]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arm-tdep.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <ctype.h> /* XXX for isupper () */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register styles. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
40 #include "objfiles.h"
41 #include "dwarf2-frame.h"
42 #include "gdbtypes.h"
43 #include "prologue-value.h"
44 #include "target-descriptions.h"
45 #include "user-regs.h"
46
47 #include "arm-tdep.h"
48 #include "gdb/sim-arm.h"
49
50 #include "elf-bfd.h"
51 #include "coff/internal.h"
52 #include "elf/arm.h"
53
54 #include "gdb_assert.h"
55
56 static int arm_debug;
57
58 /* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
60 is used for this purpose.
61
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
64
65 #define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x80000000)
68
69 #define MSYMBOL_IS_SPECIAL(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72 /* The list of available "set arm ..." and "show arm ..." commands. */
73 static struct cmd_list_element *setarmcmdlist = NULL;
74 static struct cmd_list_element *showarmcmdlist = NULL;
75
76 /* The type of floating-point to use. Keep this in sync with enum
77 arm_float_model, and the help string in _initialize_arm_tdep. */
78 static const char *fp_model_strings[] =
79 {
80 "auto",
81 "softfpa",
82 "fpa",
83 "softvfp",
84 "vfp",
85 NULL
86 };
87
88 /* A variable that can be configured by the user. */
89 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
90 static const char *current_fp_model = "auto";
91
92 /* The ABI to use. Keep this in sync with arm_abi_kind. */
93 static const char *arm_abi_strings[] =
94 {
95 "auto",
96 "APCS",
97 "AAPCS",
98 NULL
99 };
100
101 /* A variable that can be configured by the user. */
102 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
103 static const char *arm_abi_string = "auto";
104
105 /* Number of different reg name sets (options). */
106 static int num_disassembly_options;
107
108 /* The standard register names, and all the valid aliases for them. */
109 static const struct
110 {
111 const char *name;
112 int regnum;
113 } arm_register_aliases[] = {
114 /* Basic register numbers. */
115 { "r0", 0 },
116 { "r1", 1 },
117 { "r2", 2 },
118 { "r3", 3 },
119 { "r4", 4 },
120 { "r5", 5 },
121 { "r6", 6 },
122 { "r7", 7 },
123 { "r8", 8 },
124 { "r9", 9 },
125 { "r10", 10 },
126 { "r11", 11 },
127 { "r12", 12 },
128 { "r13", 13 },
129 { "r14", 14 },
130 { "r15", 15 },
131 /* Synonyms (argument and variable registers). */
132 { "a1", 0 },
133 { "a2", 1 },
134 { "a3", 2 },
135 { "a4", 3 },
136 { "v1", 4 },
137 { "v2", 5 },
138 { "v3", 6 },
139 { "v4", 7 },
140 { "v5", 8 },
141 { "v6", 9 },
142 { "v7", 10 },
143 { "v8", 11 },
144 /* Other platform-specific names for r9. */
145 { "sb", 9 },
146 { "tr", 9 },
147 /* Special names. */
148 { "ip", 12 },
149 { "sp", 13 },
150 { "lr", 14 },
151 { "pc", 15 },
152 /* Names used by GCC (not listed in the ARM EABI). */
153 { "sl", 10 },
154 { "fp", 11 },
155 /* A special name from the older ATPCS. */
156 { "wr", 7 },
157 };
158
159 static const char *const arm_register_names[] =
160 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
161 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
162 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
163 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
164 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
165 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
166 "fps", "cpsr" }; /* 24 25 */
167
168 /* Valid register name styles. */
169 static const char **valid_disassembly_styles;
170
171 /* Disassembly style to use. Default to "std" register names. */
172 static const char *disassembly_style;
173
174 /* This is used to keep the bfd arch_info in sync with the disassembly
175 style. */
176 static void set_disassembly_style_sfunc(char *, int,
177 struct cmd_list_element *);
178 static void set_disassembly_style (void);
179
180 static void convert_from_extended (const struct floatformat *, const void *,
181 void *);
182 static void convert_to_extended (const struct floatformat *, void *,
183 const void *);
184
185 struct arm_prologue_cache
186 {
187 /* The stack pointer at the time this frame was created; i.e. the
188 caller's stack pointer when this function was called. It is used
189 to identify this frame. */
190 CORE_ADDR prev_sp;
191
192 /* The frame base for this frame is just prev_sp + frame offset -
193 frame size. FRAMESIZE is the size of this stack frame, and
194 FRAMEOFFSET if the initial offset from the stack pointer (this
195 frame's stack pointer, not PREV_SP) to the frame base. */
196
197 int framesize;
198 int frameoffset;
199
200 /* The register used to hold the frame pointer for this frame. */
201 int framereg;
202
203 /* Saved register offsets. */
204 struct trad_frame_saved_reg *saved_regs;
205 };
206
207 /* Addresses for calling Thumb functions have the bit 0 set.
208 Here are some macros to test, set, or clear bit 0 of addresses. */
209 #define IS_THUMB_ADDR(addr) ((addr) & 1)
210 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
211 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
212
213 /* Set to true if the 32-bit mode is in use. */
214
215 int arm_apcs_32 = 1;
216
217 /* Determine if the program counter specified in MEMADDR is in a Thumb
218 function. */
219
220 static int
221 arm_pc_is_thumb (CORE_ADDR memaddr)
222 {
223 struct minimal_symbol *sym;
224
225 /* If bit 0 of the address is set, assume this is a Thumb address. */
226 if (IS_THUMB_ADDR (memaddr))
227 return 1;
228
229 /* Thumb functions have a "special" bit set in minimal symbols. */
230 sym = lookup_minimal_symbol_by_pc (memaddr);
231 if (sym)
232 {
233 return (MSYMBOL_IS_SPECIAL (sym));
234 }
235 else
236 {
237 return 0;
238 }
239 }
240
241 /* Remove useless bits from addresses in a running program. */
242 static CORE_ADDR
243 arm_addr_bits_remove (CORE_ADDR val)
244 {
245 if (arm_apcs_32)
246 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
247 else
248 return (val & 0x03fffffc);
249 }
250
251 /* When reading symbols, we need to zap the low bit of the address,
252 which may be set to 1 for Thumb functions. */
253 static CORE_ADDR
254 arm_smash_text_address (CORE_ADDR val)
255 {
256 return val & ~1;
257 }
258
259 /* Analyze a Thumb prologue, looking for a recognizable stack frame
260 and frame pointer. Scan until we encounter a store that could
261 clobber the stack frame unexpectedly, or an unknown instruction. */
262
263 static CORE_ADDR
264 thumb_analyze_prologue (struct gdbarch *gdbarch,
265 CORE_ADDR start, CORE_ADDR limit,
266 struct arm_prologue_cache *cache)
267 {
268 int i;
269 pv_t regs[16];
270 struct pv_area *stack;
271 struct cleanup *back_to;
272 CORE_ADDR offset;
273
274 for (i = 0; i < 16; i++)
275 regs[i] = pv_register (i, 0);
276 stack = make_pv_area (ARM_SP_REGNUM);
277 back_to = make_cleanup_free_pv_area (stack);
278
279 /* The call instruction saved PC in LR, and the current PC is not
280 interesting. Due to this file's conventions, we want the value
281 of LR at this function's entry, not at the call site, so we do
282 not record the save of the PC - when the ARM prologue analyzer
283 has also been converted to the pv mechanism, we could record the
284 save here and remove the hack in prev_register. */
285 regs[ARM_PC_REGNUM] = pv_unknown ();
286
287 while (start < limit)
288 {
289 unsigned short insn;
290
291 insn = read_memory_unsigned_integer (start, 2);
292
293 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
294 {
295 int regno;
296 int mask;
297 int stop = 0;
298
299 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
300 whether to save LR (R14). */
301 mask = (insn & 0xff) | ((insn & 0x100) << 6);
302
303 /* Calculate offsets of saved R0-R7 and LR. */
304 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
305 if (mask & (1 << regno))
306 {
307 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
308 {
309 stop = 1;
310 break;
311 }
312
313 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
314 -4);
315 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
316 }
317
318 if (stop)
319 break;
320 }
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
322 sub sp, #simm */
323 {
324 offset = (insn & 0x7f) << 2; /* get scaled offset */
325 if (insn & 0x80) /* Check for SUB. */
326 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
327 -offset);
328 else
329 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
330 offset);
331 }
332 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
333 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
334 (insn & 0xff) << 2);
335 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
336 {
337 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
338 int src_reg = (insn & 0x78) >> 3;
339 regs[dst_reg] = regs[src_reg];
340 }
341 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
342 {
343 /* Handle stores to the stack. Normally pushes are used,
344 but with GCC -mtpcs-frame, there may be other stores
345 in the prologue to create the frame. */
346 int regno = (insn >> 8) & 0x7;
347 pv_t addr;
348
349 offset = (insn & 0xff) << 2;
350 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
351
352 if (pv_area_store_would_trash (stack, addr))
353 break;
354
355 pv_area_store (stack, addr, 4, regs[regno]);
356 }
357 else
358 {
359 /* We don't know what this instruction is. We're finished
360 scanning. NOTE: Recognizing more safe-to-ignore
361 instructions here will improve support for optimized
362 code. */
363 break;
364 }
365
366 start += 2;
367 }
368
369 if (cache == NULL)
370 {
371 do_cleanups (back_to);
372 return start;
373 }
374
375 /* frameoffset is unused for this unwinder. */
376 cache->frameoffset = 0;
377
378 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
379 {
380 /* Frame pointer is fp. Frame size is constant. */
381 cache->framereg = ARM_FP_REGNUM;
382 cache->framesize = -regs[ARM_FP_REGNUM].k;
383 }
384 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
385 {
386 /* Frame pointer is r7. Frame size is constant. */
387 cache->framereg = THUMB_FP_REGNUM;
388 cache->framesize = -regs[THUMB_FP_REGNUM].k;
389 }
390 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
391 {
392 /* Try the stack pointer... this is a bit desperate. */
393 cache->framereg = ARM_SP_REGNUM;
394 cache->framesize = -regs[ARM_SP_REGNUM].k;
395 }
396 else
397 {
398 /* We're just out of luck. We don't know where the frame is. */
399 cache->framereg = -1;
400 cache->framesize = 0;
401 }
402
403 for (i = 0; i < 16; i++)
404 if (pv_area_find_reg (stack, gdbarch, i, &offset))
405 cache->saved_regs[i].addr = offset;
406
407 do_cleanups (back_to);
408 return start;
409 }
410
411 /* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
413
414 The APCS (ARM Procedure Call Standard) defines the following
415 prologue:
416
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
425
426 static CORE_ADDR
427 arm_skip_prologue (CORE_ADDR pc)
428 {
429 unsigned long inst;
430 CORE_ADDR skip_pc;
431 CORE_ADDR func_addr, func_end = 0;
432 char *func_name;
433 struct symtab_and_line sal;
434
435 /* If we're in a dummy frame, don't even try to skip the prologue. */
436 if (deprecated_pc_in_call_dummy (pc))
437 return pc;
438
439 /* See what the symbol table says. */
440
441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
442 {
443 struct symbol *sym;
444
445 /* Found a function. */
446 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
449 /* Don't use this trick for assembly source files. */
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
454 }
455
456 /* Can't find the prologue end in the symbol table, try it the hard way
457 by disassembling the instructions. */
458
459 /* Like arm_scan_prologue, stop no later than pc + 64. */
460 if (func_end == 0 || func_end > pc + 64)
461 func_end = pc + 64;
462
463 /* Check if this is Thumb code. */
464 if (arm_pc_is_thumb (pc))
465 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
466
467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
468 {
469 inst = read_memory_unsigned_integer (skip_pc, 4);
470
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
474
475 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
479 continue;
480
481 /* Some prologues begin with "str lr, [sp, #-4]!". */
482 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
483 continue;
484
485 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
486 continue;
487
488 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
489 continue;
490
491 /* Any insns after this point may float into the code, if it makes
492 for better instruction scheduling, so we skip them only if we
493 find them, but still consider the function to be frame-ful. */
494
495 /* We may have either one sfmfd instruction here, or several stfe
496 insns, depending on the version of floating point code we
497 support. */
498 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
499 continue;
500
501 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
502 continue;
503
504 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
505 continue;
506
507 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
508 continue;
509
510 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
511 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
512 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
513 continue;
514
515 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
516 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
517 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
518 continue;
519
520 /* Un-recognized instruction; stop scanning. */
521 break;
522 }
523
524 return skip_pc; /* End of prologue */
525 }
526
527 /* *INDENT-OFF* */
528 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
529 This function decodes a Thumb function prologue to determine:
530 1) the size of the stack frame
531 2) which registers are saved on it
532 3) the offsets of saved regs
533 4) the offset from the stack pointer to the frame pointer
534
535 A typical Thumb function prologue would create this stack frame
536 (offsets relative to FP)
537 old SP -> 24 stack parameters
538 20 LR
539 16 R7
540 R7 -> 0 local variables (16 bytes)
541 SP -> -12 additional stack space (12 bytes)
542 The frame size would thus be 36 bytes, and the frame offset would be
543 12 bytes. The frame register is R7.
544
545 The comments for thumb_skip_prolog() describe the algorithm we use
546 to detect the end of the prolog. */
547 /* *INDENT-ON* */
548
549 static void
550 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
551 {
552 CORE_ADDR prologue_start;
553 CORE_ADDR prologue_end;
554 CORE_ADDR current_pc;
555 /* Which register has been copied to register n? */
556 int saved_reg[16];
557 /* findmask:
558 bit 0 - push { rlist }
559 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
560 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
561 */
562 int findmask = 0;
563 int i;
564
565 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
569 if (sal.line == 0) /* no line info, use current PC */
570 prologue_end = prev_pc;
571 else if (sal.end < prologue_end) /* next line begins after fn end */
572 prologue_end = sal.end; /* (probably means no prologue) */
573 }
574 else
575 /* We're in the boondocks: we have no idea where the start of the
576 function is. */
577 return;
578
579 prologue_end = min (prologue_end, prev_pc);
580
581 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
582 cache);
583 }
584
585 /* This function decodes an ARM function prologue to determine:
586 1) the size of the stack frame
587 2) which registers are saved on it
588 3) the offsets of saved regs
589 4) the offset from the stack pointer to the frame pointer
590 This information is stored in the "extra" fields of the frame_info.
591
592 There are two basic forms for the ARM prologue. The fixed argument
593 function call will look like:
594
595 mov ip, sp
596 stmfd sp!, {fp, ip, lr, pc}
597 sub fp, ip, #4
598 [sub sp, sp, #4]
599
600 Which would create this stack frame (offsets relative to FP):
601 IP -> 4 (caller's stack)
602 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
603 -4 LR (return address in caller)
604 -8 IP (copy of caller's SP)
605 -12 FP (caller's FP)
606 SP -> -28 Local variables
607
608 The frame size would thus be 32 bytes, and the frame offset would be
609 28 bytes. The stmfd call can also save any of the vN registers it
610 plans to use, which increases the frame size accordingly.
611
612 Note: The stored PC is 8 off of the STMFD instruction that stored it
613 because the ARM Store instructions always store PC + 8 when you read
614 the PC register.
615
616 A variable argument function call will look like:
617
618 mov ip, sp
619 stmfd sp!, {a1, a2, a3, a4}
620 stmfd sp!, {fp, ip, lr, pc}
621 sub fp, ip, #20
622
623 Which would create this stack frame (offsets relative to FP):
624 IP -> 20 (caller's stack)
625 16 A4
626 12 A3
627 8 A2
628 4 A1
629 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
630 -4 LR (return address in caller)
631 -8 IP (copy of caller's SP)
632 -12 FP (caller's FP)
633 SP -> -28 Local variables
634
635 The frame size would thus be 48 bytes, and the frame offset would be
636 28 bytes.
637
638 There is another potential complication, which is that the optimizer
639 will try to separate the store of fp in the "stmfd" instruction from
640 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
641 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
642
643 Also, note, the original version of the ARM toolchain claimed that there
644 should be an
645
646 instruction at the end of the prologue. I have never seen GCC produce
647 this, and the ARM docs don't mention it. We still test for it below in
648 case it happens...
649
650 */
651
652 static void
653 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
654 {
655 int regno, sp_offset, fp_offset, ip_offset;
656 CORE_ADDR prologue_start, prologue_end, current_pc;
657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
658
659 /* Assume there is no frame until proven otherwise. */
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
663
664 /* Check for Thumb prologue. */
665 if (arm_pc_is_thumb (prev_pc))
666 {
667 thumb_scan_prologue (prev_pc, cache);
668 return;
669 }
670
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
674 {
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
677
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
679
680 if (sal.line == 0)
681 prologue_end = prev_pc;
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
684
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
691
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
698
699 The expression
700
701 prologue_start + 64
702
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
705 the scheduler. */
706
707 if (prologue_end > prologue_start + 64)
708 {
709 prologue_end = prologue_start + 64; /* See above. */
710 }
711 }
712 else
713 {
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
719 CORE_ADDR frame_loc;
720 LONGEST return_value;
721
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
724 return;
725 else
726 {
727 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
728 prologue_end = prologue_start + 64; /* See above. */
729 }
730 }
731
732 if (prev_pc < prologue_end)
733 prologue_end = prev_pc;
734
735 /* Now search the prologue looking for instructions that set up the
736 frame pointer, adjust the stack pointer, and save registers.
737
738 Be careful, however, and if it doesn't look like a prologue,
739 don't try to scan it. If, for instance, a frameless function
740 begins with stmfd sp!, then we will tell ourselves there is
741 a frame, which will confuse stack traceback, as well as "finish"
742 and other operations that rely on a knowledge of the stack
743 traceback.
744
745 In the APCS, the prologue should start with "mov ip, sp" so
746 if we don't see this as the first insn, we will stop.
747
748 [Note: This doesn't seem to be true any longer, so it's now an
749 optional part of the prologue. - Kevin Buettner, 2001-11-20]
750
751 [Note further: The "mov ip,sp" only seems to be missing in
752 frameless functions at optimization level "-O2" or above,
753 in which case it is often (but not always) replaced by
754 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
755
756 sp_offset = fp_offset = ip_offset = 0;
757
758 for (current_pc = prologue_start;
759 current_pc < prologue_end;
760 current_pc += 4)
761 {
762 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
763
764 if (insn == 0xe1a0c00d) /* mov ip, sp */
765 {
766 ip_offset = 0;
767 continue;
768 }
769 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
770 {
771 unsigned imm = insn & 0xff; /* immediate value */
772 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
773 imm = (imm >> rot) | (imm << (32 - rot));
774 ip_offset = imm;
775 continue;
776 }
777 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
778 {
779 unsigned imm = insn & 0xff; /* immediate value */
780 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
781 imm = (imm >> rot) | (imm << (32 - rot));
782 ip_offset = -imm;
783 continue;
784 }
785 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
786 {
787 sp_offset -= 4;
788 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
789 continue;
790 }
791 else if ((insn & 0xffff0000) == 0xe92d0000)
792 /* stmfd sp!, {..., fp, ip, lr, pc}
793 or
794 stmfd sp!, {a1, a2, a3, a4} */
795 {
796 int mask = insn & 0xffff;
797
798 /* Calculate offsets of saved registers. */
799 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
800 if (mask & (1 << regno))
801 {
802 sp_offset -= 4;
803 cache->saved_regs[regno].addr = sp_offset;
804 }
805 }
806 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
807 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
808 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
809 {
810 /* No need to add this to saved_regs -- it's just an arg reg. */
811 continue;
812 }
813 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
814 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
815 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
816 {
817 /* No need to add this to saved_regs -- it's just an arg reg. */
818 continue;
819 }
820 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
821 {
822 unsigned imm = insn & 0xff; /* immediate value */
823 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
824 imm = (imm >> rot) | (imm << (32 - rot));
825 fp_offset = -imm + ip_offset;
826 cache->framereg = ARM_FP_REGNUM;
827 }
828 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
829 {
830 unsigned imm = insn & 0xff; /* immediate value */
831 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
832 imm = (imm >> rot) | (imm << (32 - rot));
833 sp_offset -= imm;
834 }
835 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
836 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
837 {
838 sp_offset -= 12;
839 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
840 cache->saved_regs[regno].addr = sp_offset;
841 }
842 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
843 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
844 {
845 int n_saved_fp_regs;
846 unsigned int fp_start_reg, fp_bound_reg;
847
848 if ((insn & 0x800) == 0x800) /* N0 is set */
849 {
850 if ((insn & 0x40000) == 0x40000) /* N1 is set */
851 n_saved_fp_regs = 3;
852 else
853 n_saved_fp_regs = 1;
854 }
855 else
856 {
857 if ((insn & 0x40000) == 0x40000) /* N1 is set */
858 n_saved_fp_regs = 2;
859 else
860 n_saved_fp_regs = 4;
861 }
862
863 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
864 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
865 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
866 {
867 sp_offset -= 12;
868 cache->saved_regs[fp_start_reg++].addr = sp_offset;
869 }
870 }
871 else if ((insn & 0xf0000000) != 0xe0000000)
872 break; /* Condition not true, exit early */
873 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
874 break; /* Don't scan past a block load */
875 else
876 /* The optimizer might shove anything into the prologue,
877 so we just skip what we don't recognize. */
878 continue;
879 }
880
881 /* The frame size is just the negative of the offset (from the
882 original SP) of the last thing thing we pushed on the stack.
883 The frame offset is [new FP] - [new SP]. */
884 cache->framesize = -sp_offset;
885 if (cache->framereg == ARM_FP_REGNUM)
886 cache->frameoffset = fp_offset - sp_offset;
887 else
888 cache->frameoffset = 0;
889 }
890
891 static struct arm_prologue_cache *
892 arm_make_prologue_cache (struct frame_info *next_frame)
893 {
894 int reg;
895 struct arm_prologue_cache *cache;
896 CORE_ADDR unwound_fp;
897
898 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
899 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
900
901 arm_scan_prologue (next_frame, cache);
902
903 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
904 if (unwound_fp == 0)
905 return cache;
906
907 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
908
909 /* Calculate actual addresses of saved registers using offsets
910 determined by arm_scan_prologue. */
911 for (reg = 0; reg < NUM_REGS; reg++)
912 if (trad_frame_addr_p (cache->saved_regs, reg))
913 cache->saved_regs[reg].addr += cache->prev_sp;
914
915 return cache;
916 }
917
918 /* Our frame ID for a normal frame is the current function's starting PC
919 and the caller's SP when we were called. */
920
921 static void
922 arm_prologue_this_id (struct frame_info *next_frame,
923 void **this_cache,
924 struct frame_id *this_id)
925 {
926 struct arm_prologue_cache *cache;
927 struct frame_id id;
928 CORE_ADDR func;
929
930 if (*this_cache == NULL)
931 *this_cache = arm_make_prologue_cache (next_frame);
932 cache = *this_cache;
933
934 func = frame_func_unwind (next_frame, NORMAL_FRAME);
935
936 /* This is meant to halt the backtrace at "_start". Make sure we
937 don't halt it at a generic dummy frame. */
938 if (func <= LOWEST_PC)
939 return;
940
941 /* If we've hit a wall, stop. */
942 if (cache->prev_sp == 0)
943 return;
944
945 id = frame_id_build (cache->prev_sp, func);
946 *this_id = id;
947 }
948
949 static void
950 arm_prologue_prev_register (struct frame_info *next_frame,
951 void **this_cache,
952 int prev_regnum,
953 int *optimized,
954 enum lval_type *lvalp,
955 CORE_ADDR *addrp,
956 int *realnump,
957 gdb_byte *valuep)
958 {
959 struct arm_prologue_cache *cache;
960
961 if (*this_cache == NULL)
962 *this_cache = arm_make_prologue_cache (next_frame);
963 cache = *this_cache;
964
965 /* If we are asked to unwind the PC, then we need to return the LR
966 instead. The saved value of PC points into this frame's
967 prologue, not the next frame's resume location. */
968 if (prev_regnum == ARM_PC_REGNUM)
969 prev_regnum = ARM_LR_REGNUM;
970
971 /* SP is generally not saved to the stack, but this frame is
972 identified by NEXT_FRAME's stack pointer at the time of the call.
973 The value was already reconstructed into PREV_SP. */
974 if (prev_regnum == ARM_SP_REGNUM)
975 {
976 *lvalp = not_lval;
977 if (valuep)
978 store_unsigned_integer (valuep, 4, cache->prev_sp);
979 return;
980 }
981
982 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
983 optimized, lvalp, addrp, realnump, valuep);
984 }
985
986 struct frame_unwind arm_prologue_unwind = {
987 NORMAL_FRAME,
988 arm_prologue_this_id,
989 arm_prologue_prev_register
990 };
991
992 static const struct frame_unwind *
993 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
994 {
995 return &arm_prologue_unwind;
996 }
997
998 static struct arm_prologue_cache *
999 arm_make_stub_cache (struct frame_info *next_frame)
1000 {
1001 int reg;
1002 struct arm_prologue_cache *cache;
1003 CORE_ADDR unwound_fp;
1004
1005 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1006 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1007
1008 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1009
1010 return cache;
1011 }
1012
1013 /* Our frame ID for a stub frame is the current SP and LR. */
1014
1015 static void
1016 arm_stub_this_id (struct frame_info *next_frame,
1017 void **this_cache,
1018 struct frame_id *this_id)
1019 {
1020 struct arm_prologue_cache *cache;
1021
1022 if (*this_cache == NULL)
1023 *this_cache = arm_make_stub_cache (next_frame);
1024 cache = *this_cache;
1025
1026 *this_id = frame_id_build (cache->prev_sp,
1027 frame_pc_unwind (next_frame));
1028 }
1029
1030 struct frame_unwind arm_stub_unwind = {
1031 NORMAL_FRAME,
1032 arm_stub_this_id,
1033 arm_prologue_prev_register
1034 };
1035
1036 static const struct frame_unwind *
1037 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1038 {
1039 CORE_ADDR addr_in_block;
1040 char dummy[4];
1041
1042 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1043 if (in_plt_section (addr_in_block, NULL)
1044 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1045 return &arm_stub_unwind;
1046
1047 return NULL;
1048 }
1049
1050 static CORE_ADDR
1051 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1052 {
1053 struct arm_prologue_cache *cache;
1054
1055 if (*this_cache == NULL)
1056 *this_cache = arm_make_prologue_cache (next_frame);
1057 cache = *this_cache;
1058
1059 return cache->prev_sp + cache->frameoffset - cache->framesize;
1060 }
1061
1062 struct frame_base arm_normal_base = {
1063 &arm_prologue_unwind,
1064 arm_normal_frame_base,
1065 arm_normal_frame_base,
1066 arm_normal_frame_base
1067 };
1068
1069 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1070 dummy frame. The frame ID's base needs to match the TOS value
1071 saved by save_dummy_frame_tos() and returned from
1072 arm_push_dummy_call, and the PC needs to match the dummy frame's
1073 breakpoint. */
1074
1075 static struct frame_id
1076 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1077 {
1078 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1079 frame_pc_unwind (next_frame));
1080 }
1081
1082 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1083 be used to construct the previous frame's ID, after looking up the
1084 containing function). */
1085
1086 static CORE_ADDR
1087 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1088 {
1089 CORE_ADDR pc;
1090 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1091 return arm_addr_bits_remove (pc);
1092 }
1093
1094 static CORE_ADDR
1095 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1096 {
1097 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1098 }
1099
1100 /* When arguments must be pushed onto the stack, they go on in reverse
1101 order. The code below implements a FILO (stack) to do this. */
1102
1103 struct stack_item
1104 {
1105 int len;
1106 struct stack_item *prev;
1107 void *data;
1108 };
1109
1110 static struct stack_item *
1111 push_stack_item (struct stack_item *prev, void *contents, int len)
1112 {
1113 struct stack_item *si;
1114 si = xmalloc (sizeof (struct stack_item));
1115 si->data = xmalloc (len);
1116 si->len = len;
1117 si->prev = prev;
1118 memcpy (si->data, contents, len);
1119 return si;
1120 }
1121
1122 static struct stack_item *
1123 pop_stack_item (struct stack_item *si)
1124 {
1125 struct stack_item *dead = si;
1126 si = si->prev;
1127 xfree (dead->data);
1128 xfree (dead);
1129 return si;
1130 }
1131
1132
1133 /* Return the alignment (in bytes) of the given type. */
1134
1135 static int
1136 arm_type_align (struct type *t)
1137 {
1138 int n;
1139 int align;
1140 int falign;
1141
1142 t = check_typedef (t);
1143 switch (TYPE_CODE (t))
1144 {
1145 default:
1146 /* Should never happen. */
1147 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1148 return 4;
1149
1150 case TYPE_CODE_PTR:
1151 case TYPE_CODE_ENUM:
1152 case TYPE_CODE_INT:
1153 case TYPE_CODE_FLT:
1154 case TYPE_CODE_SET:
1155 case TYPE_CODE_RANGE:
1156 case TYPE_CODE_BITSTRING:
1157 case TYPE_CODE_REF:
1158 case TYPE_CODE_CHAR:
1159 case TYPE_CODE_BOOL:
1160 return TYPE_LENGTH (t);
1161
1162 case TYPE_CODE_ARRAY:
1163 case TYPE_CODE_COMPLEX:
1164 /* TODO: What about vector types? */
1165 return arm_type_align (TYPE_TARGET_TYPE (t));
1166
1167 case TYPE_CODE_STRUCT:
1168 case TYPE_CODE_UNION:
1169 align = 1;
1170 for (n = 0; n < TYPE_NFIELDS (t); n++)
1171 {
1172 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1173 if (falign > align)
1174 align = falign;
1175 }
1176 return align;
1177 }
1178 }
1179
1180 /* We currently only support passing parameters in integer registers. This
1181 conforms with GCC's default model. Several other variants exist and
1182 we should probably support some of them based on the selected ABI. */
1183
1184 static CORE_ADDR
1185 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1186 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1187 struct value **args, CORE_ADDR sp, int struct_return,
1188 CORE_ADDR struct_addr)
1189 {
1190 int argnum;
1191 int argreg;
1192 int nstack;
1193 struct stack_item *si = NULL;
1194
1195 /* Set the return address. For the ARM, the return breakpoint is
1196 always at BP_ADDR. */
1197 /* XXX Fix for Thumb. */
1198 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1199
1200 /* Walk through the list of args and determine how large a temporary
1201 stack is required. Need to take care here as structs may be
1202 passed on the stack, and we have to to push them. */
1203 nstack = 0;
1204
1205 argreg = ARM_A1_REGNUM;
1206 nstack = 0;
1207
1208 /* The struct_return pointer occupies the first parameter
1209 passing register. */
1210 if (struct_return)
1211 {
1212 if (arm_debug)
1213 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1214 REGISTER_NAME (argreg), paddr (struct_addr));
1215 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1216 argreg++;
1217 }
1218
1219 for (argnum = 0; argnum < nargs; argnum++)
1220 {
1221 int len;
1222 struct type *arg_type;
1223 struct type *target_type;
1224 enum type_code typecode;
1225 bfd_byte *val;
1226 int align;
1227
1228 arg_type = check_typedef (value_type (args[argnum]));
1229 len = TYPE_LENGTH (arg_type);
1230 target_type = TYPE_TARGET_TYPE (arg_type);
1231 typecode = TYPE_CODE (arg_type);
1232 val = value_contents_writeable (args[argnum]);
1233
1234 align = arm_type_align (arg_type);
1235 /* Round alignment up to a whole number of words. */
1236 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1237 /* Different ABIs have different maximum alignments. */
1238 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1239 {
1240 /* The APCS ABI only requires word alignment. */
1241 align = INT_REGISTER_SIZE;
1242 }
1243 else
1244 {
1245 /* The AAPCS requires at most doubleword alignment. */
1246 if (align > INT_REGISTER_SIZE * 2)
1247 align = INT_REGISTER_SIZE * 2;
1248 }
1249
1250 /* Push stack padding for dowubleword alignment. */
1251 if (nstack & (align - 1))
1252 {
1253 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1254 nstack += INT_REGISTER_SIZE;
1255 }
1256
1257 /* Doubleword aligned quantities must go in even register pairs. */
1258 if (argreg <= ARM_LAST_ARG_REGNUM
1259 && align > INT_REGISTER_SIZE
1260 && argreg & 1)
1261 argreg++;
1262
1263 /* If the argument is a pointer to a function, and it is a
1264 Thumb function, create a LOCAL copy of the value and set
1265 the THUMB bit in it. */
1266 if (TYPE_CODE_PTR == typecode
1267 && target_type != NULL
1268 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1269 {
1270 CORE_ADDR regval = extract_unsigned_integer (val, len);
1271 if (arm_pc_is_thumb (regval))
1272 {
1273 val = alloca (len);
1274 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1275 }
1276 }
1277
1278 /* Copy the argument to general registers or the stack in
1279 register-sized pieces. Large arguments are split between
1280 registers and stack. */
1281 while (len > 0)
1282 {
1283 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1284
1285 if (argreg <= ARM_LAST_ARG_REGNUM)
1286 {
1287 /* The argument is being passed in a general purpose
1288 register. */
1289 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1290 if (arm_debug)
1291 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1292 argnum, REGISTER_NAME (argreg),
1293 phex (regval, DEPRECATED_REGISTER_SIZE));
1294 regcache_cooked_write_unsigned (regcache, argreg, regval);
1295 argreg++;
1296 }
1297 else
1298 {
1299 /* Push the arguments onto the stack. */
1300 if (arm_debug)
1301 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1302 argnum, nstack);
1303 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1304 nstack += DEPRECATED_REGISTER_SIZE;
1305 }
1306
1307 len -= partial_len;
1308 val += partial_len;
1309 }
1310 }
1311 /* If we have an odd number of words to push, then decrement the stack
1312 by one word now, so first stack argument will be dword aligned. */
1313 if (nstack & 4)
1314 sp -= 4;
1315
1316 while (si)
1317 {
1318 sp -= si->len;
1319 write_memory (sp, si->data, si->len);
1320 si = pop_stack_item (si);
1321 }
1322
1323 /* Finally, update teh SP register. */
1324 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1325
1326 return sp;
1327 }
1328
1329
1330 /* Always align the frame to an 8-byte boundary. This is required on
1331 some platforms and harmless on the rest. */
1332
1333 static CORE_ADDR
1334 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1335 {
1336 /* Align the stack to eight bytes. */
1337 return sp & ~ (CORE_ADDR) 7;
1338 }
1339
1340 static void
1341 print_fpu_flags (int flags)
1342 {
1343 if (flags & (1 << 0))
1344 fputs ("IVO ", stdout);
1345 if (flags & (1 << 1))
1346 fputs ("DVZ ", stdout);
1347 if (flags & (1 << 2))
1348 fputs ("OFL ", stdout);
1349 if (flags & (1 << 3))
1350 fputs ("UFL ", stdout);
1351 if (flags & (1 << 4))
1352 fputs ("INX ", stdout);
1353 putchar ('\n');
1354 }
1355
1356 /* Print interesting information about the floating point processor
1357 (if present) or emulator. */
1358 static void
1359 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1360 struct frame_info *frame, const char *args)
1361 {
1362 unsigned long status = read_register (ARM_FPS_REGNUM);
1363 int type;
1364
1365 type = (status >> 24) & 127;
1366 if (status & (1 << 31))
1367 printf (_("Hardware FPU type %d\n"), type);
1368 else
1369 printf (_("Software FPU type %d\n"), type);
1370 /* i18n: [floating point unit] mask */
1371 fputs (_("mask: "), stdout);
1372 print_fpu_flags (status >> 16);
1373 /* i18n: [floating point unit] flags */
1374 fputs (_("flags: "), stdout);
1375 print_fpu_flags (status);
1376 }
1377
1378 /* Return the GDB type object for the "standard" data type of data in
1379 register N. */
1380
1381 static struct type *
1382 arm_register_type (struct gdbarch *gdbarch, int regnum)
1383 {
1384 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1385 return builtin_type_arm_ext;
1386 else if (regnum == ARM_SP_REGNUM)
1387 return builtin_type_void_data_ptr;
1388 else if (regnum == ARM_PC_REGNUM)
1389 return builtin_type_void_func_ptr;
1390 else if (regnum >= ARRAY_SIZE (arm_register_names))
1391 /* These registers are only supported on targets which supply
1392 an XML description. */
1393 return builtin_type_int0;
1394 else
1395 return builtin_type_uint32;
1396 }
1397
1398 /* Map a DWARF register REGNUM onto the appropriate GDB register
1399 number. */
1400
1401 static int
1402 arm_dwarf_reg_to_regnum (int reg)
1403 {
1404 /* Core integer regs. */
1405 if (reg >= 0 && reg <= 15)
1406 return reg;
1407
1408 /* Legacy FPA encoding. These were once used in a way which
1409 overlapped with VFP register numbering, so their use is
1410 discouraged, but GDB doesn't support the ARM toolchain
1411 which used them for VFP. */
1412 if (reg >= 16 && reg <= 23)
1413 return ARM_F0_REGNUM + reg - 16;
1414
1415 /* New assignments for the FPA registers. */
1416 if (reg >= 96 && reg <= 103)
1417 return ARM_F0_REGNUM + reg - 96;
1418
1419 /* WMMX register assignments. */
1420 if (reg >= 104 && reg <= 111)
1421 return ARM_WCGR0_REGNUM + reg - 104;
1422
1423 if (reg >= 112 && reg <= 127)
1424 return ARM_WR0_REGNUM + reg - 112;
1425
1426 if (reg >= 192 && reg <= 199)
1427 return ARM_WC0_REGNUM + reg - 192;
1428
1429 return -1;
1430 }
1431
1432 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1433 static int
1434 arm_register_sim_regno (int regnum)
1435 {
1436 int reg = regnum;
1437 gdb_assert (reg >= 0 && reg < NUM_REGS);
1438
1439 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1440 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1441
1442 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1443 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1444
1445 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1446 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1447
1448 if (reg < NUM_GREGS)
1449 return SIM_ARM_R0_REGNUM + reg;
1450 reg -= NUM_GREGS;
1451
1452 if (reg < NUM_FREGS)
1453 return SIM_ARM_FP0_REGNUM + reg;
1454 reg -= NUM_FREGS;
1455
1456 if (reg < NUM_SREGS)
1457 return SIM_ARM_FPS_REGNUM + reg;
1458 reg -= NUM_SREGS;
1459
1460 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1461 }
1462
1463 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1464 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1465 It is thought that this is is the floating-point register format on
1466 little-endian systems. */
1467
1468 static void
1469 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1470 void *dbl)
1471 {
1472 DOUBLEST d;
1473 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1474 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1475 else
1476 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1477 ptr, &d);
1478 floatformat_from_doublest (fmt, &d, dbl);
1479 }
1480
1481 static void
1482 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1483 {
1484 DOUBLEST d;
1485 floatformat_to_doublest (fmt, ptr, &d);
1486 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1487 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1488 else
1489 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1490 &d, dbl);
1491 }
1492
1493 static int
1494 condition_true (unsigned long cond, unsigned long status_reg)
1495 {
1496 if (cond == INST_AL || cond == INST_NV)
1497 return 1;
1498
1499 switch (cond)
1500 {
1501 case INST_EQ:
1502 return ((status_reg & FLAG_Z) != 0);
1503 case INST_NE:
1504 return ((status_reg & FLAG_Z) == 0);
1505 case INST_CS:
1506 return ((status_reg & FLAG_C) != 0);
1507 case INST_CC:
1508 return ((status_reg & FLAG_C) == 0);
1509 case INST_MI:
1510 return ((status_reg & FLAG_N) != 0);
1511 case INST_PL:
1512 return ((status_reg & FLAG_N) == 0);
1513 case INST_VS:
1514 return ((status_reg & FLAG_V) != 0);
1515 case INST_VC:
1516 return ((status_reg & FLAG_V) == 0);
1517 case INST_HI:
1518 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1519 case INST_LS:
1520 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1521 case INST_GE:
1522 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1523 case INST_LT:
1524 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1525 case INST_GT:
1526 return (((status_reg & FLAG_Z) == 0) &&
1527 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1528 case INST_LE:
1529 return (((status_reg & FLAG_Z) != 0) ||
1530 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1531 }
1532 return 1;
1533 }
1534
1535 /* Support routines for single stepping. Calculate the next PC value. */
1536 #define submask(x) ((1L << ((x) + 1)) - 1)
1537 #define bit(obj,st) (((obj) >> (st)) & 1)
1538 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1539 #define sbits(obj,st,fn) \
1540 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1541 #define BranchDest(addr,instr) \
1542 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1543 #define ARM_PC_32 1
1544
1545 static unsigned long
1546 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1547 unsigned long status_reg)
1548 {
1549 unsigned long res, shift;
1550 int rm = bits (inst, 0, 3);
1551 unsigned long shifttype = bits (inst, 5, 6);
1552
1553 if (bit (inst, 4))
1554 {
1555 int rs = bits (inst, 8, 11);
1556 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1557 }
1558 else
1559 shift = bits (inst, 7, 11);
1560
1561 res = (rm == 15
1562 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1563 + (bit (inst, 4) ? 12 : 8))
1564 : read_register (rm));
1565
1566 switch (shifttype)
1567 {
1568 case 0: /* LSL */
1569 res = shift >= 32 ? 0 : res << shift;
1570 break;
1571
1572 case 1: /* LSR */
1573 res = shift >= 32 ? 0 : res >> shift;
1574 break;
1575
1576 case 2: /* ASR */
1577 if (shift >= 32)
1578 shift = 31;
1579 res = ((res & 0x80000000L)
1580 ? ~((~res) >> shift) : res >> shift);
1581 break;
1582
1583 case 3: /* ROR/RRX */
1584 shift &= 31;
1585 if (shift == 0)
1586 res = (res >> 1) | (carry ? 0x80000000L : 0);
1587 else
1588 res = (res >> shift) | (res << (32 - shift));
1589 break;
1590 }
1591
1592 return res & 0xffffffff;
1593 }
1594
1595 /* Return number of 1-bits in VAL. */
1596
1597 static int
1598 bitcount (unsigned long val)
1599 {
1600 int nbits;
1601 for (nbits = 0; val != 0; nbits++)
1602 val &= val - 1; /* delete rightmost 1-bit in val */
1603 return nbits;
1604 }
1605
1606 static CORE_ADDR
1607 thumb_get_next_pc (CORE_ADDR pc)
1608 {
1609 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1610 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1611 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1612 unsigned long offset;
1613
1614 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1615 {
1616 CORE_ADDR sp;
1617
1618 /* Fetch the saved PC from the stack. It's stored above
1619 all of the other registers. */
1620 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1621 sp = read_register (ARM_SP_REGNUM);
1622 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1623 nextpc = ADDR_BITS_REMOVE (nextpc);
1624 if (nextpc == pc)
1625 error (_("Infinite loop detected"));
1626 }
1627 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1628 {
1629 unsigned long status = read_register (ARM_PS_REGNUM);
1630 unsigned long cond = bits (inst1, 8, 11);
1631 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1632 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1633 }
1634 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1635 {
1636 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1637 }
1638 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1639 {
1640 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1641 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1642 nextpc = pc_val + offset;
1643 /* For BLX make sure to clear the low bits. */
1644 if (bits (inst2, 11, 12) == 1)
1645 nextpc = nextpc & 0xfffffffc;
1646 }
1647 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1648 {
1649 if (bits (inst1, 3, 6) == 0x0f)
1650 nextpc = pc_val;
1651 else
1652 nextpc = read_register (bits (inst1, 3, 6));
1653
1654 nextpc = ADDR_BITS_REMOVE (nextpc);
1655 if (nextpc == pc)
1656 error (_("Infinite loop detected"));
1657 }
1658
1659 return nextpc;
1660 }
1661
1662 static CORE_ADDR
1663 arm_get_next_pc (CORE_ADDR pc)
1664 {
1665 unsigned long pc_val;
1666 unsigned long this_instr;
1667 unsigned long status;
1668 CORE_ADDR nextpc;
1669
1670 if (arm_pc_is_thumb (pc))
1671 return thumb_get_next_pc (pc);
1672
1673 pc_val = (unsigned long) pc;
1674 this_instr = read_memory_unsigned_integer (pc, 4);
1675 status = read_register (ARM_PS_REGNUM);
1676 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1677
1678 if (condition_true (bits (this_instr, 28, 31), status))
1679 {
1680 switch (bits (this_instr, 24, 27))
1681 {
1682 case 0x0:
1683 case 0x1: /* data processing */
1684 case 0x2:
1685 case 0x3:
1686 {
1687 unsigned long operand1, operand2, result = 0;
1688 unsigned long rn;
1689 int c;
1690
1691 if (bits (this_instr, 12, 15) != 15)
1692 break;
1693
1694 if (bits (this_instr, 22, 25) == 0
1695 && bits (this_instr, 4, 7) == 9) /* multiply */
1696 error (_("Invalid update to pc in instruction"));
1697
1698 /* BX <reg>, BLX <reg> */
1699 if (bits (this_instr, 4, 27) == 0x12fff1
1700 || bits (this_instr, 4, 27) == 0x12fff3)
1701 {
1702 rn = bits (this_instr, 0, 3);
1703 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1704 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1705
1706 if (nextpc == pc)
1707 error (_("Infinite loop detected"));
1708
1709 return nextpc;
1710 }
1711
1712 /* Multiply into PC */
1713 c = (status & FLAG_C) ? 1 : 0;
1714 rn = bits (this_instr, 16, 19);
1715 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1716
1717 if (bit (this_instr, 25))
1718 {
1719 unsigned long immval = bits (this_instr, 0, 7);
1720 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1721 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1722 & 0xffffffff;
1723 }
1724 else /* operand 2 is a shifted register */
1725 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1726
1727 switch (bits (this_instr, 21, 24))
1728 {
1729 case 0x0: /*and */
1730 result = operand1 & operand2;
1731 break;
1732
1733 case 0x1: /*eor */
1734 result = operand1 ^ operand2;
1735 break;
1736
1737 case 0x2: /*sub */
1738 result = operand1 - operand2;
1739 break;
1740
1741 case 0x3: /*rsb */
1742 result = operand2 - operand1;
1743 break;
1744
1745 case 0x4: /*add */
1746 result = operand1 + operand2;
1747 break;
1748
1749 case 0x5: /*adc */
1750 result = operand1 + operand2 + c;
1751 break;
1752
1753 case 0x6: /*sbc */
1754 result = operand1 - operand2 + c;
1755 break;
1756
1757 case 0x7: /*rsc */
1758 result = operand2 - operand1 + c;
1759 break;
1760
1761 case 0x8:
1762 case 0x9:
1763 case 0xa:
1764 case 0xb: /* tst, teq, cmp, cmn */
1765 result = (unsigned long) nextpc;
1766 break;
1767
1768 case 0xc: /*orr */
1769 result = operand1 | operand2;
1770 break;
1771
1772 case 0xd: /*mov */
1773 /* Always step into a function. */
1774 result = operand2;
1775 break;
1776
1777 case 0xe: /*bic */
1778 result = operand1 & ~operand2;
1779 break;
1780
1781 case 0xf: /*mvn */
1782 result = ~operand2;
1783 break;
1784 }
1785 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1786
1787 if (nextpc == pc)
1788 error (_("Infinite loop detected"));
1789 break;
1790 }
1791
1792 case 0x4:
1793 case 0x5: /* data transfer */
1794 case 0x6:
1795 case 0x7:
1796 if (bit (this_instr, 20))
1797 {
1798 /* load */
1799 if (bits (this_instr, 12, 15) == 15)
1800 {
1801 /* rd == pc */
1802 unsigned long rn;
1803 unsigned long base;
1804
1805 if (bit (this_instr, 22))
1806 error (_("Invalid update to pc in instruction"));
1807
1808 /* byte write to PC */
1809 rn = bits (this_instr, 16, 19);
1810 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1811 if (bit (this_instr, 24))
1812 {
1813 /* pre-indexed */
1814 int c = (status & FLAG_C) ? 1 : 0;
1815 unsigned long offset =
1816 (bit (this_instr, 25)
1817 ? shifted_reg_val (this_instr, c, pc_val, status)
1818 : bits (this_instr, 0, 11));
1819
1820 if (bit (this_instr, 23))
1821 base += offset;
1822 else
1823 base -= offset;
1824 }
1825 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1826 4);
1827
1828 nextpc = ADDR_BITS_REMOVE (nextpc);
1829
1830 if (nextpc == pc)
1831 error (_("Infinite loop detected"));
1832 }
1833 }
1834 break;
1835
1836 case 0x8:
1837 case 0x9: /* block transfer */
1838 if (bit (this_instr, 20))
1839 {
1840 /* LDM */
1841 if (bit (this_instr, 15))
1842 {
1843 /* loading pc */
1844 int offset = 0;
1845
1846 if (bit (this_instr, 23))
1847 {
1848 /* up */
1849 unsigned long reglist = bits (this_instr, 0, 14);
1850 offset = bitcount (reglist) * 4;
1851 if (bit (this_instr, 24)) /* pre */
1852 offset += 4;
1853 }
1854 else if (bit (this_instr, 24))
1855 offset = -4;
1856
1857 {
1858 unsigned long rn_val =
1859 read_register (bits (this_instr, 16, 19));
1860 nextpc =
1861 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1862 + offset),
1863 4);
1864 }
1865 nextpc = ADDR_BITS_REMOVE (nextpc);
1866 if (nextpc == pc)
1867 error (_("Infinite loop detected"));
1868 }
1869 }
1870 break;
1871
1872 case 0xb: /* branch & link */
1873 case 0xa: /* branch */
1874 {
1875 nextpc = BranchDest (pc, this_instr);
1876
1877 /* BLX */
1878 if (bits (this_instr, 28, 31) == INST_NV)
1879 nextpc |= bit (this_instr, 24) << 1;
1880
1881 nextpc = ADDR_BITS_REMOVE (nextpc);
1882 if (nextpc == pc)
1883 error (_("Infinite loop detected"));
1884 break;
1885 }
1886
1887 case 0xc:
1888 case 0xd:
1889 case 0xe: /* coproc ops */
1890 case 0xf: /* SWI */
1891 break;
1892
1893 default:
1894 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1895 return (pc);
1896 }
1897 }
1898
1899 return nextpc;
1900 }
1901
1902 /* single_step() is called just before we want to resume the inferior,
1903 if we want to single-step it but there is no hardware or kernel
1904 single-step support. We find the target of the coming instruction
1905 and breakpoint it.
1906
1907 single_step() is also called just after the inferior stops. If we
1908 had set up a simulated single-step, we undo our damage. */
1909
1910 static void
1911 arm_software_single_step (enum target_signal sig, int insert_bpt)
1912 {
1913 /* NOTE: This may insert the wrong breakpoint instruction when
1914 single-stepping over a mode-changing instruction, if the
1915 CPSR heuristics are used. */
1916
1917 if (insert_bpt)
1918 {
1919 CORE_ADDR next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1920
1921 insert_single_step_breakpoint (next_pc);
1922 }
1923 else
1924 remove_single_step_breakpoints ();
1925 }
1926
1927 #include "bfd-in2.h"
1928 #include "libcoff.h"
1929
1930 static int
1931 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1932 {
1933 if (arm_pc_is_thumb (memaddr))
1934 {
1935 static asymbol *asym;
1936 static combined_entry_type ce;
1937 static struct coff_symbol_struct csym;
1938 static struct bfd fake_bfd;
1939 static bfd_target fake_target;
1940
1941 if (csym.native == NULL)
1942 {
1943 /* Create a fake symbol vector containing a Thumb symbol.
1944 This is solely so that the code in print_insn_little_arm()
1945 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1946 the presence of a Thumb symbol and switch to decoding
1947 Thumb instructions. */
1948
1949 fake_target.flavour = bfd_target_coff_flavour;
1950 fake_bfd.xvec = &fake_target;
1951 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1952 csym.native = &ce;
1953 csym.symbol.the_bfd = &fake_bfd;
1954 csym.symbol.name = "fake";
1955 asym = (asymbol *) & csym;
1956 }
1957
1958 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1959 info->symbols = &asym;
1960 }
1961 else
1962 info->symbols = NULL;
1963
1964 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1965 return print_insn_big_arm (memaddr, info);
1966 else
1967 return print_insn_little_arm (memaddr, info);
1968 }
1969
1970 /* The following define instruction sequences that will cause ARM
1971 cpu's to take an undefined instruction trap. These are used to
1972 signal a breakpoint to GDB.
1973
1974 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1975 modes. A different instruction is required for each mode. The ARM
1976 cpu's can also be big or little endian. Thus four different
1977 instructions are needed to support all cases.
1978
1979 Note: ARMv4 defines several new instructions that will take the
1980 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1981 not in fact add the new instructions. The new undefined
1982 instructions in ARMv4 are all instructions that had no defined
1983 behaviour in earlier chips. There is no guarantee that they will
1984 raise an exception, but may be treated as NOP's. In practice, it
1985 may only safe to rely on instructions matching:
1986
1987 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1988 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1989 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1990
1991 Even this may only true if the condition predicate is true. The
1992 following use a condition predicate of ALWAYS so it is always TRUE.
1993
1994 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1995 and NetBSD all use a software interrupt rather than an undefined
1996 instruction to force a trap. This can be handled by by the
1997 abi-specific code during establishment of the gdbarch vector. */
1998
1999
2000 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2001 override these definitions. */
2002 #ifndef ARM_LE_BREAKPOINT
2003 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2004 #endif
2005 #ifndef ARM_BE_BREAKPOINT
2006 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2007 #endif
2008 #ifndef THUMB_LE_BREAKPOINT
2009 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2010 #endif
2011 #ifndef THUMB_BE_BREAKPOINT
2012 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2013 #endif
2014
2015 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2016 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2017 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2018 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2019
2020 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2021 the program counter value to determine whether a 16-bit or 32-bit
2022 breakpoint should be used. It returns a pointer to a string of
2023 bytes that encode a breakpoint instruction, stores the length of
2024 the string to *lenptr, and adjusts the program counter (if
2025 necessary) to point to the actual memory location where the
2026 breakpoint should be inserted. */
2027
2028 static const unsigned char *
2029 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2030 {
2031 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2032
2033 if (arm_pc_is_thumb (*pcptr))
2034 {
2035 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2036 *lenptr = tdep->thumb_breakpoint_size;
2037 return tdep->thumb_breakpoint;
2038 }
2039 else
2040 {
2041 *lenptr = tdep->arm_breakpoint_size;
2042 return tdep->arm_breakpoint;
2043 }
2044 }
2045
2046 /* Extract from an array REGBUF containing the (raw) register state a
2047 function return value of type TYPE, and copy that, in virtual
2048 format, into VALBUF. */
2049
2050 static void
2051 arm_extract_return_value (struct type *type, struct regcache *regs,
2052 gdb_byte *valbuf)
2053 {
2054 if (TYPE_CODE_FLT == TYPE_CODE (type))
2055 {
2056 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2057 {
2058 case ARM_FLOAT_FPA:
2059 {
2060 /* The value is in register F0 in internal format. We need to
2061 extract the raw value and then convert it to the desired
2062 internal type. */
2063 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2064
2065 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2066 convert_from_extended (floatformat_from_type (type), tmpbuf,
2067 valbuf);
2068 }
2069 break;
2070
2071 case ARM_FLOAT_SOFT_FPA:
2072 case ARM_FLOAT_SOFT_VFP:
2073 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2074 if (TYPE_LENGTH (type) > 4)
2075 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2076 valbuf + INT_REGISTER_SIZE);
2077 break;
2078
2079 default:
2080 internal_error
2081 (__FILE__, __LINE__,
2082 _("arm_extract_return_value: Floating point model not supported"));
2083 break;
2084 }
2085 }
2086 else if (TYPE_CODE (type) == TYPE_CODE_INT
2087 || TYPE_CODE (type) == TYPE_CODE_CHAR
2088 || TYPE_CODE (type) == TYPE_CODE_BOOL
2089 || TYPE_CODE (type) == TYPE_CODE_PTR
2090 || TYPE_CODE (type) == TYPE_CODE_REF
2091 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2092 {
2093 /* If the the type is a plain integer, then the access is
2094 straight-forward. Otherwise we have to play around a bit more. */
2095 int len = TYPE_LENGTH (type);
2096 int regno = ARM_A1_REGNUM;
2097 ULONGEST tmp;
2098
2099 while (len > 0)
2100 {
2101 /* By using store_unsigned_integer we avoid having to do
2102 anything special for small big-endian values. */
2103 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2104 store_unsigned_integer (valbuf,
2105 (len > INT_REGISTER_SIZE
2106 ? INT_REGISTER_SIZE : len),
2107 tmp);
2108 len -= INT_REGISTER_SIZE;
2109 valbuf += INT_REGISTER_SIZE;
2110 }
2111 }
2112 else
2113 {
2114 /* For a structure or union the behaviour is as if the value had
2115 been stored to word-aligned memory and then loaded into
2116 registers with 32-bit load instruction(s). */
2117 int len = TYPE_LENGTH (type);
2118 int regno = ARM_A1_REGNUM;
2119 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2120
2121 while (len > 0)
2122 {
2123 regcache_cooked_read (regs, regno++, tmpbuf);
2124 memcpy (valbuf, tmpbuf,
2125 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2126 len -= INT_REGISTER_SIZE;
2127 valbuf += INT_REGISTER_SIZE;
2128 }
2129 }
2130 }
2131
2132
2133 /* Will a function return an aggregate type in memory or in a
2134 register? Return 0 if an aggregate type can be returned in a
2135 register, 1 if it must be returned in memory. */
2136
2137 static int
2138 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2139 {
2140 int nRc;
2141 enum type_code code;
2142
2143 CHECK_TYPEDEF (type);
2144
2145 /* In the ARM ABI, "integer" like aggregate types are returned in
2146 registers. For an aggregate type to be integer like, its size
2147 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2148 offset of each addressable subfield must be zero. Note that bit
2149 fields are not addressable, and all addressable subfields of
2150 unions always start at offset zero.
2151
2152 This function is based on the behaviour of GCC 2.95.1.
2153 See: gcc/arm.c: arm_return_in_memory() for details.
2154
2155 Note: All versions of GCC before GCC 2.95.2 do not set up the
2156 parameters correctly for a function returning the following
2157 structure: struct { float f;}; This should be returned in memory,
2158 not a register. Richard Earnshaw sent me a patch, but I do not
2159 know of any way to detect if a function like the above has been
2160 compiled with the correct calling convention. */
2161
2162 /* All aggregate types that won't fit in a register must be returned
2163 in memory. */
2164 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2165 {
2166 return 1;
2167 }
2168
2169 /* The AAPCS says all aggregates not larger than a word are returned
2170 in a register. */
2171 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2172 return 0;
2173
2174 /* The only aggregate types that can be returned in a register are
2175 structs and unions. Arrays must be returned in memory. */
2176 code = TYPE_CODE (type);
2177 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2178 {
2179 return 1;
2180 }
2181
2182 /* Assume all other aggregate types can be returned in a register.
2183 Run a check for structures, unions and arrays. */
2184 nRc = 0;
2185
2186 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2187 {
2188 int i;
2189 /* Need to check if this struct/union is "integer" like. For
2190 this to be true, its size must be less than or equal to
2191 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2192 subfield must be zero. Note that bit fields are not
2193 addressable, and unions always start at offset zero. If any
2194 of the subfields is a floating point type, the struct/union
2195 cannot be an integer type. */
2196
2197 /* For each field in the object, check:
2198 1) Is it FP? --> yes, nRc = 1;
2199 2) Is it addressable (bitpos != 0) and
2200 not packed (bitsize == 0)?
2201 --> yes, nRc = 1
2202 */
2203
2204 for (i = 0; i < TYPE_NFIELDS (type); i++)
2205 {
2206 enum type_code field_type_code;
2207 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2208
2209 /* Is it a floating point type field? */
2210 if (field_type_code == TYPE_CODE_FLT)
2211 {
2212 nRc = 1;
2213 break;
2214 }
2215
2216 /* If bitpos != 0, then we have to care about it. */
2217 if (TYPE_FIELD_BITPOS (type, i) != 0)
2218 {
2219 /* Bitfields are not addressable. If the field bitsize is
2220 zero, then the field is not packed. Hence it cannot be
2221 a bitfield or any other packed type. */
2222 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2223 {
2224 nRc = 1;
2225 break;
2226 }
2227 }
2228 }
2229 }
2230
2231 return nRc;
2232 }
2233
2234 /* Write into appropriate registers a function return value of type
2235 TYPE, given in virtual format. */
2236
2237 static void
2238 arm_store_return_value (struct type *type, struct regcache *regs,
2239 const gdb_byte *valbuf)
2240 {
2241 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2242 {
2243 char buf[MAX_REGISTER_SIZE];
2244
2245 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2246 {
2247 case ARM_FLOAT_FPA:
2248
2249 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2250 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2251 break;
2252
2253 case ARM_FLOAT_SOFT_FPA:
2254 case ARM_FLOAT_SOFT_VFP:
2255 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2256 if (TYPE_LENGTH (type) > 4)
2257 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2258 valbuf + INT_REGISTER_SIZE);
2259 break;
2260
2261 default:
2262 internal_error
2263 (__FILE__, __LINE__,
2264 _("arm_store_return_value: Floating point model not supported"));
2265 break;
2266 }
2267 }
2268 else if (TYPE_CODE (type) == TYPE_CODE_INT
2269 || TYPE_CODE (type) == TYPE_CODE_CHAR
2270 || TYPE_CODE (type) == TYPE_CODE_BOOL
2271 || TYPE_CODE (type) == TYPE_CODE_PTR
2272 || TYPE_CODE (type) == TYPE_CODE_REF
2273 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2274 {
2275 if (TYPE_LENGTH (type) <= 4)
2276 {
2277 /* Values of one word or less are zero/sign-extended and
2278 returned in r0. */
2279 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2280 LONGEST val = unpack_long (type, valbuf);
2281
2282 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2283 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2284 }
2285 else
2286 {
2287 /* Integral values greater than one word are stored in consecutive
2288 registers starting with r0. This will always be a multiple of
2289 the regiser size. */
2290 int len = TYPE_LENGTH (type);
2291 int regno = ARM_A1_REGNUM;
2292
2293 while (len > 0)
2294 {
2295 regcache_cooked_write (regs, regno++, valbuf);
2296 len -= INT_REGISTER_SIZE;
2297 valbuf += INT_REGISTER_SIZE;
2298 }
2299 }
2300 }
2301 else
2302 {
2303 /* For a structure or union the behaviour is as if the value had
2304 been stored to word-aligned memory and then loaded into
2305 registers with 32-bit load instruction(s). */
2306 int len = TYPE_LENGTH (type);
2307 int regno = ARM_A1_REGNUM;
2308 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2309
2310 while (len > 0)
2311 {
2312 memcpy (tmpbuf, valbuf,
2313 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2314 regcache_cooked_write (regs, regno++, tmpbuf);
2315 len -= INT_REGISTER_SIZE;
2316 valbuf += INT_REGISTER_SIZE;
2317 }
2318 }
2319 }
2320
2321
2322 /* Handle function return values. */
2323
2324 static enum return_value_convention
2325 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2326 struct regcache *regcache, gdb_byte *readbuf,
2327 const gdb_byte *writebuf)
2328 {
2329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2330
2331 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2332 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2333 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2334 {
2335 if (tdep->struct_return == pcc_struct_return
2336 || arm_return_in_memory (gdbarch, valtype))
2337 return RETURN_VALUE_STRUCT_CONVENTION;
2338 }
2339
2340 if (writebuf)
2341 arm_store_return_value (valtype, regcache, writebuf);
2342
2343 if (readbuf)
2344 arm_extract_return_value (valtype, regcache, readbuf);
2345
2346 return RETURN_VALUE_REGISTER_CONVENTION;
2347 }
2348
2349
2350 static int
2351 arm_get_longjmp_target (CORE_ADDR *pc)
2352 {
2353 CORE_ADDR jb_addr;
2354 char buf[INT_REGISTER_SIZE];
2355 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2356
2357 jb_addr = read_register (ARM_A1_REGNUM);
2358
2359 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2360 INT_REGISTER_SIZE))
2361 return 0;
2362
2363 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2364 return 1;
2365 }
2366
2367 /* Return non-zero if the PC is inside a thumb call thunk. */
2368
2369 int
2370 arm_in_call_stub (CORE_ADDR pc, char *name)
2371 {
2372 CORE_ADDR start_addr;
2373
2374 /* Find the starting address of the function containing the PC. If
2375 the caller didn't give us a name, look it up at the same time. */
2376 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2377 &start_addr, NULL))
2378 return 0;
2379
2380 return strncmp (name, "_call_via_r", 11) == 0;
2381 }
2382
2383 /* If PC is in a Thumb call or return stub, return the address of the
2384 target PC, which is in a register. The thunk functions are called
2385 _called_via_xx, where x is the register name. The possible names
2386 are r0-r9, sl, fp, ip, sp, and lr. */
2387
2388 CORE_ADDR
2389 arm_skip_stub (CORE_ADDR pc)
2390 {
2391 char *name;
2392 CORE_ADDR start_addr;
2393
2394 /* Find the starting address and name of the function containing the PC. */
2395 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2396 return 0;
2397
2398 /* Call thunks always start with "_call_via_". */
2399 if (strncmp (name, "_call_via_", 10) == 0)
2400 {
2401 /* Use the name suffix to determine which register contains the
2402 target PC. */
2403 static char *table[15] =
2404 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2405 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2406 };
2407 int regno;
2408
2409 for (regno = 0; regno <= 14; regno++)
2410 if (strcmp (&name[10], table[regno]) == 0)
2411 return read_register (regno);
2412 }
2413
2414 return 0; /* not a stub */
2415 }
2416
2417 static void
2418 set_arm_command (char *args, int from_tty)
2419 {
2420 printf_unfiltered (_("\
2421 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2422 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2423 }
2424
2425 static void
2426 show_arm_command (char *args, int from_tty)
2427 {
2428 cmd_show_list (showarmcmdlist, from_tty, "");
2429 }
2430
2431 static void
2432 arm_update_current_architecture (void)
2433 {
2434 struct gdbarch_info info;
2435
2436 /* If the current architecture is not ARM, we have nothing to do. */
2437 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2438 return;
2439
2440 /* Update the architecture. */
2441 gdbarch_info_init (&info);
2442
2443 if (!gdbarch_update_p (info))
2444 internal_error (__FILE__, __LINE__, "could not update architecture");
2445 }
2446
2447 static void
2448 set_fp_model_sfunc (char *args, int from_tty,
2449 struct cmd_list_element *c)
2450 {
2451 enum arm_float_model fp_model;
2452
2453 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2454 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2455 {
2456 arm_fp_model = fp_model;
2457 break;
2458 }
2459
2460 if (fp_model == ARM_FLOAT_LAST)
2461 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2462 current_fp_model);
2463
2464 arm_update_current_architecture ();
2465 }
2466
2467 static void
2468 show_fp_model (struct ui_file *file, int from_tty,
2469 struct cmd_list_element *c, const char *value)
2470 {
2471 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2472
2473 if (arm_fp_model == ARM_FLOAT_AUTO
2474 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2475 fprintf_filtered (file, _("\
2476 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2477 fp_model_strings[tdep->fp_model]);
2478 else
2479 fprintf_filtered (file, _("\
2480 The current ARM floating point model is \"%s\".\n"),
2481 fp_model_strings[arm_fp_model]);
2482 }
2483
2484 static void
2485 arm_set_abi (char *args, int from_tty,
2486 struct cmd_list_element *c)
2487 {
2488 enum arm_abi_kind arm_abi;
2489
2490 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2491 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2492 {
2493 arm_abi_global = arm_abi;
2494 break;
2495 }
2496
2497 if (arm_abi == ARM_ABI_LAST)
2498 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2499 arm_abi_string);
2500
2501 arm_update_current_architecture ();
2502 }
2503
2504 static void
2505 arm_show_abi (struct ui_file *file, int from_tty,
2506 struct cmd_list_element *c, const char *value)
2507 {
2508 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2509
2510 if (arm_abi_global == ARM_ABI_AUTO
2511 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2512 fprintf_filtered (file, _("\
2513 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2514 arm_abi_strings[tdep->arm_abi]);
2515 else
2516 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2517 arm_abi_string);
2518 }
2519
2520 /* If the user changes the register disassembly style used for info
2521 register and other commands, we have to also switch the style used
2522 in opcodes for disassembly output. This function is run in the "set
2523 arm disassembly" command, and does that. */
2524
2525 static void
2526 set_disassembly_style_sfunc (char *args, int from_tty,
2527 struct cmd_list_element *c)
2528 {
2529 set_disassembly_style ();
2530 }
2531 \f
2532 /* Return the ARM register name corresponding to register I. */
2533 static const char *
2534 arm_register_name (int i)
2535 {
2536 if (i >= ARRAY_SIZE (arm_register_names))
2537 /* These registers are only supported on targets which supply
2538 an XML description. */
2539 return "";
2540
2541 return arm_register_names[i];
2542 }
2543
2544 static void
2545 set_disassembly_style (void)
2546 {
2547 int current;
2548
2549 /* Find the style that the user wants. */
2550 for (current = 0; current < num_disassembly_options; current++)
2551 if (disassembly_style == valid_disassembly_styles[current])
2552 break;
2553 gdb_assert (current < num_disassembly_options);
2554
2555 /* Synchronize the disassembler. */
2556 set_arm_regname_option (current);
2557 }
2558
2559 /* Test whether the coff symbol specific value corresponds to a Thumb
2560 function. */
2561
2562 static int
2563 coff_sym_is_thumb (int val)
2564 {
2565 return (val == C_THUMBEXT ||
2566 val == C_THUMBSTAT ||
2567 val == C_THUMBEXTFUNC ||
2568 val == C_THUMBSTATFUNC ||
2569 val == C_THUMBLABEL);
2570 }
2571
2572 /* arm_coff_make_msymbol_special()
2573 arm_elf_make_msymbol_special()
2574
2575 These functions test whether the COFF or ELF symbol corresponds to
2576 an address in thumb code, and set a "special" bit in a minimal
2577 symbol to indicate that it does. */
2578
2579 static void
2580 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2581 {
2582 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2583 STT_ARM_TFUNC). */
2584 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2585 == STT_LOPROC)
2586 MSYMBOL_SET_SPECIAL (msym);
2587 }
2588
2589 static void
2590 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2591 {
2592 if (coff_sym_is_thumb (val))
2593 MSYMBOL_SET_SPECIAL (msym);
2594 }
2595
2596 static void
2597 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2598 {
2599 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2600
2601 /* If necessary, set the T bit. */
2602 if (arm_apcs_32)
2603 {
2604 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2605 if (arm_pc_is_thumb (pc))
2606 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2607 else
2608 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2609 }
2610 }
2611
2612 static struct value *
2613 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2614 {
2615 const int *reg_p = baton;
2616 return value_of_register (*reg_p, frame);
2617 }
2618 \f
2619 static enum gdb_osabi
2620 arm_elf_osabi_sniffer (bfd *abfd)
2621 {
2622 unsigned int elfosabi;
2623 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2624
2625 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2626
2627 if (elfosabi == ELFOSABI_ARM)
2628 /* GNU tools use this value. Check note sections in this case,
2629 as well. */
2630 bfd_map_over_sections (abfd,
2631 generic_elf_osabi_sniff_abi_tag_sections,
2632 &osabi);
2633
2634 /* Anything else will be handled by the generic ELF sniffer. */
2635 return osabi;
2636 }
2637
2638 \f
2639 /* Initialize the current architecture based on INFO. If possible,
2640 re-use an architecture from ARCHES, which is a list of
2641 architectures already created during this debugging session.
2642
2643 Called e.g. at program startup, when reading a core file, and when
2644 reading a binary file. */
2645
2646 static struct gdbarch *
2647 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2648 {
2649 struct gdbarch_tdep *tdep;
2650 struct gdbarch *gdbarch;
2651 struct gdbarch_list *best_arch;
2652 enum arm_abi_kind arm_abi = arm_abi_global;
2653 enum arm_float_model fp_model = arm_fp_model;
2654 struct tdesc_arch_data *tdesc_data = NULL;
2655 int i;
2656 int have_fpa_registers = 1;
2657
2658 /* Check any target description for validity. */
2659 if (tdesc_has_registers (info.target_desc))
2660 {
2661 /* For most registers we require GDB's default names; but also allow
2662 the numeric names for sp / lr / pc, as a convenience. */
2663 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2664 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2665 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2666
2667 const struct tdesc_feature *feature;
2668 int i, valid_p;
2669
2670 feature = tdesc_find_feature (info.target_desc,
2671 "org.gnu.gdb.arm.core");
2672 if (feature == NULL)
2673 return NULL;
2674
2675 tdesc_data = tdesc_data_alloc ();
2676
2677 valid_p = 1;
2678 for (i = 0; i < ARM_SP_REGNUM; i++)
2679 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2680 arm_register_names[i]);
2681 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2682 ARM_SP_REGNUM,
2683 arm_sp_names);
2684 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2685 ARM_LR_REGNUM,
2686 arm_lr_names);
2687 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2688 ARM_PC_REGNUM,
2689 arm_pc_names);
2690 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2691 ARM_PS_REGNUM, "cpsr");
2692
2693 if (!valid_p)
2694 {
2695 tdesc_data_cleanup (tdesc_data);
2696 return NULL;
2697 }
2698
2699 feature = tdesc_find_feature (info.target_desc,
2700 "org.gnu.gdb.arm.fpa");
2701 if (feature != NULL)
2702 {
2703 valid_p = 1;
2704 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2705 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2706 arm_register_names[i]);
2707 if (!valid_p)
2708 {
2709 tdesc_data_cleanup (tdesc_data);
2710 return NULL;
2711 }
2712 }
2713 else
2714 have_fpa_registers = 0;
2715
2716 feature = tdesc_find_feature (info.target_desc,
2717 "org.gnu.gdb.xscale.iwmmxt");
2718 if (feature != NULL)
2719 {
2720 static const char *const iwmmxt_names[] = {
2721 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2722 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2723 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2724 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2725 };
2726
2727 valid_p = 1;
2728 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2729 valid_p
2730 &= tdesc_numbered_register (feature, tdesc_data, i,
2731 iwmmxt_names[i - ARM_WR0_REGNUM]);
2732
2733 /* Check for the control registers, but do not fail if they
2734 are missing. */
2735 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2736 tdesc_numbered_register (feature, tdesc_data, i,
2737 iwmmxt_names[i - ARM_WR0_REGNUM]);
2738
2739 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2740 valid_p
2741 &= tdesc_numbered_register (feature, tdesc_data, i,
2742 iwmmxt_names[i - ARM_WR0_REGNUM]);
2743
2744 if (!valid_p)
2745 {
2746 tdesc_data_cleanup (tdesc_data);
2747 return NULL;
2748 }
2749 }
2750 }
2751
2752 /* If we have an object to base this architecture on, try to determine
2753 its ABI. */
2754
2755 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2756 {
2757 int ei_osabi, e_flags;
2758
2759 switch (bfd_get_flavour (info.abfd))
2760 {
2761 case bfd_target_aout_flavour:
2762 /* Assume it's an old APCS-style ABI. */
2763 arm_abi = ARM_ABI_APCS;
2764 break;
2765
2766 case bfd_target_coff_flavour:
2767 /* Assume it's an old APCS-style ABI. */
2768 /* XXX WinCE? */
2769 arm_abi = ARM_ABI_APCS;
2770 break;
2771
2772 case bfd_target_elf_flavour:
2773 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2774 e_flags = elf_elfheader (info.abfd)->e_flags;
2775
2776 if (ei_osabi == ELFOSABI_ARM)
2777 {
2778 /* GNU tools used to use this value, but do not for EABI
2779 objects. There's nowhere to tag an EABI version
2780 anyway, so assume APCS. */
2781 arm_abi = ARM_ABI_APCS;
2782 }
2783 else if (ei_osabi == ELFOSABI_NONE)
2784 {
2785 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2786
2787 switch (eabi_ver)
2788 {
2789 case EF_ARM_EABI_UNKNOWN:
2790 /* Assume GNU tools. */
2791 arm_abi = ARM_ABI_APCS;
2792 break;
2793
2794 case EF_ARM_EABI_VER4:
2795 case EF_ARM_EABI_VER5:
2796 arm_abi = ARM_ABI_AAPCS;
2797 /* EABI binaries default to VFP float ordering. */
2798 if (fp_model == ARM_FLOAT_AUTO)
2799 fp_model = ARM_FLOAT_SOFT_VFP;
2800 break;
2801
2802 default:
2803 /* Leave it as "auto". */
2804 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2805 break;
2806 }
2807 }
2808
2809 if (fp_model == ARM_FLOAT_AUTO)
2810 {
2811 int e_flags = elf_elfheader (info.abfd)->e_flags;
2812
2813 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2814 {
2815 case 0:
2816 /* Leave it as "auto". Strictly speaking this case
2817 means FPA, but almost nobody uses that now, and
2818 many toolchains fail to set the appropriate bits
2819 for the floating-point model they use. */
2820 break;
2821 case EF_ARM_SOFT_FLOAT:
2822 fp_model = ARM_FLOAT_SOFT_FPA;
2823 break;
2824 case EF_ARM_VFP_FLOAT:
2825 fp_model = ARM_FLOAT_VFP;
2826 break;
2827 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2828 fp_model = ARM_FLOAT_SOFT_VFP;
2829 break;
2830 }
2831 }
2832 break;
2833
2834 default:
2835 /* Leave it as "auto". */
2836 break;
2837 }
2838 }
2839
2840 /* Now that we have inferred any architecture settings that we
2841 can, try to inherit from the last ARM ABI. */
2842 if (arches != NULL)
2843 {
2844 if (arm_abi == ARM_ABI_AUTO)
2845 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2846
2847 if (fp_model == ARM_FLOAT_AUTO)
2848 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2849 }
2850 else
2851 {
2852 /* There was no prior ARM architecture; fill in default values. */
2853
2854 if (arm_abi == ARM_ABI_AUTO)
2855 arm_abi = ARM_ABI_APCS;
2856
2857 /* We used to default to FPA for generic ARM, but almost nobody
2858 uses that now, and we now provide a way for the user to force
2859 the model. So default to the most useful variant. */
2860 if (fp_model == ARM_FLOAT_AUTO)
2861 fp_model = ARM_FLOAT_SOFT_FPA;
2862 }
2863
2864 /* If there is already a candidate, use it. */
2865 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2866 best_arch != NULL;
2867 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2868 {
2869 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2870 continue;
2871
2872 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2873 continue;
2874
2875 /* Found a match. */
2876 break;
2877 }
2878
2879 if (best_arch != NULL)
2880 {
2881 if (tdesc_data != NULL)
2882 tdesc_data_cleanup (tdesc_data);
2883 return best_arch->gdbarch;
2884 }
2885
2886 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2887 gdbarch = gdbarch_alloc (&info, tdep);
2888
2889 /* Record additional information about the architecture we are defining.
2890 These are gdbarch discriminators, like the OSABI. */
2891 tdep->arm_abi = arm_abi;
2892 tdep->fp_model = fp_model;
2893 tdep->have_fpa_registers = have_fpa_registers;
2894
2895 /* Breakpoints. */
2896 switch (info.byte_order)
2897 {
2898 case BFD_ENDIAN_BIG:
2899 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2900 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2901 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2902 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2903
2904 break;
2905
2906 case BFD_ENDIAN_LITTLE:
2907 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2908 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2909 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2910 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2911
2912 break;
2913
2914 default:
2915 internal_error (__FILE__, __LINE__,
2916 _("arm_gdbarch_init: bad byte order for float format"));
2917 }
2918
2919 /* On ARM targets char defaults to unsigned. */
2920 set_gdbarch_char_signed (gdbarch, 0);
2921
2922 /* This should be low enough for everything. */
2923 tdep->lowest_pc = 0x20;
2924 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2925
2926 /* The default, for both APCS and AAPCS, is to return small
2927 structures in registers. */
2928 tdep->struct_return = reg_struct_return;
2929
2930 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2931 set_gdbarch_frame_align (gdbarch, arm_frame_align);
2932
2933 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2934
2935 /* Frame handling. */
2936 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2937 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2938 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2939
2940 frame_base_set_default (gdbarch, &arm_normal_base);
2941
2942 /* Address manipulation. */
2943 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2944 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2945
2946 /* Advance PC across function entry code. */
2947 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2948
2949 /* The stack grows downward. */
2950 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2951
2952 /* Breakpoint manipulation. */
2953 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2954
2955 /* Information about registers, etc. */
2956 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2957 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2958 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2959 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
2960 set_gdbarch_register_type (gdbarch, arm_register_type);
2961
2962 /* This "info float" is FPA-specific. Use the generic version if we
2963 do not have FPA. */
2964 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2965 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2966
2967 /* Internal <-> external register number maps. */
2968 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2969 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2970 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2971
2972 /* Integer registers are 4 bytes. */
2973 set_gdbarch_deprecated_register_size (gdbarch, 4);
2974 set_gdbarch_register_name (gdbarch, arm_register_name);
2975
2976 /* Returning results. */
2977 set_gdbarch_return_value (gdbarch, arm_return_value);
2978
2979 /* Single stepping. */
2980 /* XXX For an RDI target we should ask the target if it can single-step. */
2981 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2982
2983 /* Disassembly. */
2984 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2985
2986 /* Minsymbol frobbing. */
2987 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2988 set_gdbarch_coff_make_msymbol_special (gdbarch,
2989 arm_coff_make_msymbol_special);
2990
2991 /* Virtual tables. */
2992 set_gdbarch_vbit_in_delta (gdbarch, 1);
2993
2994 /* Hook in the ABI-specific overrides, if they have been registered. */
2995 gdbarch_init_osabi (info, gdbarch);
2996
2997 /* Add some default predicates. */
2998 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
2999 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3000 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
3001
3002 /* Now we have tuned the configuration, set a few final things,
3003 based on what the OS ABI has told us. */
3004
3005 if (tdep->jb_pc >= 0)
3006 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3007
3008 /* Floating point sizes and format. */
3009 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3010 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
3011 {
3012 set_gdbarch_double_format
3013 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3014 set_gdbarch_long_double_format
3015 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3016 }
3017 else
3018 {
3019 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3020 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3021 }
3022
3023 if (tdesc_data)
3024 tdesc_use_registers (gdbarch, tdesc_data);
3025
3026 /* Add standard register aliases. We add aliases even for those
3027 nanes which are used by the current architecture - it's simpler,
3028 and does no harm, since nothing ever lists user registers. */
3029 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3030 user_reg_add (gdbarch, arm_register_aliases[i].name,
3031 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3032
3033 return gdbarch;
3034 }
3035
3036 static void
3037 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3038 {
3039 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3040
3041 if (tdep == NULL)
3042 return;
3043
3044 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3045 (unsigned long) tdep->lowest_pc);
3046 }
3047
3048 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3049
3050 void
3051 _initialize_arm_tdep (void)
3052 {
3053 struct ui_file *stb;
3054 long length;
3055 struct cmd_list_element *new_set, *new_show;
3056 const char *setname;
3057 const char *setdesc;
3058 const char *const *regnames;
3059 int numregs, i, j;
3060 static char *helptext;
3061 char regdesc[1024], *rdptr = regdesc;
3062 size_t rest = sizeof (regdesc);
3063
3064 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3065
3066 /* Register an ELF OS ABI sniffer for ARM binaries. */
3067 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3068 bfd_target_elf_flavour,
3069 arm_elf_osabi_sniffer);
3070
3071 /* Get the number of possible sets of register names defined in opcodes. */
3072 num_disassembly_options = get_arm_regname_num_options ();
3073
3074 /* Add root prefix command for all "set arm"/"show arm" commands. */
3075 add_prefix_cmd ("arm", no_class, set_arm_command,
3076 _("Various ARM-specific commands."),
3077 &setarmcmdlist, "set arm ", 0, &setlist);
3078
3079 add_prefix_cmd ("arm", no_class, show_arm_command,
3080 _("Various ARM-specific commands."),
3081 &showarmcmdlist, "show arm ", 0, &showlist);
3082
3083 /* Sync the opcode insn printer with our register viewer. */
3084 parse_arm_disassembler_option ("reg-names-std");
3085
3086 /* Initialize the array that will be passed to
3087 add_setshow_enum_cmd(). */
3088 valid_disassembly_styles
3089 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3090 for (i = 0; i < num_disassembly_options; i++)
3091 {
3092 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3093 valid_disassembly_styles[i] = setname;
3094 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3095 rdptr += length;
3096 rest -= length;
3097 /* When we find the default names, tell the disassembler to use
3098 them. */
3099 if (!strcmp (setname, "std"))
3100 {
3101 disassembly_style = setname;
3102 set_arm_regname_option (i);
3103 }
3104 }
3105 /* Mark the end of valid options. */
3106 valid_disassembly_styles[num_disassembly_options] = NULL;
3107
3108 /* Create the help text. */
3109 stb = mem_fileopen ();
3110 fprintf_unfiltered (stb, "%s%s%s",
3111 _("The valid values are:\n"),
3112 regdesc,
3113 _("The default is \"std\"."));
3114 helptext = ui_file_xstrdup (stb, &length);
3115 ui_file_delete (stb);
3116
3117 add_setshow_enum_cmd("disassembler", no_class,
3118 valid_disassembly_styles, &disassembly_style,
3119 _("Set the disassembly style."),
3120 _("Show the disassembly style."),
3121 helptext,
3122 set_disassembly_style_sfunc,
3123 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3124 &setarmcmdlist, &showarmcmdlist);
3125
3126 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3127 _("Set usage of ARM 32-bit mode."),
3128 _("Show usage of ARM 32-bit mode."),
3129 _("When off, a 26-bit PC will be used."),
3130 NULL,
3131 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3132 &setarmcmdlist, &showarmcmdlist);
3133
3134 /* Add a command to allow the user to force the FPU model. */
3135 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3136 _("Set the floating point type."),
3137 _("Show the floating point type."),
3138 _("auto - Determine the FP typefrom the OS-ABI.\n\
3139 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3140 fpa - FPA co-processor (GCC compiled).\n\
3141 softvfp - Software FP with pure-endian doubles.\n\
3142 vfp - VFP co-processor."),
3143 set_fp_model_sfunc, show_fp_model,
3144 &setarmcmdlist, &showarmcmdlist);
3145
3146 /* Add a command to allow the user to force the ABI. */
3147 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3148 _("Set the ABI."),
3149 _("Show the ABI."),
3150 NULL, arm_set_abi, arm_show_abi,
3151 &setarmcmdlist, &showarmcmdlist);
3152
3153 /* Debugging flag. */
3154 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3155 _("Set ARM debugging."),
3156 _("Show ARM debugging."),
3157 _("When on, arm-specific debugging is enabled."),
3158 NULL,
3159 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3160 &setdebuglist, &showdebuglist);
3161 }