]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/bcache.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / bcache.c
1 /* Implement a cached obstack.
2 Written by Fred Fish <fnf@cygnus.com>
3 Rewritten by Jim Blandy <jimb@cygnus.com>
4
5 Copyright (C) 1999, 2000, 2002, 2003, 2007 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "gdb_obstack.h"
26 #include "bcache.h"
27 #include "gdb_string.h" /* For memcpy declaration */
28 #include "gdb_assert.h"
29
30 #include <stddef.h>
31 #include <stdlib.h>
32
33 /* The type used to hold a single bcache string. The user data is
34 stored in d.data. Since it can be any type, it needs to have the
35 same alignment as the most strict alignment of any type on the host
36 machine. I don't know of any really correct way to do this in
37 stock ANSI C, so just do it the same way obstack.h does. */
38
39 struct bstring
40 {
41 /* Hash chain. */
42 struct bstring *next;
43 /* Assume the data length is no more than 64k. */
44 unsigned short length;
45 /* The half hash hack. This contains the upper 16 bits of the hash
46 value and is used as a pre-check when comparing two strings and
47 avoids the need to do length or memcmp calls. It proves to be
48 roughly 100% effective. */
49 unsigned short half_hash;
50
51 union
52 {
53 char data[1];
54 double dummy;
55 }
56 d;
57 };
58
59
60 /* The structure for a bcache itself. The bcache is initialized, in
61 bcache_xmalloc(), by filling it with zeros and then setting the
62 corresponding obstack's malloc() and free() methods. */
63
64 struct bcache
65 {
66 /* All the bstrings are allocated here. */
67 struct obstack cache;
68
69 /* How many hash buckets we're using. */
70 unsigned int num_buckets;
71
72 /* Hash buckets. This table is allocated using malloc, so when we
73 grow the table we can return the old table to the system. */
74 struct bstring **bucket;
75
76 /* Statistics. */
77 unsigned long unique_count; /* number of unique strings */
78 long total_count; /* total number of strings cached, including dups */
79 long unique_size; /* size of unique strings, in bytes */
80 long total_size; /* total number of bytes cached, including dups */
81 long structure_size; /* total size of bcache, including infrastructure */
82 /* Number of times that the hash table is expanded and hence
83 re-built, and the corresponding number of times that a string is
84 [re]hashed as part of entering it into the expanded table. The
85 total number of hashes can be computed by adding TOTAL_COUNT to
86 expand_hash_count. */
87 unsigned long expand_count;
88 unsigned long expand_hash_count;
89 /* Number of times that the half-hash compare hit (compare the upper
90 16 bits of hash values) hit, but the corresponding combined
91 length/data compare missed. */
92 unsigned long half_hash_miss_count;
93 };
94
95 /* The old hash function was stolen from SDBM. This is what DB 3.0 uses now,
96 * and is better than the old one.
97 */
98 \f
99 unsigned long
100 hash(const void *addr, int length)
101 {
102 const unsigned char *k, *e;
103 unsigned long h;
104
105 k = (const unsigned char *)addr;
106 e = k+length;
107 for (h=0; k< e;++k)
108 {
109 h *=16777619;
110 h ^= *k;
111 }
112 return (h);
113 }
114 \f
115 /* Growing the bcache's hash table. */
116
117 /* If the average chain length grows beyond this, then we want to
118 resize our hash table. */
119 #define CHAIN_LENGTH_THRESHOLD (5)
120
121 static void
122 expand_hash_table (struct bcache *bcache)
123 {
124 /* A table of good hash table sizes. Whenever we grow, we pick the
125 next larger size from this table. sizes[i] is close to 1 << (i+10),
126 so we roughly double the table size each time. After we fall off
127 the end of this table, we just double. Don't laugh --- there have
128 been executables sighted with a gigabyte of debug info. */
129 static unsigned long sizes[] = {
130 1021, 2053, 4099, 8191, 16381, 32771,
131 65537, 131071, 262144, 524287, 1048573, 2097143,
132 4194301, 8388617, 16777213, 33554467, 67108859, 134217757,
133 268435459, 536870923, 1073741827, 2147483659UL
134 };
135 unsigned int new_num_buckets;
136 struct bstring **new_buckets;
137 unsigned int i;
138
139 /* Count the stats. Every unique item needs to be re-hashed and
140 re-entered. */
141 bcache->expand_count++;
142 bcache->expand_hash_count += bcache->unique_count;
143
144 /* Find the next size. */
145 new_num_buckets = bcache->num_buckets * 2;
146 for (i = 0; i < (sizeof (sizes) / sizeof (sizes[0])); i++)
147 if (sizes[i] > bcache->num_buckets)
148 {
149 new_num_buckets = sizes[i];
150 break;
151 }
152
153 /* Allocate the new table. */
154 {
155 size_t new_size = new_num_buckets * sizeof (new_buckets[0]);
156 new_buckets = (struct bstring **) xmalloc (new_size);
157 memset (new_buckets, 0, new_size);
158
159 bcache->structure_size -= (bcache->num_buckets
160 * sizeof (bcache->bucket[0]));
161 bcache->structure_size += new_size;
162 }
163
164 /* Rehash all existing strings. */
165 for (i = 0; i < bcache->num_buckets; i++)
166 {
167 struct bstring *s, *next;
168
169 for (s = bcache->bucket[i]; s; s = next)
170 {
171 struct bstring **new_bucket;
172 next = s->next;
173
174 new_bucket = &new_buckets[(hash (&s->d.data, s->length)
175 % new_num_buckets)];
176 s->next = *new_bucket;
177 *new_bucket = s;
178 }
179 }
180
181 /* Plug in the new table. */
182 if (bcache->bucket)
183 xfree (bcache->bucket);
184 bcache->bucket = new_buckets;
185 bcache->num_buckets = new_num_buckets;
186 }
187
188 \f
189 /* Looking up things in the bcache. */
190
191 /* The number of bytes needed to allocate a struct bstring whose data
192 is N bytes long. */
193 #define BSTRING_SIZE(n) (offsetof (struct bstring, d.data) + (n))
194
195 /* Find a copy of the LENGTH bytes at ADDR in BCACHE. If BCACHE has
196 never seen those bytes before, add a copy of them to BCACHE. In
197 either case, return a pointer to BCACHE's copy of that string. */
198 static void *
199 bcache_data (const void *addr, int length, struct bcache *bcache)
200 {
201 unsigned long full_hash;
202 unsigned short half_hash;
203 int hash_index;
204 struct bstring *s;
205
206 /* If our average chain length is too high, expand the hash table. */
207 if (bcache->unique_count >= bcache->num_buckets * CHAIN_LENGTH_THRESHOLD)
208 expand_hash_table (bcache);
209
210 bcache->total_count++;
211 bcache->total_size += length;
212
213 full_hash = hash (addr, length);
214 half_hash = (full_hash >> 16);
215 hash_index = full_hash % bcache->num_buckets;
216
217 /* Search the hash bucket for a string identical to the caller's.
218 As a short-circuit first compare the upper part of each hash
219 values. */
220 for (s = bcache->bucket[hash_index]; s; s = s->next)
221 {
222 if (s->half_hash == half_hash)
223 {
224 if (s->length == length
225 && ! memcmp (&s->d.data, addr, length))
226 return &s->d.data;
227 else
228 bcache->half_hash_miss_count++;
229 }
230 }
231
232 /* The user's string isn't in the list. Insert it after *ps. */
233 {
234 struct bstring *new
235 = obstack_alloc (&bcache->cache, BSTRING_SIZE (length));
236 memcpy (&new->d.data, addr, length);
237 new->length = length;
238 new->next = bcache->bucket[hash_index];
239 new->half_hash = half_hash;
240 bcache->bucket[hash_index] = new;
241
242 bcache->unique_count++;
243 bcache->unique_size += length;
244 bcache->structure_size += BSTRING_SIZE (length);
245
246 return &new->d.data;
247 }
248 }
249
250 void *
251 deprecated_bcache (const void *addr, int length, struct bcache *bcache)
252 {
253 return bcache_data (addr, length, bcache);
254 }
255
256 const void *
257 bcache (const void *addr, int length, struct bcache *bcache)
258 {
259 return bcache_data (addr, length, bcache);
260 }
261 \f
262 /* Allocating and freeing bcaches. */
263
264 struct bcache *
265 bcache_xmalloc (void)
266 {
267 /* Allocate the bcache pre-zeroed. */
268 struct bcache *b = XCALLOC (1, struct bcache);
269 /* We could use obstack_specify_allocation here instead, but
270 gdb_obstack.h specifies the allocation/deallocation
271 functions. */
272 obstack_init (&b->cache);
273 return b;
274 }
275
276 /* Free all the storage associated with BCACHE. */
277 void
278 bcache_xfree (struct bcache *bcache)
279 {
280 if (bcache == NULL)
281 return;
282 obstack_free (&bcache->cache, 0);
283 xfree (bcache->bucket);
284 xfree (bcache);
285 }
286
287
288 \f
289 /* Printing statistics. */
290
291 static int
292 compare_ints (const void *ap, const void *bp)
293 {
294 /* Because we know we're comparing two ints which are positive,
295 there's no danger of overflow here. */
296 return * (int *) ap - * (int *) bp;
297 }
298
299
300 static void
301 print_percentage (int portion, int total)
302 {
303 if (total == 0)
304 /* i18n: Like "Percentage of duplicates, by count: (not applicable)" */
305 printf_filtered (_("(not applicable)\n"));
306 else
307 printf_filtered ("%3d%%\n", (int) (portion * 100.0 / total));
308 }
309
310
311 /* Print statistics on BCACHE's memory usage and efficacity at
312 eliminating duplication. NAME should describe the kind of data
313 BCACHE holds. Statistics are printed using `printf_filtered' and
314 its ilk. */
315 void
316 print_bcache_statistics (struct bcache *c, char *type)
317 {
318 int occupied_buckets;
319 int max_chain_length;
320 int median_chain_length;
321 int max_entry_size;
322 int median_entry_size;
323
324 /* Count the number of occupied buckets, tally the various string
325 lengths, and measure chain lengths. */
326 {
327 unsigned int b;
328 int *chain_length = XCALLOC (c->num_buckets + 1, int);
329 int *entry_size = XCALLOC (c->unique_count + 1, int);
330 int stringi = 0;
331
332 occupied_buckets = 0;
333
334 for (b = 0; b < c->num_buckets; b++)
335 {
336 struct bstring *s = c->bucket[b];
337
338 chain_length[b] = 0;
339
340 if (s)
341 {
342 occupied_buckets++;
343
344 while (s)
345 {
346 gdb_assert (b < c->num_buckets);
347 chain_length[b]++;
348 gdb_assert (stringi < c->unique_count);
349 entry_size[stringi++] = s->length;
350 s = s->next;
351 }
352 }
353 }
354
355 /* To compute the median, we need the set of chain lengths sorted. */
356 qsort (chain_length, c->num_buckets, sizeof (chain_length[0]),
357 compare_ints);
358 qsort (entry_size, c->unique_count, sizeof (entry_size[0]),
359 compare_ints);
360
361 if (c->num_buckets > 0)
362 {
363 max_chain_length = chain_length[c->num_buckets - 1];
364 median_chain_length = chain_length[c->num_buckets / 2];
365 }
366 else
367 {
368 max_chain_length = 0;
369 median_chain_length = 0;
370 }
371 if (c->unique_count > 0)
372 {
373 max_entry_size = entry_size[c->unique_count - 1];
374 median_entry_size = entry_size[c->unique_count / 2];
375 }
376 else
377 {
378 max_entry_size = 0;
379 median_entry_size = 0;
380 }
381
382 xfree (chain_length);
383 xfree (entry_size);
384 }
385
386 printf_filtered (_(" Cached '%s' statistics:\n"), type);
387 printf_filtered (_(" Total object count: %ld\n"), c->total_count);
388 printf_filtered (_(" Unique object count: %lu\n"), c->unique_count);
389 printf_filtered (_(" Percentage of duplicates, by count: "));
390 print_percentage (c->total_count - c->unique_count, c->total_count);
391 printf_filtered ("\n");
392
393 printf_filtered (_(" Total object size: %ld\n"), c->total_size);
394 printf_filtered (_(" Unique object size: %ld\n"), c->unique_size);
395 printf_filtered (_(" Percentage of duplicates, by size: "));
396 print_percentage (c->total_size - c->unique_size, c->total_size);
397 printf_filtered ("\n");
398
399 printf_filtered (_(" Max entry size: %d\n"), max_entry_size);
400 printf_filtered (_(" Average entry size: "));
401 if (c->unique_count > 0)
402 printf_filtered ("%ld\n", c->unique_size / c->unique_count);
403 else
404 /* i18n: "Average entry size: (not applicable)" */
405 printf_filtered (_("(not applicable)\n"));
406 printf_filtered (_(" Median entry size: %d\n"), median_entry_size);
407 printf_filtered ("\n");
408
409 printf_filtered (_(" Total memory used by bcache, including overhead: %ld\n"),
410 c->structure_size);
411 printf_filtered (_(" Percentage memory overhead: "));
412 print_percentage (c->structure_size - c->unique_size, c->unique_size);
413 printf_filtered (_(" Net memory savings: "));
414 print_percentage (c->total_size - c->structure_size, c->total_size);
415 printf_filtered ("\n");
416
417 printf_filtered (_(" Hash table size: %3d\n"), c->num_buckets);
418 printf_filtered (_(" Hash table expands: %lu\n"),
419 c->expand_count);
420 printf_filtered (_(" Hash table hashes: %lu\n"),
421 c->total_count + c->expand_hash_count);
422 printf_filtered (_(" Half hash misses: %lu\n"),
423 c->half_hash_miss_count);
424 printf_filtered (_(" Hash table population: "));
425 print_percentage (occupied_buckets, c->num_buckets);
426 printf_filtered (_(" Median hash chain length: %3d\n"),
427 median_chain_length);
428 printf_filtered (_(" Average hash chain length: "));
429 if (c->num_buckets > 0)
430 printf_filtered ("%3lu\n", c->unique_count / c->num_buckets);
431 else
432 /* i18n: "Average hash chain length: (not applicable)" */
433 printf_filtered (_("(not applicable)\n"));
434 printf_filtered (_(" Maximum hash chain length: %3d\n"), max_chain_length);
435 printf_filtered ("\n");
436 }
437
438 int
439 bcache_memory_used (struct bcache *bcache)
440 {
441 return obstack_memory_used (&bcache->cache);
442 }