]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arm-tdep.c
* gdbarch.sh (software_single_step): Replace REGCACHE argument by
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <ctype.h> /* XXX for isupper () */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register styles. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
40 #include "objfiles.h"
41 #include "dwarf2-frame.h"
42 #include "gdbtypes.h"
43 #include "prologue-value.h"
44 #include "target-descriptions.h"
45 #include "user-regs.h"
46
47 #include "arm-tdep.h"
48 #include "gdb/sim-arm.h"
49
50 #include "elf-bfd.h"
51 #include "coff/internal.h"
52 #include "elf/arm.h"
53
54 #include "gdb_assert.h"
55
56 static int arm_debug;
57
58 /* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
60 is used for this purpose.
61
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
64
65 #define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x80000000)
68
69 #define MSYMBOL_IS_SPECIAL(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72 /* The list of available "set arm ..." and "show arm ..." commands. */
73 static struct cmd_list_element *setarmcmdlist = NULL;
74 static struct cmd_list_element *showarmcmdlist = NULL;
75
76 /* The type of floating-point to use. Keep this in sync with enum
77 arm_float_model, and the help string in _initialize_arm_tdep. */
78 static const char *fp_model_strings[] =
79 {
80 "auto",
81 "softfpa",
82 "fpa",
83 "softvfp",
84 "vfp",
85 NULL
86 };
87
88 /* A variable that can be configured by the user. */
89 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
90 static const char *current_fp_model = "auto";
91
92 /* The ABI to use. Keep this in sync with arm_abi_kind. */
93 static const char *arm_abi_strings[] =
94 {
95 "auto",
96 "APCS",
97 "AAPCS",
98 NULL
99 };
100
101 /* A variable that can be configured by the user. */
102 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
103 static const char *arm_abi_string = "auto";
104
105 /* Number of different reg name sets (options). */
106 static int num_disassembly_options;
107
108 /* The standard register names, and all the valid aliases for them. */
109 static const struct
110 {
111 const char *name;
112 int regnum;
113 } arm_register_aliases[] = {
114 /* Basic register numbers. */
115 { "r0", 0 },
116 { "r1", 1 },
117 { "r2", 2 },
118 { "r3", 3 },
119 { "r4", 4 },
120 { "r5", 5 },
121 { "r6", 6 },
122 { "r7", 7 },
123 { "r8", 8 },
124 { "r9", 9 },
125 { "r10", 10 },
126 { "r11", 11 },
127 { "r12", 12 },
128 { "r13", 13 },
129 { "r14", 14 },
130 { "r15", 15 },
131 /* Synonyms (argument and variable registers). */
132 { "a1", 0 },
133 { "a2", 1 },
134 { "a3", 2 },
135 { "a4", 3 },
136 { "v1", 4 },
137 { "v2", 5 },
138 { "v3", 6 },
139 { "v4", 7 },
140 { "v5", 8 },
141 { "v6", 9 },
142 { "v7", 10 },
143 { "v8", 11 },
144 /* Other platform-specific names for r9. */
145 { "sb", 9 },
146 { "tr", 9 },
147 /* Special names. */
148 { "ip", 12 },
149 { "sp", 13 },
150 { "lr", 14 },
151 { "pc", 15 },
152 /* Names used by GCC (not listed in the ARM EABI). */
153 { "sl", 10 },
154 { "fp", 11 },
155 /* A special name from the older ATPCS. */
156 { "wr", 7 },
157 };
158
159 static const char *const arm_register_names[] =
160 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
161 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
162 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
163 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
164 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
165 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
166 "fps", "cpsr" }; /* 24 25 */
167
168 /* Valid register name styles. */
169 static const char **valid_disassembly_styles;
170
171 /* Disassembly style to use. Default to "std" register names. */
172 static const char *disassembly_style;
173
174 /* This is used to keep the bfd arch_info in sync with the disassembly
175 style. */
176 static void set_disassembly_style_sfunc(char *, int,
177 struct cmd_list_element *);
178 static void set_disassembly_style (void);
179
180 static void convert_from_extended (const struct floatformat *, const void *,
181 void *);
182 static void convert_to_extended (const struct floatformat *, void *,
183 const void *);
184
185 struct arm_prologue_cache
186 {
187 /* The stack pointer at the time this frame was created; i.e. the
188 caller's stack pointer when this function was called. It is used
189 to identify this frame. */
190 CORE_ADDR prev_sp;
191
192 /* The frame base for this frame is just prev_sp + frame offset -
193 frame size. FRAMESIZE is the size of this stack frame, and
194 FRAMEOFFSET if the initial offset from the stack pointer (this
195 frame's stack pointer, not PREV_SP) to the frame base. */
196
197 int framesize;
198 int frameoffset;
199
200 /* The register used to hold the frame pointer for this frame. */
201 int framereg;
202
203 /* Saved register offsets. */
204 struct trad_frame_saved_reg *saved_regs;
205 };
206
207 /* Addresses for calling Thumb functions have the bit 0 set.
208 Here are some macros to test, set, or clear bit 0 of addresses. */
209 #define IS_THUMB_ADDR(addr) ((addr) & 1)
210 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
211 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
212
213 /* Set to true if the 32-bit mode is in use. */
214
215 int arm_apcs_32 = 1;
216
217 /* Determine if the program counter specified in MEMADDR is in a Thumb
218 function. */
219
220 static int
221 arm_pc_is_thumb (CORE_ADDR memaddr)
222 {
223 struct minimal_symbol *sym;
224
225 /* If bit 0 of the address is set, assume this is a Thumb address. */
226 if (IS_THUMB_ADDR (memaddr))
227 return 1;
228
229 /* Thumb functions have a "special" bit set in minimal symbols. */
230 sym = lookup_minimal_symbol_by_pc (memaddr);
231 if (sym)
232 {
233 return (MSYMBOL_IS_SPECIAL (sym));
234 }
235 else
236 {
237 return 0;
238 }
239 }
240
241 /* Remove useless bits from addresses in a running program. */
242 static CORE_ADDR
243 arm_addr_bits_remove (CORE_ADDR val)
244 {
245 if (arm_apcs_32)
246 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
247 else
248 return (val & 0x03fffffc);
249 }
250
251 /* When reading symbols, we need to zap the low bit of the address,
252 which may be set to 1 for Thumb functions. */
253 static CORE_ADDR
254 arm_smash_text_address (CORE_ADDR val)
255 {
256 return val & ~1;
257 }
258
259 /* Analyze a Thumb prologue, looking for a recognizable stack frame
260 and frame pointer. Scan until we encounter a store that could
261 clobber the stack frame unexpectedly, or an unknown instruction. */
262
263 static CORE_ADDR
264 thumb_analyze_prologue (struct gdbarch *gdbarch,
265 CORE_ADDR start, CORE_ADDR limit,
266 struct arm_prologue_cache *cache)
267 {
268 int i;
269 pv_t regs[16];
270 struct pv_area *stack;
271 struct cleanup *back_to;
272 CORE_ADDR offset;
273
274 for (i = 0; i < 16; i++)
275 regs[i] = pv_register (i, 0);
276 stack = make_pv_area (ARM_SP_REGNUM);
277 back_to = make_cleanup_free_pv_area (stack);
278
279 /* The call instruction saved PC in LR, and the current PC is not
280 interesting. Due to this file's conventions, we want the value
281 of LR at this function's entry, not at the call site, so we do
282 not record the save of the PC - when the ARM prologue analyzer
283 has also been converted to the pv mechanism, we could record the
284 save here and remove the hack in prev_register. */
285 regs[ARM_PC_REGNUM] = pv_unknown ();
286
287 while (start < limit)
288 {
289 unsigned short insn;
290
291 insn = read_memory_unsigned_integer (start, 2);
292
293 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
294 {
295 int regno;
296 int mask;
297 int stop = 0;
298
299 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
300 whether to save LR (R14). */
301 mask = (insn & 0xff) | ((insn & 0x100) << 6);
302
303 /* Calculate offsets of saved R0-R7 and LR. */
304 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
305 if (mask & (1 << regno))
306 {
307 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
308 {
309 stop = 1;
310 break;
311 }
312
313 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
314 -4);
315 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
316 }
317
318 if (stop)
319 break;
320 }
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
322 sub sp, #simm */
323 {
324 offset = (insn & 0x7f) << 2; /* get scaled offset */
325 if (insn & 0x80) /* Check for SUB. */
326 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
327 -offset);
328 else
329 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
330 offset);
331 }
332 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
333 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
334 (insn & 0xff) << 2);
335 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
336 {
337 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
338 int src_reg = (insn & 0x78) >> 3;
339 regs[dst_reg] = regs[src_reg];
340 }
341 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
342 {
343 /* Handle stores to the stack. Normally pushes are used,
344 but with GCC -mtpcs-frame, there may be other stores
345 in the prologue to create the frame. */
346 int regno = (insn >> 8) & 0x7;
347 pv_t addr;
348
349 offset = (insn & 0xff) << 2;
350 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
351
352 if (pv_area_store_would_trash (stack, addr))
353 break;
354
355 pv_area_store (stack, addr, 4, regs[regno]);
356 }
357 else
358 {
359 /* We don't know what this instruction is. We're finished
360 scanning. NOTE: Recognizing more safe-to-ignore
361 instructions here will improve support for optimized
362 code. */
363 break;
364 }
365
366 start += 2;
367 }
368
369 if (cache == NULL)
370 {
371 do_cleanups (back_to);
372 return start;
373 }
374
375 /* frameoffset is unused for this unwinder. */
376 cache->frameoffset = 0;
377
378 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
379 {
380 /* Frame pointer is fp. Frame size is constant. */
381 cache->framereg = ARM_FP_REGNUM;
382 cache->framesize = -regs[ARM_FP_REGNUM].k;
383 }
384 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
385 {
386 /* Frame pointer is r7. Frame size is constant. */
387 cache->framereg = THUMB_FP_REGNUM;
388 cache->framesize = -regs[THUMB_FP_REGNUM].k;
389 }
390 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
391 {
392 /* Try the stack pointer... this is a bit desperate. */
393 cache->framereg = ARM_SP_REGNUM;
394 cache->framesize = -regs[ARM_SP_REGNUM].k;
395 }
396 else
397 {
398 /* We're just out of luck. We don't know where the frame is. */
399 cache->framereg = -1;
400 cache->framesize = 0;
401 }
402
403 for (i = 0; i < 16; i++)
404 if (pv_area_find_reg (stack, gdbarch, i, &offset))
405 cache->saved_regs[i].addr = offset;
406
407 do_cleanups (back_to);
408 return start;
409 }
410
411 /* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
413
414 The APCS (ARM Procedure Call Standard) defines the following
415 prologue:
416
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
425
426 static CORE_ADDR
427 arm_skip_prologue (CORE_ADDR pc)
428 {
429 unsigned long inst;
430 CORE_ADDR skip_pc;
431 CORE_ADDR func_addr, func_end = 0;
432 char *func_name;
433 struct symtab_and_line sal;
434
435 /* If we're in a dummy frame, don't even try to skip the prologue. */
436 if (deprecated_pc_in_call_dummy (pc))
437 return pc;
438
439 /* See what the symbol table says. */
440
441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
442 {
443 struct symbol *sym;
444
445 /* Found a function. */
446 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
449 /* Don't use this trick for assembly source files. */
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
454 }
455
456 /* Can't find the prologue end in the symbol table, try it the hard way
457 by disassembling the instructions. */
458
459 /* Like arm_scan_prologue, stop no later than pc + 64. */
460 if (func_end == 0 || func_end > pc + 64)
461 func_end = pc + 64;
462
463 /* Check if this is Thumb code. */
464 if (arm_pc_is_thumb (pc))
465 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
466
467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
468 {
469 inst = read_memory_unsigned_integer (skip_pc, 4);
470
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
474
475 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
479 continue;
480
481 /* Some prologues begin with "str lr, [sp, #-4]!". */
482 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
483 continue;
484
485 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
486 continue;
487
488 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
489 continue;
490
491 /* Any insns after this point may float into the code, if it makes
492 for better instruction scheduling, so we skip them only if we
493 find them, but still consider the function to be frame-ful. */
494
495 /* We may have either one sfmfd instruction here, or several stfe
496 insns, depending on the version of floating point code we
497 support. */
498 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
499 continue;
500
501 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
502 continue;
503
504 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
505 continue;
506
507 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
508 continue;
509
510 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
511 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
512 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
513 continue;
514
515 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
516 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
517 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
518 continue;
519
520 /* Un-recognized instruction; stop scanning. */
521 break;
522 }
523
524 return skip_pc; /* End of prologue */
525 }
526
527 /* *INDENT-OFF* */
528 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
529 This function decodes a Thumb function prologue to determine:
530 1) the size of the stack frame
531 2) which registers are saved on it
532 3) the offsets of saved regs
533 4) the offset from the stack pointer to the frame pointer
534
535 A typical Thumb function prologue would create this stack frame
536 (offsets relative to FP)
537 old SP -> 24 stack parameters
538 20 LR
539 16 R7
540 R7 -> 0 local variables (16 bytes)
541 SP -> -12 additional stack space (12 bytes)
542 The frame size would thus be 36 bytes, and the frame offset would be
543 12 bytes. The frame register is R7.
544
545 The comments for thumb_skip_prolog() describe the algorithm we use
546 to detect the end of the prolog. */
547 /* *INDENT-ON* */
548
549 static void
550 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
551 {
552 CORE_ADDR prologue_start;
553 CORE_ADDR prologue_end;
554 CORE_ADDR current_pc;
555 /* Which register has been copied to register n? */
556 int saved_reg[16];
557 /* findmask:
558 bit 0 - push { rlist }
559 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
560 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
561 */
562 int findmask = 0;
563 int i;
564
565 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
569 if (sal.line == 0) /* no line info, use current PC */
570 prologue_end = prev_pc;
571 else if (sal.end < prologue_end) /* next line begins after fn end */
572 prologue_end = sal.end; /* (probably means no prologue) */
573 }
574 else
575 /* We're in the boondocks: we have no idea where the start of the
576 function is. */
577 return;
578
579 prologue_end = min (prologue_end, prev_pc);
580
581 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
582 cache);
583 }
584
585 /* This function decodes an ARM function prologue to determine:
586 1) the size of the stack frame
587 2) which registers are saved on it
588 3) the offsets of saved regs
589 4) the offset from the stack pointer to the frame pointer
590 This information is stored in the "extra" fields of the frame_info.
591
592 There are two basic forms for the ARM prologue. The fixed argument
593 function call will look like:
594
595 mov ip, sp
596 stmfd sp!, {fp, ip, lr, pc}
597 sub fp, ip, #4
598 [sub sp, sp, #4]
599
600 Which would create this stack frame (offsets relative to FP):
601 IP -> 4 (caller's stack)
602 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
603 -4 LR (return address in caller)
604 -8 IP (copy of caller's SP)
605 -12 FP (caller's FP)
606 SP -> -28 Local variables
607
608 The frame size would thus be 32 bytes, and the frame offset would be
609 28 bytes. The stmfd call can also save any of the vN registers it
610 plans to use, which increases the frame size accordingly.
611
612 Note: The stored PC is 8 off of the STMFD instruction that stored it
613 because the ARM Store instructions always store PC + 8 when you read
614 the PC register.
615
616 A variable argument function call will look like:
617
618 mov ip, sp
619 stmfd sp!, {a1, a2, a3, a4}
620 stmfd sp!, {fp, ip, lr, pc}
621 sub fp, ip, #20
622
623 Which would create this stack frame (offsets relative to FP):
624 IP -> 20 (caller's stack)
625 16 A4
626 12 A3
627 8 A2
628 4 A1
629 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
630 -4 LR (return address in caller)
631 -8 IP (copy of caller's SP)
632 -12 FP (caller's FP)
633 SP -> -28 Local variables
634
635 The frame size would thus be 48 bytes, and the frame offset would be
636 28 bytes.
637
638 There is another potential complication, which is that the optimizer
639 will try to separate the store of fp in the "stmfd" instruction from
640 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
641 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
642
643 Also, note, the original version of the ARM toolchain claimed that there
644 should be an
645
646 instruction at the end of the prologue. I have never seen GCC produce
647 this, and the ARM docs don't mention it. We still test for it below in
648 case it happens...
649
650 */
651
652 static void
653 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
654 {
655 int regno, sp_offset, fp_offset, ip_offset;
656 CORE_ADDR prologue_start, prologue_end, current_pc;
657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
658
659 /* Assume there is no frame until proven otherwise. */
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
663
664 /* Check for Thumb prologue. */
665 if (arm_pc_is_thumb (prev_pc))
666 {
667 thumb_scan_prologue (prev_pc, cache);
668 return;
669 }
670
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
674 {
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
677
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
679
680 if (sal.line == 0)
681 prologue_end = prev_pc;
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
684
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
691
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
698
699 The expression
700
701 prologue_start + 64
702
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
705 the scheduler. */
706
707 if (prologue_end > prologue_start + 64)
708 {
709 prologue_end = prologue_start + 64; /* See above. */
710 }
711 }
712 else
713 {
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
719 CORE_ADDR frame_loc;
720 LONGEST return_value;
721
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
724 return;
725 else
726 {
727 prologue_start = gdbarch_addr_bits_remove
728 (current_gdbarch, return_value) - 8;
729 prologue_end = prologue_start + 64; /* See above. */
730 }
731 }
732
733 if (prev_pc < prologue_end)
734 prologue_end = prev_pc;
735
736 /* Now search the prologue looking for instructions that set up the
737 frame pointer, adjust the stack pointer, and save registers.
738
739 Be careful, however, and if it doesn't look like a prologue,
740 don't try to scan it. If, for instance, a frameless function
741 begins with stmfd sp!, then we will tell ourselves there is
742 a frame, which will confuse stack traceback, as well as "finish"
743 and other operations that rely on a knowledge of the stack
744 traceback.
745
746 In the APCS, the prologue should start with "mov ip, sp" so
747 if we don't see this as the first insn, we will stop.
748
749 [Note: This doesn't seem to be true any longer, so it's now an
750 optional part of the prologue. - Kevin Buettner, 2001-11-20]
751
752 [Note further: The "mov ip,sp" only seems to be missing in
753 frameless functions at optimization level "-O2" or above,
754 in which case it is often (but not always) replaced by
755 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
756
757 sp_offset = fp_offset = ip_offset = 0;
758
759 for (current_pc = prologue_start;
760 current_pc < prologue_end;
761 current_pc += 4)
762 {
763 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
764
765 if (insn == 0xe1a0c00d) /* mov ip, sp */
766 {
767 ip_offset = 0;
768 continue;
769 }
770 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
771 {
772 unsigned imm = insn & 0xff; /* immediate value */
773 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
774 imm = (imm >> rot) | (imm << (32 - rot));
775 ip_offset = imm;
776 continue;
777 }
778 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
779 {
780 unsigned imm = insn & 0xff; /* immediate value */
781 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
782 imm = (imm >> rot) | (imm << (32 - rot));
783 ip_offset = -imm;
784 continue;
785 }
786 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
787 {
788 sp_offset -= 4;
789 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
790 continue;
791 }
792 else if ((insn & 0xffff0000) == 0xe92d0000)
793 /* stmfd sp!, {..., fp, ip, lr, pc}
794 or
795 stmfd sp!, {a1, a2, a3, a4} */
796 {
797 int mask = insn & 0xffff;
798
799 /* Calculate offsets of saved registers. */
800 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
801 if (mask & (1 << regno))
802 {
803 sp_offset -= 4;
804 cache->saved_regs[regno].addr = sp_offset;
805 }
806 }
807 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
808 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
809 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
810 {
811 /* No need to add this to saved_regs -- it's just an arg reg. */
812 continue;
813 }
814 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
815 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
816 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
817 {
818 /* No need to add this to saved_regs -- it's just an arg reg. */
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 fp_offset = -imm + ip_offset;
827 cache->framereg = ARM_FP_REGNUM;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 sp_offset -= imm;
835 }
836 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
837 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
838 {
839 sp_offset -= 12;
840 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
841 cache->saved_regs[regno].addr = sp_offset;
842 }
843 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
844 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
845 {
846 int n_saved_fp_regs;
847 unsigned int fp_start_reg, fp_bound_reg;
848
849 if ((insn & 0x800) == 0x800) /* N0 is set */
850 {
851 if ((insn & 0x40000) == 0x40000) /* N1 is set */
852 n_saved_fp_regs = 3;
853 else
854 n_saved_fp_regs = 1;
855 }
856 else
857 {
858 if ((insn & 0x40000) == 0x40000) /* N1 is set */
859 n_saved_fp_regs = 2;
860 else
861 n_saved_fp_regs = 4;
862 }
863
864 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
865 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
866 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
867 {
868 sp_offset -= 12;
869 cache->saved_regs[fp_start_reg++].addr = sp_offset;
870 }
871 }
872 else if ((insn & 0xf0000000) != 0xe0000000)
873 break; /* Condition not true, exit early */
874 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
875 break; /* Don't scan past a block load */
876 else
877 /* The optimizer might shove anything into the prologue,
878 so we just skip what we don't recognize. */
879 continue;
880 }
881
882 /* The frame size is just the negative of the offset (from the
883 original SP) of the last thing thing we pushed on the stack.
884 The frame offset is [new FP] - [new SP]. */
885 cache->framesize = -sp_offset;
886 if (cache->framereg == ARM_FP_REGNUM)
887 cache->frameoffset = fp_offset - sp_offset;
888 else
889 cache->frameoffset = 0;
890 }
891
892 static struct arm_prologue_cache *
893 arm_make_prologue_cache (struct frame_info *next_frame)
894 {
895 int reg;
896 struct arm_prologue_cache *cache;
897 CORE_ADDR unwound_fp;
898
899 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
900 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
901
902 arm_scan_prologue (next_frame, cache);
903
904 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
905 if (unwound_fp == 0)
906 return cache;
907
908 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
909
910 /* Calculate actual addresses of saved registers using offsets
911 determined by arm_scan_prologue. */
912 for (reg = 0; reg < gdbarch_num_regs (current_gdbarch); reg++)
913 if (trad_frame_addr_p (cache->saved_regs, reg))
914 cache->saved_regs[reg].addr += cache->prev_sp;
915
916 return cache;
917 }
918
919 /* Our frame ID for a normal frame is the current function's starting PC
920 and the caller's SP when we were called. */
921
922 static void
923 arm_prologue_this_id (struct frame_info *next_frame,
924 void **this_cache,
925 struct frame_id *this_id)
926 {
927 struct arm_prologue_cache *cache;
928 struct frame_id id;
929 CORE_ADDR func;
930
931 if (*this_cache == NULL)
932 *this_cache = arm_make_prologue_cache (next_frame);
933 cache = *this_cache;
934
935 func = frame_func_unwind (next_frame, NORMAL_FRAME);
936
937 /* This is meant to halt the backtrace at "_start". Make sure we
938 don't halt it at a generic dummy frame. */
939 if (func <= LOWEST_PC)
940 return;
941
942 /* If we've hit a wall, stop. */
943 if (cache->prev_sp == 0)
944 return;
945
946 id = frame_id_build (cache->prev_sp, func);
947 *this_id = id;
948 }
949
950 static void
951 arm_prologue_prev_register (struct frame_info *next_frame,
952 void **this_cache,
953 int prev_regnum,
954 int *optimized,
955 enum lval_type *lvalp,
956 CORE_ADDR *addrp,
957 int *realnump,
958 gdb_byte *valuep)
959 {
960 struct arm_prologue_cache *cache;
961
962 if (*this_cache == NULL)
963 *this_cache = arm_make_prologue_cache (next_frame);
964 cache = *this_cache;
965
966 /* If we are asked to unwind the PC, then we need to return the LR
967 instead. The saved value of PC points into this frame's
968 prologue, not the next frame's resume location. */
969 if (prev_regnum == ARM_PC_REGNUM)
970 prev_regnum = ARM_LR_REGNUM;
971
972 /* SP is generally not saved to the stack, but this frame is
973 identified by NEXT_FRAME's stack pointer at the time of the call.
974 The value was already reconstructed into PREV_SP. */
975 if (prev_regnum == ARM_SP_REGNUM)
976 {
977 *lvalp = not_lval;
978 if (valuep)
979 store_unsigned_integer (valuep, 4, cache->prev_sp);
980 return;
981 }
982
983 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
984 optimized, lvalp, addrp, realnump, valuep);
985 }
986
987 struct frame_unwind arm_prologue_unwind = {
988 NORMAL_FRAME,
989 arm_prologue_this_id,
990 arm_prologue_prev_register
991 };
992
993 static const struct frame_unwind *
994 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
995 {
996 return &arm_prologue_unwind;
997 }
998
999 static struct arm_prologue_cache *
1000 arm_make_stub_cache (struct frame_info *next_frame)
1001 {
1002 int reg;
1003 struct arm_prologue_cache *cache;
1004 CORE_ADDR unwound_fp;
1005
1006 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1007 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1008
1009 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1010
1011 return cache;
1012 }
1013
1014 /* Our frame ID for a stub frame is the current SP and LR. */
1015
1016 static void
1017 arm_stub_this_id (struct frame_info *next_frame,
1018 void **this_cache,
1019 struct frame_id *this_id)
1020 {
1021 struct arm_prologue_cache *cache;
1022
1023 if (*this_cache == NULL)
1024 *this_cache = arm_make_stub_cache (next_frame);
1025 cache = *this_cache;
1026
1027 *this_id = frame_id_build (cache->prev_sp,
1028 frame_pc_unwind (next_frame));
1029 }
1030
1031 struct frame_unwind arm_stub_unwind = {
1032 NORMAL_FRAME,
1033 arm_stub_this_id,
1034 arm_prologue_prev_register
1035 };
1036
1037 static const struct frame_unwind *
1038 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1039 {
1040 CORE_ADDR addr_in_block;
1041 char dummy[4];
1042
1043 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1044 if (in_plt_section (addr_in_block, NULL)
1045 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1046 return &arm_stub_unwind;
1047
1048 return NULL;
1049 }
1050
1051 static CORE_ADDR
1052 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1053 {
1054 struct arm_prologue_cache *cache;
1055
1056 if (*this_cache == NULL)
1057 *this_cache = arm_make_prologue_cache (next_frame);
1058 cache = *this_cache;
1059
1060 return cache->prev_sp + cache->frameoffset - cache->framesize;
1061 }
1062
1063 struct frame_base arm_normal_base = {
1064 &arm_prologue_unwind,
1065 arm_normal_frame_base,
1066 arm_normal_frame_base,
1067 arm_normal_frame_base
1068 };
1069
1070 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1071 dummy frame. The frame ID's base needs to match the TOS value
1072 saved by save_dummy_frame_tos() and returned from
1073 arm_push_dummy_call, and the PC needs to match the dummy frame's
1074 breakpoint. */
1075
1076 static struct frame_id
1077 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1078 {
1079 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1080 frame_pc_unwind (next_frame));
1081 }
1082
1083 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1084 be used to construct the previous frame's ID, after looking up the
1085 containing function). */
1086
1087 static CORE_ADDR
1088 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1089 {
1090 CORE_ADDR pc;
1091 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1092 return arm_addr_bits_remove (pc);
1093 }
1094
1095 static CORE_ADDR
1096 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1097 {
1098 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1099 }
1100
1101 /* When arguments must be pushed onto the stack, they go on in reverse
1102 order. The code below implements a FILO (stack) to do this. */
1103
1104 struct stack_item
1105 {
1106 int len;
1107 struct stack_item *prev;
1108 void *data;
1109 };
1110
1111 static struct stack_item *
1112 push_stack_item (struct stack_item *prev, void *contents, int len)
1113 {
1114 struct stack_item *si;
1115 si = xmalloc (sizeof (struct stack_item));
1116 si->data = xmalloc (len);
1117 si->len = len;
1118 si->prev = prev;
1119 memcpy (si->data, contents, len);
1120 return si;
1121 }
1122
1123 static struct stack_item *
1124 pop_stack_item (struct stack_item *si)
1125 {
1126 struct stack_item *dead = si;
1127 si = si->prev;
1128 xfree (dead->data);
1129 xfree (dead);
1130 return si;
1131 }
1132
1133
1134 /* Return the alignment (in bytes) of the given type. */
1135
1136 static int
1137 arm_type_align (struct type *t)
1138 {
1139 int n;
1140 int align;
1141 int falign;
1142
1143 t = check_typedef (t);
1144 switch (TYPE_CODE (t))
1145 {
1146 default:
1147 /* Should never happen. */
1148 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1149 return 4;
1150
1151 case TYPE_CODE_PTR:
1152 case TYPE_CODE_ENUM:
1153 case TYPE_CODE_INT:
1154 case TYPE_CODE_FLT:
1155 case TYPE_CODE_SET:
1156 case TYPE_CODE_RANGE:
1157 case TYPE_CODE_BITSTRING:
1158 case TYPE_CODE_REF:
1159 case TYPE_CODE_CHAR:
1160 case TYPE_CODE_BOOL:
1161 return TYPE_LENGTH (t);
1162
1163 case TYPE_CODE_ARRAY:
1164 case TYPE_CODE_COMPLEX:
1165 /* TODO: What about vector types? */
1166 return arm_type_align (TYPE_TARGET_TYPE (t));
1167
1168 case TYPE_CODE_STRUCT:
1169 case TYPE_CODE_UNION:
1170 align = 1;
1171 for (n = 0; n < TYPE_NFIELDS (t); n++)
1172 {
1173 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1174 if (falign > align)
1175 align = falign;
1176 }
1177 return align;
1178 }
1179 }
1180
1181 /* We currently only support passing parameters in integer registers. This
1182 conforms with GCC's default model. Several other variants exist and
1183 we should probably support some of them based on the selected ABI. */
1184
1185 static CORE_ADDR
1186 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1187 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1188 struct value **args, CORE_ADDR sp, int struct_return,
1189 CORE_ADDR struct_addr)
1190 {
1191 int argnum;
1192 int argreg;
1193 int nstack;
1194 struct stack_item *si = NULL;
1195
1196 /* Set the return address. For the ARM, the return breakpoint is
1197 always at BP_ADDR. */
1198 /* XXX Fix for Thumb. */
1199 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1200
1201 /* Walk through the list of args and determine how large a temporary
1202 stack is required. Need to take care here as structs may be
1203 passed on the stack, and we have to to push them. */
1204 nstack = 0;
1205
1206 argreg = ARM_A1_REGNUM;
1207 nstack = 0;
1208
1209 /* The struct_return pointer occupies the first parameter
1210 passing register. */
1211 if (struct_return)
1212 {
1213 if (arm_debug)
1214 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1215 gdbarch_register_name (current_gdbarch, argreg),
1216 paddr (struct_addr));
1217 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1218 argreg++;
1219 }
1220
1221 for (argnum = 0; argnum < nargs; argnum++)
1222 {
1223 int len;
1224 struct type *arg_type;
1225 struct type *target_type;
1226 enum type_code typecode;
1227 bfd_byte *val;
1228 int align;
1229
1230 arg_type = check_typedef (value_type (args[argnum]));
1231 len = TYPE_LENGTH (arg_type);
1232 target_type = TYPE_TARGET_TYPE (arg_type);
1233 typecode = TYPE_CODE (arg_type);
1234 val = value_contents_writeable (args[argnum]);
1235
1236 align = arm_type_align (arg_type);
1237 /* Round alignment up to a whole number of words. */
1238 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1239 /* Different ABIs have different maximum alignments. */
1240 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1241 {
1242 /* The APCS ABI only requires word alignment. */
1243 align = INT_REGISTER_SIZE;
1244 }
1245 else
1246 {
1247 /* The AAPCS requires at most doubleword alignment. */
1248 if (align > INT_REGISTER_SIZE * 2)
1249 align = INT_REGISTER_SIZE * 2;
1250 }
1251
1252 /* Push stack padding for dowubleword alignment. */
1253 if (nstack & (align - 1))
1254 {
1255 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1256 nstack += INT_REGISTER_SIZE;
1257 }
1258
1259 /* Doubleword aligned quantities must go in even register pairs. */
1260 if (argreg <= ARM_LAST_ARG_REGNUM
1261 && align > INT_REGISTER_SIZE
1262 && argreg & 1)
1263 argreg++;
1264
1265 /* If the argument is a pointer to a function, and it is a
1266 Thumb function, create a LOCAL copy of the value and set
1267 the THUMB bit in it. */
1268 if (TYPE_CODE_PTR == typecode
1269 && target_type != NULL
1270 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1271 {
1272 CORE_ADDR regval = extract_unsigned_integer (val, len);
1273 if (arm_pc_is_thumb (regval))
1274 {
1275 val = alloca (len);
1276 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1277 }
1278 }
1279
1280 /* Copy the argument to general registers or the stack in
1281 register-sized pieces. Large arguments are split between
1282 registers and stack. */
1283 while (len > 0)
1284 {
1285 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1286
1287 if (argreg <= ARM_LAST_ARG_REGNUM)
1288 {
1289 /* The argument is being passed in a general purpose
1290 register. */
1291 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1292 if (arm_debug)
1293 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1294 argnum,
1295 gdbarch_register_name
1296 (current_gdbarch, argreg),
1297 phex (regval, DEPRECATED_REGISTER_SIZE));
1298 regcache_cooked_write_unsigned (regcache, argreg, regval);
1299 argreg++;
1300 }
1301 else
1302 {
1303 /* Push the arguments onto the stack. */
1304 if (arm_debug)
1305 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1306 argnum, nstack);
1307 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1308 nstack += DEPRECATED_REGISTER_SIZE;
1309 }
1310
1311 len -= partial_len;
1312 val += partial_len;
1313 }
1314 }
1315 /* If we have an odd number of words to push, then decrement the stack
1316 by one word now, so first stack argument will be dword aligned. */
1317 if (nstack & 4)
1318 sp -= 4;
1319
1320 while (si)
1321 {
1322 sp -= si->len;
1323 write_memory (sp, si->data, si->len);
1324 si = pop_stack_item (si);
1325 }
1326
1327 /* Finally, update teh SP register. */
1328 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1329
1330 return sp;
1331 }
1332
1333
1334 /* Always align the frame to an 8-byte boundary. This is required on
1335 some platforms and harmless on the rest. */
1336
1337 static CORE_ADDR
1338 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1339 {
1340 /* Align the stack to eight bytes. */
1341 return sp & ~ (CORE_ADDR) 7;
1342 }
1343
1344 static void
1345 print_fpu_flags (int flags)
1346 {
1347 if (flags & (1 << 0))
1348 fputs ("IVO ", stdout);
1349 if (flags & (1 << 1))
1350 fputs ("DVZ ", stdout);
1351 if (flags & (1 << 2))
1352 fputs ("OFL ", stdout);
1353 if (flags & (1 << 3))
1354 fputs ("UFL ", stdout);
1355 if (flags & (1 << 4))
1356 fputs ("INX ", stdout);
1357 putchar ('\n');
1358 }
1359
1360 /* Print interesting information about the floating point processor
1361 (if present) or emulator. */
1362 static void
1363 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1364 struct frame_info *frame, const char *args)
1365 {
1366 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
1367 int type;
1368
1369 type = (status >> 24) & 127;
1370 if (status & (1 << 31))
1371 printf (_("Hardware FPU type %d\n"), type);
1372 else
1373 printf (_("Software FPU type %d\n"), type);
1374 /* i18n: [floating point unit] mask */
1375 fputs (_("mask: "), stdout);
1376 print_fpu_flags (status >> 16);
1377 /* i18n: [floating point unit] flags */
1378 fputs (_("flags: "), stdout);
1379 print_fpu_flags (status);
1380 }
1381
1382 /* Return the GDB type object for the "standard" data type of data in
1383 register N. */
1384
1385 static struct type *
1386 arm_register_type (struct gdbarch *gdbarch, int regnum)
1387 {
1388 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1389 return builtin_type_arm_ext;
1390 else if (regnum == ARM_SP_REGNUM)
1391 return builtin_type_void_data_ptr;
1392 else if (regnum == ARM_PC_REGNUM)
1393 return builtin_type_void_func_ptr;
1394 else if (regnum >= ARRAY_SIZE (arm_register_names))
1395 /* These registers are only supported on targets which supply
1396 an XML description. */
1397 return builtin_type_int0;
1398 else
1399 return builtin_type_uint32;
1400 }
1401
1402 /* Map a DWARF register REGNUM onto the appropriate GDB register
1403 number. */
1404
1405 static int
1406 arm_dwarf_reg_to_regnum (int reg)
1407 {
1408 /* Core integer regs. */
1409 if (reg >= 0 && reg <= 15)
1410 return reg;
1411
1412 /* Legacy FPA encoding. These were once used in a way which
1413 overlapped with VFP register numbering, so their use is
1414 discouraged, but GDB doesn't support the ARM toolchain
1415 which used them for VFP. */
1416 if (reg >= 16 && reg <= 23)
1417 return ARM_F0_REGNUM + reg - 16;
1418
1419 /* New assignments for the FPA registers. */
1420 if (reg >= 96 && reg <= 103)
1421 return ARM_F0_REGNUM + reg - 96;
1422
1423 /* WMMX register assignments. */
1424 if (reg >= 104 && reg <= 111)
1425 return ARM_WCGR0_REGNUM + reg - 104;
1426
1427 if (reg >= 112 && reg <= 127)
1428 return ARM_WR0_REGNUM + reg - 112;
1429
1430 if (reg >= 192 && reg <= 199)
1431 return ARM_WC0_REGNUM + reg - 192;
1432
1433 return -1;
1434 }
1435
1436 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1437 static int
1438 arm_register_sim_regno (int regnum)
1439 {
1440 int reg = regnum;
1441 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
1442
1443 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1444 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1445
1446 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1447 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1448
1449 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1450 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1451
1452 if (reg < NUM_GREGS)
1453 return SIM_ARM_R0_REGNUM + reg;
1454 reg -= NUM_GREGS;
1455
1456 if (reg < NUM_FREGS)
1457 return SIM_ARM_FP0_REGNUM + reg;
1458 reg -= NUM_FREGS;
1459
1460 if (reg < NUM_SREGS)
1461 return SIM_ARM_FPS_REGNUM + reg;
1462 reg -= NUM_SREGS;
1463
1464 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1465 }
1466
1467 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1468 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1469 It is thought that this is is the floating-point register format on
1470 little-endian systems. */
1471
1472 static void
1473 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1474 void *dbl)
1475 {
1476 DOUBLEST d;
1477 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1478 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1479 else
1480 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1481 ptr, &d);
1482 floatformat_from_doublest (fmt, &d, dbl);
1483 }
1484
1485 static void
1486 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1487 {
1488 DOUBLEST d;
1489 floatformat_to_doublest (fmt, ptr, &d);
1490 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1491 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1492 else
1493 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1494 &d, dbl);
1495 }
1496
1497 static int
1498 condition_true (unsigned long cond, unsigned long status_reg)
1499 {
1500 if (cond == INST_AL || cond == INST_NV)
1501 return 1;
1502
1503 switch (cond)
1504 {
1505 case INST_EQ:
1506 return ((status_reg & FLAG_Z) != 0);
1507 case INST_NE:
1508 return ((status_reg & FLAG_Z) == 0);
1509 case INST_CS:
1510 return ((status_reg & FLAG_C) != 0);
1511 case INST_CC:
1512 return ((status_reg & FLAG_C) == 0);
1513 case INST_MI:
1514 return ((status_reg & FLAG_N) != 0);
1515 case INST_PL:
1516 return ((status_reg & FLAG_N) == 0);
1517 case INST_VS:
1518 return ((status_reg & FLAG_V) != 0);
1519 case INST_VC:
1520 return ((status_reg & FLAG_V) == 0);
1521 case INST_HI:
1522 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1523 case INST_LS:
1524 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1525 case INST_GE:
1526 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1527 case INST_LT:
1528 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1529 case INST_GT:
1530 return (((status_reg & FLAG_Z) == 0) &&
1531 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1532 case INST_LE:
1533 return (((status_reg & FLAG_Z) != 0) ||
1534 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1535 }
1536 return 1;
1537 }
1538
1539 /* Support routines for single stepping. Calculate the next PC value. */
1540 #define submask(x) ((1L << ((x) + 1)) - 1)
1541 #define bit(obj,st) (((obj) >> (st)) & 1)
1542 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1543 #define sbits(obj,st,fn) \
1544 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1545 #define BranchDest(addr,instr) \
1546 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1547 #define ARM_PC_32 1
1548
1549 static unsigned long
1550 shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1551 unsigned long pc_val, unsigned long status_reg)
1552 {
1553 unsigned long res, shift;
1554 int rm = bits (inst, 0, 3);
1555 unsigned long shifttype = bits (inst, 5, 6);
1556
1557 if (bit (inst, 4))
1558 {
1559 int rs = bits (inst, 8, 11);
1560 shift = (rs == 15 ? pc_val + 8
1561 : get_frame_register_unsigned (frame, rs)) & 0xFF;
1562 }
1563 else
1564 shift = bits (inst, 7, 11);
1565
1566 res = (rm == 15
1567 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1568 + (bit (inst, 4) ? 12 : 8))
1569 : get_frame_register_unsigned (frame, rm));
1570
1571 switch (shifttype)
1572 {
1573 case 0: /* LSL */
1574 res = shift >= 32 ? 0 : res << shift;
1575 break;
1576
1577 case 1: /* LSR */
1578 res = shift >= 32 ? 0 : res >> shift;
1579 break;
1580
1581 case 2: /* ASR */
1582 if (shift >= 32)
1583 shift = 31;
1584 res = ((res & 0x80000000L)
1585 ? ~((~res) >> shift) : res >> shift);
1586 break;
1587
1588 case 3: /* ROR/RRX */
1589 shift &= 31;
1590 if (shift == 0)
1591 res = (res >> 1) | (carry ? 0x80000000L : 0);
1592 else
1593 res = (res >> shift) | (res << (32 - shift));
1594 break;
1595 }
1596
1597 return res & 0xffffffff;
1598 }
1599
1600 /* Return number of 1-bits in VAL. */
1601
1602 static int
1603 bitcount (unsigned long val)
1604 {
1605 int nbits;
1606 for (nbits = 0; val != 0; nbits++)
1607 val &= val - 1; /* delete rightmost 1-bit in val */
1608 return nbits;
1609 }
1610
1611 static CORE_ADDR
1612 thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1613 {
1614 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1615 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1616 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1617 unsigned long offset;
1618
1619 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1620 {
1621 CORE_ADDR sp;
1622
1623 /* Fetch the saved PC from the stack. It's stored above
1624 all of the other registers. */
1625 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1626 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1627 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1628 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1629 if (nextpc == pc)
1630 error (_("Infinite loop detected"));
1631 }
1632 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1633 {
1634 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1635 unsigned long cond = bits (inst1, 8, 11);
1636 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1637 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1638 }
1639 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1640 {
1641 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1642 }
1643 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1644 {
1645 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1646 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1647 nextpc = pc_val + offset;
1648 /* For BLX make sure to clear the low bits. */
1649 if (bits (inst2, 11, 12) == 1)
1650 nextpc = nextpc & 0xfffffffc;
1651 }
1652 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1653 {
1654 if (bits (inst1, 3, 6) == 0x0f)
1655 nextpc = pc_val;
1656 else
1657 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
1658
1659 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1660 if (nextpc == pc)
1661 error (_("Infinite loop detected"));
1662 }
1663
1664 return nextpc;
1665 }
1666
1667 static CORE_ADDR
1668 arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1669 {
1670 unsigned long pc_val;
1671 unsigned long this_instr;
1672 unsigned long status;
1673 CORE_ADDR nextpc;
1674
1675 if (arm_pc_is_thumb (pc))
1676 return thumb_get_next_pc (frame, pc);
1677
1678 pc_val = (unsigned long) pc;
1679 this_instr = read_memory_unsigned_integer (pc, 4);
1680 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1681 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1682
1683 if (condition_true (bits (this_instr, 28, 31), status))
1684 {
1685 switch (bits (this_instr, 24, 27))
1686 {
1687 case 0x0:
1688 case 0x1: /* data processing */
1689 case 0x2:
1690 case 0x3:
1691 {
1692 unsigned long operand1, operand2, result = 0;
1693 unsigned long rn;
1694 int c;
1695
1696 if (bits (this_instr, 12, 15) != 15)
1697 break;
1698
1699 if (bits (this_instr, 22, 25) == 0
1700 && bits (this_instr, 4, 7) == 9) /* multiply */
1701 error (_("Invalid update to pc in instruction"));
1702
1703 /* BX <reg>, BLX <reg> */
1704 if (bits (this_instr, 4, 27) == 0x12fff1
1705 || bits (this_instr, 4, 27) == 0x12fff3)
1706 {
1707 rn = bits (this_instr, 0, 3);
1708 result = (rn == 15) ? pc_val + 8
1709 : get_frame_register_unsigned (frame, rn);
1710 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1711 (current_gdbarch, result);
1712
1713 if (nextpc == pc)
1714 error (_("Infinite loop detected"));
1715
1716 return nextpc;
1717 }
1718
1719 /* Multiply into PC */
1720 c = (status & FLAG_C) ? 1 : 0;
1721 rn = bits (this_instr, 16, 19);
1722 operand1 = (rn == 15) ? pc_val + 8
1723 : get_frame_register_unsigned (frame, rn);
1724
1725 if (bit (this_instr, 25))
1726 {
1727 unsigned long immval = bits (this_instr, 0, 7);
1728 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1729 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1730 & 0xffffffff;
1731 }
1732 else /* operand 2 is a shifted register */
1733 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
1734
1735 switch (bits (this_instr, 21, 24))
1736 {
1737 case 0x0: /*and */
1738 result = operand1 & operand2;
1739 break;
1740
1741 case 0x1: /*eor */
1742 result = operand1 ^ operand2;
1743 break;
1744
1745 case 0x2: /*sub */
1746 result = operand1 - operand2;
1747 break;
1748
1749 case 0x3: /*rsb */
1750 result = operand2 - operand1;
1751 break;
1752
1753 case 0x4: /*add */
1754 result = operand1 + operand2;
1755 break;
1756
1757 case 0x5: /*adc */
1758 result = operand1 + operand2 + c;
1759 break;
1760
1761 case 0x6: /*sbc */
1762 result = operand1 - operand2 + c;
1763 break;
1764
1765 case 0x7: /*rsc */
1766 result = operand2 - operand1 + c;
1767 break;
1768
1769 case 0x8:
1770 case 0x9:
1771 case 0xa:
1772 case 0xb: /* tst, teq, cmp, cmn */
1773 result = (unsigned long) nextpc;
1774 break;
1775
1776 case 0xc: /*orr */
1777 result = operand1 | operand2;
1778 break;
1779
1780 case 0xd: /*mov */
1781 /* Always step into a function. */
1782 result = operand2;
1783 break;
1784
1785 case 0xe: /*bic */
1786 result = operand1 & ~operand2;
1787 break;
1788
1789 case 0xf: /*mvn */
1790 result = ~operand2;
1791 break;
1792 }
1793 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1794 (current_gdbarch, result);
1795
1796 if (nextpc == pc)
1797 error (_("Infinite loop detected"));
1798 break;
1799 }
1800
1801 case 0x4:
1802 case 0x5: /* data transfer */
1803 case 0x6:
1804 case 0x7:
1805 if (bit (this_instr, 20))
1806 {
1807 /* load */
1808 if (bits (this_instr, 12, 15) == 15)
1809 {
1810 /* rd == pc */
1811 unsigned long rn;
1812 unsigned long base;
1813
1814 if (bit (this_instr, 22))
1815 error (_("Invalid update to pc in instruction"));
1816
1817 /* byte write to PC */
1818 rn = bits (this_instr, 16, 19);
1819 base = (rn == 15) ? pc_val + 8
1820 : get_frame_register_unsigned (frame, rn);
1821 if (bit (this_instr, 24))
1822 {
1823 /* pre-indexed */
1824 int c = (status & FLAG_C) ? 1 : 0;
1825 unsigned long offset =
1826 (bit (this_instr, 25)
1827 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
1828 : bits (this_instr, 0, 11));
1829
1830 if (bit (this_instr, 23))
1831 base += offset;
1832 else
1833 base -= offset;
1834 }
1835 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1836 4);
1837
1838 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1839
1840 if (nextpc == pc)
1841 error (_("Infinite loop detected"));
1842 }
1843 }
1844 break;
1845
1846 case 0x8:
1847 case 0x9: /* block transfer */
1848 if (bit (this_instr, 20))
1849 {
1850 /* LDM */
1851 if (bit (this_instr, 15))
1852 {
1853 /* loading pc */
1854 int offset = 0;
1855
1856 if (bit (this_instr, 23))
1857 {
1858 /* up */
1859 unsigned long reglist = bits (this_instr, 0, 14);
1860 offset = bitcount (reglist) * 4;
1861 if (bit (this_instr, 24)) /* pre */
1862 offset += 4;
1863 }
1864 else if (bit (this_instr, 24))
1865 offset = -4;
1866
1867 {
1868 unsigned long rn_val =
1869 get_frame_register_unsigned (frame,
1870 bits (this_instr, 16, 19));
1871 nextpc =
1872 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1873 + offset),
1874 4);
1875 }
1876 nextpc = gdbarch_addr_bits_remove
1877 (current_gdbarch, nextpc);
1878 if (nextpc == pc)
1879 error (_("Infinite loop detected"));
1880 }
1881 }
1882 break;
1883
1884 case 0xb: /* branch & link */
1885 case 0xa: /* branch */
1886 {
1887 nextpc = BranchDest (pc, this_instr);
1888
1889 /* BLX */
1890 if (bits (this_instr, 28, 31) == INST_NV)
1891 nextpc |= bit (this_instr, 24) << 1;
1892
1893 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1894 if (nextpc == pc)
1895 error (_("Infinite loop detected"));
1896 break;
1897 }
1898
1899 case 0xc:
1900 case 0xd:
1901 case 0xe: /* coproc ops */
1902 case 0xf: /* SWI */
1903 break;
1904
1905 default:
1906 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1907 return (pc);
1908 }
1909 }
1910
1911 return nextpc;
1912 }
1913
1914 /* single_step() is called just before we want to resume the inferior,
1915 if we want to single-step it but there is no hardware or kernel
1916 single-step support. We find the target of the coming instruction
1917 and breakpoint it. */
1918
1919 int
1920 arm_software_single_step (struct frame_info *frame)
1921 {
1922 /* NOTE: This may insert the wrong breakpoint instruction when
1923 single-stepping over a mode-changing instruction, if the
1924 CPSR heuristics are used. */
1925
1926 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
1927 insert_single_step_breakpoint (next_pc);
1928
1929 return 1;
1930 }
1931
1932 #include "bfd-in2.h"
1933 #include "libcoff.h"
1934
1935 static int
1936 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1937 {
1938 if (arm_pc_is_thumb (memaddr))
1939 {
1940 static asymbol *asym;
1941 static combined_entry_type ce;
1942 static struct coff_symbol_struct csym;
1943 static struct bfd fake_bfd;
1944 static bfd_target fake_target;
1945
1946 if (csym.native == NULL)
1947 {
1948 /* Create a fake symbol vector containing a Thumb symbol.
1949 This is solely so that the code in print_insn_little_arm()
1950 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1951 the presence of a Thumb symbol and switch to decoding
1952 Thumb instructions. */
1953
1954 fake_target.flavour = bfd_target_coff_flavour;
1955 fake_bfd.xvec = &fake_target;
1956 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1957 csym.native = &ce;
1958 csym.symbol.the_bfd = &fake_bfd;
1959 csym.symbol.name = "fake";
1960 asym = (asymbol *) & csym;
1961 }
1962
1963 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1964 info->symbols = &asym;
1965 }
1966 else
1967 info->symbols = NULL;
1968
1969 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1970 return print_insn_big_arm (memaddr, info);
1971 else
1972 return print_insn_little_arm (memaddr, info);
1973 }
1974
1975 /* The following define instruction sequences that will cause ARM
1976 cpu's to take an undefined instruction trap. These are used to
1977 signal a breakpoint to GDB.
1978
1979 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1980 modes. A different instruction is required for each mode. The ARM
1981 cpu's can also be big or little endian. Thus four different
1982 instructions are needed to support all cases.
1983
1984 Note: ARMv4 defines several new instructions that will take the
1985 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1986 not in fact add the new instructions. The new undefined
1987 instructions in ARMv4 are all instructions that had no defined
1988 behaviour in earlier chips. There is no guarantee that they will
1989 raise an exception, but may be treated as NOP's. In practice, it
1990 may only safe to rely on instructions matching:
1991
1992 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1993 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1994 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1995
1996 Even this may only true if the condition predicate is true. The
1997 following use a condition predicate of ALWAYS so it is always TRUE.
1998
1999 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2000 and NetBSD all use a software interrupt rather than an undefined
2001 instruction to force a trap. This can be handled by by the
2002 abi-specific code during establishment of the gdbarch vector. */
2003
2004 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2005 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2006 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2007 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
2008
2009 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2010 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2011 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2012 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2013
2014 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2015 the program counter value to determine whether a 16-bit or 32-bit
2016 breakpoint should be used. It returns a pointer to a string of
2017 bytes that encode a breakpoint instruction, stores the length of
2018 the string to *lenptr, and adjusts the program counter (if
2019 necessary) to point to the actual memory location where the
2020 breakpoint should be inserted. */
2021
2022 static const unsigned char *
2023 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2024 {
2025 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2026
2027 if (arm_pc_is_thumb (*pcptr))
2028 {
2029 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2030 *lenptr = tdep->thumb_breakpoint_size;
2031 return tdep->thumb_breakpoint;
2032 }
2033 else
2034 {
2035 *lenptr = tdep->arm_breakpoint_size;
2036 return tdep->arm_breakpoint;
2037 }
2038 }
2039
2040 /* Extract from an array REGBUF containing the (raw) register state a
2041 function return value of type TYPE, and copy that, in virtual
2042 format, into VALBUF. */
2043
2044 static void
2045 arm_extract_return_value (struct type *type, struct regcache *regs,
2046 gdb_byte *valbuf)
2047 {
2048 if (TYPE_CODE_FLT == TYPE_CODE (type))
2049 {
2050 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2051 {
2052 case ARM_FLOAT_FPA:
2053 {
2054 /* The value is in register F0 in internal format. We need to
2055 extract the raw value and then convert it to the desired
2056 internal type. */
2057 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2058
2059 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2060 convert_from_extended (floatformat_from_type (type), tmpbuf,
2061 valbuf);
2062 }
2063 break;
2064
2065 case ARM_FLOAT_SOFT_FPA:
2066 case ARM_FLOAT_SOFT_VFP:
2067 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2068 if (TYPE_LENGTH (type) > 4)
2069 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2070 valbuf + INT_REGISTER_SIZE);
2071 break;
2072
2073 default:
2074 internal_error
2075 (__FILE__, __LINE__,
2076 _("arm_extract_return_value: Floating point model not supported"));
2077 break;
2078 }
2079 }
2080 else if (TYPE_CODE (type) == TYPE_CODE_INT
2081 || TYPE_CODE (type) == TYPE_CODE_CHAR
2082 || TYPE_CODE (type) == TYPE_CODE_BOOL
2083 || TYPE_CODE (type) == TYPE_CODE_PTR
2084 || TYPE_CODE (type) == TYPE_CODE_REF
2085 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2086 {
2087 /* If the the type is a plain integer, then the access is
2088 straight-forward. Otherwise we have to play around a bit more. */
2089 int len = TYPE_LENGTH (type);
2090 int regno = ARM_A1_REGNUM;
2091 ULONGEST tmp;
2092
2093 while (len > 0)
2094 {
2095 /* By using store_unsigned_integer we avoid having to do
2096 anything special for small big-endian values. */
2097 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2098 store_unsigned_integer (valbuf,
2099 (len > INT_REGISTER_SIZE
2100 ? INT_REGISTER_SIZE : len),
2101 tmp);
2102 len -= INT_REGISTER_SIZE;
2103 valbuf += INT_REGISTER_SIZE;
2104 }
2105 }
2106 else
2107 {
2108 /* For a structure or union the behaviour is as if the value had
2109 been stored to word-aligned memory and then loaded into
2110 registers with 32-bit load instruction(s). */
2111 int len = TYPE_LENGTH (type);
2112 int regno = ARM_A1_REGNUM;
2113 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2114
2115 while (len > 0)
2116 {
2117 regcache_cooked_read (regs, regno++, tmpbuf);
2118 memcpy (valbuf, tmpbuf,
2119 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2120 len -= INT_REGISTER_SIZE;
2121 valbuf += INT_REGISTER_SIZE;
2122 }
2123 }
2124 }
2125
2126
2127 /* Will a function return an aggregate type in memory or in a
2128 register? Return 0 if an aggregate type can be returned in a
2129 register, 1 if it must be returned in memory. */
2130
2131 static int
2132 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2133 {
2134 int nRc;
2135 enum type_code code;
2136
2137 CHECK_TYPEDEF (type);
2138
2139 /* In the ARM ABI, "integer" like aggregate types are returned in
2140 registers. For an aggregate type to be integer like, its size
2141 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2142 offset of each addressable subfield must be zero. Note that bit
2143 fields are not addressable, and all addressable subfields of
2144 unions always start at offset zero.
2145
2146 This function is based on the behaviour of GCC 2.95.1.
2147 See: gcc/arm.c: arm_return_in_memory() for details.
2148
2149 Note: All versions of GCC before GCC 2.95.2 do not set up the
2150 parameters correctly for a function returning the following
2151 structure: struct { float f;}; This should be returned in memory,
2152 not a register. Richard Earnshaw sent me a patch, but I do not
2153 know of any way to detect if a function like the above has been
2154 compiled with the correct calling convention. */
2155
2156 /* All aggregate types that won't fit in a register must be returned
2157 in memory. */
2158 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2159 {
2160 return 1;
2161 }
2162
2163 /* The AAPCS says all aggregates not larger than a word are returned
2164 in a register. */
2165 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2166 return 0;
2167
2168 /* The only aggregate types that can be returned in a register are
2169 structs and unions. Arrays must be returned in memory. */
2170 code = TYPE_CODE (type);
2171 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2172 {
2173 return 1;
2174 }
2175
2176 /* Assume all other aggregate types can be returned in a register.
2177 Run a check for structures, unions and arrays. */
2178 nRc = 0;
2179
2180 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2181 {
2182 int i;
2183 /* Need to check if this struct/union is "integer" like. For
2184 this to be true, its size must be less than or equal to
2185 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2186 subfield must be zero. Note that bit fields are not
2187 addressable, and unions always start at offset zero. If any
2188 of the subfields is a floating point type, the struct/union
2189 cannot be an integer type. */
2190
2191 /* For each field in the object, check:
2192 1) Is it FP? --> yes, nRc = 1;
2193 2) Is it addressable (bitpos != 0) and
2194 not packed (bitsize == 0)?
2195 --> yes, nRc = 1
2196 */
2197
2198 for (i = 0; i < TYPE_NFIELDS (type); i++)
2199 {
2200 enum type_code field_type_code;
2201 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2202
2203 /* Is it a floating point type field? */
2204 if (field_type_code == TYPE_CODE_FLT)
2205 {
2206 nRc = 1;
2207 break;
2208 }
2209
2210 /* If bitpos != 0, then we have to care about it. */
2211 if (TYPE_FIELD_BITPOS (type, i) != 0)
2212 {
2213 /* Bitfields are not addressable. If the field bitsize is
2214 zero, then the field is not packed. Hence it cannot be
2215 a bitfield or any other packed type. */
2216 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2217 {
2218 nRc = 1;
2219 break;
2220 }
2221 }
2222 }
2223 }
2224
2225 return nRc;
2226 }
2227
2228 /* Write into appropriate registers a function return value of type
2229 TYPE, given in virtual format. */
2230
2231 static void
2232 arm_store_return_value (struct type *type, struct regcache *regs,
2233 const gdb_byte *valbuf)
2234 {
2235 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2236 {
2237 char buf[MAX_REGISTER_SIZE];
2238
2239 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2240 {
2241 case ARM_FLOAT_FPA:
2242
2243 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2244 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2245 break;
2246
2247 case ARM_FLOAT_SOFT_FPA:
2248 case ARM_FLOAT_SOFT_VFP:
2249 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2250 if (TYPE_LENGTH (type) > 4)
2251 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2252 valbuf + INT_REGISTER_SIZE);
2253 break;
2254
2255 default:
2256 internal_error
2257 (__FILE__, __LINE__,
2258 _("arm_store_return_value: Floating point model not supported"));
2259 break;
2260 }
2261 }
2262 else if (TYPE_CODE (type) == TYPE_CODE_INT
2263 || TYPE_CODE (type) == TYPE_CODE_CHAR
2264 || TYPE_CODE (type) == TYPE_CODE_BOOL
2265 || TYPE_CODE (type) == TYPE_CODE_PTR
2266 || TYPE_CODE (type) == TYPE_CODE_REF
2267 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2268 {
2269 if (TYPE_LENGTH (type) <= 4)
2270 {
2271 /* Values of one word or less are zero/sign-extended and
2272 returned in r0. */
2273 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2274 LONGEST val = unpack_long (type, valbuf);
2275
2276 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2277 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2278 }
2279 else
2280 {
2281 /* Integral values greater than one word are stored in consecutive
2282 registers starting with r0. This will always be a multiple of
2283 the regiser size. */
2284 int len = TYPE_LENGTH (type);
2285 int regno = ARM_A1_REGNUM;
2286
2287 while (len > 0)
2288 {
2289 regcache_cooked_write (regs, regno++, valbuf);
2290 len -= INT_REGISTER_SIZE;
2291 valbuf += INT_REGISTER_SIZE;
2292 }
2293 }
2294 }
2295 else
2296 {
2297 /* For a structure or union the behaviour is as if the value had
2298 been stored to word-aligned memory and then loaded into
2299 registers with 32-bit load instruction(s). */
2300 int len = TYPE_LENGTH (type);
2301 int regno = ARM_A1_REGNUM;
2302 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2303
2304 while (len > 0)
2305 {
2306 memcpy (tmpbuf, valbuf,
2307 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2308 regcache_cooked_write (regs, regno++, tmpbuf);
2309 len -= INT_REGISTER_SIZE;
2310 valbuf += INT_REGISTER_SIZE;
2311 }
2312 }
2313 }
2314
2315
2316 /* Handle function return values. */
2317
2318 static enum return_value_convention
2319 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2320 struct regcache *regcache, gdb_byte *readbuf,
2321 const gdb_byte *writebuf)
2322 {
2323 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2324
2325 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2326 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2327 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2328 {
2329 if (tdep->struct_return == pcc_struct_return
2330 || arm_return_in_memory (gdbarch, valtype))
2331 return RETURN_VALUE_STRUCT_CONVENTION;
2332 }
2333
2334 if (writebuf)
2335 arm_store_return_value (valtype, regcache, writebuf);
2336
2337 if (readbuf)
2338 arm_extract_return_value (valtype, regcache, readbuf);
2339
2340 return RETURN_VALUE_REGISTER_CONVENTION;
2341 }
2342
2343
2344 static int
2345 arm_get_longjmp_target (CORE_ADDR *pc)
2346 {
2347 CORE_ADDR jb_addr;
2348 char buf[INT_REGISTER_SIZE];
2349 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2350
2351 jb_addr = read_register (ARM_A1_REGNUM);
2352
2353 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2354 INT_REGISTER_SIZE))
2355 return 0;
2356
2357 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2358 return 1;
2359 }
2360
2361 /* Return non-zero if the PC is inside a thumb call thunk. */
2362
2363 int
2364 arm_in_call_stub (CORE_ADDR pc, char *name)
2365 {
2366 CORE_ADDR start_addr;
2367
2368 /* Find the starting address of the function containing the PC. If
2369 the caller didn't give us a name, look it up at the same time. */
2370 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2371 &start_addr, NULL))
2372 return 0;
2373
2374 return strncmp (name, "_call_via_r", 11) == 0;
2375 }
2376
2377 /* If PC is in a Thumb call or return stub, return the address of the
2378 target PC, which is in a register. The thunk functions are called
2379 _called_via_xx, where x is the register name. The possible names
2380 are r0-r9, sl, fp, ip, sp, and lr. */
2381
2382 CORE_ADDR
2383 arm_skip_stub (CORE_ADDR pc)
2384 {
2385 char *name;
2386 CORE_ADDR start_addr;
2387
2388 /* Find the starting address and name of the function containing the PC. */
2389 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2390 return 0;
2391
2392 /* Call thunks always start with "_call_via_". */
2393 if (strncmp (name, "_call_via_", 10) == 0)
2394 {
2395 /* Use the name suffix to determine which register contains the
2396 target PC. */
2397 static char *table[15] =
2398 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2399 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2400 };
2401 int regno;
2402
2403 for (regno = 0; regno <= 14; regno++)
2404 if (strcmp (&name[10], table[regno]) == 0)
2405 return read_register (regno);
2406 }
2407
2408 return 0; /* not a stub */
2409 }
2410
2411 static void
2412 set_arm_command (char *args, int from_tty)
2413 {
2414 printf_unfiltered (_("\
2415 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2416 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2417 }
2418
2419 static void
2420 show_arm_command (char *args, int from_tty)
2421 {
2422 cmd_show_list (showarmcmdlist, from_tty, "");
2423 }
2424
2425 static void
2426 arm_update_current_architecture (void)
2427 {
2428 struct gdbarch_info info;
2429
2430 /* If the current architecture is not ARM, we have nothing to do. */
2431 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2432 return;
2433
2434 /* Update the architecture. */
2435 gdbarch_info_init (&info);
2436
2437 if (!gdbarch_update_p (info))
2438 internal_error (__FILE__, __LINE__, "could not update architecture");
2439 }
2440
2441 static void
2442 set_fp_model_sfunc (char *args, int from_tty,
2443 struct cmd_list_element *c)
2444 {
2445 enum arm_float_model fp_model;
2446
2447 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2448 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2449 {
2450 arm_fp_model = fp_model;
2451 break;
2452 }
2453
2454 if (fp_model == ARM_FLOAT_LAST)
2455 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2456 current_fp_model);
2457
2458 arm_update_current_architecture ();
2459 }
2460
2461 static void
2462 show_fp_model (struct ui_file *file, int from_tty,
2463 struct cmd_list_element *c, const char *value)
2464 {
2465 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2466
2467 if (arm_fp_model == ARM_FLOAT_AUTO
2468 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2469 fprintf_filtered (file, _("\
2470 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2471 fp_model_strings[tdep->fp_model]);
2472 else
2473 fprintf_filtered (file, _("\
2474 The current ARM floating point model is \"%s\".\n"),
2475 fp_model_strings[arm_fp_model]);
2476 }
2477
2478 static void
2479 arm_set_abi (char *args, int from_tty,
2480 struct cmd_list_element *c)
2481 {
2482 enum arm_abi_kind arm_abi;
2483
2484 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2485 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2486 {
2487 arm_abi_global = arm_abi;
2488 break;
2489 }
2490
2491 if (arm_abi == ARM_ABI_LAST)
2492 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2493 arm_abi_string);
2494
2495 arm_update_current_architecture ();
2496 }
2497
2498 static void
2499 arm_show_abi (struct ui_file *file, int from_tty,
2500 struct cmd_list_element *c, const char *value)
2501 {
2502 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2503
2504 if (arm_abi_global == ARM_ABI_AUTO
2505 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2506 fprintf_filtered (file, _("\
2507 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2508 arm_abi_strings[tdep->arm_abi]);
2509 else
2510 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2511 arm_abi_string);
2512 }
2513
2514 /* If the user changes the register disassembly style used for info
2515 register and other commands, we have to also switch the style used
2516 in opcodes for disassembly output. This function is run in the "set
2517 arm disassembly" command, and does that. */
2518
2519 static void
2520 set_disassembly_style_sfunc (char *args, int from_tty,
2521 struct cmd_list_element *c)
2522 {
2523 set_disassembly_style ();
2524 }
2525 \f
2526 /* Return the ARM register name corresponding to register I. */
2527 static const char *
2528 arm_register_name (int i)
2529 {
2530 if (i >= ARRAY_SIZE (arm_register_names))
2531 /* These registers are only supported on targets which supply
2532 an XML description. */
2533 return "";
2534
2535 return arm_register_names[i];
2536 }
2537
2538 static void
2539 set_disassembly_style (void)
2540 {
2541 int current;
2542
2543 /* Find the style that the user wants. */
2544 for (current = 0; current < num_disassembly_options; current++)
2545 if (disassembly_style == valid_disassembly_styles[current])
2546 break;
2547 gdb_assert (current < num_disassembly_options);
2548
2549 /* Synchronize the disassembler. */
2550 set_arm_regname_option (current);
2551 }
2552
2553 /* Test whether the coff symbol specific value corresponds to a Thumb
2554 function. */
2555
2556 static int
2557 coff_sym_is_thumb (int val)
2558 {
2559 return (val == C_THUMBEXT ||
2560 val == C_THUMBSTAT ||
2561 val == C_THUMBEXTFUNC ||
2562 val == C_THUMBSTATFUNC ||
2563 val == C_THUMBLABEL);
2564 }
2565
2566 /* arm_coff_make_msymbol_special()
2567 arm_elf_make_msymbol_special()
2568
2569 These functions test whether the COFF or ELF symbol corresponds to
2570 an address in thumb code, and set a "special" bit in a minimal
2571 symbol to indicate that it does. */
2572
2573 static void
2574 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2575 {
2576 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2577 STT_ARM_TFUNC). */
2578 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2579 == STT_LOPROC)
2580 MSYMBOL_SET_SPECIAL (msym);
2581 }
2582
2583 static void
2584 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2585 {
2586 if (coff_sym_is_thumb (val))
2587 MSYMBOL_SET_SPECIAL (msym);
2588 }
2589
2590 static void
2591 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2592 {
2593 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2594
2595 /* If necessary, set the T bit. */
2596 if (arm_apcs_32)
2597 {
2598 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2599 if (arm_pc_is_thumb (pc))
2600 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2601 else
2602 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2603 }
2604 }
2605
2606 static struct value *
2607 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2608 {
2609 const int *reg_p = baton;
2610 return value_of_register (*reg_p, frame);
2611 }
2612 \f
2613 static enum gdb_osabi
2614 arm_elf_osabi_sniffer (bfd *abfd)
2615 {
2616 unsigned int elfosabi;
2617 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2618
2619 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2620
2621 if (elfosabi == ELFOSABI_ARM)
2622 /* GNU tools use this value. Check note sections in this case,
2623 as well. */
2624 bfd_map_over_sections (abfd,
2625 generic_elf_osabi_sniff_abi_tag_sections,
2626 &osabi);
2627
2628 /* Anything else will be handled by the generic ELF sniffer. */
2629 return osabi;
2630 }
2631
2632 \f
2633 /* Initialize the current architecture based on INFO. If possible,
2634 re-use an architecture from ARCHES, which is a list of
2635 architectures already created during this debugging session.
2636
2637 Called e.g. at program startup, when reading a core file, and when
2638 reading a binary file. */
2639
2640 static struct gdbarch *
2641 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2642 {
2643 struct gdbarch_tdep *tdep;
2644 struct gdbarch *gdbarch;
2645 struct gdbarch_list *best_arch;
2646 enum arm_abi_kind arm_abi = arm_abi_global;
2647 enum arm_float_model fp_model = arm_fp_model;
2648 struct tdesc_arch_data *tdesc_data = NULL;
2649 int i;
2650 int have_fpa_registers = 1;
2651
2652 /* Check any target description for validity. */
2653 if (tdesc_has_registers (info.target_desc))
2654 {
2655 /* For most registers we require GDB's default names; but also allow
2656 the numeric names for sp / lr / pc, as a convenience. */
2657 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2658 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2659 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2660
2661 const struct tdesc_feature *feature;
2662 int i, valid_p;
2663
2664 feature = tdesc_find_feature (info.target_desc,
2665 "org.gnu.gdb.arm.core");
2666 if (feature == NULL)
2667 return NULL;
2668
2669 tdesc_data = tdesc_data_alloc ();
2670
2671 valid_p = 1;
2672 for (i = 0; i < ARM_SP_REGNUM; i++)
2673 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2674 arm_register_names[i]);
2675 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2676 ARM_SP_REGNUM,
2677 arm_sp_names);
2678 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2679 ARM_LR_REGNUM,
2680 arm_lr_names);
2681 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2682 ARM_PC_REGNUM,
2683 arm_pc_names);
2684 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2685 ARM_PS_REGNUM, "cpsr");
2686
2687 if (!valid_p)
2688 {
2689 tdesc_data_cleanup (tdesc_data);
2690 return NULL;
2691 }
2692
2693 feature = tdesc_find_feature (info.target_desc,
2694 "org.gnu.gdb.arm.fpa");
2695 if (feature != NULL)
2696 {
2697 valid_p = 1;
2698 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2699 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2700 arm_register_names[i]);
2701 if (!valid_p)
2702 {
2703 tdesc_data_cleanup (tdesc_data);
2704 return NULL;
2705 }
2706 }
2707 else
2708 have_fpa_registers = 0;
2709
2710 feature = tdesc_find_feature (info.target_desc,
2711 "org.gnu.gdb.xscale.iwmmxt");
2712 if (feature != NULL)
2713 {
2714 static const char *const iwmmxt_names[] = {
2715 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2716 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2717 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2718 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2719 };
2720
2721 valid_p = 1;
2722 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2723 valid_p
2724 &= tdesc_numbered_register (feature, tdesc_data, i,
2725 iwmmxt_names[i - ARM_WR0_REGNUM]);
2726
2727 /* Check for the control registers, but do not fail if they
2728 are missing. */
2729 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2730 tdesc_numbered_register (feature, tdesc_data, i,
2731 iwmmxt_names[i - ARM_WR0_REGNUM]);
2732
2733 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2734 valid_p
2735 &= tdesc_numbered_register (feature, tdesc_data, i,
2736 iwmmxt_names[i - ARM_WR0_REGNUM]);
2737
2738 if (!valid_p)
2739 {
2740 tdesc_data_cleanup (tdesc_data);
2741 return NULL;
2742 }
2743 }
2744 }
2745
2746 /* If we have an object to base this architecture on, try to determine
2747 its ABI. */
2748
2749 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2750 {
2751 int ei_osabi, e_flags;
2752
2753 switch (bfd_get_flavour (info.abfd))
2754 {
2755 case bfd_target_aout_flavour:
2756 /* Assume it's an old APCS-style ABI. */
2757 arm_abi = ARM_ABI_APCS;
2758 break;
2759
2760 case bfd_target_coff_flavour:
2761 /* Assume it's an old APCS-style ABI. */
2762 /* XXX WinCE? */
2763 arm_abi = ARM_ABI_APCS;
2764 break;
2765
2766 case bfd_target_elf_flavour:
2767 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2768 e_flags = elf_elfheader (info.abfd)->e_flags;
2769
2770 if (ei_osabi == ELFOSABI_ARM)
2771 {
2772 /* GNU tools used to use this value, but do not for EABI
2773 objects. There's nowhere to tag an EABI version
2774 anyway, so assume APCS. */
2775 arm_abi = ARM_ABI_APCS;
2776 }
2777 else if (ei_osabi == ELFOSABI_NONE)
2778 {
2779 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2780
2781 switch (eabi_ver)
2782 {
2783 case EF_ARM_EABI_UNKNOWN:
2784 /* Assume GNU tools. */
2785 arm_abi = ARM_ABI_APCS;
2786 break;
2787
2788 case EF_ARM_EABI_VER4:
2789 case EF_ARM_EABI_VER5:
2790 arm_abi = ARM_ABI_AAPCS;
2791 /* EABI binaries default to VFP float ordering. */
2792 if (fp_model == ARM_FLOAT_AUTO)
2793 fp_model = ARM_FLOAT_SOFT_VFP;
2794 break;
2795
2796 default:
2797 /* Leave it as "auto". */
2798 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2799 break;
2800 }
2801 }
2802
2803 if (fp_model == ARM_FLOAT_AUTO)
2804 {
2805 int e_flags = elf_elfheader (info.abfd)->e_flags;
2806
2807 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2808 {
2809 case 0:
2810 /* Leave it as "auto". Strictly speaking this case
2811 means FPA, but almost nobody uses that now, and
2812 many toolchains fail to set the appropriate bits
2813 for the floating-point model they use. */
2814 break;
2815 case EF_ARM_SOFT_FLOAT:
2816 fp_model = ARM_FLOAT_SOFT_FPA;
2817 break;
2818 case EF_ARM_VFP_FLOAT:
2819 fp_model = ARM_FLOAT_VFP;
2820 break;
2821 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2822 fp_model = ARM_FLOAT_SOFT_VFP;
2823 break;
2824 }
2825 }
2826 break;
2827
2828 default:
2829 /* Leave it as "auto". */
2830 break;
2831 }
2832 }
2833
2834 /* Now that we have inferred any architecture settings that we
2835 can, try to inherit from the last ARM ABI. */
2836 if (arches != NULL)
2837 {
2838 if (arm_abi == ARM_ABI_AUTO)
2839 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2840
2841 if (fp_model == ARM_FLOAT_AUTO)
2842 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2843 }
2844 else
2845 {
2846 /* There was no prior ARM architecture; fill in default values. */
2847
2848 if (arm_abi == ARM_ABI_AUTO)
2849 arm_abi = ARM_ABI_APCS;
2850
2851 /* We used to default to FPA for generic ARM, but almost nobody
2852 uses that now, and we now provide a way for the user to force
2853 the model. So default to the most useful variant. */
2854 if (fp_model == ARM_FLOAT_AUTO)
2855 fp_model = ARM_FLOAT_SOFT_FPA;
2856 }
2857
2858 /* If there is already a candidate, use it. */
2859 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2860 best_arch != NULL;
2861 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2862 {
2863 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2864 continue;
2865
2866 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2867 continue;
2868
2869 /* Found a match. */
2870 break;
2871 }
2872
2873 if (best_arch != NULL)
2874 {
2875 if (tdesc_data != NULL)
2876 tdesc_data_cleanup (tdesc_data);
2877 return best_arch->gdbarch;
2878 }
2879
2880 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2881 gdbarch = gdbarch_alloc (&info, tdep);
2882
2883 /* Record additional information about the architecture we are defining.
2884 These are gdbarch discriminators, like the OSABI. */
2885 tdep->arm_abi = arm_abi;
2886 tdep->fp_model = fp_model;
2887 tdep->have_fpa_registers = have_fpa_registers;
2888
2889 /* Breakpoints. */
2890 switch (info.byte_order)
2891 {
2892 case BFD_ENDIAN_BIG:
2893 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2894 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2895 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2896 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2897
2898 break;
2899
2900 case BFD_ENDIAN_LITTLE:
2901 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2902 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2903 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2904 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2905
2906 break;
2907
2908 default:
2909 internal_error (__FILE__, __LINE__,
2910 _("arm_gdbarch_init: bad byte order for float format"));
2911 }
2912
2913 /* On ARM targets char defaults to unsigned. */
2914 set_gdbarch_char_signed (gdbarch, 0);
2915
2916 /* This should be low enough for everything. */
2917 tdep->lowest_pc = 0x20;
2918 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2919
2920 /* The default, for both APCS and AAPCS, is to return small
2921 structures in registers. */
2922 tdep->struct_return = reg_struct_return;
2923
2924 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2925 set_gdbarch_frame_align (gdbarch, arm_frame_align);
2926
2927 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2928
2929 /* Frame handling. */
2930 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2931 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2932 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2933
2934 frame_base_set_default (gdbarch, &arm_normal_base);
2935
2936 /* Address manipulation. */
2937 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2938 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2939
2940 /* Advance PC across function entry code. */
2941 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2942
2943 /* Skip trampolines. */
2944 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
2945
2946 /* The stack grows downward. */
2947 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2948
2949 /* Breakpoint manipulation. */
2950 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2951
2952 /* Information about registers, etc. */
2953 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2954 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2955 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2956 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
2957 set_gdbarch_register_type (gdbarch, arm_register_type);
2958
2959 /* This "info float" is FPA-specific. Use the generic version if we
2960 do not have FPA. */
2961 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2962 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2963
2964 /* Internal <-> external register number maps. */
2965 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2966 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2967 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2968
2969 /* Integer registers are 4 bytes. */
2970 set_gdbarch_deprecated_register_size (gdbarch, 4);
2971 set_gdbarch_register_name (gdbarch, arm_register_name);
2972
2973 /* Returning results. */
2974 set_gdbarch_return_value (gdbarch, arm_return_value);
2975
2976 /* Disassembly. */
2977 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2978
2979 /* Minsymbol frobbing. */
2980 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2981 set_gdbarch_coff_make_msymbol_special (gdbarch,
2982 arm_coff_make_msymbol_special);
2983
2984 /* Virtual tables. */
2985 set_gdbarch_vbit_in_delta (gdbarch, 1);
2986
2987 /* Hook in the ABI-specific overrides, if they have been registered. */
2988 gdbarch_init_osabi (info, gdbarch);
2989
2990 /* Add some default predicates. */
2991 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
2992 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2993 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2994
2995 /* Now we have tuned the configuration, set a few final things,
2996 based on what the OS ABI has told us. */
2997
2998 if (tdep->jb_pc >= 0)
2999 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3000
3001 /* Floating point sizes and format. */
3002 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3003 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
3004 {
3005 set_gdbarch_double_format
3006 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3007 set_gdbarch_long_double_format
3008 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3009 }
3010 else
3011 {
3012 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3013 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3014 }
3015
3016 if (tdesc_data)
3017 tdesc_use_registers (gdbarch, tdesc_data);
3018
3019 /* Add standard register aliases. We add aliases even for those
3020 nanes which are used by the current architecture - it's simpler,
3021 and does no harm, since nothing ever lists user registers. */
3022 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3023 user_reg_add (gdbarch, arm_register_aliases[i].name,
3024 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3025
3026 return gdbarch;
3027 }
3028
3029 static void
3030 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3031 {
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3033
3034 if (tdep == NULL)
3035 return;
3036
3037 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3038 (unsigned long) tdep->lowest_pc);
3039 }
3040
3041 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3042
3043 void
3044 _initialize_arm_tdep (void)
3045 {
3046 struct ui_file *stb;
3047 long length;
3048 struct cmd_list_element *new_set, *new_show;
3049 const char *setname;
3050 const char *setdesc;
3051 const char *const *regnames;
3052 int numregs, i, j;
3053 static char *helptext;
3054 char regdesc[1024], *rdptr = regdesc;
3055 size_t rest = sizeof (regdesc);
3056
3057 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3058
3059 /* Register an ELF OS ABI sniffer for ARM binaries. */
3060 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3061 bfd_target_elf_flavour,
3062 arm_elf_osabi_sniffer);
3063
3064 /* Get the number of possible sets of register names defined in opcodes. */
3065 num_disassembly_options = get_arm_regname_num_options ();
3066
3067 /* Add root prefix command for all "set arm"/"show arm" commands. */
3068 add_prefix_cmd ("arm", no_class, set_arm_command,
3069 _("Various ARM-specific commands."),
3070 &setarmcmdlist, "set arm ", 0, &setlist);
3071
3072 add_prefix_cmd ("arm", no_class, show_arm_command,
3073 _("Various ARM-specific commands."),
3074 &showarmcmdlist, "show arm ", 0, &showlist);
3075
3076 /* Sync the opcode insn printer with our register viewer. */
3077 parse_arm_disassembler_option ("reg-names-std");
3078
3079 /* Initialize the array that will be passed to
3080 add_setshow_enum_cmd(). */
3081 valid_disassembly_styles
3082 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3083 for (i = 0; i < num_disassembly_options; i++)
3084 {
3085 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3086 valid_disassembly_styles[i] = setname;
3087 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3088 rdptr += length;
3089 rest -= length;
3090 /* When we find the default names, tell the disassembler to use
3091 them. */
3092 if (!strcmp (setname, "std"))
3093 {
3094 disassembly_style = setname;
3095 set_arm_regname_option (i);
3096 }
3097 }
3098 /* Mark the end of valid options. */
3099 valid_disassembly_styles[num_disassembly_options] = NULL;
3100
3101 /* Create the help text. */
3102 stb = mem_fileopen ();
3103 fprintf_unfiltered (stb, "%s%s%s",
3104 _("The valid values are:\n"),
3105 regdesc,
3106 _("The default is \"std\"."));
3107 helptext = ui_file_xstrdup (stb, &length);
3108 ui_file_delete (stb);
3109
3110 add_setshow_enum_cmd("disassembler", no_class,
3111 valid_disassembly_styles, &disassembly_style,
3112 _("Set the disassembly style."),
3113 _("Show the disassembly style."),
3114 helptext,
3115 set_disassembly_style_sfunc,
3116 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3117 &setarmcmdlist, &showarmcmdlist);
3118
3119 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3120 _("Set usage of ARM 32-bit mode."),
3121 _("Show usage of ARM 32-bit mode."),
3122 _("When off, a 26-bit PC will be used."),
3123 NULL,
3124 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3125 &setarmcmdlist, &showarmcmdlist);
3126
3127 /* Add a command to allow the user to force the FPU model. */
3128 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3129 _("Set the floating point type."),
3130 _("Show the floating point type."),
3131 _("auto - Determine the FP typefrom the OS-ABI.\n\
3132 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3133 fpa - FPA co-processor (GCC compiled).\n\
3134 softvfp - Software FP with pure-endian doubles.\n\
3135 vfp - VFP co-processor."),
3136 set_fp_model_sfunc, show_fp_model,
3137 &setarmcmdlist, &showarmcmdlist);
3138
3139 /* Add a command to allow the user to force the ABI. */
3140 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3141 _("Set the ABI."),
3142 _("Show the ABI."),
3143 NULL, arm_set_abi, arm_show_abi,
3144 &setarmcmdlist, &showarmcmdlist);
3145
3146 /* Debugging flag. */
3147 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3148 _("Set ARM debugging."),
3149 _("Show ARM debugging."),
3150 _("When on, arm-specific debugging is enabled."),
3151 NULL,
3152 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3153 &setdebuglist, &showdebuglist);
3154 }