]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/avr-tdep.c
gdb: add names to unwinders, add debug messages when looking for unwinder
[thirdparty/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include <algorithm>
40
41 /* AVR Background:
42
43 (AVR micros are pure Harvard Architecture processors.)
44
45 The AVR family of microcontrollers have three distinctly different memory
46 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
47 the most part to store program instructions. The sram is 8 bits wide and is
48 used for the stack and the heap. Some devices lack sram and some can have
49 an additional external sram added on as a peripheral.
50
51 The eeprom is 8 bits wide and is used to store data when the device is
52 powered down. Eeprom is not directly accessible, it can only be accessed
53 via io-registers using a special algorithm. Accessing eeprom via gdb's
54 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
55 not included at this time.
56
57 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
58 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
59 work, the remote target must be able to handle eeprom accesses and perform
60 the address translation.]
61
62 All three memory spaces have physical addresses beginning at 0x0. In
63 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
64 bytes instead of the 16 bit wide words used by the real device for the
65 Program Counter.
66
67 In order for remote targets to work correctly, extra bits must be added to
68 addresses before they are send to the target or received from the target
69 via the remote serial protocol. The extra bits are the MSBs and are used to
70 decode which memory space the address is referring to. */
71
72 /* Constants: prefixed with AVR_ to avoid name space clashes */
73
74 /* Address space flags */
75
76 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
77 space. */
78
79 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
80 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
81 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
82
83
84 enum
85 {
86 AVR_REG_W = 24,
87 AVR_REG_X = 26,
88 AVR_REG_Y = 28,
89 AVR_FP_REGNUM = 28,
90 AVR_REG_Z = 30,
91
92 AVR_SREG_REGNUM = 32,
93 AVR_SP_REGNUM = 33,
94 AVR_PC_REGNUM = 34,
95
96 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
97 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
98
99 /* Pseudo registers. */
100 AVR_PSEUDO_PC_REGNUM = 35,
101 AVR_NUM_PSEUDO_REGS = 1,
102
103 AVR_PC_REG_INDEX = 35, /* index into array of registers */
104
105 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
106
107 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
108 AVR_MAX_PUSHES = 18,
109
110 /* Number of the last pushed register. r17 for current avr-gcc */
111 AVR_LAST_PUSHED_REGNUM = 17,
112
113 AVR_ARG1_REGNUM = 24, /* Single byte argument */
114 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
115 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
116
117 AVR_RET1_REGNUM = 24, /* Single byte return value */
118 AVR_RETN_REGNUM = 25, /* Multi byte return value */
119
120 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
121 bits? Do these have to match the bfd vma values? It sure would make
122 things easier in the future if they didn't need to match.
123
124 Note: I chose these values so as to be consistent with bfd vma
125 addresses.
126
127 TRoth/2002-04-08: There is already a conflict with very large programs
128 in the mega128. The mega128 has 128K instruction bytes (64K words),
129 thus the Most Significant Bit is 0x10000 which gets masked off my
130 AVR_MEM_MASK.
131
132 The problem manifests itself when trying to set a breakpoint in a
133 function which resides in the upper half of the instruction space and
134 thus requires a 17-bit address.
135
136 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
137 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
138 but could be for some remote targets by just adding the correct offset
139 to the address and letting the remote target handle the low-level
140 details of actually accessing the eeprom. */
141
142 AVR_IMEM_START = 0x00000000, /* INSN memory */
143 AVR_SMEM_START = 0x00800000, /* SRAM memory */
144 #if 1
145 /* No eeprom mask defined */
146 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
147 #else
148 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
149 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
150 #endif
151 };
152
153 /* Prologue types:
154
155 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
156 causes the generation of the CALL type prologues). */
157
158 enum {
159 AVR_PROLOGUE_NONE, /* No prologue */
160 AVR_PROLOGUE_NORMAL,
161 AVR_PROLOGUE_CALL, /* -mcall-prologues */
162 AVR_PROLOGUE_MAIN,
163 AVR_PROLOGUE_INTR, /* interrupt handler */
164 AVR_PROLOGUE_SIG, /* signal handler */
165 };
166
167 /* Any function with a frame looks like this
168 ....... <-SP POINTS HERE
169 LOCALS1 <-FP POINTS HERE
170 LOCALS0
171 SAVED FP
172 SAVED R3
173 SAVED R2
174 RET PC
175 FIRST ARG
176 SECOND ARG */
177
178 struct avr_unwind_cache
179 {
180 /* The previous frame's inner most stack address. Used as this
181 frame ID's stack_addr. */
182 CORE_ADDR prev_sp;
183 /* The frame's base, optionally used by the high-level debug info. */
184 CORE_ADDR base;
185 int size;
186 int prologue_type;
187 /* Table indicating the location of each and every register. */
188 trad_frame_saved_reg *saved_regs;
189 };
190
191 struct gdbarch_tdep
192 {
193 /* Number of bytes stored to the stack by call instructions.
194 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
195 int call_length;
196
197 /* Type for void. */
198 struct type *void_type;
199 /* Type for a function returning void. */
200 struct type *func_void_type;
201 /* Type for a pointer to a function. Used for the type of PC. */
202 struct type *pc_type;
203 };
204
205 /* Lookup the name of a register given it's number. */
206
207 static const char *
208 avr_register_name (struct gdbarch *gdbarch, int regnum)
209 {
210 static const char * const register_names[] = {
211 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
212 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
213 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
214 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
215 "SREG", "SP", "PC2",
216 "pc"
217 };
218 if (regnum < 0)
219 return NULL;
220 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
221 return NULL;
222 return register_names[regnum];
223 }
224
225 /* Return the GDB type object for the "standard" data type
226 of data in register N. */
227
228 static struct type *
229 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
230 {
231 if (reg_nr == AVR_PC_REGNUM)
232 return builtin_type (gdbarch)->builtin_uint32;
233 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
234 return gdbarch_tdep (gdbarch)->pc_type;
235 if (reg_nr == AVR_SP_REGNUM)
236 return builtin_type (gdbarch)->builtin_data_ptr;
237 return builtin_type (gdbarch)->builtin_uint8;
238 }
239
240 /* Instruction address checks and convertions. */
241
242 static CORE_ADDR
243 avr_make_iaddr (CORE_ADDR x)
244 {
245 return ((x) | AVR_IMEM_START);
246 }
247
248 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
249 devices are already up to 128KBytes of flash space.
250
251 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
252
253 static CORE_ADDR
254 avr_convert_iaddr_to_raw (CORE_ADDR x)
255 {
256 return ((x) & 0xffffffff);
257 }
258
259 /* SRAM address checks and convertions. */
260
261 static CORE_ADDR
262 avr_make_saddr (CORE_ADDR x)
263 {
264 /* Return 0 for NULL. */
265 if (x == 0)
266 return 0;
267
268 return ((x) | AVR_SMEM_START);
269 }
270
271 static CORE_ADDR
272 avr_convert_saddr_to_raw (CORE_ADDR x)
273 {
274 return ((x) & 0xffffffff);
275 }
276
277 /* EEPROM address checks and convertions. I don't know if these will ever
278 actually be used, but I've added them just the same. TRoth */
279
280 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
281 programs in the mega128. */
282
283 /* static CORE_ADDR */
284 /* avr_make_eaddr (CORE_ADDR x) */
285 /* { */
286 /* return ((x) | AVR_EMEM_START); */
287 /* } */
288
289 /* static int */
290 /* avr_eaddr_p (CORE_ADDR x) */
291 /* { */
292 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
293 /* } */
294
295 /* static CORE_ADDR */
296 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
297 /* { */
298 /* return ((x) & 0xffffffff); */
299 /* } */
300
301 /* Convert from address to pointer and vice-versa. */
302
303 static void
304 avr_address_to_pointer (struct gdbarch *gdbarch,
305 struct type *type, gdb_byte *buf, CORE_ADDR addr)
306 {
307 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
308
309 /* Is it a data address in flash? */
310 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
311 {
312 /* A data pointer in flash is byte addressed. */
313 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
314 avr_convert_iaddr_to_raw (addr));
315 }
316 /* Is it a code address? */
317 else if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC
318 || TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_METHOD)
319 {
320 /* A code pointer is word (16 bits) addressed. We shift the address down
321 by 1 bit to convert it to a pointer. */
322 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
323 avr_convert_iaddr_to_raw (addr >> 1));
324 }
325 else
326 {
327 /* Strip off any upper segment bits. */
328 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
329 avr_convert_saddr_to_raw (addr));
330 }
331 }
332
333 static CORE_ADDR
334 avr_pointer_to_address (struct gdbarch *gdbarch,
335 struct type *type, const gdb_byte *buf)
336 {
337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338 CORE_ADDR addr
339 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
340
341 /* Is it a data address in flash? */
342 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
343 {
344 /* A data pointer in flash is already byte addressed. */
345 return avr_make_iaddr (addr);
346 }
347 /* Is it a code address? */
348 else if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC
349 || TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_METHOD
350 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
351 {
352 /* A code pointer is word (16 bits) addressed so we shift it up
353 by 1 bit to convert it to an address. */
354 return avr_make_iaddr (addr << 1);
355 }
356 else
357 return avr_make_saddr (addr);
358 }
359
360 static CORE_ADDR
361 avr_integer_to_address (struct gdbarch *gdbarch,
362 struct type *type, const gdb_byte *buf)
363 {
364 ULONGEST addr = unpack_long (type, buf);
365
366 if (TYPE_DATA_SPACE (type))
367 return avr_make_saddr (addr);
368 else
369 return avr_make_iaddr (addr);
370 }
371
372 static CORE_ADDR
373 avr_read_pc (readable_regcache *regcache)
374 {
375 ULONGEST pc;
376
377 regcache->cooked_read (AVR_PC_REGNUM, &pc);
378 return avr_make_iaddr (pc);
379 }
380
381 static void
382 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
383 {
384 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
385 avr_convert_iaddr_to_raw (val));
386 }
387
388 static enum register_status
389 avr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
390 int regnum, gdb_byte *buf)
391 {
392 ULONGEST val;
393 enum register_status status;
394
395 switch (regnum)
396 {
397 case AVR_PSEUDO_PC_REGNUM:
398 status = regcache->raw_read (AVR_PC_REGNUM, &val);
399 if (status != REG_VALID)
400 return status;
401 val >>= 1;
402 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
403 return status;
404 default:
405 internal_error (__FILE__, __LINE__, _("invalid regnum"));
406 }
407 }
408
409 static void
410 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
411 int regnum, const gdb_byte *buf)
412 {
413 ULONGEST val;
414
415 switch (regnum)
416 {
417 case AVR_PSEUDO_PC_REGNUM:
418 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
419 val <<= 1;
420 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
421 break;
422 default:
423 internal_error (__FILE__, __LINE__, _("invalid regnum"));
424 }
425 }
426
427 /* Function: avr_scan_prologue
428
429 This function decodes an AVR function prologue to determine:
430 1) the size of the stack frame
431 2) which registers are saved on it
432 3) the offsets of saved regs
433 This information is stored in the avr_unwind_cache structure.
434
435 Some devices lack the sbiw instruction, so on those replace this:
436 sbiw r28, XX
437 with this:
438 subi r28,lo8(XX)
439 sbci r29,hi8(XX)
440
441 A typical AVR function prologue with a frame pointer might look like this:
442 push rXX ; saved regs
443 ...
444 push r28
445 push r29
446 in r28,__SP_L__
447 in r29,__SP_H__
448 sbiw r28,<LOCALS_SIZE>
449 in __tmp_reg__,__SREG__
450 cli
451 out __SP_H__,r29
452 out __SREG__,__tmp_reg__
453 out __SP_L__,r28
454
455 A typical AVR function prologue without a frame pointer might look like
456 this:
457 push rXX ; saved regs
458 ...
459
460 A main function prologue looks like this:
461 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
462 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
463 out __SP_H__,r29
464 out __SP_L__,r28
465
466 A signal handler prologue looks like this:
467 push __zero_reg__
468 push __tmp_reg__
469 in __tmp_reg__, __SREG__
470 push __tmp_reg__
471 clr __zero_reg__
472 push rXX ; save registers r18:r27, r30:r31
473 ...
474 push r28 ; save frame pointer
475 push r29
476 in r28, __SP_L__
477 in r29, __SP_H__
478 sbiw r28, <LOCALS_SIZE>
479 out __SP_H__, r29
480 out __SP_L__, r28
481
482 A interrupt handler prologue looks like this:
483 sei
484 push __zero_reg__
485 push __tmp_reg__
486 in __tmp_reg__, __SREG__
487 push __tmp_reg__
488 clr __zero_reg__
489 push rXX ; save registers r18:r27, r30:r31
490 ...
491 push r28 ; save frame pointer
492 push r29
493 in r28, __SP_L__
494 in r29, __SP_H__
495 sbiw r28, <LOCALS_SIZE>
496 cli
497 out __SP_H__, r29
498 sei
499 out __SP_L__, r28
500
501 A `-mcall-prologues' prologue looks like this (Note that the megas use a
502 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
503 32 bit insn and rjmp is a 16 bit insn):
504 ldi r26,lo8(<LOCALS_SIZE>)
505 ldi r27,hi8(<LOCALS_SIZE>)
506 ldi r30,pm_lo8(.L_foo_body)
507 ldi r31,pm_hi8(.L_foo_body)
508 rjmp __prologue_saves__+RRR
509 .L_foo_body: */
510
511 /* Not really part of a prologue, but still need to scan for it, is when a
512 function prologue moves values passed via registers as arguments to new
513 registers. In this case, all local variables live in registers, so there
514 may be some register saves. This is what it looks like:
515 movw rMM, rNN
516 ...
517
518 There could be multiple movw's. If the target doesn't have a movw insn, it
519 will use two mov insns. This could be done after any of the above prologue
520 types. */
521
522 static CORE_ADDR
523 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
524 struct avr_unwind_cache *info)
525 {
526 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
527 int i;
528 unsigned short insn;
529 int scan_stage = 0;
530 struct bound_minimal_symbol msymbol;
531 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
532 int vpc = 0;
533 int len;
534
535 len = pc_end - pc_beg;
536 if (len > AVR_MAX_PROLOGUE_SIZE)
537 len = AVR_MAX_PROLOGUE_SIZE;
538
539 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
540 reading in the bytes of the prologue. The problem is that the figuring
541 out where the end of the prologue is is a bit difficult. The old code
542 tried to do that, but failed quite often. */
543 read_memory (pc_beg, prologue, len);
544
545 /* Scanning main()'s prologue
546 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
547 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
548 out __SP_H__,r29
549 out __SP_L__,r28 */
550
551 if (len >= 4)
552 {
553 CORE_ADDR locals;
554 static const unsigned char img[] = {
555 0xde, 0xbf, /* out __SP_H__,r29 */
556 0xcd, 0xbf /* out __SP_L__,r28 */
557 };
558
559 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
560 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
561 if ((insn & 0xf0f0) == 0xe0c0)
562 {
563 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
564 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
565 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
566 if ((insn & 0xf0f0) == 0xe0d0)
567 {
568 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
569 if (vpc + 4 + sizeof (img) < len
570 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
571 {
572 info->prologue_type = AVR_PROLOGUE_MAIN;
573 info->base = locals;
574 return pc_beg + 4;
575 }
576 }
577 }
578 }
579
580 /* Scanning `-mcall-prologues' prologue
581 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
582
583 while (1) /* Using a while to avoid many goto's */
584 {
585 int loc_size;
586 int body_addr;
587 unsigned num_pushes;
588 int pc_offset = 0;
589
590 /* At least the fifth instruction must have been executed to
591 modify frame shape. */
592 if (len < 10)
593 break;
594
595 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
596 /* ldi r26,<LOCALS_SIZE> */
597 if ((insn & 0xf0f0) != 0xe0a0)
598 break;
599 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
600 pc_offset += 2;
601
602 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
603 /* ldi r27,<LOCALS_SIZE> / 256 */
604 if ((insn & 0xf0f0) != 0xe0b0)
605 break;
606 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
607 pc_offset += 2;
608
609 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
610 /* ldi r30,pm_lo8(.L_foo_body) */
611 if ((insn & 0xf0f0) != 0xe0e0)
612 break;
613 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
614 pc_offset += 2;
615
616 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
617 /* ldi r31,pm_hi8(.L_foo_body) */
618 if ((insn & 0xf0f0) != 0xe0f0)
619 break;
620 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
621 pc_offset += 2;
622
623 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
624 if (!msymbol.minsym)
625 break;
626
627 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
628 /* rjmp __prologue_saves__+RRR */
629 if ((insn & 0xf000) == 0xc000)
630 {
631 /* Extract PC relative offset from RJMP */
632 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
633 /* Convert offset to byte addressable mode */
634 i *= 2;
635 /* Destination address */
636 i += pc_beg + 10;
637
638 if (body_addr != (pc_beg + 10)/2)
639 break;
640
641 pc_offset += 2;
642 }
643 else if ((insn & 0xfe0e) == 0x940c)
644 {
645 /* Extract absolute PC address from JMP */
646 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
647 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
648 & 0xffff));
649 /* Convert address to byte addressable mode */
650 i *= 2;
651
652 if (body_addr != (pc_beg + 12)/2)
653 break;
654
655 pc_offset += 4;
656 }
657 else
658 break;
659
660 /* Resolve offset (in words) from __prologue_saves__ symbol.
661 Which is a pushes count in `-mcall-prologues' mode */
662 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
663
664 if (num_pushes > AVR_MAX_PUSHES)
665 {
666 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
667 num_pushes);
668 num_pushes = 0;
669 }
670
671 if (num_pushes)
672 {
673 int from;
674
675 info->saved_regs[AVR_FP_REGNUM + 1].set_addr (num_pushes);
676 if (num_pushes >= 2)
677 info->saved_regs[AVR_FP_REGNUM].set_addr (num_pushes - 1);
678
679 i = 0;
680 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
681 from <= AVR_LAST_PUSHED_REGNUM; ++from)
682 info->saved_regs [from].set_addr (++i);
683 }
684 info->size = loc_size + num_pushes;
685 info->prologue_type = AVR_PROLOGUE_CALL;
686
687 return pc_beg + pc_offset;
688 }
689
690 /* Scan for the beginning of the prologue for an interrupt or signal
691 function. Note that we have to set the prologue type here since the
692 third stage of the prologue may not be present (e.g. no saved registered
693 or changing of the SP register). */
694
695 if (1)
696 {
697 static const unsigned char img[] = {
698 0x78, 0x94, /* sei */
699 0x1f, 0x92, /* push r1 */
700 0x0f, 0x92, /* push r0 */
701 0x0f, 0xb6, /* in r0,0x3f SREG */
702 0x0f, 0x92, /* push r0 */
703 0x11, 0x24 /* clr r1 */
704 };
705 if (len >= sizeof (img)
706 && memcmp (prologue, img, sizeof (img)) == 0)
707 {
708 info->prologue_type = AVR_PROLOGUE_INTR;
709 vpc += sizeof (img);
710 info->saved_regs[AVR_SREG_REGNUM].set_addr (3);
711 info->saved_regs[0].set_addr (2);
712 info->saved_regs[1].set_addr (1);
713 info->size += 3;
714 }
715 else if (len >= sizeof (img) - 2
716 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
717 {
718 info->prologue_type = AVR_PROLOGUE_SIG;
719 vpc += sizeof (img) - 2;
720 info->saved_regs[AVR_SREG_REGNUM].set_addr (3);
721 info->saved_regs[0].set_addr (2);
722 info->saved_regs[1].set_addr (1);
723 info->size += 2;
724 }
725 }
726
727 /* First stage of the prologue scanning.
728 Scan pushes (saved registers) */
729
730 for (; vpc < len; vpc += 2)
731 {
732 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
733 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
734 {
735 /* Bits 4-9 contain a mask for registers R0-R32. */
736 int regno = (insn & 0x1f0) >> 4;
737 info->size++;
738 info->saved_regs[regno].set_addr (info->size);
739 scan_stage = 1;
740 }
741 else
742 break;
743 }
744
745 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
746
747 /* Handle static small stack allocation using rcall or push. */
748
749 while (scan_stage == 1 && vpc < len)
750 {
751 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
752 if (insn == 0xd000) /* rcall .+0 */
753 {
754 info->size += gdbarch_tdep (gdbarch)->call_length;
755 vpc += 2;
756 }
757 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
758 {
759 info->size += 1;
760 vpc += 2;
761 }
762 else
763 break;
764 }
765
766 /* Second stage of the prologue scanning.
767 Scan:
768 in r28,__SP_L__
769 in r29,__SP_H__ */
770
771 if (scan_stage == 1 && vpc < len)
772 {
773 static const unsigned char img[] = {
774 0xcd, 0xb7, /* in r28,__SP_L__ */
775 0xde, 0xb7 /* in r29,__SP_H__ */
776 };
777
778 if (vpc + sizeof (img) < len
779 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
780 {
781 vpc += 4;
782 scan_stage = 2;
783 }
784 }
785
786 /* Third stage of the prologue scanning. (Really two stages).
787 Scan for:
788 sbiw r28,XX or subi r28,lo8(XX)
789 sbci r29,hi8(XX)
790 in __tmp_reg__,__SREG__
791 cli
792 out __SP_H__,r29
793 out __SREG__,__tmp_reg__
794 out __SP_L__,r28 */
795
796 if (scan_stage == 2 && vpc < len)
797 {
798 int locals_size = 0;
799 static const unsigned char img[] = {
800 0x0f, 0xb6, /* in r0,0x3f */
801 0xf8, 0x94, /* cli */
802 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
803 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
804 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
805 };
806 static const unsigned char img_sig[] = {
807 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
808 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
809 };
810 static const unsigned char img_int[] = {
811 0xf8, 0x94, /* cli */
812 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
813 0x78, 0x94, /* sei */
814 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
815 };
816
817 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
818 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
819 {
820 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
821 vpc += 2;
822 }
823 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
824 {
825 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
826 vpc += 2;
827 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
828 vpc += 2;
829 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
830 }
831 else
832 return pc_beg + vpc;
833
834 /* Scan the last part of the prologue. May not be present for interrupt
835 or signal handler functions, which is why we set the prologue type
836 when we saw the beginning of the prologue previously. */
837
838 if (vpc + sizeof (img_sig) < len
839 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
840 {
841 vpc += sizeof (img_sig);
842 }
843 else if (vpc + sizeof (img_int) < len
844 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
845 {
846 vpc += sizeof (img_int);
847 }
848 if (vpc + sizeof (img) < len
849 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
850 {
851 info->prologue_type = AVR_PROLOGUE_NORMAL;
852 vpc += sizeof (img);
853 }
854
855 info->size += locals_size;
856
857 /* Fall through. */
858 }
859
860 /* If we got this far, we could not scan the prologue, so just return the pc
861 of the frame plus an adjustment for argument move insns. */
862
863 for (; vpc < len; vpc += 2)
864 {
865 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
866 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
867 continue;
868 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
869 continue;
870 else
871 break;
872 }
873
874 return pc_beg + vpc;
875 }
876
877 static CORE_ADDR
878 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
879 {
880 CORE_ADDR func_addr, func_end;
881 CORE_ADDR post_prologue_pc;
882
883 /* See what the symbol table says */
884
885 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
886 return pc;
887
888 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
889 if (post_prologue_pc != 0)
890 return std::max (pc, post_prologue_pc);
891
892 {
893 CORE_ADDR prologue_end = pc;
894 struct avr_unwind_cache info = {0};
895 trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
896
897 info.saved_regs = saved_regs;
898
899 /* Need to run the prologue scanner to figure out if the function has a
900 prologue and possibly skip over moving arguments passed via registers
901 to other registers. */
902
903 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
904
905 if (info.prologue_type != AVR_PROLOGUE_NONE)
906 return prologue_end;
907 }
908
909 /* Either we didn't find the start of this function (nothing we can do),
910 or there's no line info, or the line after the prologue is after
911 the end of the function (there probably isn't a prologue). */
912
913 return pc;
914 }
915
916 /* Not all avr devices support the BREAK insn. Those that don't should treat
917 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
918 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
919
920 constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 };
921
922 typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint;
923
924 /* Determine, for architecture GDBARCH, how a return value of TYPE
925 should be returned. If it is supposed to be returned in registers,
926 and READBUF is non-zero, read the appropriate value from REGCACHE,
927 and copy it into READBUF. If WRITEBUF is non-zero, write the value
928 from WRITEBUF into REGCACHE. */
929
930 static enum return_value_convention
931 avr_return_value (struct gdbarch *gdbarch, struct value *function,
932 struct type *valtype, struct regcache *regcache,
933 gdb_byte *readbuf, const gdb_byte *writebuf)
934 {
935 int i;
936 /* Single byte are returned in r24.
937 Otherwise, the MSB of the return value is always in r25, calculate which
938 register holds the LSB. */
939 int lsb_reg;
940
941 if ((valtype->code () == TYPE_CODE_STRUCT
942 || valtype->code () == TYPE_CODE_UNION
943 || valtype->code () == TYPE_CODE_ARRAY)
944 && TYPE_LENGTH (valtype) > 8)
945 return RETURN_VALUE_STRUCT_CONVENTION;
946
947 if (TYPE_LENGTH (valtype) <= 2)
948 lsb_reg = 24;
949 else if (TYPE_LENGTH (valtype) <= 4)
950 lsb_reg = 22;
951 else if (TYPE_LENGTH (valtype) <= 8)
952 lsb_reg = 18;
953 else
954 gdb_assert_not_reached ("unexpected type length");
955
956 if (writebuf != NULL)
957 {
958 for (i = 0; i < TYPE_LENGTH (valtype); i++)
959 regcache->cooked_write (lsb_reg + i, writebuf + i);
960 }
961
962 if (readbuf != NULL)
963 {
964 for (i = 0; i < TYPE_LENGTH (valtype); i++)
965 regcache->cooked_read (lsb_reg + i, readbuf + i);
966 }
967
968 return RETURN_VALUE_REGISTER_CONVENTION;
969 }
970
971
972 /* Put here the code to store, into fi->saved_regs, the addresses of
973 the saved registers of frame described by FRAME_INFO. This
974 includes special registers such as pc and fp saved in special ways
975 in the stack frame. sp is even more special: the address we return
976 for it IS the sp for the next frame. */
977
978 static struct avr_unwind_cache *
979 avr_frame_unwind_cache (struct frame_info *this_frame,
980 void **this_prologue_cache)
981 {
982 CORE_ADDR start_pc, current_pc;
983 ULONGEST prev_sp;
984 ULONGEST this_base;
985 struct avr_unwind_cache *info;
986 struct gdbarch *gdbarch;
987 struct gdbarch_tdep *tdep;
988 int i;
989
990 if (*this_prologue_cache)
991 return (struct avr_unwind_cache *) *this_prologue_cache;
992
993 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
994 *this_prologue_cache = info;
995 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
996
997 info->size = 0;
998 info->prologue_type = AVR_PROLOGUE_NONE;
999
1000 start_pc = get_frame_func (this_frame);
1001 current_pc = get_frame_pc (this_frame);
1002 if ((start_pc > 0) && (start_pc <= current_pc))
1003 avr_scan_prologue (get_frame_arch (this_frame),
1004 start_pc, current_pc, info);
1005
1006 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1007 && (info->prologue_type != AVR_PROLOGUE_MAIN))
1008 {
1009 ULONGEST high_base; /* High byte of FP */
1010
1011 /* The SP was moved to the FP. This indicates that a new frame
1012 was created. Get THIS frame's FP value by unwinding it from
1013 the next frame. */
1014 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
1015 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
1016 this_base += (high_base << 8);
1017
1018 /* The FP points at the last saved register. Adjust the FP back
1019 to before the first saved register giving the SP. */
1020 prev_sp = this_base + info->size;
1021 }
1022 else
1023 {
1024 /* Assume that the FP is this frame's SP but with that pushed
1025 stack space added back. */
1026 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1027 prev_sp = this_base + info->size;
1028 }
1029
1030 /* Add 1 here to adjust for the post-decrement nature of the push
1031 instruction.*/
1032 info->prev_sp = avr_make_saddr (prev_sp + 1);
1033 info->base = avr_make_saddr (this_base);
1034
1035 gdbarch = get_frame_arch (this_frame);
1036
1037 /* Adjust all the saved registers so that they contain addresses and not
1038 offsets. */
1039 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1040 if (info->saved_regs[i].is_addr ())
1041 info->saved_regs[i].set_addr (info->prev_sp
1042 - info->saved_regs[i].addr ());
1043
1044 /* Except for the main and startup code, the return PC is always saved on
1045 the stack and is at the base of the frame. */
1046
1047 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1048 info->saved_regs[AVR_PC_REGNUM].set_addr (info->prev_sp);
1049
1050 /* The previous frame's SP needed to be computed. Save the computed
1051 value. */
1052 tdep = gdbarch_tdep (gdbarch);
1053 info->saved_regs[AVR_SP_REGNUM].set_value (info->prev_sp
1054 - 1 + tdep->call_length);
1055
1056 return info;
1057 }
1058
1059 static CORE_ADDR
1060 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1061 {
1062 ULONGEST pc;
1063
1064 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1065
1066 return avr_make_iaddr (pc);
1067 }
1068
1069 static CORE_ADDR
1070 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1071 {
1072 ULONGEST sp;
1073
1074 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1075
1076 return avr_make_saddr (sp);
1077 }
1078
1079 /* Given a GDB frame, determine the address of the calling function's
1080 frame. This will be used to create a new GDB frame struct. */
1081
1082 static void
1083 avr_frame_this_id (struct frame_info *this_frame,
1084 void **this_prologue_cache,
1085 struct frame_id *this_id)
1086 {
1087 struct avr_unwind_cache *info
1088 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1089 CORE_ADDR base;
1090 CORE_ADDR func;
1091 struct frame_id id;
1092
1093 /* The FUNC is easy. */
1094 func = get_frame_func (this_frame);
1095
1096 /* Hopefully the prologue analysis either correctly determined the
1097 frame's base (which is the SP from the previous frame), or set
1098 that base to "NULL". */
1099 base = info->prev_sp;
1100 if (base == 0)
1101 return;
1102
1103 id = frame_id_build (base, func);
1104 (*this_id) = id;
1105 }
1106
1107 static struct value *
1108 avr_frame_prev_register (struct frame_info *this_frame,
1109 void **this_prologue_cache, int regnum)
1110 {
1111 struct avr_unwind_cache *info
1112 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1113
1114 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1115 {
1116 if (info->saved_regs[AVR_PC_REGNUM].is_addr ())
1117 {
1118 /* Reading the return PC from the PC register is slightly
1119 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1120 but in reality, only two bytes (3 in upcoming mega256) are
1121 stored on the stack.
1122
1123 Also, note that the value on the stack is an addr to a word
1124 not a byte, so we will need to multiply it by two at some
1125 point.
1126
1127 And to confuse matters even more, the return address stored
1128 on the stack is in big endian byte order, even though most
1129 everything else about the avr is little endian. Ick! */
1130 ULONGEST pc;
1131 int i;
1132 gdb_byte buf[3];
1133 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1135
1136 read_memory (info->saved_regs[AVR_PC_REGNUM].addr (),
1137 buf, tdep->call_length);
1138
1139 /* Extract the PC read from memory as a big-endian. */
1140 pc = 0;
1141 for (i = 0; i < tdep->call_length; i++)
1142 pc = (pc << 8) | buf[i];
1143
1144 if (regnum == AVR_PC_REGNUM)
1145 pc <<= 1;
1146
1147 return frame_unwind_got_constant (this_frame, regnum, pc);
1148 }
1149
1150 return frame_unwind_got_optimized (this_frame, regnum);
1151 }
1152
1153 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1154 }
1155
1156 static const struct frame_unwind avr_frame_unwind = {
1157 "avr prologue",
1158 NORMAL_FRAME,
1159 default_frame_unwind_stop_reason,
1160 avr_frame_this_id,
1161 avr_frame_prev_register,
1162 NULL,
1163 default_frame_sniffer
1164 };
1165
1166 static CORE_ADDR
1167 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1168 {
1169 struct avr_unwind_cache *info
1170 = avr_frame_unwind_cache (this_frame, this_cache);
1171
1172 return info->base;
1173 }
1174
1175 static const struct frame_base avr_frame_base = {
1176 &avr_frame_unwind,
1177 avr_frame_base_address,
1178 avr_frame_base_address,
1179 avr_frame_base_address
1180 };
1181
1182 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1183 frame. The frame ID's base needs to match the TOS value saved by
1184 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1185
1186 static struct frame_id
1187 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1188 {
1189 ULONGEST base;
1190
1191 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1192 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1193 }
1194
1195 /* When arguments must be pushed onto the stack, they go on in reverse
1196 order. The below implements a FILO (stack) to do this. */
1197
1198 struct stack_item
1199 {
1200 int len;
1201 struct stack_item *prev;
1202 gdb_byte *data;
1203 };
1204
1205 static struct stack_item *
1206 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1207 {
1208 struct stack_item *si;
1209 si = XNEW (struct stack_item);
1210 si->data = (gdb_byte *) xmalloc (len);
1211 si->len = len;
1212 si->prev = prev;
1213 memcpy (si->data, contents, len);
1214 return si;
1215 }
1216
1217 static struct stack_item *pop_stack_item (struct stack_item *si);
1218 static struct stack_item *
1219 pop_stack_item (struct stack_item *si)
1220 {
1221 struct stack_item *dead = si;
1222 si = si->prev;
1223 xfree (dead->data);
1224 xfree (dead);
1225 return si;
1226 }
1227
1228 /* Setup the function arguments for calling a function in the inferior.
1229
1230 On the AVR architecture, there are 18 registers (R25 to R8) which are
1231 dedicated for passing function arguments. Up to the first 18 arguments
1232 (depending on size) may go into these registers. The rest go on the stack.
1233
1234 All arguments are aligned to start in even-numbered registers (odd-sized
1235 arguments, including char, have one free register above them). For example,
1236 an int in arg1 and a char in arg2 would be passed as such:
1237
1238 arg1 -> r25:r24
1239 arg2 -> r22
1240
1241 Arguments that are larger than 2 bytes will be split between two or more
1242 registers as available, but will NOT be split between a register and the
1243 stack. Arguments that go onto the stack are pushed last arg first (this is
1244 similar to the d10v). */
1245
1246 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1247 inaccurate.
1248
1249 An exceptional case exists for struct arguments (and possibly other
1250 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1251 not a multiple of WORDSIZE bytes. In this case the argument is never split
1252 between the registers and the stack, but instead is copied in its entirety
1253 onto the stack, AND also copied into as many registers as there is room
1254 for. In other words, space in registers permitting, two copies of the same
1255 argument are passed in. As far as I can tell, only the one on the stack is
1256 used, although that may be a function of the level of compiler
1257 optimization. I suspect this is a compiler bug. Arguments of these odd
1258 sizes are left-justified within the word (as opposed to arguments smaller
1259 than WORDSIZE bytes, which are right-justified).
1260
1261 If the function is to return an aggregate type such as a struct, the caller
1262 must allocate space into which the callee will copy the return value. In
1263 this case, a pointer to the return value location is passed into the callee
1264 in register R0, which displaces one of the other arguments passed in via
1265 registers R0 to R2. */
1266
1267 static CORE_ADDR
1268 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1269 struct regcache *regcache, CORE_ADDR bp_addr,
1270 int nargs, struct value **args, CORE_ADDR sp,
1271 function_call_return_method return_method,
1272 CORE_ADDR struct_addr)
1273 {
1274 int i;
1275 gdb_byte buf[3];
1276 int call_length = gdbarch_tdep (gdbarch)->call_length;
1277 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1278 int regnum = AVR_ARGN_REGNUM;
1279 struct stack_item *si = NULL;
1280
1281 if (return_method == return_method_struct)
1282 {
1283 regcache_cooked_write_unsigned
1284 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1285 regcache_cooked_write_unsigned
1286 (regcache, regnum--, struct_addr & 0xff);
1287 /* SP being post decremented, we need to reserve one byte so that the
1288 return address won't overwrite the result (or vice-versa). */
1289 if (sp == struct_addr)
1290 sp--;
1291 }
1292
1293 for (i = 0; i < nargs; i++)
1294 {
1295 int last_regnum;
1296 int j;
1297 struct value *arg = args[i];
1298 struct type *type = check_typedef (value_type (arg));
1299 const bfd_byte *contents = value_contents (arg);
1300 int len = TYPE_LENGTH (type);
1301
1302 /* Calculate the potential last register needed.
1303 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1304 shall be used. So, last needed register will be regnum-1(24). */
1305 last_regnum = regnum - (len + (len & 1)) + 1;
1306
1307 /* If there are registers available, use them. Once we start putting
1308 stuff on the stack, all subsequent args go on stack. */
1309 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
1310 {
1311 /* Skip a register for odd length args. */
1312 if (len & 1)
1313 regnum--;
1314
1315 /* Write MSB of argument into register and subsequent bytes in
1316 decreasing register numbers. */
1317 for (j = 0; j < len; j++)
1318 regcache_cooked_write_unsigned
1319 (regcache, regnum--, contents[len - j - 1]);
1320 }
1321 /* No registers available, push the args onto the stack. */
1322 else
1323 {
1324 /* From here on, we don't care about regnum. */
1325 si = push_stack_item (si, contents, len);
1326 }
1327 }
1328
1329 /* Push args onto the stack. */
1330 while (si)
1331 {
1332 sp -= si->len;
1333 /* Add 1 to sp here to account for post decr nature of pushes. */
1334 write_memory (sp + 1, si->data, si->len);
1335 si = pop_stack_item (si);
1336 }
1337
1338 /* Set the return address. For the avr, the return address is the BP_ADDR.
1339 Need to push the return address onto the stack noting that it needs to be
1340 in big-endian order on the stack. */
1341 for (i = 1; i <= call_length; i++)
1342 {
1343 buf[call_length - i] = return_pc & 0xff;
1344 return_pc >>= 8;
1345 }
1346
1347 sp -= call_length;
1348 /* Use 'sp + 1' since pushes are post decr ops. */
1349 write_memory (sp + 1, buf, call_length);
1350
1351 /* Finally, update the SP register. */
1352 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1353 avr_convert_saddr_to_raw (sp));
1354
1355 /* Return SP value for the dummy frame, where the return address hasn't been
1356 pushed. */
1357 return sp + call_length;
1358 }
1359
1360 /* Unfortunately dwarf2 register for SP is 32. */
1361
1362 static int
1363 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1364 {
1365 if (reg >= 0 && reg < 32)
1366 return reg;
1367 if (reg == 32)
1368 return AVR_SP_REGNUM;
1369 return -1;
1370 }
1371
1372 /* Implementation of `address_class_type_flags' gdbarch method.
1373
1374 This method maps DW_AT_address_class attributes to a
1375 type_instance_flag_value. */
1376
1377 static type_instance_flags
1378 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1379 {
1380 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1381 __flash qualifier. Note that this attribute is only valid with
1382 pointer types and therefore the flag is set to the pointer type and
1383 not its target type. */
1384 if (dwarf2_addr_class == 1 && byte_size == 2)
1385 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1386 return 0;
1387 }
1388
1389 /* Implementation of `address_class_type_flags_to_name' gdbarch method.
1390
1391 Convert a type_instance_flag_value to an address space qualifier. */
1392
1393 static const char*
1394 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch,
1395 type_instance_flags type_flags)
1396 {
1397 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1398 return "flash";
1399 else
1400 return NULL;
1401 }
1402
1403 /* Implementation of `address_class_name_to_type_flags' gdbarch method.
1404
1405 Convert an address space qualifier to a type_instance_flag_value. */
1406
1407 static bool
1408 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1409 const char* name,
1410 type_instance_flags *type_flags_ptr)
1411 {
1412 if (strcmp (name, "flash") == 0)
1413 {
1414 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1415 return true;
1416 }
1417 else
1418 return false;
1419 }
1420
1421 /* Initialize the gdbarch structure for the AVR's. */
1422
1423 static struct gdbarch *
1424 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1425 {
1426 struct gdbarch *gdbarch;
1427 struct gdbarch_tdep *tdep;
1428 struct gdbarch_list *best_arch;
1429 int call_length;
1430
1431 /* Avr-6 call instructions save 3 bytes. */
1432 switch (info.bfd_arch_info->mach)
1433 {
1434 case bfd_mach_avr1:
1435 case bfd_mach_avrxmega1:
1436 case bfd_mach_avr2:
1437 case bfd_mach_avrxmega2:
1438 case bfd_mach_avr3:
1439 case bfd_mach_avrxmega3:
1440 case bfd_mach_avr4:
1441 case bfd_mach_avrxmega4:
1442 case bfd_mach_avr5:
1443 case bfd_mach_avrxmega5:
1444 default:
1445 call_length = 2;
1446 break;
1447 case bfd_mach_avr6:
1448 case bfd_mach_avrxmega6:
1449 case bfd_mach_avrxmega7:
1450 call_length = 3;
1451 break;
1452 }
1453
1454 /* If there is already a candidate, use it. */
1455 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1456 best_arch != NULL;
1457 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1458 {
1459 if (gdbarch_tdep (best_arch->gdbarch)->call_length == call_length)
1460 return best_arch->gdbarch;
1461 }
1462
1463 /* None found, create a new architecture from the information provided. */
1464 tdep = XCNEW (struct gdbarch_tdep);
1465 gdbarch = gdbarch_alloc (&info, tdep);
1466
1467 tdep->call_length = call_length;
1468
1469 /* Create a type for PC. We can't use builtin types here, as they may not
1470 be defined. */
1471 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1472 "void");
1473 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1474 tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
1475 tdep->func_void_type);
1476
1477 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1478 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1479 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1480 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1481 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1482 set_gdbarch_addr_bit (gdbarch, 32);
1483
1484 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1485 set_gdbarch_wchar_signed (gdbarch, 1);
1486
1487 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1488 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1489 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1490
1491 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1492 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1493 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1494
1495 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1496 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1497
1498 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1499
1500 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1501 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1502
1503 set_gdbarch_register_name (gdbarch, avr_register_name);
1504 set_gdbarch_register_type (gdbarch, avr_register_type);
1505
1506 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1507 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1508 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1509
1510 set_gdbarch_return_value (gdbarch, avr_return_value);
1511
1512 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1513
1514 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1515
1516 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1517 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1518 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1519
1520 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1521 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1522
1523 set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc);
1524 set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind);
1525
1526 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1527 frame_base_set_default (gdbarch, &avr_frame_base);
1528
1529 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1530
1531 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1532 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1533
1534 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1535 set_gdbarch_address_class_name_to_type_flags
1536 (gdbarch, avr_address_class_name_to_type_flags);
1537 set_gdbarch_address_class_type_flags_to_name
1538 (gdbarch, avr_address_class_type_flags_to_name);
1539
1540 return gdbarch;
1541 }
1542
1543 /* Send a query request to the avr remote target asking for values of the io
1544 registers. If args parameter is not NULL, then the user has requested info
1545 on a specific io register [This still needs implemented and is ignored for
1546 now]. The query string should be one of these forms:
1547
1548 "Ravr.io_reg" -> reply is "NN" number of io registers
1549
1550 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1551 registers to be read. The reply should be "<NAME>,VV;" for each io register
1552 where, <NAME> is a string, and VV is the hex value of the register.
1553
1554 All io registers are 8-bit. */
1555
1556 static void
1557 avr_io_reg_read_command (const char *args, int from_tty)
1558 {
1559 char query[400];
1560 unsigned int nreg = 0;
1561 unsigned int val;
1562
1563 /* Find out how many io registers the target has. */
1564 gdb::optional<gdb::byte_vector> buf
1565 = target_read_alloc (current_inferior ()->top_target (),
1566 TARGET_OBJECT_AVR, "avr.io_reg");
1567
1568 if (!buf)
1569 {
1570 fprintf_unfiltered (gdb_stderr,
1571 _("ERR: info io_registers NOT supported "
1572 "by current target\n"));
1573 return;
1574 }
1575
1576 const char *bufstr = (const char *) buf->data ();
1577
1578 if (sscanf (bufstr, "%x", &nreg) != 1)
1579 {
1580 fprintf_unfiltered (gdb_stderr,
1581 _("Error fetching number of io registers\n"));
1582 return;
1583 }
1584
1585 reinitialize_more_filter ();
1586
1587 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1588
1589 /* only fetch up to 8 registers at a time to keep the buffer small */
1590 int step = 8;
1591
1592 for (int i = 0; i < nreg; i += step)
1593 {
1594 /* how many registers this round? */
1595 int j = step;
1596 if ((i+j) >= nreg)
1597 j = nreg - i; /* last block is less than 8 registers */
1598
1599 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1600 buf = target_read_alloc (current_inferior ()->top_target (),
1601 TARGET_OBJECT_AVR, query);
1602
1603 if (!buf)
1604 {
1605 fprintf_unfiltered (gdb_stderr,
1606 _("ERR: error reading avr.io_reg:%x,%x\n"),
1607 i, j);
1608 return;
1609 }
1610
1611 const char *p = (const char *) buf->data ();
1612 for (int k = i; k < (i + j); k++)
1613 {
1614 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1615 {
1616 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1617 while ((*p != ';') && (*p != '\0'))
1618 p++;
1619 p++; /* skip over ';' */
1620 if (*p == '\0')
1621 break;
1622 }
1623 }
1624 }
1625 }
1626
1627 void _initialize_avr_tdep ();
1628 void
1629 _initialize_avr_tdep ()
1630 {
1631 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1632
1633 /* Add a new command to allow the user to query the avr remote target for
1634 the values of the io space registers in a saner way than just using
1635 `x/NNNb ADDR`. */
1636
1637 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1638 io_registers' to signify it is not available on other platforms. */
1639
1640 add_info ("io_registers", avr_io_reg_read_command,
1641 _("Query remote AVR target for I/O space register values."));
1642 }