]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arch-utils.c
s/get_regcache_arch (regcache)/regcache->arch ()/g
[thirdparty/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright (C) 1998-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "arch-utils.h"
23 #include "buildsym.h"
24 #include "gdbcmd.h"
25 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et al. */
26 #include "infrun.h"
27 #include "regcache.h"
28 #include "sim-regno.h"
29 #include "gdbcore.h"
30 #include "osabi.h"
31 #include "target-descriptions.h"
32 #include "objfiles.h"
33 #include "language.h"
34 #include "symtab.h"
35
36 #include "version.h"
37
38 #include "floatformat.h"
39
40 #include "dis-asm.h"
41
42 int
43 default_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
44 struct displaced_step_closure *closure)
45 {
46 return !gdbarch_software_single_step_p (gdbarch);
47 }
48
49 CORE_ADDR
50 displaced_step_at_entry_point (struct gdbarch *gdbarch)
51 {
52 CORE_ADDR addr;
53 int bp_len;
54
55 addr = entry_point_address ();
56
57 /* Inferior calls also use the entry point as a breakpoint location.
58 We don't want displaced stepping to interfere with those
59 breakpoints, so leave space. */
60 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
61 addr += bp_len * 2;
62
63 return addr;
64 }
65
66 int
67 legacy_register_sim_regno (struct gdbarch *gdbarch, int regnum)
68 {
69 /* Only makes sense to supply raw registers. */
70 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
71 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
72 suspected that some GDB/SIM combinations may rely on this
73 behavour. The default should be one2one_register_sim_regno
74 (below). */
75 if (gdbarch_register_name (gdbarch, regnum) != NULL
76 && gdbarch_register_name (gdbarch, regnum)[0] != '\0')
77 return regnum;
78 else
79 return LEGACY_SIM_REGNO_IGNORE;
80 }
81
82 CORE_ADDR
83 generic_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
84 {
85 return 0;
86 }
87
88 CORE_ADDR
89 generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
90 {
91 return 0;
92 }
93
94 int
95 generic_in_solib_return_trampoline (struct gdbarch *gdbarch,
96 CORE_ADDR pc, const char *name)
97 {
98 return 0;
99 }
100
101 int
102 generic_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
103 {
104 return 0;
105 }
106
107 int
108 default_code_of_frame_writable (struct gdbarch *gdbarch,
109 struct frame_info *frame)
110 {
111 return 1;
112 }
113
114 /* Helper functions for gdbarch_inner_than */
115
116 int
117 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
118 {
119 return (lhs < rhs);
120 }
121
122 int
123 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
124 {
125 return (lhs > rhs);
126 }
127
128 /* Misc helper functions for targets. */
129
130 CORE_ADDR
131 core_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr)
132 {
133 return addr;
134 }
135
136 CORE_ADDR
137 convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
138 struct target_ops *targ)
139 {
140 return addr;
141 }
142
143 int
144 no_op_reg_to_regnum (struct gdbarch *gdbarch, int reg)
145 {
146 return reg;
147 }
148
149 void
150 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
151 {
152 return;
153 }
154
155 /* See arch-utils.h. */
156
157 void
158 default_make_symbol_special (struct symbol *sym, struct objfile *objfile)
159 {
160 return;
161 }
162
163 /* See arch-utils.h. */
164
165 CORE_ADDR
166 default_adjust_dwarf2_addr (CORE_ADDR pc)
167 {
168 return pc;
169 }
170
171 /* See arch-utils.h. */
172
173 CORE_ADDR
174 default_adjust_dwarf2_line (CORE_ADDR addr, int rel)
175 {
176 return addr;
177 }
178
179 /* See arch-utils.h. */
180
181 bool
182 default_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
183 struct dwarf2_frame_state *fs)
184 {
185 return false;
186 }
187
188 int
189 cannot_register_not (struct gdbarch *gdbarch, int regnum)
190 {
191 return 0;
192 }
193
194 /* Legacy version of target_virtual_frame_pointer(). Assumes that
195 there is an gdbarch_deprecated_fp_regnum and that it is the same,
196 cooked or raw. */
197
198 void
199 legacy_virtual_frame_pointer (struct gdbarch *gdbarch,
200 CORE_ADDR pc,
201 int *frame_regnum,
202 LONGEST *frame_offset)
203 {
204 /* FIXME: cagney/2002-09-13: This code is used when identifying the
205 frame pointer of the current PC. It is assuming that a single
206 register and an offset can determine this. I think it should
207 instead generate a byte code expression as that would work better
208 with things like Dwarf2's CFI. */
209 if (gdbarch_deprecated_fp_regnum (gdbarch) >= 0
210 && gdbarch_deprecated_fp_regnum (gdbarch)
211 < gdbarch_num_regs (gdbarch))
212 *frame_regnum = gdbarch_deprecated_fp_regnum (gdbarch);
213 else if (gdbarch_sp_regnum (gdbarch) >= 0
214 && gdbarch_sp_regnum (gdbarch)
215 < gdbarch_num_regs (gdbarch))
216 *frame_regnum = gdbarch_sp_regnum (gdbarch);
217 else
218 /* Should this be an internal error? I guess so, it is reflecting
219 an architectural limitation in the current design. */
220 internal_error (__FILE__, __LINE__,
221 _("No virtual frame pointer available"));
222 *frame_offset = 0;
223 }
224
225 /* Return a floating-point format for a floating-point variable of
226 length LEN in bits. If non-NULL, NAME is the name of its type.
227 If no suitable type is found, return NULL. */
228
229 const struct floatformat **
230 default_floatformat_for_type (struct gdbarch *gdbarch,
231 const char *name, int len)
232 {
233 const struct floatformat **format = NULL;
234
235 if (len == gdbarch_half_bit (gdbarch))
236 format = gdbarch_half_format (gdbarch);
237 else if (len == gdbarch_float_bit (gdbarch))
238 format = gdbarch_float_format (gdbarch);
239 else if (len == gdbarch_double_bit (gdbarch))
240 format = gdbarch_double_format (gdbarch);
241 else if (len == gdbarch_long_double_bit (gdbarch))
242 format = gdbarch_long_double_format (gdbarch);
243 /* On i386 the 'long double' type takes 96 bits,
244 while the real number of used bits is only 80,
245 both in processor and in memory.
246 The code below accepts the real bit size. */
247 else if (gdbarch_long_double_format (gdbarch) != NULL
248 && len == gdbarch_long_double_format (gdbarch)[0]->totalsize)
249 format = gdbarch_long_double_format (gdbarch);
250
251 return format;
252 }
253 \f
254 int
255 generic_convert_register_p (struct gdbarch *gdbarch, int regnum,
256 struct type *type)
257 {
258 return 0;
259 }
260
261 int
262 default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
263 {
264 return 0;
265 }
266
267 int
268 generic_instruction_nullified (struct gdbarch *gdbarch,
269 struct regcache *regcache)
270 {
271 return 0;
272 }
273
274 int
275 default_remote_register_number (struct gdbarch *gdbarch,
276 int regno)
277 {
278 return regno;
279 }
280
281 /* See arch-utils.h. */
282
283 int
284 default_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
285 {
286 return 0;
287 }
288
289 \f
290 /* Functions to manipulate the endianness of the target. */
291
292 static enum bfd_endian target_byte_order_user = BFD_ENDIAN_UNKNOWN;
293
294 static const char endian_big[] = "big";
295 static const char endian_little[] = "little";
296 static const char endian_auto[] = "auto";
297 static const char *const endian_enum[] =
298 {
299 endian_big,
300 endian_little,
301 endian_auto,
302 NULL,
303 };
304 static const char *set_endian_string;
305
306 enum bfd_endian
307 selected_byte_order (void)
308 {
309 return target_byte_order_user;
310 }
311
312 /* Called by ``show endian''. */
313
314 static void
315 show_endian (struct ui_file *file, int from_tty, struct cmd_list_element *c,
316 const char *value)
317 {
318 if (target_byte_order_user == BFD_ENDIAN_UNKNOWN)
319 if (gdbarch_byte_order (get_current_arch ()) == BFD_ENDIAN_BIG)
320 fprintf_unfiltered (file, _("The target endianness is set automatically "
321 "(currently big endian)\n"));
322 else
323 fprintf_unfiltered (file, _("The target endianness is set automatically "
324 "(currently little endian)\n"));
325 else
326 if (target_byte_order_user == BFD_ENDIAN_BIG)
327 fprintf_unfiltered (file,
328 _("The target is assumed to be big endian\n"));
329 else
330 fprintf_unfiltered (file,
331 _("The target is assumed to be little endian\n"));
332 }
333
334 static void
335 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
336 {
337 struct gdbarch_info info;
338
339 gdbarch_info_init (&info);
340
341 if (set_endian_string == endian_auto)
342 {
343 target_byte_order_user = BFD_ENDIAN_UNKNOWN;
344 if (! gdbarch_update_p (info))
345 internal_error (__FILE__, __LINE__,
346 _("set_endian: architecture update failed"));
347 }
348 else if (set_endian_string == endian_little)
349 {
350 info.byte_order = BFD_ENDIAN_LITTLE;
351 if (! gdbarch_update_p (info))
352 printf_unfiltered (_("Little endian target not supported by GDB\n"));
353 else
354 target_byte_order_user = BFD_ENDIAN_LITTLE;
355 }
356 else if (set_endian_string == endian_big)
357 {
358 info.byte_order = BFD_ENDIAN_BIG;
359 if (! gdbarch_update_p (info))
360 printf_unfiltered (_("Big endian target not supported by GDB\n"));
361 else
362 target_byte_order_user = BFD_ENDIAN_BIG;
363 }
364 else
365 internal_error (__FILE__, __LINE__,
366 _("set_endian: bad value"));
367
368 show_endian (gdb_stdout, from_tty, NULL, NULL);
369 }
370
371 /* Given SELECTED, a currently selected BFD architecture, and
372 TARGET_DESC, the current target description, return what
373 architecture to use.
374
375 SELECTED may be NULL, in which case we return the architecture
376 associated with TARGET_DESC. If SELECTED specifies a variant
377 of the architecture associtated with TARGET_DESC, return the
378 more specific of the two.
379
380 If SELECTED is a different architecture, but it is accepted as
381 compatible by the target, we can use the target architecture.
382
383 If SELECTED is obviously incompatible, warn the user. */
384
385 static const struct bfd_arch_info *
386 choose_architecture_for_target (const struct target_desc *target_desc,
387 const struct bfd_arch_info *selected)
388 {
389 const struct bfd_arch_info *from_target = tdesc_architecture (target_desc);
390 const struct bfd_arch_info *compat1, *compat2;
391
392 if (selected == NULL)
393 return from_target;
394
395 if (from_target == NULL)
396 return selected;
397
398 /* struct bfd_arch_info objects are singletons: that is, there's
399 supposed to be exactly one instance for a given machine. So you
400 can tell whether two are equivalent by comparing pointers. */
401 if (from_target == selected)
402 return selected;
403
404 /* BFD's 'A->compatible (A, B)' functions return zero if A and B are
405 incompatible. But if they are compatible, it returns the 'more
406 featureful' of the two arches. That is, if A can run code
407 written for B, but B can't run code written for A, then it'll
408 return A.
409
410 Some targets (e.g. MIPS as of 2006-12-04) don't fully
411 implement this, instead always returning NULL or the first
412 argument. We detect that case by checking both directions. */
413
414 compat1 = selected->compatible (selected, from_target);
415 compat2 = from_target->compatible (from_target, selected);
416
417 if (compat1 == NULL && compat2 == NULL)
418 {
419 /* BFD considers the architectures incompatible. Check our
420 target description whether it accepts SELECTED as compatible
421 anyway. */
422 if (tdesc_compatible_p (target_desc, selected))
423 return from_target;
424
425 warning (_("Selected architecture %s is not compatible "
426 "with reported target architecture %s"),
427 selected->printable_name, from_target->printable_name);
428 return selected;
429 }
430
431 if (compat1 == NULL)
432 return compat2;
433 if (compat2 == NULL)
434 return compat1;
435 if (compat1 == compat2)
436 return compat1;
437
438 /* If the two didn't match, but one of them was a default
439 architecture, assume the more specific one is correct. This
440 handles the case where an executable or target description just
441 says "mips", but the other knows which MIPS variant. */
442 if (compat1->the_default)
443 return compat2;
444 if (compat2->the_default)
445 return compat1;
446
447 /* We have no idea which one is better. This is a bug, but not
448 a critical problem; warn the user. */
449 warning (_("Selected architecture %s is ambiguous with "
450 "reported target architecture %s"),
451 selected->printable_name, from_target->printable_name);
452 return selected;
453 }
454
455 /* Functions to manipulate the architecture of the target. */
456
457 enum set_arch { set_arch_auto, set_arch_manual };
458
459 static const struct bfd_arch_info *target_architecture_user;
460
461 static const char *set_architecture_string;
462
463 const char *
464 selected_architecture_name (void)
465 {
466 if (target_architecture_user == NULL)
467 return NULL;
468 else
469 return set_architecture_string;
470 }
471
472 /* Called if the user enters ``show architecture'' without an
473 argument. */
474
475 static void
476 show_architecture (struct ui_file *file, int from_tty,
477 struct cmd_list_element *c, const char *value)
478 {
479 if (target_architecture_user == NULL)
480 fprintf_filtered (file, _("The target architecture is set "
481 "automatically (currently %s)\n"),
482 gdbarch_bfd_arch_info (get_current_arch ())->printable_name);
483 else
484 fprintf_filtered (file, _("The target architecture is assumed to be %s\n"),
485 set_architecture_string);
486 }
487
488
489 /* Called if the user enters ``set architecture'' with or without an
490 argument. */
491
492 static void
493 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
494 {
495 struct gdbarch_info info;
496
497 gdbarch_info_init (&info);
498
499 if (strcmp (set_architecture_string, "auto") == 0)
500 {
501 target_architecture_user = NULL;
502 if (!gdbarch_update_p (info))
503 internal_error (__FILE__, __LINE__,
504 _("could not select an architecture automatically"));
505 }
506 else
507 {
508 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
509 if (info.bfd_arch_info == NULL)
510 internal_error (__FILE__, __LINE__,
511 _("set_architecture: bfd_scan_arch failed"));
512 if (gdbarch_update_p (info))
513 target_architecture_user = info.bfd_arch_info;
514 else
515 printf_unfiltered (_("Architecture `%s' not recognized.\n"),
516 set_architecture_string);
517 }
518 show_architecture (gdb_stdout, from_tty, NULL, NULL);
519 }
520
521 /* Try to select a global architecture that matches "info". Return
522 non-zero if the attempt succeeds. */
523 int
524 gdbarch_update_p (struct gdbarch_info info)
525 {
526 struct gdbarch *new_gdbarch;
527
528 /* Check for the current file. */
529 if (info.abfd == NULL)
530 info.abfd = exec_bfd;
531 if (info.abfd == NULL)
532 info.abfd = core_bfd;
533
534 /* Check for the current target description. */
535 if (info.target_desc == NULL)
536 info.target_desc = target_current_description ();
537
538 new_gdbarch = gdbarch_find_by_info (info);
539
540 /* If there no architecture by that name, reject the request. */
541 if (new_gdbarch == NULL)
542 {
543 if (gdbarch_debug)
544 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
545 "Architecture not found\n");
546 return 0;
547 }
548
549 /* If it is the same old architecture, accept the request (but don't
550 swap anything). */
551 if (new_gdbarch == target_gdbarch ())
552 {
553 if (gdbarch_debug)
554 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
555 "Architecture %s (%s) unchanged\n",
556 host_address_to_string (new_gdbarch),
557 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
558 return 1;
559 }
560
561 /* It's a new architecture, swap it in. */
562 if (gdbarch_debug)
563 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
564 "New architecture %s (%s) selected\n",
565 host_address_to_string (new_gdbarch),
566 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
567 set_target_gdbarch (new_gdbarch);
568
569 return 1;
570 }
571
572 /* Return the architecture for ABFD. If no suitable architecture
573 could be find, return NULL. */
574
575 struct gdbarch *
576 gdbarch_from_bfd (bfd *abfd)
577 {
578 struct gdbarch_info info;
579 gdbarch_info_init (&info);
580
581 info.abfd = abfd;
582 return gdbarch_find_by_info (info);
583 }
584
585 /* Set the dynamic target-system-dependent parameters (architecture,
586 byte-order) using information found in the BFD */
587
588 void
589 set_gdbarch_from_file (bfd *abfd)
590 {
591 struct gdbarch_info info;
592 struct gdbarch *gdbarch;
593
594 gdbarch_info_init (&info);
595 info.abfd = abfd;
596 info.target_desc = target_current_description ();
597 gdbarch = gdbarch_find_by_info (info);
598
599 if (gdbarch == NULL)
600 error (_("Architecture of file not recognized."));
601 set_target_gdbarch (gdbarch);
602 }
603
604 /* Initialize the current architecture. Update the ``set
605 architecture'' command so that it specifies a list of valid
606 architectures. */
607
608 #ifdef DEFAULT_BFD_ARCH
609 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
610 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
611 #else
612 static const bfd_arch_info_type *default_bfd_arch;
613 #endif
614
615 #ifdef DEFAULT_BFD_VEC
616 extern const bfd_target DEFAULT_BFD_VEC;
617 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
618 #else
619 static const bfd_target *default_bfd_vec;
620 #endif
621
622 static enum bfd_endian default_byte_order = BFD_ENDIAN_UNKNOWN;
623
624 void
625 initialize_current_architecture (void)
626 {
627 const char **arches = gdbarch_printable_names ();
628 struct gdbarch_info info;
629
630 /* determine a default architecture and byte order. */
631 gdbarch_info_init (&info);
632
633 /* Find a default architecture. */
634 if (default_bfd_arch == NULL)
635 {
636 /* Choose the architecture by taking the first one
637 alphabetically. */
638 const char *chosen = arches[0];
639 const char **arch;
640 for (arch = arches; *arch != NULL; arch++)
641 {
642 if (strcmp (*arch, chosen) < 0)
643 chosen = *arch;
644 }
645 if (chosen == NULL)
646 internal_error (__FILE__, __LINE__,
647 _("initialize_current_architecture: No arch"));
648 default_bfd_arch = bfd_scan_arch (chosen);
649 if (default_bfd_arch == NULL)
650 internal_error (__FILE__, __LINE__,
651 _("initialize_current_architecture: Arch not found"));
652 }
653
654 info.bfd_arch_info = default_bfd_arch;
655
656 /* Take several guesses at a byte order. */
657 if (default_byte_order == BFD_ENDIAN_UNKNOWN
658 && default_bfd_vec != NULL)
659 {
660 /* Extract BFD's default vector's byte order. */
661 switch (default_bfd_vec->byteorder)
662 {
663 case BFD_ENDIAN_BIG:
664 default_byte_order = BFD_ENDIAN_BIG;
665 break;
666 case BFD_ENDIAN_LITTLE:
667 default_byte_order = BFD_ENDIAN_LITTLE;
668 break;
669 default:
670 break;
671 }
672 }
673 if (default_byte_order == BFD_ENDIAN_UNKNOWN)
674 {
675 /* look for ``*el-*'' in the target name. */
676 const char *chp;
677 chp = strchr (target_name, '-');
678 if (chp != NULL
679 && chp - 2 >= target_name
680 && startswith (chp - 2, "el"))
681 default_byte_order = BFD_ENDIAN_LITTLE;
682 }
683 if (default_byte_order == BFD_ENDIAN_UNKNOWN)
684 {
685 /* Wire it to big-endian!!! */
686 default_byte_order = BFD_ENDIAN_BIG;
687 }
688
689 info.byte_order = default_byte_order;
690 info.byte_order_for_code = info.byte_order;
691
692 if (! gdbarch_update_p (info))
693 internal_error (__FILE__, __LINE__,
694 _("initialize_current_architecture: Selection of "
695 "initial architecture failed"));
696
697 /* Create the ``set architecture'' command appending ``auto'' to the
698 list of architectures. */
699 {
700 /* Append ``auto''. */
701 int nr;
702 for (nr = 0; arches[nr] != NULL; nr++);
703 arches = XRESIZEVEC (const char *, arches, nr + 2);
704 arches[nr + 0] = "auto";
705 arches[nr + 1] = NULL;
706 add_setshow_enum_cmd ("architecture", class_support,
707 arches, &set_architecture_string,
708 _("Set architecture of target."),
709 _("Show architecture of target."), NULL,
710 set_architecture, show_architecture,
711 &setlist, &showlist);
712 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
713 }
714 }
715
716
717 /* Initialize a gdbarch info to values that will be automatically
718 overridden. Note: Originally, this ``struct info'' was initialized
719 using memset(0). Unfortunately, that ran into problems, namely
720 BFD_ENDIAN_BIG is zero. An explicit initialization function that
721 can explicitly set each field to a well defined value is used. */
722
723 void
724 gdbarch_info_init (struct gdbarch_info *info)
725 {
726 memset (info, 0, sizeof (struct gdbarch_info));
727 info->byte_order = BFD_ENDIAN_UNKNOWN;
728 info->byte_order_for_code = info->byte_order;
729 info->osabi = GDB_OSABI_UNINITIALIZED;
730 }
731
732 /* Similar to init, but this time fill in the blanks. Information is
733 obtained from the global "set ..." options and explicitly
734 initialized INFO fields. */
735
736 void
737 gdbarch_info_fill (struct gdbarch_info *info)
738 {
739 /* "(gdb) set architecture ...". */
740 if (info->bfd_arch_info == NULL
741 && target_architecture_user)
742 info->bfd_arch_info = target_architecture_user;
743 /* From the file. */
744 if (info->bfd_arch_info == NULL
745 && info->abfd != NULL
746 && bfd_get_arch (info->abfd) != bfd_arch_unknown
747 && bfd_get_arch (info->abfd) != bfd_arch_obscure)
748 info->bfd_arch_info = bfd_get_arch_info (info->abfd);
749 /* From the target. */
750 if (info->target_desc != NULL)
751 info->bfd_arch_info = choose_architecture_for_target
752 (info->target_desc, info->bfd_arch_info);
753 /* From the default. */
754 if (info->bfd_arch_info == NULL)
755 info->bfd_arch_info = default_bfd_arch;
756
757 /* "(gdb) set byte-order ...". */
758 if (info->byte_order == BFD_ENDIAN_UNKNOWN
759 && target_byte_order_user != BFD_ENDIAN_UNKNOWN)
760 info->byte_order = target_byte_order_user;
761 /* From the INFO struct. */
762 if (info->byte_order == BFD_ENDIAN_UNKNOWN
763 && info->abfd != NULL)
764 info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
765 : bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
766 : BFD_ENDIAN_UNKNOWN);
767 /* From the default. */
768 if (info->byte_order == BFD_ENDIAN_UNKNOWN)
769 info->byte_order = default_byte_order;
770 info->byte_order_for_code = info->byte_order;
771
772 /* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
773 /* From the manual override, or from file. */
774 if (info->osabi == GDB_OSABI_UNINITIALIZED)
775 info->osabi = gdbarch_lookup_osabi (info->abfd);
776 /* From the target. */
777 if (info->osabi == GDB_OSABI_UNKNOWN && info->target_desc != NULL)
778 info->osabi = tdesc_osabi (info->target_desc);
779 /* From the configured default. */
780 #ifdef GDB_OSABI_DEFAULT
781 if (info->osabi == GDB_OSABI_UNKNOWN)
782 info->osabi = GDB_OSABI_DEFAULT;
783 #endif
784
785 /* Must have at least filled in the architecture. */
786 gdb_assert (info->bfd_arch_info != NULL);
787 }
788
789 /* Return "current" architecture. If the target is running, this is
790 the architecture of the selected frame. Otherwise, the "current"
791 architecture defaults to the target architecture.
792
793 This function should normally be called solely by the command
794 interpreter routines to determine the architecture to execute a
795 command in. */
796 struct gdbarch *
797 get_current_arch (void)
798 {
799 if (has_stack_frames ())
800 return get_frame_arch (get_selected_frame (NULL));
801 else
802 return target_gdbarch ();
803 }
804
805 int
806 default_has_shared_address_space (struct gdbarch *gdbarch)
807 {
808 /* Simply say no. In most unix-like targets each inferior/process
809 has its own address space. */
810 return 0;
811 }
812
813 int
814 default_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
815 char **msg)
816 {
817 /* We don't know if maybe the target has some way to do fast
818 tracepoints that doesn't need gdbarch, so always say yes. */
819 if (msg)
820 *msg = NULL;
821 return 1;
822 }
823
824 const gdb_byte *
825 default_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
826 int *lenptr)
827 {
828 int kind = gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);
829
830 return gdbarch_sw_breakpoint_from_kind (gdbarch, kind, lenptr);
831 }
832 int
833 default_breakpoint_kind_from_current_state (struct gdbarch *gdbarch,
834 struct regcache *regcache,
835 CORE_ADDR *pcptr)
836 {
837 return gdbarch_breakpoint_kind_from_pc (gdbarch, pcptr);
838 }
839
840
841 void
842 default_gen_return_address (struct gdbarch *gdbarch,
843 struct agent_expr *ax, struct axs_value *value,
844 CORE_ADDR scope)
845 {
846 error (_("This architecture has no method to collect a return address."));
847 }
848
849 int
850 default_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
851 struct type *type)
852 {
853 /* Usually, the return value's address is stored the in the "first hidden"
854 parameter if the return value should be passed by reference, as
855 specified in ABI. */
856 return language_pass_by_reference (type);
857 }
858
859 int default_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
860 {
861 return 0;
862 }
863
864 int default_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
865 {
866 return 0;
867 }
868
869 int default_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
870 {
871 return 0;
872 }
873
874 void
875 default_skip_permanent_breakpoint (struct regcache *regcache)
876 {
877 struct gdbarch *gdbarch = regcache->arch ();
878 CORE_ADDR current_pc = regcache_read_pc (regcache);
879 int bp_len;
880
881 gdbarch_breakpoint_from_pc (gdbarch, &current_pc, &bp_len);
882 current_pc += bp_len;
883 regcache_write_pc (regcache, current_pc);
884 }
885
886 CORE_ADDR
887 default_infcall_mmap (CORE_ADDR size, unsigned prot)
888 {
889 error (_("This target does not support inferior memory allocation by mmap."));
890 }
891
892 void
893 default_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
894 {
895 /* Memory reserved by inferior mmap is kept leaked. */
896 }
897
898 /* -mcmodel=large is used so that no GOT (Global Offset Table) is needed to be
899 created in inferior memory by GDB (normally it is set by ld.so). */
900
901 char *
902 default_gcc_target_options (struct gdbarch *gdbarch)
903 {
904 return xstrprintf ("-m%d%s", gdbarch_ptr_bit (gdbarch),
905 gdbarch_ptr_bit (gdbarch) == 64 ? " -mcmodel=large" : "");
906 }
907
908 /* gdbarch gnu_triplet_regexp method. */
909
910 const char *
911 default_gnu_triplet_regexp (struct gdbarch *gdbarch)
912 {
913 return gdbarch_bfd_arch_info (gdbarch)->arch_name;
914 }
915
916 /* Default method for gdbarch_addressable_memory_unit_size. By default, a memory byte has
917 a size of 1 octet. */
918
919 int
920 default_addressable_memory_unit_size (struct gdbarch *gdbarch)
921 {
922 return 1;
923 }
924
925 void
926 default_guess_tracepoint_registers (struct gdbarch *gdbarch,
927 struct regcache *regcache,
928 CORE_ADDR addr)
929 {
930 int pc_regno = gdbarch_pc_regnum (gdbarch);
931 gdb_byte *regs;
932
933 /* This guessing code below only works if the PC register isn't
934 a pseudo-register. The value of a pseudo-register isn't stored
935 in the (non-readonly) regcache -- instead it's recomputed
936 (probably from some other cached raw register) whenever the
937 register is read. In this case, a custom method implementation
938 should be used by the architecture. */
939 if (pc_regno < 0 || pc_regno >= gdbarch_num_regs (gdbarch))
940 return;
941
942 regs = (gdb_byte *) alloca (register_size (gdbarch, pc_regno));
943 store_unsigned_integer (regs, register_size (gdbarch, pc_regno),
944 gdbarch_byte_order (gdbarch), addr);
945 regcache_raw_supply (regcache, pc_regno, regs);
946 }
947
948 int
949 default_print_insn (bfd_vma memaddr, disassemble_info *info)
950 {
951 disassembler_ftype disassemble_fn;
952
953 disassemble_fn = disassembler (info->arch, info->endian == BFD_ENDIAN_BIG,
954 info->mach, exec_bfd);
955
956 gdb_assert (disassemble_fn != NULL);
957 return (*disassemble_fn) (memaddr, info);
958 }
959
960 /* See arch-utils.h. */
961
962 CORE_ADDR
963 gdbarch_skip_prologue_noexcept (gdbarch *gdbarch, CORE_ADDR pc) noexcept
964 {
965 CORE_ADDR new_pc = pc;
966
967 TRY
968 {
969 new_pc = gdbarch_skip_prologue (gdbarch, pc);
970 }
971 CATCH (ex, RETURN_MASK_ALL)
972 {}
973 END_CATCH
974
975 return new_pc;
976 }
977
978 void
979 _initialize_gdbarch_utils (void)
980 {
981 add_setshow_enum_cmd ("endian", class_support,
982 endian_enum, &set_endian_string,
983 _("Set endianness of target."),
984 _("Show endianness of target."),
985 NULL, set_endian, show_endian,
986 &setlist, &showlist);
987 }