]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arm-tdep.c
2007-06-09 Markus Deuling <deuling@de.ibm.com>
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include <ctype.h> /* XXX for isupper () */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register styles. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "osabi.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39 #include "trad-frame.h"
40 #include "objfiles.h"
41 #include "dwarf2-frame.h"
42 #include "gdbtypes.h"
43 #include "prologue-value.h"
44 #include "target-descriptions.h"
45 #include "user-regs.h"
46
47 #include "arm-tdep.h"
48 #include "gdb/sim-arm.h"
49
50 #include "elf-bfd.h"
51 #include "coff/internal.h"
52 #include "elf/arm.h"
53
54 #include "gdb_assert.h"
55
56 static int arm_debug;
57
58 /* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
60 is used for this purpose.
61
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
64
65 #define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x80000000)
68
69 #define MSYMBOL_IS_SPECIAL(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72 /* The list of available "set arm ..." and "show arm ..." commands. */
73 static struct cmd_list_element *setarmcmdlist = NULL;
74 static struct cmd_list_element *showarmcmdlist = NULL;
75
76 /* The type of floating-point to use. Keep this in sync with enum
77 arm_float_model, and the help string in _initialize_arm_tdep. */
78 static const char *fp_model_strings[] =
79 {
80 "auto",
81 "softfpa",
82 "fpa",
83 "softvfp",
84 "vfp",
85 NULL
86 };
87
88 /* A variable that can be configured by the user. */
89 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
90 static const char *current_fp_model = "auto";
91
92 /* The ABI to use. Keep this in sync with arm_abi_kind. */
93 static const char *arm_abi_strings[] =
94 {
95 "auto",
96 "APCS",
97 "AAPCS",
98 NULL
99 };
100
101 /* A variable that can be configured by the user. */
102 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
103 static const char *arm_abi_string = "auto";
104
105 /* Number of different reg name sets (options). */
106 static int num_disassembly_options;
107
108 /* The standard register names, and all the valid aliases for them. */
109 static const struct
110 {
111 const char *name;
112 int regnum;
113 } arm_register_aliases[] = {
114 /* Basic register numbers. */
115 { "r0", 0 },
116 { "r1", 1 },
117 { "r2", 2 },
118 { "r3", 3 },
119 { "r4", 4 },
120 { "r5", 5 },
121 { "r6", 6 },
122 { "r7", 7 },
123 { "r8", 8 },
124 { "r9", 9 },
125 { "r10", 10 },
126 { "r11", 11 },
127 { "r12", 12 },
128 { "r13", 13 },
129 { "r14", 14 },
130 { "r15", 15 },
131 /* Synonyms (argument and variable registers). */
132 { "a1", 0 },
133 { "a2", 1 },
134 { "a3", 2 },
135 { "a4", 3 },
136 { "v1", 4 },
137 { "v2", 5 },
138 { "v3", 6 },
139 { "v4", 7 },
140 { "v5", 8 },
141 { "v6", 9 },
142 { "v7", 10 },
143 { "v8", 11 },
144 /* Other platform-specific names for r9. */
145 { "sb", 9 },
146 { "tr", 9 },
147 /* Special names. */
148 { "ip", 12 },
149 { "sp", 13 },
150 { "lr", 14 },
151 { "pc", 15 },
152 /* Names used by GCC (not listed in the ARM EABI). */
153 { "sl", 10 },
154 { "fp", 11 },
155 /* A special name from the older ATPCS. */
156 { "wr", 7 },
157 };
158
159 static const char *const arm_register_names[] =
160 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
161 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
162 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
163 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
164 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
165 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
166 "fps", "cpsr" }; /* 24 25 */
167
168 /* Valid register name styles. */
169 static const char **valid_disassembly_styles;
170
171 /* Disassembly style to use. Default to "std" register names. */
172 static const char *disassembly_style;
173
174 /* This is used to keep the bfd arch_info in sync with the disassembly
175 style. */
176 static void set_disassembly_style_sfunc(char *, int,
177 struct cmd_list_element *);
178 static void set_disassembly_style (void);
179
180 static void convert_from_extended (const struct floatformat *, const void *,
181 void *);
182 static void convert_to_extended (const struct floatformat *, void *,
183 const void *);
184
185 struct arm_prologue_cache
186 {
187 /* The stack pointer at the time this frame was created; i.e. the
188 caller's stack pointer when this function was called. It is used
189 to identify this frame. */
190 CORE_ADDR prev_sp;
191
192 /* The frame base for this frame is just prev_sp + frame offset -
193 frame size. FRAMESIZE is the size of this stack frame, and
194 FRAMEOFFSET if the initial offset from the stack pointer (this
195 frame's stack pointer, not PREV_SP) to the frame base. */
196
197 int framesize;
198 int frameoffset;
199
200 /* The register used to hold the frame pointer for this frame. */
201 int framereg;
202
203 /* Saved register offsets. */
204 struct trad_frame_saved_reg *saved_regs;
205 };
206
207 /* Addresses for calling Thumb functions have the bit 0 set.
208 Here are some macros to test, set, or clear bit 0 of addresses. */
209 #define IS_THUMB_ADDR(addr) ((addr) & 1)
210 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
211 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
212
213 /* Set to true if the 32-bit mode is in use. */
214
215 int arm_apcs_32 = 1;
216
217 /* Determine if the program counter specified in MEMADDR is in a Thumb
218 function. */
219
220 static int
221 arm_pc_is_thumb (CORE_ADDR memaddr)
222 {
223 struct minimal_symbol *sym;
224
225 /* If bit 0 of the address is set, assume this is a Thumb address. */
226 if (IS_THUMB_ADDR (memaddr))
227 return 1;
228
229 /* Thumb functions have a "special" bit set in minimal symbols. */
230 sym = lookup_minimal_symbol_by_pc (memaddr);
231 if (sym)
232 {
233 return (MSYMBOL_IS_SPECIAL (sym));
234 }
235 else
236 {
237 return 0;
238 }
239 }
240
241 /* Remove useless bits from addresses in a running program. */
242 static CORE_ADDR
243 arm_addr_bits_remove (CORE_ADDR val)
244 {
245 if (arm_apcs_32)
246 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
247 else
248 return (val & 0x03fffffc);
249 }
250
251 /* When reading symbols, we need to zap the low bit of the address,
252 which may be set to 1 for Thumb functions. */
253 static CORE_ADDR
254 arm_smash_text_address (CORE_ADDR val)
255 {
256 return val & ~1;
257 }
258
259 /* Analyze a Thumb prologue, looking for a recognizable stack frame
260 and frame pointer. Scan until we encounter a store that could
261 clobber the stack frame unexpectedly, or an unknown instruction. */
262
263 static CORE_ADDR
264 thumb_analyze_prologue (struct gdbarch *gdbarch,
265 CORE_ADDR start, CORE_ADDR limit,
266 struct arm_prologue_cache *cache)
267 {
268 int i;
269 pv_t regs[16];
270 struct pv_area *stack;
271 struct cleanup *back_to;
272 CORE_ADDR offset;
273
274 for (i = 0; i < 16; i++)
275 regs[i] = pv_register (i, 0);
276 stack = make_pv_area (ARM_SP_REGNUM);
277 back_to = make_cleanup_free_pv_area (stack);
278
279 /* The call instruction saved PC in LR, and the current PC is not
280 interesting. Due to this file's conventions, we want the value
281 of LR at this function's entry, not at the call site, so we do
282 not record the save of the PC - when the ARM prologue analyzer
283 has also been converted to the pv mechanism, we could record the
284 save here and remove the hack in prev_register. */
285 regs[ARM_PC_REGNUM] = pv_unknown ();
286
287 while (start < limit)
288 {
289 unsigned short insn;
290
291 insn = read_memory_unsigned_integer (start, 2);
292
293 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
294 {
295 int regno;
296 int mask;
297 int stop = 0;
298
299 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
300 whether to save LR (R14). */
301 mask = (insn & 0xff) | ((insn & 0x100) << 6);
302
303 /* Calculate offsets of saved R0-R7 and LR. */
304 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
305 if (mask & (1 << regno))
306 {
307 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
308 {
309 stop = 1;
310 break;
311 }
312
313 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
314 -4);
315 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
316 }
317
318 if (stop)
319 break;
320 }
321 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
322 sub sp, #simm */
323 {
324 offset = (insn & 0x7f) << 2; /* get scaled offset */
325 if (insn & 0x80) /* Check for SUB. */
326 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
327 -offset);
328 else
329 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
330 offset);
331 }
332 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
333 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
334 (insn & 0xff) << 2);
335 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
336 {
337 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
338 int src_reg = (insn & 0x78) >> 3;
339 regs[dst_reg] = regs[src_reg];
340 }
341 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
342 {
343 /* Handle stores to the stack. Normally pushes are used,
344 but with GCC -mtpcs-frame, there may be other stores
345 in the prologue to create the frame. */
346 int regno = (insn >> 8) & 0x7;
347 pv_t addr;
348
349 offset = (insn & 0xff) << 2;
350 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
351
352 if (pv_area_store_would_trash (stack, addr))
353 break;
354
355 pv_area_store (stack, addr, 4, regs[regno]);
356 }
357 else
358 {
359 /* We don't know what this instruction is. We're finished
360 scanning. NOTE: Recognizing more safe-to-ignore
361 instructions here will improve support for optimized
362 code. */
363 break;
364 }
365
366 start += 2;
367 }
368
369 if (cache == NULL)
370 {
371 do_cleanups (back_to);
372 return start;
373 }
374
375 /* frameoffset is unused for this unwinder. */
376 cache->frameoffset = 0;
377
378 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
379 {
380 /* Frame pointer is fp. Frame size is constant. */
381 cache->framereg = ARM_FP_REGNUM;
382 cache->framesize = -regs[ARM_FP_REGNUM].k;
383 }
384 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
385 {
386 /* Frame pointer is r7. Frame size is constant. */
387 cache->framereg = THUMB_FP_REGNUM;
388 cache->framesize = -regs[THUMB_FP_REGNUM].k;
389 }
390 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
391 {
392 /* Try the stack pointer... this is a bit desperate. */
393 cache->framereg = ARM_SP_REGNUM;
394 cache->framesize = -regs[ARM_SP_REGNUM].k;
395 }
396 else
397 {
398 /* We're just out of luck. We don't know where the frame is. */
399 cache->framereg = -1;
400 cache->framesize = 0;
401 }
402
403 for (i = 0; i < 16; i++)
404 if (pv_area_find_reg (stack, gdbarch, i, &offset))
405 cache->saved_regs[i].addr = offset;
406
407 do_cleanups (back_to);
408 return start;
409 }
410
411 /* Advance the PC across any function entry prologue instructions to
412 reach some "real" code.
413
414 The APCS (ARM Procedure Call Standard) defines the following
415 prologue:
416
417 mov ip, sp
418 [stmfd sp!, {a1,a2,a3,a4}]
419 stmfd sp!, {...,fp,ip,lr,pc}
420 [stfe f7, [sp, #-12]!]
421 [stfe f6, [sp, #-12]!]
422 [stfe f5, [sp, #-12]!]
423 [stfe f4, [sp, #-12]!]
424 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
425
426 static CORE_ADDR
427 arm_skip_prologue (CORE_ADDR pc)
428 {
429 unsigned long inst;
430 CORE_ADDR skip_pc;
431 CORE_ADDR func_addr, func_end = 0;
432 char *func_name;
433 struct symtab_and_line sal;
434
435 /* If we're in a dummy frame, don't even try to skip the prologue. */
436 if (deprecated_pc_in_call_dummy (pc))
437 return pc;
438
439 /* See what the symbol table says. */
440
441 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
442 {
443 struct symbol *sym;
444
445 /* Found a function. */
446 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
447 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
448 {
449 /* Don't use this trick for assembly source files. */
450 sal = find_pc_line (func_addr, 0);
451 if ((sal.line != 0) && (sal.end < func_end))
452 return sal.end;
453 }
454 }
455
456 /* Can't find the prologue end in the symbol table, try it the hard way
457 by disassembling the instructions. */
458
459 /* Like arm_scan_prologue, stop no later than pc + 64. */
460 if (func_end == 0 || func_end > pc + 64)
461 func_end = pc + 64;
462
463 /* Check if this is Thumb code. */
464 if (arm_pc_is_thumb (pc))
465 return thumb_analyze_prologue (current_gdbarch, pc, func_end, NULL);
466
467 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
468 {
469 inst = read_memory_unsigned_integer (skip_pc, 4);
470
471 /* "mov ip, sp" is no longer a required part of the prologue. */
472 if (inst == 0xe1a0c00d) /* mov ip, sp */
473 continue;
474
475 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
479 continue;
480
481 /* Some prologues begin with "str lr, [sp, #-4]!". */
482 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
483 continue;
484
485 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
486 continue;
487
488 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
489 continue;
490
491 /* Any insns after this point may float into the code, if it makes
492 for better instruction scheduling, so we skip them only if we
493 find them, but still consider the function to be frame-ful. */
494
495 /* We may have either one sfmfd instruction here, or several stfe
496 insns, depending on the version of floating point code we
497 support. */
498 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
499 continue;
500
501 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
502 continue;
503
504 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
505 continue;
506
507 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
508 continue;
509
510 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
511 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
512 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
513 continue;
514
515 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
516 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
517 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
518 continue;
519
520 /* Un-recognized instruction; stop scanning. */
521 break;
522 }
523
524 return skip_pc; /* End of prologue */
525 }
526
527 /* *INDENT-OFF* */
528 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
529 This function decodes a Thumb function prologue to determine:
530 1) the size of the stack frame
531 2) which registers are saved on it
532 3) the offsets of saved regs
533 4) the offset from the stack pointer to the frame pointer
534
535 A typical Thumb function prologue would create this stack frame
536 (offsets relative to FP)
537 old SP -> 24 stack parameters
538 20 LR
539 16 R7
540 R7 -> 0 local variables (16 bytes)
541 SP -> -12 additional stack space (12 bytes)
542 The frame size would thus be 36 bytes, and the frame offset would be
543 12 bytes. The frame register is R7.
544
545 The comments for thumb_skip_prolog() describe the algorithm we use
546 to detect the end of the prolog. */
547 /* *INDENT-ON* */
548
549 static void
550 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
551 {
552 CORE_ADDR prologue_start;
553 CORE_ADDR prologue_end;
554 CORE_ADDR current_pc;
555 /* Which register has been copied to register n? */
556 int saved_reg[16];
557 /* findmask:
558 bit 0 - push { rlist }
559 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
560 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
561 */
562 int findmask = 0;
563 int i;
564
565 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
566 {
567 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
568
569 if (sal.line == 0) /* no line info, use current PC */
570 prologue_end = prev_pc;
571 else if (sal.end < prologue_end) /* next line begins after fn end */
572 prologue_end = sal.end; /* (probably means no prologue) */
573 }
574 else
575 /* We're in the boondocks: we have no idea where the start of the
576 function is. */
577 return;
578
579 prologue_end = min (prologue_end, prev_pc);
580
581 thumb_analyze_prologue (current_gdbarch, prologue_start, prologue_end,
582 cache);
583 }
584
585 /* This function decodes an ARM function prologue to determine:
586 1) the size of the stack frame
587 2) which registers are saved on it
588 3) the offsets of saved regs
589 4) the offset from the stack pointer to the frame pointer
590 This information is stored in the "extra" fields of the frame_info.
591
592 There are two basic forms for the ARM prologue. The fixed argument
593 function call will look like:
594
595 mov ip, sp
596 stmfd sp!, {fp, ip, lr, pc}
597 sub fp, ip, #4
598 [sub sp, sp, #4]
599
600 Which would create this stack frame (offsets relative to FP):
601 IP -> 4 (caller's stack)
602 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
603 -4 LR (return address in caller)
604 -8 IP (copy of caller's SP)
605 -12 FP (caller's FP)
606 SP -> -28 Local variables
607
608 The frame size would thus be 32 bytes, and the frame offset would be
609 28 bytes. The stmfd call can also save any of the vN registers it
610 plans to use, which increases the frame size accordingly.
611
612 Note: The stored PC is 8 off of the STMFD instruction that stored it
613 because the ARM Store instructions always store PC + 8 when you read
614 the PC register.
615
616 A variable argument function call will look like:
617
618 mov ip, sp
619 stmfd sp!, {a1, a2, a3, a4}
620 stmfd sp!, {fp, ip, lr, pc}
621 sub fp, ip, #20
622
623 Which would create this stack frame (offsets relative to FP):
624 IP -> 20 (caller's stack)
625 16 A4
626 12 A3
627 8 A2
628 4 A1
629 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
630 -4 LR (return address in caller)
631 -8 IP (copy of caller's SP)
632 -12 FP (caller's FP)
633 SP -> -28 Local variables
634
635 The frame size would thus be 48 bytes, and the frame offset would be
636 28 bytes.
637
638 There is another potential complication, which is that the optimizer
639 will try to separate the store of fp in the "stmfd" instruction from
640 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
641 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
642
643 Also, note, the original version of the ARM toolchain claimed that there
644 should be an
645
646 instruction at the end of the prologue. I have never seen GCC produce
647 this, and the ARM docs don't mention it. We still test for it below in
648 case it happens...
649
650 */
651
652 static void
653 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
654 {
655 int regno, sp_offset, fp_offset, ip_offset;
656 CORE_ADDR prologue_start, prologue_end, current_pc;
657 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
658
659 /* Assume there is no frame until proven otherwise. */
660 cache->framereg = ARM_SP_REGNUM;
661 cache->framesize = 0;
662 cache->frameoffset = 0;
663
664 /* Check for Thumb prologue. */
665 if (arm_pc_is_thumb (prev_pc))
666 {
667 thumb_scan_prologue (prev_pc, cache);
668 return;
669 }
670
671 /* Find the function prologue. If we can't find the function in
672 the symbol table, peek in the stack frame to find the PC. */
673 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
674 {
675 /* One way to find the end of the prologue (which works well
676 for unoptimized code) is to do the following:
677
678 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
679
680 if (sal.line == 0)
681 prologue_end = prev_pc;
682 else if (sal.end < prologue_end)
683 prologue_end = sal.end;
684
685 This mechanism is very accurate so long as the optimizer
686 doesn't move any instructions from the function body into the
687 prologue. If this happens, sal.end will be the last
688 instruction in the first hunk of prologue code just before
689 the first instruction that the scheduler has moved from
690 the body to the prologue.
691
692 In order to make sure that we scan all of the prologue
693 instructions, we use a slightly less accurate mechanism which
694 may scan more than necessary. To help compensate for this
695 lack of accuracy, the prologue scanning loop below contains
696 several clauses which'll cause the loop to terminate early if
697 an implausible prologue instruction is encountered.
698
699 The expression
700
701 prologue_start + 64
702
703 is a suitable endpoint since it accounts for the largest
704 possible prologue plus up to five instructions inserted by
705 the scheduler. */
706
707 if (prologue_end > prologue_start + 64)
708 {
709 prologue_end = prologue_start + 64; /* See above. */
710 }
711 }
712 else
713 {
714 /* We have no symbol information. Our only option is to assume this
715 function has a standard stack frame and the normal frame register.
716 Then, we can find the value of our frame pointer on entrance to
717 the callee (or at the present moment if this is the innermost frame).
718 The value stored there should be the address of the stmfd + 8. */
719 CORE_ADDR frame_loc;
720 LONGEST return_value;
721
722 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
723 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
724 return;
725 else
726 {
727 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
728 prologue_end = prologue_start + 64; /* See above. */
729 }
730 }
731
732 if (prev_pc < prologue_end)
733 prologue_end = prev_pc;
734
735 /* Now search the prologue looking for instructions that set up the
736 frame pointer, adjust the stack pointer, and save registers.
737
738 Be careful, however, and if it doesn't look like a prologue,
739 don't try to scan it. If, for instance, a frameless function
740 begins with stmfd sp!, then we will tell ourselves there is
741 a frame, which will confuse stack traceback, as well as "finish"
742 and other operations that rely on a knowledge of the stack
743 traceback.
744
745 In the APCS, the prologue should start with "mov ip, sp" so
746 if we don't see this as the first insn, we will stop.
747
748 [Note: This doesn't seem to be true any longer, so it's now an
749 optional part of the prologue. - Kevin Buettner, 2001-11-20]
750
751 [Note further: The "mov ip,sp" only seems to be missing in
752 frameless functions at optimization level "-O2" or above,
753 in which case it is often (but not always) replaced by
754 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
755
756 sp_offset = fp_offset = ip_offset = 0;
757
758 for (current_pc = prologue_start;
759 current_pc < prologue_end;
760 current_pc += 4)
761 {
762 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
763
764 if (insn == 0xe1a0c00d) /* mov ip, sp */
765 {
766 ip_offset = 0;
767 continue;
768 }
769 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
770 {
771 unsigned imm = insn & 0xff; /* immediate value */
772 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
773 imm = (imm >> rot) | (imm << (32 - rot));
774 ip_offset = imm;
775 continue;
776 }
777 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
778 {
779 unsigned imm = insn & 0xff; /* immediate value */
780 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
781 imm = (imm >> rot) | (imm << (32 - rot));
782 ip_offset = -imm;
783 continue;
784 }
785 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
786 {
787 sp_offset -= 4;
788 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
789 continue;
790 }
791 else if ((insn & 0xffff0000) == 0xe92d0000)
792 /* stmfd sp!, {..., fp, ip, lr, pc}
793 or
794 stmfd sp!, {a1, a2, a3, a4} */
795 {
796 int mask = insn & 0xffff;
797
798 /* Calculate offsets of saved registers. */
799 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
800 if (mask & (1 << regno))
801 {
802 sp_offset -= 4;
803 cache->saved_regs[regno].addr = sp_offset;
804 }
805 }
806 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
807 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
808 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
809 {
810 /* No need to add this to saved_regs -- it's just an arg reg. */
811 continue;
812 }
813 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
814 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
815 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
816 {
817 /* No need to add this to saved_regs -- it's just an arg reg. */
818 continue;
819 }
820 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
821 {
822 unsigned imm = insn & 0xff; /* immediate value */
823 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
824 imm = (imm >> rot) | (imm << (32 - rot));
825 fp_offset = -imm + ip_offset;
826 cache->framereg = ARM_FP_REGNUM;
827 }
828 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
829 {
830 unsigned imm = insn & 0xff; /* immediate value */
831 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
832 imm = (imm >> rot) | (imm << (32 - rot));
833 sp_offset -= imm;
834 }
835 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
836 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
837 {
838 sp_offset -= 12;
839 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
840 cache->saved_regs[regno].addr = sp_offset;
841 }
842 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
843 && gdbarch_tdep (current_gdbarch)->have_fpa_registers)
844 {
845 int n_saved_fp_regs;
846 unsigned int fp_start_reg, fp_bound_reg;
847
848 if ((insn & 0x800) == 0x800) /* N0 is set */
849 {
850 if ((insn & 0x40000) == 0x40000) /* N1 is set */
851 n_saved_fp_regs = 3;
852 else
853 n_saved_fp_regs = 1;
854 }
855 else
856 {
857 if ((insn & 0x40000) == 0x40000) /* N1 is set */
858 n_saved_fp_regs = 2;
859 else
860 n_saved_fp_regs = 4;
861 }
862
863 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
864 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
865 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
866 {
867 sp_offset -= 12;
868 cache->saved_regs[fp_start_reg++].addr = sp_offset;
869 }
870 }
871 else if ((insn & 0xf0000000) != 0xe0000000)
872 break; /* Condition not true, exit early */
873 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
874 break; /* Don't scan past a block load */
875 else
876 /* The optimizer might shove anything into the prologue,
877 so we just skip what we don't recognize. */
878 continue;
879 }
880
881 /* The frame size is just the negative of the offset (from the
882 original SP) of the last thing thing we pushed on the stack.
883 The frame offset is [new FP] - [new SP]. */
884 cache->framesize = -sp_offset;
885 if (cache->framereg == ARM_FP_REGNUM)
886 cache->frameoffset = fp_offset - sp_offset;
887 else
888 cache->frameoffset = 0;
889 }
890
891 static struct arm_prologue_cache *
892 arm_make_prologue_cache (struct frame_info *next_frame)
893 {
894 int reg;
895 struct arm_prologue_cache *cache;
896 CORE_ADDR unwound_fp;
897
898 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
899 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
900
901 arm_scan_prologue (next_frame, cache);
902
903 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
904 if (unwound_fp == 0)
905 return cache;
906
907 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
908
909 /* Calculate actual addresses of saved registers using offsets
910 determined by arm_scan_prologue. */
911 for (reg = 0; reg < gdbarch_num_regs (current_gdbarch); reg++)
912 if (trad_frame_addr_p (cache->saved_regs, reg))
913 cache->saved_regs[reg].addr += cache->prev_sp;
914
915 return cache;
916 }
917
918 /* Our frame ID for a normal frame is the current function's starting PC
919 and the caller's SP when we were called. */
920
921 static void
922 arm_prologue_this_id (struct frame_info *next_frame,
923 void **this_cache,
924 struct frame_id *this_id)
925 {
926 struct arm_prologue_cache *cache;
927 struct frame_id id;
928 CORE_ADDR func;
929
930 if (*this_cache == NULL)
931 *this_cache = arm_make_prologue_cache (next_frame);
932 cache = *this_cache;
933
934 func = frame_func_unwind (next_frame, NORMAL_FRAME);
935
936 /* This is meant to halt the backtrace at "_start". Make sure we
937 don't halt it at a generic dummy frame. */
938 if (func <= LOWEST_PC)
939 return;
940
941 /* If we've hit a wall, stop. */
942 if (cache->prev_sp == 0)
943 return;
944
945 id = frame_id_build (cache->prev_sp, func);
946 *this_id = id;
947 }
948
949 static void
950 arm_prologue_prev_register (struct frame_info *next_frame,
951 void **this_cache,
952 int prev_regnum,
953 int *optimized,
954 enum lval_type *lvalp,
955 CORE_ADDR *addrp,
956 int *realnump,
957 gdb_byte *valuep)
958 {
959 struct arm_prologue_cache *cache;
960
961 if (*this_cache == NULL)
962 *this_cache = arm_make_prologue_cache (next_frame);
963 cache = *this_cache;
964
965 /* If we are asked to unwind the PC, then we need to return the LR
966 instead. The saved value of PC points into this frame's
967 prologue, not the next frame's resume location. */
968 if (prev_regnum == ARM_PC_REGNUM)
969 prev_regnum = ARM_LR_REGNUM;
970
971 /* SP is generally not saved to the stack, but this frame is
972 identified by NEXT_FRAME's stack pointer at the time of the call.
973 The value was already reconstructed into PREV_SP. */
974 if (prev_regnum == ARM_SP_REGNUM)
975 {
976 *lvalp = not_lval;
977 if (valuep)
978 store_unsigned_integer (valuep, 4, cache->prev_sp);
979 return;
980 }
981
982 trad_frame_get_prev_register (next_frame, cache->saved_regs, prev_regnum,
983 optimized, lvalp, addrp, realnump, valuep);
984 }
985
986 struct frame_unwind arm_prologue_unwind = {
987 NORMAL_FRAME,
988 arm_prologue_this_id,
989 arm_prologue_prev_register
990 };
991
992 static const struct frame_unwind *
993 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
994 {
995 return &arm_prologue_unwind;
996 }
997
998 static struct arm_prologue_cache *
999 arm_make_stub_cache (struct frame_info *next_frame)
1000 {
1001 int reg;
1002 struct arm_prologue_cache *cache;
1003 CORE_ADDR unwound_fp;
1004
1005 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1006 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1007
1008 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1009
1010 return cache;
1011 }
1012
1013 /* Our frame ID for a stub frame is the current SP and LR. */
1014
1015 static void
1016 arm_stub_this_id (struct frame_info *next_frame,
1017 void **this_cache,
1018 struct frame_id *this_id)
1019 {
1020 struct arm_prologue_cache *cache;
1021
1022 if (*this_cache == NULL)
1023 *this_cache = arm_make_stub_cache (next_frame);
1024 cache = *this_cache;
1025
1026 *this_id = frame_id_build (cache->prev_sp,
1027 frame_pc_unwind (next_frame));
1028 }
1029
1030 struct frame_unwind arm_stub_unwind = {
1031 NORMAL_FRAME,
1032 arm_stub_this_id,
1033 arm_prologue_prev_register
1034 };
1035
1036 static const struct frame_unwind *
1037 arm_stub_unwind_sniffer (struct frame_info *next_frame)
1038 {
1039 CORE_ADDR addr_in_block;
1040 char dummy[4];
1041
1042 addr_in_block = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
1043 if (in_plt_section (addr_in_block, NULL)
1044 || target_read_memory (frame_pc_unwind (next_frame), dummy, 4) != 0)
1045 return &arm_stub_unwind;
1046
1047 return NULL;
1048 }
1049
1050 static CORE_ADDR
1051 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1052 {
1053 struct arm_prologue_cache *cache;
1054
1055 if (*this_cache == NULL)
1056 *this_cache = arm_make_prologue_cache (next_frame);
1057 cache = *this_cache;
1058
1059 return cache->prev_sp + cache->frameoffset - cache->framesize;
1060 }
1061
1062 struct frame_base arm_normal_base = {
1063 &arm_prologue_unwind,
1064 arm_normal_frame_base,
1065 arm_normal_frame_base,
1066 arm_normal_frame_base
1067 };
1068
1069 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1070 dummy frame. The frame ID's base needs to match the TOS value
1071 saved by save_dummy_frame_tos() and returned from
1072 arm_push_dummy_call, and the PC needs to match the dummy frame's
1073 breakpoint. */
1074
1075 static struct frame_id
1076 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1077 {
1078 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1079 frame_pc_unwind (next_frame));
1080 }
1081
1082 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1083 be used to construct the previous frame's ID, after looking up the
1084 containing function). */
1085
1086 static CORE_ADDR
1087 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1088 {
1089 CORE_ADDR pc;
1090 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1091 return arm_addr_bits_remove (pc);
1092 }
1093
1094 static CORE_ADDR
1095 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1096 {
1097 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1098 }
1099
1100 /* When arguments must be pushed onto the stack, they go on in reverse
1101 order. The code below implements a FILO (stack) to do this. */
1102
1103 struct stack_item
1104 {
1105 int len;
1106 struct stack_item *prev;
1107 void *data;
1108 };
1109
1110 static struct stack_item *
1111 push_stack_item (struct stack_item *prev, void *contents, int len)
1112 {
1113 struct stack_item *si;
1114 si = xmalloc (sizeof (struct stack_item));
1115 si->data = xmalloc (len);
1116 si->len = len;
1117 si->prev = prev;
1118 memcpy (si->data, contents, len);
1119 return si;
1120 }
1121
1122 static struct stack_item *
1123 pop_stack_item (struct stack_item *si)
1124 {
1125 struct stack_item *dead = si;
1126 si = si->prev;
1127 xfree (dead->data);
1128 xfree (dead);
1129 return si;
1130 }
1131
1132
1133 /* Return the alignment (in bytes) of the given type. */
1134
1135 static int
1136 arm_type_align (struct type *t)
1137 {
1138 int n;
1139 int align;
1140 int falign;
1141
1142 t = check_typedef (t);
1143 switch (TYPE_CODE (t))
1144 {
1145 default:
1146 /* Should never happen. */
1147 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1148 return 4;
1149
1150 case TYPE_CODE_PTR:
1151 case TYPE_CODE_ENUM:
1152 case TYPE_CODE_INT:
1153 case TYPE_CODE_FLT:
1154 case TYPE_CODE_SET:
1155 case TYPE_CODE_RANGE:
1156 case TYPE_CODE_BITSTRING:
1157 case TYPE_CODE_REF:
1158 case TYPE_CODE_CHAR:
1159 case TYPE_CODE_BOOL:
1160 return TYPE_LENGTH (t);
1161
1162 case TYPE_CODE_ARRAY:
1163 case TYPE_CODE_COMPLEX:
1164 /* TODO: What about vector types? */
1165 return arm_type_align (TYPE_TARGET_TYPE (t));
1166
1167 case TYPE_CODE_STRUCT:
1168 case TYPE_CODE_UNION:
1169 align = 1;
1170 for (n = 0; n < TYPE_NFIELDS (t); n++)
1171 {
1172 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1173 if (falign > align)
1174 align = falign;
1175 }
1176 return align;
1177 }
1178 }
1179
1180 /* We currently only support passing parameters in integer registers. This
1181 conforms with GCC's default model. Several other variants exist and
1182 we should probably support some of them based on the selected ABI. */
1183
1184 static CORE_ADDR
1185 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1186 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1187 struct value **args, CORE_ADDR sp, int struct_return,
1188 CORE_ADDR struct_addr)
1189 {
1190 int argnum;
1191 int argreg;
1192 int nstack;
1193 struct stack_item *si = NULL;
1194
1195 /* Set the return address. For the ARM, the return breakpoint is
1196 always at BP_ADDR. */
1197 /* XXX Fix for Thumb. */
1198 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1199
1200 /* Walk through the list of args and determine how large a temporary
1201 stack is required. Need to take care here as structs may be
1202 passed on the stack, and we have to to push them. */
1203 nstack = 0;
1204
1205 argreg = ARM_A1_REGNUM;
1206 nstack = 0;
1207
1208 /* The struct_return pointer occupies the first parameter
1209 passing register. */
1210 if (struct_return)
1211 {
1212 if (arm_debug)
1213 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1214 gdbarch_register_name (current_gdbarch, argreg),
1215 paddr (struct_addr));
1216 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1217 argreg++;
1218 }
1219
1220 for (argnum = 0; argnum < nargs; argnum++)
1221 {
1222 int len;
1223 struct type *arg_type;
1224 struct type *target_type;
1225 enum type_code typecode;
1226 bfd_byte *val;
1227 int align;
1228
1229 arg_type = check_typedef (value_type (args[argnum]));
1230 len = TYPE_LENGTH (arg_type);
1231 target_type = TYPE_TARGET_TYPE (arg_type);
1232 typecode = TYPE_CODE (arg_type);
1233 val = value_contents_writeable (args[argnum]);
1234
1235 align = arm_type_align (arg_type);
1236 /* Round alignment up to a whole number of words. */
1237 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1238 /* Different ABIs have different maximum alignments. */
1239 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1240 {
1241 /* The APCS ABI only requires word alignment. */
1242 align = INT_REGISTER_SIZE;
1243 }
1244 else
1245 {
1246 /* The AAPCS requires at most doubleword alignment. */
1247 if (align > INT_REGISTER_SIZE * 2)
1248 align = INT_REGISTER_SIZE * 2;
1249 }
1250
1251 /* Push stack padding for dowubleword alignment. */
1252 if (nstack & (align - 1))
1253 {
1254 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1255 nstack += INT_REGISTER_SIZE;
1256 }
1257
1258 /* Doubleword aligned quantities must go in even register pairs. */
1259 if (argreg <= ARM_LAST_ARG_REGNUM
1260 && align > INT_REGISTER_SIZE
1261 && argreg & 1)
1262 argreg++;
1263
1264 /* If the argument is a pointer to a function, and it is a
1265 Thumb function, create a LOCAL copy of the value and set
1266 the THUMB bit in it. */
1267 if (TYPE_CODE_PTR == typecode
1268 && target_type != NULL
1269 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1270 {
1271 CORE_ADDR regval = extract_unsigned_integer (val, len);
1272 if (arm_pc_is_thumb (regval))
1273 {
1274 val = alloca (len);
1275 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1276 }
1277 }
1278
1279 /* Copy the argument to general registers or the stack in
1280 register-sized pieces. Large arguments are split between
1281 registers and stack. */
1282 while (len > 0)
1283 {
1284 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1285
1286 if (argreg <= ARM_LAST_ARG_REGNUM)
1287 {
1288 /* The argument is being passed in a general purpose
1289 register. */
1290 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1291 if (arm_debug)
1292 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1293 argnum,
1294 gdbarch_register_name
1295 (current_gdbarch, argreg),
1296 phex (regval, DEPRECATED_REGISTER_SIZE));
1297 regcache_cooked_write_unsigned (regcache, argreg, regval);
1298 argreg++;
1299 }
1300 else
1301 {
1302 /* Push the arguments onto the stack. */
1303 if (arm_debug)
1304 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1305 argnum, nstack);
1306 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1307 nstack += DEPRECATED_REGISTER_SIZE;
1308 }
1309
1310 len -= partial_len;
1311 val += partial_len;
1312 }
1313 }
1314 /* If we have an odd number of words to push, then decrement the stack
1315 by one word now, so first stack argument will be dword aligned. */
1316 if (nstack & 4)
1317 sp -= 4;
1318
1319 while (si)
1320 {
1321 sp -= si->len;
1322 write_memory (sp, si->data, si->len);
1323 si = pop_stack_item (si);
1324 }
1325
1326 /* Finally, update teh SP register. */
1327 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1328
1329 return sp;
1330 }
1331
1332
1333 /* Always align the frame to an 8-byte boundary. This is required on
1334 some platforms and harmless on the rest. */
1335
1336 static CORE_ADDR
1337 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1338 {
1339 /* Align the stack to eight bytes. */
1340 return sp & ~ (CORE_ADDR) 7;
1341 }
1342
1343 static void
1344 print_fpu_flags (int flags)
1345 {
1346 if (flags & (1 << 0))
1347 fputs ("IVO ", stdout);
1348 if (flags & (1 << 1))
1349 fputs ("DVZ ", stdout);
1350 if (flags & (1 << 2))
1351 fputs ("OFL ", stdout);
1352 if (flags & (1 << 3))
1353 fputs ("UFL ", stdout);
1354 if (flags & (1 << 4))
1355 fputs ("INX ", stdout);
1356 putchar ('\n');
1357 }
1358
1359 /* Print interesting information about the floating point processor
1360 (if present) or emulator. */
1361 static void
1362 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1363 struct frame_info *frame, const char *args)
1364 {
1365 unsigned long status = read_register (ARM_FPS_REGNUM);
1366 int type;
1367
1368 type = (status >> 24) & 127;
1369 if (status & (1 << 31))
1370 printf (_("Hardware FPU type %d\n"), type);
1371 else
1372 printf (_("Software FPU type %d\n"), type);
1373 /* i18n: [floating point unit] mask */
1374 fputs (_("mask: "), stdout);
1375 print_fpu_flags (status >> 16);
1376 /* i18n: [floating point unit] flags */
1377 fputs (_("flags: "), stdout);
1378 print_fpu_flags (status);
1379 }
1380
1381 /* Return the GDB type object for the "standard" data type of data in
1382 register N. */
1383
1384 static struct type *
1385 arm_register_type (struct gdbarch *gdbarch, int regnum)
1386 {
1387 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1388 return builtin_type_arm_ext;
1389 else if (regnum == ARM_SP_REGNUM)
1390 return builtin_type_void_data_ptr;
1391 else if (regnum == ARM_PC_REGNUM)
1392 return builtin_type_void_func_ptr;
1393 else if (regnum >= ARRAY_SIZE (arm_register_names))
1394 /* These registers are only supported on targets which supply
1395 an XML description. */
1396 return builtin_type_int0;
1397 else
1398 return builtin_type_uint32;
1399 }
1400
1401 /* Map a DWARF register REGNUM onto the appropriate GDB register
1402 number. */
1403
1404 static int
1405 arm_dwarf_reg_to_regnum (int reg)
1406 {
1407 /* Core integer regs. */
1408 if (reg >= 0 && reg <= 15)
1409 return reg;
1410
1411 /* Legacy FPA encoding. These were once used in a way which
1412 overlapped with VFP register numbering, so their use is
1413 discouraged, but GDB doesn't support the ARM toolchain
1414 which used them for VFP. */
1415 if (reg >= 16 && reg <= 23)
1416 return ARM_F0_REGNUM + reg - 16;
1417
1418 /* New assignments for the FPA registers. */
1419 if (reg >= 96 && reg <= 103)
1420 return ARM_F0_REGNUM + reg - 96;
1421
1422 /* WMMX register assignments. */
1423 if (reg >= 104 && reg <= 111)
1424 return ARM_WCGR0_REGNUM + reg - 104;
1425
1426 if (reg >= 112 && reg <= 127)
1427 return ARM_WR0_REGNUM + reg - 112;
1428
1429 if (reg >= 192 && reg <= 199)
1430 return ARM_WC0_REGNUM + reg - 192;
1431
1432 return -1;
1433 }
1434
1435 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1436 static int
1437 arm_register_sim_regno (int regnum)
1438 {
1439 int reg = regnum;
1440 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (current_gdbarch));
1441
1442 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1443 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1444
1445 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1446 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1447
1448 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1449 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1450
1451 if (reg < NUM_GREGS)
1452 return SIM_ARM_R0_REGNUM + reg;
1453 reg -= NUM_GREGS;
1454
1455 if (reg < NUM_FREGS)
1456 return SIM_ARM_FP0_REGNUM + reg;
1457 reg -= NUM_FREGS;
1458
1459 if (reg < NUM_SREGS)
1460 return SIM_ARM_FPS_REGNUM + reg;
1461 reg -= NUM_SREGS;
1462
1463 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1464 }
1465
1466 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1467 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1468 It is thought that this is is the floating-point register format on
1469 little-endian systems. */
1470
1471 static void
1472 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1473 void *dbl)
1474 {
1475 DOUBLEST d;
1476 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1477 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1478 else
1479 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1480 ptr, &d);
1481 floatformat_from_doublest (fmt, &d, dbl);
1482 }
1483
1484 static void
1485 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1486 {
1487 DOUBLEST d;
1488 floatformat_to_doublest (fmt, ptr, &d);
1489 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1490 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1491 else
1492 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1493 &d, dbl);
1494 }
1495
1496 static int
1497 condition_true (unsigned long cond, unsigned long status_reg)
1498 {
1499 if (cond == INST_AL || cond == INST_NV)
1500 return 1;
1501
1502 switch (cond)
1503 {
1504 case INST_EQ:
1505 return ((status_reg & FLAG_Z) != 0);
1506 case INST_NE:
1507 return ((status_reg & FLAG_Z) == 0);
1508 case INST_CS:
1509 return ((status_reg & FLAG_C) != 0);
1510 case INST_CC:
1511 return ((status_reg & FLAG_C) == 0);
1512 case INST_MI:
1513 return ((status_reg & FLAG_N) != 0);
1514 case INST_PL:
1515 return ((status_reg & FLAG_N) == 0);
1516 case INST_VS:
1517 return ((status_reg & FLAG_V) != 0);
1518 case INST_VC:
1519 return ((status_reg & FLAG_V) == 0);
1520 case INST_HI:
1521 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1522 case INST_LS:
1523 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1524 case INST_GE:
1525 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1526 case INST_LT:
1527 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1528 case INST_GT:
1529 return (((status_reg & FLAG_Z) == 0) &&
1530 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1531 case INST_LE:
1532 return (((status_reg & FLAG_Z) != 0) ||
1533 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1534 }
1535 return 1;
1536 }
1537
1538 /* Support routines for single stepping. Calculate the next PC value. */
1539 #define submask(x) ((1L << ((x) + 1)) - 1)
1540 #define bit(obj,st) (((obj) >> (st)) & 1)
1541 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1542 #define sbits(obj,st,fn) \
1543 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1544 #define BranchDest(addr,instr) \
1545 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1546 #define ARM_PC_32 1
1547
1548 static unsigned long
1549 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1550 unsigned long status_reg)
1551 {
1552 unsigned long res, shift;
1553 int rm = bits (inst, 0, 3);
1554 unsigned long shifttype = bits (inst, 5, 6);
1555
1556 if (bit (inst, 4))
1557 {
1558 int rs = bits (inst, 8, 11);
1559 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1560 }
1561 else
1562 shift = bits (inst, 7, 11);
1563
1564 res = (rm == 15
1565 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1566 + (bit (inst, 4) ? 12 : 8))
1567 : read_register (rm));
1568
1569 switch (shifttype)
1570 {
1571 case 0: /* LSL */
1572 res = shift >= 32 ? 0 : res << shift;
1573 break;
1574
1575 case 1: /* LSR */
1576 res = shift >= 32 ? 0 : res >> shift;
1577 break;
1578
1579 case 2: /* ASR */
1580 if (shift >= 32)
1581 shift = 31;
1582 res = ((res & 0x80000000L)
1583 ? ~((~res) >> shift) : res >> shift);
1584 break;
1585
1586 case 3: /* ROR/RRX */
1587 shift &= 31;
1588 if (shift == 0)
1589 res = (res >> 1) | (carry ? 0x80000000L : 0);
1590 else
1591 res = (res >> shift) | (res << (32 - shift));
1592 break;
1593 }
1594
1595 return res & 0xffffffff;
1596 }
1597
1598 /* Return number of 1-bits in VAL. */
1599
1600 static int
1601 bitcount (unsigned long val)
1602 {
1603 int nbits;
1604 for (nbits = 0; val != 0; nbits++)
1605 val &= val - 1; /* delete rightmost 1-bit in val */
1606 return nbits;
1607 }
1608
1609 static CORE_ADDR
1610 thumb_get_next_pc (CORE_ADDR pc)
1611 {
1612 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1613 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1614 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1615 unsigned long offset;
1616
1617 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1618 {
1619 CORE_ADDR sp;
1620
1621 /* Fetch the saved PC from the stack. It's stored above
1622 all of the other registers. */
1623 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1624 sp = read_register (ARM_SP_REGNUM);
1625 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1626 nextpc = ADDR_BITS_REMOVE (nextpc);
1627 if (nextpc == pc)
1628 error (_("Infinite loop detected"));
1629 }
1630 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1631 {
1632 unsigned long status = read_register (ARM_PS_REGNUM);
1633 unsigned long cond = bits (inst1, 8, 11);
1634 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1635 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1636 }
1637 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1638 {
1639 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1640 }
1641 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1642 {
1643 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1644 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1645 nextpc = pc_val + offset;
1646 /* For BLX make sure to clear the low bits. */
1647 if (bits (inst2, 11, 12) == 1)
1648 nextpc = nextpc & 0xfffffffc;
1649 }
1650 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1651 {
1652 if (bits (inst1, 3, 6) == 0x0f)
1653 nextpc = pc_val;
1654 else
1655 nextpc = read_register (bits (inst1, 3, 6));
1656
1657 nextpc = ADDR_BITS_REMOVE (nextpc);
1658 if (nextpc == pc)
1659 error (_("Infinite loop detected"));
1660 }
1661
1662 return nextpc;
1663 }
1664
1665 static CORE_ADDR
1666 arm_get_next_pc (CORE_ADDR pc)
1667 {
1668 unsigned long pc_val;
1669 unsigned long this_instr;
1670 unsigned long status;
1671 CORE_ADDR nextpc;
1672
1673 if (arm_pc_is_thumb (pc))
1674 return thumb_get_next_pc (pc);
1675
1676 pc_val = (unsigned long) pc;
1677 this_instr = read_memory_unsigned_integer (pc, 4);
1678 status = read_register (ARM_PS_REGNUM);
1679 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1680
1681 if (condition_true (bits (this_instr, 28, 31), status))
1682 {
1683 switch (bits (this_instr, 24, 27))
1684 {
1685 case 0x0:
1686 case 0x1: /* data processing */
1687 case 0x2:
1688 case 0x3:
1689 {
1690 unsigned long operand1, operand2, result = 0;
1691 unsigned long rn;
1692 int c;
1693
1694 if (bits (this_instr, 12, 15) != 15)
1695 break;
1696
1697 if (bits (this_instr, 22, 25) == 0
1698 && bits (this_instr, 4, 7) == 9) /* multiply */
1699 error (_("Invalid update to pc in instruction"));
1700
1701 /* BX <reg>, BLX <reg> */
1702 if (bits (this_instr, 4, 27) == 0x12fff1
1703 || bits (this_instr, 4, 27) == 0x12fff3)
1704 {
1705 rn = bits (this_instr, 0, 3);
1706 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1707 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1708
1709 if (nextpc == pc)
1710 error (_("Infinite loop detected"));
1711
1712 return nextpc;
1713 }
1714
1715 /* Multiply into PC */
1716 c = (status & FLAG_C) ? 1 : 0;
1717 rn = bits (this_instr, 16, 19);
1718 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1719
1720 if (bit (this_instr, 25))
1721 {
1722 unsigned long immval = bits (this_instr, 0, 7);
1723 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1724 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1725 & 0xffffffff;
1726 }
1727 else /* operand 2 is a shifted register */
1728 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1729
1730 switch (bits (this_instr, 21, 24))
1731 {
1732 case 0x0: /*and */
1733 result = operand1 & operand2;
1734 break;
1735
1736 case 0x1: /*eor */
1737 result = operand1 ^ operand2;
1738 break;
1739
1740 case 0x2: /*sub */
1741 result = operand1 - operand2;
1742 break;
1743
1744 case 0x3: /*rsb */
1745 result = operand2 - operand1;
1746 break;
1747
1748 case 0x4: /*add */
1749 result = operand1 + operand2;
1750 break;
1751
1752 case 0x5: /*adc */
1753 result = operand1 + operand2 + c;
1754 break;
1755
1756 case 0x6: /*sbc */
1757 result = operand1 - operand2 + c;
1758 break;
1759
1760 case 0x7: /*rsc */
1761 result = operand2 - operand1 + c;
1762 break;
1763
1764 case 0x8:
1765 case 0x9:
1766 case 0xa:
1767 case 0xb: /* tst, teq, cmp, cmn */
1768 result = (unsigned long) nextpc;
1769 break;
1770
1771 case 0xc: /*orr */
1772 result = operand1 | operand2;
1773 break;
1774
1775 case 0xd: /*mov */
1776 /* Always step into a function. */
1777 result = operand2;
1778 break;
1779
1780 case 0xe: /*bic */
1781 result = operand1 & ~operand2;
1782 break;
1783
1784 case 0xf: /*mvn */
1785 result = ~operand2;
1786 break;
1787 }
1788 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1789
1790 if (nextpc == pc)
1791 error (_("Infinite loop detected"));
1792 break;
1793 }
1794
1795 case 0x4:
1796 case 0x5: /* data transfer */
1797 case 0x6:
1798 case 0x7:
1799 if (bit (this_instr, 20))
1800 {
1801 /* load */
1802 if (bits (this_instr, 12, 15) == 15)
1803 {
1804 /* rd == pc */
1805 unsigned long rn;
1806 unsigned long base;
1807
1808 if (bit (this_instr, 22))
1809 error (_("Invalid update to pc in instruction"));
1810
1811 /* byte write to PC */
1812 rn = bits (this_instr, 16, 19);
1813 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1814 if (bit (this_instr, 24))
1815 {
1816 /* pre-indexed */
1817 int c = (status & FLAG_C) ? 1 : 0;
1818 unsigned long offset =
1819 (bit (this_instr, 25)
1820 ? shifted_reg_val (this_instr, c, pc_val, status)
1821 : bits (this_instr, 0, 11));
1822
1823 if (bit (this_instr, 23))
1824 base += offset;
1825 else
1826 base -= offset;
1827 }
1828 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1829 4);
1830
1831 nextpc = ADDR_BITS_REMOVE (nextpc);
1832
1833 if (nextpc == pc)
1834 error (_("Infinite loop detected"));
1835 }
1836 }
1837 break;
1838
1839 case 0x8:
1840 case 0x9: /* block transfer */
1841 if (bit (this_instr, 20))
1842 {
1843 /* LDM */
1844 if (bit (this_instr, 15))
1845 {
1846 /* loading pc */
1847 int offset = 0;
1848
1849 if (bit (this_instr, 23))
1850 {
1851 /* up */
1852 unsigned long reglist = bits (this_instr, 0, 14);
1853 offset = bitcount (reglist) * 4;
1854 if (bit (this_instr, 24)) /* pre */
1855 offset += 4;
1856 }
1857 else if (bit (this_instr, 24))
1858 offset = -4;
1859
1860 {
1861 unsigned long rn_val =
1862 read_register (bits (this_instr, 16, 19));
1863 nextpc =
1864 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1865 + offset),
1866 4);
1867 }
1868 nextpc = ADDR_BITS_REMOVE (nextpc);
1869 if (nextpc == pc)
1870 error (_("Infinite loop detected"));
1871 }
1872 }
1873 break;
1874
1875 case 0xb: /* branch & link */
1876 case 0xa: /* branch */
1877 {
1878 nextpc = BranchDest (pc, this_instr);
1879
1880 /* BLX */
1881 if (bits (this_instr, 28, 31) == INST_NV)
1882 nextpc |= bit (this_instr, 24) << 1;
1883
1884 nextpc = ADDR_BITS_REMOVE (nextpc);
1885 if (nextpc == pc)
1886 error (_("Infinite loop detected"));
1887 break;
1888 }
1889
1890 case 0xc:
1891 case 0xd:
1892 case 0xe: /* coproc ops */
1893 case 0xf: /* SWI */
1894 break;
1895
1896 default:
1897 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
1898 return (pc);
1899 }
1900 }
1901
1902 return nextpc;
1903 }
1904
1905 /* single_step() is called just before we want to resume the inferior,
1906 if we want to single-step it but there is no hardware or kernel
1907 single-step support. We find the target of the coming instruction
1908 and breakpoint it. */
1909
1910 int
1911 arm_software_single_step (struct regcache *regcache)
1912 {
1913 /* NOTE: This may insert the wrong breakpoint instruction when
1914 single-stepping over a mode-changing instruction, if the
1915 CPSR heuristics are used. */
1916
1917 CORE_ADDR next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1918 insert_single_step_breakpoint (next_pc);
1919
1920 return 1;
1921 }
1922
1923 #include "bfd-in2.h"
1924 #include "libcoff.h"
1925
1926 static int
1927 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1928 {
1929 if (arm_pc_is_thumb (memaddr))
1930 {
1931 static asymbol *asym;
1932 static combined_entry_type ce;
1933 static struct coff_symbol_struct csym;
1934 static struct bfd fake_bfd;
1935 static bfd_target fake_target;
1936
1937 if (csym.native == NULL)
1938 {
1939 /* Create a fake symbol vector containing a Thumb symbol.
1940 This is solely so that the code in print_insn_little_arm()
1941 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1942 the presence of a Thumb symbol and switch to decoding
1943 Thumb instructions. */
1944
1945 fake_target.flavour = bfd_target_coff_flavour;
1946 fake_bfd.xvec = &fake_target;
1947 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1948 csym.native = &ce;
1949 csym.symbol.the_bfd = &fake_bfd;
1950 csym.symbol.name = "fake";
1951 asym = (asymbol *) & csym;
1952 }
1953
1954 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1955 info->symbols = &asym;
1956 }
1957 else
1958 info->symbols = NULL;
1959
1960 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
1961 return print_insn_big_arm (memaddr, info);
1962 else
1963 return print_insn_little_arm (memaddr, info);
1964 }
1965
1966 /* The following define instruction sequences that will cause ARM
1967 cpu's to take an undefined instruction trap. These are used to
1968 signal a breakpoint to GDB.
1969
1970 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1971 modes. A different instruction is required for each mode. The ARM
1972 cpu's can also be big or little endian. Thus four different
1973 instructions are needed to support all cases.
1974
1975 Note: ARMv4 defines several new instructions that will take the
1976 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1977 not in fact add the new instructions. The new undefined
1978 instructions in ARMv4 are all instructions that had no defined
1979 behaviour in earlier chips. There is no guarantee that they will
1980 raise an exception, but may be treated as NOP's. In practice, it
1981 may only safe to rely on instructions matching:
1982
1983 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1984 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1985 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1986
1987 Even this may only true if the condition predicate is true. The
1988 following use a condition predicate of ALWAYS so it is always TRUE.
1989
1990 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1991 and NetBSD all use a software interrupt rather than an undefined
1992 instruction to force a trap. This can be handled by by the
1993 abi-specific code during establishment of the gdbarch vector. */
1994
1995 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1996 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1997 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
1998 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
1999
2000 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2001 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2002 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2003 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2004
2005 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2006 the program counter value to determine whether a 16-bit or 32-bit
2007 breakpoint should be used. It returns a pointer to a string of
2008 bytes that encode a breakpoint instruction, stores the length of
2009 the string to *lenptr, and adjusts the program counter (if
2010 necessary) to point to the actual memory location where the
2011 breakpoint should be inserted. */
2012
2013 static const unsigned char *
2014 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2015 {
2016 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2017
2018 if (arm_pc_is_thumb (*pcptr))
2019 {
2020 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2021 *lenptr = tdep->thumb_breakpoint_size;
2022 return tdep->thumb_breakpoint;
2023 }
2024 else
2025 {
2026 *lenptr = tdep->arm_breakpoint_size;
2027 return tdep->arm_breakpoint;
2028 }
2029 }
2030
2031 /* Extract from an array REGBUF containing the (raw) register state a
2032 function return value of type TYPE, and copy that, in virtual
2033 format, into VALBUF. */
2034
2035 static void
2036 arm_extract_return_value (struct type *type, struct regcache *regs,
2037 gdb_byte *valbuf)
2038 {
2039 if (TYPE_CODE_FLT == TYPE_CODE (type))
2040 {
2041 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2042 {
2043 case ARM_FLOAT_FPA:
2044 {
2045 /* The value is in register F0 in internal format. We need to
2046 extract the raw value and then convert it to the desired
2047 internal type. */
2048 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2049
2050 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2051 convert_from_extended (floatformat_from_type (type), tmpbuf,
2052 valbuf);
2053 }
2054 break;
2055
2056 case ARM_FLOAT_SOFT_FPA:
2057 case ARM_FLOAT_SOFT_VFP:
2058 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2059 if (TYPE_LENGTH (type) > 4)
2060 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2061 valbuf + INT_REGISTER_SIZE);
2062 break;
2063
2064 default:
2065 internal_error
2066 (__FILE__, __LINE__,
2067 _("arm_extract_return_value: Floating point model not supported"));
2068 break;
2069 }
2070 }
2071 else if (TYPE_CODE (type) == TYPE_CODE_INT
2072 || TYPE_CODE (type) == TYPE_CODE_CHAR
2073 || TYPE_CODE (type) == TYPE_CODE_BOOL
2074 || TYPE_CODE (type) == TYPE_CODE_PTR
2075 || TYPE_CODE (type) == TYPE_CODE_REF
2076 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2077 {
2078 /* If the the type is a plain integer, then the access is
2079 straight-forward. Otherwise we have to play around a bit more. */
2080 int len = TYPE_LENGTH (type);
2081 int regno = ARM_A1_REGNUM;
2082 ULONGEST tmp;
2083
2084 while (len > 0)
2085 {
2086 /* By using store_unsigned_integer we avoid having to do
2087 anything special for small big-endian values. */
2088 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2089 store_unsigned_integer (valbuf,
2090 (len > INT_REGISTER_SIZE
2091 ? INT_REGISTER_SIZE : len),
2092 tmp);
2093 len -= INT_REGISTER_SIZE;
2094 valbuf += INT_REGISTER_SIZE;
2095 }
2096 }
2097 else
2098 {
2099 /* For a structure or union the behaviour is as if the value had
2100 been stored to word-aligned memory and then loaded into
2101 registers with 32-bit load instruction(s). */
2102 int len = TYPE_LENGTH (type);
2103 int regno = ARM_A1_REGNUM;
2104 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2105
2106 while (len > 0)
2107 {
2108 regcache_cooked_read (regs, regno++, tmpbuf);
2109 memcpy (valbuf, tmpbuf,
2110 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2111 len -= INT_REGISTER_SIZE;
2112 valbuf += INT_REGISTER_SIZE;
2113 }
2114 }
2115 }
2116
2117
2118 /* Will a function return an aggregate type in memory or in a
2119 register? Return 0 if an aggregate type can be returned in a
2120 register, 1 if it must be returned in memory. */
2121
2122 static int
2123 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2124 {
2125 int nRc;
2126 enum type_code code;
2127
2128 CHECK_TYPEDEF (type);
2129
2130 /* In the ARM ABI, "integer" like aggregate types are returned in
2131 registers. For an aggregate type to be integer like, its size
2132 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2133 offset of each addressable subfield must be zero. Note that bit
2134 fields are not addressable, and all addressable subfields of
2135 unions always start at offset zero.
2136
2137 This function is based on the behaviour of GCC 2.95.1.
2138 See: gcc/arm.c: arm_return_in_memory() for details.
2139
2140 Note: All versions of GCC before GCC 2.95.2 do not set up the
2141 parameters correctly for a function returning the following
2142 structure: struct { float f;}; This should be returned in memory,
2143 not a register. Richard Earnshaw sent me a patch, but I do not
2144 know of any way to detect if a function like the above has been
2145 compiled with the correct calling convention. */
2146
2147 /* All aggregate types that won't fit in a register must be returned
2148 in memory. */
2149 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2150 {
2151 return 1;
2152 }
2153
2154 /* The AAPCS says all aggregates not larger than a word are returned
2155 in a register. */
2156 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2157 return 0;
2158
2159 /* The only aggregate types that can be returned in a register are
2160 structs and unions. Arrays must be returned in memory. */
2161 code = TYPE_CODE (type);
2162 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2163 {
2164 return 1;
2165 }
2166
2167 /* Assume all other aggregate types can be returned in a register.
2168 Run a check for structures, unions and arrays. */
2169 nRc = 0;
2170
2171 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2172 {
2173 int i;
2174 /* Need to check if this struct/union is "integer" like. For
2175 this to be true, its size must be less than or equal to
2176 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2177 subfield must be zero. Note that bit fields are not
2178 addressable, and unions always start at offset zero. If any
2179 of the subfields is a floating point type, the struct/union
2180 cannot be an integer type. */
2181
2182 /* For each field in the object, check:
2183 1) Is it FP? --> yes, nRc = 1;
2184 2) Is it addressable (bitpos != 0) and
2185 not packed (bitsize == 0)?
2186 --> yes, nRc = 1
2187 */
2188
2189 for (i = 0; i < TYPE_NFIELDS (type); i++)
2190 {
2191 enum type_code field_type_code;
2192 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2193
2194 /* Is it a floating point type field? */
2195 if (field_type_code == TYPE_CODE_FLT)
2196 {
2197 nRc = 1;
2198 break;
2199 }
2200
2201 /* If bitpos != 0, then we have to care about it. */
2202 if (TYPE_FIELD_BITPOS (type, i) != 0)
2203 {
2204 /* Bitfields are not addressable. If the field bitsize is
2205 zero, then the field is not packed. Hence it cannot be
2206 a bitfield or any other packed type. */
2207 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2208 {
2209 nRc = 1;
2210 break;
2211 }
2212 }
2213 }
2214 }
2215
2216 return nRc;
2217 }
2218
2219 /* Write into appropriate registers a function return value of type
2220 TYPE, given in virtual format. */
2221
2222 static void
2223 arm_store_return_value (struct type *type, struct regcache *regs,
2224 const gdb_byte *valbuf)
2225 {
2226 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2227 {
2228 char buf[MAX_REGISTER_SIZE];
2229
2230 switch (gdbarch_tdep (current_gdbarch)->fp_model)
2231 {
2232 case ARM_FLOAT_FPA:
2233
2234 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2235 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2236 break;
2237
2238 case ARM_FLOAT_SOFT_FPA:
2239 case ARM_FLOAT_SOFT_VFP:
2240 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2241 if (TYPE_LENGTH (type) > 4)
2242 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2243 valbuf + INT_REGISTER_SIZE);
2244 break;
2245
2246 default:
2247 internal_error
2248 (__FILE__, __LINE__,
2249 _("arm_store_return_value: Floating point model not supported"));
2250 break;
2251 }
2252 }
2253 else if (TYPE_CODE (type) == TYPE_CODE_INT
2254 || TYPE_CODE (type) == TYPE_CODE_CHAR
2255 || TYPE_CODE (type) == TYPE_CODE_BOOL
2256 || TYPE_CODE (type) == TYPE_CODE_PTR
2257 || TYPE_CODE (type) == TYPE_CODE_REF
2258 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2259 {
2260 if (TYPE_LENGTH (type) <= 4)
2261 {
2262 /* Values of one word or less are zero/sign-extended and
2263 returned in r0. */
2264 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2265 LONGEST val = unpack_long (type, valbuf);
2266
2267 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2268 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2269 }
2270 else
2271 {
2272 /* Integral values greater than one word are stored in consecutive
2273 registers starting with r0. This will always be a multiple of
2274 the regiser size. */
2275 int len = TYPE_LENGTH (type);
2276 int regno = ARM_A1_REGNUM;
2277
2278 while (len > 0)
2279 {
2280 regcache_cooked_write (regs, regno++, valbuf);
2281 len -= INT_REGISTER_SIZE;
2282 valbuf += INT_REGISTER_SIZE;
2283 }
2284 }
2285 }
2286 else
2287 {
2288 /* For a structure or union the behaviour is as if the value had
2289 been stored to word-aligned memory and then loaded into
2290 registers with 32-bit load instruction(s). */
2291 int len = TYPE_LENGTH (type);
2292 int regno = ARM_A1_REGNUM;
2293 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2294
2295 while (len > 0)
2296 {
2297 memcpy (tmpbuf, valbuf,
2298 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2299 regcache_cooked_write (regs, regno++, tmpbuf);
2300 len -= INT_REGISTER_SIZE;
2301 valbuf += INT_REGISTER_SIZE;
2302 }
2303 }
2304 }
2305
2306
2307 /* Handle function return values. */
2308
2309 static enum return_value_convention
2310 arm_return_value (struct gdbarch *gdbarch, struct type *valtype,
2311 struct regcache *regcache, gdb_byte *readbuf,
2312 const gdb_byte *writebuf)
2313 {
2314 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2315
2316 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2317 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2318 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2319 {
2320 if (tdep->struct_return == pcc_struct_return
2321 || arm_return_in_memory (gdbarch, valtype))
2322 return RETURN_VALUE_STRUCT_CONVENTION;
2323 }
2324
2325 if (writebuf)
2326 arm_store_return_value (valtype, regcache, writebuf);
2327
2328 if (readbuf)
2329 arm_extract_return_value (valtype, regcache, readbuf);
2330
2331 return RETURN_VALUE_REGISTER_CONVENTION;
2332 }
2333
2334
2335 static int
2336 arm_get_longjmp_target (CORE_ADDR *pc)
2337 {
2338 CORE_ADDR jb_addr;
2339 char buf[INT_REGISTER_SIZE];
2340 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2341
2342 jb_addr = read_register (ARM_A1_REGNUM);
2343
2344 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2345 INT_REGISTER_SIZE))
2346 return 0;
2347
2348 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2349 return 1;
2350 }
2351
2352 /* Return non-zero if the PC is inside a thumb call thunk. */
2353
2354 int
2355 arm_in_call_stub (CORE_ADDR pc, char *name)
2356 {
2357 CORE_ADDR start_addr;
2358
2359 /* Find the starting address of the function containing the PC. If
2360 the caller didn't give us a name, look it up at the same time. */
2361 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2362 &start_addr, NULL))
2363 return 0;
2364
2365 return strncmp (name, "_call_via_r", 11) == 0;
2366 }
2367
2368 /* If PC is in a Thumb call or return stub, return the address of the
2369 target PC, which is in a register. The thunk functions are called
2370 _called_via_xx, where x is the register name. The possible names
2371 are r0-r9, sl, fp, ip, sp, and lr. */
2372
2373 CORE_ADDR
2374 arm_skip_stub (CORE_ADDR pc)
2375 {
2376 char *name;
2377 CORE_ADDR start_addr;
2378
2379 /* Find the starting address and name of the function containing the PC. */
2380 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2381 return 0;
2382
2383 /* Call thunks always start with "_call_via_". */
2384 if (strncmp (name, "_call_via_", 10) == 0)
2385 {
2386 /* Use the name suffix to determine which register contains the
2387 target PC. */
2388 static char *table[15] =
2389 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2390 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2391 };
2392 int regno;
2393
2394 for (regno = 0; regno <= 14; regno++)
2395 if (strcmp (&name[10], table[regno]) == 0)
2396 return read_register (regno);
2397 }
2398
2399 return 0; /* not a stub */
2400 }
2401
2402 static void
2403 set_arm_command (char *args, int from_tty)
2404 {
2405 printf_unfiltered (_("\
2406 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2407 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2408 }
2409
2410 static void
2411 show_arm_command (char *args, int from_tty)
2412 {
2413 cmd_show_list (showarmcmdlist, from_tty, "");
2414 }
2415
2416 static void
2417 arm_update_current_architecture (void)
2418 {
2419 struct gdbarch_info info;
2420
2421 /* If the current architecture is not ARM, we have nothing to do. */
2422 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2423 return;
2424
2425 /* Update the architecture. */
2426 gdbarch_info_init (&info);
2427
2428 if (!gdbarch_update_p (info))
2429 internal_error (__FILE__, __LINE__, "could not update architecture");
2430 }
2431
2432 static void
2433 set_fp_model_sfunc (char *args, int from_tty,
2434 struct cmd_list_element *c)
2435 {
2436 enum arm_float_model fp_model;
2437
2438 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2439 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2440 {
2441 arm_fp_model = fp_model;
2442 break;
2443 }
2444
2445 if (fp_model == ARM_FLOAT_LAST)
2446 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2447 current_fp_model);
2448
2449 arm_update_current_architecture ();
2450 }
2451
2452 static void
2453 show_fp_model (struct ui_file *file, int from_tty,
2454 struct cmd_list_element *c, const char *value)
2455 {
2456 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2457
2458 if (arm_fp_model == ARM_FLOAT_AUTO
2459 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2460 fprintf_filtered (file, _("\
2461 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2462 fp_model_strings[tdep->fp_model]);
2463 else
2464 fprintf_filtered (file, _("\
2465 The current ARM floating point model is \"%s\".\n"),
2466 fp_model_strings[arm_fp_model]);
2467 }
2468
2469 static void
2470 arm_set_abi (char *args, int from_tty,
2471 struct cmd_list_element *c)
2472 {
2473 enum arm_abi_kind arm_abi;
2474
2475 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2476 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2477 {
2478 arm_abi_global = arm_abi;
2479 break;
2480 }
2481
2482 if (arm_abi == ARM_ABI_LAST)
2483 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2484 arm_abi_string);
2485
2486 arm_update_current_architecture ();
2487 }
2488
2489 static void
2490 arm_show_abi (struct ui_file *file, int from_tty,
2491 struct cmd_list_element *c, const char *value)
2492 {
2493 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2494
2495 if (arm_abi_global == ARM_ABI_AUTO
2496 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2497 fprintf_filtered (file, _("\
2498 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2499 arm_abi_strings[tdep->arm_abi]);
2500 else
2501 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2502 arm_abi_string);
2503 }
2504
2505 /* If the user changes the register disassembly style used for info
2506 register and other commands, we have to also switch the style used
2507 in opcodes for disassembly output. This function is run in the "set
2508 arm disassembly" command, and does that. */
2509
2510 static void
2511 set_disassembly_style_sfunc (char *args, int from_tty,
2512 struct cmd_list_element *c)
2513 {
2514 set_disassembly_style ();
2515 }
2516 \f
2517 /* Return the ARM register name corresponding to register I. */
2518 static const char *
2519 arm_register_name (int i)
2520 {
2521 if (i >= ARRAY_SIZE (arm_register_names))
2522 /* These registers are only supported on targets which supply
2523 an XML description. */
2524 return "";
2525
2526 return arm_register_names[i];
2527 }
2528
2529 static void
2530 set_disassembly_style (void)
2531 {
2532 int current;
2533
2534 /* Find the style that the user wants. */
2535 for (current = 0; current < num_disassembly_options; current++)
2536 if (disassembly_style == valid_disassembly_styles[current])
2537 break;
2538 gdb_assert (current < num_disassembly_options);
2539
2540 /* Synchronize the disassembler. */
2541 set_arm_regname_option (current);
2542 }
2543
2544 /* Test whether the coff symbol specific value corresponds to a Thumb
2545 function. */
2546
2547 static int
2548 coff_sym_is_thumb (int val)
2549 {
2550 return (val == C_THUMBEXT ||
2551 val == C_THUMBSTAT ||
2552 val == C_THUMBEXTFUNC ||
2553 val == C_THUMBSTATFUNC ||
2554 val == C_THUMBLABEL);
2555 }
2556
2557 /* arm_coff_make_msymbol_special()
2558 arm_elf_make_msymbol_special()
2559
2560 These functions test whether the COFF or ELF symbol corresponds to
2561 an address in thumb code, and set a "special" bit in a minimal
2562 symbol to indicate that it does. */
2563
2564 static void
2565 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2566 {
2567 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2568 STT_ARM_TFUNC). */
2569 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2570 == STT_LOPROC)
2571 MSYMBOL_SET_SPECIAL (msym);
2572 }
2573
2574 static void
2575 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2576 {
2577 if (coff_sym_is_thumb (val))
2578 MSYMBOL_SET_SPECIAL (msym);
2579 }
2580
2581 static void
2582 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2583 {
2584 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2585
2586 /* If necessary, set the T bit. */
2587 if (arm_apcs_32)
2588 {
2589 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2590 if (arm_pc_is_thumb (pc))
2591 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2592 else
2593 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2594 }
2595 }
2596
2597 static struct value *
2598 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2599 {
2600 const int *reg_p = baton;
2601 return value_of_register (*reg_p, frame);
2602 }
2603 \f
2604 static enum gdb_osabi
2605 arm_elf_osabi_sniffer (bfd *abfd)
2606 {
2607 unsigned int elfosabi;
2608 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2609
2610 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2611
2612 if (elfosabi == ELFOSABI_ARM)
2613 /* GNU tools use this value. Check note sections in this case,
2614 as well. */
2615 bfd_map_over_sections (abfd,
2616 generic_elf_osabi_sniff_abi_tag_sections,
2617 &osabi);
2618
2619 /* Anything else will be handled by the generic ELF sniffer. */
2620 return osabi;
2621 }
2622
2623 \f
2624 /* Initialize the current architecture based on INFO. If possible,
2625 re-use an architecture from ARCHES, which is a list of
2626 architectures already created during this debugging session.
2627
2628 Called e.g. at program startup, when reading a core file, and when
2629 reading a binary file. */
2630
2631 static struct gdbarch *
2632 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2633 {
2634 struct gdbarch_tdep *tdep;
2635 struct gdbarch *gdbarch;
2636 struct gdbarch_list *best_arch;
2637 enum arm_abi_kind arm_abi = arm_abi_global;
2638 enum arm_float_model fp_model = arm_fp_model;
2639 struct tdesc_arch_data *tdesc_data = NULL;
2640 int i;
2641 int have_fpa_registers = 1;
2642
2643 /* Check any target description for validity. */
2644 if (tdesc_has_registers (info.target_desc))
2645 {
2646 /* For most registers we require GDB's default names; but also allow
2647 the numeric names for sp / lr / pc, as a convenience. */
2648 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2649 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2650 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2651
2652 const struct tdesc_feature *feature;
2653 int i, valid_p;
2654
2655 feature = tdesc_find_feature (info.target_desc,
2656 "org.gnu.gdb.arm.core");
2657 if (feature == NULL)
2658 return NULL;
2659
2660 tdesc_data = tdesc_data_alloc ();
2661
2662 valid_p = 1;
2663 for (i = 0; i < ARM_SP_REGNUM; i++)
2664 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2665 arm_register_names[i]);
2666 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2667 ARM_SP_REGNUM,
2668 arm_sp_names);
2669 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2670 ARM_LR_REGNUM,
2671 arm_lr_names);
2672 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
2673 ARM_PC_REGNUM,
2674 arm_pc_names);
2675 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2676 ARM_PS_REGNUM, "cpsr");
2677
2678 if (!valid_p)
2679 {
2680 tdesc_data_cleanup (tdesc_data);
2681 return NULL;
2682 }
2683
2684 feature = tdesc_find_feature (info.target_desc,
2685 "org.gnu.gdb.arm.fpa");
2686 if (feature != NULL)
2687 {
2688 valid_p = 1;
2689 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
2690 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2691 arm_register_names[i]);
2692 if (!valid_p)
2693 {
2694 tdesc_data_cleanup (tdesc_data);
2695 return NULL;
2696 }
2697 }
2698 else
2699 have_fpa_registers = 0;
2700
2701 feature = tdesc_find_feature (info.target_desc,
2702 "org.gnu.gdb.xscale.iwmmxt");
2703 if (feature != NULL)
2704 {
2705 static const char *const iwmmxt_names[] = {
2706 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
2707 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
2708 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
2709 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
2710 };
2711
2712 valid_p = 1;
2713 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
2714 valid_p
2715 &= tdesc_numbered_register (feature, tdesc_data, i,
2716 iwmmxt_names[i - ARM_WR0_REGNUM]);
2717
2718 /* Check for the control registers, but do not fail if they
2719 are missing. */
2720 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
2721 tdesc_numbered_register (feature, tdesc_data, i,
2722 iwmmxt_names[i - ARM_WR0_REGNUM]);
2723
2724 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
2725 valid_p
2726 &= tdesc_numbered_register (feature, tdesc_data, i,
2727 iwmmxt_names[i - ARM_WR0_REGNUM]);
2728
2729 if (!valid_p)
2730 {
2731 tdesc_data_cleanup (tdesc_data);
2732 return NULL;
2733 }
2734 }
2735 }
2736
2737 /* If we have an object to base this architecture on, try to determine
2738 its ABI. */
2739
2740 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
2741 {
2742 int ei_osabi, e_flags;
2743
2744 switch (bfd_get_flavour (info.abfd))
2745 {
2746 case bfd_target_aout_flavour:
2747 /* Assume it's an old APCS-style ABI. */
2748 arm_abi = ARM_ABI_APCS;
2749 break;
2750
2751 case bfd_target_coff_flavour:
2752 /* Assume it's an old APCS-style ABI. */
2753 /* XXX WinCE? */
2754 arm_abi = ARM_ABI_APCS;
2755 break;
2756
2757 case bfd_target_elf_flavour:
2758 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
2759 e_flags = elf_elfheader (info.abfd)->e_flags;
2760
2761 if (ei_osabi == ELFOSABI_ARM)
2762 {
2763 /* GNU tools used to use this value, but do not for EABI
2764 objects. There's nowhere to tag an EABI version
2765 anyway, so assume APCS. */
2766 arm_abi = ARM_ABI_APCS;
2767 }
2768 else if (ei_osabi == ELFOSABI_NONE)
2769 {
2770 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
2771
2772 switch (eabi_ver)
2773 {
2774 case EF_ARM_EABI_UNKNOWN:
2775 /* Assume GNU tools. */
2776 arm_abi = ARM_ABI_APCS;
2777 break;
2778
2779 case EF_ARM_EABI_VER4:
2780 case EF_ARM_EABI_VER5:
2781 arm_abi = ARM_ABI_AAPCS;
2782 /* EABI binaries default to VFP float ordering. */
2783 if (fp_model == ARM_FLOAT_AUTO)
2784 fp_model = ARM_FLOAT_SOFT_VFP;
2785 break;
2786
2787 default:
2788 /* Leave it as "auto". */
2789 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
2790 break;
2791 }
2792 }
2793
2794 if (fp_model == ARM_FLOAT_AUTO)
2795 {
2796 int e_flags = elf_elfheader (info.abfd)->e_flags;
2797
2798 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
2799 {
2800 case 0:
2801 /* Leave it as "auto". Strictly speaking this case
2802 means FPA, but almost nobody uses that now, and
2803 many toolchains fail to set the appropriate bits
2804 for the floating-point model they use. */
2805 break;
2806 case EF_ARM_SOFT_FLOAT:
2807 fp_model = ARM_FLOAT_SOFT_FPA;
2808 break;
2809 case EF_ARM_VFP_FLOAT:
2810 fp_model = ARM_FLOAT_VFP;
2811 break;
2812 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
2813 fp_model = ARM_FLOAT_SOFT_VFP;
2814 break;
2815 }
2816 }
2817 break;
2818
2819 default:
2820 /* Leave it as "auto". */
2821 break;
2822 }
2823 }
2824
2825 /* Now that we have inferred any architecture settings that we
2826 can, try to inherit from the last ARM ABI. */
2827 if (arches != NULL)
2828 {
2829 if (arm_abi == ARM_ABI_AUTO)
2830 arm_abi = gdbarch_tdep (arches->gdbarch)->arm_abi;
2831
2832 if (fp_model == ARM_FLOAT_AUTO)
2833 fp_model = gdbarch_tdep (arches->gdbarch)->fp_model;
2834 }
2835 else
2836 {
2837 /* There was no prior ARM architecture; fill in default values. */
2838
2839 if (arm_abi == ARM_ABI_AUTO)
2840 arm_abi = ARM_ABI_APCS;
2841
2842 /* We used to default to FPA for generic ARM, but almost nobody
2843 uses that now, and we now provide a way for the user to force
2844 the model. So default to the most useful variant. */
2845 if (fp_model == ARM_FLOAT_AUTO)
2846 fp_model = ARM_FLOAT_SOFT_FPA;
2847 }
2848
2849 /* If there is already a candidate, use it. */
2850 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
2851 best_arch != NULL;
2852 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
2853 {
2854 if (arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
2855 continue;
2856
2857 if (fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
2858 continue;
2859
2860 /* Found a match. */
2861 break;
2862 }
2863
2864 if (best_arch != NULL)
2865 {
2866 if (tdesc_data != NULL)
2867 tdesc_data_cleanup (tdesc_data);
2868 return best_arch->gdbarch;
2869 }
2870
2871 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
2872 gdbarch = gdbarch_alloc (&info, tdep);
2873
2874 /* Record additional information about the architecture we are defining.
2875 These are gdbarch discriminators, like the OSABI. */
2876 tdep->arm_abi = arm_abi;
2877 tdep->fp_model = fp_model;
2878 tdep->have_fpa_registers = have_fpa_registers;
2879
2880 /* Breakpoints. */
2881 switch (info.byte_order)
2882 {
2883 case BFD_ENDIAN_BIG:
2884 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2885 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2886 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2887 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2888
2889 break;
2890
2891 case BFD_ENDIAN_LITTLE:
2892 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2893 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2894 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2895 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2896
2897 break;
2898
2899 default:
2900 internal_error (__FILE__, __LINE__,
2901 _("arm_gdbarch_init: bad byte order for float format"));
2902 }
2903
2904 /* On ARM targets char defaults to unsigned. */
2905 set_gdbarch_char_signed (gdbarch, 0);
2906
2907 /* This should be low enough for everything. */
2908 tdep->lowest_pc = 0x20;
2909 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2910
2911 /* The default, for both APCS and AAPCS, is to return small
2912 structures in registers. */
2913 tdep->struct_return = reg_struct_return;
2914
2915 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2916 set_gdbarch_frame_align (gdbarch, arm_frame_align);
2917
2918 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2919
2920 /* Frame handling. */
2921 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2922 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2923 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2924
2925 frame_base_set_default (gdbarch, &arm_normal_base);
2926
2927 /* Address manipulation. */
2928 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2929 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2930
2931 /* Advance PC across function entry code. */
2932 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2933
2934 /* Skip trampolines. */
2935 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
2936
2937 /* The stack grows downward. */
2938 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2939
2940 /* Breakpoint manipulation. */
2941 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2942
2943 /* Information about registers, etc. */
2944 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2945 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2946 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2947 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
2948 set_gdbarch_register_type (gdbarch, arm_register_type);
2949
2950 /* This "info float" is FPA-specific. Use the generic version if we
2951 do not have FPA. */
2952 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
2953 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2954
2955 /* Internal <-> external register number maps. */
2956 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2957 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
2958 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2959
2960 /* Integer registers are 4 bytes. */
2961 set_gdbarch_deprecated_register_size (gdbarch, 4);
2962 set_gdbarch_register_name (gdbarch, arm_register_name);
2963
2964 /* Returning results. */
2965 set_gdbarch_return_value (gdbarch, arm_return_value);
2966
2967 /* Disassembly. */
2968 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2969
2970 /* Minsymbol frobbing. */
2971 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2972 set_gdbarch_coff_make_msymbol_special (gdbarch,
2973 arm_coff_make_msymbol_special);
2974
2975 /* Virtual tables. */
2976 set_gdbarch_vbit_in_delta (gdbarch, 1);
2977
2978 /* Hook in the ABI-specific overrides, if they have been registered. */
2979 gdbarch_init_osabi (info, gdbarch);
2980
2981 /* Add some default predicates. */
2982 frame_unwind_append_sniffer (gdbarch, arm_stub_unwind_sniffer);
2983 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2984 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2985
2986 /* Now we have tuned the configuration, set a few final things,
2987 based on what the OS ABI has told us. */
2988
2989 if (tdep->jb_pc >= 0)
2990 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2991
2992 /* Floating point sizes and format. */
2993 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2994 if (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA)
2995 {
2996 set_gdbarch_double_format
2997 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
2998 set_gdbarch_long_double_format
2999 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3000 }
3001 else
3002 {
3003 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3004 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3005 }
3006
3007 if (tdesc_data)
3008 tdesc_use_registers (gdbarch, tdesc_data);
3009
3010 /* Add standard register aliases. We add aliases even for those
3011 nanes which are used by the current architecture - it's simpler,
3012 and does no harm, since nothing ever lists user registers. */
3013 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3014 user_reg_add (gdbarch, arm_register_aliases[i].name,
3015 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3016
3017 return gdbarch;
3018 }
3019
3020 static void
3021 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3022 {
3023 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3024
3025 if (tdep == NULL)
3026 return;
3027
3028 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3029 (unsigned long) tdep->lowest_pc);
3030 }
3031
3032 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3033
3034 void
3035 _initialize_arm_tdep (void)
3036 {
3037 struct ui_file *stb;
3038 long length;
3039 struct cmd_list_element *new_set, *new_show;
3040 const char *setname;
3041 const char *setdesc;
3042 const char *const *regnames;
3043 int numregs, i, j;
3044 static char *helptext;
3045 char regdesc[1024], *rdptr = regdesc;
3046 size_t rest = sizeof (regdesc);
3047
3048 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3049
3050 /* Register an ELF OS ABI sniffer for ARM binaries. */
3051 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3052 bfd_target_elf_flavour,
3053 arm_elf_osabi_sniffer);
3054
3055 /* Get the number of possible sets of register names defined in opcodes. */
3056 num_disassembly_options = get_arm_regname_num_options ();
3057
3058 /* Add root prefix command for all "set arm"/"show arm" commands. */
3059 add_prefix_cmd ("arm", no_class, set_arm_command,
3060 _("Various ARM-specific commands."),
3061 &setarmcmdlist, "set arm ", 0, &setlist);
3062
3063 add_prefix_cmd ("arm", no_class, show_arm_command,
3064 _("Various ARM-specific commands."),
3065 &showarmcmdlist, "show arm ", 0, &showlist);
3066
3067 /* Sync the opcode insn printer with our register viewer. */
3068 parse_arm_disassembler_option ("reg-names-std");
3069
3070 /* Initialize the array that will be passed to
3071 add_setshow_enum_cmd(). */
3072 valid_disassembly_styles
3073 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3074 for (i = 0; i < num_disassembly_options; i++)
3075 {
3076 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3077 valid_disassembly_styles[i] = setname;
3078 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3079 rdptr += length;
3080 rest -= length;
3081 /* When we find the default names, tell the disassembler to use
3082 them. */
3083 if (!strcmp (setname, "std"))
3084 {
3085 disassembly_style = setname;
3086 set_arm_regname_option (i);
3087 }
3088 }
3089 /* Mark the end of valid options. */
3090 valid_disassembly_styles[num_disassembly_options] = NULL;
3091
3092 /* Create the help text. */
3093 stb = mem_fileopen ();
3094 fprintf_unfiltered (stb, "%s%s%s",
3095 _("The valid values are:\n"),
3096 regdesc,
3097 _("The default is \"std\"."));
3098 helptext = ui_file_xstrdup (stb, &length);
3099 ui_file_delete (stb);
3100
3101 add_setshow_enum_cmd("disassembler", no_class,
3102 valid_disassembly_styles, &disassembly_style,
3103 _("Set the disassembly style."),
3104 _("Show the disassembly style."),
3105 helptext,
3106 set_disassembly_style_sfunc,
3107 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3108 &setarmcmdlist, &showarmcmdlist);
3109
3110 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3111 _("Set usage of ARM 32-bit mode."),
3112 _("Show usage of ARM 32-bit mode."),
3113 _("When off, a 26-bit PC will be used."),
3114 NULL,
3115 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3116 &setarmcmdlist, &showarmcmdlist);
3117
3118 /* Add a command to allow the user to force the FPU model. */
3119 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3120 _("Set the floating point type."),
3121 _("Show the floating point type."),
3122 _("auto - Determine the FP typefrom the OS-ABI.\n\
3123 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3124 fpa - FPA co-processor (GCC compiled).\n\
3125 softvfp - Software FP with pure-endian doubles.\n\
3126 vfp - VFP co-processor."),
3127 set_fp_model_sfunc, show_fp_model,
3128 &setarmcmdlist, &showarmcmdlist);
3129
3130 /* Add a command to allow the user to force the ABI. */
3131 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3132 _("Set the ABI."),
3133 _("Show the ABI."),
3134 NULL, arm_set_abi, arm_show_abi,
3135 &setarmcmdlist, &showarmcmdlist);
3136
3137 /* Debugging flag. */
3138 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3139 _("Set ARM debugging."),
3140 _("Show ARM debugging."),
3141 _("When on, arm-specific debugging is enabled."),
3142 NULL,
3143 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3144 &setdebuglist, &showdebuglist);
3145 }