]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arch-utils.c
Remove regcache_raw_supply
[thirdparty/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright (C) 1998-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "arch-utils.h"
23 #include "buildsym.h"
24 #include "gdbcmd.h"
25 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et al. */
26 #include "infrun.h"
27 #include "regcache.h"
28 #include "sim-regno.h"
29 #include "gdbcore.h"
30 #include "osabi.h"
31 #include "target-descriptions.h"
32 #include "objfiles.h"
33 #include "language.h"
34 #include "symtab.h"
35
36 #include "version.h"
37
38 #include "floatformat.h"
39
40 #include "dis-asm.h"
41
42 int
43 default_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
44 struct displaced_step_closure *closure)
45 {
46 return !gdbarch_software_single_step_p (gdbarch);
47 }
48
49 CORE_ADDR
50 displaced_step_at_entry_point (struct gdbarch *gdbarch)
51 {
52 CORE_ADDR addr;
53 int bp_len;
54
55 addr = entry_point_address ();
56
57 /* Inferior calls also use the entry point as a breakpoint location.
58 We don't want displaced stepping to interfere with those
59 breakpoints, so leave space. */
60 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
61 addr += bp_len * 2;
62
63 return addr;
64 }
65
66 int
67 legacy_register_sim_regno (struct gdbarch *gdbarch, int regnum)
68 {
69 /* Only makes sense to supply raw registers. */
70 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
71 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
72 suspected that some GDB/SIM combinations may rely on this
73 behavour. The default should be one2one_register_sim_regno
74 (below). */
75 if (gdbarch_register_name (gdbarch, regnum) != NULL
76 && gdbarch_register_name (gdbarch, regnum)[0] != '\0')
77 return regnum;
78 else
79 return LEGACY_SIM_REGNO_IGNORE;
80 }
81
82 CORE_ADDR
83 generic_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
84 {
85 return 0;
86 }
87
88 CORE_ADDR
89 generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
90 {
91 return 0;
92 }
93
94 int
95 generic_in_solib_return_trampoline (struct gdbarch *gdbarch,
96 CORE_ADDR pc, const char *name)
97 {
98 return 0;
99 }
100
101 int
102 generic_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
103 {
104 return 0;
105 }
106
107 int
108 default_code_of_frame_writable (struct gdbarch *gdbarch,
109 struct frame_info *frame)
110 {
111 return 1;
112 }
113
114 /* Helper functions for gdbarch_inner_than */
115
116 int
117 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
118 {
119 return (lhs < rhs);
120 }
121
122 int
123 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
124 {
125 return (lhs > rhs);
126 }
127
128 /* Misc helper functions for targets. */
129
130 CORE_ADDR
131 core_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr)
132 {
133 return addr;
134 }
135
136 CORE_ADDR
137 convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
138 struct target_ops *targ)
139 {
140 return addr;
141 }
142
143 int
144 no_op_reg_to_regnum (struct gdbarch *gdbarch, int reg)
145 {
146 return reg;
147 }
148
149 void
150 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
151 {
152 return;
153 }
154
155 /* See arch-utils.h. */
156
157 void
158 default_make_symbol_special (struct symbol *sym, struct objfile *objfile)
159 {
160 return;
161 }
162
163 /* See arch-utils.h. */
164
165 CORE_ADDR
166 default_adjust_dwarf2_addr (CORE_ADDR pc)
167 {
168 return pc;
169 }
170
171 /* See arch-utils.h. */
172
173 CORE_ADDR
174 default_adjust_dwarf2_line (CORE_ADDR addr, int rel)
175 {
176 return addr;
177 }
178
179 /* See arch-utils.h. */
180
181 bool
182 default_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
183 struct dwarf2_frame_state *fs)
184 {
185 return false;
186 }
187
188 int
189 cannot_register_not (struct gdbarch *gdbarch, int regnum)
190 {
191 return 0;
192 }
193
194 /* Legacy version of target_virtual_frame_pointer(). Assumes that
195 there is an gdbarch_deprecated_fp_regnum and that it is the same,
196 cooked or raw. */
197
198 void
199 legacy_virtual_frame_pointer (struct gdbarch *gdbarch,
200 CORE_ADDR pc,
201 int *frame_regnum,
202 LONGEST *frame_offset)
203 {
204 /* FIXME: cagney/2002-09-13: This code is used when identifying the
205 frame pointer of the current PC. It is assuming that a single
206 register and an offset can determine this. I think it should
207 instead generate a byte code expression as that would work better
208 with things like Dwarf2's CFI. */
209 if (gdbarch_deprecated_fp_regnum (gdbarch) >= 0
210 && gdbarch_deprecated_fp_regnum (gdbarch)
211 < gdbarch_num_regs (gdbarch))
212 *frame_regnum = gdbarch_deprecated_fp_regnum (gdbarch);
213 else if (gdbarch_sp_regnum (gdbarch) >= 0
214 && gdbarch_sp_regnum (gdbarch)
215 < gdbarch_num_regs (gdbarch))
216 *frame_regnum = gdbarch_sp_regnum (gdbarch);
217 else
218 /* Should this be an internal error? I guess so, it is reflecting
219 an architectural limitation in the current design. */
220 internal_error (__FILE__, __LINE__,
221 _("No virtual frame pointer available"));
222 *frame_offset = 0;
223 }
224
225 /* Return a floating-point format for a floating-point variable of
226 length LEN in bits. If non-NULL, NAME is the name of its type.
227 If no suitable type is found, return NULL. */
228
229 const struct floatformat **
230 default_floatformat_for_type (struct gdbarch *gdbarch,
231 const char *name, int len)
232 {
233 const struct floatformat **format = NULL;
234
235 if (len == gdbarch_half_bit (gdbarch))
236 format = gdbarch_half_format (gdbarch);
237 else if (len == gdbarch_float_bit (gdbarch))
238 format = gdbarch_float_format (gdbarch);
239 else if (len == gdbarch_double_bit (gdbarch))
240 format = gdbarch_double_format (gdbarch);
241 else if (len == gdbarch_long_double_bit (gdbarch))
242 format = gdbarch_long_double_format (gdbarch);
243 /* On i386 the 'long double' type takes 96 bits,
244 while the real number of used bits is only 80,
245 both in processor and in memory.
246 The code below accepts the real bit size. */
247 else if (gdbarch_long_double_format (gdbarch) != NULL
248 && len == gdbarch_long_double_format (gdbarch)[0]->totalsize)
249 format = gdbarch_long_double_format (gdbarch);
250
251 return format;
252 }
253 \f
254 int
255 generic_convert_register_p (struct gdbarch *gdbarch, int regnum,
256 struct type *type)
257 {
258 return 0;
259 }
260
261 int
262 default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
263 {
264 return 0;
265 }
266
267 int
268 generic_instruction_nullified (struct gdbarch *gdbarch,
269 struct regcache *regcache)
270 {
271 return 0;
272 }
273
274 int
275 default_remote_register_number (struct gdbarch *gdbarch,
276 int regno)
277 {
278 return regno;
279 }
280
281 /* See arch-utils.h. */
282
283 int
284 default_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
285 {
286 return 0;
287 }
288
289 \f
290 /* Functions to manipulate the endianness of the target. */
291
292 static enum bfd_endian target_byte_order_user = BFD_ENDIAN_UNKNOWN;
293
294 static const char endian_big[] = "big";
295 static const char endian_little[] = "little";
296 static const char endian_auto[] = "auto";
297 static const char *const endian_enum[] =
298 {
299 endian_big,
300 endian_little,
301 endian_auto,
302 NULL,
303 };
304 static const char *set_endian_string;
305
306 enum bfd_endian
307 selected_byte_order (void)
308 {
309 return target_byte_order_user;
310 }
311
312 /* Called by ``show endian''. */
313
314 static void
315 show_endian (struct ui_file *file, int from_tty, struct cmd_list_element *c,
316 const char *value)
317 {
318 if (target_byte_order_user == BFD_ENDIAN_UNKNOWN)
319 if (gdbarch_byte_order (get_current_arch ()) == BFD_ENDIAN_BIG)
320 fprintf_unfiltered (file, _("The target endianness is set automatically "
321 "(currently big endian)\n"));
322 else
323 fprintf_unfiltered (file, _("The target endianness is set automatically "
324 "(currently little endian)\n"));
325 else
326 if (target_byte_order_user == BFD_ENDIAN_BIG)
327 fprintf_unfiltered (file,
328 _("The target is assumed to be big endian\n"));
329 else
330 fprintf_unfiltered (file,
331 _("The target is assumed to be little endian\n"));
332 }
333
334 static void
335 set_endian (const char *ignore_args, int from_tty, struct cmd_list_element *c)
336 {
337 struct gdbarch_info info;
338
339 gdbarch_info_init (&info);
340
341 if (set_endian_string == endian_auto)
342 {
343 target_byte_order_user = BFD_ENDIAN_UNKNOWN;
344 if (! gdbarch_update_p (info))
345 internal_error (__FILE__, __LINE__,
346 _("set_endian: architecture update failed"));
347 }
348 else if (set_endian_string == endian_little)
349 {
350 info.byte_order = BFD_ENDIAN_LITTLE;
351 if (! gdbarch_update_p (info))
352 printf_unfiltered (_("Little endian target not supported by GDB\n"));
353 else
354 target_byte_order_user = BFD_ENDIAN_LITTLE;
355 }
356 else if (set_endian_string == endian_big)
357 {
358 info.byte_order = BFD_ENDIAN_BIG;
359 if (! gdbarch_update_p (info))
360 printf_unfiltered (_("Big endian target not supported by GDB\n"));
361 else
362 target_byte_order_user = BFD_ENDIAN_BIG;
363 }
364 else
365 internal_error (__FILE__, __LINE__,
366 _("set_endian: bad value"));
367
368 show_endian (gdb_stdout, from_tty, NULL, NULL);
369 }
370
371 /* Given SELECTED, a currently selected BFD architecture, and
372 TARGET_DESC, the current target description, return what
373 architecture to use.
374
375 SELECTED may be NULL, in which case we return the architecture
376 associated with TARGET_DESC. If SELECTED specifies a variant
377 of the architecture associtated with TARGET_DESC, return the
378 more specific of the two.
379
380 If SELECTED is a different architecture, but it is accepted as
381 compatible by the target, we can use the target architecture.
382
383 If SELECTED is obviously incompatible, warn the user. */
384
385 static const struct bfd_arch_info *
386 choose_architecture_for_target (const struct target_desc *target_desc,
387 const struct bfd_arch_info *selected)
388 {
389 const struct bfd_arch_info *from_target = tdesc_architecture (target_desc);
390 const struct bfd_arch_info *compat1, *compat2;
391
392 if (selected == NULL)
393 return from_target;
394
395 if (from_target == NULL)
396 return selected;
397
398 /* struct bfd_arch_info objects are singletons: that is, there's
399 supposed to be exactly one instance for a given machine. So you
400 can tell whether two are equivalent by comparing pointers. */
401 if (from_target == selected)
402 return selected;
403
404 /* BFD's 'A->compatible (A, B)' functions return zero if A and B are
405 incompatible. But if they are compatible, it returns the 'more
406 featureful' of the two arches. That is, if A can run code
407 written for B, but B can't run code written for A, then it'll
408 return A.
409
410 Some targets (e.g. MIPS as of 2006-12-04) don't fully
411 implement this, instead always returning NULL or the first
412 argument. We detect that case by checking both directions. */
413
414 compat1 = selected->compatible (selected, from_target);
415 compat2 = from_target->compatible (from_target, selected);
416
417 if (compat1 == NULL && compat2 == NULL)
418 {
419 /* BFD considers the architectures incompatible. Check our
420 target description whether it accepts SELECTED as compatible
421 anyway. */
422 if (tdesc_compatible_p (target_desc, selected))
423 return from_target;
424
425 warning (_("Selected architecture %s is not compatible "
426 "with reported target architecture %s"),
427 selected->printable_name, from_target->printable_name);
428 return selected;
429 }
430
431 if (compat1 == NULL)
432 return compat2;
433 if (compat2 == NULL)
434 return compat1;
435 if (compat1 == compat2)
436 return compat1;
437
438 /* If the two didn't match, but one of them was a default
439 architecture, assume the more specific one is correct. This
440 handles the case where an executable or target description just
441 says "mips", but the other knows which MIPS variant. */
442 if (compat1->the_default)
443 return compat2;
444 if (compat2->the_default)
445 return compat1;
446
447 /* We have no idea which one is better. This is a bug, but not
448 a critical problem; warn the user. */
449 warning (_("Selected architecture %s is ambiguous with "
450 "reported target architecture %s"),
451 selected->printable_name, from_target->printable_name);
452 return selected;
453 }
454
455 /* Functions to manipulate the architecture of the target. */
456
457 enum set_arch { set_arch_auto, set_arch_manual };
458
459 static const struct bfd_arch_info *target_architecture_user;
460
461 static const char *set_architecture_string;
462
463 const char *
464 selected_architecture_name (void)
465 {
466 if (target_architecture_user == NULL)
467 return NULL;
468 else
469 return set_architecture_string;
470 }
471
472 /* Called if the user enters ``show architecture'' without an
473 argument. */
474
475 static void
476 show_architecture (struct ui_file *file, int from_tty,
477 struct cmd_list_element *c, const char *value)
478 {
479 if (target_architecture_user == NULL)
480 fprintf_filtered (file, _("The target architecture is set "
481 "automatically (currently %s)\n"),
482 gdbarch_bfd_arch_info (get_current_arch ())->printable_name);
483 else
484 fprintf_filtered (file, _("The target architecture is assumed to be %s\n"),
485 set_architecture_string);
486 }
487
488
489 /* Called if the user enters ``set architecture'' with or without an
490 argument. */
491
492 static void
493 set_architecture (const char *ignore_args,
494 int from_tty, struct cmd_list_element *c)
495 {
496 struct gdbarch_info info;
497
498 gdbarch_info_init (&info);
499
500 if (strcmp (set_architecture_string, "auto") == 0)
501 {
502 target_architecture_user = NULL;
503 if (!gdbarch_update_p (info))
504 internal_error (__FILE__, __LINE__,
505 _("could not select an architecture automatically"));
506 }
507 else
508 {
509 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
510 if (info.bfd_arch_info == NULL)
511 internal_error (__FILE__, __LINE__,
512 _("set_architecture: bfd_scan_arch failed"));
513 if (gdbarch_update_p (info))
514 target_architecture_user = info.bfd_arch_info;
515 else
516 printf_unfiltered (_("Architecture `%s' not recognized.\n"),
517 set_architecture_string);
518 }
519 show_architecture (gdb_stdout, from_tty, NULL, NULL);
520 }
521
522 /* Try to select a global architecture that matches "info". Return
523 non-zero if the attempt succeeds. */
524 int
525 gdbarch_update_p (struct gdbarch_info info)
526 {
527 struct gdbarch *new_gdbarch;
528
529 /* Check for the current file. */
530 if (info.abfd == NULL)
531 info.abfd = exec_bfd;
532 if (info.abfd == NULL)
533 info.abfd = core_bfd;
534
535 /* Check for the current target description. */
536 if (info.target_desc == NULL)
537 info.target_desc = target_current_description ();
538
539 new_gdbarch = gdbarch_find_by_info (info);
540
541 /* If there no architecture by that name, reject the request. */
542 if (new_gdbarch == NULL)
543 {
544 if (gdbarch_debug)
545 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
546 "Architecture not found\n");
547 return 0;
548 }
549
550 /* If it is the same old architecture, accept the request (but don't
551 swap anything). */
552 if (new_gdbarch == target_gdbarch ())
553 {
554 if (gdbarch_debug)
555 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
556 "Architecture %s (%s) unchanged\n",
557 host_address_to_string (new_gdbarch),
558 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
559 return 1;
560 }
561
562 /* It's a new architecture, swap it in. */
563 if (gdbarch_debug)
564 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
565 "New architecture %s (%s) selected\n",
566 host_address_to_string (new_gdbarch),
567 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
568 set_target_gdbarch (new_gdbarch);
569
570 return 1;
571 }
572
573 /* Return the architecture for ABFD. If no suitable architecture
574 could be find, return NULL. */
575
576 struct gdbarch *
577 gdbarch_from_bfd (bfd *abfd)
578 {
579 struct gdbarch_info info;
580 gdbarch_info_init (&info);
581
582 info.abfd = abfd;
583 return gdbarch_find_by_info (info);
584 }
585
586 /* Set the dynamic target-system-dependent parameters (architecture,
587 byte-order) using information found in the BFD */
588
589 void
590 set_gdbarch_from_file (bfd *abfd)
591 {
592 struct gdbarch_info info;
593 struct gdbarch *gdbarch;
594
595 gdbarch_info_init (&info);
596 info.abfd = abfd;
597 info.target_desc = target_current_description ();
598 gdbarch = gdbarch_find_by_info (info);
599
600 if (gdbarch == NULL)
601 error (_("Architecture of file not recognized."));
602 set_target_gdbarch (gdbarch);
603 }
604
605 /* Initialize the current architecture. Update the ``set
606 architecture'' command so that it specifies a list of valid
607 architectures. */
608
609 #ifdef DEFAULT_BFD_ARCH
610 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
611 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
612 #else
613 static const bfd_arch_info_type *default_bfd_arch;
614 #endif
615
616 #ifdef DEFAULT_BFD_VEC
617 extern const bfd_target DEFAULT_BFD_VEC;
618 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
619 #else
620 static const bfd_target *default_bfd_vec;
621 #endif
622
623 static enum bfd_endian default_byte_order = BFD_ENDIAN_UNKNOWN;
624
625 void
626 initialize_current_architecture (void)
627 {
628 const char **arches = gdbarch_printable_names ();
629 struct gdbarch_info info;
630
631 /* determine a default architecture and byte order. */
632 gdbarch_info_init (&info);
633
634 /* Find a default architecture. */
635 if (default_bfd_arch == NULL)
636 {
637 /* Choose the architecture by taking the first one
638 alphabetically. */
639 const char *chosen = arches[0];
640 const char **arch;
641 for (arch = arches; *arch != NULL; arch++)
642 {
643 if (strcmp (*arch, chosen) < 0)
644 chosen = *arch;
645 }
646 if (chosen == NULL)
647 internal_error (__FILE__, __LINE__,
648 _("initialize_current_architecture: No arch"));
649 default_bfd_arch = bfd_scan_arch (chosen);
650 if (default_bfd_arch == NULL)
651 internal_error (__FILE__, __LINE__,
652 _("initialize_current_architecture: Arch not found"));
653 }
654
655 info.bfd_arch_info = default_bfd_arch;
656
657 /* Take several guesses at a byte order. */
658 if (default_byte_order == BFD_ENDIAN_UNKNOWN
659 && default_bfd_vec != NULL)
660 {
661 /* Extract BFD's default vector's byte order. */
662 switch (default_bfd_vec->byteorder)
663 {
664 case BFD_ENDIAN_BIG:
665 default_byte_order = BFD_ENDIAN_BIG;
666 break;
667 case BFD_ENDIAN_LITTLE:
668 default_byte_order = BFD_ENDIAN_LITTLE;
669 break;
670 default:
671 break;
672 }
673 }
674 if (default_byte_order == BFD_ENDIAN_UNKNOWN)
675 {
676 /* look for ``*el-*'' in the target name. */
677 const char *chp;
678 chp = strchr (target_name, '-');
679 if (chp != NULL
680 && chp - 2 >= target_name
681 && startswith (chp - 2, "el"))
682 default_byte_order = BFD_ENDIAN_LITTLE;
683 }
684 if (default_byte_order == BFD_ENDIAN_UNKNOWN)
685 {
686 /* Wire it to big-endian!!! */
687 default_byte_order = BFD_ENDIAN_BIG;
688 }
689
690 info.byte_order = default_byte_order;
691 info.byte_order_for_code = info.byte_order;
692
693 if (! gdbarch_update_p (info))
694 internal_error (__FILE__, __LINE__,
695 _("initialize_current_architecture: Selection of "
696 "initial architecture failed"));
697
698 /* Create the ``set architecture'' command appending ``auto'' to the
699 list of architectures. */
700 {
701 /* Append ``auto''. */
702 int nr;
703 for (nr = 0; arches[nr] != NULL; nr++);
704 arches = XRESIZEVEC (const char *, arches, nr + 2);
705 arches[nr + 0] = "auto";
706 arches[nr + 1] = NULL;
707 add_setshow_enum_cmd ("architecture", class_support,
708 arches, &set_architecture_string,
709 _("Set architecture of target."),
710 _("Show architecture of target."), NULL,
711 set_architecture, show_architecture,
712 &setlist, &showlist);
713 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
714 }
715 }
716
717
718 /* Initialize a gdbarch info to values that will be automatically
719 overridden. Note: Originally, this ``struct info'' was initialized
720 using memset(0). Unfortunately, that ran into problems, namely
721 BFD_ENDIAN_BIG is zero. An explicit initialization function that
722 can explicitly set each field to a well defined value is used. */
723
724 void
725 gdbarch_info_init (struct gdbarch_info *info)
726 {
727 memset (info, 0, sizeof (struct gdbarch_info));
728 info->byte_order = BFD_ENDIAN_UNKNOWN;
729 info->byte_order_for_code = info->byte_order;
730 }
731
732 /* Similar to init, but this time fill in the blanks. Information is
733 obtained from the global "set ..." options and explicitly
734 initialized INFO fields. */
735
736 void
737 gdbarch_info_fill (struct gdbarch_info *info)
738 {
739 /* "(gdb) set architecture ...". */
740 if (info->bfd_arch_info == NULL
741 && target_architecture_user)
742 info->bfd_arch_info = target_architecture_user;
743 /* From the file. */
744 if (info->bfd_arch_info == NULL
745 && info->abfd != NULL
746 && bfd_get_arch (info->abfd) != bfd_arch_unknown
747 && bfd_get_arch (info->abfd) != bfd_arch_obscure)
748 info->bfd_arch_info = bfd_get_arch_info (info->abfd);
749 /* From the target. */
750 if (info->target_desc != NULL)
751 info->bfd_arch_info = choose_architecture_for_target
752 (info->target_desc, info->bfd_arch_info);
753 /* From the default. */
754 if (info->bfd_arch_info == NULL)
755 info->bfd_arch_info = default_bfd_arch;
756
757 /* "(gdb) set byte-order ...". */
758 if (info->byte_order == BFD_ENDIAN_UNKNOWN
759 && target_byte_order_user != BFD_ENDIAN_UNKNOWN)
760 info->byte_order = target_byte_order_user;
761 /* From the INFO struct. */
762 if (info->byte_order == BFD_ENDIAN_UNKNOWN
763 && info->abfd != NULL)
764 info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
765 : bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
766 : BFD_ENDIAN_UNKNOWN);
767 /* From the default. */
768 if (info->byte_order == BFD_ENDIAN_UNKNOWN)
769 info->byte_order = default_byte_order;
770 info->byte_order_for_code = info->byte_order;
771
772 /* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
773 /* From the manual override, or from file. */
774 if (info->osabi == GDB_OSABI_UNKNOWN)
775 info->osabi = gdbarch_lookup_osabi (info->abfd);
776 /* From the target. */
777
778 if (info->osabi == GDB_OSABI_UNKNOWN && info->target_desc != NULL)
779 info->osabi = tdesc_osabi (info->target_desc);
780 /* From the configured default. */
781 #ifdef GDB_OSABI_DEFAULT
782 if (info->osabi == GDB_OSABI_UNKNOWN)
783 info->osabi = GDB_OSABI_DEFAULT;
784 #endif
785 /* If we still don't know which osabi to pick, pick none. */
786 if (info->osabi == GDB_OSABI_UNKNOWN)
787 info->osabi = GDB_OSABI_NONE;
788
789 /* Must have at least filled in the architecture. */
790 gdb_assert (info->bfd_arch_info != NULL);
791 }
792
793 /* Return "current" architecture. If the target is running, this is
794 the architecture of the selected frame. Otherwise, the "current"
795 architecture defaults to the target architecture.
796
797 This function should normally be called solely by the command
798 interpreter routines to determine the architecture to execute a
799 command in. */
800 struct gdbarch *
801 get_current_arch (void)
802 {
803 if (has_stack_frames ())
804 return get_frame_arch (get_selected_frame (NULL));
805 else
806 return target_gdbarch ();
807 }
808
809 int
810 default_has_shared_address_space (struct gdbarch *gdbarch)
811 {
812 /* Simply say no. In most unix-like targets each inferior/process
813 has its own address space. */
814 return 0;
815 }
816
817 int
818 default_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
819 std::string *msg)
820 {
821 /* We don't know if maybe the target has some way to do fast
822 tracepoints that doesn't need gdbarch, so always say yes. */
823 if (msg)
824 msg->clear ();
825 return 1;
826 }
827
828 const gdb_byte *
829 default_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
830 int *lenptr)
831 {
832 int kind = gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);
833
834 return gdbarch_sw_breakpoint_from_kind (gdbarch, kind, lenptr);
835 }
836 int
837 default_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
838 struct regcache *regcache,
839 CORE_ADDR *pcptr)
840 {
841 return gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);
842 }
843
844
845 void
846 default_gen_return_address (struct gdbarch *gdbarch,
847 struct agent_expr *ax, struct axs_value *value,
848 CORE_ADDR scope)
849 {
850 error (_("This architecture has no method to collect a return address."));
851 }
852
853 int
854 default_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
855 struct type *type)
856 {
857 /* Usually, the return value's address is stored the in the "first hidden"
858 parameter if the return value should be passed by reference, as
859 specified in ABI. */
860 return language_pass_by_reference (type);
861 }
862
863 int default_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
864 {
865 return 0;
866 }
867
868 int default_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
869 {
870 return 0;
871 }
872
873 int default_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
874 {
875 return 0;
876 }
877
878 void
879 default_skip_permanent_breakpoint (struct regcache *regcache)
880 {
881 struct gdbarch *gdbarch = regcache->arch ();
882 CORE_ADDR current_pc = regcache_read_pc (regcache);
883 int bp_len;
884
885 gdbarch_breakpoint_from_pc (gdbarch, &current_pc, &bp_len);
886 current_pc += bp_len;
887 regcache_write_pc (regcache, current_pc);
888 }
889
890 CORE_ADDR
891 default_infcall_mmap (CORE_ADDR size, unsigned prot)
892 {
893 error (_("This target does not support inferior memory allocation by mmap."));
894 }
895
896 void
897 default_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
898 {
899 /* Memory reserved by inferior mmap is kept leaked. */
900 }
901
902 /* -mcmodel=large is used so that no GOT (Global Offset Table) is needed to be
903 created in inferior memory by GDB (normally it is set by ld.so). */
904
905 char *
906 default_gcc_target_options (struct gdbarch *gdbarch)
907 {
908 return xstrprintf ("-m%d%s", gdbarch_ptr_bit (gdbarch),
909 gdbarch_ptr_bit (gdbarch) == 64 ? " -mcmodel=large" : "");
910 }
911
912 /* gdbarch gnu_triplet_regexp method. */
913
914 const char *
915 default_gnu_triplet_regexp (struct gdbarch *gdbarch)
916 {
917 return gdbarch_bfd_arch_info (gdbarch)->arch_name;
918 }
919
920 /* Default method for gdbarch_addressable_memory_unit_size. By default, a memory byte has
921 a size of 1 octet. */
922
923 int
924 default_addressable_memory_unit_size (struct gdbarch *gdbarch)
925 {
926 return 1;
927 }
928
929 void
930 default_guess_tracepoint_registers (struct gdbarch *gdbarch,
931 struct regcache *regcache,
932 CORE_ADDR addr)
933 {
934 int pc_regno = gdbarch_pc_regnum (gdbarch);
935 gdb_byte *regs;
936
937 /* This guessing code below only works if the PC register isn't
938 a pseudo-register. The value of a pseudo-register isn't stored
939 in the (non-readonly) regcache -- instead it's recomputed
940 (probably from some other cached raw register) whenever the
941 register is read. In this case, a custom method implementation
942 should be used by the architecture. */
943 if (pc_regno < 0 || pc_regno >= gdbarch_num_regs (gdbarch))
944 return;
945
946 regs = (gdb_byte *) alloca (register_size (gdbarch, pc_regno));
947 store_unsigned_integer (regs, register_size (gdbarch, pc_regno),
948 gdbarch_byte_order (gdbarch), addr);
949 regcache->raw_supply (pc_regno, regs);
950 }
951
952 int
953 default_print_insn (bfd_vma memaddr, disassemble_info *info)
954 {
955 disassembler_ftype disassemble_fn;
956
957 disassemble_fn = disassembler (info->arch, info->endian == BFD_ENDIAN_BIG,
958 info->mach, exec_bfd);
959
960 gdb_assert (disassemble_fn != NULL);
961 return (*disassemble_fn) (memaddr, info);
962 }
963
964 /* See arch-utils.h. */
965
966 CORE_ADDR
967 gdbarch_skip_prologue_noexcept (gdbarch *gdbarch, CORE_ADDR pc) noexcept
968 {
969 CORE_ADDR new_pc = pc;
970
971 TRY
972 {
973 new_pc = gdbarch_skip_prologue (gdbarch, pc);
974 }
975 CATCH (ex, RETURN_MASK_ALL)
976 {}
977 END_CATCH
978
979 return new_pc;
980 }
981
982 /* See arch-utils.h. */
983
984 bool
985 default_in_indirect_branch_thunk (gdbarch *gdbarch, CORE_ADDR pc)
986 {
987 return false;
988 }
989
990 /* See arch-utils.h. */
991
992 ULONGEST
993 default_type_align (struct gdbarch *gdbarch, struct type *type)
994 {
995 return TYPE_LENGTH (check_typedef (type));
996 }
997
998 void
999 _initialize_gdbarch_utils (void)
1000 {
1001 add_setshow_enum_cmd ("endian", class_support,
1002 endian_enum, &set_endian_string,
1003 _("Set endianness of target."),
1004 _("Show endianness of target."),
1005 NULL, set_endian, show_endian,
1006 &setlist, &showlist);
1007 }