]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/alpha-tdep.c
gdb: remove TYPE_LENGTH
[thirdparty/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "dwarf2/frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "dis-asm.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "linespec.h"
34 #include "regcache.h"
35 #include "reggroups.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "block.h"
39 #include "infcall.h"
40 #include "trad-frame.h"
41
42 #include "elf-bfd.h"
43
44 #include "alpha-tdep.h"
45 #include <algorithm>
46
47 /* Instruction decoding. The notations for registers, immediates and
48 opcodes are the same as the one used in Compaq's Alpha architecture
49 handbook. */
50
51 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
52
53 /* Memory instruction format */
54 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
55 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
56 #define MEM_DISP(insn) \
57 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
58
59 static const int lda_opcode = 0x08;
60 static const int stq_opcode = 0x2d;
61
62 /* Branch instruction format */
63 #define BR_RA(insn) MEM_RA(insn)
64
65 static const int br_opcode = 0x30;
66 static const int bne_opcode = 0x3d;
67
68 /* Operate instruction format */
69 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
70 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
71 #define OPR_RA(insn) MEM_RA(insn)
72 #define OPR_RC(insn) ((insn & 0x1f))
73 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
74
75 static const int subq_opcode = 0x10;
76 static const int subq_function = 0x29;
77
78 \f
79 /* Return the name of the REGNO register.
80
81 An empty name corresponds to a register number that used to
82 be used for a virtual register. That virtual register has
83 been removed, but the index is still reserved to maintain
84 compatibility with existing remote alpha targets. */
85
86 static const char *
87 alpha_register_name (struct gdbarch *gdbarch, int regno)
88 {
89 static const char * const register_names[] =
90 {
91 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
92 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
93 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
94 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
95 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
96 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
97 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
98 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
99 "pc", "", "unique"
100 };
101
102 if (regno < 0)
103 return NULL;
104 if (regno >= ARRAY_SIZE(register_names))
105 return NULL;
106 return register_names[regno];
107 }
108
109 static int
110 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
111 {
112 return (strlen (alpha_register_name (gdbarch, regno)) == 0);
113 }
114
115 static int
116 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
117 {
118 return (regno == ALPHA_ZERO_REGNUM
119 || strlen (alpha_register_name (gdbarch, regno)) == 0);
120 }
121
122 static struct type *
123 alpha_register_type (struct gdbarch *gdbarch, int regno)
124 {
125 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
126 return builtin_type (gdbarch)->builtin_data_ptr;
127 if (regno == ALPHA_PC_REGNUM)
128 return builtin_type (gdbarch)->builtin_func_ptr;
129
130 /* Don't need to worry about little vs big endian until
131 some jerk tries to port to alpha-unicosmk. */
132 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
133 return builtin_type (gdbarch)->builtin_double;
134
135 return builtin_type (gdbarch)->builtin_int64;
136 }
137
138 /* Is REGNUM a member of REGGROUP? */
139
140 static int
141 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
142 const struct reggroup *group)
143 {
144 /* Filter out any registers eliminated, but whose regnum is
145 reserved for backward compatibility, e.g. the vfp. */
146 if (gdbarch_register_name (gdbarch, regnum) == NULL
147 || *gdbarch_register_name (gdbarch, regnum) == '\0')
148 return 0;
149
150 if (group == all_reggroup)
151 return 1;
152
153 /* Zero should not be saved or restored. Technically it is a general
154 register (just as $f31 would be a float if we represented it), but
155 there's no point displaying it during "info regs", so leave it out
156 of all groups except for "all". */
157 if (regnum == ALPHA_ZERO_REGNUM)
158 return 0;
159
160 /* All other registers are saved and restored. */
161 if (group == save_reggroup || group == restore_reggroup)
162 return 1;
163
164 /* All other groups are non-overlapping. */
165
166 /* Since this is really a PALcode memory slot... */
167 if (regnum == ALPHA_UNIQUE_REGNUM)
168 return group == system_reggroup;
169
170 /* Force the FPCR to be considered part of the floating point state. */
171 if (regnum == ALPHA_FPCR_REGNUM)
172 return group == float_reggroup;
173
174 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
175 return group == float_reggroup;
176 else
177 return group == general_reggroup;
178 }
179
180 /* The following represents exactly the conversion performed by
181 the LDS instruction. This applies to both single-precision
182 floating point and 32-bit integers. */
183
184 static void
185 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
186 {
187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
188 ULONGEST mem
189 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
190 ULONGEST frac = (mem >> 0) & 0x7fffff;
191 ULONGEST sign = (mem >> 31) & 1;
192 ULONGEST exp_msb = (mem >> 30) & 1;
193 ULONGEST exp_low = (mem >> 23) & 0x7f;
194 ULONGEST exp, reg;
195
196 exp = (exp_msb << 10) | exp_low;
197 if (exp_msb)
198 {
199 if (exp_low == 0x7f)
200 exp = 0x7ff;
201 }
202 else
203 {
204 if (exp_low != 0x00)
205 exp |= 0x380;
206 }
207
208 reg = (sign << 63) | (exp << 52) | (frac << 29);
209 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
210 }
211
212 /* Similarly, this represents exactly the conversion performed by
213 the STS instruction. */
214
215 static void
216 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
217 {
218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
219 ULONGEST reg, mem;
220
221 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
222 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
223 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
224 }
225
226 /* The alpha needs a conversion between register and memory format if the
227 register is a floating point register and memory format is float, as the
228 register format must be double or memory format is an integer with 4
229 bytes, as the representation of integers in floating point
230 registers is different. */
231
232 static int
233 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
234 struct type *type)
235 {
236 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
237 && type->length () == 4);
238 }
239
240 static int
241 alpha_register_to_value (struct frame_info *frame, int regnum,
242 struct type *valtype, gdb_byte *out,
243 int *optimizedp, int *unavailablep)
244 {
245 struct gdbarch *gdbarch = get_frame_arch (frame);
246 struct value *value = get_frame_register_value (frame, regnum);
247
248 gdb_assert (value != NULL);
249 *optimizedp = value_optimized_out (value);
250 *unavailablep = !value_entirely_available (value);
251
252 if (*optimizedp || *unavailablep)
253 {
254 release_value (value);
255 return 0;
256 }
257
258 /* Convert to VALTYPE. */
259
260 gdb_assert (valtype->length () == 4);
261 alpha_sts (gdbarch, out, value_contents_all (value).data ());
262
263 release_value (value);
264 return 1;
265 }
266
267 static void
268 alpha_value_to_register (struct frame_info *frame, int regnum,
269 struct type *valtype, const gdb_byte *in)
270 {
271 gdb_byte out[ALPHA_REGISTER_SIZE];
272
273 gdb_assert (valtype->length () == 4);
274 gdb_assert (register_size (get_frame_arch (frame), regnum)
275 <= ALPHA_REGISTER_SIZE);
276 alpha_lds (get_frame_arch (frame), out, in);
277
278 put_frame_register (frame, regnum, out);
279 }
280
281 \f
282 /* The alpha passes the first six arguments in the registers, the rest on
283 the stack. The register arguments are stored in ARG_REG_BUFFER, and
284 then moved into the register file; this simplifies the passing of a
285 large struct which extends from the registers to the stack, plus avoids
286 three ptrace invocations per word.
287
288 We don't bother tracking which register values should go in integer
289 regs or fp regs; we load the same values into both.
290
291 If the called function is returning a structure, the address of the
292 structure to be returned is passed as a hidden first argument. */
293
294 static CORE_ADDR
295 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
296 struct regcache *regcache, CORE_ADDR bp_addr,
297 int nargs, struct value **args, CORE_ADDR sp,
298 function_call_return_method return_method,
299 CORE_ADDR struct_addr)
300 {
301 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
302 int i;
303 int accumulate_size = (return_method == return_method_struct) ? 8 : 0;
304 struct alpha_arg
305 {
306 const gdb_byte *contents;
307 int len;
308 int offset;
309 };
310 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
311 struct alpha_arg *m_arg;
312 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
313 int required_arg_regs;
314 CORE_ADDR func_addr = find_function_addr (function, NULL);
315
316 /* The ABI places the address of the called function in T12. */
317 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
318
319 /* Set the return address register to point to the entry point
320 of the program, where a breakpoint lies in wait. */
321 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
322
323 /* Lay out the arguments in memory. */
324 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
325 {
326 struct value *arg = args[i];
327 struct type *arg_type = check_typedef (value_type (arg));
328
329 /* Cast argument to long if necessary as the compiler does it too. */
330 switch (arg_type->code ())
331 {
332 case TYPE_CODE_INT:
333 case TYPE_CODE_BOOL:
334 case TYPE_CODE_CHAR:
335 case TYPE_CODE_RANGE:
336 case TYPE_CODE_ENUM:
337 if (arg_type->length () == 4)
338 {
339 /* 32-bit values must be sign-extended to 64 bits
340 even if the base data type is unsigned. */
341 arg_type = builtin_type (gdbarch)->builtin_int32;
342 arg = value_cast (arg_type, arg);
343 }
344 if (arg_type->length () < ALPHA_REGISTER_SIZE)
345 {
346 arg_type = builtin_type (gdbarch)->builtin_int64;
347 arg = value_cast (arg_type, arg);
348 }
349 break;
350
351 case TYPE_CODE_FLT:
352 /* "float" arguments loaded in registers must be passed in
353 register format, aka "double". */
354 if (accumulate_size < sizeof (arg_reg_buffer)
355 && arg_type->length () == 4)
356 {
357 arg_type = builtin_type (gdbarch)->builtin_double;
358 arg = value_cast (arg_type, arg);
359 }
360 /* Tru64 5.1 has a 128-bit long double, and passes this by
361 invisible reference. No one else uses this data type. */
362 else if (arg_type->length () == 16)
363 {
364 /* Allocate aligned storage. */
365 sp = (sp & -16) - 16;
366
367 /* Write the real data into the stack. */
368 write_memory (sp, value_contents (arg).data (), 16);
369
370 /* Construct the indirection. */
371 arg_type = lookup_pointer_type (arg_type);
372 arg = value_from_pointer (arg_type, sp);
373 }
374 break;
375
376 case TYPE_CODE_COMPLEX:
377 /* ??? The ABI says that complex values are passed as two
378 separate scalar values. This distinction only matters
379 for complex float. However, GCC does not implement this. */
380
381 /* Tru64 5.1 has a 128-bit long double, and passes this by
382 invisible reference. */
383 if (arg_type->length () == 32)
384 {
385 /* Allocate aligned storage. */
386 sp = (sp & -16) - 16;
387
388 /* Write the real data into the stack. */
389 write_memory (sp, value_contents (arg).data (), 32);
390
391 /* Construct the indirection. */
392 arg_type = lookup_pointer_type (arg_type);
393 arg = value_from_pointer (arg_type, sp);
394 }
395 break;
396
397 default:
398 break;
399 }
400 m_arg->len = arg_type->length ();
401 m_arg->offset = accumulate_size;
402 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
403 m_arg->contents = value_contents (arg).data ();
404 }
405
406 /* Determine required argument register loads, loading an argument register
407 is expensive as it uses three ptrace calls. */
408 required_arg_regs = accumulate_size / 8;
409 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
410 required_arg_regs = ALPHA_NUM_ARG_REGS;
411
412 /* Make room for the arguments on the stack. */
413 if (accumulate_size < sizeof(arg_reg_buffer))
414 accumulate_size = 0;
415 else
416 accumulate_size -= sizeof(arg_reg_buffer);
417 sp -= accumulate_size;
418
419 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
420 sp &= ~15;
421
422 /* `Push' arguments on the stack. */
423 for (i = nargs; m_arg--, --i >= 0;)
424 {
425 const gdb_byte *contents = m_arg->contents;
426 int offset = m_arg->offset;
427 int len = m_arg->len;
428
429 /* Copy the bytes destined for registers into arg_reg_buffer. */
430 if (offset < sizeof(arg_reg_buffer))
431 {
432 if (offset + len <= sizeof(arg_reg_buffer))
433 {
434 memcpy (arg_reg_buffer + offset, contents, len);
435 continue;
436 }
437 else
438 {
439 int tlen = sizeof(arg_reg_buffer) - offset;
440 memcpy (arg_reg_buffer + offset, contents, tlen);
441 offset += tlen;
442 contents += tlen;
443 len -= tlen;
444 }
445 }
446
447 /* Everything else goes to the stack. */
448 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
449 }
450 if (return_method == return_method_struct)
451 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
452 byte_order, struct_addr);
453
454 /* Load the argument registers. */
455 for (i = 0; i < required_arg_regs; i++)
456 {
457 regcache->cooked_write (ALPHA_A0_REGNUM + i,
458 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
459 regcache->cooked_write (ALPHA_FPA0_REGNUM + i,
460 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
461 }
462
463 /* Finally, update the stack pointer. */
464 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
465
466 return sp;
467 }
468
469 /* Extract from REGCACHE the value about to be returned from a function
470 and copy it into VALBUF. */
471
472 static void
473 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
474 gdb_byte *valbuf)
475 {
476 struct gdbarch *gdbarch = regcache->arch ();
477 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
478 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
479 ULONGEST l;
480
481 switch (valtype->code ())
482 {
483 case TYPE_CODE_FLT:
484 switch (valtype->length ())
485 {
486 case 4:
487 regcache->cooked_read (ALPHA_FP0_REGNUM, raw_buffer);
488 alpha_sts (gdbarch, valbuf, raw_buffer);
489 break;
490
491 case 8:
492 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
493 break;
494
495 case 16:
496 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
497 read_memory (l, valbuf, 16);
498 break;
499
500 default:
501 internal_error (__FILE__, __LINE__,
502 _("unknown floating point width"));
503 }
504 break;
505
506 case TYPE_CODE_COMPLEX:
507 switch (valtype->length ())
508 {
509 case 8:
510 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
511 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
512 break;
513
514 case 16:
515 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
516 regcache->cooked_read (ALPHA_FP0_REGNUM + 1, valbuf + 8);
517 break;
518
519 case 32:
520 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
521 read_memory (l, valbuf, 32);
522 break;
523
524 default:
525 internal_error (__FILE__, __LINE__,
526 _("unknown floating point width"));
527 }
528 break;
529
530 default:
531 /* Assume everything else degenerates to an integer. */
532 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
533 store_unsigned_integer (valbuf, valtype->length (), byte_order, l);
534 break;
535 }
536 }
537
538 /* Insert the given value into REGCACHE as if it was being
539 returned by a function. */
540
541 static void
542 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
543 const gdb_byte *valbuf)
544 {
545 struct gdbarch *gdbarch = regcache->arch ();
546 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
547 ULONGEST l;
548
549 switch (valtype->code ())
550 {
551 case TYPE_CODE_FLT:
552 switch (valtype->length ())
553 {
554 case 4:
555 alpha_lds (gdbarch, raw_buffer, valbuf);
556 regcache->cooked_write (ALPHA_FP0_REGNUM, raw_buffer);
557 break;
558
559 case 8:
560 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
561 break;
562
563 case 16:
564 /* FIXME: 128-bit long doubles are returned like structures:
565 by writing into indirect storage provided by the caller
566 as the first argument. */
567 error (_("Cannot set a 128-bit long double return value."));
568
569 default:
570 internal_error (__FILE__, __LINE__,
571 _("unknown floating point width"));
572 }
573 break;
574
575 case TYPE_CODE_COMPLEX:
576 switch (valtype->length ())
577 {
578 case 8:
579 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
580 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
581 break;
582
583 case 16:
584 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
585 regcache->cooked_write (ALPHA_FP0_REGNUM + 1, valbuf + 8);
586 break;
587
588 case 32:
589 /* FIXME: 128-bit long doubles are returned like structures:
590 by writing into indirect storage provided by the caller
591 as the first argument. */
592 error (_("Cannot set a 128-bit long double return value."));
593
594 default:
595 internal_error (__FILE__, __LINE__,
596 _("unknown floating point width"));
597 }
598 break;
599
600 default:
601 /* Assume everything else degenerates to an integer. */
602 /* 32-bit values must be sign-extended to 64 bits
603 even if the base data type is unsigned. */
604 if (valtype->length () == 4)
605 valtype = builtin_type (gdbarch)->builtin_int32;
606 l = unpack_long (valtype, valbuf);
607 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
608 break;
609 }
610 }
611
612 static enum return_value_convention
613 alpha_return_value (struct gdbarch *gdbarch, struct value *function,
614 struct type *type, struct regcache *regcache,
615 gdb_byte *readbuf, const gdb_byte *writebuf)
616 {
617 enum type_code code = type->code ();
618 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
619
620 if ((code == TYPE_CODE_STRUCT
621 || code == TYPE_CODE_UNION
622 || code == TYPE_CODE_ARRAY)
623 && tdep->return_in_memory (type))
624 {
625 if (readbuf)
626 {
627 ULONGEST addr;
628 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
629 read_memory (addr, readbuf, type->length ());
630 }
631
632 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
633 }
634
635 if (readbuf)
636 alpha_extract_return_value (type, regcache, readbuf);
637 if (writebuf)
638 alpha_store_return_value (type, regcache, writebuf);
639
640 return RETURN_VALUE_REGISTER_CONVENTION;
641 }
642
643 static int
644 alpha_return_in_memory_always (struct type *type)
645 {
646 return 1;
647 }
648 \f
649
650 constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
651
652 typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
653
654 \f
655 /* This returns the PC of the first insn after the prologue.
656 If we can't find the prologue, then return 0. */
657
658 CORE_ADDR
659 alpha_after_prologue (CORE_ADDR pc)
660 {
661 struct symtab_and_line sal;
662 CORE_ADDR func_addr, func_end;
663
664 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
665 return 0;
666
667 sal = find_pc_line (func_addr, 0);
668 if (sal.end < func_end)
669 return sal.end;
670
671 /* The line after the prologue is after the end of the function. In this
672 case, tell the caller to find the prologue the hard way. */
673 return 0;
674 }
675
676 /* Read an instruction from memory at PC, looking through breakpoints. */
677
678 unsigned int
679 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
680 {
681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
682 gdb_byte buf[ALPHA_INSN_SIZE];
683 int res;
684
685 res = target_read_memory (pc, buf, sizeof (buf));
686 if (res != 0)
687 memory_error (TARGET_XFER_E_IO, pc);
688 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
689 }
690
691 /* To skip prologues, I use this predicate. Returns either PC itself
692 if the code at PC does not look like a function prologue; otherwise
693 returns an address that (if we're lucky) follows the prologue. If
694 LENIENT, then we must skip everything which is involved in setting
695 up the frame (it's OK to skip more, just so long as we don't skip
696 anything which might clobber the registers which are being saved. */
697
698 static CORE_ADDR
699 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
700 {
701 unsigned long inst;
702 int offset;
703 CORE_ADDR post_prologue_pc;
704 gdb_byte buf[ALPHA_INSN_SIZE];
705
706 /* Silently return the unaltered pc upon memory errors.
707 This could happen on OSF/1 if decode_line_1 tries to skip the
708 prologue for quickstarted shared library functions when the
709 shared library is not yet mapped in.
710 Reading target memory is slow over serial lines, so we perform
711 this check only if the target has shared libraries (which all
712 Alpha targets do). */
713 if (target_read_memory (pc, buf, sizeof (buf)))
714 return pc;
715
716 /* See if we can determine the end of the prologue via the symbol table.
717 If so, then return either PC, or the PC after the prologue, whichever
718 is greater. */
719
720 post_prologue_pc = alpha_after_prologue (pc);
721 if (post_prologue_pc != 0)
722 return std::max (pc, post_prologue_pc);
723
724 /* Can't determine prologue from the symbol table, need to examine
725 instructions. */
726
727 /* Skip the typical prologue instructions. These are the stack adjustment
728 instruction and the instructions that save registers on the stack
729 or in the gcc frame. */
730 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
731 {
732 inst = alpha_read_insn (gdbarch, pc + offset);
733
734 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
735 continue;
736 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
737 continue;
738 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
739 continue;
740 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
741 continue;
742
743 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
744 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
745 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
746 continue;
747
748 if (inst == 0x47de040f) /* bis sp,sp,fp */
749 continue;
750 if (inst == 0x47fe040f) /* bis zero,sp,fp */
751 continue;
752
753 break;
754 }
755 return pc + offset;
756 }
757
758 \f
759 static const int ldl_l_opcode = 0x2a;
760 static const int ldq_l_opcode = 0x2b;
761 static const int stl_c_opcode = 0x2e;
762 static const int stq_c_opcode = 0x2f;
763
764 /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
765 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
766 is found, attempt to step through it. A breakpoint is placed at the end of
767 the sequence. */
768
769 static std::vector<CORE_ADDR>
770 alpha_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
771 {
772 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
773 CORE_ADDR loc = pc;
774 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
775 unsigned int insn = alpha_read_insn (gdbarch, loc);
776 int insn_count;
777 int index;
778 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
779 const int atomic_sequence_length = 16; /* Instruction sequence length. */
780 int bc_insn_count = 0; /* Conditional branch instruction count. */
781
782 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
783 if (INSN_OPCODE (insn) != ldl_l_opcode
784 && INSN_OPCODE (insn) != ldq_l_opcode)
785 return {};
786
787 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
788 instructions. */
789 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
790 {
791 loc += ALPHA_INSN_SIZE;
792 insn = alpha_read_insn (gdbarch, loc);
793
794 /* Assume that there is at most one branch in the atomic
795 sequence. If a branch is found, put a breakpoint in
796 its destination address. */
797 if (INSN_OPCODE (insn) >= br_opcode)
798 {
799 int immediate = (insn & 0x001fffff) << 2;
800
801 immediate = (immediate ^ 0x400000) - 0x400000;
802
803 if (bc_insn_count >= 1)
804 return {}; /* More than one branch found, fallback
805 to the standard single-step code. */
806
807 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
808
809 bc_insn_count++;
810 last_breakpoint++;
811 }
812
813 if (INSN_OPCODE (insn) == stl_c_opcode
814 || INSN_OPCODE (insn) == stq_c_opcode)
815 break;
816 }
817
818 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
819 if (INSN_OPCODE (insn) != stl_c_opcode
820 && INSN_OPCODE (insn) != stq_c_opcode)
821 return {};
822
823 closing_insn = loc;
824 loc += ALPHA_INSN_SIZE;
825
826 /* Insert a breakpoint right after the end of the atomic sequence. */
827 breaks[0] = loc;
828
829 /* Check for duplicated breakpoints. Check also for a breakpoint
830 placed (branch instruction's destination) anywhere in sequence. */
831 if (last_breakpoint
832 && (breaks[1] == breaks[0]
833 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
834 last_breakpoint = 0;
835
836 std::vector<CORE_ADDR> next_pcs;
837
838 for (index = 0; index <= last_breakpoint; index++)
839 next_pcs.push_back (breaks[index]);
840
841 return next_pcs;
842 }
843
844 \f
845 /* Figure out where the longjmp will land.
846 We expect the first arg to be a pointer to the jmp_buf structure from
847 which we extract the PC (JB_PC) that we will land at. The PC is copied
848 into the "pc". This routine returns true on success. */
849
850 static int
851 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
852 {
853 struct gdbarch *gdbarch = get_frame_arch (frame);
854 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
856 CORE_ADDR jb_addr;
857 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
858
859 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
860
861 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
862 raw_buffer, tdep->jb_elt_size))
863 return 0;
864
865 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
866 return 1;
867 }
868
869 \f
870 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
871 describe the location and shape of the sigcontext structure. After
872 that, all registers are in memory, so it's easy. */
873 /* ??? Shouldn't we be able to do this generically, rather than with
874 OSABI data specific to Alpha? */
875
876 struct alpha_sigtramp_unwind_cache
877 {
878 CORE_ADDR sigcontext_addr;
879 };
880
881 static struct alpha_sigtramp_unwind_cache *
882 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
883 void **this_prologue_cache)
884 {
885 struct alpha_sigtramp_unwind_cache *info;
886
887 if (*this_prologue_cache)
888 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
889
890 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
891 *this_prologue_cache = info;
892
893 gdbarch *arch = get_frame_arch (this_frame);
894 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (arch);
895 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
896
897 return info;
898 }
899
900 /* Return the address of REGNUM in a sigtramp frame. Since this is
901 all arithmetic, it doesn't seem worthwhile to cache it. */
902
903 static CORE_ADDR
904 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
905 CORE_ADDR sigcontext_addr, int regnum)
906 {
907 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
908
909 if (regnum >= 0 && regnum < 32)
910 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
911 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
912 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
913 else if (regnum == ALPHA_PC_REGNUM)
914 return sigcontext_addr + tdep->sc_pc_offset;
915
916 return 0;
917 }
918
919 /* Given a GDB frame, determine the address of the calling function's
920 frame. This will be used to create a new GDB frame struct. */
921
922 static void
923 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
924 void **this_prologue_cache,
925 struct frame_id *this_id)
926 {
927 struct gdbarch *gdbarch = get_frame_arch (this_frame);
928 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
929 struct alpha_sigtramp_unwind_cache *info
930 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
931 CORE_ADDR stack_addr, code_addr;
932
933 /* If the OSABI couldn't locate the sigcontext, give up. */
934 if (info->sigcontext_addr == 0)
935 return;
936
937 /* If we have dynamic signal trampolines, find their start.
938 If we do not, then we must assume there is a symbol record
939 that can provide the start address. */
940 if (tdep->dynamic_sigtramp_offset)
941 {
942 int offset;
943 code_addr = get_frame_pc (this_frame);
944 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
945 if (offset >= 0)
946 code_addr -= offset;
947 else
948 code_addr = 0;
949 }
950 else
951 code_addr = get_frame_func (this_frame);
952
953 /* The stack address is trivially read from the sigcontext. */
954 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
955 ALPHA_SP_REGNUM);
956 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
957 ALPHA_REGISTER_SIZE);
958
959 *this_id = frame_id_build (stack_addr, code_addr);
960 }
961
962 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
963
964 static struct value *
965 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
966 void **this_prologue_cache, int regnum)
967 {
968 struct alpha_sigtramp_unwind_cache *info
969 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
970 CORE_ADDR addr;
971
972 if (info->sigcontext_addr != 0)
973 {
974 /* All integer and fp registers are stored in memory. */
975 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
976 info->sigcontext_addr, regnum);
977 if (addr != 0)
978 return frame_unwind_got_memory (this_frame, regnum, addr);
979 }
980
981 /* This extra register may actually be in the sigcontext, but our
982 current description of it in alpha_sigtramp_frame_unwind_cache
983 doesn't include it. Too bad. Fall back on whatever's in the
984 outer frame. */
985 return frame_unwind_got_register (this_frame, regnum, regnum);
986 }
987
988 static int
989 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
990 struct frame_info *this_frame,
991 void **this_prologue_cache)
992 {
993 struct gdbarch *gdbarch = get_frame_arch (this_frame);
994 CORE_ADDR pc = get_frame_pc (this_frame);
995 const char *name;
996
997 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
998 look at tramp-frame.h and other simpler per-architecture
999 sigtramp unwinders. */
1000
1001 /* We shouldn't even bother to try if the OSABI didn't register a
1002 sigcontext_addr handler or pc_in_sigtramp handler. */
1003 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
1004 if (tdep->sigcontext_addr == NULL)
1005 return 0;
1006
1007 if (tdep->pc_in_sigtramp == NULL)
1008 return 0;
1009
1010 /* Otherwise we should be in a signal frame. */
1011 find_pc_partial_function (pc, &name, NULL, NULL);
1012 if (tdep->pc_in_sigtramp (gdbarch, pc, name))
1013 return 1;
1014
1015 return 0;
1016 }
1017
1018 static const struct frame_unwind alpha_sigtramp_frame_unwind =
1019 {
1020 "alpha sigtramp",
1021 SIGTRAMP_FRAME,
1022 default_frame_unwind_stop_reason,
1023 alpha_sigtramp_frame_this_id,
1024 alpha_sigtramp_frame_prev_register,
1025 NULL,
1026 alpha_sigtramp_frame_sniffer
1027 };
1028
1029 \f
1030
1031 /* Heuristic_proc_start may hunt through the text section for a long
1032 time across a 2400 baud serial line. Allows the user to limit this
1033 search. */
1034 static int heuristic_fence_post = 0;
1035
1036 /* Attempt to locate the start of the function containing PC. We assume that
1037 the previous function ends with an about_to_return insn. Not foolproof by
1038 any means, since gcc is happy to put the epilogue in the middle of a
1039 function. But we're guessing anyway... */
1040
1041 static CORE_ADDR
1042 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
1043 {
1044 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
1045 CORE_ADDR last_non_nop = pc;
1046 CORE_ADDR fence = pc - heuristic_fence_post;
1047 CORE_ADDR orig_pc = pc;
1048 CORE_ADDR func;
1049 struct inferior *inf;
1050
1051 if (pc == 0)
1052 return 0;
1053
1054 /* First see if we can find the start of the function from minimal
1055 symbol information. This can succeed with a binary that doesn't
1056 have debug info, but hasn't been stripped. */
1057 func = get_pc_function_start (pc);
1058 if (func)
1059 return func;
1060
1061 if (heuristic_fence_post == -1
1062 || fence < tdep->vm_min_address)
1063 fence = tdep->vm_min_address;
1064
1065 /* Search back for previous return; also stop at a 0, which might be
1066 seen for instance before the start of a code section. Don't include
1067 nops, since this usually indicates padding between functions. */
1068 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
1069 {
1070 unsigned int insn = alpha_read_insn (gdbarch, pc);
1071 switch (insn)
1072 {
1073 case 0: /* invalid insn */
1074 case 0x6bfa8001: /* ret $31,($26),1 */
1075 return last_non_nop;
1076
1077 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1078 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1079 break;
1080
1081 default:
1082 last_non_nop = pc;
1083 break;
1084 }
1085 }
1086
1087 inf = current_inferior ();
1088
1089 /* It's not clear to me why we reach this point when stopping quietly,
1090 but with this test, at least we don't print out warnings for every
1091 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
1092 if (inf->control.stop_soon == NO_STOP_QUIETLY)
1093 {
1094 static int blurb_printed = 0;
1095
1096 if (fence == tdep->vm_min_address)
1097 warning (_("Hit beginning of text section without finding \
1098 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1099 else
1100 warning (_("Hit heuristic-fence-post without finding \
1101 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1102
1103 if (!blurb_printed)
1104 {
1105 gdb_printf (_("\
1106 This warning occurs if you are debugging a function without any symbols\n\
1107 (for example, in a stripped executable). In that case, you may wish to\n\
1108 increase the size of the search with the `set heuristic-fence-post' command.\n\
1109 \n\
1110 Otherwise, you told GDB there was a function where there isn't one, or\n\
1111 (more likely) you have encountered a bug in GDB.\n"));
1112 blurb_printed = 1;
1113 }
1114 }
1115
1116 return 0;
1117 }
1118
1119 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
1120 something about the traditional layout of alpha stack frames. */
1121
1122 struct alpha_heuristic_unwind_cache
1123 {
1124 CORE_ADDR vfp;
1125 CORE_ADDR start_pc;
1126 trad_frame_saved_reg *saved_regs;
1127 int return_reg;
1128 };
1129
1130 /* If a probing loop sequence starts at PC, simulate it and compute
1131 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1132 FRAME_SIZE unchanged. */
1133
1134 static void
1135 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1136 int *frame_size)
1137 {
1138 CORE_ADDR cur_pc = *pc;
1139 int cur_frame_size = *frame_size;
1140 int nb_of_iterations, reg_index, reg_probe;
1141 unsigned int insn;
1142
1143 /* The following pattern is recognized as a probing loop:
1144
1145 lda REG_INDEX,NB_OF_ITERATIONS
1146 lda REG_PROBE,<immediate>(sp)
1147
1148 LOOP_START:
1149 stq zero,<immediate>(REG_PROBE)
1150 subq REG_INDEX,0x1,REG_INDEX
1151 lda REG_PROBE,<immediate>(REG_PROBE)
1152 bne REG_INDEX, LOOP_START
1153
1154 lda sp,<immediate>(REG_PROBE)
1155
1156 If anything different is found, the function returns without
1157 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
1158 after this sequence, and FRAME_SIZE will be updated. */
1159
1160 /* lda REG_INDEX,NB_OF_ITERATIONS */
1161
1162 insn = alpha_read_insn (gdbarch, cur_pc);
1163 if (INSN_OPCODE (insn) != lda_opcode)
1164 return;
1165 reg_index = MEM_RA (insn);
1166 nb_of_iterations = MEM_DISP (insn);
1167
1168 /* lda REG_PROBE,<immediate>(sp) */
1169
1170 cur_pc += ALPHA_INSN_SIZE;
1171 insn = alpha_read_insn (gdbarch, cur_pc);
1172 if (INSN_OPCODE (insn) != lda_opcode
1173 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1174 return;
1175 reg_probe = MEM_RA (insn);
1176 cur_frame_size -= MEM_DISP (insn);
1177
1178 /* stq zero,<immediate>(REG_PROBE) */
1179
1180 cur_pc += ALPHA_INSN_SIZE;
1181 insn = alpha_read_insn (gdbarch, cur_pc);
1182 if (INSN_OPCODE (insn) != stq_opcode
1183 || MEM_RA (insn) != 0x1f
1184 || MEM_RB (insn) != reg_probe)
1185 return;
1186
1187 /* subq REG_INDEX,0x1,REG_INDEX */
1188
1189 cur_pc += ALPHA_INSN_SIZE;
1190 insn = alpha_read_insn (gdbarch, cur_pc);
1191 if (INSN_OPCODE (insn) != subq_opcode
1192 || !OPR_HAS_IMMEDIATE (insn)
1193 || OPR_FUNCTION (insn) != subq_function
1194 || OPR_LIT(insn) != 1
1195 || OPR_RA (insn) != reg_index
1196 || OPR_RC (insn) != reg_index)
1197 return;
1198
1199 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1200
1201 cur_pc += ALPHA_INSN_SIZE;
1202 insn = alpha_read_insn (gdbarch, cur_pc);
1203 if (INSN_OPCODE (insn) != lda_opcode
1204 || MEM_RA (insn) != reg_probe
1205 || MEM_RB (insn) != reg_probe)
1206 return;
1207 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1208
1209 /* bne REG_INDEX, LOOP_START */
1210
1211 cur_pc += ALPHA_INSN_SIZE;
1212 insn = alpha_read_insn (gdbarch, cur_pc);
1213 if (INSN_OPCODE (insn) != bne_opcode
1214 || MEM_RA (insn) != reg_index)
1215 return;
1216
1217 /* lda sp,<immediate>(REG_PROBE) */
1218
1219 cur_pc += ALPHA_INSN_SIZE;
1220 insn = alpha_read_insn (gdbarch, cur_pc);
1221 if (INSN_OPCODE (insn) != lda_opcode
1222 || MEM_RA (insn) != ALPHA_SP_REGNUM
1223 || MEM_RB (insn) != reg_probe)
1224 return;
1225 cur_frame_size -= MEM_DISP (insn);
1226
1227 *pc = cur_pc;
1228 *frame_size = cur_frame_size;
1229 }
1230
1231 static struct alpha_heuristic_unwind_cache *
1232 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
1233 void **this_prologue_cache,
1234 CORE_ADDR start_pc)
1235 {
1236 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1237 struct alpha_heuristic_unwind_cache *info;
1238 ULONGEST val;
1239 CORE_ADDR limit_pc, cur_pc;
1240 int frame_reg, frame_size, return_reg, reg;
1241
1242 if (*this_prologue_cache)
1243 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
1244
1245 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1246 *this_prologue_cache = info;
1247 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1248
1249 limit_pc = get_frame_pc (this_frame);
1250 if (start_pc == 0)
1251 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1252 info->start_pc = start_pc;
1253
1254 frame_reg = ALPHA_SP_REGNUM;
1255 frame_size = 0;
1256 return_reg = -1;
1257
1258 /* If we've identified a likely place to start, do code scanning. */
1259 if (start_pc != 0)
1260 {
1261 /* Limit the forward search to 50 instructions. */
1262 if (start_pc + 200 < limit_pc)
1263 limit_pc = start_pc + 200;
1264
1265 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1266 {
1267 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1268
1269 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1270 {
1271 if (word & 0x8000)
1272 {
1273 /* Consider only the first stack allocation instruction
1274 to contain the static size of the frame. */
1275 if (frame_size == 0)
1276 frame_size = (-word) & 0xffff;
1277 }
1278 else
1279 {
1280 /* Exit loop if a positive stack adjustment is found, which
1281 usually means that the stack cleanup code in the function
1282 epilogue is reached. */
1283 break;
1284 }
1285 }
1286 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1287 {
1288 reg = (word & 0x03e00000) >> 21;
1289
1290 /* Ignore this instruction if we have already encountered
1291 an instruction saving the same register earlier in the
1292 function code. The current instruction does not tell
1293 us where the original value upon function entry is saved.
1294 All it says is that the function we are scanning reused
1295 that register for some computation of its own, and is now
1296 saving its result. */
1297 if (info->saved_regs[reg].is_addr ())
1298 continue;
1299
1300 if (reg == 31)
1301 continue;
1302
1303 /* Do not compute the address where the register was saved yet,
1304 because we don't know yet if the offset will need to be
1305 relative to $sp or $fp (we can not compute the address
1306 relative to $sp if $sp is updated during the execution of
1307 the current subroutine, for instance when doing some alloca).
1308 So just store the offset for the moment, and compute the
1309 address later when we know whether this frame has a frame
1310 pointer or not. */
1311 /* Hack: temporarily add one, so that the offset is non-zero
1312 and we can tell which registers have save offsets below. */
1313 info->saved_regs[reg].set_addr ((word & 0xffff) + 1);
1314
1315 /* Starting with OSF/1-3.2C, the system libraries are shipped
1316 without local symbols, but they still contain procedure
1317 descriptors without a symbol reference. GDB is currently
1318 unable to find these procedure descriptors and uses
1319 heuristic_proc_desc instead.
1320 As some low level compiler support routines (__div*, __add*)
1321 use a non-standard return address register, we have to
1322 add some heuristics to determine the return address register,
1323 or stepping over these routines will fail.
1324 Usually the return address register is the first register
1325 saved on the stack, but assembler optimization might
1326 rearrange the register saves.
1327 So we recognize only a few registers (t7, t9, ra) within
1328 the procedure prologue as valid return address registers.
1329 If we encounter a return instruction, we extract the
1330 return address register from it.
1331
1332 FIXME: Rewriting GDB to access the procedure descriptors,
1333 e.g. via the minimal symbol table, might obviate this
1334 hack. */
1335 if (return_reg == -1
1336 && cur_pc < (start_pc + 80)
1337 && (reg == ALPHA_T7_REGNUM
1338 || reg == ALPHA_T9_REGNUM
1339 || reg == ALPHA_RA_REGNUM))
1340 return_reg = reg;
1341 }
1342 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1343 return_reg = (word >> 16) & 0x1f;
1344 else if (word == 0x47de040f) /* bis sp,sp,fp */
1345 frame_reg = ALPHA_GCC_FP_REGNUM;
1346 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1347 frame_reg = ALPHA_GCC_FP_REGNUM;
1348
1349 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1350 }
1351
1352 /* If we haven't found a valid return address register yet, keep
1353 searching in the procedure prologue. */
1354 if (return_reg == -1)
1355 {
1356 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1357 {
1358 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1359
1360 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1361 {
1362 reg = (word & 0x03e00000) >> 21;
1363 if (reg == ALPHA_T7_REGNUM
1364 || reg == ALPHA_T9_REGNUM
1365 || reg == ALPHA_RA_REGNUM)
1366 {
1367 return_reg = reg;
1368 break;
1369 }
1370 }
1371 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1372 {
1373 return_reg = (word >> 16) & 0x1f;
1374 break;
1375 }
1376
1377 cur_pc += ALPHA_INSN_SIZE;
1378 }
1379 }
1380 }
1381
1382 /* Failing that, do default to the customary RA. */
1383 if (return_reg == -1)
1384 return_reg = ALPHA_RA_REGNUM;
1385 info->return_reg = return_reg;
1386
1387 val = get_frame_register_unsigned (this_frame, frame_reg);
1388 info->vfp = val + frame_size;
1389
1390 /* Convert offsets to absolute addresses. See above about adding
1391 one to the offsets to make all detected offsets non-zero. */
1392 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1393 if (info->saved_regs[reg].is_addr ())
1394 info->saved_regs[reg].set_addr (info->saved_regs[reg].addr ()
1395 + val - 1);
1396
1397 /* The stack pointer of the previous frame is computed by popping
1398 the current stack frame. */
1399 if (!info->saved_regs[ALPHA_SP_REGNUM].is_addr ())
1400 info->saved_regs[ALPHA_SP_REGNUM].set_value (info->vfp);
1401
1402 return info;
1403 }
1404
1405 /* Given a GDB frame, determine the address of the calling function's
1406 frame. This will be used to create a new GDB frame struct. */
1407
1408 static void
1409 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1410 void **this_prologue_cache,
1411 struct frame_id *this_id)
1412 {
1413 struct alpha_heuristic_unwind_cache *info
1414 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1415
1416 *this_id = frame_id_build (info->vfp, info->start_pc);
1417 }
1418
1419 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1420
1421 static struct value *
1422 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1423 void **this_prologue_cache, int regnum)
1424 {
1425 struct alpha_heuristic_unwind_cache *info
1426 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1427
1428 /* The PC of the previous frame is stored in the link register of
1429 the current frame. Frob regnum so that we pull the value from
1430 the correct place. */
1431 if (regnum == ALPHA_PC_REGNUM)
1432 regnum = info->return_reg;
1433
1434 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1435 }
1436
1437 static const struct frame_unwind alpha_heuristic_frame_unwind =
1438 {
1439 "alpha prologue",
1440 NORMAL_FRAME,
1441 default_frame_unwind_stop_reason,
1442 alpha_heuristic_frame_this_id,
1443 alpha_heuristic_frame_prev_register,
1444 NULL,
1445 default_frame_sniffer
1446 };
1447
1448 static CORE_ADDR
1449 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1450 void **this_prologue_cache)
1451 {
1452 struct alpha_heuristic_unwind_cache *info
1453 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1454
1455 return info->vfp;
1456 }
1457
1458 static const struct frame_base alpha_heuristic_frame_base = {
1459 &alpha_heuristic_frame_unwind,
1460 alpha_heuristic_frame_base_address,
1461 alpha_heuristic_frame_base_address,
1462 alpha_heuristic_frame_base_address
1463 };
1464
1465 /* Just like reinit_frame_cache, but with the right arguments to be
1466 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1467
1468 static void
1469 reinit_frame_cache_sfunc (const char *args,
1470 int from_tty, struct cmd_list_element *c)
1471 {
1472 reinit_frame_cache ();
1473 }
1474 \f
1475 /* Helper routines for alpha*-nat.c files to move register sets to and
1476 from core files. The UNIQUE pointer is allowed to be NULL, as most
1477 targets don't supply this value in their core files. */
1478
1479 void
1480 alpha_supply_int_regs (struct regcache *regcache, int regno,
1481 const void *r0_r30, const void *pc, const void *unique)
1482 {
1483 const gdb_byte *regs = (const gdb_byte *) r0_r30;
1484 int i;
1485
1486 for (i = 0; i < 31; ++i)
1487 if (regno == i || regno == -1)
1488 regcache->raw_supply (i, regs + i * 8);
1489
1490 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1491 {
1492 const gdb_byte zero[8] = { 0 };
1493
1494 regcache->raw_supply (ALPHA_ZERO_REGNUM, zero);
1495 }
1496
1497 if (regno == ALPHA_PC_REGNUM || regno == -1)
1498 regcache->raw_supply (ALPHA_PC_REGNUM, pc);
1499
1500 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1501 regcache->raw_supply (ALPHA_UNIQUE_REGNUM, unique);
1502 }
1503
1504 void
1505 alpha_fill_int_regs (const struct regcache *regcache,
1506 int regno, void *r0_r30, void *pc, void *unique)
1507 {
1508 gdb_byte *regs = (gdb_byte *) r0_r30;
1509 int i;
1510
1511 for (i = 0; i < 31; ++i)
1512 if (regno == i || regno == -1)
1513 regcache->raw_collect (i, regs + i * 8);
1514
1515 if (regno == ALPHA_PC_REGNUM || regno == -1)
1516 regcache->raw_collect (ALPHA_PC_REGNUM, pc);
1517
1518 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1519 regcache->raw_collect (ALPHA_UNIQUE_REGNUM, unique);
1520 }
1521
1522 void
1523 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1524 const void *f0_f30, const void *fpcr)
1525 {
1526 const gdb_byte *regs = (const gdb_byte *) f0_f30;
1527 int i;
1528
1529 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1530 if (regno == i || regno == -1)
1531 regcache->raw_supply (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
1532
1533 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1534 regcache->raw_supply (ALPHA_FPCR_REGNUM, fpcr);
1535 }
1536
1537 void
1538 alpha_fill_fp_regs (const struct regcache *regcache,
1539 int regno, void *f0_f30, void *fpcr)
1540 {
1541 gdb_byte *regs = (gdb_byte *) f0_f30;
1542 int i;
1543
1544 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1545 if (regno == i || regno == -1)
1546 regcache->raw_collect (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
1547
1548 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1549 regcache->raw_collect (ALPHA_FPCR_REGNUM, fpcr);
1550 }
1551
1552 \f
1553
1554 /* Return nonzero if the G_floating register value in REG is equal to
1555 zero for FP control instructions. */
1556
1557 static int
1558 fp_register_zero_p (LONGEST reg)
1559 {
1560 /* Check that all bits except the sign bit are zero. */
1561 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1562
1563 return ((reg & zero_mask) == 0);
1564 }
1565
1566 /* Return the value of the sign bit for the G_floating register
1567 value held in REG. */
1568
1569 static int
1570 fp_register_sign_bit (LONGEST reg)
1571 {
1572 const LONGEST sign_mask = (LONGEST) 1 << 63;
1573
1574 return ((reg & sign_mask) != 0);
1575 }
1576
1577 /* alpha_software_single_step() is called just before we want to resume
1578 the inferior, if we want to single-step it but there is no hardware
1579 or kernel single-step support (NetBSD on Alpha, for example). We find
1580 the target of the coming instruction and breakpoint it. */
1581
1582 static CORE_ADDR
1583 alpha_next_pc (struct regcache *regcache, CORE_ADDR pc)
1584 {
1585 struct gdbarch *gdbarch = regcache->arch ();
1586 unsigned int insn;
1587 unsigned int op;
1588 int regno;
1589 int offset;
1590 LONGEST rav;
1591
1592 insn = alpha_read_insn (gdbarch, pc);
1593
1594 /* Opcode is top 6 bits. */
1595 op = (insn >> 26) & 0x3f;
1596
1597 if (op == 0x1a)
1598 {
1599 /* Jump format: target PC is:
1600 RB & ~3 */
1601 return (regcache_raw_get_unsigned (regcache, (insn >> 16) & 0x1f) & ~3);
1602 }
1603
1604 if ((op & 0x30) == 0x30)
1605 {
1606 /* Branch format: target PC is:
1607 (new PC) + (4 * sext(displacement)) */
1608 if (op == 0x30 /* BR */
1609 || op == 0x34) /* BSR */
1610 {
1611 branch_taken:
1612 offset = (insn & 0x001fffff);
1613 if (offset & 0x00100000)
1614 offset |= 0xffe00000;
1615 offset *= ALPHA_INSN_SIZE;
1616 return (pc + ALPHA_INSN_SIZE + offset);
1617 }
1618
1619 /* Need to determine if branch is taken; read RA. */
1620 regno = (insn >> 21) & 0x1f;
1621 switch (op)
1622 {
1623 case 0x31: /* FBEQ */
1624 case 0x36: /* FBGE */
1625 case 0x37: /* FBGT */
1626 case 0x33: /* FBLE */
1627 case 0x32: /* FBLT */
1628 case 0x35: /* FBNE */
1629 regno += gdbarch_fp0_regnum (gdbarch);
1630 }
1631
1632 rav = regcache_raw_get_signed (regcache, regno);
1633
1634 switch (op)
1635 {
1636 case 0x38: /* BLBC */
1637 if ((rav & 1) == 0)
1638 goto branch_taken;
1639 break;
1640 case 0x3c: /* BLBS */
1641 if (rav & 1)
1642 goto branch_taken;
1643 break;
1644 case 0x39: /* BEQ */
1645 if (rav == 0)
1646 goto branch_taken;
1647 break;
1648 case 0x3d: /* BNE */
1649 if (rav != 0)
1650 goto branch_taken;
1651 break;
1652 case 0x3a: /* BLT */
1653 if (rav < 0)
1654 goto branch_taken;
1655 break;
1656 case 0x3b: /* BLE */
1657 if (rav <= 0)
1658 goto branch_taken;
1659 break;
1660 case 0x3f: /* BGT */
1661 if (rav > 0)
1662 goto branch_taken;
1663 break;
1664 case 0x3e: /* BGE */
1665 if (rav >= 0)
1666 goto branch_taken;
1667 break;
1668
1669 /* Floating point branches. */
1670
1671 case 0x31: /* FBEQ */
1672 if (fp_register_zero_p (rav))
1673 goto branch_taken;
1674 break;
1675 case 0x36: /* FBGE */
1676 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1677 goto branch_taken;
1678 break;
1679 case 0x37: /* FBGT */
1680 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1681 goto branch_taken;
1682 break;
1683 case 0x33: /* FBLE */
1684 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1685 goto branch_taken;
1686 break;
1687 case 0x32: /* FBLT */
1688 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1689 goto branch_taken;
1690 break;
1691 case 0x35: /* FBNE */
1692 if (! fp_register_zero_p (rav))
1693 goto branch_taken;
1694 break;
1695 }
1696 }
1697
1698 /* Not a branch or branch not taken; target PC is:
1699 pc + 4 */
1700 return (pc + ALPHA_INSN_SIZE);
1701 }
1702
1703 std::vector<CORE_ADDR>
1704 alpha_software_single_step (struct regcache *regcache)
1705 {
1706 struct gdbarch *gdbarch = regcache->arch ();
1707
1708 CORE_ADDR pc = regcache_read_pc (regcache);
1709
1710 std::vector<CORE_ADDR> next_pcs
1711 = alpha_deal_with_atomic_sequence (gdbarch, pc);
1712 if (!next_pcs.empty ())
1713 return next_pcs;
1714
1715 CORE_ADDR next_pc = alpha_next_pc (regcache, pc);
1716 return {next_pc};
1717 }
1718
1719 \f
1720 /* Initialize the current architecture based on INFO. If possible, re-use an
1721 architecture from ARCHES, which is a list of architectures already created
1722 during this debugging session.
1723
1724 Called e.g. at program startup, when reading a core file, and when reading
1725 a binary file. */
1726
1727 static struct gdbarch *
1728 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1729 {
1730 struct gdbarch *gdbarch;
1731
1732 /* Find a candidate among extant architectures. */
1733 arches = gdbarch_list_lookup_by_info (arches, &info);
1734 if (arches != NULL)
1735 return arches->gdbarch;
1736
1737 alpha_gdbarch_tdep *tdep = new alpha_gdbarch_tdep;
1738 gdbarch = gdbarch_alloc (&info, tdep);
1739
1740 /* Lowest text address. This is used by heuristic_proc_start()
1741 to decide when to stop looking. */
1742 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1743
1744 tdep->dynamic_sigtramp_offset = NULL;
1745 tdep->sigcontext_addr = NULL;
1746 tdep->sc_pc_offset = 2 * 8;
1747 tdep->sc_regs_offset = 4 * 8;
1748 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1749
1750 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
1751
1752 tdep->return_in_memory = alpha_return_in_memory_always;
1753
1754 /* Type sizes */
1755 set_gdbarch_short_bit (gdbarch, 16);
1756 set_gdbarch_int_bit (gdbarch, 32);
1757 set_gdbarch_long_bit (gdbarch, 64);
1758 set_gdbarch_long_long_bit (gdbarch, 64);
1759 set_gdbarch_wchar_bit (gdbarch, 64);
1760 set_gdbarch_wchar_signed (gdbarch, 0);
1761 set_gdbarch_float_bit (gdbarch, 32);
1762 set_gdbarch_double_bit (gdbarch, 64);
1763 set_gdbarch_long_double_bit (gdbarch, 64);
1764 set_gdbarch_ptr_bit (gdbarch, 64);
1765
1766 /* Register info */
1767 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1768 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1769 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1770 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1771
1772 set_gdbarch_register_name (gdbarch, alpha_register_name);
1773 set_gdbarch_register_type (gdbarch, alpha_register_type);
1774
1775 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1776 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1777
1778 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1779 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1780 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1781
1782 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1783
1784 /* Prologue heuristics. */
1785 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1786
1787 /* Call info. */
1788
1789 set_gdbarch_return_value (gdbarch, alpha_return_value);
1790
1791 /* Settings for calling functions in the inferior. */
1792 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1793
1794 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1795 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1796
1797 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1798 alpha_breakpoint::kind_from_pc);
1799 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1800 alpha_breakpoint::bp_from_kind);
1801 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1802 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1803
1804 /* Handles single stepping of atomic sequences. */
1805 set_gdbarch_software_single_step (gdbarch, alpha_software_single_step);
1806
1807 /* Hook in ABI-specific overrides, if they have been registered. */
1808 gdbarch_init_osabi (info, gdbarch);
1809
1810 /* Now that we have tuned the configuration, set a few final things
1811 based on what the OS ABI has told us. */
1812
1813 if (tdep->jb_pc >= 0)
1814 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1815
1816 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1817 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1818
1819 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1820
1821 return gdbarch;
1822 }
1823
1824 void
1825 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1826 {
1827 dwarf2_append_unwinders (gdbarch);
1828 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1829 }
1830
1831 void _initialize_alpha_tdep ();
1832 void
1833 _initialize_alpha_tdep ()
1834 {
1835
1836 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1837
1838 /* Let the user set the fence post for heuristic_proc_start. */
1839
1840 /* We really would like to have both "0" and "unlimited" work, but
1841 command.c doesn't deal with that. So make it a var_zinteger
1842 because the user can always use "999999" or some such for unlimited. */
1843 /* We need to throw away the frame cache when we set this, since it
1844 might change our ability to get backtraces. */
1845 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1846 &heuristic_fence_post, _("\
1847 Set the distance searched for the start of a function."), _("\
1848 Show the distance searched for the start of a function."), _("\
1849 If you are debugging a stripped executable, GDB needs to search through the\n\
1850 program for the start of a function. This command sets the distance of the\n\
1851 search. The only need to set it is when debugging a stripped executable."),
1852 reinit_frame_cache_sfunc,
1853 NULL, /* FIXME: i18n: The distance searched for
1854 the start of a function is \"%d\". */
1855 &setlist, &showlist);
1856 }