]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arm-tdep.c
* arm-tdep.c (arm_gdbarch_init): Allow unknown ABI and FPU settings
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <ctype.h> /* XXX for isupper () */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register styles. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
40 #include "objfiles.h"
41 #include "dwarf2-frame.h"
42 #include "gdbtypes.h"
43 #include "prologue-value.h"
44 #include "target-descriptions.h"
45 #include "user-regs.h"
46
47 #include "arm-tdep.h"
48 #include "gdb/sim-arm.h"
49
50 #include "elf-bfd.h"
51 #include "coff/internal.h"
52 #include "elf/arm.h"
53
54 #include "gdb_assert.h"
55
56 static int arm_debug;
57
58 /* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
60 is used for this purpose.
61
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
64
65 #define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x80000000)
68
69 #define MSYMBOL_IS_SPECIAL(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72 /* The list of available "set arm ..." and "show arm ..." commands. */
73 static struct cmd_list_element *setarmcmdlist = NULL;
74 static struct cmd_list_element *showarmcmdlist = NULL;
75
76 /* The type of floating-point to use. Keep this in sync with enum
77 arm_float_model, and the help string in _initialize_arm_tdep. */
78 static const char *fp_model_strings[] =
79 {
80 "auto",
81 "softfpa",
82 "fpa",
83 "softvfp",
84 "vfp",
85 NULL
86 };
87
88 /* A variable that can be configured by the user. */
89 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
90 static const char *current_fp_model = "auto";
91
92 /* The ABI to use. Keep this in sync with arm_abi_kind. */
93 static const char *arm_abi_strings[] =
94 {
95 "auto",
96 "APCS",
97 "AAPCS",
98 NULL
99 };
100
101 /* A variable that can be configured by the user. */
102 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
103 static const char *arm_abi_string = "auto";
104
105 /* Number of different reg name sets (options). */
106 static int num_disassembly_options;
107
108 /* The standard register names, and all the valid aliases for them. */
109 static const struct
110 {
111 const char *name;
112 int regnum;
113 } arm_register_aliases[] = {
114 /* Basic register numbers. */
115 { "r0", 0 },
116 { "r1", 1 },
117 { "r2", 2 },
118 { "r3", 3 },
119 { "r4", 4 },
120 { "r5", 5 },
121 { "r6", 6 },
122 { "r7", 7 },
123 { "r8", 8 },
124 { "r9", 9 },
125 { "r10", 10 },
126 { "r11", 11 },
127 { "r12", 12 },
128 { "r13", 13 },
129 { "r14", 14 },
130 { "r15", 15 },
131 /* Synonyms (argument and variable registers). */
132 { "a1", 0 },
133 { "a2", 1 },
134 { "a3", 2 },
135 { "a4", 3 },
136 { "v1", 4 },
137 { "v2", 5 },
138 { "v3", 6 },
139 { "v4", 7 },
140 { "v5", 8 },
141 { "v6", 9 },
142 { "v7", 10 },
143 { "v8", 11 },
144 /* Other platform-specific names for r9. */
145 { "sb", 9 },
146 { "tr", 9 },
147 /* Special names. */
148 { "ip", 12 },
149 { "sp", 13 },
150 { "lr", 14 },
151 { "pc", 15 },
152 /* Names used by GCC (not listed in the ARM EABI). */
153 { "sl", 10 },
154 { "fp", 11 },
155 /* A special name from the older ATPCS. */
156 { "wr", 7 },
157 };
158
159 static const char *const arm_register_names[] =
160 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
161 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
162 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
163 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
164 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
165 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
166 "fps", "cpsr" }; /* 24 25 */
167
168 /* Valid register name styles. */
169 static const char **valid_disassembly_styles;
170
171 /* Disassembly style to use. Default to "std" register names. */
172 static const char *disassembly_style;
173
174 /* This is used to keep the bfd arch_info in sync with the disassembly
175 style. */
176 static void set_disassembly_style_sfunc(char *, int,
177 struct cmd_list_element *);
178 static void set_disassembly_style (void);
179
180 static void convert_from_extended (const struct floatformat *, const void *,
181 void *);
182 static void convert_to_extended (const struct floatformat *, void *,
183 const void *);
184
185 struct arm_prologue_cache
186 {
187 /* The stack pointer at the time this frame was created; i.e. the
188 caller's stack pointer when this function was called. It is used
189 to identify this frame. */
190 CORE_ADDR prev_sp;
191
192 /* The frame base for this frame is just prev_sp + frame offset -
193 frame size. FRAMESIZE is the size of this stack frame, and
194 FRAMEOFFSET if the initial offset from the stack pointer (this
195 frame's stack pointer, not PREV_SP) to the frame base. */
196
197 int framesize;
198 int frameoffset;
199
200 /* The register used to hold the frame pointer for this frame. */
201 int framereg;
202
203 /* Saved register offsets. */
204 struct trad_frame_saved_reg *saved_regs;
205 };
206
207 /* Addresses for calling Thumb functions have the bit 0 set.
208 Here are some macros to test, set, or clear bit 0 of addresses. */
209 #define IS_THUMB_ADDR(addr) ((addr) & 1)
210 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
211 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
212
213 /* Set to true if the 32-bit mode is in use. */
214
215 int arm_apcs_32 = 1;
216
217 /* Determine if the program counter specified in MEMADDR is in a Thumb
218 function. */
219
220 static int
221 arm_pc_is_thumb (CORE_ADDR memaddr)
222 {
223 struct minimal_symbol *sym;
224
225 /* If bit 0 of the address is set, assume this is a Thumb address. */
226 if (IS_THUMB_ADDR (memaddr))
227 return 1;
228
229 /* Thumb functions have a "special" bit set in minimal symbols. */
230 sym = lookup_minimal_symbol_by_pc (memaddr);
231 if (sym)
232 {
233 return (MSYMBOL_IS_SPECIAL (sym));
234 }
235 else
236 {
237 return 0;
238 }
239 }
240
241 /* Remove useless bits from addresses in a running program. */
242 static CORE_ADDR
243 arm_addr_bits_remove (CORE_ADDR val)
244 {
245 if (arm_apcs_32)
246 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
247 else
248 return (val & 0x03fffffc);
249 }
250
251 /* When reading symbols, we need to zap the low bit of the address,
252 which may be set to 1 for Thumb functions. */
253 static CORE_ADDR
254 arm_smash_text_address (CORE_ADDR val)
255 {
256 return val & ~1;
257 }
258
259 /* Analyze a Thumb prologue, looking for a recognizable stack frame
260 and frame pointer. Scan until we encounter a store that could
261 clobber the stack frame unexpectedly, or an unknown instruction. */
262
263 static CORE_ADDR
264 thumb_analyze_prologue (struct gdbarch *gdbarch,
265 CORE_ADDR start, CORE_ADDR limit,
266 struct arm_prologue_cache *cache)
267 {
268 int i;
269 pv_t regs[16];
270 struct pv_area *stack;
271 struct cleanup *back_to;
272 CORE_ADDR offset;
273
274 for (i = 0; i < 16; i++)
275 regs[i] = pv_register (i, 0);
276 stack = make_pv_area (ARM_SP_REGNUM);
277 back_to = make_cleanup_free_pv_area (stack);
278
279 /* The call instruction saved PC in LR, and the current PC is not
280 interesting. Due to this file's conventions, we want the value
281 of LR at this function's entry, not at the call site, so we do
282 not record the save of the PC - when the ARM prologue analyzer
283 has also been converted to the pv mechanism, we could record the
284 save here and remove the hack in prev_register. */
285 regs[ARM_PC_REGNUM] = pv_unknown ();
286
287 while (start < limit)
288 {
289 unsigned short insn;
290
291 insn = read_memory_unsigned_integer (start, 2);
292
293 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
294 {
295 int regno;
296 int mask;
297 int stop = 0;
298
299 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
300 whether to save LR (R14). */
301 mask = (insn & 0xff) | ((insn & 0x100) << 6);
302
303 /* Calculate offsets of saved R0-R7 and LR. */
304 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
305 if (mask & (1 << regno))
306 {
307 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
308 {
309 stop = 1;
310 break;
311 }
312
313 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
314 -4);
315 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
316 }
317
318 if (stop)
319 break;
320 }
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
322 sub sp, #simm */
323 {
324 offset = (insn & 0x7f) << 2; /* get scaled offset */
325 if (insn & 0x80) /* Check for SUB. */
326 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
327 -offset);
328 else
329 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
330 offset);
331 }
332 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
333 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
334 (insn & 0xff) << 2);
335 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
336 {
337 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
338 int src_reg = (insn & 0x78) >> 3;
339 regs[dst_reg] = regs[src_reg];
340 }
341 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
342 {
343 /* Handle stores to the stack. Normally pushes are used,
344 but with GCC -mtpcs-frame, there may be other stores
345 in the prologue to create the frame. */
346 int regno = (insn >> 8) & 0x7;
347 pv_t addr;
348
349 offset = (insn & 0xff) << 2;
350 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
351
352 if (pv_area_store_would_trash (stack, addr))
353 break;
354
355 pv_area_store (stack, addr, 4, regs[regno]);
356 }
357 else
358 {
359 /* We don't know what this instruction is. We're finished
360 scanning. NOTE: Recognizing more safe-to-ignore
361 instructions here will improve support for optimized
362 code. */
363 break;
364 }
365
366 start += 2;
367 }
368
369 if (cache == NULL)
370 {
371 do_cleanups (back_to);
372 return start;
373 }
374
375 /* frameoffset is unused for this unwinder. */
376 cache->frameoffset = 0;
377
378 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
379 {
380 /* Frame pointer is fp. Frame size is constant. */
381 cache->framereg = ARM_FP_REGNUM;
382 cache->framesize = -regs[ARM_FP_REGNUM].k;
383 }
384 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
385 {
386 /* Frame pointer is r7. Frame size is constant. */
387 cache->framereg = THUMB_FP_REGNUM;
388 cache->framesize = -regs[THUMB_FP_REGNUM].k;
389 }
390 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
391 {
392 /* Try the stack pointer... this is a bit desperate. */
393 cache->framereg = ARM_SP_REGNUM;
394 cache->framesize = -regs[ARM_SP_REGNUM].k;
395 }
396 else
397 {
398 /* We're just out of luck. We don't know where the frame is. */
399 cache->framereg = -1;
400 cache->framesize = 0;
401 }
402
403 for (i = 0; i < 16; i++)
404 if (pv_area_find_reg (stack, gdbarch, i, &offset))
405 cache->saved_regs[i].addr = offset;
406
407 do_cleanups (back_to);
408 return start;
409 }
410
411 /* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
413
414 The APCS (ARM Procedure Call Standard) defines the following
415 prologue:
416
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
425
426 static CORE_ADDR
427 arm_skip_prologue (CORE_ADDR pc)
428 {
429 unsigned long inst;
430 CORE_ADDR skip_pc;
431 CORE_ADDR func_addr, func_end = 0;
432 char *func_name;
433 struct symtab_and_line sal;
434
435 /* If we're in a dummy frame, don't even try to skip the prologue. */
436 if (deprecated_pc_in_call_dummy (pc))
437 return pc;
438
439 /* See what the symbol table says. */
440
441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
442 {
443 struct symbol *sym;
444
445 /* Found a function. */
446 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
449 /* Don't use this trick for assembly source files. */
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
454 }
455
456 /* Can't find the prologue end in the symbol table, try it the hard way
457 by disassembling the instructions. */
458
459 /* Like arm_scan_prologue, stop no later than pc + 64. */
460 if (func_end == 0 || func_end > pc + 64)
461 func_end = pc + 64;
462
463 /* Check if this is Thumb code. */
464 if (arm_pc_is_thumb (pc))
465 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
466
467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
468 {
469 inst = read_memory_unsigned_integer (skip_pc, 4);
470
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
474
475 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
479 continue;
480
481 /* Some prologues begin with "str lr, [sp, #-4]!". */
482 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
483 continue;
484
485 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
486 continue;
487
488 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
489 continue;
490
491 /* Any insns after this point may float into the code, if it makes
492 for better instruction scheduling, so we skip them only if we
493 find them, but still consider the function to be frame-ful. */
494
495 /* We may have either one sfmfd instruction here, or several stfe
496 insns, depending on the version of floating point code we
497 support. */
498 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
499 continue;
500
501 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
502 continue;
503
504 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
505 continue;
506
507 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
508 continue;
509
510 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
511 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
512 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
513 continue;
514
515 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
516 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
517 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
518 continue;
519
520 /* Un-recognized instruction; stop scanning. */
521 break;
522 }
523
524 return skip_pc; /* End of prologue */
525 }
526
527 /* *INDENT-OFF* */
528 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
529 This function decodes a Thumb function prologue to determine:
530 1) the size of the stack frame
531 2) which registers are saved on it
532 3) the offsets of saved regs
533 4) the offset from the stack pointer to the frame pointer
534
535 A typical Thumb function prologue would create this stack frame
536 (offsets relative to FP)
537 old SP -> 24 stack parameters
538 20 LR
539 16 R7
540 R7 -> 0 local variables (16 bytes)
541 SP -> -12 additional stack space (12 bytes)
542 The frame size would thus be 36 bytes, and the frame offset would be
543 12 bytes. The frame register is R7.
544
545 The comments for thumb_skip_prolog() describe the algorithm we use
546 to detect the end of the prolog. */
547 /* *INDENT-ON* */
548
549 static void
550 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
551 {
552 CORE_ADDR prologue_start;
553 CORE_ADDR prologue_end;
554 CORE_ADDR current_pc;
555 /* Which register has been copied to register n? */
556 int saved_reg[16];
557 /* findmask:
558 bit 0 - push { rlist }
559 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
560 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
561 */
562 int findmask = 0;
563 int i;
564
565 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
569 if (sal.line == 0) /* no line info, use current PC */
570 prologue_end = prev_pc;
571 else if (sal.end < prologue_end) /* next line begins after fn end */
572 prologue_end = sal.end; /* (probably means no prologue) */
573 }
574 else
575 /* We're in the boondocks: we have no idea where the start of the
576 function is. */
577 return;
578
579 prologue_end = min (prologue_end, prev_pc);
580
581 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
582 cache);
583 }
584
585 /* This function decodes an ARM function prologue to determine:
586 1) the size of the stack frame
587 2) which registers are saved on it
588 3) the offsets of saved regs
589 4) the offset from the stack pointer to the frame pointer
590 This information is stored in the "extra" fields of the frame_info.
591
592 There are two basic forms for the ARM prologue. The fixed argument
593 function call will look like:
594
595 mov ip, sp
596 stmfd sp!, {fp, ip, lr, pc}
597 sub fp, ip, #4
598 [sub sp, sp, #4]
599
600 Which would create this stack frame (offsets relative to FP):
601 IP -> 4 (caller's stack)
602 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
603 -4 LR (return address in caller)
604 -8 IP (copy of caller's SP)
605 -12 FP (caller's FP)
606 SP -> -28 Local variables
607
608 The frame size would thus be 32 bytes, and the frame offset would be
609 28 bytes. The stmfd call can also save any of the vN registers it
610 plans to use, which increases the frame size accordingly.
611
612 Note: The stored PC is 8 off of the STMFD instruction that stored it
613 because the ARM Store instructions always store PC + 8 when you read
614 the PC register.
615
616 A variable argument function call will look like:
617
618 mov ip, sp
619 stmfd sp!, {a1, a2, a3, a4}
620 stmfd sp!, {fp, ip, lr, pc}
621 sub fp, ip, #20
622
623 Which would create this stack frame (offsets relative to FP):
624 IP -> 20 (caller's stack)
625 16 A4
626 12 A3
627 8 A2
628 4 A1
629 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
630 -4 LR (return address in caller)
631 -8 IP (copy of caller's SP)
632 -12 FP (caller's FP)
633 SP -> -28 Local variables
634
635 The frame size would thus be 48 bytes, and the frame offset would be
636 28 bytes.
637
638 There is another potential complication, which is that the optimizer
639 will try to separate the store of fp in the "stmfd" instruction from
640 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
641 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
642
643 Also, note, the original version of the ARM toolchain claimed that there
644 should be an
645
646 instruction at the end of the prologue. I have never seen GCC produce
647 this, and the ARM docs don't mention it. We still test for it below in
648 case it happens...
649
650 */
651
652 static void
653 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
654 {
655 int regno, sp_offset, fp_offset, ip_offset;
656 CORE_ADDR prologue_start, prologue_end, current_pc;
657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
658
659 /* Assume there is no frame until proven otherwise. */
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
663
664 /* Check for Thumb prologue. */
665 if (arm_pc_is_thumb (prev_pc))
666 {
667 thumb_scan_prologue (prev_pc, cache);
668 return;
669 }
670
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
674 {
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
677
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
679
680 if (sal.line == 0)
681 prologue_end = prev_pc;
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
684
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
691
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
698
699 The expression
700
701 prologue_start + 64
702
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
705 the scheduler. */
706
707 if (prologue_end > prologue_start + 64)
708 {
709 prologue_end = prologue_start + 64; /* See above. */
710 }
711 }
712 else
713 {
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
719 CORE_ADDR frame_loc;
720 LONGEST return_value;
721
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
724 return;
725 else
726 {
727 prologue_start = gdbarch_addr_bits_remove
728 (current_gdbarch, return_value) - 8;
729 prologue_end = prologue_start + 64; /* See above. */
730 }
731 }
732
733 if (prev_pc < prologue_end)
734 prologue_end = prev_pc;
735
736 /* Now search the prologue looking for instructions that set up the
737 frame pointer, adjust the stack pointer, and save registers.
738
739 Be careful, however, and if it doesn't look like a prologue,
740 don't try to scan it. If, for instance, a frameless function
741 begins with stmfd sp!, then we will tell ourselves there is
742 a frame, which will confuse stack traceback, as well as "finish"
743 and other operations that rely on a knowledge of the stack
744 traceback.
745
746 In the APCS, the prologue should start with "mov ip, sp" so
747 if we don't see this as the first insn, we will stop.
748
749 [Note: This doesn't seem to be true any longer, so it's now an
750 optional part of the prologue. - Kevin Buettner, 2001-11-20]
751
752 [Note further: The "mov ip,sp" only seems to be missing in
753 frameless functions at optimization level "-O2" or above,
754 in which case it is often (but not always) replaced by
755 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
756
757 sp_offset = fp_offset = ip_offset = 0;
758
759 for (current_pc = prologue_start;
760 current_pc < prologue_end;
761 current_pc += 4)
762 {
763 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
764
765 if (insn == 0xe1a0c00d) /* mov ip, sp */
766 {
767 ip_offset = 0;
768 continue;
769 }
770 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
771 {
772 unsigned imm = insn & 0xff; /* immediate value */
773 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
774 imm = (imm >> rot) | (imm << (32 - rot));
775 ip_offset = imm;
776 continue;
777 }
778 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
779 {
780 unsigned imm = insn & 0xff; /* immediate value */
781 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
782 imm = (imm >> rot) | (imm << (32 - rot));
783 ip_offset = -imm;
784 continue;
785 }
786 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
787 {
788 sp_offset -= 4;
789 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
790 continue;
791 }
792 else if ((insn & 0xffff0000) == 0xe92d0000)
793 /* stmfd sp!, {..., fp, ip, lr, pc}
794 or
795 stmfd sp!, {a1, a2, a3, a4} */
796 {
797 int mask = insn & 0xffff;
798
799 /* Calculate offsets of saved registers. */
800 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
801 if (mask & (1 << regno))
802 {
803 sp_offset -= 4;
804 cache->saved_regs[regno].addr = sp_offset;
805 }
806 }
807 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
808 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
809 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
810 {
811 /* No need to add this to saved_regs -- it's just an arg reg. */
812 continue;
813 }
814 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
815 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
816 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
817 {
818 /* No need to add this to saved_regs -- it's just an arg reg. */
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 fp_offset = -imm + ip_offset;
827 cache->framereg = ARM_FP_REGNUM;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 sp_offset -= imm;
835 }
836 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
837 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
838 {
839 sp_offset -= 12;
840 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
841 cache->saved_regs[regno].addr = sp_offset;
842 }
843 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
844 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
845 {
846 int n_saved_fp_regs;
847 unsigned int fp_start_reg, fp_bound_reg;
848
849 if ((insn & 0x800) == 0x800) /* N0 is set */
850 {
851 if ((insn & 0x40000) == 0x40000) /* N1 is set */
852 n_saved_fp_regs = 3;
853 else
854 n_saved_fp_regs = 1;
855 }
856 else
857 {
858 if ((insn & 0x40000) == 0x40000) /* N1 is set */
859 n_saved_fp_regs = 2;
860 else
861 n_saved_fp_regs = 4;
862 }
863
864 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
865 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
866 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
867 {
868 sp_offset -= 12;
869 cache->saved_regs[fp_start_reg++].addr = sp_offset;
870 }
871 }
872 else if ((insn & 0xf0000000) != 0xe0000000)
873 break; /* Condition not true, exit early */
874 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
875 break; /* Don't scan past a block load */
876 else
877 /* The optimizer might shove anything into the prologue,
878 so we just skip what we don't recognize. */
879 continue;
880 }
881
882 /* The frame size is just the negative of the offset (from the
883 original SP) of the last thing thing we pushed on the stack.
884 The frame offset is [new FP] - [new SP]. */
885 cache->framesize = -sp_offset;
886 if (cache->framereg == ARM_FP_REGNUM)
887 cache->frameoffset = fp_offset - sp_offset;
888 else
889 cache->frameoffset = 0;
890 }
891
892 static struct arm_prologue_cache *
893 arm_make_prologue_cache (struct frame_info *next_frame)
894 {
895 int reg;
896 struct arm_prologue_cache *cache;
897 CORE_ADDR unwound_fp;
898
899 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
900 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
901
902 arm_scan_prologue (next_frame, cache);
903
904 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
905 if (unwound_fp == 0)
906 return cache;
907
908 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
909
910 /* Calculate actual addresses of saved registers using offsets
911 determined by arm_scan_prologue. */
912 for (reg = 0; reg < gdbarch_num_regs (current_gdbarch); reg++)
913 if (trad_frame_addr_p (cache->saved_regs, reg))
914 cache->saved_regs[reg].addr += cache->prev_sp;
915
916 return cache;
917 }
918
919 /* Our frame ID for a normal frame is the current function's starting PC
920 and the caller's SP when we were called. */
921
922 static void
923 arm_prologue_this_id (struct frame_info *next_frame,
924 void **this_cache,
925 struct frame_id *this_id)
926 {
927 struct arm_prologue_cache *cache;
928 struct frame_id id;
929 CORE_ADDR func;
930
931 if (*this_cache == NULL)
932 *this_cache = arm_make_prologue_cache (next_frame);
933 cache = *this_cache;
934
935 func = frame_func_unwind (next_frame, NORMAL_FRAME);
936
937 /* This is meant to halt the backtrace at "_start". Make sure we
938 don't halt it at a generic dummy frame. */
939 if (func <= LOWEST_PC)
940 return;
941
942 /* If we've hit a wall, stop. */
943 if (cache->prev_sp == 0)
944 return;
945
946 id = frame_id_build (cache->prev_sp, func);
947 *this_id = id;
948 }
949
950 static void
951 arm_prologue_prev_register (struct frame_info *next_frame,
952 void **this_cache,
953 int prev_regnum,
954 int *optimized,
955 enum lval_type *lvalp,
956 CORE_ADDR *addrp,
957 int *realnump,
958 gdb_byte *valuep)
959 {
960 struct arm_prologue_cache *cache;
961
962 if (*this_cache == NULL)
963 *this_cache = arm_make_prologue_cache (next_frame);
964 cache = *this_cache;
965
966 /* If we are asked to unwind the PC, then we need to return the LR
967 instead. The saved value of PC points into this frame's
968 prologue, not the next frame's resume location. */
969 if (prev_regnum == ARM_PC_REGNUM)
970 prev_regnum = ARM_LR_REGNUM;
971
972 /* SP is generally not saved to the stack, but this frame is
973 identified by NEXT_FRAME's stack pointer at the time of the call.
974 The value was already reconstructed into PREV_SP. */
975 if (prev_regnum == ARM_SP_REGNUM)
976 {
977 *lvalp = not_lval;
978 if (valuep)
979 store_unsigned_integer (valuep, 4, cache->prev_sp);
980 return;
981 }
982
983 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
984 optimized, lvalp, addrp, realnump, valuep);
985 }
986
987 struct frame_unwind arm_prologue_unwind = {
988 NORMAL_FRAME,
989 arm_prologue_this_id,
990 arm_prologue_prev_register
991 };
992
993 static const struct frame_unwind *
994 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
995 {
996 return &arm_prologue_unwind;
997 }
998
999 static struct arm_prologue_cache *
1000 arm_make_stub_cache (struct frame_info *next_frame)
1001 {
1002 int reg;
1003 struct arm_prologue_cache *cache;
1004 CORE_ADDR unwound_fp;
1005
1006 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1007 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1008
1009 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1010
1011 return cache;
1012 }
1013
1014 /* Our frame ID for a stub frame is the current SP and LR. */
1015
1016 static void
1017 arm_stub_this_id (struct frame_info *next_frame,
1018 void **this_cache,
1019 struct frame_id *this_id)
1020 {
1021 struct arm_prologue_cache *cache;
1022
1023 if (*this_cache == NULL)
1024 *this_cache = arm_make_stub_cache (next_frame);
1025 cache = *this_cache;
1026
1027 *this_id = frame_id_build (cache->prev_sp,
1028 frame_pc_unwind (next_frame));
1029 }
1030
1031 struct frame_unwind arm_stub_unwind = {
1032 NORMAL_FRAME,
1033 arm_stub_this_id,
1034 arm_prologue_prev_register
1035 };
1036
1037 static const struct frame_unwind *
1038 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1039 {
1040 CORE_ADDR addr_in_block;
1041 char dummy[4];
1042
1043 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1044 if (in_plt_section (addr_in_block, NULL)
1045 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1046 return &arm_stub_unwind;
1047
1048 return NULL;
1049 }
1050
1051 static CORE_ADDR
1052 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1053 {
1054 struct arm_prologue_cache *cache;
1055
1056 if (*this_cache == NULL)
1057 *this_cache = arm_make_prologue_cache (next_frame);
1058 cache = *this_cache;
1059
1060 return cache->prev_sp + cache->frameoffset - cache->framesize;
1061 }
1062
1063 struct frame_base arm_normal_base = {
1064 &arm_prologue_unwind,
1065 arm_normal_frame_base,
1066 arm_normal_frame_base,
1067 arm_normal_frame_base
1068 };
1069
1070 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1071 dummy frame. The frame ID's base needs to match the TOS value
1072 saved by save_dummy_frame_tos() and returned from
1073 arm_push_dummy_call, and the PC needs to match the dummy frame's
1074 breakpoint. */
1075
1076 static struct frame_id
1077 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1078 {
1079 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1080 frame_pc_unwind (next_frame));
1081 }
1082
1083 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1084 be used to construct the previous frame's ID, after looking up the
1085 containing function). */
1086
1087 static CORE_ADDR
1088 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1089 {
1090 CORE_ADDR pc;
1091 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1092 return arm_addr_bits_remove (pc);
1093 }
1094
1095 static CORE_ADDR
1096 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1097 {
1098 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1099 }
1100
1101 /* When arguments must be pushed onto the stack, they go on in reverse
1102 order. The code below implements a FILO (stack) to do this. */
1103
1104 struct stack_item
1105 {
1106 int len;
1107 struct stack_item *prev;
1108 void *data;
1109 };
1110
1111 static struct stack_item *
1112 push_stack_item (struct stack_item *prev, void *contents, int len)
1113 {
1114 struct stack_item *si;
1115 si = xmalloc (sizeof (struct stack_item));
1116 si->data = xmalloc (len);
1117 si->len = len;
1118 si->prev = prev;
1119 memcpy (si->data, contents, len);
1120 return si;
1121 }
1122
1123 static struct stack_item *
1124 pop_stack_item (struct stack_item *si)
1125 {
1126 struct stack_item *dead = si;
1127 si = si->prev;
1128 xfree (dead->data);
1129 xfree (dead);
1130 return si;
1131 }
1132
1133
1134 /* Return the alignment (in bytes) of the given type. */
1135
1136 static int
1137 arm_type_align (struct type *t)
1138 {
1139 int n;
1140 int align;
1141 int falign;
1142
1143 t = check_typedef (t);
1144 switch (TYPE_CODE (t))
1145 {
1146 default:
1147 /* Should never happen. */
1148 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1149 return 4;
1150
1151 case TYPE_CODE_PTR:
1152 case TYPE_CODE_ENUM:
1153 case TYPE_CODE_INT:
1154 case TYPE_CODE_FLT:
1155 case TYPE_CODE_SET:
1156 case TYPE_CODE_RANGE:
1157 case TYPE_CODE_BITSTRING:
1158 case TYPE_CODE_REF:
1159 case TYPE_CODE_CHAR:
1160 case TYPE_CODE_BOOL:
1161 return TYPE_LENGTH (t);
1162
1163 case TYPE_CODE_ARRAY:
1164 case TYPE_CODE_COMPLEX:
1165 /* TODO: What about vector types? */
1166 return arm_type_align (TYPE_TARGET_TYPE (t));
1167
1168 case TYPE_CODE_STRUCT:
1169 case TYPE_CODE_UNION:
1170 align = 1;
1171 for (n = 0; n < TYPE_NFIELDS (t); n++)
1172 {
1173 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1174 if (falign > align)
1175 align = falign;
1176 }
1177 return align;
1178 }
1179 }
1180
1181 /* We currently only support passing parameters in integer registers. This
1182 conforms with GCC's default model. Several other variants exist and
1183 we should probably support some of them based on the selected ABI. */
1184
1185 static CORE_ADDR
1186 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1187 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1188 struct value **args, CORE_ADDR sp, int struct_return,
1189 CORE_ADDR struct_addr)
1190 {
1191 int argnum;
1192 int argreg;
1193 int nstack;
1194 struct stack_item *si = NULL;
1195
1196 /* Set the return address. For the ARM, the return breakpoint is
1197 always at BP_ADDR. */
1198 /* XXX Fix for Thumb. */
1199 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1200
1201 /* Walk through the list of args and determine how large a temporary
1202 stack is required. Need to take care here as structs may be
1203 passed on the stack, and we have to to push them. */
1204 nstack = 0;
1205
1206 argreg = ARM_A1_REGNUM;
1207 nstack = 0;
1208
1209 /* The struct_return pointer occupies the first parameter
1210 passing register. */
1211 if (struct_return)
1212 {
1213 if (arm_debug)
1214 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1215 gdbarch_register_name (current_gdbarch, argreg),
1216 paddr (struct_addr));
1217 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1218 argreg++;
1219 }
1220
1221 for (argnum = 0; argnum < nargs; argnum++)
1222 {
1223 int len;
1224 struct type *arg_type;
1225 struct type *target_type;
1226 enum type_code typecode;
1227 bfd_byte *val;
1228 int align;
1229
1230 arg_type = check_typedef (value_type (args[argnum]));
1231 len = TYPE_LENGTH (arg_type);
1232 target_type = TYPE_TARGET_TYPE (arg_type);
1233 typecode = TYPE_CODE (arg_type);
1234 val = value_contents_writeable (args[argnum]);
1235
1236 align = arm_type_align (arg_type);
1237 /* Round alignment up to a whole number of words. */
1238 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1239 /* Different ABIs have different maximum alignments. */
1240 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1241 {
1242 /* The APCS ABI only requires word alignment. */
1243 align = INT_REGISTER_SIZE;
1244 }
1245 else
1246 {
1247 /* The AAPCS requires at most doubleword alignment. */
1248 if (align > INT_REGISTER_SIZE * 2)
1249 align = INT_REGISTER_SIZE * 2;
1250 }
1251
1252 /* Push stack padding for dowubleword alignment. */
1253 if (nstack & (align - 1))
1254 {
1255 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1256 nstack += INT_REGISTER_SIZE;
1257 }
1258
1259 /* Doubleword aligned quantities must go in even register pairs. */
1260 if (argreg <= ARM_LAST_ARG_REGNUM
1261 && align > INT_REGISTER_SIZE
1262 && argreg & 1)
1263 argreg++;
1264
1265 /* If the argument is a pointer to a function, and it is a
1266 Thumb function, create a LOCAL copy of the value and set
1267 the THUMB bit in it. */
1268 if (TYPE_CODE_PTR == typecode
1269 && target_type != NULL
1270 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1271 {
1272 CORE_ADDR regval = extract_unsigned_integer (val, len);
1273 if (arm_pc_is_thumb (regval))
1274 {
1275 val = alloca (len);
1276 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1277 }
1278 }
1279
1280 /* Copy the argument to general registers or the stack in
1281 register-sized pieces. Large arguments are split between
1282 registers and stack. */
1283 while (len > 0)
1284 {
1285 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
1286
1287 if (argreg <= ARM_LAST_ARG_REGNUM)
1288 {
1289 /* The argument is being passed in a general purpose
1290 register. */
1291 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1292 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1293 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
1294 if (arm_debug)
1295 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1296 argnum,
1297 gdbarch_register_name
1298 (current_gdbarch, argreg),
1299 phex (regval, INT_REGISTER_SIZE));
1300 regcache_cooked_write_unsigned (regcache, argreg, regval);
1301 argreg++;
1302 }
1303 else
1304 {
1305 /* Push the arguments onto the stack. */
1306 if (arm_debug)
1307 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1308 argnum, nstack);
1309 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1310 nstack += INT_REGISTER_SIZE;
1311 }
1312
1313 len -= partial_len;
1314 val += partial_len;
1315 }
1316 }
1317 /* If we have an odd number of words to push, then decrement the stack
1318 by one word now, so first stack argument will be dword aligned. */
1319 if (nstack & 4)
1320 sp -= 4;
1321
1322 while (si)
1323 {
1324 sp -= si->len;
1325 write_memory (sp, si->data, si->len);
1326 si = pop_stack_item (si);
1327 }
1328
1329 /* Finally, update teh SP register. */
1330 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1331
1332 return sp;
1333 }
1334
1335
1336 /* Always align the frame to an 8-byte boundary. This is required on
1337 some platforms and harmless on the rest. */
1338
1339 static CORE_ADDR
1340 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1341 {
1342 /* Align the stack to eight bytes. */
1343 return sp & ~ (CORE_ADDR) 7;
1344 }
1345
1346 static void
1347 print_fpu_flags (int flags)
1348 {
1349 if (flags & (1 << 0))
1350 fputs ("IVO ", stdout);
1351 if (flags & (1 << 1))
1352 fputs ("DVZ ", stdout);
1353 if (flags & (1 << 2))
1354 fputs ("OFL ", stdout);
1355 if (flags & (1 << 3))
1356 fputs ("UFL ", stdout);
1357 if (flags & (1 << 4))
1358 fputs ("INX ", stdout);
1359 putchar ('\n');
1360 }
1361
1362 /* Print interesting information about the floating point processor
1363 (if present) or emulator. */
1364 static void
1365 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1366 struct frame_info *frame, const char *args)
1367 {
1368 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
1369 int type;
1370
1371 type = (status >> 24) & 127;
1372 if (status & (1 << 31))
1373 printf (_("Hardware FPU type %d\n"), type);
1374 else
1375 printf (_("Software FPU type %d\n"), type);
1376 /* i18n: [floating point unit] mask */
1377 fputs (_("mask: "), stdout);
1378 print_fpu_flags (status >> 16);
1379 /* i18n: [floating point unit] flags */
1380 fputs (_("flags: "), stdout);
1381 print_fpu_flags (status);
1382 }
1383
1384 /* Return the GDB type object for the "standard" data type of data in
1385 register N. */
1386
1387 static struct type *
1388 arm_register_type (struct gdbarch *gdbarch, int regnum)
1389 {
1390 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1391 return builtin_type_arm_ext;
1392 else if (regnum == ARM_SP_REGNUM)
1393 return builtin_type_void_data_ptr;
1394 else if (regnum == ARM_PC_REGNUM)
1395 return builtin_type_void_func_ptr;
1396 else if (regnum >= ARRAY_SIZE (arm_register_names))
1397 /* These registers are only supported on targets which supply
1398 an XML description. */
1399 return builtin_type_int0;
1400 else
1401 return builtin_type_uint32;
1402 }
1403
1404 /* Map a DWARF register REGNUM onto the appropriate GDB register
1405 number. */
1406
1407 static int
1408 arm_dwarf_reg_to_regnum (int reg)
1409 {
1410 /* Core integer regs. */
1411 if (reg >= 0 && reg <= 15)
1412 return reg;
1413
1414 /* Legacy FPA encoding. These were once used in a way which
1415 overlapped with VFP register numbering, so their use is
1416 discouraged, but GDB doesn't support the ARM toolchain
1417 which used them for VFP. */
1418 if (reg >= 16 && reg <= 23)
1419 return ARM_F0_REGNUM + reg - 16;
1420
1421 /* New assignments for the FPA registers. */
1422 if (reg >= 96 && reg <= 103)
1423 return ARM_F0_REGNUM + reg - 96;
1424
1425 /* WMMX register assignments. */
1426 if (reg >= 104 && reg <= 111)
1427 return ARM_WCGR0_REGNUM + reg - 104;
1428
1429 if (reg >= 112 && reg <= 127)
1430 return ARM_WR0_REGNUM + reg - 112;
1431
1432 if (reg >= 192 && reg <= 199)
1433 return ARM_WC0_REGNUM + reg - 192;
1434
1435 return -1;
1436 }
1437
1438 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1439 static int
1440 arm_register_sim_regno (int regnum)
1441 {
1442 int reg = regnum;
1443 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
1444
1445 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1446 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1447
1448 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1449 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1450
1451 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1452 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1453
1454 if (reg < NUM_GREGS)
1455 return SIM_ARM_R0_REGNUM + reg;
1456 reg -= NUM_GREGS;
1457
1458 if (reg < NUM_FREGS)
1459 return SIM_ARM_FP0_REGNUM + reg;
1460 reg -= NUM_FREGS;
1461
1462 if (reg < NUM_SREGS)
1463 return SIM_ARM_FPS_REGNUM + reg;
1464 reg -= NUM_SREGS;
1465
1466 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1467 }
1468
1469 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1470 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1471 It is thought that this is is the floating-point register format on
1472 little-endian systems. */
1473
1474 static void
1475 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1476 void *dbl)
1477 {
1478 DOUBLEST d;
1479 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1480 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1481 else
1482 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1483 ptr, &d);
1484 floatformat_from_doublest (fmt, &d, dbl);
1485 }
1486
1487 static void
1488 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1489 {
1490 DOUBLEST d;
1491 floatformat_to_doublest (fmt, ptr, &d);
1492 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1493 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1494 else
1495 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1496 &d, dbl);
1497 }
1498
1499 static int
1500 condition_true (unsigned long cond, unsigned long status_reg)
1501 {
1502 if (cond == INST_AL || cond == INST_NV)
1503 return 1;
1504
1505 switch (cond)
1506 {
1507 case INST_EQ:
1508 return ((status_reg & FLAG_Z) != 0);
1509 case INST_NE:
1510 return ((status_reg & FLAG_Z) == 0);
1511 case INST_CS:
1512 return ((status_reg & FLAG_C) != 0);
1513 case INST_CC:
1514 return ((status_reg & FLAG_C) == 0);
1515 case INST_MI:
1516 return ((status_reg & FLAG_N) != 0);
1517 case INST_PL:
1518 return ((status_reg & FLAG_N) == 0);
1519 case INST_VS:
1520 return ((status_reg & FLAG_V) != 0);
1521 case INST_VC:
1522 return ((status_reg & FLAG_V) == 0);
1523 case INST_HI:
1524 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1525 case INST_LS:
1526 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1527 case INST_GE:
1528 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1529 case INST_LT:
1530 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1531 case INST_GT:
1532 return (((status_reg & FLAG_Z) == 0) &&
1533 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1534 case INST_LE:
1535 return (((status_reg & FLAG_Z) != 0) ||
1536 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1537 }
1538 return 1;
1539 }
1540
1541 /* Support routines for single stepping. Calculate the next PC value. */
1542 #define submask(x) ((1L << ((x) + 1)) - 1)
1543 #define bit(obj,st) (((obj) >> (st)) & 1)
1544 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1545 #define sbits(obj,st,fn) \
1546 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1547 #define BranchDest(addr,instr) \
1548 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1549 #define ARM_PC_32 1
1550
1551 static unsigned long
1552 shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1553 unsigned long pc_val, unsigned long status_reg)
1554 {
1555 unsigned long res, shift;
1556 int rm = bits (inst, 0, 3);
1557 unsigned long shifttype = bits (inst, 5, 6);
1558
1559 if (bit (inst, 4))
1560 {
1561 int rs = bits (inst, 8, 11);
1562 shift = (rs == 15 ? pc_val + 8
1563 : get_frame_register_unsigned (frame, rs)) & 0xFF;
1564 }
1565 else
1566 shift = bits (inst, 7, 11);
1567
1568 res = (rm == 15
1569 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1570 + (bit (inst, 4) ? 12 : 8))
1571 : get_frame_register_unsigned (frame, rm));
1572
1573 switch (shifttype)
1574 {
1575 case 0: /* LSL */
1576 res = shift >= 32 ? 0 : res << shift;
1577 break;
1578
1579 case 1: /* LSR */
1580 res = shift >= 32 ? 0 : res >> shift;
1581 break;
1582
1583 case 2: /* ASR */
1584 if (shift >= 32)
1585 shift = 31;
1586 res = ((res & 0x80000000L)
1587 ? ~((~res) >> shift) : res >> shift);
1588 break;
1589
1590 case 3: /* ROR/RRX */
1591 shift &= 31;
1592 if (shift == 0)
1593 res = (res >> 1) | (carry ? 0x80000000L : 0);
1594 else
1595 res = (res >> shift) | (res << (32 - shift));
1596 break;
1597 }
1598
1599 return res & 0xffffffff;
1600 }
1601
1602 /* Return number of 1-bits in VAL. */
1603
1604 static int
1605 bitcount (unsigned long val)
1606 {
1607 int nbits;
1608 for (nbits = 0; val != 0; nbits++)
1609 val &= val - 1; /* delete rightmost 1-bit in val */
1610 return nbits;
1611 }
1612
1613 static CORE_ADDR
1614 thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1615 {
1616 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1617 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1618 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1619 unsigned long offset;
1620
1621 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1622 {
1623 CORE_ADDR sp;
1624
1625 /* Fetch the saved PC from the stack. It's stored above
1626 all of the other registers. */
1627 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
1628 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1629 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1630 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1631 if (nextpc == pc)
1632 error (_("Infinite loop detected"));
1633 }
1634 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1635 {
1636 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1637 unsigned long cond = bits (inst1, 8, 11);
1638 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1639 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1640 }
1641 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1642 {
1643 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1644 }
1645 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1646 {
1647 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1648 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1649 nextpc = pc_val + offset;
1650 /* For BLX make sure to clear the low bits. */
1651 if (bits (inst2, 11, 12) == 1)
1652 nextpc = nextpc & 0xfffffffc;
1653 }
1654 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1655 {
1656 if (bits (inst1, 3, 6) == 0x0f)
1657 nextpc = pc_val;
1658 else
1659 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
1660
1661 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1662 if (nextpc == pc)
1663 error (_("Infinite loop detected"));
1664 }
1665
1666 return nextpc;
1667 }
1668
1669 static CORE_ADDR
1670 arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1671 {
1672 unsigned long pc_val;
1673 unsigned long this_instr;
1674 unsigned long status;
1675 CORE_ADDR nextpc;
1676
1677 if (arm_pc_is_thumb (pc))
1678 return thumb_get_next_pc (frame, pc);
1679
1680 pc_val = (unsigned long) pc;
1681 this_instr = read_memory_unsigned_integer (pc, 4);
1682 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1683 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1684
1685 if (condition_true (bits (this_instr, 28, 31), status))
1686 {
1687 switch (bits (this_instr, 24, 27))
1688 {
1689 case 0x0:
1690 case 0x1: /* data processing */
1691 case 0x2:
1692 case 0x3:
1693 {
1694 unsigned long operand1, operand2, result = 0;
1695 unsigned long rn;
1696 int c;
1697
1698 if (bits (this_instr, 12, 15) != 15)
1699 break;
1700
1701 if (bits (this_instr, 22, 25) == 0
1702 && bits (this_instr, 4, 7) == 9) /* multiply */
1703 error (_("Invalid update to pc in instruction"));
1704
1705 /* BX <reg>, BLX <reg> */
1706 if (bits (this_instr, 4, 27) == 0x12fff1
1707 || bits (this_instr, 4, 27) == 0x12fff3)
1708 {
1709 rn = bits (this_instr, 0, 3);
1710 result = (rn == 15) ? pc_val + 8
1711 : get_frame_register_unsigned (frame, rn);
1712 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1713 (current_gdbarch, result);
1714
1715 if (nextpc == pc)
1716 error (_("Infinite loop detected"));
1717
1718 return nextpc;
1719 }
1720
1721 /* Multiply into PC */
1722 c = (status & FLAG_C) ? 1 : 0;
1723 rn = bits (this_instr, 16, 19);
1724 operand1 = (rn == 15) ? pc_val + 8
1725 : get_frame_register_unsigned (frame, rn);
1726
1727 if (bit (this_instr, 25))
1728 {
1729 unsigned long immval = bits (this_instr, 0, 7);
1730 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1731 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1732 & 0xffffffff;
1733 }
1734 else /* operand 2 is a shifted register */
1735 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
1736
1737 switch (bits (this_instr, 21, 24))
1738 {
1739 case 0x0: /*and */
1740 result = operand1 & operand2;
1741 break;
1742
1743 case 0x1: /*eor */
1744 result = operand1 ^ operand2;
1745 break;
1746
1747 case 0x2: /*sub */
1748 result = operand1 - operand2;
1749 break;
1750
1751 case 0x3: /*rsb */
1752 result = operand2 - operand1;
1753 break;
1754
1755 case 0x4: /*add */
1756 result = operand1 + operand2;
1757 break;
1758
1759 case 0x5: /*adc */
1760 result = operand1 + operand2 + c;
1761 break;
1762
1763 case 0x6: /*sbc */
1764 result = operand1 - operand2 + c;
1765 break;
1766
1767 case 0x7: /*rsc */
1768 result = operand2 - operand1 + c;
1769 break;
1770
1771 case 0x8:
1772 case 0x9:
1773 case 0xa:
1774 case 0xb: /* tst, teq, cmp, cmn */
1775 result = (unsigned long) nextpc;
1776 break;
1777
1778 case 0xc: /*orr */
1779 result = operand1 | operand2;
1780 break;
1781
1782 case 0xd: /*mov */
1783 /* Always step into a function. */
1784 result = operand2;
1785 break;
1786
1787 case 0xe: /*bic */
1788 result = operand1 & ~operand2;
1789 break;
1790
1791 case 0xf: /*mvn */
1792 result = ~operand2;
1793 break;
1794 }
1795 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1796 (current_gdbarch, result);
1797
1798 if (nextpc == pc)
1799 error (_("Infinite loop detected"));
1800 break;
1801 }
1802
1803 case 0x4:
1804 case 0x5: /* data transfer */
1805 case 0x6:
1806 case 0x7:
1807 if (bit (this_instr, 20))
1808 {
1809 /* load */
1810 if (bits (this_instr, 12, 15) == 15)
1811 {
1812 /* rd == pc */
1813 unsigned long rn;
1814 unsigned long base;
1815
1816 if (bit (this_instr, 22))
1817 error (_("Invalid update to pc in instruction"));
1818
1819 /* byte write to PC */
1820 rn = bits (this_instr, 16, 19);
1821 base = (rn == 15) ? pc_val + 8
1822 : get_frame_register_unsigned (frame, rn);
1823 if (bit (this_instr, 24))
1824 {
1825 /* pre-indexed */
1826 int c = (status & FLAG_C) ? 1 : 0;
1827 unsigned long offset =
1828 (bit (this_instr, 25)
1829 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
1830 : bits (this_instr, 0, 11));
1831
1832 if (bit (this_instr, 23))
1833 base += offset;
1834 else
1835 base -= offset;
1836 }
1837 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1838 4);
1839
1840 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1841
1842 if (nextpc == pc)
1843 error (_("Infinite loop detected"));
1844 }
1845 }
1846 break;
1847
1848 case 0x8:
1849 case 0x9: /* block transfer */
1850 if (bit (this_instr, 20))
1851 {
1852 /* LDM */
1853 if (bit (this_instr, 15))
1854 {
1855 /* loading pc */
1856 int offset = 0;
1857
1858 if (bit (this_instr, 23))
1859 {
1860 /* up */
1861 unsigned long reglist = bits (this_instr, 0, 14);
1862 offset = bitcount (reglist) * 4;
1863 if (bit (this_instr, 24)) /* pre */
1864 offset += 4;
1865 }
1866 else if (bit (this_instr, 24))
1867 offset = -4;
1868
1869 {
1870 unsigned long rn_val =
1871 get_frame_register_unsigned (frame,
1872 bits (this_instr, 16, 19));
1873 nextpc =
1874 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1875 + offset),
1876 4);
1877 }
1878 nextpc = gdbarch_addr_bits_remove
1879 (current_gdbarch, nextpc);
1880 if (nextpc == pc)
1881 error (_("Infinite loop detected"));
1882 }
1883 }
1884 break;
1885
1886 case 0xb: /* branch & link */
1887 case 0xa: /* branch */
1888 {
1889 nextpc = BranchDest (pc, this_instr);
1890
1891 /* BLX */
1892 if (bits (this_instr, 28, 31) == INST_NV)
1893 nextpc |= bit (this_instr, 24) << 1;
1894
1895 nextpc = gdbarch_addr_bits_remove (current_gdbarch, nextpc);
1896 if (nextpc == pc)
1897 error (_("Infinite loop detected"));
1898 break;
1899 }
1900
1901 case 0xc:
1902 case 0xd:
1903 case 0xe: /* coproc ops */
1904 case 0xf: /* SWI */
1905 break;
1906
1907 default:
1908 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1909 return (pc);
1910 }
1911 }
1912
1913 return nextpc;
1914 }
1915
1916 /* single_step() is called just before we want to resume the inferior,
1917 if we want to single-step it but there is no hardware or kernel
1918 single-step support. We find the target of the coming instruction
1919 and breakpoint it. */
1920
1921 int
1922 arm_software_single_step (struct frame_info *frame)
1923 {
1924 /* NOTE: This may insert the wrong breakpoint instruction when
1925 single-stepping over a mode-changing instruction, if the
1926 CPSR heuristics are used. */
1927
1928 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
1929 insert_single_step_breakpoint (next_pc);
1930
1931 return 1;
1932 }
1933
1934 #include "bfd-in2.h"
1935 #include "libcoff.h"
1936
1937 static int
1938 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1939 {
1940 if (arm_pc_is_thumb (memaddr))
1941 {
1942 static asymbol *asym;
1943 static combined_entry_type ce;
1944 static struct coff_symbol_struct csym;
1945 static struct bfd fake_bfd;
1946 static bfd_target fake_target;
1947
1948 if (csym.native == NULL)
1949 {
1950 /* Create a fake symbol vector containing a Thumb symbol.
1951 This is solely so that the code in print_insn_little_arm()
1952 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1953 the presence of a Thumb symbol and switch to decoding
1954 Thumb instructions. */
1955
1956 fake_target.flavour = bfd_target_coff_flavour;
1957 fake_bfd.xvec = &fake_target;
1958 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1959 csym.native = &ce;
1960 csym.symbol.the_bfd = &fake_bfd;
1961 csym.symbol.name = "fake";
1962 asym = (asymbol *) & csym;
1963 }
1964
1965 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1966 info->symbols = &asym;
1967 }
1968 else
1969 info->symbols = NULL;
1970
1971 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1972 return print_insn_big_arm (memaddr, info);
1973 else
1974 return print_insn_little_arm (memaddr, info);
1975 }
1976
1977 /* The following define instruction sequences that will cause ARM
1978 cpu's to take an undefined instruction trap. These are used to
1979 signal a breakpoint to GDB.
1980
1981 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1982 modes. A different instruction is required for each mode. The ARM
1983 cpu's can also be big or little endian. Thus four different
1984 instructions are needed to support all cases.
1985
1986 Note: ARMv4 defines several new instructions that will take the
1987 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1988 not in fact add the new instructions. The new undefined
1989 instructions in ARMv4 are all instructions that had no defined
1990 behaviour in earlier chips. There is no guarantee that they will
1991 raise an exception, but may be treated as NOP's. In practice, it
1992 may only safe to rely on instructions matching:
1993
1994 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1995 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1996 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1997
1998 Even this may only true if the condition predicate is true. The
1999 following use a condition predicate of ALWAYS so it is always TRUE.
2000
2001 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2002 and NetBSD all use a software interrupt rather than an undefined
2003 instruction to force a trap. This can be handled by by the
2004 abi-specific code during establishment of the gdbarch vector. */
2005
2006 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2007 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2008 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2009 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
2010
2011 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2012 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2013 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2014 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2015
2016 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2017 the program counter value to determine whether a 16-bit or 32-bit
2018 breakpoint should be used. It returns a pointer to a string of
2019 bytes that encode a breakpoint instruction, stores the length of
2020 the string to *lenptr, and adjusts the program counter (if
2021 necessary) to point to the actual memory location where the
2022 breakpoint should be inserted. */
2023
2024 static const unsigned char *
2025 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2026 {
2027 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2028
2029 if (arm_pc_is_thumb (*pcptr))
2030 {
2031 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2032 *lenptr = tdep->thumb_breakpoint_size;
2033 return tdep->thumb_breakpoint;
2034 }
2035 else
2036 {
2037 *lenptr = tdep->arm_breakpoint_size;
2038 return tdep->arm_breakpoint;
2039 }
2040 }
2041
2042 /* Extract from an array REGBUF containing the (raw) register state a
2043 function return value of type TYPE, and copy that, in virtual
2044 format, into VALBUF. */
2045
2046 static void
2047 arm_extract_return_value (struct type *type, struct regcache *regs,
2048 gdb_byte *valbuf)
2049 {
2050 if (TYPE_CODE_FLT == TYPE_CODE (type))
2051 {
2052 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2053 {
2054 case ARM_FLOAT_FPA:
2055 {
2056 /* The value is in register F0 in internal format. We need to
2057 extract the raw value and then convert it to the desired
2058 internal type. */
2059 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2060
2061 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2062 convert_from_extended (floatformat_from_type (type), tmpbuf,
2063 valbuf);
2064 }
2065 break;
2066
2067 case ARM_FLOAT_SOFT_FPA:
2068 case ARM_FLOAT_SOFT_VFP:
2069 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2070 if (TYPE_LENGTH (type) > 4)
2071 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2072 valbuf + INT_REGISTER_SIZE);
2073 break;
2074
2075 default:
2076 internal_error
2077 (__FILE__, __LINE__,
2078 _("arm_extract_return_value: Floating point model not supported"));
2079 break;
2080 }
2081 }
2082 else if (TYPE_CODE (type) == TYPE_CODE_INT
2083 || TYPE_CODE (type) == TYPE_CODE_CHAR
2084 || TYPE_CODE (type) == TYPE_CODE_BOOL
2085 || TYPE_CODE (type) == TYPE_CODE_PTR
2086 || TYPE_CODE (type) == TYPE_CODE_REF
2087 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2088 {
2089 /* If the the type is a plain integer, then the access is
2090 straight-forward. Otherwise we have to play around a bit more. */
2091 int len = TYPE_LENGTH (type);
2092 int regno = ARM_A1_REGNUM;
2093 ULONGEST tmp;
2094
2095 while (len > 0)
2096 {
2097 /* By using store_unsigned_integer we avoid having to do
2098 anything special for small big-endian values. */
2099 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2100 store_unsigned_integer (valbuf,
2101 (len > INT_REGISTER_SIZE
2102 ? INT_REGISTER_SIZE : len),
2103 tmp);
2104 len -= INT_REGISTER_SIZE;
2105 valbuf += INT_REGISTER_SIZE;
2106 }
2107 }
2108 else
2109 {
2110 /* For a structure or union the behaviour is as if the value had
2111 been stored to word-aligned memory and then loaded into
2112 registers with 32-bit load instruction(s). */
2113 int len = TYPE_LENGTH (type);
2114 int regno = ARM_A1_REGNUM;
2115 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2116
2117 while (len > 0)
2118 {
2119 regcache_cooked_read (regs, regno++, tmpbuf);
2120 memcpy (valbuf, tmpbuf,
2121 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2122 len -= INT_REGISTER_SIZE;
2123 valbuf += INT_REGISTER_SIZE;
2124 }
2125 }
2126 }
2127
2128
2129 /* Will a function return an aggregate type in memory or in a
2130 register? Return 0 if an aggregate type can be returned in a
2131 register, 1 if it must be returned in memory. */
2132
2133 static int
2134 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2135 {
2136 int nRc;
2137 enum type_code code;
2138
2139 CHECK_TYPEDEF (type);
2140
2141 /* In the ARM ABI, "integer" like aggregate types are returned in
2142 registers. For an aggregate type to be integer like, its size
2143 must be less than or equal to INT_REGISTER_SIZE and the
2144 offset of each addressable subfield must be zero. Note that bit
2145 fields are not addressable, and all addressable subfields of
2146 unions always start at offset zero.
2147
2148 This function is based on the behaviour of GCC 2.95.1.
2149 See: gcc/arm.c: arm_return_in_memory() for details.
2150
2151 Note: All versions of GCC before GCC 2.95.2 do not set up the
2152 parameters correctly for a function returning the following
2153 structure: struct { float f;}; This should be returned in memory,
2154 not a register. Richard Earnshaw sent me a patch, but I do not
2155 know of any way to detect if a function like the above has been
2156 compiled with the correct calling convention. */
2157
2158 /* All aggregate types that won't fit in a register must be returned
2159 in memory. */
2160 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
2161 {
2162 return 1;
2163 }
2164
2165 /* The AAPCS says all aggregates not larger than a word are returned
2166 in a register. */
2167 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2168 return 0;
2169
2170 /* The only aggregate types that can be returned in a register are
2171 structs and unions. Arrays must be returned in memory. */
2172 code = TYPE_CODE (type);
2173 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2174 {
2175 return 1;
2176 }
2177
2178 /* Assume all other aggregate types can be returned in a register.
2179 Run a check for structures, unions and arrays. */
2180 nRc = 0;
2181
2182 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2183 {
2184 int i;
2185 /* Need to check if this struct/union is "integer" like. For
2186 this to be true, its size must be less than or equal to
2187 INT_REGISTER_SIZE and the offset of each addressable
2188 subfield must be zero. Note that bit fields are not
2189 addressable, and unions always start at offset zero. If any
2190 of the subfields is a floating point type, the struct/union
2191 cannot be an integer type. */
2192
2193 /* For each field in the object, check:
2194 1) Is it FP? --> yes, nRc = 1;
2195 2) Is it addressable (bitpos != 0) and
2196 not packed (bitsize == 0)?
2197 --> yes, nRc = 1
2198 */
2199
2200 for (i = 0; i < TYPE_NFIELDS (type); i++)
2201 {
2202 enum type_code field_type_code;
2203 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2204
2205 /* Is it a floating point type field? */
2206 if (field_type_code == TYPE_CODE_FLT)
2207 {
2208 nRc = 1;
2209 break;
2210 }
2211
2212 /* If bitpos != 0, then we have to care about it. */
2213 if (TYPE_FIELD_BITPOS (type, i) != 0)
2214 {
2215 /* Bitfields are not addressable. If the field bitsize is
2216 zero, then the field is not packed. Hence it cannot be
2217 a bitfield or any other packed type. */
2218 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2219 {
2220 nRc = 1;
2221 break;
2222 }
2223 }
2224 }
2225 }
2226
2227 return nRc;
2228 }
2229
2230 /* Write into appropriate registers a function return value of type
2231 TYPE, given in virtual format. */
2232
2233 static void
2234 arm_store_return_value (struct type *type, struct regcache *regs,
2235 const gdb_byte *valbuf)
2236 {
2237 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2238 {
2239 char buf[MAX_REGISTER_SIZE];
2240
2241 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2242 {
2243 case ARM_FLOAT_FPA:
2244
2245 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2246 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2247 break;
2248
2249 case ARM_FLOAT_SOFT_FPA:
2250 case ARM_FLOAT_SOFT_VFP:
2251 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2252 if (TYPE_LENGTH (type) > 4)
2253 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2254 valbuf + INT_REGISTER_SIZE);
2255 break;
2256
2257 default:
2258 internal_error
2259 (__FILE__, __LINE__,
2260 _("arm_store_return_value: Floating point model not supported"));
2261 break;
2262 }
2263 }
2264 else if (TYPE_CODE (type) == TYPE_CODE_INT
2265 || TYPE_CODE (type) == TYPE_CODE_CHAR
2266 || TYPE_CODE (type) == TYPE_CODE_BOOL
2267 || TYPE_CODE (type) == TYPE_CODE_PTR
2268 || TYPE_CODE (type) == TYPE_CODE_REF
2269 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2270 {
2271 if (TYPE_LENGTH (type) <= 4)
2272 {
2273 /* Values of one word or less are zero/sign-extended and
2274 returned in r0. */
2275 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2276 LONGEST val = unpack_long (type, valbuf);
2277
2278 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2279 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2280 }
2281 else
2282 {
2283 /* Integral values greater than one word are stored in consecutive
2284 registers starting with r0. This will always be a multiple of
2285 the regiser size. */
2286 int len = TYPE_LENGTH (type);
2287 int regno = ARM_A1_REGNUM;
2288
2289 while (len > 0)
2290 {
2291 regcache_cooked_write (regs, regno++, valbuf);
2292 len -= INT_REGISTER_SIZE;
2293 valbuf += INT_REGISTER_SIZE;
2294 }
2295 }
2296 }
2297 else
2298 {
2299 /* For a structure or union the behaviour is as if the value had
2300 been stored to word-aligned memory and then loaded into
2301 registers with 32-bit load instruction(s). */
2302 int len = TYPE_LENGTH (type);
2303 int regno = ARM_A1_REGNUM;
2304 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2305
2306 while (len > 0)
2307 {
2308 memcpy (tmpbuf, valbuf,
2309 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2310 regcache_cooked_write (regs, regno++, tmpbuf);
2311 len -= INT_REGISTER_SIZE;
2312 valbuf += INT_REGISTER_SIZE;
2313 }
2314 }
2315 }
2316
2317
2318 /* Handle function return values. */
2319
2320 static enum return_value_convention
2321 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2322 struct regcache *regcache, gdb_byte *readbuf,
2323 const gdb_byte *writebuf)
2324 {
2325 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2326
2327 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2328 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2329 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2330 {
2331 if (tdep->struct_return == pcc_struct_return
2332 || arm_return_in_memory (gdbarch, valtype))
2333 return RETURN_VALUE_STRUCT_CONVENTION;
2334 }
2335
2336 if (writebuf)
2337 arm_store_return_value (valtype, regcache, writebuf);
2338
2339 if (readbuf)
2340 arm_extract_return_value (valtype, regcache, readbuf);
2341
2342 return RETURN_VALUE_REGISTER_CONVENTION;
2343 }
2344
2345
2346 static int
2347 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2348 {
2349 CORE_ADDR jb_addr;
2350 char buf[INT_REGISTER_SIZE];
2351 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
2352
2353 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
2354
2355 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2356 INT_REGISTER_SIZE))
2357 return 0;
2358
2359 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2360 return 1;
2361 }
2362
2363 /* Return non-zero if the PC is inside a thumb call thunk. */
2364
2365 int
2366 arm_in_call_stub (CORE_ADDR pc, char *name)
2367 {
2368 CORE_ADDR start_addr;
2369
2370 /* Find the starting address of the function containing the PC. If
2371 the caller didn't give us a name, look it up at the same time. */
2372 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2373 &start_addr, NULL))
2374 return 0;
2375
2376 return strncmp (name, "_call_via_r", 11) == 0;
2377 }
2378
2379 /* If PC is in a Thumb call or return stub, return the address of the
2380 target PC, which is in a register. The thunk functions are called
2381 _called_via_xx, where x is the register name. The possible names
2382 are r0-r9, sl, fp, ip, sp, and lr. */
2383
2384 CORE_ADDR
2385 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
2386 {
2387 char *name;
2388 CORE_ADDR start_addr;
2389
2390 /* Find the starting address and name of the function containing the PC. */
2391 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2392 return 0;
2393
2394 /* Call thunks always start with "_call_via_". */
2395 if (strncmp (name, "_call_via_", 10) == 0)
2396 {
2397 /* Use the name suffix to determine which register contains the
2398 target PC. */
2399 static char *table[15] =
2400 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2401 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2402 };
2403 int regno;
2404
2405 for (regno = 0; regno <= 14; regno++)
2406 if (strcmp (&name[10], table[regno]) == 0)
2407 return get_frame_register_unsigned (frame, regno);
2408 }
2409
2410 return 0; /* not a stub */
2411 }
2412
2413 static void
2414 set_arm_command (char *args, int from_tty)
2415 {
2416 printf_unfiltered (_("\
2417 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2418 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2419 }
2420
2421 static void
2422 show_arm_command (char *args, int from_tty)
2423 {
2424 cmd_show_list (showarmcmdlist, from_tty, "");
2425 }
2426
2427 static void
2428 arm_update_current_architecture (void)
2429 {
2430 struct gdbarch_info info;
2431
2432 /* If the current architecture is not ARM, we have nothing to do. */
2433 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2434 return;
2435
2436 /* Update the architecture. */
2437 gdbarch_info_init (&info);
2438
2439 if (!gdbarch_update_p (info))
2440 internal_error (__FILE__, __LINE__, "could not update architecture");
2441 }
2442
2443 static void
2444 set_fp_model_sfunc (char *args, int from_tty,
2445 struct cmd_list_element *c)
2446 {
2447 enum arm_float_model fp_model;
2448
2449 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2450 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2451 {
2452 arm_fp_model = fp_model;
2453 break;
2454 }
2455
2456 if (fp_model == ARM_FLOAT_LAST)
2457 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2458 current_fp_model);
2459
2460 arm_update_current_architecture ();
2461 }
2462
2463 static void
2464 show_fp_model (struct ui_file *file, int from_tty,
2465 struct cmd_list_element *c, const char *value)
2466 {
2467 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2468
2469 if (arm_fp_model == ARM_FLOAT_AUTO
2470 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2471 fprintf_filtered (file, _("\
2472 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2473 fp_model_strings[tdep->fp_model]);
2474 else
2475 fprintf_filtered (file, _("\
2476 The current ARM floating point model is \"%s\".\n"),
2477 fp_model_strings[arm_fp_model]);
2478 }
2479
2480 static void
2481 arm_set_abi (char *args, int from_tty,
2482 struct cmd_list_element *c)
2483 {
2484 enum arm_abi_kind arm_abi;
2485
2486 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2487 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2488 {
2489 arm_abi_global = arm_abi;
2490 break;
2491 }
2492
2493 if (arm_abi == ARM_ABI_LAST)
2494 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2495 arm_abi_string);
2496
2497 arm_update_current_architecture ();
2498 }
2499
2500 static void
2501 arm_show_abi (struct ui_file *file, int from_tty,
2502 struct cmd_list_element *c, const char *value)
2503 {
2504 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2505
2506 if (arm_abi_global == ARM_ABI_AUTO
2507 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2508 fprintf_filtered (file, _("\
2509 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2510 arm_abi_strings[tdep->arm_abi]);
2511 else
2512 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2513 arm_abi_string);
2514 }
2515
2516 /* If the user changes the register disassembly style used for info
2517 register and other commands, we have to also switch the style used
2518 in opcodes for disassembly output. This function is run in the "set
2519 arm disassembly" command, and does that. */
2520
2521 static void
2522 set_disassembly_style_sfunc (char *args, int from_tty,
2523 struct cmd_list_element *c)
2524 {
2525 set_disassembly_style ();
2526 }
2527 \f
2528 /* Return the ARM register name corresponding to register I. */
2529 static const char *
2530 arm_register_name (int i)
2531 {
2532 if (i >= ARRAY_SIZE (arm_register_names))
2533 /* These registers are only supported on targets which supply
2534 an XML description. */
2535 return "";
2536
2537 return arm_register_names[i];
2538 }
2539
2540 static void
2541 set_disassembly_style (void)
2542 {
2543 int current;
2544
2545 /* Find the style that the user wants. */
2546 for (current = 0; current < num_disassembly_options; current++)
2547 if (disassembly_style == valid_disassembly_styles[current])
2548 break;
2549 gdb_assert (current < num_disassembly_options);
2550
2551 /* Synchronize the disassembler. */
2552 set_arm_regname_option (current);
2553 }
2554
2555 /* Test whether the coff symbol specific value corresponds to a Thumb
2556 function. */
2557
2558 static int
2559 coff_sym_is_thumb (int val)
2560 {
2561 return (val == C_THUMBEXT ||
2562 val == C_THUMBSTAT ||
2563 val == C_THUMBEXTFUNC ||
2564 val == C_THUMBSTATFUNC ||
2565 val == C_THUMBLABEL);
2566 }
2567
2568 /* arm_coff_make_msymbol_special()
2569 arm_elf_make_msymbol_special()
2570
2571 These functions test whether the COFF or ELF symbol corresponds to
2572 an address in thumb code, and set a "special" bit in a minimal
2573 symbol to indicate that it does. */
2574
2575 static void
2576 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2577 {
2578 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2579 STT_ARM_TFUNC). */
2580 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2581 == STT_LOPROC)
2582 MSYMBOL_SET_SPECIAL (msym);
2583 }
2584
2585 static void
2586 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2587 {
2588 if (coff_sym_is_thumb (val))
2589 MSYMBOL_SET_SPECIAL (msym);
2590 }
2591
2592 static void
2593 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
2594 {
2595 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
2596
2597 /* If necessary, set the T bit. */
2598 if (arm_apcs_32)
2599 {
2600 ULONGEST val;
2601 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
2602 if (arm_pc_is_thumb (pc))
2603 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | 0x20);
2604 else
2605 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
2606 val & ~(ULONGEST) 0x20);
2607 }
2608 }
2609
2610 static struct value *
2611 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2612 {
2613 const int *reg_p = baton;
2614 return value_of_register (*reg_p, frame);
2615 }
2616 \f
2617 static enum gdb_osabi
2618 arm_elf_osabi_sniffer (bfd *abfd)
2619 {
2620 unsigned int elfosabi;
2621 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2622
2623 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2624
2625 if (elfosabi == ELFOSABI_ARM)
2626 /* GNU tools use this value. Check note sections in this case,
2627 as well. */
2628 bfd_map_over_sections (abfd,
2629 generic_elf_osabi_sniff_abi_tag_sections,
2630 &osabi);
2631
2632 /* Anything else will be handled by the generic ELF sniffer. */
2633 return osabi;
2634 }
2635
2636 \f
2637 /* Initialize the current architecture based on INFO. If possible,
2638 re-use an architecture from ARCHES, which is a list of
2639 architectures already created during this debugging session.
2640
2641 Called e.g. at program startup, when reading a core file, and when
2642 reading a binary file. */
2643
2644 static struct gdbarch *
2645 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2646 {
2647 struct gdbarch_tdep *tdep;
2648 struct gdbarch *gdbarch;
2649 struct gdbarch_list *best_arch;
2650 enum arm_abi_kind arm_abi = arm_abi_global;
2651 enum arm_float_model fp_model = arm_fp_model;
2652 struct tdesc_arch_data *tdesc_data = NULL;
2653 int i;
2654 int have_fpa_registers = 1;
2655
2656 /* Check any target description for validity. */
2657 if (tdesc_has_registers (info.target_desc))
2658 {
2659 /* For most registers we require GDB's default names; but also allow
2660 the numeric names for sp / lr / pc, as a convenience. */
2661 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2662 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2663 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2664
2665 const struct tdesc_feature *feature;
2666 int i, valid_p;
2667
2668 feature = tdesc_find_feature (info.target_desc,
2669 "org.gnu.gdb.arm.core");
2670 if (feature == NULL)
2671 return NULL;
2672
2673 tdesc_data = tdesc_data_alloc ();
2674
2675 valid_p = 1;
2676 for (i = 0; i < ARM_SP_REGNUM; i++)
2677 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2678 arm_register_names[i]);
2679 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2680 ARM_SP_REGNUM,
2681 arm_sp_names);
2682 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2683 ARM_LR_REGNUM,
2684 arm_lr_names);
2685 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2686 ARM_PC_REGNUM,
2687 arm_pc_names);
2688 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2689 ARM_PS_REGNUM, "cpsr");
2690
2691 if (!valid_p)
2692 {
2693 tdesc_data_cleanup (tdesc_data);
2694 return NULL;
2695 }
2696
2697 feature = tdesc_find_feature (info.target_desc,
2698 "org.gnu.gdb.arm.fpa");
2699 if (feature != NULL)
2700 {
2701 valid_p = 1;
2702 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2703 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2704 arm_register_names[i]);
2705 if (!valid_p)
2706 {
2707 tdesc_data_cleanup (tdesc_data);
2708 return NULL;
2709 }
2710 }
2711 else
2712 have_fpa_registers = 0;
2713
2714 feature = tdesc_find_feature (info.target_desc,
2715 "org.gnu.gdb.xscale.iwmmxt");
2716 if (feature != NULL)
2717 {
2718 static const char *const iwmmxt_names[] = {
2719 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2720 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2721 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2722 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2723 };
2724
2725 valid_p = 1;
2726 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2727 valid_p
2728 &= tdesc_numbered_register (feature, tdesc_data, i,
2729 iwmmxt_names[i - ARM_WR0_REGNUM]);
2730
2731 /* Check for the control registers, but do not fail if they
2732 are missing. */
2733 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2734 tdesc_numbered_register (feature, tdesc_data, i,
2735 iwmmxt_names[i - ARM_WR0_REGNUM]);
2736
2737 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2738 valid_p
2739 &= tdesc_numbered_register (feature, tdesc_data, i,
2740 iwmmxt_names[i - ARM_WR0_REGNUM]);
2741
2742 if (!valid_p)
2743 {
2744 tdesc_data_cleanup (tdesc_data);
2745 return NULL;
2746 }
2747 }
2748 }
2749
2750 /* If we have an object to base this architecture on, try to determine
2751 its ABI. */
2752
2753 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2754 {
2755 int ei_osabi, e_flags;
2756
2757 switch (bfd_get_flavour (info.abfd))
2758 {
2759 case bfd_target_aout_flavour:
2760 /* Assume it's an old APCS-style ABI. */
2761 arm_abi = ARM_ABI_APCS;
2762 break;
2763
2764 case bfd_target_coff_flavour:
2765 /* Assume it's an old APCS-style ABI. */
2766 /* XXX WinCE? */
2767 arm_abi = ARM_ABI_APCS;
2768 break;
2769
2770 case bfd_target_elf_flavour:
2771 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2772 e_flags = elf_elfheader (info.abfd)->e_flags;
2773
2774 if (ei_osabi == ELFOSABI_ARM)
2775 {
2776 /* GNU tools used to use this value, but do not for EABI
2777 objects. There's nowhere to tag an EABI version
2778 anyway, so assume APCS. */
2779 arm_abi = ARM_ABI_APCS;
2780 }
2781 else if (ei_osabi == ELFOSABI_NONE)
2782 {
2783 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2784
2785 switch (eabi_ver)
2786 {
2787 case EF_ARM_EABI_UNKNOWN:
2788 /* Assume GNU tools. */
2789 arm_abi = ARM_ABI_APCS;
2790 break;
2791
2792 case EF_ARM_EABI_VER4:
2793 case EF_ARM_EABI_VER5:
2794 arm_abi = ARM_ABI_AAPCS;
2795 /* EABI binaries default to VFP float ordering. */
2796 if (fp_model == ARM_FLOAT_AUTO)
2797 fp_model = ARM_FLOAT_SOFT_VFP;
2798 break;
2799
2800 default:
2801 /* Leave it as "auto". */
2802 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2803 break;
2804 }
2805 }
2806
2807 if (fp_model == ARM_FLOAT_AUTO)
2808 {
2809 int e_flags = elf_elfheader (info.abfd)->e_flags;
2810
2811 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2812 {
2813 case 0:
2814 /* Leave it as "auto". Strictly speaking this case
2815 means FPA, but almost nobody uses that now, and
2816 many toolchains fail to set the appropriate bits
2817 for the floating-point model they use. */
2818 break;
2819 case EF_ARM_SOFT_FLOAT:
2820 fp_model = ARM_FLOAT_SOFT_FPA;
2821 break;
2822 case EF_ARM_VFP_FLOAT:
2823 fp_model = ARM_FLOAT_VFP;
2824 break;
2825 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2826 fp_model = ARM_FLOAT_SOFT_VFP;
2827 break;
2828 }
2829 }
2830 break;
2831
2832 default:
2833 /* Leave it as "auto". */
2834 break;
2835 }
2836 }
2837
2838 /* If there is already a candidate, use it. */
2839 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2840 best_arch != NULL;
2841 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2842 {
2843 if (arm_abi != ARM_ABI_AUTO
2844 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2845 continue;
2846
2847 if (fp_model != ARM_FLOAT_AUTO
2848 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2849 continue;
2850
2851 /* Found a match. */
2852 break;
2853 }
2854
2855 if (best_arch != NULL)
2856 {
2857 if (tdesc_data != NULL)
2858 tdesc_data_cleanup (tdesc_data);
2859 return best_arch->gdbarch;
2860 }
2861
2862 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2863 gdbarch = gdbarch_alloc (&info, tdep);
2864
2865 /* Record additional information about the architecture we are defining.
2866 These are gdbarch discriminators, like the OSABI. */
2867 tdep->arm_abi = arm_abi;
2868 tdep->fp_model = fp_model;
2869 tdep->have_fpa_registers = have_fpa_registers;
2870
2871 /* Breakpoints. */
2872 switch (info.byte_order)
2873 {
2874 case BFD_ENDIAN_BIG:
2875 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2876 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2877 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2878 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2879
2880 break;
2881
2882 case BFD_ENDIAN_LITTLE:
2883 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2884 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2885 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2886 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2887
2888 break;
2889
2890 default:
2891 internal_error (__FILE__, __LINE__,
2892 _("arm_gdbarch_init: bad byte order for float format"));
2893 }
2894
2895 /* On ARM targets char defaults to unsigned. */
2896 set_gdbarch_char_signed (gdbarch, 0);
2897
2898 /* This should be low enough for everything. */
2899 tdep->lowest_pc = 0x20;
2900 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2901
2902 /* The default, for both APCS and AAPCS, is to return small
2903 structures in registers. */
2904 tdep->struct_return = reg_struct_return;
2905
2906 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2907 set_gdbarch_frame_align (gdbarch, arm_frame_align);
2908
2909 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2910
2911 /* Frame handling. */
2912 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2913 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2914 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2915
2916 frame_base_set_default (gdbarch, &arm_normal_base);
2917
2918 /* Address manipulation. */
2919 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2920 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2921
2922 /* Advance PC across function entry code. */
2923 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2924
2925 /* Skip trampolines. */
2926 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
2927
2928 /* The stack grows downward. */
2929 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2930
2931 /* Breakpoint manipulation. */
2932 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2933
2934 /* Information about registers, etc. */
2935 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2936 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2937 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2938 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
2939 set_gdbarch_register_type (gdbarch, arm_register_type);
2940
2941 /* This "info float" is FPA-specific. Use the generic version if we
2942 do not have FPA. */
2943 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2944 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2945
2946 /* Internal <-> external register number maps. */
2947 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2948 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2949 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2950
2951 set_gdbarch_register_name (gdbarch, arm_register_name);
2952
2953 /* Returning results. */
2954 set_gdbarch_return_value (gdbarch, arm_return_value);
2955
2956 /* Disassembly. */
2957 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2958
2959 /* Minsymbol frobbing. */
2960 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2961 set_gdbarch_coff_make_msymbol_special (gdbarch,
2962 arm_coff_make_msymbol_special);
2963
2964 /* Virtual tables. */
2965 set_gdbarch_vbit_in_delta (gdbarch, 1);
2966
2967 /* Hook in the ABI-specific overrides, if they have been registered. */
2968 gdbarch_init_osabi (info, gdbarch);
2969
2970 /* Add some default predicates. */
2971 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
2972 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2973 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2974
2975 /* Now we have tuned the configuration, set a few final things,
2976 based on what the OS ABI has told us. */
2977
2978 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
2979 binaries are always marked. */
2980 if (tdep->arm_abi == ARM_ABI_AUTO)
2981 tdep->arm_abi = ARM_ABI_APCS;
2982
2983 /* We used to default to FPA for generic ARM, but almost nobody
2984 uses that now, and we now provide a way for the user to force
2985 the model. So default to the most useful variant. */
2986 if (tdep->fp_model == ARM_FLOAT_AUTO)
2987 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
2988
2989 if (tdep->jb_pc >= 0)
2990 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2991
2992 /* Floating point sizes and format. */
2993 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2994 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
2995 {
2996 set_gdbarch_double_format
2997 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
2998 set_gdbarch_long_double_format
2999 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3000 }
3001 else
3002 {
3003 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3004 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3005 }
3006
3007 if (tdesc_data)
3008 tdesc_use_registers (gdbarch, tdesc_data);
3009
3010 /* Add standard register aliases. We add aliases even for those
3011 nanes which are used by the current architecture - it's simpler,
3012 and does no harm, since nothing ever lists user registers. */
3013 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3014 user_reg_add (gdbarch, arm_register_aliases[i].name,
3015 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3016
3017 return gdbarch;
3018 }
3019
3020 static void
3021 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3022 {
3023 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3024
3025 if (tdep == NULL)
3026 return;
3027
3028 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3029 (unsigned long) tdep->lowest_pc);
3030 }
3031
3032 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3033
3034 void
3035 _initialize_arm_tdep (void)
3036 {
3037 struct ui_file *stb;
3038 long length;
3039 struct cmd_list_element *new_set, *new_show;
3040 const char *setname;
3041 const char *setdesc;
3042 const char *const *regnames;
3043 int numregs, i, j;
3044 static char *helptext;
3045 char regdesc[1024], *rdptr = regdesc;
3046 size_t rest = sizeof (regdesc);
3047
3048 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3049
3050 /* Register an ELF OS ABI sniffer for ARM binaries. */
3051 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3052 bfd_target_elf_flavour,
3053 arm_elf_osabi_sniffer);
3054
3055 /* Get the number of possible sets of register names defined in opcodes. */
3056 num_disassembly_options = get_arm_regname_num_options ();
3057
3058 /* Add root prefix command for all "set arm"/"show arm" commands. */
3059 add_prefix_cmd ("arm", no_class, set_arm_command,
3060 _("Various ARM-specific commands."),
3061 &setarmcmdlist, "set arm ", 0, &setlist);
3062
3063 add_prefix_cmd ("arm", no_class, show_arm_command,
3064 _("Various ARM-specific commands."),
3065 &showarmcmdlist, "show arm ", 0, &showlist);
3066
3067 /* Sync the opcode insn printer with our register viewer. */
3068 parse_arm_disassembler_option ("reg-names-std");
3069
3070 /* Initialize the array that will be passed to
3071 add_setshow_enum_cmd(). */
3072 valid_disassembly_styles
3073 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3074 for (i = 0; i < num_disassembly_options; i++)
3075 {
3076 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3077 valid_disassembly_styles[i] = setname;
3078 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3079 rdptr += length;
3080 rest -= length;
3081 /* When we find the default names, tell the disassembler to use
3082 them. */
3083 if (!strcmp (setname, "std"))
3084 {
3085 disassembly_style = setname;
3086 set_arm_regname_option (i);
3087 }
3088 }
3089 /* Mark the end of valid options. */
3090 valid_disassembly_styles[num_disassembly_options] = NULL;
3091
3092 /* Create the help text. */
3093 stb = mem_fileopen ();
3094 fprintf_unfiltered (stb, "%s%s%s",
3095 _("The valid values are:\n"),
3096 regdesc,
3097 _("The default is \"std\"."));
3098 helptext = ui_file_xstrdup (stb, &length);
3099 ui_file_delete (stb);
3100
3101 add_setshow_enum_cmd("disassembler", no_class,
3102 valid_disassembly_styles, &disassembly_style,
3103 _("Set the disassembly style."),
3104 _("Show the disassembly style."),
3105 helptext,
3106 set_disassembly_style_sfunc,
3107 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3108 &setarmcmdlist, &showarmcmdlist);
3109
3110 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3111 _("Set usage of ARM 32-bit mode."),
3112 _("Show usage of ARM 32-bit mode."),
3113 _("When off, a 26-bit PC will be used."),
3114 NULL,
3115 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3116 &setarmcmdlist, &showarmcmdlist);
3117
3118 /* Add a command to allow the user to force the FPU model. */
3119 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3120 _("Set the floating point type."),
3121 _("Show the floating point type."),
3122 _("auto - Determine the FP typefrom the OS-ABI.\n\
3123 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3124 fpa - FPA co-processor (GCC compiled).\n\
3125 softvfp - Software FP with pure-endian doubles.\n\
3126 vfp - VFP co-processor."),
3127 set_fp_model_sfunc, show_fp_model,
3128 &setarmcmdlist, &showarmcmdlist);
3129
3130 /* Add a command to allow the user to force the ABI. */
3131 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3132 _("Set the ABI."),
3133 _("Show the ABI."),
3134 NULL, arm_set_abi, arm_show_abi,
3135 &setarmcmdlist, &showarmcmdlist);
3136
3137 /* Debugging flag. */
3138 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3139 _("Set ARM debugging."),
3140 _("Show ARM debugging."),
3141 _("When on, arm-specific debugging is enabled."),
3142 NULL,
3143 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3144 &setdebuglist, &showdebuglist);
3145 }