]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arm-tdep.c
2004-07-26 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "dis-asm.h" /* For register styles. */
31 #include "regcache.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
39
40 #include "arm-tdep.h"
41 #include "gdb/sim-arm.h"
42
43 #include "elf-bfd.h"
44 #include "coff/internal.h"
45 #include "elf/arm.h"
46
47 #include "gdb_assert.h"
48
49 static int arm_debug;
50
51 /* Each OS has a different mechanism for accessing the various
52 registers stored in the sigcontext structure.
53
54 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
55 function pointer) which may be used to determine the addresses
56 of the various saved registers in the sigcontext structure.
57
58 For the ARM target, there are three parameters to this function.
59 The first is the pc value of the frame under consideration, the
60 second the stack pointer of this frame, and the last is the
61 register number to fetch.
62
63 If the tm.h file does not define this macro, then it's assumed that
64 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
65 be 0.
66
67 When it comes time to multi-arching this code, see the identically
68 named machinery in ia64-tdep.c for an example of how it could be
69 done. It should not be necessary to modify the code below where
70 this macro is used. */
71
72 #ifdef SIGCONTEXT_REGISTER_ADDRESS
73 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
74 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
75 #endif
76 #else
77 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
78 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
79 #endif
80
81 /* Macros for setting and testing a bit in a minimal symbol that marks
82 it as Thumb function. The MSB of the minimal symbol's "info" field
83 is used for this purpose.
84
85 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
86 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
87
88 #define MSYMBOL_SET_SPECIAL(msym) \
89 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
90 | 0x80000000)
91
92 #define MSYMBOL_IS_SPECIAL(msym) \
93 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
94
95 /* The list of available "set arm ..." and "show arm ..." commands. */
96 static struct cmd_list_element *setarmcmdlist = NULL;
97 static struct cmd_list_element *showarmcmdlist = NULL;
98
99 /* The type of floating-point to use. Keep this in sync with enum
100 arm_float_model, and the help string in _initialize_arm_tdep. */
101 static const char *fp_model_strings[] =
102 {
103 "auto",
104 "softfpa",
105 "fpa",
106 "softvfp",
107 "vfp"
108 };
109
110 /* A variable that can be configured by the user. */
111 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
112 static const char *current_fp_model = "auto";
113
114 /* Number of different reg name sets (options). */
115 static int num_disassembly_options;
116
117 /* We have more registers than the disassembler as gdb can print the value
118 of special registers as well.
119 The general register names are overwritten by whatever is being used by
120 the disassembler at the moment. We also adjust the case of cpsr and fps. */
121
122 /* Initial value: Register names used in ARM's ISA documentation. */
123 static char * arm_register_name_strings[] =
124 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
125 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
126 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
127 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
128 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
129 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
130 "fps", "cpsr" }; /* 24 25 */
131 static char **arm_register_names = arm_register_name_strings;
132
133 /* Valid register name styles. */
134 static const char **valid_disassembly_styles;
135
136 /* Disassembly style to use. Default to "std" register names. */
137 static const char *disassembly_style;
138 /* Index to that option in the opcodes table. */
139 static int current_option;
140
141 /* This is used to keep the bfd arch_info in sync with the disassembly
142 style. */
143 static void set_disassembly_style_sfunc(char *, int,
144 struct cmd_list_element *);
145 static void set_disassembly_style (void);
146
147 static void convert_from_extended (const struct floatformat *, const void *,
148 void *);
149 static void convert_to_extended (const struct floatformat *, void *,
150 const void *);
151
152 struct arm_prologue_cache
153 {
154 /* The stack pointer at the time this frame was created; i.e. the
155 caller's stack pointer when this function was called. It is used
156 to identify this frame. */
157 CORE_ADDR prev_sp;
158
159 /* The frame base for this frame is just prev_sp + frame offset -
160 frame size. FRAMESIZE is the size of this stack frame, and
161 FRAMEOFFSET if the initial offset from the stack pointer (this
162 frame's stack pointer, not PREV_SP) to the frame base. */
163
164 int framesize;
165 int frameoffset;
166
167 /* The register used to hold the frame pointer for this frame. */
168 int framereg;
169
170 /* Saved register offsets. */
171 struct trad_frame_saved_reg *saved_regs;
172 };
173
174 /* Addresses for calling Thumb functions have the bit 0 set.
175 Here are some macros to test, set, or clear bit 0 of addresses. */
176 #define IS_THUMB_ADDR(addr) ((addr) & 1)
177 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
178 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
179
180 /* Set to true if the 32-bit mode is in use. */
181
182 int arm_apcs_32 = 1;
183
184 /* Flag set by arm_fix_call_dummy that tells whether the target
185 function is a Thumb function. This flag is checked by
186 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
187 its use in valops.c) to pass the function address as an additional
188 parameter. */
189
190 static int target_is_thumb;
191
192 /* Flag set by arm_fix_call_dummy that tells whether the calling
193 function is a Thumb function. This flag is checked by
194 arm_pc_is_thumb. */
195
196 static int caller_is_thumb;
197
198 /* Determine if the program counter specified in MEMADDR is in a Thumb
199 function. */
200
201 int
202 arm_pc_is_thumb (CORE_ADDR memaddr)
203 {
204 struct minimal_symbol *sym;
205
206 /* If bit 0 of the address is set, assume this is a Thumb address. */
207 if (IS_THUMB_ADDR (memaddr))
208 return 1;
209
210 /* Thumb functions have a "special" bit set in minimal symbols. */
211 sym = lookup_minimal_symbol_by_pc (memaddr);
212 if (sym)
213 {
214 return (MSYMBOL_IS_SPECIAL (sym));
215 }
216 else
217 {
218 return 0;
219 }
220 }
221
222 /* Determine if the program counter specified in MEMADDR is in a call
223 dummy being called from a Thumb function. */
224
225 int
226 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
227 {
228 CORE_ADDR sp = read_sp ();
229
230 /* FIXME: Until we switch for the new call dummy macros, this heuristic
231 is the best we can do. We are trying to determine if the pc is on
232 the stack, which (hopefully) will only happen in a call dummy.
233 We hope the current stack pointer is not so far alway from the dummy
234 frame location (true if we have not pushed large data structures or
235 gone too many levels deep) and that our 1024 is not enough to consider
236 code regions as part of the stack (true for most practical purposes). */
237 if (deprecated_pc_in_call_dummy (memaddr))
238 return caller_is_thumb;
239 else
240 return 0;
241 }
242
243 /* Remove useless bits from addresses in a running program. */
244 static CORE_ADDR
245 arm_addr_bits_remove (CORE_ADDR val)
246 {
247 if (arm_apcs_32)
248 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
249 else
250 return (val & 0x03fffffc);
251 }
252
253 /* When reading symbols, we need to zap the low bit of the address,
254 which may be set to 1 for Thumb functions. */
255 static CORE_ADDR
256 arm_smash_text_address (CORE_ADDR val)
257 {
258 return val & ~1;
259 }
260
261 /* Immediately after a function call, return the saved pc. Can't
262 always go through the frames for this because on some machines the
263 new frame is not set up until the new function executes some
264 instructions. */
265
266 static CORE_ADDR
267 arm_saved_pc_after_call (struct frame_info *frame)
268 {
269 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
270 }
271
272 /* Determine whether the function invocation represented by FI has a
273 frame on the stack associated with it. If it does return zero,
274 otherwise return 1. */
275
276 static int
277 arm_frameless_function_invocation (struct frame_info *fi)
278 {
279 CORE_ADDR func_start, after_prologue;
280 int frameless;
281
282 /* Sometimes we have functions that do a little setup (like saving the
283 vN registers with the stmdb instruction, but DO NOT set up a frame.
284 The symbol table will report this as a prologue. However, it is
285 important not to try to parse these partial frames as frames, or we
286 will get really confused.
287
288 So I will demand 3 instructions between the start & end of the
289 prologue before I call it a real prologue, i.e. at least
290 mov ip, sp,
291 stmdb sp!, {}
292 sub sp, ip, #4. */
293
294 func_start = (get_frame_func (fi) + DEPRECATED_FUNCTION_START_OFFSET);
295 after_prologue = SKIP_PROLOGUE (func_start);
296
297 /* There are some frameless functions whose first two instructions
298 follow the standard APCS form, in which case after_prologue will
299 be func_start + 8. */
300
301 frameless = (after_prologue < func_start + 12);
302 return frameless;
303 }
304
305 /* A typical Thumb prologue looks like this:
306 push {r7, lr}
307 add sp, sp, #-28
308 add r7, sp, #12
309 Sometimes the latter instruction may be replaced by:
310 mov r7, sp
311
312 or like this:
313 push {r7, lr}
314 mov r7, sp
315 sub sp, #12
316
317 or, on tpcs, like this:
318 sub sp,#16
319 push {r7, lr}
320 (many instructions)
321 mov r7, sp
322 sub sp, #12
323
324 There is always one instruction of three classes:
325 1 - push
326 2 - setting of r7
327 3 - adjusting of sp
328
329 When we have found at least one of each class we are done with the prolog.
330 Note that the "sub sp, #NN" before the push does not count.
331 */
332
333 static CORE_ADDR
334 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
335 {
336 CORE_ADDR current_pc;
337 /* findmask:
338 bit 0 - push { rlist }
339 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
340 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
341 */
342 int findmask = 0;
343
344 for (current_pc = pc;
345 current_pc + 2 < func_end && current_pc < pc + 40;
346 current_pc += 2)
347 {
348 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
349
350 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
351 {
352 findmask |= 1; /* push found */
353 }
354 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
355 sub sp, #simm */
356 {
357 if ((findmask & 1) == 0) /* before push ? */
358 continue;
359 else
360 findmask |= 4; /* add/sub sp found */
361 }
362 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
363 {
364 findmask |= 2; /* setting of r7 found */
365 }
366 else if (insn == 0x466f) /* mov r7, sp */
367 {
368 findmask |= 2; /* setting of r7 found */
369 }
370 else if (findmask == (4+2+1))
371 {
372 /* We have found one of each type of prologue instruction */
373 break;
374 }
375 else
376 /* Something in the prolog that we don't care about or some
377 instruction from outside the prolog scheduled here for
378 optimization. */
379 continue;
380 }
381
382 return current_pc;
383 }
384
385 /* Advance the PC across any function entry prologue instructions to
386 reach some "real" code.
387
388 The APCS (ARM Procedure Call Standard) defines the following
389 prologue:
390
391 mov ip, sp
392 [stmfd sp!, {a1,a2,a3,a4}]
393 stmfd sp!, {...,fp,ip,lr,pc}
394 [stfe f7, [sp, #-12]!]
395 [stfe f6, [sp, #-12]!]
396 [stfe f5, [sp, #-12]!]
397 [stfe f4, [sp, #-12]!]
398 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
399
400 static CORE_ADDR
401 arm_skip_prologue (CORE_ADDR pc)
402 {
403 unsigned long inst;
404 CORE_ADDR skip_pc;
405 CORE_ADDR func_addr, func_end = 0;
406 char *func_name;
407 struct symtab_and_line sal;
408
409 /* If we're in a dummy frame, don't even try to skip the prologue. */
410 if (deprecated_pc_in_call_dummy (pc))
411 return pc;
412
413 /* See what the symbol table says. */
414
415 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
416 {
417 struct symbol *sym;
418
419 /* Found a function. */
420 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
421 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
422 {
423 /* Don't use this trick for assembly source files. */
424 sal = find_pc_line (func_addr, 0);
425 if ((sal.line != 0) && (sal.end < func_end))
426 return sal.end;
427 }
428 }
429
430 /* Check if this is Thumb code. */
431 if (arm_pc_is_thumb (pc))
432 return thumb_skip_prologue (pc, func_end);
433
434 /* Can't find the prologue end in the symbol table, try it the hard way
435 by disassembling the instructions. */
436
437 /* Like arm_scan_prologue, stop no later than pc + 64. */
438 if (func_end == 0 || func_end > pc + 64)
439 func_end = pc + 64;
440
441 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
442 {
443 inst = read_memory_integer (skip_pc, 4);
444
445 /* "mov ip, sp" is no longer a required part of the prologue. */
446 if (inst == 0xe1a0c00d) /* mov ip, sp */
447 continue;
448
449 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
450 continue;
451
452 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
453 continue;
454
455 /* Some prologues begin with "str lr, [sp, #-4]!". */
456 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
457 continue;
458
459 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
460 continue;
461
462 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
463 continue;
464
465 /* Any insns after this point may float into the code, if it makes
466 for better instruction scheduling, so we skip them only if we
467 find them, but still consider the function to be frame-ful. */
468
469 /* We may have either one sfmfd instruction here, or several stfe
470 insns, depending on the version of floating point code we
471 support. */
472 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
473 continue;
474
475 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
479 continue;
480
481 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
482 continue;
483
484 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
485 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
486 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
487 continue;
488
489 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
490 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
491 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
492 continue;
493
494 /* Un-recognized instruction; stop scanning. */
495 break;
496 }
497
498 return skip_pc; /* End of prologue */
499 }
500
501 /* *INDENT-OFF* */
502 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
503 This function decodes a Thumb function prologue to determine:
504 1) the size of the stack frame
505 2) which registers are saved on it
506 3) the offsets of saved regs
507 4) the offset from the stack pointer to the frame pointer
508
509 A typical Thumb function prologue would create this stack frame
510 (offsets relative to FP)
511 old SP -> 24 stack parameters
512 20 LR
513 16 R7
514 R7 -> 0 local variables (16 bytes)
515 SP -> -12 additional stack space (12 bytes)
516 The frame size would thus be 36 bytes, and the frame offset would be
517 12 bytes. The frame register is R7.
518
519 The comments for thumb_skip_prolog() describe the algorithm we use
520 to detect the end of the prolog. */
521 /* *INDENT-ON* */
522
523 static void
524 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
525 {
526 CORE_ADDR prologue_start;
527 CORE_ADDR prologue_end;
528 CORE_ADDR current_pc;
529 /* Which register has been copied to register n? */
530 int saved_reg[16];
531 /* findmask:
532 bit 0 - push { rlist }
533 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
534 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
535 */
536 int findmask = 0;
537 int i;
538
539 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
540 {
541 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
542
543 if (sal.line == 0) /* no line info, use current PC */
544 prologue_end = prev_pc;
545 else if (sal.end < prologue_end) /* next line begins after fn end */
546 prologue_end = sal.end; /* (probably means no prologue) */
547 }
548 else
549 /* We're in the boondocks: allow for
550 16 pushes, an add, and "mv fp,sp". */
551 prologue_end = prologue_start + 40;
552
553 prologue_end = min (prologue_end, prev_pc);
554
555 /* Initialize the saved register map. When register H is copied to
556 register L, we will put H in saved_reg[L]. */
557 for (i = 0; i < 16; i++)
558 saved_reg[i] = i;
559
560 /* Search the prologue looking for instructions that set up the
561 frame pointer, adjust the stack pointer, and save registers.
562 Do this until all basic prolog instructions are found. */
563
564 cache->framesize = 0;
565 for (current_pc = prologue_start;
566 (current_pc < prologue_end) && ((findmask & 7) != 7);
567 current_pc += 2)
568 {
569 unsigned short insn;
570 int regno;
571 int offset;
572
573 insn = read_memory_unsigned_integer (current_pc, 2);
574
575 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
576 {
577 int mask;
578 findmask |= 1; /* push found */
579 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
580 whether to save LR (R14). */
581 mask = (insn & 0xff) | ((insn & 0x100) << 6);
582
583 /* Calculate offsets of saved R0-R7 and LR. */
584 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
585 if (mask & (1 << regno))
586 {
587 cache->framesize += 4;
588 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
589 /* Reset saved register map. */
590 saved_reg[regno] = regno;
591 }
592 }
593 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
594 sub sp, #simm */
595 {
596 if ((findmask & 1) == 0) /* before push? */
597 continue;
598 else
599 findmask |= 4; /* add/sub sp found */
600
601 offset = (insn & 0x7f) << 2; /* get scaled offset */
602 if (insn & 0x80) /* is it signed? (==subtracting) */
603 {
604 cache->frameoffset += offset;
605 offset = -offset;
606 }
607 cache->framesize -= offset;
608 }
609 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
610 {
611 findmask |= 2; /* setting of r7 found */
612 cache->framereg = THUMB_FP_REGNUM;
613 /* get scaled offset */
614 cache->frameoffset = (insn & 0xff) << 2;
615 }
616 else if (insn == 0x466f) /* mov r7, sp */
617 {
618 findmask |= 2; /* setting of r7 found */
619 cache->framereg = THUMB_FP_REGNUM;
620 cache->frameoffset = 0;
621 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
622 }
623 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
624 {
625 int lo_reg = insn & 7; /* dest. register (r0-r7) */
626 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
627 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
628 }
629 else
630 /* Something in the prolog that we don't care about or some
631 instruction from outside the prolog scheduled here for
632 optimization. */
633 continue;
634 }
635 }
636
637 /* This function decodes an ARM function prologue to determine:
638 1) the size of the stack frame
639 2) which registers are saved on it
640 3) the offsets of saved regs
641 4) the offset from the stack pointer to the frame pointer
642 This information is stored in the "extra" fields of the frame_info.
643
644 There are two basic forms for the ARM prologue. The fixed argument
645 function call will look like:
646
647 mov ip, sp
648 stmfd sp!, {fp, ip, lr, pc}
649 sub fp, ip, #4
650 [sub sp, sp, #4]
651
652 Which would create this stack frame (offsets relative to FP):
653 IP -> 4 (caller's stack)
654 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
655 -4 LR (return address in caller)
656 -8 IP (copy of caller's SP)
657 -12 FP (caller's FP)
658 SP -> -28 Local variables
659
660 The frame size would thus be 32 bytes, and the frame offset would be
661 28 bytes. The stmfd call can also save any of the vN registers it
662 plans to use, which increases the frame size accordingly.
663
664 Note: The stored PC is 8 off of the STMFD instruction that stored it
665 because the ARM Store instructions always store PC + 8 when you read
666 the PC register.
667
668 A variable argument function call will look like:
669
670 mov ip, sp
671 stmfd sp!, {a1, a2, a3, a4}
672 stmfd sp!, {fp, ip, lr, pc}
673 sub fp, ip, #20
674
675 Which would create this stack frame (offsets relative to FP):
676 IP -> 20 (caller's stack)
677 16 A4
678 12 A3
679 8 A2
680 4 A1
681 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
682 -4 LR (return address in caller)
683 -8 IP (copy of caller's SP)
684 -12 FP (caller's FP)
685 SP -> -28 Local variables
686
687 The frame size would thus be 48 bytes, and the frame offset would be
688 28 bytes.
689
690 There is another potential complication, which is that the optimizer
691 will try to separate the store of fp in the "stmfd" instruction from
692 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
693 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
694
695 Also, note, the original version of the ARM toolchain claimed that there
696 should be an
697
698 instruction at the end of the prologue. I have never seen GCC produce
699 this, and the ARM docs don't mention it. We still test for it below in
700 case it happens...
701
702 */
703
704 static void
705 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
706 {
707 int regno, sp_offset, fp_offset, ip_offset;
708 CORE_ADDR prologue_start, prologue_end, current_pc;
709 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
710
711 /* Assume there is no frame until proven otherwise. */
712 cache->framereg = ARM_SP_REGNUM;
713 cache->framesize = 0;
714 cache->frameoffset = 0;
715
716 /* Check for Thumb prologue. */
717 if (arm_pc_is_thumb (prev_pc))
718 {
719 thumb_scan_prologue (prev_pc, cache);
720 return;
721 }
722
723 /* Find the function prologue. If we can't find the function in
724 the symbol table, peek in the stack frame to find the PC. */
725 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
726 {
727 /* One way to find the end of the prologue (which works well
728 for unoptimized code) is to do the following:
729
730 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
731
732 if (sal.line == 0)
733 prologue_end = prev_pc;
734 else if (sal.end < prologue_end)
735 prologue_end = sal.end;
736
737 This mechanism is very accurate so long as the optimizer
738 doesn't move any instructions from the function body into the
739 prologue. If this happens, sal.end will be the last
740 instruction in the first hunk of prologue code just before
741 the first instruction that the scheduler has moved from
742 the body to the prologue.
743
744 In order to make sure that we scan all of the prologue
745 instructions, we use a slightly less accurate mechanism which
746 may scan more than necessary. To help compensate for this
747 lack of accuracy, the prologue scanning loop below contains
748 several clauses which'll cause the loop to terminate early if
749 an implausible prologue instruction is encountered.
750
751 The expression
752
753 prologue_start + 64
754
755 is a suitable endpoint since it accounts for the largest
756 possible prologue plus up to five instructions inserted by
757 the scheduler. */
758
759 if (prologue_end > prologue_start + 64)
760 {
761 prologue_end = prologue_start + 64; /* See above. */
762 }
763 }
764 else
765 {
766 /* We have no symbol information. Our only option is to assume this
767 function has a standard stack frame and the normal frame register.
768 Then, we can find the value of our frame pointer on entrance to
769 the callee (or at the present moment if this is the innermost frame).
770 The value stored there should be the address of the stmfd + 8. */
771 CORE_ADDR frame_loc;
772 LONGEST return_value;
773
774 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
775 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
776 return;
777 else
778 {
779 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
780 prologue_end = prologue_start + 64; /* See above. */
781 }
782 }
783
784 if (prev_pc < prologue_end)
785 prologue_end = prev_pc;
786
787 /* Now search the prologue looking for instructions that set up the
788 frame pointer, adjust the stack pointer, and save registers.
789
790 Be careful, however, and if it doesn't look like a prologue,
791 don't try to scan it. If, for instance, a frameless function
792 begins with stmfd sp!, then we will tell ourselves there is
793 a frame, which will confuse stack traceback, as well as "finish"
794 and other operations that rely on a knowledge of the stack
795 traceback.
796
797 In the APCS, the prologue should start with "mov ip, sp" so
798 if we don't see this as the first insn, we will stop.
799
800 [Note: This doesn't seem to be true any longer, so it's now an
801 optional part of the prologue. - Kevin Buettner, 2001-11-20]
802
803 [Note further: The "mov ip,sp" only seems to be missing in
804 frameless functions at optimization level "-O2" or above,
805 in which case it is often (but not always) replaced by
806 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
807
808 sp_offset = fp_offset = ip_offset = 0;
809
810 for (current_pc = prologue_start;
811 current_pc < prologue_end;
812 current_pc += 4)
813 {
814 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
815
816 if (insn == 0xe1a0c00d) /* mov ip, sp */
817 {
818 ip_offset = 0;
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 ip_offset = imm;
827 continue;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 ip_offset = -imm;
835 continue;
836 }
837 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
838 {
839 sp_offset -= 4;
840 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
841 continue;
842 }
843 else if ((insn & 0xffff0000) == 0xe92d0000)
844 /* stmfd sp!, {..., fp, ip, lr, pc}
845 or
846 stmfd sp!, {a1, a2, a3, a4} */
847 {
848 int mask = insn & 0xffff;
849
850 /* Calculate offsets of saved registers. */
851 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
852 if (mask & (1 << regno))
853 {
854 sp_offset -= 4;
855 cache->saved_regs[regno].addr = sp_offset;
856 }
857 }
858 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
859 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
860 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
861 {
862 /* No need to add this to saved_regs -- it's just an arg reg. */
863 continue;
864 }
865 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
866 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
867 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
868 {
869 /* No need to add this to saved_regs -- it's just an arg reg. */
870 continue;
871 }
872 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
873 {
874 unsigned imm = insn & 0xff; /* immediate value */
875 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
876 imm = (imm >> rot) | (imm << (32 - rot));
877 fp_offset = -imm + ip_offset;
878 cache->framereg = ARM_FP_REGNUM;
879 }
880 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
881 {
882 unsigned imm = insn & 0xff; /* immediate value */
883 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
884 imm = (imm >> rot) | (imm << (32 - rot));
885 sp_offset -= imm;
886 }
887 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
888 {
889 sp_offset -= 12;
890 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
891 cache->saved_regs[regno].addr = sp_offset;
892 }
893 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
894 {
895 int n_saved_fp_regs;
896 unsigned int fp_start_reg, fp_bound_reg;
897
898 if ((insn & 0x800) == 0x800) /* N0 is set */
899 {
900 if ((insn & 0x40000) == 0x40000) /* N1 is set */
901 n_saved_fp_regs = 3;
902 else
903 n_saved_fp_regs = 1;
904 }
905 else
906 {
907 if ((insn & 0x40000) == 0x40000) /* N1 is set */
908 n_saved_fp_regs = 2;
909 else
910 n_saved_fp_regs = 4;
911 }
912
913 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
914 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
915 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
916 {
917 sp_offset -= 12;
918 cache->saved_regs[fp_start_reg++].addr = sp_offset;
919 }
920 }
921 else if ((insn & 0xf0000000) != 0xe0000000)
922 break; /* Condition not true, exit early */
923 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
924 break; /* Don't scan past a block load */
925 else
926 /* The optimizer might shove anything into the prologue,
927 so we just skip what we don't recognize. */
928 continue;
929 }
930
931 /* The frame size is just the negative of the offset (from the
932 original SP) of the last thing thing we pushed on the stack.
933 The frame offset is [new FP] - [new SP]. */
934 cache->framesize = -sp_offset;
935 if (cache->framereg == ARM_FP_REGNUM)
936 cache->frameoffset = fp_offset - sp_offset;
937 else
938 cache->frameoffset = 0;
939 }
940
941 static struct arm_prologue_cache *
942 arm_make_prologue_cache (struct frame_info *next_frame)
943 {
944 int reg;
945 struct arm_prologue_cache *cache;
946 CORE_ADDR unwound_fp;
947
948 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
949 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
950
951 arm_scan_prologue (next_frame, cache);
952
953 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
954 if (unwound_fp == 0)
955 return cache;
956
957 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
958
959 /* Calculate actual addresses of saved registers using offsets
960 determined by arm_scan_prologue. */
961 for (reg = 0; reg < NUM_REGS; reg++)
962 if (trad_frame_addr_p (cache->saved_regs, reg))
963 cache->saved_regs[reg].addr += cache->prev_sp;
964
965 return cache;
966 }
967
968 /* Our frame ID for a normal frame is the current function's starting PC
969 and the caller's SP when we were called. */
970
971 static void
972 arm_prologue_this_id (struct frame_info *next_frame,
973 void **this_cache,
974 struct frame_id *this_id)
975 {
976 struct arm_prologue_cache *cache;
977 struct frame_id id;
978 CORE_ADDR func;
979
980 if (*this_cache == NULL)
981 *this_cache = arm_make_prologue_cache (next_frame);
982 cache = *this_cache;
983
984 func = frame_func_unwind (next_frame);
985
986 /* This is meant to halt the backtrace at "_start". Make sure we
987 don't halt it at a generic dummy frame. */
988 if (func <= LOWEST_PC)
989 return;
990
991 /* If we've hit a wall, stop. */
992 if (cache->prev_sp == 0)
993 return;
994
995 id = frame_id_build (cache->prev_sp, func);
996 *this_id = id;
997 }
998
999 static void
1000 arm_prologue_prev_register (struct frame_info *next_frame,
1001 void **this_cache,
1002 int prev_regnum,
1003 int *optimized,
1004 enum lval_type *lvalp,
1005 CORE_ADDR *addrp,
1006 int *realnump,
1007 void *valuep)
1008 {
1009 struct arm_prologue_cache *cache;
1010
1011 if (*this_cache == NULL)
1012 *this_cache = arm_make_prologue_cache (next_frame);
1013 cache = *this_cache;
1014
1015 /* If we are asked to unwind the PC, then we need to return the LR
1016 instead. The saved value of PC points into this frame's
1017 prologue, not the next frame's resume location. */
1018 if (prev_regnum == ARM_PC_REGNUM)
1019 prev_regnum = ARM_LR_REGNUM;
1020
1021 /* SP is generally not saved to the stack, but this frame is
1022 identified by NEXT_FRAME's stack pointer at the time of the call.
1023 The value was already reconstructed into PREV_SP. */
1024 if (prev_regnum == ARM_SP_REGNUM)
1025 {
1026 *lvalp = not_lval;
1027 if (valuep)
1028 store_unsigned_integer (valuep, 4, cache->prev_sp);
1029 return;
1030 }
1031
1032 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1033 optimized, lvalp, addrp, realnump, valuep);
1034 }
1035
1036 struct frame_unwind arm_prologue_unwind = {
1037 NORMAL_FRAME,
1038 arm_prologue_this_id,
1039 arm_prologue_prev_register
1040 };
1041
1042 static const struct frame_unwind *
1043 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1044 {
1045 return &arm_prologue_unwind;
1046 }
1047
1048 static CORE_ADDR
1049 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1050 {
1051 struct arm_prologue_cache *cache;
1052
1053 if (*this_cache == NULL)
1054 *this_cache = arm_make_prologue_cache (next_frame);
1055 cache = *this_cache;
1056
1057 return cache->prev_sp + cache->frameoffset - cache->framesize;
1058 }
1059
1060 struct frame_base arm_normal_base = {
1061 &arm_prologue_unwind,
1062 arm_normal_frame_base,
1063 arm_normal_frame_base,
1064 arm_normal_frame_base
1065 };
1066
1067 static struct arm_prologue_cache *
1068 arm_make_sigtramp_cache (struct frame_info *next_frame)
1069 {
1070 struct arm_prologue_cache *cache;
1071 int reg;
1072
1073 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
1074
1075 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1076
1077 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1078
1079 for (reg = 0; reg < NUM_REGS; reg++)
1080 cache->saved_regs[reg].addr
1081 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1082 frame_pc_unwind (next_frame), reg);
1083
1084 /* FIXME: What about thumb mode? */
1085 cache->framereg = ARM_SP_REGNUM;
1086 cache->prev_sp
1087 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
1088 register_size (current_gdbarch, cache->framereg));
1089
1090 return cache;
1091 }
1092
1093 static void
1094 arm_sigtramp_this_id (struct frame_info *next_frame,
1095 void **this_cache,
1096 struct frame_id *this_id)
1097 {
1098 struct arm_prologue_cache *cache;
1099
1100 if (*this_cache == NULL)
1101 *this_cache = arm_make_sigtramp_cache (next_frame);
1102 cache = *this_cache;
1103
1104 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1105 the sigtramp frame; the PC should be the beginning of the trampoline. */
1106 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1107 }
1108
1109 static void
1110 arm_sigtramp_prev_register (struct frame_info *next_frame,
1111 void **this_cache,
1112 int prev_regnum,
1113 int *optimized,
1114 enum lval_type *lvalp,
1115 CORE_ADDR *addrp,
1116 int *realnump,
1117 void *valuep)
1118 {
1119 struct arm_prologue_cache *cache;
1120
1121 if (*this_cache == NULL)
1122 *this_cache = arm_make_sigtramp_cache (next_frame);
1123 cache = *this_cache;
1124
1125 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1126 optimized, lvalp, addrp, realnump, valuep);
1127 }
1128
1129 struct frame_unwind arm_sigtramp_unwind = {
1130 SIGTRAMP_FRAME,
1131 arm_sigtramp_this_id,
1132 arm_sigtramp_prev_register
1133 };
1134
1135 static const struct frame_unwind *
1136 arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
1137 {
1138 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1139 && legacy_pc_in_sigtramp (frame_pc_unwind (next_frame), (char *) 0))
1140 return &arm_sigtramp_unwind;
1141
1142 return NULL;
1143 }
1144
1145 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1146 dummy frame. The frame ID's base needs to match the TOS value
1147 saved by save_dummy_frame_tos() and returned from
1148 arm_push_dummy_call, and the PC needs to match the dummy frame's
1149 breakpoint. */
1150
1151 static struct frame_id
1152 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1153 {
1154 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1155 frame_pc_unwind (next_frame));
1156 }
1157
1158 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1159 be used to construct the previous frame's ID, after looking up the
1160 containing function). */
1161
1162 static CORE_ADDR
1163 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1164 {
1165 CORE_ADDR pc;
1166 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1167 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1168 }
1169
1170 static CORE_ADDR
1171 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1172 {
1173 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1174 }
1175
1176 /* When arguments must be pushed onto the stack, they go on in reverse
1177 order. The code below implements a FILO (stack) to do this. */
1178
1179 struct stack_item
1180 {
1181 int len;
1182 struct stack_item *prev;
1183 void *data;
1184 };
1185
1186 static struct stack_item *
1187 push_stack_item (struct stack_item *prev, void *contents, int len)
1188 {
1189 struct stack_item *si;
1190 si = xmalloc (sizeof (struct stack_item));
1191 si->data = xmalloc (len);
1192 si->len = len;
1193 si->prev = prev;
1194 memcpy (si->data, contents, len);
1195 return si;
1196 }
1197
1198 static struct stack_item *
1199 pop_stack_item (struct stack_item *si)
1200 {
1201 struct stack_item *dead = si;
1202 si = si->prev;
1203 xfree (dead->data);
1204 xfree (dead);
1205 return si;
1206 }
1207
1208 /* We currently only support passing parameters in integer registers. This
1209 conforms with GCC's default model. Several other variants exist and
1210 we should probably support some of them based on the selected ABI. */
1211
1212 static CORE_ADDR
1213 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1214 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1215 struct value **args, CORE_ADDR sp, int struct_return,
1216 CORE_ADDR struct_addr)
1217 {
1218 int argnum;
1219 int argreg;
1220 int nstack;
1221 struct stack_item *si = NULL;
1222
1223 /* Set the return address. For the ARM, the return breakpoint is
1224 always at BP_ADDR. */
1225 /* XXX Fix for Thumb. */
1226 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1227
1228 /* Walk through the list of args and determine how large a temporary
1229 stack is required. Need to take care here as structs may be
1230 passed on the stack, and we have to to push them. */
1231 nstack = 0;
1232
1233 argreg = ARM_A1_REGNUM;
1234 nstack = 0;
1235
1236 /* Some platforms require a double-word aligned stack. Make sure sp
1237 is correctly aligned before we start. We always do this even if
1238 it isn't really needed -- it can never hurt things. */
1239 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
1240
1241 /* The struct_return pointer occupies the first parameter
1242 passing register. */
1243 if (struct_return)
1244 {
1245 if (arm_debug)
1246 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1247 REGISTER_NAME (argreg), paddr (struct_addr));
1248 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1249 argreg++;
1250 }
1251
1252 for (argnum = 0; argnum < nargs; argnum++)
1253 {
1254 int len;
1255 struct type *arg_type;
1256 struct type *target_type;
1257 enum type_code typecode;
1258 char *val;
1259
1260 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1261 len = TYPE_LENGTH (arg_type);
1262 target_type = TYPE_TARGET_TYPE (arg_type);
1263 typecode = TYPE_CODE (arg_type);
1264 val = VALUE_CONTENTS (args[argnum]);
1265
1266 /* If the argument is a pointer to a function, and it is a
1267 Thumb function, create a LOCAL copy of the value and set
1268 the THUMB bit in it. */
1269 if (TYPE_CODE_PTR == typecode
1270 && target_type != NULL
1271 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1272 {
1273 CORE_ADDR regval = extract_unsigned_integer (val, len);
1274 if (arm_pc_is_thumb (regval))
1275 {
1276 val = alloca (len);
1277 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1278 }
1279 }
1280
1281 /* Copy the argument to general registers or the stack in
1282 register-sized pieces. Large arguments are split between
1283 registers and stack. */
1284 while (len > 0)
1285 {
1286 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1287
1288 if (argreg <= ARM_LAST_ARG_REGNUM)
1289 {
1290 /* The argument is being passed in a general purpose
1291 register. */
1292 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1293 if (arm_debug)
1294 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1295 argnum, REGISTER_NAME (argreg),
1296 phex (regval, DEPRECATED_REGISTER_SIZE));
1297 regcache_cooked_write_unsigned (regcache, argreg, regval);
1298 argreg++;
1299 }
1300 else
1301 {
1302 /* Push the arguments onto the stack. */
1303 if (arm_debug)
1304 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1305 argnum, nstack);
1306 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1307 nstack += DEPRECATED_REGISTER_SIZE;
1308 }
1309
1310 len -= partial_len;
1311 val += partial_len;
1312 }
1313 }
1314 /* If we have an odd number of words to push, then decrement the stack
1315 by one word now, so first stack argument will be dword aligned. */
1316 if (nstack & 4)
1317 sp -= 4;
1318
1319 while (si)
1320 {
1321 sp -= si->len;
1322 write_memory (sp, si->data, si->len);
1323 si = pop_stack_item (si);
1324 }
1325
1326 /* Finally, update teh SP register. */
1327 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1328
1329 return sp;
1330 }
1331
1332 static void
1333 print_fpu_flags (int flags)
1334 {
1335 if (flags & (1 << 0))
1336 fputs ("IVO ", stdout);
1337 if (flags & (1 << 1))
1338 fputs ("DVZ ", stdout);
1339 if (flags & (1 << 2))
1340 fputs ("OFL ", stdout);
1341 if (flags & (1 << 3))
1342 fputs ("UFL ", stdout);
1343 if (flags & (1 << 4))
1344 fputs ("INX ", stdout);
1345 putchar ('\n');
1346 }
1347
1348 /* Print interesting information about the floating point processor
1349 (if present) or emulator. */
1350 static void
1351 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1352 struct frame_info *frame, const char *args)
1353 {
1354 unsigned long status = read_register (ARM_FPS_REGNUM);
1355 int type;
1356
1357 type = (status >> 24) & 127;
1358 printf ("%s FPU type %d\n",
1359 (status & (1 << 31)) ? "Hardware" : "Software",
1360 type);
1361 fputs ("mask: ", stdout);
1362 print_fpu_flags (status >> 16);
1363 fputs ("flags: ", stdout);
1364 print_fpu_flags (status);
1365 }
1366
1367 /* Return the GDB type object for the "standard" data type of data in
1368 register N. */
1369
1370 static struct type *
1371 arm_register_type (struct gdbarch *gdbarch, int regnum)
1372 {
1373 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1374 {
1375 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1376 return builtin_type_arm_ext_big;
1377 else
1378 return builtin_type_arm_ext_littlebyte_bigword;
1379 }
1380 else
1381 return builtin_type_int32;
1382 }
1383
1384 /* Index within `registers' of the first byte of the space for
1385 register N. */
1386
1387 static int
1388 arm_register_byte (int regnum)
1389 {
1390 if (regnum < ARM_F0_REGNUM)
1391 return regnum * INT_REGISTER_SIZE;
1392 else if (regnum < ARM_PS_REGNUM)
1393 return (NUM_GREGS * INT_REGISTER_SIZE
1394 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
1395 else
1396 return (NUM_GREGS * INT_REGISTER_SIZE
1397 + NUM_FREGS * FP_REGISTER_SIZE
1398 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1399 }
1400
1401 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1402 static int
1403 arm_register_sim_regno (int regnum)
1404 {
1405 int reg = regnum;
1406 gdb_assert (reg >= 0 && reg < NUM_REGS);
1407
1408 if (reg < NUM_GREGS)
1409 return SIM_ARM_R0_REGNUM + reg;
1410 reg -= NUM_GREGS;
1411
1412 if (reg < NUM_FREGS)
1413 return SIM_ARM_FP0_REGNUM + reg;
1414 reg -= NUM_FREGS;
1415
1416 if (reg < NUM_SREGS)
1417 return SIM_ARM_FPS_REGNUM + reg;
1418 reg -= NUM_SREGS;
1419
1420 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1421 }
1422
1423 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1424 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1425 It is thought that this is is the floating-point register format on
1426 little-endian systems. */
1427
1428 static void
1429 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1430 void *dbl)
1431 {
1432 DOUBLEST d;
1433 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1434 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1435 else
1436 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1437 ptr, &d);
1438 floatformat_from_doublest (fmt, &d, dbl);
1439 }
1440
1441 static void
1442 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1443 {
1444 DOUBLEST d;
1445 floatformat_to_doublest (fmt, ptr, &d);
1446 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1447 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1448 else
1449 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1450 &d, dbl);
1451 }
1452
1453 static int
1454 condition_true (unsigned long cond, unsigned long status_reg)
1455 {
1456 if (cond == INST_AL || cond == INST_NV)
1457 return 1;
1458
1459 switch (cond)
1460 {
1461 case INST_EQ:
1462 return ((status_reg & FLAG_Z) != 0);
1463 case INST_NE:
1464 return ((status_reg & FLAG_Z) == 0);
1465 case INST_CS:
1466 return ((status_reg & FLAG_C) != 0);
1467 case INST_CC:
1468 return ((status_reg & FLAG_C) == 0);
1469 case INST_MI:
1470 return ((status_reg & FLAG_N) != 0);
1471 case INST_PL:
1472 return ((status_reg & FLAG_N) == 0);
1473 case INST_VS:
1474 return ((status_reg & FLAG_V) != 0);
1475 case INST_VC:
1476 return ((status_reg & FLAG_V) == 0);
1477 case INST_HI:
1478 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1479 case INST_LS:
1480 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1481 case INST_GE:
1482 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1483 case INST_LT:
1484 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1485 case INST_GT:
1486 return (((status_reg & FLAG_Z) == 0) &&
1487 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1488 case INST_LE:
1489 return (((status_reg & FLAG_Z) != 0) ||
1490 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1491 }
1492 return 1;
1493 }
1494
1495 /* Support routines for single stepping. Calculate the next PC value. */
1496 #define submask(x) ((1L << ((x) + 1)) - 1)
1497 #define bit(obj,st) (((obj) >> (st)) & 1)
1498 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1499 #define sbits(obj,st,fn) \
1500 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1501 #define BranchDest(addr,instr) \
1502 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1503 #define ARM_PC_32 1
1504
1505 static unsigned long
1506 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1507 unsigned long status_reg)
1508 {
1509 unsigned long res, shift;
1510 int rm = bits (inst, 0, 3);
1511 unsigned long shifttype = bits (inst, 5, 6);
1512
1513 if (bit (inst, 4))
1514 {
1515 int rs = bits (inst, 8, 11);
1516 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1517 }
1518 else
1519 shift = bits (inst, 7, 11);
1520
1521 res = (rm == 15
1522 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1523 + (bit (inst, 4) ? 12 : 8))
1524 : read_register (rm));
1525
1526 switch (shifttype)
1527 {
1528 case 0: /* LSL */
1529 res = shift >= 32 ? 0 : res << shift;
1530 break;
1531
1532 case 1: /* LSR */
1533 res = shift >= 32 ? 0 : res >> shift;
1534 break;
1535
1536 case 2: /* ASR */
1537 if (shift >= 32)
1538 shift = 31;
1539 res = ((res & 0x80000000L)
1540 ? ~((~res) >> shift) : res >> shift);
1541 break;
1542
1543 case 3: /* ROR/RRX */
1544 shift &= 31;
1545 if (shift == 0)
1546 res = (res >> 1) | (carry ? 0x80000000L : 0);
1547 else
1548 res = (res >> shift) | (res << (32 - shift));
1549 break;
1550 }
1551
1552 return res & 0xffffffff;
1553 }
1554
1555 /* Return number of 1-bits in VAL. */
1556
1557 static int
1558 bitcount (unsigned long val)
1559 {
1560 int nbits;
1561 for (nbits = 0; val != 0; nbits++)
1562 val &= val - 1; /* delete rightmost 1-bit in val */
1563 return nbits;
1564 }
1565
1566 CORE_ADDR
1567 thumb_get_next_pc (CORE_ADDR pc)
1568 {
1569 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1570 unsigned short inst1 = read_memory_integer (pc, 2);
1571 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1572 unsigned long offset;
1573
1574 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1575 {
1576 CORE_ADDR sp;
1577
1578 /* Fetch the saved PC from the stack. It's stored above
1579 all of the other registers. */
1580 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1581 sp = read_register (ARM_SP_REGNUM);
1582 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1583 nextpc = ADDR_BITS_REMOVE (nextpc);
1584 if (nextpc == pc)
1585 error ("Infinite loop detected");
1586 }
1587 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1588 {
1589 unsigned long status = read_register (ARM_PS_REGNUM);
1590 unsigned long cond = bits (inst1, 8, 11);
1591 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1592 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1593 }
1594 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1595 {
1596 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1597 }
1598 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1599 {
1600 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1601 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1602 nextpc = pc_val + offset;
1603 /* For BLX make sure to clear the low bits. */
1604 if (bits (inst2, 11, 12) == 1)
1605 nextpc = nextpc & 0xfffffffc;
1606 }
1607 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1608 {
1609 if (bits (inst1, 3, 6) == 0x0f)
1610 nextpc = pc_val;
1611 else
1612 nextpc = read_register (bits (inst1, 3, 6));
1613
1614 nextpc = ADDR_BITS_REMOVE (nextpc);
1615 if (nextpc == pc)
1616 error ("Infinite loop detected");
1617 }
1618
1619 return nextpc;
1620 }
1621
1622 CORE_ADDR
1623 arm_get_next_pc (CORE_ADDR pc)
1624 {
1625 unsigned long pc_val;
1626 unsigned long this_instr;
1627 unsigned long status;
1628 CORE_ADDR nextpc;
1629
1630 if (arm_pc_is_thumb (pc))
1631 return thumb_get_next_pc (pc);
1632
1633 pc_val = (unsigned long) pc;
1634 this_instr = read_memory_integer (pc, 4);
1635 status = read_register (ARM_PS_REGNUM);
1636 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1637
1638 if (condition_true (bits (this_instr, 28, 31), status))
1639 {
1640 switch (bits (this_instr, 24, 27))
1641 {
1642 case 0x0:
1643 case 0x1: /* data processing */
1644 case 0x2:
1645 case 0x3:
1646 {
1647 unsigned long operand1, operand2, result = 0;
1648 unsigned long rn;
1649 int c;
1650
1651 if (bits (this_instr, 12, 15) != 15)
1652 break;
1653
1654 if (bits (this_instr, 22, 25) == 0
1655 && bits (this_instr, 4, 7) == 9) /* multiply */
1656 error ("Illegal update to pc in instruction");
1657
1658 /* BX <reg>, BLX <reg> */
1659 if (bits (this_instr, 4, 28) == 0x12fff1
1660 || bits (this_instr, 4, 28) == 0x12fff3)
1661 {
1662 rn = bits (this_instr, 0, 3);
1663 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1664 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1665
1666 if (nextpc == pc)
1667 error ("Infinite loop detected");
1668
1669 return nextpc;
1670 }
1671
1672 /* Multiply into PC */
1673 c = (status & FLAG_C) ? 1 : 0;
1674 rn = bits (this_instr, 16, 19);
1675 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1676
1677 if (bit (this_instr, 25))
1678 {
1679 unsigned long immval = bits (this_instr, 0, 7);
1680 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1681 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1682 & 0xffffffff;
1683 }
1684 else /* operand 2 is a shifted register */
1685 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1686
1687 switch (bits (this_instr, 21, 24))
1688 {
1689 case 0x0: /*and */
1690 result = operand1 & operand2;
1691 break;
1692
1693 case 0x1: /*eor */
1694 result = operand1 ^ operand2;
1695 break;
1696
1697 case 0x2: /*sub */
1698 result = operand1 - operand2;
1699 break;
1700
1701 case 0x3: /*rsb */
1702 result = operand2 - operand1;
1703 break;
1704
1705 case 0x4: /*add */
1706 result = operand1 + operand2;
1707 break;
1708
1709 case 0x5: /*adc */
1710 result = operand1 + operand2 + c;
1711 break;
1712
1713 case 0x6: /*sbc */
1714 result = operand1 - operand2 + c;
1715 break;
1716
1717 case 0x7: /*rsc */
1718 result = operand2 - operand1 + c;
1719 break;
1720
1721 case 0x8:
1722 case 0x9:
1723 case 0xa:
1724 case 0xb: /* tst, teq, cmp, cmn */
1725 result = (unsigned long) nextpc;
1726 break;
1727
1728 case 0xc: /*orr */
1729 result = operand1 | operand2;
1730 break;
1731
1732 case 0xd: /*mov */
1733 /* Always step into a function. */
1734 result = operand2;
1735 break;
1736
1737 case 0xe: /*bic */
1738 result = operand1 & ~operand2;
1739 break;
1740
1741 case 0xf: /*mvn */
1742 result = ~operand2;
1743 break;
1744 }
1745 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1746
1747 if (nextpc == pc)
1748 error ("Infinite loop detected");
1749 break;
1750 }
1751
1752 case 0x4:
1753 case 0x5: /* data transfer */
1754 case 0x6:
1755 case 0x7:
1756 if (bit (this_instr, 20))
1757 {
1758 /* load */
1759 if (bits (this_instr, 12, 15) == 15)
1760 {
1761 /* rd == pc */
1762 unsigned long rn;
1763 unsigned long base;
1764
1765 if (bit (this_instr, 22))
1766 error ("Illegal update to pc in instruction");
1767
1768 /* byte write to PC */
1769 rn = bits (this_instr, 16, 19);
1770 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1771 if (bit (this_instr, 24))
1772 {
1773 /* pre-indexed */
1774 int c = (status & FLAG_C) ? 1 : 0;
1775 unsigned long offset =
1776 (bit (this_instr, 25)
1777 ? shifted_reg_val (this_instr, c, pc_val, status)
1778 : bits (this_instr, 0, 11));
1779
1780 if (bit (this_instr, 23))
1781 base += offset;
1782 else
1783 base -= offset;
1784 }
1785 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1786 4);
1787
1788 nextpc = ADDR_BITS_REMOVE (nextpc);
1789
1790 if (nextpc == pc)
1791 error ("Infinite loop detected");
1792 }
1793 }
1794 break;
1795
1796 case 0x8:
1797 case 0x9: /* block transfer */
1798 if (bit (this_instr, 20))
1799 {
1800 /* LDM */
1801 if (bit (this_instr, 15))
1802 {
1803 /* loading pc */
1804 int offset = 0;
1805
1806 if (bit (this_instr, 23))
1807 {
1808 /* up */
1809 unsigned long reglist = bits (this_instr, 0, 14);
1810 offset = bitcount (reglist) * 4;
1811 if (bit (this_instr, 24)) /* pre */
1812 offset += 4;
1813 }
1814 else if (bit (this_instr, 24))
1815 offset = -4;
1816
1817 {
1818 unsigned long rn_val =
1819 read_register (bits (this_instr, 16, 19));
1820 nextpc =
1821 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1822 + offset),
1823 4);
1824 }
1825 nextpc = ADDR_BITS_REMOVE (nextpc);
1826 if (nextpc == pc)
1827 error ("Infinite loop detected");
1828 }
1829 }
1830 break;
1831
1832 case 0xb: /* branch & link */
1833 case 0xa: /* branch */
1834 {
1835 nextpc = BranchDest (pc, this_instr);
1836
1837 /* BLX */
1838 if (bits (this_instr, 28, 31) == INST_NV)
1839 nextpc |= bit (this_instr, 24) << 1;
1840
1841 nextpc = ADDR_BITS_REMOVE (nextpc);
1842 if (nextpc == pc)
1843 error ("Infinite loop detected");
1844 break;
1845 }
1846
1847 case 0xc:
1848 case 0xd:
1849 case 0xe: /* coproc ops */
1850 case 0xf: /* SWI */
1851 break;
1852
1853 default:
1854 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
1855 return (pc);
1856 }
1857 }
1858
1859 return nextpc;
1860 }
1861
1862 /* single_step() is called just before we want to resume the inferior,
1863 if we want to single-step it but there is no hardware or kernel
1864 single-step support. We find the target of the coming instruction
1865 and breakpoint it.
1866
1867 single_step() is also called just after the inferior stops. If we
1868 had set up a simulated single-step, we undo our damage. */
1869
1870 static void
1871 arm_software_single_step (enum target_signal sig, int insert_bpt)
1872 {
1873 static int next_pc; /* State between setting and unsetting. */
1874 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1875
1876 if (insert_bpt)
1877 {
1878 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1879 target_insert_breakpoint (next_pc, break_mem);
1880 }
1881 else
1882 target_remove_breakpoint (next_pc, break_mem);
1883 }
1884
1885 #include "bfd-in2.h"
1886 #include "libcoff.h"
1887
1888 static int
1889 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1890 {
1891 if (arm_pc_is_thumb (memaddr))
1892 {
1893 static asymbol *asym;
1894 static combined_entry_type ce;
1895 static struct coff_symbol_struct csym;
1896 static struct bfd fake_bfd;
1897 static bfd_target fake_target;
1898
1899 if (csym.native == NULL)
1900 {
1901 /* Create a fake symbol vector containing a Thumb symbol.
1902 This is solely so that the code in print_insn_little_arm()
1903 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1904 the presence of a Thumb symbol and switch to decoding
1905 Thumb instructions. */
1906
1907 fake_target.flavour = bfd_target_coff_flavour;
1908 fake_bfd.xvec = &fake_target;
1909 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1910 csym.native = &ce;
1911 csym.symbol.the_bfd = &fake_bfd;
1912 csym.symbol.name = "fake";
1913 asym = (asymbol *) & csym;
1914 }
1915
1916 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1917 info->symbols = &asym;
1918 }
1919 else
1920 info->symbols = NULL;
1921
1922 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1923 return print_insn_big_arm (memaddr, info);
1924 else
1925 return print_insn_little_arm (memaddr, info);
1926 }
1927
1928 /* The following define instruction sequences that will cause ARM
1929 cpu's to take an undefined instruction trap. These are used to
1930 signal a breakpoint to GDB.
1931
1932 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1933 modes. A different instruction is required for each mode. The ARM
1934 cpu's can also be big or little endian. Thus four different
1935 instructions are needed to support all cases.
1936
1937 Note: ARMv4 defines several new instructions that will take the
1938 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1939 not in fact add the new instructions. The new undefined
1940 instructions in ARMv4 are all instructions that had no defined
1941 behaviour in earlier chips. There is no guarantee that they will
1942 raise an exception, but may be treated as NOP's. In practice, it
1943 may only safe to rely on instructions matching:
1944
1945 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1946 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1947 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1948
1949 Even this may only true if the condition predicate is true. The
1950 following use a condition predicate of ALWAYS so it is always TRUE.
1951
1952 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1953 and NetBSD all use a software interrupt rather than an undefined
1954 instruction to force a trap. This can be handled by by the
1955 abi-specific code during establishment of the gdbarch vector. */
1956
1957
1958 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1959 override these definitions. */
1960 #ifndef ARM_LE_BREAKPOINT
1961 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1962 #endif
1963 #ifndef ARM_BE_BREAKPOINT
1964 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1965 #endif
1966 #ifndef THUMB_LE_BREAKPOINT
1967 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1968 #endif
1969 #ifndef THUMB_BE_BREAKPOINT
1970 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1971 #endif
1972
1973 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1974 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1975 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1976 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1977
1978 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
1979 the program counter value to determine whether a 16-bit or 32-bit
1980 breakpoint should be used. It returns a pointer to a string of
1981 bytes that encode a breakpoint instruction, stores the length of
1982 the string to *lenptr, and adjusts the program counter (if
1983 necessary) to point to the actual memory location where the
1984 breakpoint should be inserted. */
1985
1986 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
1987 breakpoints and storing their handles instread of what was in
1988 memory. It is nice that this is the same size as a handle -
1989 otherwise remote-rdp will have to change. */
1990
1991 static const unsigned char *
1992 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1993 {
1994 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1995
1996 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
1997 {
1998 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
1999 *lenptr = tdep->thumb_breakpoint_size;
2000 return tdep->thumb_breakpoint;
2001 }
2002 else
2003 {
2004 *lenptr = tdep->arm_breakpoint_size;
2005 return tdep->arm_breakpoint;
2006 }
2007 }
2008
2009 /* Extract from an array REGBUF containing the (raw) register state a
2010 function return value of type TYPE, and copy that, in virtual
2011 format, into VALBUF. */
2012
2013 static void
2014 arm_extract_return_value (struct type *type,
2015 struct regcache *regs,
2016 void *dst)
2017 {
2018 bfd_byte *valbuf = dst;
2019
2020 if (TYPE_CODE_FLT == TYPE_CODE (type))
2021 {
2022 switch (arm_get_fp_model (current_gdbarch))
2023 {
2024 case ARM_FLOAT_FPA:
2025 {
2026 /* The value is in register F0 in internal format. We need to
2027 extract the raw value and then convert it to the desired
2028 internal type. */
2029 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2030
2031 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2032 convert_from_extended (floatformat_from_type (type), tmpbuf,
2033 valbuf);
2034 }
2035 break;
2036
2037 case ARM_FLOAT_SOFT_FPA:
2038 case ARM_FLOAT_SOFT_VFP:
2039 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2040 if (TYPE_LENGTH (type) > 4)
2041 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2042 valbuf + INT_REGISTER_SIZE);
2043 break;
2044
2045 default:
2046 internal_error
2047 (__FILE__, __LINE__,
2048 "arm_extract_return_value: Floating point model not supported");
2049 break;
2050 }
2051 }
2052 else if (TYPE_CODE (type) == TYPE_CODE_INT
2053 || TYPE_CODE (type) == TYPE_CODE_CHAR
2054 || TYPE_CODE (type) == TYPE_CODE_BOOL
2055 || TYPE_CODE (type) == TYPE_CODE_PTR
2056 || TYPE_CODE (type) == TYPE_CODE_REF
2057 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2058 {
2059 /* If the the type is a plain integer, then the access is
2060 straight-forward. Otherwise we have to play around a bit more. */
2061 int len = TYPE_LENGTH (type);
2062 int regno = ARM_A1_REGNUM;
2063 ULONGEST tmp;
2064
2065 while (len > 0)
2066 {
2067 /* By using store_unsigned_integer we avoid having to do
2068 anything special for small big-endian values. */
2069 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2070 store_unsigned_integer (valbuf,
2071 (len > INT_REGISTER_SIZE
2072 ? INT_REGISTER_SIZE : len),
2073 tmp);
2074 len -= INT_REGISTER_SIZE;
2075 valbuf += INT_REGISTER_SIZE;
2076 }
2077 }
2078 else
2079 {
2080 /* For a structure or union the behaviour is as if the value had
2081 been stored to word-aligned memory and then loaded into
2082 registers with 32-bit load instruction(s). */
2083 int len = TYPE_LENGTH (type);
2084 int regno = ARM_A1_REGNUM;
2085 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2086
2087 while (len > 0)
2088 {
2089 regcache_cooked_read (regs, regno++, tmpbuf);
2090 memcpy (valbuf, tmpbuf,
2091 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2092 len -= INT_REGISTER_SIZE;
2093 valbuf += INT_REGISTER_SIZE;
2094 }
2095 }
2096 }
2097
2098 /* Extract from an array REGBUF containing the (raw) register state
2099 the address in which a function should return its structure value. */
2100
2101 static CORE_ADDR
2102 arm_extract_struct_value_address (struct regcache *regcache)
2103 {
2104 ULONGEST ret;
2105
2106 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2107 return ret;
2108 }
2109
2110 /* Will a function return an aggregate type in memory or in a
2111 register? Return 0 if an aggregate type can be returned in a
2112 register, 1 if it must be returned in memory. */
2113
2114 static int
2115 arm_use_struct_convention (int gcc_p, struct type *type)
2116 {
2117 int nRc;
2118 enum type_code code;
2119
2120 CHECK_TYPEDEF (type);
2121
2122 /* In the ARM ABI, "integer" like aggregate types are returned in
2123 registers. For an aggregate type to be integer like, its size
2124 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2125 offset of each addressable subfield must be zero. Note that bit
2126 fields are not addressable, and all addressable subfields of
2127 unions always start at offset zero.
2128
2129 This function is based on the behaviour of GCC 2.95.1.
2130 See: gcc/arm.c: arm_return_in_memory() for details.
2131
2132 Note: All versions of GCC before GCC 2.95.2 do not set up the
2133 parameters correctly for a function returning the following
2134 structure: struct { float f;}; This should be returned in memory,
2135 not a register. Richard Earnshaw sent me a patch, but I do not
2136 know of any way to detect if a function like the above has been
2137 compiled with the correct calling convention. */
2138
2139 /* All aggregate types that won't fit in a register must be returned
2140 in memory. */
2141 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2142 {
2143 return 1;
2144 }
2145
2146 /* The only aggregate types that can be returned in a register are
2147 structs and unions. Arrays must be returned in memory. */
2148 code = TYPE_CODE (type);
2149 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2150 {
2151 return 1;
2152 }
2153
2154 /* Assume all other aggregate types can be returned in a register.
2155 Run a check for structures, unions and arrays. */
2156 nRc = 0;
2157
2158 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2159 {
2160 int i;
2161 /* Need to check if this struct/union is "integer" like. For
2162 this to be true, its size must be less than or equal to
2163 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2164 subfield must be zero. Note that bit fields are not
2165 addressable, and unions always start at offset zero. If any
2166 of the subfields is a floating point type, the struct/union
2167 cannot be an integer type. */
2168
2169 /* For each field in the object, check:
2170 1) Is it FP? --> yes, nRc = 1;
2171 2) Is it addressable (bitpos != 0) and
2172 not packed (bitsize == 0)?
2173 --> yes, nRc = 1
2174 */
2175
2176 for (i = 0; i < TYPE_NFIELDS (type); i++)
2177 {
2178 enum type_code field_type_code;
2179 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2180
2181 /* Is it a floating point type field? */
2182 if (field_type_code == TYPE_CODE_FLT)
2183 {
2184 nRc = 1;
2185 break;
2186 }
2187
2188 /* If bitpos != 0, then we have to care about it. */
2189 if (TYPE_FIELD_BITPOS (type, i) != 0)
2190 {
2191 /* Bitfields are not addressable. If the field bitsize is
2192 zero, then the field is not packed. Hence it cannot be
2193 a bitfield or any other packed type. */
2194 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2195 {
2196 nRc = 1;
2197 break;
2198 }
2199 }
2200 }
2201 }
2202
2203 return nRc;
2204 }
2205
2206 /* Write into appropriate registers a function return value of type
2207 TYPE, given in virtual format. */
2208
2209 static void
2210 arm_store_return_value (struct type *type, struct regcache *regs,
2211 const void *src)
2212 {
2213 const bfd_byte *valbuf = src;
2214
2215 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2216 {
2217 char buf[MAX_REGISTER_SIZE];
2218
2219 switch (arm_get_fp_model (current_gdbarch))
2220 {
2221 case ARM_FLOAT_FPA:
2222
2223 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2224 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2225 break;
2226
2227 case ARM_FLOAT_SOFT_FPA:
2228 case ARM_FLOAT_SOFT_VFP:
2229 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2230 if (TYPE_LENGTH (type) > 4)
2231 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2232 valbuf + INT_REGISTER_SIZE);
2233 break;
2234
2235 default:
2236 internal_error
2237 (__FILE__, __LINE__,
2238 "arm_store_return_value: Floating point model not supported");
2239 break;
2240 }
2241 }
2242 else if (TYPE_CODE (type) == TYPE_CODE_INT
2243 || TYPE_CODE (type) == TYPE_CODE_CHAR
2244 || TYPE_CODE (type) == TYPE_CODE_BOOL
2245 || TYPE_CODE (type) == TYPE_CODE_PTR
2246 || TYPE_CODE (type) == TYPE_CODE_REF
2247 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2248 {
2249 if (TYPE_LENGTH (type) <= 4)
2250 {
2251 /* Values of one word or less are zero/sign-extended and
2252 returned in r0. */
2253 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2254 LONGEST val = unpack_long (type, valbuf);
2255
2256 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2257 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2258 }
2259 else
2260 {
2261 /* Integral values greater than one word are stored in consecutive
2262 registers starting with r0. This will always be a multiple of
2263 the regiser size. */
2264 int len = TYPE_LENGTH (type);
2265 int regno = ARM_A1_REGNUM;
2266
2267 while (len > 0)
2268 {
2269 regcache_cooked_write (regs, regno++, valbuf);
2270 len -= INT_REGISTER_SIZE;
2271 valbuf += INT_REGISTER_SIZE;
2272 }
2273 }
2274 }
2275 else
2276 {
2277 /* For a structure or union the behaviour is as if the value had
2278 been stored to word-aligned memory and then loaded into
2279 registers with 32-bit load instruction(s). */
2280 int len = TYPE_LENGTH (type);
2281 int regno = ARM_A1_REGNUM;
2282 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2283
2284 while (len > 0)
2285 {
2286 memcpy (tmpbuf, valbuf,
2287 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2288 regcache_cooked_write (regs, regno++, tmpbuf);
2289 len -= INT_REGISTER_SIZE;
2290 valbuf += INT_REGISTER_SIZE;
2291 }
2292 }
2293 }
2294
2295 static int
2296 arm_get_longjmp_target (CORE_ADDR *pc)
2297 {
2298 CORE_ADDR jb_addr;
2299 char buf[INT_REGISTER_SIZE];
2300 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2301
2302 jb_addr = read_register (ARM_A1_REGNUM);
2303
2304 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2305 INT_REGISTER_SIZE))
2306 return 0;
2307
2308 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2309 return 1;
2310 }
2311
2312 /* Return non-zero if the PC is inside a thumb call thunk. */
2313
2314 int
2315 arm_in_call_stub (CORE_ADDR pc, char *name)
2316 {
2317 CORE_ADDR start_addr;
2318
2319 /* Find the starting address of the function containing the PC. If
2320 the caller didn't give us a name, look it up at the same time. */
2321 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2322 &start_addr, NULL))
2323 return 0;
2324
2325 return strncmp (name, "_call_via_r", 11) == 0;
2326 }
2327
2328 /* If PC is in a Thumb call or return stub, return the address of the
2329 target PC, which is in a register. The thunk functions are called
2330 _called_via_xx, where x is the register name. The possible names
2331 are r0-r9, sl, fp, ip, sp, and lr. */
2332
2333 CORE_ADDR
2334 arm_skip_stub (CORE_ADDR pc)
2335 {
2336 char *name;
2337 CORE_ADDR start_addr;
2338
2339 /* Find the starting address and name of the function containing the PC. */
2340 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2341 return 0;
2342
2343 /* Call thunks always start with "_call_via_". */
2344 if (strncmp (name, "_call_via_", 10) == 0)
2345 {
2346 /* Use the name suffix to determine which register contains the
2347 target PC. */
2348 static char *table[15] =
2349 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2350 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2351 };
2352 int regno;
2353
2354 for (regno = 0; regno <= 14; regno++)
2355 if (strcmp (&name[10], table[regno]) == 0)
2356 return read_register (regno);
2357 }
2358
2359 return 0; /* not a stub */
2360 }
2361
2362 static void
2363 set_arm_command (char *args, int from_tty)
2364 {
2365 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2366 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2367 }
2368
2369 static void
2370 show_arm_command (char *args, int from_tty)
2371 {
2372 cmd_show_list (showarmcmdlist, from_tty, "");
2373 }
2374
2375 enum arm_float_model
2376 arm_get_fp_model (struct gdbarch *gdbarch)
2377 {
2378 if (arm_fp_model == ARM_FLOAT_AUTO)
2379 return gdbarch_tdep (gdbarch)->fp_model;
2380
2381 return arm_fp_model;
2382 }
2383
2384 static void
2385 arm_set_fp (struct gdbarch *gdbarch)
2386 {
2387 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2388
2389 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2390 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2391 {
2392 set_gdbarch_double_format (gdbarch,
2393 &floatformat_ieee_double_littlebyte_bigword);
2394 set_gdbarch_long_double_format
2395 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2396 }
2397 else
2398 {
2399 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2400 set_gdbarch_long_double_format (gdbarch,
2401 &floatformat_ieee_double_little);
2402 }
2403 }
2404
2405 static void
2406 set_fp_model_sfunc (char *args, int from_tty,
2407 struct cmd_list_element *c)
2408 {
2409 enum arm_float_model fp_model;
2410
2411 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2412 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2413 {
2414 arm_fp_model = fp_model;
2415 break;
2416 }
2417
2418 if (fp_model == ARM_FLOAT_LAST)
2419 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2420 current_fp_model);
2421
2422 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2423 arm_set_fp (current_gdbarch);
2424 }
2425
2426 static void
2427 show_fp_model (char *args, int from_tty,
2428 struct cmd_list_element *c)
2429 {
2430 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2431
2432 if (arm_fp_model == ARM_FLOAT_AUTO
2433 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2434 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2435 fp_model_strings[tdep->fp_model]);
2436 }
2437
2438 /* If the user changes the register disassembly style used for info
2439 register and other commands, we have to also switch the style used
2440 in opcodes for disassembly output. This function is run in the "set
2441 arm disassembly" command, and does that. */
2442
2443 static void
2444 set_disassembly_style_sfunc (char *args, int from_tty,
2445 struct cmd_list_element *c)
2446 {
2447 set_disassembly_style ();
2448 }
2449 \f
2450 /* Return the ARM register name corresponding to register I. */
2451 static const char *
2452 arm_register_name (int i)
2453 {
2454 return arm_register_names[i];
2455 }
2456
2457 static void
2458 set_disassembly_style (void)
2459 {
2460 const char *setname, *setdesc, **regnames;
2461 int numregs, j;
2462
2463 /* Find the style that the user wants in the opcodes table. */
2464 int current = 0;
2465 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2466 while ((disassembly_style != setname)
2467 && (current < num_disassembly_options))
2468 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2469 current_option = current;
2470
2471 /* Fill our copy. */
2472 for (j = 0; j < numregs; j++)
2473 arm_register_names[j] = (char *) regnames[j];
2474
2475 /* Adjust case. */
2476 if (isupper (*regnames[ARM_PC_REGNUM]))
2477 {
2478 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2479 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2480 }
2481 else
2482 {
2483 arm_register_names[ARM_FPS_REGNUM] = "fps";
2484 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2485 }
2486
2487 /* Synchronize the disassembler. */
2488 set_arm_regname_option (current);
2489 }
2490
2491 /* arm_othernames implements the "othernames" command. This is deprecated
2492 by the "set arm disassembly" command. */
2493
2494 static void
2495 arm_othernames (char *names, int n)
2496 {
2497 /* Circle through the various flavors. */
2498 current_option = (current_option + 1) % num_disassembly_options;
2499
2500 disassembly_style = valid_disassembly_styles[current_option];
2501 set_disassembly_style ();
2502 }
2503
2504 /* Test whether the coff symbol specific value corresponds to a Thumb
2505 function. */
2506
2507 static int
2508 coff_sym_is_thumb (int val)
2509 {
2510 return (val == C_THUMBEXT ||
2511 val == C_THUMBSTAT ||
2512 val == C_THUMBEXTFUNC ||
2513 val == C_THUMBSTATFUNC ||
2514 val == C_THUMBLABEL);
2515 }
2516
2517 /* arm_coff_make_msymbol_special()
2518 arm_elf_make_msymbol_special()
2519
2520 These functions test whether the COFF or ELF symbol corresponds to
2521 an address in thumb code, and set a "special" bit in a minimal
2522 symbol to indicate that it does. */
2523
2524 static void
2525 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2526 {
2527 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2528 STT_ARM_TFUNC). */
2529 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2530 == STT_LOPROC)
2531 MSYMBOL_SET_SPECIAL (msym);
2532 }
2533
2534 static void
2535 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2536 {
2537 if (coff_sym_is_thumb (val))
2538 MSYMBOL_SET_SPECIAL (msym);
2539 }
2540
2541 static void
2542 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2543 {
2544 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2545
2546 /* If necessary, set the T bit. */
2547 if (arm_apcs_32)
2548 {
2549 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2550 if (arm_pc_is_thumb (pc))
2551 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2552 else
2553 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2554 }
2555 }
2556 \f
2557 static enum gdb_osabi
2558 arm_elf_osabi_sniffer (bfd *abfd)
2559 {
2560 unsigned int elfosabi, eflags;
2561 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2562
2563 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2564
2565 switch (elfosabi)
2566 {
2567 case ELFOSABI_NONE:
2568 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2569 file are conforming to the base specification for that machine
2570 (there are no OS-specific extensions). In order to determine the
2571 real OS in use we must look for OS notes that have been added. */
2572 bfd_map_over_sections (abfd,
2573 generic_elf_osabi_sniff_abi_tag_sections,
2574 &osabi);
2575 if (osabi == GDB_OSABI_UNKNOWN)
2576 {
2577 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2578 field for more information. */
2579 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2580 switch (eflags)
2581 {
2582 case EF_ARM_EABI_VER1:
2583 osabi = GDB_OSABI_ARM_EABI_V1;
2584 break;
2585
2586 case EF_ARM_EABI_VER2:
2587 osabi = GDB_OSABI_ARM_EABI_V2;
2588 break;
2589
2590 case EF_ARM_EABI_UNKNOWN:
2591 /* Assume GNU tools. */
2592 osabi = GDB_OSABI_ARM_APCS;
2593 break;
2594
2595 default:
2596 internal_error (__FILE__, __LINE__,
2597 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2598 "version 0x%x", eflags);
2599 }
2600 }
2601 break;
2602
2603 case ELFOSABI_ARM:
2604 /* GNU tools use this value. Check note sections in this case,
2605 as well. */
2606 bfd_map_over_sections (abfd,
2607 generic_elf_osabi_sniff_abi_tag_sections,
2608 &osabi);
2609 if (osabi == GDB_OSABI_UNKNOWN)
2610 {
2611 /* Assume APCS ABI. */
2612 osabi = GDB_OSABI_ARM_APCS;
2613 }
2614 break;
2615
2616 case ELFOSABI_FREEBSD:
2617 osabi = GDB_OSABI_FREEBSD_ELF;
2618 break;
2619
2620 case ELFOSABI_NETBSD:
2621 osabi = GDB_OSABI_NETBSD_ELF;
2622 break;
2623
2624 case ELFOSABI_LINUX:
2625 osabi = GDB_OSABI_LINUX;
2626 break;
2627 }
2628
2629 return osabi;
2630 }
2631
2632 \f
2633 /* Initialize the current architecture based on INFO. If possible,
2634 re-use an architecture from ARCHES, which is a list of
2635 architectures already created during this debugging session.
2636
2637 Called e.g. at program startup, when reading a core file, and when
2638 reading a binary file. */
2639
2640 static struct gdbarch *
2641 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2642 {
2643 struct gdbarch_tdep *tdep;
2644 struct gdbarch *gdbarch;
2645
2646 /* Try to deterimine the ABI of the object we are loading. */
2647
2648 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2649 {
2650 switch (bfd_get_flavour (info.abfd))
2651 {
2652 case bfd_target_aout_flavour:
2653 /* Assume it's an old APCS-style ABI. */
2654 info.osabi = GDB_OSABI_ARM_APCS;
2655 break;
2656
2657 case bfd_target_coff_flavour:
2658 /* Assume it's an old APCS-style ABI. */
2659 /* XXX WinCE? */
2660 info.osabi = GDB_OSABI_ARM_APCS;
2661 break;
2662
2663 default:
2664 /* Leave it as "unknown". */
2665 break;
2666 }
2667 }
2668
2669 /* If there is already a candidate, use it. */
2670 arches = gdbarch_list_lookup_by_info (arches, &info);
2671 if (arches != NULL)
2672 return arches->gdbarch;
2673
2674 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2675 gdbarch = gdbarch_alloc (&info, tdep);
2676
2677 /* We used to default to FPA for generic ARM, but almost nobody uses that
2678 now, and we now provide a way for the user to force the model. So
2679 default to the most useful variant. */
2680 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
2681
2682 /* Breakpoints. */
2683 switch (info.byte_order)
2684 {
2685 case BFD_ENDIAN_BIG:
2686 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2687 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2688 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2689 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2690
2691 break;
2692
2693 case BFD_ENDIAN_LITTLE:
2694 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2695 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2696 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2697 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2698
2699 break;
2700
2701 default:
2702 internal_error (__FILE__, __LINE__,
2703 "arm_gdbarch_init: bad byte order for float format");
2704 }
2705
2706 /* On ARM targets char defaults to unsigned. */
2707 set_gdbarch_char_signed (gdbarch, 0);
2708
2709 /* This should be low enough for everything. */
2710 tdep->lowest_pc = 0x20;
2711 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2712
2713 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2714
2715 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2716
2717 /* Frame handling. */
2718 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2719 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2720 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2721
2722 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, arm_frameless_function_invocation);
2723
2724 frame_base_set_default (gdbarch, &arm_normal_base);
2725
2726 /* Address manipulation. */
2727 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2728 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2729
2730 /* Advance PC across function entry code. */
2731 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2732
2733 /* Get the PC when a frame might not be available. */
2734 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2735
2736 /* The stack grows downward. */
2737 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2738
2739 /* Breakpoint manipulation. */
2740 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2741
2742 /* Information about registers, etc. */
2743 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2744 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2745 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2746 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2747 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
2748 set_gdbarch_deprecated_register_bytes (gdbarch,
2749 (NUM_GREGS * INT_REGISTER_SIZE
2750 + NUM_FREGS * FP_REGISTER_SIZE
2751 + NUM_SREGS * STATUS_REGISTER_SIZE));
2752 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2753 set_gdbarch_register_type (gdbarch, arm_register_type);
2754
2755 /* Internal <-> external register number maps. */
2756 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2757
2758 /* Integer registers are 4 bytes. */
2759 set_gdbarch_deprecated_register_size (gdbarch, 4);
2760 set_gdbarch_register_name (gdbarch, arm_register_name);
2761
2762 /* Returning results. */
2763 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2764 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2765 set_gdbarch_deprecated_use_struct_convention (gdbarch, arm_use_struct_convention);
2766 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
2767
2768 /* Single stepping. */
2769 /* XXX For an RDI target we should ask the target if it can single-step. */
2770 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2771
2772 /* Disassembly. */
2773 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2774
2775 /* Minsymbol frobbing. */
2776 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2777 set_gdbarch_coff_make_msymbol_special (gdbarch,
2778 arm_coff_make_msymbol_special);
2779
2780 /* Hook in the ABI-specific overrides, if they have been registered. */
2781 gdbarch_init_osabi (info, gdbarch);
2782
2783 /* Add some default predicates. */
2784 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
2785 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2786
2787 /* Now we have tuned the configuration, set a few final things,
2788 based on what the OS ABI has told us. */
2789
2790 if (tdep->jb_pc >= 0)
2791 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2792
2793 /* Floating point sizes and format. */
2794 switch (info.byte_order)
2795 {
2796 case BFD_ENDIAN_BIG:
2797 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2798 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2799 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2800
2801 break;
2802
2803 case BFD_ENDIAN_LITTLE:
2804 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2805 arm_set_fp (gdbarch);
2806 break;
2807
2808 default:
2809 internal_error (__FILE__, __LINE__,
2810 "arm_gdbarch_init: bad byte order for float format");
2811 }
2812
2813 return gdbarch;
2814 }
2815
2816 static void
2817 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2818 {
2819 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2820
2821 if (tdep == NULL)
2822 return;
2823
2824 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2825 (unsigned long) tdep->lowest_pc);
2826 }
2827
2828 static void
2829 arm_init_abi_eabi_v1 (struct gdbarch_info info,
2830 struct gdbarch *gdbarch)
2831 {
2832 /* Place-holder. */
2833 }
2834
2835 static void
2836 arm_init_abi_eabi_v2 (struct gdbarch_info info,
2837 struct gdbarch *gdbarch)
2838 {
2839 /* Place-holder. */
2840 }
2841
2842 static void
2843 arm_init_abi_apcs (struct gdbarch_info info,
2844 struct gdbarch *gdbarch)
2845 {
2846 /* Place-holder. */
2847 }
2848
2849 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2850
2851 void
2852 _initialize_arm_tdep (void)
2853 {
2854 struct ui_file *stb;
2855 long length;
2856 struct cmd_list_element *new_set, *new_show;
2857 const char *setname;
2858 const char *setdesc;
2859 const char **regnames;
2860 int numregs, i, j;
2861 static char *helptext;
2862
2863 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2864
2865 /* Register an ELF OS ABI sniffer for ARM binaries. */
2866 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2867 bfd_target_elf_flavour,
2868 arm_elf_osabi_sniffer);
2869
2870 /* Register some ABI variants for embedded systems. */
2871 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
2872 arm_init_abi_eabi_v1);
2873 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
2874 arm_init_abi_eabi_v2);
2875 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
2876 arm_init_abi_apcs);
2877
2878 /* Get the number of possible sets of register names defined in opcodes. */
2879 num_disassembly_options = get_arm_regname_num_options ();
2880
2881 /* Add root prefix command for all "set arm"/"show arm" commands. */
2882 add_prefix_cmd ("arm", no_class, set_arm_command,
2883 "Various ARM-specific commands.",
2884 &setarmcmdlist, "set arm ", 0, &setlist);
2885
2886 add_prefix_cmd ("arm", no_class, show_arm_command,
2887 "Various ARM-specific commands.",
2888 &showarmcmdlist, "show arm ", 0, &showlist);
2889
2890 /* Sync the opcode insn printer with our register viewer. */
2891 parse_arm_disassembler_option ("reg-names-std");
2892
2893 /* Begin creating the help text. */
2894 stb = mem_fileopen ();
2895 fprintf_unfiltered (stb, "Set the disassembly style.\n"
2896 "The valid values are:\n");
2897
2898 /* Initialize the array that will be passed to add_set_enum_cmd(). */
2899 valid_disassembly_styles
2900 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2901 for (i = 0; i < num_disassembly_options; i++)
2902 {
2903 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
2904 valid_disassembly_styles[i] = setname;
2905 fprintf_unfiltered (stb, "%s - %s\n", setname,
2906 setdesc);
2907 /* Copy the default names (if found) and synchronize disassembler. */
2908 if (!strcmp (setname, "std"))
2909 {
2910 disassembly_style = setname;
2911 current_option = i;
2912 for (j = 0; j < numregs; j++)
2913 arm_register_names[j] = (char *) regnames[j];
2914 set_arm_regname_option (i);
2915 }
2916 }
2917 /* Mark the end of valid options. */
2918 valid_disassembly_styles[num_disassembly_options] = NULL;
2919
2920 /* Finish the creation of the help text. */
2921 fprintf_unfiltered (stb, "The default is \"std\".");
2922 helptext = ui_file_xstrdup (stb, &length);
2923 ui_file_delete (stb);
2924
2925 /* Add the deprecated disassembly-flavor command. */
2926 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
2927 valid_disassembly_styles,
2928 &disassembly_style,
2929 helptext,
2930 &setlist);
2931 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2932 deprecate_cmd (new_set, "set arm disassembly");
2933 deprecate_cmd (deprecated_add_show_from_set (new_set, &showlist),
2934 "show arm disassembly");
2935
2936 /* And now add the new interface. */
2937 new_set = add_set_enum_cmd ("disassembler", no_class,
2938 valid_disassembly_styles, &disassembly_style,
2939 helptext, &setarmcmdlist);
2940
2941 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2942 deprecated_add_show_from_set (new_set, &showarmcmdlist);
2943
2944 add_setshow_cmd_full ("apcs32", no_class,
2945 var_boolean, (char *) &arm_apcs_32,
2946 "Set usage of ARM 32-bit mode.",
2947 "Show usage of ARM 32-bit mode.",
2948 NULL, NULL,
2949 &setlist, &showlist, &new_set, &new_show);
2950 deprecate_cmd (new_set, "set arm apcs32");
2951 deprecate_cmd (new_show, "show arm apcs32");
2952
2953 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2954 "Set usage of ARM 32-bit mode. "
2955 "When off, a 26-bit PC will be used.",
2956 "Show usage of ARM 32-bit mode. "
2957 "When off, a 26-bit PC will be used.",
2958 NULL, NULL,
2959 &setarmcmdlist, &showarmcmdlist);
2960
2961 /* Add a command to allow the user to force the FPU model. */
2962 new_set = add_set_enum_cmd
2963 ("fpu", no_class, fp_model_strings, &current_fp_model,
2964 "Set the floating point type.\n"
2965 "auto - Determine the FP typefrom the OS-ABI.\n"
2966 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
2967 "fpa - FPA co-processor (GCC compiled).\n"
2968 "softvfp - Software FP with pure-endian doubles.\n"
2969 "vfp - VFP co-processor.",
2970 &setarmcmdlist);
2971 set_cmd_sfunc (new_set, set_fp_model_sfunc);
2972 set_cmd_sfunc (deprecated_add_show_from_set (new_set, &showarmcmdlist),
2973 show_fp_model);
2974
2975 /* Add the deprecated "othernames" command. */
2976 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
2977 "Switch to the next set of register names."),
2978 "set arm disassembly");
2979
2980 /* Debugging flag. */
2981 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
2982 "Set ARM debugging. "
2983 "When on, arm-specific debugging is enabled.",
2984 "Show ARM debugging. "
2985 "When on, arm-specific debugging is enabled.",
2986 NULL, NULL,
2987 &setdebuglist, &showdebuglist);
2988 }