073 /* Information about operators given special treatment in functions
12074 below. */
12075 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
12076
12077 #define ADA_OPERATORS \
12078 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
12079 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
12080 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
12081 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
12082 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
12083 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
12084 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
12085 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
12086 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
12087 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
12088 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
12089 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
12090 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
12091 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
12092 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
12093 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
12094 OP_DEFN (OP_OTHERS, 1, 1, 0) \
12095 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
12096 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
12097
12098 static void
12099 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
12100 int *argsp)
12101 {
12102 switch (exp->elts[pc - 1].opcode)
12103 {
12104 default:
12105 operator_length_standard (exp, pc, oplenp, argsp);
12106 break;
12107
12108 #define OP_DEFN(op, len, args, binop) \
12109 case op: *oplenp = len; *argsp = args; break;
12110 ADA_OPERATORS;
12111 #undef OP_DEFN
12112
12113 case OP_AGGREGATE:
12114 *oplenp = 3;
12115 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
12116 break;
12117
12118 case OP_CHOICES:
12119 *oplenp = 3;
12120 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
12121 break;
12122 }
12123 }
12124
12125 /* Implementation of the exp_descriptor method operator_check. */
12126
12127 static int
12128 ada_operator_check (struct expression *exp, int pos,
12129 int (*objfile_func) (struct objfile *objfile, void *data),
12130 void *data)
12131 {
12132 const union exp_element *const elts = exp->elts;
12133 struct type *type = NULL;
12134
12135 switch (elts[pos].opcode)
12136 {
12137 case UNOP_IN_RANGE:
12138 case UNOP_QUAL:
12139 type = elts[pos + 1].type;
12140 break;
12141
12142 default:
12143 return operator_check_standard (exp, pos, objfile_func, data);
12144 }
12145
12146 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12147
12148 if (type && TYPE_OBJFILE (type)
12149 && (*objfile_func) (TYPE_OBJFILE (type), data))
12150 return 1;
12151
12152 return 0;
12153 }
12154
12155 static char *
12156 ada_op_name (enum exp_opcode opcode)
12157 {
12158 switch (opcode)
12159 {
12160 default:
12161 return op_name_standard (opcode);
12162
12163 #define OP_DEFN(op, len, args, binop) case op: return #op;
12164 ADA_OPERATORS;
12165 #undef OP_DEFN
12166
12167 case OP_AGGREGATE:
12168 return "OP_AGGREGATE";
12169 case OP_CHOICES:
12170 return "OP_CHOICES";
12171 case OP_NAME:
12172 return "OP_NAME";
12173 }
12174 }
12175
12176 /* As for operator_length, but assumes PC is pointing at the first
12177 element of the operator, and gives meaningful results only for the
12178 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12179
12180 static void
12181 ada_forward_operator_length (struct expression *exp, int pc,
12182 int *oplenp, int *argsp)
12183 {
12184 switch (exp->elts[pc].opcode)
12185 {
12186 default:
12187 *oplenp = *argsp = 0;
12188 break;
12189
12190 #define OP_DEFN(op, len, args, binop) \
12191 case op: *oplenp = len; *argsp = args; break;
12192 ADA_OPERATORS;
12193 #undef OP_DEFN
12194
12195 case OP_AGGREGATE:
12196 *oplenp = 3;
12197 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12198 break;
12199
12200 case OP_CHOICES:
12201 *oplenp = 3;
12202 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12203 break;
12204
12205 case OP_STRING:
12206 case OP_NAME:
12207 {
12208 int len = longest_to_int (exp->elts[pc + 1].longconst);
12209
12210 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12211 *argsp = 0;
12212 break;
12213 }
12214 }
12215 }
12216
12217 static int
12218 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12219 {
12220 enum exp_opcode op = exp->elts[elt].opcode;
12221 int oplen, nargs;
12222 int pc = elt;
12223 int i;
12224
12225 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12226
12227 switch (op)
12228 {
12229 /* Ada attributes ('Foo). */
12230 case OP_ATR_FIRST:
12231 case OP_ATR_LAST:
12232 case OP_ATR_LENGTH:
12233 case OP_ATR_IMAGE:
12234 case OP_ATR_MAX:
12235 case OP_ATR_MIN:
12236 case OP_ATR_MODULUS:
12237 case OP_ATR_POS:
12238 case OP_ATR_SIZE:
12239 case OP_ATR_TAG:
12240 case OP_ATR_VAL:
12241 break;
12242
12243 case UNOP_IN_RANGE:
12244 case UNOP_QUAL:
12245 /* XXX: gdb_sprint_host_address, type_sprint */
12246 fprintf_filtered (stream, _("Type @"));
12247 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12248 fprintf_filtered (stream, " (");
12249 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12250 fprintf_filtered (stream, ")");
12251 break;
12252 case BINOP_IN_BOUNDS:
12253 fprintf_filtered (stream, " (%d)",
12254 longest_to_int (exp->elts[pc + 2].longconst));
12255 break;
12256 case TERNOP_IN_RANGE:
12257 break;
12258
12259 case OP_AGGREGATE:
12260 case OP_OTHERS:
12261 case OP_DISCRETE_RANGE:
12262 case OP_POSITIONAL:
12263 case OP_CHOICES:
12264 break;
12265
12266 case OP_NAME:
12267 case OP_STRING:
12268 {
12269 char *name = &exp->elts[elt + 2].string;
12270 int len = longest_to_int (exp->elts[elt + 1].longconst);
12271
12272 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12273 break;
12274 }
12275
12276 default:
12277 return dump_subexp_body_standard (exp, stream, elt);
12278 }
12279
12280 elt += oplen;
12281 for (i = 0; i < nargs; i += 1)
12282 elt = dump_subexp (exp, stream, elt);
12283
12284 return elt;
12285 }
12286
12287 /* The Ada extension of print_subexp (q.v.). */
12288
12289 static void
12290 ada_print_subexp (struct expression *exp, int *pos,
12291 struct ui_file *stream, enum precedence prec)
12292 {
12293 int oplen, nargs, i;
12294 int pc = *pos;
12295 enum exp_opcode op = exp->elts[pc].opcode;
12296
12297 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12298
12299 *pos += oplen;
12300 switch (op)
12301 {
12302 default:
12303 *pos -= oplen;
12304 print_subexp_standard (exp, pos, stream, prec);
12305 return;
12306
12307 case OP_VAR_VALUE:
12308 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12309 return;
12310
12311 case BINOP_IN_BOUNDS:
12312 /* XXX: sprint_subexp */
12313 print_subexp (exp, pos, stream, PREC_SUFFIX);
12314 fputs_filtered (" in ", stream);
12315 print_subexp (exp, pos, stream, PREC_SUFFIX);
12316 fputs_filtered ("'range", stream);
12317 if (exp->elts[pc + 1].longconst > 1)
12318 fprintf_filtered (stream, "(%ld)",
12319 (long) exp->elts[pc + 1].longconst);
12320 return;
12321
12322 case TERNOP_IN_RANGE:
12323 if (prec >= PREC_EQUAL)
12324 fputs_filtered ("(", stream);
12325 /* XXX: sprint_subexp */
12326 print_subexp (exp, pos, stream, PREC_SUFFIX);
12327 fputs_filtered (" in ", stream);
12328 print_subexp (exp, pos, stream, PREC_EQUAL);
12329 fputs_filtered (" .. ", stream);
12330 print_subexp (exp, pos, stream, PREC_EQUAL);
12331 if (prec >= PREC_EQUAL)
12332 fputs_filtered (")", stream);
12333 return;
12334
12335 case OP_ATR_FIRST:
12336 case OP_ATR_LAST:
12337 case OP_ATR_LENGTH:
12338 case OP_ATR_IMAGE:
12339 case OP_ATR_MAX:
12340 case OP_ATR_MIN:
12341 case OP_ATR_MODULUS:
12342 case OP_ATR_POS:
12343 case OP_ATR_SIZE:
12344 case OP_ATR_TAG:
12345 case OP_ATR_VAL:
12346 if (exp->elts[*pos].opcode == OP_TYPE)
12347 {
12348 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12349 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12350 *pos += 3;
12351 }
12352 else
12353 print_subexp (exp, pos, stream, PREC_SUFFIX);
12354 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12355 if (nargs > 1)
12356 {
12357 int tem;
12358
12359 for (tem = 1; tem < nargs; tem += 1)
12360 {
12361 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12362 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12363 }
12364 fputs_filtered (")", stream);
12365 }
12366 return;
12367
12368 case UNOP_QUAL:
12369 type_print (exp->elts[pc + 1].type, "", stream, 0);
12370 fputs_filtered ("'(", stream);
12371 print_subexp (exp, pos, stream, PREC_PREFIX);
12372 fputs_filtered (")", stream);
12373 return;
12374
12375 case UNOP_IN_RANGE:
12376 /* XXX: sprint_subexp */
12377 print_subexp (exp, pos, stream, PREC_SUFFIX);
12378 fputs_filtered (" in ", stream);
12379 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12380 return;
12381
12382 case OP_DISCRETE_RANGE:
12383 print_subexp (exp, pos, stream, PREC_SUFFIX);
12384 fputs_filtered ("..", stream);
12385 print_subexp (exp, pos, stream, PREC_SUFFIX);
12386 return;
12387
12388 case OP_OTHERS:
12389 fputs_filtered ("others => ", stream);
12390 print_subexp (exp, pos, stream, PREC_SUFFIX);
12391 return;
12392
12393 case OP_CHOICES:
12394 for (i = 0; i < nargs-1; i += 1)
12395 {
12396 if (i > 0)
12397 fputs_filtered ("|", stream);
12398 print_subexp (exp, pos, stream, PREC_SUFFIX);
12399 }
12400 fputs_filtered (" => ", stream);
12401 print_subexp (exp, pos, stream, PREC_SUFFIX);
12402 return;
12403
12404 case OP_POSITIONAL:
12405 print_subexp (exp, pos, stream, PREC_SUFFIX);
12406 return;
12407
12408 case OP_AGGREGATE:
12409 fputs_filtered ("(", stream);
12410 for (i = 0; i < nargs; i += 1)
12411 {
12412 if (i > 0)
12413 fputs_filtered (", ", stream);
12414 print_subexp (exp, pos, stream, PREC_SUFFIX);
12415 }
12416 fputs_filtered (")", stream);
12417 return;
12418 }
12419 }
12420
12421 /* Table mapping opcodes into strings for printing operators
12422 and precedences of the operators. */
12423
12424 static const struct op_print ada_op_print_tab[] = {
12425 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12426 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12427 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12428 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12429 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12430 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12431 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12432 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12433 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12434 {">=", BINOP_GEQ, PREC_ORDER, 0},
12435 {">", BINOP_GTR, PREC_ORDER, 0},
12436 {"<", BINOP_LESS, PREC_ORDER, 0},
12437 {">>", BINOP_RSH, PREC_SHIFT, 0},
12438 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12439 {"+", BINOP_ADD, PREC_ADD, 0},
12440 {"-", BINOP_SUB, PREC_ADD, 0},
12441 {"&", BINOP_CONCAT, PREC_ADD, 0},
12442 {"*", BINOP_MUL, PREC_MUL, 0},
12443 {"/", BINOP_DIV, PREC_MUL, 0},
12444 {"rem", BINOP_REM, PREC_MUL, 0},
12445 {"mod", BINOP_MOD, PREC_MUL, 0},
12446 {"**", BINOP_EXP, PREC_REPEAT, 0},
12447 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12448 {"-", UNOP_NEG, PREC_PREFIX, 0},
12449 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12450 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12451 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12452 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12453 {".all", UNOP_IND, PREC_SUFFIX, 1},
12454 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12455 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12456 {NULL, 0, 0, 0}
12457 };
12458 \f
12459 enum ada_primitive_types {
12460 ada_primitive_type_int,
12461 ada_primitive_type_long,
12462 ada_primitive_type_short,
12463 ada_primitive_type_char,
12464 ada_primitive_type_float,
12465 ada_primitive_type_double,
12466 ada_primitive_type_void,
12467 ada_primitive_type_long_long,
12468 ada_primitive_type_long_double,
12469 ada_primitive_type_natural,
12470 ada_primitive_type_positive,
12471 ada_primitive_type_system_address,
12472 nr_ada_primitive_types
12473 };
12474
12475 static void
12476 ada_language_arch_info (struct gdbarch *gdbarch,
12477 struct language_arch_info *lai)
12478 {
12479 const struct builtin_type *builtin = builtin_type (gdbarch);
12480
12481 lai->primitive_type_vector
12482 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12483 struct type *);
12484
12485 lai->primitive_type_vector [ada_primitive_type_int]
12486 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12487 0, "integer");
12488 lai->primitive_type_vector [ada_primitive_type_long]
12489 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12490 0, "long_integer");
12491 lai->primitive_type_vector [ada_primitive_type_short]
12492 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12493 0, "short_integer");
12494 lai->string_char_type
12495 = lai->primitive_type_vector [ada_primitive_type_char]
12496 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12497 lai->primitive_type_vector [ada_primitive_type_float]
12498 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12499 "float", NULL);
12500 lai->primitive_type_vector [ada_primitive_type_double]
12501 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12502 "long_float", NULL);
12503 lai->primitive_type_vector [ada_primitive_type_long_long]
12504 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12505 0, "long_long_integer");
12506 lai->primitive_type_vector [ada_primitive_type_long_double]
12507 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12508 "long_long_float", NULL);
12509 lai->primitive_type_vector [ada_primitive_type_natural]
12510 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12511 0, "natural");
12512 lai->primitive_type_vector [ada_primitive_type_positive]
12513 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12514 0, "positive");
12515 lai->primitive_type_vector [ada_primitive_type_void]
12516 = builtin->builtin_void;
12517
12518 lai->primitive_type_vector [ada_primitive_type_system_address]
12519 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12520 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12521 = "system__address";
12522
12523 lai->bool_type_symbol = NULL;
12524 lai->bool_type_default = builtin->builtin_bool;
12525 }
12526 \f
12527 /* Language vector */
12528
12529 /* Not really used, but needed in the ada_language_defn. */
12530
12531 static void
12532 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12533 {
12534 ada_emit_char (c, type, stream, quoter, 1);
12535 }
12536
12537 static int
12538 parse (void)
12539 {
12540 warnings_issued = 0;
12541 return ada_parse ();
12542 }
12543
12544 static const struct exp_descriptor ada_exp_descriptor = {
12545 ada_print_subexp,
12546 ada_operator_length,
12547 ada_operator_check,
12548 ada_op_name,
12549 ada_dump_subexp_body,
12550 ada_evaluate_subexp
12551 };
12552
12553 /* Implement the "la_get_symbol_name_cmp" language_defn method
12554 for Ada. */
12555
12556 static symbol_name_cmp_ftype
12557 ada_get_symbol_name_cmp (const char *lookup_name)
12558 {
12559 if (should_use_wild_match (lookup_name))
12560 return wild_match;
12561 else
12562 return compare_names;
12563 }
12564
12565 /* Implement the "la_read_var_value" language_defn method for Ada. */
12566
12567 static struct value *
12568 ada_read_var_value (struct symbol *var, struct frame_info *frame)
12569 {
12570 struct block *frame_block = NULL;
12571 struct symbol *renaming_sym = NULL;
12572
12573 /* The only case where default_read_var_value is not sufficient
12574 is when VAR is a renaming... */
12575 if (frame)
12576 frame_block = get_frame_block (frame, NULL);
12577 if (frame_block)
12578 renaming_sym = ada_find_renaming_symbol (var, frame_block);
12579 if (renaming_sym != NULL)
12580 return ada_read_renaming_var_value (renaming_sym, frame_block);
12581
12582 /* This is a typical case where we expect the default_read_var_value
12583 function to work. */
12584 return default_read_var_value (var, frame);
12585 }
12586
12587 const struct language_defn ada_language_defn = {
12588 "ada", /* Language name */
12589 language_ada,
12590 range_check_off,
12591 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12592 that's not quite what this means. */
12593 array_row_major,
12594 macro_expansion_no,
12595 &ada_exp_descriptor,
12596 parse,
12597 ada_error,
12598 resolve,
12599 ada_printchar, /* Print a character constant */
12600 ada_printstr, /* Function to print string constant */
12601 emit_char, /* Function to print single char (not used) */
12602 ada_print_type, /* Print a type using appropriate syntax */
12603 ada_print_typedef, /* Print a typedef using appropriate syntax */
12604 ada_val_print, /* Print a value using appropriate syntax */
12605 ada_value_print, /* Print a top-level value */
12606 ada_read_var_value, /* la_read_var_value */
12607 NULL, /* Language specific skip_trampoline */
12608 NULL, /* name_of_this */
12609 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12610 basic_lookup_transparent_type, /* lookup_transparent_type */
12611 ada_la_decode, /* Language specific symbol demangler */
12612 NULL, /* Language specific
12613 class_name_from_physname */
12614 ada_op_print_tab, /* expression operators for printing */
12615 0, /* c-style arrays */
12616 1, /* String lower bound */
12617 ada_get_gdb_completer_word_break_characters,
12618 ada_make_symbol_completion_list,
12619 ada_language_arch_info,
12620 ada_print_array_index,
12621 default_pass_by_reference,
12622 c_get_string,
12623 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12624 ada_iterate_over_symbols,
12625 LANG_MAGIC
12626 };
12627
12628 /* Provide a prototype to silence -Wmissing-prototypes. */
12629 extern initialize_file_ftype _initialize_ada_language;
12630
12631 /* Command-list for the "set/show ada" prefix command. */
12632 static struct cmd_list_element *set_ada_list;
12633 static struct cmd_list_element *show_ada_list;
12634
12635 /* Implement the "set ada" prefix command. */
12636
12637 static void
12638 set_ada_command (char *arg, int from_tty)
12639 {
12640 printf_unfiltered (_(\
12641 "\"set ada\" must be followed by the name of a setting.\n"));
12642 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12643 }
12644
12645 /* Implement the "show ada" prefix command. */
12646
12647 static void
12648 show_ada_command (char *args, int from_tty)
12649 {
12650 cmd_show_list (show_ada_list, from_tty, "");
12651 }
12652
12653 static void
12654 initialize_ada_catchpoint_ops (void)
12655 {
12656 struct breakpoint_ops *ops;
12657
12658 initialize_breakpoint_ops ();
12659
12660 ops = &catch_exception_breakpoint_ops;
12661 *ops = bkpt_breakpoint_ops;
12662 ops->dtor = dtor_catch_exception;
12663 ops->allocate_location = allocate_location_catch_exception;
12664 ops->re_set = re_set_catch_exception;
12665 ops->check_status = check_status_catch_exception;
12666 ops->print_it = print_it_catch_exception;
12667 ops->print_one = print_one_catch_exception;
12668 ops->print_mention = print_mention_catch_exception;
12669 ops->print_recreate = print_recreate_catch_exception;
12670
12671 ops = &catch_exception_unhandled_breakpoint_ops;
12672 *ops = bkpt_breakpoint_ops;
12673 ops->dtor = dtor_catch_exception_unhandled;
12674 ops->allocate_location = allocate_location_catch_exception_unhandled;
12675 ops->re_set = re_set_catch_exception_unhandled;
12676 ops->check_status = check_status_catch_exception_unhandled;
12677 ops->print_it = print_it_catch_exception_unhandled;
12678 ops->print_one = print_one_catch_exception_unhandled;
12679 ops->print_mention = print_mention_catch_exception_unhandled;
12680 ops->print_recreate = print_recreate_catch_exception_unhandled;
12681
12682 ops = &catch_assert_breakpoint_ops;
12683 *ops = bkpt_breakpoint_ops;
12684 ops->dtor = dtor_catch_assert;
12685 ops->allocate_location = allocate_location_catch_assert;
12686 ops->re_set = re_set_catch_assert;
12687 ops->check_status = check_status_catch_assert;
12688 ops->print_it = print_it_catch_assert;
12689 ops->print_one = print_one_catch_assert;
12690 ops->print_mention = print_mention_catch_assert;
12691 ops->print_recreate = print_recreate_catch_assert;
12692 }
12693
12694 void
12695 _initialize_ada_language (void)
12696 {
12697 add_language (&ada_language_defn);
12698
12699 initialize_ada_catchpoint_ops ();
12700
12701 add_prefix_cmd ("ada", no_class, set_ada_command,
12702 _("Prefix command for changing Ada-specfic settings"),
12703 &set_ada_list, "set ada ", 0, &setlist);
12704
12705 add_prefix_cmd ("ada", no_class, show_ada_command,
12706 _("Generic command for showing Ada-specific settings."),
12707 &show_ada_list, "show ada ", 0, &showlist);
12708
12709 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12710 &trust_pad_over_xvs, _("\
12711 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12712 Show whether an optimization trusting PAD types over XVS types is activated"),
12713 _("\
12714 This is related to the encoding used by the GNAT compiler. The debugger\n\
12715 should normally trust the contents of PAD types, but certain older versions\n\
12716 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12717 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12718 work around this bug. It is always safe to turn this option \"off\", but\n\
12719 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12720 this option to \"off\" unless necessary."),
12721 NULL, NULL, &set_ada_list, &show_ada_list);
12722
12723 add_catch_command ("exception", _("\
12724 Catch Ada exceptions, when raised.\n\
12725 With an argument, catch only exceptions with the given name."),
12726 catch_ada_exception_command,
12727 NULL,
12728 CATCH_PERMANENT,
12729 CATCH_TEMPORARY);
12730 add_catch_command ("assert", _("\
12731 Catch failed Ada assertions, when raised.\n\
12732 With an argument, catch only exceptions with the given name."),
12733 catch_assert_command,
12734 NULL,
12735 CATCH_PERMANENT,
12736 CATCH_TEMPORARY);
12737
12738 varsize_limit = 65536;
12739
12740 obstack_init (&symbol_list_obstack);
12741
12742 decoded_names_store = htab_create_alloc
12743 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12744 NULL, xcalloc, xfree);
12745
12746 /* Setup per-inferior data. */
12747 observer_attach_inferior_exit (ada_inferior_exit);
12748 ada_inferior_data
12749 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
12750 }