]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/avr-tdep.c
gdb: include gdbarch.h in all files extending gdbarch_tdep
[thirdparty/binutils-gdb.git] / gdb / avr-tdep.c
1 /* Target-dependent code for Atmel AVR, for GDB.
2
3 Copyright (C) 1996-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Theodore A. Roth, troth@openavr.org */
21
22 /* Portions of this file were taken from the original gdb-4.18 patch developed
23 by Denis Chertykov, denisc@overta.ru */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "frame-unwind.h"
28 #include "frame-base.h"
29 #include "trad-frame.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "gdbtypes.h"
33 #include "inferior.h"
34 #include "symfile.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include <algorithm>
40 #include "gdbarch.h"
41
42 /* AVR Background:
43
44 (AVR micros are pure Harvard Architecture processors.)
45
46 The AVR family of microcontrollers have three distinctly different memory
47 spaces: flash, sram and eeprom. The flash is 16 bits wide and is used for
48 the most part to store program instructions. The sram is 8 bits wide and is
49 used for the stack and the heap. Some devices lack sram and some can have
50 an additional external sram added on as a peripheral.
51
52 The eeprom is 8 bits wide and is used to store data when the device is
53 powered down. Eeprom is not directly accessible, it can only be accessed
54 via io-registers using a special algorithm. Accessing eeprom via gdb's
55 remote serial protocol ('m' or 'M' packets) looks difficult to do and is
56 not included at this time.
57
58 [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or
59 written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''. For this to
60 work, the remote target must be able to handle eeprom accesses and perform
61 the address translation.]
62
63 All three memory spaces have physical addresses beginning at 0x0. In
64 addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit
65 bytes instead of the 16 bit wide words used by the real device for the
66 Program Counter.
67
68 In order for remote targets to work correctly, extra bits must be added to
69 addresses before they are send to the target or received from the target
70 via the remote serial protocol. The extra bits are the MSBs and are used to
71 decode which memory space the address is referring to. */
72
73 /* Constants: prefixed with AVR_ to avoid name space clashes */
74
75 /* Address space flags */
76
77 /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address
78 space. */
79
80 #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1
81 #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH \
82 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1
83
84
85 enum
86 {
87 AVR_REG_W = 24,
88 AVR_REG_X = 26,
89 AVR_REG_Y = 28,
90 AVR_FP_REGNUM = 28,
91 AVR_REG_Z = 30,
92
93 AVR_SREG_REGNUM = 32,
94 AVR_SP_REGNUM = 33,
95 AVR_PC_REGNUM = 34,
96
97 AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/,
98 AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/,
99
100 /* Pseudo registers. */
101 AVR_PSEUDO_PC_REGNUM = 35,
102 AVR_NUM_PSEUDO_REGS = 1,
103
104 AVR_PC_REG_INDEX = 35, /* index into array of registers */
105
106 AVR_MAX_PROLOGUE_SIZE = 64, /* bytes */
107
108 /* Count of pushed registers. From r2 to r17 (inclusively), r28, r29 */
109 AVR_MAX_PUSHES = 18,
110
111 /* Number of the last pushed register. r17 for current avr-gcc */
112 AVR_LAST_PUSHED_REGNUM = 17,
113
114 AVR_ARG1_REGNUM = 24, /* Single byte argument */
115 AVR_ARGN_REGNUM = 25, /* Multi byte argments */
116 AVR_LAST_ARG_REGNUM = 8, /* Last argument register */
117
118 AVR_RET1_REGNUM = 24, /* Single byte return value */
119 AVR_RETN_REGNUM = 25, /* Multi byte return value */
120
121 /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8
122 bits? Do these have to match the bfd vma values? It sure would make
123 things easier in the future if they didn't need to match.
124
125 Note: I chose these values so as to be consistent with bfd vma
126 addresses.
127
128 TRoth/2002-04-08: There is already a conflict with very large programs
129 in the mega128. The mega128 has 128K instruction bytes (64K words),
130 thus the Most Significant Bit is 0x10000 which gets masked off my
131 AVR_MEM_MASK.
132
133 The problem manifests itself when trying to set a breakpoint in a
134 function which resides in the upper half of the instruction space and
135 thus requires a 17-bit address.
136
137 For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK
138 from 0x00ff0000 to 0x00f00000. Eeprom is not accessible from gdb yet,
139 but could be for some remote targets by just adding the correct offset
140 to the address and letting the remote target handle the low-level
141 details of actually accessing the eeprom. */
142
143 AVR_IMEM_START = 0x00000000, /* INSN memory */
144 AVR_SMEM_START = 0x00800000, /* SRAM memory */
145 #if 1
146 /* No eeprom mask defined */
147 AVR_MEM_MASK = 0x00f00000, /* mask to determine memory space */
148 #else
149 AVR_EMEM_START = 0x00810000, /* EEPROM memory */
150 AVR_MEM_MASK = 0x00ff0000, /* mask to determine memory space */
151 #endif
152 };
153
154 /* Prologue types:
155
156 NORMAL and CALL are the typical types (the -mcall-prologues gcc option
157 causes the generation of the CALL type prologues). */
158
159 enum {
160 AVR_PROLOGUE_NONE, /* No prologue */
161 AVR_PROLOGUE_NORMAL,
162 AVR_PROLOGUE_CALL, /* -mcall-prologues */
163 AVR_PROLOGUE_MAIN,
164 AVR_PROLOGUE_INTR, /* interrupt handler */
165 AVR_PROLOGUE_SIG, /* signal handler */
166 };
167
168 /* Any function with a frame looks like this
169 ....... <-SP POINTS HERE
170 LOCALS1 <-FP POINTS HERE
171 LOCALS0
172 SAVED FP
173 SAVED R3
174 SAVED R2
175 RET PC
176 FIRST ARG
177 SECOND ARG */
178
179 struct avr_unwind_cache
180 {
181 /* The previous frame's inner most stack address. Used as this
182 frame ID's stack_addr. */
183 CORE_ADDR prev_sp;
184 /* The frame's base, optionally used by the high-level debug info. */
185 CORE_ADDR base;
186 int size;
187 int prologue_type;
188 /* Table indicating the location of each and every register. */
189 trad_frame_saved_reg *saved_regs;
190 };
191
192 struct avr_gdbarch_tdep : gdbarch_tdep
193 {
194 /* Number of bytes stored to the stack by call instructions.
195 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7. */
196 int call_length = 0;
197
198 /* Type for void. */
199 struct type *void_type = nullptr;
200 /* Type for a function returning void. */
201 struct type *func_void_type = nullptr;
202 /* Type for a pointer to a function. Used for the type of PC. */
203 struct type *pc_type = nullptr;
204 };
205
206 /* Lookup the name of a register given it's number. */
207
208 static const char *
209 avr_register_name (struct gdbarch *gdbarch, int regnum)
210 {
211 static const char * const register_names[] = {
212 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
213 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
214 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
215 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
216 "SREG", "SP", "PC2",
217 "pc"
218 };
219 if (regnum < 0)
220 return NULL;
221 if (regnum >= (sizeof (register_names) / sizeof (*register_names)))
222 return NULL;
223 return register_names[regnum];
224 }
225
226 /* Return the GDB type object for the "standard" data type
227 of data in register N. */
228
229 static struct type *
230 avr_register_type (struct gdbarch *gdbarch, int reg_nr)
231 {
232 if (reg_nr == AVR_PC_REGNUM)
233 return builtin_type (gdbarch)->builtin_uint32;
234
235 avr_gdbarch_tdep *tdep = (avr_gdbarch_tdep *) gdbarch_tdep (gdbarch);
236 if (reg_nr == AVR_PSEUDO_PC_REGNUM)
237 return tdep->pc_type;
238
239 if (reg_nr == AVR_SP_REGNUM)
240 return builtin_type (gdbarch)->builtin_data_ptr;
241
242 return builtin_type (gdbarch)->builtin_uint8;
243 }
244
245 /* Instruction address checks and convertions. */
246
247 static CORE_ADDR
248 avr_make_iaddr (CORE_ADDR x)
249 {
250 return ((x) | AVR_IMEM_START);
251 }
252
253 /* FIXME: TRoth: Really need to use a larger mask for instructions. Some
254 devices are already up to 128KBytes of flash space.
255
256 TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined. */
257
258 static CORE_ADDR
259 avr_convert_iaddr_to_raw (CORE_ADDR x)
260 {
261 return ((x) & 0xffffffff);
262 }
263
264 /* SRAM address checks and convertions. */
265
266 static CORE_ADDR
267 avr_make_saddr (CORE_ADDR x)
268 {
269 /* Return 0 for NULL. */
270 if (x == 0)
271 return 0;
272
273 return ((x) | AVR_SMEM_START);
274 }
275
276 static CORE_ADDR
277 avr_convert_saddr_to_raw (CORE_ADDR x)
278 {
279 return ((x) & 0xffffffff);
280 }
281
282 /* EEPROM address checks and convertions. I don't know if these will ever
283 actually be used, but I've added them just the same. TRoth */
284
285 /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large
286 programs in the mega128. */
287
288 /* static CORE_ADDR */
289 /* avr_make_eaddr (CORE_ADDR x) */
290 /* { */
291 /* return ((x) | AVR_EMEM_START); */
292 /* } */
293
294 /* static int */
295 /* avr_eaddr_p (CORE_ADDR x) */
296 /* { */
297 /* return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */
298 /* } */
299
300 /* static CORE_ADDR */
301 /* avr_convert_eaddr_to_raw (CORE_ADDR x) */
302 /* { */
303 /* return ((x) & 0xffffffff); */
304 /* } */
305
306 /* Convert from address to pointer and vice-versa. */
307
308 static void
309 avr_address_to_pointer (struct gdbarch *gdbarch,
310 struct type *type, gdb_byte *buf, CORE_ADDR addr)
311 {
312 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
313
314 /* Is it a data address in flash? */
315 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
316 {
317 /* A data pointer in flash is byte addressed. */
318 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
319 avr_convert_iaddr_to_raw (addr));
320 }
321 /* Is it a code address? */
322 else if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC
323 || TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_METHOD)
324 {
325 /* A code pointer is word (16 bits) addressed. We shift the address down
326 by 1 bit to convert it to a pointer. */
327 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
328 avr_convert_iaddr_to_raw (addr >> 1));
329 }
330 else
331 {
332 /* Strip off any upper segment bits. */
333 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
334 avr_convert_saddr_to_raw (addr));
335 }
336 }
337
338 static CORE_ADDR
339 avr_pointer_to_address (struct gdbarch *gdbarch,
340 struct type *type, const gdb_byte *buf)
341 {
342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
343 CORE_ADDR addr
344 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
345
346 /* Is it a data address in flash? */
347 if (AVR_TYPE_ADDRESS_CLASS_FLASH (type))
348 {
349 /* A data pointer in flash is already byte addressed. */
350 return avr_make_iaddr (addr);
351 }
352 /* Is it a code address? */
353 else if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC
354 || TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_METHOD
355 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
356 {
357 /* A code pointer is word (16 bits) addressed so we shift it up
358 by 1 bit to convert it to an address. */
359 return avr_make_iaddr (addr << 1);
360 }
361 else
362 return avr_make_saddr (addr);
363 }
364
365 static CORE_ADDR
366 avr_integer_to_address (struct gdbarch *gdbarch,
367 struct type *type, const gdb_byte *buf)
368 {
369 ULONGEST addr = unpack_long (type, buf);
370
371 if (TYPE_DATA_SPACE (type))
372 return avr_make_saddr (addr);
373 else
374 return avr_make_iaddr (addr);
375 }
376
377 static CORE_ADDR
378 avr_read_pc (readable_regcache *regcache)
379 {
380 ULONGEST pc;
381
382 regcache->cooked_read (AVR_PC_REGNUM, &pc);
383 return avr_make_iaddr (pc);
384 }
385
386 static void
387 avr_write_pc (struct regcache *regcache, CORE_ADDR val)
388 {
389 regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM,
390 avr_convert_iaddr_to_raw (val));
391 }
392
393 static enum register_status
394 avr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
395 int regnum, gdb_byte *buf)
396 {
397 ULONGEST val;
398 enum register_status status;
399
400 switch (regnum)
401 {
402 case AVR_PSEUDO_PC_REGNUM:
403 status = regcache->raw_read (AVR_PC_REGNUM, &val);
404 if (status != REG_VALID)
405 return status;
406 val >>= 1;
407 store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val);
408 return status;
409 default:
410 internal_error (__FILE__, __LINE__, _("invalid regnum"));
411 }
412 }
413
414 static void
415 avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
416 int regnum, const gdb_byte *buf)
417 {
418 ULONGEST val;
419
420 switch (regnum)
421 {
422 case AVR_PSEUDO_PC_REGNUM:
423 val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch));
424 val <<= 1;
425 regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val);
426 break;
427 default:
428 internal_error (__FILE__, __LINE__, _("invalid regnum"));
429 }
430 }
431
432 /* Function: avr_scan_prologue
433
434 This function decodes an AVR function prologue to determine:
435 1) the size of the stack frame
436 2) which registers are saved on it
437 3) the offsets of saved regs
438 This information is stored in the avr_unwind_cache structure.
439
440 Some devices lack the sbiw instruction, so on those replace this:
441 sbiw r28, XX
442 with this:
443 subi r28,lo8(XX)
444 sbci r29,hi8(XX)
445
446 A typical AVR function prologue with a frame pointer might look like this:
447 push rXX ; saved regs
448 ...
449 push r28
450 push r29
451 in r28,__SP_L__
452 in r29,__SP_H__
453 sbiw r28,<LOCALS_SIZE>
454 in __tmp_reg__,__SREG__
455 cli
456 out __SP_H__,r29
457 out __SREG__,__tmp_reg__
458 out __SP_L__,r28
459
460 A typical AVR function prologue without a frame pointer might look like
461 this:
462 push rXX ; saved regs
463 ...
464
465 A main function prologue looks like this:
466 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
467 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
468 out __SP_H__,r29
469 out __SP_L__,r28
470
471 A signal handler prologue looks like this:
472 push __zero_reg__
473 push __tmp_reg__
474 in __tmp_reg__, __SREG__
475 push __tmp_reg__
476 clr __zero_reg__
477 push rXX ; save registers r18:r27, r30:r31
478 ...
479 push r28 ; save frame pointer
480 push r29
481 in r28, __SP_L__
482 in r29, __SP_H__
483 sbiw r28, <LOCALS_SIZE>
484 out __SP_H__, r29
485 out __SP_L__, r28
486
487 A interrupt handler prologue looks like this:
488 sei
489 push __zero_reg__
490 push __tmp_reg__
491 in __tmp_reg__, __SREG__
492 push __tmp_reg__
493 clr __zero_reg__
494 push rXX ; save registers r18:r27, r30:r31
495 ...
496 push r28 ; save frame pointer
497 push r29
498 in r28, __SP_L__
499 in r29, __SP_H__
500 sbiw r28, <LOCALS_SIZE>
501 cli
502 out __SP_H__, r29
503 sei
504 out __SP_L__, r28
505
506 A `-mcall-prologues' prologue looks like this (Note that the megas use a
507 jmp instead of a rjmp, thus the prologue is one word larger since jmp is a
508 32 bit insn and rjmp is a 16 bit insn):
509 ldi r26,lo8(<LOCALS_SIZE>)
510 ldi r27,hi8(<LOCALS_SIZE>)
511 ldi r30,pm_lo8(.L_foo_body)
512 ldi r31,pm_hi8(.L_foo_body)
513 rjmp __prologue_saves__+RRR
514 .L_foo_body: */
515
516 /* Not really part of a prologue, but still need to scan for it, is when a
517 function prologue moves values passed via registers as arguments to new
518 registers. In this case, all local variables live in registers, so there
519 may be some register saves. This is what it looks like:
520 movw rMM, rNN
521 ...
522
523 There could be multiple movw's. If the target doesn't have a movw insn, it
524 will use two mov insns. This could be done after any of the above prologue
525 types. */
526
527 static CORE_ADDR
528 avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end,
529 struct avr_unwind_cache *info)
530 {
531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
532 int i;
533 unsigned short insn;
534 int scan_stage = 0;
535 struct bound_minimal_symbol msymbol;
536 unsigned char prologue[AVR_MAX_PROLOGUE_SIZE];
537 int vpc = 0;
538 int len;
539
540 len = pc_end - pc_beg;
541 if (len > AVR_MAX_PROLOGUE_SIZE)
542 len = AVR_MAX_PROLOGUE_SIZE;
543
544 /* FIXME: TRoth/2003-06-11: This could be made more efficient by only
545 reading in the bytes of the prologue. The problem is that the figuring
546 out where the end of the prologue is is a bit difficult. The old code
547 tried to do that, but failed quite often. */
548 read_memory (pc_beg, prologue, len);
549
550 /* Scanning main()'s prologue
551 ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>)
552 ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>)
553 out __SP_H__,r29
554 out __SP_L__,r28 */
555
556 if (len >= 4)
557 {
558 CORE_ADDR locals;
559 static const unsigned char img[] = {
560 0xde, 0xbf, /* out __SP_H__,r29 */
561 0xcd, 0xbf /* out __SP_L__,r28 */
562 };
563
564 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
565 /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */
566 if ((insn & 0xf0f0) == 0xe0c0)
567 {
568 locals = (insn & 0xf) | ((insn & 0x0f00) >> 4);
569 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
570 /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */
571 if ((insn & 0xf0f0) == 0xe0d0)
572 {
573 locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
574 if (vpc + 4 + sizeof (img) < len
575 && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0)
576 {
577 info->prologue_type = AVR_PROLOGUE_MAIN;
578 info->base = locals;
579 return pc_beg + 4;
580 }
581 }
582 }
583 }
584
585 /* Scanning `-mcall-prologues' prologue
586 Classic prologue is 10 bytes, mega prologue is a 12 bytes long */
587
588 while (1) /* Using a while to avoid many goto's */
589 {
590 int loc_size;
591 int body_addr;
592 unsigned num_pushes;
593 int pc_offset = 0;
594
595 /* At least the fifth instruction must have been executed to
596 modify frame shape. */
597 if (len < 10)
598 break;
599
600 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
601 /* ldi r26,<LOCALS_SIZE> */
602 if ((insn & 0xf0f0) != 0xe0a0)
603 break;
604 loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4);
605 pc_offset += 2;
606
607 insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order);
608 /* ldi r27,<LOCALS_SIZE> / 256 */
609 if ((insn & 0xf0f0) != 0xe0b0)
610 break;
611 loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
612 pc_offset += 2;
613
614 insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order);
615 /* ldi r30,pm_lo8(.L_foo_body) */
616 if ((insn & 0xf0f0) != 0xe0e0)
617 break;
618 body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4);
619 pc_offset += 2;
620
621 insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order);
622 /* ldi r31,pm_hi8(.L_foo_body) */
623 if ((insn & 0xf0f0) != 0xe0f0)
624 break;
625 body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8;
626 pc_offset += 2;
627
628 msymbol = lookup_minimal_symbol ("__prologue_saves__", NULL, NULL);
629 if (!msymbol.minsym)
630 break;
631
632 insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order);
633 /* rjmp __prologue_saves__+RRR */
634 if ((insn & 0xf000) == 0xc000)
635 {
636 /* Extract PC relative offset from RJMP */
637 i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0);
638 /* Convert offset to byte addressable mode */
639 i *= 2;
640 /* Destination address */
641 i += pc_beg + 10;
642
643 if (body_addr != (pc_beg + 10)/2)
644 break;
645
646 pc_offset += 2;
647 }
648 else if ((insn & 0xfe0e) == 0x940c)
649 {
650 /* Extract absolute PC address from JMP */
651 i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16)
652 | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order)
653 & 0xffff));
654 /* Convert address to byte addressable mode */
655 i *= 2;
656
657 if (body_addr != (pc_beg + 12)/2)
658 break;
659
660 pc_offset += 4;
661 }
662 else
663 break;
664
665 /* Resolve offset (in words) from __prologue_saves__ symbol.
666 Which is a pushes count in `-mcall-prologues' mode */
667 num_pushes = AVR_MAX_PUSHES - (i - BMSYMBOL_VALUE_ADDRESS (msymbol)) / 2;
668
669 if (num_pushes > AVR_MAX_PUSHES)
670 {
671 fprintf_unfiltered (gdb_stderr, _("Num pushes too large: %d\n"),
672 num_pushes);
673 num_pushes = 0;
674 }
675
676 if (num_pushes)
677 {
678 int from;
679
680 info->saved_regs[AVR_FP_REGNUM + 1].set_addr (num_pushes);
681 if (num_pushes >= 2)
682 info->saved_regs[AVR_FP_REGNUM].set_addr (num_pushes - 1);
683
684 i = 0;
685 for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2);
686 from <= AVR_LAST_PUSHED_REGNUM; ++from)
687 info->saved_regs [from].set_addr (++i);
688 }
689 info->size = loc_size + num_pushes;
690 info->prologue_type = AVR_PROLOGUE_CALL;
691
692 return pc_beg + pc_offset;
693 }
694
695 /* Scan for the beginning of the prologue for an interrupt or signal
696 function. Note that we have to set the prologue type here since the
697 third stage of the prologue may not be present (e.g. no saved registered
698 or changing of the SP register). */
699
700 if (1)
701 {
702 static const unsigned char img[] = {
703 0x78, 0x94, /* sei */
704 0x1f, 0x92, /* push r1 */
705 0x0f, 0x92, /* push r0 */
706 0x0f, 0xb6, /* in r0,0x3f SREG */
707 0x0f, 0x92, /* push r0 */
708 0x11, 0x24 /* clr r1 */
709 };
710 if (len >= sizeof (img)
711 && memcmp (prologue, img, sizeof (img)) == 0)
712 {
713 info->prologue_type = AVR_PROLOGUE_INTR;
714 vpc += sizeof (img);
715 info->saved_regs[AVR_SREG_REGNUM].set_addr (3);
716 info->saved_regs[0].set_addr (2);
717 info->saved_regs[1].set_addr (1);
718 info->size += 3;
719 }
720 else if (len >= sizeof (img) - 2
721 && memcmp (img + 2, prologue, sizeof (img) - 2) == 0)
722 {
723 info->prologue_type = AVR_PROLOGUE_SIG;
724 vpc += sizeof (img) - 2;
725 info->saved_regs[AVR_SREG_REGNUM].set_addr (3);
726 info->saved_regs[0].set_addr (2);
727 info->saved_regs[1].set_addr (1);
728 info->size += 2;
729 }
730 }
731
732 /* First stage of the prologue scanning.
733 Scan pushes (saved registers) */
734
735 for (; vpc < len; vpc += 2)
736 {
737 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
738 if ((insn & 0xfe0f) == 0x920f) /* push rXX */
739 {
740 /* Bits 4-9 contain a mask for registers R0-R32. */
741 int regno = (insn & 0x1f0) >> 4;
742 info->size++;
743 info->saved_regs[regno].set_addr (info->size);
744 scan_stage = 1;
745 }
746 else
747 break;
748 }
749
750 gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE);
751
752 /* Handle static small stack allocation using rcall or push. */
753 avr_gdbarch_tdep *tdep = (avr_gdbarch_tdep *) gdbarch_tdep (gdbarch);
754 while (scan_stage == 1 && vpc < len)
755 {
756 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
757 if (insn == 0xd000) /* rcall .+0 */
758 {
759 info->size += tdep->call_length;
760 vpc += 2;
761 }
762 else if (insn == 0x920f || insn == 0x921f) /* push r0 or push r1 */
763 {
764 info->size += 1;
765 vpc += 2;
766 }
767 else
768 break;
769 }
770
771 /* Second stage of the prologue scanning.
772 Scan:
773 in r28,__SP_L__
774 in r29,__SP_H__ */
775
776 if (scan_stage == 1 && vpc < len)
777 {
778 static const unsigned char img[] = {
779 0xcd, 0xb7, /* in r28,__SP_L__ */
780 0xde, 0xb7 /* in r29,__SP_H__ */
781 };
782
783 if (vpc + sizeof (img) < len
784 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
785 {
786 vpc += 4;
787 scan_stage = 2;
788 }
789 }
790
791 /* Third stage of the prologue scanning. (Really two stages).
792 Scan for:
793 sbiw r28,XX or subi r28,lo8(XX)
794 sbci r29,hi8(XX)
795 in __tmp_reg__,__SREG__
796 cli
797 out __SP_H__,r29
798 out __SREG__,__tmp_reg__
799 out __SP_L__,r28 */
800
801 if (scan_stage == 2 && vpc < len)
802 {
803 int locals_size = 0;
804 static const unsigned char img[] = {
805 0x0f, 0xb6, /* in r0,0x3f */
806 0xf8, 0x94, /* cli */
807 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
808 0x0f, 0xbe, /* out 0x3f,r0 ; SREG */
809 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
810 };
811 static const unsigned char img_sig[] = {
812 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
813 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
814 };
815 static const unsigned char img_int[] = {
816 0xf8, 0x94, /* cli */
817 0xde, 0xbf, /* out 0x3e,r29 ; SPH */
818 0x78, 0x94, /* sei */
819 0xcd, 0xbf /* out 0x3d,r28 ; SPL */
820 };
821
822 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
823 if ((insn & 0xff30) == 0x9720) /* sbiw r28,XXX */
824 {
825 locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2);
826 vpc += 2;
827 }
828 else if ((insn & 0xf0f0) == 0x50c0) /* subi r28,lo8(XX) */
829 {
830 locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4);
831 vpc += 2;
832 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
833 vpc += 2;
834 locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8;
835 }
836 else
837 return pc_beg + vpc;
838
839 /* Scan the last part of the prologue. May not be present for interrupt
840 or signal handler functions, which is why we set the prologue type
841 when we saw the beginning of the prologue previously. */
842
843 if (vpc + sizeof (img_sig) < len
844 && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0)
845 {
846 vpc += sizeof (img_sig);
847 }
848 else if (vpc + sizeof (img_int) < len
849 && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0)
850 {
851 vpc += sizeof (img_int);
852 }
853 if (vpc + sizeof (img) < len
854 && memcmp (prologue + vpc, img, sizeof (img)) == 0)
855 {
856 info->prologue_type = AVR_PROLOGUE_NORMAL;
857 vpc += sizeof (img);
858 }
859
860 info->size += locals_size;
861
862 /* Fall through. */
863 }
864
865 /* If we got this far, we could not scan the prologue, so just return the pc
866 of the frame plus an adjustment for argument move insns. */
867
868 for (; vpc < len; vpc += 2)
869 {
870 insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order);
871 if ((insn & 0xff00) == 0x0100) /* movw rXX, rYY */
872 continue;
873 else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */
874 continue;
875 else
876 break;
877 }
878
879 return pc_beg + vpc;
880 }
881
882 static CORE_ADDR
883 avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
884 {
885 CORE_ADDR func_addr, func_end;
886 CORE_ADDR post_prologue_pc;
887
888 /* See what the symbol table says */
889
890 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
891 return pc;
892
893 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
894 if (post_prologue_pc != 0)
895 return std::max (pc, post_prologue_pc);
896
897 {
898 CORE_ADDR prologue_end = pc;
899 struct avr_unwind_cache info = {0};
900 trad_frame_saved_reg saved_regs[AVR_NUM_REGS];
901
902 info.saved_regs = saved_regs;
903
904 /* Need to run the prologue scanner to figure out if the function has a
905 prologue and possibly skip over moving arguments passed via registers
906 to other registers. */
907
908 prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info);
909
910 if (info.prologue_type != AVR_PROLOGUE_NONE)
911 return prologue_end;
912 }
913
914 /* Either we didn't find the start of this function (nothing we can do),
915 or there's no line info, or the line after the prologue is after
916 the end of the function (there probably isn't a prologue). */
917
918 return pc;
919 }
920
921 /* Not all avr devices support the BREAK insn. Those that don't should treat
922 it as a NOP. Thus, it should be ok. Since the avr is currently a remote
923 only target, this shouldn't be a problem (I hope). TRoth/2003-05-14 */
924
925 constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 };
926
927 typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint;
928
929 /* Determine, for architecture GDBARCH, how a return value of TYPE
930 should be returned. If it is supposed to be returned in registers,
931 and READBUF is non-zero, read the appropriate value from REGCACHE,
932 and copy it into READBUF. If WRITEBUF is non-zero, write the value
933 from WRITEBUF into REGCACHE. */
934
935 static enum return_value_convention
936 avr_return_value (struct gdbarch *gdbarch, struct value *function,
937 struct type *valtype, struct regcache *regcache,
938 gdb_byte *readbuf, const gdb_byte *writebuf)
939 {
940 int i;
941 /* Single byte are returned in r24.
942 Otherwise, the MSB of the return value is always in r25, calculate which
943 register holds the LSB. */
944 int lsb_reg;
945
946 if ((valtype->code () == TYPE_CODE_STRUCT
947 || valtype->code () == TYPE_CODE_UNION
948 || valtype->code () == TYPE_CODE_ARRAY)
949 && TYPE_LENGTH (valtype) > 8)
950 return RETURN_VALUE_STRUCT_CONVENTION;
951
952 if (TYPE_LENGTH (valtype) <= 2)
953 lsb_reg = 24;
954 else if (TYPE_LENGTH (valtype) <= 4)
955 lsb_reg = 22;
956 else if (TYPE_LENGTH (valtype) <= 8)
957 lsb_reg = 18;
958 else
959 gdb_assert_not_reached ("unexpected type length");
960
961 if (writebuf != NULL)
962 {
963 for (i = 0; i < TYPE_LENGTH (valtype); i++)
964 regcache->cooked_write (lsb_reg + i, writebuf + i);
965 }
966
967 if (readbuf != NULL)
968 {
969 for (i = 0; i < TYPE_LENGTH (valtype); i++)
970 regcache->cooked_read (lsb_reg + i, readbuf + i);
971 }
972
973 return RETURN_VALUE_REGISTER_CONVENTION;
974 }
975
976
977 /* Put here the code to store, into fi->saved_regs, the addresses of
978 the saved registers of frame described by FRAME_INFO. This
979 includes special registers such as pc and fp saved in special ways
980 in the stack frame. sp is even more special: the address we return
981 for it IS the sp for the next frame. */
982
983 static struct avr_unwind_cache *
984 avr_frame_unwind_cache (struct frame_info *this_frame,
985 void **this_prologue_cache)
986 {
987 CORE_ADDR start_pc, current_pc;
988 ULONGEST prev_sp;
989 ULONGEST this_base;
990 struct avr_unwind_cache *info;
991 struct gdbarch *gdbarch;
992 int i;
993
994 if (*this_prologue_cache)
995 return (struct avr_unwind_cache *) *this_prologue_cache;
996
997 info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache);
998 *this_prologue_cache = info;
999 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1000
1001 info->size = 0;
1002 info->prologue_type = AVR_PROLOGUE_NONE;
1003
1004 start_pc = get_frame_func (this_frame);
1005 current_pc = get_frame_pc (this_frame);
1006 if ((start_pc > 0) && (start_pc <= current_pc))
1007 avr_scan_prologue (get_frame_arch (this_frame),
1008 start_pc, current_pc, info);
1009
1010 if ((info->prologue_type != AVR_PROLOGUE_NONE)
1011 && (info->prologue_type != AVR_PROLOGUE_MAIN))
1012 {
1013 ULONGEST high_base; /* High byte of FP */
1014
1015 /* The SP was moved to the FP. This indicates that a new frame
1016 was created. Get THIS frame's FP value by unwinding it from
1017 the next frame. */
1018 this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM);
1019 high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1);
1020 this_base += (high_base << 8);
1021
1022 /* The FP points at the last saved register. Adjust the FP back
1023 to before the first saved register giving the SP. */
1024 prev_sp = this_base + info->size;
1025 }
1026 else
1027 {
1028 /* Assume that the FP is this frame's SP but with that pushed
1029 stack space added back. */
1030 this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1031 prev_sp = this_base + info->size;
1032 }
1033
1034 /* Add 1 here to adjust for the post-decrement nature of the push
1035 instruction.*/
1036 info->prev_sp = avr_make_saddr (prev_sp + 1);
1037 info->base = avr_make_saddr (this_base);
1038
1039 gdbarch = get_frame_arch (this_frame);
1040
1041 /* Adjust all the saved registers so that they contain addresses and not
1042 offsets. */
1043 for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++)
1044 if (info->saved_regs[i].is_addr ())
1045 info->saved_regs[i].set_addr (info->prev_sp
1046 - info->saved_regs[i].addr ());
1047
1048 /* Except for the main and startup code, the return PC is always saved on
1049 the stack and is at the base of the frame. */
1050
1051 if (info->prologue_type != AVR_PROLOGUE_MAIN)
1052 info->saved_regs[AVR_PC_REGNUM].set_addr (info->prev_sp);
1053
1054 /* The previous frame's SP needed to be computed. Save the computed
1055 value. */
1056 avr_gdbarch_tdep *tdep = (avr_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1057 info->saved_regs[AVR_SP_REGNUM].set_value (info->prev_sp
1058 - 1 + tdep->call_length);
1059
1060 return info;
1061 }
1062
1063 static CORE_ADDR
1064 avr_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1065 {
1066 ULONGEST pc;
1067
1068 pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM);
1069
1070 return avr_make_iaddr (pc);
1071 }
1072
1073 static CORE_ADDR
1074 avr_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1075 {
1076 ULONGEST sp;
1077
1078 sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM);
1079
1080 return avr_make_saddr (sp);
1081 }
1082
1083 /* Given a GDB frame, determine the address of the calling function's
1084 frame. This will be used to create a new GDB frame struct. */
1085
1086 static void
1087 avr_frame_this_id (struct frame_info *this_frame,
1088 void **this_prologue_cache,
1089 struct frame_id *this_id)
1090 {
1091 struct avr_unwind_cache *info
1092 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1093 CORE_ADDR base;
1094 CORE_ADDR func;
1095 struct frame_id id;
1096
1097 /* The FUNC is easy. */
1098 func = get_frame_func (this_frame);
1099
1100 /* Hopefully the prologue analysis either correctly determined the
1101 frame's base (which is the SP from the previous frame), or set
1102 that base to "NULL". */
1103 base = info->prev_sp;
1104 if (base == 0)
1105 return;
1106
1107 id = frame_id_build (base, func);
1108 (*this_id) = id;
1109 }
1110
1111 static struct value *
1112 avr_frame_prev_register (struct frame_info *this_frame,
1113 void **this_prologue_cache, int regnum)
1114 {
1115 struct avr_unwind_cache *info
1116 = avr_frame_unwind_cache (this_frame, this_prologue_cache);
1117
1118 if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM)
1119 {
1120 if (info->saved_regs[AVR_PC_REGNUM].is_addr ())
1121 {
1122 /* Reading the return PC from the PC register is slightly
1123 abnormal. register_size(AVR_PC_REGNUM) says it is 4 bytes,
1124 but in reality, only two bytes (3 in upcoming mega256) are
1125 stored on the stack.
1126
1127 Also, note that the value on the stack is an addr to a word
1128 not a byte, so we will need to multiply it by two at some
1129 point.
1130
1131 And to confuse matters even more, the return address stored
1132 on the stack is in big endian byte order, even though most
1133 everything else about the avr is little endian. Ick! */
1134 ULONGEST pc;
1135 int i;
1136 gdb_byte buf[3];
1137 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1138 avr_gdbarch_tdep *tdep = (avr_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1139
1140 read_memory (info->saved_regs[AVR_PC_REGNUM].addr (),
1141 buf, tdep->call_length);
1142
1143 /* Extract the PC read from memory as a big-endian. */
1144 pc = 0;
1145 for (i = 0; i < tdep->call_length; i++)
1146 pc = (pc << 8) | buf[i];
1147
1148 if (regnum == AVR_PC_REGNUM)
1149 pc <<= 1;
1150
1151 return frame_unwind_got_constant (this_frame, regnum, pc);
1152 }
1153
1154 return frame_unwind_got_optimized (this_frame, regnum);
1155 }
1156
1157 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1158 }
1159
1160 static const struct frame_unwind avr_frame_unwind = {
1161 "avr prologue",
1162 NORMAL_FRAME,
1163 default_frame_unwind_stop_reason,
1164 avr_frame_this_id,
1165 avr_frame_prev_register,
1166 NULL,
1167 default_frame_sniffer
1168 };
1169
1170 static CORE_ADDR
1171 avr_frame_base_address (struct frame_info *this_frame, void **this_cache)
1172 {
1173 struct avr_unwind_cache *info
1174 = avr_frame_unwind_cache (this_frame, this_cache);
1175
1176 return info->base;
1177 }
1178
1179 static const struct frame_base avr_frame_base = {
1180 &avr_frame_unwind,
1181 avr_frame_base_address,
1182 avr_frame_base_address,
1183 avr_frame_base_address
1184 };
1185
1186 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1187 frame. The frame ID's base needs to match the TOS value saved by
1188 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1189
1190 static struct frame_id
1191 avr_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1192 {
1193 ULONGEST base;
1194
1195 base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM);
1196 return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame));
1197 }
1198
1199 /* When arguments must be pushed onto the stack, they go on in reverse
1200 order. The below implements a FILO (stack) to do this. */
1201
1202 struct stack_item
1203 {
1204 int len;
1205 struct stack_item *prev;
1206 gdb_byte *data;
1207 };
1208
1209 static struct stack_item *
1210 push_stack_item (struct stack_item *prev, const bfd_byte *contents, int len)
1211 {
1212 struct stack_item *si;
1213 si = XNEW (struct stack_item);
1214 si->data = (gdb_byte *) xmalloc (len);
1215 si->len = len;
1216 si->prev = prev;
1217 memcpy (si->data, contents, len);
1218 return si;
1219 }
1220
1221 static struct stack_item *pop_stack_item (struct stack_item *si);
1222 static struct stack_item *
1223 pop_stack_item (struct stack_item *si)
1224 {
1225 struct stack_item *dead = si;
1226 si = si->prev;
1227 xfree (dead->data);
1228 xfree (dead);
1229 return si;
1230 }
1231
1232 /* Setup the function arguments for calling a function in the inferior.
1233
1234 On the AVR architecture, there are 18 registers (R25 to R8) which are
1235 dedicated for passing function arguments. Up to the first 18 arguments
1236 (depending on size) may go into these registers. The rest go on the stack.
1237
1238 All arguments are aligned to start in even-numbered registers (odd-sized
1239 arguments, including char, have one free register above them). For example,
1240 an int in arg1 and a char in arg2 would be passed as such:
1241
1242 arg1 -> r25:r24
1243 arg2 -> r22
1244
1245 Arguments that are larger than 2 bytes will be split between two or more
1246 registers as available, but will NOT be split between a register and the
1247 stack. Arguments that go onto the stack are pushed last arg first (this is
1248 similar to the d10v). */
1249
1250 /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be
1251 inaccurate.
1252
1253 An exceptional case exists for struct arguments (and possibly other
1254 aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but
1255 not a multiple of WORDSIZE bytes. In this case the argument is never split
1256 between the registers and the stack, but instead is copied in its entirety
1257 onto the stack, AND also copied into as many registers as there is room
1258 for. In other words, space in registers permitting, two copies of the same
1259 argument are passed in. As far as I can tell, only the one on the stack is
1260 used, although that may be a function of the level of compiler
1261 optimization. I suspect this is a compiler bug. Arguments of these odd
1262 sizes are left-justified within the word (as opposed to arguments smaller
1263 than WORDSIZE bytes, which are right-justified).
1264
1265 If the function is to return an aggregate type such as a struct, the caller
1266 must allocate space into which the callee will copy the return value. In
1267 this case, a pointer to the return value location is passed into the callee
1268 in register R0, which displaces one of the other arguments passed in via
1269 registers R0 to R2. */
1270
1271 static CORE_ADDR
1272 avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1273 struct regcache *regcache, CORE_ADDR bp_addr,
1274 int nargs, struct value **args, CORE_ADDR sp,
1275 function_call_return_method return_method,
1276 CORE_ADDR struct_addr)
1277 {
1278 int i;
1279 gdb_byte buf[3];
1280 avr_gdbarch_tdep *tdep = (avr_gdbarch_tdep *) gdbarch_tdep (gdbarch);
1281 int call_length = tdep->call_length;
1282 CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr);
1283 int regnum = AVR_ARGN_REGNUM;
1284 struct stack_item *si = NULL;
1285
1286 if (return_method == return_method_struct)
1287 {
1288 regcache_cooked_write_unsigned
1289 (regcache, regnum--, (struct_addr >> 8) & 0xff);
1290 regcache_cooked_write_unsigned
1291 (regcache, regnum--, struct_addr & 0xff);
1292 /* SP being post decremented, we need to reserve one byte so that the
1293 return address won't overwrite the result (or vice-versa). */
1294 if (sp == struct_addr)
1295 sp--;
1296 }
1297
1298 for (i = 0; i < nargs; i++)
1299 {
1300 int last_regnum;
1301 int j;
1302 struct value *arg = args[i];
1303 struct type *type = check_typedef (value_type (arg));
1304 const bfd_byte *contents = value_contents (arg).data ();
1305 int len = TYPE_LENGTH (type);
1306
1307 /* Calculate the potential last register needed.
1308 E.g. For length 2, registers regnum and regnum-1 (say 25 and 24)
1309 shall be used. So, last needed register will be regnum-1(24). */
1310 last_regnum = regnum - (len + (len & 1)) + 1;
1311
1312 /* If there are registers available, use them. Once we start putting
1313 stuff on the stack, all subsequent args go on stack. */
1314 if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM))
1315 {
1316 /* Skip a register for odd length args. */
1317 if (len & 1)
1318 regnum--;
1319
1320 /* Write MSB of argument into register and subsequent bytes in
1321 decreasing register numbers. */
1322 for (j = 0; j < len; j++)
1323 regcache_cooked_write_unsigned
1324 (regcache, regnum--, contents[len - j - 1]);
1325 }
1326 /* No registers available, push the args onto the stack. */
1327 else
1328 {
1329 /* From here on, we don't care about regnum. */
1330 si = push_stack_item (si, contents, len);
1331 }
1332 }
1333
1334 /* Push args onto the stack. */
1335 while (si)
1336 {
1337 sp -= si->len;
1338 /* Add 1 to sp here to account for post decr nature of pushes. */
1339 write_memory (sp + 1, si->data, si->len);
1340 si = pop_stack_item (si);
1341 }
1342
1343 /* Set the return address. For the avr, the return address is the BP_ADDR.
1344 Need to push the return address onto the stack noting that it needs to be
1345 in big-endian order on the stack. */
1346 for (i = 1; i <= call_length; i++)
1347 {
1348 buf[call_length - i] = return_pc & 0xff;
1349 return_pc >>= 8;
1350 }
1351
1352 sp -= call_length;
1353 /* Use 'sp + 1' since pushes are post decr ops. */
1354 write_memory (sp + 1, buf, call_length);
1355
1356 /* Finally, update the SP register. */
1357 regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM,
1358 avr_convert_saddr_to_raw (sp));
1359
1360 /* Return SP value for the dummy frame, where the return address hasn't been
1361 pushed. */
1362 return sp + call_length;
1363 }
1364
1365 /* Unfortunately dwarf2 register for SP is 32. */
1366
1367 static int
1368 avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1369 {
1370 if (reg >= 0 && reg < 32)
1371 return reg;
1372 if (reg == 32)
1373 return AVR_SP_REGNUM;
1374 return -1;
1375 }
1376
1377 /* Implementation of `address_class_type_flags' gdbarch method.
1378
1379 This method maps DW_AT_address_class attributes to a
1380 type_instance_flag_value. */
1381
1382 static type_instance_flags
1383 avr_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1384 {
1385 /* The value 1 of the DW_AT_address_class attribute corresponds to the
1386 __flash qualifier. Note that this attribute is only valid with
1387 pointer types and therefore the flag is set to the pointer type and
1388 not its target type. */
1389 if (dwarf2_addr_class == 1 && byte_size == 2)
1390 return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1391 return 0;
1392 }
1393
1394 /* Implementation of `address_class_type_flags_to_name' gdbarch method.
1395
1396 Convert a type_instance_flag_value to an address space qualifier. */
1397
1398 static const char*
1399 avr_address_class_type_flags_to_name (struct gdbarch *gdbarch,
1400 type_instance_flags type_flags)
1401 {
1402 if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH)
1403 return "flash";
1404 else
1405 return NULL;
1406 }
1407
1408 /* Implementation of `address_class_name_to_type_flags' gdbarch method.
1409
1410 Convert an address space qualifier to a type_instance_flag_value. */
1411
1412 static bool
1413 avr_address_class_name_to_type_flags (struct gdbarch *gdbarch,
1414 const char* name,
1415 type_instance_flags *type_flags_ptr)
1416 {
1417 if (strcmp (name, "flash") == 0)
1418 {
1419 *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH;
1420 return true;
1421 }
1422 else
1423 return false;
1424 }
1425
1426 /* Initialize the gdbarch structure for the AVR's. */
1427
1428 static struct gdbarch *
1429 avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1430 {
1431 struct gdbarch *gdbarch;
1432 struct gdbarch_list *best_arch;
1433 int call_length;
1434
1435 /* Avr-6 call instructions save 3 bytes. */
1436 switch (info.bfd_arch_info->mach)
1437 {
1438 case bfd_mach_avr1:
1439 case bfd_mach_avrxmega1:
1440 case bfd_mach_avr2:
1441 case bfd_mach_avrxmega2:
1442 case bfd_mach_avr3:
1443 case bfd_mach_avrxmega3:
1444 case bfd_mach_avr4:
1445 case bfd_mach_avrxmega4:
1446 case bfd_mach_avr5:
1447 case bfd_mach_avrxmega5:
1448 default:
1449 call_length = 2;
1450 break;
1451 case bfd_mach_avr6:
1452 case bfd_mach_avrxmega6:
1453 case bfd_mach_avrxmega7:
1454 call_length = 3;
1455 break;
1456 }
1457
1458 /* If there is already a candidate, use it. */
1459 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1460 best_arch != NULL;
1461 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1462 {
1463 avr_gdbarch_tdep *tdep
1464 = (avr_gdbarch_tdep *) gdbarch_tdep (best_arch->gdbarch);
1465
1466 if (tdep->call_length == call_length)
1467 return best_arch->gdbarch;
1468 }
1469
1470 /* None found, create a new architecture from the information provided. */
1471 avr_gdbarch_tdep *tdep = new avr_gdbarch_tdep;
1472 gdbarch = gdbarch_alloc (&info, tdep);
1473
1474 tdep->call_length = call_length;
1475
1476 /* Create a type for PC. We can't use builtin types here, as they may not
1477 be defined. */
1478 tdep->void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
1479 "void");
1480 tdep->func_void_type = make_function_type (tdep->void_type, NULL);
1481 tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
1482 tdep->func_void_type);
1483
1484 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1485 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1486 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1487 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1488 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1489 set_gdbarch_addr_bit (gdbarch, 32);
1490
1491 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1492 set_gdbarch_wchar_signed (gdbarch, 1);
1493
1494 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1495 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1496 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1497
1498 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1499 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1500 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);
1501
1502 set_gdbarch_read_pc (gdbarch, avr_read_pc);
1503 set_gdbarch_write_pc (gdbarch, avr_write_pc);
1504
1505 set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS);
1506
1507 set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM);
1508 set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM);
1509
1510 set_gdbarch_register_name (gdbarch, avr_register_name);
1511 set_gdbarch_register_type (gdbarch, avr_register_type);
1512
1513 set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS);
1514 set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read);
1515 set_gdbarch_pseudo_register_write (gdbarch, avr_pseudo_register_write);
1516
1517 set_gdbarch_return_value (gdbarch, avr_return_value);
1518
1519 set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call);
1520
1521 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum);
1522
1523 set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer);
1524 set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address);
1525 set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address);
1526
1527 set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue);
1528 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1529
1530 set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc);
1531 set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind);
1532
1533 frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind);
1534 frame_base_set_default (gdbarch, &avr_frame_base);
1535
1536 set_gdbarch_dummy_id (gdbarch, avr_dummy_id);
1537
1538 set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc);
1539 set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp);
1540
1541 set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags);
1542 set_gdbarch_address_class_name_to_type_flags
1543 (gdbarch, avr_address_class_name_to_type_flags);
1544 set_gdbarch_address_class_type_flags_to_name
1545 (gdbarch, avr_address_class_type_flags_to_name);
1546
1547 return gdbarch;
1548 }
1549
1550 /* Send a query request to the avr remote target asking for values of the io
1551 registers. If args parameter is not NULL, then the user has requested info
1552 on a specific io register [This still needs implemented and is ignored for
1553 now]. The query string should be one of these forms:
1554
1555 "Ravr.io_reg" -> reply is "NN" number of io registers
1556
1557 "Ravr.io_reg:addr,len" where addr is first register and len is number of
1558 registers to be read. The reply should be "<NAME>,VV;" for each io register
1559 where, <NAME> is a string, and VV is the hex value of the register.
1560
1561 All io registers are 8-bit. */
1562
1563 static void
1564 avr_io_reg_read_command (const char *args, int from_tty)
1565 {
1566 char query[400];
1567 unsigned int nreg = 0;
1568 unsigned int val;
1569
1570 /* Find out how many io registers the target has. */
1571 gdb::optional<gdb::byte_vector> buf
1572 = target_read_alloc (current_inferior ()->top_target (),
1573 TARGET_OBJECT_AVR, "avr.io_reg");
1574
1575 if (!buf)
1576 {
1577 fprintf_unfiltered (gdb_stderr,
1578 _("ERR: info io_registers NOT supported "
1579 "by current target\n"));
1580 return;
1581 }
1582
1583 const char *bufstr = (const char *) buf->data ();
1584
1585 if (sscanf (bufstr, "%x", &nreg) != 1)
1586 {
1587 fprintf_unfiltered (gdb_stderr,
1588 _("Error fetching number of io registers\n"));
1589 return;
1590 }
1591
1592 reinitialize_more_filter ();
1593
1594 printf_unfiltered (_("Target has %u io registers:\n\n"), nreg);
1595
1596 /* only fetch up to 8 registers at a time to keep the buffer small */
1597 int step = 8;
1598
1599 for (int i = 0; i < nreg; i += step)
1600 {
1601 /* how many registers this round? */
1602 int j = step;
1603 if ((i+j) >= nreg)
1604 j = nreg - i; /* last block is less than 8 registers */
1605
1606 snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j);
1607 buf = target_read_alloc (current_inferior ()->top_target (),
1608 TARGET_OBJECT_AVR, query);
1609
1610 if (!buf)
1611 {
1612 fprintf_unfiltered (gdb_stderr,
1613 _("ERR: error reading avr.io_reg:%x,%x\n"),
1614 i, j);
1615 return;
1616 }
1617
1618 const char *p = (const char *) buf->data ();
1619 for (int k = i; k < (i + j); k++)
1620 {
1621 if (sscanf (p, "%[^,],%x;", query, &val) == 2)
1622 {
1623 printf_filtered ("[%02x] %-15s : %02x\n", k, query, val);
1624 while ((*p != ';') && (*p != '\0'))
1625 p++;
1626 p++; /* skip over ';' */
1627 if (*p == '\0')
1628 break;
1629 }
1630 }
1631 }
1632 }
1633
1634 void _initialize_avr_tdep ();
1635 void
1636 _initialize_avr_tdep ()
1637 {
1638 register_gdbarch_init (bfd_arch_avr, avr_gdbarch_init);
1639
1640 /* Add a new command to allow the user to query the avr remote target for
1641 the values of the io space registers in a saner way than just using
1642 `x/NNNb ADDR`. */
1643
1644 /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr
1645 io_registers' to signify it is not available on other platforms. */
1646
1647 add_info ("io_registers", avr_io_reg_read_command,
1648 _("Query remote AVR target for I/O space register values."));
1649 }