]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arm-tdep.c
* arm-linux-tdep.c (ARM_LINUX_JB_ELEMENT_SIZE): Define to
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "dis-asm.h" /* For register styles. */
31 #include "regcache.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
39
40 #include "arm-tdep.h"
41 #include "gdb/sim-arm.h"
42
43 #include "elf-bfd.h"
44 #include "coff/internal.h"
45 #include "elf/arm.h"
46
47 #include "gdb_assert.h"
48
49 static int arm_debug;
50
51 /* Each OS has a different mechanism for accessing the various
52 registers stored in the sigcontext structure.
53
54 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
55 function pointer) which may be used to determine the addresses
56 of the various saved registers in the sigcontext structure.
57
58 For the ARM target, there are three parameters to this function.
59 The first is the pc value of the frame under consideration, the
60 second the stack pointer of this frame, and the last is the
61 register number to fetch.
62
63 If the tm.h file does not define this macro, then it's assumed that
64 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
65 be 0.
66
67 When it comes time to multi-arching this code, see the identically
68 named machinery in ia64-tdep.c for an example of how it could be
69 done. It should not be necessary to modify the code below where
70 this macro is used. */
71
72 #ifdef SIGCONTEXT_REGISTER_ADDRESS
73 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
74 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
75 #endif
76 #else
77 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
78 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
79 #endif
80
81 /* Macros for setting and testing a bit in a minimal symbol that marks
82 it as Thumb function. The MSB of the minimal symbol's "info" field
83 is used for this purpose.
84
85 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
86 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
87
88 #define MSYMBOL_SET_SPECIAL(msym) \
89 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
90 | 0x80000000)
91
92 #define MSYMBOL_IS_SPECIAL(msym) \
93 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
94
95 /* The list of available "set arm ..." and "show arm ..." commands. */
96 static struct cmd_list_element *setarmcmdlist = NULL;
97 static struct cmd_list_element *showarmcmdlist = NULL;
98
99 /* The type of floating-point to use. Keep this in sync with enum
100 arm_float_model, and the help string in _initialize_arm_tdep. */
101 static const char *fp_model_strings[] =
102 {
103 "auto",
104 "softfpa",
105 "fpa",
106 "softvfp",
107 "vfp"
108 };
109
110 /* A variable that can be configured by the user. */
111 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
112 static const char *current_fp_model = "auto";
113
114 /* Number of different reg name sets (options). */
115 static int num_disassembly_options;
116
117 /* We have more registers than the disassembler as gdb can print the value
118 of special registers as well.
119 The general register names are overwritten by whatever is being used by
120 the disassembler at the moment. We also adjust the case of cpsr and fps. */
121
122 /* Initial value: Register names used in ARM's ISA documentation. */
123 static char * arm_register_name_strings[] =
124 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
125 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
126 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
127 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
128 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
129 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
130 "fps", "cpsr" }; /* 24 25 */
131 static char **arm_register_names = arm_register_name_strings;
132
133 /* Valid register name styles. */
134 static const char **valid_disassembly_styles;
135
136 /* Disassembly style to use. Default to "std" register names. */
137 static const char *disassembly_style;
138 /* Index to that option in the opcodes table. */
139 static int current_option;
140
141 /* This is used to keep the bfd arch_info in sync with the disassembly
142 style. */
143 static void set_disassembly_style_sfunc(char *, int,
144 struct cmd_list_element *);
145 static void set_disassembly_style (void);
146
147 static void convert_from_extended (const struct floatformat *, const void *,
148 void *);
149 static void convert_to_extended (const struct floatformat *, void *,
150 const void *);
151
152 struct arm_prologue_cache
153 {
154 /* The stack pointer at the time this frame was created; i.e. the
155 caller's stack pointer when this function was called. It is used
156 to identify this frame. */
157 CORE_ADDR prev_sp;
158
159 /* The frame base for this frame is just prev_sp + frame offset -
160 frame size. FRAMESIZE is the size of this stack frame, and
161 FRAMEOFFSET if the initial offset from the stack pointer (this
162 frame's stack pointer, not PREV_SP) to the frame base. */
163
164 int framesize;
165 int frameoffset;
166
167 /* The register used to hold the frame pointer for this frame. */
168 int framereg;
169
170 /* Saved register offsets. */
171 struct trad_frame_saved_reg *saved_regs;
172 };
173
174 /* Addresses for calling Thumb functions have the bit 0 set.
175 Here are some macros to test, set, or clear bit 0 of addresses. */
176 #define IS_THUMB_ADDR(addr) ((addr) & 1)
177 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
178 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
179
180 /* Set to true if the 32-bit mode is in use. */
181
182 int arm_apcs_32 = 1;
183
184 /* Flag set by arm_fix_call_dummy that tells whether the target
185 function is a Thumb function. This flag is checked by
186 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
187 its use in valops.c) to pass the function address as an additional
188 parameter. */
189
190 static int target_is_thumb;
191
192 /* Flag set by arm_fix_call_dummy that tells whether the calling
193 function is a Thumb function. This flag is checked by
194 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
195
196 static int caller_is_thumb;
197
198 /* Determine if the program counter specified in MEMADDR is in a Thumb
199 function. */
200
201 int
202 arm_pc_is_thumb (CORE_ADDR memaddr)
203 {
204 struct minimal_symbol *sym;
205
206 /* If bit 0 of the address is set, assume this is a Thumb address. */
207 if (IS_THUMB_ADDR (memaddr))
208 return 1;
209
210 /* Thumb functions have a "special" bit set in minimal symbols. */
211 sym = lookup_minimal_symbol_by_pc (memaddr);
212 if (sym)
213 {
214 return (MSYMBOL_IS_SPECIAL (sym));
215 }
216 else
217 {
218 return 0;
219 }
220 }
221
222 /* Determine if the program counter specified in MEMADDR is in a call
223 dummy being called from a Thumb function. */
224
225 int
226 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
227 {
228 CORE_ADDR sp = read_sp ();
229
230 /* FIXME: Until we switch for the new call dummy macros, this heuristic
231 is the best we can do. We are trying to determine if the pc is on
232 the stack, which (hopefully) will only happen in a call dummy.
233 We hope the current stack pointer is not so far alway from the dummy
234 frame location (true if we have not pushed large data structures or
235 gone too many levels deep) and that our 1024 is not enough to consider
236 code regions as part of the stack (true for most practical purposes). */
237 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
238 return caller_is_thumb;
239 else
240 return 0;
241 }
242
243 /* Remove useless bits from addresses in a running program. */
244 static CORE_ADDR
245 arm_addr_bits_remove (CORE_ADDR val)
246 {
247 if (arm_apcs_32)
248 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
249 else
250 return (val & 0x03fffffc);
251 }
252
253 /* When reading symbols, we need to zap the low bit of the address,
254 which may be set to 1 for Thumb functions. */
255 static CORE_ADDR
256 arm_smash_text_address (CORE_ADDR val)
257 {
258 return val & ~1;
259 }
260
261 /* Immediately after a function call, return the saved pc. Can't
262 always go through the frames for this because on some machines the
263 new frame is not set up until the new function executes some
264 instructions. */
265
266 static CORE_ADDR
267 arm_saved_pc_after_call (struct frame_info *frame)
268 {
269 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
270 }
271
272 /* Determine whether the function invocation represented by FI has a
273 frame on the stack associated with it. If it does return zero,
274 otherwise return 1. */
275
276 static int
277 arm_frameless_function_invocation (struct frame_info *fi)
278 {
279 CORE_ADDR func_start, after_prologue;
280 int frameless;
281
282 /* Sometimes we have functions that do a little setup (like saving the
283 vN registers with the stmdb instruction, but DO NOT set up a frame.
284 The symbol table will report this as a prologue. However, it is
285 important not to try to parse these partial frames as frames, or we
286 will get really confused.
287
288 So I will demand 3 instructions between the start & end of the
289 prologue before I call it a real prologue, i.e. at least
290 mov ip, sp,
291 stmdb sp!, {}
292 sub sp, ip, #4. */
293
294 func_start = (get_frame_func (fi) + FUNCTION_START_OFFSET);
295 after_prologue = SKIP_PROLOGUE (func_start);
296
297 /* There are some frameless functions whose first two instructions
298 follow the standard APCS form, in which case after_prologue will
299 be func_start + 8. */
300
301 frameless = (after_prologue < func_start + 12);
302 return frameless;
303 }
304
305 /* A typical Thumb prologue looks like this:
306 push {r7, lr}
307 add sp, sp, #-28
308 add r7, sp, #12
309 Sometimes the latter instruction may be replaced by:
310 mov r7, sp
311
312 or like this:
313 push {r7, lr}
314 mov r7, sp
315 sub sp, #12
316
317 or, on tpcs, like this:
318 sub sp,#16
319 push {r7, lr}
320 (many instructions)
321 mov r7, sp
322 sub sp, #12
323
324 There is always one instruction of three classes:
325 1 - push
326 2 - setting of r7
327 3 - adjusting of sp
328
329 When we have found at least one of each class we are done with the prolog.
330 Note that the "sub sp, #NN" before the push does not count.
331 */
332
333 static CORE_ADDR
334 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
335 {
336 CORE_ADDR current_pc;
337 /* findmask:
338 bit 0 - push { rlist }
339 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
340 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
341 */
342 int findmask = 0;
343
344 for (current_pc = pc;
345 current_pc + 2 < func_end && current_pc < pc + 40;
346 current_pc += 2)
347 {
348 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
349
350 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
351 {
352 findmask |= 1; /* push found */
353 }
354 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
355 sub sp, #simm */
356 {
357 if ((findmask & 1) == 0) /* before push ? */
358 continue;
359 else
360 findmask |= 4; /* add/sub sp found */
361 }
362 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
363 {
364 findmask |= 2; /* setting of r7 found */
365 }
366 else if (insn == 0x466f) /* mov r7, sp */
367 {
368 findmask |= 2; /* setting of r7 found */
369 }
370 else if (findmask == (4+2+1))
371 {
372 /* We have found one of each type of prologue instruction */
373 break;
374 }
375 else
376 /* Something in the prolog that we don't care about or some
377 instruction from outside the prolog scheduled here for
378 optimization. */
379 continue;
380 }
381
382 return current_pc;
383 }
384
385 /* Advance the PC across any function entry prologue instructions to
386 reach some "real" code.
387
388 The APCS (ARM Procedure Call Standard) defines the following
389 prologue:
390
391 mov ip, sp
392 [stmfd sp!, {a1,a2,a3,a4}]
393 stmfd sp!, {...,fp,ip,lr,pc}
394 [stfe f7, [sp, #-12]!]
395 [stfe f6, [sp, #-12]!]
396 [stfe f5, [sp, #-12]!]
397 [stfe f4, [sp, #-12]!]
398 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
399
400 static CORE_ADDR
401 arm_skip_prologue (CORE_ADDR pc)
402 {
403 unsigned long inst;
404 CORE_ADDR skip_pc;
405 CORE_ADDR func_addr, func_end = 0;
406 char *func_name;
407 struct symtab_and_line sal;
408
409 /* If we're in a dummy frame, don't even try to skip the prologue. */
410 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
411 return pc;
412
413 /* See what the symbol table says. */
414
415 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
416 {
417 struct symbol *sym;
418
419 /* Found a function. */
420 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
421 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
422 {
423 /* Don't use this trick for assembly source files. */
424 sal = find_pc_line (func_addr, 0);
425 if ((sal.line != 0) && (sal.end < func_end))
426 return sal.end;
427 }
428 }
429
430 /* Check if this is Thumb code. */
431 if (arm_pc_is_thumb (pc))
432 return thumb_skip_prologue (pc, func_end);
433
434 /* Can't find the prologue end in the symbol table, try it the hard way
435 by disassembling the instructions. */
436
437 /* Like arm_scan_prologue, stop no later than pc + 64. */
438 if (func_end == 0 || func_end > pc + 64)
439 func_end = pc + 64;
440
441 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
442 {
443 inst = read_memory_integer (skip_pc, 4);
444
445 /* "mov ip, sp" is no longer a required part of the prologue. */
446 if (inst == 0xe1a0c00d) /* mov ip, sp */
447 continue;
448
449 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
450 continue;
451
452 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
453 continue;
454
455 /* Some prologues begin with "str lr, [sp, #-4]!". */
456 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
457 continue;
458
459 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
460 continue;
461
462 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
463 continue;
464
465 /* Any insns after this point may float into the code, if it makes
466 for better instruction scheduling, so we skip them only if we
467 find them, but still consider the function to be frame-ful. */
468
469 /* We may have either one sfmfd instruction here, or several stfe
470 insns, depending on the version of floating point code we
471 support. */
472 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
473 continue;
474
475 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
479 continue;
480
481 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
482 continue;
483
484 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
485 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
486 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
487 continue;
488
489 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
490 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
491 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
492 continue;
493
494 /* Un-recognized instruction; stop scanning. */
495 break;
496 }
497
498 return skip_pc; /* End of prologue */
499 }
500
501 /* *INDENT-OFF* */
502 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
503 This function decodes a Thumb function prologue to determine:
504 1) the size of the stack frame
505 2) which registers are saved on it
506 3) the offsets of saved regs
507 4) the offset from the stack pointer to the frame pointer
508
509 A typical Thumb function prologue would create this stack frame
510 (offsets relative to FP)
511 old SP -> 24 stack parameters
512 20 LR
513 16 R7
514 R7 -> 0 local variables (16 bytes)
515 SP -> -12 additional stack space (12 bytes)
516 The frame size would thus be 36 bytes, and the frame offset would be
517 12 bytes. The frame register is R7.
518
519 The comments for thumb_skip_prolog() describe the algorithm we use
520 to detect the end of the prolog. */
521 /* *INDENT-ON* */
522
523 static void
524 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
525 {
526 CORE_ADDR prologue_start;
527 CORE_ADDR prologue_end;
528 CORE_ADDR current_pc;
529 /* Which register has been copied to register n? */
530 int saved_reg[16];
531 /* findmask:
532 bit 0 - push { rlist }
533 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
534 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
535 */
536 int findmask = 0;
537 int i;
538
539 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
540 {
541 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
542
543 if (sal.line == 0) /* no line info, use current PC */
544 prologue_end = prev_pc;
545 else if (sal.end < prologue_end) /* next line begins after fn end */
546 prologue_end = sal.end; /* (probably means no prologue) */
547 }
548 else
549 /* We're in the boondocks: allow for
550 16 pushes, an add, and "mv fp,sp". */
551 prologue_end = prologue_start + 40;
552
553 prologue_end = min (prologue_end, prev_pc);
554
555 /* Initialize the saved register map. When register H is copied to
556 register L, we will put H in saved_reg[L]. */
557 for (i = 0; i < 16; i++)
558 saved_reg[i] = i;
559
560 /* Search the prologue looking for instructions that set up the
561 frame pointer, adjust the stack pointer, and save registers.
562 Do this until all basic prolog instructions are found. */
563
564 cache->framesize = 0;
565 for (current_pc = prologue_start;
566 (current_pc < prologue_end) && ((findmask & 7) != 7);
567 current_pc += 2)
568 {
569 unsigned short insn;
570 int regno;
571 int offset;
572
573 insn = read_memory_unsigned_integer (current_pc, 2);
574
575 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
576 {
577 int mask;
578 findmask |= 1; /* push found */
579 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
580 whether to save LR (R14). */
581 mask = (insn & 0xff) | ((insn & 0x100) << 6);
582
583 /* Calculate offsets of saved R0-R7 and LR. */
584 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
585 if (mask & (1 << regno))
586 {
587 cache->framesize += 4;
588 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
589 /* Reset saved register map. */
590 saved_reg[regno] = regno;
591 }
592 }
593 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
594 sub sp, #simm */
595 {
596 if ((findmask & 1) == 0) /* before push? */
597 continue;
598 else
599 findmask |= 4; /* add/sub sp found */
600
601 offset = (insn & 0x7f) << 2; /* get scaled offset */
602 if (insn & 0x80) /* is it signed? (==subtracting) */
603 {
604 cache->frameoffset += offset;
605 offset = -offset;
606 }
607 cache->framesize -= offset;
608 }
609 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
610 {
611 findmask |= 2; /* setting of r7 found */
612 cache->framereg = THUMB_FP_REGNUM;
613 /* get scaled offset */
614 cache->frameoffset = (insn & 0xff) << 2;
615 }
616 else if (insn == 0x466f) /* mov r7, sp */
617 {
618 findmask |= 2; /* setting of r7 found */
619 cache->framereg = THUMB_FP_REGNUM;
620 cache->frameoffset = 0;
621 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
622 }
623 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
624 {
625 int lo_reg = insn & 7; /* dest. register (r0-r7) */
626 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
627 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
628 }
629 else
630 /* Something in the prolog that we don't care about or some
631 instruction from outside the prolog scheduled here for
632 optimization. */
633 continue;
634 }
635 }
636
637 /* This function decodes an ARM function prologue to determine:
638 1) the size of the stack frame
639 2) which registers are saved on it
640 3) the offsets of saved regs
641 4) the offset from the stack pointer to the frame pointer
642 This information is stored in the "extra" fields of the frame_info.
643
644 There are two basic forms for the ARM prologue. The fixed argument
645 function call will look like:
646
647 mov ip, sp
648 stmfd sp!, {fp, ip, lr, pc}
649 sub fp, ip, #4
650 [sub sp, sp, #4]
651
652 Which would create this stack frame (offsets relative to FP):
653 IP -> 4 (caller's stack)
654 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
655 -4 LR (return address in caller)
656 -8 IP (copy of caller's SP)
657 -12 FP (caller's FP)
658 SP -> -28 Local variables
659
660 The frame size would thus be 32 bytes, and the frame offset would be
661 28 bytes. The stmfd call can also save any of the vN registers it
662 plans to use, which increases the frame size accordingly.
663
664 Note: The stored PC is 8 off of the STMFD instruction that stored it
665 because the ARM Store instructions always store PC + 8 when you read
666 the PC register.
667
668 A variable argument function call will look like:
669
670 mov ip, sp
671 stmfd sp!, {a1, a2, a3, a4}
672 stmfd sp!, {fp, ip, lr, pc}
673 sub fp, ip, #20
674
675 Which would create this stack frame (offsets relative to FP):
676 IP -> 20 (caller's stack)
677 16 A4
678 12 A3
679 8 A2
680 4 A1
681 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
682 -4 LR (return address in caller)
683 -8 IP (copy of caller's SP)
684 -12 FP (caller's FP)
685 SP -> -28 Local variables
686
687 The frame size would thus be 48 bytes, and the frame offset would be
688 28 bytes.
689
690 There is another potential complication, which is that the optimizer
691 will try to separate the store of fp in the "stmfd" instruction from
692 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
693 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
694
695 Also, note, the original version of the ARM toolchain claimed that there
696 should be an
697
698 instruction at the end of the prologue. I have never seen GCC produce
699 this, and the ARM docs don't mention it. We still test for it below in
700 case it happens...
701
702 */
703
704 static void
705 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
706 {
707 int regno, sp_offset, fp_offset, ip_offset;
708 CORE_ADDR prologue_start, prologue_end, current_pc;
709 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
710
711 /* Assume there is no frame until proven otherwise. */
712 cache->framereg = ARM_SP_REGNUM;
713 cache->framesize = 0;
714 cache->frameoffset = 0;
715
716 /* Check for Thumb prologue. */
717 if (arm_pc_is_thumb (prev_pc))
718 {
719 thumb_scan_prologue (prev_pc, cache);
720 return;
721 }
722
723 /* Find the function prologue. If we can't find the function in
724 the symbol table, peek in the stack frame to find the PC. */
725 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
726 {
727 /* One way to find the end of the prologue (which works well
728 for unoptimized code) is to do the following:
729
730 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
731
732 if (sal.line == 0)
733 prologue_end = prev_pc;
734 else if (sal.end < prologue_end)
735 prologue_end = sal.end;
736
737 This mechanism is very accurate so long as the optimizer
738 doesn't move any instructions from the function body into the
739 prologue. If this happens, sal.end will be the last
740 instruction in the first hunk of prologue code just before
741 the first instruction that the scheduler has moved from
742 the body to the prologue.
743
744 In order to make sure that we scan all of the prologue
745 instructions, we use a slightly less accurate mechanism which
746 may scan more than necessary. To help compensate for this
747 lack of accuracy, the prologue scanning loop below contains
748 several clauses which'll cause the loop to terminate early if
749 an implausible prologue instruction is encountered.
750
751 The expression
752
753 prologue_start + 64
754
755 is a suitable endpoint since it accounts for the largest
756 possible prologue plus up to five instructions inserted by
757 the scheduler. */
758
759 if (prologue_end > prologue_start + 64)
760 {
761 prologue_end = prologue_start + 64; /* See above. */
762 }
763 }
764 else
765 {
766 /* We have no symbol information. Our only option is to assume this
767 function has a standard stack frame and the normal frame register.
768 Then, we can find the value of our frame pointer on entrance to
769 the callee (or at the present moment if this is the innermost frame).
770 The value stored there should be the address of the stmfd + 8. */
771 CORE_ADDR frame_loc;
772 LONGEST return_value;
773
774 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
775 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
776 return;
777 else
778 {
779 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
780 prologue_end = prologue_start + 64; /* See above. */
781 }
782 }
783
784 if (prev_pc < prologue_end)
785 prologue_end = prev_pc;
786
787 /* Now search the prologue looking for instructions that set up the
788 frame pointer, adjust the stack pointer, and save registers.
789
790 Be careful, however, and if it doesn't look like a prologue,
791 don't try to scan it. If, for instance, a frameless function
792 begins with stmfd sp!, then we will tell ourselves there is
793 a frame, which will confuse stack traceback, as well as "finish"
794 and other operations that rely on a knowledge of the stack
795 traceback.
796
797 In the APCS, the prologue should start with "mov ip, sp" so
798 if we don't see this as the first insn, we will stop.
799
800 [Note: This doesn't seem to be true any longer, so it's now an
801 optional part of the prologue. - Kevin Buettner, 2001-11-20]
802
803 [Note further: The "mov ip,sp" only seems to be missing in
804 frameless functions at optimization level "-O2" or above,
805 in which case it is often (but not always) replaced by
806 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
807
808 sp_offset = fp_offset = ip_offset = 0;
809
810 for (current_pc = prologue_start;
811 current_pc < prologue_end;
812 current_pc += 4)
813 {
814 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
815
816 if (insn == 0xe1a0c00d) /* mov ip, sp */
817 {
818 ip_offset = 0;
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 ip_offset = imm;
827 continue;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 ip_offset = -imm;
835 continue;
836 }
837 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
838 {
839 sp_offset -= 4;
840 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
841 continue;
842 }
843 else if ((insn & 0xffff0000) == 0xe92d0000)
844 /* stmfd sp!, {..., fp, ip, lr, pc}
845 or
846 stmfd sp!, {a1, a2, a3, a4} */
847 {
848 int mask = insn & 0xffff;
849
850 /* Calculate offsets of saved registers. */
851 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
852 if (mask & (1 << regno))
853 {
854 sp_offset -= 4;
855 cache->saved_regs[regno].addr = sp_offset;
856 }
857 }
858 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
859 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
860 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
861 {
862 /* No need to add this to saved_regs -- it's just an arg reg. */
863 continue;
864 }
865 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
866 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
867 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
868 {
869 /* No need to add this to saved_regs -- it's just an arg reg. */
870 continue;
871 }
872 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
873 {
874 unsigned imm = insn & 0xff; /* immediate value */
875 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
876 imm = (imm >> rot) | (imm << (32 - rot));
877 fp_offset = -imm + ip_offset;
878 cache->framereg = ARM_FP_REGNUM;
879 }
880 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
881 {
882 unsigned imm = insn & 0xff; /* immediate value */
883 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
884 imm = (imm >> rot) | (imm << (32 - rot));
885 sp_offset -= imm;
886 }
887 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
888 {
889 sp_offset -= 12;
890 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
891 cache->saved_regs[regno].addr = sp_offset;
892 }
893 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
894 {
895 int n_saved_fp_regs;
896 unsigned int fp_start_reg, fp_bound_reg;
897
898 if ((insn & 0x800) == 0x800) /* N0 is set */
899 {
900 if ((insn & 0x40000) == 0x40000) /* N1 is set */
901 n_saved_fp_regs = 3;
902 else
903 n_saved_fp_regs = 1;
904 }
905 else
906 {
907 if ((insn & 0x40000) == 0x40000) /* N1 is set */
908 n_saved_fp_regs = 2;
909 else
910 n_saved_fp_regs = 4;
911 }
912
913 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
914 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
915 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
916 {
917 sp_offset -= 12;
918 cache->saved_regs[fp_start_reg++].addr = sp_offset;
919 }
920 }
921 else if ((insn & 0xf0000000) != 0xe0000000)
922 break; /* Condition not true, exit early */
923 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
924 break; /* Don't scan past a block load */
925 else
926 /* The optimizer might shove anything into the prologue,
927 so we just skip what we don't recognize. */
928 continue;
929 }
930
931 /* The frame size is just the negative of the offset (from the
932 original SP) of the last thing thing we pushed on the stack.
933 The frame offset is [new FP] - [new SP]. */
934 cache->framesize = -sp_offset;
935 if (cache->framereg == ARM_FP_REGNUM)
936 cache->frameoffset = fp_offset - sp_offset;
937 else
938 cache->frameoffset = 0;
939 }
940
941 static struct arm_prologue_cache *
942 arm_make_prologue_cache (struct frame_info *next_frame)
943 {
944 int reg;
945 struct arm_prologue_cache *cache;
946 CORE_ADDR unwound_fp;
947
948 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
949 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
950
951 arm_scan_prologue (next_frame, cache);
952
953 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
954 if (unwound_fp == 0)
955 return cache;
956
957 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
958
959 /* Calculate actual addresses of saved registers using offsets
960 determined by arm_scan_prologue. */
961 for (reg = 0; reg < NUM_REGS; reg++)
962 if (trad_frame_addr_p (cache->saved_regs, reg))
963 cache->saved_regs[reg].addr += cache->prev_sp;
964
965 return cache;
966 }
967
968 /* Our frame ID for a normal frame is the current function's starting PC
969 and the caller's SP when we were called. */
970
971 static void
972 arm_prologue_this_id (struct frame_info *next_frame,
973 void **this_cache,
974 struct frame_id *this_id)
975 {
976 struct arm_prologue_cache *cache;
977 struct frame_id id;
978 CORE_ADDR func;
979
980 if (*this_cache == NULL)
981 *this_cache = arm_make_prologue_cache (next_frame);
982 cache = *this_cache;
983
984 func = frame_func_unwind (next_frame);
985
986 /* This is meant to halt the backtrace at "_start". Make sure we
987 don't halt it at a generic dummy frame. */
988 if (func <= LOWEST_PC)
989 return;
990
991 /* If we've hit a wall, stop. */
992 if (cache->prev_sp == 0)
993 return;
994
995 id = frame_id_build (cache->prev_sp, func);
996
997 /* Check that we're not going round in circles with the same frame
998 ID (but avoid applying the test to sentinel frames which do go
999 round in circles). */
1000 if (frame_relative_level (next_frame) >= 0
1001 && get_frame_type (next_frame) == NORMAL_FRAME
1002 && frame_id_eq (get_frame_id (next_frame), id))
1003 return;
1004
1005 *this_id = id;
1006 }
1007
1008 static void
1009 arm_prologue_prev_register (struct frame_info *next_frame,
1010 void **this_cache,
1011 int prev_regnum,
1012 int *optimized,
1013 enum lval_type *lvalp,
1014 CORE_ADDR *addrp,
1015 int *realnump,
1016 void *valuep)
1017 {
1018 struct arm_prologue_cache *cache;
1019
1020 if (*this_cache == NULL)
1021 *this_cache = arm_make_prologue_cache (next_frame);
1022 cache = *this_cache;
1023
1024 /* If we are asked to unwind the PC, then we need to return the LR
1025 instead. The saved value of PC points into this frame's
1026 prologue, not the next frame's resume location. */
1027 if (prev_regnum == ARM_PC_REGNUM)
1028 prev_regnum = ARM_LR_REGNUM;
1029
1030 /* SP is generally not saved to the stack, but this frame is
1031 identified by NEXT_FRAME's stack pointer at the time of the call.
1032 The value was already reconstructed into PREV_SP. */
1033 if (prev_regnum == ARM_SP_REGNUM)
1034 {
1035 *lvalp = not_lval;
1036 if (valuep)
1037 store_unsigned_integer (valuep, 4, cache->prev_sp);
1038 return;
1039 }
1040
1041 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1042 optimized, lvalp, addrp, realnump, valuep);
1043 }
1044
1045 struct frame_unwind arm_prologue_unwind = {
1046 NORMAL_FRAME,
1047 arm_prologue_this_id,
1048 arm_prologue_prev_register
1049 };
1050
1051 static const struct frame_unwind *
1052 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1053 {
1054 return &arm_prologue_unwind;
1055 }
1056
1057 static CORE_ADDR
1058 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1059 {
1060 struct arm_prologue_cache *cache;
1061
1062 if (*this_cache == NULL)
1063 *this_cache = arm_make_prologue_cache (next_frame);
1064 cache = *this_cache;
1065
1066 return cache->prev_sp + cache->frameoffset - cache->framesize;
1067 }
1068
1069 struct frame_base arm_normal_base = {
1070 &arm_prologue_unwind,
1071 arm_normal_frame_base,
1072 arm_normal_frame_base,
1073 arm_normal_frame_base
1074 };
1075
1076 static struct arm_prologue_cache *
1077 arm_make_sigtramp_cache (struct frame_info *next_frame)
1078 {
1079 struct arm_prologue_cache *cache;
1080 int reg;
1081
1082 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
1083
1084 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1085
1086 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1087
1088 for (reg = 0; reg < NUM_REGS; reg++)
1089 cache->saved_regs[reg].addr
1090 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1091 frame_pc_unwind (next_frame), reg);
1092
1093 /* FIXME: What about thumb mode? */
1094 cache->framereg = ARM_SP_REGNUM;
1095 cache->prev_sp
1096 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
1097 register_size (current_gdbarch, cache->framereg));
1098
1099 return cache;
1100 }
1101
1102 static void
1103 arm_sigtramp_this_id (struct frame_info *next_frame,
1104 void **this_cache,
1105 struct frame_id *this_id)
1106 {
1107 struct arm_prologue_cache *cache;
1108
1109 if (*this_cache == NULL)
1110 *this_cache = arm_make_sigtramp_cache (next_frame);
1111 cache = *this_cache;
1112
1113 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1114 the sigtramp frame; the PC should be the beginning of the trampoline. */
1115 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1116 }
1117
1118 static void
1119 arm_sigtramp_prev_register (struct frame_info *next_frame,
1120 void **this_cache,
1121 int prev_regnum,
1122 int *optimized,
1123 enum lval_type *lvalp,
1124 CORE_ADDR *addrp,
1125 int *realnump,
1126 void *valuep)
1127 {
1128 struct arm_prologue_cache *cache;
1129
1130 if (*this_cache == NULL)
1131 *this_cache = arm_make_sigtramp_cache (next_frame);
1132 cache = *this_cache;
1133
1134 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1135 optimized, lvalp, addrp, realnump, valuep);
1136 }
1137
1138 struct frame_unwind arm_sigtramp_unwind = {
1139 SIGTRAMP_FRAME,
1140 arm_sigtramp_this_id,
1141 arm_sigtramp_prev_register
1142 };
1143
1144 static const struct frame_unwind *
1145 arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
1146 {
1147 /* Note: If an ARM DEPRECATED_PC_IN_SIGTRAMP method ever needs to
1148 compare against the name of the function, the code below will
1149 have to be changed to first fetch the name of the function and
1150 then pass this name to DEPRECATED_PC_IN_SIGTRAMP. */
1151
1152 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1153 && DEPRECATED_PC_IN_SIGTRAMP (frame_pc_unwind (next_frame), (char *) 0))
1154 return &arm_sigtramp_unwind;
1155
1156 return NULL;
1157 }
1158
1159 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1160 dummy frame. The frame ID's base needs to match the TOS value
1161 saved by save_dummy_frame_tos() and returned from
1162 arm_push_dummy_call, and the PC needs to match the dummy frame's
1163 breakpoint. */
1164
1165 static struct frame_id
1166 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1167 {
1168 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1169 frame_pc_unwind (next_frame));
1170 }
1171
1172 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1173 be used to construct the previous frame's ID, after looking up the
1174 containing function). */
1175
1176 static CORE_ADDR
1177 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1178 {
1179 CORE_ADDR pc;
1180 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1181 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1182 }
1183
1184 static CORE_ADDR
1185 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1186 {
1187 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1188 }
1189
1190 /* DEPRECATED_CALL_DUMMY_WORDS:
1191 This sequence of words is the instructions
1192
1193 mov lr,pc
1194 mov pc,r4
1195 illegal
1196
1197 Note this is 12 bytes. */
1198
1199 static LONGEST arm_call_dummy_words[] =
1200 {
1201 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1202 };
1203
1204 /* When arguments must be pushed onto the stack, they go on in reverse
1205 order. The code below implements a FILO (stack) to do this. */
1206
1207 struct stack_item
1208 {
1209 int len;
1210 struct stack_item *prev;
1211 void *data;
1212 };
1213
1214 static struct stack_item *
1215 push_stack_item (struct stack_item *prev, void *contents, int len)
1216 {
1217 struct stack_item *si;
1218 si = xmalloc (sizeof (struct stack_item));
1219 si->data = xmalloc (len);
1220 si->len = len;
1221 si->prev = prev;
1222 memcpy (si->data, contents, len);
1223 return si;
1224 }
1225
1226 static struct stack_item *
1227 pop_stack_item (struct stack_item *si)
1228 {
1229 struct stack_item *dead = si;
1230 si = si->prev;
1231 xfree (dead->data);
1232 xfree (dead);
1233 return si;
1234 }
1235
1236 /* We currently only support passing parameters in integer registers. This
1237 conforms with GCC's default model. Several other variants exist and
1238 we should probably support some of them based on the selected ABI. */
1239
1240 static CORE_ADDR
1241 arm_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1242 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1243 struct value **args, CORE_ADDR sp, int struct_return,
1244 CORE_ADDR struct_addr)
1245 {
1246 int argnum;
1247 int argreg;
1248 int nstack;
1249 struct stack_item *si = NULL;
1250
1251 /* Set the return address. For the ARM, the return breakpoint is
1252 always at BP_ADDR. */
1253 /* XXX Fix for Thumb. */
1254 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1255
1256 /* Walk through the list of args and determine how large a temporary
1257 stack is required. Need to take care here as structs may be
1258 passed on the stack, and we have to to push them. */
1259 nstack = 0;
1260
1261 argreg = ARM_A1_REGNUM;
1262 nstack = 0;
1263
1264 /* Some platforms require a double-word aligned stack. Make sure sp
1265 is correctly aligned before we start. We always do this even if
1266 it isn't really needed -- it can never hurt things. */
1267 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
1268
1269 /* The struct_return pointer occupies the first parameter
1270 passing register. */
1271 if (struct_return)
1272 {
1273 if (arm_debug)
1274 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1275 REGISTER_NAME (argreg), paddr (struct_addr));
1276 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1277 argreg++;
1278 }
1279
1280 for (argnum = 0; argnum < nargs; argnum++)
1281 {
1282 int len;
1283 struct type *arg_type;
1284 struct type *target_type;
1285 enum type_code typecode;
1286 char *val;
1287
1288 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1289 len = TYPE_LENGTH (arg_type);
1290 target_type = TYPE_TARGET_TYPE (arg_type);
1291 typecode = TYPE_CODE (arg_type);
1292 val = VALUE_CONTENTS (args[argnum]);
1293
1294 /* If the argument is a pointer to a function, and it is a
1295 Thumb function, create a LOCAL copy of the value and set
1296 the THUMB bit in it. */
1297 if (TYPE_CODE_PTR == typecode
1298 && target_type != NULL
1299 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1300 {
1301 CORE_ADDR regval = extract_unsigned_integer (val, len);
1302 if (arm_pc_is_thumb (regval))
1303 {
1304 val = alloca (len);
1305 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1306 }
1307 }
1308
1309 /* Copy the argument to general registers or the stack in
1310 register-sized pieces. Large arguments are split between
1311 registers and stack. */
1312 while (len > 0)
1313 {
1314 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1315
1316 if (argreg <= ARM_LAST_ARG_REGNUM)
1317 {
1318 /* The argument is being passed in a general purpose
1319 register. */
1320 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1321 if (arm_debug)
1322 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1323 argnum, REGISTER_NAME (argreg),
1324 phex (regval, DEPRECATED_REGISTER_SIZE));
1325 regcache_cooked_write_unsigned (regcache, argreg, regval);
1326 argreg++;
1327 }
1328 else
1329 {
1330 /* Push the arguments onto the stack. */
1331 if (arm_debug)
1332 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1333 argnum, nstack);
1334 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1335 nstack += DEPRECATED_REGISTER_SIZE;
1336 }
1337
1338 len -= partial_len;
1339 val += partial_len;
1340 }
1341 }
1342 /* If we have an odd number of words to push, then decrement the stack
1343 by one word now, so first stack argument will be dword aligned. */
1344 if (nstack & 4)
1345 sp -= 4;
1346
1347 while (si)
1348 {
1349 sp -= si->len;
1350 write_memory (sp, si->data, si->len);
1351 si = pop_stack_item (si);
1352 }
1353
1354 /* Finally, update teh SP register. */
1355 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1356
1357 return sp;
1358 }
1359
1360 static void
1361 print_fpu_flags (int flags)
1362 {
1363 if (flags & (1 << 0))
1364 fputs ("IVO ", stdout);
1365 if (flags & (1 << 1))
1366 fputs ("DVZ ", stdout);
1367 if (flags & (1 << 2))
1368 fputs ("OFL ", stdout);
1369 if (flags & (1 << 3))
1370 fputs ("UFL ", stdout);
1371 if (flags & (1 << 4))
1372 fputs ("INX ", stdout);
1373 putchar ('\n');
1374 }
1375
1376 /* Print interesting information about the floating point processor
1377 (if present) or emulator. */
1378 static void
1379 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1380 struct frame_info *frame, const char *args)
1381 {
1382 unsigned long status = read_register (ARM_FPS_REGNUM);
1383 int type;
1384
1385 type = (status >> 24) & 127;
1386 printf ("%s FPU type %d\n",
1387 (status & (1 << 31)) ? "Hardware" : "Software",
1388 type);
1389 fputs ("mask: ", stdout);
1390 print_fpu_flags (status >> 16);
1391 fputs ("flags: ", stdout);
1392 print_fpu_flags (status);
1393 }
1394
1395 /* Return the GDB type object for the "standard" data type of data in
1396 register N. */
1397
1398 static struct type *
1399 arm_register_type (struct gdbarch *gdbarch, int regnum)
1400 {
1401 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1402 {
1403 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1404 return builtin_type_arm_ext_big;
1405 else
1406 return builtin_type_arm_ext_littlebyte_bigword;
1407 }
1408 else
1409 return builtin_type_int32;
1410 }
1411
1412 /* Index within `registers' of the first byte of the space for
1413 register N. */
1414
1415 static int
1416 arm_register_byte (int regnum)
1417 {
1418 if (regnum < ARM_F0_REGNUM)
1419 return regnum * INT_REGISTER_SIZE;
1420 else if (regnum < ARM_PS_REGNUM)
1421 return (NUM_GREGS * INT_REGISTER_SIZE
1422 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
1423 else
1424 return (NUM_GREGS * INT_REGISTER_SIZE
1425 + NUM_FREGS * FP_REGISTER_SIZE
1426 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1427 }
1428
1429 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1430 static int
1431 arm_register_sim_regno (int regnum)
1432 {
1433 int reg = regnum;
1434 gdb_assert (reg >= 0 && reg < NUM_REGS);
1435
1436 if (reg < NUM_GREGS)
1437 return SIM_ARM_R0_REGNUM + reg;
1438 reg -= NUM_GREGS;
1439
1440 if (reg < NUM_FREGS)
1441 return SIM_ARM_FP0_REGNUM + reg;
1442 reg -= NUM_FREGS;
1443
1444 if (reg < NUM_SREGS)
1445 return SIM_ARM_FPS_REGNUM + reg;
1446 reg -= NUM_SREGS;
1447
1448 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1449 }
1450
1451 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1452 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1453 It is thought that this is is the floating-point register format on
1454 little-endian systems. */
1455
1456 static void
1457 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1458 void *dbl)
1459 {
1460 DOUBLEST d;
1461 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1462 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1463 else
1464 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1465 ptr, &d);
1466 floatformat_from_doublest (fmt, &d, dbl);
1467 }
1468
1469 static void
1470 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1471 {
1472 DOUBLEST d;
1473 floatformat_to_doublest (fmt, ptr, &d);
1474 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1475 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1476 else
1477 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1478 &d, dbl);
1479 }
1480
1481 static int
1482 condition_true (unsigned long cond, unsigned long status_reg)
1483 {
1484 if (cond == INST_AL || cond == INST_NV)
1485 return 1;
1486
1487 switch (cond)
1488 {
1489 case INST_EQ:
1490 return ((status_reg & FLAG_Z) != 0);
1491 case INST_NE:
1492 return ((status_reg & FLAG_Z) == 0);
1493 case INST_CS:
1494 return ((status_reg & FLAG_C) != 0);
1495 case INST_CC:
1496 return ((status_reg & FLAG_C) == 0);
1497 case INST_MI:
1498 return ((status_reg & FLAG_N) != 0);
1499 case INST_PL:
1500 return ((status_reg & FLAG_N) == 0);
1501 case INST_VS:
1502 return ((status_reg & FLAG_V) != 0);
1503 case INST_VC:
1504 return ((status_reg & FLAG_V) == 0);
1505 case INST_HI:
1506 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1507 case INST_LS:
1508 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1509 case INST_GE:
1510 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1511 case INST_LT:
1512 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1513 case INST_GT:
1514 return (((status_reg & FLAG_Z) == 0) &&
1515 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1516 case INST_LE:
1517 return (((status_reg & FLAG_Z) != 0) ||
1518 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1519 }
1520 return 1;
1521 }
1522
1523 /* Support routines for single stepping. Calculate the next PC value. */
1524 #define submask(x) ((1L << ((x) + 1)) - 1)
1525 #define bit(obj,st) (((obj) >> (st)) & 1)
1526 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1527 #define sbits(obj,st,fn) \
1528 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1529 #define BranchDest(addr,instr) \
1530 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1531 #define ARM_PC_32 1
1532
1533 static unsigned long
1534 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1535 unsigned long status_reg)
1536 {
1537 unsigned long res, shift;
1538 int rm = bits (inst, 0, 3);
1539 unsigned long shifttype = bits (inst, 5, 6);
1540
1541 if (bit (inst, 4))
1542 {
1543 int rs = bits (inst, 8, 11);
1544 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1545 }
1546 else
1547 shift = bits (inst, 7, 11);
1548
1549 res = (rm == 15
1550 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1551 + (bit (inst, 4) ? 12 : 8))
1552 : read_register (rm));
1553
1554 switch (shifttype)
1555 {
1556 case 0: /* LSL */
1557 res = shift >= 32 ? 0 : res << shift;
1558 break;
1559
1560 case 1: /* LSR */
1561 res = shift >= 32 ? 0 : res >> shift;
1562 break;
1563
1564 case 2: /* ASR */
1565 if (shift >= 32)
1566 shift = 31;
1567 res = ((res & 0x80000000L)
1568 ? ~((~res) >> shift) : res >> shift);
1569 break;
1570
1571 case 3: /* ROR/RRX */
1572 shift &= 31;
1573 if (shift == 0)
1574 res = (res >> 1) | (carry ? 0x80000000L : 0);
1575 else
1576 res = (res >> shift) | (res << (32 - shift));
1577 break;
1578 }
1579
1580 return res & 0xffffffff;
1581 }
1582
1583 /* Return number of 1-bits in VAL. */
1584
1585 static int
1586 bitcount (unsigned long val)
1587 {
1588 int nbits;
1589 for (nbits = 0; val != 0; nbits++)
1590 val &= val - 1; /* delete rightmost 1-bit in val */
1591 return nbits;
1592 }
1593
1594 CORE_ADDR
1595 thumb_get_next_pc (CORE_ADDR pc)
1596 {
1597 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1598 unsigned short inst1 = read_memory_integer (pc, 2);
1599 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1600 unsigned long offset;
1601
1602 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1603 {
1604 CORE_ADDR sp;
1605
1606 /* Fetch the saved PC from the stack. It's stored above
1607 all of the other registers. */
1608 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1609 sp = read_register (ARM_SP_REGNUM);
1610 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1611 nextpc = ADDR_BITS_REMOVE (nextpc);
1612 if (nextpc == pc)
1613 error ("Infinite loop detected");
1614 }
1615 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1616 {
1617 unsigned long status = read_register (ARM_PS_REGNUM);
1618 unsigned long cond = bits (inst1, 8, 11);
1619 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1620 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1621 }
1622 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1623 {
1624 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1625 }
1626 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1627 {
1628 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1629 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1630 nextpc = pc_val + offset;
1631 /* For BLX make sure to clear the low bits. */
1632 if (bits (inst2, 11, 12) == 1)
1633 nextpc = nextpc & 0xfffffffc;
1634 }
1635 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1636 {
1637 if (bits (inst1, 3, 6) == 0x0f)
1638 nextpc = pc_val;
1639 else
1640 nextpc = read_register (bits (inst1, 3, 6));
1641
1642 nextpc = ADDR_BITS_REMOVE (nextpc);
1643 if (nextpc == pc)
1644 error ("Infinite loop detected");
1645 }
1646
1647 return nextpc;
1648 }
1649
1650 CORE_ADDR
1651 arm_get_next_pc (CORE_ADDR pc)
1652 {
1653 unsigned long pc_val;
1654 unsigned long this_instr;
1655 unsigned long status;
1656 CORE_ADDR nextpc;
1657
1658 if (arm_pc_is_thumb (pc))
1659 return thumb_get_next_pc (pc);
1660
1661 pc_val = (unsigned long) pc;
1662 this_instr = read_memory_integer (pc, 4);
1663 status = read_register (ARM_PS_REGNUM);
1664 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1665
1666 if (condition_true (bits (this_instr, 28, 31), status))
1667 {
1668 switch (bits (this_instr, 24, 27))
1669 {
1670 case 0x0:
1671 case 0x1: /* data processing */
1672 case 0x2:
1673 case 0x3:
1674 {
1675 unsigned long operand1, operand2, result = 0;
1676 unsigned long rn;
1677 int c;
1678
1679 if (bits (this_instr, 12, 15) != 15)
1680 break;
1681
1682 if (bits (this_instr, 22, 25) == 0
1683 && bits (this_instr, 4, 7) == 9) /* multiply */
1684 error ("Illegal update to pc in instruction");
1685
1686 /* BX <reg>, BLX <reg> */
1687 if (bits (this_instr, 4, 28) == 0x12fff1
1688 || bits (this_instr, 4, 28) == 0x12fff3)
1689 {
1690 rn = bits (this_instr, 0, 3);
1691 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1692 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1693
1694 if (nextpc == pc)
1695 error ("Infinite loop detected");
1696
1697 return nextpc;
1698 }
1699
1700 /* Multiply into PC */
1701 c = (status & FLAG_C) ? 1 : 0;
1702 rn = bits (this_instr, 16, 19);
1703 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1704
1705 if (bit (this_instr, 25))
1706 {
1707 unsigned long immval = bits (this_instr, 0, 7);
1708 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1709 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1710 & 0xffffffff;
1711 }
1712 else /* operand 2 is a shifted register */
1713 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1714
1715 switch (bits (this_instr, 21, 24))
1716 {
1717 case 0x0: /*and */
1718 result = operand1 & operand2;
1719 break;
1720
1721 case 0x1: /*eor */
1722 result = operand1 ^ operand2;
1723 break;
1724
1725 case 0x2: /*sub */
1726 result = operand1 - operand2;
1727 break;
1728
1729 case 0x3: /*rsb */
1730 result = operand2 - operand1;
1731 break;
1732
1733 case 0x4: /*add */
1734 result = operand1 + operand2;
1735 break;
1736
1737 case 0x5: /*adc */
1738 result = operand1 + operand2 + c;
1739 break;
1740
1741 case 0x6: /*sbc */
1742 result = operand1 - operand2 + c;
1743 break;
1744
1745 case 0x7: /*rsc */
1746 result = operand2 - operand1 + c;
1747 break;
1748
1749 case 0x8:
1750 case 0x9:
1751 case 0xa:
1752 case 0xb: /* tst, teq, cmp, cmn */
1753 result = (unsigned long) nextpc;
1754 break;
1755
1756 case 0xc: /*orr */
1757 result = operand1 | operand2;
1758 break;
1759
1760 case 0xd: /*mov */
1761 /* Always step into a function. */
1762 result = operand2;
1763 break;
1764
1765 case 0xe: /*bic */
1766 result = operand1 & ~operand2;
1767 break;
1768
1769 case 0xf: /*mvn */
1770 result = ~operand2;
1771 break;
1772 }
1773 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1774
1775 if (nextpc == pc)
1776 error ("Infinite loop detected");
1777 break;
1778 }
1779
1780 case 0x4:
1781 case 0x5: /* data transfer */
1782 case 0x6:
1783 case 0x7:
1784 if (bit (this_instr, 20))
1785 {
1786 /* load */
1787 if (bits (this_instr, 12, 15) == 15)
1788 {
1789 /* rd == pc */
1790 unsigned long rn;
1791 unsigned long base;
1792
1793 if (bit (this_instr, 22))
1794 error ("Illegal update to pc in instruction");
1795
1796 /* byte write to PC */
1797 rn = bits (this_instr, 16, 19);
1798 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1799 if (bit (this_instr, 24))
1800 {
1801 /* pre-indexed */
1802 int c = (status & FLAG_C) ? 1 : 0;
1803 unsigned long offset =
1804 (bit (this_instr, 25)
1805 ? shifted_reg_val (this_instr, c, pc_val, status)
1806 : bits (this_instr, 0, 11));
1807
1808 if (bit (this_instr, 23))
1809 base += offset;
1810 else
1811 base -= offset;
1812 }
1813 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1814 4);
1815
1816 nextpc = ADDR_BITS_REMOVE (nextpc);
1817
1818 if (nextpc == pc)
1819 error ("Infinite loop detected");
1820 }
1821 }
1822 break;
1823
1824 case 0x8:
1825 case 0x9: /* block transfer */
1826 if (bit (this_instr, 20))
1827 {
1828 /* LDM */
1829 if (bit (this_instr, 15))
1830 {
1831 /* loading pc */
1832 int offset = 0;
1833
1834 if (bit (this_instr, 23))
1835 {
1836 /* up */
1837 unsigned long reglist = bits (this_instr, 0, 14);
1838 offset = bitcount (reglist) * 4;
1839 if (bit (this_instr, 24)) /* pre */
1840 offset += 4;
1841 }
1842 else if (bit (this_instr, 24))
1843 offset = -4;
1844
1845 {
1846 unsigned long rn_val =
1847 read_register (bits (this_instr, 16, 19));
1848 nextpc =
1849 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1850 + offset),
1851 4);
1852 }
1853 nextpc = ADDR_BITS_REMOVE (nextpc);
1854 if (nextpc == pc)
1855 error ("Infinite loop detected");
1856 }
1857 }
1858 break;
1859
1860 case 0xb: /* branch & link */
1861 case 0xa: /* branch */
1862 {
1863 nextpc = BranchDest (pc, this_instr);
1864
1865 /* BLX */
1866 if (bits (this_instr, 28, 31) == INST_NV)
1867 nextpc |= bit (this_instr, 24) << 1;
1868
1869 nextpc = ADDR_BITS_REMOVE (nextpc);
1870 if (nextpc == pc)
1871 error ("Infinite loop detected");
1872 break;
1873 }
1874
1875 case 0xc:
1876 case 0xd:
1877 case 0xe: /* coproc ops */
1878 case 0xf: /* SWI */
1879 break;
1880
1881 default:
1882 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
1883 return (pc);
1884 }
1885 }
1886
1887 return nextpc;
1888 }
1889
1890 /* single_step() is called just before we want to resume the inferior,
1891 if we want to single-step it but there is no hardware or kernel
1892 single-step support. We find the target of the coming instruction
1893 and breakpoint it.
1894
1895 single_step() is also called just after the inferior stops. If we
1896 had set up a simulated single-step, we undo our damage. */
1897
1898 static void
1899 arm_software_single_step (enum target_signal sig, int insert_bpt)
1900 {
1901 static int next_pc; /* State between setting and unsetting. */
1902 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1903
1904 if (insert_bpt)
1905 {
1906 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1907 target_insert_breakpoint (next_pc, break_mem);
1908 }
1909 else
1910 target_remove_breakpoint (next_pc, break_mem);
1911 }
1912
1913 #include "bfd-in2.h"
1914 #include "libcoff.h"
1915
1916 static int
1917 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1918 {
1919 if (arm_pc_is_thumb (memaddr))
1920 {
1921 static asymbol *asym;
1922 static combined_entry_type ce;
1923 static struct coff_symbol_struct csym;
1924 static struct bfd fake_bfd;
1925 static bfd_target fake_target;
1926
1927 if (csym.native == NULL)
1928 {
1929 /* Create a fake symbol vector containing a Thumb symbol.
1930 This is solely so that the code in print_insn_little_arm()
1931 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1932 the presence of a Thumb symbol and switch to decoding
1933 Thumb instructions. */
1934
1935 fake_target.flavour = bfd_target_coff_flavour;
1936 fake_bfd.xvec = &fake_target;
1937 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1938 csym.native = &ce;
1939 csym.symbol.the_bfd = &fake_bfd;
1940 csym.symbol.name = "fake";
1941 asym = (asymbol *) & csym;
1942 }
1943
1944 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1945 info->symbols = &asym;
1946 }
1947 else
1948 info->symbols = NULL;
1949
1950 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1951 return print_insn_big_arm (memaddr, info);
1952 else
1953 return print_insn_little_arm (memaddr, info);
1954 }
1955
1956 /* The following define instruction sequences that will cause ARM
1957 cpu's to take an undefined instruction trap. These are used to
1958 signal a breakpoint to GDB.
1959
1960 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1961 modes. A different instruction is required for each mode. The ARM
1962 cpu's can also be big or little endian. Thus four different
1963 instructions are needed to support all cases.
1964
1965 Note: ARMv4 defines several new instructions that will take the
1966 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1967 not in fact add the new instructions. The new undefined
1968 instructions in ARMv4 are all instructions that had no defined
1969 behaviour in earlier chips. There is no guarantee that they will
1970 raise an exception, but may be treated as NOP's. In practice, it
1971 may only safe to rely on instructions matching:
1972
1973 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1974 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1975 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1976
1977 Even this may only true if the condition predicate is true. The
1978 following use a condition predicate of ALWAYS so it is always TRUE.
1979
1980 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1981 and NetBSD all use a software interrupt rather than an undefined
1982 instruction to force a trap. This can be handled by by the
1983 abi-specific code during establishment of the gdbarch vector. */
1984
1985
1986 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1987 override these definitions. */
1988 #ifndef ARM_LE_BREAKPOINT
1989 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1990 #endif
1991 #ifndef ARM_BE_BREAKPOINT
1992 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1993 #endif
1994 #ifndef THUMB_LE_BREAKPOINT
1995 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1996 #endif
1997 #ifndef THUMB_BE_BREAKPOINT
1998 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1999 #endif
2000
2001 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2002 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2003 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2004 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2005
2006 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2007 the program counter value to determine whether a 16-bit or 32-bit
2008 breakpoint should be used. It returns a pointer to a string of
2009 bytes that encode a breakpoint instruction, stores the length of
2010 the string to *lenptr, and adjusts the program counter (if
2011 necessary) to point to the actual memory location where the
2012 breakpoint should be inserted. */
2013
2014 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2015 breakpoints and storing their handles instread of what was in
2016 memory. It is nice that this is the same size as a handle -
2017 otherwise remote-rdp will have to change. */
2018
2019 static const unsigned char *
2020 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2021 {
2022 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2023
2024 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2025 {
2026 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2027 *lenptr = tdep->thumb_breakpoint_size;
2028 return tdep->thumb_breakpoint;
2029 }
2030 else
2031 {
2032 *lenptr = tdep->arm_breakpoint_size;
2033 return tdep->arm_breakpoint;
2034 }
2035 }
2036
2037 /* Extract from an array REGBUF containing the (raw) register state a
2038 function return value of type TYPE, and copy that, in virtual
2039 format, into VALBUF. */
2040
2041 static void
2042 arm_extract_return_value (struct type *type,
2043 struct regcache *regs,
2044 void *dst)
2045 {
2046 bfd_byte *valbuf = dst;
2047
2048 if (TYPE_CODE_FLT == TYPE_CODE (type))
2049 {
2050 switch (arm_get_fp_model (current_gdbarch))
2051 {
2052 case ARM_FLOAT_FPA:
2053 {
2054 /* The value is in register F0 in internal format. We need to
2055 extract the raw value and then convert it to the desired
2056 internal type. */
2057 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2058
2059 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2060 convert_from_extended (floatformat_from_type (type), tmpbuf,
2061 valbuf);
2062 }
2063 break;
2064
2065 case ARM_FLOAT_SOFT_FPA:
2066 case ARM_FLOAT_SOFT_VFP:
2067 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2068 if (TYPE_LENGTH (type) > 4)
2069 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2070 valbuf + INT_REGISTER_SIZE);
2071 break;
2072
2073 default:
2074 internal_error
2075 (__FILE__, __LINE__,
2076 "arm_extract_return_value: Floating point model not supported");
2077 break;
2078 }
2079 }
2080 else if (TYPE_CODE (type) == TYPE_CODE_INT
2081 || TYPE_CODE (type) == TYPE_CODE_CHAR
2082 || TYPE_CODE (type) == TYPE_CODE_BOOL
2083 || TYPE_CODE (type) == TYPE_CODE_PTR
2084 || TYPE_CODE (type) == TYPE_CODE_REF
2085 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2086 {
2087 /* If the the type is a plain integer, then the access is
2088 straight-forward. Otherwise we have to play around a bit more. */
2089 int len = TYPE_LENGTH (type);
2090 int regno = ARM_A1_REGNUM;
2091 ULONGEST tmp;
2092
2093 while (len > 0)
2094 {
2095 /* By using store_unsigned_integer we avoid having to do
2096 anything special for small big-endian values. */
2097 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2098 store_unsigned_integer (valbuf,
2099 (len > INT_REGISTER_SIZE
2100 ? INT_REGISTER_SIZE : len),
2101 tmp);
2102 len -= INT_REGISTER_SIZE;
2103 valbuf += INT_REGISTER_SIZE;
2104 }
2105 }
2106 else
2107 {
2108 /* For a structure or union the behaviour is as if the value had
2109 been stored to word-aligned memory and then loaded into
2110 registers with 32-bit load instruction(s). */
2111 int len = TYPE_LENGTH (type);
2112 int regno = ARM_A1_REGNUM;
2113 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2114
2115 while (len > 0)
2116 {
2117 regcache_cooked_read (regs, regno++, tmpbuf);
2118 memcpy (valbuf, tmpbuf,
2119 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2120 len -= INT_REGISTER_SIZE;
2121 valbuf += INT_REGISTER_SIZE;
2122 }
2123 }
2124 }
2125
2126 /* Extract from an array REGBUF containing the (raw) register state
2127 the address in which a function should return its structure value. */
2128
2129 static CORE_ADDR
2130 arm_extract_struct_value_address (struct regcache *regcache)
2131 {
2132 ULONGEST ret;
2133
2134 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2135 return ret;
2136 }
2137
2138 /* Will a function return an aggregate type in memory or in a
2139 register? Return 0 if an aggregate type can be returned in a
2140 register, 1 if it must be returned in memory. */
2141
2142 static int
2143 arm_use_struct_convention (int gcc_p, struct type *type)
2144 {
2145 int nRc;
2146 enum type_code code;
2147
2148 CHECK_TYPEDEF (type);
2149
2150 /* In the ARM ABI, "integer" like aggregate types are returned in
2151 registers. For an aggregate type to be integer like, its size
2152 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2153 offset of each addressable subfield must be zero. Note that bit
2154 fields are not addressable, and all addressable subfields of
2155 unions always start at offset zero.
2156
2157 This function is based on the behaviour of GCC 2.95.1.
2158 See: gcc/arm.c: arm_return_in_memory() for details.
2159
2160 Note: All versions of GCC before GCC 2.95.2 do not set up the
2161 parameters correctly for a function returning the following
2162 structure: struct { float f;}; This should be returned in memory,
2163 not a register. Richard Earnshaw sent me a patch, but I do not
2164 know of any way to detect if a function like the above has been
2165 compiled with the correct calling convention. */
2166
2167 /* All aggregate types that won't fit in a register must be returned
2168 in memory. */
2169 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2170 {
2171 return 1;
2172 }
2173
2174 /* The only aggregate types that can be returned in a register are
2175 structs and unions. Arrays must be returned in memory. */
2176 code = TYPE_CODE (type);
2177 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2178 {
2179 return 1;
2180 }
2181
2182 /* Assume all other aggregate types can be returned in a register.
2183 Run a check for structures, unions and arrays. */
2184 nRc = 0;
2185
2186 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2187 {
2188 int i;
2189 /* Need to check if this struct/union is "integer" like. For
2190 this to be true, its size must be less than or equal to
2191 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2192 subfield must be zero. Note that bit fields are not
2193 addressable, and unions always start at offset zero. If any
2194 of the subfields is a floating point type, the struct/union
2195 cannot be an integer type. */
2196
2197 /* For each field in the object, check:
2198 1) Is it FP? --> yes, nRc = 1;
2199 2) Is it addressable (bitpos != 0) and
2200 not packed (bitsize == 0)?
2201 --> yes, nRc = 1
2202 */
2203
2204 for (i = 0; i < TYPE_NFIELDS (type); i++)
2205 {
2206 enum type_code field_type_code;
2207 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2208
2209 /* Is it a floating point type field? */
2210 if (field_type_code == TYPE_CODE_FLT)
2211 {
2212 nRc = 1;
2213 break;
2214 }
2215
2216 /* If bitpos != 0, then we have to care about it. */
2217 if (TYPE_FIELD_BITPOS (type, i) != 0)
2218 {
2219 /* Bitfields are not addressable. If the field bitsize is
2220 zero, then the field is not packed. Hence it cannot be
2221 a bitfield or any other packed type. */
2222 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2223 {
2224 nRc = 1;
2225 break;
2226 }
2227 }
2228 }
2229 }
2230
2231 return nRc;
2232 }
2233
2234 /* Write into appropriate registers a function return value of type
2235 TYPE, given in virtual format. */
2236
2237 static void
2238 arm_store_return_value (struct type *type, struct regcache *regs,
2239 const void *src)
2240 {
2241 const bfd_byte *valbuf = src;
2242
2243 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2244 {
2245 char buf[MAX_REGISTER_SIZE];
2246
2247 switch (arm_get_fp_model (current_gdbarch))
2248 {
2249 case ARM_FLOAT_FPA:
2250
2251 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2252 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2253 break;
2254
2255 case ARM_FLOAT_SOFT_FPA:
2256 case ARM_FLOAT_SOFT_VFP:
2257 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2258 if (TYPE_LENGTH (type) > 4)
2259 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2260 valbuf + INT_REGISTER_SIZE);
2261 break;
2262
2263 default:
2264 internal_error
2265 (__FILE__, __LINE__,
2266 "arm_store_return_value: Floating point model not supported");
2267 break;
2268 }
2269 }
2270 else if (TYPE_CODE (type) == TYPE_CODE_INT
2271 || TYPE_CODE (type) == TYPE_CODE_CHAR
2272 || TYPE_CODE (type) == TYPE_CODE_BOOL
2273 || TYPE_CODE (type) == TYPE_CODE_PTR
2274 || TYPE_CODE (type) == TYPE_CODE_REF
2275 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2276 {
2277 if (TYPE_LENGTH (type) <= 4)
2278 {
2279 /* Values of one word or less are zero/sign-extended and
2280 returned in r0. */
2281 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2282 LONGEST val = unpack_long (type, valbuf);
2283
2284 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2285 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2286 }
2287 else
2288 {
2289 /* Integral values greater than one word are stored in consecutive
2290 registers starting with r0. This will always be a multiple of
2291 the regiser size. */
2292 int len = TYPE_LENGTH (type);
2293 int regno = ARM_A1_REGNUM;
2294
2295 while (len > 0)
2296 {
2297 regcache_cooked_write (regs, regno++, valbuf);
2298 len -= INT_REGISTER_SIZE;
2299 valbuf += INT_REGISTER_SIZE;
2300 }
2301 }
2302 }
2303 else
2304 {
2305 /* For a structure or union the behaviour is as if the value had
2306 been stored to word-aligned memory and then loaded into
2307 registers with 32-bit load instruction(s). */
2308 int len = TYPE_LENGTH (type);
2309 int regno = ARM_A1_REGNUM;
2310 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2311
2312 while (len > 0)
2313 {
2314 memcpy (tmpbuf, valbuf,
2315 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2316 regcache_cooked_write (regs, regno++, tmpbuf);
2317 len -= INT_REGISTER_SIZE;
2318 valbuf += INT_REGISTER_SIZE;
2319 }
2320 }
2321 }
2322
2323 static int
2324 arm_get_longjmp_target (CORE_ADDR *pc)
2325 {
2326 CORE_ADDR jb_addr;
2327 char buf[INT_REGISTER_SIZE];
2328 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2329
2330 jb_addr = read_register (ARM_A1_REGNUM);
2331
2332 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2333 INT_REGISTER_SIZE))
2334 return 0;
2335
2336 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2337 return 1;
2338 }
2339
2340 /* Return non-zero if the PC is inside a thumb call thunk. */
2341
2342 int
2343 arm_in_call_stub (CORE_ADDR pc, char *name)
2344 {
2345 CORE_ADDR start_addr;
2346
2347 /* Find the starting address of the function containing the PC. If
2348 the caller didn't give us a name, look it up at the same time. */
2349 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2350 &start_addr, NULL))
2351 return 0;
2352
2353 return strncmp (name, "_call_via_r", 11) == 0;
2354 }
2355
2356 /* If PC is in a Thumb call or return stub, return the address of the
2357 target PC, which is in a register. The thunk functions are called
2358 _called_via_xx, where x is the register name. The possible names
2359 are r0-r9, sl, fp, ip, sp, and lr. */
2360
2361 CORE_ADDR
2362 arm_skip_stub (CORE_ADDR pc)
2363 {
2364 char *name;
2365 CORE_ADDR start_addr;
2366
2367 /* Find the starting address and name of the function containing the PC. */
2368 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2369 return 0;
2370
2371 /* Call thunks always start with "_call_via_". */
2372 if (strncmp (name, "_call_via_", 10) == 0)
2373 {
2374 /* Use the name suffix to determine which register contains the
2375 target PC. */
2376 static char *table[15] =
2377 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2378 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2379 };
2380 int regno;
2381
2382 for (regno = 0; regno <= 14; regno++)
2383 if (strcmp (&name[10], table[regno]) == 0)
2384 return read_register (regno);
2385 }
2386
2387 return 0; /* not a stub */
2388 }
2389
2390 static void
2391 set_arm_command (char *args, int from_tty)
2392 {
2393 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2394 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2395 }
2396
2397 static void
2398 show_arm_command (char *args, int from_tty)
2399 {
2400 cmd_show_list (showarmcmdlist, from_tty, "");
2401 }
2402
2403 enum arm_float_model
2404 arm_get_fp_model (struct gdbarch *gdbarch)
2405 {
2406 if (arm_fp_model == ARM_FLOAT_AUTO)
2407 return gdbarch_tdep (gdbarch)->fp_model;
2408
2409 return arm_fp_model;
2410 }
2411
2412 static void
2413 arm_set_fp (struct gdbarch *gdbarch)
2414 {
2415 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2416
2417 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2418 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2419 {
2420 set_gdbarch_double_format (gdbarch,
2421 &floatformat_ieee_double_littlebyte_bigword);
2422 set_gdbarch_long_double_format
2423 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2424 }
2425 else
2426 {
2427 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2428 set_gdbarch_long_double_format (gdbarch,
2429 &floatformat_ieee_double_little);
2430 }
2431 }
2432
2433 static void
2434 set_fp_model_sfunc (char *args, int from_tty,
2435 struct cmd_list_element *c)
2436 {
2437 enum arm_float_model fp_model;
2438
2439 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2440 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2441 {
2442 arm_fp_model = fp_model;
2443 break;
2444 }
2445
2446 if (fp_model == ARM_FLOAT_LAST)
2447 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2448 current_fp_model);
2449
2450 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2451 arm_set_fp (current_gdbarch);
2452 }
2453
2454 static void
2455 show_fp_model (char *args, int from_tty,
2456 struct cmd_list_element *c)
2457 {
2458 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2459
2460 if (arm_fp_model == ARM_FLOAT_AUTO
2461 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2462 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2463 fp_model_strings[tdep->fp_model]);
2464 }
2465
2466 /* If the user changes the register disassembly style used for info
2467 register and other commands, we have to also switch the style used
2468 in opcodes for disassembly output. This function is run in the "set
2469 arm disassembly" command, and does that. */
2470
2471 static void
2472 set_disassembly_style_sfunc (char *args, int from_tty,
2473 struct cmd_list_element *c)
2474 {
2475 set_disassembly_style ();
2476 }
2477 \f
2478 /* Return the ARM register name corresponding to register I. */
2479 static const char *
2480 arm_register_name (int i)
2481 {
2482 return arm_register_names[i];
2483 }
2484
2485 static void
2486 set_disassembly_style (void)
2487 {
2488 const char *setname, *setdesc, **regnames;
2489 int numregs, j;
2490
2491 /* Find the style that the user wants in the opcodes table. */
2492 int current = 0;
2493 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2494 while ((disassembly_style != setname)
2495 && (current < num_disassembly_options))
2496 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2497 current_option = current;
2498
2499 /* Fill our copy. */
2500 for (j = 0; j < numregs; j++)
2501 arm_register_names[j] = (char *) regnames[j];
2502
2503 /* Adjust case. */
2504 if (isupper (*regnames[ARM_PC_REGNUM]))
2505 {
2506 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2507 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2508 }
2509 else
2510 {
2511 arm_register_names[ARM_FPS_REGNUM] = "fps";
2512 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2513 }
2514
2515 /* Synchronize the disassembler. */
2516 set_arm_regname_option (current);
2517 }
2518
2519 /* arm_othernames implements the "othernames" command. This is deprecated
2520 by the "set arm disassembly" command. */
2521
2522 static void
2523 arm_othernames (char *names, int n)
2524 {
2525 /* Circle through the various flavors. */
2526 current_option = (current_option + 1) % num_disassembly_options;
2527
2528 disassembly_style = valid_disassembly_styles[current_option];
2529 set_disassembly_style ();
2530 }
2531
2532 /* Test whether the coff symbol specific value corresponds to a Thumb
2533 function. */
2534
2535 static int
2536 coff_sym_is_thumb (int val)
2537 {
2538 return (val == C_THUMBEXT ||
2539 val == C_THUMBSTAT ||
2540 val == C_THUMBEXTFUNC ||
2541 val == C_THUMBSTATFUNC ||
2542 val == C_THUMBLABEL);
2543 }
2544
2545 /* arm_coff_make_msymbol_special()
2546 arm_elf_make_msymbol_special()
2547
2548 These functions test whether the COFF or ELF symbol corresponds to
2549 an address in thumb code, and set a "special" bit in a minimal
2550 symbol to indicate that it does. */
2551
2552 static void
2553 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2554 {
2555 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2556 STT_ARM_TFUNC). */
2557 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2558 == STT_LOPROC)
2559 MSYMBOL_SET_SPECIAL (msym);
2560 }
2561
2562 static void
2563 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2564 {
2565 if (coff_sym_is_thumb (val))
2566 MSYMBOL_SET_SPECIAL (msym);
2567 }
2568
2569 static void
2570 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2571 {
2572 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2573
2574 /* If necessary, set the T bit. */
2575 if (arm_apcs_32)
2576 {
2577 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2578 if (arm_pc_is_thumb (pc))
2579 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2580 else
2581 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2582 }
2583 }
2584 \f
2585 static enum gdb_osabi
2586 arm_elf_osabi_sniffer (bfd *abfd)
2587 {
2588 unsigned int elfosabi, eflags;
2589 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2590
2591 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2592
2593 switch (elfosabi)
2594 {
2595 case ELFOSABI_NONE:
2596 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2597 file are conforming to the base specification for that machine
2598 (there are no OS-specific extensions). In order to determine the
2599 real OS in use we must look for OS notes that have been added. */
2600 bfd_map_over_sections (abfd,
2601 generic_elf_osabi_sniff_abi_tag_sections,
2602 &osabi);
2603 if (osabi == GDB_OSABI_UNKNOWN)
2604 {
2605 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2606 field for more information. */
2607 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2608 switch (eflags)
2609 {
2610 case EF_ARM_EABI_VER1:
2611 osabi = GDB_OSABI_ARM_EABI_V1;
2612 break;
2613
2614 case EF_ARM_EABI_VER2:
2615 osabi = GDB_OSABI_ARM_EABI_V2;
2616 break;
2617
2618 case EF_ARM_EABI_UNKNOWN:
2619 /* Assume GNU tools. */
2620 osabi = GDB_OSABI_ARM_APCS;
2621 break;
2622
2623 default:
2624 internal_error (__FILE__, __LINE__,
2625 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2626 "version 0x%x", eflags);
2627 }
2628 }
2629 break;
2630
2631 case ELFOSABI_ARM:
2632 /* GNU tools use this value. Check note sections in this case,
2633 as well. */
2634 bfd_map_over_sections (abfd,
2635 generic_elf_osabi_sniff_abi_tag_sections,
2636 &osabi);
2637 if (osabi == GDB_OSABI_UNKNOWN)
2638 {
2639 /* Assume APCS ABI. */
2640 osabi = GDB_OSABI_ARM_APCS;
2641 }
2642 break;
2643
2644 case ELFOSABI_FREEBSD:
2645 osabi = GDB_OSABI_FREEBSD_ELF;
2646 break;
2647
2648 case ELFOSABI_NETBSD:
2649 osabi = GDB_OSABI_NETBSD_ELF;
2650 break;
2651
2652 case ELFOSABI_LINUX:
2653 osabi = GDB_OSABI_LINUX;
2654 break;
2655 }
2656
2657 return osabi;
2658 }
2659
2660 \f
2661 /* Initialize the current architecture based on INFO. If possible,
2662 re-use an architecture from ARCHES, which is a list of
2663 architectures already created during this debugging session.
2664
2665 Called e.g. at program startup, when reading a core file, and when
2666 reading a binary file. */
2667
2668 static struct gdbarch *
2669 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2670 {
2671 struct gdbarch_tdep *tdep;
2672 struct gdbarch *gdbarch;
2673
2674 /* Try to deterimine the ABI of the object we are loading. */
2675
2676 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2677 {
2678 switch (bfd_get_flavour (info.abfd))
2679 {
2680 case bfd_target_aout_flavour:
2681 /* Assume it's an old APCS-style ABI. */
2682 info.osabi = GDB_OSABI_ARM_APCS;
2683 break;
2684
2685 case bfd_target_coff_flavour:
2686 /* Assume it's an old APCS-style ABI. */
2687 /* XXX WinCE? */
2688 info.osabi = GDB_OSABI_ARM_APCS;
2689 break;
2690
2691 default:
2692 /* Leave it as "unknown". */
2693 break;
2694 }
2695 }
2696
2697 /* If there is already a candidate, use it. */
2698 arches = gdbarch_list_lookup_by_info (arches, &info);
2699 if (arches != NULL)
2700 return arches->gdbarch;
2701
2702 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2703 gdbarch = gdbarch_alloc (&info, tdep);
2704
2705 /* We used to default to FPA for generic ARM, but almost nobody uses that
2706 now, and we now provide a way for the user to force the model. So
2707 default to the most useful variant. */
2708 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
2709
2710 /* Breakpoints. */
2711 switch (info.byte_order)
2712 {
2713 case BFD_ENDIAN_BIG:
2714 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2715 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2716 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2717 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2718
2719 break;
2720
2721 case BFD_ENDIAN_LITTLE:
2722 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2723 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2724 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2725 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2726
2727 break;
2728
2729 default:
2730 internal_error (__FILE__, __LINE__,
2731 "arm_gdbarch_init: bad byte order for float format");
2732 }
2733
2734 /* On ARM targets char defaults to unsigned. */
2735 set_gdbarch_char_signed (gdbarch, 0);
2736
2737 /* This should be low enough for everything. */
2738 tdep->lowest_pc = 0x20;
2739 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2740
2741 set_gdbarch_deprecated_call_dummy_words (gdbarch, arm_call_dummy_words);
2742 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
2743
2744 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2745
2746 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2747
2748 /* Frame handling. */
2749 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2750 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2751 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2752
2753 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, arm_frameless_function_invocation);
2754
2755 frame_base_set_default (gdbarch, &arm_normal_base);
2756
2757 /* Address manipulation. */
2758 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2759 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2760
2761 /* Advance PC across function entry code. */
2762 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2763
2764 /* Get the PC when a frame might not be available. */
2765 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2766
2767 /* The stack grows downward. */
2768 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2769
2770 /* Breakpoint manipulation. */
2771 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2772
2773 /* Information about registers, etc. */
2774 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2775 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2776 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2777 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2778 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
2779 set_gdbarch_deprecated_register_bytes (gdbarch,
2780 (NUM_GREGS * INT_REGISTER_SIZE
2781 + NUM_FREGS * FP_REGISTER_SIZE
2782 + NUM_SREGS * STATUS_REGISTER_SIZE));
2783 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2784 set_gdbarch_register_type (gdbarch, arm_register_type);
2785
2786 /* Internal <-> external register number maps. */
2787 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2788
2789 /* Integer registers are 4 bytes. */
2790 set_gdbarch_deprecated_register_size (gdbarch, 4);
2791 set_gdbarch_register_name (gdbarch, arm_register_name);
2792
2793 /* Returning results. */
2794 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2795 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2796 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
2797 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
2798
2799 /* Single stepping. */
2800 /* XXX For an RDI target we should ask the target if it can single-step. */
2801 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2802
2803 /* Disassembly. */
2804 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2805
2806 /* Minsymbol frobbing. */
2807 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2808 set_gdbarch_coff_make_msymbol_special (gdbarch,
2809 arm_coff_make_msymbol_special);
2810
2811 /* Hook in the ABI-specific overrides, if they have been registered. */
2812 gdbarch_init_osabi (info, gdbarch);
2813
2814 /* Add some default predicates. */
2815 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
2816 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2817
2818 /* Now we have tuned the configuration, set a few final things,
2819 based on what the OS ABI has told us. */
2820
2821 if (tdep->jb_pc >= 0)
2822 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2823
2824 /* Floating point sizes and format. */
2825 switch (info.byte_order)
2826 {
2827 case BFD_ENDIAN_BIG:
2828 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2829 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2830 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2831
2832 break;
2833
2834 case BFD_ENDIAN_LITTLE:
2835 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2836 arm_set_fp (gdbarch);
2837 break;
2838
2839 default:
2840 internal_error (__FILE__, __LINE__,
2841 "arm_gdbarch_init: bad byte order for float format");
2842 }
2843
2844 return gdbarch;
2845 }
2846
2847 static void
2848 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2849 {
2850 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2851
2852 if (tdep == NULL)
2853 return;
2854
2855 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2856 (unsigned long) tdep->lowest_pc);
2857 }
2858
2859 static void
2860 arm_init_abi_eabi_v1 (struct gdbarch_info info,
2861 struct gdbarch *gdbarch)
2862 {
2863 /* Place-holder. */
2864 }
2865
2866 static void
2867 arm_init_abi_eabi_v2 (struct gdbarch_info info,
2868 struct gdbarch *gdbarch)
2869 {
2870 /* Place-holder. */
2871 }
2872
2873 static void
2874 arm_init_abi_apcs (struct gdbarch_info info,
2875 struct gdbarch *gdbarch)
2876 {
2877 /* Place-holder. */
2878 }
2879
2880 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2881
2882 void
2883 _initialize_arm_tdep (void)
2884 {
2885 struct ui_file *stb;
2886 long length;
2887 struct cmd_list_element *new_set, *new_show;
2888 const char *setname;
2889 const char *setdesc;
2890 const char **regnames;
2891 int numregs, i, j;
2892 static char *helptext;
2893
2894 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2895
2896 /* Register an ELF OS ABI sniffer for ARM binaries. */
2897 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2898 bfd_target_elf_flavour,
2899 arm_elf_osabi_sniffer);
2900
2901 /* Register some ABI variants for embedded systems. */
2902 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
2903 arm_init_abi_eabi_v1);
2904 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
2905 arm_init_abi_eabi_v2);
2906 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
2907 arm_init_abi_apcs);
2908
2909 /* Get the number of possible sets of register names defined in opcodes. */
2910 num_disassembly_options = get_arm_regname_num_options ();
2911
2912 /* Add root prefix command for all "set arm"/"show arm" commands. */
2913 add_prefix_cmd ("arm", no_class, set_arm_command,
2914 "Various ARM-specific commands.",
2915 &setarmcmdlist, "set arm ", 0, &setlist);
2916
2917 add_prefix_cmd ("arm", no_class, show_arm_command,
2918 "Various ARM-specific commands.",
2919 &showarmcmdlist, "show arm ", 0, &showlist);
2920
2921 /* Sync the opcode insn printer with our register viewer. */
2922 parse_arm_disassembler_option ("reg-names-std");
2923
2924 /* Begin creating the help text. */
2925 stb = mem_fileopen ();
2926 fprintf_unfiltered (stb, "Set the disassembly style.\n"
2927 "The valid values are:\n");
2928
2929 /* Initialize the array that will be passed to add_set_enum_cmd(). */
2930 valid_disassembly_styles
2931 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2932 for (i = 0; i < num_disassembly_options; i++)
2933 {
2934 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
2935 valid_disassembly_styles[i] = setname;
2936 fprintf_unfiltered (stb, "%s - %s\n", setname,
2937 setdesc);
2938 /* Copy the default names (if found) and synchronize disassembler. */
2939 if (!strcmp (setname, "std"))
2940 {
2941 disassembly_style = setname;
2942 current_option = i;
2943 for (j = 0; j < numregs; j++)
2944 arm_register_names[j] = (char *) regnames[j];
2945 set_arm_regname_option (i);
2946 }
2947 }
2948 /* Mark the end of valid options. */
2949 valid_disassembly_styles[num_disassembly_options] = NULL;
2950
2951 /* Finish the creation of the help text. */
2952 fprintf_unfiltered (stb, "The default is \"std\".");
2953 helptext = ui_file_xstrdup (stb, &length);
2954 ui_file_delete (stb);
2955
2956 /* Add the deprecated disassembly-flavor command. */
2957 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
2958 valid_disassembly_styles,
2959 &disassembly_style,
2960 helptext,
2961 &setlist);
2962 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2963 deprecate_cmd (new_set, "set arm disassembly");
2964 deprecate_cmd (add_show_from_set (new_set, &showlist),
2965 "show arm disassembly");
2966
2967 /* And now add the new interface. */
2968 new_set = add_set_enum_cmd ("disassembler", no_class,
2969 valid_disassembly_styles, &disassembly_style,
2970 helptext, &setarmcmdlist);
2971
2972 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2973 add_show_from_set (new_set, &showarmcmdlist);
2974
2975 add_setshow_cmd_full ("apcs32", no_class,
2976 var_boolean, (char *) &arm_apcs_32,
2977 "Set usage of ARM 32-bit mode.",
2978 "Show usage of ARM 32-bit mode.",
2979 NULL, NULL,
2980 &setlist, &showlist, &new_set, &new_show);
2981 deprecate_cmd (new_set, "set arm apcs32");
2982 deprecate_cmd (new_show, "show arm apcs32");
2983
2984 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2985 "Set usage of ARM 32-bit mode. "
2986 "When off, a 26-bit PC will be used.",
2987 "Show usage of ARM 32-bit mode. "
2988 "When off, a 26-bit PC will be used.",
2989 NULL, NULL,
2990 &setarmcmdlist, &showarmcmdlist);
2991
2992 /* Add a command to allow the user to force the FPU model. */
2993 new_set = add_set_enum_cmd
2994 ("fpu", no_class, fp_model_strings, &current_fp_model,
2995 "Set the floating point type.\n"
2996 "auto - Determine the FP typefrom the OS-ABI.\n"
2997 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
2998 "fpa - FPA co-processor (GCC compiled).\n"
2999 "softvfp - Software FP with pure-endian doubles.\n"
3000 "vfp - VFP co-processor.",
3001 &setarmcmdlist);
3002 set_cmd_sfunc (new_set, set_fp_model_sfunc);
3003 set_cmd_sfunc (add_show_from_set (new_set, &showarmcmdlist), show_fp_model);
3004
3005 /* Add the deprecated "othernames" command. */
3006 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
3007 "Switch to the next set of register names."),
3008 "set arm disassembly");
3009
3010 /* Debugging flag. */
3011 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3012 "Set ARM debugging. "
3013 "When on, arm-specific debugging is enabled.",
3014 "Show ARM debugging. "
3015 "When on, arm-specific debugging is enabled.",
3016 NULL, NULL,
3017 &setdebuglist, &showdebuglist);
3018 }