]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arc-tdep.c
Unify gdb printf functions
[thirdparty/binutils-gdb.git] / gdb / arc-tdep.c
1 /* Target dependent code for ARC architecture, for GDB.
2
3 Copyright 2005-2022 Free Software Foundation, Inc.
4 Contributed by Synopsys Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* GDB header files. */
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "elf-bfd.h"
25 #include "disasm.h"
26 #include "dwarf2/frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "gdbcore.h"
30 #include "reggroups.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "osabi.h"
34 #include "prologue-value.h"
35 #include "target-descriptions.h"
36 #include "trad-frame.h"
37
38 /* ARC header files. */
39 #include "opcode/arc.h"
40 #include "opcodes/arc-dis.h"
41 #include "arc-tdep.h"
42 #include "arch/arc.h"
43
44 /* Standard headers. */
45 #include <algorithm>
46 #include <sstream>
47
48 /* The frame unwind cache for ARC. */
49
50 struct arc_frame_cache
51 {
52 /* The stack pointer at the time this frame was created; i.e. the caller's
53 stack pointer when this function was called. It is used to identify this
54 frame. */
55 CORE_ADDR prev_sp;
56
57 /* Register that is a base for this frame - FP for normal frame, SP for
58 non-FP frames. */
59 int frame_base_reg;
60
61 /* Offset from the previous SP to the current frame base. If GCC uses
62 `SUB SP,SP,offset` to allocate space for local variables, then it will be
63 done after setting up a frame pointer, but it still will be considered
64 part of prologue, therefore SP will be lesser than FP at the end of the
65 prologue analysis. In this case that would be an offset from old SP to a
66 new FP. But in case of non-FP frames, frame base is an SP and thus that
67 would be an offset from old SP to new SP. What is important is that this
68 is an offset from old SP to a known register, so it can be used to find
69 old SP.
70
71 Using FP is preferable, when possible, because SP can change in function
72 body after prologue due to alloca, variadic arguments or other shenanigans.
73 If that is the case in the caller frame, then PREV_SP will point to SP at
74 the moment of function call, but it will be different from SP value at the
75 end of the caller prologue. As a result it will not be possible to
76 reconstruct caller's frame and go past it in the backtrace. Those things
77 are unlikely to happen to FP - FP value at the moment of function call (as
78 stored on stack in callee prologue) is also an FP value at the end of the
79 caller's prologue. */
80
81 LONGEST frame_base_offset;
82
83 /* Store addresses for registers saved in prologue. During prologue analysis
84 GDB stores offsets relatively to "old SP", then after old SP is evaluated,
85 offsets are replaced with absolute addresses. */
86 trad_frame_saved_reg *saved_regs;
87 };
88
89 /* Global debug flag. */
90
91 bool arc_debug;
92
93 /* List of "maintenance print arc" commands. */
94
95 static struct cmd_list_element *maintenance_print_arc_list = NULL;
96
97 /* A set of registers that we expect to find in a tdesc_feature. These
98 are used in ARC_TDESC_INIT when processing the target description. */
99
100 struct arc_register_feature
101 {
102 /* Information for a single register. */
103 struct register_info
104 {
105 /* The GDB register number for this register. */
106 int regnum;
107
108 /* List of names for this register. The first name in this list is the
109 preferred name, the name GDB will use when describing this register. */
110 std::vector<const char *> names;
111
112 /* When true, this register must be present in this feature set. */
113 bool required_p;
114 };
115
116 /* The name for this feature. This is the name used to find this feature
117 within the target description. */
118 const char *name;
119
120 /* List of all the registers that we expect to encounter in this register
121 set. */
122 std::vector<struct register_info> registers;
123 };
124
125 /* Obsolete feature names for backward compatibility. */
126 static const char *ARC_CORE_V1_OBSOLETE_FEATURE_NAME
127 = "org.gnu.gdb.arc.core.arcompact";
128 static const char *ARC_CORE_V2_OBSOLETE_FEATURE_NAME
129 = "org.gnu.gdb.arc.core.v2";
130 static const char *ARC_CORE_V2_REDUCED_OBSOLETE_FEATURE_NAME
131 = "org.gnu.gdb.arc.core-reduced.v2";
132 static const char *ARC_AUX_OBSOLETE_FEATURE_NAME
133 = "org.gnu.gdb.arc.aux-minimal";
134 /* Modern feature names. */
135 static const char *ARC_CORE_FEATURE_NAME = "org.gnu.gdb.arc.core";
136 static const char *ARC_AUX_FEATURE_NAME = "org.gnu.gdb.arc.aux";
137
138 /* ARCv1 (ARC600, ARC601, ARC700) general core registers feature set.
139 See also arc_update_acc_reg_names() for "accl/acch" names. */
140
141 static struct arc_register_feature arc_v1_core_reg_feature =
142 {
143 ARC_CORE_FEATURE_NAME,
144 {
145 { ARC_R0_REGNUM + 0, { "r0" }, true },
146 { ARC_R0_REGNUM + 1, { "r1" }, true },
147 { ARC_R0_REGNUM + 2, { "r2" }, true },
148 { ARC_R0_REGNUM + 3, { "r3" }, true },
149 { ARC_R0_REGNUM + 4, { "r4" }, false },
150 { ARC_R0_REGNUM + 5, { "r5" }, false },
151 { ARC_R0_REGNUM + 6, { "r6" }, false },
152 { ARC_R0_REGNUM + 7, { "r7" }, false },
153 { ARC_R0_REGNUM + 8, { "r8" }, false },
154 { ARC_R0_REGNUM + 9, { "r9" }, false },
155 { ARC_R0_REGNUM + 10, { "r10" }, true },
156 { ARC_R0_REGNUM + 11, { "r11" }, true },
157 { ARC_R0_REGNUM + 12, { "r12" }, true },
158 { ARC_R0_REGNUM + 13, { "r13" }, true },
159 { ARC_R0_REGNUM + 14, { "r14" }, true },
160 { ARC_R0_REGNUM + 15, { "r15" }, true },
161 { ARC_R0_REGNUM + 16, { "r16" }, false },
162 { ARC_R0_REGNUM + 17, { "r17" }, false },
163 { ARC_R0_REGNUM + 18, { "r18" }, false },
164 { ARC_R0_REGNUM + 19, { "r19" }, false },
165 { ARC_R0_REGNUM + 20, { "r20" }, false },
166 { ARC_R0_REGNUM + 21, { "r21" }, false },
167 { ARC_R0_REGNUM + 22, { "r22" }, false },
168 { ARC_R0_REGNUM + 23, { "r23" }, false },
169 { ARC_R0_REGNUM + 24, { "r24" }, false },
170 { ARC_R0_REGNUM + 25, { "r25" }, false },
171 { ARC_R0_REGNUM + 26, { "gp" }, true },
172 { ARC_R0_REGNUM + 27, { "fp" }, true },
173 { ARC_R0_REGNUM + 28, { "sp" }, true },
174 { ARC_R0_REGNUM + 29, { "ilink1" }, false },
175 { ARC_R0_REGNUM + 30, { "ilink2" }, false },
176 { ARC_R0_REGNUM + 31, { "blink" }, true },
177 { ARC_R0_REGNUM + 32, { "r32" }, false },
178 { ARC_R0_REGNUM + 33, { "r33" }, false },
179 { ARC_R0_REGNUM + 34, { "r34" }, false },
180 { ARC_R0_REGNUM + 35, { "r35" }, false },
181 { ARC_R0_REGNUM + 36, { "r36" }, false },
182 { ARC_R0_REGNUM + 37, { "r37" }, false },
183 { ARC_R0_REGNUM + 38, { "r38" }, false },
184 { ARC_R0_REGNUM + 39, { "r39" }, false },
185 { ARC_R0_REGNUM + 40, { "r40" }, false },
186 { ARC_R0_REGNUM + 41, { "r41" }, false },
187 { ARC_R0_REGNUM + 42, { "r42" }, false },
188 { ARC_R0_REGNUM + 43, { "r43" }, false },
189 { ARC_R0_REGNUM + 44, { "r44" }, false },
190 { ARC_R0_REGNUM + 45, { "r45" }, false },
191 { ARC_R0_REGNUM + 46, { "r46" }, false },
192 { ARC_R0_REGNUM + 47, { "r47" }, false },
193 { ARC_R0_REGNUM + 48, { "r48" }, false },
194 { ARC_R0_REGNUM + 49, { "r49" }, false },
195 { ARC_R0_REGNUM + 50, { "r50" }, false },
196 { ARC_R0_REGNUM + 51, { "r51" }, false },
197 { ARC_R0_REGNUM + 52, { "r52" }, false },
198 { ARC_R0_REGNUM + 53, { "r53" }, false },
199 { ARC_R0_REGNUM + 54, { "r54" }, false },
200 { ARC_R0_REGNUM + 55, { "r55" }, false },
201 { ARC_R0_REGNUM + 56, { "r56" }, false },
202 { ARC_R0_REGNUM + 57, { "r57" }, false },
203 { ARC_R0_REGNUM + 58, { "r58", "accl" }, false },
204 { ARC_R0_REGNUM + 59, { "r59", "acch" }, false },
205 { ARC_R0_REGNUM + 60, { "lp_count" }, false },
206 { ARC_R0_REGNUM + 61, { "reserved" }, false },
207 { ARC_R0_REGNUM + 62, { "limm" }, false },
208 { ARC_R0_REGNUM + 63, { "pcl" }, true }
209 }
210 };
211
212 /* ARCv2 (ARCHS) general core registers feature set. See also
213 arc_update_acc_reg_names() for "accl/acch" names. */
214
215 static struct arc_register_feature arc_v2_core_reg_feature =
216 {
217 ARC_CORE_FEATURE_NAME,
218 {
219 { ARC_R0_REGNUM + 0, { "r0" }, true },
220 { ARC_R0_REGNUM + 1, { "r1" }, true },
221 { ARC_R0_REGNUM + 2, { "r2" }, true },
222 { ARC_R0_REGNUM + 3, { "r3" }, true },
223 { ARC_R0_REGNUM + 4, { "r4" }, false },
224 { ARC_R0_REGNUM + 5, { "r5" }, false },
225 { ARC_R0_REGNUM + 6, { "r6" }, false },
226 { ARC_R0_REGNUM + 7, { "r7" }, false },
227 { ARC_R0_REGNUM + 8, { "r8" }, false },
228 { ARC_R0_REGNUM + 9, { "r9" }, false },
229 { ARC_R0_REGNUM + 10, { "r10" }, true },
230 { ARC_R0_REGNUM + 11, { "r11" }, true },
231 { ARC_R0_REGNUM + 12, { "r12" }, true },
232 { ARC_R0_REGNUM + 13, { "r13" }, true },
233 { ARC_R0_REGNUM + 14, { "r14" }, true },
234 { ARC_R0_REGNUM + 15, { "r15" }, true },
235 { ARC_R0_REGNUM + 16, { "r16" }, false },
236 { ARC_R0_REGNUM + 17, { "r17" }, false },
237 { ARC_R0_REGNUM + 18, { "r18" }, false },
238 { ARC_R0_REGNUM + 19, { "r19" }, false },
239 { ARC_R0_REGNUM + 20, { "r20" }, false },
240 { ARC_R0_REGNUM + 21, { "r21" }, false },
241 { ARC_R0_REGNUM + 22, { "r22" }, false },
242 { ARC_R0_REGNUM + 23, { "r23" }, false },
243 { ARC_R0_REGNUM + 24, { "r24" }, false },
244 { ARC_R0_REGNUM + 25, { "r25" }, false },
245 { ARC_R0_REGNUM + 26, { "gp" }, true },
246 { ARC_R0_REGNUM + 27, { "fp" }, true },
247 { ARC_R0_REGNUM + 28, { "sp" }, true },
248 { ARC_R0_REGNUM + 29, { "ilink" }, false },
249 { ARC_R0_REGNUM + 30, { "r30" }, true },
250 { ARC_R0_REGNUM + 31, { "blink" }, true },
251 { ARC_R0_REGNUM + 32, { "r32" }, false },
252 { ARC_R0_REGNUM + 33, { "r33" }, false },
253 { ARC_R0_REGNUM + 34, { "r34" }, false },
254 { ARC_R0_REGNUM + 35, { "r35" }, false },
255 { ARC_R0_REGNUM + 36, { "r36" }, false },
256 { ARC_R0_REGNUM + 37, { "r37" }, false },
257 { ARC_R0_REGNUM + 38, { "r38" }, false },
258 { ARC_R0_REGNUM + 39, { "r39" }, false },
259 { ARC_R0_REGNUM + 40, { "r40" }, false },
260 { ARC_R0_REGNUM + 41, { "r41" }, false },
261 { ARC_R0_REGNUM + 42, { "r42" }, false },
262 { ARC_R0_REGNUM + 43, { "r43" }, false },
263 { ARC_R0_REGNUM + 44, { "r44" }, false },
264 { ARC_R0_REGNUM + 45, { "r45" }, false },
265 { ARC_R0_REGNUM + 46, { "r46" }, false },
266 { ARC_R0_REGNUM + 47, { "r47" }, false },
267 { ARC_R0_REGNUM + 48, { "r48" }, false },
268 { ARC_R0_REGNUM + 49, { "r49" }, false },
269 { ARC_R0_REGNUM + 50, { "r50" }, false },
270 { ARC_R0_REGNUM + 51, { "r51" }, false },
271 { ARC_R0_REGNUM + 52, { "r52" }, false },
272 { ARC_R0_REGNUM + 53, { "r53" }, false },
273 { ARC_R0_REGNUM + 54, { "r54" }, false },
274 { ARC_R0_REGNUM + 55, { "r55" }, false },
275 { ARC_R0_REGNUM + 56, { "r56" }, false },
276 { ARC_R0_REGNUM + 57, { "r57" }, false },
277 { ARC_R0_REGNUM + 58, { "r58", "accl" }, false },
278 { ARC_R0_REGNUM + 59, { "r59", "acch" }, false },
279 { ARC_R0_REGNUM + 60, { "lp_count" }, false },
280 { ARC_R0_REGNUM + 61, { "reserved" }, false },
281 { ARC_R0_REGNUM + 62, { "limm" }, false },
282 { ARC_R0_REGNUM + 63, { "pcl" }, true }
283 }
284 };
285
286 /* The common auxiliary registers feature set. The REGNUM field
287 must match the ARC_REGNUM enum in arc-tdep.h. */
288
289 static const struct arc_register_feature arc_common_aux_reg_feature =
290 {
291 ARC_AUX_FEATURE_NAME,
292 {
293 { ARC_FIRST_AUX_REGNUM + 0, { "pc" }, true },
294 { ARC_FIRST_AUX_REGNUM + 1, { "status32" }, true },
295 { ARC_FIRST_AUX_REGNUM + 2, { "lp_start" }, false },
296 { ARC_FIRST_AUX_REGNUM + 3, { "lp_end" }, false },
297 { ARC_FIRST_AUX_REGNUM + 4, { "bta" }, false }
298 }
299 };
300
301 static char *arc_disassembler_options = NULL;
302
303 /* Functions are sorted in the order as they are used in the
304 _initialize_arc_tdep (), which uses the same order as gdbarch.h. Static
305 functions are defined before the first invocation. */
306
307 /* Returns an unsigned value of OPERAND_NUM in instruction INSN.
308 For relative branch instructions returned value is an offset, not an actual
309 branch target. */
310
311 static ULONGEST
312 arc_insn_get_operand_value (const struct arc_instruction &insn,
313 unsigned int operand_num)
314 {
315 switch (insn.operands[operand_num].kind)
316 {
317 case ARC_OPERAND_KIND_LIMM:
318 gdb_assert (insn.limm_p);
319 return insn.limm_value;
320 case ARC_OPERAND_KIND_SHIMM:
321 return insn.operands[operand_num].value;
322 default:
323 /* Value in instruction is a register number. */
324 struct regcache *regcache = get_current_regcache ();
325 ULONGEST value;
326 regcache_cooked_read_unsigned (regcache,
327 insn.operands[operand_num].value,
328 &value);
329 return value;
330 }
331 }
332
333 /* Like arc_insn_get_operand_value, but returns a signed value. */
334
335 static LONGEST
336 arc_insn_get_operand_value_signed (const struct arc_instruction &insn,
337 unsigned int operand_num)
338 {
339 switch (insn.operands[operand_num].kind)
340 {
341 case ARC_OPERAND_KIND_LIMM:
342 gdb_assert (insn.limm_p);
343 /* Convert unsigned raw value to signed one. This assumes 2's
344 complement arithmetic, but so is the LONG_MIN value from generic
345 defs.h and that assumption is true for ARC. */
346 gdb_static_assert (sizeof (insn.limm_value) == sizeof (int));
347 return (((LONGEST) insn.limm_value) ^ INT_MIN) - INT_MIN;
348 case ARC_OPERAND_KIND_SHIMM:
349 /* Sign conversion has been done by binutils. */
350 return insn.operands[operand_num].value;
351 default:
352 /* Value in instruction is a register number. */
353 struct regcache *regcache = get_current_regcache ();
354 LONGEST value;
355 regcache_cooked_read_signed (regcache,
356 insn.operands[operand_num].value,
357 &value);
358 return value;
359 }
360 }
361
362 /* Get register with base address of memory operation. */
363
364 static int
365 arc_insn_get_memory_base_reg (const struct arc_instruction &insn)
366 {
367 /* POP_S and PUSH_S have SP as an implicit argument in a disassembler. */
368 if (insn.insn_class == PUSH || insn.insn_class == POP)
369 return ARC_SP_REGNUM;
370
371 gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE);
372
373 /* Other instructions all have at least two operands: operand 0 is data,
374 operand 1 is address. Operand 2 is offset from address. However, see
375 comment to arc_instruction.operands - in some cases, third operand may be
376 missing, namely if it is 0. */
377 gdb_assert (insn.operands_count >= 2);
378 return insn.operands[1].value;
379 }
380
381 /* Get offset of a memory operation INSN. */
382
383 static CORE_ADDR
384 arc_insn_get_memory_offset (const struct arc_instruction &insn)
385 {
386 /* POP_S and PUSH_S have offset as an implicit argument in a
387 disassembler. */
388 if (insn.insn_class == POP)
389 return 4;
390 else if (insn.insn_class == PUSH)
391 return -4;
392
393 gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE);
394
395 /* Other instructions all have at least two operands: operand 0 is data,
396 operand 1 is address. Operand 2 is offset from address. However, see
397 comment to arc_instruction.operands - in some cases, third operand may be
398 missing, namely if it is 0. */
399 if (insn.operands_count < 3)
400 return 0;
401
402 CORE_ADDR value = arc_insn_get_operand_value (insn, 2);
403 /* Handle scaling. */
404 if (insn.writeback_mode == ARC_WRITEBACK_AS)
405 {
406 /* Byte data size is not valid for AS. Halfword means shift by 1 bit.
407 Word and double word means shift by 2 bits. */
408 gdb_assert (insn.data_size_mode != ARC_SCALING_B);
409 if (insn.data_size_mode == ARC_SCALING_H)
410 value <<= 1;
411 else
412 value <<= 2;
413 }
414 return value;
415 }
416
417 CORE_ADDR
418 arc_insn_get_branch_target (const struct arc_instruction &insn)
419 {
420 gdb_assert (insn.is_control_flow);
421
422 /* BI [c]: PC = nextPC + (c << 2). */
423 if (insn.insn_class == BI)
424 {
425 ULONGEST reg_value = arc_insn_get_operand_value (insn, 0);
426 return arc_insn_get_linear_next_pc (insn) + (reg_value << 2);
427 }
428 /* BIH [c]: PC = nextPC + (c << 1). */
429 else if (insn.insn_class == BIH)
430 {
431 ULONGEST reg_value = arc_insn_get_operand_value (insn, 0);
432 return arc_insn_get_linear_next_pc (insn) + (reg_value << 1);
433 }
434 /* JLI and EI. */
435 /* JLI and EI depend on optional AUX registers. Not supported right now. */
436 else if (insn.insn_class == JLI)
437 {
438 gdb_printf (gdb_stderr,
439 "JLI_S instruction is not supported by the GDB.");
440 return 0;
441 }
442 else if (insn.insn_class == EI)
443 {
444 gdb_printf (gdb_stderr,
445 "EI_S instruction is not supported by the GDB.");
446 return 0;
447 }
448 /* LEAVE_S: PC = BLINK. */
449 else if (insn.insn_class == LEAVE)
450 {
451 struct regcache *regcache = get_current_regcache ();
452 ULONGEST value;
453 regcache_cooked_read_unsigned (regcache, ARC_BLINK_REGNUM, &value);
454 return value;
455 }
456 /* BBIT0/1, BRcc: PC = currentPC + operand. */
457 else if (insn.insn_class == BBIT0 || insn.insn_class == BBIT1
458 || insn.insn_class == BRCC)
459 {
460 /* Most instructions has branch target as their sole argument. However
461 conditional brcc/bbit has it as a third operand. */
462 CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 2);
463
464 /* Offset is relative to the 4-byte aligned address of the current
465 instruction, hence last two bits should be truncated. */
466 return pcrel_addr + align_down (insn.address, 4);
467 }
468 /* B, Bcc, BL, BLcc, LP, LPcc: PC = currentPC + operand. */
469 else if (insn.insn_class == BRANCH || insn.insn_class == LOOP)
470 {
471 CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 0);
472
473 /* Offset is relative to the 4-byte aligned address of the current
474 instruction, hence last two bits should be truncated. */
475 return pcrel_addr + align_down (insn.address, 4);
476 }
477 /* J, Jcc, JL, JLcc: PC = operand. */
478 else if (insn.insn_class == JUMP)
479 {
480 /* All jumps are single-operand. */
481 return arc_insn_get_operand_value (insn, 0);
482 }
483
484 /* This is some new and unknown instruction. */
485 gdb_assert_not_reached ("Unknown branch instruction.");
486 }
487
488 /* Dump INSN into gdb_stdlog. */
489
490 static void
491 arc_insn_dump (const struct arc_instruction &insn)
492 {
493 struct gdbarch *gdbarch = target_gdbarch ();
494
495 arc_print ("Dumping arc_instruction at %s\n",
496 paddress (gdbarch, insn.address));
497 arc_print ("\tlength = %u\n", insn.length);
498
499 if (!insn.valid)
500 {
501 arc_print ("\tThis is not a valid ARC instruction.\n");
502 return;
503 }
504
505 arc_print ("\tlength_with_limm = %u\n", insn.length + (insn.limm_p ? 4 : 0));
506 arc_print ("\tcc = 0x%x\n", insn.condition_code);
507 arc_print ("\tinsn_class = %u\n", insn.insn_class);
508 arc_print ("\tis_control_flow = %i\n", insn.is_control_flow);
509 arc_print ("\thas_delay_slot = %i\n", insn.has_delay_slot);
510
511 CORE_ADDR next_pc = arc_insn_get_linear_next_pc (insn);
512 arc_print ("\tlinear_next_pc = %s\n", paddress (gdbarch, next_pc));
513
514 if (insn.is_control_flow)
515 {
516 CORE_ADDR t = arc_insn_get_branch_target (insn);
517 arc_print ("\tbranch_target = %s\n", paddress (gdbarch, t));
518 }
519
520 arc_print ("\tlimm_p = %i\n", insn.limm_p);
521 if (insn.limm_p)
522 arc_print ("\tlimm_value = 0x%08x\n", insn.limm_value);
523
524 if (insn.insn_class == STORE || insn.insn_class == LOAD
525 || insn.insn_class == PUSH || insn.insn_class == POP)
526 {
527 arc_print ("\twriteback_mode = %u\n", insn.writeback_mode);
528 arc_print ("\tdata_size_mode = %u\n", insn.data_size_mode);
529 arc_print ("\tmemory_base_register = %s\n",
530 gdbarch_register_name (gdbarch,
531 arc_insn_get_memory_base_reg (insn)));
532 /* get_memory_offset returns an unsigned CORE_ADDR, but treat it as a
533 LONGEST for a nicer representation. */
534 arc_print ("\taddr_offset = %s\n",
535 plongest (arc_insn_get_memory_offset (insn)));
536 }
537
538 arc_print ("\toperands_count = %u\n", insn.operands_count);
539 for (unsigned int i = 0; i < insn.operands_count; ++i)
540 {
541 int is_reg = (insn.operands[i].kind == ARC_OPERAND_KIND_REG);
542
543 arc_print ("\toperand[%u] = {\n", i);
544 arc_print ("\t\tis_reg = %i\n", is_reg);
545 if (is_reg)
546 arc_print ("\t\tregister = %s\n",
547 gdbarch_register_name (gdbarch, insn.operands[i].value));
548 /* Don't know if this value is signed or not, so print both
549 representations. This tends to look quite ugly, especially for big
550 numbers. */
551 arc_print ("\t\tunsigned value = %s\n",
552 pulongest (arc_insn_get_operand_value (insn, i)));
553 arc_print ("\t\tsigned value = %s\n",
554 plongest (arc_insn_get_operand_value_signed (insn, i)));
555 arc_print ("\t}\n");
556 }
557 }
558
559 CORE_ADDR
560 arc_insn_get_linear_next_pc (const struct arc_instruction &insn)
561 {
562 /* In ARC long immediate is always 4 bytes. */
563 return (insn.address + insn.length + (insn.limm_p ? 4 : 0));
564 }
565
566 /* Implement the "write_pc" gdbarch method.
567
568 In ARC PC register is a normal register so in most cases setting PC value
569 is a straightforward process: debugger just writes PC value. However it
570 gets trickier in case when current instruction is an instruction in delay
571 slot. In this case CPU will execute instruction at current PC value, then
572 will set PC to the current value of BTA register; also current instruction
573 cannot be branch/jump and some of the other instruction types. Thus if
574 debugger would try to just change PC value in this case, this instruction
575 will get executed, but then core will "jump" to the original branch target.
576
577 Whether current instruction is a delay-slot instruction or not is indicated
578 by DE bit in STATUS32 register indicates if current instruction is a delay
579 slot instruction. This bit is writable by debug host, which allows debug
580 host to prevent core from jumping after the delay slot instruction. It
581 also works in another direction: setting this bit will make core to treat
582 any current instructions as a delay slot instruction and to set PC to the
583 current value of BTA register.
584
585 To workaround issues with changing PC register while in delay slot
586 instruction, debugger should check for the STATUS32.DE bit and reset it if
587 it is set. No other change is required in this function. Most common
588 case, where this function might be required is calling inferior functions
589 from debugger. Generic GDB logic handles this pretty well: current values
590 of registers are stored, value of PC is changed (that is the job of this
591 function), and after inferior function is executed, GDB restores all
592 registers, include BTA and STATUS32, which also means that core is returned
593 to its original state of being halted on delay slot instructions.
594
595 This method is useless for ARC 600, because it doesn't have externally
596 exposed BTA register. In the case of ARC 600 it is impossible to restore
597 core to its state in all occasions thus core should never be halted (from
598 the perspective of debugger host) in the delay slot. */
599
600 static void
601 arc_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
602 {
603 struct gdbarch *gdbarch = regcache->arch ();
604
605 arc_debug_printf ("Writing PC, new value=%s",
606 paddress (gdbarch, new_pc));
607
608 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch),
609 new_pc);
610
611 ULONGEST status32;
612 regcache_cooked_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
613 &status32);
614
615 if ((status32 & ARC_STATUS32_DE_MASK) != 0)
616 {
617 arc_debug_printf ("Changing PC while in delay slot. Will "
618 "reset STATUS32.DE bit to zero. Value of STATUS32 "
619 "register is 0x%s",
620 phex (status32, ARC_REGISTER_SIZE));
621
622 /* Reset bit and write to the cache. */
623 status32 &= ~0x40;
624 regcache_cooked_write_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
625 status32);
626 }
627 }
628
629 /* Implement the "virtual_frame_pointer" gdbarch method.
630
631 According to ABI the FP (r27) is used to point to the middle of the current
632 stack frame, just below the saved FP and before local variables, register
633 spill area and outgoing args. However for optimization levels above O2 and
634 in any case in leaf functions, the frame pointer is usually not set at all.
635 The exception being when handling nested functions.
636
637 We use this function to return a "virtual" frame pointer, marking the start
638 of the current stack frame as a register-offset pair. If the FP is not
639 being used, then it should return SP, with an offset of the frame size.
640
641 The current implementation doesn't actually know the frame size, nor
642 whether the FP is actually being used, so for now we just return SP and an
643 offset of zero. This is no worse than other architectures, but is needed
644 to avoid assertion failures.
645
646 TODO: Can we determine the frame size to get a correct offset?
647
648 PC is a program counter where we need the virtual FP. REG_PTR is the base
649 register used for the virtual FP. OFFSET_PTR is the offset used for the
650 virtual FP. */
651
652 static void
653 arc_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
654 int *reg_ptr, LONGEST *offset_ptr)
655 {
656 *reg_ptr = gdbarch_sp_regnum (gdbarch);
657 *offset_ptr = 0;
658 }
659
660 /* Implement the "push_dummy_call" gdbarch method.
661
662 Stack Frame Layout
663
664 This shows the layout of the stack frame for the general case of a
665 function call; a given function might not have a variable number of
666 arguments or local variables, or might not save any registers, so it would
667 not have the corresponding frame areas. Additionally, a leaf function
668 (i.e. one which calls no other functions) does not need to save the
669 contents of the BLINK register (which holds its return address), and a
670 function might not have a frame pointer.
671
672 The stack grows downward, so SP points below FP in memory; SP always
673 points to the last used word on the stack, not the first one.
674
675 | | |
676 | arg word N | | caller's
677 | : | | frame
678 | arg word 10 | |
679 | arg word 9 | |
680 old SP ---> +-----------------------+ --+
681 | | |
682 | callee-saved | |
683 | registers | |
684 | including fp, blink | |
685 | | | callee's
686 new FP ---> +-----------------------+ | frame
687 | | |
688 | local | |
689 | variables | |
690 | | |
691 | register | |
692 | spill area | |
693 | | |
694 | outgoing args | |
695 | | |
696 new SP ---> +-----------------------+ --+
697 | |
698 | unused |
699 | |
700 |
701 |
702 V
703 downwards
704
705 The list of arguments to be passed to a function is considered to be a
706 sequence of _N_ words (as though all the parameters were stored in order in
707 memory with each parameter occupying an integral number of words). Words
708 1..8 are passed in registers 0..7; if the function has more than 8 words of
709 arguments then words 9..@em N are passed on the stack in the caller's frame.
710
711 If the function has a variable number of arguments, e.g. it has a form such
712 as `function (p1, p2, ...);' and _P_ words are required to hold the values
713 of the named parameters (which are passed in registers 0..@em P -1), then
714 the remaining 8 - _P_ words passed in registers _P_..7 are spilled into the
715 top of the frame so that the anonymous parameter words occupy a continuous
716 region.
717
718 Any arguments are already in target byte order. We just need to store
719 them!
720
721 BP_ADDR is the return address where breakpoint must be placed. NARGS is
722 the number of arguments to the function. ARGS is the arguments values (in
723 target byte order). SP is the Current value of SP register. STRUCT_RETURN
724 is TRUE if structures are returned by the function. STRUCT_ADDR is the
725 hidden address for returning a struct. Returns SP of a new frame. */
726
727 static CORE_ADDR
728 arc_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
729 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
730 struct value **args, CORE_ADDR sp,
731 function_call_return_method return_method,
732 CORE_ADDR struct_addr)
733 {
734 arc_debug_printf ("nargs = %d", nargs);
735
736 int arg_reg = ARC_FIRST_ARG_REGNUM;
737
738 /* Push the return address. */
739 regcache_cooked_write_unsigned (regcache, ARC_BLINK_REGNUM, bp_addr);
740
741 /* Are we returning a value using a structure return instead of a normal
742 value return? If so, struct_addr is the address of the reserved space for
743 the return structure to be written on the stack, and that address is
744 passed to that function as a hidden first argument. */
745 if (return_method == return_method_struct)
746 {
747 /* Pass the return address in the first argument register. */
748 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
749
750 arc_debug_printf ("struct return address %s passed in R%d",
751 print_core_address (gdbarch, struct_addr), arg_reg);
752
753 arg_reg++;
754 }
755
756 if (nargs > 0)
757 {
758 unsigned int total_space = 0;
759
760 /* How much space do the arguments occupy in total? Must round each
761 argument's size up to an integral number of words. */
762 for (int i = 0; i < nargs; i++)
763 {
764 unsigned int len = TYPE_LENGTH (value_type (args[i]));
765 unsigned int space = align_up (len, 4);
766
767 total_space += space;
768
769 arc_debug_printf ("arg %d: %u bytes -> %u", i, len, space);
770 }
771
772 /* Allocate a buffer to hold a memory image of the arguments. */
773 gdb_byte *memory_image = XCNEWVEC (gdb_byte, total_space);
774
775 /* Now copy all of the arguments into the buffer, correctly aligned. */
776 gdb_byte *data = memory_image;
777 for (int i = 0; i < nargs; i++)
778 {
779 unsigned int len = TYPE_LENGTH (value_type (args[i]));
780 unsigned int space = align_up (len, 4);
781
782 memcpy (data, value_contents (args[i]).data (), (size_t) len);
783 arc_debug_printf ("copying arg %d, val 0x%08x, len %d to mem",
784 i, *((int *) value_contents (args[i]).data ()),
785 len);
786
787 data += space;
788 }
789
790 /* Now load as much as possible of the memory image into registers. */
791 data = memory_image;
792 while (arg_reg <= ARC_LAST_ARG_REGNUM)
793 {
794 arc_debug_printf ("passing 0x%02x%02x%02x%02x in register R%d",
795 data[0], data[1], data[2], data[3], arg_reg);
796
797 /* Note we don't use write_unsigned here, since that would convert
798 the byte order, but we are already in the correct byte order. */
799 regcache->cooked_write (arg_reg, data);
800
801 data += ARC_REGISTER_SIZE;
802 total_space -= ARC_REGISTER_SIZE;
803
804 /* All the data is now in registers. */
805 if (total_space == 0)
806 break;
807
808 arg_reg++;
809 }
810
811 /* If there is any data left, push it onto the stack (in a single write
812 operation). */
813 if (total_space > 0)
814 {
815 arc_debug_printf ("passing %d bytes on stack\n", total_space);
816
817 sp -= total_space;
818 write_memory (sp, data, (int) total_space);
819 }
820
821 xfree (memory_image);
822 }
823
824 /* Finally, update the SP register. */
825 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
826
827 return sp;
828 }
829
830 /* Implement the "push_dummy_code" gdbarch method.
831
832 We don't actually push any code. We just identify where a breakpoint can
833 be inserted to which we are can return and the resume address where we
834 should be called.
835
836 ARC does not necessarily have an executable stack, so we can't put the
837 return breakpoint there. Instead we put it at the entry point of the
838 function. This means the SP is unchanged.
839
840 SP is a current stack pointer FUNADDR is an address of the function to be
841 called. ARGS is arguments to pass. NARGS is a number of args to pass.
842 VALUE_TYPE is a type of value returned. REAL_PC is a resume address when
843 the function is called. BP_ADDR is an address where breakpoint should be
844 set. Returns the updated stack pointer. */
845
846 static CORE_ADDR
847 arc_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
848 struct value **args, int nargs, struct type *value_type,
849 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
850 struct regcache *regcache)
851 {
852 *real_pc = funaddr;
853 *bp_addr = entry_point_address ();
854 return sp;
855 }
856
857 /* Implement the "cannot_fetch_register" gdbarch method. */
858
859 static int
860 arc_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
861 {
862 /* Assume that register is readable if it is unknown. LIMM and RESERVED are
863 not real registers, but specific register numbers. They are available as
864 regnums to align architectural register numbers with GDB internal regnums,
865 but they shouldn't appear in target descriptions generated by
866 GDB-servers. */
867 switch (regnum)
868 {
869 case ARC_RESERVED_REGNUM:
870 case ARC_LIMM_REGNUM:
871 return true;
872 default:
873 return false;
874 }
875 }
876
877 /* Implement the "cannot_store_register" gdbarch method. */
878
879 static int
880 arc_cannot_store_register (struct gdbarch *gdbarch, int regnum)
881 {
882 /* Assume that register is writable if it is unknown. See comment in
883 arc_cannot_fetch_register about LIMM and RESERVED. */
884 switch (regnum)
885 {
886 case ARC_RESERVED_REGNUM:
887 case ARC_LIMM_REGNUM:
888 case ARC_PCL_REGNUM:
889 return true;
890 default:
891 return false;
892 }
893 }
894
895 /* Get the return value of a function from the registers/memory used to
896 return it, according to the convention used by the ABI - 4-bytes values are
897 in the R0, while 8-byte values are in the R0-R1.
898
899 TODO: This implementation ignores the case of "complex double", where
900 according to ABI, value is returned in the R0-R3 registers.
901
902 TYPE is a returned value's type. VALBUF is a buffer for the returned
903 value. */
904
905 static void
906 arc_extract_return_value (struct gdbarch *gdbarch, struct type *type,
907 struct regcache *regcache, gdb_byte *valbuf)
908 {
909 unsigned int len = TYPE_LENGTH (type);
910
911 arc_debug_printf ("called");
912
913 if (len <= ARC_REGISTER_SIZE)
914 {
915 ULONGEST val;
916
917 /* Get the return value from one register. */
918 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &val);
919 store_unsigned_integer (valbuf, (int) len,
920 gdbarch_byte_order (gdbarch), val);
921
922 arc_debug_printf ("returning 0x%s", phex (val, ARC_REGISTER_SIZE));
923 }
924 else if (len <= ARC_REGISTER_SIZE * 2)
925 {
926 ULONGEST low, high;
927
928 /* Get the return value from two registers. */
929 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &low);
930 regcache_cooked_read_unsigned (regcache, ARC_R1_REGNUM, &high);
931
932 store_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
933 gdbarch_byte_order (gdbarch), low);
934 store_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
935 (int) len - ARC_REGISTER_SIZE,
936 gdbarch_byte_order (gdbarch), high);
937
938 arc_debug_printf ("returning 0x%s%s",
939 phex (high, ARC_REGISTER_SIZE),
940 phex (low, ARC_REGISTER_SIZE));
941 }
942 else
943 error (_("arc: extract_return_value: type length %u too large"), len);
944 }
945
946
947 /* Store the return value of a function into the registers/memory used to
948 return it, according to the convention used by the ABI.
949
950 TODO: This implementation ignores the case of "complex double", where
951 according to ABI, value is returned in the R0-R3 registers.
952
953 TYPE is a returned value's type. VALBUF is a buffer with the value to
954 return. */
955
956 static void
957 arc_store_return_value (struct gdbarch *gdbarch, struct type *type,
958 struct regcache *regcache, const gdb_byte *valbuf)
959 {
960 unsigned int len = TYPE_LENGTH (type);
961
962 arc_debug_printf ("called");
963
964 if (len <= ARC_REGISTER_SIZE)
965 {
966 ULONGEST val;
967
968 /* Put the return value into one register. */
969 val = extract_unsigned_integer (valbuf, (int) len,
970 gdbarch_byte_order (gdbarch));
971 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, val);
972
973 arc_debug_printf ("storing 0x%s", phex (val, ARC_REGISTER_SIZE));
974 }
975 else if (len <= ARC_REGISTER_SIZE * 2)
976 {
977 ULONGEST low, high;
978
979 /* Put the return value into two registers. */
980 low = extract_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
981 gdbarch_byte_order (gdbarch));
982 high = extract_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
983 (int) len - ARC_REGISTER_SIZE,
984 gdbarch_byte_order (gdbarch));
985
986 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, low);
987 regcache_cooked_write_unsigned (regcache, ARC_R1_REGNUM, high);
988
989 arc_debug_printf ("storing 0x%s%s",
990 phex (high, ARC_REGISTER_SIZE),
991 phex (low, ARC_REGISTER_SIZE));
992 }
993 else
994 error (_("arc_store_return_value: type length too large."));
995 }
996
997 /* Implement the "get_longjmp_target" gdbarch method. */
998
999 static int
1000 arc_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1001 {
1002 arc_debug_printf ("called");
1003
1004 struct gdbarch *gdbarch = get_frame_arch (frame);
1005 arc_gdbarch_tdep *tdep = (arc_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1006 int pc_offset = tdep->jb_pc * ARC_REGISTER_SIZE;
1007 gdb_byte buf[ARC_REGISTER_SIZE];
1008 CORE_ADDR jb_addr = get_frame_register_unsigned (frame, ARC_FIRST_ARG_REGNUM);
1009
1010 if (target_read_memory (jb_addr + pc_offset, buf, ARC_REGISTER_SIZE))
1011 return 0; /* Failed to read from memory. */
1012
1013 *pc = extract_unsigned_integer (buf, ARC_REGISTER_SIZE,
1014 gdbarch_byte_order (gdbarch));
1015 return 1;
1016 }
1017
1018 /* Implement the "return_value" gdbarch method. */
1019
1020 static enum return_value_convention
1021 arc_return_value (struct gdbarch *gdbarch, struct value *function,
1022 struct type *valtype, struct regcache *regcache,
1023 gdb_byte *readbuf, const gdb_byte *writebuf)
1024 {
1025 /* If the return type is a struct, or a union, or would occupy more than two
1026 registers, the ABI uses the "struct return convention": the calling
1027 function passes a hidden first parameter to the callee (in R0). That
1028 parameter is the address at which the value being returned should be
1029 stored. Otherwise, the result is returned in registers. */
1030 int is_struct_return = (valtype->code () == TYPE_CODE_STRUCT
1031 || valtype->code () == TYPE_CODE_UNION
1032 || TYPE_LENGTH (valtype) > 2 * ARC_REGISTER_SIZE);
1033
1034 arc_debug_printf ("readbuf = %s, writebuf = %s",
1035 host_address_to_string (readbuf),
1036 host_address_to_string (writebuf));
1037
1038 if (writebuf != NULL)
1039 {
1040 /* Case 1. GDB should not ask us to set a struct return value: it
1041 should know the struct return location and write the value there
1042 itself. */
1043 gdb_assert (!is_struct_return);
1044 arc_store_return_value (gdbarch, valtype, regcache, writebuf);
1045 }
1046 else if (readbuf != NULL)
1047 {
1048 /* Case 2. GDB should not ask us to get a struct return value: it
1049 should know the struct return location and read the value from there
1050 itself. */
1051 gdb_assert (!is_struct_return);
1052 arc_extract_return_value (gdbarch, valtype, regcache, readbuf);
1053 }
1054
1055 return (is_struct_return
1056 ? RETURN_VALUE_STRUCT_CONVENTION
1057 : RETURN_VALUE_REGISTER_CONVENTION);
1058 }
1059
1060 /* Return the base address of the frame. For ARC, the base address is the
1061 frame pointer. */
1062
1063 static CORE_ADDR
1064 arc_frame_base_address (struct frame_info *this_frame, void **prologue_cache)
1065 {
1066 return (CORE_ADDR) get_frame_register_unsigned (this_frame, ARC_FP_REGNUM);
1067 }
1068
1069 /* Helper function that returns valid pv_t for an instruction operand:
1070 either a register or a constant. */
1071
1072 static pv_t
1073 arc_pv_get_operand (pv_t *regs, const struct arc_instruction &insn, int operand)
1074 {
1075 if (insn.operands[operand].kind == ARC_OPERAND_KIND_REG)
1076 return regs[insn.operands[operand].value];
1077 else
1078 return pv_constant (arc_insn_get_operand_value (insn, operand));
1079 }
1080
1081 /* Determine whether the given disassembled instruction may be part of a
1082 function prologue. If it is, the information in the frame unwind cache will
1083 be updated. */
1084
1085 static bool
1086 arc_is_in_prologue (struct gdbarch *gdbarch, const struct arc_instruction &insn,
1087 pv_t *regs, struct pv_area *stack)
1088 {
1089 /* It might be that currently analyzed address doesn't contain an
1090 instruction, hence INSN is not valid. It likely means that address points
1091 to a data, non-initialized memory, or middle of a 32-bit instruction. In
1092 practice this may happen if GDB connects to a remote target that has
1093 non-zeroed memory. GDB would read PC value and would try to analyze
1094 prologue, but there is no guarantee that memory contents at the address
1095 specified in PC is address is a valid instruction. There is not much that
1096 that can be done about that. */
1097 if (!insn.valid)
1098 return false;
1099
1100 /* Branch/jump or a predicated instruction. */
1101 if (insn.is_control_flow || insn.condition_code != ARC_CC_AL)
1102 return false;
1103
1104 /* Store of some register. May or may not update base address register. */
1105 if (insn.insn_class == STORE || insn.insn_class == PUSH)
1106 {
1107 /* There is definitely at least one operand - register/value being
1108 stored. */
1109 gdb_assert (insn.operands_count > 0);
1110
1111 /* Store at some constant address. */
1112 if (insn.operands_count > 1
1113 && insn.operands[1].kind != ARC_OPERAND_KIND_REG)
1114 return false;
1115
1116 /* Writeback modes:
1117 Mode Address used Writeback value
1118 --------------------------------------------------
1119 No reg + offset no
1120 A/AW reg + offset reg + offset
1121 AB reg reg + offset
1122 AS reg + (offset << scaling) no
1123
1124 "PUSH reg" is an alias to "ST.AW reg, [SP, -4]" encoding. However
1125 16-bit PUSH_S is a distinct instruction encoding, where offset and
1126 base register are implied through opcode. */
1127
1128 /* Register with base memory address. */
1129 int base_reg = arc_insn_get_memory_base_reg (insn);
1130
1131 /* Address where to write. arc_insn_get_memory_offset returns scaled
1132 value for ARC_WRITEBACK_AS. */
1133 pv_t addr;
1134 if (insn.writeback_mode == ARC_WRITEBACK_AB)
1135 addr = regs[base_reg];
1136 else
1137 addr = pv_add_constant (regs[base_reg],
1138 arc_insn_get_memory_offset (insn));
1139
1140 if (stack->store_would_trash (addr))
1141 return false;
1142
1143 if (insn.data_size_mode != ARC_SCALING_D)
1144 {
1145 /* Find the value being stored. */
1146 pv_t store_value = arc_pv_get_operand (regs, insn, 0);
1147
1148 /* What is the size of a the stored value? */
1149 CORE_ADDR size;
1150 if (insn.data_size_mode == ARC_SCALING_B)
1151 size = 1;
1152 else if (insn.data_size_mode == ARC_SCALING_H)
1153 size = 2;
1154 else
1155 size = ARC_REGISTER_SIZE;
1156
1157 stack->store (addr, size, store_value);
1158 }
1159 else
1160 {
1161 if (insn.operands[0].kind == ARC_OPERAND_KIND_REG)
1162 {
1163 /* If this is a double store, than write N+1 register as well. */
1164 pv_t store_value1 = regs[insn.operands[0].value];
1165 pv_t store_value2 = regs[insn.operands[0].value + 1];
1166 stack->store (addr, ARC_REGISTER_SIZE, store_value1);
1167 stack->store (pv_add_constant (addr, ARC_REGISTER_SIZE),
1168 ARC_REGISTER_SIZE, store_value2);
1169 }
1170 else
1171 {
1172 pv_t store_value
1173 = pv_constant (arc_insn_get_operand_value (insn, 0));
1174 stack->store (addr, ARC_REGISTER_SIZE * 2, store_value);
1175 }
1176 }
1177
1178 /* Is base register updated? */
1179 if (insn.writeback_mode == ARC_WRITEBACK_A
1180 || insn.writeback_mode == ARC_WRITEBACK_AB)
1181 regs[base_reg] = pv_add_constant (regs[base_reg],
1182 arc_insn_get_memory_offset (insn));
1183
1184 return true;
1185 }
1186 else if (insn.insn_class == MOVE)
1187 {
1188 gdb_assert (insn.operands_count == 2);
1189
1190 /* Destination argument can be "0", so nothing will happen. */
1191 if (insn.operands[0].kind == ARC_OPERAND_KIND_REG)
1192 {
1193 int dst_regnum = insn.operands[0].value;
1194 regs[dst_regnum] = arc_pv_get_operand (regs, insn, 1);
1195 }
1196 return true;
1197 }
1198 else if (insn.insn_class == SUB)
1199 {
1200 gdb_assert (insn.operands_count == 3);
1201
1202 /* SUB 0,b,c. */
1203 if (insn.operands[0].kind != ARC_OPERAND_KIND_REG)
1204 return true;
1205
1206 int dst_regnum = insn.operands[0].value;
1207 regs[dst_regnum] = pv_subtract (arc_pv_get_operand (regs, insn, 1),
1208 arc_pv_get_operand (regs, insn, 2));
1209 return true;
1210 }
1211 else if (insn.insn_class == ENTER)
1212 {
1213 /* ENTER_S is a prologue-in-instruction - it saves all callee-saved
1214 registers according to given arguments thus greatly reducing code
1215 size. Which registers will be actually saved depends on arguments.
1216
1217 ENTER_S {R13-...,FP,BLINK} stores registers in following order:
1218
1219 new SP ->
1220 BLINK
1221 R13
1222 R14
1223 R15
1224 ...
1225 FP
1226 old SP ->
1227
1228 There are up to three arguments for this opcode, as presented by ARC
1229 disassembler:
1230 1) amount of general-purpose registers to be saved - this argument is
1231 always present even when it is 0;
1232 2) FP register number (27) if FP has to be stored, otherwise argument
1233 is not present;
1234 3) BLINK register number (31) if BLINK has to be stored, otherwise
1235 argument is not present. If both FP and BLINK are stored, then FP
1236 is present before BLINK in argument list. */
1237 gdb_assert (insn.operands_count > 0);
1238
1239 int regs_saved = arc_insn_get_operand_value (insn, 0);
1240
1241 bool is_fp_saved;
1242 if (insn.operands_count > 1)
1243 is_fp_saved = (insn.operands[1].value == ARC_FP_REGNUM);
1244 else
1245 is_fp_saved = false;
1246
1247 bool is_blink_saved;
1248 if (insn.operands_count > 1)
1249 is_blink_saved = (insn.operands[insn.operands_count - 1].value
1250 == ARC_BLINK_REGNUM);
1251 else
1252 is_blink_saved = false;
1253
1254 /* Amount of bytes to be allocated to store specified registers. */
1255 CORE_ADDR st_size = ((regs_saved + is_fp_saved + is_blink_saved)
1256 * ARC_REGISTER_SIZE);
1257 pv_t new_sp = pv_add_constant (regs[ARC_SP_REGNUM], -st_size);
1258
1259 /* Assume that if the last register (closest to new SP) can be written,
1260 then it is possible to write all of them. */
1261 if (stack->store_would_trash (new_sp))
1262 return false;
1263
1264 /* Current store address. */
1265 pv_t addr = regs[ARC_SP_REGNUM];
1266
1267 if (is_fp_saved)
1268 {
1269 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
1270 stack->store (addr, ARC_REGISTER_SIZE, regs[ARC_FP_REGNUM]);
1271 }
1272
1273 /* Registers are stored in backward order: from GP (R26) to R13. */
1274 for (int i = ARC_R13_REGNUM + regs_saved - 1; i >= ARC_R13_REGNUM; i--)
1275 {
1276 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
1277 stack->store (addr, ARC_REGISTER_SIZE, regs[i]);
1278 }
1279
1280 if (is_blink_saved)
1281 {
1282 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
1283 stack->store (addr, ARC_REGISTER_SIZE,
1284 regs[ARC_BLINK_REGNUM]);
1285 }
1286
1287 gdb_assert (pv_is_identical (addr, new_sp));
1288
1289 regs[ARC_SP_REGNUM] = new_sp;
1290
1291 if (is_fp_saved)
1292 regs[ARC_FP_REGNUM] = regs[ARC_SP_REGNUM];
1293
1294 return true;
1295 }
1296
1297 /* Some other architectures, like nds32 or arm, try to continue as far as
1298 possible when building a prologue cache (as opposed to when skipping
1299 prologue), so that cache will be as full as possible. However current
1300 code for ARC doesn't recognize some instructions that may modify SP, like
1301 ADD, AND, OR, etc, hence there is no way to guarantee that SP wasn't
1302 clobbered by the skipped instruction. Potential existence of extension
1303 instruction, which may do anything they want makes this even more complex,
1304 so it is just better to halt on a first unrecognized instruction. */
1305
1306 return false;
1307 }
1308
1309 /* See arc-tdep.h. */
1310
1311 struct disassemble_info
1312 arc_disassemble_info (struct gdbarch *gdbarch)
1313 {
1314 struct disassemble_info di;
1315 init_disassemble_info_for_no_printing (&di);
1316 di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1317 di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1318 di.endian = gdbarch_byte_order (gdbarch);
1319 di.read_memory_func = [](bfd_vma memaddr, gdb_byte *myaddr,
1320 unsigned int len, struct disassemble_info *info)
1321 {
1322 return target_read_code (memaddr, myaddr, len);
1323 };
1324 return di;
1325 }
1326
1327 /* Analyze the prologue and update the corresponding frame cache for the frame
1328 unwinder for unwinding frames that doesn't have debug info. In such
1329 situation GDB attempts to parse instructions in the prologue to understand
1330 where each register is saved.
1331
1332 If CACHE is not NULL, then it will be filled with information about saved
1333 registers.
1334
1335 There are several variations of prologue which GDB may encounter. "Full"
1336 prologue looks like this:
1337
1338 sub sp,sp,<imm> ; Space for variadic arguments.
1339 push blink ; Store return address.
1340 push r13 ; Store callee saved registers (up to R26/GP).
1341 push r14
1342 push fp ; Store frame pointer.
1343 mov fp,sp ; Update frame pointer.
1344 sub sp,sp,<imm> ; Create space for local vars on the stack.
1345
1346 Depending on compiler options lots of things may change:
1347
1348 1) BLINK is not saved in leaf functions.
1349 2) Frame pointer is not saved and updated if -fomit-frame-pointer is used.
1350 3) 16-bit versions of those instructions may be used.
1351 4) Instead of a sequence of several push'es, compiler may instead prefer to
1352 do one subtract on stack pointer and then store registers using normal
1353 store, that doesn't update SP. Like this:
1354
1355
1356 sub sp,sp,8 ; Create space for callee-saved registers.
1357 st r13,[sp,4] ; Store callee saved registers (up to R26/GP).
1358 st r14,[sp,0]
1359
1360 5) ENTER_S instruction can encode most of prologue sequence in one
1361 instruction (except for those subtracts for variadic arguments and local
1362 variables).
1363 6) GCC may use "millicode" functions from libgcc to store callee-saved
1364 registers with minimal code-size requirements. This function currently
1365 doesn't support this.
1366
1367 ENTRYPOINT is a function entry point where prologue starts.
1368
1369 LIMIT_PC is a maximum possible end address of prologue (meaning address
1370 of first instruction after the prologue). It might also point to the middle
1371 of prologue if execution has been stopped by the breakpoint at this address
1372 - in this case debugger should analyze prologue only up to this address,
1373 because further instructions haven't been executed yet.
1374
1375 Returns address of the first instruction after the prologue. */
1376
1377 static CORE_ADDR
1378 arc_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR entrypoint,
1379 const CORE_ADDR limit_pc, struct arc_frame_cache *cache)
1380 {
1381 arc_debug_printf ("entrypoint=%s, limit_pc=%s",
1382 paddress (gdbarch, entrypoint),
1383 paddress (gdbarch, limit_pc));
1384
1385 /* Prologue values. Only core registers can be stored. */
1386 pv_t regs[ARC_LAST_CORE_REGNUM + 1];
1387 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1388 regs[i] = pv_register (i, 0);
1389 pv_area stack (ARC_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1390
1391 CORE_ADDR current_prologue_end = entrypoint;
1392
1393 /* Look at each instruction in the prologue. */
1394 while (current_prologue_end < limit_pc)
1395 {
1396 struct arc_instruction insn;
1397 struct disassemble_info di = arc_disassemble_info (gdbarch);
1398 arc_insn_decode (current_prologue_end, &di, arc_delayed_print_insn,
1399 &insn);
1400
1401 if (arc_debug)
1402 arc_insn_dump (insn);
1403
1404 /* If this instruction is in the prologue, fields in the cache will be
1405 updated, and the saved registers mask may be updated. */
1406 if (!arc_is_in_prologue (gdbarch, insn, regs, &stack))
1407 {
1408 /* Found an instruction that is not in the prologue. */
1409 arc_debug_printf ("End of prologue reached at address %s",
1410 paddress (gdbarch, insn.address));
1411 break;
1412 }
1413
1414 current_prologue_end = arc_insn_get_linear_next_pc (insn);
1415 }
1416
1417 if (cache != NULL)
1418 {
1419 /* Figure out if it is a frame pointer or just a stack pointer. */
1420 if (pv_is_register (regs[ARC_FP_REGNUM], ARC_SP_REGNUM))
1421 {
1422 cache->frame_base_reg = ARC_FP_REGNUM;
1423 cache->frame_base_offset = -regs[ARC_FP_REGNUM].k;
1424 }
1425 else
1426 {
1427 cache->frame_base_reg = ARC_SP_REGNUM;
1428 cache->frame_base_offset = -regs[ARC_SP_REGNUM].k;
1429 }
1430
1431 /* Assign offset from old SP to all saved registers. */
1432 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1433 {
1434 CORE_ADDR offset;
1435 if (stack.find_reg (gdbarch, i, &offset))
1436 cache->saved_regs[i].set_addr (offset);
1437 }
1438 }
1439
1440 return current_prologue_end;
1441 }
1442
1443 /* Estimated maximum prologue length in bytes. This should include:
1444 1) Store instruction for each callee-saved register (R25 - R13 + 1)
1445 2) Two instructions for FP
1446 3) One for BLINK
1447 4) Three substract instructions for SP (for variadic args, for
1448 callee saved regs and for local vars) and assuming that those SUB use
1449 long-immediate (hence double length).
1450 5) Stores of arguments registers are considered part of prologue too
1451 (R7 - R1 + 1).
1452 This is quite an extreme case, because even with -O0 GCC will collapse first
1453 two SUBs into one and long immediate values are quite unlikely to appear in
1454 this case, but still better to overshoot a bit - prologue analysis will
1455 anyway stop at the first instruction that doesn't fit prologue, so this
1456 limit will be rarely reached. */
1457
1458 const static int MAX_PROLOGUE_LENGTH
1459 = 4 * (ARC_R25_REGNUM - ARC_R13_REGNUM + 1 + 2 + 1 + 6
1460 + ARC_LAST_ARG_REGNUM - ARC_FIRST_ARG_REGNUM + 1);
1461
1462 /* Implement the "skip_prologue" gdbarch method.
1463
1464 Skip the prologue for the function at PC. This is done by checking from
1465 the line information read from the DWARF, if possible; otherwise, we scan
1466 the function prologue to find its end. */
1467
1468 static CORE_ADDR
1469 arc_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1470 {
1471 arc_debug_printf ("pc = %s", paddress (gdbarch, pc));
1472
1473 CORE_ADDR func_addr;
1474 const char *func_name;
1475
1476 /* See what the symbol table says. */
1477 if (find_pc_partial_function (pc, &func_name, &func_addr, NULL))
1478 {
1479 /* Found a function. */
1480 CORE_ADDR postprologue_pc
1481 = skip_prologue_using_sal (gdbarch, func_addr);
1482
1483 if (postprologue_pc != 0)
1484 return std::max (pc, postprologue_pc);
1485 }
1486
1487 /* No prologue info in symbol table, have to analyze prologue. */
1488
1489 /* Find an upper limit on the function prologue using the debug
1490 information. If there is no debug information about prologue end, then
1491 skip_prologue_using_sal will return 0. */
1492 CORE_ADDR limit_pc = skip_prologue_using_sal (gdbarch, pc);
1493
1494 /* If there is no debug information at all, it is required to give some
1495 semi-arbitrary hard limit on amount of bytes to scan during prologue
1496 analysis. */
1497 if (limit_pc == 0)
1498 limit_pc = pc + MAX_PROLOGUE_LENGTH;
1499
1500 /* Find the address of the first instruction after the prologue by scanning
1501 through it - no other information is needed, so pass NULL as a cache. */
1502 return arc_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1503 }
1504
1505 /* Implement the "print_insn" gdbarch method.
1506
1507 arc_get_disassembler () may return different functions depending on bfd
1508 type, so it is not possible to pass print_insn directly to
1509 set_gdbarch_print_insn (). Instead this wrapper function is used. It also
1510 may be used by other functions to get disassemble_info for address. It is
1511 important to note, that those print_insn from opcodes always print
1512 instruction to the stream specified in the INFO. If this is not desired,
1513 then either `print_insn` function in INFO should be set to some function
1514 that will not print, or `stream` should be different from standard
1515 gdb_stdlog. */
1516
1517 int
1518 arc_delayed_print_insn (bfd_vma addr, struct disassemble_info *info)
1519 {
1520 /* Standard BFD "machine number" field allows libopcodes disassembler to
1521 distinguish ARC 600, 700 and v2 cores, however v2 encompasses both ARC EM
1522 and HS, which have some difference between. There are two ways to specify
1523 what is the target core:
1524 1) via the disassemble_info->disassembler_options;
1525 2) otherwise libopcodes will use private (architecture-specific) ELF
1526 header.
1527
1528 Using disassembler_options is preferable, because it comes directly from
1529 GDBserver which scanned an actual ARC core identification info. However,
1530 not all GDBservers report core architecture, so as a fallback GDB still
1531 should support analysis of ELF header. The libopcodes disassembly code
1532 uses the section to find the BFD and the BFD to find the ELF header,
1533 therefore this function should set disassemble_info->section properly.
1534
1535 disassembler_options was already set by non-target specific code with
1536 proper options obtained via gdbarch_disassembler_options ().
1537
1538 This function might be called multiple times in a sequence, reusing same
1539 disassemble_info. */
1540 if ((info->disassembler_options == NULL) && (info->section == NULL))
1541 {
1542 struct obj_section *s = find_pc_section (addr);
1543 if (s != NULL)
1544 info->section = s->the_bfd_section;
1545 }
1546
1547 return default_print_insn (addr, info);
1548 }
1549
1550 /* Baremetal breakpoint instructions.
1551
1552 ARC supports both big- and little-endian. However, instructions for
1553 little-endian processors are encoded in the middle-endian: half-words are
1554 in big-endian, while bytes inside the half-words are in little-endian; data
1555 is represented in the "normal" little-endian. Big-endian processors treat
1556 data and code identically.
1557
1558 Assuming the number 0x01020304, it will be presented this way:
1559
1560 Address : N N+1 N+2 N+3
1561 little-endian : 0x04 0x03 0x02 0x01
1562 big-endian : 0x01 0x02 0x03 0x04
1563 ARC middle-endian : 0x02 0x01 0x04 0x03
1564 */
1565
1566 static const gdb_byte arc_brk_s_be[] = { 0x7f, 0xff };
1567 static const gdb_byte arc_brk_s_le[] = { 0xff, 0x7f };
1568 static const gdb_byte arc_brk_be[] = { 0x25, 0x6f, 0x00, 0x3f };
1569 static const gdb_byte arc_brk_le[] = { 0x6f, 0x25, 0x3f, 0x00 };
1570
1571 /* For ARC ELF, breakpoint uses the 16-bit BRK_S instruction, which is 0x7fff
1572 (little endian) or 0xff7f (big endian). We used to insert BRK_S even
1573 instead of 32-bit instructions, which works mostly ok, unless breakpoint is
1574 inserted into delay slot instruction. In this case if branch is taken
1575 BLINK value will be set to address of instruction after delay slot, however
1576 if we replaced 32-bit instruction in delay slot with 16-bit long BRK_S,
1577 then BLINK value will have an invalid value - it will point to the address
1578 after the BRK_S (which was there at the moment of branch execution) while
1579 it should point to the address after the 32-bit long instruction. To avoid
1580 such issues this function disassembles instruction at target location and
1581 evaluates it value.
1582
1583 ARC 600 supports only 16-bit BRK_S.
1584
1585 NB: Baremetal GDB uses BRK[_S], while user-space GDB uses TRAP_S. BRK[_S]
1586 is much better because it doesn't commit unlike TRAP_S, so it can be set in
1587 delay slots; however it cannot be used in user-mode, hence usage of TRAP_S
1588 in GDB for user-space. */
1589
1590 /* Implement the "breakpoint_kind_from_pc" gdbarch method. */
1591
1592 static int
1593 arc_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1594 {
1595 size_t length_with_limm = gdb_insn_length (gdbarch, *pcptr);
1596
1597 /* Replace 16-bit instruction with BRK_S, replace 32-bit instructions with
1598 BRK. LIMM is part of instruction length, so it can be either 4 or 8
1599 bytes for 32-bit instructions. */
1600 if ((length_with_limm == 4 || length_with_limm == 8)
1601 && !arc_mach_is_arc600 (gdbarch))
1602 return sizeof (arc_brk_le);
1603 else
1604 return sizeof (arc_brk_s_le);
1605 }
1606
1607 /* Implement the "sw_breakpoint_from_kind" gdbarch method. */
1608
1609 static const gdb_byte *
1610 arc_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1611 {
1612 gdb_assert (kind == 2 || kind == 4);
1613 *size = kind;
1614
1615 if (kind == sizeof (arc_brk_le))
1616 {
1617 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1618 ? arc_brk_be
1619 : arc_brk_le);
1620 }
1621 else
1622 {
1623 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1624 ? arc_brk_s_be
1625 : arc_brk_s_le);
1626 }
1627 }
1628
1629 /* Implement the "frame_align" gdbarch method. */
1630
1631 static CORE_ADDR
1632 arc_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1633 {
1634 return align_down (sp, 4);
1635 }
1636
1637 /* Dump the frame info. Used for internal debugging only. */
1638
1639 static void
1640 arc_print_frame_cache (struct gdbarch *gdbarch, const char *message,
1641 struct arc_frame_cache *cache, int addresses_known)
1642 {
1643 arc_debug_printf ("frame_info %s", message);
1644 arc_debug_printf ("prev_sp = %s", paddress (gdbarch, cache->prev_sp));
1645 arc_debug_printf ("frame_base_reg = %i", cache->frame_base_reg);
1646 arc_debug_printf ("frame_base_offset = %s",
1647 plongest (cache->frame_base_offset));
1648
1649 for (int i = 0; i <= ARC_BLINK_REGNUM; i++)
1650 {
1651 if (cache->saved_regs[i].is_addr ())
1652 arc_debug_printf ("saved register %s at %s %s",
1653 gdbarch_register_name (gdbarch, i),
1654 (addresses_known) ? "address" : "offset",
1655 paddress (gdbarch, cache->saved_regs[i].addr ()));
1656 }
1657 }
1658
1659 /* Frame unwinder for normal frames. */
1660
1661 static struct arc_frame_cache *
1662 arc_make_frame_cache (struct frame_info *this_frame)
1663 {
1664 arc_debug_printf ("called");
1665
1666 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1667
1668 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1669 CORE_ADDR entrypoint, prologue_end;
1670 if (find_pc_partial_function (block_addr, NULL, &entrypoint, &prologue_end))
1671 {
1672 struct symtab_and_line sal = find_pc_line (entrypoint, 0);
1673 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1674 if (sal.line == 0)
1675 /* No line info so use current PC. */
1676 prologue_end = prev_pc;
1677 else if (sal.end < prologue_end)
1678 /* The next line begins after the function end. */
1679 prologue_end = sal.end;
1680
1681 prologue_end = std::min (prologue_end, prev_pc);
1682 }
1683 else
1684 {
1685 /* If find_pc_partial_function returned nothing then there is no symbol
1686 information at all for this PC. Currently it is assumed in this case
1687 that current PC is entrypoint to function and try to construct the
1688 frame from that. This is, probably, suboptimal, for example ARM
1689 assumes in this case that program is inside the normal frame (with
1690 frame pointer). ARC, perhaps, should try to do the same. */
1691 entrypoint = get_frame_register_unsigned (this_frame,
1692 gdbarch_pc_regnum (gdbarch));
1693 prologue_end = entrypoint + MAX_PROLOGUE_LENGTH;
1694 }
1695
1696 /* Allocate new frame cache instance and space for saved register info.
1697 FRAME_OBSTACK_ZALLOC will initialize fields to zeroes. */
1698 struct arc_frame_cache *cache
1699 = FRAME_OBSTACK_ZALLOC (struct arc_frame_cache);
1700 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1701
1702 arc_analyze_prologue (gdbarch, entrypoint, prologue_end, cache);
1703
1704 if (arc_debug)
1705 arc_print_frame_cache (gdbarch, "after prologue", cache, false);
1706
1707 CORE_ADDR unwound_fb = get_frame_register_unsigned (this_frame,
1708 cache->frame_base_reg);
1709 if (unwound_fb == 0)
1710 return cache;
1711 cache->prev_sp = unwound_fb + cache->frame_base_offset;
1712
1713 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1714 {
1715 if (cache->saved_regs[i].is_addr ())
1716 cache->saved_regs[i].set_addr (cache->saved_regs[i].addr ()
1717 + cache->prev_sp);
1718 }
1719
1720 if (arc_debug)
1721 arc_print_frame_cache (gdbarch, "after previous SP found", cache, true);
1722
1723 return cache;
1724 }
1725
1726 /* Implement the "this_id" frame_unwind method. */
1727
1728 static void
1729 arc_frame_this_id (struct frame_info *this_frame, void **this_cache,
1730 struct frame_id *this_id)
1731 {
1732 arc_debug_printf ("called");
1733
1734 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1735
1736 if (*this_cache == NULL)
1737 *this_cache = arc_make_frame_cache (this_frame);
1738 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
1739
1740 CORE_ADDR stack_addr = cache->prev_sp;
1741
1742 /* There are 4 possible situation which decide how frame_id->code_addr is
1743 evaluated:
1744
1745 1) Function is compiled with option -g. Then frame_id will be created
1746 in dwarf_* function and not in this function. NB: even if target
1747 binary is compiled with -g, some std functions like __start and _init
1748 are not, so they still will follow one of the following choices.
1749
1750 2) Function is compiled without -g and binary hasn't been stripped in
1751 any way. In this case GDB still has enough information to evaluate
1752 frame code_addr properly. This case is covered by call to
1753 get_frame_func ().
1754
1755 3) Binary has been striped with option -g (strip debug symbols). In
1756 this case there is still enough symbols for get_frame_func () to work
1757 properly, so this case is also covered by it.
1758
1759 4) Binary has been striped with option -s (strip all symbols). In this
1760 case GDB cannot get function start address properly, so we return current
1761 PC value instead.
1762 */
1763 CORE_ADDR code_addr = get_frame_func (this_frame);
1764 if (code_addr == 0)
1765 code_addr = get_frame_register_unsigned (this_frame,
1766 gdbarch_pc_regnum (gdbarch));
1767
1768 *this_id = frame_id_build (stack_addr, code_addr);
1769 }
1770
1771 /* Implement the "prev_register" frame_unwind method. */
1772
1773 static struct value *
1774 arc_frame_prev_register (struct frame_info *this_frame,
1775 void **this_cache, int regnum)
1776 {
1777 if (*this_cache == NULL)
1778 *this_cache = arc_make_frame_cache (this_frame);
1779 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
1780
1781 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1782
1783 /* If we are asked to unwind the PC, then we need to return BLINK instead:
1784 the saved value of PC points into this frame's function's prologue, not
1785 the next frame's function's resume location. */
1786 if (regnum == gdbarch_pc_regnum (gdbarch))
1787 regnum = ARC_BLINK_REGNUM;
1788
1789 /* SP is a special case - we should return prev_sp, because
1790 trad_frame_get_prev_register will return _current_ SP value.
1791 Alternatively we could have stored cache->prev_sp in the cache->saved
1792 regs, but here we follow the lead of AArch64, ARM and Xtensa and will
1793 leave that logic in this function, instead of prologue analyzers. That I
1794 think is a bit more clear as `saved_regs` should contain saved regs, not
1795 computable.
1796
1797 Because value has been computed, "got_constant" should be used, so that
1798 returned value will be a "not_lval" - immutable. */
1799
1800 if (regnum == gdbarch_sp_regnum (gdbarch))
1801 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1802
1803 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
1804 }
1805
1806 /* Implement the "init_reg" dwarf2_frame method. */
1807
1808 static void
1809 arc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1810 struct dwarf2_frame_state_reg *reg,
1811 struct frame_info *info)
1812 {
1813 if (regnum == gdbarch_pc_regnum (gdbarch))
1814 /* The return address column. */
1815 reg->how = DWARF2_FRAME_REG_RA;
1816 else if (regnum == gdbarch_sp_regnum (gdbarch))
1817 /* The call frame address. */
1818 reg->how = DWARF2_FRAME_REG_CFA;
1819 }
1820
1821 /* Signal trampoline frame unwinder. Allows frame unwinding to happen
1822 from within signal handlers. */
1823
1824 static struct arc_frame_cache *
1825 arc_make_sigtramp_frame_cache (struct frame_info *this_frame)
1826 {
1827 arc_debug_printf ("called");
1828
1829 gdbarch *arch = get_frame_arch (this_frame);
1830 arc_gdbarch_tdep *tdep = (arc_gdbarch_tdep *) gdbarch_tdep (arch);
1831
1832 /* Allocate new frame cache instance and space for saved register info. */
1833 struct arc_frame_cache *cache = FRAME_OBSTACK_ZALLOC (struct arc_frame_cache);
1834 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1835
1836 /* Get the stack pointer and use it as the frame base. */
1837 cache->prev_sp = arc_frame_base_address (this_frame, NULL);
1838
1839 /* If the ARC-private target-dependent info doesn't have a table of
1840 offsets of saved register contents within an OS signal context
1841 structure, then there is nothing to analyze. */
1842 if (tdep->sc_reg_offset == NULL)
1843 return cache;
1844
1845 /* Find the address of the sigcontext structure. */
1846 CORE_ADDR addr = tdep->sigcontext_addr (this_frame);
1847
1848 /* For each register, if its contents have been saved within the
1849 sigcontext structure, determine the address of those contents. */
1850 gdb_assert (tdep->sc_num_regs <= (ARC_LAST_REGNUM + 1));
1851 for (int i = 0; i < tdep->sc_num_regs; i++)
1852 {
1853 if (tdep->sc_reg_offset[i] != ARC_OFFSET_NO_REGISTER)
1854 cache->saved_regs[i].set_addr (addr + tdep->sc_reg_offset[i]);
1855 }
1856
1857 return cache;
1858 }
1859
1860 /* Implement the "this_id" frame_unwind method for signal trampoline
1861 frames. */
1862
1863 static void
1864 arc_sigtramp_frame_this_id (struct frame_info *this_frame,
1865 void **this_cache, struct frame_id *this_id)
1866 {
1867 arc_debug_printf ("called");
1868
1869 if (*this_cache == NULL)
1870 *this_cache = arc_make_sigtramp_frame_cache (this_frame);
1871
1872 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1873 struct arc_frame_cache *cache = (struct arc_frame_cache *) *this_cache;
1874 CORE_ADDR stack_addr = cache->prev_sp;
1875 CORE_ADDR code_addr
1876 = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1877 *this_id = frame_id_build (stack_addr, code_addr);
1878 }
1879
1880 /* Get a register from a signal handler frame. */
1881
1882 static struct value *
1883 arc_sigtramp_frame_prev_register (struct frame_info *this_frame,
1884 void **this_cache, int regnum)
1885 {
1886 arc_debug_printf ("regnum = %d", regnum);
1887
1888 /* Make sure we've initialized the cache. */
1889 if (*this_cache == NULL)
1890 *this_cache = arc_make_sigtramp_frame_cache (this_frame);
1891
1892 struct arc_frame_cache *cache = (struct arc_frame_cache *) *this_cache;
1893 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
1894 }
1895
1896 /* Frame sniffer for signal handler frame. Only recognize a frame if we
1897 have a sigcontext_addr handler in the target dependency. */
1898
1899 static int
1900 arc_sigtramp_frame_sniffer (const struct frame_unwind *self,
1901 struct frame_info *this_frame,
1902 void **this_cache)
1903 {
1904 arc_debug_printf ("called");
1905
1906 gdbarch *arch = get_frame_arch (this_frame);
1907 arc_gdbarch_tdep *tdep = (arc_gdbarch_tdep *) gdbarch_tdep (arch);
1908
1909 /* If we have a sigcontext_addr handler, then just return 1 (same as the
1910 "default_frame_sniffer ()"). */
1911 return (tdep->sigcontext_addr != NULL && tdep->is_sigtramp != NULL
1912 && tdep->is_sigtramp (this_frame));
1913 }
1914
1915 /* Structure defining the ARC ordinary frame unwind functions. Since we are
1916 the fallback unwinder, we use the default frame sniffer, which always
1917 accepts the frame. */
1918
1919 static const struct frame_unwind arc_frame_unwind = {
1920 "arc prologue",
1921 NORMAL_FRAME,
1922 default_frame_unwind_stop_reason,
1923 arc_frame_this_id,
1924 arc_frame_prev_register,
1925 NULL,
1926 default_frame_sniffer,
1927 NULL,
1928 NULL
1929 };
1930
1931 /* Structure defining the ARC signal frame unwind functions. Custom
1932 sniffer is used, because this frame must be accepted only in the right
1933 context. */
1934
1935 static const struct frame_unwind arc_sigtramp_frame_unwind = {
1936 "arc sigtramp",
1937 SIGTRAMP_FRAME,
1938 default_frame_unwind_stop_reason,
1939 arc_sigtramp_frame_this_id,
1940 arc_sigtramp_frame_prev_register,
1941 NULL,
1942 arc_sigtramp_frame_sniffer,
1943 NULL,
1944 NULL
1945 };
1946
1947
1948 static const struct frame_base arc_normal_base = {
1949 &arc_frame_unwind,
1950 arc_frame_base_address,
1951 arc_frame_base_address,
1952 arc_frame_base_address
1953 };
1954
1955 /* Add all the expected register sets into GDBARCH. */
1956
1957 static void
1958 arc_add_reggroups (struct gdbarch *gdbarch)
1959 {
1960 reggroup_add (gdbarch, general_reggroup);
1961 reggroup_add (gdbarch, float_reggroup);
1962 reggroup_add (gdbarch, system_reggroup);
1963 reggroup_add (gdbarch, vector_reggroup);
1964 reggroup_add (gdbarch, all_reggroup);
1965 reggroup_add (gdbarch, save_reggroup);
1966 reggroup_add (gdbarch, restore_reggroup);
1967 }
1968
1969 static enum arc_isa
1970 mach_type_to_arc_isa (const unsigned long mach)
1971 {
1972 switch (mach)
1973 {
1974 case bfd_mach_arc_arc600:
1975 case bfd_mach_arc_arc601:
1976 case bfd_mach_arc_arc700:
1977 return ARC_ISA_ARCV1;
1978 case bfd_mach_arc_arcv2:
1979 return ARC_ISA_ARCV2;
1980 default:
1981 internal_error (__FILE__, __LINE__,
1982 _("unknown machine id %lu"), mach);
1983 }
1984 }
1985
1986 /* See arc-tdep.h. */
1987
1988 arc_arch_features
1989 arc_arch_features_create (const bfd *abfd, const unsigned long mach)
1990 {
1991 /* Use 4 as a fallback value. */
1992 int reg_size = 4;
1993
1994 /* Try to guess the features parameters by looking at the binary to be
1995 executed. If the user is providing a binary that does not match the
1996 target, then tough luck. This is the last effort to makes sense of
1997 what's going on. */
1998 if (abfd != nullptr && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
1999 {
2000 unsigned char eclass = elf_elfheader (abfd)->e_ident[EI_CLASS];
2001
2002 if (eclass == ELFCLASS32)
2003 reg_size = 4;
2004 else if (eclass == ELFCLASS64)
2005 reg_size = 8;
2006 else
2007 internal_error (__FILE__, __LINE__,
2008 _("unknown ELF header class %d"), eclass);
2009 }
2010
2011 /* MACH from a bfd_arch_info struct is used here. It should be a safe
2012 bet, as it looks like the struct is always initialized even when we
2013 don't pass any elf file to GDB at all (it uses default arch in that
2014 case). */
2015 arc_isa isa = mach_type_to_arc_isa (mach);
2016
2017 return arc_arch_features (reg_size, isa);
2018 }
2019
2020 /* Look for obsolete core feature names in TDESC. */
2021
2022 static const struct tdesc_feature *
2023 find_obsolete_core_names (const struct target_desc *tdesc)
2024 {
2025 const struct tdesc_feature *feat = nullptr;
2026
2027 feat = tdesc_find_feature (tdesc, ARC_CORE_V1_OBSOLETE_FEATURE_NAME);
2028
2029 if (feat == nullptr)
2030 feat = tdesc_find_feature (tdesc, ARC_CORE_V2_OBSOLETE_FEATURE_NAME);
2031
2032 if (feat == nullptr)
2033 feat = tdesc_find_feature
2034 (tdesc, ARC_CORE_V2_REDUCED_OBSOLETE_FEATURE_NAME);
2035
2036 return feat;
2037 }
2038
2039 /* Look for obsolete aux feature names in TDESC. */
2040
2041 static const struct tdesc_feature *
2042 find_obsolete_aux_names (const struct target_desc *tdesc)
2043 {
2044 return tdesc_find_feature (tdesc, ARC_AUX_OBSOLETE_FEATURE_NAME);
2045 }
2046
2047 /* Based on the MACH value, determines which core register features set
2048 must be used. */
2049
2050 static arc_register_feature *
2051 determine_core_reg_feature_set (const unsigned long mach)
2052 {
2053 switch (mach_type_to_arc_isa (mach))
2054 {
2055 case ARC_ISA_ARCV1:
2056 return &arc_v1_core_reg_feature;
2057 case ARC_ISA_ARCV2:
2058 return &arc_v2_core_reg_feature;
2059 default:
2060 gdb_assert_not_reached
2061 ("Unknown machine type to determine the core feature set.");
2062 }
2063 }
2064
2065 /* At the moment, there is only 1 auxiliary register features set.
2066 This is a place holder for future extendability. */
2067
2068 static const arc_register_feature *
2069 determine_aux_reg_feature_set ()
2070 {
2071 return &arc_common_aux_reg_feature;
2072 }
2073
2074 /* Update accumulator register names (ACCH/ACCL) for r58 and r59 in the
2075 register sets. The endianness determines the assignment:
2076
2077 ,------.------.
2078 | acch | accl |
2079 ,----|------+------|
2080 | LE | r59 | r58 |
2081 | BE | r58 | r59 |
2082 `----^------^------' */
2083
2084 static void
2085 arc_update_acc_reg_names (const int byte_order)
2086 {
2087 const char *r58_alias
2088 = byte_order == BFD_ENDIAN_LITTLE ? "accl" : "acch";
2089 const char *r59_alias
2090 = byte_order == BFD_ENDIAN_LITTLE ? "acch" : "accl";
2091
2092 /* Subscript 1 must be OK because those registers have 2 names. */
2093 arc_v1_core_reg_feature.registers[ARC_R58_REGNUM].names[1] = r58_alias;
2094 arc_v1_core_reg_feature.registers[ARC_R59_REGNUM].names[1] = r59_alias;
2095 arc_v2_core_reg_feature.registers[ARC_R58_REGNUM].names[1] = r58_alias;
2096 arc_v2_core_reg_feature.registers[ARC_R59_REGNUM].names[1] = r59_alias;
2097 }
2098
2099 /* Go through all the registers in REG_SET and check if they exist
2100 in FEATURE. The TDESC_DATA is updated with the register number
2101 in REG_SET if it is found in the feature. If a required register
2102 is not found, this function returns false. */
2103
2104 static bool
2105 arc_check_tdesc_feature (struct tdesc_arch_data *tdesc_data,
2106 const struct tdesc_feature *feature,
2107 const struct arc_register_feature *reg_set)
2108 {
2109 for (const auto &reg : reg_set->registers)
2110 {
2111 bool found = false;
2112
2113 for (const char *name : reg.names)
2114 {
2115 found
2116 = tdesc_numbered_register (feature, tdesc_data, reg.regnum, name);
2117
2118 if (found)
2119 break;
2120 }
2121
2122 if (!found && reg.required_p)
2123 {
2124 std::ostringstream reg_names;
2125 for (std::size_t i = 0; i < reg.names.size(); ++i)
2126 {
2127 if (i == 0)
2128 reg_names << "'" << reg.names[0] << "'";
2129 else
2130 reg_names << " or '" << reg.names[0] << "'";
2131 }
2132 arc_print (_("Error: Cannot find required register(s) %s "
2133 "in feature '%s'.\n"), reg_names.str ().c_str (),
2134 feature->name.c_str ());
2135 return false;
2136 }
2137 }
2138
2139 return true;
2140 }
2141
2142 /* Check for the existance of "lp_start" and "lp_end" in target description.
2143 If both are present, assume there is hardware loop support in the target.
2144 This can be improved by looking into "lpc_size" field of "isa_config"
2145 auxiliary register. */
2146
2147 static bool
2148 arc_check_for_hw_loops (const struct target_desc *tdesc,
2149 struct tdesc_arch_data *data)
2150 {
2151 const auto feature_aux = tdesc_find_feature (tdesc, ARC_AUX_FEATURE_NAME);
2152 const auto aux_regset = determine_aux_reg_feature_set ();
2153
2154 if (feature_aux == nullptr)
2155 return false;
2156
2157 bool hw_loop_p = false;
2158 const auto lp_start_name =
2159 aux_regset->registers[ARC_LP_START_REGNUM - ARC_FIRST_AUX_REGNUM].names[0];
2160 const auto lp_end_name =
2161 aux_regset->registers[ARC_LP_END_REGNUM - ARC_FIRST_AUX_REGNUM].names[0];
2162
2163 hw_loop_p = tdesc_numbered_register (feature_aux, data,
2164 ARC_LP_START_REGNUM, lp_start_name);
2165 hw_loop_p &= tdesc_numbered_register (feature_aux, data,
2166 ARC_LP_END_REGNUM, lp_end_name);
2167
2168 return hw_loop_p;
2169 }
2170
2171 /* Initialize target description for the ARC.
2172
2173 Returns true if input TDESC was valid and in this case it will assign TDESC
2174 and TDESC_DATA output parameters. */
2175
2176 static bool
2177 arc_tdesc_init (struct gdbarch_info info, const struct target_desc **tdesc,
2178 tdesc_arch_data_up *tdesc_data)
2179 {
2180 const struct target_desc *tdesc_loc = info.target_desc;
2181 arc_debug_printf ("Target description initialization.");
2182
2183 /* If target doesn't provide a description, use the default ones. */
2184 if (!tdesc_has_registers (tdesc_loc))
2185 {
2186 arc_arch_features features
2187 = arc_arch_features_create (info.abfd,
2188 info.bfd_arch_info->mach);
2189 tdesc_loc = arc_lookup_target_description (features);
2190 }
2191 gdb_assert (tdesc_loc != nullptr);
2192
2193 arc_debug_printf ("Have got a target description");
2194
2195 const struct tdesc_feature *feature_core
2196 = tdesc_find_feature (tdesc_loc, ARC_CORE_FEATURE_NAME);
2197 const struct tdesc_feature *feature_aux
2198 = tdesc_find_feature (tdesc_loc, ARC_AUX_FEATURE_NAME);
2199
2200 /* Maybe there still is a chance to salvage the input. */
2201 if (feature_core == nullptr)
2202 feature_core = find_obsolete_core_names (tdesc_loc);
2203 if (feature_aux == nullptr)
2204 feature_aux = find_obsolete_aux_names (tdesc_loc);
2205
2206 if (feature_core == nullptr)
2207 {
2208 arc_print (_("Error: Cannot find required feature '%s' in supplied "
2209 "target description.\n"), ARC_CORE_FEATURE_NAME);
2210 return false;
2211 }
2212
2213 if (feature_aux == nullptr)
2214 {
2215 arc_print (_("Error: Cannot find required feature '%s' in supplied "
2216 "target description.\n"), ARC_AUX_FEATURE_NAME);
2217 return false;
2218 }
2219
2220 const arc_register_feature *arc_core_reg_feature
2221 = determine_core_reg_feature_set (info.bfd_arch_info->mach);
2222 const arc_register_feature *arc_aux_reg_feature
2223 = determine_aux_reg_feature_set ();
2224
2225 tdesc_arch_data_up tdesc_data_loc = tdesc_data_alloc ();
2226
2227 arc_update_acc_reg_names (info.byte_order);
2228
2229 bool valid_p = arc_check_tdesc_feature (tdesc_data_loc.get (),
2230 feature_core,
2231 arc_core_reg_feature);
2232
2233 valid_p &= arc_check_tdesc_feature (tdesc_data_loc.get (),
2234 feature_aux,
2235 arc_aux_reg_feature);
2236
2237 if (!valid_p)
2238 {
2239 arc_debug_printf ("Target description is not valid");
2240 return false;
2241 }
2242
2243 *tdesc = tdesc_loc;
2244 *tdesc_data = std::move (tdesc_data_loc);
2245
2246 return true;
2247 }
2248
2249 /* Implement the type_align gdbarch function. */
2250
2251 static ULONGEST
2252 arc_type_align (struct gdbarch *gdbarch, struct type *type)
2253 {
2254 switch (type->code ())
2255 {
2256 case TYPE_CODE_PTR:
2257 case TYPE_CODE_FUNC:
2258 case TYPE_CODE_FLAGS:
2259 case TYPE_CODE_INT:
2260 case TYPE_CODE_RANGE:
2261 case TYPE_CODE_FLT:
2262 case TYPE_CODE_ENUM:
2263 case TYPE_CODE_REF:
2264 case TYPE_CODE_RVALUE_REF:
2265 case TYPE_CODE_CHAR:
2266 case TYPE_CODE_BOOL:
2267 case TYPE_CODE_DECFLOAT:
2268 case TYPE_CODE_METHODPTR:
2269 case TYPE_CODE_MEMBERPTR:
2270 type = check_typedef (type);
2271 return std::min<ULONGEST> (4, TYPE_LENGTH (type));
2272 default:
2273 return 0;
2274 }
2275 }
2276
2277 /* Implement the "init" gdbarch method. */
2278
2279 static struct gdbarch *
2280 arc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2281 {
2282 const struct target_desc *tdesc;
2283 tdesc_arch_data_up tdesc_data;
2284
2285 arc_debug_printf ("Architecture initialization.");
2286
2287 if (!arc_tdesc_init (info, &tdesc, &tdesc_data))
2288 return nullptr;
2289
2290 /* Allocate the ARC-private target-dependent information structure, and the
2291 GDB target-independent information structure. */
2292 std::unique_ptr<arc_gdbarch_tdep> tdep_holder (new arc_gdbarch_tdep);
2293 arc_gdbarch_tdep *tdep = tdep_holder.get ();
2294 tdep->jb_pc = -1; /* No longjmp support by default. */
2295 tdep->has_hw_loops = arc_check_for_hw_loops (tdesc, tdesc_data.get ());
2296 struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep_holder.release ());
2297
2298 /* Data types. */
2299 set_gdbarch_short_bit (gdbarch, 16);
2300 set_gdbarch_int_bit (gdbarch, 32);
2301 set_gdbarch_long_bit (gdbarch, 32);
2302 set_gdbarch_long_long_bit (gdbarch, 64);
2303 set_gdbarch_type_align (gdbarch, arc_type_align);
2304 set_gdbarch_float_bit (gdbarch, 32);
2305 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2306 set_gdbarch_double_bit (gdbarch, 64);
2307 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2308 set_gdbarch_ptr_bit (gdbarch, 32);
2309 set_gdbarch_addr_bit (gdbarch, 32);
2310 set_gdbarch_char_signed (gdbarch, 0);
2311
2312 set_gdbarch_write_pc (gdbarch, arc_write_pc);
2313
2314 set_gdbarch_virtual_frame_pointer (gdbarch, arc_virtual_frame_pointer);
2315
2316 /* tdesc_use_registers expects gdbarch_num_regs to return number of registers
2317 parsed by gdbarch_init, and then it will add all of the remaining
2318 registers and will increase number of registers. */
2319 set_gdbarch_num_regs (gdbarch, ARC_LAST_REGNUM + 1);
2320 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2321 set_gdbarch_sp_regnum (gdbarch, ARC_SP_REGNUM);
2322 set_gdbarch_pc_regnum (gdbarch, ARC_PC_REGNUM);
2323 set_gdbarch_ps_regnum (gdbarch, ARC_STATUS32_REGNUM);
2324 set_gdbarch_fp0_regnum (gdbarch, -1); /* No FPU registers. */
2325
2326 set_gdbarch_push_dummy_call (gdbarch, arc_push_dummy_call);
2327 set_gdbarch_push_dummy_code (gdbarch, arc_push_dummy_code);
2328
2329 set_gdbarch_cannot_fetch_register (gdbarch, arc_cannot_fetch_register);
2330 set_gdbarch_cannot_store_register (gdbarch, arc_cannot_store_register);
2331
2332 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2333
2334 set_gdbarch_return_value (gdbarch, arc_return_value);
2335
2336 set_gdbarch_skip_prologue (gdbarch, arc_skip_prologue);
2337 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2338
2339 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arc_breakpoint_kind_from_pc);
2340 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arc_sw_breakpoint_from_kind);
2341
2342 /* On ARC 600 BRK_S instruction advances PC, unlike other ARC cores. */
2343 if (!arc_mach_is_arc600 (gdbarch))
2344 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2345 else
2346 set_gdbarch_decr_pc_after_break (gdbarch, 2);
2347
2348 set_gdbarch_frame_align (gdbarch, arc_frame_align);
2349
2350 set_gdbarch_print_insn (gdbarch, arc_delayed_print_insn);
2351
2352 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2353
2354 /* "nonsteppable" watchpoint means that watchpoint triggers before
2355 instruction is committed, therefore it is required to remove watchpoint
2356 to step though instruction that triggers it. ARC watchpoints trigger
2357 only after instruction is committed, thus there is no need to remove
2358 them. In fact on ARC watchpoint for memory writes may trigger with more
2359 significant delay, like one or two instructions, depending on type of
2360 memory where write is performed (CCM or external) and next instruction
2361 after the memory write. */
2362 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 0);
2363
2364 /* This doesn't include possible long-immediate value. */
2365 set_gdbarch_max_insn_length (gdbarch, 4);
2366
2367 /* Add default register groups. */
2368 arc_add_reggroups (gdbarch);
2369
2370 /* Frame unwinders and sniffers. */
2371 dwarf2_frame_set_init_reg (gdbarch, arc_dwarf2_frame_init_reg);
2372 dwarf2_append_unwinders (gdbarch);
2373 frame_unwind_append_unwinder (gdbarch, &arc_sigtramp_frame_unwind);
2374 frame_unwind_append_unwinder (gdbarch, &arc_frame_unwind);
2375 frame_base_set_default (gdbarch, &arc_normal_base);
2376
2377 /* Setup stuff specific to a particular environment (baremetal or Linux).
2378 It can override functions set earlier. */
2379 gdbarch_init_osabi (info, gdbarch);
2380
2381 if (tdep->jb_pc >= 0)
2382 set_gdbarch_get_longjmp_target (gdbarch, arc_get_longjmp_target);
2383
2384 /* Disassembler options. Enforce CPU if it was specified in XML target
2385 description, otherwise use default method of determining CPU (ELF private
2386 header). */
2387 if (info.target_desc != NULL)
2388 {
2389 const struct bfd_arch_info *tdesc_arch
2390 = tdesc_architecture (info.target_desc);
2391 if (tdesc_arch != NULL)
2392 {
2393 xfree (arc_disassembler_options);
2394 /* FIXME: It is not really good to change disassembler options
2395 behind the scene, because that might override options
2396 specified by the user. However as of now ARC doesn't support
2397 `set disassembler-options' hence this code is the only place
2398 where options are changed. It also changes options for all
2399 existing gdbarches, which also can be problematic, if
2400 arc_gdbarch_init will start reusing existing gdbarch
2401 instances. */
2402 /* Target description specifies a BFD architecture, which is
2403 different from ARC cpu, as accepted by disassembler (and most
2404 other ARC tools), because cpu values are much more fine grained -
2405 there can be multiple cpu values per single BFD architecture. As
2406 a result this code should translate architecture to some cpu
2407 value. Since there is no info on exact cpu configuration, it is
2408 best to use the most feature-rich CPU, so that disassembler will
2409 recognize all instructions available to the specified
2410 architecture. */
2411 switch (tdesc_arch->mach)
2412 {
2413 case bfd_mach_arc_arc601:
2414 arc_disassembler_options = xstrdup ("cpu=arc601");
2415 break;
2416 case bfd_mach_arc_arc600:
2417 arc_disassembler_options = xstrdup ("cpu=arc600");
2418 break;
2419 case bfd_mach_arc_arc700:
2420 arc_disassembler_options = xstrdup ("cpu=arc700");
2421 break;
2422 case bfd_mach_arc_arcv2:
2423 /* Machine arcv2 has three arches: ARCv2, EM and HS; where ARCv2
2424 is treated as EM. */
2425 if (arc_arch_is_hs (tdesc_arch))
2426 arc_disassembler_options = xstrdup ("cpu=hs38_linux");
2427 else
2428 arc_disassembler_options = xstrdup ("cpu=em4_fpuda");
2429 break;
2430 default:
2431 arc_disassembler_options = NULL;
2432 break;
2433 }
2434 }
2435 }
2436
2437 set_gdbarch_disassembler_options (gdbarch, &arc_disassembler_options);
2438 set_gdbarch_valid_disassembler_options (gdbarch,
2439 disassembler_options_arc ());
2440
2441 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
2442
2443 return gdbarch;
2444 }
2445
2446 /* Implement the "dump_tdep" gdbarch method. */
2447
2448 static void
2449 arc_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2450 {
2451 arc_gdbarch_tdep *tdep = (arc_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2452
2453 gdb_printf (file, "arc_dump_tdep: jb_pc = %i\n", tdep->jb_pc);
2454
2455 gdb_printf (file, "arc_dump_tdep: is_sigtramp = <%s>\n",
2456 host_address_to_string (tdep->is_sigtramp));
2457 gdb_printf (file, "arc_dump_tdep: sigcontext_addr = <%s>\n",
2458 host_address_to_string (tdep->sigcontext_addr));
2459 gdb_printf (file, "arc_dump_tdep: sc_reg_offset = <%s>\n",
2460 host_address_to_string (tdep->sc_reg_offset));
2461 gdb_printf (file, "arc_dump_tdep: sc_num_regs = %d\n",
2462 tdep->sc_num_regs);
2463 }
2464
2465 /* This command accepts single argument - address of instruction to
2466 disassemble. */
2467
2468 static void
2469 dump_arc_instruction_command (const char *args, int from_tty)
2470 {
2471 struct value *val;
2472 if (args != NULL && strlen (args) > 0)
2473 val = evaluate_expression (parse_expression (args).get ());
2474 else
2475 val = access_value_history (0);
2476 record_latest_value (val);
2477
2478 CORE_ADDR address = value_as_address (val);
2479 struct arc_instruction insn;
2480 struct disassemble_info di = arc_disassemble_info (target_gdbarch ());
2481 arc_insn_decode (address, &di, arc_delayed_print_insn, &insn);
2482 arc_insn_dump (insn);
2483 }
2484
2485 void _initialize_arc_tdep ();
2486 void
2487 _initialize_arc_tdep ()
2488 {
2489 gdbarch_register (bfd_arch_arc, arc_gdbarch_init, arc_dump_tdep);
2490
2491 /* Register ARC-specific commands with gdb. */
2492
2493 /* Add root prefix command for "maintenance print arc" commands. */
2494 add_show_prefix_cmd ("arc", class_maintenance,
2495 _("ARC-specific maintenance commands for printing GDB "
2496 "internal state."),
2497 &maintenance_print_arc_list,
2498 0, &maintenanceprintlist);
2499
2500 add_cmd ("arc-instruction", class_maintenance,
2501 dump_arc_instruction_command,
2502 _("Dump arc_instruction structure for specified address."),
2503 &maintenance_print_arc_list);
2504
2505 /* Debug internals for ARC GDB. */
2506 add_setshow_boolean_cmd ("arc", class_maintenance,
2507 &arc_debug,
2508 _("Set ARC specific debugging."),
2509 _("Show ARC specific debugging."),
2510 _("When set, ARC specific debugging is enabled."),
2511 NULL, NULL, &setdebuglist, &showdebuglist);
2512 }