]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arm-tdep.c
2004-05-08 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "dis-asm.h" /* For register styles. */
31 #include "regcache.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
39
40 #include "arm-tdep.h"
41 #include "gdb/sim-arm.h"
42
43 #include "elf-bfd.h"
44 #include "coff/internal.h"
45 #include "elf/arm.h"
46
47 #include "gdb_assert.h"
48
49 static int arm_debug;
50
51 /* Each OS has a different mechanism for accessing the various
52 registers stored in the sigcontext structure.
53
54 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
55 function pointer) which may be used to determine the addresses
56 of the various saved registers in the sigcontext structure.
57
58 For the ARM target, there are three parameters to this function.
59 The first is the pc value of the frame under consideration, the
60 second the stack pointer of this frame, and the last is the
61 register number to fetch.
62
63 If the tm.h file does not define this macro, then it's assumed that
64 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
65 be 0.
66
67 When it comes time to multi-arching this code, see the identically
68 named machinery in ia64-tdep.c for an example of how it could be
69 done. It should not be necessary to modify the code below where
70 this macro is used. */
71
72 #ifdef SIGCONTEXT_REGISTER_ADDRESS
73 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
74 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
75 #endif
76 #else
77 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
78 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
79 #endif
80
81 /* Macros for setting and testing a bit in a minimal symbol that marks
82 it as Thumb function. The MSB of the minimal symbol's "info" field
83 is used for this purpose.
84
85 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
86 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
87
88 #define MSYMBOL_SET_SPECIAL(msym) \
89 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
90 | 0x80000000)
91
92 #define MSYMBOL_IS_SPECIAL(msym) \
93 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
94
95 /* The list of available "set arm ..." and "show arm ..." commands. */
96 static struct cmd_list_element *setarmcmdlist = NULL;
97 static struct cmd_list_element *showarmcmdlist = NULL;
98
99 /* The type of floating-point to use. Keep this in sync with enum
100 arm_float_model, and the help string in _initialize_arm_tdep. */
101 static const char *fp_model_strings[] =
102 {
103 "auto",
104 "softfpa",
105 "fpa",
106 "softvfp",
107 "vfp"
108 };
109
110 /* A variable that can be configured by the user. */
111 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
112 static const char *current_fp_model = "auto";
113
114 /* Number of different reg name sets (options). */
115 static int num_disassembly_options;
116
117 /* We have more registers than the disassembler as gdb can print the value
118 of special registers as well.
119 The general register names are overwritten by whatever is being used by
120 the disassembler at the moment. We also adjust the case of cpsr and fps. */
121
122 /* Initial value: Register names used in ARM's ISA documentation. */
123 static char * arm_register_name_strings[] =
124 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
125 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
126 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
127 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
128 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
129 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
130 "fps", "cpsr" }; /* 24 25 */
131 static char **arm_register_names = arm_register_name_strings;
132
133 /* Valid register name styles. */
134 static const char **valid_disassembly_styles;
135
136 /* Disassembly style to use. Default to "std" register names. */
137 static const char *disassembly_style;
138 /* Index to that option in the opcodes table. */
139 static int current_option;
140
141 /* This is used to keep the bfd arch_info in sync with the disassembly
142 style. */
143 static void set_disassembly_style_sfunc(char *, int,
144 struct cmd_list_element *);
145 static void set_disassembly_style (void);
146
147 static void convert_from_extended (const struct floatformat *, const void *,
148 void *);
149 static void convert_to_extended (const struct floatformat *, void *,
150 const void *);
151
152 struct arm_prologue_cache
153 {
154 /* The stack pointer at the time this frame was created; i.e. the
155 caller's stack pointer when this function was called. It is used
156 to identify this frame. */
157 CORE_ADDR prev_sp;
158
159 /* The frame base for this frame is just prev_sp + frame offset -
160 frame size. FRAMESIZE is the size of this stack frame, and
161 FRAMEOFFSET if the initial offset from the stack pointer (this
162 frame's stack pointer, not PREV_SP) to the frame base. */
163
164 int framesize;
165 int frameoffset;
166
167 /* The register used to hold the frame pointer for this frame. */
168 int framereg;
169
170 /* Saved register offsets. */
171 struct trad_frame_saved_reg *saved_regs;
172 };
173
174 /* Addresses for calling Thumb functions have the bit 0 set.
175 Here are some macros to test, set, or clear bit 0 of addresses. */
176 #define IS_THUMB_ADDR(addr) ((addr) & 1)
177 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
178 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
179
180 /* Set to true if the 32-bit mode is in use. */
181
182 int arm_apcs_32 = 1;
183
184 /* Flag set by arm_fix_call_dummy that tells whether the target
185 function is a Thumb function. This flag is checked by
186 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
187 its use in valops.c) to pass the function address as an additional
188 parameter. */
189
190 static int target_is_thumb;
191
192 /* Flag set by arm_fix_call_dummy that tells whether the calling
193 function is a Thumb function. This flag is checked by
194 arm_pc_is_thumb. */
195
196 static int caller_is_thumb;
197
198 /* Determine if the program counter specified in MEMADDR is in a Thumb
199 function. */
200
201 int
202 arm_pc_is_thumb (CORE_ADDR memaddr)
203 {
204 struct minimal_symbol *sym;
205
206 /* If bit 0 of the address is set, assume this is a Thumb address. */
207 if (IS_THUMB_ADDR (memaddr))
208 return 1;
209
210 /* Thumb functions have a "special" bit set in minimal symbols. */
211 sym = lookup_minimal_symbol_by_pc (memaddr);
212 if (sym)
213 {
214 return (MSYMBOL_IS_SPECIAL (sym));
215 }
216 else
217 {
218 return 0;
219 }
220 }
221
222 /* Determine if the program counter specified in MEMADDR is in a call
223 dummy being called from a Thumb function. */
224
225 int
226 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
227 {
228 CORE_ADDR sp = read_sp ();
229
230 /* FIXME: Until we switch for the new call dummy macros, this heuristic
231 is the best we can do. We are trying to determine if the pc is on
232 the stack, which (hopefully) will only happen in a call dummy.
233 We hope the current stack pointer is not so far alway from the dummy
234 frame location (true if we have not pushed large data structures or
235 gone too many levels deep) and that our 1024 is not enough to consider
236 code regions as part of the stack (true for most practical purposes). */
237 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
238 return caller_is_thumb;
239 else
240 return 0;
241 }
242
243 /* Remove useless bits from addresses in a running program. */
244 static CORE_ADDR
245 arm_addr_bits_remove (CORE_ADDR val)
246 {
247 if (arm_apcs_32)
248 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
249 else
250 return (val & 0x03fffffc);
251 }
252
253 /* When reading symbols, we need to zap the low bit of the address,
254 which may be set to 1 for Thumb functions. */
255 static CORE_ADDR
256 arm_smash_text_address (CORE_ADDR val)
257 {
258 return val & ~1;
259 }
260
261 /* Immediately after a function call, return the saved pc. Can't
262 always go through the frames for this because on some machines the
263 new frame is not set up until the new function executes some
264 instructions. */
265
266 static CORE_ADDR
267 arm_saved_pc_after_call (struct frame_info *frame)
268 {
269 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
270 }
271
272 /* Determine whether the function invocation represented by FI has a
273 frame on the stack associated with it. If it does return zero,
274 otherwise return 1. */
275
276 static int
277 arm_frameless_function_invocation (struct frame_info *fi)
278 {
279 CORE_ADDR func_start, after_prologue;
280 int frameless;
281
282 /* Sometimes we have functions that do a little setup (like saving the
283 vN registers with the stmdb instruction, but DO NOT set up a frame.
284 The symbol table will report this as a prologue. However, it is
285 important not to try to parse these partial frames as frames, or we
286 will get really confused.
287
288 So I will demand 3 instructions between the start & end of the
289 prologue before I call it a real prologue, i.e. at least
290 mov ip, sp,
291 stmdb sp!, {}
292 sub sp, ip, #4. */
293
294 func_start = (get_frame_func (fi) + FUNCTION_START_OFFSET);
295 after_prologue = SKIP_PROLOGUE (func_start);
296
297 /* There are some frameless functions whose first two instructions
298 follow the standard APCS form, in which case after_prologue will
299 be func_start + 8. */
300
301 frameless = (after_prologue < func_start + 12);
302 return frameless;
303 }
304
305 /* A typical Thumb prologue looks like this:
306 push {r7, lr}
307 add sp, sp, #-28
308 add r7, sp, #12
309 Sometimes the latter instruction may be replaced by:
310 mov r7, sp
311
312 or like this:
313 push {r7, lr}
314 mov r7, sp
315 sub sp, #12
316
317 or, on tpcs, like this:
318 sub sp,#16
319 push {r7, lr}
320 (many instructions)
321 mov r7, sp
322 sub sp, #12
323
324 There is always one instruction of three classes:
325 1 - push
326 2 - setting of r7
327 3 - adjusting of sp
328
329 When we have found at least one of each class we are done with the prolog.
330 Note that the "sub sp, #NN" before the push does not count.
331 */
332
333 static CORE_ADDR
334 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
335 {
336 CORE_ADDR current_pc;
337 /* findmask:
338 bit 0 - push { rlist }
339 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
340 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
341 */
342 int findmask = 0;
343
344 for (current_pc = pc;
345 current_pc + 2 < func_end && current_pc < pc + 40;
346 current_pc += 2)
347 {
348 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
349
350 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
351 {
352 findmask |= 1; /* push found */
353 }
354 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
355 sub sp, #simm */
356 {
357 if ((findmask & 1) == 0) /* before push ? */
358 continue;
359 else
360 findmask |= 4; /* add/sub sp found */
361 }
362 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
363 {
364 findmask |= 2; /* setting of r7 found */
365 }
366 else if (insn == 0x466f) /* mov r7, sp */
367 {
368 findmask |= 2; /* setting of r7 found */
369 }
370 else if (findmask == (4+2+1))
371 {
372 /* We have found one of each type of prologue instruction */
373 break;
374 }
375 else
376 /* Something in the prolog that we don't care about or some
377 instruction from outside the prolog scheduled here for
378 optimization. */
379 continue;
380 }
381
382 return current_pc;
383 }
384
385 /* Advance the PC across any function entry prologue instructions to
386 reach some "real" code.
387
388 The APCS (ARM Procedure Call Standard) defines the following
389 prologue:
390
391 mov ip, sp
392 [stmfd sp!, {a1,a2,a3,a4}]
393 stmfd sp!, {...,fp,ip,lr,pc}
394 [stfe f7, [sp, #-12]!]
395 [stfe f6, [sp, #-12]!]
396 [stfe f5, [sp, #-12]!]
397 [stfe f4, [sp, #-12]!]
398 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
399
400 static CORE_ADDR
401 arm_skip_prologue (CORE_ADDR pc)
402 {
403 unsigned long inst;
404 CORE_ADDR skip_pc;
405 CORE_ADDR func_addr, func_end = 0;
406 char *func_name;
407 struct symtab_and_line sal;
408
409 /* If we're in a dummy frame, don't even try to skip the prologue. */
410 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
411 return pc;
412
413 /* See what the symbol table says. */
414
415 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
416 {
417 struct symbol *sym;
418
419 /* Found a function. */
420 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
421 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
422 {
423 /* Don't use this trick for assembly source files. */
424 sal = find_pc_line (func_addr, 0);
425 if ((sal.line != 0) && (sal.end < func_end))
426 return sal.end;
427 }
428 }
429
430 /* Check if this is Thumb code. */
431 if (arm_pc_is_thumb (pc))
432 return thumb_skip_prologue (pc, func_end);
433
434 /* Can't find the prologue end in the symbol table, try it the hard way
435 by disassembling the instructions. */
436
437 /* Like arm_scan_prologue, stop no later than pc + 64. */
438 if (func_end == 0 || func_end > pc + 64)
439 func_end = pc + 64;
440
441 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
442 {
443 inst = read_memory_integer (skip_pc, 4);
444
445 /* "mov ip, sp" is no longer a required part of the prologue. */
446 if (inst == 0xe1a0c00d) /* mov ip, sp */
447 continue;
448
449 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
450 continue;
451
452 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
453 continue;
454
455 /* Some prologues begin with "str lr, [sp, #-4]!". */
456 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
457 continue;
458
459 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
460 continue;
461
462 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
463 continue;
464
465 /* Any insns after this point may float into the code, if it makes
466 for better instruction scheduling, so we skip them only if we
467 find them, but still consider the function to be frame-ful. */
468
469 /* We may have either one sfmfd instruction here, or several stfe
470 insns, depending on the version of floating point code we
471 support. */
472 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
473 continue;
474
475 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
479 continue;
480
481 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
482 continue;
483
484 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
485 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
486 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
487 continue;
488
489 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
490 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
491 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
492 continue;
493
494 /* Un-recognized instruction; stop scanning. */
495 break;
496 }
497
498 return skip_pc; /* End of prologue */
499 }
500
501 /* *INDENT-OFF* */
502 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
503 This function decodes a Thumb function prologue to determine:
504 1) the size of the stack frame
505 2) which registers are saved on it
506 3) the offsets of saved regs
507 4) the offset from the stack pointer to the frame pointer
508
509 A typical Thumb function prologue would create this stack frame
510 (offsets relative to FP)
511 old SP -> 24 stack parameters
512 20 LR
513 16 R7
514 R7 -> 0 local variables (16 bytes)
515 SP -> -12 additional stack space (12 bytes)
516 The frame size would thus be 36 bytes, and the frame offset would be
517 12 bytes. The frame register is R7.
518
519 The comments for thumb_skip_prolog() describe the algorithm we use
520 to detect the end of the prolog. */
521 /* *INDENT-ON* */
522
523 static void
524 thumb_scan_prologue (CORE_ADDR prev_pc, struct arm_prologue_cache *cache)
525 {
526 CORE_ADDR prologue_start;
527 CORE_ADDR prologue_end;
528 CORE_ADDR current_pc;
529 /* Which register has been copied to register n? */
530 int saved_reg[16];
531 /* findmask:
532 bit 0 - push { rlist }
533 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
534 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
535 */
536 int findmask = 0;
537 int i;
538
539 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
540 {
541 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
542
543 if (sal.line == 0) /* no line info, use current PC */
544 prologue_end = prev_pc;
545 else if (sal.end < prologue_end) /* next line begins after fn end */
546 prologue_end = sal.end; /* (probably means no prologue) */
547 }
548 else
549 /* We're in the boondocks: allow for
550 16 pushes, an add, and "mv fp,sp". */
551 prologue_end = prologue_start + 40;
552
553 prologue_end = min (prologue_end, prev_pc);
554
555 /* Initialize the saved register map. When register H is copied to
556 register L, we will put H in saved_reg[L]. */
557 for (i = 0; i < 16; i++)
558 saved_reg[i] = i;
559
560 /* Search the prologue looking for instructions that set up the
561 frame pointer, adjust the stack pointer, and save registers.
562 Do this until all basic prolog instructions are found. */
563
564 cache->framesize = 0;
565 for (current_pc = prologue_start;
566 (current_pc < prologue_end) && ((findmask & 7) != 7);
567 current_pc += 2)
568 {
569 unsigned short insn;
570 int regno;
571 int offset;
572
573 insn = read_memory_unsigned_integer (current_pc, 2);
574
575 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
576 {
577 int mask;
578 findmask |= 1; /* push found */
579 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
580 whether to save LR (R14). */
581 mask = (insn & 0xff) | ((insn & 0x100) << 6);
582
583 /* Calculate offsets of saved R0-R7 and LR. */
584 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
585 if (mask & (1 << regno))
586 {
587 cache->framesize += 4;
588 cache->saved_regs[saved_reg[regno]].addr = -cache->framesize;
589 /* Reset saved register map. */
590 saved_reg[regno] = regno;
591 }
592 }
593 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
594 sub sp, #simm */
595 {
596 if ((findmask & 1) == 0) /* before push? */
597 continue;
598 else
599 findmask |= 4; /* add/sub sp found */
600
601 offset = (insn & 0x7f) << 2; /* get scaled offset */
602 if (insn & 0x80) /* is it signed? (==subtracting) */
603 {
604 cache->frameoffset += offset;
605 offset = -offset;
606 }
607 cache->framesize -= offset;
608 }
609 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
610 {
611 findmask |= 2; /* setting of r7 found */
612 cache->framereg = THUMB_FP_REGNUM;
613 /* get scaled offset */
614 cache->frameoffset = (insn & 0xff) << 2;
615 }
616 else if (insn == 0x466f) /* mov r7, sp */
617 {
618 findmask |= 2; /* setting of r7 found */
619 cache->framereg = THUMB_FP_REGNUM;
620 cache->frameoffset = 0;
621 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
622 }
623 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
624 {
625 int lo_reg = insn & 7; /* dest. register (r0-r7) */
626 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
627 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
628 }
629 else
630 /* Something in the prolog that we don't care about or some
631 instruction from outside the prolog scheduled here for
632 optimization. */
633 continue;
634 }
635 }
636
637 /* This function decodes an ARM function prologue to determine:
638 1) the size of the stack frame
639 2) which registers are saved on it
640 3) the offsets of saved regs
641 4) the offset from the stack pointer to the frame pointer
642 This information is stored in the "extra" fields of the frame_info.
643
644 There are two basic forms for the ARM prologue. The fixed argument
645 function call will look like:
646
647 mov ip, sp
648 stmfd sp!, {fp, ip, lr, pc}
649 sub fp, ip, #4
650 [sub sp, sp, #4]
651
652 Which would create this stack frame (offsets relative to FP):
653 IP -> 4 (caller's stack)
654 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
655 -4 LR (return address in caller)
656 -8 IP (copy of caller's SP)
657 -12 FP (caller's FP)
658 SP -> -28 Local variables
659
660 The frame size would thus be 32 bytes, and the frame offset would be
661 28 bytes. The stmfd call can also save any of the vN registers it
662 plans to use, which increases the frame size accordingly.
663
664 Note: The stored PC is 8 off of the STMFD instruction that stored it
665 because the ARM Store instructions always store PC + 8 when you read
666 the PC register.
667
668 A variable argument function call will look like:
669
670 mov ip, sp
671 stmfd sp!, {a1, a2, a3, a4}
672 stmfd sp!, {fp, ip, lr, pc}
673 sub fp, ip, #20
674
675 Which would create this stack frame (offsets relative to FP):
676 IP -> 20 (caller's stack)
677 16 A4
678 12 A3
679 8 A2
680 4 A1
681 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
682 -4 LR (return address in caller)
683 -8 IP (copy of caller's SP)
684 -12 FP (caller's FP)
685 SP -> -28 Local variables
686
687 The frame size would thus be 48 bytes, and the frame offset would be
688 28 bytes.
689
690 There is another potential complication, which is that the optimizer
691 will try to separate the store of fp in the "stmfd" instruction from
692 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
693 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
694
695 Also, note, the original version of the ARM toolchain claimed that there
696 should be an
697
698 instruction at the end of the prologue. I have never seen GCC produce
699 this, and the ARM docs don't mention it. We still test for it below in
700 case it happens...
701
702 */
703
704 static void
705 arm_scan_prologue (struct frame_info *next_frame, struct arm_prologue_cache *cache)
706 {
707 int regno, sp_offset, fp_offset, ip_offset;
708 CORE_ADDR prologue_start, prologue_end, current_pc;
709 CORE_ADDR prev_pc = frame_pc_unwind (next_frame);
710
711 /* Assume there is no frame until proven otherwise. */
712 cache->framereg = ARM_SP_REGNUM;
713 cache->framesize = 0;
714 cache->frameoffset = 0;
715
716 /* Check for Thumb prologue. */
717 if (arm_pc_is_thumb (prev_pc))
718 {
719 thumb_scan_prologue (prev_pc, cache);
720 return;
721 }
722
723 /* Find the function prologue. If we can't find the function in
724 the symbol table, peek in the stack frame to find the PC. */
725 if (find_pc_partial_function (prev_pc, NULL, &prologue_start, &prologue_end))
726 {
727 /* One way to find the end of the prologue (which works well
728 for unoptimized code) is to do the following:
729
730 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
731
732 if (sal.line == 0)
733 prologue_end = prev_pc;
734 else if (sal.end < prologue_end)
735 prologue_end = sal.end;
736
737 This mechanism is very accurate so long as the optimizer
738 doesn't move any instructions from the function body into the
739 prologue. If this happens, sal.end will be the last
740 instruction in the first hunk of prologue code just before
741 the first instruction that the scheduler has moved from
742 the body to the prologue.
743
744 In order to make sure that we scan all of the prologue
745 instructions, we use a slightly less accurate mechanism which
746 may scan more than necessary. To help compensate for this
747 lack of accuracy, the prologue scanning loop below contains
748 several clauses which'll cause the loop to terminate early if
749 an implausible prologue instruction is encountered.
750
751 The expression
752
753 prologue_start + 64
754
755 is a suitable endpoint since it accounts for the largest
756 possible prologue plus up to five instructions inserted by
757 the scheduler. */
758
759 if (prologue_end > prologue_start + 64)
760 {
761 prologue_end = prologue_start + 64; /* See above. */
762 }
763 }
764 else
765 {
766 /* We have no symbol information. Our only option is to assume this
767 function has a standard stack frame and the normal frame register.
768 Then, we can find the value of our frame pointer on entrance to
769 the callee (or at the present moment if this is the innermost frame).
770 The value stored there should be the address of the stmfd + 8. */
771 CORE_ADDR frame_loc;
772 LONGEST return_value;
773
774 frame_loc = frame_unwind_register_unsigned (next_frame, ARM_FP_REGNUM);
775 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
776 return;
777 else
778 {
779 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
780 prologue_end = prologue_start + 64; /* See above. */
781 }
782 }
783
784 if (prev_pc < prologue_end)
785 prologue_end = prev_pc;
786
787 /* Now search the prologue looking for instructions that set up the
788 frame pointer, adjust the stack pointer, and save registers.
789
790 Be careful, however, and if it doesn't look like a prologue,
791 don't try to scan it. If, for instance, a frameless function
792 begins with stmfd sp!, then we will tell ourselves there is
793 a frame, which will confuse stack traceback, as well as "finish"
794 and other operations that rely on a knowledge of the stack
795 traceback.
796
797 In the APCS, the prologue should start with "mov ip, sp" so
798 if we don't see this as the first insn, we will stop.
799
800 [Note: This doesn't seem to be true any longer, so it's now an
801 optional part of the prologue. - Kevin Buettner, 2001-11-20]
802
803 [Note further: The "mov ip,sp" only seems to be missing in
804 frameless functions at optimization level "-O2" or above,
805 in which case it is often (but not always) replaced by
806 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
807
808 sp_offset = fp_offset = ip_offset = 0;
809
810 for (current_pc = prologue_start;
811 current_pc < prologue_end;
812 current_pc += 4)
813 {
814 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
815
816 if (insn == 0xe1a0c00d) /* mov ip, sp */
817 {
818 ip_offset = 0;
819 continue;
820 }
821 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
822 {
823 unsigned imm = insn & 0xff; /* immediate value */
824 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
825 imm = (imm >> rot) | (imm << (32 - rot));
826 ip_offset = imm;
827 continue;
828 }
829 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
830 {
831 unsigned imm = insn & 0xff; /* immediate value */
832 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
833 imm = (imm >> rot) | (imm << (32 - rot));
834 ip_offset = -imm;
835 continue;
836 }
837 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
838 {
839 sp_offset -= 4;
840 cache->saved_regs[ARM_LR_REGNUM].addr = sp_offset;
841 continue;
842 }
843 else if ((insn & 0xffff0000) == 0xe92d0000)
844 /* stmfd sp!, {..., fp, ip, lr, pc}
845 or
846 stmfd sp!, {a1, a2, a3, a4} */
847 {
848 int mask = insn & 0xffff;
849
850 /* Calculate offsets of saved registers. */
851 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
852 if (mask & (1 << regno))
853 {
854 sp_offset -= 4;
855 cache->saved_regs[regno].addr = sp_offset;
856 }
857 }
858 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
859 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
860 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
861 {
862 /* No need to add this to saved_regs -- it's just an arg reg. */
863 continue;
864 }
865 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
866 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
867 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
868 {
869 /* No need to add this to saved_regs -- it's just an arg reg. */
870 continue;
871 }
872 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
873 {
874 unsigned imm = insn & 0xff; /* immediate value */
875 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
876 imm = (imm >> rot) | (imm << (32 - rot));
877 fp_offset = -imm + ip_offset;
878 cache->framereg = ARM_FP_REGNUM;
879 }
880 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
881 {
882 unsigned imm = insn & 0xff; /* immediate value */
883 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
884 imm = (imm >> rot) | (imm << (32 - rot));
885 sp_offset -= imm;
886 }
887 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
888 {
889 sp_offset -= 12;
890 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
891 cache->saved_regs[regno].addr = sp_offset;
892 }
893 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
894 {
895 int n_saved_fp_regs;
896 unsigned int fp_start_reg, fp_bound_reg;
897
898 if ((insn & 0x800) == 0x800) /* N0 is set */
899 {
900 if ((insn & 0x40000) == 0x40000) /* N1 is set */
901 n_saved_fp_regs = 3;
902 else
903 n_saved_fp_regs = 1;
904 }
905 else
906 {
907 if ((insn & 0x40000) == 0x40000) /* N1 is set */
908 n_saved_fp_regs = 2;
909 else
910 n_saved_fp_regs = 4;
911 }
912
913 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
914 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
915 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
916 {
917 sp_offset -= 12;
918 cache->saved_regs[fp_start_reg++].addr = sp_offset;
919 }
920 }
921 else if ((insn & 0xf0000000) != 0xe0000000)
922 break; /* Condition not true, exit early */
923 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
924 break; /* Don't scan past a block load */
925 else
926 /* The optimizer might shove anything into the prologue,
927 so we just skip what we don't recognize. */
928 continue;
929 }
930
931 /* The frame size is just the negative of the offset (from the
932 original SP) of the last thing thing we pushed on the stack.
933 The frame offset is [new FP] - [new SP]. */
934 cache->framesize = -sp_offset;
935 if (cache->framereg == ARM_FP_REGNUM)
936 cache->frameoffset = fp_offset - sp_offset;
937 else
938 cache->frameoffset = 0;
939 }
940
941 static struct arm_prologue_cache *
942 arm_make_prologue_cache (struct frame_info *next_frame)
943 {
944 int reg;
945 struct arm_prologue_cache *cache;
946 CORE_ADDR unwound_fp;
947
948 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
949 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
950
951 arm_scan_prologue (next_frame, cache);
952
953 unwound_fp = frame_unwind_register_unsigned (next_frame, cache->framereg);
954 if (unwound_fp == 0)
955 return cache;
956
957 cache->prev_sp = unwound_fp + cache->framesize - cache->frameoffset;
958
959 /* Calculate actual addresses of saved registers using offsets
960 determined by arm_scan_prologue. */
961 for (reg = 0; reg < NUM_REGS; reg++)
962 if (trad_frame_addr_p (cache->saved_regs, reg))
963 cache->saved_regs[reg].addr += cache->prev_sp;
964
965 return cache;
966 }
967
968 /* Our frame ID for a normal frame is the current function's starting PC
969 and the caller's SP when we were called. */
970
971 static void
972 arm_prologue_this_id (struct frame_info *next_frame,
973 void **this_cache,
974 struct frame_id *this_id)
975 {
976 struct arm_prologue_cache *cache;
977 struct frame_id id;
978 CORE_ADDR func;
979
980 if (*this_cache == NULL)
981 *this_cache = arm_make_prologue_cache (next_frame);
982 cache = *this_cache;
983
984 func = frame_func_unwind (next_frame);
985
986 /* This is meant to halt the backtrace at "_start". Make sure we
987 don't halt it at a generic dummy frame. */
988 if (func <= LOWEST_PC)
989 return;
990
991 /* If we've hit a wall, stop. */
992 if (cache->prev_sp == 0)
993 return;
994
995 id = frame_id_build (cache->prev_sp, func);
996 *this_id = id;
997 }
998
999 static void
1000 arm_prologue_prev_register (struct frame_info *next_frame,
1001 void **this_cache,
1002 int prev_regnum,
1003 int *optimized,
1004 enum lval_type *lvalp,
1005 CORE_ADDR *addrp,
1006 int *realnump,
1007 void *valuep)
1008 {
1009 struct arm_prologue_cache *cache;
1010
1011 if (*this_cache == NULL)
1012 *this_cache = arm_make_prologue_cache (next_frame);
1013 cache = *this_cache;
1014
1015 /* If we are asked to unwind the PC, then we need to return the LR
1016 instead. The saved value of PC points into this frame's
1017 prologue, not the next frame's resume location. */
1018 if (prev_regnum == ARM_PC_REGNUM)
1019 prev_regnum = ARM_LR_REGNUM;
1020
1021 /* SP is generally not saved to the stack, but this frame is
1022 identified by NEXT_FRAME's stack pointer at the time of the call.
1023 The value was already reconstructed into PREV_SP. */
1024 if (prev_regnum == ARM_SP_REGNUM)
1025 {
1026 *lvalp = not_lval;
1027 if (valuep)
1028 store_unsigned_integer (valuep, 4, cache->prev_sp);
1029 return;
1030 }
1031
1032 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1033 optimized, lvalp, addrp, realnump, valuep);
1034 }
1035
1036 struct frame_unwind arm_prologue_unwind = {
1037 NORMAL_FRAME,
1038 arm_prologue_this_id,
1039 arm_prologue_prev_register
1040 };
1041
1042 static const struct frame_unwind *
1043 arm_prologue_unwind_sniffer (struct frame_info *next_frame)
1044 {
1045 return &arm_prologue_unwind;
1046 }
1047
1048 static CORE_ADDR
1049 arm_normal_frame_base (struct frame_info *next_frame, void **this_cache)
1050 {
1051 struct arm_prologue_cache *cache;
1052
1053 if (*this_cache == NULL)
1054 *this_cache = arm_make_prologue_cache (next_frame);
1055 cache = *this_cache;
1056
1057 return cache->prev_sp + cache->frameoffset - cache->framesize;
1058 }
1059
1060 struct frame_base arm_normal_base = {
1061 &arm_prologue_unwind,
1062 arm_normal_frame_base,
1063 arm_normal_frame_base,
1064 arm_normal_frame_base
1065 };
1066
1067 static struct arm_prologue_cache *
1068 arm_make_sigtramp_cache (struct frame_info *next_frame)
1069 {
1070 struct arm_prologue_cache *cache;
1071 int reg;
1072
1073 cache = frame_obstack_zalloc (sizeof (struct arm_prologue_cache));
1074
1075 cache->prev_sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
1076
1077 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1078
1079 for (reg = 0; reg < NUM_REGS; reg++)
1080 cache->saved_regs[reg].addr
1081 = SIGCONTEXT_REGISTER_ADDRESS (cache->prev_sp,
1082 frame_pc_unwind (next_frame), reg);
1083
1084 /* FIXME: What about thumb mode? */
1085 cache->framereg = ARM_SP_REGNUM;
1086 cache->prev_sp
1087 = read_memory_integer (cache->saved_regs[cache->framereg].addr,
1088 register_size (current_gdbarch, cache->framereg));
1089
1090 return cache;
1091 }
1092
1093 static void
1094 arm_sigtramp_this_id (struct frame_info *next_frame,
1095 void **this_cache,
1096 struct frame_id *this_id)
1097 {
1098 struct arm_prologue_cache *cache;
1099
1100 if (*this_cache == NULL)
1101 *this_cache = arm_make_sigtramp_cache (next_frame);
1102 cache = *this_cache;
1103
1104 /* FIXME drow/2003-07-07: This isn't right if we single-step within
1105 the sigtramp frame; the PC should be the beginning of the trampoline. */
1106 *this_id = frame_id_build (cache->prev_sp, frame_pc_unwind (next_frame));
1107 }
1108
1109 static void
1110 arm_sigtramp_prev_register (struct frame_info *next_frame,
1111 void **this_cache,
1112 int prev_regnum,
1113 int *optimized,
1114 enum lval_type *lvalp,
1115 CORE_ADDR *addrp,
1116 int *realnump,
1117 void *valuep)
1118 {
1119 struct arm_prologue_cache *cache;
1120
1121 if (*this_cache == NULL)
1122 *this_cache = arm_make_sigtramp_cache (next_frame);
1123 cache = *this_cache;
1124
1125 trad_frame_prev_register (next_frame, cache->saved_regs, prev_regnum,
1126 optimized, lvalp, addrp, realnump, valuep);
1127 }
1128
1129 struct frame_unwind arm_sigtramp_unwind = {
1130 SIGTRAMP_FRAME,
1131 arm_sigtramp_this_id,
1132 arm_sigtramp_prev_register
1133 };
1134
1135 static const struct frame_unwind *
1136 arm_sigtramp_unwind_sniffer (struct frame_info *next_frame)
1137 {
1138 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1139 && legacy_pc_in_sigtramp (frame_pc_unwind (next_frame), (char *) 0))
1140 return &arm_sigtramp_unwind;
1141
1142 return NULL;
1143 }
1144
1145 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1146 dummy frame. The frame ID's base needs to match the TOS value
1147 saved by save_dummy_frame_tos() and returned from
1148 arm_push_dummy_call, and the PC needs to match the dummy frame's
1149 breakpoint. */
1150
1151 static struct frame_id
1152 arm_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1153 {
1154 return frame_id_build (frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM),
1155 frame_pc_unwind (next_frame));
1156 }
1157
1158 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1159 be used to construct the previous frame's ID, after looking up the
1160 containing function). */
1161
1162 static CORE_ADDR
1163 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1164 {
1165 CORE_ADDR pc;
1166 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1167 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1168 }
1169
1170 static CORE_ADDR
1171 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1172 {
1173 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1174 }
1175
1176 /* DEPRECATED_CALL_DUMMY_WORDS:
1177 This sequence of words is the instructions
1178
1179 mov lr,pc
1180 mov pc,r4
1181 illegal
1182
1183 Note this is 12 bytes. */
1184
1185 static LONGEST arm_call_dummy_words[] =
1186 {
1187 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1188 };
1189
1190 /* When arguments must be pushed onto the stack, they go on in reverse
1191 order. The code below implements a FILO (stack) to do this. */
1192
1193 struct stack_item
1194 {
1195 int len;
1196 struct stack_item *prev;
1197 void *data;
1198 };
1199
1200 static struct stack_item *
1201 push_stack_item (struct stack_item *prev, void *contents, int len)
1202 {
1203 struct stack_item *si;
1204 si = xmalloc (sizeof (struct stack_item));
1205 si->data = xmalloc (len);
1206 si->len = len;
1207 si->prev = prev;
1208 memcpy (si->data, contents, len);
1209 return si;
1210 }
1211
1212 static struct stack_item *
1213 pop_stack_item (struct stack_item *si)
1214 {
1215 struct stack_item *dead = si;
1216 si = si->prev;
1217 xfree (dead->data);
1218 xfree (dead);
1219 return si;
1220 }
1221
1222 /* We currently only support passing parameters in integer registers. This
1223 conforms with GCC's default model. Several other variants exist and
1224 we should probably support some of them based on the selected ABI. */
1225
1226 static CORE_ADDR
1227 arm_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1228 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1229 struct value **args, CORE_ADDR sp, int struct_return,
1230 CORE_ADDR struct_addr)
1231 {
1232 int argnum;
1233 int argreg;
1234 int nstack;
1235 struct stack_item *si = NULL;
1236
1237 /* Set the return address. For the ARM, the return breakpoint is
1238 always at BP_ADDR. */
1239 /* XXX Fix for Thumb. */
1240 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1241
1242 /* Walk through the list of args and determine how large a temporary
1243 stack is required. Need to take care here as structs may be
1244 passed on the stack, and we have to to push them. */
1245 nstack = 0;
1246
1247 argreg = ARM_A1_REGNUM;
1248 nstack = 0;
1249
1250 /* Some platforms require a double-word aligned stack. Make sure sp
1251 is correctly aligned before we start. We always do this even if
1252 it isn't really needed -- it can never hurt things. */
1253 sp &= ~(CORE_ADDR)(2 * DEPRECATED_REGISTER_SIZE - 1);
1254
1255 /* The struct_return pointer occupies the first parameter
1256 passing register. */
1257 if (struct_return)
1258 {
1259 if (arm_debug)
1260 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1261 REGISTER_NAME (argreg), paddr (struct_addr));
1262 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1263 argreg++;
1264 }
1265
1266 for (argnum = 0; argnum < nargs; argnum++)
1267 {
1268 int len;
1269 struct type *arg_type;
1270 struct type *target_type;
1271 enum type_code typecode;
1272 char *val;
1273
1274 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1275 len = TYPE_LENGTH (arg_type);
1276 target_type = TYPE_TARGET_TYPE (arg_type);
1277 typecode = TYPE_CODE (arg_type);
1278 val = VALUE_CONTENTS (args[argnum]);
1279
1280 /* If the argument is a pointer to a function, and it is a
1281 Thumb function, create a LOCAL copy of the value and set
1282 the THUMB bit in it. */
1283 if (TYPE_CODE_PTR == typecode
1284 && target_type != NULL
1285 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1286 {
1287 CORE_ADDR regval = extract_unsigned_integer (val, len);
1288 if (arm_pc_is_thumb (regval))
1289 {
1290 val = alloca (len);
1291 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1292 }
1293 }
1294
1295 /* Copy the argument to general registers or the stack in
1296 register-sized pieces. Large arguments are split between
1297 registers and stack. */
1298 while (len > 0)
1299 {
1300 int partial_len = len < DEPRECATED_REGISTER_SIZE ? len : DEPRECATED_REGISTER_SIZE;
1301
1302 if (argreg <= ARM_LAST_ARG_REGNUM)
1303 {
1304 /* The argument is being passed in a general purpose
1305 register. */
1306 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1307 if (arm_debug)
1308 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1309 argnum, REGISTER_NAME (argreg),
1310 phex (regval, DEPRECATED_REGISTER_SIZE));
1311 regcache_cooked_write_unsigned (regcache, argreg, regval);
1312 argreg++;
1313 }
1314 else
1315 {
1316 /* Push the arguments onto the stack. */
1317 if (arm_debug)
1318 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1319 argnum, nstack);
1320 si = push_stack_item (si, val, DEPRECATED_REGISTER_SIZE);
1321 nstack += DEPRECATED_REGISTER_SIZE;
1322 }
1323
1324 len -= partial_len;
1325 val += partial_len;
1326 }
1327 }
1328 /* If we have an odd number of words to push, then decrement the stack
1329 by one word now, so first stack argument will be dword aligned. */
1330 if (nstack & 4)
1331 sp -= 4;
1332
1333 while (si)
1334 {
1335 sp -= si->len;
1336 write_memory (sp, si->data, si->len);
1337 si = pop_stack_item (si);
1338 }
1339
1340 /* Finally, update teh SP register. */
1341 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1342
1343 return sp;
1344 }
1345
1346 static void
1347 print_fpu_flags (int flags)
1348 {
1349 if (flags & (1 << 0))
1350 fputs ("IVO ", stdout);
1351 if (flags & (1 << 1))
1352 fputs ("DVZ ", stdout);
1353 if (flags & (1 << 2))
1354 fputs ("OFL ", stdout);
1355 if (flags & (1 << 3))
1356 fputs ("UFL ", stdout);
1357 if (flags & (1 << 4))
1358 fputs ("INX ", stdout);
1359 putchar ('\n');
1360 }
1361
1362 /* Print interesting information about the floating point processor
1363 (if present) or emulator. */
1364 static void
1365 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1366 struct frame_info *frame, const char *args)
1367 {
1368 unsigned long status = read_register (ARM_FPS_REGNUM);
1369 int type;
1370
1371 type = (status >> 24) & 127;
1372 printf ("%s FPU type %d\n",
1373 (status & (1 << 31)) ? "Hardware" : "Software",
1374 type);
1375 fputs ("mask: ", stdout);
1376 print_fpu_flags (status >> 16);
1377 fputs ("flags: ", stdout);
1378 print_fpu_flags (status);
1379 }
1380
1381 /* Return the GDB type object for the "standard" data type of data in
1382 register N. */
1383
1384 static struct type *
1385 arm_register_type (struct gdbarch *gdbarch, int regnum)
1386 {
1387 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1388 {
1389 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1390 return builtin_type_arm_ext_big;
1391 else
1392 return builtin_type_arm_ext_littlebyte_bigword;
1393 }
1394 else
1395 return builtin_type_int32;
1396 }
1397
1398 /* Index within `registers' of the first byte of the space for
1399 register N. */
1400
1401 static int
1402 arm_register_byte (int regnum)
1403 {
1404 if (regnum < ARM_F0_REGNUM)
1405 return regnum * INT_REGISTER_SIZE;
1406 else if (regnum < ARM_PS_REGNUM)
1407 return (NUM_GREGS * INT_REGISTER_SIZE
1408 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_SIZE);
1409 else
1410 return (NUM_GREGS * INT_REGISTER_SIZE
1411 + NUM_FREGS * FP_REGISTER_SIZE
1412 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1413 }
1414
1415 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1416 static int
1417 arm_register_sim_regno (int regnum)
1418 {
1419 int reg = regnum;
1420 gdb_assert (reg >= 0 && reg < NUM_REGS);
1421
1422 if (reg < NUM_GREGS)
1423 return SIM_ARM_R0_REGNUM + reg;
1424 reg -= NUM_GREGS;
1425
1426 if (reg < NUM_FREGS)
1427 return SIM_ARM_FP0_REGNUM + reg;
1428 reg -= NUM_FREGS;
1429
1430 if (reg < NUM_SREGS)
1431 return SIM_ARM_FPS_REGNUM + reg;
1432 reg -= NUM_SREGS;
1433
1434 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1435 }
1436
1437 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1438 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1439 It is thought that this is is the floating-point register format on
1440 little-endian systems. */
1441
1442 static void
1443 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1444 void *dbl)
1445 {
1446 DOUBLEST d;
1447 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1448 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1449 else
1450 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1451 ptr, &d);
1452 floatformat_from_doublest (fmt, &d, dbl);
1453 }
1454
1455 static void
1456 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
1457 {
1458 DOUBLEST d;
1459 floatformat_to_doublest (fmt, ptr, &d);
1460 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1461 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1462 else
1463 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1464 &d, dbl);
1465 }
1466
1467 static int
1468 condition_true (unsigned long cond, unsigned long status_reg)
1469 {
1470 if (cond == INST_AL || cond == INST_NV)
1471 return 1;
1472
1473 switch (cond)
1474 {
1475 case INST_EQ:
1476 return ((status_reg & FLAG_Z) != 0);
1477 case INST_NE:
1478 return ((status_reg & FLAG_Z) == 0);
1479 case INST_CS:
1480 return ((status_reg & FLAG_C) != 0);
1481 case INST_CC:
1482 return ((status_reg & FLAG_C) == 0);
1483 case INST_MI:
1484 return ((status_reg & FLAG_N) != 0);
1485 case INST_PL:
1486 return ((status_reg & FLAG_N) == 0);
1487 case INST_VS:
1488 return ((status_reg & FLAG_V) != 0);
1489 case INST_VC:
1490 return ((status_reg & FLAG_V) == 0);
1491 case INST_HI:
1492 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1493 case INST_LS:
1494 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1495 case INST_GE:
1496 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1497 case INST_LT:
1498 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1499 case INST_GT:
1500 return (((status_reg & FLAG_Z) == 0) &&
1501 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1502 case INST_LE:
1503 return (((status_reg & FLAG_Z) != 0) ||
1504 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1505 }
1506 return 1;
1507 }
1508
1509 /* Support routines for single stepping. Calculate the next PC value. */
1510 #define submask(x) ((1L << ((x) + 1)) - 1)
1511 #define bit(obj,st) (((obj) >> (st)) & 1)
1512 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1513 #define sbits(obj,st,fn) \
1514 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1515 #define BranchDest(addr,instr) \
1516 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1517 #define ARM_PC_32 1
1518
1519 static unsigned long
1520 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1521 unsigned long status_reg)
1522 {
1523 unsigned long res, shift;
1524 int rm = bits (inst, 0, 3);
1525 unsigned long shifttype = bits (inst, 5, 6);
1526
1527 if (bit (inst, 4))
1528 {
1529 int rs = bits (inst, 8, 11);
1530 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1531 }
1532 else
1533 shift = bits (inst, 7, 11);
1534
1535 res = (rm == 15
1536 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1537 + (bit (inst, 4) ? 12 : 8))
1538 : read_register (rm));
1539
1540 switch (shifttype)
1541 {
1542 case 0: /* LSL */
1543 res = shift >= 32 ? 0 : res << shift;
1544 break;
1545
1546 case 1: /* LSR */
1547 res = shift >= 32 ? 0 : res >> shift;
1548 break;
1549
1550 case 2: /* ASR */
1551 if (shift >= 32)
1552 shift = 31;
1553 res = ((res & 0x80000000L)
1554 ? ~((~res) >> shift) : res >> shift);
1555 break;
1556
1557 case 3: /* ROR/RRX */
1558 shift &= 31;
1559 if (shift == 0)
1560 res = (res >> 1) | (carry ? 0x80000000L : 0);
1561 else
1562 res = (res >> shift) | (res << (32 - shift));
1563 break;
1564 }
1565
1566 return res & 0xffffffff;
1567 }
1568
1569 /* Return number of 1-bits in VAL. */
1570
1571 static int
1572 bitcount (unsigned long val)
1573 {
1574 int nbits;
1575 for (nbits = 0; val != 0; nbits++)
1576 val &= val - 1; /* delete rightmost 1-bit in val */
1577 return nbits;
1578 }
1579
1580 CORE_ADDR
1581 thumb_get_next_pc (CORE_ADDR pc)
1582 {
1583 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1584 unsigned short inst1 = read_memory_integer (pc, 2);
1585 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1586 unsigned long offset;
1587
1588 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1589 {
1590 CORE_ADDR sp;
1591
1592 /* Fetch the saved PC from the stack. It's stored above
1593 all of the other registers. */
1594 offset = bitcount (bits (inst1, 0, 7)) * DEPRECATED_REGISTER_SIZE;
1595 sp = read_register (ARM_SP_REGNUM);
1596 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1597 nextpc = ADDR_BITS_REMOVE (nextpc);
1598 if (nextpc == pc)
1599 error ("Infinite loop detected");
1600 }
1601 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1602 {
1603 unsigned long status = read_register (ARM_PS_REGNUM);
1604 unsigned long cond = bits (inst1, 8, 11);
1605 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1606 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1607 }
1608 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1609 {
1610 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1611 }
1612 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1613 {
1614 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1615 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1616 nextpc = pc_val + offset;
1617 /* For BLX make sure to clear the low bits. */
1618 if (bits (inst2, 11, 12) == 1)
1619 nextpc = nextpc & 0xfffffffc;
1620 }
1621 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1622 {
1623 if (bits (inst1, 3, 6) == 0x0f)
1624 nextpc = pc_val;
1625 else
1626 nextpc = read_register (bits (inst1, 3, 6));
1627
1628 nextpc = ADDR_BITS_REMOVE (nextpc);
1629 if (nextpc == pc)
1630 error ("Infinite loop detected");
1631 }
1632
1633 return nextpc;
1634 }
1635
1636 CORE_ADDR
1637 arm_get_next_pc (CORE_ADDR pc)
1638 {
1639 unsigned long pc_val;
1640 unsigned long this_instr;
1641 unsigned long status;
1642 CORE_ADDR nextpc;
1643
1644 if (arm_pc_is_thumb (pc))
1645 return thumb_get_next_pc (pc);
1646
1647 pc_val = (unsigned long) pc;
1648 this_instr = read_memory_integer (pc, 4);
1649 status = read_register (ARM_PS_REGNUM);
1650 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1651
1652 if (condition_true (bits (this_instr, 28, 31), status))
1653 {
1654 switch (bits (this_instr, 24, 27))
1655 {
1656 case 0x0:
1657 case 0x1: /* data processing */
1658 case 0x2:
1659 case 0x3:
1660 {
1661 unsigned long operand1, operand2, result = 0;
1662 unsigned long rn;
1663 int c;
1664
1665 if (bits (this_instr, 12, 15) != 15)
1666 break;
1667
1668 if (bits (this_instr, 22, 25) == 0
1669 && bits (this_instr, 4, 7) == 9) /* multiply */
1670 error ("Illegal update to pc in instruction");
1671
1672 /* BX <reg>, BLX <reg> */
1673 if (bits (this_instr, 4, 28) == 0x12fff1
1674 || bits (this_instr, 4, 28) == 0x12fff3)
1675 {
1676 rn = bits (this_instr, 0, 3);
1677 result = (rn == 15) ? pc_val + 8 : read_register (rn);
1678 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1679
1680 if (nextpc == pc)
1681 error ("Infinite loop detected");
1682
1683 return nextpc;
1684 }
1685
1686 /* Multiply into PC */
1687 c = (status & FLAG_C) ? 1 : 0;
1688 rn = bits (this_instr, 16, 19);
1689 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1690
1691 if (bit (this_instr, 25))
1692 {
1693 unsigned long immval = bits (this_instr, 0, 7);
1694 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1695 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1696 & 0xffffffff;
1697 }
1698 else /* operand 2 is a shifted register */
1699 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1700
1701 switch (bits (this_instr, 21, 24))
1702 {
1703 case 0x0: /*and */
1704 result = operand1 & operand2;
1705 break;
1706
1707 case 0x1: /*eor */
1708 result = operand1 ^ operand2;
1709 break;
1710
1711 case 0x2: /*sub */
1712 result = operand1 - operand2;
1713 break;
1714
1715 case 0x3: /*rsb */
1716 result = operand2 - operand1;
1717 break;
1718
1719 case 0x4: /*add */
1720 result = operand1 + operand2;
1721 break;
1722
1723 case 0x5: /*adc */
1724 result = operand1 + operand2 + c;
1725 break;
1726
1727 case 0x6: /*sbc */
1728 result = operand1 - operand2 + c;
1729 break;
1730
1731 case 0x7: /*rsc */
1732 result = operand2 - operand1 + c;
1733 break;
1734
1735 case 0x8:
1736 case 0x9:
1737 case 0xa:
1738 case 0xb: /* tst, teq, cmp, cmn */
1739 result = (unsigned long) nextpc;
1740 break;
1741
1742 case 0xc: /*orr */
1743 result = operand1 | operand2;
1744 break;
1745
1746 case 0xd: /*mov */
1747 /* Always step into a function. */
1748 result = operand2;
1749 break;
1750
1751 case 0xe: /*bic */
1752 result = operand1 & ~operand2;
1753 break;
1754
1755 case 0xf: /*mvn */
1756 result = ~operand2;
1757 break;
1758 }
1759 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1760
1761 if (nextpc == pc)
1762 error ("Infinite loop detected");
1763 break;
1764 }
1765
1766 case 0x4:
1767 case 0x5: /* data transfer */
1768 case 0x6:
1769 case 0x7:
1770 if (bit (this_instr, 20))
1771 {
1772 /* load */
1773 if (bits (this_instr, 12, 15) == 15)
1774 {
1775 /* rd == pc */
1776 unsigned long rn;
1777 unsigned long base;
1778
1779 if (bit (this_instr, 22))
1780 error ("Illegal update to pc in instruction");
1781
1782 /* byte write to PC */
1783 rn = bits (this_instr, 16, 19);
1784 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1785 if (bit (this_instr, 24))
1786 {
1787 /* pre-indexed */
1788 int c = (status & FLAG_C) ? 1 : 0;
1789 unsigned long offset =
1790 (bit (this_instr, 25)
1791 ? shifted_reg_val (this_instr, c, pc_val, status)
1792 : bits (this_instr, 0, 11));
1793
1794 if (bit (this_instr, 23))
1795 base += offset;
1796 else
1797 base -= offset;
1798 }
1799 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1800 4);
1801
1802 nextpc = ADDR_BITS_REMOVE (nextpc);
1803
1804 if (nextpc == pc)
1805 error ("Infinite loop detected");
1806 }
1807 }
1808 break;
1809
1810 case 0x8:
1811 case 0x9: /* block transfer */
1812 if (bit (this_instr, 20))
1813 {
1814 /* LDM */
1815 if (bit (this_instr, 15))
1816 {
1817 /* loading pc */
1818 int offset = 0;
1819
1820 if (bit (this_instr, 23))
1821 {
1822 /* up */
1823 unsigned long reglist = bits (this_instr, 0, 14);
1824 offset = bitcount (reglist) * 4;
1825 if (bit (this_instr, 24)) /* pre */
1826 offset += 4;
1827 }
1828 else if (bit (this_instr, 24))
1829 offset = -4;
1830
1831 {
1832 unsigned long rn_val =
1833 read_register (bits (this_instr, 16, 19));
1834 nextpc =
1835 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
1836 + offset),
1837 4);
1838 }
1839 nextpc = ADDR_BITS_REMOVE (nextpc);
1840 if (nextpc == pc)
1841 error ("Infinite loop detected");
1842 }
1843 }
1844 break;
1845
1846 case 0xb: /* branch & link */
1847 case 0xa: /* branch */
1848 {
1849 nextpc = BranchDest (pc, this_instr);
1850
1851 /* BLX */
1852 if (bits (this_instr, 28, 31) == INST_NV)
1853 nextpc |= bit (this_instr, 24) << 1;
1854
1855 nextpc = ADDR_BITS_REMOVE (nextpc);
1856 if (nextpc == pc)
1857 error ("Infinite loop detected");
1858 break;
1859 }
1860
1861 case 0xc:
1862 case 0xd:
1863 case 0xe: /* coproc ops */
1864 case 0xf: /* SWI */
1865 break;
1866
1867 default:
1868 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
1869 return (pc);
1870 }
1871 }
1872
1873 return nextpc;
1874 }
1875
1876 /* single_step() is called just before we want to resume the inferior,
1877 if we want to single-step it but there is no hardware or kernel
1878 single-step support. We find the target of the coming instruction
1879 and breakpoint it.
1880
1881 single_step() is also called just after the inferior stops. If we
1882 had set up a simulated single-step, we undo our damage. */
1883
1884 static void
1885 arm_software_single_step (enum target_signal sig, int insert_bpt)
1886 {
1887 static int next_pc; /* State between setting and unsetting. */
1888 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
1889
1890 if (insert_bpt)
1891 {
1892 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
1893 target_insert_breakpoint (next_pc, break_mem);
1894 }
1895 else
1896 target_remove_breakpoint (next_pc, break_mem);
1897 }
1898
1899 #include "bfd-in2.h"
1900 #include "libcoff.h"
1901
1902 static int
1903 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
1904 {
1905 if (arm_pc_is_thumb (memaddr))
1906 {
1907 static asymbol *asym;
1908 static combined_entry_type ce;
1909 static struct coff_symbol_struct csym;
1910 static struct bfd fake_bfd;
1911 static bfd_target fake_target;
1912
1913 if (csym.native == NULL)
1914 {
1915 /* Create a fake symbol vector containing a Thumb symbol.
1916 This is solely so that the code in print_insn_little_arm()
1917 and print_insn_big_arm() in opcodes/arm-dis.c will detect
1918 the presence of a Thumb symbol and switch to decoding
1919 Thumb instructions. */
1920
1921 fake_target.flavour = bfd_target_coff_flavour;
1922 fake_bfd.xvec = &fake_target;
1923 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
1924 csym.native = &ce;
1925 csym.symbol.the_bfd = &fake_bfd;
1926 csym.symbol.name = "fake";
1927 asym = (asymbol *) & csym;
1928 }
1929
1930 memaddr = UNMAKE_THUMB_ADDR (memaddr);
1931 info->symbols = &asym;
1932 }
1933 else
1934 info->symbols = NULL;
1935
1936 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1937 return print_insn_big_arm (memaddr, info);
1938 else
1939 return print_insn_little_arm (memaddr, info);
1940 }
1941
1942 /* The following define instruction sequences that will cause ARM
1943 cpu's to take an undefined instruction trap. These are used to
1944 signal a breakpoint to GDB.
1945
1946 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
1947 modes. A different instruction is required for each mode. The ARM
1948 cpu's can also be big or little endian. Thus four different
1949 instructions are needed to support all cases.
1950
1951 Note: ARMv4 defines several new instructions that will take the
1952 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
1953 not in fact add the new instructions. The new undefined
1954 instructions in ARMv4 are all instructions that had no defined
1955 behaviour in earlier chips. There is no guarantee that they will
1956 raise an exception, but may be treated as NOP's. In practice, it
1957 may only safe to rely on instructions matching:
1958
1959 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1960 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1961 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
1962
1963 Even this may only true if the condition predicate is true. The
1964 following use a condition predicate of ALWAYS so it is always TRUE.
1965
1966 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
1967 and NetBSD all use a software interrupt rather than an undefined
1968 instruction to force a trap. This can be handled by by the
1969 abi-specific code during establishment of the gdbarch vector. */
1970
1971
1972 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
1973 override these definitions. */
1974 #ifndef ARM_LE_BREAKPOINT
1975 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
1976 #endif
1977 #ifndef ARM_BE_BREAKPOINT
1978 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
1979 #endif
1980 #ifndef THUMB_LE_BREAKPOINT
1981 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
1982 #endif
1983 #ifndef THUMB_BE_BREAKPOINT
1984 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
1985 #endif
1986
1987 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
1988 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
1989 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
1990 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
1991
1992 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
1993 the program counter value to determine whether a 16-bit or 32-bit
1994 breakpoint should be used. It returns a pointer to a string of
1995 bytes that encode a breakpoint instruction, stores the length of
1996 the string to *lenptr, and adjusts the program counter (if
1997 necessary) to point to the actual memory location where the
1998 breakpoint should be inserted. */
1999
2000 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2001 breakpoints and storing their handles instread of what was in
2002 memory. It is nice that this is the same size as a handle -
2003 otherwise remote-rdp will have to change. */
2004
2005 static const unsigned char *
2006 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2007 {
2008 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2009
2010 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2011 {
2012 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2013 *lenptr = tdep->thumb_breakpoint_size;
2014 return tdep->thumb_breakpoint;
2015 }
2016 else
2017 {
2018 *lenptr = tdep->arm_breakpoint_size;
2019 return tdep->arm_breakpoint;
2020 }
2021 }
2022
2023 /* Extract from an array REGBUF containing the (raw) register state a
2024 function return value of type TYPE, and copy that, in virtual
2025 format, into VALBUF. */
2026
2027 static void
2028 arm_extract_return_value (struct type *type,
2029 struct regcache *regs,
2030 void *dst)
2031 {
2032 bfd_byte *valbuf = dst;
2033
2034 if (TYPE_CODE_FLT == TYPE_CODE (type))
2035 {
2036 switch (arm_get_fp_model (current_gdbarch))
2037 {
2038 case ARM_FLOAT_FPA:
2039 {
2040 /* The value is in register F0 in internal format. We need to
2041 extract the raw value and then convert it to the desired
2042 internal type. */
2043 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2044
2045 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2046 convert_from_extended (floatformat_from_type (type), tmpbuf,
2047 valbuf);
2048 }
2049 break;
2050
2051 case ARM_FLOAT_SOFT_FPA:
2052 case ARM_FLOAT_SOFT_VFP:
2053 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2054 if (TYPE_LENGTH (type) > 4)
2055 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2056 valbuf + INT_REGISTER_SIZE);
2057 break;
2058
2059 default:
2060 internal_error
2061 (__FILE__, __LINE__,
2062 "arm_extract_return_value: Floating point model not supported");
2063 break;
2064 }
2065 }
2066 else if (TYPE_CODE (type) == TYPE_CODE_INT
2067 || TYPE_CODE (type) == TYPE_CODE_CHAR
2068 || TYPE_CODE (type) == TYPE_CODE_BOOL
2069 || TYPE_CODE (type) == TYPE_CODE_PTR
2070 || TYPE_CODE (type) == TYPE_CODE_REF
2071 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2072 {
2073 /* If the the type is a plain integer, then the access is
2074 straight-forward. Otherwise we have to play around a bit more. */
2075 int len = TYPE_LENGTH (type);
2076 int regno = ARM_A1_REGNUM;
2077 ULONGEST tmp;
2078
2079 while (len > 0)
2080 {
2081 /* By using store_unsigned_integer we avoid having to do
2082 anything special for small big-endian values. */
2083 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2084 store_unsigned_integer (valbuf,
2085 (len > INT_REGISTER_SIZE
2086 ? INT_REGISTER_SIZE : len),
2087 tmp);
2088 len -= INT_REGISTER_SIZE;
2089 valbuf += INT_REGISTER_SIZE;
2090 }
2091 }
2092 else
2093 {
2094 /* For a structure or union the behaviour is as if the value had
2095 been stored to word-aligned memory and then loaded into
2096 registers with 32-bit load instruction(s). */
2097 int len = TYPE_LENGTH (type);
2098 int regno = ARM_A1_REGNUM;
2099 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2100
2101 while (len > 0)
2102 {
2103 regcache_cooked_read (regs, regno++, tmpbuf);
2104 memcpy (valbuf, tmpbuf,
2105 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2106 len -= INT_REGISTER_SIZE;
2107 valbuf += INT_REGISTER_SIZE;
2108 }
2109 }
2110 }
2111
2112 /* Extract from an array REGBUF containing the (raw) register state
2113 the address in which a function should return its structure value. */
2114
2115 static CORE_ADDR
2116 arm_extract_struct_value_address (struct regcache *regcache)
2117 {
2118 ULONGEST ret;
2119
2120 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2121 return ret;
2122 }
2123
2124 /* Will a function return an aggregate type in memory or in a
2125 register? Return 0 if an aggregate type can be returned in a
2126 register, 1 if it must be returned in memory. */
2127
2128 static int
2129 arm_use_struct_convention (int gcc_p, struct type *type)
2130 {
2131 int nRc;
2132 enum type_code code;
2133
2134 CHECK_TYPEDEF (type);
2135
2136 /* In the ARM ABI, "integer" like aggregate types are returned in
2137 registers. For an aggregate type to be integer like, its size
2138 must be less than or equal to DEPRECATED_REGISTER_SIZE and the
2139 offset of each addressable subfield must be zero. Note that bit
2140 fields are not addressable, and all addressable subfields of
2141 unions always start at offset zero.
2142
2143 This function is based on the behaviour of GCC 2.95.1.
2144 See: gcc/arm.c: arm_return_in_memory() for details.
2145
2146 Note: All versions of GCC before GCC 2.95.2 do not set up the
2147 parameters correctly for a function returning the following
2148 structure: struct { float f;}; This should be returned in memory,
2149 not a register. Richard Earnshaw sent me a patch, but I do not
2150 know of any way to detect if a function like the above has been
2151 compiled with the correct calling convention. */
2152
2153 /* All aggregate types that won't fit in a register must be returned
2154 in memory. */
2155 if (TYPE_LENGTH (type) > DEPRECATED_REGISTER_SIZE)
2156 {
2157 return 1;
2158 }
2159
2160 /* The only aggregate types that can be returned in a register are
2161 structs and unions. Arrays must be returned in memory. */
2162 code = TYPE_CODE (type);
2163 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2164 {
2165 return 1;
2166 }
2167
2168 /* Assume all other aggregate types can be returned in a register.
2169 Run a check for structures, unions and arrays. */
2170 nRc = 0;
2171
2172 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2173 {
2174 int i;
2175 /* Need to check if this struct/union is "integer" like. For
2176 this to be true, its size must be less than or equal to
2177 DEPRECATED_REGISTER_SIZE and the offset of each addressable
2178 subfield must be zero. Note that bit fields are not
2179 addressable, and unions always start at offset zero. If any
2180 of the subfields is a floating point type, the struct/union
2181 cannot be an integer type. */
2182
2183 /* For each field in the object, check:
2184 1) Is it FP? --> yes, nRc = 1;
2185 2) Is it addressable (bitpos != 0) and
2186 not packed (bitsize == 0)?
2187 --> yes, nRc = 1
2188 */
2189
2190 for (i = 0; i < TYPE_NFIELDS (type); i++)
2191 {
2192 enum type_code field_type_code;
2193 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2194
2195 /* Is it a floating point type field? */
2196 if (field_type_code == TYPE_CODE_FLT)
2197 {
2198 nRc = 1;
2199 break;
2200 }
2201
2202 /* If bitpos != 0, then we have to care about it. */
2203 if (TYPE_FIELD_BITPOS (type, i) != 0)
2204 {
2205 /* Bitfields are not addressable. If the field bitsize is
2206 zero, then the field is not packed. Hence it cannot be
2207 a bitfield or any other packed type. */
2208 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2209 {
2210 nRc = 1;
2211 break;
2212 }
2213 }
2214 }
2215 }
2216
2217 return nRc;
2218 }
2219
2220 /* Write into appropriate registers a function return value of type
2221 TYPE, given in virtual format. */
2222
2223 static void
2224 arm_store_return_value (struct type *type, struct regcache *regs,
2225 const void *src)
2226 {
2227 const bfd_byte *valbuf = src;
2228
2229 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2230 {
2231 char buf[MAX_REGISTER_SIZE];
2232
2233 switch (arm_get_fp_model (current_gdbarch))
2234 {
2235 case ARM_FLOAT_FPA:
2236
2237 convert_to_extended (floatformat_from_type (type), buf, valbuf);
2238 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2239 break;
2240
2241 case ARM_FLOAT_SOFT_FPA:
2242 case ARM_FLOAT_SOFT_VFP:
2243 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2244 if (TYPE_LENGTH (type) > 4)
2245 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2246 valbuf + INT_REGISTER_SIZE);
2247 break;
2248
2249 default:
2250 internal_error
2251 (__FILE__, __LINE__,
2252 "arm_store_return_value: Floating point model not supported");
2253 break;
2254 }
2255 }
2256 else if (TYPE_CODE (type) == TYPE_CODE_INT
2257 || TYPE_CODE (type) == TYPE_CODE_CHAR
2258 || TYPE_CODE (type) == TYPE_CODE_BOOL
2259 || TYPE_CODE (type) == TYPE_CODE_PTR
2260 || TYPE_CODE (type) == TYPE_CODE_REF
2261 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2262 {
2263 if (TYPE_LENGTH (type) <= 4)
2264 {
2265 /* Values of one word or less are zero/sign-extended and
2266 returned in r0. */
2267 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2268 LONGEST val = unpack_long (type, valbuf);
2269
2270 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2271 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2272 }
2273 else
2274 {
2275 /* Integral values greater than one word are stored in consecutive
2276 registers starting with r0. This will always be a multiple of
2277 the regiser size. */
2278 int len = TYPE_LENGTH (type);
2279 int regno = ARM_A1_REGNUM;
2280
2281 while (len > 0)
2282 {
2283 regcache_cooked_write (regs, regno++, valbuf);
2284 len -= INT_REGISTER_SIZE;
2285 valbuf += INT_REGISTER_SIZE;
2286 }
2287 }
2288 }
2289 else
2290 {
2291 /* For a structure or union the behaviour is as if the value had
2292 been stored to word-aligned memory and then loaded into
2293 registers with 32-bit load instruction(s). */
2294 int len = TYPE_LENGTH (type);
2295 int regno = ARM_A1_REGNUM;
2296 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2297
2298 while (len > 0)
2299 {
2300 memcpy (tmpbuf, valbuf,
2301 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2302 regcache_cooked_write (regs, regno++, tmpbuf);
2303 len -= INT_REGISTER_SIZE;
2304 valbuf += INT_REGISTER_SIZE;
2305 }
2306 }
2307 }
2308
2309 static int
2310 arm_get_longjmp_target (CORE_ADDR *pc)
2311 {
2312 CORE_ADDR jb_addr;
2313 char buf[INT_REGISTER_SIZE];
2314 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2315
2316 jb_addr = read_register (ARM_A1_REGNUM);
2317
2318 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2319 INT_REGISTER_SIZE))
2320 return 0;
2321
2322 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2323 return 1;
2324 }
2325
2326 /* Return non-zero if the PC is inside a thumb call thunk. */
2327
2328 int
2329 arm_in_call_stub (CORE_ADDR pc, char *name)
2330 {
2331 CORE_ADDR start_addr;
2332
2333 /* Find the starting address of the function containing the PC. If
2334 the caller didn't give us a name, look it up at the same time. */
2335 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2336 &start_addr, NULL))
2337 return 0;
2338
2339 return strncmp (name, "_call_via_r", 11) == 0;
2340 }
2341
2342 /* If PC is in a Thumb call or return stub, return the address of the
2343 target PC, which is in a register. The thunk functions are called
2344 _called_via_xx, where x is the register name. The possible names
2345 are r0-r9, sl, fp, ip, sp, and lr. */
2346
2347 CORE_ADDR
2348 arm_skip_stub (CORE_ADDR pc)
2349 {
2350 char *name;
2351 CORE_ADDR start_addr;
2352
2353 /* Find the starting address and name of the function containing the PC. */
2354 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2355 return 0;
2356
2357 /* Call thunks always start with "_call_via_". */
2358 if (strncmp (name, "_call_via_", 10) == 0)
2359 {
2360 /* Use the name suffix to determine which register contains the
2361 target PC. */
2362 static char *table[15] =
2363 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2364 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2365 };
2366 int regno;
2367
2368 for (regno = 0; regno <= 14; regno++)
2369 if (strcmp (&name[10], table[regno]) == 0)
2370 return read_register (regno);
2371 }
2372
2373 return 0; /* not a stub */
2374 }
2375
2376 static void
2377 set_arm_command (char *args, int from_tty)
2378 {
2379 printf_unfiltered ("\"set arm\" must be followed by an apporpriate subcommand.\n");
2380 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2381 }
2382
2383 static void
2384 show_arm_command (char *args, int from_tty)
2385 {
2386 cmd_show_list (showarmcmdlist, from_tty, "");
2387 }
2388
2389 enum arm_float_model
2390 arm_get_fp_model (struct gdbarch *gdbarch)
2391 {
2392 if (arm_fp_model == ARM_FLOAT_AUTO)
2393 return gdbarch_tdep (gdbarch)->fp_model;
2394
2395 return arm_fp_model;
2396 }
2397
2398 static void
2399 arm_set_fp (struct gdbarch *gdbarch)
2400 {
2401 enum arm_float_model fp_model = arm_get_fp_model (gdbarch);
2402
2403 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2404 && (fp_model == ARM_FLOAT_SOFT_FPA || fp_model == ARM_FLOAT_FPA))
2405 {
2406 set_gdbarch_double_format (gdbarch,
2407 &floatformat_ieee_double_littlebyte_bigword);
2408 set_gdbarch_long_double_format
2409 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2410 }
2411 else
2412 {
2413 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2414 set_gdbarch_long_double_format (gdbarch,
2415 &floatformat_ieee_double_little);
2416 }
2417 }
2418
2419 static void
2420 set_fp_model_sfunc (char *args, int from_tty,
2421 struct cmd_list_element *c)
2422 {
2423 enum arm_float_model fp_model;
2424
2425 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2426 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2427 {
2428 arm_fp_model = fp_model;
2429 break;
2430 }
2431
2432 if (fp_model == ARM_FLOAT_LAST)
2433 internal_error (__FILE__, __LINE__, "Invalid fp model accepted: %s.",
2434 current_fp_model);
2435
2436 if (gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2437 arm_set_fp (current_gdbarch);
2438 }
2439
2440 static void
2441 show_fp_model (char *args, int from_tty,
2442 struct cmd_list_element *c)
2443 {
2444 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2445
2446 if (arm_fp_model == ARM_FLOAT_AUTO
2447 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2448 printf_filtered (" - the default for the current ABI is \"%s\".\n",
2449 fp_model_strings[tdep->fp_model]);
2450 }
2451
2452 /* If the user changes the register disassembly style used for info
2453 register and other commands, we have to also switch the style used
2454 in opcodes for disassembly output. This function is run in the "set
2455 arm disassembly" command, and does that. */
2456
2457 static void
2458 set_disassembly_style_sfunc (char *args, int from_tty,
2459 struct cmd_list_element *c)
2460 {
2461 set_disassembly_style ();
2462 }
2463 \f
2464 /* Return the ARM register name corresponding to register I. */
2465 static const char *
2466 arm_register_name (int i)
2467 {
2468 return arm_register_names[i];
2469 }
2470
2471 static void
2472 set_disassembly_style (void)
2473 {
2474 const char *setname, *setdesc, **regnames;
2475 int numregs, j;
2476
2477 /* Find the style that the user wants in the opcodes table. */
2478 int current = 0;
2479 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2480 while ((disassembly_style != setname)
2481 && (current < num_disassembly_options))
2482 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2483 current_option = current;
2484
2485 /* Fill our copy. */
2486 for (j = 0; j < numregs; j++)
2487 arm_register_names[j] = (char *) regnames[j];
2488
2489 /* Adjust case. */
2490 if (isupper (*regnames[ARM_PC_REGNUM]))
2491 {
2492 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2493 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2494 }
2495 else
2496 {
2497 arm_register_names[ARM_FPS_REGNUM] = "fps";
2498 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2499 }
2500
2501 /* Synchronize the disassembler. */
2502 set_arm_regname_option (current);
2503 }
2504
2505 /* arm_othernames implements the "othernames" command. This is deprecated
2506 by the "set arm disassembly" command. */
2507
2508 static void
2509 arm_othernames (char *names, int n)
2510 {
2511 /* Circle through the various flavors. */
2512 current_option = (current_option + 1) % num_disassembly_options;
2513
2514 disassembly_style = valid_disassembly_styles[current_option];
2515 set_disassembly_style ();
2516 }
2517
2518 /* Test whether the coff symbol specific value corresponds to a Thumb
2519 function. */
2520
2521 static int
2522 coff_sym_is_thumb (int val)
2523 {
2524 return (val == C_THUMBEXT ||
2525 val == C_THUMBSTAT ||
2526 val == C_THUMBEXTFUNC ||
2527 val == C_THUMBSTATFUNC ||
2528 val == C_THUMBLABEL);
2529 }
2530
2531 /* arm_coff_make_msymbol_special()
2532 arm_elf_make_msymbol_special()
2533
2534 These functions test whether the COFF or ELF symbol corresponds to
2535 an address in thumb code, and set a "special" bit in a minimal
2536 symbol to indicate that it does. */
2537
2538 static void
2539 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2540 {
2541 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2542 STT_ARM_TFUNC). */
2543 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2544 == STT_LOPROC)
2545 MSYMBOL_SET_SPECIAL (msym);
2546 }
2547
2548 static void
2549 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2550 {
2551 if (coff_sym_is_thumb (val))
2552 MSYMBOL_SET_SPECIAL (msym);
2553 }
2554
2555 static void
2556 arm_write_pc (CORE_ADDR pc, ptid_t ptid)
2557 {
2558 write_register_pid (ARM_PC_REGNUM, pc, ptid);
2559
2560 /* If necessary, set the T bit. */
2561 if (arm_apcs_32)
2562 {
2563 CORE_ADDR val = read_register_pid (ARM_PS_REGNUM, ptid);
2564 if (arm_pc_is_thumb (pc))
2565 write_register_pid (ARM_PS_REGNUM, val | 0x20, ptid);
2566 else
2567 write_register_pid (ARM_PS_REGNUM, val & ~(CORE_ADDR) 0x20, ptid);
2568 }
2569 }
2570 \f
2571 static enum gdb_osabi
2572 arm_elf_osabi_sniffer (bfd *abfd)
2573 {
2574 unsigned int elfosabi, eflags;
2575 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2576
2577 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2578
2579 switch (elfosabi)
2580 {
2581 case ELFOSABI_NONE:
2582 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2583 file are conforming to the base specification for that machine
2584 (there are no OS-specific extensions). In order to determine the
2585 real OS in use we must look for OS notes that have been added. */
2586 bfd_map_over_sections (abfd,
2587 generic_elf_osabi_sniff_abi_tag_sections,
2588 &osabi);
2589 if (osabi == GDB_OSABI_UNKNOWN)
2590 {
2591 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2592 field for more information. */
2593 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2594 switch (eflags)
2595 {
2596 case EF_ARM_EABI_VER1:
2597 osabi = GDB_OSABI_ARM_EABI_V1;
2598 break;
2599
2600 case EF_ARM_EABI_VER2:
2601 osabi = GDB_OSABI_ARM_EABI_V2;
2602 break;
2603
2604 case EF_ARM_EABI_UNKNOWN:
2605 /* Assume GNU tools. */
2606 osabi = GDB_OSABI_ARM_APCS;
2607 break;
2608
2609 default:
2610 internal_error (__FILE__, __LINE__,
2611 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2612 "version 0x%x", eflags);
2613 }
2614 }
2615 break;
2616
2617 case ELFOSABI_ARM:
2618 /* GNU tools use this value. Check note sections in this case,
2619 as well. */
2620 bfd_map_over_sections (abfd,
2621 generic_elf_osabi_sniff_abi_tag_sections,
2622 &osabi);
2623 if (osabi == GDB_OSABI_UNKNOWN)
2624 {
2625 /* Assume APCS ABI. */
2626 osabi = GDB_OSABI_ARM_APCS;
2627 }
2628 break;
2629
2630 case ELFOSABI_FREEBSD:
2631 osabi = GDB_OSABI_FREEBSD_ELF;
2632 break;
2633
2634 case ELFOSABI_NETBSD:
2635 osabi = GDB_OSABI_NETBSD_ELF;
2636 break;
2637
2638 case ELFOSABI_LINUX:
2639 osabi = GDB_OSABI_LINUX;
2640 break;
2641 }
2642
2643 return osabi;
2644 }
2645
2646 \f
2647 /* Initialize the current architecture based on INFO. If possible,
2648 re-use an architecture from ARCHES, which is a list of
2649 architectures already created during this debugging session.
2650
2651 Called e.g. at program startup, when reading a core file, and when
2652 reading a binary file. */
2653
2654 static struct gdbarch *
2655 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2656 {
2657 struct gdbarch_tdep *tdep;
2658 struct gdbarch *gdbarch;
2659
2660 /* Try to deterimine the ABI of the object we are loading. */
2661
2662 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2663 {
2664 switch (bfd_get_flavour (info.abfd))
2665 {
2666 case bfd_target_aout_flavour:
2667 /* Assume it's an old APCS-style ABI. */
2668 info.osabi = GDB_OSABI_ARM_APCS;
2669 break;
2670
2671 case bfd_target_coff_flavour:
2672 /* Assume it's an old APCS-style ABI. */
2673 /* XXX WinCE? */
2674 info.osabi = GDB_OSABI_ARM_APCS;
2675 break;
2676
2677 default:
2678 /* Leave it as "unknown". */
2679 break;
2680 }
2681 }
2682
2683 /* If there is already a candidate, use it. */
2684 arches = gdbarch_list_lookup_by_info (arches, &info);
2685 if (arches != NULL)
2686 return arches->gdbarch;
2687
2688 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2689 gdbarch = gdbarch_alloc (&info, tdep);
2690
2691 /* We used to default to FPA for generic ARM, but almost nobody uses that
2692 now, and we now provide a way for the user to force the model. So
2693 default to the most useful variant. */
2694 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
2695
2696 /* Breakpoints. */
2697 switch (info.byte_order)
2698 {
2699 case BFD_ENDIAN_BIG:
2700 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2701 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2702 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2703 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2704
2705 break;
2706
2707 case BFD_ENDIAN_LITTLE:
2708 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2709 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2710 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2711 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2712
2713 break;
2714
2715 default:
2716 internal_error (__FILE__, __LINE__,
2717 "arm_gdbarch_init: bad byte order for float format");
2718 }
2719
2720 /* On ARM targets char defaults to unsigned. */
2721 set_gdbarch_char_signed (gdbarch, 0);
2722
2723 /* This should be low enough for everything. */
2724 tdep->lowest_pc = 0x20;
2725 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2726
2727 set_gdbarch_deprecated_call_dummy_words (gdbarch, arm_call_dummy_words);
2728 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, 0);
2729
2730 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
2731
2732 set_gdbarch_write_pc (gdbarch, arm_write_pc);
2733
2734 /* Frame handling. */
2735 set_gdbarch_unwind_dummy_id (gdbarch, arm_unwind_dummy_id);
2736 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
2737 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
2738
2739 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, arm_frameless_function_invocation);
2740
2741 frame_base_set_default (gdbarch, &arm_normal_base);
2742
2743 /* Address manipulation. */
2744 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2745 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2746
2747 /* Advance PC across function entry code. */
2748 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2749
2750 /* Get the PC when a frame might not be available. */
2751 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2752
2753 /* The stack grows downward. */
2754 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2755
2756 /* Breakpoint manipulation. */
2757 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2758
2759 /* Information about registers, etc. */
2760 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2761 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2762 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2763 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2764 set_gdbarch_deprecated_register_byte (gdbarch, arm_register_byte);
2765 set_gdbarch_deprecated_register_bytes (gdbarch,
2766 (NUM_GREGS * INT_REGISTER_SIZE
2767 + NUM_FREGS * FP_REGISTER_SIZE
2768 + NUM_SREGS * STATUS_REGISTER_SIZE));
2769 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2770 set_gdbarch_register_type (gdbarch, arm_register_type);
2771
2772 /* Internal <-> external register number maps. */
2773 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2774
2775 /* Integer registers are 4 bytes. */
2776 set_gdbarch_deprecated_register_size (gdbarch, 4);
2777 set_gdbarch_register_name (gdbarch, arm_register_name);
2778
2779 /* Returning results. */
2780 set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
2781 set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
2782 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
2783 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, arm_extract_struct_value_address);
2784
2785 /* Single stepping. */
2786 /* XXX For an RDI target we should ask the target if it can single-step. */
2787 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2788
2789 /* Disassembly. */
2790 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
2791
2792 /* Minsymbol frobbing. */
2793 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2794 set_gdbarch_coff_make_msymbol_special (gdbarch,
2795 arm_coff_make_msymbol_special);
2796
2797 /* Hook in the ABI-specific overrides, if they have been registered. */
2798 gdbarch_init_osabi (info, gdbarch);
2799
2800 /* Add some default predicates. */
2801 frame_unwind_append_sniffer (gdbarch, arm_sigtramp_unwind_sniffer);
2802 frame_unwind_append_sniffer (gdbarch, arm_prologue_unwind_sniffer);
2803
2804 /* Now we have tuned the configuration, set a few final things,
2805 based on what the OS ABI has told us. */
2806
2807 if (tdep->jb_pc >= 0)
2808 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2809
2810 /* Floating point sizes and format. */
2811 switch (info.byte_order)
2812 {
2813 case BFD_ENDIAN_BIG:
2814 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2815 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2816 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2817
2818 break;
2819
2820 case BFD_ENDIAN_LITTLE:
2821 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2822 arm_set_fp (gdbarch);
2823 break;
2824
2825 default:
2826 internal_error (__FILE__, __LINE__,
2827 "arm_gdbarch_init: bad byte order for float format");
2828 }
2829
2830 return gdbarch;
2831 }
2832
2833 static void
2834 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2835 {
2836 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2837
2838 if (tdep == NULL)
2839 return;
2840
2841 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2842 (unsigned long) tdep->lowest_pc);
2843 }
2844
2845 static void
2846 arm_init_abi_eabi_v1 (struct gdbarch_info info,
2847 struct gdbarch *gdbarch)
2848 {
2849 /* Place-holder. */
2850 }
2851
2852 static void
2853 arm_init_abi_eabi_v2 (struct gdbarch_info info,
2854 struct gdbarch *gdbarch)
2855 {
2856 /* Place-holder. */
2857 }
2858
2859 static void
2860 arm_init_abi_apcs (struct gdbarch_info info,
2861 struct gdbarch *gdbarch)
2862 {
2863 /* Place-holder. */
2864 }
2865
2866 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
2867
2868 void
2869 _initialize_arm_tdep (void)
2870 {
2871 struct ui_file *stb;
2872 long length;
2873 struct cmd_list_element *new_set, *new_show;
2874 const char *setname;
2875 const char *setdesc;
2876 const char **regnames;
2877 int numregs, i, j;
2878 static char *helptext;
2879
2880 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2881
2882 /* Register an ELF OS ABI sniffer for ARM binaries. */
2883 gdbarch_register_osabi_sniffer (bfd_arch_arm,
2884 bfd_target_elf_flavour,
2885 arm_elf_osabi_sniffer);
2886
2887 /* Register some ABI variants for embedded systems. */
2888 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
2889 arm_init_abi_eabi_v1);
2890 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
2891 arm_init_abi_eabi_v2);
2892 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
2893 arm_init_abi_apcs);
2894
2895 /* Get the number of possible sets of register names defined in opcodes. */
2896 num_disassembly_options = get_arm_regname_num_options ();
2897
2898 /* Add root prefix command for all "set arm"/"show arm" commands. */
2899 add_prefix_cmd ("arm", no_class, set_arm_command,
2900 "Various ARM-specific commands.",
2901 &setarmcmdlist, "set arm ", 0, &setlist);
2902
2903 add_prefix_cmd ("arm", no_class, show_arm_command,
2904 "Various ARM-specific commands.",
2905 &showarmcmdlist, "show arm ", 0, &showlist);
2906
2907 /* Sync the opcode insn printer with our register viewer. */
2908 parse_arm_disassembler_option ("reg-names-std");
2909
2910 /* Begin creating the help text. */
2911 stb = mem_fileopen ();
2912 fprintf_unfiltered (stb, "Set the disassembly style.\n"
2913 "The valid values are:\n");
2914
2915 /* Initialize the array that will be passed to add_set_enum_cmd(). */
2916 valid_disassembly_styles
2917 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
2918 for (i = 0; i < num_disassembly_options; i++)
2919 {
2920 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
2921 valid_disassembly_styles[i] = setname;
2922 fprintf_unfiltered (stb, "%s - %s\n", setname,
2923 setdesc);
2924 /* Copy the default names (if found) and synchronize disassembler. */
2925 if (!strcmp (setname, "std"))
2926 {
2927 disassembly_style = setname;
2928 current_option = i;
2929 for (j = 0; j < numregs; j++)
2930 arm_register_names[j] = (char *) regnames[j];
2931 set_arm_regname_option (i);
2932 }
2933 }
2934 /* Mark the end of valid options. */
2935 valid_disassembly_styles[num_disassembly_options] = NULL;
2936
2937 /* Finish the creation of the help text. */
2938 fprintf_unfiltered (stb, "The default is \"std\".");
2939 helptext = ui_file_xstrdup (stb, &length);
2940 ui_file_delete (stb);
2941
2942 /* Add the deprecated disassembly-flavor command. */
2943 new_set = add_set_enum_cmd ("disassembly-flavor", no_class,
2944 valid_disassembly_styles,
2945 &disassembly_style,
2946 helptext,
2947 &setlist);
2948 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2949 deprecate_cmd (new_set, "set arm disassembly");
2950 deprecate_cmd (add_show_from_set (new_set, &showlist),
2951 "show arm disassembly");
2952
2953 /* And now add the new interface. */
2954 new_set = add_set_enum_cmd ("disassembler", no_class,
2955 valid_disassembly_styles, &disassembly_style,
2956 helptext, &setarmcmdlist);
2957
2958 set_cmd_sfunc (new_set, set_disassembly_style_sfunc);
2959 add_show_from_set (new_set, &showarmcmdlist);
2960
2961 add_setshow_cmd_full ("apcs32", no_class,
2962 var_boolean, (char *) &arm_apcs_32,
2963 "Set usage of ARM 32-bit mode.",
2964 "Show usage of ARM 32-bit mode.",
2965 NULL, NULL,
2966 &setlist, &showlist, &new_set, &new_show);
2967 deprecate_cmd (new_set, "set arm apcs32");
2968 deprecate_cmd (new_show, "show arm apcs32");
2969
2970 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
2971 "Set usage of ARM 32-bit mode. "
2972 "When off, a 26-bit PC will be used.",
2973 "Show usage of ARM 32-bit mode. "
2974 "When off, a 26-bit PC will be used.",
2975 NULL, NULL,
2976 &setarmcmdlist, &showarmcmdlist);
2977
2978 /* Add a command to allow the user to force the FPU model. */
2979 new_set = add_set_enum_cmd
2980 ("fpu", no_class, fp_model_strings, &current_fp_model,
2981 "Set the floating point type.\n"
2982 "auto - Determine the FP typefrom the OS-ABI.\n"
2983 "softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n"
2984 "fpa - FPA co-processor (GCC compiled).\n"
2985 "softvfp - Software FP with pure-endian doubles.\n"
2986 "vfp - VFP co-processor.",
2987 &setarmcmdlist);
2988 set_cmd_sfunc (new_set, set_fp_model_sfunc);
2989 set_cmd_sfunc (add_show_from_set (new_set, &showarmcmdlist), show_fp_model);
2990
2991 /* Add the deprecated "othernames" command. */
2992 deprecate_cmd (add_com ("othernames", class_obscure, arm_othernames,
2993 "Switch to the next set of register names."),
2994 "set arm disassembly");
2995
2996 /* Debugging flag. */
2997 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
2998 "Set ARM debugging. "
2999 "When on, arm-specific debugging is enabled.",
3000 "Show ARM debugging. "
3001 "When on, arm-specific debugging is enabled.",
3002 NULL, NULL,
3003 &setdebuglist, &showdebuglist);
3004 }