]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/alpha-tdep.c
2003-07-16 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "doublest.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "inferior.h"
29 #include "symtab.h"
30 #include "value.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_string.h"
37 #include "linespec.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "arch-utils.h"
41 #include "osabi.h"
42 #include "block.h"
43
44 #include "elf-bfd.h"
45
46 #include "alpha-tdep.h"
47
48 \f
49 static const char *
50 alpha_register_name (int regno)
51 {
52 static const char * const register_names[] =
53 {
54 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
55 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
56 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
57 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
58 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
59 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
60 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
61 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
62 "pc", "", "unique"
63 };
64
65 if (regno < 0)
66 return NULL;
67 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
68 return NULL;
69 return register_names[regno];
70 }
71
72 static int
73 alpha_cannot_fetch_register (int regno)
74 {
75 return regno == ALPHA_ZERO_REGNUM;
76 }
77
78 static int
79 alpha_cannot_store_register (int regno)
80 {
81 return regno == ALPHA_ZERO_REGNUM;
82 }
83
84 static struct type *
85 alpha_register_type (struct gdbarch *gdbarch, int regno)
86 {
87 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
88 return builtin_type_void_data_ptr;
89 if (regno == ALPHA_PC_REGNUM)
90 return builtin_type_void_func_ptr;
91
92 /* Don't need to worry about little vs big endian until
93 some jerk tries to port to alpha-unicosmk. */
94 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
95 return builtin_type_ieee_double_little;
96
97 return builtin_type_int64;
98 }
99
100 /* Is REGNUM a member of REGGROUP? */
101
102 static int
103 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
104 struct reggroup *group)
105 {
106 /* Filter out any registers eliminated, but whose regnum is
107 reserved for backward compatibility, e.g. the vfp. */
108 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
109 return 0;
110
111 if (group == all_reggroup)
112 return 1;
113
114 /* Zero should not be saved or restored. Technically it is a general
115 register (just as $f31 would be a float if we represented it), but
116 there's no point displaying it during "info regs", so leave it out
117 of all groups except for "all". */
118 if (regnum == ALPHA_ZERO_REGNUM)
119 return 0;
120
121 /* All other registers are saved and restored. */
122 if (group == save_reggroup || group == restore_reggroup)
123 return 1;
124
125 /* All other groups are non-overlapping. */
126
127 /* Since this is really a PALcode memory slot... */
128 if (regnum == ALPHA_UNIQUE_REGNUM)
129 return group == system_reggroup;
130
131 /* Force the FPCR to be considered part of the floating point state. */
132 if (regnum == ALPHA_FPCR_REGNUM)
133 return group == float_reggroup;
134
135 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
136 return group == float_reggroup;
137 else
138 return group == general_reggroup;
139 }
140
141 static int
142 alpha_register_byte (int regno)
143 {
144 return (regno * 8);
145 }
146
147 static int
148 alpha_register_raw_size (int regno)
149 {
150 return 8;
151 }
152
153 static int
154 alpha_register_virtual_size (int regno)
155 {
156 return 8;
157 }
158
159 /* The following represents exactly the conversion performed by
160 the LDS instruction. This applies to both single-precision
161 floating point and 32-bit integers. */
162
163 static void
164 alpha_lds (void *out, const void *in)
165 {
166 ULONGEST mem = extract_unsigned_integer (in, 4);
167 ULONGEST frac = (mem >> 0) & 0x7fffff;
168 ULONGEST sign = (mem >> 31) & 1;
169 ULONGEST exp_msb = (mem >> 30) & 1;
170 ULONGEST exp_low = (mem >> 23) & 0x7f;
171 ULONGEST exp, reg;
172
173 exp = (exp_msb << 10) | exp_low;
174 if (exp_msb)
175 {
176 if (exp_low == 0x7f)
177 exp = 0x7ff;
178 }
179 else
180 {
181 if (exp_low != 0x00)
182 exp |= 0x380;
183 }
184
185 reg = (sign << 63) | (exp << 52) | (frac << 29);
186 store_unsigned_integer (out, 8, reg);
187 }
188
189 /* Similarly, this represents exactly the conversion performed by
190 the STS instruction. */
191
192 static inline void
193 alpha_sts (void *out, const void *in)
194 {
195 ULONGEST reg, mem;
196
197 reg = extract_unsigned_integer (in, 8);
198 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
199 store_unsigned_integer (out, 4, mem);
200 }
201
202 /* The alpha needs a conversion between register and memory format if the
203 register is a floating point register and memory format is float, as the
204 register format must be double or memory format is an integer with 4
205 bytes or less, as the representation of integers in floating point
206 registers is different. */
207
208 static int
209 alpha_convert_register_p (int regno, struct type *type)
210 {
211 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
212 }
213
214 static void
215 alpha_register_to_value (struct frame_info *frame, int regnum,
216 struct type *valtype, void *out)
217 {
218 char in[MAX_REGISTER_SIZE];
219 frame_register_read (frame, regnum, in);
220 switch (TYPE_LENGTH (valtype))
221 {
222 case 4:
223 alpha_sts (out, in);
224 break;
225 case 8:
226 memcpy (out, in, 8);
227 break;
228 default:
229 error ("Cannot retrieve value from floating point register");
230 }
231 }
232
233 static void
234 alpha_value_to_register (struct frame_info *frame, int regnum,
235 struct type *valtype, const void *in)
236 {
237 char out[MAX_REGISTER_SIZE];
238 switch (TYPE_LENGTH (valtype))
239 {
240 case 4:
241 alpha_lds (out, in);
242 break;
243 case 8:
244 memcpy (out, in, 8);
245 break;
246 default:
247 error ("Cannot store value in floating point register");
248 }
249 put_frame_register (frame, regnum, out);
250 }
251
252 \f
253 /* The alpha passes the first six arguments in the registers, the rest on
254 the stack. The register arguments are stored in ARG_REG_BUFFER, and
255 then moved into the register file; this simplifies the passing of a
256 large struct which extends from the registers to the stack, plus avoids
257 three ptrace invocations per word.
258
259 We don't bother tracking which register values should go in integer
260 regs or fp regs; we load the same values into both.
261
262 If the called function is returning a structure, the address of the
263 structure to be returned is passed as a hidden first argument. */
264
265 static CORE_ADDR
266 alpha_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
267 struct regcache *regcache, CORE_ADDR bp_addr,
268 int nargs, struct value **args, CORE_ADDR sp,
269 int struct_return, CORE_ADDR struct_addr)
270 {
271 int i;
272 int accumulate_size = struct_return ? 8 : 0;
273 struct alpha_arg
274 {
275 char *contents;
276 int len;
277 int offset;
278 };
279 struct alpha_arg *alpha_args
280 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
281 register struct alpha_arg *m_arg;
282 char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
283 int required_arg_regs;
284
285 /* The ABI places the address of the called function in T12. */
286 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
287
288 /* Set the return address register to point to the entry point
289 of the program, where a breakpoint lies in wait. */
290 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
291
292 /* Lay out the arguments in memory. */
293 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
294 {
295 struct value *arg = args[i];
296 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
297
298 /* Cast argument to long if necessary as the compiler does it too. */
299 switch (TYPE_CODE (arg_type))
300 {
301 case TYPE_CODE_INT:
302 case TYPE_CODE_BOOL:
303 case TYPE_CODE_CHAR:
304 case TYPE_CODE_RANGE:
305 case TYPE_CODE_ENUM:
306 if (TYPE_LENGTH (arg_type) == 4)
307 {
308 /* 32-bit values must be sign-extended to 64 bits
309 even if the base data type is unsigned. */
310 arg_type = builtin_type_int32;
311 arg = value_cast (arg_type, arg);
312 }
313 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
314 {
315 arg_type = builtin_type_int64;
316 arg = value_cast (arg_type, arg);
317 }
318 break;
319
320 case TYPE_CODE_FLT:
321 /* "float" arguments loaded in registers must be passed in
322 register format, aka "double". */
323 if (accumulate_size < sizeof (arg_reg_buffer)
324 && TYPE_LENGTH (arg_type) == 4)
325 {
326 arg_type = builtin_type_ieee_double_little;
327 arg = value_cast (arg_type, arg);
328 }
329 /* Tru64 5.1 has a 128-bit long double, and passes this by
330 invisible reference. No one else uses this data type. */
331 else if (TYPE_LENGTH (arg_type) == 16)
332 {
333 /* Allocate aligned storage. */
334 sp = (sp & -16) - 16;
335
336 /* Write the real data into the stack. */
337 write_memory (sp, VALUE_CONTENTS (arg), 16);
338
339 /* Construct the indirection. */
340 arg_type = lookup_pointer_type (arg_type);
341 arg = value_from_pointer (arg_type, sp);
342 }
343 break;
344
345 case TYPE_CODE_COMPLEX:
346 /* ??? The ABI says that complex values are passed as two
347 separate scalar values. This distinction only matters
348 for complex float. However, GCC does not implement this. */
349
350 /* Tru64 5.1 has a 128-bit long double, and passes this by
351 invisible reference. */
352 if (TYPE_LENGTH (arg_type) == 32)
353 {
354 /* Allocate aligned storage. */
355 sp = (sp & -16) - 16;
356
357 /* Write the real data into the stack. */
358 write_memory (sp, VALUE_CONTENTS (arg), 32);
359
360 /* Construct the indirection. */
361 arg_type = lookup_pointer_type (arg_type);
362 arg = value_from_pointer (arg_type, sp);
363 }
364 break;
365
366 default:
367 break;
368 }
369 m_arg->len = TYPE_LENGTH (arg_type);
370 m_arg->offset = accumulate_size;
371 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
372 m_arg->contents = VALUE_CONTENTS (arg);
373 }
374
375 /* Determine required argument register loads, loading an argument register
376 is expensive as it uses three ptrace calls. */
377 required_arg_regs = accumulate_size / 8;
378 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
379 required_arg_regs = ALPHA_NUM_ARG_REGS;
380
381 /* Make room for the arguments on the stack. */
382 if (accumulate_size < sizeof(arg_reg_buffer))
383 accumulate_size = 0;
384 else
385 accumulate_size -= sizeof(arg_reg_buffer);
386 sp -= accumulate_size;
387
388 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
389 sp &= ~15;
390
391 /* `Push' arguments on the stack. */
392 for (i = nargs; m_arg--, --i >= 0;)
393 {
394 char *contents = m_arg->contents;
395 int offset = m_arg->offset;
396 int len = m_arg->len;
397
398 /* Copy the bytes destined for registers into arg_reg_buffer. */
399 if (offset < sizeof(arg_reg_buffer))
400 {
401 if (offset + len <= sizeof(arg_reg_buffer))
402 {
403 memcpy (arg_reg_buffer + offset, contents, len);
404 continue;
405 }
406 else
407 {
408 int tlen = sizeof(arg_reg_buffer) - offset;
409 memcpy (arg_reg_buffer + offset, contents, tlen);
410 offset += tlen;
411 contents += tlen;
412 len -= tlen;
413 }
414 }
415
416 /* Everything else goes to the stack. */
417 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
418 }
419 if (struct_return)
420 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
421
422 /* Load the argument registers. */
423 for (i = 0; i < required_arg_regs; i++)
424 {
425 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
426 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
427 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
428 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
429 }
430
431 /* Finally, update the stack pointer. */
432 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
433
434 return sp;
435 }
436
437 /* Extract from REGCACHE the value about to be returned from a function
438 and copy it into VALBUF. */
439
440 static void
441 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
442 void *valbuf)
443 {
444 int length = TYPE_LENGTH (valtype);
445 char raw_buffer[ALPHA_REGISTER_SIZE];
446 ULONGEST l;
447
448 switch (TYPE_CODE (valtype))
449 {
450 case TYPE_CODE_FLT:
451 switch (length)
452 {
453 case 4:
454 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
455 alpha_sts (valbuf, raw_buffer);
456 break;
457
458 case 8:
459 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
460 break;
461
462 case 16:
463 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
464 read_memory (l, valbuf, 16);
465 break;
466
467 default:
468 internal_error (__FILE__, __LINE__, "unknown floating point width");
469 }
470 break;
471
472 case TYPE_CODE_COMPLEX:
473 switch (length)
474 {
475 case 8:
476 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
477 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
478 break;
479
480 case 16:
481 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
482 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1,
483 (char *)valbuf + 8);
484 break;
485
486 case 32:
487 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
488 read_memory (l, valbuf, 32);
489 break;
490
491 default:
492 internal_error (__FILE__, __LINE__, "unknown floating point width");
493 }
494 break;
495
496 default:
497 /* Assume everything else degenerates to an integer. */
498 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
499 store_unsigned_integer (valbuf, length, l);
500 break;
501 }
502 }
503
504 /* Extract from REGCACHE the address of a structure about to be returned
505 from a function. */
506
507 static CORE_ADDR
508 alpha_extract_struct_value_address (struct regcache *regcache)
509 {
510 ULONGEST addr;
511 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
512 return addr;
513 }
514
515 /* Insert the given value into REGCACHE as if it was being
516 returned by a function. */
517
518 static void
519 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
520 const void *valbuf)
521 {
522 int length = TYPE_LENGTH (valtype);
523 char raw_buffer[ALPHA_REGISTER_SIZE];
524 ULONGEST l;
525
526 switch (TYPE_CODE (valtype))
527 {
528 case TYPE_CODE_FLT:
529 switch (length)
530 {
531 case 4:
532 alpha_lds (raw_buffer, valbuf);
533 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
534 break;
535
536 case 8:
537 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
538 break;
539
540 case 16:
541 /* FIXME: 128-bit long doubles are returned like structures:
542 by writing into indirect storage provided by the caller
543 as the first argument. */
544 error ("Cannot set a 128-bit long double return value.");
545
546 default:
547 internal_error (__FILE__, __LINE__, "unknown floating point width");
548 }
549 break;
550
551 case TYPE_CODE_COMPLEX:
552 switch (length)
553 {
554 case 8:
555 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
556 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
557 break;
558
559 case 16:
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
561 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1,
562 (const char *)valbuf + 8);
563 break;
564
565 case 32:
566 /* FIXME: 128-bit long doubles are returned like structures:
567 by writing into indirect storage provided by the caller
568 as the first argument. */
569 error ("Cannot set a 128-bit long double return value.");
570
571 default:
572 internal_error (__FILE__, __LINE__, "unknown floating point width");
573 }
574 break;
575
576 default:
577 /* Assume everything else degenerates to an integer. */
578 /* 32-bit values must be sign-extended to 64 bits
579 even if the base data type is unsigned. */
580 if (length == 4)
581 valtype = builtin_type_int32;
582 l = unpack_long (valtype, valbuf);
583 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
584 break;
585 }
586 }
587
588 \f
589 static const unsigned char *
590 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
591 {
592 static const unsigned char alpha_breakpoint[] =
593 { 0x80, 0, 0, 0 }; /* call_pal bpt */
594
595 *lenptr = sizeof(alpha_breakpoint);
596 return (alpha_breakpoint);
597 }
598
599 \f
600 /* This returns the PC of the first insn after the prologue.
601 If we can't find the prologue, then return 0. */
602
603 CORE_ADDR
604 alpha_after_prologue (CORE_ADDR pc)
605 {
606 struct symtab_and_line sal;
607 CORE_ADDR func_addr, func_end;
608
609 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
610 return 0;
611
612 sal = find_pc_line (func_addr, 0);
613 if (sal.end < func_end)
614 return sal.end;
615
616 /* The line after the prologue is after the end of the function. In this
617 case, tell the caller to find the prologue the hard way. */
618 return 0;
619 }
620
621 /* Read an instruction from memory at PC, looking through breakpoints. */
622
623 unsigned int
624 alpha_read_insn (CORE_ADDR pc)
625 {
626 char buf[4];
627 int status;
628
629 status = read_memory_nobpt (pc, buf, 4);
630 if (status)
631 memory_error (status, pc);
632 return extract_unsigned_integer (buf, 4);
633 }
634
635 /* To skip prologues, I use this predicate. Returns either PC itself
636 if the code at PC does not look like a function prologue; otherwise
637 returns an address that (if we're lucky) follows the prologue. If
638 LENIENT, then we must skip everything which is involved in setting
639 up the frame (it's OK to skip more, just so long as we don't skip
640 anything which might clobber the registers which are being saved. */
641
642 static CORE_ADDR
643 alpha_skip_prologue (CORE_ADDR pc)
644 {
645 unsigned long inst;
646 int offset;
647 CORE_ADDR post_prologue_pc;
648 char buf[4];
649
650 /* Silently return the unaltered pc upon memory errors.
651 This could happen on OSF/1 if decode_line_1 tries to skip the
652 prologue for quickstarted shared library functions when the
653 shared library is not yet mapped in.
654 Reading target memory is slow over serial lines, so we perform
655 this check only if the target has shared libraries (which all
656 Alpha targets do). */
657 if (target_read_memory (pc, buf, 4))
658 return pc;
659
660 /* See if we can determine the end of the prologue via the symbol table.
661 If so, then return either PC, or the PC after the prologue, whichever
662 is greater. */
663
664 post_prologue_pc = alpha_after_prologue (pc);
665 if (post_prologue_pc != 0)
666 return max (pc, post_prologue_pc);
667
668 /* Can't determine prologue from the symbol table, need to examine
669 instructions. */
670
671 /* Skip the typical prologue instructions. These are the stack adjustment
672 instruction and the instructions that save registers on the stack
673 or in the gcc frame. */
674 for (offset = 0; offset < 100; offset += 4)
675 {
676 inst = alpha_read_insn (pc + offset);
677
678 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
679 continue;
680 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
681 continue;
682 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
683 continue;
684 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
685 continue;
686
687 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
688 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
689 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
690 continue;
691
692 if (inst == 0x47de040f) /* bis sp,sp,fp */
693 continue;
694 if (inst == 0x47fe040f) /* bis zero,sp,fp */
695 continue;
696
697 break;
698 }
699 return pc + offset;
700 }
701
702 \f
703 /* Figure out where the longjmp will land.
704 We expect the first arg to be a pointer to the jmp_buf structure from
705 which we extract the PC (JB_PC) that we will land at. The PC is copied
706 into the "pc". This routine returns true on success. */
707
708 static int
709 alpha_get_longjmp_target (CORE_ADDR *pc)
710 {
711 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
712 CORE_ADDR jb_addr;
713 char raw_buffer[ALPHA_REGISTER_SIZE];
714
715 jb_addr = read_register (ALPHA_A0_REGNUM);
716
717 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
718 raw_buffer, tdep->jb_elt_size))
719 return 0;
720
721 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
722 return 1;
723 }
724
725 \f
726 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
727 describe the location and shape of the sigcontext structure. After
728 that, all registers are in memory, so it's easy. */
729 /* ??? Shouldn't we be able to do this generically, rather than with
730 OSABI data specific to Alpha? */
731
732 struct alpha_sigtramp_unwind_cache
733 {
734 CORE_ADDR sigcontext_addr;
735 };
736
737 static struct alpha_sigtramp_unwind_cache *
738 alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
739 void **this_prologue_cache)
740 {
741 struct alpha_sigtramp_unwind_cache *info;
742 struct gdbarch_tdep *tdep;
743
744 if (*this_prologue_cache)
745 return *this_prologue_cache;
746
747 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
748 *this_prologue_cache = info;
749
750 tdep = gdbarch_tdep (current_gdbarch);
751 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
752
753 return info;
754 }
755
756 /* Return the address of REGNUM in a sigtramp frame. Since this is
757 all arithmetic, it doesn't seem worthwhile to cache it. */
758
759 static CORE_ADDR
760 alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, int regnum)
761 {
762 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
763
764 if (regnum >= 0 && regnum < 32)
765 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
766 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
767 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
768 else if (regnum == ALPHA_PC_REGNUM)
769 return sigcontext_addr + tdep->sc_pc_offset;
770
771 return 0;
772 }
773
774 /* Given a GDB frame, determine the address of the calling function's
775 frame. This will be used to create a new GDB frame struct. */
776
777 static void
778 alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
779 void **this_prologue_cache,
780 struct frame_id *this_id)
781 {
782 struct alpha_sigtramp_unwind_cache *info
783 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
784 struct gdbarch_tdep *tdep;
785 CORE_ADDR stack_addr, code_addr;
786
787 /* If the OSABI couldn't locate the sigcontext, give up. */
788 if (info->sigcontext_addr == 0)
789 return;
790
791 /* If we have dynamic signal trampolines, find their start.
792 If we do not, then we must assume there is a symbol record
793 that can provide the start address. */
794 tdep = gdbarch_tdep (current_gdbarch);
795 if (tdep->dynamic_sigtramp_offset)
796 {
797 int offset;
798 code_addr = frame_pc_unwind (next_frame);
799 offset = tdep->dynamic_sigtramp_offset (code_addr);
800 if (offset >= 0)
801 code_addr -= offset;
802 else
803 code_addr = 0;
804 }
805 else
806 code_addr = frame_func_unwind (next_frame);
807
808 /* The stack address is trivially read from the sigcontext. */
809 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
810 ALPHA_SP_REGNUM);
811 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
812 ALPHA_REGISTER_SIZE);
813
814 *this_id = frame_id_build (stack_addr, code_addr);
815 }
816
817 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
818
819 static void
820 alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
821 void **this_prologue_cache,
822 int regnum, int *optimizedp,
823 enum lval_type *lvalp, CORE_ADDR *addrp,
824 int *realnump, void *bufferp)
825 {
826 struct alpha_sigtramp_unwind_cache *info
827 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
828 CORE_ADDR addr;
829
830 if (info->sigcontext_addr != 0)
831 {
832 /* All integer and fp registers are stored in memory. */
833 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
834 if (addr != 0)
835 {
836 *optimizedp = 0;
837 *lvalp = lval_memory;
838 *addrp = addr;
839 *realnump = -1;
840 if (bufferp != NULL)
841 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
842 return;
843 }
844 }
845
846 /* This extra register may actually be in the sigcontext, but our
847 current description of it in alpha_sigtramp_frame_unwind_cache
848 doesn't include it. Too bad. Fall back on whatever's in the
849 outer frame. */
850 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
851 realnump, bufferp);
852 }
853
854 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
855 SIGTRAMP_FRAME,
856 alpha_sigtramp_frame_this_id,
857 alpha_sigtramp_frame_prev_register
858 };
859
860 static const struct frame_unwind *
861 alpha_sigtramp_frame_sniffer (struct frame_info *next_frame)
862 {
863 CORE_ADDR pc = frame_pc_unwind (next_frame);
864 char *name;
865
866 /* We shouldn't even bother to try if the OSABI didn't register
867 a sigcontext_addr handler. */
868 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
869 return NULL;
870
871 /* Otherwise we should be in a signal frame. */
872 find_pc_partial_function (pc, &name, NULL, NULL);
873 if (PC_IN_SIGTRAMP (pc, name))
874 return &alpha_sigtramp_frame_unwind;
875
876 return NULL;
877 }
878 \f
879 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
880 something about the traditional layout of alpha stack frames. */
881
882 struct alpha_heuristic_unwind_cache
883 {
884 CORE_ADDR *saved_regs;
885 CORE_ADDR vfp;
886 CORE_ADDR start_pc;
887 int return_reg;
888 };
889
890 /* Heuristic_proc_start may hunt through the text section for a long
891 time across a 2400 baud serial line. Allows the user to limit this
892 search. */
893 static unsigned int heuristic_fence_post = 0;
894
895 /* Attempt to locate the start of the function containing PC. We assume that
896 the previous function ends with an about_to_return insn. Not foolproof by
897 any means, since gcc is happy to put the epilogue in the middle of a
898 function. But we're guessing anyway... */
899
900 static CORE_ADDR
901 alpha_heuristic_proc_start (CORE_ADDR pc)
902 {
903 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
904 CORE_ADDR last_non_nop = pc;
905 CORE_ADDR fence = pc - heuristic_fence_post;
906 CORE_ADDR orig_pc = pc;
907 CORE_ADDR func;
908
909 if (pc == 0)
910 return 0;
911
912 /* First see if we can find the start of the function from minimal
913 symbol information. This can succeed with a binary that doesn't
914 have debug info, but hasn't been stripped. */
915 func = get_pc_function_start (pc);
916 if (func)
917 return func;
918
919 if (heuristic_fence_post == UINT_MAX
920 || fence < tdep->vm_min_address)
921 fence = tdep->vm_min_address;
922
923 /* Search back for previous return; also stop at a 0, which might be
924 seen for instance before the start of a code section. Don't include
925 nops, since this usually indicates padding between functions. */
926 for (pc -= 4; pc >= fence; pc -= 4)
927 {
928 unsigned int insn = alpha_read_insn (pc);
929 switch (insn)
930 {
931 case 0: /* invalid insn */
932 case 0x6bfa8001: /* ret $31,($26),1 */
933 return last_non_nop;
934
935 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
936 case 0x47ff041f: /* nop: bis $31,$31,$31 */
937 break;
938
939 default:
940 last_non_nop = pc;
941 break;
942 }
943 }
944
945 /* It's not clear to me why we reach this point when stopping quietly,
946 but with this test, at least we don't print out warnings for every
947 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
948 if (stop_soon == NO_STOP_QUIETLY)
949 {
950 static int blurb_printed = 0;
951
952 if (fence == tdep->vm_min_address)
953 warning ("Hit beginning of text section without finding");
954 else
955 warning ("Hit heuristic-fence-post without finding");
956 warning ("enclosing function for address 0x%s", paddr_nz (orig_pc));
957
958 if (!blurb_printed)
959 {
960 printf_filtered ("\
961 This warning occurs if you are debugging a function without any symbols\n\
962 (for example, in a stripped executable). In that case, you may wish to\n\
963 increase the size of the search with the `set heuristic-fence-post' command.\n\
964 \n\
965 Otherwise, you told GDB there was a function where there isn't one, or\n\
966 (more likely) you have encountered a bug in GDB.\n");
967 blurb_printed = 1;
968 }
969 }
970
971 return 0;
972 }
973
974 static struct alpha_heuristic_unwind_cache *
975 alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
976 void **this_prologue_cache,
977 CORE_ADDR start_pc)
978 {
979 struct alpha_heuristic_unwind_cache *info;
980 ULONGEST val;
981 CORE_ADDR limit_pc, cur_pc;
982 int frame_reg, frame_size, return_reg, reg;
983
984 if (*this_prologue_cache)
985 return *this_prologue_cache;
986
987 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
988 *this_prologue_cache = info;
989 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
990
991 limit_pc = frame_pc_unwind (next_frame);
992 if (start_pc == 0)
993 start_pc = alpha_heuristic_proc_start (limit_pc);
994 info->start_pc = start_pc;
995
996 frame_reg = ALPHA_SP_REGNUM;
997 frame_size = 0;
998 return_reg = -1;
999
1000 /* If we've identified a likely place to start, do code scanning. */
1001 if (start_pc != 0)
1002 {
1003 /* Limit the forward search to 50 instructions. */
1004 if (start_pc + 200 < limit_pc)
1005 limit_pc = start_pc + 200;
1006
1007 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
1008 {
1009 unsigned int word = alpha_read_insn (cur_pc);
1010
1011 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1012 {
1013 if (word & 0x8000)
1014 {
1015 /* Consider only the first stack allocation instruction
1016 to contain the static size of the frame. */
1017 if (frame_size == 0)
1018 frame_size = (-word) & 0xffff;
1019 }
1020 else
1021 {
1022 /* Exit loop if a positive stack adjustment is found, which
1023 usually means that the stack cleanup code in the function
1024 epilogue is reached. */
1025 break;
1026 }
1027 }
1028 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1029 {
1030 reg = (word & 0x03e00000) >> 21;
1031
1032 if (reg == 31)
1033 continue;
1034
1035 /* Do not compute the address where the register was saved yet,
1036 because we don't know yet if the offset will need to be
1037 relative to $sp or $fp (we can not compute the address
1038 relative to $sp if $sp is updated during the execution of
1039 the current subroutine, for instance when doing some alloca).
1040 So just store the offset for the moment, and compute the
1041 address later when we know whether this frame has a frame
1042 pointer or not. */
1043 /* Hack: temporarily add one, so that the offset is non-zero
1044 and we can tell which registers have save offsets below. */
1045 info->saved_regs[reg] = (word & 0xffff) + 1;
1046
1047 /* Starting with OSF/1-3.2C, the system libraries are shipped
1048 without local symbols, but they still contain procedure
1049 descriptors without a symbol reference. GDB is currently
1050 unable to find these procedure descriptors and uses
1051 heuristic_proc_desc instead.
1052 As some low level compiler support routines (__div*, __add*)
1053 use a non-standard return address register, we have to
1054 add some heuristics to determine the return address register,
1055 or stepping over these routines will fail.
1056 Usually the return address register is the first register
1057 saved on the stack, but assembler optimization might
1058 rearrange the register saves.
1059 So we recognize only a few registers (t7, t9, ra) within
1060 the procedure prologue as valid return address registers.
1061 If we encounter a return instruction, we extract the
1062 the return address register from it.
1063
1064 FIXME: Rewriting GDB to access the procedure descriptors,
1065 e.g. via the minimal symbol table, might obviate this hack. */
1066 if (return_reg == -1
1067 && cur_pc < (start_pc + 80)
1068 && (reg == ALPHA_T7_REGNUM
1069 || reg == ALPHA_T9_REGNUM
1070 || reg == ALPHA_RA_REGNUM))
1071 return_reg = reg;
1072 }
1073 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1074 return_reg = (word >> 16) & 0x1f;
1075 else if (word == 0x47de040f) /* bis sp,sp,fp */
1076 frame_reg = ALPHA_GCC_FP_REGNUM;
1077 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1078 frame_reg = ALPHA_GCC_FP_REGNUM;
1079 }
1080
1081 /* If we haven't found a valid return address register yet, keep
1082 searching in the procedure prologue. */
1083 if (return_reg == -1)
1084 {
1085 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1086 {
1087 unsigned int word = alpha_read_insn (cur_pc);
1088
1089 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1090 {
1091 reg = (word & 0x03e00000) >> 21;
1092 if (reg == ALPHA_T7_REGNUM
1093 || reg == ALPHA_T9_REGNUM
1094 || reg == ALPHA_RA_REGNUM)
1095 {
1096 return_reg = reg;
1097 break;
1098 }
1099 }
1100 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1101 {
1102 return_reg = (word >> 16) & 0x1f;
1103 break;
1104 }
1105
1106 cur_pc += 4;
1107 }
1108 }
1109 }
1110
1111 /* Failing that, do default to the customary RA. */
1112 if (return_reg == -1)
1113 return_reg = ALPHA_RA_REGNUM;
1114 info->return_reg = return_reg;
1115
1116 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1117 info->vfp = val + frame_size;
1118
1119 /* Convert offsets to absolute addresses. See above about adding
1120 one to the offsets to make all detected offsets non-zero. */
1121 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1122 if (info->saved_regs[reg])
1123 info->saved_regs[reg] += val - 1;
1124
1125 return info;
1126 }
1127
1128 /* Given a GDB frame, determine the address of the calling function's
1129 frame. This will be used to create a new GDB frame struct. */
1130
1131 static void
1132 alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1133 void **this_prologue_cache,
1134 struct frame_id *this_id)
1135 {
1136 struct alpha_heuristic_unwind_cache *info
1137 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1138
1139 /* This is meant to halt the backtrace at "_start". Make sure we
1140 don't halt it at a generic dummy frame. */
1141 if (inside_entry_file (info->start_pc))
1142 return;
1143
1144 *this_id = frame_id_build (info->vfp, info->start_pc);
1145 }
1146
1147 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1148
1149 static void
1150 alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1151 void **this_prologue_cache,
1152 int regnum, int *optimizedp,
1153 enum lval_type *lvalp, CORE_ADDR *addrp,
1154 int *realnump, void *bufferp)
1155 {
1156 struct alpha_heuristic_unwind_cache *info
1157 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1158
1159 /* The PC of the previous frame is stored in the link register of
1160 the current frame. Frob regnum so that we pull the value from
1161 the correct place. */
1162 if (regnum == ALPHA_PC_REGNUM)
1163 regnum = info->return_reg;
1164
1165 /* For all registers known to be saved in the current frame,
1166 do the obvious and pull the value out. */
1167 if (info->saved_regs[regnum])
1168 {
1169 *optimizedp = 0;
1170 *lvalp = lval_memory;
1171 *addrp = info->saved_regs[regnum];
1172 *realnump = -1;
1173 if (bufferp != NULL)
1174 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
1175 return;
1176 }
1177
1178 /* The stack pointer of the previous frame is computed by popping
1179 the current stack frame. */
1180 if (regnum == ALPHA_SP_REGNUM)
1181 {
1182 *optimizedp = 0;
1183 *lvalp = not_lval;
1184 *addrp = 0;
1185 *realnump = -1;
1186 if (bufferp != NULL)
1187 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1188 return;
1189 }
1190
1191 /* Otherwise assume the next frame has the same register value. */
1192 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
1193 realnump, bufferp);
1194 }
1195
1196 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1197 NORMAL_FRAME,
1198 alpha_heuristic_frame_this_id,
1199 alpha_heuristic_frame_prev_register
1200 };
1201
1202 static const struct frame_unwind *
1203 alpha_heuristic_frame_sniffer (struct frame_info *next_frame)
1204 {
1205 return &alpha_heuristic_frame_unwind;
1206 }
1207
1208 static CORE_ADDR
1209 alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1210 void **this_prologue_cache)
1211 {
1212 struct alpha_heuristic_unwind_cache *info
1213 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1214
1215 return info->vfp;
1216 }
1217
1218 static const struct frame_base alpha_heuristic_frame_base = {
1219 &alpha_heuristic_frame_unwind,
1220 alpha_heuristic_frame_base_address,
1221 alpha_heuristic_frame_base_address,
1222 alpha_heuristic_frame_base_address
1223 };
1224
1225 /* Just like reinit_frame_cache, but with the right arguments to be
1226 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1227
1228 static void
1229 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1230 {
1231 reinit_frame_cache ();
1232 }
1233
1234 \f
1235 /* ALPHA stack frames are almost impenetrable. When execution stops,
1236 we basically have to look at symbol information for the function
1237 that we stopped in, which tells us *which* register (if any) is
1238 the base of the frame pointer, and what offset from that register
1239 the frame itself is at.
1240
1241 This presents a problem when trying to examine a stack in memory
1242 (that isn't executing at the moment), using the "frame" command. We
1243 don't have a PC, nor do we have any registers except SP.
1244
1245 This routine takes two arguments, SP and PC, and tries to make the
1246 cached frames look as if these two arguments defined a frame on the
1247 cache. This allows the rest of info frame to extract the important
1248 arguments without difficulty. */
1249
1250 struct frame_info *
1251 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1252 {
1253 if (argc != 2)
1254 error ("ALPHA frame specifications require two arguments: sp and pc");
1255
1256 return create_new_frame (argv[0], argv[1]);
1257 }
1258
1259 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1260 dummy frame. The frame ID's base needs to match the TOS value
1261 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1262 breakpoint. */
1263
1264 static struct frame_id
1265 alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1266 {
1267 ULONGEST base;
1268 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1269 return frame_id_build (base, frame_pc_unwind (next_frame));
1270 }
1271
1272 static CORE_ADDR
1273 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1274 {
1275 ULONGEST pc;
1276 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1277 return pc;
1278 }
1279
1280 \f
1281 /* Helper routines for alpha*-nat.c files to move register sets to and
1282 from core files. The UNIQUE pointer is allowed to be NULL, as most
1283 targets don't supply this value in their core files. */
1284
1285 void
1286 alpha_supply_int_regs (int regno, const void *r0_r30,
1287 const void *pc, const void *unique)
1288 {
1289 int i;
1290
1291 for (i = 0; i < 31; ++i)
1292 if (regno == i || regno == -1)
1293 supply_register (i, (const char *)r0_r30 + i*8);
1294
1295 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1296 supply_register (ALPHA_ZERO_REGNUM, NULL);
1297
1298 if (regno == ALPHA_PC_REGNUM || regno == -1)
1299 supply_register (ALPHA_PC_REGNUM, pc);
1300
1301 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1302 supply_register (ALPHA_UNIQUE_REGNUM, unique);
1303 }
1304
1305 void
1306 alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique)
1307 {
1308 int i;
1309
1310 for (i = 0; i < 31; ++i)
1311 if (regno == i || regno == -1)
1312 regcache_collect (i, (char *)r0_r30 + i*8);
1313
1314 if (regno == ALPHA_PC_REGNUM || regno == -1)
1315 regcache_collect (ALPHA_PC_REGNUM, pc);
1316
1317 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1318 regcache_collect (ALPHA_UNIQUE_REGNUM, unique);
1319 }
1320
1321 void
1322 alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr)
1323 {
1324 int i;
1325
1326 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1327 if (regno == i || regno == -1)
1328 supply_register (i, (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1329
1330 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1331 supply_register (ALPHA_FPCR_REGNUM, fpcr);
1332 }
1333
1334 void
1335 alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr)
1336 {
1337 int i;
1338
1339 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1340 if (regno == i || regno == -1)
1341 regcache_collect (i, (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1342
1343 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1344 regcache_collect (ALPHA_FPCR_REGNUM, fpcr);
1345 }
1346
1347 \f
1348 /* alpha_software_single_step() is called just before we want to resume
1349 the inferior, if we want to single-step it but there is no hardware
1350 or kernel single-step support (NetBSD on Alpha, for example). We find
1351 the target of the coming instruction and breakpoint it.
1352
1353 single_step is also called just after the inferior stops. If we had
1354 set up a simulated single-step, we undo our damage. */
1355
1356 static CORE_ADDR
1357 alpha_next_pc (CORE_ADDR pc)
1358 {
1359 unsigned int insn;
1360 unsigned int op;
1361 int offset;
1362 LONGEST rav;
1363
1364 insn = alpha_read_insn (pc);
1365
1366 /* Opcode is top 6 bits. */
1367 op = (insn >> 26) & 0x3f;
1368
1369 if (op == 0x1a)
1370 {
1371 /* Jump format: target PC is:
1372 RB & ~3 */
1373 return (read_register ((insn >> 16) & 0x1f) & ~3);
1374 }
1375
1376 if ((op & 0x30) == 0x30)
1377 {
1378 /* Branch format: target PC is:
1379 (new PC) + (4 * sext(displacement)) */
1380 if (op == 0x30 || /* BR */
1381 op == 0x34) /* BSR */
1382 {
1383 branch_taken:
1384 offset = (insn & 0x001fffff);
1385 if (offset & 0x00100000)
1386 offset |= 0xffe00000;
1387 offset *= 4;
1388 return (pc + 4 + offset);
1389 }
1390
1391 /* Need to determine if branch is taken; read RA. */
1392 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1393 switch (op)
1394 {
1395 case 0x38: /* BLBC */
1396 if ((rav & 1) == 0)
1397 goto branch_taken;
1398 break;
1399 case 0x3c: /* BLBS */
1400 if (rav & 1)
1401 goto branch_taken;
1402 break;
1403 case 0x39: /* BEQ */
1404 if (rav == 0)
1405 goto branch_taken;
1406 break;
1407 case 0x3d: /* BNE */
1408 if (rav != 0)
1409 goto branch_taken;
1410 break;
1411 case 0x3a: /* BLT */
1412 if (rav < 0)
1413 goto branch_taken;
1414 break;
1415 case 0x3b: /* BLE */
1416 if (rav <= 0)
1417 goto branch_taken;
1418 break;
1419 case 0x3f: /* BGT */
1420 if (rav > 0)
1421 goto branch_taken;
1422 break;
1423 case 0x3e: /* BGE */
1424 if (rav >= 0)
1425 goto branch_taken;
1426 break;
1427
1428 /* ??? Missing floating-point branches. */
1429 }
1430 }
1431
1432 /* Not a branch or branch not taken; target PC is:
1433 pc + 4 */
1434 return (pc + 4);
1435 }
1436
1437 void
1438 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1439 {
1440 static CORE_ADDR next_pc;
1441 typedef char binsn_quantum[BREAKPOINT_MAX];
1442 static binsn_quantum break_mem;
1443 CORE_ADDR pc;
1444
1445 if (insert_breakpoints_p)
1446 {
1447 pc = read_pc ();
1448 next_pc = alpha_next_pc (pc);
1449
1450 target_insert_breakpoint (next_pc, break_mem);
1451 }
1452 else
1453 {
1454 target_remove_breakpoint (next_pc, break_mem);
1455 write_pc (next_pc);
1456 }
1457 }
1458
1459 \f
1460 /* Initialize the current architecture based on INFO. If possible, re-use an
1461 architecture from ARCHES, which is a list of architectures already created
1462 during this debugging session.
1463
1464 Called e.g. at program startup, when reading a core file, and when reading
1465 a binary file. */
1466
1467 static struct gdbarch *
1468 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1469 {
1470 struct gdbarch_tdep *tdep;
1471 struct gdbarch *gdbarch;
1472
1473 /* Try to determine the ABI of the object we are loading. */
1474 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1475 {
1476 /* If it's an ECOFF file, assume it's OSF/1. */
1477 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1478 info.osabi = GDB_OSABI_OSF1;
1479 }
1480
1481 /* Find a candidate among extant architectures. */
1482 arches = gdbarch_list_lookup_by_info (arches, &info);
1483 if (arches != NULL)
1484 return arches->gdbarch;
1485
1486 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1487 gdbarch = gdbarch_alloc (&info, tdep);
1488
1489 /* Lowest text address. This is used by heuristic_proc_start()
1490 to decide when to stop looking. */
1491 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1492
1493 tdep->dynamic_sigtramp_offset = NULL;
1494 tdep->sigcontext_addr = NULL;
1495 tdep->sc_pc_offset = 2 * 8;
1496 tdep->sc_regs_offset = 4 * 8;
1497 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1498
1499 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1500
1501 /* Type sizes */
1502 set_gdbarch_short_bit (gdbarch, 16);
1503 set_gdbarch_int_bit (gdbarch, 32);
1504 set_gdbarch_long_bit (gdbarch, 64);
1505 set_gdbarch_long_long_bit (gdbarch, 64);
1506 set_gdbarch_float_bit (gdbarch, 32);
1507 set_gdbarch_double_bit (gdbarch, 64);
1508 set_gdbarch_long_double_bit (gdbarch, 64);
1509 set_gdbarch_ptr_bit (gdbarch, 64);
1510
1511 /* Register info */
1512 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1513 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1514 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1515 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1516
1517 set_gdbarch_register_name (gdbarch, alpha_register_name);
1518 set_gdbarch_deprecated_register_byte (gdbarch, alpha_register_byte);
1519 set_gdbarch_deprecated_register_raw_size (gdbarch, alpha_register_raw_size);
1520 set_gdbarch_deprecated_register_virtual_size (gdbarch, alpha_register_virtual_size);
1521 set_gdbarch_register_type (gdbarch, alpha_register_type);
1522
1523 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1524 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1525
1526 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1527 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1528 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1529
1530 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1531
1532 /* Prologue heuristics. */
1533 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1534
1535 /* Disassembler. */
1536 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1537
1538 /* Call info. */
1539 set_gdbarch_frameless_function_invocation (gdbarch,
1540 generic_frameless_function_invocation_not);
1541
1542 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1543 set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
1544 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
1545 set_gdbarch_extract_struct_value_address (gdbarch,
1546 alpha_extract_struct_value_address);
1547
1548 /* Settings for calling functions in the inferior. */
1549 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1550
1551 /* Methods for saving / extracting a dummy frame's ID. */
1552 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1553
1554 /* Return the unwound PC value. */
1555 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1556
1557 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1558 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1559
1560 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1561 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1562
1563 set_gdbarch_function_start_offset (gdbarch, 0);
1564 set_gdbarch_frame_args_skip (gdbarch, 0);
1565
1566 /* Hook in ABI-specific overrides, if they have been registered. */
1567 gdbarch_init_osabi (info, gdbarch);
1568
1569 /* Now that we have tuned the configuration, set a few final things
1570 based on what the OS ABI has told us. */
1571
1572 if (tdep->jb_pc >= 0)
1573 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1574
1575 frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer);
1576 frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer);
1577
1578 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1579
1580 return gdbarch;
1581 }
1582
1583 void
1584 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1585 {
1586 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1587 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1588 set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
1589 }
1590
1591 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1592
1593 void
1594 _initialize_alpha_tdep (void)
1595 {
1596 struct cmd_list_element *c;
1597
1598 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1599
1600 /* Let the user set the fence post for heuristic_proc_start. */
1601
1602 /* We really would like to have both "0" and "unlimited" work, but
1603 command.c doesn't deal with that. So make it a var_zinteger
1604 because the user can always use "999999" or some such for unlimited. */
1605 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1606 (char *) &heuristic_fence_post,
1607 "\
1608 Set the distance searched for the start of a function.\n\
1609 If you are debugging a stripped executable, GDB needs to search through the\n\
1610 program for the start of a function. This command sets the distance of the\n\
1611 search. The only need to set it is when debugging a stripped executable.",
1612 &setlist);
1613 /* We need to throw away the frame cache when we set this, since it
1614 might change our ability to get backtraces. */
1615 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
1616 add_show_from_set (c, &showlist);
1617 }